aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/ChangeLog5
-rw-r--r--src/algebra/files.spad.pamphlet4
-rw-r--r--src/share/algebra/browse.daase1484
-rw-r--r--src/share/algebra/category.daase1574
-rw-r--r--src/share/algebra/compress.daase1350
-rw-r--r--src/share/algebra/interp.daase9128
-rw-r--r--src/share/algebra/operation.daase31850
7 files changed, 22702 insertions, 22693 deletions
diff --git a/src/ChangeLog b/src/ChangeLog
index 3f914bd7..d2a64671 100644
--- a/src/ChangeLog
+++ b/src/ChangeLog
@@ -1,5 +1,10 @@
2010-12-19 Gabriel Dos Reis <gdr@cs.tamu.edu>
+ * algebra/files.spad.pamphlet (KeyedAccessFile): Use try/finally
+ instead of Lisp-level UNWIND-PROTECT.
+
+2010-12-19 Gabriel Dos Reis <gdr@cs.tamu.edu>
+
* interp/vmlisp.lisp (VECP): Remove.
(REFVECP): Likewise.
(CVECP): Likewise.
diff --git a/src/algebra/files.spad.pamphlet b/src/algebra/files.spad.pamphlet
index 6f288a23..82fac4e6 100644
--- a/src/algebra/files.spad.pamphlet
+++ b/src/algebra/files.spad.pamphlet
@@ -391,8 +391,8 @@ KeyedAccessFile(Entry): KAFcategory == KAFcapsule where
setelt(f,k,e) ==
-- Leaves f in a safe, closed state. For speed use "write".
reopen!(f, "output")
- UNWIND_-PROTECT(write!(f, [k,e]), close! f)$Lisp
- close! f
+ try write!(f, [k,e])
+ finally close! f
e
search(k,f) ==
not member?(k, keys f) => "failed" -- can't trap RREAD error
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index b1a1c1e5..65f9fd0b 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,5 +1,5 @@
-(2300690 . 3500593098)
+(2287550 . 3501779185)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
@@ -33,19 +33,19 @@ NIL
NIL
NIL
(-26 S)
-((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
+((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
NIL
NIL
(-27)
-((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
+((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-28 S R)
-((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
+((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
NIL
NIL
(-29 R)
-((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
+((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
((-4505 . T) (-4503 . T) (-4502 . T) ((-4510 "*") . T) (-4501 . T) (-4506 . T) (-4500 . T))
NIL
(-30)
@@ -53,19 +53,19 @@ NIL
NIL
NIL
(-31)
-((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
+((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression `d'.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -2284)
+(-32 R -1683)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))))
(-33 S)
-((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
+((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
((|HasAttribute| |#1| (QUOTE -4508)))
(-34)
-((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
+((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
NIL
(-35)
@@ -85,15 +85,15 @@ NIL
((-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-39 UP)
-((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
+((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an.")))
NIL
NIL
-(-40 -2284 UP UPUP -2865)
+(-40 -1683 UP UPUP -3601)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
((-4501 |has| (-421 |#2|) (-376)) (-4506 |has| (-421 |#2|) (-376)) (-4500 |has| (-421 |#2|) (-376)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-363))) (-2304 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2304 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2304 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2304 (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-363))))) (-2304 (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -660) (QUOTE (-560)))) (-2304 (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))))
-(-41 R -2284)
-((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
+((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-363))) (-2196 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2196 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2196 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2196 (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-363))))) (-2196 (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -660) (QUOTE (-560)))) (-2196 (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))))
+(-41 R -1683)
+((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -435) (|devaluate| |#1|)))))
(-42 OV E P)
@@ -111,7 +111,7 @@ NIL
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
((-4508 . T) (-4509 . T))
-((-2304 (-12 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2968) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2460) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2968) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2460) (|devaluate| |#2|))))))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-871))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2968) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2460) (|devaluate| |#2|)))))))
+((-2196 (-12 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1438) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3067) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1438) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3067) (|devaluate| |#2|))))))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-871))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1438) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3067) (|devaluate| |#2|)))))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
@@ -125,7 +125,7 @@ NIL
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
((|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (LIST (QUOTE -1069) (QUOTE (-560)))))
(-49)
-((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
+((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function `f'.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by `f'.")))
NIL
NIL
(-50 R |lVar|)
@@ -133,7 +133,7 @@ NIL
((-4505 . T))
NIL
(-51)
-((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and AnyFunctions1.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
+((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and \\spad{AnyFunctions1}.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}.")))
NIL
NIL
(-52 S)
@@ -144,8 +144,8 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -2284)
-((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
+(-54 |Base| R -1683)
+((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}rn is applicable to the expression.")))
NIL
NIL
(-55)
@@ -153,149 +153,149 @@ NIL
NIL
NIL
(-56 S R |Row| |Col|)
-((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $ |#2|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#4|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#3|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#2|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#4| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#3| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#2| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#2| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#2|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
+((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $ |#2|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#4|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#3|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#2|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#4| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#3| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#2| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#2| $ (|Integer|) (|Integer|) |#2|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#2| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#2|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}'s")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#2|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
NIL
NIL
(-57 R |Row| |Col|)
-((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
+((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}'s")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
((-4508 . T) (-4509 . T))
NIL
(-58 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
((-4509 . T) (-4508 . T))
-((-2304 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2304 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-2196 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2196 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-59 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
NIL
NIL
(-60 R)
-((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
+((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray's.")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
-(-61 -3614)
+((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
+(-61 -4389)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-62 -3614)
+(-62 -4389)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-63 -3614)
+(-63 -4389)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-64 -3614)
+(-64 -4389)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-65 -3614)
+(-65 -4389)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -3614)
+(-66 -4389)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -3614)
+(-67 -4389)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -3614)
+(-68 -4389)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -3614)
+(-69 -4389)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -3614)
+(-70 -4389)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -3614)
+(-71 -4389)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -3614)
+(-72 -4389)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -3614)
+(-73 -4389)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -3614)
+(-74 -4389)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-75 -3614)
+(-75 -4389)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
(-76 |nameOne| |nameTwo| |nameThree|)
-((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
+((|constructor| (NIL "\\spadtype{Asp41} produces Fortran for Type 41 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives wrt \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE FCN(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=Y(2) F(2)=Y(3) F(3)=(-1.0D0*Y(1)*Y(3))+2.0D0*EPS*Y(2)**2+(-2.0D0*EPS) RETURN END SUBROUTINE JACOBF(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N,N),X,Y(N) INTEGER N F(1,1)=0.0D0 F(1,2)=1.0D0 F(1,3)=0.0D0 F(2,1)=0.0D0 F(2,2)=0.0D0 F(2,3)=1.0D0 F(3,1)=-1.0D0*Y(3) F(3,2)=4.0D0*EPS*Y(2) F(3,3)=-1.0D0*Y(1) RETURN END SUBROUTINE JACEPS(X,EPS,Y,F,N) DOUBLE PRECISION EPS,F(N),X,Y(N) INTEGER N F(1)=0.0D0 F(2)=0.0D0 F(3)=2.0D0*Y(2)**2-2.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE EPS)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
(-77 |nameOne| |nameTwo| |nameThree|)
-((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
+((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives wrt \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-78 -3614)
+(-78 -4389)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -3614)
+(-79 -4389)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -3614)
+(-80 -4389)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -3614)
+(-81 -4389)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -3614)
+(-82 -4389)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -3614)
+(-83 -4389)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -3614)
+(-84 -4389)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -3614)
+(-85 -4389)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -3614)
+(-86 -4389)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -3614)
+(-87 -4389)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-88 -3614)
+(-88 -4389)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-89 -3614)
+(-89 -4389)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
(-90 R L)
-((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}\\spad{'s}.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}.")))
+((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}'s.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}.")))
NIL
((|HasCategory| |#1| (QUOTE (-376))))
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -341,9 +341,9 @@ NIL
NIL
NIL
(-103 S)
-((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
+((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values pl and pr. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} := \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of ls.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
@@ -363,9 +363,9 @@ NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2304 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (LIST (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147)))))
+((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2196 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (LIST (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147)))))
(-109)
-((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
+((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name `n' and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
NIL
(-110)
@@ -389,41 +389,41 @@ NIL
NIL
NIL
(-115)
-((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")))
+((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If \\spad{op1} and \\spad{op2} have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If \\spad{op1} and \\spad{op2} have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1} and \\spad{op2} should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")))
NIL
NIL
(-116 A)
-((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise.")))
+((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [\\spad{foo1},{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise.")))
NIL
NIL
-(-117 -2284 UP)
+(-117 -1683 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-118 |p|)
-((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
+((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-119 |p|)
-((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
+((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| (-118 |#1|) (QUOTE (-939))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-149))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-118 |#1|) (QUOTE (-1051))) (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-871))) (-2304 (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-871)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (QUOTE (-1182))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (QUOTE (-239))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (QUOTE (-240))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -321) (LIST (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -298) (LIST (QUOTE -118) (|devaluate| |#1|)) (LIST (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (QUOTE (-319))) (|HasCategory| (-118 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-939)))) (|HasCategory| (-118 |#1|) (QUOTE (-147)))))
+((|HasCategory| (-118 |#1|) (QUOTE (-939))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-149))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-118 |#1|) (QUOTE (-1051))) (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-871))) (-2196 (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-871)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (QUOTE (-1182))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (QUOTE (-239))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (QUOTE (-240))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -321) (LIST (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (LIST (QUOTE -298) (LIST (QUOTE -118) (|devaluate| |#1|)) (LIST (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (QUOTE (-319))) (|HasCategory| (-118 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-939)))) (|HasCategory| (-118 |#1|) (QUOTE (-147)))))
(-120 A S)
-((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
+((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
((|HasAttribute| |#1| (QUOTE -4509)))
(-121 S)
-((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
+((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
NIL
(-122 UP)
-((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive.")))
+((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} pp. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive.")))
NIL
NIL
(-123 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
(-124 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")))
NIL
@@ -443,19 +443,19 @@ NIL
(-128 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
(-129 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
(-130)
-((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
+((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value `v' into the Byte algebra. `v' must be non-negative and less than 256.")))
NIL
NIL
(-131)
-((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
+((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity `n'. The array can then store up to `n' bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if `n' is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
((-4509 . T) (-4508 . T))
-((-2304 (-12 (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (LIST (QUOTE -321) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (LIST (QUOTE -321) (QUOTE (-130)))))) (-2304 (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (LIST (QUOTE -321) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-130) (LIST (QUOTE -633) (QUOTE (-549)))) (-2304 (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132)))) (|HasCategory| (-130) (QUOTE (-871))) (-2304 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (LIST (QUOTE -321) (QUOTE (-130))))))
+((-2196 (-12 (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (LIST (QUOTE -321) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (LIST (QUOTE -321) (QUOTE (-130)))))) (-2196 (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (LIST (QUOTE -321) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-130) (LIST (QUOTE -633) (QUOTE (-549)))) (-2196 (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132)))) (|HasCategory| (-130) (QUOTE (-871))) (-2196 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (LIST (QUOTE -321) (QUOTE (-130))))))
(-132)
((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host")))
NIL
@@ -469,18 +469,18 @@ NIL
NIL
NIL
(-135)
-((|constructor| (NIL "This domain represents the capsule of a domain definition.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of top level expressions appearing in \\spad{`c'}.")))
+((|constructor| (NIL "This domain represents the capsule of a domain definition.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of top level expressions appearing in `c'.")))
NIL
NIL
(-136)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")))
(((-4510 "*") . T))
NIL
-(-137 |minix| -1834 R)
+(-137 |minix| -3662 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
-(-138 |minix| -1834 S T$)
+(-138 |minix| -3662 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
@@ -489,7 +489,7 @@ NIL
NIL
NIL
(-140)
-((|constructor| (NIL "This domain represents the unnamed category defined \\indented{2}{by a list of exported signatures}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of exports in category syntax \\spad{`c'}.")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(c)} returns the kind of unnamed category,{} either 'domain' or 'package'.")))
+((|constructor| (NIL "This domain represents the unnamed category defined \\indented{2}{by a list of exported signatures}")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(c)} returns the list of exports in category syntax `c'.")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(c)} returns the kind of unnamed category,{} either 'domain' or 'package'.")))
NIL
NIL
(-141)
@@ -497,15 +497,15 @@ NIL
NIL
NIL
(-142)
-((|parents| (((|List| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{parents(c)} returns the list of all category forms directly extended by the category \\spad{`c'}.")) (|principalAncestors| (((|List| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{principalAncestors(c)} returns the list of all category forms that are principal ancestors of the the category \\spad{`c'}.")) (|exportedOperators| (((|List| (|OperatorSignature|)) $) "\\spad{exportedOperators(c)} returns the list of all operator signatures exported by the category \\spad{`c'},{} along with their predicates.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: December 20,{} 2008. Date Last Updated: February 16,{} 2008. Basic Operations: coerce Related Constructors: Also See: Type") (((|CategoryConstructor|) $) "\\spad{constructor(c)} returns the category constructor used to instantiate the category object \\spad{`c'}.")))
+((|parents| (((|List| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{parents(c)} returns the list of all category forms directly extended by the category `c'.")) (|principalAncestors| (((|List| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{principalAncestors(c)} returns the list of all category forms that are principal ancestors of the the category `c'.")) (|exportedOperators| (((|List| (|OperatorSignature|)) $) "\\spad{exportedOperators(c)} returns the list of all operator signatures exported by the category `c',{} along with their predicates.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: December 20,{} 2008. Date Last Updated: February 16,{} 2008. Basic Operations: coerce Related Constructors: Also See: Type") (((|CategoryConstructor|) $) "\\spad{constructor(c)} returns the category constructor used to instantiate the category object `c'.")))
NIL
NIL
(-143)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
((-4508 . T) (-4498 . T) (-4509 . T))
-((-2304 (-12 (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))))
+((-2196 (-12 (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))))
(-144 R Q A)
-((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
+((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn.")))
NIL
NIL
(-145)
@@ -521,27 +521,27 @@ NIL
((-4505 . T))
NIL
(-148 R)
-((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
+((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial 'x,{} then it returns the characteristic polynomial expressed as a polynomial in 'x.")))
NIL
NIL
(-149)
((|constructor| (NIL "Rings of Characteristic Zero.")))
((-4505 . T))
NIL
-(-150 -2284 UP UPUP)
+(-150 -1683 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}.")))
NIL
NIL
(-151 R CR)
-((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod \\spad{fj} (\\spad{j} \\spad{\\=} \\spad{i}) or equivalently g/prod \\spad{fj} = sum (ai/fi) or returns \"failed\" if no such list exists")))
+((|constructor| (NIL "This package provides the generalized euclidean algorithm which is needed as the basic step for factoring polynomials.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} where (\\spad{fi} relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g} = sum \\spad{ai} prod fj (\\spad{j} \\= \\spad{i}) or equivalently g/prod fj = sum (ai/fi) or returns \"failed\" if no such list exists")))
NIL
NIL
(-152 A S)
-((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
+((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasAttribute| |#1| (QUOTE -4508)))
(-153 S)
-((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
+((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
(-154 |n| K Q)
@@ -568,8 +568,8 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-160 R -2284)
-((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
+(-160 R -1683)
+((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} n!.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} n!/(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} n!/(r! * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
(-161 I)
@@ -577,7 +577,7 @@ NIL
NIL
NIL
(-162)
-((|constructor| (NIL "CombinatorialOpsCategory is the category obtaining by adjoining summations and products to the usual combinatorial operations.")) (|product| (($ $ (|SegmentBinding| $)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") (($ $ (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| (($ $ (|SegmentBinding| $)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") (($ $ (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| (($ $ (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") (($ $) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")))
+((|constructor| (NIL "CombinatorialOpsCategory is the category obtaining by adjoining summations and products to the usual combinatorial operations.")) (|product| (($ $ (|SegmentBinding| $)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") (($ $ (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| (($ $ (|SegmentBinding| $)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") (($ $ (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| (($ $ (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") (($ $) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")))
NIL
NIL
(-163)
@@ -602,7 +602,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-939))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1033))) (|HasCategory| |#2| (QUOTE (-1233))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4504)) (|HasAttribute| |#2| (QUOTE -4507)) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-571))))
(-168 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4501 -2304 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4504 |has| |#1| (-6 -4504)) (-4507 |has| |#1| (-6 -4507)) (-2245 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((-4501 -2196 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4504 |has| |#1| (-6 -4504)) (-4507 |has| |#1| (-6 -4507)) (-2917 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-169 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -614,8 +614,8 @@ NIL
NIL
(-171 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4501 -2304 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4504 |has| |#1| (-6 -4504)) (-4507 |has| |#1| (-6 -4507)) (-2245 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-2304 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-2304 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-363)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-939))))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-939))))) (-2304 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2304 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-571)))) (-2304 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-1091))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasAttribute| |#1| (QUOTE -4504)) (|HasAttribute| |#1| (QUOTE -4507)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207))))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-363)))))
+((-4501 -2196 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4504 |has| |#1| (-6 -4504)) (-4507 |has| |#1| (-6 -4507)) (-2917 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-2196 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-2196 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-363)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-939))))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-939))))) (-2196 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2196 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-571)))) (-2196 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-1091))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasAttribute| |#1| (QUOTE -4504)) (|HasAttribute| |#1| (QUOTE -4507)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207))))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-363)))))
(-172 R S)
((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}.")))
NIL
@@ -641,7 +641,7 @@ NIL
(((-4510 "*") . T) (-4501 . T) (-4506 . T) (-4500 . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-178)
-((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with \\spad{`n'}. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
+((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with `n'. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding `b'.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
NIL
NIL
(-179 R)
@@ -657,7 +657,7 @@ NIL
NIL
((|HasCategory| (-975 |#2|) (LIST (QUOTE -911) (|devaluate| |#1|))))
(-182 R)
-((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}")))
+((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)*lm(2)*...*lm(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}")))
NIL
NIL
(-183)
@@ -665,7 +665,7 @@ NIL
NIL
NIL
(-184 R UP)
-((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken\\spad{'s} idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user\\spad{'s} responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage\\spad{'s} variant of Graeffe\\spad{'s} method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly, eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,eps,info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} \\spad{-1\"}. Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p, eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p, eps, info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p, eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}.")))
+((|constructor| (NIL "\\spadtype{ComplexRootFindingPackage} provides functions to find all roots of a polynomial \\spad{p} over the complex number by using Plesken's idea to calculate in the polynomial ring modulo \\spad{f} and employing the Chinese Remainder Theorem. In this first version,{} the precision (see \\spadfunFrom{digits}{Float}) is not increased when this is necessary to avoid rounding errors. Hence it is the user's responsibility to increase the precision if necessary. Note also,{} if this package is called with \\spadignore{e.g.} \\spadtype{Fraction Integer},{} the precise calculations could require a lot of time. Also note that evaluating the zeros is not necessarily a good check whether the result is correct: already evaluation can cause rounding errors.")) (|startPolynomial| (((|Record| (|:| |start| |#2|) (|:| |factors| (|Factored| |#2|))) |#2|) "\\spad{startPolynomial(p)} uses the ideas of Schoenhage's variant of Graeffe's method to construct circles which separate roots to get a good start polynomial,{} \\spadignore{i.e.} one whose image under the Chinese Remainder Isomorphism has both entries of norm smaller and greater or equal to 1. In case the roots are found during internal calculations. The corresponding factors are in {\\em factors} which are otherwise 1.")) (|setErrorBound| ((|#1| |#1|) "\\spad{setErrorBound(eps)} changes the internal error bound,{} by default being {\\em 10 ** (-3)} to \\spad{eps},{} if \\spad{R} is a member in the category \\spadtype{QuotientFieldCategory Integer}. The internal {\\em globalDigits} is set to {\\em ceiling(1/r)**2*10} being {\\em 10**7} by default.")) (|schwerpunkt| (((|Complex| |#1|) |#2|) "\\spad{schwerpunkt(p)} determines the 'Schwerpunkt' of the roots of the polynomial \\spad{p} of degree \\spad{n},{} \\spadignore{i.e.} the center of gravity,{} which is {\\em coeffient of \\spad{x**(n-1)}} divided by {\\em n times coefficient of \\spad{x**n}}.")) (|rootRadius| ((|#1| |#2|) "\\spad{rootRadius(p)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em 1+globalEps},{} where {\\em globalEps} is the internal error bound,{} which can be set by {\\em setErrorBound}.") ((|#1| |#2| |#1|) "\\spad{rootRadius(p,errQuot)} calculates the root radius of \\spad{p} with a maximal error quotient of {\\em errQuot}.")) (|reciprocalPolynomial| ((|#2| |#2|) "\\spad{reciprocalPolynomial(p)} calulates a polynomial which has exactly the inverses of the non-zero roots of \\spad{p} as roots,{} and the same number of 0-roots.")) (|pleskenSplit| (((|Factored| |#2|) |#2| |#1|) "\\spad{pleskenSplit(poly, eps)} determines a start polynomial {\\em start}\\\\ by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} -1\". Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{pleskenSplit(poly,eps,info)} determines a start polynomial {\\em start} by using \"startPolynomial then it increases the exponent \\spad{n} of {\\em start ** n mod poly} to get an approximate factor of {\\em poly},{} in general of degree \"degree \\spad{poly} -1\". Then a divisor cascade is calculated and the best splitting is chosen,{} as soon as the error is small enough. If {\\em info} is {\\em true},{} then information messages are issued.")) (|norm| ((|#1| |#2|) "\\spad{norm(p)} determines sum of absolute values of coefficients Note: this function depends on \\spadfunFrom{abs}{Complex}.")) (|graeffe| ((|#2| |#2|) "\\spad{graeffe p} determines \\spad{q} such that \\spad{q(-z**2) = p(z)*p(-z)}. Note that the roots of \\spad{q} are the squares of the roots of \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} tries to factor \\spad{p} into linear factors with error atmost {\\em globalEps},{} the internal error bound,{} which can be set by {\\em setErrorBound}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1|) "\\spad{factor(p, eps)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization.") (((|Factored| |#2|) |#2| |#1| (|Boolean|)) "\\spad{factor(p, eps, info)} tries to factor \\spad{p} into linear factors with error atmost {\\em eps}. An overall error bound {\\em eps0} is determined and iterated tree-like calls to {\\em pleskenSplit} are used to get the factorization. If {\\em info} is {\\em true},{} then information messages are given.")) (|divisorCascade| (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2|) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions is calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial.") (((|List| (|Record| (|:| |factors| (|List| |#2|)) (|:| |error| |#1|))) |#2| |#2| (|Boolean|)) "\\spad{divisorCascade(p,tp)} assumes that degree of polynomial {\\em tp} is smaller than degree of polynomial \\spad{p},{} both monic. A sequence of divisions are calculated using the remainder,{} made monic,{} as divisor for the the next division. The result contains also the error of the factorizations,{} \\spadignore{i.e.} the norm of the remainder polynomial. If {\\em info} is {\\em true},{} then information messages are issued.")) (|complexZeros| (((|List| (|Complex| |#1|)) |#2| |#1|) "\\spad{complexZeros(p, eps)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by {\\em eps}.") (((|List| (|Complex| |#1|)) |#2|) "\\spad{complexZeros(p)} tries to determine all complex zeros of the polynomial \\spad{p} with accuracy given by the package constant {\\em globalEps} which you may change by {\\em setErrorBound}.")))
NIL
NIL
(-185 S ST)
@@ -681,18 +681,18 @@ NIL
NIL
NIL
(-188 S)
-((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")))
+((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(\\spad{i+1}) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")))
NIL
NIL
(-189)
-((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(i+1) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")))
+((|constructor| (NIL "This category declares basic operations on all constructors.")) (|operations| (((|List| (|OverloadSet|)) $) "\\spad{operations(c)} returns the list of all operator exported by instantiations of constructor \\spad{c}. The operators are partitioned into overload sets.")) (|dualSignature| (((|List| (|Boolean|)) $) "\\spad{dualSignature(c)} returns a list \\spad{l} of Boolean values with the following meaning: \\indented{2}{\\spad{l}.(\\spad{i+1}) holds when the constructor takes a domain object} \\indented{10}{as the `i'th argument.\\space{2}Otherwise the argument} \\indented{10}{must be a non-domain object.}")) (|kind| (((|ConstructorKind|) $) "\\spad{kind(ctor)} returns the kind of the constructor `ctor'.")))
NIL
NIL
(-190)
((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors")))
NIL
NIL
-(-191 R -2284)
+(-191 R -1683)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -733,11 +733,11 @@ NIL
NIL
NIL
(-201)
-((|constructor| (NIL "\\axiomType{d01apfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01APF,{} a general numerical integration routine which can handle end point singularities of the algebraico-logarithmic form \\spad{w}(\\spad{x}) = (\\spad{x}-a)\\spad{^c} * (\\spad{b}-\\spad{x})\\spad{^d}. The function \\axiomFun{measure} measures the usefulness of the routine D01APF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
+((|constructor| (NIL "\\axiomType{d01apfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01APF,{} a general numerical integration routine which can handle end point singularities of the algebraico-logarithmic form \\spad{w}(\\spad{x}) = (\\spad{x}-a)^c * (\\spad{b}-\\spad{x})^d. The function \\axiomFun{measure} measures the usefulness of the routine D01APF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
(-202)
-((|constructor| (NIL "\\axiomType{d01aqfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AQF,{} a general numerical integration routine which can solve an integral of the form \\newline \\centerline{\\inputbitmap{/home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.\\spad{xbm}}} The function \\axiomFun{measure} measures the usefulness of the routine D01AQF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
+((|constructor| (NIL "\\axiomType{d01aqfAnnaType} is a domain of \\axiomType{NumericalIntegrationCategory} for the NAG routine D01AQF,{} a general numerical integration routine which can solve an integral of the form \\newline \\centerline{\\inputbitmap{/home/bjd/Axiom/anna/hypertex/bitmaps/d01aqf.xbm}} The function \\axiomFun{measure} measures the usefulness of the routine D01AQF for the given problem. The function \\axiomFun{numericalIntegration} performs the integration by using \\axiomType{NagIntegrationPackage}.")))
NIL
NIL
(-203)
@@ -761,7 +761,7 @@ NIL
NIL
NIL
(-208)
-((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units\\spad{''} \\spad{->} 0.75 \\newline 200 ``operation units\\spad{''} \\spad{->} 0.5 \\newline 83 ``operation units\\spad{''} \\spad{->} 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,symbols,values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,C2)} is for interacting attributes")))
+((|constructor| (NIL "\\axiom{d02AgentsPackage} contains a set of computational agents for use with Ordinary Differential Equation solvers.")) (|intermediateResultsIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{intermediateResultsIF(o)} returns a value corresponding to the required number of intermediate results required and,{} therefore,{} an indication of how much this would affect the step-length of the calculation. It returns a value in the range [0,{}1].")) (|accuracyIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{accuracyIF(o)} returns the intensity value of the accuracy requirements of the input ODE. A request of accuracy of 10^-6 corresponds to the neutral intensity. It returns a value in the range [0,{}1].")) (|expenseOfEvaluationIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{expenseOfEvaluationIF(o)} returns the intensity value of the cost of evaluating the input ODE. This is in terms of the number of ``operational units''. It returns a value in the range [0,{}1].\\newline\\indent{20} 400 ``operation units'' -> 0.75 \\newline 200 ``operation units'' -> 0.5 \\newline 83 ``operation units'' -> 0.25 \\newline\\indent{15} exponentiation = 4 units ,{} function calls = 10 units.")) (|systemSizeIF| (((|Float|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{systemSizeIF(ode)} returns the intensity value of the size of the system of ODEs. 20 equations corresponds to the neutral value. It returns a value in the range [0,{}1].")) (|stiffnessAndStabilityOfODEIF| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityOfODEIF(ode)} calculates the intensity values of stiffness of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian). \\blankline It returns two values in the range [0,{}1].")) (|stiffnessAndStabilityFactor| (((|Record| (|:| |stiffnessFactor| (|Float|)) (|:| |stabilityFactor| (|Float|))) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{stiffnessAndStabilityFactor(me)} calculates the stability and stiffness factor of a system of first-order differential equations (by evaluating the maximum difference in the real parts of the negative eigenvalues of the jacobian of the system for which \\spad{O}(10) equates to mildly stiff wheras stiffness ratios of \\spad{O}(10^6) are not uncommon) and whether the system is likely to show any oscillations (identified by the closeness to the imaginary axis of the complex eigenvalues of the jacobian).")) (|eval| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Matrix| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|)) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{eval(mat,symbols,values)} evaluates a multivariable matrix at given \\spad{values} for each of a list of variables")) (|jacobian| (((|Matrix| (|Expression| (|DoubleFloat|))) (|Vector| (|Expression| (|DoubleFloat|))) (|List| (|Symbol|))) "\\spad{jacobian(v,w)} is a local function to make a jacobian matrix")) (|sparsityIF| (((|Float|) (|Matrix| (|Expression| (|DoubleFloat|)))) "\\spad{sparsityIF(m)} calculates the sparsity of a jacobian matrix")) (|combineFeatureCompatibility| (((|Float|) (|Float|) (|List| (|Float|))) "\\spad{combineFeatureCompatibility(C1,L)} is for interacting attributes") (((|Float|) (|Float|) (|Float|)) "\\spad{combineFeatureCompatibility(C1,C2)} is for interacting attributes")))
NIL
NIL
(-209)
@@ -793,7 +793,7 @@ NIL
NIL
NIL
(-216 N T$)
-((|constructor| (NIL "This domain provides for a fixed-sized homogeneous data buffer.")) (|qsetelt| ((|#2| $ (|NonNegativeInteger|) |#2|) "setelt(\\spad{b},{}\\spad{i},{}\\spad{x}) sets the \\spad{i}th entry of data buffer \\spad{`b'} to \\spad{`x'}. Indexing is 0-based.")) (|qelt| ((|#2| $ (|NonNegativeInteger|)) "elt(\\spad{b},{}\\spad{i}) returns the \\spad{i}th element in buffer \\spad{`b'}. Indexing is 0-based.")) (|new| (($) "\\spad{new()} returns a fresly allocated data buffer or length \\spad{N}.")))
+((|constructor| (NIL "This domain provides for a fixed-sized homogeneous data buffer.")) (|qsetelt| ((|#2| $ (|NonNegativeInteger|) |#2|) "setelt(\\spad{b},{}\\spad{i},{}\\spad{x}) sets the \\spad{i}th entry of data buffer `b' to `x'. Indexing is 0-based.")) (|qelt| ((|#2| $ (|NonNegativeInteger|)) "elt(\\spad{b},{}\\spad{i}) returns the \\spad{i}th element in buffer `b'. Indexing is 0-based.")) (|new| (($) "\\spad{new()} returns a fresly allocated data buffer or length \\spad{N}.")))
NIL
NIL
(-217 S)
@@ -804,23 +804,23 @@ NIL
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis.")))
NIL
NIL
-(-219 -2284 UP UPUP R)
+(-219 -1683 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-220 -2284 FP)
-((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
+(-220 -1683 FP)
+((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and q= size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-221)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2304 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (LIST (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147)))))
+((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2196 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (LIST (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147)))))
(-222)
-((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
+((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition `d'.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition `d'. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-223 R -2284)
+(-223 R -1683)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -835,18 +835,18 @@ NIL
(-226 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
(-227 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
((-4505 . T))
NIL
-(-228 R -2284)
+(-228 R -1683)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-229)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-2239 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((-2905 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-230)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}")))
@@ -855,7 +855,7 @@ NIL
(-231 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4510 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4510 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
(-232 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
@@ -904,19 +904,19 @@ NIL
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-244 S -1834 R)
+(-244 S -3662 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
((|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasAttribute| |#3| (QUOTE -4505)) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1132))))
-(-245 -1834 R)
+(-245 -3662 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
((-4502 |has| |#2| (-1080)) (-4503 |has| |#2| (-1080)) (-4505 |has| |#2| (-6 -4505)) (-4508 . T))
NIL
-(-246 -1834 R)
+(-246 -3662 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
((-4502 |has| |#2| (-1080)) (-4503 |has| |#2| (-1080)) (-4505 |has| |#2| (-6 -4505)) (-4508 . T))
-((-2304 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2304 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2304 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2304 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2304 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2304 (-12 (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2304 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2304 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2304 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-2304 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2304 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4505)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))))
-(-247 -1834 A B)
+((-2196 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2196 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2196 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2196 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2196 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2196 (-12 (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2196 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2196 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2196 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-2196 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2196 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4505)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))))
+(-247 -3662 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
@@ -939,9 +939,9 @@ NIL
(-252 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
((-4509 . T) (-4508 . T))
-((-2304 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2304 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-2196 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2196 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-253 M)
-((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
+((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-254 R)
@@ -951,9 +951,9 @@ NIL
(-255 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
(((-4510 "*") |has| |#2| (-175)) (-4501 |has| |#2| (-571)) (-4506 |has| |#2| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
-((|HasCategory| |#2| (QUOTE (-939))) (-2304 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2304 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2304 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2304 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147)))))
+((|HasCategory| |#2| (QUOTE (-939))) (-2196 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2196 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2196 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2196 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147)))))
(-256)
-((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
+((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain `d'.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain `x'.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object `d'.")))
NIL
NIL
(-257)
@@ -966,18 +966,18 @@ NIL
NIL
(-259 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4505 -2304 (-1953 (|has| |#4| (-1080)) (|has| |#4| (-240))) (|has| |#4| (-6 -4505)) (-1953 (|has| |#4| (-1080)) (|has| |#4| (-927 (-1207))))) (-4502 |has| |#4| (-1080)) (-4503 |has| |#4| (-1080)) (-4508 . T))
-((-2304 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#4| (QUOTE (-376))) (-2304 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-1080)))) (-2304 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376)))) (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (QUOTE (-815))) (-2304 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (QUOTE (-871)))) (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (QUOTE (-381))) (-2304 (-12 (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-560)))))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2304 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (|HasCategory| |#4| (QUOTE (-240))) (-2304 (|HasCategory| |#4| (QUOTE (-240))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-2304 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#4| (QUOTE (-1132))) (-2304 (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-175)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-240)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-376)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-381)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-748)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-815)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-871)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1132))))) (-2304 (-12 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-2304 (-12 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-560))))) (-2304 (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-2304 (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-2304 (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1132)))) (-2304 (|HasAttribute| |#4| (QUOTE -4505)) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -929) (QUOTE (-1207))))) (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-133))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))))
+((-4505 -2196 (-1404 (|has| |#4| (-1080)) (|has| |#4| (-240))) (|has| |#4| (-6 -4505)) (-1404 (|has| |#4| (-1080)) (|has| |#4| (-927 (-1207))))) (-4502 |has| |#4| (-1080)) (-4503 |has| |#4| (-1080)) (-4508 . T))
+((-2196 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#4| (QUOTE (-376))) (-2196 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-1080)))) (-2196 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376)))) (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (QUOTE (-815))) (-2196 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (QUOTE (-871)))) (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (QUOTE (-381))) (-2196 (-12 (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-560)))))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2196 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (|HasCategory| |#4| (QUOTE (-240))) (-2196 (|HasCategory| |#4| (QUOTE (-240))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-2196 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#4| (QUOTE (-1132))) (-2196 (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-175)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-240)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-376)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-381)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-748)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-815)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-871)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1132))))) (-2196 (-12 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-2196 (-12 (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -660) (QUOTE (-560))))) (-2196 (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-2196 (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560))))) (-2196 (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1132)))) (-2196 (|HasAttribute| |#4| (QUOTE -4505)) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (LIST (QUOTE -929) (QUOTE (-1207))))) (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-133))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))))
(-260 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4505 -2304 (-1953 (|has| |#3| (-1080)) (|has| |#3| (-240))) (|has| |#3| (-6 -4505)) (-1953 (|has| |#3| (-1080)) (|has| |#3| (-927 (-1207))))) (-4502 |has| |#3| (-1080)) (-4503 |has| |#3| (-1080)) (-4508 . T))
-((-2304 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-376))) (-2304 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2304 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2304 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2304 (-12 (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560)))))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2304 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2304 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2304 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-1132))) (-2304 (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132))))) (-2304 (-12 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-2304 (-12 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560))))) (-2304 (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-2304 (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-2304 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2304 (|HasAttribute| |#3| (QUOTE -4505)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))))
+((-4505 -2196 (-1404 (|has| |#3| (-1080)) (|has| |#3| (-240))) (|has| |#3| (-6 -4505)) (-1404 (|has| |#3| (-1080)) (|has| |#3| (-927 (-1207))))) (-4502 |has| |#3| (-1080)) (-4503 |has| |#3| (-1080)) (-4508 . T))
+((-2196 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-376))) (-2196 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2196 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2196 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2196 (-12 (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560)))))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2196 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2196 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2196 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-1132))) (-2196 (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132))))) (-2196 (-12 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-2196 (-12 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560))))) (-2196 (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-2196 (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-2196 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2196 (|HasAttribute| |#3| (QUOTE -4505)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))))
(-261 A R S V E)
-((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
+((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-240))))
(-262 R S V E)
-((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
+((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
NIL
(-263 S)
@@ -997,7 +997,7 @@ NIL
NIL
NIL
(-267)
-((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,rRange,iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f, -2..2, -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,rRange,iRange,arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f, 0.3..3, 0..2*\\%pi, false)}} Parameter descriptions: \\indented{2}{\\spad{f:}\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")))
+((|setClipValue| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{setClipValue(x)} sets to \\spad{x} the maximum value to plot when drawing complex functions. Returns \\spad{x}.")) (|setImagSteps| (((|Integer|) (|Integer|)) "\\spad{setImagSteps(i)} sets to \\spad{i} the number of steps to use in the imaginary direction when drawing complex functions. Returns \\spad{i}.")) (|setRealSteps| (((|Integer|) (|Integer|)) "\\spad{setRealSteps(i)} sets to \\spad{i} the number of steps to use in the real direction when drawing complex functions. Returns \\spad{i}.")) (|drawComplexVectorField| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{drawComplexVectorField(f,rRange,iRange)} draws a complex vector field using arrows on the \\spad{x--y} plane. These vector fields should be viewed from the top by pressing the \"XY\" translate button on the 3-\\spad{d} viewport control panel.\\newline Sample call: \\indented{3}{\\spad{f z == sin z}} \\indented{3}{\\spad{drawComplexVectorField(f, -2..2, -2..2)}} Parameter descriptions: \\indented{2}{\\spad{f} : the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of the imaginary values} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")) (|drawComplex| (((|ThreeDimensionalViewport|) (|Mapping| (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Boolean|)) "\\spad{drawComplex(f,rRange,iRange,arrows?)} draws a complex function as a height field. It uses the complex norm as the height and the complex argument as the color. It will optionally draw arrows on the surface indicating the direction of the complex value.\\newline Sample call: \\indented{2}{\\spad{f z == exp(1/z)}} \\indented{2}{\\spad{drawComplex(f, 0.3..3, 0..2*\\%pi, false)}} Parameter descriptions: \\indented{2}{f:\\space{2}the function to draw} \\indented{2}{\\spad{rRange} : the range of the real values} \\indented{2}{\\spad{iRange} : the range of imaginary values} \\indented{2}{\\spad{arrows?} : a flag indicating whether to draw the phase arrows for \\spad{f}} Call the functions \\axiomFunFrom{setRealSteps}{DrawComplex} and \\axiomFunFrom{setImagSteps}{DrawComplex} to change the number of steps used in each direction.")))
NIL
NIL
(-268 R)
@@ -1013,7 +1013,7 @@ NIL
NIL
NIL
(-271)
-((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn\\spad{'t} exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned.")))
+((|constructor| (NIL "This package \\undocumented{}")) (|units| (((|List| (|Float|)) (|List| (|DrawOption|)) (|List| (|Float|))) "\\spad{units(l,u)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{unit}. If the option does not exist the value,{} \\spad{u} is returned.")) (|coord| (((|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Mapping| (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)))) "\\spad{coord(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{coord}. If the option does not exist the value,{} \\spad{p} is returned.")) (|tubeRadius| (((|Float|) (|List| (|DrawOption|)) (|Float|)) "\\spad{tubeRadius(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubeRadius}. If the option does not exist the value,{} \\spad{n} is returned.")) (|tubePoints| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{tubePoints(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{tubePoints}. If the option does not exist the value,{} \\spad{n} is returned.")) (|space| (((|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{space(l)} takes a list of draw options,{} \\spad{l},{} and checks to see if it contains the option \\spad{space}. If the the option doesn't exist,{} then an empty space is returned.")) (|var2Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var2Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var2Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|var1Steps| (((|PositiveInteger|) (|List| (|DrawOption|)) (|PositiveInteger|)) "\\spad{var1Steps(l,n)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{var1Steps}. If the option does not exist the value,{} \\spad{n} is returned.")) (|ranges| (((|List| (|Segment| (|Float|))) (|List| (|DrawOption|)) (|List| (|Segment| (|Float|)))) "\\spad{ranges(l,r)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{ranges}. If the option does not exist the value,{} \\spad{r} is returned.")) (|curveColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{curveColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{curveColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|pointColorPalette| (((|Palette|) (|List| (|DrawOption|)) (|Palette|)) "\\spad{pointColorPalette(l,p)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{pointColorPalette}. If the option does not exist the value,{} \\spad{p} is returned.")) (|toScale| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{toScale(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{toScale}. If the option does not exist the value,{} \\spad{b} is returned.")) (|style| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{style(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{style}. If the option does not exist the value,{} \\spad{s} is returned.")) (|title| (((|String|) (|List| (|DrawOption|)) (|String|)) "\\spad{title(l,s)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{title}. If the option does not exist the value,{} \\spad{s} is returned.")) (|viewpoint| (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) (|List| (|DrawOption|)) (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(l,ls)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{viewpoint}. IF the option does not exist,{} the value \\spad{ls} is returned.")) (|clipBoolean| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{clipBoolean(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{clipBoolean}. If the option does not exist the value,{} \\spad{b} is returned.")) (|adaptive| (((|Boolean|) (|List| (|DrawOption|)) (|Boolean|)) "\\spad{adaptive(l,b)} takes the list of draw options,{} \\spad{l},{} and checks the list to see if it contains the option \\spad{adaptive}. If the option does not exist the value,{} \\spad{b} is returned.")))
NIL
NIL
(-272 S)
@@ -1031,7 +1031,7 @@ NIL
(-275 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
-((|HasCategory| |#1| (QUOTE (-939))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#3| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#3| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))))
+((|HasCategory| |#1| (QUOTE (-939))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#3| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#3| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#3| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-276 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -1041,7 +1041,7 @@ NIL
NIL
NIL
(-278)
-((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units\\spad{''}. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.\\spad{lfn}}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{\\spad{-b}}.")))
+((|optAttributes| (((|List| (|String|)) (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{optAttributes(o)} is a function for supplying a list of attributes of an optimization problem.")) (|expenseOfEvaluation| (((|Float|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{expenseOfEvaluation(o)} returns the intensity value of the cost of evaluating the input set of functions. This is in terms of the number of ``operational units''. It returns a value in the range [0,{}1].")) (|changeNameToObjf| (((|Result|) (|Symbol|) (|Result|)) "\\spad{changeNameToObjf(s,r)} changes the name of item \\axiom{\\spad{s}} in \\axiom{\\spad{r}} to objf.")) (|varList| (((|List| (|Symbol|)) (|Expression| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{varList(e,n)} returns a list of \\axiom{\\spad{n}} indexed variables with name as in \\axiom{\\spad{e}}.")) (|variables| (((|List| (|Symbol|)) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{variables(args)} returns the list of variables in \\axiom{\\spad{args}.lfn}")) (|quadratic?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{quadratic?(e)} tests if \\axiom{\\spad{e}} is a quadratic function.")) (|nonLinearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{nonLinearPart(l)} returns the list of non-linear functions of \\axiom{\\spad{l}}.")) (|linearPart| (((|List| (|Expression| (|DoubleFloat|))) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linearPart(l)} returns the list of linear functions of \\axiom{\\spad{l}}.")) (|linearMatrix| (((|Matrix| (|DoubleFloat|)) (|List| (|Expression| (|DoubleFloat|))) (|NonNegativeInteger|)) "\\spad{linearMatrix(l,n)} returns a matrix of coefficients of the linear functions in \\axiom{\\spad{l}}. If \\spad{l} is empty,{} the matrix has at least one row.")) (|linear?| (((|Boolean|) (|Expression| (|DoubleFloat|))) "\\spad{linear?(e)} tests if \\axiom{\\spad{e}} is a linear function.") (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{linear?(l)} returns \\spad{true} if all the bounds \\spad{l} are either linear or simple.")) (|simpleBounds?| (((|Boolean|) (|List| (|Expression| (|DoubleFloat|)))) "\\spad{simpleBounds?(l)} returns \\spad{true} if the list of expressions \\spad{l} are simple.")) (|splitLinear| (((|Expression| (|DoubleFloat|)) (|Expression| (|DoubleFloat|))) "\\spad{splitLinear(f)} splits the linear part from an expression which it returns.")) (|sumOfSquares| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{sumOfSquares(f)} returns either an expression for which the square is the original function of \"failed\".")) (|sortConstraints| (((|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|))))) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{sortConstraints(args)} uses a simple bubblesort on the list of constraints using the degree of the expression on which to sort. Of course,{} it must match the bounds to the constraints.")) (|finiteBound| (((|List| (|DoubleFloat|)) (|List| (|OrderedCompletion| (|DoubleFloat|))) (|DoubleFloat|)) "\\spad{finiteBound(l,b)} repaces all instances of an infinite entry in \\axiom{\\spad{l}} by a finite entry \\axiom{\\spad{b}} or \\axiom{-b}.")))
NIL
NIL
(-279)
@@ -1073,14 +1073,14 @@ NIL
NIL
NIL
(-286)
-((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
+((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1's in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0's and 1's into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-287 R -2284)
+(-287 R -1683)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-288 R -2284)
+(-288 R -1683)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -1117,7 +1117,7 @@ NIL
NIL
NIL
(-297 |Coef| UTS)
-((|constructor| (NIL "The elliptic functions \\spad{sn},{} \\spad{sc} and \\spad{dn} are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,k)} expands the elliptic function \\spad{dn} as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,k)} expands the elliptic function \\spad{cn} as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,k)} expands the elliptic function \\spad{sn} as a Taylor \\indented{1}{series.}")))
+((|constructor| (NIL "The elliptic functions sn,{} sc and dn are expanded as Taylor series.")) (|sncndn| (((|List| (|Stream| |#1|)) (|Stream| |#1|) |#1|) "\\spad{sncndn(s,c)} is used internally.")) (|dn| ((|#2| |#2| |#1|) "\\spad{dn(x,k)} expands the elliptic function dn as a Taylor \\indented{1}{series.}")) (|cn| ((|#2| |#2| |#1|) "\\spad{cn(x,k)} expands the elliptic function cn as a Taylor \\indented{1}{series.}")) (|sn| ((|#2| |#2| |#1|) "\\spad{sn(x,k)} expands the elliptic function sn as a Taylor \\indented{1}{series.}")))
NIL
NIL
(-298 S T$)
@@ -1132,7 +1132,7 @@ NIL
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-301 S R |Mod| -2588 -3223 |exactQuo|)
+(-301 S R |Mod| -3836 -4167 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
@@ -1149,9 +1149,9 @@ NIL
NIL
NIL
(-305 S)
-((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4505 -2304 (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4502 |has| |#1| (-1080)) (-4503 |has| |#1| (-1080)))
-((|HasCategory| |#1| (QUOTE (-376))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2304 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748)))) (|HasCategory| |#1| (QUOTE (-487))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-310))) (-2304 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487)))) (-2304 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748)))) (-2304 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-748))))
+((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the lhs of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
+((-4505 -2196 (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4502 |has| |#1| (-1080)) (-4503 |has| |#1| (-1080)))
+((|HasCategory| |#1| (QUOTE (-376))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2196 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748)))) (|HasCategory| |#1| (QUOTE (-487))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-310))) (-2196 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487)))) (-2196 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748)))) (-2196 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-748))))
(-306 S R)
((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}")))
NIL
@@ -1159,25 +1159,25 @@ NIL
(-307 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2968) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2460) (|devaluate| |#2|)))))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-102))))
+((-12 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1438) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3067) (|devaluate| |#2|)))))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-102))))
(-308)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
(-309 S)
-((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
+((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080))))
(-310)
-((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
+((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
NIL
-(-311 -2284 S)
+(-311 -1683 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-312 E -2284)
-((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}.")))
+(-312 E -1683)
+((|constructor| (NIL "This package allows a mapping \\spad{E} -> \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}.")))
NIL
NIL
(-313)
@@ -1185,38 +1185,38 @@ NIL
NIL
NIL
(-314 A B)
-((|constructor| (NIL "ExpertSystemContinuityPackage1 exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
+((|constructor| (NIL "\\spad{ExpertSystemContinuityPackage1} exports a function to check range inclusion")) (|in?| (((|Boolean|) (|DoubleFloat|)) "\\spad{in?(p)} tests whether point \\spad{p} is internal to the range [\\spad{A..B}]")))
NIL
NIL
(-315)
-((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' \\spad{->} 0.75 200 `operation units' \\spad{->} 0.5 83 `operation units' \\spad{->} 0.25 \\spad{**} = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
+((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage} contains some useful functions for use by the computational agents of numerical solvers.")) (|mat| (((|Matrix| (|DoubleFloat|)) (|List| (|DoubleFloat|)) (|NonNegativeInteger|)) "\\spad{mat(a,n)} constructs a one-dimensional matrix of a.")) (|fi2df| (((|DoubleFloat|) (|Fraction| (|Integer|))) "\\spad{fi2df(f)} coerces a \\axiomType{Fraction Integer} to \\axiomType{DoubleFloat}")) (|df2ef| (((|Expression| (|Float|)) (|DoubleFloat|)) "\\spad{df2ef(a)} coerces a \\axiomType{DoubleFloat} to \\axiomType{Expression Float}")) (|pdf2df| (((|DoubleFloat|) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2df(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{DoubleFloat}. It is an error if \\axiom{\\spad{p}} is not retractable to DoubleFloat.")) (|pdf2ef| (((|Expression| (|Float|)) (|Polynomial| (|DoubleFloat|))) "\\spad{pdf2ef(p)} coerces a \\axiomType{Polynomial DoubleFloat} to \\axiomType{Expression Float}")) (|iflist2Result| (((|Result|) (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))) "\\spad{iflist2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|att2Result| (((|Result|) (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) "\\spad{att2Result(m)} converts a attributes record into a \\axiomType{Result}")) (|measure2Result| (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|)))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}") (((|Result|) (|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))))) "\\spad{measure2Result(m)} converts a measure record into a \\axiomType{Result}")) (|outputMeasure| (((|String|) (|Float|)) "\\spad{outputMeasure(n)} rounds \\spad{n} to 3 decimal places and outputs it as a string")) (|concat| (((|Result|) (|List| (|Result|))) "\\spad{concat(l)} concatenates a list of aggregates of type \\axiomType{Result}") (((|Result|) (|Result|) (|Result|)) "\\spad{concat(a,b)} adds two aggregates of type \\axiomType{Result}.")) (|gethi| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{gethi(u)} gets the \\axiomType{DoubleFloat} equivalent of the second endpoint of the range \\spad{u}")) (|getlo| (((|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{getlo(u)} gets the \\axiomType{DoubleFloat} equivalent of the first endpoint of the range \\spad{u}")) (|sdf2lst| (((|List| (|String|)) (|Stream| (|DoubleFloat|))) "\\spad{sdf2lst(ln)} coerces a \\axiomType{Stream DoubleFloat} to \\axiomType{String}")) (|ldf2lst| (((|List| (|String|)) (|List| (|DoubleFloat|))) "\\spad{ldf2lst(ln)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List String}")) (|f2st| (((|String|) (|Float|)) "\\spad{f2st(n)} coerces a \\axiomType{Float} to \\axiomType{String}")) (|df2st| (((|String|) (|DoubleFloat|)) "\\spad{df2st(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{String}")) (|in?| (((|Boolean|) (|DoubleFloat|) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{in?(p,range)} tests whether point \\spad{p} is internal to the \\spad{range} \\spad{range}")) (|vedf2vef| (((|Vector| (|Expression| (|Float|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{vedf2vef(v)} maps \\axiomType{Vector Expression DoubleFloat} to \\axiomType{Vector Expression Float}")) (|edf2ef| (((|Expression| (|Float|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2ef(e)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Expression Float}")) (|ldf2vmf| (((|Vector| (|MachineFloat|)) (|List| (|DoubleFloat|))) "\\spad{ldf2vmf(l)} coerces a \\axiomType{List DoubleFloat} to \\axiomType{List MachineFloat}")) (|df2mf| (((|MachineFloat|) (|DoubleFloat|)) "\\spad{df2mf(n)} coerces a \\axiomType{DoubleFloat} to \\axiomType{MachineFloat}")) (|dflist| (((|List| (|DoubleFloat|)) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{dflist(l)} returns a list of \\axiomType{DoubleFloat} equivalents of list \\spad{l}")) (|dfRange| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) "\\spad{dfRange(r)} converts a range including \\inputbitmap{\\htbmdir{}/plusminus.bitmap} \\infty to \\axiomType{DoubleFloat} equavalents.")) (|edf2efi| (((|Expression| (|Fraction| (|Integer|))) (|Expression| (|DoubleFloat|))) "\\spad{edf2efi(e)} coerces \\axiomType{Expression DoubleFloat} into \\axiomType{Expression Fraction Integer}")) (|numberOfOperations| (((|Record| (|:| |additions| (|Integer|)) (|:| |multiplications| (|Integer|)) (|:| |exponentiations| (|Integer|)) (|:| |functionCalls| (|Integer|))) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{numberOfOperations(ode)} counts additions,{} multiplications,{} exponentiations and function calls in the input set of expressions.")) (|expenseOfEvaluation| (((|Float|) (|Vector| (|Expression| (|DoubleFloat|)))) "\\spad{expenseOfEvaluation(o)} gives an approximation of the cost of evaluating a list of expressions in terms of the number of basic operations. < 0.3 inexpensive ; 0.5 neutral ; > 0.7 very expensive 400 `operation units' -> 0.75 200 `operation units' -> 0.5 83 `operation units' -> 0.25 ** = 4 units ,{} function calls = 10 units.")) (|isQuotient| (((|Union| (|Expression| (|DoubleFloat|)) "failed") (|Expression| (|DoubleFloat|))) "\\spad{isQuotient(expr)} returns the quotient part of the input expression or \\spad{\"failed\"} if the expression is not of that form.")) (|edf2df| (((|DoubleFloat|) (|Expression| (|DoubleFloat|))) "\\spad{edf2df(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{DoubleFloat} It is an error if \\spad{n} is not coercible to DoubleFloat")) (|edf2fi| (((|Fraction| (|Integer|)) (|Expression| (|DoubleFloat|))) "\\spad{edf2fi(n)} maps \\axiomType{Expression DoubleFloat} to \\axiomType{Fraction Integer} It is an error if \\spad{n} is not coercible to Fraction Integer")) (|df2fi| (((|Fraction| (|Integer|)) (|DoubleFloat|)) "\\spad{df2fi(n)} is a function to convert a \\axiomType{DoubleFloat} to a \\axiomType{Fraction Integer}")) (|convert| (((|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{convert(l)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|socf2socdf| (((|Segment| (|OrderedCompletion| (|DoubleFloat|))) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{socf2socdf(a)} is a function to convert a \\axiomType{Segment OrderedCompletion Float} to a \\axiomType{Segment OrderedCompletion DoubleFloat}")) (|ocf2ocdf| (((|OrderedCompletion| (|DoubleFloat|)) (|OrderedCompletion| (|Float|))) "\\spad{ocf2ocdf(a)} is a function to convert an \\axiomType{OrderedCompletion Float} to an \\axiomType{OrderedCompletion DoubleFloat}")) (|ef2edf| (((|Expression| (|DoubleFloat|)) (|Expression| (|Float|))) "\\spad{ef2edf(f)} is a function to convert an \\axiomType{Expression Float} to an \\axiomType{Expression DoubleFloat}")) (|f2df| (((|DoubleFloat|) (|Float|)) "\\spad{f2df(f)} is a function to convert a \\axiomType{Float} to a \\axiomType{DoubleFloat}")))
NIL
NIL
(-316 R1)
-((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage1} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}")))
+((|constructor| (NIL "\\axiom{\\spad{ExpertSystemToolsPackage1}} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|neglist| (((|List| |#1|) (|List| |#1|)) "\\spad{neglist(l)} returns only the negative elements of the list \\spad{l}")))
NIL
NIL
(-317 R1 R2)
-((|constructor| (NIL "\\axiom{ExpertSystemToolsPackage2} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,m)} applies a mapping f:R1 \\spad{->} \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}")))
+((|constructor| (NIL "\\axiom{\\spad{ExpertSystemToolsPackage2}} contains some useful functions for use by the computational agents of Ordinary Differential Equation solvers.")) (|map| (((|Matrix| |#2|) (|Mapping| |#2| |#1|) (|Matrix| |#1|)) "\\spad{map(f,m)} applies a mapping \\spad{f:R1} -> \\spad{R2} onto a matrix \\spad{m} in \\spad{R1} returning a matrix in \\spad{R2}")))
NIL
NIL
(-318 S)
-((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
+((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
NIL
NIL
(-319)
-((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
+((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-320 S R)
-((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
+((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
(-321 R)
-((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
+((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-322 -2284)
+(-322 -1683)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -1231,11 +1231,11 @@ NIL
(-325 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}.")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-1051))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-871))) (-2304 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-871)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-1182))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-240))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -321) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -298) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-319))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-559))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| $ (QUOTE (-147)))) (-2304 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| $ (QUOTE (-147))))))
+((|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-1051))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-871))) (-2196 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-871)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-1182))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-240))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -321) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (LIST (QUOTE -298) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-319))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-559))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| $ (QUOTE (-147)))) (-2196 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| $ (QUOTE (-147))))))
(-326 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4505 -2304 (-12 (|has| |#1| (-571)) (-2304 (|has| |#1| (-1080)) (|has| |#1| (-487)))) (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) ((-4510 "*") |has| |#1| (-571)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-571)) (-4500 |has| |#1| (-571)))
-((-2304 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (-2304 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-21))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-1080))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))))) (-2304 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2304 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560))))) (-2304 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2304 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2304 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571)))) (-2304 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560))))) (-2304 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))))) (-2304 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-1143)))) (-2304 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))))) (-2304 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2304 (-12 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (LIST (QUOTE -1069) (QUOTE (-560)))))
+((-4505 -2196 (-12 (|has| |#1| (-571)) (-2196 (|has| |#1| (-1080)) (|has| |#1| (-487)))) (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) ((-4510 "*") |has| |#1| (-571)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-571)) (-4500 |has| |#1| (-571)))
+((-2196 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (-2196 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-21))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-1080))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))))) (-2196 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2196 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560))))) (-2196 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2196 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2196 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571)))) (-2196 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560))))) (-2196 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))))) (-2196 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-1143)))) (-2196 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))))) (-2196 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2196 (-12 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (LIST (QUOTE -1069) (QUOTE (-560)))))
(-327 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1244,8 +1244,8 @@ NIL
((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series.")))
NIL
NIL
-(-329 R -2284)
-((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}.")))
+(-329 R -1683)
+((|constructor| (NIL "Taylor series solutions of explicit ODE's.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}.")))
NIL
NIL
(-330)
@@ -1255,45 +1255,45 @@ NIL
(-331 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2304 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560)))))) (-2304 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2518) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1443) (LIST (LIST (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2196 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (LIST (QUOTE -3913) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560)))))) (-2196 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -4424) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -4162) (LIST (LIST (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))))
(-332 M)
-((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
+((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}rm are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
NIL
(-333 E OV R P)
-((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between \\spad{-k} and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly, lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly, lvar, lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}.")))
+((|constructor| (NIL "This package provides utilities used by the factorizers which operate on polynomials represented as univariate polynomials with multivariate coefficients.")) (|ran| ((|#3| (|Integer|)) "\\spad{ran(k)} computes a random integer between -k and \\spad{k} as a member of \\spad{R}.")) (|normalDeriv| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|Integer|)) "\\spad{normalDeriv(poly,i)} computes the \\spad{i}th derivative of \\spad{poly} divided by i!.")) (|raisePolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|)) "\\spad{raisePolynomial(rpoly)} converts \\spad{rpoly} from a univariate polynomial over \\spad{r} to be a univariate polynomial with polynomial coefficients.")) (|lowerPolynomial| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{lowerPolynomial(upoly)} converts \\spad{upoly} to be a univariate polynomial over \\spad{R}. An error if the coefficients contain variables.")) (|variables| (((|List| |#2|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{variables(upoly)} returns the list of variables for the coefficients of \\spad{upoly}.")) (|degree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|)) "\\spad{degree(upoly, lvar)} returns a list containing the maximum degree for each variable in lvar.")) (|completeEval| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|)) "\\spad{completeEval(upoly, lvar, lval)} evaluates the polynomial \\spad{upoly} with each variable in \\spad{lvar} replaced by the corresponding value in lval. Substitutions are done for all variables in \\spad{upoly} producing a univariate polynomial over \\spad{R}.")))
NIL
NIL
(-334 S)
-((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
+((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The operation is commutative.")))
((-4503 . T) (-4502 . T))
((|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| (-560) (QUOTE (-814))))
(-335 S E)
-((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
+((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}'s.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} \\spad{a1}\\^\\spad{e1} ... an\\^en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
NIL
(-336 S)
-((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative.")))
+((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The operation is commutative.")))
NIL
((|HasCategory| (-793) (QUOTE (-814))))
(-337 S R E)
-((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
+((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
((|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))))
(-338 R E)
-((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
+((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-339 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
((-4509 . T) (-4508 . T))
-((-2304 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2304 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
-(-340 S -2284)
-((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
+((-2196 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2196 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+(-340 S -1683)
+((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-381))))
-(-341 -2284)
-((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
+(-341 -1683)
+((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace.")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-342)
@@ -1305,27 +1305,27 @@ NIL
NIL
NIL
(-344)
-((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables I1,{} I2,{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,b,d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,p,q)} uses loop variables in the Fortran,{} I1 and I2")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,p)} \\undocumented{}")))
+((|constructor| (NIL "\\spadtype{FortranCodePackage1} provides some utilities for producing useful objects in FortranCode domain. The Package may be used with the FortranCode domain and its \\spad{printCode} or possibly via an outputAsFortran. (The package provides items of use in connection with ASPs in the AXIOM-NAG link and,{} where appropriate,{} naming accords with that in IRENA.) The easy-to-use functions use Fortran loop variables \\spad{I1},{} \\spad{I2},{} and it is users' responsibility to check that this is sensible. The advanced functions use SegmentBinding to allow users control over Fortran loop variable names.")) (|identitySquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{identitySquareMatrix(s,p)} \\undocumented{}")) (|zeroSquareMatrix| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroSquareMatrix(s,p)} \\undocumented{}")) (|zeroMatrix| (((|FortranCode|) (|Symbol|) (|SegmentBinding| (|Polynomial| (|Integer|))) (|SegmentBinding| (|Polynomial| (|Integer|)))) "\\spad{zeroMatrix(s,b,d)} in this version gives the user control over names of Fortran variables used in loops.") (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|)) (|Polynomial| (|Integer|))) "\\spad{zeroMatrix(s,p,q)} uses loop variables in the Fortran,{} \\spad{I1} and \\spad{I2}")) (|zeroVector| (((|FortranCode|) (|Symbol|) (|Polynomial| (|Integer|))) "\\spad{zeroVector(s,p)} \\undocumented{}")))
NIL
NIL
(-345)
((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}.")))
NIL
NIL
-(-346 -2284 UP UPUP R)
-((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
+(-346 -1683 UP UPUP R)
+((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
(-347 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}")))
NIL
NIL
-(-348 S -2284 UP UPUP R)
-((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
+(-348 S -1683 UP UPUP R)
+((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-349 -2284 UP UPUP R)
-((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
+(-349 -1683 UP UPUP R)
+((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
(-350 S R)
@@ -1337,19 +1337,19 @@ NIL
NIL
NIL
(-352 |basicSymbols| |subscriptedSymbols| R)
-((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
+((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function \\spad{LOG10}")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
((-4502 . T) (-4503 . T) (-4505 . T))
((|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-391)))) (|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (LIST (QUOTE -1069) (QUOTE (-560)))))
(-353 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((-2304 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147))))
-(-354 S -2284 UP UPUP)
-((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
+((-2196 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147))))
+(-354 S -1683 UP UPUP)
+((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-376))))
-(-355 -2284 UP UPUP)
-((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
+(-355 -1683 UP UPUP)
+((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
((-4501 |has| (-421 |#2|) (-376)) (-4506 |has| (-421 |#2|) (-376)) (-4500 |has| (-421 |#2|) (-376)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-356 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
@@ -1359,73 +1359,73 @@ NIL
(-357 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((-2304 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147))))
+((-2196 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147))))
(-358 GF |defpol|)
-((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
+((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((-2304 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
+((-2196 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
(-359 GF |extdeg|)
-((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
+((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((-2304 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
+((-2196 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
(-360 GF)
-((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
+((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
NIL
(-361 F1 GF F2)
-((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}\\spad{GF},{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn\\spad{'t} divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn\\spad{'t} divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.")))
+((|constructor| (NIL "FiniteFieldHomomorphisms(\\spad{F1},{}GF,{}\\spad{F2}) exports coercion functions of elements between the fields {\\em F1} and {\\em F2},{} which both must be finite simple algebraic extensions of the finite ground field {\\em GF}.")) (|coerce| ((|#1| |#3|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F2} in {\\em F1},{} where {\\em coerce} is a field homomorphism between the fields extensions {\\em F2} and {\\em F1} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F2} doesn't divide the extension degree of {\\em F1}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.") ((|#3| |#1|) "\\spad{coerce(x)} is the homomorphic image of \\spad{x} from {\\em F1} in {\\em F2}. Thus {\\em coerce} is a field homomorphism between the fields extensions {\\em F1} and {\\em F2} both over ground field {\\em GF} (the second argument to the package). Error: if the extension degree of {\\em F1} doesn't divide the extension degree of {\\em F2}. Note that the other coercion function in the \\spadtype{FiniteFieldHomomorphisms} is a left inverse.")))
NIL
NIL
(-362 S)
-((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
+((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
NIL
NIL
(-363)
-((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
+((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
-(-364 R UP -2284)
+(-364 R UP -1683)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-365 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((-2304 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147))))
+((-2196 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147))))
(-366 GF |uni|)
-((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
+((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((-2304 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
+((-2196 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
(-367 GF |extdeg|)
-((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
+((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((-2304 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
+((-2196 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
(-368 GF |defpol|)
-((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
+((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((-2304 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
+((-2196 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
(-369 GF)
-((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
+((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(GF) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(GF) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(GF) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(GF) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(GF) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(GF) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-370 -2284 GF)
-((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
+(-370 -1683 GF)
+((|constructor| (NIL "\\spad{FiniteFieldPolynomialPackage2}(\\spad{F},{}GF) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-371 -2284 FP FPP)
-((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
+(-371 -1683 FP FPP)
+((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")))
NIL
NIL
(-372 GF |n|)
-((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
+((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((-2304 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
+((-2196 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147))))
(-373 R |ls|)
-((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
+((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{ls}.")))
NIL
NIL
(-374 S)
-((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
+((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
((-4505 . T))
NIL
(-375 S)
@@ -1441,15 +1441,15 @@ NIL
NIL
NIL
(-378 |Name| S)
-((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
+((|constructor| (NIL "This category provides an interface to operate on files in the computer's file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
NIL
NIL
(-379 S R)
-((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
+((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
((|HasCategory| |#2| (QUOTE (-571))))
(-380 R)
-((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
+((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
((-4505 |has| |#1| (-571)) (-4503 . T) (-4502 . T))
NIL
(-381)
@@ -1457,27 +1457,27 @@ NIL
NIL
NIL
(-382 S R UP)
-((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
+((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#3| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#3| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#2| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#2| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#2| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
NIL
((|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-376))))
(-383 R UP)
-((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
+((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
((-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-384 A S)
-((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
+((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
((|HasAttribute| |#1| (QUOTE -4509)) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))))
(-385 S)
-((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
+((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
((-4508 . T))
NIL
(-386 S A R B)
-((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
+((|constructor| (NIL "\\spad{FiniteLinearAggregateFunctions2} provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
NIL
NIL
(-387 |VarSet| R)
-((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
+((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr)")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}xn],{} [\\spad{v1},{}...,{}vn])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
((|JacobiIdentity| . T) (|NullSquare| . T) (-4503 . T) (-4502 . T))
NIL
(-388 S V)
@@ -1494,14 +1494,14 @@ NIL
NIL
(-391)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4491 . T) (-4499 . T) (-2239 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((-4491 . T) (-4499 . T) (-2905 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-392 |Par|)
-((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
+((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in lp.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
NIL
NIL
(-393 |Par|)
-((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
+((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in lp,{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
NIL
NIL
(-394 R S)
@@ -1509,7 +1509,7 @@ NIL
((-4503 . T) (-4502 . T))
((|HasCategory| |#1| (QUOTE (-175))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))))
(-395 R S)
-((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
+((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.fr)")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
((-4503 . T) (-4502 . T))
((|HasCategory| |#1| (QUOTE (-175))))
(-396)
@@ -1517,7 +1517,7 @@ NIL
NIL
NIL
(-397 R |Basis|)
-((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
+((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.fr)")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
((-4503 . T) (-4502 . T))
NIL
(-398)
@@ -1525,11 +1525,11 @@ NIL
NIL
NIL
(-399 S)
-((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
+((|constructor| (NIL "A free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x, y)} returns \\spad{[l, m, r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l, r) = [l, 1, r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x, y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l, r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x, y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x, y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x, y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x, y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
NIL
(-400 S)
-((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")))
+((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative.")))
NIL
((|HasCategory| |#1| (QUOTE (-871))))
(-401)
@@ -1552,7 +1552,7 @@ NIL
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-406 -2284 UP UPUP R)
+(-406 -1683 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
@@ -1576,12 +1576,12 @@ NIL
((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
NIL
NIL
-(-412 -3614 |returnType| -4074 |symbols|)
+(-412 -4389 |returnType| -3285 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-413 -2284 UP)
-((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
+(-413 -1683 UP)
+((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of \\spad{ISSAC'93},{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
(-414 R)
@@ -1597,46 +1597,46 @@ NIL
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-417 S)
-((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
+((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
((|HasAttribute| |#1| (QUOTE -4491)) (|HasAttribute| |#1| (QUOTE -4499)))
(-418)
-((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-2239 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
+((-2905 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-419 R)
-((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
+((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and gcd are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -321) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -298) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1252))) (-2304 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1252)))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-466))))
+((|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -321) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -298) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1252))) (-2196 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1252)))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-466))))
(-420 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
NIL
NIL
(-421 S)
-((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
+((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
((-4495 -12 (|has| |#1| (-6 -4506)) (|has| |#1| (-466)) (|has| |#1| (-6 -4495))) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-871))) (-2304 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-871)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843))))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-559))) (-12 (|HasAttribute| |#1| (QUOTE -4506)) (|HasAttribute| |#1| (QUOTE -4495)) (|HasCategory| |#1| (QUOTE (-466)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))))
+((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-871))) (-2196 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-871)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843))))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-559))) (-12 (|HasAttribute| |#1| (QUOTE -4506)) (|HasAttribute| |#1| (QUOTE -4495)) (|HasCategory| |#1| (QUOTE (-466)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-422 A B)
((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}.")))
NIL
NIL
(-423 S R UP)
-((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
+((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
(-424 R UP)
-((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
+((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
((-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-425 A S)
-((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
+((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))))
(-426 S)
-((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
+((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
NIL
-(-427 R -2284 UP A)
+(-427 R -1683 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}.")))
((-4505 . T))
NIL
@@ -1644,20 +1644,20 @@ NIL
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}")))
NIL
NIL
-(-429 R -2284 UP A |ibasis|)
+(-429 R -1683 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")))
NIL
((|HasCategory| |#4| (LIST (QUOTE -1069) (|devaluate| |#2|))))
(-430 AR R AS S)
-((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
+((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
NIL
(-431 S R)
-((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
+((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#2|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#2|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#2|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#2|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#2|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#2|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
((|HasCategory| |#2| (QUOTE (-376))))
(-432 R)
-((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
+((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
((-4505 |has| |#1| (-571)) (-4503 . T) (-4502 . T))
NIL
(-433 R)
@@ -1665,23 +1665,23 @@ NIL
NIL
NIL
(-434 S R)
-((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
+((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-1143))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549)))))
(-435 R)
-((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4505 -2304 (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) ((-4510 "*") |has| |#1| (-571)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-571)) (-4500 |has| |#1| (-571)))
+((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
+((-4505 -2196 (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) ((-4510 "*") |has| |#1| (-571)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-571)) (-4500 |has| |#1| (-571)))
NIL
(-436 R A S B)
-((|constructor| (NIL "This package allows a mapping \\spad{R} \\spad{->} \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
+((|constructor| (NIL "This package allows a mapping \\spad{R} -> \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}.")))
NIL
NIL
(-437 R FE |x| |cen|)
-((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
+((|constructor| (NIL "This package converts expressions in some function space to exponential expansions.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won't allow it.")) (|exprToXXP| (((|Union| (|:| |%expansion| (|ExponentialExpansion| |#1| |#2| |#3| |#4|)) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|)) "\\spad{exprToXXP(fcn,posCheck?)} converts the expression \\spad{fcn} to an exponential expansion. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed.")))
NIL
NIL
(-438 R FE |Expon| UPS TRAN |x|)
-((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won\\spad{'t} allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log\\spad{'s} of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")))
+((|constructor| (NIL "This package converts expressions in some function space to power series in a variable \\spad{x} with coefficients in that function space. The function \\spadfun{exprToUPS} converts expressions to power series whose coefficients do not contain the variable \\spad{x}. The function \\spadfun{exprToGenUPS} converts functional expressions to power series whose coefficients may involve functions of \\spad{log(x)}.")) (|localAbs| ((|#2| |#2|) "\\spad{localAbs(fcn)} = \\spad{abs(fcn)} or \\spad{sqrt(fcn**2)} depending on whether or not FE has a function \\spad{abs}. This should be a local function,{} but the compiler won't allow it.")) (|exprToGenUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToGenUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a generalized power series. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} we return a record containing the name of the function that caused the problem and a brief description of the problem. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|exprToUPS| (((|Union| (|:| |%series| |#4|) (|:| |%problem| (|Record| (|:| |func| (|String|)) (|:| |prob| (|String|))))) |#2| (|Boolean|) (|String|)) "\\spad{exprToUPS(fcn,posCheck?,atanFlag)} converts the expression \\spad{fcn} to a power series. If \\spad{posCheck?} is \\spad{true},{} log's of negative numbers are not allowed nor are \\spad{n}th roots of negative numbers with \\spad{n} even. If \\spad{posCheck?} is \\spad{false},{} these are allowed. \\spad{atanFlag} determines how the case \\spad{atan(f(x))},{} where \\spad{f(x)} has a pole,{} will be treated. The possible values of \\spad{atanFlag} are \\spad{\"complex\"},{} \\spad{\"real: two sides\"},{} \\spad{\"real: left side\"},{} \\spad{\"real: right side\"},{} and \\spad{\"just do it\"}. If \\spad{atanFlag} is \\spad{\"complex\"},{} then no series expansion will be computed because,{} viewed as a function of a complex variable,{} \\spad{atan(f(x))} has an essential singularity. Otherwise,{} the sign of the leading coefficient of the series expansion of \\spad{f(x)} determines the constant coefficient in the series expansion of \\spad{atan(f(x))}. If this sign cannot be determined,{} a series expansion is computed only when \\spad{atanFlag} is \\spad{\"just do it\"}. When the leading term in the series expansion of \\spad{f(x)} is of odd degree (or is a rational degree with odd numerator),{} then the constant coefficient in the series expansion of \\spad{atan(f(x))} for values to the left differs from that for values to the right. If \\spad{atanFlag} is \\spad{\"real: two sides\"},{} no series expansion will be computed. If \\spad{atanFlag} is \\spad{\"real: left side\"} the constant coefficient for values to the left will be used and if \\spad{atanFlag} \\spad{\"real: right side\"} the constant coefficient for values to the right will be used. If there is a problem in converting the function to a power series,{} a record containing the name of the function that caused the problem and a brief description of the problem is returned. When expanding the expression into a series it is assumed that the series is centered at 0. For a series centered at a,{} the user should perform the substitution \\spad{x -> x + a} before calling this function.")) (|integrate| (($ $) "\\spad{integrate(x)} returns the integral of \\spad{x} since we need to be able to integrate a power series")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x} since we need to be able to differentiate a power series")))
NIL
NIL
(-439 A S)
@@ -1693,10 +1693,10 @@ NIL
((-4508 . T) (-4498 . T) (-4509 . T))
NIL
(-441 S A R B)
-((|constructor| (NIL "FiniteSetAggregateFunctions2 provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
+((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain.")))
NIL
NIL
-(-442 R -2284)
+(-442 R -1683)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
@@ -1704,19 +1704,19 @@ NIL
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
((-4495 -12 (|has| |#1| (-6 -4495)) (|has| |#2| (-6 -4495))) (-4502 . T) (-4503 . T) (-4505 . T))
((-12 (|HasAttribute| |#1| (QUOTE -4495)) (|HasAttribute| |#2| (QUOTE -4495))))
-(-444 R -2284)
+(-444 R -1683)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
-(-445 R -2284)
+(-445 R -1683)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-446 R -2284)
-((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
+(-446 R -1683)
+((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve \\spad{a2}; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-447 R -2284)
+(-447 R -1683)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1724,7 +1724,7 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-449 R -2284 UP)
+(-449 R -1683 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-48)))))
@@ -1753,11 +1753,11 @@ NIL
NIL
NIL
(-456 UP)
-((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
+((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein's criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein's criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein's criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-457 R UP -2284)
-((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
+(-457 R UP -1683)
+((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the lp norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri's norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri's norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
(-458 R UP)
@@ -1781,7 +1781,7 @@ NIL
NIL
NIL
(-463 |Dom| |Expon| |VarSet| |Dpol|)
-((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don\\spad{'t} vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
+((|constructor| (NIL "\\spadtype{GroebnerFactorizationPackage} provides the function groebnerFactor\" which uses the factorization routines of \\Language{} to factor each polynomial under consideration while doing the groebner basis algorithm. Then it writes the ideal as an intersection of ideals determined by the irreducible factors. Note that the whole ring may occur as well as other redundancies. We also use the fact,{} that from the second factor on we can assume that the preceding factors are not equal to 0 and we divide all polynomials under considerations by the elements of this list of \"nonZeroRestrictions\". The result is a list of groebner bases,{} whose union of solutions of the corresponding systems of equations is the solution of the system of equation corresponding to the input list. The term ordering is determined by the polynomial type used. Suggested types include \\spadtype{DistributedMultivariatePolynomial},{} \\spadtype{HomogeneousDistributedMultivariatePolynomial},{} \\spadtype{GeneralDistributedMultivariatePolynomial}.")) (|groebnerFactorize| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, info)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys)} returns a list of groebner bases. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys}. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions, info)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|) (|List| |#4|)) "\\spad{groebnerFactorize(listOfPolys, nonZeroRestrictions)} returns a list of groebner basis. The union of their solutions is the solution of the system of equations given by {\\em listOfPolys} under the restriction that the polynomials of {\\em nonZeroRestrictions} don't vanish. At each stage the polynomial \\spad{p} under consideration (either from the given basis or obtained from a reduction of the next \\spad{S}-polynomial) is factorized. For each irreducible factors of \\spad{p},{} a new {\\em createGroebnerBasis} is started doing the usual updates with the factor in place of \\spad{p}.")) (|factorGroebnerBasis| (((|List| (|List| |#4|)) (|List| |#4|) (|Boolean|)) "\\spad{factorGroebnerBasis(basis,info)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}. If argument {\\em info} is \\spad{true},{} information is printed about partial results.") (((|List| (|List| |#4|)) (|List| |#4|)) "\\spad{factorGroebnerBasis(basis)} checks whether the \\spad{basis} contains reducible polynomials and uses these to split the \\spad{basis}.")))
NIL
NIL
(-464 |Dom| |Expon| |VarSet| |Dpol|)
@@ -1789,11 +1789,11 @@ NIL
NIL
NIL
(-465 S)
-((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
+((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
NIL
NIL
(-466)
-((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
+((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-467 R |n| |ls| |gamma|)
@@ -1803,9 +1803,9 @@ NIL
(-468 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
(((-4510 "*") |has| |#2| (-175)) (-4501 |has| |#2| (-571)) (-4506 |has| |#2| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
-((|HasCategory| |#2| (QUOTE (-939))) (-2304 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2304 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2304 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2304 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147)))))
+((|HasCategory| |#2| (QUOTE (-939))) (-2196 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2196 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2196 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2196 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147)))))
(-469 R BP)
-((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
+((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it's conditional.")))
NIL
NIL
(-470 OV E S R P)
@@ -1813,7 +1813,7 @@ NIL
NIL
NIL
(-471 E OV R P)
-((|constructor| (NIL "This package provides operations for \\spad{GCD} computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{GCD} of \\spad{p} and \\spad{q}")))
+((|constructor| (NIL "This package provides operations for GCD computations on polynomials")) (|randomR| ((|#3|) "\\spad{randomR()} should be local but conditional")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPolynomial(p,q)} returns the GCD of \\spad{p} and \\spad{q}")))
NIL
NIL
(-472 R)
@@ -1833,23 +1833,23 @@ NIL
((-4503 . T) (-4502 . T))
NIL
(-476 E V R P Q)
-((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
+((|constructor| (NIL "Gosper's summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
NIL
NIL
(-477 R E |VarSet| P)
-((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
+((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(lp)} returns the polynomial set whose members are the polynomials of \\axiom{lp}.")))
((-4509 . T) (-4508 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#4| (QUOTE (-102))))
(-478 S R E)
-((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
+((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
(-479 R E)
-((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
+((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
NIL
(-480)
-((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(\\spad{vv}) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect.")))
+((|constructor| (NIL "GrayCode provides a function for efficiently running through all subsets of a finite set,{} only changing one element by another one.")) (|firstSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{firstSubsetGray(n)} creates the first vector {\\em ww} to start a loop using {\\em nextSubsetGray(ww,n)}")) (|nextSubsetGray| (((|Vector| (|Vector| (|Integer|))) (|Vector| (|Vector| (|Integer|))) (|PositiveInteger|)) "\\spad{nextSubsetGray(ww,n)} returns a vector {\\em vv} whose components have the following meanings:\\begin{items} \\item {\\em vv.1}: a vector of length \\spad{n} whose entries are 0 or 1. This \\indented{3}{can be interpreted as a code for a subset of the set 1,{}...,{}\\spad{n};} \\indented{3}{{\\em vv.1} differs from {\\em ww.1} by exactly one entry;} \\item {\\em vv.2.1} is the number of the entry of {\\em vv.1} which \\indented{3}{will be changed next time;} \\item {\\em vv.2.1 = n+1} means that {\\em vv.1} is the last subset; \\indented{3}{trying to compute nextSubsetGray(vv) if {\\em vv.2.1 = n+1}} \\indented{3}{will produce an error!} \\end{items} The other components of {\\em vv.2} are needed to compute nextSubsetGray efficiently. Note: this is an implementation of [Williamson,{} Topic II,{} 3.54,{} \\spad{p}. 112] for the special case {\\em r1 = r2 = ... = rn = 2}; Note: nextSubsetGray produces a side-effect,{} \\spadignore{i.e.} {\\em nextSubsetGray(vv)} and {\\em vv := nextSubsetGray(vv)} will have the same effect.")))
NIL
NIL
(-481)
@@ -1857,18 +1857,18 @@ NIL
NIL
NIL
(-482)
-((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}\\spad{pt}) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it\\spad{'s} data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it\\spad{'s} elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport.")))
+((|constructor| (NIL "TwoDimensionalGraph creates virtual two dimensional graphs (to be displayed on TwoDimensionalViewports).")) (|putColorInfo| (((|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|))) "\\spad{putColorInfo(llp,lpal)} takes a list of list of points,{} \\spad{llp},{} and returns the points with their hue and shade components set according to the list of palette colors,{} \\spad{lpal}.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(gi)} returns the indicated graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage} as output of the domain \\spadtype{OutputForm}.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{coerce(llp)} component(\\spad{gi},{}pt) creates and returns a graph of the domain \\spadtype{GraphImage} which is composed of the list of list of points given by \\spad{llp},{} and whose point colors,{} line colors and point sizes are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.")) (|point| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|)) "\\spad{point(gi,pt,pal)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to be the palette color \\spad{pal},{} and whose line color and point size are determined by the default functions \\spadfun{lineColorDefault} and \\spadfun{pointSizeDefault}.")) (|appendPoint| (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{appendPoint(gi,pt)} appends the point \\spad{pt} to the end of the list of points component for the graph,{} \\spad{gi},{} which is of the domain \\spadtype{GraphImage}.")) (|component| (((|Void|) $ (|Point| (|DoubleFloat|)) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,pt,pal1,pal2,ps)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color is set to the palette color \\spad{pal1},{} line color is set to the palette color \\spad{pal2},{} and point size is set to the positive integer \\spad{ps}.") (((|Void|) $ (|Point| (|DoubleFloat|))) "\\spad{component(gi,pt)} modifies the graph \\spad{gi} of the domain \\spadtype{GraphImage} to contain one point component,{} \\spad{pt} whose point color,{} line color and point size are determined by the default functions \\spadfun{pointColorDefault},{} \\spadfun{lineColorDefault},{} and \\spadfun{pointSizeDefault}.") (((|Void|) $ (|List| (|Point| (|DoubleFloat|))) (|Palette|) (|Palette|) (|PositiveInteger|)) "\\spad{component(gi,lp,pal1,pal2,p)} sets the components of the graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to the values given. The point list for \\spad{gi} is set to the list \\spad{lp},{} the color of the points in \\spad{lp} is set to the palette color \\spad{pal1},{} the color of the lines which connect the points \\spad{lp} is set to the palette color \\spad{pal2},{} and the size of the points in \\spad{lp} is given by the integer \\spad{p}.")) (|units| (((|List| (|Float|)) $ (|List| (|Float|))) "\\spad{units(gi,lu)} modifies the list of unit increments for the \\spad{x} and \\spad{y} axes of the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of unit increments,{} \\spad{lu},{} and returns the new list of units for \\spad{gi}.") (((|List| (|Float|)) $) "\\spad{units(gi)} returns the list of unit increments for the \\spad{x} and \\spad{y} axes of the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|ranges| (((|List| (|Segment| (|Float|))) $ (|List| (|Segment| (|Float|)))) "\\spad{ranges(gi,lr)} modifies the list of ranges for the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} to be that of the list of range segments,{} \\spad{lr},{} and returns the new range list for \\spad{gi}.") (((|List| (|Segment| (|Float|))) $) "\\spad{ranges(gi)} returns the list of ranges of the point components from the indicated graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|key| (((|Integer|) $) "\\spad{key(gi)} returns the process ID of the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|pointLists| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{pointLists(gi)} returns the list of lists of points which compose the given graph,{} \\spad{gi},{} of the domain \\spadtype{GraphImage}.")) (|makeGraphImage| (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|)) (|List| (|DrawOption|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp,lopt)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points,{} and \\spad{lopt} is the list of draw command options. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|Palette|)) (|List| (|Palette|)) (|List| (|PositiveInteger|))) "\\spad{makeGraphImage(llp,lpal1,lpal2,lp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} whose point colors are indicated by the list of palette colors,{} \\spad{lpal1},{} and whose lines are colored according to the list of palette colors,{} \\spad{lpal2}. The paramater \\spad{lp} is a list of integers which denote the size of the data points. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{makeGraphImage(llp)} returns a graph of the domain \\spadtype{GraphImage} which is composed of the points and lines from the list of lists of points,{} \\spad{llp},{} with default point size and default point and line colours. The graph data is then sent to the viewport manager where it waits to be included in a two-dimensional viewport window.") (($ $) "\\spad{makeGraphImage(gi)} takes the given graph,{} \\spad{gi} of the domain \\spadtype{GraphImage},{} and sends it's data to the viewport manager where it waits to be included in a two-dimensional viewport window. \\spad{gi} cannot be an empty graph,{} and it's elements must have been created using the \\spadfun{point} or \\spadfun{component} functions,{} not by a previous \\spadfun{makeGraphImage}.")) (|graphImage| (($) "\\spad{graphImage()} returns an empty graph with 0 point lists of the domain \\spadtype{GraphImage}. A graph image contains the graph data component of a two dimensional viewport.")))
NIL
NIL
(-483 S R E)
-((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
+((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#2|) "\\spad{g*r} is right module multiplication.") (($ |#2| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#3| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
(-484 R E)
-((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
+((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-485 |lv| -2284 R)
+(-485 |lv| -1683 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1883,11 +1883,11 @@ NIL
(-488 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2304 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560)))))) (-2304 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2518) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1443) (LIST (LIST (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2196 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (LIST (QUOTE -3913) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560)))))) (-2196 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -4424) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -4162) (LIST (LIST (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))))
(-489 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
((-4509 . T))
-((-12 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2968) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2460) (|devaluate| |#2|)))))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-871))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))))
+((-12 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1438) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3067) (|devaluate| |#2|)))))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-871))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))))
(-490 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
((-4509 . T) (-4508 . T))
@@ -1903,39 +1903,39 @@ NIL
(-493 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2968) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2460) (|devaluate| |#2|)))))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-102))))
+((-12 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1438) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3067) (|devaluate| |#2|)))))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-102))))
(-494)
-((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
+((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre's book Lie Groups -- Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight <= \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-495 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
(((-4510 "*") |has| |#2| (-175)) (-4501 |has| |#2| (-571)) (-4506 |has| |#2| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
-((|HasCategory| |#2| (QUOTE (-939))) (-2304 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2304 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2304 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2304 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147)))))
-(-496 -1834 S)
+((|HasCategory| |#2| (QUOTE (-939))) (-2196 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2196 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2196 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2196 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147)))))
+(-496 -3662 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4502 |has| |#2| (-1080)) (-4503 |has| |#2| (-1080)) (-4505 |has| |#2| (-6 -4505)) (-4508 . T))
-((-2304 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2304 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2304 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2304 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2304 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2304 (-12 (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2304 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2304 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2304 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-2304 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2304 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4505)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))))
+((-2196 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2196 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2196 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2196 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2196 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2196 (-12 (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2196 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2196 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2196 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-2196 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2196 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4505)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))))
(-497)
-((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header.")))
+((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header `h'.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header.")))
NIL
NIL
(-498 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
-(-499 -2284 UP UPUP R)
-((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
+((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
+(-499 -1683 UP UPUP R)
+((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
(-500 BP)
-((|constructor| (NIL "This package provides the functions for the heuristic integer \\spad{gcd}. Geddes\\spad{'s} algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = \\spad{gcd} of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = \\spad{gcd} and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = \\spad{gcd} of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = \\spad{gcd} of the polynomials \\spad{fi}.")))
+((|constructor| (NIL "This package provides the functions for the heuristic integer gcd. Geddes's algorithm,{}for univariate polynomials with integer coefficients")) (|lintgcd| (((|Integer|) (|List| (|Integer|))) "\\spad{lintgcd([a1,..,ak])} = gcd of a list of integers")) (|content| (((|List| (|Integer|)) (|List| |#1|)) "\\spad{content([f1,..,fk])} = content of a list of univariate polynonials")) (|gcdcofactprim| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofactprim([f1,..fk])} = gcd and cofactors of \\spad{k} primitive polynomials.")) (|gcdcofact| (((|List| |#1|) (|List| |#1|)) "\\spad{gcdcofact([f1,..fk])} = gcd and cofactors of \\spad{k} univariate polynomials.")) (|gcdprim| ((|#1| (|List| |#1|)) "\\spad{gcdprim([f1,..,fk])} = gcd of \\spad{k} PRIMITIVE univariate polynomials")) (|gcd| ((|#1| (|List| |#1|)) "\\spad{gcd([f1,..,fk])} = gcd of the polynomials \\spad{fi}.")))
NIL
NIL
(-501)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2304 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (LIST (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147)))))
+((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2196 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (LIST (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147)))))
(-502 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
@@ -1949,7 +1949,7 @@ NIL
NIL
NIL
(-505)
-((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}.")))
+((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name `n'.")))
NIL
NIL
(-506 S)
@@ -1960,8 +1960,8 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-508 -2284 UP |AlExt| |AlPol|)
-((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
+(-508 -1683 UP |AlExt| |AlPol|)
+((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP's.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-509)
@@ -1969,19 +1969,19 @@ NIL
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
((|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (LIST (QUOTE -1069) (QUOTE (-560)))))
(-510 S |mn|)
-((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
+((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type.")))
((-4509 . T) (-4508 . T))
-((-2304 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2304 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-2196 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2196 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-511 R |mnRow| |mnCol|)
-((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
+((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray's with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
(-512 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented")))
NIL
NIL
-(-513 R UP -2284)
-((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
+(-513 R UP -1683)
+((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the gcd of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-514 |mn|)
@@ -1997,10 +1997,10 @@ NIL
NIL
NIL
(-517 R Q A B)
-((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
+((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn.")))
NIL
NIL
-(-518 -2284 |Expon| |VarSet| |DPoly|)
+(-518 -1683 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -633) (QUOTE (-1207)))))
@@ -2037,11 +2037,11 @@ NIL
NIL
((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))))
(-527 S A B)
-((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
+((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
(-528 A B)
-((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
+((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
(-529 S E |un|)
@@ -2049,9 +2049,9 @@ NIL
NIL
((|HasCategory| |#2| (QUOTE (-814))))
(-530 S |mn|)
-((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
+((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified SMW \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
((-4509 . T) (-4508 . T))
-((-2304 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2304 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-2196 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2196 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-531)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
@@ -2059,17 +2059,17 @@ NIL
(-532 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((-2304 (|HasCategory| (-595 |#1|) (QUOTE (-147))) (|HasCategory| (-595 |#1|) (QUOTE (-381)))) (|HasCategory| (-595 |#1|) (QUOTE (-149))) (|HasCategory| (-595 |#1|) (QUOTE (-381))) (|HasCategory| (-595 |#1|) (QUOTE (-147))))
+((-2196 (|HasCategory| (-595 |#1|) (QUOTE (-147))) (|HasCategory| (-595 |#1|) (QUOTE (-381)))) (|HasCategory| (-595 |#1|) (QUOTE (-149))) (|HasCategory| (-595 |#1|) (QUOTE (-381))) (|HasCategory| (-595 |#1|) (QUOTE (-147))))
(-533 R |mnRow| |mnCol| |Row| |Col|)
-((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
+((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray's of PrimitiveArray's.")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
(-534 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
((-4509 . T) (-4508 . T))
-((-2304 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2304 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-2196 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2196 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-535 R |Row| |Col| M)
-((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
+((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} m*h and h*m are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
((|HasAttribute| |#3| (QUOTE -4509)))
(-536 R |Row| |Col| M QF |Row2| |Col2| M2)
@@ -2079,7 +2079,7 @@ NIL
(-537 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4510 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4510 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
(-538)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
@@ -2089,31 +2089,31 @@ NIL
NIL
NIL
(-540 S)
-((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}.")))
+((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}.")))
NIL
NIL
(-541)
-((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit \\spad{`c'} into the byte buffer \\spad{`b'}. The actual number of bytes written is returned,{} and the length of \\spad{`b'} is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a UInt32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an Int32 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a UInt16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an Int16 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a UInt8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an Int8 value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}.")))
+((|constructor| (NIL "This category describes input byte stream conduits.")) (|readBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{readBytes!(c,b)} reads byte sequences from conduit `c' into the byte buffer `b'. The actual number of bytes written is returned,{} and the length of `b' is set to that amount.")) (|readUInt32!| (((|Maybe| (|UInt32|)) $) "\\spad{readUInt32!(cond)} attempts to read a \\spad{UInt32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt32!| (((|Maybe| (|Int32|)) $) "\\spad{readInt32!(cond)} attempts to read an \\spad{Int32} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt16!| (((|Maybe| (|UInt16|)) $) "\\spad{readUInt16!(cond)} attempts to read a \\spad{UInt16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt16!| (((|Maybe| (|Int16|)) $) "\\spad{readInt16!(cond)} attempts to read an \\spad{Int16} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readUInt8!| (((|Maybe| (|UInt8|)) $) "\\spad{readUInt8!(cond)} attempts to read a \\spad{UInt8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readInt8!| (((|Maybe| (|Int8|)) $) "\\spad{readInt8!(cond)} attempts to read an \\spad{Int8} value from the input conduit `cond'. Returns the value if successful,{} otherwise \\spad{nothing}.")) (|readByte!| (((|Maybe| (|Byte|)) $) "\\spad{readByte!(cond)} attempts to read a byte from the input conduit `cond'. Returns the read byte if successful,{} otherwise \\spad{nothing}.")))
NIL
NIL
(-542 GF)
-((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}.")))
+((|constructor| (NIL "InnerNormalBasisFieldFunctions(GF) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{**}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,e,d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in GF(2^m) using normal bases\",{} Information and Computation 78,{} pp.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,n,k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in GF(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} pp.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,...,vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field GF.")))
NIL
NIL
(-543)
-((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file \\spad{`f'}.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
+((|constructor| (NIL "This domain provides representation for binary files open for input operations. `Binary' here means that the conduits do not interpret their contents.")) (|position!| (((|SingleInteger|) $ (|SingleInteger|)) "position(\\spad{f},{}\\spad{p}) sets the current byte-position to `i'.")) (|position| (((|SingleInteger|) $) "\\spad{position(f)} returns the current byte-position in the file `f'.")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(ifile)} holds if `ifile' is in open state.")) (|eof?| (((|Boolean|) $) "\\spad{eof?(ifile)} holds when the last read reached end of file.")) (|inputBinaryFile| (($ (|String|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputBinaryFile(f)} returns an input conduit obtained by opening the file named by `f' as a binary file.")))
NIL
NIL
(-544 R)
-((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}.")))
+((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} := increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} := increment()} then \\spad{f x} is \\spad{x+1}.")))
NIL
NIL
(-545 |Varset|)
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
((-12 (|HasCategory| (-793) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-1132)))))
-(-546 K -2284 |Par|)
-((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
+(-546 K -1683 |Par|)
+((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to br used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
(-547)
@@ -2125,7 +2125,7 @@ NIL
NIL
NIL
(-549)
-((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
+((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f, [t1,...,tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,...,tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}'s are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|parseString| (($ (|String|)) "parseString is the inverse of unparse. It parses a string to InputForm.")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code, [x1,...,xn])} returns the input form corresponding to \\spad{(x1,...,xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code, [x1,...,xn], f)} returns the input form corresponding to \\spad{f(x1,...,xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op, [a1,...,an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
NIL
NIL
(-550 R)
@@ -2136,12 +2136,12 @@ NIL
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-552 K -2284 |Par|)
+(-552 K -1683 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
(-553 R BP |pMod| |nextMod|)
-((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods.")))
+((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the gcd of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,f2)} computes the gcd of the two polynomials \\spad{f1} and \\spad{f2} by modular methods.")))
NIL
NIL
(-554 OV E R P)
@@ -2191,12 +2191,12 @@ NIL
(-565 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2968) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2460) (|devaluate| |#2|)))))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-102))))
-(-566 R -2284)
+((-12 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1438) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3067) (|devaluate| |#2|)))))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-102))))
+(-566 R -1683)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-567 R0 -2284 UP UPUP R)
+(-567 R0 -1683 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
@@ -2205,8 +2205,8 @@ NIL
NIL
NIL
(-569 R)
-((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-2239 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} <= \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
+((-2905 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-570 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
@@ -2216,75 +2216,75 @@ NIL
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
-(-572 R -2284)
-((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
+(-572 R -1683)
+((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}kn (the \\spad{ki}'s must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
(-573 I)
-((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
+((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra's eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
(-574)
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-575 R -2284 L)
-((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
+(-575 R -1683 L)
+((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -680) (|devaluate| |#2|))))
(-576)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-577 -2284 UP UPUP R)
+(-577 -1683 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-578 -2284 UP)
+(-578 -1683 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
(-579)
-((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
+((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range,{} {\\tt a} to {\\tt \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\tt numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range,{} {\\tt a} to {\\tt \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\tt \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-580 R -2284 L)
-((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
+(-580 R -1683 L)
+((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -680) (|devaluate| |#2|))))
-(-581 R -2284)
+(-581 R -1683)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1170)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-649)))))
-(-582 -2284 UP)
-((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
+(-582 -1683 UP)
+((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
(-583 S)
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-584 -2284)
-((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
+(-584 -1683)
+((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-585 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-2239 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((-2905 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-586)
-((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
+((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")))
NIL
NIL
-(-587 R -2284)
+(-587 R -1683)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-296))) (|HasCategory| |#2| (QUOTE (-649))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-296)))) (|HasCategory| |#1| (QUOTE (-571))))
-(-588 -2284 UP)
+(-588 -1683 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-589 R -2284)
+(-589 R -1683)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
@@ -2293,7 +2293,7 @@ NIL
NIL
NIL
(-591)
-((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if \\spad{`f'} is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by \\spad{`f'} as a binary file.")))
+((|constructor| (NIL "\\indented{2}{This domain provides representation for binary files open} \\indented{2}{for input and output operations.} See Also: InputBinaryFile,{} OutputBinaryFile")) (|isOpen?| (((|Boolean|) $) "\\spad{isOpen?(f)} holds if `f' is in open state.")) (|inputOutputBinaryFile| (($ (|String|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{inputOutputBinaryFile(f)} returns an input/output conduit obtained by opening the file designated by `f' as a binary file.")))
NIL
NIL
(-592)
@@ -2301,11 +2301,11 @@ NIL
NIL
NIL
(-593)
-((|constructor| (NIL "This domain provides representation for ARPA Internet IP4 addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the IP4 address of host \\spad{`h'}.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address \\spad{`x'}.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'.")))
+((|constructor| (NIL "This domain provides representation for ARPA Internet \\spad{IP4} addresses.")) (|resolve| (((|Maybe| $) (|Hostname|)) "\\spad{resolve(h)} returns the \\spad{IP4} address of host `h'.")) (|bytes| (((|DataArray| 4 (|Byte|)) $) "\\spad{bytes(x)} returns the bytes of the numeric address `x'.")) (|ip4Address| (($ (|String|)) "\\spad{ip4Address(a)} builds a numeric address out of the ASCII form `a'.")))
NIL
NIL
(-594 |p| |unBalanced?|)
-((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
+((|constructor| (NIL "This domain implements Zp,{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-595 |p|)
@@ -2316,16 +2316,16 @@ NIL
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-597 -2284)
-((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
+(-597 -1683)
+((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over F?")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
((-4503 . T) (-4502 . T))
((|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-1207)))))
-(-598 E -2284)
+(-598 E -1683)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented")))
NIL
NIL
-(-599 R -2284)
-((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
+(-599 R -1683)
+((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}.")))
NIL
NIL
(-600)
@@ -2341,11 +2341,11 @@ NIL
NIL
NIL
(-603 R)
-((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
+((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}.")))
NIL
((|HasCategory| |#1| (QUOTE (-149))))
(-604)
-((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented.")))
+((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,2,...,n}} in Young's natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,3,3,1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young's natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young's natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,2,...,n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,pi)} is the irreducible representation corresponding to partition {\\em lambda} in Young's natural form of the permutation {\\em pi} in the symmetric group,{} whose elements permute {\\em {1,2,...,n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|PositiveInteger|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented.")))
NIL
NIL
(-605 R E V P TS)
@@ -2359,7 +2359,7 @@ NIL
(-607 |mn|)
((|constructor| (NIL "This domain implements low-level strings")))
((-4509 . T) (-4508 . T))
-((-2304 (-12 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (-2304 (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (LIST (QUOTE -633) (QUOTE (-549)))) (-2304 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-146) (QUOTE (-871))) (-2304 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))))
+((-2196 (-12 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (-2196 (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (LIST (QUOTE -633) (QUOTE (-549)))) (-2196 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-146) (QUOTE (-871))) (-2196 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))))
(-608 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
@@ -2367,7 +2367,7 @@ NIL
(-609 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))) (|HasCategory| (-560) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))) (|HasCategory| (-560) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -3913) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))))
(-610 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
(((-4510 "*") |has| |#1| (-571)) (-4501 |has| |#1| (-571)) (-4502 . T) (-4503 . T) (-4505 . T))
@@ -2384,8 +2384,8 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented")))
NIL
NIL
-(-614 R -2284 FG)
-((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
+(-614 R -1683 FG)
+((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and FG should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
(-615 S)
@@ -2395,7 +2395,7 @@ NIL
(-616 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
((-4509 . T) (-4508 . T))
-((-2304 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2304 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-2196 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2196 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-617 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
@@ -2405,41 +2405,41 @@ NIL
NIL
NIL
(-619)
-((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join \\spad{`x'}.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'.")))
+((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join `x'.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'.")))
NIL
NIL
(-620 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4505 -2304 (-1953 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) (-4503 . T) (-4502 . T))
-((-2304 (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -432) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -432) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -432) (|devaluate| |#1|)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (LIST (QUOTE -432) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|))))
+((-4505 -2196 (-1404 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) (-4503 . T) (-4502 . T))
+((-2196 (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -432) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -432) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -432) (|devaluate| |#1|)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (LIST (QUOTE -432) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|))))
(-621)
-((|constructor| (NIL "This is the datatype for the \\spad{JVM} bytecodes.")))
+((|constructor| (NIL "This is the datatype for the JVM bytecodes.")))
NIL
NIL
(-622)
-((|constructor| (NIL "\\spad{JVM} class file access bitmask and values.")) (|jvmAbstract| (($) "The class was declared abstract; therefore object of this class may not be created.")) (|jvmInterface| (($) "The class file represents an interface,{} not a class.")) (|jvmSuper| (($) "Instruct the \\spad{JVM} to treat base clss method invokation specially.")) (|jvmFinal| (($) "The class was declared final; therefore no derived class allowed.")) (|jvmPublic| (($) "The class was declared public,{} therefore may be accessed from outside its package")))
+((|constructor| (NIL "JVM class file access bitmask and values.")) (|jvmAbstract| (($) "The class was declared abstract; therefore object of this class may not be created.")) (|jvmInterface| (($) "The class file represents an interface,{} not a class.")) (|jvmSuper| (($) "Instruct the JVM to treat base clss method invokation specially.")) (|jvmFinal| (($) "The class was declared final; therefore no derived class allowed.")) (|jvmPublic| (($) "The class was declared public,{} therefore may be accessed from outside its package")))
NIL
NIL
(-623)
-((|constructor| (NIL "\\spad{JVM} class file constant pool tags.")) (|jvmNameAndTypeConstantTag| (($) "The correspondong constant pool entry represents the name and type of a field or method info.")) (|jvmInterfaceMethodConstantTag| (($) "The correspondong constant pool entry represents an interface method info.")) (|jvmMethodrefConstantTag| (($) "The correspondong constant pool entry represents a class method info.")) (|jvmFieldrefConstantTag| (($) "The corresponding constant pool entry represents a class field info.")) (|jvmStringConstantTag| (($) "The corresponding constant pool entry is a string constant info.")) (|jvmClassConstantTag| (($) "The corresponding constant pool entry represents a class or and interface.")) (|jvmDoubleConstantTag| (($) "The corresponding constant pool entry is a double constant info.")) (|jvmLongConstantTag| (($) "The corresponding constant pool entry is a long constant info.")) (|jvmFloatConstantTag| (($) "The corresponding constant pool entry is a float constant info.")) (|jvmIntegerConstantTag| (($) "The corresponding constant pool entry is an integer constant info.")) (|jvmUTF8ConstantTag| (($) "The corresponding constant pool entry is sequence of bytes representing Java UTF8 string constant.")))
+((|constructor| (NIL "JVM class file constant pool tags.")) (|jvmNameAndTypeConstantTag| (($) "The correspondong constant pool entry represents the name and type of a field or method info.")) (|jvmInterfaceMethodConstantTag| (($) "The correspondong constant pool entry represents an interface method info.")) (|jvmMethodrefConstantTag| (($) "The correspondong constant pool entry represents a class method info.")) (|jvmFieldrefConstantTag| (($) "The corresponding constant pool entry represents a class field info.")) (|jvmStringConstantTag| (($) "The corresponding constant pool entry is a string constant info.")) (|jvmClassConstantTag| (($) "The corresponding constant pool entry represents a class or and interface.")) (|jvmDoubleConstantTag| (($) "The corresponding constant pool entry is a double constant info.")) (|jvmLongConstantTag| (($) "The corresponding constant pool entry is a long constant info.")) (|jvmFloatConstantTag| (($) "The corresponding constant pool entry is a float constant info.")) (|jvmIntegerConstantTag| (($) "The corresponding constant pool entry is an integer constant info.")) (|jvmUTF8ConstantTag| (($) "The corresponding constant pool entry is sequence of bytes representing Java \\spad{UTF8} string constant.")))
NIL
NIL
(-624)
-((|constructor| (NIL "\\spad{JVM} class field access bitmask and values.")) (|jvmTransient| (($) "The field was declared transient.")) (|jvmVolatile| (($) "The field was declared volatile.")) (|jvmFinal| (($) "The field was declared final; therefore may not be modified after initialization.")) (|jvmStatic| (($) "The field was declared static.")) (|jvmProtected| (($) "The field was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The field was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The field was declared public; therefore mey accessed from outside its package.")))
+((|constructor| (NIL "JVM class field access bitmask and values.")) (|jvmTransient| (($) "The field was declared transient.")) (|jvmVolatile| (($) "The field was declared volatile.")) (|jvmFinal| (($) "The field was declared final; therefore may not be modified after initialization.")) (|jvmStatic| (($) "The field was declared static.")) (|jvmProtected| (($) "The field was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The field was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The field was declared public; therefore mey accessed from outside its package.")))
NIL
NIL
(-625)
-((|constructor| (NIL "\\spad{JVM} class method access bitmask and values.")) (|jvmStrict| (($) "The method was declared fpstrict; therefore floating-point mode is \\spad{FP}-strict.")) (|jvmAbstract| (($) "The method was declared abstract; therefore no implementation is provided.")) (|jvmNative| (($) "The method was declared native; therefore implemented in a language other than Java.")) (|jvmSynchronized| (($) "The method was declared synchronized.")) (|jvmFinal| (($) "The method was declared final; therefore may not be overriden. in derived classes.")) (|jvmStatic| (($) "The method was declared static.")) (|jvmProtected| (($) "The method was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The method was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The method was declared public; therefore mey accessed from outside its package.")))
+((|constructor| (NIL "JVM class method access bitmask and values.")) (|jvmStrict| (($) "The method was declared fpstrict; therefore floating-point mode is FP-strict.")) (|jvmAbstract| (($) "The method was declared abstract; therefore no implementation is provided.")) (|jvmNative| (($) "The method was declared native; therefore implemented in a language other than Java.")) (|jvmSynchronized| (($) "The method was declared synchronized.")) (|jvmFinal| (($) "The method was declared final; therefore may not be overriden. in derived classes.")) (|jvmStatic| (($) "The method was declared static.")) (|jvmProtected| (($) "The method was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The method was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The method was declared public; therefore mey accessed from outside its package.")))
NIL
NIL
(-626)
-((|constructor| (NIL "This is the datatype for the \\spad{JVM} opcodes.")))
+((|constructor| (NIL "This is the datatype for the JVM opcodes.")))
NIL
NIL
(-627 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2968) (QUOTE (-1189))) (LIST (QUOTE |:|) (QUOTE -2460) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| (-1189) (QUOTE (-871))) (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (QUOTE (-102))))
+((-12 (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1438) (QUOTE (-1189))) (LIST (QUOTE |:|) (QUOTE -3067) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| (-1189) (QUOTE (-871))) (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (QUOTE (-102))))
(-628 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
@@ -2464,20 +2464,20 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-634 -2284 UP)
-((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
+(-634 -1683 UP)
+((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic's algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
(-635 S)
-((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms \\spad{`s'} into an element of `\\%'.")))
+((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms `s' into an element of `\\%'.")))
NIL
NIL
(-636)
-((|constructor| (NIL "This domain implements Kleene\\spad{'s} 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of \\spad{`x'} is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of \\spad{`x'} is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of \\spad{`x'} is `false'")) (|unknown| (($) "the indefinite `unknown'")))
+((|constructor| (NIL "This domain implements Kleene's 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of `x' is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of `x' is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of `x' is `false'")) (|unknown| (($) "the indefinite `unknown'")))
NIL
NIL
(-637 S)
-((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms \\spad{`s'} into an element of `\\%'.")))
+((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms `s' into an element of `\\%'.")))
NIL
NIL
(-638 A R S)
@@ -2492,7 +2492,7 @@ NIL
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
((-4505 . T))
NIL
-(-641 R -2284)
+(-641 R -1683)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform.")))
NIL
NIL
@@ -2501,11 +2501,11 @@ NIL
((-4503 . T) (-4502 . T) ((-4510 "*") . T) (-4501 . T) (-4505 . T))
((|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))))
(-643 R E V P TS ST)
-((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
+((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(lp,{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(ts)} returns \\axiom{ts} in an normalized shape if \\axiom{ts} is zero-dimensional.")))
NIL
NIL
(-644 OV E Z P)
-((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation.")))
+((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \"F\".")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation.")))
NIL
NIL
(-645)
@@ -2513,14 +2513,14 @@ NIL
NIL
NIL
(-646 |VarSet| R |Order|)
-((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
+((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(lv)} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
((-4505 . T))
NIL
(-647 R |ls|)
-((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
+((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(lp)} returns the lexicographical Groebner basis of \\axiom{lp}. If \\axiom{lp} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(lp)} returns the lexicographical Groebner basis of \\axiom{lp} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(lp)} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(lp)} returns \\spad{true} iff \\axiom{lp} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{lp}.")))
NIL
NIL
-(-648 R -2284)
+(-648 R -1683)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
@@ -2528,24 +2528,24 @@ NIL
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-650 |lv| -2284)
+(-650 |lv| -1683)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-651)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
((-4509 . T))
-((-12 (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2968) (QUOTE (-1189))) (LIST (QUOTE |:|) (QUOTE -2460) (QUOTE (-51))))))) (-2304 (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2304 (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2304 (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (LIST (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-1189) (QUOTE (-871))) (-2304 (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (LIST (QUOTE -632) (QUOTE (-887))))) (-2304 (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (QUOTE (-1132))))
+((-12 (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1438) (QUOTE (-1189))) (LIST (QUOTE |:|) (QUOTE -3067) (QUOTE (-51))))))) (-2196 (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2196 (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2196 (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (LIST (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-1189) (QUOTE (-871))) (-2196 (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (LIST (QUOTE -632) (QUOTE (-887))))) (-2196 (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (QUOTE (-1132))))
(-652 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4505 -2304 (-1953 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) (-4503 . T) (-4502 . T))
-((-2304 (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -432) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -432) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -432) (|devaluate| |#1|)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (LIST (QUOTE -432) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|))))
+((-4505 -2196 (-1404 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) (-4503 . T) (-4502 . T))
+((-2196 (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -432) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -432) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -432) (|devaluate| |#1|)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (LIST (QUOTE -432) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -380) (|devaluate| |#1|))))
(-653 S R)
-((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
+((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-376))))
(-654 R)
-((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
+((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
((|JacobiIdentity| . T) (|NullSquare| . T) (-4503 . T) (-4502 . T))
NIL
(-655 R FE)
@@ -2561,9 +2561,9 @@ NIL
NIL
NIL
(-658 S R)
-((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
+((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-1937 (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-376))))
+((-1394 (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-376))))
(-659 K B)
((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}.")))
((-4503 . T) (-4502 . T))
@@ -2583,13 +2583,13 @@ NIL
(-663 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list.")))
((-4509 . T) (-4508 . T))
-((-2304 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2304 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-2196 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2196 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-664 A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}.")))
NIL
NIL
(-665 A B)
-((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
+((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and lb of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index lb. Error: if \\spad{la} and lb are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
NIL
NIL
(-666 A B C)
@@ -2605,11 +2605,11 @@ NIL
NIL
NIL
(-669 S)
-((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
+((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}'s with \\spad{y}'s in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
(-670 R)
-((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")))
+((|constructor| (NIL "The category of left modules over an rng (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline")))
NIL
NIL
(-671 S E |un|)
@@ -2617,22 +2617,22 @@ NIL
NIL
NIL
(-672 A S)
-((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
+((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
((|HasAttribute| |#1| (QUOTE -4509)))
(-673 S)
-((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
+((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
(-674 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
((-4503 . T) (-4502 . T))
((|HasCategory| |#1| (QUOTE (-813))))
-(-675 R -2284 L)
+(-675 R -1683 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-676 A -3327)
+(-676 A -3969)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
((-4502 . T) (-4503 . T) (-4505 . T))
((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376))))
@@ -2652,7 +2652,7 @@ NIL
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
((-4502 . T) (-4503 . T) (-4505 . T))
NIL
-(-681 -2284 UP)
+(-681 -1683 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
@@ -2673,7 +2673,7 @@ NIL
NIL
NIL
(-686 |VarSet| R)
-((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
+((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
((|JacobiIdentity| . T) (|NullSquare| . T) (-4503 . T) (-4502 . T))
((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-175))))
(-687 A S)
@@ -2684,12 +2684,12 @@ NIL
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
((-4509 . T) (-4508 . T))
NIL
-(-689 -2284 |Row| |Col| M)
+(-689 -1683 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-690 -2284)
-((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
+(-690 -1683)
+((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package's existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
(-691 R E OV P)
@@ -2699,33 +2699,33 @@ NIL
(-692 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
((-4505 . T) (-4508 . T) (-4502 . T) (-4503 . T))
-((|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2304 (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-571))) (-2304 (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175))))
+((|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2196 (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-571))) (-2196 (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175))))
(-693)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
NIL
(-694 |VarSet|)
-((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
+((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} <= \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.fr).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(vl,{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{\\spad{LyndonWordsList1}(vl,{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
NIL
(-695 A S)
-((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}.")))
+((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}.")))
NIL
NIL
(-696 S)
-((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}.")))
+((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}.")))
NIL
NIL
(-697 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms")))
NIL
-((-2304 (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1132))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-2196 (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1132))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-698)
-((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
+((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition `m'.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition `m'. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
NIL
(-699 |VarSet|)
-((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
+((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{y*z}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
NIL
(-700 A)
@@ -2741,7 +2741,7 @@ NIL
NIL
NIL
(-703)
-((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for \\spad{`s'}.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of \\spad{`s'}.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} \\spad{->} \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'.")))
+((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for `s'.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of `s'.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} -> \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'.")))
NIL
NIL
(-704 A)
@@ -2757,11 +2757,11 @@ NIL
NIL
NIL
(-707 S R |Row| |Col|)
-((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
+((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
((|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-571))))
(-708 R |Row| |Col|)
-((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
+((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
((-4508 . T) (-4509 . T))
NIL
(-709 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
@@ -2769,23 +2769,23 @@ NIL
NIL
NIL
(-710 R |Row| |Col| M)
-((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
+((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that m*n = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))))
(-711 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
((-4508 . T) (-4509 . T))
-((-2304 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1132))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4510 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-2196 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1132))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4510 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-712 R)
-((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
+((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} ** \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
(-713 T$)
-((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%.")))
+((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that `x' really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value `x' into \\%.")))
NIL
NIL
-(-714 S -2284 FLAF FLAS)
-((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
+(-714 S -1683 FLAF FLAS)
+((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} \\spad{kl+ku+1} being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions \\spad{kl+ku+1} by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row \\spad{ku+1},{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
(-715 R Q)
@@ -2794,27 +2794,27 @@ NIL
NIL
(-716)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4501 . T) (-4506 |has| (-721) (-376)) (-4500 |has| (-721) (-376)) (-2245 . T) (-4507 |has| (-721) (-6 -4507)) (-4504 |has| (-721) (-6 -4504)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| (-721) (QUOTE (-149))) (|HasCategory| (-721) (QUOTE (-147))) (|HasCategory| (-721) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-721) (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-721) (QUOTE (-381))) (|HasCategory| (-721) (QUOTE (-376))) (-2304 (|HasCategory| (-721) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-239))) (-2304 (-12 (|HasCategory| (-721) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (LIST (QUOTE -929) (QUOTE (-1207))))) (-2304 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-363)))) (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (LIST (QUOTE -298) (QUOTE (-721)) (QUOTE (-721)))) (|HasCategory| (-721) (LIST (QUOTE -321) (QUOTE (-721)))) (|HasCategory| (-721) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-721)))) (|HasCategory| (-721) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-721) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-721) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-721) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (-2304 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-363)))) (|HasCategory| (-721) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-721) (QUOTE (-1051))) (|HasCategory| (-721) (QUOTE (-1233))) (-12 (|HasCategory| (-721) (QUOTE (-1033))) (|HasCategory| (-721) (QUOTE (-1233)))) (-2304 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-376))) (-12 (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (QUOTE (-939))))) (-2304 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (-12 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-939)))) (-12 (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (QUOTE (-939))))) (|HasCategory| (-721) (QUOTE (-559))) (-12 (|HasCategory| (-721) (QUOTE (-1091))) (|HasCategory| (-721) (QUOTE (-1233)))) (|HasCategory| (-721) (QUOTE (-1091))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939))) (-2304 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-376)))) (-2304 (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (QUOTE (-239)))) (-2304 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-571)))) (-12 (|HasCategory| (-721) (QUOTE (-239))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-721) (QUOTE (-571))) (|HasAttribute| (-721) (QUOTE -4507)) (|HasAttribute| (-721) (QUOTE -4504)) (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (LIST (QUOTE -929) (QUOTE (-1207)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-147)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-363)))))
+((-4501 . T) (-4506 |has| (-721) (-376)) (-4500 |has| (-721) (-376)) (-2917 . T) (-4507 |has| (-721) (-6 -4507)) (-4504 |has| (-721) (-6 -4504)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((|HasCategory| (-721) (QUOTE (-149))) (|HasCategory| (-721) (QUOTE (-147))) (|HasCategory| (-721) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-721) (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-721) (QUOTE (-381))) (|HasCategory| (-721) (QUOTE (-376))) (-2196 (|HasCategory| (-721) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-239))) (-2196 (-12 (|HasCategory| (-721) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (LIST (QUOTE -929) (QUOTE (-1207))))) (-2196 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-363)))) (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (LIST (QUOTE -298) (QUOTE (-721)) (QUOTE (-721)))) (|HasCategory| (-721) (LIST (QUOTE -321) (QUOTE (-721)))) (|HasCategory| (-721) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-721)))) (|HasCategory| (-721) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-721) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-721) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-721) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (-2196 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-363)))) (|HasCategory| (-721) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-721) (QUOTE (-1051))) (|HasCategory| (-721) (QUOTE (-1233))) (-12 (|HasCategory| (-721) (QUOTE (-1033))) (|HasCategory| (-721) (QUOTE (-1233)))) (-2196 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-376))) (-12 (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (QUOTE (-939))))) (-2196 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (-12 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-939)))) (-12 (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (QUOTE (-939))))) (|HasCategory| (-721) (QUOTE (-559))) (-12 (|HasCategory| (-721) (QUOTE (-1091))) (|HasCategory| (-721) (QUOTE (-1233)))) (|HasCategory| (-721) (QUOTE (-1091))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939))) (-2196 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-376)))) (-2196 (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (QUOTE (-239)))) (-2196 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-571)))) (-12 (|HasCategory| (-721) (QUOTE (-239))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-721) (QUOTE (-571))) (|HasAttribute| (-721) (QUOTE -4507)) (|HasAttribute| (-721) (QUOTE -4504)) (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (LIST (QUOTE -929) (QUOTE (-1207)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-147)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-363)))))
(-717 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
((-4509 . T))
NIL
(-718 U)
-((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
+((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the gcd of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
(-719)
-((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented")))
+((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: ?? Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented")))
NIL
NIL
-(-720 OV E -2284 PG)
+(-720 OV E -1683 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-721)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-2239 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
+((-2905 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-722 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2837,10 +2837,10 @@ NIL
NIL
NIL
(-727 S T$)
-((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
+((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}.")))
NIL
NIL
-(-728 S -3305 I)
+(-728 S -2111 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2860,23 +2860,23 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-733 R |Mod| -2588 -3223 |exactQuo|)
+(-733 R |Mod| -3836 -4167 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-734 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4504 |has| |#1| (-376)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
-((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))))
+((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-735 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
(-736 R M)
-((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
+((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
((-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) (-4505 . T))
((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))))
-(-737 R |Mod| -2588 -3223 |exactQuo|)
+(-737 R |Mod| -3836 -4167 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
((-4505 . T))
NIL
@@ -2888,7 +2888,7 @@ NIL
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
((-4503 . T) (-4502 . T))
NIL
-(-740 -2284)
+(-740 -1683)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}.")))
((-4505 . T))
NIL
@@ -2901,11 +2901,11 @@ NIL
NIL
NIL
(-743 S)
-((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
+((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
(-744)
-((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
+((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
(-745 S R UP)
@@ -2924,12 +2924,12 @@ NIL
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-749 -2284 UP)
+(-749 -1683 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
(-750 |VarSet| E1 E2 R S PR PS)
-((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented ")))
+((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (PG)")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented ")))
NIL
NIL
(-751 |Vars1| |Vars2| E1 E2 R PR1 PR2)
@@ -2943,7 +2943,7 @@ NIL
(-753 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
(((-4510 "*") |has| |#2| (-175)) (-4501 |has| |#2| (-571)) (-4506 |has| |#2| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
-((|HasCategory| |#2| (QUOTE (-939))) (-2304 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2304 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2304 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2304 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147)))))
+((|HasCategory| |#2| (QUOTE (-939))) (-2196 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2196 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2196 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2196 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147)))))
(-754 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2953,7 +2953,7 @@ NIL
NIL
NIL
(-756 R S M)
-((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}.")))
+((|constructor| (NIL "\\spad{MonoidRingFunctions2} implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}.")))
NIL
NIL
(-757 R M)
@@ -2989,67 +2989,67 @@ NIL
NIL
NIL
(-765 S R)
-((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
+((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
NIL
NIL
(-766 R)
-((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
+((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
((-4503 . T) (-4502 . T))
NIL
(-767)
-((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
+((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{\\spad{manpageXXc02}}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre's Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre's Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
NIL
NIL
(-768)
-((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}.")))
+((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{\\spad{manpageXXc05}}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}.")))
NIL
NIL
(-769)
-((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}.")))
+((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{\\spad{manpageXXc06}}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}.")))
NIL
NIL
(-770)
-((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}.")))
+((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{\\spad{manpageXXd01}}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}.")))
NIL
NIL
(-771)
-((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork,liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}.")))
+((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{\\spad{manpageXXd02}}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork,liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains \\spad{Asp12} and \\spad{Asp33} are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (BDF),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}.")))
NIL
NIL
(-772)
-((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}.")))
+((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{\\spad{manpageXXd03}}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}.")))
NIL
NIL
(-773)
-((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}.")))
+((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{\\spad{manpageXXe01}}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}.")))
NIL
NIL
(-774)
-((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}.")))
+((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{\\spad{manpageXXe02}}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}.")))
NIL
NIL
(-775)
-((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,m,n,fsumsq,s,lv,v,ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta,cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,clamda,r,x,ifail,confun,objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl,bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu,cvec,linobj,liwork,lwork,x,ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,n,liw,lw,x,ifail,lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}.")))
+((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{\\spad{manpageXXe04}}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,m,n,fsumsq,s,lv,v,ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta,cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,clamda,r,x,ifail,confun,objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl,bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess)} is a comprehensive programming (QP) or linear programming (LP) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu,cvec,linobj,liwork,lwork,x,ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,n,liw,lw,x,ifail,lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}.")))
NIL
NIL
(-776)
-((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow,eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}.")))
+((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{\\spad{manpageXXf01}}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the QR factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the QR factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow,eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}.")))
NIL
NIL
(-777)
-((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}.")))
+((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{\\spad{manpageXXf02}}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)Bx where A and \\spad{B} are real,{} square matrices,{} using the QZ algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)Bx,{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)Bx,{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}.")))
NIL
NIL
(-778)
-((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}.")))
+((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{\\spad{manpageXXf04}}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A x=b,{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}.")))
NIL
NIL
(-779)
-((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}.")))
+((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{\\spad{manpageXXf07}}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A X=B,{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}.")))
NIL
NIL
(-780)
-((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}.")))
+((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)+n} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)+n} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)+n\\space{8}(nu)+n} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)+n} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)+n} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log,{} ln(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}.")))
NIL
NIL
(-781)
@@ -3057,38 +3057,38 @@ NIL
NIL
NIL
(-782 S)
-((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
+((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
(-783)
-((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
+((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
(-784 S)
-((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
+((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
(-785)
-((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
+((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
(-786 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-787 -2284)
+(-787 -1683)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-788 P -2284)
-((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
+(-788 P -1683)
+((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")))
NIL
NIL
(-789 T$)
NIL
NIL
NIL
-(-790 UP -2284)
+(-790 UP -1683)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -3104,7 +3104,7 @@ NIL
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
(((-4510 "*") . T))
NIL
-(-794 R -2284)
+(-794 R -1683)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
@@ -3121,10 +3121,10 @@ NIL
NIL
NIL
(-798 R E V P TS)
-((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
+((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}ts)} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}ts)} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}ts)} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-799 -2284 |ExtF| |SUEx| |ExtP| |n|)
+(-799 -1683 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -3133,17 +3133,17 @@ NIL
NIL
NIL
(-801 |Par|)
-((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable.")))
+((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with variable \\spad{x}. Fraction \\spad{P} RN.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with a new symbol as variable.")))
NIL
NIL
(-802 R |VarSet|)
-((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
+((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
-((|HasCategory| |#1| (QUOTE (-939))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207))))) (-2304 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (-1937 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))))) (-2304 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (-1937 (|HasCategory| |#1| (QUOTE (-559)))) (-1937 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (-1937 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-560))))) (-1937 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (-1937 (|HasCategory| |#1| (LIST (QUOTE -1022) (QUOTE (-560))))))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))))
+((|HasCategory| |#1| (QUOTE (-939))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207))))) (-2196 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (-1394 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))))) (-2196 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (-1394 (|HasCategory| |#1| (QUOTE (-559)))) (-1394 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (-1394 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-560))))) (-1394 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-1207)))) (-1394 (|HasCategory| |#1| (LIST (QUOTE -1022) (QUOTE (-560))))))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-803 R)
-((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
+((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and gcd for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}cb]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + cb * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]} such that \\axiom{\\spad{g}} is a gcd of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + cb * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial gcd in \\axiom{R^(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{c^n * a = q*b +r} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a -r} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4504 |has| |#1| (-376)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
-((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))))
+((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-804 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
@@ -3153,7 +3153,7 @@ NIL
NIL
((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))))
(-806 R E V P)
-((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
+((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
((-4509 . T) (-4508 . T))
NIL
(-807 S)
@@ -3169,7 +3169,7 @@ NIL
NIL
NIL
(-810)
-((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}.")))
+((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})**(\\spad{-1/5})}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation's right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}.")))
NIL
NIL
(-811)
@@ -3211,79 +3211,79 @@ NIL
(-820 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
((-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-2304 (|HasCategory| (-1027 |#1|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (-2304 (|HasCategory| (-1027 |#1|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1027 |#1|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1027 |#1|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))))
-(-821 -2304 R OS S)
-((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
+((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-2196 (|HasCategory| (-1027 |#1|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (-2196 (|HasCategory| (-1027 |#1|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1027 |#1|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1027 |#1|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))))
+(-821 -2196 R OS S)
+((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
(-822)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-823 R -2284 L)
-((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
+(-823 R -1683 L)
+((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}'s form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-824 R -2284)
+(-824 R -1683)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
(-825)
-((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
+((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE's.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-826 R -2284)
+(-826 R -1683)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
(-827)
-((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
+((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-828 -2284 UP UPUP R)
+(-828 -1683 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-829 -2284 UP L LQ)
-((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
+(-829 -1683 UP L LQ)
+((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
(-830)
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-831 -2284 UP L LQ)
-((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
+(-831 -1683 UP L LQ)
+((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}'s such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}'s in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree mj for some \\spad{j},{} and its leading coefficient is then a zero of pj. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {gcd(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-832 -2284 UP)
-((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
+(-832 -1683 UP)
+((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-833 -2284 L UP A LO)
+(-833 -1683 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-834 -2284 UP)
-((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
+(-834 -1683 UP)
+((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular ++ part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-835 -2284 LO)
+(-835 -1683 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-836 -2284 LODO)
+(-836 -1683 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.")))
NIL
NIL
-(-837 -1834 S |f|)
+(-837 -3662 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4502 |has| |#2| (-1080)) (-4503 |has| |#2| (-1080)) (-4505 |has| |#2| (-6 -4505)) (-4508 . T))
-((-2304 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2304 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2304 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2304 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2304 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2304 (-12 (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2304 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2304 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2304 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-2304 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2304 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4505)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))))
+((-2196 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2196 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2196 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2196 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2196 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2196 (-12 (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2196 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2196 (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2196 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-2196 (-12 (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2196 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4505)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))))
(-838 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
-((|HasCategory| |#1| (QUOTE (-939))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))))
+((|HasCategory| |#1| (QUOTE (-939))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-840 (-1207)) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-839 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
(((-4510 "*") |has| |#2| (-376)) (-4501 |has| |#2| (-376)) (-4506 |has| |#2| (-376)) (-4500 |has| |#2| (-376)) (-4505 . T) (-4503 . T) (-4502 . T))
@@ -3293,7 +3293,7 @@ NIL
NIL
NIL
(-841 S)
-((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")))
+((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")))
NIL
((|HasCategory| |#1| (QUOTE (-871))))
(-842)
@@ -3301,7 +3301,7 @@ NIL
((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-843)
-((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
+((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev, u, true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev, u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u, true)} returns the OpenMath XML encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath XML encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath XML encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
NIL
NIL
(-844)
@@ -3309,11 +3309,11 @@ NIL
NIL
NIL
(-845)
-((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
+((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,cd,s)} writes the symbol \\axiom{\\spad{s}} from CD \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,mode,enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \"r\",{} \"w\" or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
NIL
NIL
(-846)
-((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
+((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath XML encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
NIL
NIL
(-847)
@@ -3321,7 +3321,7 @@ NIL
NIL
NIL
(-848)
-((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
+((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown CD or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown CD error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
NIL
NIL
(-849 R)
@@ -3329,11 +3329,11 @@ NIL
NIL
NIL
(-850 P R)
-((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
+((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite'' in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
((-4502 . T) (-4503 . T) (-4505 . T))
((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-240))))
(-851)
-((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
+((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from CD \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the CDs supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
NIL
NIL
(-852 S)
@@ -3347,7 +3347,7 @@ NIL
(-854 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
((-4505 |has| |#1| (-870)))
-((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-21))) (-2304 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (-2304 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-559))))
+((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-21))) (-2196 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (-2196 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-559))))
(-855 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
@@ -3365,11 +3365,11 @@ NIL
NIL
NIL
(-859)
-((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
+((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \"k\" (constructors),{} \"d\" (domains),{} \"c\" (categories) or \"p\" (packages).")))
NIL
NIL
(-860)
-((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of \\spad{`x'}.")))
+((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of `x'.")))
NIL
NIL
(-861)
@@ -3387,7 +3387,7 @@ NIL
(-864 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
((-4505 |has| |#1| (-870)))
-((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-21))) (-2304 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (-2304 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-559))))
+((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-21))) (-2196 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (-2196 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-559))))
(-865 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
@@ -3396,7 +3396,7 @@ NIL
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-867 -1834 S)
+(-867 -3662 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3429,22 +3429,22 @@ NIL
NIL
NIL
(-875 S R)
-((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
+((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
NIL
((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))))
(-876 R)
-((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
+((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")))
((-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-877 R C)
-((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
+((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571))))
-(-878 R |sigma| -1765)
+(-878 R |sigma| -3327)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
((-4502 . T) (-4503 . T) (-4505 . T))
((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376))))
-(-879 |x| R |sigma| -1765)
+(-879 |x| R |sigma| -3327)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
((-4502 . T) (-4503 . T) (-4505 . T))
((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-376))))
@@ -3461,23 +3461,23 @@ NIL
NIL
NIL
(-883)
-((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
+((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
(-884 S)
-((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
+((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
(-885)
-((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer \\spad{`b'} onto the conduit \\spad{`c'}. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value \\spad{`v'} on the conduit \\spad{`c'}. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte \\spad{`b'} on the conduit \\spad{`c'}. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
+((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}.")))
NIL
NIL
(-886)
-((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by \\spad{`f'} as a binary file.")))
+((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.")))
NIL
NIL
(-887)
-((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
+((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \"x overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \"f super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
(-888 |VariableList|)
@@ -3489,7 +3489,7 @@ NIL
NIL
NIL
(-890 R |vl| |wl| |wtlevel|)
-((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
+((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
((-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) (-4505 . T))
((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))))
(-891 R PS UP)
@@ -3501,7 +3501,7 @@ NIL
NIL
NIL
(-893 |p|)
-((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
+((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-894 |p|)
@@ -3509,19 +3509,19 @@ NIL
((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-895 |p|)
-((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
+((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| (-893 |#1|) (QUOTE (-939))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-893 |#1|) (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-149))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-893 |#1|) (QUOTE (-1051))) (|HasCategory| (-893 |#1|) (QUOTE (-842))) (|HasCategory| (-893 |#1|) (QUOTE (-871))) (-2304 (|HasCategory| (-893 |#1|) (QUOTE (-842))) (|HasCategory| (-893 |#1|) (QUOTE (-871)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (QUOTE (-1182))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (QUOTE (-239))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-893 |#1|) (QUOTE (-240))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -321) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -298) (LIST (QUOTE -893) (|devaluate| |#1|)) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (QUOTE (-319))) (|HasCategory| (-893 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-939)))) (|HasCategory| (-893 |#1|) (QUOTE (-147)))))
+((|HasCategory| (-893 |#1|) (QUOTE (-939))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-893 |#1|) (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-149))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-893 |#1|) (QUOTE (-1051))) (|HasCategory| (-893 |#1|) (QUOTE (-842))) (|HasCategory| (-893 |#1|) (QUOTE (-871))) (-2196 (|HasCategory| (-893 |#1|) (QUOTE (-842))) (|HasCategory| (-893 |#1|) (QUOTE (-871)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (QUOTE (-1182))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (QUOTE (-239))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-893 |#1|) (QUOTE (-240))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -321) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -298) (LIST (QUOTE -893) (|devaluate| |#1|)) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (QUOTE (-319))) (|HasCategory| (-893 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-939)))) (|HasCategory| (-893 |#1|) (QUOTE (-147)))))
(-896 |p| PADIC)
-((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
+((|constructor| (NIL "This is the category of stream-based representations of Qp.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| |#2| (QUOTE (-939))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871))) (-2304 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1182))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147)))))
+((|HasCategory| |#2| (QUOTE (-939))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871))) (-2196 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1182))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147)))))
(-897 S T$)
-((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
+((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of `p'.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of `p'.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of `s' and `t'.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))))
+((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))))
(-898)
-((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
+((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it's highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it's lowest value.")))
NIL
NIL
(-899)
@@ -3561,7 +3561,7 @@ NIL
NIL
NIL
(-908)
-((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")))
+((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0's,{}\\spad{l1} 1's,{}\\spad{l2} 2's,{}...,{}\\spad{ln} \\spad{n}'s.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}'s,{} and 4 \\spad{5}'s.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")))
NIL
NIL
(-909 R)
@@ -3579,21 +3579,21 @@ NIL
(-912 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-1937 (|HasCategory| |#2| (QUOTE (-1080)))) (-1937 (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (-1937 (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))
+((-12 (-1394 (|HasCategory| |#2| (QUOTE (-1080)))) (-1394 (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (-1394 (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))
(-913 R S)
-((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
+((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don't,{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(vn,{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
(-914 R A B)
-((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
+((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(\\spad{a1})),{}...,{}(vn,{}\\spad{f}(an))].")))
NIL
NIL
(-915 R)
-((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
+((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and pn to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and pn to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and pn.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form 's for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
NIL
NIL
-(-916 R -3305)
-((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
+(-916 R -2111)
+((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and fn to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
(-917 R S)
@@ -3601,7 +3601,7 @@ NIL
NIL
NIL
(-918 |VarSet|)
-((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
+((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
NIL
(-919 UP R)
@@ -3620,12 +3620,12 @@ NIL
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-923 UP -2284)
+(-923 UP -1683)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
(-924)
-((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}")))
+((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline ** At the moment,{} only Second Order Elliptic Partial Differential Equations are solved **") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline ** At the moment,{} only Second Order Elliptic Partial Differential Equations are solved **") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline ** At the moment,{} only Second Order Elliptic Partial Differential Equations are solved **") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline ** At the moment,{} only Second Order Elliptic Partial Differential Equations are solved **")))
NIL
NIL
(-925)
@@ -3649,15 +3649,15 @@ NIL
NIL
NIL
(-930 S)
-((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
+((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})'s")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
(-931 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
((-4505 . T))
-((-2304 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-871)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-871))))
+((-2196 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-871)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-871))))
(-932 |n| R)
-((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
+((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} Ch. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of x:\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} ch.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
(-933 S)
@@ -3681,14 +3681,14 @@ NIL
NIL
NIL
(-938 S)
-((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
+((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-147))))
(-939)
-((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
+((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
-(-940 R0 -2284 UP UPUP R)
+(-940 R0 -1683 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
@@ -3701,7 +3701,7 @@ NIL
NIL
NIL
(-943 R)
-((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
+((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact'' form has only one fractional term per prime in the denominator,{} while the ``p-adic'' form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} ``p-adically'' in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-944 R)
@@ -3709,19 +3709,19 @@ NIL
NIL
NIL
(-945 E OV R P)
-((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.")))
+((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the gcd of the list of primitive polynomials lp.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
(-946)
-((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}.")))
+((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik's group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic's Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik's Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic's Cube acting on integers 10*i+j for 1 <= \\spad{i} <= 6,{} 1 <= \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}.")))
NIL
NIL
-(-947 -2284)
-((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
+(-947 -1683)
+((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any gcd domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
(-948)
-((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
+((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = y*x")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
(((-4510 "*") . T))
NIL
(-949 R)
@@ -3732,16 +3732,16 @@ NIL
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
-(-951 |xx| -2284)
+(-951 |xx| -1683)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented")))
NIL
NIL
-(-952 -2284 P)
+(-952 -1683 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented")))
NIL
NIL
(-953 R |Var| |Expon| GR)
-((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
+((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank >= \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} ~= 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
(-954)
@@ -3749,7 +3749,7 @@ NIL
NIL
NIL
(-955 S)
-((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval")))
+((|constructor| (NIL "\\spad{PlotFunctions1} provides facilities for plotting curves where functions SF -> SF are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
(-956)
@@ -3761,18 +3761,18 @@ NIL
NIL
NIL
(-958)
-((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}.")))
+((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-959 R -2284)
-((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
+(-959 R -1683)
+((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
(-960 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-961 S R -2284)
+(-961 S R -1683)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
@@ -3792,12 +3792,12 @@ NIL
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -911) (|devaluate| |#1|))))
-(-966 -3305)
-((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
+(-966 -2111)
+((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-967 R -2284 -3305)
-((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
+(-967 R -1683 -2111)
+((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
(-968 S R Q)
@@ -3819,19 +3819,19 @@ NIL
(-972 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
((-4509 . T) (-4508 . T))
-((-2304 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2304 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-2196 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2196 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-973 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
(-974 |TheField| |ThePols|)
-((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
+((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}sn)} is the number of sign variations in the list of non null numbers [s1::l]@sn,{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}p')}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
((|HasCategory| |#1| (QUOTE (-870))))
(-975 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
-((|HasCategory| |#1| (QUOTE (-939))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))))
+((|HasCategory| |#1| (QUOTE (-939))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1207) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-976 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
@@ -3841,27 +3841,27 @@ NIL
NIL
NIL
(-978 S R E |VarSet|)
-((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
+((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
((|HasCategory| |#2| (QUOTE (-939))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#4| (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#4| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#4| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#4| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549)))))
(-979 R E |VarSet|)
-((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
+((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
NIL
-(-980 E V R P -2284)
-((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
+(-980 E V R P -1683)
+((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}mn] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
(-981 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-982 E V R P -2284)
+(-982 E V R P -1683)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-466))))
(-983)
-((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}.")))
+((|constructor| (NIL "This domain represents network port numbers (notable TCP and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer `n'.")))
NIL
NIL
(-984)
@@ -3871,29 +3871,29 @@ NIL
(-985 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4506)))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4506)))
(-986 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}.")))
NIL
NIL
(-987 S)
-((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
+((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt's.} Minimum index is 0 in this type,{} cannot be changed")))
((-4509 . T) (-4508 . T))
-((-2304 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2304 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-2196 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2196 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-988 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")))
NIL
NIL
(-989)
-((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
+((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} dx for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} dx.")))
NIL
NIL
-(-990 -2284)
-((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
+(-990 -1683)
+((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve \\spad{a2}. This operation uses \\spadfun{resultant}.")))
NIL
NIL
(-991 I)
-((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
+((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin's probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin's probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for \\spad{n<10**20}. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
(-992)
@@ -3903,9 +3903,9 @@ NIL
(-993 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented")))
((-4505 -12 (|has| |#2| (-487)) (|has| |#1| (-487))))
-((-2304 (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-871))))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748))))) (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-871)))))
+((-2196 (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-871))))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748))))) (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-871)))))
(-994)
-((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
+((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name `n' and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
NIL
(-995 T$)
@@ -3913,7 +3913,7 @@ NIL
NIL
NIL
(-996 T$)
-((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} \\spad{++} returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}.")))
+((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} ++ returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}.")))
NIL
NIL
(-997 S T$)
@@ -3921,7 +3921,7 @@ NIL
NIL
NIL
(-998)
-((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
+((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of `p',{} `q'.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of `q' by `p'.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
NIL
NIL
(-999 S)
@@ -3929,7 +3929,7 @@ NIL
((-4508 . T) (-4509 . T))
NIL
(-1000 R |polR|)
-((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
+((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean1}}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean2}}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.fr}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{\\spad{nextsousResultant2}(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{S_{\\spad{e}-1}} where \\axiom{\\spad{P} ~ S_d,{} \\spad{Q} = S_{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = lc(S_d)}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{\\spad{Lazard2}(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)**(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{gcd(\\spad{P},{} \\spad{Q})} returns the gcd of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{\\spad{coef1} * \\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the gcd of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{\\spad{coef1}.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
((|HasCategory| |#1| (QUOTE (-466))))
(-1001)
@@ -3949,19 +3949,19 @@ NIL
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1005)
-((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
+((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the x-,{} y-,{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
(-1006 S R E |VarSet| P)
-((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
+((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#4| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
((|HasCategory| |#2| (QUOTE (-571))))
(-1007 R E |VarSet| P)
-((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
+((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#3| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
((-4508 . T))
NIL
(-1008 R E V P)
-((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
+((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(lp,{}lq)} returns the same as \\axiom{irreducibleFactors(concat(lp,{}lq))} assuming that \\axiom{irreducibleFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of gcd techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{lp}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(lp,{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(lp)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(lp)} returns \\axiom{lg} where \\axiom{lg} is a list of the gcds of every pair in \\axiom{lp} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(lp,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} and \\axiom{lp} generate the same ideal in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{lq} has rank not higher than the one of \\axiom{lp}. Moreover,{} \\axiom{lq} is computed by reducing \\axiom{lp} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{lp}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(lp,{}pred?,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(lp)} returns \\axiom{lq} such that \\axiom{lp} and and \\axiom{lq} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{lq}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{lp}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(lp)} returns \\axiom{lq} such that \\axiom{lp} and \\axiom{lq} generate the same ideal and no polynomial in \\axiom{lq} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}lf)} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}lf,{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf,{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(lp)} returns \\axiom{bps,{}nbps} where \\axiom{bps} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(lp)} returns \\axiom{lps,{}nlps} where \\axiom{lps} is a list of the linear polynomials in lp,{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(lp)} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(lp)} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{lp} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{bps} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(lp)} returns \\spad{true} iff the number of polynomials in \\axiom{lp} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}llp)} returns \\spad{true} iff for every \\axiom{lp} in \\axiom{llp} certainlySubVariety?(newlp,{}lp) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}lp)} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{lp} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is gcd-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(lp)} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in lp]} if \\axiom{\\spad{R}} is gcd-domain else returns \\axiom{lp}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(lp,{}lq,{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,{}lq)),{}lq)} assuming that \\axiom{remOp(lq)} returns \\axiom{lq} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp,{}lq)} returns the same as \\axiom{removeRedundantFactors(concat(lp,{}lq))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(lp,{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}lp))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp)} returns \\axiom{lq} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lq = [\\spad{q1},{}...,{}qm]} then the product \\axiom{p1*p2*...*pn} vanishes iff the product \\axiom{q1*q2*...*qm} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{pj},{} and no polynomial in \\axiom{lq} divides another polynomial in \\axiom{lq}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{lq} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is gcd-domain,{} the polynomials in \\axiom{lq} are pairwise without common non trivial factor.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-466))))
(-1009 K)
@@ -3969,7 +3969,7 @@ NIL
NIL
NIL
(-1010 |VarSet| E RC P)
-((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
+((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary gcd domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
(-1011 R)
@@ -3985,19 +3985,19 @@ NIL
NIL
NIL
(-1014 K)
-((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
+((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns csc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
(-1015 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-1016 K R UP -2284)
+(-1016 K R UP -1683)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
(-1017 R |Var| |Expon| |Dpoly|)
-((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
+((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger's algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don't know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} ~= 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-319)))))
(-1018 |vl| |nv|)
@@ -4005,7 +4005,7 @@ NIL
NIL
NIL
(-1019 R E V P TS)
-((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
+((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
(-1020)
@@ -4033,13 +4033,13 @@ NIL
NIL
NIL
(-1026 S)
-((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
+((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\#q}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
((-4508 . T) (-4509 . T))
NIL
(-1027 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
((-4501 |has| |#1| (-302)) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376))) (-2304 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-559))))
+((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376))) (-2196 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-559))))
(-1028 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
@@ -4055,7 +4055,7 @@ NIL
(-1031 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
(-1032 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
@@ -4064,14 +4064,14 @@ NIL
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-1034 -2284 UP UPUP |radicnd| |n|)
+(-1034 -1683 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
((-4501 |has| (-421 |#2|) (-376)) (-4506 |has| (-421 |#2|) (-376)) (-4500 |has| (-421 |#2|) (-376)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-363))) (-2304 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2304 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2304 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2304 (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-363))))) (-2304 (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -660) (QUOTE (-560)))) (-2304 (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))))
+((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-363))) (-2196 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2196 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2196 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2196 (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-363))))) (-2196 (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -660) (QUOTE (-560)))) (-2196 (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))))
(-1035 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2304 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (LIST (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147)))))
+((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2196 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (LIST (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (LIST (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (LIST (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147)))))
(-1036)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
@@ -4089,34 +4089,34 @@ NIL
NIL
NIL
(-1040 A S)
-((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
+((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
((|HasAttribute| |#1| (QUOTE -4509)) (|HasCategory| |#2| (QUOTE (-1132))))
(-1041 S)
-((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
+((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
NIL
(-1042 S)
-((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
+((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
(-1043)
-((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
+((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
((-4501 . T) (-4506 . T) (-4500 . T) (-4503 . T) (-4502 . T) ((-4510 "*") . T) (-4505 . T))
NIL
-(-1044 R -2284)
+(-1044 R -1683)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-1045 R -2284)
+(-1045 R -1683)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1046 -2284 UP)
+(-1046 -1683 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1047 -2284 UP)
+(-1047 -1683 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -4151,8 +4151,8 @@ NIL
(-1055 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
((-4501 . T) (-4506 . T) (-4500 . T) (-4503 . T) (-4502 . T) ((-4510 "*") . T) (-4505 . T))
-((-2304 (|HasCategory| (-421 (-560)) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-421 (-560)) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 (-560)) (LIST (QUOTE -1069) (QUOTE (-560)))))
-(-1056 -2284 L)
+((-2196 (|HasCategory| (-421 (-560)) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-421 (-560)) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 (-560)) (LIST (QUOTE -1069) (QUOTE (-560)))))
+(-1056 -1683 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
@@ -4161,7 +4161,7 @@ NIL
NIL
((|HasCategory| |#1| (QUOTE (-1132))))
(-1058 R E V P)
-((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
+((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
((-4509 . T) (-4508 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#4| (QUOTE (-102))))
(-1059)
@@ -4169,11 +4169,11 @@ NIL
NIL
NIL
(-1060 R)
-((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
+((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 <= \\spad{i} <= \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 <= \\spad{i} <= \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
((|HasAttribute| |#1| (QUOTE (-4510 "*"))))
(-1061 R)
-((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
+((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker's fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker's fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker's fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton's irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-319))))
(-1062 S)
@@ -4188,14 +4188,14 @@ NIL
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1065 -2284 |Expon| |VarSet| |FPol| |LFPol|)
+(-1065 -1683 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
(((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1066)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2968) (QUOTE (-1207))) (LIST (QUOTE |:|) (QUOTE -2460) (QUOTE (-51))))))) (-2304 (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2304 (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2304 (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (LIST (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (QUOTE (-1132))) (|HasCategory| (-1207) (QUOTE (-871))) (|HasCategory| (-51) (QUOTE (-1132))) (-2304 (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (LIST (QUOTE -632) (QUOTE (-887))))) (-2304 (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (QUOTE (-102))))
+((-12 (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1438) (QUOTE (-1207))) (LIST (QUOTE |:|) (QUOTE -3067) (QUOTE (-51))))))) (-2196 (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2196 (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2196 (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (LIST (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (QUOTE (-1132))) (|HasCategory| (-1207) (QUOTE (-871))) (|HasCategory| (-51) (QUOTE (-1132))) (-2196 (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (LIST (QUOTE -632) (QUOTE (-887))))) (-2196 (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (QUOTE (-102))))
(-1067)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
@@ -4213,7 +4213,7 @@ NIL
NIL
NIL
(-1071 R)
-((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
+((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
(-1072)
@@ -4229,15 +4229,15 @@ NIL
NIL
NIL
(-1075 T$)
-((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of \\spad{`c'}.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of \\spad{`c'}.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of \\spad{`c'}.")))
+((|constructor| (NIL "This category defines the common interface for RGB color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of `c'.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of `c'.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of `c'.")))
NIL
NIL
(-1076 T$)
-((|constructor| (NIL "This category defines the common interface for \\spad{RGB} color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space.")))
+((|constructor| (NIL "This category defines the common interface for RGB color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space.")))
NIL
NIL
(-1077 R |ls|)
-((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
+((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a Gcd-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
((-4509 . T) (-4508 . T))
((-12 (|HasCategory| (-802 |#1| (-888 |#2|)) (QUOTE (-1132))) (|HasCategory| (-802 |#1| (-888 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -802) (|devaluate| |#1|) (LIST (QUOTE -888) (|devaluate| |#2|)))))) (|HasCategory| (-802 |#1| (-888 |#2|)) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-802 |#1| (-888 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| (-888 |#2|) (QUOTE (-381))) (|HasCategory| (-802 |#1| (-888 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-802 |#1| (-888 |#2|)) (QUOTE (-102))))
(-1078)
@@ -4252,7 +4252,7 @@ NIL
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
((-4505 . T))
NIL
-(-1081 |xx| -2284)
+(-1081 |xx| -1683)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
@@ -4271,13 +4271,13 @@ NIL
(-1085 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
((-4508 . T) (-4503 . T) (-4502 . T))
-((|HasCategory| |#3| (QUOTE (-175))) (-2304 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -633) (QUOTE (-549)))) (-2304 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-571))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-887)))))
+((|HasCategory| |#3| (QUOTE (-175))) (-2196 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -633) (QUOTE (-549)))) (-2196 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-571))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-887)))))
(-1086 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
(-1087 R)
-((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")))
+((|constructor| (NIL "The category of right modules over an rng (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the rng. \\blankline")))
NIL
NIL
(-1088)
@@ -4305,15 +4305,15 @@ NIL
((-4496 . T) (-4500 . T) (-4495 . T) (-4506 . T) (-4507 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1094)
-((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}")))
+((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE's")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE's")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2968) (QUOTE (-1207))) (LIST (QUOTE |:|) (QUOTE -2460) (QUOTE (-51))))))) (-2304 (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2304 (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2304 (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (LIST (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (QUOTE (-1132))) (|HasCategory| (-1207) (QUOTE (-871))) (|HasCategory| (-51) (QUOTE (-1132))) (-2304 (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (LIST (QUOTE -632) (QUOTE (-887))))) (-2304 (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (QUOTE (-102))))
+((-12 (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1438) (QUOTE (-1207))) (LIST (QUOTE |:|) (QUOTE -3067) (QUOTE (-51))))))) (-2196 (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2196 (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2196 (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (LIST (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (QUOTE (-1132))) (|HasCategory| (-1207) (QUOTE (-871))) (|HasCategory| (-51) (QUOTE (-1132))) (-2196 (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (LIST (QUOTE -632) (QUOTE (-887))))) (-2196 (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (QUOTE (-102))))
(-1095 S R E V)
-((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
+((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -1022) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (LIST (QUOTE -633) (QUOTE (-1207)))))
(-1096 R E V)
-((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
+((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
NIL
(-1097)
@@ -4329,19 +4329,19 @@ NIL
NIL
NIL
(-1100 R E V P TS)
-((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
+((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS). The same way it does not care about the way univariate polynomial gcd (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcd need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
(-1101 S R E V P)
-((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
+((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
(-1102 R E V P)
-((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
+((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
((-4509 . T) (-4508 . T))
NIL
(-1103 R E V P TS)
-((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
+((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}ts)} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts,{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
(-1104)
@@ -4352,15 +4352,15 @@ NIL
((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory.")))
NIL
NIL
-(-1106 |Base| R -2284)
-((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
+(-1106 |Base| R -1683)
+((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}fn are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
(-1107 |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1108 |Base| R -2284)
+(-1108 |Base| R -1683)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}.")))
NIL
NIL
@@ -4371,7 +4371,7 @@ NIL
(-1110 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
((-4501 |has| |#1| (-376)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-2304 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207))))))
+((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-2196 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207))))))
(-1111 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
@@ -4393,7 +4393,7 @@ NIL
NIL
NIL
(-1116)
-((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
+((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding `b'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of `n' in `s'; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
NIL
NIL
(-1117 R)
@@ -4403,7 +4403,7 @@ NIL
(-1118 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
-((|HasCategory| |#1| (QUOTE (-939))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))))
+((|HasCategory| |#1| (QUOTE (-939))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1119 (-1207)) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-1119 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
@@ -4417,7 +4417,7 @@ NIL
NIL
((|HasCategory| |#1| (QUOTE (-870))))
(-1122)
-((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment \\spad{`s'}. If \\spad{`s'} designates an infinite interval,{} then the returns list a singleton list.")))
+((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment `s'. If `s' designates an infinite interval,{} then the returns list a singleton list.")))
NIL
NIL
(-1123 S)
@@ -4443,7 +4443,7 @@ NIL
(-1128 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}")))
((-4508 . T) (-4498 . T) (-4509 . T))
-((-2304 (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-2196 (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-1129 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
@@ -4461,7 +4461,7 @@ NIL
NIL
NIL
(-1133 |m| |n|)
-((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
+((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the k^{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {\\spad{a_1},{}...,{}a_m}. Error if {\\spad{a_1},{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the k^{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the k^{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
(-1134)
@@ -4469,7 +4469,7 @@ NIL
NIL
NIL
(-1135 |Str| |Sym| |Int| |Flt| |Expr|)
-((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers.")))
+((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns \\spad{a1}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of Flt; Error: if \\spad{s} is not an atom that also belongs to Flt.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of Sym. Error: if \\spad{s} is not an atom that also belongs to Sym.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of Str. Error: if \\spad{s} is not an atom that also belongs to Str.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [\\spad{a1},{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Flt.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Sym.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Str.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers.")))
NIL
NIL
(-1136 |Str| |Sym| |Int| |Flt| |Expr|)
@@ -4481,15 +4481,15 @@ NIL
NIL
NIL
(-1138 R E V P TS)
-((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
+((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(ts,{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
(-1139 R E V P TS)
-((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
+((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
(-1140 R E V P)
-((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
+((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the gcd of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(ts,{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
((-4509 . T) (-4508 . T))
NIL
(-1141)
@@ -4505,22 +4505,22 @@ NIL
NIL
NIL
(-1144 |dimtot| |dim1| S)
-((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
+((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
((-4502 |has| |#3| (-1080)) (-4503 |has| |#3| (-1080)) (-4505 |has| |#3| (-6 -4505)) (-4508 . T))
-((-2304 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2304 (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#3| (QUOTE (-376))) (-2304 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2304 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2304 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2304 (-12 (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560)))))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2304 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2304 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2304 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2304 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2304 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2304 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2304 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2304 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2304 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-1132))) (-2304 (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-133)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132))))) (-2304 (-12 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-2304 (-12 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2304 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (|HasAttribute| |#3| (QUOTE -4505)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))))
+((-2196 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2196 (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#3| (QUOTE (-376))) (-2196 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2196 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2196 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2196 (-12 (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560)))))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (-2196 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2196 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2196 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2196 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2196 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2196 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2196 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2196 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2196 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-1132))) (-2196 (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-133)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132))))) (-2196 (-12 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-2196 (-12 (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -929) (QUOTE (-1207))))) (-2196 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (|HasAttribute| |#3| (QUOTE -4505)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (LIST (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (LIST (QUOTE -321) (|devaluate| |#3|)))))
(-1145 R |x|)
-((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
+((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
((|HasCategory| |#1| (QUOTE (-466))))
(-1146)
-((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
+((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of `s'.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature `s'.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by `s',{} and return type indicated by `t'.")))
NIL
NIL
(-1147)
-((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
+((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for `s'.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature `s'.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST n: \\spad{s} -> \\spad{t}")))
NIL
NIL
-(-1148 R -2284)
+(-1148 R -1683)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
@@ -4537,15 +4537,15 @@ NIL
((-4496 . T) (-4500 . T) (-4495 . T) (-4506 . T) (-4507 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1152 S)
-((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
+((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\#s}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
((-4508 . T) (-4509 . T))
NIL
(-1153 S |ndim| R |Row| |Col|)
-((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
+((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")))
NIL
((|HasCategory| |#3| (QUOTE (-376))) (|HasAttribute| |#3| (QUOTE (-4510 "*"))) (|HasCategory| |#3| (QUOTE (-175))))
(-1154 |ndim| R |Row| |Col|)
-((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
+((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")))
((-4508 . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1155 R |Row| |Col| M)
@@ -4555,16 +4555,16 @@ NIL
(-1156 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
-((|HasCategory| |#1| (QUOTE (-939))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))))
+((|HasCategory| |#1| (QUOTE (-939))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-1157 |Coef| |Var| SMP)
-((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
+((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4503 . T) (-4502 . T) (-4505 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376))))
(-1158 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
((-4509 . T) (-4508 . T))
NIL
-(-1159 UP -2284)
+(-1159 UP -1683)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
@@ -4573,7 +4573,7 @@ NIL
NIL
NIL
(-1161 R)
-((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
+((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} \\indented{1}{are given and\\space{2}\\spad{func1} = \\spad{func3}(\\spad{func2}) .\\space{2}If there is no solution then} \\indented{1}{function \\spad{func1} will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function \\spad{func3} where \\spad{func1} = \\spad{func3}(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
(-1162 R)
@@ -4589,7 +4589,7 @@ NIL
NIL
NIL
(-1165 R)
-((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
+((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through pn,{} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through pn,{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if \\spad{close2} is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through pn,{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught pn,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through pn defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through pn to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
(-1166)
@@ -4601,7 +4601,7 @@ NIL
NIL
NIL
(-1168)
-((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of \\spad{`s'}. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of \\spad{`s'}. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of \\spad{`s'}. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of \\spad{`s'}. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if \\spad{`s'} represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if \\spad{`s'} represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if \\spad{`s'} represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if \\spad{`s'} represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if \\spad{`s'} represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if \\spad{`s'} represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if \\spad{`s'} represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if \\spad{`s'} represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if \\spad{`s'} represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if \\spad{`s'} represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if \\spad{`s'} represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if \\spad{`s'} represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if \\spad{`s'} represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if \\spad{`s'} represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if \\spad{`s'} represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if \\spad{`s'} represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if \\spad{`s'} represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if \\spad{`s'} represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if \\spad{`s'} represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if \\spad{`s'} represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if \\spad{`s'} represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if \\spad{`s'} represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if \\spad{`s'} represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if \\spad{`s'} represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if \\spad{`s'} represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if \\spad{`s'} represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if \\spad{`s'} represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if \\spad{`s'} represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if \\spad{`s'} represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if \\spad{`s'} represents an `import' statement.")))
+((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of `s'. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of `s'. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of `s'. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of `s'. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of `s'. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of `s'. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of `s'. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of `s'. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of `s'. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of `s'. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of `s'. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of `s'. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of `s'. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of `s'. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of `s'. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of `s'. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of `s'. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of `s'. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of `s'. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of `s'. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of `s'. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of `s'. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of `s'. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of `s'. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of `s'. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of `s'. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of `s'. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of `s'. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of `s'. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of `s'. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of `s'. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if `s' represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if `s' represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if `s' represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if `s' represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if `s' represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if `s' represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if `s' represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if `s' represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if `s' represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if `s' represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if `s' represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if `s' represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if `s' represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if `s' represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if `s' represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if `s' represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if `s' represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if `s' represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if `s' represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if `s' represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if `s' represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if `s' represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if `s' represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if `s' represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if `s' represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if `s' represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if `s' represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if `s' represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if `s' represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if `s' represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if `s' represents an `import' statement.")))
NIL
NIL
(-1169)
@@ -4613,37 +4613,37 @@ NIL
NIL
NIL
(-1171 V C)
-((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
+((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}\\spad{o2})} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}\\spad{o1},{}\\spad{o2})} returns \\spad{true} iff \\axiom{\\spad{o1}(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}lt)} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in lt]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(lvt)} returns the same as \\axiom{[construct(vt.val,{}vt.tower) for vt in lvt]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(vt)} returns the same as \\axiom{construct(vt.val,{}vt.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
(-1172 V C)
-((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
+((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls,{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}lt)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}ls)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| (-1171 |#1| |#2|) (LIST (QUOTE -321) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132))) (-2304 (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132)))) (-2304 (|HasCategory| (-1171 |#1| |#2|) (LIST (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-1171 |#1| |#2|) (LIST (QUOTE -321) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132))))) (|HasCategory| (-1171 |#1| |#2|) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-102))))
+((-12 (|HasCategory| (-1171 |#1| |#2|) (LIST (QUOTE -321) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132))) (-2196 (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132)))) (-2196 (|HasCategory| (-1171 |#1| |#2|) (LIST (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-1171 |#1| |#2|) (LIST (QUOTE -321) (LIST (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132))))) (|HasCategory| (-1171 |#1| |#2|) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-102))))
(-1173 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
((-4505 . T) (-4497 |has| |#2| (-6 (-4510 "*"))) (-4508 . T) (-4502 . T) (-4503 . T))
-((|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2304 (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-376))) (-2304 (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175))))
+((|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2196 (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-376))) (-2196 (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175))))
(-1174 S)
-((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
+((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
(-1175)
-((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
+((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
((-4509 . T) (-4508 . T))
NIL
(-1176 R E V P TS)
-((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
+((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
(-1177 R E V P)
-((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
+((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
((-4509 . T) (-4508 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#4| (QUOTE (-102))))
(-1178 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
(-1179 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
@@ -4655,9 +4655,9 @@ NIL
(-1181 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
((-4509 . T))
-((-12 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2968) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2460) (|devaluate| |#2|)))))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-871))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))))
+((-12 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1438) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3067) (|devaluate| |#2|)))))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-871))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))))
(-1182)
-((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
+((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}'s are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
(-1183)
@@ -4671,7 +4671,7 @@ NIL
(-1185 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
((-4509 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
(-1186 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}.")))
NIL
@@ -4687,13 +4687,13 @@ NIL
(-1189)
((|string| (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string")))
((-4509 . T) (-4508 . T))
-((-2304 (-12 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (-2304 (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (LIST (QUOTE -633) (QUOTE (-549)))) (-2304 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-146) (QUOTE (-871))) (-2304 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))))
+((-2196 (-12 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (-2196 (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (LIST (QUOTE -633) (QUOTE (-549)))) (-2196 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-146) (QUOTE (-871))) (-2196 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (LIST (QUOTE -321) (QUOTE (-146))))))
(-1190 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2968) (QUOTE (-1189))) (LIST (QUOTE |:|) (QUOTE -2460) (|devaluate| |#1|)))))) (-2304 (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (QUOTE (-1132))) (|HasCategory| (-1189) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (-2304 (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (-2304 (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (QUOTE (-102))))
+((-12 (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1438) (QUOTE (-1189))) (LIST (QUOTE |:|) (QUOTE -3067) (|devaluate| |#1|)))))) (-2196 (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (QUOTE (-1132))) (|HasCategory| (-1189) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (-2196 (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (-2196 (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (QUOTE (-102))))
(-1191 A)
-((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}")))
+((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by r: \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and b: \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}")))
NIL
((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))))
(-1192 |Coef|)
@@ -4709,11 +4709,11 @@ NIL
NIL
((|HasCategory| |#1| (QUOTE (-319))))
(-1195 |n| R)
-((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
+((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
(-1196 S1 S2)
-((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form \\spad{s:t}")))
+((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form s:t")))
NIL
NIL
(-1197)
@@ -4722,10 +4722,10 @@ NIL
NIL
(-1198 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4510 "*") -2304 (-1953 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-1953 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-939)))) (-4501 -2304 (-1953 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-571)) (-1953 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-939)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
-((-2304 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-2304 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2304 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-2304 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2304 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2304 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2304 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasCategory| (-560) (QUOTE (-1143))) (-2304 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-2304 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-2304 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2518) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1443) (LIST (LIST (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-2304 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-571)))) (-2304 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-2304 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))))
-(-1199 R -2284)
-((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
+(((-4510 "*") -2196 (-1404 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-1404 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-939)))) (-4501 -2196 (-1404 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-571)) (-1404 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-939)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
+((-2196 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-2196 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2196 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-2196 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2196 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2196 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2196 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasCategory| (-560) (QUOTE (-1143))) (-2196 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-2196 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -3913) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-2196 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -4424) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -4162) (LIST (LIST (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-2196 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-571)))) (-2196 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-2196 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(-1199 R -1683)
+((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
(-1200 R)
@@ -4735,7 +4735,7 @@ NIL
(-1201 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4504 |has| |#1| (-376)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
-((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))))
+((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-1202 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
@@ -4747,17 +4747,17 @@ NIL
(-1204 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2304 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560)))))) (-2304 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2518) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1443) (LIST (LIST (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2196 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (LIST (QUOTE -3913) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560)))))) (-2196 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -4424) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -4162) (LIST (LIST (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))))
(-1205 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2304 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2518) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1443) (LIST (LIST (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (LIST (QUOTE -3913) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2196 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -4424) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -4162) (LIST (LIST (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))))
(-1206)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
(-1207)
-((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
+((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([\\spad{a1},{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
(-1208 R)
@@ -4767,7 +4767,7 @@ NIL
(-1209 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| (-1002) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasAttribute| |#1| (QUOTE -4506)))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| (-1002) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasAttribute| |#1| (QUOTE -4506)))
(-1210)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
@@ -4777,7 +4777,7 @@ NIL
NIL
NIL
(-1212)
-((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if \\spad{`x'} really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax \\spad{`s'}.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
+((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if `x' really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if `x' really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if `x' really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if `x' really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when `x' is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in `x'.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax `x'. The value returned is itself a syntax if `x' really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when `s' is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain `s'; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax `s'; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax `s'.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax `s'.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax `s'.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax `s'")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when `s' is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
(-1213 N)
@@ -4785,7 +4785,7 @@ NIL
NIL
NIL
(-1214 N)
-((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "\\spad{bitior(x,y)} returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")))
+((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "\\spad{bitior(x,y)} returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")))
NIL
NIL
(-1215)
@@ -4801,13 +4801,13 @@ NIL
NIL
NIL
(-1218 S)
-((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
+((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for mr")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{\\spad{ListFunctions3}}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{\\spad{tab1}}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation \\spad{bat1} is the inverse of \\spad{tab1}.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
(-1219 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
((-4508 . T) (-4509 . T))
-((-12 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2968) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2460) (|devaluate| |#2|)))))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (-2304 (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (QUOTE (-102))))
+((-12 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -321) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -1438) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3067) (|devaluate| |#2|)))))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887))))) (-2196 (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (QUOTE (-102))))
(-1220 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
@@ -4821,15 +4821,15 @@ NIL
NIL
NIL
(-1223 S |Key| |Entry|)
-((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
+((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} := \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
(-1224 |Key| |Entry|)
-((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
+((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} := \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
((-4509 . T))
NIL
(-1225 |Key| |Entry|)
-((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
+((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key -> Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
(-1226)
@@ -4837,7 +4837,7 @@ NIL
NIL
NIL
(-1227)
-((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
+((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain ``\\verb+\\[+'' and ``\\verb+\\]+'',{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")))
NIL
NIL
(-1228 S)
@@ -4867,7 +4867,7 @@ NIL
(-1234 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
((-4509 . T) (-4508 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
+((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))))
(-1235 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
@@ -4876,7 +4876,7 @@ NIL
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1237 R -2284)
+(-1237 R -1683)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -4884,20 +4884,20 @@ NIL
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1239 R -2284)
-((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
+(-1239 R -1683)
+((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on f:\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on f:\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -633) (LIST (QUOTE -915) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -911) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -911) (|devaluate| |#1|)))))
(-1240 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4503 . T) (-4502 . T) (-4505 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376))))
(-1241 S R E V P)
-((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
+((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#5|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
((|HasCategory| |#4| (QUOTE (-381))))
(-1242 R E V P)
-((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
+((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#4|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
((-4509 . T) (-4508 . T))
NIL
(-1243 |Curve|)
@@ -4909,10 +4909,10 @@ NIL
NIL
NIL
(-1245 S)
-((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
+((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter's notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
((|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))))
-(-1246 -2284)
+(-1246 -1683)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
@@ -4925,7 +4925,7 @@ NIL
NIL
NIL
(-1249 S)
-((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
+((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by fn.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}'s and bj's.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}'s,{}bj's.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}'s.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}'s.}")))
NIL
((|HasCategory| |#1| (QUOTE (-871))))
(-1250)
@@ -4958,14 +4958,14 @@ NIL
NIL
(-1257 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4510 "*") -2304 (-1953 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-1953 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-939)))) (-4501 -2304 (-1953 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-842))) (|has| |#1| (-571)) (-1953 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-939)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
-((-2304 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-2304 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2304 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-2304 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2304 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2304 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2304 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasCategory| (-560) (QUOTE (-1143))) (-2304 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-2304 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-2304 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2518) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1443) (LIST (LIST (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-2304 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-571)))) (-2304 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-2304 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))))
+(((-4510 "*") -2196 (-1404 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-1404 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-939)))) (-4501 -2196 (-1404 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-842))) (|has| |#1| (-571)) (-1404 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-939)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
+((-2196 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-2196 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2196 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-2196 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2196 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2196 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2196 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasCategory| (-560) (QUOTE (-1143))) (-2196 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-2196 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -298) (LIST (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -321) (LIST (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -528) (QUOTE (-1207)) (LIST (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -3913) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-2196 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -4424) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -4162) (LIST (LIST (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-2196 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-571)))) (-2196 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-2196 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))))
(-1258 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
(-1259 |Coef|)
-((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
+((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree <= \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1260 S |Coef| UTS)
@@ -4979,7 +4979,7 @@ NIL
(-1262 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
-((-2304 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-2304 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147))))) (-2304 (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-149))))) (-2304 (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2304 (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasCategory| (-560) (QUOTE (-1143))) (-2304 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871))))) (-2304 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-2304 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2518) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1443) (LIST (LIST (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-939))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-147))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2304 (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147))))))
+((-2196 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-2196 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147))))) (-2196 (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-149))))) (-2196 (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))))) (-2196 (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasCategory| (-560) (QUOTE (-1143))) (-2196 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871))))) (-2196 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-1207)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -3913) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-2196 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -4424) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -4162) (LIST (LIST (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-939))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-147))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2196 (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147))))))
(-1263 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
@@ -4995,17 +4995,17 @@ NIL
(-1266 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
(((-4510 "*") |has| |#2| (-175)) (-4501 |has| |#2| (-571)) (-4504 |has| |#2| (-376)) (-4506 |has| |#2| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
-((|HasCategory| |#2| (QUOTE (-939))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2304 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2304 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (-2304 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2304 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2304 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-240))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2304 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147)))))
+((|HasCategory| |#2| (QUOTE (-939))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2196 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (LIST (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -633) (LIST (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (QUOTE (-560)))) (-2196 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (-2196 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2196 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2196 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182))) (|HasCategory| |#2| (LIST (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-240))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2196 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147)))))
(-1267 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
(-1268 R Q UP)
-((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
+((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a gcd domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
(-1269 R UP)
-((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
+((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} fn ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} fn).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
(-1270 R UP)
@@ -5013,15 +5013,15 @@ NIL
NIL
NIL
(-1271 R U)
-((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
+((|constructor| (NIL "This package implements Karatsuba's trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba's trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba's trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba's trick at all.")))
NIL
NIL
(-1272 S R)
-((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
+((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-1182))))
(-1273 R)
-((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
+((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4504 |has| |#1| (-376)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T))
NIL
(-1274 R PR S PS)
@@ -5029,11 +5029,11 @@ NIL
NIL
NIL
(-1275 S |Coef| |Expon|)
-((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
+((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1143))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -1578) (LIST (|devaluate| |#2|) (QUOTE (-1207))))))
+((|HasCategory| |#2| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1143))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -3913) (LIST (|devaluate| |#2|) (QUOTE (-1207))))))
(-1276 |Coef| |Expon|)
-((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
+((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1277 RC P)
@@ -5043,7 +5043,7 @@ NIL
(-1278 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2304 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560)))))) (-2304 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2518) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1443) (LIST (LIST (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2196 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (LIST (QUOTE -3913) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560)))))) (-2196 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -4424) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -4162) (LIST (LIST (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))))
(-1279 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
@@ -5063,23 +5063,23 @@ NIL
(-1283 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2304 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560)))))) (-2304 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2518) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1443) (LIST (LIST (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))))
+((|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2196 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (LIST (QUOTE -3913) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -421) (QUOTE (-560)))))) (-2196 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -4424) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -4162) (LIST (LIST (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))))
(-1284 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}.")))
(((-4510 "*") |has| (-1278 |#2| |#3| |#4|) (-175)) (-4501 |has| (-1278 |#2| |#3| |#4|) (-571)) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| (-1278 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-175))) (-2304 (|HasCategory| (-1278 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-376))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-466))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-571))))
+((|HasCategory| (-1278 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-175))) (-2196 (|HasCategory| (-1278 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (LIST (QUOTE -1069) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (LIST (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-376))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-466))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-571))))
(-1285 A S)
-((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
+((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
((|HasAttribute| |#1| (QUOTE -4509)))
(-1286 S)
-((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
+((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
NIL
(-1287 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4502 . T) (-4503 . T) (-4505 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2304 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (LIST (QUOTE -1578) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2304 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -2518) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -1443) (LIST (LIST (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2196 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (LIST (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (LIST (QUOTE -3913) (LIST (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2196 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (LIST (QUOTE -4424) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (LIST (QUOTE -4162) (LIST (LIST (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))))
(-1288 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
@@ -5087,7 +5087,7 @@ NIL
(-1289 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-1233))) (|HasSignature| |#2| (LIST (QUOTE -1443) (LIST (LIST (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2518) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1207))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))))
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-1233))) (|HasSignature| |#2| (LIST (QUOTE -4162) (LIST (LIST (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4424) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1207))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))))
(-1290 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
(((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4502 . T) (-4503 . T) (-4505 . T))
@@ -5096,7 +5096,7 @@ NIL
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1292 -2284 UP L UTS)
+(-1292 -1683 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
((|HasCategory| |#1| (QUOTE (-571))))
@@ -5109,27 +5109,27 @@ NIL
NIL
NIL
(-1295 S R)
-((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
+((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
((|HasCategory| |#2| (QUOTE (-1033))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
(-1296 R)
-((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
+((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
((-4509 . T) (-4508 . T))
NIL
(-1297 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
((-4509 . T) (-4508 . T))
-((-2304 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2304 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2304 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2304 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
+((-2196 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|))))) (-2196 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (LIST (QUOTE -633) (QUOTE (-549)))) (-2196 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2196 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (LIST (QUOTE -321) (|devaluate| |#1|)))))
(-1298 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
(-1299)
-((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
+((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through pn.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
(-1300)
-((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
+((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it's draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
(-1301)
@@ -5153,10 +5153,10 @@ NIL
((-4503 . T) (-4502 . T))
NIL
(-1306 R)
-((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
+((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]*v + A[2]\\spad{*v**2} + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1307 K R UP -2284)
+(-1307 K R UP -1683)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")))
NIL
NIL
@@ -5169,15 +5169,15 @@ NIL
NIL
NIL
(-1310 R |VarSet| E P |vl| |wl| |wtlevel|)
-((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
+((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
((-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) (-4505 . T))
((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))))
(-1311 R E V P)
-((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
+((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{MM Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. \\spad{DISCO'92}. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(ps)} returns the same as \\axiom{characteristicSerie(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(ps,{}redOp?,{}redOp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{ps} is the union of the regular zero sets of the members of \\axiom{lts}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(ps,{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(ps)} returns the same as \\axiom{characteristicSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(ps,{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{ps} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(ps)} returns the same as \\axiom{medialSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(ps,{}redOp?,{}redOp)} returns \\axiom{bs} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{ps} (with rank not higher than any basic set of \\axiom{ps}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{bs} has to be understood as a candidate for being a characteristic set of \\axiom{ps}. In the original algorithm,{} \\axiom{bs} is simply a basic set of \\axiom{ps}.")))
((-4509 . T) (-4508 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (LIST (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (LIST (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#4| (QUOTE (-102))))
(-1312 R)
-((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")))
+((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.fr)")))
((-4502 . T) (-4503 . T) (-4505 . T))
NIL
(-1313 |vl| R)
@@ -5185,14 +5185,14 @@ NIL
((-4505 . T) (-4501 |has| |#2| (-6 -4501)) (-4503 . T) (-4502 . T))
((|HasCategory| |#2| (QUOTE (-175))) (|HasAttribute| |#2| (QUOTE -4501)))
(-1314 R |VarSet| XPOLY)
-((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
+((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1315 S -2284)
+(-1315 S -1683)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))))
-(-1316 -2284)
+(-1316 -1683)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T))
NIL
@@ -5201,7 +5201,7 @@ NIL
((-4501 |has| |#2| (-6 -4501)) (-4503 . T) (-4502 . T) (-4505 . T))
NIL
(-1318 |VarSet| R)
-((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
+((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
((-4501 |has| |#2| (-6 -4501)) (-4503 . T) (-4502 . T) (-4505 . T))
((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (LIST (QUOTE -739) (LIST (QUOTE -421) (QUOTE (-560))))) (|HasAttribute| |#2| (QUOTE -4501)))
(-1319 R)
@@ -5229,11 +5229,11 @@ NIL
NIL
NIL
(-1325 R |ls| |ls2|)
-((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}. ") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
+((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}. ") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(lp,{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
(-1326 R)
-((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise.")))
+((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}'s exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
(-1327 |p|)
@@ -5256,4 +5256,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2300670 2300675 2300680 2300685) (-2 NIL 2300650 2300655 2300660 2300665) (-1 NIL 2300630 2300635 2300640 2300645) (0 NIL 2300610 2300615 2300620 2300625) (-1327 "ZMOD.spad" 2300419 2300432 2300548 2300605) (-1326 "ZLINDEP.spad" 2299485 2299496 2300409 2300414) (-1325 "ZDSOLVE.spad" 2289429 2289451 2299475 2299480) (-1324 "YSTREAM.spad" 2288924 2288935 2289419 2289424) (-1323 "YDIAGRAM.spad" 2288558 2288567 2288914 2288919) (-1322 "XRPOLY.spad" 2287778 2287798 2288414 2288483) (-1321 "XPR.spad" 2285573 2285586 2287496 2287595) (-1320 "XPOLYC.spad" 2284892 2284908 2285499 2285568) (-1319 "XPOLY.spad" 2284447 2284458 2284748 2284817) (-1318 "XPBWPOLY.spad" 2282884 2282904 2284227 2284296) (-1317 "XFALG.spad" 2279932 2279948 2282810 2282879) (-1316 "XF.spad" 2278395 2278410 2279834 2279927) (-1315 "XF.spad" 2276838 2276855 2278279 2278284) (-1314 "XEXPPKG.spad" 2276089 2276115 2276828 2276833) (-1313 "XDPOLY.spad" 2275703 2275719 2275945 2276014) (-1312 "XALG.spad" 2275363 2275374 2275659 2275698) (-1311 "WUTSET.spad" 2271166 2271183 2274973 2275000) (-1310 "WP.spad" 2270365 2270409 2271024 2271091) (-1309 "WHILEAST.spad" 2270163 2270172 2270355 2270360) (-1308 "WHEREAST.spad" 2269834 2269843 2270153 2270158) (-1307 "WFFINTBS.spad" 2267497 2267519 2269824 2269829) (-1306 "WEIER.spad" 2265719 2265730 2267487 2267492) (-1305 "VSPACE.spad" 2265392 2265403 2265687 2265714) (-1304 "VSPACE.spad" 2265085 2265098 2265382 2265387) (-1303 "VOID.spad" 2264762 2264771 2265075 2265080) (-1302 "VIEWDEF.spad" 2259963 2259972 2264752 2264757) (-1301 "VIEW3D.spad" 2243924 2243933 2259953 2259958) (-1300 "VIEW2D.spad" 2231815 2231824 2243914 2243919) (-1299 "VIEW.spad" 2229495 2229504 2231805 2231810) (-1298 "VECTOR2.spad" 2228134 2228147 2229485 2229490) (-1297 "VECTOR.spad" 2226655 2226666 2226906 2226933) (-1296 "VECTCAT.spad" 2224559 2224570 2226623 2226650) (-1295 "VECTCAT.spad" 2222270 2222283 2224336 2224341) (-1294 "VARIABLE.spad" 2222050 2222065 2222260 2222265) (-1293 "UTYPE.spad" 2221694 2221703 2222040 2222045) (-1292 "UTSODETL.spad" 2220989 2221013 2221650 2221655) (-1291 "UTSODE.spad" 2219205 2219225 2220979 2220984) (-1290 "UTSCAT.spad" 2216684 2216700 2219103 2219200) (-1289 "UTSCAT.spad" 2213807 2213825 2216228 2216233) (-1288 "UTS2.spad" 2213402 2213437 2213797 2213802) (-1287 "UTS.spad" 2208349 2208377 2211869 2211966) (-1286 "URAGG.spad" 2203022 2203033 2208339 2208344) (-1285 "URAGG.spad" 2197659 2197672 2202978 2202983) (-1284 "UPXSSING.spad" 2195304 2195330 2196740 2196873) (-1283 "UPXSCONS.spad" 2193063 2193083 2193436 2193585) (-1282 "UPXSCCA.spad" 2191634 2191654 2192909 2193058) (-1281 "UPXSCCA.spad" 2190347 2190369 2191624 2191629) (-1280 "UPXSCAT.spad" 2188936 2188952 2190193 2190342) (-1279 "UPXS2.spad" 2188479 2188532 2188926 2188931) (-1278 "UPXS.spad" 2185775 2185803 2186611 2186760) (-1277 "UPSQFREE.spad" 2184189 2184203 2185765 2185770) (-1276 "UPSCAT.spad" 2181976 2182000 2184087 2184184) (-1275 "UPSCAT.spad" 2179469 2179495 2181582 2181587) (-1274 "UPOLYC2.spad" 2178940 2178959 2179459 2179464) (-1273 "UPOLYC.spad" 2173980 2173991 2178782 2178935) (-1272 "UPOLYC.spad" 2168912 2168925 2173716 2173721) (-1271 "UPMP.spad" 2167812 2167825 2168902 2168907) (-1270 "UPDIVP.spad" 2167377 2167391 2167802 2167807) (-1269 "UPDECOMP.spad" 2165622 2165636 2167367 2167372) (-1268 "UPCDEN.spad" 2164831 2164847 2165612 2165617) (-1267 "UP2.spad" 2164195 2164216 2164821 2164826) (-1266 "UP.spad" 2161301 2161316 2161688 2161841) (-1265 "UNISEG2.spad" 2160798 2160811 2161257 2161262) (-1264 "UNISEG.spad" 2160151 2160162 2160717 2160722) (-1263 "UNIFACT.spad" 2159254 2159266 2160141 2160146) (-1262 "ULSCONS.spad" 2150388 2150408 2150758 2150907) (-1261 "ULSCCAT.spad" 2148125 2148145 2150234 2150383) (-1260 "ULSCCAT.spad" 2145970 2145992 2148081 2148086) (-1259 "ULSCAT.spad" 2144202 2144218 2145816 2145965) (-1258 "ULS2.spad" 2143716 2143769 2144192 2144197) (-1257 "ULS.spad" 2133500 2133528 2134445 2134874) (-1256 "UINT8.spad" 2133377 2133386 2133490 2133495) (-1255 "UINT64.spad" 2133253 2133262 2133367 2133372) (-1254 "UINT32.spad" 2133129 2133138 2133243 2133248) (-1253 "UINT16.spad" 2133005 2133014 2133119 2133124) (-1252 "UFD.spad" 2132070 2132079 2132931 2133000) (-1251 "UFD.spad" 2131197 2131208 2132060 2132065) (-1250 "UDVO.spad" 2130078 2130087 2131187 2131192) (-1249 "UDPO.spad" 2127571 2127582 2130034 2130039) (-1248 "TYPEAST.spad" 2127490 2127499 2127561 2127566) (-1247 "TYPE.spad" 2127422 2127431 2127480 2127485) (-1246 "TWOFACT.spad" 2126074 2126089 2127412 2127417) (-1245 "TUPLE.spad" 2125560 2125571 2125973 2125978) (-1244 "TUBETOOL.spad" 2122427 2122436 2125550 2125555) (-1243 "TUBE.spad" 2121074 2121091 2122417 2122422) (-1242 "TSETCAT.spad" 2108201 2108218 2121042 2121069) (-1241 "TSETCAT.spad" 2095314 2095333 2108157 2108162) (-1240 "TS.spad" 2093913 2093929 2094879 2094976) (-1239 "TRMANIP.spad" 2088279 2088296 2093619 2093624) (-1238 "TRIMAT.spad" 2087242 2087267 2088269 2088274) (-1237 "TRIGMNIP.spad" 2085769 2085786 2087232 2087237) (-1236 "TRIGCAT.spad" 2085281 2085290 2085759 2085764) (-1235 "TRIGCAT.spad" 2084791 2084802 2085271 2085276) (-1234 "TREE.spad" 2083249 2083260 2084281 2084308) (-1233 "TRANFUN.spad" 2083088 2083097 2083239 2083244) (-1232 "TRANFUN.spad" 2082925 2082936 2083078 2083083) (-1231 "TOPSP.spad" 2082599 2082608 2082915 2082920) (-1230 "TOOLSIGN.spad" 2082262 2082273 2082589 2082594) (-1229 "TEXTFILE.spad" 2080823 2080832 2082252 2082257) (-1228 "TEX1.spad" 2080379 2080390 2080813 2080818) (-1227 "TEX.spad" 2077525 2077534 2080369 2080374) (-1226 "TEMUTL.spad" 2077080 2077089 2077515 2077520) (-1225 "TBCMPPK.spad" 2075173 2075196 2077070 2077075) (-1224 "TBAGG.spad" 2074223 2074246 2075153 2075168) (-1223 "TBAGG.spad" 2073281 2073306 2074213 2074218) (-1222 "TANEXP.spad" 2072689 2072700 2073271 2073276) (-1221 "TALGOP.spad" 2072413 2072424 2072679 2072684) (-1220 "TABLEAU.spad" 2071894 2071905 2072403 2072408) (-1219 "TABLE.spad" 2069863 2069886 2070133 2070160) (-1218 "TABLBUMP.spad" 2066666 2066677 2069853 2069858) (-1217 "SYSTEM.spad" 2065894 2065903 2066656 2066661) (-1216 "SYSSOLP.spad" 2063377 2063388 2065884 2065889) (-1215 "SYSPTR.spad" 2063276 2063285 2063367 2063372) (-1214 "SYSNNI.spad" 2062467 2062478 2063266 2063271) (-1213 "SYSINT.spad" 2061871 2061882 2062457 2062462) (-1212 "SYNTAX.spad" 2058077 2058086 2061861 2061866) (-1211 "SYMTAB.spad" 2056145 2056154 2058067 2058072) (-1210 "SYMS.spad" 2052168 2052177 2056135 2056140) (-1209 "SYMPOLY.spad" 2051174 2051185 2051256 2051383) (-1208 "SYMFUNC.spad" 2050675 2050686 2051164 2051169) (-1207 "SYMBOL.spad" 2048178 2048187 2050665 2050670) (-1206 "SWITCH.spad" 2044949 2044958 2048168 2048173) (-1205 "SUTS.spad" 2041997 2042025 2043416 2043513) (-1204 "SUPXS.spad" 2039280 2039308 2040129 2040278) (-1203 "SUPFRACF.spad" 2038385 2038403 2039270 2039275) (-1202 "SUP2.spad" 2037777 2037790 2038375 2038380) (-1201 "SUP.spad" 2034497 2034508 2035270 2035423) (-1200 "SUMRF.spad" 2033471 2033482 2034487 2034492) (-1199 "SUMFS.spad" 2033108 2033125 2033461 2033466) (-1198 "SULS.spad" 2022879 2022907 2023837 2024266) (-1197 "SUCHTAST.spad" 2022648 2022657 2022869 2022874) (-1196 "SUCH.spad" 2022330 2022345 2022638 2022643) (-1195 "SUBSPACE.spad" 2014445 2014460 2022320 2022325) (-1194 "SUBRESP.spad" 2013615 2013629 2014401 2014406) (-1193 "STTFNC.spad" 2010083 2010099 2013605 2013610) (-1192 "STTF.spad" 2006182 2006198 2010073 2010078) (-1191 "STTAYLOR.spad" 1998817 1998828 2006063 2006068) (-1190 "STRTBL.spad" 1996868 1996885 1997017 1997044) (-1189 "STRING.spad" 1995655 1995664 1995876 1995903) (-1188 "STREAM3.spad" 1995228 1995243 1995645 1995650) (-1187 "STREAM2.spad" 1994356 1994369 1995218 1995223) (-1186 "STREAM1.spad" 1994062 1994073 1994346 1994351) (-1185 "STREAM.spad" 1990863 1990874 1993470 1993485) (-1184 "STINPROD.spad" 1989799 1989815 1990853 1990858) (-1183 "STEPAST.spad" 1989033 1989042 1989789 1989794) (-1182 "STEP.spad" 1988234 1988243 1989023 1989028) (-1181 "STBL.spad" 1986318 1986346 1986485 1986500) (-1180 "STAGG.spad" 1985393 1985404 1986308 1986313) (-1179 "STAGG.spad" 1984466 1984479 1985383 1985388) (-1178 "STACK.spad" 1983706 1983717 1983956 1983983) (-1177 "SREGSET.spad" 1981374 1981391 1983316 1983343) (-1176 "SRDCMPK.spad" 1979935 1979955 1981364 1981369) (-1175 "SRAGG.spad" 1975078 1975087 1979903 1979930) (-1174 "SRAGG.spad" 1970241 1970252 1975068 1975073) (-1173 "SQMATRIX.spad" 1967784 1967802 1968700 1968787) (-1172 "SPLTREE.spad" 1962180 1962193 1967064 1967091) (-1171 "SPLNODE.spad" 1958768 1958781 1962170 1962175) (-1170 "SPFCAT.spad" 1957577 1957586 1958758 1958763) (-1169 "SPECOUT.spad" 1956129 1956138 1957567 1957572) (-1168 "SPADXPT.spad" 1947724 1947733 1956119 1956124) (-1167 "spad-parser.spad" 1947189 1947198 1947714 1947719) (-1166 "SPADAST.spad" 1946890 1946899 1947179 1947184) (-1165 "SPACEC.spad" 1931089 1931100 1946880 1946885) (-1164 "SPACE3.spad" 1930865 1930876 1931079 1931084) (-1163 "SORTPAK.spad" 1930414 1930427 1930821 1930826) (-1162 "SOLVETRA.spad" 1928177 1928188 1930404 1930409) (-1161 "SOLVESER.spad" 1926705 1926716 1928167 1928172) (-1160 "SOLVERAD.spad" 1922731 1922742 1926695 1926700) (-1159 "SOLVEFOR.spad" 1921193 1921211 1922721 1922726) (-1158 "SNTSCAT.spad" 1920793 1920810 1921161 1921188) (-1157 "SMTS.spad" 1919065 1919091 1920358 1920455) (-1156 "SMP.spad" 1916540 1916560 1916930 1917057) (-1155 "SMITH.spad" 1915385 1915410 1916530 1916535) (-1154 "SMATCAT.spad" 1913495 1913525 1915329 1915380) (-1153 "SMATCAT.spad" 1911537 1911569 1913373 1913378) (-1152 "SKAGG.spad" 1910500 1910511 1911505 1911532) (-1151 "SINT.spad" 1909440 1909449 1910366 1910495) (-1150 "SIMPAN.spad" 1909168 1909177 1909430 1909435) (-1149 "SIGNRF.spad" 1908286 1908297 1909158 1909163) (-1148 "SIGNEF.spad" 1907565 1907582 1908276 1908281) (-1147 "SIGAST.spad" 1906950 1906959 1907555 1907560) (-1146 "SIG.spad" 1906280 1906289 1906940 1906945) (-1145 "SHP.spad" 1904208 1904223 1906236 1906241) (-1144 "SHDP.spad" 1891886 1891913 1892395 1892494) (-1143 "SGROUP.spad" 1891494 1891503 1891876 1891881) (-1142 "SGROUP.spad" 1891100 1891111 1891484 1891489) (-1141 "SGCF.spad" 1884239 1884248 1891090 1891095) (-1140 "SFRTCAT.spad" 1883169 1883186 1884207 1884234) (-1139 "SFRGCD.spad" 1882232 1882252 1883159 1883164) (-1138 "SFQCMPK.spad" 1876869 1876889 1882222 1882227) (-1137 "SFORT.spad" 1876308 1876322 1876859 1876864) (-1136 "SEXOF.spad" 1876151 1876191 1876298 1876303) (-1135 "SEXCAT.spad" 1873923 1873963 1876141 1876146) (-1134 "SEX.spad" 1873815 1873824 1873913 1873918) (-1133 "SETMN.spad" 1872265 1872282 1873805 1873810) (-1132 "SETCAT.spad" 1871750 1871759 1872255 1872260) (-1131 "SETCAT.spad" 1871233 1871244 1871740 1871745) (-1130 "SETAGG.spad" 1867782 1867793 1871213 1871228) (-1129 "SETAGG.spad" 1864339 1864352 1867772 1867777) (-1128 "SET.spad" 1862627 1862638 1863724 1863763) (-1127 "SEQAST.spad" 1862330 1862339 1862617 1862622) (-1126 "SEGXCAT.spad" 1861486 1861499 1862320 1862325) (-1125 "SEGCAT.spad" 1860411 1860422 1861476 1861481) (-1124 "SEGBIND2.spad" 1860109 1860122 1860401 1860406) (-1123 "SEGBIND.spad" 1859867 1859878 1860056 1860061) (-1122 "SEGAST.spad" 1859581 1859590 1859857 1859862) (-1121 "SEG2.spad" 1859016 1859029 1859537 1859542) (-1120 "SEG.spad" 1858829 1858840 1858935 1858940) (-1119 "SDVAR.spad" 1858105 1858116 1858819 1858824) (-1118 "SDPOL.spad" 1855438 1855449 1855729 1855856) (-1117 "SCPKG.spad" 1853527 1853538 1855428 1855433) (-1116 "SCOPE.spad" 1852680 1852689 1853517 1853522) (-1115 "SCACHE.spad" 1851376 1851387 1852670 1852675) (-1114 "SASTCAT.spad" 1851285 1851294 1851366 1851371) (-1113 "SAOS.spad" 1851157 1851166 1851275 1851280) (-1112 "SAERFFC.spad" 1850870 1850890 1851147 1851152) (-1111 "SAEFACT.spad" 1850571 1850591 1850860 1850865) (-1110 "SAE.spad" 1848041 1848057 1848652 1848787) (-1109 "RURPK.spad" 1845700 1845716 1848031 1848036) (-1108 "RULESET.spad" 1845153 1845177 1845690 1845695) (-1107 "RULECOLD.spad" 1845005 1845018 1845143 1845148) (-1106 "RULE.spad" 1843245 1843269 1844995 1845000) (-1105 "RTVALUE.spad" 1842980 1842989 1843235 1843240) (-1104 "RSTRCAST.spad" 1842697 1842706 1842970 1842975) (-1103 "RSETGCD.spad" 1839075 1839095 1842687 1842692) (-1102 "RSETCAT.spad" 1829011 1829028 1839043 1839070) (-1101 "RSETCAT.spad" 1818967 1818986 1829001 1829006) (-1100 "RSDCMPK.spad" 1817419 1817439 1818957 1818962) (-1099 "RRCC.spad" 1815803 1815833 1817409 1817414) (-1098 "RRCC.spad" 1814185 1814217 1815793 1815798) (-1097 "RPTAST.spad" 1813887 1813896 1814175 1814180) (-1096 "RPOLCAT.spad" 1793247 1793262 1813755 1813882) (-1095 "RPOLCAT.spad" 1772320 1772337 1792830 1792835) (-1094 "ROUTINE.spad" 1767741 1767750 1770505 1770532) (-1093 "ROMAN.spad" 1767069 1767078 1767607 1767736) (-1092 "ROIRC.spad" 1766149 1766181 1767059 1767064) (-1091 "RNS.spad" 1765052 1765061 1766051 1766144) (-1090 "RNS.spad" 1764041 1764052 1765042 1765047) (-1089 "RNGBIND.spad" 1763201 1763215 1763996 1764001) (-1088 "RNG.spad" 1762936 1762945 1763191 1763196) (-1087 "RMODULE.spad" 1762701 1762712 1762926 1762931) (-1086 "RMCAT2.spad" 1762121 1762178 1762691 1762696) (-1085 "RMATRIX.spad" 1760909 1760928 1761252 1761291) (-1084 "RMATCAT.spad" 1756488 1756519 1760865 1760904) (-1083 "RMATCAT.spad" 1751957 1751990 1756336 1756341) (-1082 "RLINSET.spad" 1751661 1751672 1751947 1751952) (-1081 "RINTERP.spad" 1751549 1751569 1751651 1751656) (-1080 "RING.spad" 1751019 1751028 1751529 1751544) (-1079 "RING.spad" 1750497 1750508 1751009 1751014) (-1078 "RIDIST.spad" 1749889 1749898 1750487 1750492) (-1077 "RGCHAIN.spad" 1748417 1748433 1749319 1749346) (-1076 "RGBCSPC.spad" 1748198 1748210 1748407 1748412) (-1075 "RGBCMDL.spad" 1747728 1747740 1748188 1748193) (-1074 "RFFACTOR.spad" 1747190 1747201 1747718 1747723) (-1073 "RFFACT.spad" 1746925 1746937 1747180 1747185) (-1072 "RFDIST.spad" 1745921 1745930 1746915 1746920) (-1071 "RF.spad" 1743563 1743574 1745911 1745916) (-1070 "RETSOL.spad" 1742982 1742995 1743553 1743558) (-1069 "RETRACT.spad" 1742410 1742421 1742972 1742977) (-1068 "RETRACT.spad" 1741836 1741849 1742400 1742405) (-1067 "RETAST.spad" 1741648 1741657 1741826 1741831) (-1066 "RESULT.spad" 1739246 1739255 1739833 1739860) (-1065 "RESRING.spad" 1738593 1738640 1739184 1739241) (-1064 "RESLATC.spad" 1737917 1737928 1738583 1738588) (-1063 "REPSQ.spad" 1737648 1737659 1737907 1737912) (-1062 "REPDB.spad" 1737355 1737366 1737638 1737643) (-1061 "REP2.spad" 1727013 1727024 1737197 1737202) (-1060 "REP1.spad" 1721209 1721220 1726963 1726968) (-1059 "REP.spad" 1718763 1718772 1721199 1721204) (-1058 "REGSET.spad" 1716524 1716541 1718373 1718400) (-1057 "REF.spad" 1715859 1715870 1716479 1716484) (-1056 "REDORDER.spad" 1715065 1715082 1715849 1715854) (-1055 "RECLOS.spad" 1713848 1713868 1714552 1714645) (-1054 "REALSOLV.spad" 1712988 1712997 1713838 1713843) (-1053 "REAL0Q.spad" 1710286 1710301 1712978 1712983) (-1052 "REAL0.spad" 1707130 1707145 1710276 1710281) (-1051 "REAL.spad" 1707002 1707011 1707120 1707125) (-1050 "RDUCEAST.spad" 1706723 1706732 1706992 1706997) (-1049 "RDIV.spad" 1706378 1706403 1706713 1706718) (-1048 "RDIST.spad" 1705945 1705956 1706368 1706373) (-1047 "RDETRS.spad" 1704809 1704827 1705935 1705940) (-1046 "RDETR.spad" 1702948 1702966 1704799 1704804) (-1045 "RDEEFS.spad" 1702047 1702064 1702938 1702943) (-1044 "RDEEF.spad" 1701057 1701074 1702037 1702042) (-1043 "RCFIELD.spad" 1698243 1698252 1700959 1701052) (-1042 "RCFIELD.spad" 1695515 1695526 1698233 1698238) (-1041 "RCAGG.spad" 1693443 1693454 1695505 1695510) (-1040 "RCAGG.spad" 1691298 1691311 1693362 1693367) (-1039 "RATRET.spad" 1690658 1690669 1691288 1691293) (-1038 "RATFACT.spad" 1690350 1690362 1690648 1690653) (-1037 "RANDSRC.spad" 1689669 1689678 1690340 1690345) (-1036 "RADUTIL.spad" 1689425 1689434 1689659 1689664) (-1035 "RADIX.spad" 1686249 1686263 1687795 1687888) (-1034 "RADFF.spad" 1683988 1684025 1684107 1684263) (-1033 "RADCAT.spad" 1683583 1683592 1683978 1683983) (-1032 "RADCAT.spad" 1683176 1683187 1683573 1683578) (-1031 "QUEUE.spad" 1682407 1682418 1682666 1682693) (-1030 "QUATCT2.spad" 1682027 1682046 1682397 1682402) (-1029 "QUATCAT.spad" 1680197 1680208 1681957 1682022) (-1028 "QUATCAT.spad" 1678118 1678131 1679880 1679885) (-1027 "QUAT.spad" 1676606 1676617 1676949 1677014) (-1026 "QUAGG.spad" 1675433 1675444 1676574 1676601) (-1025 "QQUTAST.spad" 1675201 1675210 1675423 1675428) (-1024 "QFORM.spad" 1674819 1674834 1675191 1675196) (-1023 "QFCAT2.spad" 1674511 1674528 1674809 1674814) (-1022 "QFCAT.spad" 1673213 1673224 1674413 1674506) (-1021 "QFCAT.spad" 1671506 1671519 1672708 1672713) (-1020 "QEQUAT.spad" 1671064 1671073 1671496 1671501) (-1019 "QCMPACK.spad" 1665810 1665830 1671054 1671059) (-1018 "QALGSET2.spad" 1663805 1663824 1665800 1665805) (-1017 "QALGSET.spad" 1659883 1659916 1663719 1663724) (-1016 "PWFFINTB.spad" 1657298 1657320 1659873 1659878) (-1015 "PUSHVAR.spad" 1656636 1656656 1657288 1657293) (-1014 "PTRANFN.spad" 1652763 1652774 1656626 1656631) (-1013 "PTPACK.spad" 1649850 1649861 1652753 1652758) (-1012 "PTFUNC2.spad" 1649672 1649687 1649840 1649845) (-1011 "PTCAT.spad" 1648926 1648937 1649640 1649667) (-1010 "PSQFR.spad" 1648232 1648257 1648916 1648921) (-1009 "PSEUDLIN.spad" 1647117 1647128 1648222 1648227) (-1008 "PSETPK.spad" 1632549 1632566 1646995 1647000) (-1007 "PSETCAT.spad" 1626468 1626492 1632529 1632544) (-1006 "PSETCAT.spad" 1620361 1620387 1626424 1626429) (-1005 "PSCURVE.spad" 1619343 1619352 1620351 1620356) (-1004 "PSCAT.spad" 1618125 1618155 1619241 1619338) (-1003 "PSCAT.spad" 1616997 1617029 1618115 1618120) (-1002 "PRTITION.spad" 1615694 1615703 1616987 1616992) (-1001 "PRTDAST.spad" 1615412 1615421 1615684 1615689) (-1000 "PRS.spad" 1604973 1604991 1615368 1615373) (-999 "PRQAGG.spad" 1604408 1604418 1604941 1604968) (-998 "PROPLOG.spad" 1603980 1603988 1604398 1604403) (-997 "PROPFUN2.spad" 1603603 1603616 1603970 1603975) (-996 "PROPFUN1.spad" 1603001 1603012 1603593 1603598) (-995 "PROPFRML.spad" 1601569 1601580 1602991 1602996) (-994 "PROPERTY.spad" 1601057 1601065 1601559 1601564) (-993 "PRODUCT.spad" 1598739 1598751 1599023 1599078) (-992 "PRINT.spad" 1598491 1598499 1598729 1598734) (-991 "PRIMES.spad" 1596744 1596754 1598481 1598486) (-990 "PRIMELT.spad" 1594825 1594839 1596734 1596739) (-989 "PRIMCAT.spad" 1594452 1594460 1594815 1594820) (-988 "PRIMARR2.spad" 1593219 1593231 1594442 1594447) (-987 "PRIMARR.spad" 1592071 1592081 1592249 1592276) (-986 "PREASSOC.spad" 1591453 1591465 1592061 1592066) (-985 "PR.spad" 1589845 1589857 1590544 1590671) (-984 "PPCURVE.spad" 1588982 1588990 1589835 1589840) (-983 "PORTNUM.spad" 1588757 1588765 1588972 1588977) (-982 "POLYROOT.spad" 1587606 1587628 1588713 1588718) (-981 "POLYLIFT.spad" 1586871 1586894 1587596 1587601) (-980 "POLYCATQ.spad" 1584989 1585011 1586861 1586866) (-979 "POLYCAT.spad" 1578459 1578480 1584857 1584984) (-978 "POLYCAT.spad" 1571267 1571290 1577667 1577672) (-977 "POLY2UP.spad" 1570719 1570733 1571257 1571262) (-976 "POLY2.spad" 1570316 1570328 1570709 1570714) (-975 "POLY.spad" 1567651 1567661 1568166 1568293) (-974 "POLUTIL.spad" 1566592 1566621 1567607 1567612) (-973 "POLTOPOL.spad" 1565340 1565355 1566582 1566587) (-972 "POINT.spad" 1564025 1564035 1564112 1564139) (-971 "PNTHEORY.spad" 1560727 1560735 1564015 1564020) (-970 "PMTOOLS.spad" 1559502 1559516 1560717 1560722) (-969 "PMSYM.spad" 1559051 1559061 1559492 1559497) (-968 "PMQFCAT.spad" 1558642 1558656 1559041 1559046) (-967 "PMPREDFS.spad" 1558096 1558118 1558632 1558637) (-966 "PMPRED.spad" 1557575 1557589 1558086 1558091) (-965 "PMPLCAT.spad" 1556655 1556673 1557507 1557512) (-964 "PMLSAGG.spad" 1556240 1556254 1556645 1556650) (-963 "PMKERNEL.spad" 1555819 1555831 1556230 1556235) (-962 "PMINS.spad" 1555399 1555409 1555809 1555814) (-961 "PMFS.spad" 1554976 1554994 1555389 1555394) (-960 "PMDOWN.spad" 1554266 1554280 1554966 1554971) (-959 "PMASSFS.spad" 1553233 1553249 1554256 1554261) (-958 "PMASS.spad" 1552243 1552251 1553223 1553228) (-957 "PLOTTOOL.spad" 1552023 1552031 1552233 1552238) (-956 "PLOT3D.spad" 1548487 1548495 1552013 1552018) (-955 "PLOT1.spad" 1547644 1547654 1548477 1548482) (-954 "PLOT.spad" 1542567 1542575 1547634 1547639) (-953 "PLEQN.spad" 1529857 1529884 1542557 1542562) (-952 "PINTERPA.spad" 1529641 1529657 1529847 1529852) (-951 "PINTERP.spad" 1529263 1529282 1529631 1529636) (-950 "PID.spad" 1528233 1528241 1529189 1529258) (-949 "PICOERCE.spad" 1527890 1527900 1528223 1528228) (-948 "PI.spad" 1527499 1527507 1527864 1527885) (-947 "PGROEB.spad" 1526100 1526114 1527489 1527494) (-946 "PGE.spad" 1517717 1517725 1526090 1526095) (-945 "PGCD.spad" 1516607 1516624 1517707 1517712) (-944 "PFRPAC.spad" 1515756 1515766 1516597 1516602) (-943 "PFR.spad" 1512419 1512429 1515658 1515751) (-942 "PFOTOOLS.spad" 1511677 1511693 1512409 1512414) (-941 "PFOQ.spad" 1511047 1511065 1511667 1511672) (-940 "PFO.spad" 1510466 1510493 1511037 1511042) (-939 "PFECAT.spad" 1508148 1508156 1510392 1510461) (-938 "PFECAT.spad" 1505858 1505868 1508104 1508109) (-937 "PFBRU.spad" 1503746 1503758 1505848 1505853) (-936 "PFBR.spad" 1501306 1501329 1503736 1503741) (-935 "PF.spad" 1500880 1500892 1501111 1501204) (-934 "PERMGRP.spad" 1495650 1495660 1500870 1500875) (-933 "PERMCAT.spad" 1494311 1494321 1495630 1495645) (-932 "PERMAN.spad" 1492843 1492857 1494301 1494306) (-931 "PERM.spad" 1488650 1488660 1492673 1492688) (-930 "PENDTREE.spad" 1487874 1487884 1488162 1488167) (-929 "PDSPC.spad" 1486687 1486697 1487864 1487869) (-928 "PDSPC.spad" 1485498 1485510 1486677 1486682) (-927 "PDRING.spad" 1485340 1485350 1485478 1485493) (-926 "PDMOD.spad" 1485156 1485168 1485308 1485335) (-925 "PDEPROB.spad" 1484171 1484179 1485146 1485151) (-924 "PDEPACK.spad" 1478211 1478219 1484161 1484166) (-923 "PDECOMP.spad" 1477681 1477698 1478201 1478206) (-922 "PDECAT.spad" 1476037 1476045 1477671 1477676) (-921 "PDDOM.spad" 1475475 1475488 1476027 1476032) (-920 "PDDOM.spad" 1474911 1474926 1475465 1475470) (-919 "PCOMP.spad" 1474764 1474777 1474901 1474906) (-918 "PBWLB.spad" 1473352 1473369 1474754 1474759) (-917 "PATTERN2.spad" 1473090 1473102 1473342 1473347) (-916 "PATTERN1.spad" 1471426 1471442 1473080 1473085) (-915 "PATTERN.spad" 1465965 1465975 1471416 1471421) (-914 "PATRES2.spad" 1465637 1465651 1465955 1465960) (-913 "PATRES.spad" 1463212 1463224 1465627 1465632) (-912 "PATMATCH.spad" 1461409 1461440 1462920 1462925) (-911 "PATMAB.spad" 1460838 1460848 1461399 1461404) (-910 "PATLRES.spad" 1459924 1459938 1460828 1460833) (-909 "PATAB.spad" 1459688 1459698 1459914 1459919) (-908 "PARTPERM.spad" 1457696 1457704 1459678 1459683) (-907 "PARSURF.spad" 1457130 1457158 1457686 1457691) (-906 "PARSU2.spad" 1456927 1456943 1457120 1457125) (-905 "script-parser.spad" 1456447 1456455 1456917 1456922) (-904 "PARSCURV.spad" 1455881 1455909 1456437 1456442) (-903 "PARSC2.spad" 1455672 1455688 1455871 1455876) (-902 "PARPCURV.spad" 1455134 1455162 1455662 1455667) (-901 "PARPC2.spad" 1454925 1454941 1455124 1455129) (-900 "PARAMAST.spad" 1454053 1454061 1454915 1454920) (-899 "PAN2EXPR.spad" 1453465 1453473 1454043 1454048) (-898 "PALETTE.spad" 1452435 1452443 1453455 1453460) (-897 "PAIR.spad" 1451422 1451435 1452023 1452028) (-896 "PADICRC.spad" 1448663 1448681 1449834 1449927) (-895 "PADICRAT.spad" 1446571 1446583 1446792 1446885) (-894 "PADICCT.spad" 1445120 1445132 1446497 1446566) (-893 "PADIC.spad" 1444815 1444827 1445046 1445115) (-892 "PADEPAC.spad" 1443504 1443523 1444805 1444810) (-891 "PADE.spad" 1442256 1442272 1443494 1443499) (-890 "OWP.spad" 1441496 1441526 1442114 1442181) (-889 "OVERSET.spad" 1441069 1441077 1441486 1441491) (-888 "OVAR.spad" 1440850 1440873 1441059 1441064) (-887 "OUTFORM.spad" 1430242 1430250 1440840 1440845) (-886 "OUTBFILE.spad" 1429660 1429668 1430232 1430237) (-885 "OUTBCON.spad" 1428666 1428674 1429650 1429655) (-884 "OUTBCON.spad" 1427670 1427680 1428656 1428661) (-883 "OUT.spad" 1426756 1426764 1427660 1427665) (-882 "OSI.spad" 1426231 1426239 1426746 1426751) (-881 "OSGROUP.spad" 1426149 1426157 1426221 1426226) (-880 "ORTHPOL.spad" 1424634 1424644 1426066 1426071) (-879 "OREUP.spad" 1424087 1424115 1424314 1424353) (-878 "ORESUP.spad" 1423388 1423412 1423767 1423806) (-877 "OREPCTO.spad" 1421245 1421257 1423308 1423313) (-876 "OREPCAT.spad" 1415392 1415402 1421201 1421240) (-875 "OREPCAT.spad" 1409429 1409441 1415240 1415245) (-874 "ORDTYPE.spad" 1408666 1408674 1409419 1409424) (-873 "ORDTYPE.spad" 1407901 1407911 1408656 1408661) (-872 "ORDSTRCT.spad" 1407674 1407689 1407837 1407842) (-871 "ORDSET.spad" 1407374 1407382 1407664 1407669) (-870 "ORDRING.spad" 1406764 1406772 1407354 1407369) (-869 "ORDRING.spad" 1406162 1406172 1406754 1406759) (-868 "ORDMON.spad" 1406017 1406025 1406152 1406157) (-867 "ORDFUNS.spad" 1405149 1405165 1406007 1406012) (-866 "ORDFIN.spad" 1404969 1404977 1405139 1405144) (-865 "ORDCOMP2.spad" 1404262 1404274 1404959 1404964) (-864 "ORDCOMP.spad" 1402727 1402737 1403809 1403838) (-863 "OPTPROB.spad" 1401365 1401373 1402717 1402722) (-862 "OPTPACK.spad" 1393774 1393782 1401355 1401360) (-861 "OPTCAT.spad" 1391453 1391461 1393764 1393769) (-860 "OPSIG.spad" 1391107 1391115 1391443 1391448) (-859 "OPQUERY.spad" 1390656 1390664 1391097 1391102) (-858 "OPERCAT.spad" 1390122 1390132 1390646 1390651) (-857 "OPERCAT.spad" 1389586 1389598 1390112 1390117) (-856 "OP.spad" 1389328 1389338 1389408 1389475) (-855 "ONECOMP2.spad" 1388752 1388764 1389318 1389323) (-854 "ONECOMP.spad" 1387497 1387507 1388299 1388328) (-853 "OMSERVER.spad" 1386503 1386511 1387487 1387492) (-852 "OMSAGG.spad" 1386291 1386301 1386459 1386498) (-851 "OMPKG.spad" 1384907 1384915 1386281 1386286) (-850 "OMLO.spad" 1384332 1384344 1384793 1384832) (-849 "OMEXPR.spad" 1384166 1384176 1384322 1384327) (-848 "OMERRK.spad" 1383200 1383208 1384156 1384161) (-847 "OMERR.spad" 1382745 1382753 1383190 1383195) (-846 "OMENC.spad" 1382089 1382097 1382735 1382740) (-845 "OMDEV.spad" 1376398 1376406 1382079 1382084) (-844 "OMCONN.spad" 1375807 1375815 1376388 1376393) (-843 "OM.spad" 1374780 1374788 1375797 1375802) (-842 "OINTDOM.spad" 1374543 1374551 1374706 1374775) (-841 "OFMONOID.spad" 1372666 1372676 1374499 1374504) (-840 "ODVAR.spad" 1371927 1371937 1372656 1372661) (-839 "ODR.spad" 1371571 1371597 1371739 1371888) (-838 "ODPOL.spad" 1368860 1368870 1369200 1369327) (-837 "ODP.spad" 1356674 1356694 1357047 1357146) (-836 "ODETOOLS.spad" 1355323 1355342 1356664 1356669) (-835 "ODESYS.spad" 1353017 1353034 1355313 1355318) (-834 "ODERTRIC.spad" 1349026 1349043 1352974 1352979) (-833 "ODERED.spad" 1348425 1348449 1349016 1349021) (-832 "ODERAT.spad" 1346040 1346057 1348415 1348420) (-831 "ODEPRRIC.spad" 1343077 1343099 1346030 1346035) (-830 "ODEPROB.spad" 1342334 1342342 1343067 1343072) (-829 "ODEPRIM.spad" 1339668 1339690 1342324 1342329) (-828 "ODEPAL.spad" 1339054 1339078 1339658 1339663) (-827 "ODEPACK.spad" 1325720 1325728 1339044 1339049) (-826 "ODEINT.spad" 1325155 1325171 1325710 1325715) (-825 "ODEIFTBL.spad" 1322550 1322558 1325145 1325150) (-824 "ODEEF.spad" 1318041 1318057 1322540 1322545) (-823 "ODECONST.spad" 1317578 1317596 1318031 1318036) (-822 "ODECAT.spad" 1316176 1316184 1317568 1317573) (-821 "OCTCT2.spad" 1315822 1315843 1316166 1316171) (-820 "OCT.spad" 1313958 1313968 1314672 1314711) (-819 "OCAMON.spad" 1313806 1313814 1313948 1313953) (-818 "OC.spad" 1311602 1311612 1313762 1313801) (-817 "OC.spad" 1309123 1309135 1311285 1311290) (-816 "OASGP.spad" 1308938 1308946 1309113 1309118) (-815 "OAMONS.spad" 1308460 1308468 1308928 1308933) (-814 "OAMON.spad" 1308321 1308329 1308450 1308455) (-813 "OAGROUP.spad" 1308183 1308191 1308311 1308316) (-812 "NUMTUBE.spad" 1307774 1307790 1308173 1308178) (-811 "NUMQUAD.spad" 1295750 1295758 1307764 1307769) (-810 "NUMODE.spad" 1287094 1287102 1295740 1295745) (-809 "NUMINT.spad" 1284660 1284668 1287084 1287089) (-808 "NUMFMT.spad" 1283500 1283508 1284650 1284655) (-807 "NUMERIC.spad" 1275614 1275624 1283305 1283310) (-806 "NTSCAT.spad" 1274122 1274138 1275582 1275609) (-805 "NTPOLFN.spad" 1273673 1273683 1274039 1274044) (-804 "NSUP2.spad" 1273065 1273077 1273663 1273668) (-803 "NSUP.spad" 1266018 1266028 1270558 1270711) (-802 "NSMP.spad" 1262248 1262267 1262556 1262683) (-801 "NREP.spad" 1260626 1260640 1262238 1262243) (-800 "NPCOEF.spad" 1259872 1259892 1260616 1260621) (-799 "NORMRETR.spad" 1259470 1259509 1259862 1259867) (-798 "NORMPK.spad" 1257372 1257391 1259460 1259465) (-797 "NORMMA.spad" 1257060 1257086 1257362 1257367) (-796 "NONE1.spad" 1256736 1256746 1257050 1257055) (-795 "NONE.spad" 1256477 1256485 1256726 1256731) (-794 "NODE1.spad" 1255964 1255980 1256467 1256472) (-793 "NNI.spad" 1254859 1254867 1255938 1255959) (-792 "NLINSOL.spad" 1253485 1253495 1254849 1254854) (-791 "NIPROB.spad" 1252026 1252034 1253475 1253480) (-790 "NFINTBAS.spad" 1249586 1249603 1252016 1252021) (-789 "NETCLT.spad" 1249560 1249571 1249576 1249581) (-788 "NCODIV.spad" 1247776 1247792 1249550 1249555) (-787 "NCNTFRAC.spad" 1247418 1247432 1247766 1247771) (-786 "NCEP.spad" 1245584 1245598 1247408 1247413) (-785 "NASRING.spad" 1245180 1245188 1245574 1245579) (-784 "NASRING.spad" 1244774 1244784 1245170 1245175) (-783 "NARNG.spad" 1244126 1244134 1244764 1244769) (-782 "NARNG.spad" 1243476 1243486 1244116 1244121) (-781 "NAGSP.spad" 1242553 1242561 1243466 1243471) (-780 "NAGS.spad" 1232214 1232222 1242543 1242548) (-779 "NAGF07.spad" 1230645 1230653 1232204 1232209) (-778 "NAGF04.spad" 1225047 1225055 1230635 1230640) (-777 "NAGF02.spad" 1219116 1219124 1225037 1225042) (-776 "NAGF01.spad" 1214877 1214885 1219106 1219111) (-775 "NAGE04.spad" 1208577 1208585 1214867 1214872) (-774 "NAGE02.spad" 1199237 1199245 1208567 1208572) (-773 "NAGE01.spad" 1195239 1195247 1199227 1199232) (-772 "NAGD03.spad" 1193243 1193251 1195229 1195234) (-771 "NAGD02.spad" 1185990 1185998 1193233 1193238) (-770 "NAGD01.spad" 1180283 1180291 1185980 1185985) (-769 "NAGC06.spad" 1176158 1176166 1180273 1180278) (-768 "NAGC05.spad" 1174659 1174667 1176148 1176153) (-767 "NAGC02.spad" 1173926 1173934 1174649 1174654) (-766 "NAALG.spad" 1173467 1173477 1173894 1173921) (-765 "NAALG.spad" 1173028 1173040 1173457 1173462) (-764 "MULTSQFR.spad" 1169986 1170003 1173018 1173023) (-763 "MULTFACT.spad" 1169369 1169386 1169976 1169981) (-762 "MTSCAT.spad" 1167463 1167484 1169267 1169364) (-761 "MTHING.spad" 1167122 1167132 1167453 1167458) (-760 "MSYSCMD.spad" 1166556 1166564 1167112 1167117) (-759 "MSETAGG.spad" 1166401 1166411 1166524 1166551) (-758 "MSET.spad" 1164323 1164333 1166071 1166110) (-757 "MRING.spad" 1161300 1161312 1164031 1164098) (-756 "MRF2.spad" 1160870 1160884 1161290 1161295) (-755 "MRATFAC.spad" 1160416 1160433 1160860 1160865) (-754 "MPRFF.spad" 1158456 1158475 1160406 1160411) (-753 "MPOLY.spad" 1155927 1155942 1156286 1156413) (-752 "MPCPF.spad" 1155191 1155210 1155917 1155922) (-751 "MPC3.spad" 1155008 1155048 1155181 1155186) (-750 "MPC2.spad" 1154653 1154686 1154998 1155003) (-749 "MONOTOOL.spad" 1153004 1153021 1154643 1154648) (-748 "MONOID.spad" 1152323 1152331 1152994 1152999) (-747 "MONOID.spad" 1151640 1151650 1152313 1152318) (-746 "MONOGEN.spad" 1150388 1150401 1151500 1151635) (-745 "MONOGEN.spad" 1149158 1149173 1150272 1150277) (-744 "MONADWU.spad" 1147188 1147196 1149148 1149153) (-743 "MONADWU.spad" 1145216 1145226 1147178 1147183) (-742 "MONAD.spad" 1144376 1144384 1145206 1145211) (-741 "MONAD.spad" 1143534 1143544 1144366 1144371) (-740 "MOEBIUS.spad" 1142270 1142284 1143514 1143529) (-739 "MODULE.spad" 1142140 1142150 1142238 1142265) (-738 "MODULE.spad" 1142030 1142042 1142130 1142135) (-737 "MODRING.spad" 1141365 1141404 1142010 1142025) (-736 "MODOP.spad" 1140030 1140042 1141187 1141254) (-735 "MODMONOM.spad" 1139761 1139779 1140020 1140025) (-734 "MODMON.spad" 1136463 1136479 1137182 1137335) (-733 "MODFIELD.spad" 1135825 1135864 1136365 1136458) (-732 "MMLFORM.spad" 1134685 1134693 1135815 1135820) (-731 "MMAP.spad" 1134427 1134461 1134675 1134680) (-730 "MLO.spad" 1132886 1132896 1134383 1134422) (-729 "MLIFT.spad" 1131498 1131515 1132876 1132881) (-728 "MKUCFUNC.spad" 1131033 1131051 1131488 1131493) (-727 "MKRECORD.spad" 1130637 1130650 1131023 1131028) (-726 "MKFUNC.spad" 1130044 1130054 1130627 1130632) (-725 "MKFLCFN.spad" 1129012 1129022 1130034 1130039) (-724 "MKBCFUNC.spad" 1128507 1128525 1129002 1129007) (-723 "MINT.spad" 1127946 1127954 1128409 1128502) (-722 "MHROWRED.spad" 1126457 1126467 1127936 1127941) (-721 "MFLOAT.spad" 1124977 1124985 1126347 1126452) (-720 "MFINFACT.spad" 1124377 1124399 1124967 1124972) (-719 "MESH.spad" 1122159 1122167 1124367 1124372) (-718 "MDDFACT.spad" 1120370 1120380 1122149 1122154) (-717 "MDAGG.spad" 1119661 1119671 1120350 1120365) (-716 "MCMPLX.spad" 1115092 1115100 1115706 1115907) (-715 "MCDEN.spad" 1114302 1114314 1115082 1115087) (-714 "MCALCFN.spad" 1111424 1111450 1114292 1114297) (-713 "MAYBE.spad" 1110708 1110719 1111414 1111419) (-712 "MATSTOR.spad" 1108016 1108026 1110698 1110703) (-711 "MATRIX.spad" 1106603 1106613 1107087 1107114) (-710 "MATLIN.spad" 1103947 1103971 1106487 1106492) (-709 "MATCAT2.spad" 1103229 1103277 1103937 1103942) (-708 "MATCAT.spad" 1094751 1094773 1103197 1103224) (-707 "MATCAT.spad" 1086145 1086169 1094593 1094598) (-706 "MAPPKG3.spad" 1085060 1085074 1086135 1086140) (-705 "MAPPKG2.spad" 1084398 1084410 1085050 1085055) (-704 "MAPPKG1.spad" 1083226 1083236 1084388 1084393) (-703 "MAPPAST.spad" 1082541 1082549 1083216 1083221) (-702 "MAPHACK3.spad" 1082353 1082367 1082531 1082536) (-701 "MAPHACK2.spad" 1082122 1082134 1082343 1082348) (-700 "MAPHACK1.spad" 1081766 1081776 1082112 1082117) (-699 "MAGMA.spad" 1079556 1079573 1081756 1081761) (-698 "MACROAST.spad" 1079135 1079143 1079546 1079551) (-697 "M3D.spad" 1076738 1076748 1078396 1078401) (-696 "LZSTAGG.spad" 1073976 1073986 1076728 1076733) (-695 "LZSTAGG.spad" 1071212 1071224 1073966 1073971) (-694 "LWORD.spad" 1067917 1067934 1071202 1071207) (-693 "LSTAST.spad" 1067701 1067709 1067907 1067912) (-692 "LSQM.spad" 1065858 1065872 1066252 1066303) (-691 "LSPP.spad" 1065393 1065410 1065848 1065853) (-690 "LSMP1.spad" 1063211 1063225 1065383 1065388) (-689 "LSMP.spad" 1062061 1062089 1063201 1063206) (-688 "LSAGG.spad" 1061730 1061740 1062029 1062056) (-687 "LSAGG.spad" 1061419 1061431 1061720 1061725) (-686 "LPOLY.spad" 1060373 1060392 1061275 1061344) (-685 "LPEFRAC.spad" 1059644 1059654 1060363 1060368) (-684 "LOGIC.spad" 1059246 1059254 1059634 1059639) (-683 "LOGIC.spad" 1058846 1058856 1059236 1059241) (-682 "LODOOPS.spad" 1057776 1057788 1058836 1058841) (-681 "LODOF.spad" 1056822 1056839 1057733 1057738) (-680 "LODOCAT.spad" 1055488 1055498 1056778 1056817) (-679 "LODOCAT.spad" 1054152 1054164 1055444 1055449) (-678 "LODO2.spad" 1053425 1053437 1053832 1053871) (-677 "LODO1.spad" 1052825 1052835 1053105 1053144) (-676 "LODO.spad" 1052209 1052225 1052505 1052544) (-675 "LODEEF.spad" 1051011 1051029 1052199 1052204) (-674 "LO.spad" 1050412 1050426 1050945 1050972) (-673 "LNAGG.spad" 1046559 1046569 1050402 1050407) (-672 "LNAGG.spad" 1042670 1042682 1046515 1046520) (-671 "LMOPS.spad" 1039438 1039455 1042660 1042665) (-670 "LMODULE.spad" 1039206 1039216 1039428 1039433) (-669 "LMDICT.spad" 1038376 1038386 1038640 1038667) (-668 "LLINSET.spad" 1038083 1038093 1038366 1038371) (-667 "LITERAL.spad" 1037989 1038000 1038073 1038078) (-666 "LIST3.spad" 1037300 1037314 1037979 1037984) (-665 "LIST2MAP.spad" 1034203 1034215 1037290 1037295) (-664 "LIST2.spad" 1032905 1032917 1034193 1034198) (-663 "LIST.spad" 1030487 1030497 1031899 1031926) (-662 "LINSET.spad" 1030266 1030276 1030477 1030482) (-661 "LINFORM.spad" 1029729 1029741 1030234 1030261) (-660 "LINEXP.spad" 1028472 1028482 1029719 1029724) (-659 "LINELT.spad" 1027843 1027855 1028355 1028382) (-658 "LINDEP.spad" 1026652 1026664 1027755 1027760) (-657 "LINBASIS.spad" 1026288 1026303 1026642 1026647) (-656 "LIMITRF.spad" 1024216 1024226 1026278 1026283) (-655 "LIMITPS.spad" 1023119 1023132 1024206 1024211) (-654 "LIECAT.spad" 1022595 1022605 1023045 1023114) (-653 "LIECAT.spad" 1022099 1022111 1022551 1022556) (-652 "LIE.spad" 1020115 1020127 1021389 1021534) (-651 "LIB.spad" 1017866 1017874 1018312 1018327) (-650 "LGROBP.spad" 1015219 1015238 1017856 1017861) (-649 "LFCAT.spad" 1014278 1014286 1015209 1015214) (-648 "LF.spad" 1013233 1013249 1014268 1014273) (-647 "LEXTRIPK.spad" 1008736 1008751 1013223 1013228) (-646 "LEXP.spad" 1006739 1006766 1008716 1008731) (-645 "LETAST.spad" 1006438 1006446 1006729 1006734) (-644 "LEADCDET.spad" 1004836 1004853 1006428 1006433) (-643 "LAZM3PK.spad" 1003540 1003562 1004826 1004831) (-642 "LAUPOL.spad" 1002140 1002153 1003040 1003109) (-641 "LAPLACE.spad" 1001723 1001739 1002130 1002135) (-640 "LALG.spad" 1001499 1001509 1001703 1001718) (-639 "LALG.spad" 1001283 1001295 1001489 1001494) (-638 "LA.spad" 1000723 1000737 1001205 1001244) (-637 "KVTFROM.spad" 1000458 1000468 1000713 1000718) (-636 "KTVLOGIC.spad" 999970 999978 1000448 1000453) (-635 "KRCFROM.spad" 999708 999718 999960 999965) (-634 "KOVACIC.spad" 998431 998448 999698 999703) (-633 "KONVERT.spad" 998153 998163 998421 998426) (-632 "KOERCE.spad" 997890 997900 998143 998148) (-631 "KERNEL2.spad" 997593 997605 997880 997885) (-630 "KERNEL.spad" 996248 996258 997377 997382) (-629 "KDAGG.spad" 995357 995379 996228 996243) (-628 "KDAGG.spad" 994474 994498 995347 995352) (-627 "KAFILE.spad" 993328 993344 993563 993590) (-626 "JVMOP.spad" 993233 993241 993318 993323) (-625 "JVMMDACC.spad" 992271 992279 993223 993228) (-624 "JVMFDACC.spad" 991579 991587 992261 992266) (-623 "JVMCSTTG.spad" 990308 990316 991569 991574) (-622 "JVMCFACC.spad" 989738 989746 990298 990303) (-621 "JVMBCODE.spad" 989641 989649 989728 989733) (-620 "JORDAN.spad" 987470 987482 988931 989076) (-619 "JOINAST.spad" 987164 987172 987460 987465) (-618 "IXAGG.spad" 985297 985321 987154 987159) (-617 "IXAGG.spad" 983285 983311 985144 985149) (-616 "IVECTOR.spad" 981902 981917 982057 982084) (-615 "ITUPLE.spad" 981063 981073 981892 981897) (-614 "ITRIGMNP.spad" 979902 979921 981053 981058) (-613 "ITFUN3.spad" 979408 979422 979892 979897) (-612 "ITFUN2.spad" 979152 979164 979398 979403) (-611 "ITFORM.spad" 978507 978515 979142 979147) (-610 "ITAYLOR.spad" 976501 976516 978371 978468) (-609 "ISUPS.spad" 968938 968953 975475 975572) (-608 "ISUMP.spad" 968439 968455 968928 968933) (-607 "ISTRING.spad" 967366 967379 967447 967474) (-606 "ISAST.spad" 967085 967093 967356 967361) (-605 "IRURPK.spad" 965802 965821 967075 967080) (-604 "IRSN.spad" 963774 963782 965792 965797) (-603 "IRRF2F.spad" 962259 962269 963730 963735) (-602 "IRREDFFX.spad" 961860 961871 962249 962254) (-601 "IROOT.spad" 960199 960209 961850 961855) (-600 "IRFORM.spad" 959523 959531 960189 960194) (-599 "IR2F.spad" 958729 958745 959513 959518) (-598 "IR2.spad" 957757 957773 958719 958724) (-597 "IR.spad" 955558 955572 957612 957639) (-596 "IPRNTPK.spad" 955318 955326 955548 955553) (-595 "IPF.spad" 954883 954895 955123 955216) (-594 "IPADIC.spad" 954644 954670 954809 954878) (-593 "IP4ADDR.spad" 954201 954209 954634 954639) (-592 "IOMODE.spad" 953723 953731 954191 954196) (-591 "IOBFILE.spad" 953084 953092 953713 953718) (-590 "IOBCON.spad" 952949 952957 953074 953079) (-589 "INVLAPLA.spad" 952598 952614 952939 952944) (-588 "INTTR.spad" 945980 945997 952588 952593) (-587 "INTTOOLS.spad" 943735 943751 945554 945559) (-586 "INTSLPE.spad" 943055 943063 943725 943730) (-585 "INTRVL.spad" 942621 942631 942969 943050) (-584 "INTRF.spad" 941045 941059 942611 942616) (-583 "INTRET.spad" 940477 940487 941035 941040) (-582 "INTRAT.spad" 939204 939221 940467 940472) (-581 "INTPM.spad" 937589 937605 938847 938852) (-580 "INTPAF.spad" 935453 935471 937521 937526) (-579 "INTPACK.spad" 925827 925835 935443 935448) (-578 "INTHERTR.spad" 925101 925118 925817 925822) (-577 "INTHERAL.spad" 924771 924795 925091 925096) (-576 "INTHEORY.spad" 921210 921218 924761 924766) (-575 "INTG0.spad" 914943 914961 921142 921147) (-574 "INTFTBL.spad" 908972 908980 914933 914938) (-573 "INTFACT.spad" 908031 908041 908962 908967) (-572 "INTEF.spad" 906416 906432 908021 908026) (-571 "INTDOM.spad" 905039 905047 906342 906411) (-570 "INTDOM.spad" 903724 903734 905029 905034) (-569 "INTCAT.spad" 901983 901993 903638 903719) (-568 "INTBIT.spad" 901490 901498 901973 901978) (-567 "INTALG.spad" 900678 900705 901480 901485) (-566 "INTAF.spad" 900178 900194 900668 900673) (-565 "INTABL.spad" 898254 898285 898417 898444) (-564 "INT8.spad" 898134 898142 898244 898249) (-563 "INT64.spad" 898013 898021 898124 898129) (-562 "INT32.spad" 897892 897900 898003 898008) (-561 "INT16.spad" 897771 897779 897882 897887) (-560 "INT.spad" 897219 897227 897625 897766) (-559 "INS.spad" 894722 894730 897121 897214) (-558 "INS.spad" 892311 892321 894712 894717) (-557 "INPSIGN.spad" 891759 891772 892301 892306) (-556 "INPRODPF.spad" 890855 890874 891749 891754) (-555 "INPRODFF.spad" 889943 889967 890845 890850) (-554 "INNMFACT.spad" 888918 888935 889933 889938) (-553 "INMODGCD.spad" 888406 888436 888908 888913) (-552 "INFSP.spad" 886703 886725 888396 888401) (-551 "INFPROD0.spad" 885783 885802 886693 886698) (-550 "INFORM1.spad" 885408 885418 885773 885778) (-549 "INFORM.spad" 882607 882615 885398 885403) (-548 "INFINITY.spad" 882159 882167 882597 882602) (-547 "INETCLTS.spad" 882136 882144 882149 882154) (-546 "INEP.spad" 880674 880696 882126 882131) (-545 "INDE.spad" 880323 880340 880584 880589) (-544 "INCRMAPS.spad" 879744 879754 880313 880318) (-543 "INBFILE.spad" 878816 878824 879734 879739) (-542 "INBFF.spad" 874610 874621 878806 878811) (-541 "INBCON.spad" 872900 872908 874600 874605) (-540 "INBCON.spad" 871188 871198 872890 872895) (-539 "INAST.spad" 870849 870857 871178 871183) (-538 "IMPTAST.spad" 870557 870565 870839 870844) (-537 "IMATRIX.spad" 869385 869411 869897 869924) (-536 "IMATQF.spad" 868479 868523 869341 869346) (-535 "IMATLIN.spad" 867084 867108 868435 868440) (-534 "ILIST.spad" 865589 865604 866114 866141) (-533 "IIARRAY2.spad" 864860 864898 865079 865106) (-532 "IFF.spad" 864270 864286 864541 864634) (-531 "IFAST.spad" 863884 863892 864260 864265) (-530 "IFARRAY.spad" 861224 861239 862914 862941) (-529 "IFAMON.spad" 861086 861103 861180 861185) (-528 "IEVALAB.spad" 860491 860503 861076 861081) (-527 "IEVALAB.spad" 859894 859908 860481 860486) (-526 "IDPOAMS.spad" 859572 859584 859806 859811) (-525 "IDPOAM.spad" 859214 859226 859484 859489) (-524 "IDPO.spad" 858949 858961 859126 859131) (-523 "IDPC.spad" 857678 857690 858939 858944) (-522 "IDPAM.spad" 857345 857357 857590 857595) (-521 "IDPAG.spad" 857014 857026 857257 857262) (-520 "IDENT.spad" 856664 856672 857004 857009) (-519 "IDECOMP.spad" 853903 853921 856654 856659) (-518 "IDEAL.spad" 848852 848891 853838 853843) (-517 "ICDEN.spad" 848041 848057 848842 848847) (-516 "ICARD.spad" 847232 847240 848031 848036) (-515 "IBPTOOLS.spad" 845839 845856 847222 847227) (-514 "IBITS.spad" 845004 845017 845437 845464) (-513 "IBATOOL.spad" 841981 842000 844994 844999) (-512 "IBACHIN.spad" 840488 840503 841971 841976) (-511 "IARRAY2.spad" 839359 839385 839978 840005) (-510 "IARRAY1.spad" 838251 838266 838389 838416) (-509 "IAN.spad" 836474 836482 838067 838160) (-508 "IALGFACT.spad" 836077 836110 836464 836469) (-507 "HYPCAT.spad" 835501 835509 836067 836072) (-506 "HYPCAT.spad" 834923 834933 835491 835496) (-505 "HOSTNAME.spad" 834731 834739 834913 834918) (-504 "HOMOTOP.spad" 834474 834484 834721 834726) (-503 "HOAGG.spad" 831756 831766 834464 834469) (-502 "HOAGG.spad" 828777 828789 831487 831492) (-501 "HEXADEC.spad" 826782 826790 827147 827240) (-500 "HEUGCD.spad" 825817 825828 826772 826777) (-499 "HELLFDIV.spad" 825407 825431 825807 825812) (-498 "HEAP.spad" 824682 824692 824897 824924) (-497 "HEADAST.spad" 824215 824223 824672 824677) (-496 "HDP.spad" 812025 812041 812402 812501) (-495 "HDMP.spad" 809239 809254 809855 809982) (-494 "HB.spad" 807490 807498 809229 809234) (-493 "HASHTBL.spad" 805518 805549 805729 805756) (-492 "HASAST.spad" 805234 805242 805508 805513) (-491 "HACKPI.spad" 804725 804733 805136 805229) (-490 "GTSET.spad" 803628 803644 804335 804362) (-489 "GSTBL.spad" 801705 801740 801879 801894) (-488 "GSERIES.spad" 799018 799045 799837 799986) (-487 "GROUP.spad" 798291 798299 798998 799013) (-486 "GROUP.spad" 797572 797582 798281 798286) (-485 "GROEBSOL.spad" 796066 796087 797562 797567) (-484 "GRMOD.spad" 794637 794649 796056 796061) (-483 "GRMOD.spad" 793206 793220 794627 794632) (-482 "GRIMAGE.spad" 786095 786103 793196 793201) (-481 "GRDEF.spad" 784474 784482 786085 786090) (-480 "GRAY.spad" 782937 782945 784464 784469) (-479 "GRALG.spad" 782014 782026 782927 782932) (-478 "GRALG.spad" 781089 781103 782004 782009) (-477 "GPOLSET.spad" 780507 780530 780735 780762) (-476 "GOSPER.spad" 779776 779794 780497 780502) (-475 "GMODPOL.spad" 778924 778951 779744 779771) (-474 "GHENSEL.spad" 778007 778021 778914 778919) (-473 "GENUPS.spad" 774300 774313 777997 778002) (-472 "GENUFACT.spad" 773877 773887 774290 774295) (-471 "GENPGCD.spad" 773463 773480 773867 773872) (-470 "GENMFACT.spad" 772915 772934 773453 773458) (-469 "GENEEZ.spad" 770866 770879 772905 772910) (-468 "GDMP.spad" 767922 767939 768696 768823) (-467 "GCNAALG.spad" 761845 761872 767716 767783) (-466 "GCDDOM.spad" 761021 761029 761771 761840) (-465 "GCDDOM.spad" 760259 760269 761011 761016) (-464 "GBINTERN.spad" 756279 756317 760249 760254) (-463 "GBF.spad" 752046 752084 756269 756274) (-462 "GBEUCLID.spad" 749928 749966 752036 752041) (-461 "GB.spad" 747454 747492 749884 749889) (-460 "GAUSSFAC.spad" 746767 746775 747444 747449) (-459 "GALUTIL.spad" 745093 745103 746723 746728) (-458 "GALPOLYU.spad" 743547 743560 745083 745088) (-457 "GALFACTU.spad" 741720 741739 743537 743542) (-456 "GALFACT.spad" 731909 731920 741710 741715) (-455 "FVFUN.spad" 728932 728940 731899 731904) (-454 "FVC.spad" 727984 727992 728922 728927) (-453 "FUNDESC.spad" 727662 727670 727974 727979) (-452 "FUNCTION.spad" 727511 727523 727652 727657) (-451 "FTEM.spad" 726676 726684 727501 727506) (-450 "FT.spad" 724973 724981 726666 726671) (-449 "FSUPFACT.spad" 723873 723892 724909 724914) (-448 "FST.spad" 721959 721967 723863 723868) (-447 "FSRED.spad" 721439 721455 721949 721954) (-446 "FSPRMELT.spad" 720321 720337 721396 721401) (-445 "FSPECF.spad" 718412 718428 720311 720316) (-444 "FSINT.spad" 718072 718088 718402 718407) (-443 "FSERIES.spad" 717263 717275 717892 717991) (-442 "FSCINT.spad" 716580 716596 717253 717258) (-441 "FSAGG2.spad" 715323 715339 716570 716575) (-440 "FSAGG.spad" 714440 714450 715279 715318) (-439 "FSAGG.spad" 713519 713531 714360 714365) (-438 "FS2UPS.spad" 708010 708044 713509 713514) (-437 "FS2EXPXP.spad" 707135 707158 708000 708005) (-436 "FS2.spad" 706782 706798 707125 707130) (-435 "FS.spad" 701050 701060 706557 706777) (-434 "FS.spad" 695096 695108 700605 700610) (-433 "FRUTIL.spad" 694050 694060 695086 695091) (-432 "FRNAALG.spad" 689319 689329 693992 694045) (-431 "FRNAALG.spad" 684600 684612 689275 689280) (-430 "FRNAAF2.spad" 684056 684074 684590 684595) (-429 "FRMOD.spad" 683466 683496 683987 683992) (-428 "FRIDEAL2.spad" 683070 683102 683456 683461) (-427 "FRIDEAL.spad" 682295 682316 683050 683065) (-426 "FRETRCT.spad" 681806 681816 682285 682290) (-425 "FRETRCT.spad" 681183 681195 681664 681669) (-424 "FRAMALG.spad" 679531 679544 681139 681178) (-423 "FRAMALG.spad" 677911 677926 679521 679526) (-422 "FRAC2.spad" 677516 677528 677901 677906) (-421 "FRAC.spad" 674522 674532 674925 675098) (-420 "FR2.spad" 673858 673870 674512 674517) (-419 "FR.spad" 667481 667491 672789 672858) (-418 "FPS.spad" 664296 664304 667371 667476) (-417 "FPS.spad" 661139 661149 664216 664221) (-416 "FPC.spad" 660185 660193 661041 661134) (-415 "FPC.spad" 659317 659327 660175 660180) (-414 "FPATMAB.spad" 659079 659089 659307 659312) (-413 "FPARFRAC.spad" 657929 657946 659069 659074) (-412 "FORTRAN.spad" 656435 656478 657919 657924) (-411 "FORTFN.spad" 653605 653613 656425 656430) (-410 "FORTCAT.spad" 653289 653297 653595 653600) (-409 "FORT.spad" 652238 652246 653279 653284) (-408 "FORMULA1.spad" 651717 651727 652228 652233) (-407 "FORMULA.spad" 649191 649199 651707 651712) (-406 "FORDER.spad" 648882 648906 649181 649186) (-405 "FOP.spad" 648083 648091 648872 648877) (-404 "FNLA.spad" 647507 647529 648051 648078) (-403 "FNCAT.spad" 646102 646110 647497 647502) (-402 "FNAME.spad" 645994 646002 646092 646097) (-401 "FMTC.spad" 645792 645800 645920 645989) (-400 "FMONOID.spad" 645457 645467 645748 645753) (-399 "FMONCAT.spad" 642610 642620 645447 645452) (-398 "FMFUN.spad" 639640 639648 642600 642605) (-397 "FMCAT.spad" 637308 637326 639608 639635) (-396 "FMC.spad" 636360 636368 637298 637303) (-395 "FM1.spad" 635717 635729 636294 636321) (-394 "FM.spad" 635332 635344 635571 635598) (-393 "FLOATRP.spad" 633067 633081 635322 635327) (-392 "FLOATCP.spad" 630498 630512 633057 633062) (-391 "FLOAT.spad" 623812 623820 630364 630493) (-390 "FLINEXP.spad" 623534 623544 623802 623807) (-389 "FLINEXP.spad" 623200 623212 623470 623475) (-388 "FLASORT.spad" 622526 622538 623190 623195) (-387 "FLALG.spad" 620172 620191 622452 622521) (-386 "FLAGG2.spad" 618897 618913 620162 620167) (-385 "FLAGG.spad" 615939 615949 618877 618892) (-384 "FLAGG.spad" 612882 612894 615822 615827) (-383 "FINRALG.spad" 610943 610956 612838 612877) (-382 "FINRALG.spad" 608930 608945 610827 610832) (-381 "FINITE.spad" 608082 608090 608920 608925) (-380 "FINAALG.spad" 597203 597213 608024 608077) (-379 "FINAALG.spad" 586336 586348 597159 597164) (-378 "FILECAT.spad" 584862 584879 586326 586331) (-377 "FILE.spad" 584445 584455 584852 584857) (-376 "FIELD.spad" 583851 583859 584347 584440) (-375 "FIELD.spad" 583343 583353 583841 583846) (-374 "FGROUP.spad" 581990 582000 583323 583338) (-373 "FGLMICPK.spad" 580777 580792 581980 581985) (-372 "FFX.spad" 580152 580167 580493 580586) (-371 "FFSLPE.spad" 579655 579676 580142 580147) (-370 "FFPOLY2.spad" 578715 578732 579645 579650) (-369 "FFPOLY.spad" 569977 569988 578705 578710) (-368 "FFP.spad" 569374 569394 569693 569786) (-367 "FFNBX.spad" 567886 567906 569090 569183) (-366 "FFNBP.spad" 566399 566416 567602 567695) (-365 "FFNB.spad" 564864 564885 566080 566173) (-364 "FFINTBAS.spad" 562378 562397 564854 564859) (-363 "FFIELDC.spad" 559955 559963 562280 562373) (-362 "FFIELDC.spad" 557618 557628 559945 559950) (-361 "FFHOM.spad" 556366 556383 557608 557613) (-360 "FFF.spad" 553801 553812 556356 556361) (-359 "FFCGX.spad" 552648 552668 553517 553610) (-358 "FFCGP.spad" 551537 551557 552364 552457) (-357 "FFCG.spad" 550329 550350 551218 551311) (-356 "FFCAT2.spad" 550076 550116 550319 550324) (-355 "FFCAT.spad" 543249 543271 549915 550071) (-354 "FFCAT.spad" 536501 536525 543169 543174) (-353 "FF.spad" 535949 535965 536182 536275) (-352 "FEXPR.spad" 527666 527712 535705 535744) (-351 "FEVALAB.spad" 527374 527384 527656 527661) (-350 "FEVALAB.spad" 526867 526879 527151 527156) (-349 "FDIVCAT.spad" 524931 524955 526857 526862) (-348 "FDIVCAT.spad" 522993 523019 524921 524926) (-347 "FDIV2.spad" 522649 522689 522983 522988) (-346 "FDIV.spad" 522091 522115 522639 522644) (-345 "FCTRDATA.spad" 521099 521107 522081 522086) (-344 "FCPAK1.spad" 519666 519674 521089 521094) (-343 "FCOMP.spad" 519045 519055 519656 519661) (-342 "FC.spad" 509052 509060 519035 519040) (-341 "FAXF.spad" 502023 502037 508954 509047) (-340 "FAXF.spad" 495046 495062 501979 501984) (-339 "FARRAY.spad" 493043 493053 494076 494103) (-338 "FAMR.spad" 491179 491191 492941 493038) (-337 "FAMR.spad" 489299 489313 491063 491068) (-336 "FAMONOID.spad" 488967 488977 489253 489258) (-335 "FAMONC.spad" 487263 487275 488957 488962) (-334 "FAGROUP.spad" 486887 486897 487159 487186) (-333 "FACUTIL.spad" 485091 485108 486877 486882) (-332 "FACTFUNC.spad" 484285 484295 485081 485086) (-331 "EXPUPXS.spad" 481118 481141 482417 482566) (-330 "EXPRTUBE.spad" 478406 478414 481108 481113) (-329 "EXPRODE.spad" 475566 475582 478396 478401) (-328 "EXPR2UPS.spad" 471688 471701 475556 475561) (-327 "EXPR2.spad" 471393 471405 471678 471683) (-326 "EXPR.spad" 466568 466578 467282 467577) (-325 "EXPEXPAN.spad" 463369 463394 464001 464094) (-324 "EXITAST.spad" 463105 463113 463359 463364) (-323 "EXIT.spad" 462776 462784 463095 463100) (-322 "EVALCYC.spad" 462236 462250 462766 462771) (-321 "EVALAB.spad" 461808 461818 462226 462231) (-320 "EVALAB.spad" 461378 461390 461798 461803) (-319 "EUCDOM.spad" 458952 458960 461304 461373) (-318 "EUCDOM.spad" 456588 456598 458942 458947) (-317 "ESTOOLS2.spad" 456191 456205 456578 456583) (-316 "ESTOOLS1.spad" 455876 455887 456181 456186) (-315 "ESTOOLS.spad" 447722 447730 455866 455871) (-314 "ESCONT1.spad" 447471 447483 447712 447717) (-313 "ESCONT.spad" 444264 444272 447461 447466) (-312 "ES2.spad" 443769 443785 444254 444259) (-311 "ES1.spad" 443339 443355 443759 443764) (-310 "ES.spad" 436154 436162 443329 443334) (-309 "ES.spad" 428875 428885 436052 436057) (-308 "ERROR.spad" 426202 426210 428865 428870) (-307 "EQTBL.spad" 424232 424254 424441 424468) (-306 "EQ2.spad" 423950 423962 424222 424227) (-305 "EQ.spad" 418755 418765 421542 421654) (-304 "EP.spad" 415081 415091 418745 418750) (-303 "ENV.spad" 413759 413767 415071 415076) (-302 "ENTIRER.spad" 413427 413435 413703 413754) (-301 "EMR.spad" 412715 412756 413353 413422) (-300 "ELTAGG.spad" 410969 410988 412705 412710) (-299 "ELTAGG.spad" 409187 409208 410925 410930) (-298 "ELTAB.spad" 408662 408675 409177 409182) (-297 "ELFUTS.spad" 408049 408068 408652 408657) (-296 "ELEMFUN.spad" 407738 407746 408039 408044) (-295 "ELEMFUN.spad" 407425 407435 407728 407733) (-294 "ELAGG.spad" 405396 405406 407405 407420) (-293 "ELAGG.spad" 403304 403316 405315 405320) (-292 "ELABOR.spad" 402650 402658 403294 403299) (-291 "ELABEXPR.spad" 401582 401590 402640 402645) (-290 "EFUPXS.spad" 398358 398388 401538 401543) (-289 "EFULS.spad" 395194 395217 398314 398319) (-288 "EFSTRUC.spad" 393209 393225 395184 395189) (-287 "EF.spad" 387985 388001 393199 393204) (-286 "EAB.spad" 386261 386269 387975 387980) (-285 "E04UCFA.spad" 385797 385805 386251 386256) (-284 "E04NAFA.spad" 385374 385382 385787 385792) (-283 "E04MBFA.spad" 384954 384962 385364 385369) (-282 "E04JAFA.spad" 384490 384498 384944 384949) (-281 "E04GCFA.spad" 384026 384034 384480 384485) (-280 "E04FDFA.spad" 383562 383570 384016 384021) (-279 "E04DGFA.spad" 383098 383106 383552 383557) (-278 "E04AGNT.spad" 378948 378956 383088 383093) (-277 "DVARCAT.spad" 375838 375848 378938 378943) (-276 "DVARCAT.spad" 372726 372738 375828 375833) (-275 "DSMP.spad" 370100 370114 370405 370532) (-274 "DSEXT.spad" 369402 369412 370090 370095) (-273 "DSEXT.spad" 368611 368623 369301 369306) (-272 "DROPT1.spad" 368276 368286 368601 368606) (-271 "DROPT0.spad" 363133 363141 368266 368271) (-270 "DROPT.spad" 357092 357100 363123 363128) (-269 "DRAWPT.spad" 355265 355273 357082 357087) (-268 "DRAWHACK.spad" 354573 354583 355255 355260) (-267 "DRAWCX.spad" 352043 352051 354563 354568) (-266 "DRAWCURV.spad" 351590 351605 352033 352038) (-265 "DRAWCFUN.spad" 341122 341130 351580 351585) (-264 "DRAW.spad" 333998 334011 341112 341117) (-263 "DQAGG.spad" 332176 332186 333966 333993) (-262 "DPOLCAT.spad" 327525 327541 332044 332171) (-261 "DPOLCAT.spad" 322960 322978 327481 327486) (-260 "DPMO.spad" 314720 314736 314858 315071) (-259 "DPMM.spad" 306493 306511 306618 306831) (-258 "DOMTMPLT.spad" 306264 306272 306483 306488) (-257 "DOMCTOR.spad" 306019 306027 306254 306259) (-256 "DOMAIN.spad" 305106 305114 306009 306014) (-255 "DMP.spad" 302366 302381 302936 303063) (-254 "DMEXT.spad" 302233 302243 302334 302361) (-253 "DLP.spad" 301585 301595 302223 302228) (-252 "DLIST.spad" 300011 300021 300615 300642) (-251 "DLAGG.spad" 298428 298438 300001 300006) (-250 "DIVRING.spad" 297970 297978 298372 298423) (-249 "DIVRING.spad" 297556 297566 297960 297965) (-248 "DISPLAY.spad" 295746 295754 297546 297551) (-247 "DIRPROD2.spad" 294564 294582 295736 295741) (-246 "DIRPROD.spad" 282111 282127 282751 282850) (-245 "DIRPCAT.spad" 281304 281320 282007 282106) (-244 "DIRPCAT.spad" 280124 280142 280829 280834) (-243 "DIOSP.spad" 278949 278957 280114 280119) (-242 "DIOPS.spad" 277945 277955 278929 278944) (-241 "DIOPS.spad" 276915 276927 277901 277906) (-240 "DIFRING.spad" 276753 276761 276895 276910) (-239 "DIFFSPC.spad" 276332 276340 276743 276748) (-238 "DIFFSPC.spad" 275909 275919 276322 276327) (-237 "DIFFMOD.spad" 275398 275408 275877 275904) (-236 "DIFFDOM.spad" 274563 274574 275388 275393) (-235 "DIFFDOM.spad" 273726 273739 274553 274558) (-234 "DIFEXT.spad" 273545 273555 273706 273721) (-233 "DIAGG.spad" 273175 273185 273525 273540) (-232 "DIAGG.spad" 272813 272825 273165 273170) (-231 "DHMATRIX.spad" 271008 271018 272153 272180) (-230 "DFSFUN.spad" 264648 264656 270998 271003) (-229 "DFLOAT.spad" 261379 261387 264538 264643) (-228 "DFINTTLS.spad" 259610 259626 261369 261374) (-227 "DERHAM.spad" 257524 257556 259590 259605) (-226 "DEQUEUE.spad" 256731 256741 257014 257041) (-225 "DEGRED.spad" 256348 256362 256721 256726) (-224 "DEFINTRF.spad" 253885 253895 256338 256343) (-223 "DEFINTEF.spad" 252395 252411 253875 253880) (-222 "DEFAST.spad" 251763 251771 252385 252390) (-221 "DECIMAL.spad" 249772 249780 250133 250226) (-220 "DDFACT.spad" 247585 247602 249762 249767) (-219 "DBLRESP.spad" 247185 247209 247575 247580) (-218 "DBASIS.spad" 246811 246826 247175 247180) (-217 "DBASE.spad" 245475 245485 246801 246806) (-216 "DATAARY.spad" 244937 244950 245465 245470) (-215 "D03FAFA.spad" 244765 244773 244927 244932) (-214 "D03EEFA.spad" 244585 244593 244755 244760) (-213 "D03AGNT.spad" 243671 243679 244575 244580) (-212 "D02EJFA.spad" 243133 243141 243661 243666) (-211 "D02CJFA.spad" 242611 242619 243123 243128) (-210 "D02BHFA.spad" 242101 242109 242601 242606) (-209 "D02BBFA.spad" 241591 241599 242091 242096) (-208 "D02AGNT.spad" 236405 236413 241581 241586) (-207 "D01WGTS.spad" 234724 234732 236395 236400) (-206 "D01TRNS.spad" 234701 234709 234714 234719) (-205 "D01GBFA.spad" 234223 234231 234691 234696) (-204 "D01FCFA.spad" 233745 233753 234213 234218) (-203 "D01ASFA.spad" 233213 233221 233735 233740) (-202 "D01AQFA.spad" 232659 232667 233203 233208) (-201 "D01APFA.spad" 232083 232091 232649 232654) (-200 "D01ANFA.spad" 231577 231585 232073 232078) (-199 "D01AMFA.spad" 231087 231095 231567 231572) (-198 "D01ALFA.spad" 230627 230635 231077 231082) (-197 "D01AKFA.spad" 230153 230161 230617 230622) (-196 "D01AJFA.spad" 229676 229684 230143 230148) (-195 "D01AGNT.spad" 225743 225751 229666 229671) (-194 "CYCLOTOM.spad" 225249 225257 225733 225738) (-193 "CYCLES.spad" 222041 222049 225239 225244) (-192 "CVMP.spad" 221458 221468 222031 222036) (-191 "CTRIGMNP.spad" 219958 219974 221448 221453) (-190 "CTORKIND.spad" 219561 219569 219948 219953) (-189 "CTORCAT.spad" 218810 218818 219551 219556) (-188 "CTORCAT.spad" 218057 218067 218800 218805) (-187 "CTORCALL.spad" 217646 217656 218047 218052) (-186 "CTOR.spad" 217337 217345 217636 217641) (-185 "CSTTOOLS.spad" 216582 216595 217327 217332) (-184 "CRFP.spad" 210306 210319 216572 216577) (-183 "CRCEAST.spad" 210026 210034 210296 210301) (-182 "CRAPACK.spad" 209077 209087 210016 210021) (-181 "CPMATCH.spad" 208581 208596 209002 209007) (-180 "CPIMA.spad" 208286 208305 208571 208576) (-179 "COORDSYS.spad" 203295 203305 208276 208281) (-178 "CONTOUR.spad" 202706 202714 203285 203290) (-177 "CONTFRAC.spad" 198456 198466 202608 202701) (-176 "CONDUIT.spad" 198214 198222 198446 198451) (-175 "COMRING.spad" 197888 197896 198152 198209) (-174 "COMPPROP.spad" 197406 197414 197878 197883) (-173 "COMPLPAT.spad" 197173 197188 197396 197401) (-172 "COMPLEX2.spad" 196888 196900 197163 197168) (-171 "COMPLEX.spad" 192265 192275 192509 192770) (-170 "COMPILER.spad" 191814 191822 192255 192260) (-169 "COMPFACT.spad" 191416 191430 191804 191809) (-168 "COMPCAT.spad" 189488 189498 191150 191411) (-167 "COMPCAT.spad" 187288 187300 188952 188957) (-166 "COMMUPC.spad" 187036 187054 187278 187283) (-165 "COMMONOP.spad" 186569 186577 187026 187031) (-164 "COMMAAST.spad" 186332 186340 186559 186564) (-163 "COMM.spad" 186143 186151 186322 186327) (-162 "COMBOPC.spad" 185058 185066 186133 186138) (-161 "COMBINAT.spad" 183825 183835 185048 185053) (-160 "COMBF.spad" 181207 181223 183815 183820) (-159 "COLOR.spad" 180044 180052 181197 181202) (-158 "COLONAST.spad" 179710 179718 180034 180039) (-157 "CMPLXRT.spad" 179421 179438 179700 179705) (-156 "CLLCTAST.spad" 179083 179091 179411 179416) (-155 "CLIP.spad" 175191 175199 179073 179078) (-154 "CLIF.spad" 173846 173862 175147 175186) (-153 "CLAGG.spad" 170351 170361 173836 173841) (-152 "CLAGG.spad" 166727 166739 170214 170219) (-151 "CINTSLPE.spad" 166058 166071 166717 166722) (-150 "CHVAR.spad" 164196 164218 166048 166053) (-149 "CHARZ.spad" 164111 164119 164176 164191) (-148 "CHARPOL.spad" 163621 163631 164101 164106) (-147 "CHARNZ.spad" 163374 163382 163601 163616) (-146 "CHAR.spad" 160742 160750 163364 163369) (-145 "CFCAT.spad" 160070 160078 160732 160737) (-144 "CDEN.spad" 159266 159280 160060 160065) (-143 "CCLASS.spad" 157377 157385 158639 158678) (-142 "CATEGORY.spad" 156419 156427 157367 157372) (-141 "CATCTOR.spad" 156310 156318 156409 156414) (-140 "CATAST.spad" 155928 155936 156300 156305) (-139 "CASEAST.spad" 155642 155650 155918 155923) (-138 "CARTEN2.spad" 155032 155059 155632 155637) (-137 "CARTEN.spad" 150399 150423 155022 155027) (-136 "CARD.spad" 147694 147702 150373 150394) (-135 "CAPSLAST.spad" 147468 147476 147684 147689) (-134 "CACHSET.spad" 147092 147100 147458 147463) (-133 "CABMON.spad" 146647 146655 147082 147087) (-132 "BYTEORD.spad" 146322 146330 146637 146642) (-131 "BYTEBUF.spad" 144020 144028 145330 145357) (-130 "BYTE.spad" 143447 143455 144010 144015) (-129 "BTREE.spad" 142403 142413 142937 142964) (-128 "BTOURN.spad" 141291 141301 141893 141920) (-127 "BTCAT.spad" 140683 140693 141259 141286) (-126 "BTCAT.spad" 140095 140107 140673 140678) (-125 "BTAGG.spad" 139561 139569 140063 140090) (-124 "BTAGG.spad" 139047 139057 139551 139556) (-123 "BSTREE.spad" 137671 137681 138537 138564) (-122 "BRILL.spad" 135868 135879 137661 137666) (-121 "BRAGG.spad" 134808 134818 135858 135863) (-120 "BRAGG.spad" 133712 133724 134764 134769) (-119 "BPADICRT.spad" 131586 131598 131841 131934) (-118 "BPADIC.spad" 131250 131262 131512 131581) (-117 "BOUNDZRO.spad" 130906 130923 131240 131245) (-116 "BOP1.spad" 128372 128382 130896 130901) (-115 "BOP.spad" 123554 123562 128362 128367) (-114 "BOOLEAN.spad" 122992 123000 123544 123549) (-113 "BOOLE.spad" 122642 122650 122982 122987) (-112 "BOOLE.spad" 122290 122300 122632 122637) (-111 "BMODULE.spad" 122002 122014 122258 122285) (-110 "BITS.spad" 121385 121393 121600 121627) (-109 "BINDING.spad" 120798 120806 121375 121380) (-108 "BINARY.spad" 118812 118820 119168 119261) (-107 "BGAGG.spad" 118017 118027 118792 118807) (-106 "BGAGG.spad" 117230 117242 118007 118012) (-105 "BFUNCT.spad" 116794 116802 117210 117225) (-104 "BEZOUT.spad" 115934 115961 116744 116749) (-103 "BBTREE.spad" 112662 112672 115424 115451) (-102 "BASTYPE.spad" 112158 112166 112652 112657) (-101 "BASTYPE.spad" 111652 111662 112148 112153) (-100 "BALFACT.spad" 111111 111124 111642 111647) (-99 "AUTOMOR.spad" 110562 110571 111091 111106) (-98 "ATTREG.spad" 107285 107292 110314 110557) (-97 "ATTRBUT.spad" 103308 103315 107265 107280) (-96 "ATTRAST.spad" 103025 103032 103298 103303) (-95 "ATRIG.spad" 102495 102502 103015 103020) (-94 "ATRIG.spad" 101963 101972 102485 102490) (-93 "ASTCAT.spad" 101867 101874 101953 101958) (-92 "ASTCAT.spad" 101769 101778 101857 101862) (-91 "ASTACK.spad" 100991 101000 101259 101286) (-90 "ASSOCEQ.spad" 99817 99828 100947 100952) (-89 "ASP9.spad" 98898 98911 99807 99812) (-88 "ASP80.spad" 98220 98233 98888 98893) (-87 "ASP8.spad" 97263 97276 98210 98215) (-86 "ASP78.spad" 96714 96727 97253 97258) (-85 "ASP77.spad" 96083 96096 96704 96709) (-84 "ASP74.spad" 95175 95188 96073 96078) (-83 "ASP73.spad" 94446 94459 95165 95170) (-82 "ASP7.spad" 93606 93619 94436 94441) (-81 "ASP6.spad" 92473 92486 93596 93601) (-80 "ASP55.spad" 90982 90995 92463 92468) (-79 "ASP50.spad" 88799 88812 90972 90977) (-78 "ASP49.spad" 87798 87811 88789 88794) (-77 "ASP42.spad" 86205 86244 87788 87793) (-76 "ASP41.spad" 84784 84823 86195 86200) (-75 "ASP4.spad" 84079 84092 84774 84779) (-74 "ASP35.spad" 83067 83080 84069 84074) (-73 "ASP34.spad" 82368 82381 83057 83062) (-72 "ASP33.spad" 81928 81941 82358 82363) (-71 "ASP31.spad" 81068 81081 81918 81923) (-70 "ASP30.spad" 79960 79973 81058 81063) (-69 "ASP29.spad" 79426 79439 79950 79955) (-68 "ASP28.spad" 70699 70712 79416 79421) (-67 "ASP27.spad" 69596 69609 70689 70694) (-66 "ASP24.spad" 68683 68696 69586 69591) (-65 "ASP20.spad" 68147 68160 68673 68678) (-64 "ASP19.spad" 62833 62846 68137 68142) (-63 "ASP12.spad" 62247 62260 62823 62828) (-62 "ASP10.spad" 61518 61531 62237 62242) (-61 "ASP1.spad" 60899 60912 61508 61513) (-60 "ARRAY2.spad" 60142 60151 60389 60416) (-59 "ARRAY12.spad" 58855 58866 60132 60137) (-58 "ARRAY1.spad" 57539 57548 57885 57912) (-57 "ARR2CAT.spad" 53313 53334 57507 57534) (-56 "ARR2CAT.spad" 49107 49130 53303 53308) (-55 "ARITY.spad" 48479 48486 49097 49102) (-54 "APPRULE.spad" 47739 47761 48469 48474) (-53 "APPLYORE.spad" 47358 47371 47729 47734) (-52 "ANY1.spad" 46429 46438 47348 47353) (-51 "ANY.spad" 45288 45295 46419 46424) (-50 "ANTISYM.spad" 43733 43749 45268 45283) (-49 "ANON.spad" 43426 43433 43723 43728) (-48 "AN.spad" 41735 41742 43242 43335) (-47 "AMR.spad" 39920 39931 41633 41730) (-46 "AMR.spad" 37942 37955 39657 39662) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2287530 2287535 2287540 2287545) (-2 NIL 2287510 2287515 2287520 2287525) (-1 NIL 2287490 2287495 2287500 2287505) (0 NIL 2287470 2287475 2287480 2287485) (-1327 "ZMOD.spad" 2287279 2287292 2287408 2287465) (-1326 "ZLINDEP.spad" 2286377 2286388 2287269 2287274) (-1325 "ZDSOLVE.spad" 2276337 2276359 2286367 2286372) (-1324 "YSTREAM.spad" 2275832 2275843 2276327 2276332) (-1323 "YDIAGRAM.spad" 2275466 2275475 2275822 2275827) (-1322 "XRPOLY.spad" 2274686 2274706 2275322 2275391) (-1321 "XPR.spad" 2272481 2272494 2274404 2274503) (-1320 "XPOLYC.spad" 2271800 2271816 2272407 2272476) (-1319 "XPOLY.spad" 2271355 2271366 2271656 2271725) (-1318 "XPBWPOLY.spad" 2269800 2269820 2271135 2271204) (-1317 "XFALG.spad" 2266848 2266864 2269726 2269795) (-1316 "XF.spad" 2265311 2265326 2266750 2266843) (-1315 "XF.spad" 2263754 2263771 2265195 2265200) (-1314 "XEXPPKG.spad" 2263013 2263039 2263744 2263749) (-1313 "XDPOLY.spad" 2262627 2262643 2262869 2262938) (-1312 "XALG.spad" 2262295 2262306 2262583 2262622) (-1311 "WUTSET.spad" 2258274 2258291 2261905 2261932) (-1310 "WP.spad" 2257481 2257525 2258132 2258199) (-1309 "WHILEAST.spad" 2257279 2257288 2257471 2257476) (-1308 "WHEREAST.spad" 2256950 2256959 2257269 2257274) (-1307 "WFFINTBS.spad" 2254613 2254635 2256940 2256945) (-1306 "WEIER.spad" 2252835 2252846 2254603 2254608) (-1305 "VSPACE.spad" 2252508 2252519 2252803 2252830) (-1304 "VSPACE.spad" 2252201 2252214 2252498 2252503) (-1303 "VOID.spad" 2251878 2251887 2252191 2252196) (-1302 "VIEWDEF.spad" 2247079 2247088 2251868 2251873) (-1301 "VIEW3D.spad" 2231040 2231049 2247069 2247074) (-1300 "VIEW2D.spad" 2218939 2218948 2231030 2231035) (-1299 "VIEW.spad" 2216659 2216668 2218929 2218934) (-1298 "VECTOR2.spad" 2215298 2215311 2216649 2216654) (-1297 "VECTOR.spad" 2213819 2213830 2214070 2214097) (-1296 "VECTCAT.spad" 2211731 2211742 2213787 2213814) (-1295 "VECTCAT.spad" 2209450 2209463 2211508 2211513) (-1294 "VARIABLE.spad" 2209230 2209245 2209440 2209445) (-1293 "UTYPE.spad" 2208874 2208883 2209220 2209225) (-1292 "UTSODETL.spad" 2208169 2208193 2208830 2208835) (-1291 "UTSODE.spad" 2206385 2206405 2208159 2208164) (-1290 "UTSCAT.spad" 2203864 2203880 2206283 2206380) (-1289 "UTSCAT.spad" 2200987 2201005 2203408 2203413) (-1288 "UTS2.spad" 2200582 2200617 2200977 2200982) (-1287 "UTS.spad" 2195529 2195557 2199049 2199146) (-1286 "URAGG.spad" 2190250 2190261 2195519 2195524) (-1285 "URAGG.spad" 2184935 2184948 2190206 2190211) (-1284 "UPXSSING.spad" 2182580 2182606 2184016 2184149) (-1283 "UPXSCONS.spad" 2180339 2180359 2180712 2180861) (-1282 "UPXSCCA.spad" 2178910 2178930 2180185 2180334) (-1281 "UPXSCCA.spad" 2177623 2177645 2178900 2178905) (-1280 "UPXSCAT.spad" 2176212 2176228 2177469 2177618) (-1279 "UPXS2.spad" 2175755 2175808 2176202 2176207) (-1278 "UPXS.spad" 2173051 2173079 2173887 2174036) (-1277 "UPSQFREE.spad" 2171465 2171479 2173041 2173046) (-1276 "UPSCAT.spad" 2169260 2169284 2171363 2171460) (-1275 "UPSCAT.spad" 2166761 2166787 2168866 2168871) (-1274 "UPOLYC2.spad" 2166232 2166251 2166751 2166756) (-1273 "UPOLYC.spad" 2161312 2161323 2166074 2166227) (-1272 "UPOLYC.spad" 2156284 2156297 2161048 2161053) (-1271 "UPMP.spad" 2155216 2155229 2156274 2156279) (-1270 "UPDIVP.spad" 2154781 2154795 2155206 2155211) (-1269 "UPDECOMP.spad" 2153042 2153056 2154771 2154776) (-1268 "UPCDEN.spad" 2152259 2152275 2153032 2153037) (-1267 "UP2.spad" 2151623 2151644 2152249 2152254) (-1266 "UP.spad" 2148729 2148744 2149116 2149269) (-1265 "UNISEG2.spad" 2148226 2148239 2148685 2148690) (-1264 "UNISEG.spad" 2147579 2147590 2148145 2148150) (-1263 "UNIFACT.spad" 2146682 2146694 2147569 2147574) (-1262 "ULSCONS.spad" 2137816 2137836 2138186 2138335) (-1261 "ULSCCAT.spad" 2135553 2135573 2137662 2137811) (-1260 "ULSCCAT.spad" 2133398 2133420 2135509 2135514) (-1259 "ULSCAT.spad" 2131638 2131654 2133244 2133393) (-1258 "ULS2.spad" 2131152 2131205 2131628 2131633) (-1257 "ULS.spad" 2120936 2120964 2121881 2122310) (-1256 "UINT8.spad" 2120813 2120822 2120926 2120931) (-1255 "UINT64.spad" 2120689 2120698 2120803 2120808) (-1254 "UINT32.spad" 2120565 2120574 2120679 2120684) (-1253 "UINT16.spad" 2120441 2120450 2120555 2120560) (-1252 "UFD.spad" 2119506 2119515 2120367 2120436) (-1251 "UFD.spad" 2118633 2118644 2119496 2119501) (-1250 "UDVO.spad" 2117514 2117523 2118623 2118628) (-1249 "UDPO.spad" 2115095 2115106 2117470 2117475) (-1248 "TYPEAST.spad" 2115014 2115023 2115085 2115090) (-1247 "TYPE.spad" 2114946 2114955 2115004 2115009) (-1246 "TWOFACT.spad" 2113598 2113613 2114936 2114941) (-1245 "TUPLE.spad" 2113092 2113103 2113497 2113502) (-1244 "TUBETOOL.spad" 2109959 2109968 2113082 2113087) (-1243 "TUBE.spad" 2108606 2108623 2109949 2109954) (-1242 "TSETCAT.spad" 2096677 2096694 2108574 2108601) (-1241 "TSETCAT.spad" 2084734 2084753 2096633 2096638) (-1240 "TS.spad" 2083333 2083349 2084299 2084396) (-1239 "TRMANIP.spad" 2077715 2077732 2083039 2083044) (-1238 "TRIMAT.spad" 2076678 2076703 2077705 2077710) (-1237 "TRIGMNIP.spad" 2075205 2075222 2076668 2076673) (-1236 "TRIGCAT.spad" 2074717 2074726 2075195 2075200) (-1235 "TRIGCAT.spad" 2074227 2074238 2074707 2074712) (-1234 "TREE.spad" 2072685 2072696 2073717 2073744) (-1233 "TRANFUN.spad" 2072524 2072533 2072675 2072680) (-1232 "TRANFUN.spad" 2072361 2072372 2072514 2072519) (-1231 "TOPSP.spad" 2072035 2072044 2072351 2072356) (-1230 "TOOLSIGN.spad" 2071698 2071709 2072025 2072030) (-1229 "TEXTFILE.spad" 2070259 2070268 2071688 2071693) (-1228 "TEX1.spad" 2069815 2069826 2070249 2070254) (-1227 "TEX.spad" 2067009 2067018 2069805 2069810) (-1226 "TEMUTL.spad" 2066564 2066573 2066999 2067004) (-1225 "TBCMPPK.spad" 2064665 2064688 2066554 2066559) (-1224 "TBAGG.spad" 2063723 2063746 2064645 2064660) (-1223 "TBAGG.spad" 2062789 2062814 2063713 2063718) (-1222 "TANEXP.spad" 2062197 2062208 2062779 2062784) (-1221 "TALGOP.spad" 2061921 2061932 2062187 2062192) (-1220 "TABLEAU.spad" 2061402 2061413 2061911 2061916) (-1219 "TABLE.spad" 2059371 2059394 2059641 2059668) (-1218 "TABLBUMP.spad" 2056150 2056161 2059361 2059366) (-1217 "SYSTEM.spad" 2055378 2055387 2056140 2056145) (-1216 "SYSSOLP.spad" 2052861 2052872 2055368 2055373) (-1215 "SYSPTR.spad" 2052760 2052769 2052851 2052856) (-1214 "SYSNNI.spad" 2051983 2051994 2052750 2052755) (-1213 "SYSINT.spad" 2051387 2051398 2051973 2051978) (-1212 "SYNTAX.spad" 2047721 2047730 2051377 2051382) (-1211 "SYMTAB.spad" 2045789 2045798 2047711 2047716) (-1210 "SYMS.spad" 2041812 2041821 2045779 2045784) (-1209 "SYMPOLY.spad" 2040818 2040829 2040900 2041027) (-1208 "SYMFUNC.spad" 2040319 2040330 2040808 2040813) (-1207 "SYMBOL.spad" 2037814 2037823 2040309 2040314) (-1206 "SWITCH.spad" 2034585 2034594 2037804 2037809) (-1205 "SUTS.spad" 2031633 2031661 2033052 2033149) (-1204 "SUPXS.spad" 2028916 2028944 2029765 2029914) (-1203 "SUPFRACF.spad" 2028021 2028039 2028906 2028911) (-1202 "SUP2.spad" 2027413 2027426 2028011 2028016) (-1201 "SUP.spad" 2024133 2024144 2024906 2025059) (-1200 "SUMRF.spad" 2023107 2023118 2024123 2024128) (-1199 "SUMFS.spad" 2022736 2022753 2023097 2023102) (-1198 "SULS.spad" 2012507 2012535 2013465 2013894) (-1197 "SUCHTAST.spad" 2012276 2012285 2012497 2012502) (-1196 "SUCH.spad" 2011966 2011981 2012266 2012271) (-1195 "SUBSPACE.spad" 2004097 2004112 2011956 2011961) (-1194 "SUBRESP.spad" 2003267 2003281 2004053 2004058) (-1193 "STTFNC.spad" 1999735 1999751 2003257 2003262) (-1192 "STTF.spad" 1995834 1995850 1999725 1999730) (-1191 "STTAYLOR.spad" 1988485 1988496 1995715 1995720) (-1190 "STRTBL.spad" 1986536 1986553 1986685 1986712) (-1189 "STRING.spad" 1985323 1985332 1985544 1985571) (-1188 "STREAM3.spad" 1984896 1984911 1985313 1985318) (-1187 "STREAM2.spad" 1984024 1984037 1984886 1984891) (-1186 "STREAM1.spad" 1983730 1983741 1984014 1984019) (-1185 "STREAM.spad" 1980531 1980542 1983138 1983153) (-1184 "STINPROD.spad" 1979467 1979483 1980521 1980526) (-1183 "STEPAST.spad" 1978701 1978710 1979457 1979462) (-1182 "STEP.spad" 1977910 1977919 1978691 1978696) (-1181 "STBL.spad" 1975994 1976022 1976161 1976176) (-1180 "STAGG.spad" 1975069 1975080 1975984 1975989) (-1179 "STAGG.spad" 1974142 1974155 1975059 1975064) (-1178 "STACK.spad" 1973382 1973393 1973632 1973659) (-1177 "SREGSET.spad" 1971090 1971107 1972992 1973019) (-1176 "SRDCMPK.spad" 1969667 1969687 1971080 1971085) (-1175 "SRAGG.spad" 1964850 1964859 1969635 1969662) (-1174 "SRAGG.spad" 1960053 1960064 1964840 1964845) (-1173 "SQMATRIX.spad" 1957596 1957614 1958512 1958599) (-1172 "SPLTREE.spad" 1952080 1952093 1956876 1956903) (-1171 "SPLNODE.spad" 1948700 1948713 1952070 1952075) (-1170 "SPFCAT.spad" 1947509 1947518 1948690 1948695) (-1169 "SPECOUT.spad" 1946061 1946070 1947499 1947504) (-1168 "SPADXPT.spad" 1938152 1938161 1946051 1946056) (-1167 "spad-parser.spad" 1937617 1937626 1938142 1938147) (-1166 "SPADAST.spad" 1937318 1937327 1937607 1937612) (-1165 "SPACEC.spad" 1921533 1921544 1937308 1937313) (-1164 "SPACE3.spad" 1921309 1921320 1921523 1921528) (-1163 "SORTPAK.spad" 1920858 1920871 1921265 1921270) (-1162 "SOLVETRA.spad" 1918621 1918632 1920848 1920853) (-1161 "SOLVESER.spad" 1917077 1917088 1918611 1918616) (-1160 "SOLVERAD.spad" 1913103 1913114 1917067 1917072) (-1159 "SOLVEFOR.spad" 1911565 1911583 1913093 1913098) (-1158 "SNTSCAT.spad" 1911165 1911182 1911533 1911560) (-1157 "SMTS.spad" 1909453 1909479 1910730 1910827) (-1156 "SMP.spad" 1906928 1906948 1907318 1907445) (-1155 "SMITH.spad" 1905773 1905798 1906918 1906923) (-1154 "SMATCAT.spad" 1903891 1903921 1905717 1905768) (-1153 "SMATCAT.spad" 1901941 1901973 1903769 1903774) (-1152 "SKAGG.spad" 1900910 1900921 1901909 1901936) (-1151 "SINT.spad" 1899850 1899859 1900776 1900905) (-1150 "SIMPAN.spad" 1899578 1899587 1899840 1899845) (-1149 "SIGNRF.spad" 1898696 1898707 1899568 1899573) (-1148 "SIGNEF.spad" 1897975 1897992 1898686 1898691) (-1147 "SIGAST.spad" 1897392 1897401 1897965 1897970) (-1146 "SIG.spad" 1896754 1896763 1897382 1897387) (-1145 "SHP.spad" 1894698 1894713 1896710 1896715) (-1144 "SHDP.spad" 1882368 1882395 1882885 1882984) (-1143 "SGROUP.spad" 1881976 1881985 1882358 1882363) (-1142 "SGROUP.spad" 1881582 1881593 1881966 1881971) (-1141 "SGCF.spad" 1874721 1874730 1881572 1881577) (-1140 "SFRTCAT.spad" 1873667 1873684 1874689 1874716) (-1139 "SFRGCD.spad" 1872730 1872750 1873657 1873662) (-1138 "SFQCMPK.spad" 1867543 1867563 1872720 1872725) (-1137 "SFORT.spad" 1866982 1866996 1867533 1867538) (-1136 "SEXOF.spad" 1866825 1866865 1866972 1866977) (-1135 "SEXCAT.spad" 1864653 1864693 1866815 1866820) (-1134 "SEX.spad" 1864545 1864554 1864643 1864648) (-1133 "SETMN.spad" 1863003 1863020 1864535 1864540) (-1132 "SETCAT.spad" 1862488 1862497 1862993 1862998) (-1131 "SETCAT.spad" 1861971 1861982 1862478 1862483) (-1130 "SETAGG.spad" 1858520 1858531 1861951 1861966) (-1129 "SETAGG.spad" 1855077 1855090 1858510 1858515) (-1128 "SET.spad" 1853365 1853376 1854462 1854501) (-1127 "SEQAST.spad" 1853068 1853077 1853355 1853360) (-1126 "SEGXCAT.spad" 1852224 1852237 1853058 1853063) (-1125 "SEGCAT.spad" 1851149 1851160 1852214 1852219) (-1124 "SEGBIND2.spad" 1850847 1850860 1851139 1851144) (-1123 "SEGBIND.spad" 1850605 1850616 1850794 1850799) (-1122 "SEGAST.spad" 1850335 1850344 1850595 1850600) (-1121 "SEG2.spad" 1849770 1849783 1850291 1850296) (-1120 "SEG.spad" 1849583 1849594 1849689 1849694) (-1119 "SDVAR.spad" 1848859 1848870 1849573 1849578) (-1118 "SDPOL.spad" 1846192 1846203 1846483 1846610) (-1117 "SCPKG.spad" 1844281 1844292 1846182 1846187) (-1116 "SCOPE.spad" 1843458 1843467 1844271 1844276) (-1115 "SCACHE.spad" 1842154 1842165 1843448 1843453) (-1114 "SASTCAT.spad" 1842063 1842072 1842144 1842149) (-1113 "SAOS.spad" 1841935 1841944 1842053 1842058) (-1112 "SAERFFC.spad" 1841648 1841668 1841925 1841930) (-1111 "SAEFACT.spad" 1841349 1841369 1841638 1841643) (-1110 "SAE.spad" 1838819 1838835 1839430 1839565) (-1109 "RURPK.spad" 1836478 1836494 1838809 1838814) (-1108 "RULESET.spad" 1835931 1835955 1836468 1836473) (-1107 "RULECOLD.spad" 1835783 1835796 1835921 1835926) (-1106 "RULE.spad" 1834031 1834055 1835773 1835778) (-1105 "RTVALUE.spad" 1833766 1833775 1834021 1834026) (-1104 "RSTRCAST.spad" 1833483 1833492 1833756 1833761) (-1103 "RSETGCD.spad" 1829925 1829945 1833473 1833478) (-1102 "RSETCAT.spad" 1819893 1819910 1829893 1829920) (-1101 "RSETCAT.spad" 1809881 1809900 1819883 1819888) (-1100 "RSDCMPK.spad" 1808381 1808401 1809871 1809876) (-1099 "RRCC.spad" 1806765 1806795 1808371 1808376) (-1098 "RRCC.spad" 1805147 1805179 1806755 1806760) (-1097 "RPTAST.spad" 1804849 1804858 1805137 1805142) (-1096 "RPOLCAT.spad" 1784353 1784368 1804717 1804844) (-1095 "RPOLCAT.spad" 1763570 1763587 1783936 1783941) (-1094 "ROUTINE.spad" 1759007 1759016 1761755 1761782) (-1093 "ROMAN.spad" 1758335 1758344 1758873 1759002) (-1092 "ROIRC.spad" 1757415 1757447 1758325 1758330) (-1091 "RNS.spad" 1756318 1756327 1757317 1757410) (-1090 "RNS.spad" 1755307 1755318 1756308 1756313) (-1089 "RNGBIND.spad" 1754467 1754481 1755262 1755267) (-1088 "RNG.spad" 1754202 1754211 1754457 1754462) (-1087 "RMODULE.spad" 1753983 1753994 1754192 1754197) (-1086 "RMCAT2.spad" 1753403 1753460 1753973 1753978) (-1085 "RMATRIX.spad" 1752191 1752210 1752534 1752573) (-1084 "RMATCAT.spad" 1747770 1747801 1752147 1752186) (-1083 "RMATCAT.spad" 1743239 1743272 1747618 1747623) (-1082 "RLINSET.spad" 1742943 1742954 1743229 1743234) (-1081 "RINTERP.spad" 1742831 1742851 1742933 1742938) (-1080 "RING.spad" 1742301 1742310 1742811 1742826) (-1079 "RING.spad" 1741779 1741790 1742291 1742296) (-1078 "RIDIST.spad" 1741171 1741180 1741769 1741774) (-1077 "RGCHAIN.spad" 1739707 1739723 1740601 1740628) (-1076 "RGBCSPC.spad" 1739496 1739508 1739697 1739702) (-1075 "RGBCMDL.spad" 1739058 1739070 1739486 1739491) (-1074 "RFFACTOR.spad" 1738520 1738531 1739048 1739053) (-1073 "RFFACT.spad" 1738255 1738267 1738510 1738515) (-1072 "RFDIST.spad" 1737251 1737260 1738245 1738250) (-1071 "RF.spad" 1734925 1734936 1737241 1737246) (-1070 "RETSOL.spad" 1734344 1734357 1734915 1734920) (-1069 "RETRACT.spad" 1733772 1733783 1734334 1734339) (-1068 "RETRACT.spad" 1733198 1733211 1733762 1733767) (-1067 "RETAST.spad" 1733010 1733019 1733188 1733193) (-1066 "RESULT.spad" 1730608 1730617 1731195 1731222) (-1065 "RESRING.spad" 1729955 1730002 1730546 1730603) (-1064 "RESLATC.spad" 1729279 1729290 1729945 1729950) (-1063 "REPSQ.spad" 1729010 1729021 1729269 1729274) (-1062 "REPDB.spad" 1728717 1728728 1729000 1729005) (-1061 "REP2.spad" 1718431 1718442 1728559 1728564) (-1060 "REP1.spad" 1712651 1712662 1718381 1718386) (-1059 "REP.spad" 1710205 1710214 1712641 1712646) (-1058 "REGSET.spad" 1708006 1708023 1709815 1709842) (-1057 "REF.spad" 1707341 1707352 1707961 1707966) (-1056 "REDORDER.spad" 1706547 1706564 1707331 1707336) (-1055 "RECLOS.spad" 1705330 1705350 1706034 1706127) (-1054 "REALSOLV.spad" 1704470 1704479 1705320 1705325) (-1053 "REAL0Q.spad" 1701768 1701783 1704460 1704465) (-1052 "REAL0.spad" 1698612 1698627 1701758 1701763) (-1051 "REAL.spad" 1698484 1698493 1698602 1698607) (-1050 "RDUCEAST.spad" 1698205 1698214 1698474 1698479) (-1049 "RDIV.spad" 1697860 1697885 1698195 1698200) (-1048 "RDIST.spad" 1697427 1697438 1697850 1697855) (-1047 "RDETRS.spad" 1696291 1696309 1697417 1697422) (-1046 "RDETR.spad" 1694430 1694448 1696281 1696286) (-1045 "RDEEFS.spad" 1693529 1693546 1694420 1694425) (-1044 "RDEEF.spad" 1692539 1692556 1693519 1693524) (-1043 "RCFIELD.spad" 1689757 1689766 1692441 1692534) (-1042 "RCFIELD.spad" 1687061 1687072 1689747 1689752) (-1041 "RCAGG.spad" 1684997 1685008 1687051 1687056) (-1040 "RCAGG.spad" 1682860 1682873 1684916 1684921) (-1039 "RATRET.spad" 1682220 1682231 1682850 1682855) (-1038 "RATFACT.spad" 1681912 1681924 1682210 1682215) (-1037 "RANDSRC.spad" 1681231 1681240 1681902 1681907) (-1036 "RADUTIL.spad" 1680987 1680996 1681221 1681226) (-1035 "RADIX.spad" 1677811 1677825 1679357 1679450) (-1034 "RADFF.spad" 1675550 1675587 1675669 1675825) (-1033 "RADCAT.spad" 1675145 1675154 1675540 1675545) (-1032 "RADCAT.spad" 1674738 1674749 1675135 1675140) (-1031 "QUEUE.spad" 1673969 1673980 1674228 1674255) (-1030 "QUATCT2.spad" 1673589 1673608 1673959 1673964) (-1029 "QUATCAT.spad" 1671759 1671770 1673519 1673584) (-1028 "QUATCAT.spad" 1669680 1669693 1671442 1671447) (-1027 "QUAT.spad" 1668168 1668179 1668511 1668576) (-1026 "QUAGG.spad" 1667001 1667012 1668136 1668163) (-1025 "QQUTAST.spad" 1666769 1666778 1666991 1666996) (-1024 "QFORM.spad" 1666387 1666402 1666759 1666764) (-1023 "QFCAT2.spad" 1666079 1666096 1666377 1666382) (-1022 "QFCAT.spad" 1664781 1664792 1665981 1666074) (-1021 "QFCAT.spad" 1663074 1663087 1664276 1664281) (-1020 "QEQUAT.spad" 1662632 1662641 1663064 1663069) (-1019 "QCMPACK.spad" 1657546 1657566 1662622 1662627) (-1018 "QALGSET2.spad" 1655541 1655560 1657536 1657541) (-1017 "QALGSET.spad" 1651643 1651676 1655455 1655460) (-1016 "PWFFINTB.spad" 1649058 1649080 1651633 1651638) (-1015 "PUSHVAR.spad" 1648396 1648416 1649048 1649053) (-1014 "PTRANFN.spad" 1644531 1644542 1648386 1648391) (-1013 "PTPACK.spad" 1641618 1641629 1644521 1644526) (-1012 "PTFUNC2.spad" 1641440 1641455 1641608 1641613) (-1011 "PTCAT.spad" 1640694 1640705 1641408 1641435) (-1010 "PSQFR.spad" 1640008 1640033 1640684 1640689) (-1009 "PSEUDLIN.spad" 1638893 1638904 1639998 1640003) (-1008 "PSETPK.spad" 1625597 1625614 1638771 1638776) (-1007 "PSETCAT.spad" 1619996 1620020 1625577 1625592) (-1006 "PSETCAT.spad" 1614369 1614395 1619952 1619957) (-1005 "PSCURVE.spad" 1613367 1613376 1614359 1614364) (-1004 "PSCAT.spad" 1612149 1612179 1613265 1613362) (-1003 "PSCAT.spad" 1611021 1611053 1612139 1612144) (-1002 "PRTITION.spad" 1609718 1609727 1611011 1611016) (-1001 "PRTDAST.spad" 1609436 1609445 1609708 1609713) (-1000 "PRS.spad" 1599053 1599071 1609392 1609397) (-999 "PRQAGG.spad" 1598488 1598498 1599021 1599048) (-998 "PROPLOG.spad" 1598092 1598100 1598478 1598483) (-997 "PROPFUN2.spad" 1597715 1597728 1598082 1598087) (-996 "PROPFUN1.spad" 1597121 1597132 1597705 1597710) (-995 "PROPFRML.spad" 1595689 1595700 1597111 1597116) (-994 "PROPERTY.spad" 1595185 1595193 1595679 1595684) (-993 "PRODUCT.spad" 1592867 1592879 1593151 1593206) (-992 "PRINT.spad" 1592619 1592627 1592857 1592862) (-991 "PRIMES.spad" 1590880 1590890 1592609 1592614) (-990 "PRIMELT.spad" 1589001 1589015 1590870 1590875) (-989 "PRIMCAT.spad" 1588644 1588652 1588991 1588996) (-988 "PRIMARR2.spad" 1587411 1587423 1588634 1588639) (-987 "PRIMARR.spad" 1586271 1586281 1586441 1586468) (-986 "PREASSOC.spad" 1585653 1585665 1586261 1586266) (-985 "PR.spad" 1584045 1584057 1584744 1584871) (-984 "PPCURVE.spad" 1583182 1583190 1584035 1584040) (-983 "PORTNUM.spad" 1582973 1582981 1583172 1583177) (-982 "POLYROOT.spad" 1581822 1581844 1582929 1582934) (-981 "POLYLIFT.spad" 1581087 1581110 1581812 1581817) (-980 "POLYCATQ.spad" 1579213 1579235 1581077 1581082) (-979 "POLYCAT.spad" 1572715 1572736 1579081 1579208) (-978 "POLYCAT.spad" 1565555 1565578 1571923 1571928) (-977 "POLY2UP.spad" 1565007 1565021 1565545 1565550) (-976 "POLY2.spad" 1564604 1564616 1564997 1565002) (-975 "POLY.spad" 1561939 1561949 1562454 1562581) (-974 "POLUTIL.spad" 1560904 1560933 1561895 1561900) (-973 "POLTOPOL.spad" 1559652 1559667 1560894 1560899) (-972 "POINT.spad" 1558337 1558347 1558424 1558451) (-971 "PNTHEORY.spad" 1555039 1555047 1558327 1558332) (-970 "PMTOOLS.spad" 1553814 1553828 1555029 1555034) (-969 "PMSYM.spad" 1553363 1553373 1553804 1553809) (-968 "PMQFCAT.spad" 1552954 1552968 1553353 1553358) (-967 "PMPREDFS.spad" 1552416 1552438 1552944 1552949) (-966 "PMPRED.spad" 1551903 1551917 1552406 1552411) (-965 "PMPLCAT.spad" 1550983 1551001 1551835 1551840) (-964 "PMLSAGG.spad" 1550568 1550582 1550973 1550978) (-963 "PMKERNEL.spad" 1550147 1550159 1550558 1550563) (-962 "PMINS.spad" 1549727 1549737 1550137 1550142) (-961 "PMFS.spad" 1549304 1549322 1549717 1549722) (-960 "PMDOWN.spad" 1548594 1548608 1549294 1549299) (-959 "PMASSFS.spad" 1547569 1547585 1548584 1548589) (-958 "PMASS.spad" 1546587 1546595 1547559 1547564) (-957 "PLOTTOOL.spad" 1546367 1546375 1546577 1546582) (-956 "PLOT3D.spad" 1542831 1542839 1546357 1546362) (-955 "PLOT1.spad" 1542004 1542014 1542821 1542826) (-954 "PLOT.spad" 1536927 1536935 1541994 1541999) (-953 "PLEQN.spad" 1524329 1524356 1536917 1536922) (-952 "PINTERPA.spad" 1524113 1524129 1524319 1524324) (-951 "PINTERP.spad" 1523735 1523754 1524103 1524108) (-950 "PID.spad" 1522705 1522713 1523661 1523730) (-949 "PICOERCE.spad" 1522362 1522372 1522695 1522700) (-948 "PI.spad" 1521979 1521987 1522336 1522357) (-947 "PGROEB.spad" 1520588 1520602 1521969 1521974) (-946 "PGE.spad" 1512261 1512269 1520578 1520583) (-945 "PGCD.spad" 1511215 1511232 1512251 1512256) (-944 "PFRPAC.spad" 1510364 1510374 1511205 1511210) (-943 "PFR.spad" 1507067 1507077 1510266 1510359) (-942 "PFOTOOLS.spad" 1506325 1506341 1507057 1507062) (-941 "PFOQ.spad" 1505695 1505713 1506315 1506320) (-940 "PFO.spad" 1505114 1505141 1505685 1505690) (-939 "PFECAT.spad" 1502820 1502828 1505040 1505109) (-938 "PFECAT.spad" 1500554 1500564 1502776 1502781) (-937 "PFBRU.spad" 1498442 1498454 1500544 1500549) (-936 "PFBR.spad" 1496002 1496025 1498432 1498437) (-935 "PF.spad" 1495576 1495588 1495807 1495900) (-934 "PERMGRP.spad" 1490346 1490356 1495566 1495571) (-933 "PERMCAT.spad" 1489007 1489017 1490326 1490341) (-932 "PERMAN.spad" 1487563 1487577 1488997 1489002) (-931 "PERM.spad" 1483370 1483380 1487393 1487408) (-930 "PENDTREE.spad" 1482602 1482612 1482882 1482887) (-929 "PDSPC.spad" 1481415 1481425 1482592 1482597) (-928 "PDSPC.spad" 1480226 1480238 1481405 1481410) (-927 "PDRING.spad" 1480068 1480078 1480206 1480221) (-926 "PDMOD.spad" 1479884 1479896 1480036 1480063) (-925 "PDEPROB.spad" 1478899 1478907 1479874 1479879) (-924 "PDEPACK.spad" 1473035 1473043 1478889 1478894) (-923 "PDECOMP.spad" 1472505 1472522 1473025 1473030) (-922 "PDECAT.spad" 1470861 1470869 1472495 1472500) (-921 "PDDOM.spad" 1470299 1470312 1470851 1470856) (-920 "PDDOM.spad" 1469735 1469750 1470289 1470294) (-919 "PCOMP.spad" 1469588 1469601 1469725 1469730) (-918 "PBWLB.spad" 1468184 1468201 1469578 1469583) (-917 "PATTERN2.spad" 1467922 1467934 1468174 1468179) (-916 "PATTERN1.spad" 1466266 1466282 1467912 1467917) (-915 "PATTERN.spad" 1460837 1460847 1466256 1466261) (-914 "PATRES2.spad" 1460509 1460523 1460827 1460832) (-913 "PATRES.spad" 1458092 1458104 1460499 1460504) (-912 "PATMATCH.spad" 1456289 1456320 1457800 1457805) (-911 "PATMAB.spad" 1455718 1455728 1456279 1456284) (-910 "PATLRES.spad" 1454804 1454818 1455708 1455713) (-909 "PATAB.spad" 1454568 1454578 1454794 1454799) (-908 "PARTPERM.spad" 1452624 1452632 1454558 1454563) (-907 "PARSURF.spad" 1452058 1452086 1452614 1452619) (-906 "PARSU2.spad" 1451855 1451871 1452048 1452053) (-905 "script-parser.spad" 1451375 1451383 1451845 1451850) (-904 "PARSCURV.spad" 1450809 1450837 1451365 1451370) (-903 "PARSC2.spad" 1450600 1450616 1450799 1450804) (-902 "PARPCURV.spad" 1450062 1450090 1450590 1450595) (-901 "PARPC2.spad" 1449853 1449869 1450052 1450057) (-900 "PARAMAST.spad" 1448981 1448989 1449843 1449848) (-899 "PAN2EXPR.spad" 1448393 1448401 1448971 1448976) (-898 "PALETTE.spad" 1447379 1447387 1448383 1448388) (-897 "PAIR.spad" 1446398 1446411 1446967 1446972) (-896 "PADICRC.spad" 1443647 1443665 1444810 1444903) (-895 "PADICRAT.spad" 1441563 1441575 1441776 1441869) (-894 "PADICCT.spad" 1440112 1440124 1441489 1441558) (-893 "PADIC.spad" 1439815 1439827 1440038 1440107) (-892 "PADEPAC.spad" 1438504 1438523 1439805 1439810) (-891 "PADE.spad" 1437256 1437272 1438494 1438499) (-890 "OWP.spad" 1436504 1436534 1437114 1437181) (-889 "OVERSET.spad" 1436077 1436085 1436494 1436499) (-888 "OVAR.spad" 1435858 1435881 1436067 1436072) (-887 "OUTFORM.spad" 1425266 1425274 1435848 1435853) (-886 "OUTBFILE.spad" 1424700 1424708 1425256 1425261) (-885 "OUTBCON.spad" 1423770 1423778 1424690 1424695) (-884 "OUTBCON.spad" 1422838 1422848 1423760 1423765) (-883 "OUT.spad" 1421956 1421964 1422828 1422833) (-882 "OSI.spad" 1421431 1421439 1421946 1421951) (-881 "OSGROUP.spad" 1421349 1421357 1421421 1421426) (-880 "ORTHPOL.spad" 1419834 1419844 1421266 1421271) (-879 "OREUP.spad" 1419287 1419315 1419514 1419553) (-878 "ORESUP.spad" 1418588 1418612 1418967 1419006) (-877 "OREPCTO.spad" 1416477 1416489 1418508 1418513) (-876 "OREPCAT.spad" 1410664 1410674 1416433 1416472) (-875 "OREPCAT.spad" 1404741 1404753 1410512 1410517) (-874 "ORDTYPE.spad" 1403978 1403986 1404731 1404736) (-873 "ORDTYPE.spad" 1403213 1403223 1403968 1403973) (-872 "ORDSTRCT.spad" 1402986 1403001 1403149 1403154) (-871 "ORDSET.spad" 1402686 1402694 1402976 1402981) (-870 "ORDRING.spad" 1402076 1402084 1402666 1402681) (-869 "ORDRING.spad" 1401474 1401484 1402066 1402071) (-868 "ORDMON.spad" 1401329 1401337 1401464 1401469) (-867 "ORDFUNS.spad" 1400461 1400477 1401319 1401324) (-866 "ORDFIN.spad" 1400281 1400289 1400451 1400456) (-865 "ORDCOMP2.spad" 1399574 1399586 1400271 1400276) (-864 "ORDCOMP.spad" 1398039 1398049 1399121 1399150) (-863 "OPTPROB.spad" 1396677 1396685 1398029 1398034) (-862 "OPTPACK.spad" 1389086 1389094 1396667 1396672) (-861 "OPTCAT.spad" 1386765 1386773 1389076 1389081) (-860 "OPSIG.spad" 1386427 1386435 1386755 1386760) (-859 "OPQUERY.spad" 1386008 1386016 1386417 1386422) (-858 "OPERCAT.spad" 1385474 1385484 1385998 1386003) (-857 "OPERCAT.spad" 1384938 1384950 1385464 1385469) (-856 "OP.spad" 1384680 1384690 1384760 1384827) (-855 "ONECOMP2.spad" 1384104 1384116 1384670 1384675) (-854 "ONECOMP.spad" 1382849 1382859 1383651 1383680) (-853 "OMSERVER.spad" 1381855 1381863 1382839 1382844) (-852 "OMSAGG.spad" 1381643 1381653 1381811 1381850) (-851 "OMPKG.spad" 1380275 1380283 1381633 1381638) (-850 "OMLO.spad" 1379708 1379720 1380161 1380200) (-849 "OMEXPR.spad" 1379542 1379552 1379698 1379703) (-848 "OMERRK.spad" 1378592 1378600 1379532 1379537) (-847 "OMERR.spad" 1378137 1378145 1378582 1378587) (-846 "OMENC.spad" 1377489 1377497 1378127 1378132) (-845 "OMDEV.spad" 1371822 1371830 1377479 1377484) (-844 "OMCONN.spad" 1371231 1371239 1371812 1371817) (-843 "OM.spad" 1370228 1370236 1371221 1371226) (-842 "OINTDOM.spad" 1369991 1369999 1370154 1370223) (-841 "OFMONOID.spad" 1368130 1368140 1369947 1369952) (-840 "ODVAR.spad" 1367391 1367401 1368120 1368125) (-839 "ODR.spad" 1367035 1367061 1367203 1367352) (-838 "ODPOL.spad" 1364324 1364334 1364664 1364791) (-837 "ODP.spad" 1352138 1352158 1352511 1352610) (-836 "ODETOOLS.spad" 1350787 1350806 1352128 1352133) (-835 "ODESYS.spad" 1348481 1348498 1350777 1350782) (-834 "ODERTRIC.spad" 1344514 1344531 1348438 1348443) (-833 "ODERED.spad" 1343913 1343937 1344504 1344509) (-832 "ODERAT.spad" 1341544 1341561 1343903 1343908) (-831 "ODEPRRIC.spad" 1338637 1338659 1341534 1341539) (-830 "ODEPROB.spad" 1337894 1337902 1338627 1338632) (-829 "ODEPRIM.spad" 1335292 1335314 1337884 1337889) (-828 "ODEPAL.spad" 1334678 1334702 1335282 1335287) (-827 "ODEPACK.spad" 1321408 1321416 1334668 1334673) (-826 "ODEINT.spad" 1320843 1320859 1321398 1321403) (-825 "ODEIFTBL.spad" 1318246 1318254 1320833 1320838) (-824 "ODEEF.spad" 1313737 1313753 1318236 1318241) (-823 "ODECONST.spad" 1313282 1313300 1313727 1313732) (-822 "ODECAT.spad" 1311880 1311888 1313272 1313277) (-821 "OCTCT2.spad" 1311518 1311539 1311870 1311875) (-820 "OCT.spad" 1309654 1309664 1310368 1310407) (-819 "OCAMON.spad" 1309502 1309510 1309644 1309649) (-818 "OC.spad" 1307298 1307308 1309458 1309497) (-817 "OC.spad" 1304819 1304831 1306981 1306986) (-816 "OASGP.spad" 1304634 1304642 1304809 1304814) (-815 "OAMONS.spad" 1304156 1304164 1304624 1304629) (-814 "OAMON.spad" 1304017 1304025 1304146 1304151) (-813 "OAGROUP.spad" 1303879 1303887 1304007 1304012) (-812 "NUMTUBE.spad" 1303470 1303486 1303869 1303874) (-811 "NUMQUAD.spad" 1291446 1291454 1303460 1303465) (-810 "NUMODE.spad" 1282798 1282806 1291436 1291441) (-809 "NUMINT.spad" 1280364 1280372 1282788 1282793) (-808 "NUMFMT.spad" 1279204 1279212 1280354 1280359) (-807 "NUMERIC.spad" 1271318 1271328 1279009 1279014) (-806 "NTSCAT.spad" 1269826 1269842 1271286 1271313) (-805 "NTPOLFN.spad" 1269377 1269387 1269743 1269748) (-804 "NSUP2.spad" 1268769 1268781 1269367 1269372) (-803 "NSUP.spad" 1261842 1261852 1266262 1266415) (-802 "NSMP.spad" 1258088 1258107 1258380 1258507) (-801 "NREP.spad" 1256490 1256504 1258078 1258083) (-800 "NPCOEF.spad" 1255736 1255756 1256480 1256485) (-799 "NORMRETR.spad" 1255334 1255373 1255726 1255731) (-798 "NORMPK.spad" 1253276 1253295 1255324 1255329) (-797 "NORMMA.spad" 1252964 1252990 1253266 1253271) (-796 "NONE1.spad" 1252640 1252650 1252954 1252959) (-795 "NONE.spad" 1252381 1252389 1252630 1252635) (-794 "NODE1.spad" 1251868 1251884 1252371 1252376) (-793 "NNI.spad" 1250763 1250771 1251842 1251863) (-792 "NLINSOL.spad" 1249389 1249399 1250753 1250758) (-791 "NIPROB.spad" 1247930 1247938 1249379 1249384) (-790 "NFINTBAS.spad" 1245490 1245507 1247920 1247925) (-789 "NETCLT.spad" 1245464 1245475 1245480 1245485) (-788 "NCODIV.spad" 1243688 1243704 1245454 1245459) (-787 "NCNTFRAC.spad" 1243330 1243344 1243678 1243683) (-786 "NCEP.spad" 1241496 1241510 1243320 1243325) (-785 "NASRING.spad" 1241100 1241108 1241486 1241491) (-784 "NASRING.spad" 1240702 1240712 1241090 1241095) (-783 "NARNG.spad" 1240102 1240110 1240692 1240697) (-782 "NARNG.spad" 1239500 1239510 1240092 1240097) (-781 "NAGSP.spad" 1238577 1238585 1239490 1239495) (-780 "NAGS.spad" 1228294 1228302 1238567 1238572) (-779 "NAGF07.spad" 1226725 1226733 1228284 1228289) (-778 "NAGF04.spad" 1221127 1221135 1226715 1226720) (-777 "NAGF02.spad" 1215220 1215228 1221117 1221122) (-776 "NAGF01.spad" 1210989 1210997 1215210 1215215) (-775 "NAGE04.spad" 1204697 1204705 1210979 1210984) (-774 "NAGE02.spad" 1195349 1195357 1204687 1204692) (-773 "NAGE01.spad" 1191343 1191351 1195339 1195344) (-772 "NAGD03.spad" 1189339 1189347 1191333 1191338) (-771 "NAGD02.spad" 1182070 1182078 1189329 1189334) (-770 "NAGD01.spad" 1176355 1176363 1182060 1182065) (-769 "NAGC06.spad" 1172222 1172230 1176345 1176350) (-768 "NAGC05.spad" 1170715 1170723 1172212 1172217) (-767 "NAGC02.spad" 1169990 1169998 1170705 1170710) (-766 "NAALG.spad" 1169555 1169565 1169958 1169985) (-765 "NAALG.spad" 1169140 1169152 1169545 1169550) (-764 "MULTSQFR.spad" 1166098 1166115 1169130 1169135) (-763 "MULTFACT.spad" 1165481 1165498 1166088 1166093) (-762 "MTSCAT.spad" 1163575 1163596 1165379 1165476) (-761 "MTHING.spad" 1163234 1163244 1163565 1163570) (-760 "MSYSCMD.spad" 1162668 1162676 1163224 1163229) (-759 "MSETAGG.spad" 1162513 1162523 1162636 1162663) (-758 "MSET.spad" 1160435 1160445 1162183 1162222) (-757 "MRING.spad" 1157412 1157424 1160143 1160210) (-756 "MRF2.spad" 1156974 1156988 1157402 1157407) (-755 "MRATFAC.spad" 1156520 1156537 1156964 1156969) (-754 "MPRFF.spad" 1154560 1154579 1156510 1156515) (-753 "MPOLY.spad" 1152031 1152046 1152390 1152517) (-752 "MPCPF.spad" 1151295 1151314 1152021 1152026) (-751 "MPC3.spad" 1151112 1151152 1151285 1151290) (-750 "MPC2.spad" 1150765 1150798 1151102 1151107) (-749 "MONOTOOL.spad" 1149116 1149133 1150755 1150760) (-748 "MONOID.spad" 1148435 1148443 1149106 1149111) (-747 "MONOID.spad" 1147752 1147762 1148425 1148430) (-746 "MONOGEN.spad" 1146500 1146513 1147612 1147747) (-745 "MONOGEN.spad" 1145270 1145285 1146384 1146389) (-744 "MONADWU.spad" 1143348 1143356 1145260 1145265) (-743 "MONADWU.spad" 1141424 1141434 1143338 1143343) (-742 "MONAD.spad" 1140584 1140592 1141414 1141419) (-741 "MONAD.spad" 1139742 1139752 1140574 1140579) (-740 "MOEBIUS.spad" 1138478 1138492 1139722 1139737) (-739 "MODULE.spad" 1138348 1138358 1138446 1138473) (-738 "MODULE.spad" 1138238 1138250 1138338 1138343) (-737 "MODRING.spad" 1137573 1137612 1138218 1138233) (-736 "MODOP.spad" 1136230 1136242 1137395 1137462) (-735 "MODMONOM.spad" 1135961 1135979 1136220 1136225) (-734 "MODMON.spad" 1132663 1132679 1133382 1133535) (-733 "MODFIELD.spad" 1132025 1132064 1132565 1132658) (-732 "MMLFORM.spad" 1130885 1130893 1132015 1132020) (-731 "MMAP.spad" 1130627 1130661 1130875 1130880) (-730 "MLO.spad" 1129086 1129096 1130583 1130622) (-729 "MLIFT.spad" 1127698 1127715 1129076 1129081) (-728 "MKUCFUNC.spad" 1127233 1127251 1127688 1127693) (-727 "MKRECORD.spad" 1126821 1126834 1127223 1127228) (-726 "MKFUNC.spad" 1126228 1126238 1126811 1126816) (-725 "MKFLCFN.spad" 1125196 1125206 1126218 1126223) (-724 "MKBCFUNC.spad" 1124691 1124709 1125186 1125191) (-723 "MINT.spad" 1124130 1124138 1124593 1124686) (-722 "MHROWRED.spad" 1122641 1122651 1124120 1124125) (-721 "MFLOAT.spad" 1121161 1121169 1122531 1122636) (-720 "MFINFACT.spad" 1120561 1120583 1121151 1121156) (-719 "MESH.spad" 1118351 1118359 1120551 1120556) (-718 "MDDFACT.spad" 1116570 1116580 1118341 1118346) (-717 "MDAGG.spad" 1115861 1115871 1116550 1116565) (-716 "MCMPLX.spad" 1111292 1111300 1111906 1112107) (-715 "MCDEN.spad" 1110502 1110514 1111282 1111287) (-714 "MCALCFN.spad" 1107600 1107626 1110492 1110497) (-713 "MAYBE.spad" 1106900 1106911 1107590 1107595) (-712 "MATSTOR.spad" 1104216 1104226 1106890 1106895) (-711 "MATRIX.spad" 1102803 1102813 1103287 1103314) (-710 "MATLIN.spad" 1100171 1100195 1102687 1102692) (-709 "MATCAT2.spad" 1099453 1099501 1100161 1100166) (-708 "MATCAT.spad" 1091015 1091037 1099421 1099448) (-707 "MATCAT.spad" 1082449 1082473 1090857 1090862) (-706 "MAPPKG3.spad" 1081364 1081378 1082439 1082444) (-705 "MAPPKG2.spad" 1080702 1080714 1081354 1081359) (-704 "MAPPKG1.spad" 1079530 1079540 1080692 1080697) (-703 "MAPPAST.spad" 1078869 1078877 1079520 1079525) (-702 "MAPHACK3.spad" 1078681 1078695 1078859 1078864) (-701 "MAPHACK2.spad" 1078450 1078462 1078671 1078676) (-700 "MAPHACK1.spad" 1078094 1078104 1078440 1078445) (-699 "MAGMA.spad" 1075900 1075917 1078084 1078089) (-698 "MACROAST.spad" 1075495 1075503 1075890 1075895) (-697 "M3D.spad" 1073098 1073108 1074756 1074761) (-696 "LZSTAGG.spad" 1070352 1070362 1073088 1073093) (-695 "LZSTAGG.spad" 1067604 1067616 1070342 1070347) (-694 "LWORD.spad" 1064349 1064366 1067594 1067599) (-693 "LSTAST.spad" 1064133 1064141 1064339 1064344) (-692 "LSQM.spad" 1062290 1062304 1062684 1062735) (-691 "LSPP.spad" 1061825 1061842 1062280 1062285) (-690 "LSMP1.spad" 1059651 1059665 1061815 1061820) (-689 "LSMP.spad" 1058501 1058529 1059641 1059646) (-688 "LSAGG.spad" 1058170 1058180 1058469 1058496) (-687 "LSAGG.spad" 1057859 1057871 1058160 1058165) (-686 "LPOLY.spad" 1056821 1056840 1057715 1057784) (-685 "LPEFRAC.spad" 1056092 1056102 1056811 1056816) (-684 "LOGIC.spad" 1055694 1055702 1056082 1056087) (-683 "LOGIC.spad" 1055294 1055304 1055684 1055689) (-682 "LODOOPS.spad" 1054224 1054236 1055284 1055289) (-681 "LODOF.spad" 1053270 1053287 1054181 1054186) (-680 "LODOCAT.spad" 1051936 1051946 1053226 1053265) (-679 "LODOCAT.spad" 1050600 1050612 1051892 1051897) (-678 "LODO2.spad" 1049873 1049885 1050280 1050319) (-677 "LODO1.spad" 1049273 1049283 1049553 1049592) (-676 "LODO.spad" 1048657 1048673 1048953 1048992) (-675 "LODEEF.spad" 1047459 1047477 1048647 1048652) (-674 "LO.spad" 1046860 1046874 1047393 1047420) (-673 "LNAGG.spad" 1043047 1043057 1046850 1046855) (-672 "LNAGG.spad" 1039198 1039210 1043003 1043008) (-671 "LMOPS.spad" 1035966 1035983 1039188 1039193) (-670 "LMODULE.spad" 1035750 1035760 1035956 1035961) (-669 "LMDICT.spad" 1034936 1034946 1035184 1035211) (-668 "LLINSET.spad" 1034643 1034653 1034926 1034931) (-667 "LITERAL.spad" 1034549 1034560 1034633 1034638) (-666 "LIST3.spad" 1033860 1033874 1034539 1034544) (-665 "LIST2MAP.spad" 1030787 1030799 1033850 1033855) (-664 "LIST2.spad" 1029489 1029501 1030777 1030782) (-663 "LIST.spad" 1027071 1027081 1028483 1028510) (-662 "LINSET.spad" 1026850 1026860 1027061 1027066) (-661 "LINFORM.spad" 1026313 1026325 1026818 1026845) (-660 "LINEXP.spad" 1025056 1025066 1026303 1026308) (-659 "LINELT.spad" 1024427 1024439 1024939 1024966) (-658 "LINDEP.spad" 1023276 1023288 1024339 1024344) (-657 "LINBASIS.spad" 1022912 1022927 1023266 1023271) (-656 "LIMITRF.spad" 1020840 1020850 1022902 1022907) (-655 "LIMITPS.spad" 1019743 1019756 1020830 1020835) (-654 "LIECAT.spad" 1019227 1019237 1019669 1019738) (-653 "LIECAT.spad" 1018739 1018751 1019183 1019188) (-652 "LIE.spad" 1016755 1016767 1018029 1018174) (-651 "LIB.spad" 1014506 1014514 1014952 1014967) (-650 "LGROBP.spad" 1011859 1011878 1014496 1014501) (-649 "LFCAT.spad" 1010918 1010926 1011849 1011854) (-648 "LF.spad" 1009873 1009889 1010908 1010913) (-647 "LEXTRIPK.spad" 1005496 1005511 1009863 1009868) (-646 "LEXP.spad" 1003515 1003542 1005476 1005491) (-645 "LETAST.spad" 1003214 1003222 1003505 1003510) (-644 "LEADCDET.spad" 1001620 1001637 1003204 1003209) (-643 "LAZM3PK.spad" 1000364 1000386 1001610 1001615) (-642 "LAUPOL.spad" 998964 998977 999864 999933) (-641 "LAPLACE.spad" 998547 998563 998954 998959) (-640 "LALG.spad" 998323 998333 998527 998542) (-639 "LALG.spad" 998107 998119 998313 998318) (-638 "LA.spad" 997547 997561 998029 998068) (-637 "KVTFROM.spad" 997290 997300 997537 997542) (-636 "KTVLOGIC.spad" 996834 996842 997280 997285) (-635 "KRCFROM.spad" 996580 996590 996824 996829) (-634 "KOVACIC.spad" 995311 995328 996570 996575) (-633 "KONVERT.spad" 995033 995043 995301 995306) (-632 "KOERCE.spad" 994770 994780 995023 995028) (-631 "KERNEL2.spad" 994473 994485 994760 994765) (-630 "KERNEL.spad" 993128 993138 994257 994262) (-629 "KDAGG.spad" 992237 992259 993108 993123) (-628 "KDAGG.spad" 991354 991378 992227 992232) (-627 "KAFILE.spad" 990208 990224 990443 990470) (-626 "JVMOP.spad" 990121 990129 990198 990203) (-625 "JVMMDACC.spad" 989175 989183 990111 990116) (-624 "JVMFDACC.spad" 988491 988499 989165 989170) (-623 "JVMCSTTG.spad" 987220 987228 988481 988486) (-622 "JVMCFACC.spad" 986666 986674 987210 987215) (-621 "JVMBCODE.spad" 986577 986585 986656 986661) (-620 "JORDAN.spad" 984406 984418 985867 986012) (-619 "JOINAST.spad" 984108 984116 984396 984401) (-618 "IXAGG.spad" 982241 982265 984098 984103) (-617 "IXAGG.spad" 980229 980255 982088 982093) (-616 "IVECTOR.spad" 978846 978861 979001 979028) (-615 "ITUPLE.spad" 978007 978017 978836 978841) (-614 "ITRIGMNP.spad" 976854 976873 977997 978002) (-613 "ITFUN3.spad" 976360 976374 976844 976849) (-612 "ITFUN2.spad" 976104 976116 976350 976355) (-611 "ITFORM.spad" 975459 975467 976094 976099) (-610 "ITAYLOR.spad" 973453 973468 975323 975420) (-609 "ISUPS.spad" 965890 965905 972427 972524) (-608 "ISUMP.spad" 965391 965407 965880 965885) (-607 "ISTRING.spad" 964318 964331 964399 964426) (-606 "ISAST.spad" 964037 964045 964308 964313) (-605 "IRURPK.spad" 962754 962773 964027 964032) (-604 "IRSN.spad" 960758 960766 962744 962749) (-603 "IRRF2F.spad" 959251 959261 960714 960719) (-602 "IRREDFFX.spad" 958852 958863 959241 959246) (-601 "IROOT.spad" 957191 957201 958842 958847) (-600 "IRFORM.spad" 956515 956523 957181 957186) (-599 "IR2F.spad" 955729 955745 956505 956510) (-598 "IR2.spad" 954757 954773 955719 955724) (-597 "IR.spad" 952566 952580 954612 954639) (-596 "IPRNTPK.spad" 952326 952334 952556 952561) (-595 "IPF.spad" 951891 951903 952131 952224) (-594 "IPADIC.spad" 951660 951686 951817 951886) (-593 "IP4ADDR.spad" 951217 951225 951650 951655) (-592 "IOMODE.spad" 950739 950747 951207 951212) (-591 "IOBFILE.spad" 950124 950132 950729 950734) (-590 "IOBCON.spad" 949989 949997 950114 950119) (-589 "INVLAPLA.spad" 949638 949654 949979 949984) (-588 "INTTR.spad" 943020 943037 949628 949633) (-587 "INTTOOLS.spad" 940775 940791 942594 942599) (-586 "INTSLPE.spad" 940103 940111 940765 940770) (-585 "INTRVL.spad" 939669 939679 940017 940098) (-584 "INTRF.spad" 938101 938115 939659 939664) (-583 "INTRET.spad" 937533 937543 938091 938096) (-582 "INTRAT.spad" 936268 936285 937523 937528) (-581 "INTPM.spad" 934653 934669 935911 935916) (-580 "INTPAF.spad" 932525 932543 934585 934590) (-579 "INTPACK.spad" 923091 923099 932515 932520) (-578 "INTHERTR.spad" 922365 922382 923081 923086) (-577 "INTHERAL.spad" 922035 922059 922355 922360) (-576 "INTHEORY.spad" 918474 918482 922025 922030) (-575 "INTG0.spad" 912223 912241 918406 918411) (-574 "INTFTBL.spad" 906252 906260 912213 912218) (-573 "INTFACT.spad" 905319 905329 906242 906247) (-572 "INTEF.spad" 903728 903744 905309 905314) (-571 "INTDOM.spad" 902351 902359 903654 903723) (-570 "INTDOM.spad" 901036 901046 902341 902346) (-569 "INTCAT.spad" 899303 899313 900950 901031) (-568 "INTBIT.spad" 898810 898818 899293 899298) (-567 "INTALG.spad" 897998 898025 898800 898805) (-566 "INTAF.spad" 897498 897514 897988 897993) (-565 "INTABL.spad" 895574 895605 895737 895764) (-564 "INT8.spad" 895454 895462 895564 895569) (-563 "INT64.spad" 895333 895341 895444 895449) (-562 "INT32.spad" 895212 895220 895323 895328) (-561 "INT16.spad" 895091 895099 895202 895207) (-560 "INT.spad" 894539 894547 894945 895086) (-559 "INS.spad" 892042 892050 894441 894534) (-558 "INS.spad" 889631 889641 892032 892037) (-557 "INPSIGN.spad" 889079 889092 889621 889626) (-556 "INPRODPF.spad" 888175 888194 889069 889074) (-555 "INPRODFF.spad" 887263 887287 888165 888170) (-554 "INNMFACT.spad" 886238 886255 887253 887258) (-553 "INMODGCD.spad" 885742 885772 886228 886233) (-552 "INFSP.spad" 884039 884061 885732 885737) (-551 "INFPROD0.spad" 883119 883138 884029 884034) (-550 "INFORM1.spad" 882744 882754 883109 883114) (-549 "INFORM.spad" 879951 879959 882734 882739) (-548 "INFINITY.spad" 879503 879511 879941 879946) (-547 "INETCLTS.spad" 879480 879488 879493 879498) (-546 "INEP.spad" 878026 878048 879470 879475) (-545 "INDE.spad" 877675 877692 877936 877941) (-544 "INCRMAPS.spad" 877112 877122 877665 877670) (-543 "INBFILE.spad" 876208 876216 877102 877107) (-542 "INBFF.spad" 872058 872069 876198 876203) (-541 "INBCON.spad" 870324 870332 872048 872053) (-540 "INBCON.spad" 868588 868598 870314 870319) (-539 "INAST.spad" 868249 868257 868578 868583) (-538 "IMPTAST.spad" 867957 867965 868239 868244) (-537 "IMATRIX.spad" 866785 866811 867297 867324) (-536 "IMATQF.spad" 865879 865923 866741 866746) (-535 "IMATLIN.spad" 864500 864524 865835 865840) (-534 "ILIST.spad" 863005 863020 863530 863557) (-533 "IIARRAY2.spad" 862292 862330 862495 862522) (-532 "IFF.spad" 861702 861718 861973 862066) (-531 "IFAST.spad" 861316 861324 861692 861697) (-530 "IFARRAY.spad" 858648 858663 860346 860373) (-529 "IFAMON.spad" 858510 858527 858604 858609) (-528 "IEVALAB.spad" 857923 857935 858500 858505) (-527 "IEVALAB.spad" 857334 857348 857913 857918) (-526 "IDPOAMS.spad" 857012 857024 857246 857251) (-525 "IDPOAM.spad" 856654 856666 856924 856929) (-524 "IDPO.spad" 856389 856401 856566 856571) (-523 "IDPC.spad" 855118 855130 856379 856384) (-522 "IDPAM.spad" 854785 854797 855030 855035) (-521 "IDPAG.spad" 854454 854466 854697 854702) (-520 "IDENT.spad" 854104 854112 854444 854449) (-519 "IDECOMP.spad" 851343 851361 854094 854099) (-518 "IDEAL.spad" 846292 846331 851278 851283) (-517 "ICDEN.spad" 845505 845521 846282 846287) (-516 "ICARD.spad" 844696 844704 845495 845500) (-515 "IBPTOOLS.spad" 843303 843320 844686 844691) (-514 "IBITS.spad" 842468 842481 842901 842928) (-513 "IBATOOL.spad" 839453 839472 842458 842463) (-512 "IBACHIN.spad" 837960 837975 839443 839448) (-511 "IARRAY2.spad" 836839 836865 837450 837477) (-510 "IARRAY1.spad" 835723 835738 835869 835896) (-509 "IAN.spad" 833946 833954 835539 835632) (-508 "IALGFACT.spad" 833557 833590 833936 833941) (-507 "HYPCAT.spad" 832981 832989 833547 833552) (-506 "HYPCAT.spad" 832403 832413 832971 832976) (-505 "HOSTNAME.spad" 832219 832227 832393 832398) (-504 "HOMOTOP.spad" 831962 831972 832209 832214) (-503 "HOAGG.spad" 829244 829254 831952 831957) (-502 "HOAGG.spad" 826265 826277 828975 828980) (-501 "HEXADEC.spad" 824270 824278 824635 824728) (-500 "HEUGCD.spad" 823361 823372 824260 824265) (-499 "HELLFDIV.spad" 822967 822991 823351 823356) (-498 "HEAP.spad" 822242 822252 822457 822484) (-497 "HEADAST.spad" 821783 821791 822232 822237) (-496 "HDP.spad" 809593 809609 809970 810069) (-495 "HDMP.spad" 806807 806822 807423 807550) (-494 "HB.spad" 805082 805090 806797 806802) (-493 "HASHTBL.spad" 803110 803141 803321 803348) (-492 "HASAST.spad" 802826 802834 803100 803105) (-491 "HACKPI.spad" 802317 802325 802728 802821) (-490 "GTSET.spad" 801220 801236 801927 801954) (-489 "GSTBL.spad" 799297 799332 799471 799486) (-488 "GSERIES.spad" 796610 796637 797429 797578) (-487 "GROUP.spad" 795883 795891 796590 796605) (-486 "GROUP.spad" 795164 795174 795873 795878) (-485 "GROEBSOL.spad" 793658 793679 795154 795159) (-484 "GRMOD.spad" 792237 792249 793648 793653) (-483 "GRMOD.spad" 790814 790828 792227 792232) (-482 "GRIMAGE.spad" 783727 783735 790804 790809) (-481 "GRDEF.spad" 782106 782114 783717 783722) (-480 "GRAY.spad" 780577 780585 782096 782101) (-479 "GRALG.spad" 779670 779682 780567 780572) (-478 "GRALG.spad" 778761 778775 779660 779665) (-477 "GPOLSET.spad" 778195 778218 778407 778434) (-476 "GOSPER.spad" 777472 777490 778185 778190) (-475 "GMODPOL.spad" 776620 776647 777440 777467) (-474 "GHENSEL.spad" 775703 775717 776610 776615) (-473 "GENUPS.spad" 771996 772009 775693 775698) (-472 "GENUFACT.spad" 771573 771583 771986 771991) (-471 "GENPGCD.spad" 771175 771192 771563 771568) (-470 "GENMFACT.spad" 770627 770646 771165 771170) (-469 "GENEEZ.spad" 768586 768599 770617 770622) (-468 "GDMP.spad" 765642 765659 766416 766543) (-467 "GCNAALG.spad" 759565 759592 765436 765503) (-466 "GCDDOM.spad" 758757 758765 759491 759560) (-465 "GCDDOM.spad" 758011 758021 758747 758752) (-464 "GBINTERN.spad" 754031 754069 758001 758006) (-463 "GBF.spad" 749814 749852 754021 754026) (-462 "GBEUCLID.spad" 747696 747734 749804 749809) (-461 "GB.spad" 745222 745260 747652 747657) (-460 "GAUSSFAC.spad" 744535 744543 745212 745217) (-459 "GALUTIL.spad" 742861 742871 744491 744496) (-458 "GALPOLYU.spad" 741315 741328 742851 742856) (-457 "GALFACTU.spad" 739528 739547 741305 741310) (-456 "GALFACT.spad" 729741 729752 739518 739523) (-455 "FVFUN.spad" 726764 726772 729731 729736) (-454 "FVC.spad" 725816 725824 726754 726759) (-453 "FUNDESC.spad" 725494 725502 725806 725811) (-452 "FUNCTION.spad" 725343 725355 725484 725489) (-451 "FTEM.spad" 724508 724516 725333 725338) (-450 "FT.spad" 722805 722813 724498 724503) (-449 "FSUPFACT.spad" 721705 721724 722741 722746) (-448 "FST.spad" 719791 719799 721695 721700) (-447 "FSRED.spad" 719271 719287 719781 719786) (-446 "FSPRMELT.spad" 718137 718153 719228 719233) (-445 "FSPECF.spad" 716228 716244 718127 718132) (-444 "FSINT.spad" 715888 715904 716218 716223) (-443 "FSERIES.spad" 715079 715091 715708 715807) (-442 "FSCINT.spad" 714396 714412 715069 715074) (-441 "FSAGG2.spad" 713131 713147 714386 714391) (-440 "FSAGG.spad" 712248 712258 713087 713126) (-439 "FSAGG.spad" 711327 711339 712168 712173) (-438 "FS2UPS.spad" 705842 705876 711317 711322) (-437 "FS2EXPXP.spad" 704983 705006 705832 705837) (-436 "FS2.spad" 704638 704654 704973 704978) (-435 "FS.spad" 698906 698916 704413 704633) (-434 "FS.spad" 692952 692964 698461 698466) (-433 "FRUTIL.spad" 691906 691916 692942 692947) (-432 "FRNAALG.spad" 687183 687193 691848 691901) (-431 "FRNAALG.spad" 682472 682484 687139 687144) (-430 "FRNAAF2.spad" 681920 681938 682462 682467) (-429 "FRMOD.spad" 681330 681360 681851 681856) (-428 "FRIDEAL2.spad" 680934 680966 681320 681325) (-427 "FRIDEAL.spad" 680159 680180 680914 680929) (-426 "FRETRCT.spad" 679678 679688 680149 680154) (-425 "FRETRCT.spad" 679063 679075 679536 679541) (-424 "FRAMALG.spad" 677443 677456 679019 679058) (-423 "FRAMALG.spad" 675855 675870 677433 677438) (-422 "FRAC2.spad" 675460 675472 675845 675850) (-421 "FRAC.spad" 672482 672492 672869 673042) (-420 "FR2.spad" 671818 671830 672472 672477) (-419 "FR.spad" 665449 665459 670749 670818) (-418 "FPS.spad" 662288 662296 665339 665444) (-417 "FPS.spad" 659155 659165 662208 662213) (-416 "FPC.spad" 658201 658209 659057 659150) (-415 "FPC.spad" 657333 657343 658191 658196) (-414 "FPATMAB.spad" 657095 657105 657323 657328) (-413 "FPARFRAC.spad" 655937 655954 657085 657090) (-412 "FORTRAN.spad" 654443 654486 655927 655932) (-411 "FORTFN.spad" 651613 651621 654433 654438) (-410 "FORTCAT.spad" 651297 651305 651603 651608) (-409 "FORT.spad" 650246 650254 651287 651292) (-408 "FORMULA1.spad" 649725 649735 650236 650241) (-407 "FORMULA.spad" 647199 647207 649715 649720) (-406 "FORDER.spad" 646890 646914 647189 647194) (-405 "FOP.spad" 646091 646099 646880 646885) (-404 "FNLA.spad" 645515 645537 646059 646086) (-403 "FNCAT.spad" 644110 644118 645505 645510) (-402 "FNAME.spad" 644002 644010 644100 644105) (-401 "FMTC.spad" 643800 643808 643928 643997) (-400 "FMONOID.spad" 643481 643491 643756 643761) (-399 "FMONCAT.spad" 640650 640660 643471 643476) (-398 "FMFUN.spad" 637680 637688 640640 640645) (-397 "FMCAT.spad" 635356 635374 637648 637675) (-396 "FMC.spad" 634408 634416 635346 635351) (-395 "FM1.spad" 633773 633785 634342 634369) (-394 "FM.spad" 633388 633400 633627 633654) (-393 "FLOATRP.spad" 631131 631145 633378 633383) (-392 "FLOATCP.spad" 628570 628584 631121 631126) (-391 "FLOAT.spad" 621884 621892 628436 628565) (-390 "FLINEXP.spad" 621606 621616 621874 621879) (-389 "FLINEXP.spad" 621272 621284 621542 621547) (-388 "FLASORT.spad" 620598 620610 621262 621267) (-387 "FLALG.spad" 618268 618287 620524 620593) (-386 "FLAGG2.spad" 616985 617001 618258 618263) (-385 "FLAGG.spad" 614051 614061 616965 616980) (-384 "FLAGG.spad" 611018 611030 613934 613939) (-383 "FINRALG.spad" 609103 609116 610974 611013) (-382 "FINRALG.spad" 607114 607129 608987 608992) (-381 "FINITE.spad" 606266 606274 607104 607109) (-380 "FINAALG.spad" 595451 595461 606208 606261) (-379 "FINAALG.spad" 584648 584660 595407 595412) (-378 "FILECAT.spad" 583182 583199 584638 584643) (-377 "FILE.spad" 582765 582775 583172 583177) (-376 "FIELD.spad" 582171 582179 582667 582760) (-375 "FIELD.spad" 581663 581673 582161 582166) (-374 "FGROUP.spad" 580326 580336 581643 581658) (-373 "FGLMICPK.spad" 579121 579136 580316 580321) (-372 "FFX.spad" 578504 578519 578837 578930) (-371 "FFSLPE.spad" 578015 578036 578494 578499) (-370 "FFPOLY2.spad" 577075 577092 578005 578010) (-369 "FFPOLY.spad" 568417 568428 577065 577070) (-368 "FFP.spad" 567822 567842 568133 568226) (-367 "FFNBX.spad" 566342 566362 567538 567631) (-366 "FFNBP.spad" 564863 564880 566058 566151) (-365 "FFNB.spad" 563328 563349 564544 564637) (-364 "FFINTBAS.spad" 560842 560861 563318 563323) (-363 "FFIELDC.spad" 558427 558435 560744 560837) (-362 "FFIELDC.spad" 556098 556108 558417 558422) (-361 "FFHOM.spad" 554870 554887 556088 556093) (-360 "FFF.spad" 552313 552324 554860 554865) (-359 "FFCGX.spad" 551168 551188 552029 552122) (-358 "FFCGP.spad" 550065 550085 550884 550977) (-357 "FFCG.spad" 548857 548878 549746 549839) (-356 "FFCAT2.spad" 548604 548644 548847 548852) (-355 "FFCAT.spad" 541769 541791 548443 548599) (-354 "FFCAT.spad" 535013 535037 541689 541694) (-353 "FF.spad" 534461 534477 534694 534787) (-352 "FEXPR.spad" 526170 526216 534217 534256) (-351 "FEVALAB.spad" 525878 525888 526160 526165) (-350 "FEVALAB.spad" 525371 525383 525655 525660) (-349 "FDIVCAT.spad" 523467 523491 525361 525366) (-348 "FDIVCAT.spad" 521561 521587 523457 523462) (-347 "FDIV2.spad" 521217 521257 521551 521556) (-346 "FDIV.spad" 520675 520699 521207 521212) (-345 "FCTRDATA.spad" 519683 519691 520665 520670) (-344 "FCPAK1.spad" 518218 518226 519673 519678) (-343 "FCOMP.spad" 517597 517607 518208 518213) (-342 "FC.spad" 507604 507612 517587 517592) (-341 "FAXF.spad" 500639 500653 507506 507599) (-340 "FAXF.spad" 493726 493742 500595 500600) (-339 "FARRAY.spad" 491723 491733 492756 492783) (-338 "FAMR.spad" 489867 489879 491621 491718) (-337 "FAMR.spad" 487995 488009 489751 489756) (-336 "FAMONOID.spad" 487679 487689 487949 487954) (-335 "FAMONC.spad" 485999 486011 487669 487674) (-334 "FAGROUP.spad" 485639 485649 485895 485922) (-333 "FACUTIL.spad" 483851 483868 485629 485634) (-332 "FACTFUNC.spad" 483053 483063 483841 483846) (-331 "EXPUPXS.spad" 479886 479909 481185 481334) (-330 "EXPRTUBE.spad" 477174 477182 479876 479881) (-329 "EXPRODE.spad" 474342 474358 477164 477169) (-328 "EXPR2UPS.spad" 470464 470477 474332 474337) (-327 "EXPR2.spad" 470169 470181 470454 470459) (-326 "EXPR.spad" 465344 465354 466058 466353) (-325 "EXPEXPAN.spad" 462145 462170 462777 462870) (-324 "EXITAST.spad" 461881 461889 462135 462140) (-323 "EXIT.spad" 461552 461560 461871 461876) (-322 "EVALCYC.spad" 461012 461026 461542 461547) (-321 "EVALAB.spad" 460592 460602 461002 461007) (-320 "EVALAB.spad" 460170 460182 460582 460587) (-319 "EUCDOM.spad" 457760 457768 460096 460165) (-318 "EUCDOM.spad" 455412 455422 457750 457755) (-317 "ESTOOLS2.spad" 455007 455021 455402 455407) (-316 "ESTOOLS1.spad" 454684 454695 454997 455002) (-315 "ESTOOLS.spad" 446562 446570 454674 454679) (-314 "ESCONT1.spad" 446303 446315 446552 446557) (-313 "ESCONT.spad" 443096 443104 446293 446298) (-312 "ES2.spad" 442609 442625 443086 443091) (-311 "ES1.spad" 442179 442195 442599 442604) (-310 "ES.spad" 435050 435058 442169 442174) (-309 "ES.spad" 427827 427837 434948 434953) (-308 "ERROR.spad" 425154 425162 427817 427822) (-307 "EQTBL.spad" 423184 423206 423393 423420) (-306 "EQ2.spad" 422902 422914 423174 423179) (-305 "EQ.spad" 417699 417709 420494 420606) (-304 "EP.spad" 414025 414035 417689 417694) (-303 "ENV.spad" 412703 412711 414015 414020) (-302 "ENTIRER.spad" 412371 412379 412647 412698) (-301 "EMR.spad" 411659 411700 412297 412366) (-300 "ELTAGG.spad" 409913 409932 411649 411654) (-299 "ELTAGG.spad" 408131 408152 409869 409874) (-298 "ELTAB.spad" 407606 407619 408121 408126) (-297 "ELFUTS.spad" 407041 407060 407596 407601) (-296 "ELEMFUN.spad" 406730 406738 407031 407036) (-295 "ELEMFUN.spad" 406417 406427 406720 406725) (-294 "ELAGG.spad" 404388 404398 406397 406412) (-293 "ELAGG.spad" 402296 402308 404307 404312) (-292 "ELABOR.spad" 401642 401650 402286 402291) (-291 "ELABEXPR.spad" 400574 400582 401632 401637) (-290 "EFUPXS.spad" 397350 397380 400530 400535) (-289 "EFULS.spad" 394186 394209 397306 397311) (-288 "EFSTRUC.spad" 392201 392217 394176 394181) (-287 "EF.spad" 386977 386993 392191 392196) (-286 "EAB.spad" 385277 385285 386967 386972) (-285 "E04UCFA.spad" 384813 384821 385267 385272) (-284 "E04NAFA.spad" 384390 384398 384803 384808) (-283 "E04MBFA.spad" 383970 383978 384380 384385) (-282 "E04JAFA.spad" 383506 383514 383960 383965) (-281 "E04GCFA.spad" 383042 383050 383496 383501) (-280 "E04FDFA.spad" 382578 382586 383032 383037) (-279 "E04DGFA.spad" 382114 382122 382568 382573) (-278 "E04AGNT.spad" 377988 377996 382104 382109) (-277 "DVARCAT.spad" 374878 374888 377978 377983) (-276 "DVARCAT.spad" 371766 371778 374868 374873) (-275 "DSMP.spad" 369140 369154 369445 369572) (-274 "DSEXT.spad" 368442 368452 369130 369135) (-273 "DSEXT.spad" 367651 367663 368341 368346) (-272 "DROPT1.spad" 367316 367326 367641 367646) (-271 "DROPT0.spad" 362181 362189 367306 367311) (-270 "DROPT.spad" 356140 356148 362171 362176) (-269 "DRAWPT.spad" 354313 354321 356130 356135) (-268 "DRAWHACK.spad" 353621 353631 354303 354308) (-267 "DRAWCX.spad" 351099 351107 353611 353616) (-266 "DRAWCURV.spad" 350646 350661 351089 351094) (-265 "DRAWCFUN.spad" 340178 340186 350636 350641) (-264 "DRAW.spad" 333054 333067 340168 340173) (-263 "DQAGG.spad" 331232 331242 333022 333049) (-262 "DPOLCAT.spad" 326589 326605 331100 331227) (-261 "DPOLCAT.spad" 322032 322050 326545 326550) (-260 "DPMO.spad" 313792 313808 313930 314143) (-259 "DPMM.spad" 305565 305583 305690 305903) (-258 "DOMTMPLT.spad" 305336 305344 305555 305560) (-257 "DOMCTOR.spad" 305091 305099 305326 305331) (-256 "DOMAIN.spad" 304202 304210 305081 305086) (-255 "DMP.spad" 301462 301477 302032 302159) (-254 "DMEXT.spad" 301329 301339 301430 301457) (-253 "DLP.spad" 300689 300699 301319 301324) (-252 "DLIST.spad" 299115 299125 299719 299746) (-251 "DLAGG.spad" 297532 297542 299105 299110) (-250 "DIVRING.spad" 297074 297082 297476 297527) (-249 "DIVRING.spad" 296660 296670 297064 297069) (-248 "DISPLAY.spad" 294850 294858 296650 296655) (-247 "DIRPROD2.spad" 293668 293686 294840 294845) (-246 "DIRPROD.spad" 281215 281231 281855 281954) (-245 "DIRPCAT.spad" 280408 280424 281111 281210) (-244 "DIRPCAT.spad" 279228 279246 279933 279938) (-243 "DIOSP.spad" 278053 278061 279218 279223) (-242 "DIOPS.spad" 277049 277059 278033 278048) (-241 "DIOPS.spad" 276019 276031 277005 277010) (-240 "DIFRING.spad" 275857 275865 275999 276014) (-239 "DIFFSPC.spad" 275436 275444 275847 275852) (-238 "DIFFSPC.spad" 275013 275023 275426 275431) (-237 "DIFFMOD.spad" 274502 274512 274981 275008) (-236 "DIFFDOM.spad" 273667 273678 274492 274497) (-235 "DIFFDOM.spad" 272830 272843 273657 273662) (-234 "DIFEXT.spad" 272649 272659 272810 272825) (-233 "DIAGG.spad" 272279 272289 272629 272644) (-232 "DIAGG.spad" 271917 271929 272269 272274) (-231 "DHMATRIX.spad" 270112 270122 271257 271284) (-230 "DFSFUN.spad" 263752 263760 270102 270107) (-229 "DFLOAT.spad" 260483 260491 263642 263747) (-228 "DFINTTLS.spad" 258714 258730 260473 260478) (-227 "DERHAM.spad" 256628 256660 258694 258709) (-226 "DEQUEUE.spad" 255835 255845 256118 256145) (-225 "DEGRED.spad" 255452 255466 255825 255830) (-224 "DEFINTRF.spad" 252989 252999 255442 255447) (-223 "DEFINTEF.spad" 251499 251515 252979 252984) (-222 "DEFAST.spad" 250883 250891 251489 251494) (-221 "DECIMAL.spad" 248892 248900 249253 249346) (-220 "DDFACT.spad" 246713 246730 248882 248887) (-219 "DBLRESP.spad" 246313 246337 246703 246708) (-218 "DBASIS.spad" 245939 245954 246303 246308) (-217 "DBASE.spad" 244603 244613 245929 245934) (-216 "DATAARY.spad" 244089 244102 244593 244598) (-215 "D03FAFA.spad" 243917 243925 244079 244084) (-214 "D03EEFA.spad" 243737 243745 243907 243912) (-213 "D03AGNT.spad" 242823 242831 243727 243732) (-212 "D02EJFA.spad" 242285 242293 242813 242818) (-211 "D02CJFA.spad" 241763 241771 242275 242280) (-210 "D02BHFA.spad" 241253 241261 241753 241758) (-209 "D02BBFA.spad" 240743 240751 241243 241248) (-208 "D02AGNT.spad" 235613 235621 240733 240738) (-207 "D01WGTS.spad" 233932 233940 235603 235608) (-206 "D01TRNS.spad" 233909 233917 233922 233927) (-205 "D01GBFA.spad" 233431 233439 233899 233904) (-204 "D01FCFA.spad" 232953 232961 233421 233426) (-203 "D01ASFA.spad" 232421 232429 232943 232948) (-202 "D01AQFA.spad" 231875 231883 232411 232416) (-201 "D01APFA.spad" 231315 231323 231865 231870) (-200 "D01ANFA.spad" 230809 230817 231305 231310) (-199 "D01AMFA.spad" 230319 230327 230799 230804) (-198 "D01ALFA.spad" 229859 229867 230309 230314) (-197 "D01AKFA.spad" 229385 229393 229849 229854) (-196 "D01AJFA.spad" 228908 228916 229375 229380) (-195 "D01AGNT.spad" 224975 224983 228898 228903) (-194 "CYCLOTOM.spad" 224481 224489 224965 224970) (-193 "CYCLES.spad" 221273 221281 224471 224476) (-192 "CVMP.spad" 220690 220700 221263 221268) (-191 "CTRIGMNP.spad" 219190 219206 220680 220685) (-190 "CTORKIND.spad" 218793 218801 219180 219185) (-189 "CTORCAT.spad" 218034 218042 218783 218788) (-188 "CTORCAT.spad" 217273 217283 218024 218029) (-187 "CTORCALL.spad" 216862 216872 217263 217268) (-186 "CTOR.spad" 216553 216561 216852 216857) (-185 "CSTTOOLS.spad" 215798 215811 216543 216548) (-184 "CRFP.spad" 209570 209583 215788 215793) (-183 "CRCEAST.spad" 209290 209298 209560 209565) (-182 "CRAPACK.spad" 208357 208367 209280 209285) (-181 "CPMATCH.spad" 207861 207876 208282 208287) (-180 "CPIMA.spad" 207566 207585 207851 207856) (-179 "COORDSYS.spad" 202575 202585 207556 207561) (-178 "CONTOUR.spad" 202002 202010 202565 202570) (-177 "CONTFRAC.spad" 197752 197762 201904 201997) (-176 "CONDUIT.spad" 197510 197518 197742 197747) (-175 "COMRING.spad" 197184 197192 197448 197505) (-174 "COMPPROP.spad" 196702 196710 197174 197179) (-173 "COMPLPAT.spad" 196469 196484 196692 196697) (-172 "COMPLEX2.spad" 196184 196196 196459 196464) (-171 "COMPLEX.spad" 191561 191571 191805 192066) (-170 "COMPILER.spad" 191110 191118 191551 191556) (-169 "COMPFACT.spad" 190712 190726 191100 191105) (-168 "COMPCAT.spad" 188784 188794 190446 190707) (-167 "COMPCAT.spad" 186584 186596 188248 188253) (-166 "COMMUPC.spad" 186332 186350 186574 186579) (-165 "COMMONOP.spad" 185865 185873 186322 186327) (-164 "COMMAAST.spad" 185628 185636 185855 185860) (-163 "COMM.spad" 185439 185447 185618 185623) (-162 "COMBOPC.spad" 184362 184370 185429 185434) (-161 "COMBINAT.spad" 183129 183139 184352 184357) (-160 "COMBF.spad" 180551 180567 183119 183124) (-159 "COLOR.spad" 179388 179396 180541 180546) (-158 "COLONAST.spad" 179054 179062 179378 179383) (-157 "CMPLXRT.spad" 178765 178782 179044 179049) (-156 "CLLCTAST.spad" 178427 178435 178755 178760) (-155 "CLIP.spad" 174535 174543 178417 178422) (-154 "CLIF.spad" 173190 173206 174491 174530) (-153 "CLAGG.spad" 169727 169737 173180 173185) (-152 "CLAGG.spad" 166135 166147 169590 169595) (-151 "CINTSLPE.spad" 165490 165503 166125 166130) (-150 "CHVAR.spad" 163628 163650 165480 165485) (-149 "CHARZ.spad" 163543 163551 163608 163623) (-148 "CHARPOL.spad" 163069 163079 163533 163538) (-147 "CHARNZ.spad" 162822 162830 163049 163064) (-146 "CHAR.spad" 160190 160198 162812 162817) (-145 "CFCAT.spad" 159518 159526 160180 160185) (-144 "CDEN.spad" 158738 158752 159508 159513) (-143 "CCLASS.spad" 156849 156857 158111 158150) (-142 "CATEGORY.spad" 155923 155931 156839 156844) (-141 "CATCTOR.spad" 155814 155822 155913 155918) (-140 "CATAST.spad" 155440 155448 155804 155809) (-139 "CASEAST.spad" 155154 155162 155430 155435) (-138 "CARTEN2.spad" 154544 154571 155144 155149) (-137 "CARTEN.spad" 149911 149935 154534 154539) (-136 "CARD.spad" 147206 147214 149885 149906) (-135 "CAPSLAST.spad" 146988 146996 147196 147201) (-134 "CACHSET.spad" 146612 146620 146978 146983) (-133 "CABMON.spad" 146167 146175 146602 146607) (-132 "BYTEORD.spad" 145842 145850 146157 146162) (-131 "BYTEBUF.spad" 143564 143572 144850 144877) (-130 "BYTE.spad" 143039 143047 143554 143559) (-129 "BTREE.spad" 141995 142005 142529 142556) (-128 "BTOURN.spad" 140883 140893 141485 141512) (-127 "BTCAT.spad" 140275 140285 140851 140878) (-126 "BTCAT.spad" 139687 139699 140265 140270) (-125 "BTAGG.spad" 139153 139161 139655 139682) (-124 "BTAGG.spad" 138639 138649 139143 139148) (-123 "BSTREE.spad" 137263 137273 138129 138156) (-122 "BRILL.spad" 135468 135479 137253 137258) (-121 "BRAGG.spad" 134424 134434 135458 135463) (-120 "BRAGG.spad" 133344 133356 134380 134385) (-119 "BPADICRT.spad" 131226 131238 131473 131566) (-118 "BPADIC.spad" 130898 130910 131152 131221) (-117 "BOUNDZRO.spad" 130554 130571 130888 130893) (-116 "BOP1.spad" 128012 128022 130544 130549) (-115 "BOP.spad" 123146 123154 128002 128007) (-114 "BOOLEAN.spad" 122584 122592 123136 123141) (-113 "BOOLE.spad" 122234 122242 122574 122579) (-112 "BOOLE.spad" 121882 121892 122224 122229) (-111 "BMODULE.spad" 121594 121606 121850 121877) (-110 "BITS.spad" 120977 120985 121192 121219) (-109 "BINDING.spad" 120398 120406 120967 120972) (-108 "BINARY.spad" 118412 118420 118768 118861) (-107 "BGAGG.spad" 117617 117627 118392 118407) (-106 "BGAGG.spad" 116830 116842 117607 117612) (-105 "BFUNCT.spad" 116394 116402 116810 116825) (-104 "BEZOUT.spad" 115534 115561 116344 116349) (-103 "BBTREE.spad" 112294 112304 115024 115051) (-102 "BASTYPE.spad" 111790 111798 112284 112289) (-101 "BASTYPE.spad" 111284 111294 111780 111785) (-100 "BALFACT.spad" 110743 110756 111274 111279) (-99 "AUTOMOR.spad" 110194 110203 110723 110738) (-98 "ATTREG.spad" 106917 106924 109946 110189) (-97 "ATTRBUT.spad" 102940 102947 106897 106912) (-96 "ATTRAST.spad" 102657 102664 102930 102935) (-95 "ATRIG.spad" 102127 102134 102647 102652) (-94 "ATRIG.spad" 101595 101604 102117 102122) (-93 "ASTCAT.spad" 101499 101506 101585 101590) (-92 "ASTCAT.spad" 101401 101410 101489 101494) (-91 "ASTACK.spad" 100623 100632 100891 100918) (-90 "ASSOCEQ.spad" 99457 99468 100579 100584) (-89 "ASP9.spad" 98538 98551 99447 99452) (-88 "ASP80.spad" 97860 97873 98528 98533) (-87 "ASP8.spad" 96903 96916 97850 97855) (-86 "ASP78.spad" 96354 96367 96893 96898) (-85 "ASP77.spad" 95723 95736 96344 96349) (-84 "ASP74.spad" 94815 94828 95713 95718) (-83 "ASP73.spad" 94086 94099 94805 94810) (-82 "ASP7.spad" 93246 93259 94076 94081) (-81 "ASP6.spad" 92113 92126 93236 93241) (-80 "ASP55.spad" 90622 90635 92103 92108) (-79 "ASP50.spad" 88439 88452 90612 90617) (-78 "ASP49.spad" 87438 87451 88429 88434) (-77 "ASP42.spad" 85853 85892 87428 87433) (-76 "ASP41.spad" 84440 84479 85843 85848) (-75 "ASP4.spad" 83735 83748 84430 84435) (-74 "ASP35.spad" 82723 82736 83725 83730) (-73 "ASP34.spad" 82024 82037 82713 82718) (-72 "ASP33.spad" 81584 81597 82014 82019) (-71 "ASP31.spad" 80724 80737 81574 81579) (-70 "ASP30.spad" 79616 79629 80714 80719) (-69 "ASP29.spad" 79082 79095 79606 79611) (-68 "ASP28.spad" 70355 70368 79072 79077) (-67 "ASP27.spad" 69252 69265 70345 70350) (-66 "ASP24.spad" 68339 68352 69242 69247) (-65 "ASP20.spad" 67803 67816 68329 68334) (-64 "ASP19.spad" 62489 62502 67793 67798) (-63 "ASP12.spad" 61903 61916 62479 62484) (-62 "ASP10.spad" 61174 61187 61893 61898) (-61 "ASP1.spad" 60555 60568 61164 61169) (-60 "ARRAY2.spad" 59806 59815 60045 60072) (-59 "ARRAY12.spad" 58519 58530 59796 59801) (-58 "ARRAY1.spad" 57203 57212 57549 57576) (-57 "ARR2CAT.spad" 52985 53006 57171 57198) (-56 "ARR2CAT.spad" 48787 48810 52975 52980) (-55 "ARITY.spad" 48159 48166 48777 48782) (-54 "APPRULE.spad" 47443 47465 48149 48154) (-53 "APPLYORE.spad" 47062 47075 47433 47438) (-52 "ANY1.spad" 46133 46142 47052 47057) (-51 "ANY.spad" 44984 44991 46123 46128) (-50 "ANTISYM.spad" 43429 43445 44964 44979) (-49 "ANON.spad" 43138 43145 43419 43424) (-48 "AN.spad" 41447 41454 42954 43047) (-47 "AMR.spad" 39632 39643 41345 41442) (-46 "AMR.spad" 37654 37667 39369 39374) (-45 "ALIST.spad" 34554 34575 34904 34931) (-44 "ALGSC.spad" 33689 33715 34426 34479) (-43 "ALGPKG.spad" 29472 29483 33645 33650) (-42 "ALGMFACT.spad" 28665 28679 29462 29467) (-41 "ALGMANIP.spad" 26155 26170 28498 28503) (-40 "ALGFF.spad" 23796 23823 24013 24169) (-39 "ALGFACT.spad" 22915 22925 23786 23791) (-38 "ALGEBRA.spad" 22748 22757 22871 22910) (-37 "ALGEBRA.spad" 22613 22624 22738 22743) (-36 "ALAGG.spad" 22125 22146 22581 22608) (-35 "AHYP.spad" 21506 21513 22115 22120) (-34 "AGG.spad" 19839 19846 21496 21501) (-33 "AGG.spad" 18136 18145 19795 19800) (-32 "AF.spad" 16567 16582 18071 18076) (-31 "ADDAST.spad" 16253 16260 16557 16562) (-30 "ACPLOT.spad" 14844 14851 16243 16248) (-29 "ACFS.spad" 12701 12710 14746 14839) (-28 "ACFS.spad" 10644 10655 12691 12696) (-27 "ACF.spad" 7398 7405 10546 10639) (-26 "ACF.spad" 4238 4247 7388 7393) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index 6bbb3565..27cdaaa6 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,15 +1,15 @@
-(205732 . 3500593103)
-(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((#0=(-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) #0#) |has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))))
-((((-560)) . T) (($) -2304 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-571))) (((-421 (-560))) -2304 (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-1069 (-421 (-560))))) ((|#1|) . T))
+(205732 . 3501779190)
+(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((#0=(-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) #0#) |has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))))
+((((-560)) . T) (($) -2196 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-571))) (((-421 (-560))) -2196 (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-1069 (-421 (-560))))) ((|#1|) . T))
(((|#2| |#2|) . T))
((((-560)) . T))
-((($ $) -2304 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))) ((|#2| |#2|) . T) ((#0=(-421 (-560)) #0#) |has| |#2| (-38 (-421 (-560)))))
+((($ $) -2196 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))) ((|#2| |#2|) . T) ((#0=(-421 (-560)) #0#) |has| |#2| (-38 (-421 (-560)))))
((($) . T))
(((|#1|) . T))
((($) . T) (((-560)) |has| |#1| (-660 (-560))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(((|#2|) . T))
-((($) -2304 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))) ((|#2|) . T) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))) ((|#2|) . T) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))))
(|has| |#1| (-939))
((((-887)) . T))
((((-887)) . T))
@@ -23,23 +23,23 @@
((((-549)) . T) (((-1189)) . T) (((-229)) . T) (((-391)) . T) (((-915 (-391))) . T))
(((|#1|) . T))
((((-229)) . T) (((-887)) . T))
-(-2304 (|has| |#2| (-815)) (|has| |#2| (-871)))
-(-2304 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871))))
+(-2196 (|has| |#2| (-815)) (|has| |#2| (-871)))
+(-2196 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871))))
(((|#1|) . T))
(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
-(-2304 (|has| |#1| (-21)) (|has| |#1| (-870)))
-((($ $) . T) ((#0=(-421 (-560)) #0#) -2304 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1| |#1|) . T))
-(-2304 (|has| |#1| (-842)) (|has| |#1| (-871)))
+(-2196 (|has| |#1| (-21)) (|has| |#1| (-870)))
+((($ $) . T) ((#0=(-421 (-560)) #0#) -2196 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1| |#1|) . T))
+(-2196 (|has| |#1| (-842)) (|has| |#1| (-871)))
((((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) (((-560)) |has| |#1| (-1069 (-560))) ((|#1|) . T))
((((-887)) . T))
((((-887)) . T))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-571)))
(|has| |#1| (-870))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
((((-326 |#1|)) . T) (((-560)) . T) (($) . T))
(((|#1| |#2| |#3|) . T))
((((-560)) . T) (((-893 |#1|)) . T) (($) . T) (((-421 (-560))) . T))
-((($) . T) (((-421 (-560))) -2304 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
+((($) . T) (((-421 (-560))) -2196 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
((((-421 (-560))) . T) (((-721)) . T) (($) . T))
((((-887)) . T))
((((-1212)) . T))
@@ -52,14 +52,14 @@
(((|#1|) . T) ((|#2|) . T))
((((-1212)) . T))
(((|#1|) . T) (((-560)) |has| |#1| (-1069 (-560))) (((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))))
-(-2304 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
-(((|#2| (-496 (-1553 |#1|) (-793))) . T))
-((((-1207)) -2304 (|has| (-421 |#2|) (-927 (-1207))) (|has| (-421 |#2|) (-929 (-1207)))))
+(-2196 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(((|#2| (-496 (-2256 |#1|) (-793))) . T))
+((((-1207)) -2196 (|has| (-421 |#2|) (-927 (-1207))) (|has| (-421 |#2|) (-929 (-1207)))))
(((|#1| (-545 (-1207))) . T))
((((-1189)) . T) (((-987 (-130))) . T) (((-887)) . T))
((((-887)) . T))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
(((#0=(-893 |#1|) #0#) . T) ((#1=(-421 (-560)) #1#) . T) (($ $) . T))
(|has| |#4| (-381))
(|has| |#3| (-381))
@@ -75,14 +75,14 @@
(|has| |#1| (-147))
(|has| |#1| (-149))
(|has| |#1| (-571))
-((((-560)) . T) (((-421 (-560))) -2304 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1069 (-421 (-560))))) ((|#2|) . T) (($) -2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))) (((-888 |#1|)) . T))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-571)))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-571)))
-((((-2 (|:| -3128 |#1|) (|:| -3205 |#2|))) . T))
+((((-560)) . T) (((-421 (-560))) -2196 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1069 (-421 (-560))))) ((|#2|) . T) (($) -2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))) (((-888 |#1|)) . T))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-571)))
+((((-2 (|:| -1591 |#1|) (|:| -2030 |#2|))) . T))
((($) . T))
((((-887)) |has| |#1| (-632 (-887))) ((|#1|) . T))
-((((-560)) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ((|#1|) . T) (($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) (((-1207)) . T))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-871)) (|has| |#1| (-1132))))
+((((-560)) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ((|#1|) . T) (($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) (((-1207)) . T))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-871)) (|has| |#1| (-1132))))
((((-549)) |has| |#1| (-633 (-549))))
((((-1207)) . T))
(((|#1|) . T))
@@ -103,12 +103,12 @@
((((-887)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((#0=(-421 (-560)) #0#) |has| |#2| (-38 (-421 (-560)))) ((|#2| |#2|) . T) (($ $) -2304 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+(((#0=(-421 (-560)) #0#) |has| |#2| (-38 (-421 (-560)))) ((|#2| |#2|) . T) (($ $) -2196 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
(|has| |#1| (-1132))
(((|#1|) . T))
((((-118 |#1|)) . T) (($) . T) (((-421 (-560))) . T))
-((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
-((($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+((($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(((|#1|) . T) (((-421 (-560))) . T) (($) . T))
((((-118 |#1|)) . T) (((-421 (-560))) . T) (($) . T))
(((|#1|) . T) (((-421 (-560))) . T) (($) . T))
@@ -116,14 +116,14 @@
((((-421 (-560))) . T) (($) . T) (((-560)) . T))
((($) . T) (((-560)) . T) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T))
(((|#2|) . T) (((-560)) . T) ((|#6|) . T))
-((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -2304 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -2196 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) (((-560)) . T) (($) . T))
((((-560)) . T) (($) . T) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
-((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
-(((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))) ((|#1| |#1|) . T) (($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
+((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
+(((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))) ((|#1| |#1|) . T) (($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
((($ $) . T))
((($) . T))
((((-560)) . T) (($) . T) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
@@ -132,30 +132,30 @@
(|has| |#1| (-381))
(((|#1|) . T))
((((-887)) . T))
-((((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)) (($) . T) ((|#1|) . T))
+((((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)) (($) . T) ((|#1|) . T))
(((|#1|) . T))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
-(((|#1|) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
+(((|#1|) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) . T))
(((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) (($) . T))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1132)))
((((-560)) . T))
((((-887)) . T))
(((|#1| |#2|) . T))
-(-2304 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)))
-(-2304 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)))
-((($) -2304 (|has| |#1| (-240)) (|has| |#1| (-239))))
+(-2196 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)))
+(-2196 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)))
+((($) -2196 (|has| |#1| (-240)) (|has| |#1| (-239))))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
(|has| |#1| (-571))
(((|#1|) . T) (((-560)) . T) (($) . T))
((((-421 |#2|)) . T) (((-421 (-560))) . T) (($) . T))
-(-2304 (|has| |#1| (-21)) (|has| |#1| (-870)))
+(-2196 (|has| |#1| (-21)) (|has| |#1| (-870)))
((($ $) . T) ((#0=(-421 (-560)) #0#) . T))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571)))
-(-2304 (|has| |#1| (-871)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-871)) (|has| |#1| (-1132)))
(|has| |#1| (-1132))
-(-2304 (|has| |#1| (-871)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-871)) (|has| |#1| (-1132)))
(|has| |#1| (-1132))
-(-2304 (|has| |#1| (-871)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-871)) (|has| |#1| (-1132)))
(|has| |#1| (-870))
(((|#1| |#1|) . T))
((($) . T) (((-421 (-560))) . T))
@@ -170,12 +170,12 @@
(|has| |#3| (-815))
(|has| |#3| (-815))
(((|#1| |#2|) . T))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-363)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-363)))
((((-1212)) . T))
(((|#1| |#2|) . T))
(((|#2| |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) (((-1207) |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-528 (-1207) |#2|))))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-1132)))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-1132)))
((((-560)) . T) (((-421 (-560))) . T))
(((|#1| (-1207) (-1119 (-1207)) (-545 (-1119 (-1207)))) . T))
((((-560) |#1|) . T))
@@ -195,29 +195,29 @@
((((-1189) |#1|) . T))
((((-1264 (-560)) $) . T) (((-560) (-130)) . T))
(((|#1|) . T))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
(((|#3| (-793)) . T))
(|has| |#1| (-149))
(|has| |#1| (-147))
((($) . T) (((-421 (-560))) . T))
((($) . T))
((($) . T))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571)))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571)))
((((-421 (-560))) . T) (($) . T))
((($) . T))
((($) . T))
(|has| |#1| (-1132))
((((-421 (-560))) . T) (((-560)) . T))
((((-560)) . T) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))))
-((((-560)) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ((|#1|) . T) (($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#2|) . T))
+((((-560)) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ((|#1|) . T) (($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#2|) . T))
((((-1207) |#2|) |has| |#2| (-528 (-1207) |#2|)) ((|#2| |#2|) |has| |#2| (-321 |#2|)))
((((-421 (-560))) . T) (((-560)) . T))
-((((-560)) . T) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) (((-1113)) . T) ((|#1|) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))))
+((((-560)) . T) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) (((-1113)) . T) ((|#1|) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))))
(((|#1|) . T) (($) . T))
((((-560)) . T))
((((-560)) . T))
-((($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175)))
+((($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175)))
((((-560)) . T))
((((-560)) . T))
((((-421 (-560))) . T) (($) . T))
@@ -228,7 +228,7 @@
(((|#1|) . T))
(|has| |#2| (-376))
((((-1264 (-560)) $) . T) (((-560) |#1|) . T))
-((($) -2304 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-239))))
+((($) -2196 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-239))))
((($) . T) (((-560)) . T) (((-421 (-560))) . T))
(((|#1| |#2|) . T))
((((-887)) . T))
@@ -241,13 +241,13 @@
((((-887)) . T))
((((-887)) . T))
(((|#1| |#1|) . T))
-(((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))) ((|#1| |#1|) . T) (($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
-((($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))))
+(((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))) ((|#1| |#1|) . T) (($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
+((($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))))
(((|#1|) . T))
(((|#1|) . T))
-((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
-(((|#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))) (($) |has| |#2| (-1080)) (((-560)) -12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))))
+((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+(((|#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))) (($) |has| |#2| (-1080)) (((-560)) -12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))))
((((-887)) . T))
((((-887)) . T))
((((-887)) . T))
@@ -258,10 +258,10 @@
((((-171 (-229))) |has| |#1| (-1051)) (((-171 (-391))) |has| |#1| (-1051)) (((-549)) |has| |#1| (-633 (-549))) (((-1201 |#1|)) . T) (((-915 (-560))) |has| |#1| (-633 (-915 (-560)))) (((-915 (-391))) |has| |#1| (-633 (-915 (-391)))))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
(((|#1|) . T))
-(-2304 (|has| |#1| (-21)) (|has| |#1| (-870)))
-(-2304 (|has| |#1| (-21)) (|has| |#1| (-870)))
-((((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175)))
-(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))))
+(-2196 (|has| |#1| (-21)) (|has| |#1| (-870)))
+(-2196 (|has| |#1| (-21)) (|has| |#1| (-870)))
+((((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175)))
+(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))))
(|has| |#1| (-376))
((((-887)) . T))
((($) . T))
@@ -269,7 +269,7 @@
((((-130)) . T))
(-12 (|has| |#4| (-240)) (|has| |#4| (-1080)))
(-12 (|has| |#3| (-240)) (|has| |#3| (-1080)))
-((($) -2304 (|has| |#2| (-240)) (|has| |#2| (-239))))
+((($) -2196 (|has| |#2| (-240)) (|has| |#2| (-239))))
(|has| |#4| (-1080))
(|has| |#3| (-1080))
((((-887)) . T) (((-1212)) . T))
@@ -280,45 +280,45 @@
(((|#1|) . T))
((((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) (((-560)) |has| |#1| (-1069 (-560))) ((|#1|) . T))
(((|#1|) . T) (((-560)) |has| |#1| (-660 (-560))))
-(((|#2|) . T) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) . T))
+(((|#2|) . T) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) . T))
(|has| |#1| (-571))
-((((-560)) -2304 (-12 (|has| |#4| (-1069 (-560))) (|has| |#4| (-1132))) (|has| |#4| (-1080))) ((|#4|) |has| |#4| (-1132)) (((-421 (-560))) -12 (|has| |#4| (-1069 (-421 (-560)))) (|has| |#4| (-1132))))
-((((-560)) -2304 (-12 (|has| |#3| (-1069 (-560))) (|has| |#3| (-1132))) (|has| |#3| (-1080))) ((|#3|) |has| |#3| (-1132)) (((-421 (-560))) -12 (|has| |#3| (-1069 (-421 (-560)))) (|has| |#3| (-1132))))
+((((-560)) -2196 (-12 (|has| |#4| (-1069 (-560))) (|has| |#4| (-1132))) (|has| |#4| (-1080))) ((|#4|) |has| |#4| (-1132)) (((-421 (-560))) -12 (|has| |#4| (-1069 (-421 (-560)))) (|has| |#4| (-1132))))
+((((-560)) -2196 (-12 (|has| |#3| (-1069 (-560))) (|has| |#3| (-1132))) (|has| |#3| (-1080))) ((|#3|) |has| |#3| (-1132)) (((-421 (-560))) -12 (|has| |#3| (-1069 (-421 (-560)))) (|has| |#3| (-1132))))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
(|has| |#1| (-571))
-(-2304 (|has| |#1| (-871)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-871)) (|has| |#1| (-1132)))
(((|#1|) . T))
(|has| |#1| (-571))
((((-888 |#1|)) . T))
(|has| |#1| (-571))
(|has| |#1| (-571))
(((|#2|) . T))
-((((-1207)) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (((-1113)) . T))
+((((-1207)) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (((-1113)) . T))
((((-721)) . T))
(((|#1|) . T))
-((((-1207)) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (((-1119 (-1207))) . T))
+((((-1207)) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (((-1119 (-1207))) . T))
(-12 (|has| |#1| (-1033)) (|has| |#1| (-1233)))
((((-421 |#2|)) . T) (((-421 (-560))) . T) (($) . T))
(((|#2|) . T) (($) . T) (((-421 (-560))) . T))
((((-421 |#2|)) . T) (((-421 (-560))) . T) (($) . T))
(-12 (|has| |#1| (-1132)) (|has| |#2| (-1132)))
((($) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T))
-((((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) . T))
+((((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) . T))
(((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) (($) . T))
-(((|#4| |#4|) -2304 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1080))))
-(((|#3| |#3|) -2304 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080))))
+(((|#4| |#4|) -2196 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1080))))
+(((|#3| |#3|) -2196 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080))))
(((|#2|) . T))
(((|#1|) . T))
((((-549)) |has| |#2| (-633 (-549))) (((-915 (-391))) |has| |#2| (-633 (-915 (-391)))) (((-915 (-560))) |has| |#2| (-633 (-915 (-560)))))
((((-887)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-2 (|:| -3128 |#1|) (|:| -3205 |#2|))) . T) (((-887)) . T))
+((((-2 (|:| -1591 |#1|) (|:| -2030 |#2|))) . T) (((-887)) . T))
((((-549)) |has| |#1| (-633 (-549))) (((-915 (-391))) |has| |#1| (-633 (-915 (-391)))) (((-915 (-560))) |has| |#1| (-633 (-915 (-560)))))
-(((|#4|) -2304 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1080))))
-(((|#3|) -2304 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080))))
-((((-2 (|:| -3128 |#1|) (|:| -3205 |#2|))) . T))
+(((|#4|) -2196 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1080))))
+(((|#3|) -2196 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080))))
+((((-2 (|:| -1591 |#1|) (|:| -2030 |#2|))) . T))
((((-887)) . T))
((((-887)) . T))
((((-549)) . T) (((-560)) . T) (((-915 (-560))) . T) (((-391)) . T) (((-229)) . T))
@@ -326,15 +326,15 @@
(((|#1|) . T) (((-560)) |has| |#1| (-1069 (-560))) (((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))))
((($) . T) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (((-560)) |has| |#2| (-660 (-560))))
((((-421 $) (-421 $)) |has| |#2| (-571)) (($ $) . T) ((|#2| |#2|) . T))
-((($ (-1207)) -2304 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207)))))
-((((-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) . T))
+((($ (-1207)) -2196 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207)))))
+((((-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) . T))
(((|#1|) . T))
(|has| |#2| (-939))
((((-1189) (-51)) . T))
((((-560)) |has| #0=(-421 |#2|) (-660 (-560))) ((#0#) . T))
((((-549)) . T) (((-229)) . T) (((-391)) . T) (((-915 (-391))) . T))
((((-887)) . T))
-(-2304 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)))
+(-2196 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)))
(((|#1|) |has| |#1| (-175)))
(((|#1| $) |has| |#1| (-298 |#1| |#1|)))
((((-887)) . T))
@@ -349,15 +349,15 @@
(|has| |#1| (-1132))
((((-935 |#1|)) . T) (($) . T) (((-421 (-560))) . T))
(((|#1|) . T))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-871)) (|has| |#1| (-1132))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-871)) (|has| |#1| (-1132))))
((((-549)) |has| |#1| (-633 (-549))))
((((-887)) . T) (((-1212)) . T))
-((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
((((-1212)) . T))
-((($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
-((($) -2304 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(|has| |#1| (-240))
-((($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(((|#1| (-545 (-840 (-1207)))) . T))
(((|#1| (-1002)) . T))
((((-560)) . T) ((|#2|) . T))
@@ -369,7 +369,7 @@
(((|#1|) . T))
(((|#2| |#2|) . T))
(|has| |#1| (-1182))
-((((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) . T))
+((((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) . T))
(|has| (-1284 |#1| |#2| |#3| |#4|) (-147))
(|has| (-1284 |#1| |#2| |#3| |#4|) (-149))
(|has| |#1| (-147))
@@ -381,28 +381,28 @@
(((|#2|) . T))
(((|#1|) . T))
(((|#2|) . T) (((-560)) |has| |#2| (-660 (-560))))
-((((-1156 |#1| (-1207))) . T) (((-560)) . T) (((-840 (-1207))) . T) (($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) (((-1207)) . T))
+((((-1156 |#1| (-1207))) . T) (((-560)) . T) (((-840 (-1207))) . T) (($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) (((-1207)) . T))
(|has| |#2| (-381))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
((($) . T) ((|#1|) . T))
(((|#2|) |has| |#2| (-1080)))
((((-887)) . T))
(|has| |#1| (-870))
-(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((#0=(-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) #0#) |has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((#0=(-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) #0#) |has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))))
(((|#1|) . T))
-((((-1297 (-352 (-1592) (-1592 (QUOTE X)) (-721)))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((#0=(-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) #0#) |has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-321 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))))
+((((-1297 (-352 (-3924) (-3924 (QUOTE X)) (-721)))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((#0=(-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) #0#) |has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-321 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))))
((((-887)) . T))
((((-560) |#1|) . T))
((((-549)) -12 (|has| |#1| (-633 (-549))) (|has| |#2| (-633 (-549)))) (((-915 (-391))) -12 (|has| |#1| (-633 (-915 (-391)))) (|has| |#2| (-633 (-915 (-391))))) (((-915 (-560))) -12 (|has| |#1| (-633 (-915 (-560)))) (|has| |#2| (-633 (-915 (-560))))))
((($) . T))
((((-887)) . T))
-((($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))))
+((($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))))
((((-887)) . T))
((($) . T))
((($) . T))
((($) . T))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
((((-887)) . T))
((((-887)) . T))
(|has| (-1278 |#2| |#3| |#4|) (-149))
@@ -415,18 +415,18 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-2304 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)))
+(-2196 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)))
(((|#1|) . T))
((($) . T))
((((-560) |#1|) . T))
(((|#2|) |has| |#2| (-175)))
(((|#1|) . T))
(((|#1|) |has| |#1| (-175)))
-(-2304 (|has| |#1| (-21)) (|has| |#1| (-870)))
+(-2196 (|has| |#1| (-21)) (|has| |#1| (-870)))
((((-887)) |has| |#1| (-1132)))
-((($) -2304 (|has| |#1| (-240)) (|has| |#1| (-239))))
-(-2304 (|has| |#1| (-487)) (|has| |#1| (-748)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)) (|has| |#1| (-1143)))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-363)))
+((($) -2196 (|has| |#1| (-240)) (|has| |#1| (-239))))
+(-2196 (|has| |#1| (-487)) (|has| |#1| (-748)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)) (|has| |#1| (-1143)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-363)))
((((-935 |#1|)) . T))
((((-421 |#2|) |#3|) . T))
(|has| |#1| (-15 * (|#1| (-560) |#1|)))
@@ -437,7 +437,7 @@
((((-887)) . T))
((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571)))
(|has| |#1| (-376))
-(-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))
+(-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))
(|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))
(|has| |#1| (-376))
(|has| |#1| (-15 * (|#1| (-793) |#1|)))
@@ -451,23 +451,23 @@
((((-1264 (-560)) $) . T) (((-560) |#1|) . T))
((((-887)) . T))
(((|#2|) . T))
-(-2304 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
+(-2196 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
((((-560)) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571)))
((($) |has| |#1| (-571)) (((-560)) . T))
(|has| |#2| (-815))
(|has| |#2| (-815))
-((((-1287 |#1| |#2| |#3|)) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-560)) . T) ((|#1|) |has| |#1| (-175)))
-((((-1294 |#2|)) . T) (((-1287 |#1| |#2| |#3|)) . T) (((-1257 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-560)) . T) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))))
+((((-1287 |#1| |#2| |#3|)) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-560)) . T) ((|#1|) |has| |#1| (-175)))
+((((-1294 |#2|)) . T) (((-1287 |#1| |#2| |#3|)) . T) (((-1257 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-560)) . T) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))))
((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) (((-560)) . T))
(((|#1|) . T))
((((-1207)) -12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))))
(((|#1|) . T))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
(-12 (|has| |#1| (-376)) (|has| |#2| (-842)))
-(-2304 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-571)))
-(((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))) ((|#1| |#1|) . T) (($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-571))))
+(-2196 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-571)))
+(((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))) ((|#1| |#1|) . T) (($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-571))))
((($ $) |has| |#1| (-571)) ((|#1| |#1|) . T))
-((($ (-1207)) -2304 (|has| (-421 |#2|) (-927 (-1207))) (|has| (-421 |#2|) (-929 (-1207)))))
+((($ (-1207)) -2196 (|has| (-421 |#2|) (-927 (-1207))) (|has| (-421 |#2|) (-929 (-1207)))))
(((#0=(-721) (-1201 #0#)) . T))
((((-595 |#1|)) . T) (((-421 (-560))) . T) (($) . T))
((((-421 (-560))) . T) (($) . T))
@@ -475,18 +475,18 @@
((((-887)) . T) (((-1297 |#3|)) . T))
((((-595 |#1|)) . T) (($) . T) (((-421 (-560))) . T))
((($) . T) (((-421 (-560))) . T))
-((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -2304 (|has| |#1| (-175)) (|has| |#1| (-571))))
+((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -2196 (|has| |#1| (-175)) (|has| |#1| (-571))))
((($) |has| |#1| (-571)) ((|#1|) . T))
((((-887)) . T))
((($) . T) (((-560)) . T) (((-421 (-560))) . T))
((($) . T))
-((($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((#0=(-421 (-560)) #0#) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((#1=(-1287 |#1| |#2| |#3|) #1#) |has| |#1| (-376)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((#0=(-421 (-560)) #0#) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T))
-(((|#1|) . T) (($) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))))
+((($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((#0=(-421 (-560)) #0#) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((#1=(-1287 |#1| |#2| |#3|) #1#) |has| |#1| (-376)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((#0=(-421 (-560)) #0#) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T))
+(((|#1|) . T) (($) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))))
(((|#3|) |has| |#3| (-1080)))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
-((($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))))
(|has| (-1120 |#1|) (-1132))
(((|#2| (-841 |#1|)) . T))
((($) . T) (((-560)) . T) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T))
@@ -494,20 +494,20 @@
(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T))
(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T))
(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T))
-((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
(((|#2|) . T) ((|#6|) . T))
(|has| |#1| (-376))
((((-560)) . T) ((|#2|) . T))
-((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -2304 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -2196 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
(((|#2|) . T) ((|#6|) . T))
-((($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
-((($) -2304 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(((|#1|) . T))
-((($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
((((-421 $) (-421 $)) |has| |#1| (-571)) (($ $) . T) ((|#1| |#1|) . T))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(((#0=(-1113) |#2|) . T) ((#0# $) . T) (($ $) . T))
((((-887)) . T))
((((-935 |#1|)) . T))
@@ -516,22 +516,22 @@
((((-246 |#1| |#2|) |#2|) . T))
((((-887)) . T))
(((|#3|) |has| |#3| (-1132)) (((-560)) -12 (|has| |#3| (-1069 (-560))) (|has| |#3| (-1132))) (((-421 (-560))) -12 (|has| |#3| (-1069 (-421 (-560)))) (|has| |#3| (-1132))))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
(((|#1|) . T))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-871)) (|has| |#1| (-1132))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-871)) (|has| |#1| (-1132))))
((((-549)) |has| |#1| (-633 (-549))))
(((|#1|) |has| |#1| (-175)))
-((((-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) . T))
+((((-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) . T))
(|has| |#1| (-376))
((((-1212)) . T))
(((|#1|) . T))
-(-2304 (|has| |#1| (-21)) (|has| |#1| (-870)))
+(-2196 (|has| |#1| (-21)) (|has| |#1| (-870)))
((($) . T))
((((-1207) |#1|) |has| |#1| (-528 (-1207) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|)))
(|has| |#2| (-842))
(|has| |#1| (-38 (-421 (-560))))
(|has| |#1| (-870))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1| |#2| |#3| (-545 |#3|)) . T))
((((-887)) . T))
@@ -540,15 +540,15 @@
(|has| |#1| (-381))
((((-421 (-560))) . T))
(((|#1|) . T))
-(-2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
+(-2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
((((-421 (-560))) . T))
((((-1189) |#1|) . T))
(|has| |#1| (-381))
((((-560)) . T))
((((-560)) . T))
(((|#1|) . T) (((-560)) . T))
-(-2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
-(-2304 (|has| |#1| (-871)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-871)) (|has| |#1| (-1132)))
((((-887)) . T))
(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T))
((((-1207)) -12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))))
@@ -562,12 +562,12 @@
((((-560) |#3|) . T))
(((|#1|) . T) (((-560)) |has| |#1| (-660 (-560))))
(|has| |#2| (-1080))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
-(-2304 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
+(-2196 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
((((-887)) . T))
((((-1284 |#1| |#2| |#3| |#4|)) . T))
((((-421 (-560))) . T) (((-560)) . T))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
@@ -576,9 +576,9 @@
((($) . T) (((-560)) . T) (((-421 (-560))) . T))
((((-560)) . T))
((((-560)) . T))
-((($) . T) (((-560)) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) . T))
+((($) . T) (((-560)) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) . T))
((($) . T) (((-560)) . T) (((-421 (-560))) . T))
-((((-560)) -2304 (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) (|has| |#2| (-1080))) ((|#2|) |has| |#2| (-1132)) (((-421 (-560))) -12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))))
+((((-560)) -2196 (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) (|has| |#2| (-1080))) ((|#2|) |has| |#2| (-1132)) (((-421 (-560))) -12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -595,7 +595,7 @@
((((-887)) . T))
((((-560)) . T) (((-421 (-560))) . T) (($) . T))
(((|#1|) . T) (((-560)) |has| |#1| (-1069 (-560))) (((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))))
-((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -2304 (|has| |#1| (-175)) (|has| |#1| (-571))))
+((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -2196 (|has| |#1| (-175)) (|has| |#1| (-571))))
((((-887)) . T))
((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571)))
((((-560) |#1|) . T))
@@ -604,92 +604,92 @@
((($) . T))
((($ $) . T) ((#0=(-1207) $) . T) ((#0# |#1|) . T))
(((|#2|) |has| |#2| (-175)))
-((($) -2304 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))) ((|#2|) |has| |#2| (-175)) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))))
-(((|#2| |#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))))
+((($) -2196 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))) ((|#2|) |has| |#2| (-175)) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))))
+(((|#2| |#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))))
((((-146)) . T))
(((|#1|) . T))
(-12 (|has| |#1| (-381)) (|has| |#2| (-381)))
((((-887)) . T))
-(((|#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))))
+(((|#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))))
(((|#1|) . T))
((((-887)) . T))
(|has| |#1| (-1132))
(|has| $ (-149))
((((-1212)) . T))
-((((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) (((-560)) . T) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-560)) . T) (($) . T))
+((((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) (((-560)) . T) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-560)) . T) (($) . T))
((((-1264 (-560)) $) . T) (((-560) |#1|) . T))
-((($) -2304 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-571))) (((-421 (-560))) -2304 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
+((($) -2196 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-571))) (((-421 (-560))) -2196 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))))
(|has| |#1| (-376))
-(-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))
+(-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))
(|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))
(|has| |#1| (-376))
(|has| |#1| (-15 * (|#1| (-793) |#1|)))
(((|#1|) . T))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1132)))
((((-887)) . T))
(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
-(-2304 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
+(-2196 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
(((|#2| (-545 (-888 |#1|))) . T))
((((-887)) . T))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
(((|#1|) . T))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
-(-2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
((((-595 |#1|)) . T))
((($) . T))
((((-560)) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571)))
(((|#1|) . T) (($) . T))
((((-560)) |has| |#1| (-660 (-560))) ((|#1|) . T))
-((((-1205 |#1| |#2| |#3|)) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-560)) . T) ((|#1|) |has| |#1| (-175)))
-((((-1294 |#2|)) . T) (((-1205 |#1| |#2| |#3|)) . T) (((-1198 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-560)) . T) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))))
+((((-1205 |#1| |#2| |#3|)) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-560)) . T) ((|#1|) |has| |#1| (-175)))
+((((-1294 |#2|)) . T) (((-1205 |#1| |#2| |#3|)) . T) (((-1198 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-560)) . T) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))))
(((|#4|) . T))
(((|#3|) . T))
((((-893 |#1|)) . T) (($) . T) (((-421 (-560))) . T))
((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) (((-560)) . T))
((((-1207)) -12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))))
-(-2304 (|has| |#2| (-240)) (|has| |#2| (-239)))
+(-2196 (|has| |#2| (-240)) (|has| |#2| (-239)))
(((|#1|) . T))
((((-888 |#1|)) . T))
-((((-1207)) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) ((|#3|) . T))
+((((-1207)) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) ((|#3|) . T))
((($) . T))
((((-887)) . T))
((((-887)) . T))
-((((-560)) . T) (((-421 (-560))) -2304 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1069 (-421 (-560))))) ((|#2|) . T) (($) -2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))) (((-888 |#1|)) . T))
+((((-560)) . T) (((-421 (-560))) -2196 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1069 (-421 (-560))))) ((|#2|) . T) (($) -2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))) (((-888 |#1|)) . T))
((((-560) |#2|) . T))
((((-887)) . T))
((($) . T) (((-560)) . T) ((|#2|) . T) (((-421 (-560))) . T))
((((-887)) . T))
((((-887)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))) ((|#1| |#1|) . T) (($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-571))))
-((($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((#0=(-421 (-560)) #0#) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((#1=(-1205 |#1| |#2| |#3|) #1#) |has| |#1| (-376)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((#0=(-421 (-560)) #0#) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))))
-((($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))))
+(((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))) ((|#1| |#1|) . T) (($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-571))))
+((($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((#0=(-421 (-560)) #0#) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((#1=(-1205 |#1| |#2| |#3|) #1#) |has| |#1| (-376)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((#0=(-421 (-560)) #0#) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))))
+((($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))))
((((-887)) . T))
(((|#2|) |has| |#2| (-1080)))
(|has| |#1| (-1132))
-((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -2304 (|has| |#1| (-175)) (|has| |#1| (-571))))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T))
-(((|#1|) . T) (($) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -2196 (|has| |#1| (-175)) (|has| |#1| (-571))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T))
+(((|#1|) . T) (($) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(((|#1|) |has| |#1| (-175)) (($) . T))
(((|#1|) . T))
-(((#0=(-421 (-560)) #0#) |has| |#2| (-38 (-421 (-560)))) ((|#2| |#2|) . T) (($ $) -2304 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+(((#0=(-421 (-560)) #0#) |has| |#2| (-38 (-421 (-560)))) ((|#2| |#2|) . T) (($ $) -2196 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
((((-887)) . T))
-((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
((($ (-888 |#1|)) . T))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
+((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
((($ |#2|) . T))
-((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -2304 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
-((($ (-1207)) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (($ (-1113)) . T))
+((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -2196 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+((($ (-1207)) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (($ (-1113)) . T))
((($) . T))
(((#0=(-1113) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ (-1207)) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (($ (-1119 (-1207))) . T))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1132)))
+((($ (-1207)) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (($ (-1119 (-1207))) . T))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1132)))
(((|#1|) . T))
(((|#2|) |has| |#2| (-1132)) (((-560)) -12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) (((-421 (-560))) -12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))))
(((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) (($) . T))
@@ -717,8 +717,8 @@
(|has| |#1| (-147))
(|has| |#1| (-149))
((((-1212)) . T))
-((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
-((($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+((($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
((((-421 (-560))) . T) (($) . T))
((((-421 (-560))) . T) (($) . T))
((((-421 (-560))) . T) (($) . T))
@@ -729,13 +729,13 @@
(((|#1| (-793) (-1113)) . T))
((((-421 (-560))) |has| |#2| (-376)) (($) . T))
(((|#1| (-545 (-1119 (-1207))) (-1119 (-1207))) . T))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))))
(((|#2|) . T))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
(((|#1|) . T))
(((|#2|) . T))
-((((-1027 |#1|)) . T) (((-560)) . T) ((|#1|) . T) (((-421 (-560))) -2304 (|has| (-1027 |#1|) (-1069 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))))
+((((-1027 |#1|)) . T) (((-560)) . T) ((|#1|) . T) (((-421 (-560))) -2196 (|has| (-1027 |#1|) (-1069 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))))
(|has| |#2| (-1080))
(|has| |#2| (-815))
(|has| |#2| (-815))
@@ -766,45 +766,45 @@
((((-793) |#1|) . T) (($ $) . T))
(((|#1|) . T))
((($ (-1207)) . T))
-(-2304 (|has| |#1| (-842)) (|has| |#1| (-871)))
+(-2196 (|has| |#1| (-842)) (|has| |#1| (-871)))
((((-1171 |#1| |#2|)) |has| (-1171 |#1| |#2|) (-321 (-1171 |#1| |#2|))))
(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))))
(((|#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))))
-(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) |has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) |has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))))
(((|#2|) . T) (((-560)) |has| |#2| (-1069 (-560))) (((-421 (-560))) |has| |#2| (-1069 (-421 (-560)))))
(|has| |#1| (-870))
(((|#1|) . T))
-((((-1207)) -2304 (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-927 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-929 (-1207))))))
+((((-1207)) -2196 (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-927 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-929 (-1207))))))
(((|#1| |#2|) . T))
((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-2304 (|has| |#1| (-871)) (|has| |#1| (-1132)))
-(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) |has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))))
+(-2196 (|has| |#1| (-871)) (|has| |#1| (-1132)))
+(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) |has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))))
(((|#2|) . T))
-((((-887)) -2304 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-632 (-887))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1132))) (((-1297 |#2|)) . T))
+((((-887)) -2196 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-632 (-887))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1132))) (((-1297 |#2|)) . T))
((((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((|#1|) . T) (((-560)) . T) (($) . T))
(((|#1|) |has| |#1| (-175)))
((((-560)) . T))
-((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
+((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
(|has| |#1| (-1132))
-((($) -2304 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
((((-560) (-146)) . T))
-(((|#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))) (($) |has| |#2| (-1080)) (((-560)) -12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))))
+(((|#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))) (($) |has| |#2| (-1080)) (((-560)) -12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))))
((((-560)) . T))
(((|#1|) . T) ((|#2|) . T) (((-560)) . T))
-((($) |has| |#1| (-571)) ((|#1|) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) (((-560)) . T))
-(-2304 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1080)))
+((($) |has| |#1| (-571)) ((|#1|) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) (((-560)) . T))
+(-2196 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1080)))
(((|#1|) . T))
-(-2304 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1080)))
+(-2196 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1080)))
((($) . T) (((-560)) . T) ((|#2|) . T))
(((|#1|) |has| |#1| (-175)) (($) . T) (((-560)) . T))
(((|#2|) |has| |#1| (-376)))
(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175)))
+((($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175)))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
((((-1212)) . T))
((((-421 (-560))) . T) (((-560)) . T) (($) . T))
@@ -812,26 +812,26 @@
(((|#1|) . T) (($) . T))
((((-560)) . T))
(((#0=(-421 (-975 |#1|)) #0#) . T))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1132)))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-1132)))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1132)))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-1132)))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-871)) (|has| |#1| (-1132))))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-1132)))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-871)) (|has| |#1| (-1132))))
((((-549)) |has| |#1| (-633 (-549))))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1132)))
((((-887)) . T) (((-1212)) . T))
((((-1212)) . T))
(((|#1| |#1|) |has| |#1| (-175)))
-(-2304 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-239)))
-((($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))))
+(-2196 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-239)))
+((($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
((((-421 (-975 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T) (((-560)) . T) (($) . T))
(((|#1|) |has| |#1| (-175)))
-((((-1207)) -2304 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207)))))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
-(-2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+((((-1207)) -2196 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207)))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+(-2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
((((-887)) . T))
((((-887)) . T))
((((-1284 |#1| |#2| |#3| |#4|)) . T))
@@ -840,8 +840,8 @@
(|has| |#3| (-1080))
(|has| |#3| (-815))
(|has| |#3| (-815))
-((((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175)))
-(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))))
+((((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175)))
+(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))))
(((|#2|) . T))
((((-887)) . T))
((((-887)) . T))
@@ -855,37 +855,37 @@
((((-421 (-560))) . T) (($) . T))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
((($) . T) (((-421 (-560))) . T))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-1132)))
(((|#2|) . T))
((((-549)) |has| |#2| (-633 (-549))) (((-915 (-391))) |has| |#2| (-633 (-915 (-391)))) (((-915 (-560))) |has| |#2| (-633 (-915 (-560)))))
-(((|#4|) -2304 (|has| |#4| (-175)) (|has| |#4| (-376))))
-(((|#3|) -2304 (|has| |#3| (-175)) (|has| |#3| (-376))))
+(((|#4|) -2196 (|has| |#4| (-175)) (|has| |#4| (-376))))
+(((|#3|) -2196 (|has| |#3| (-175)) (|has| |#3| (-376))))
((((-887)) . T))
(((|#1|) . T))
-(-2304 (|has| |#2| (-466)) (|has| |#2| (-939)))
-((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
-((($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+(-2196 (|has| |#2| (-466)) (|has| |#2| (-939)))
+((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+((($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(((|#1|) . T) (((-421 (-560))) . T) (($) . T))
(((|#1|) . T) (((-421 (-560))) . T) (($) . T))
(((|#1|) . T) (((-421 (-560))) . T) (($) . T))
-(-2304 (|has| |#1| (-466)) (|has| |#1| (-939)))
-((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -2304 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+(-2196 (|has| |#1| (-466)) (|has| |#1| (-939)))
+((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -2196 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(((|#1|) . T) (($) . T) (((-421 (-560))) . T))
(((|#1|) . T) (($) . T) (((-421 (-560))) . T))
(((|#1|) . T) (($) . T) (((-421 (-560))) . T))
(((|#2|) . T))
(((|#2|) . T))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-939)))
((($ $) . T) ((#0=(-1207) $) |has| |#1| (-240)) ((#0# |#1|) |has| |#1| (-240)) ((#1=(-840 (-1207)) |#1|) . T) ((#1# $) . T))
-(-2304 (|has| |#1| (-466)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-466)) (|has| |#1| (-939)))
((((-560) |#2|) . T))
((((-887)) . T))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
-(((|#3|) -2304 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080))) (($) |has| |#3| (-1080)) (((-560)) -12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1080))))
+(((|#3|) -2196 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080))) (($) |has| |#3| (-1080)) (((-560)) -12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1080))))
((((-560) |#1|) . T))
(|has| (-421 |#2|) (-149))
(|has| (-421 |#2|) (-147))
@@ -898,15 +898,15 @@
(|has| |#1| (-571))
(|has| |#1| (-38 (-421 (-560))))
(|has| |#1| (-38 (-421 (-560))))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
((((-887)) . T))
-((((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) . T))
+((((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) . T))
(|has| |#1| (-38 (-421 (-560))))
-((((-402) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) . T))
+((((-402) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) . T))
(|has| |#1| (-38 (-421 (-560))))
(|has| |#2| (-1182))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-571)))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-571)))
((((-887)) . T) (((-1212)) . T))
((((-887)) . T) (((-1212)) . T))
((((-1212)) . T))
@@ -924,7 +924,7 @@
((((-402) (-1189)) . T))
(|has| |#1| (-571))
((((-1264 (-560)) $) . T) (((-560) |#1|) . T))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
((((-560)) . T) (($) . T) (((-421 (-560))) . T))
((((-560)) . T) (($) . T) (((-421 (-560))) . T))
(((|#2|) . T))
@@ -942,7 +942,7 @@
((((-663 |#1|)) . T))
((((-887)) . T))
((((-549)) |has| |#1| (-633 (-549))))
-(-2304 (|has| |#1| (-871)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-871)) (|has| |#1| (-1132)))
(((|#2|) |has| |#2| (-321 |#2|)))
(((#0=(-560) #0#) . T) ((#1=(-421 (-560)) #1#) . T) (($ $) . T))
(((|#1|) . T))
@@ -953,14 +953,14 @@
((($) . T) (((-560)) . T) (((-421 (-560))) . T))
(|has| |#2| (-381))
(((#0=(-560) #0#) . T) ((#1=(-421 (-560)) #1#) . T) (($ $) . T))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1132)))
(((|#1|) . T) (((-421 (-560))) . T) (($) . T))
(((|#1|) . T) (((-421 (-560))) . T) (($) . T))
(((|#1|) . T) (((-421 (-560))) . T) (($) . T))
((((-560)) . T) (((-421 (-560))) . T) (($) . T))
-((($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175)))
+((($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175)))
(((|#1| |#2|) . T))
-((((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#1|) . T))
+((((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#1|) . T))
((((-560)) . T) (((-421 (-560))) . T) (($) . T))
(((|#1| |#2|) . T))
((((-887)) . T))
@@ -968,8 +968,8 @@
((((-887)) . T))
((((-887)) . T))
((((-549)) |has| |#1| (-633 (-549))))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
-((($) . T) (((-421 (-560))) -2304 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T) (((-560)) |has| |#1| (-660 (-560))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
+((($) . T) (((-421 (-560))) -2196 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T) (((-560)) |has| |#1| (-660 (-560))))
((((-887)) . T))
((((-1205 |#1| |#2| |#3|) $) -12 (|has| (-1205 |#1| |#2| |#3|) (-298 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) (($ $) . T) (((-560) |#1|) . T))
((($ $) . T) (((-421 (-560)) |#1|) . T))
@@ -981,7 +981,7 @@
(((|#1|) . T))
(((|#1|) . T))
((((-560)) . T) (($) . T))
-((($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
((($) . T) (((-560)) . T) ((|#2|) . T))
((((-560)) . T) (($) . T) ((|#2|) . T) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))))
((((-421 (-560))) . T) (((-560)) . T))
@@ -990,29 +990,29 @@
(((|#1|) . T))
((((-114)) . T))
(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
-(-2304 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1080)))
+(-2196 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1080)))
((((-114)) . T))
((((-549)) |has| |#1| (-633 (-549))) (((-229)) . #0=(|has| |#1| (-1051))) (((-391)) . #0#))
((((-887)) . T))
(((|#1|) . T))
((((-1212)) . T))
(|has| |#1| (-842))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) ((|#1|) . T))
-((((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175)))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) ((|#1|) . T))
+((((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-571)))
(|has| |#1| (-571))
-(((|#1|) . T) (($) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))))
-((($) . T) (((-560)) . T) (((-421 (-560))) -2304 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
+(((|#1|) . T) (($) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))))
+((($) . T) (((-560)) . T) (((-421 (-560))) -2196 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
((((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((|#1|) . T) (((-560)) . T))
(|has| |#1| (-939))
-(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))))
+(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))))
(((|#1|) . T))
(|has| |#1| (-1132))
((((-887)) . T))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571)))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571)))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-571)))
((((-887)) . T))
((((-887)) . T))
((((-887)) . T))
@@ -1025,7 +1025,7 @@
((((-1212)) . T) (((-887)) . T))
((((-1212)) . T))
((((-887)) . T))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-1132)))
(((|#1| (-1002)) . T))
(((|#1| |#1|) . T))
((($) . T))
@@ -1041,23 +1041,23 @@
(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
(-12 (|has| |#1| (-815)) (|has| |#2| (-815)))
(-12 (|has| |#1| (-815)) (|has| |#2| (-815)))
-(-2304 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748))))
+(-2196 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748))))
(((|#1| |#2|) . T))
(((|#1|) |has| |#1| (-175)) ((|#4|) . T) (((-560)) . T))
(((|#2|) |has| |#2| (-175)))
(((|#1|) |has| |#1| (-175)))
((((-887)) . T))
-(-2304 (|has| |#1| (-240)) (|has| |#1| (-239)))
+(-2196 (|has| |#1| (-240)) (|has| |#1| (-239)))
(|has| |#1| (-363))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-421 (-560))) . T) (($) . T))
(((|#2|) . T) (($) . T) (((-421 (-560))) . T))
-((($) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) . T))
+((($) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) . T))
(|has| |#1| (-843))
((((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) (((-560)) |has| |#1| (-1069 (-560))) ((|#1|) . T))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-1132)))
(((|#1| $) |has| |#1| (-298 |#1| |#1|)))
((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571)))
((($) |has| |#1| (-571)))
@@ -1065,49 +1065,49 @@
(((|#4|) |has| |#4| (-1132)))
(((|#3|) |has| |#3| (-1132)))
(|has| |#3| (-381))
-((($) |has| |#1| (-571)) ((|#1|) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) (((-560)) . T))
+((($) |has| |#1| (-571)) ((|#1|) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) (((-560)) . T))
((((-887)) . T))
(((|#1| |#2|) . T))
((((-887)) . T))
(|has| |#1| (-871))
-((((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175)))
+((((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175)))
(((|#2|) . T))
(|has| |#2| (-376))
((((-421 (-560))) . T) (((-560)) . T))
-((($) -2304 (|has| |#2| (-240)) (|has| |#2| (-239))))
+((($) -2196 (|has| |#2| (-240)) (|has| |#2| (-239))))
((($ (-888 |#1|)) . T))
-((($ (-1207)) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (($ |#3|) . T))
+((($ (-1207)) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (($ |#3|) . T))
((($) . T) (((-560)) . T) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T))
(((|#1|) . T))
-((($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))))
+((($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))))
(((|#2|) . T))
((($) . T) (((-560)) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T))
-(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))))
+(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))))
((($) . T) (((-560)) . T))
((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(((|#1|) |has| |#1| (-175)))
(((|#1| |#1|) |has| |#1| (-175)))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))))
((((-146)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))) (($) |has| |#2| (-1080)) (((-560)) -12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))))
+(((|#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))) (($) |has| |#2| (-1080)) (((-560)) -12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))))
((((-146)) . T))
((((-146)) . T))
((((-421 (-560))) . #0=(|has| |#2| (-376))) (($) . #0#) ((|#2|) . T) (((-560)) . T))
(((|#1| |#2| |#3|) . T))
-(-2304 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1080)))
+(-2196 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1080)))
(((|#1|) |has| |#1| (-175)))
(|has| $ (-149))
(|has| $ (-149))
((((-1212)) . T))
(((|#1|) |has| |#1| (-175)))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-1132)))
((((-887)) . T))
(|has| |#1| (-38 (-421 (-560))))
(|has| |#1| (-38 (-421 (-560))))
-(-2304 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-487)) (|has| |#1| (-571)) (|has| |#1| (-1080)) (|has| |#1| (-1143)))
+(-2196 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-487)) (|has| |#1| (-571)) (|has| |#1| (-1080)) (|has| |#1| (-1143)))
((($ $) |has| |#1| (-298 $ $)) ((|#1| $) |has| |#1| (-298 |#1| |#1|)))
(((|#1| (-421 (-560))) . T))
(((|#1|) . T))
@@ -1116,8 +1116,8 @@
(((|#1|) . T))
((((-1207)) . T))
(|has| |#1| (-571))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-571)))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-571)))
(|has| |#1| (-571))
(|has| |#1| (-38 (-421 (-560))))
(|has| |#1| (-38 (-421 (-560))))
@@ -1129,7 +1129,7 @@
(|has| |#1| (-149))
(|has| |#1| (-147))
(|has| |#1| (-149))
-(((|#2| (-246 (-1553 |#1|) (-793)) (-888 |#1|)) . T))
+(((|#2| (-246 (-2256 |#1|) (-793)) (-888 |#1|)) . T))
(((|#1| (-545 |#3|) |#3|) . T))
(|has| |#1| (-147))
(((#0=(-421 (-560)) #0#) |has| |#2| (-376)) (($ $) . T))
@@ -1143,12 +1143,12 @@
(|has| |#1| (-147))
((((-421 (-560))) |has| |#2| (-376)) (($) . T))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
-(-2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
-(-2304 (|has| |#1| (-363)) (|has| |#1| (-381)))
+(-2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
+(-2196 (|has| |#1| (-363)) (|has| |#1| (-381)))
((((-1173 |#2| |#1|)) . T) ((|#1|) . T))
(((|#1| |#2|) . T))
(-12 (|has| |#2| (-240)) (|has| |#2| (-1080)))
-(((|#2|) . T) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
(|has| |#3| (-815))
(|has| |#3| (-815))
((((-887)) . T))
@@ -1176,18 +1176,18 @@
((((-887)) . T))
((((-887)) . T))
(((|#1| |#2|) . T))
-((((-1207)) -2304 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207)))) (((-1113)) . T))
+((((-1207)) -2196 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207)))) (((-1113)) . T))
(((|#1|) . T))
(((|#3|) . T) (((-630 $)) . T))
(((|#1| (-421 (-560))) . T))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
((($ (-1294 |#2|)) . T) (($ (-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
-((((-560)) -2304 (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) (|has| |#2| (-1080))) ((|#2|) |has| |#2| (-1132)) (((-421 (-560))) -12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
+((((-560)) -2196 (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) (|has| |#2| (-1080))) ((|#2|) |has| |#2| (-1132)) (((-421 (-560))) -12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))))
(((|#1|) . T) (((-421 (-560))) . T) (($) . T))
((($ $) . T) ((|#2| $) . T))
((((-560)) . T) (($) . T) (((-421 (-560))) . T))
@@ -1195,15 +1195,15 @@
((((-887)) . T))
((((-887)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) |has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) (((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) |has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-321 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))))
+(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) |has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) (((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) |has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-321 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))))
((((-887)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#1|) . T))
((($) . T) ((|#2|) . T) (((-560)) |has| |#2| (-660 (-560))))
((((-1207) (-51)) . T))
-((((-1207)) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))))
+((((-1207)) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))))
(((|#3|) . T))
((($ $) . T) ((#0=(-888 |#1|) $) . T) ((#0# |#2|) . T))
(|has| |#1| (-843))
@@ -1211,10 +1211,10 @@
((($) . T) (((-560)) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T))
((((-560)) . T) (($) . T) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(|has| (-1120 |#1|) (-1132))
-(((|#2| |#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))))
-(((|#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-376))))
-((((-560) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))))
+(((|#2| |#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))))
+(((|#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-376))))
+((((-560) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))))
((((-560)) . T))
((((-1212)) . T))
((((-793)) . T))
@@ -1233,34 +1233,34 @@
(((|#1|) . T))
((((-421 (-560))) . T) (($) . T))
((($) . T) (((-421 (-560))) . T))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-571)))
((((-1212)) . T))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571)))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571)))
((((-560)) . T))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-571)))
(|has| |#1| (-147))
((((-560)) . T))
(|has| |#1| (-149))
-((($ (-1207)) -2304 (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-927 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-929 (-1207))))))
+((($ (-1207)) -2196 (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-927 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-929 (-1207))))))
((($ (-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))))
((((-915 (-560))) . T) (((-915 (-391))) . T) (((-549)) . T) (((-1207)) . T))
((((-887)) . T))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1132)))
((((-887)) . T) (((-1212)) . T))
((((-1212)) . T))
((($) . T))
(((|#1|) . T))
((((-887)) . T))
-(-2304 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
+(-2196 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
(((|#1|) . T) (($) . T))
(((|#2|) |has| |#2| (-175)))
-((($) -2304 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))) ((|#2|) |has| |#2| (-175)) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))) ((|#2|) |has| |#2| (-175)) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))))
((((-893 |#1|)) . T))
-(-2304 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1132)))
+(-2196 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1132)))
(-12 (|has| |#3| (-240)) (|has| |#3| (-1080)))
(|has| |#2| (-1182))
-(((#0=(-51)) . T) (((-2 (|:| -2968 (-1207)) (|:| -2460 #0#))) . T))
+(((#0=(-51)) . T) (((-2 (|:| -1438 (-1207)) (|:| -3067 #0#))) . T))
(((|#1| |#2|) . T))
(((|#1| (-657 |#2|)) . T))
(|has| |#3| (-1080))
@@ -1269,10 +1269,10 @@
(((|#1| (-560) (-1113)) . T))
(((|#1| (-421 (-560)) (-1113)) . T))
((((-1207)) . T))
-((($) -2304 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-571))) (((-421 (-560))) -2304 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
-((($) -2304 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-239))))
+((($) -2196 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-571))) (((-421 (-560))) -2196 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
+((($) -2196 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-239))))
((((-560) |#2|) . T))
-((($ (-1207)) -2304 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207)))))
+((($ (-1207)) -2196 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207)))))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(|has| |#2| (-381))
@@ -1280,46 +1280,46 @@
((((-887)) . T))
((((-1207) |#1|) |has| |#1| (-528 (-1207) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|)))
(-12 (|has| |#1| (-381)) (|has| |#2| (-381)))
-(-2304 (|has| |#1| (-147)) (|has| |#1| (-381)))
-(-2304 (|has| |#1| (-147)) (|has| |#1| (-381)))
-(-2304 (|has| |#1| (-147)) (|has| |#1| (-381)))
+(-2196 (|has| |#1| (-147)) (|has| |#1| (-381)))
+(-2196 (|has| |#1| (-147)) (|has| |#1| (-381)))
+(-2196 (|has| |#1| (-147)) (|has| |#1| (-381)))
((((-887)) . T))
((((-887)) . T))
((((-887)) . T))
((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571)))
(|has| |#1| (-363))
-((((-560)) -2304 (-12 (|has| |#3| (-1069 (-560))) (|has| |#3| (-1132))) (|has| |#3| (-1080))) ((|#3|) |has| |#3| (-1132)) (((-421 (-560))) -12 (|has| |#3| (-1069 (-421 (-560)))) (|has| |#3| (-1132))))
+((((-560)) -2196 (-12 (|has| |#3| (-1069 (-560))) (|has| |#3| (-1132))) (|has| |#3| (-1080))) ((|#3|) |has| |#3| (-1132)) (((-421 (-560))) -12 (|has| |#3| (-1069 (-421 (-560)))) (|has| |#3| (-1132))))
(((|#1|) . T))
-((((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175)))
+((((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175)))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))))
+(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))))
((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(((|#4|) . T))
-(((|#3|) . T) ((|#2|) . T) (((-560)) . T) ((|#4|) -2304 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-748)) (|has| |#4| (-1080))) (($) |has| |#4| (-1080)))
-(((|#2|) . T) (((-560)) . T) ((|#3|) -2304 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748)) (|has| |#3| (-1080))) (($) |has| |#3| (-1080)))
-(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((#0=(-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) #0#) |has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))))
+(((|#3|) . T) ((|#2|) . T) (((-560)) . T) ((|#4|) -2196 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-748)) (|has| |#4| (-1080))) (($) |has| |#4| (-1080)))
+(((|#2|) . T) (((-560)) . T) ((|#3|) -2196 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748)) (|has| |#3| (-1080))) (($) |has| |#3| (-1080)))
+(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((#0=(-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) #0#) |has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))))
(((|#4|) . T) (((-887)) . T))
(|has| |#1| (-571))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
((((-887)) . T))
(((|#1| |#2|) . T))
-(-2304 (|has| |#2| (-466)) (|has| |#2| (-939)))
-(-2304 (|has| |#1| (-871)) (|has| |#1| (-1132)))
-(-2304 (|has| |#1| (-466)) (|has| |#1| (-939)))
+(-2196 (|has| |#2| (-466)) (|has| |#2| (-939)))
+(-2196 (|has| |#1| (-871)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-466)) (|has| |#1| (-939)))
(((|#1|) . T))
((((-421 (-560))) . T) (((-560)) . T))
((((-560)) . T))
-((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
((($) . T))
((((-887)) -12 (|has| |#1| (-1132)) (|has| |#2| (-1132))))
(((|#1|) . T))
((((-893 |#1|)) . T) (($) . T) (((-421 (-560))) . T))
((((-887)) . T))
-(((|#3| |#3|) -2304 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080))))
+(((|#3| |#3|) -2196 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080))))
(|has| |#1| (-1051))
((((-887)) . T))
-(((|#3|) -2304 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080))))
+(((|#3|) -2196 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080))))
((((-560) (-114)) . T))
((((-1212)) . T))
(((|#1|) |has| |#1| (-321 |#1|)))
@@ -1329,21 +1329,21 @@
(|has| |#1| (-381))
((((-1207) $) |has| |#1| (-528 (-1207) $)) (($ $) |has| |#1| (-321 $)) ((|#1| |#1|) |has| |#1| (-321 |#1|)) (((-1207) |#1|) |has| |#1| (-528 (-1207) |#1|)))
((((-1207)) |has| |#1| (-927 (-1207))))
-(-2304 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-363)))
+(-2196 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-363)))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
((($) . T))
((((-402) |#1|) . T))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-363)))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-363)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-1132)))
(((|#2|) . T) (((-887)) . T))
((((-887)) . T))
(((|#2|) . T))
((((-935 |#1|)) . T))
((((-887)) . T) (((-1212)) . T))
((((-1212)) . T))
-((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
-((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
+((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
(((|#1| |#2|) . T))
((($) . T))
((((-560)) . T) (($) . T) (((-421 (-560))) . T))
@@ -1352,7 +1352,7 @@
(((|#1|) . T) (((-421 (-560))) . T) (($) . T) (((-560)) . T))
(((|#1| |#1|) . T))
(((#0=(-893 |#1|)) |has| #0# (-321 #0#)))
-((((-560)) . T) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-421 (-560))) -2304 (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-1069 (-421 (-560))))) ((|#1|) . T))
+((((-560)) . T) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-421 (-560))) -2196 (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-1069 (-421 (-560))))) ((|#1|) . T))
(((|#1| |#2|) . T))
(|has| |#2| (-815))
(|has| |#2| (-815))
@@ -1361,7 +1361,7 @@
(-12 (|has| |#1| (-815)) (|has| |#2| (-815)))
(|has| |#2| (-1080))
((($) . T) (((-560)) . T) ((|#2|) . T))
-(((|#2|) . T) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
(((|#2|) . T) (($) . T))
(|has| |#1| (-1233))
(((#0=(-560) #0#) . T) ((#1=(-421 (-560)) #1#) . T) (($ $) . T))
@@ -1375,7 +1375,7 @@
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-421 (-560)) #0#) . T))
(|has| |#1| (-376))
((((-560)) . T) (((-421 (-560))) . T) (($) . T))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
(((|#1|) . T) (($) . T) (((-421 (-560))) . T))
((((-887)) . T))
((((-887)) . T))
@@ -1383,39 +1383,39 @@
(((|#1|) . T) (($) . T) (((-421 (-560))) . T))
(((|#1|) . T))
((((-887)) . T))
-((($ $) . T) ((#0=(-421 (-560)) #0#) -2304 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1| |#1|) . T))
+((($ $) . T) ((#0=(-421 (-560)) #0#) -2196 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1| |#1|) . T))
((((-549)) |has| |#3| (-633 (-549))))
(((|#1| |#2|) . T))
(|has| |#1| (-870))
(|has| |#1| (-870))
((((-711 |#3|)) . T) (((-887)) . T))
-((($) . T) (((-421 (-560))) -2304 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
+((($) . T) (((-421 (-560))) -2196 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
(((|#1|) . T))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-571)))
((($) . T))
-(((#0=(-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) #0#) |has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-321 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))))
+(((#0=(-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) #0#) |has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-321 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))))
((((-560) |#3|) . T))
(((|#2|) . T))
((($) . T))
((($) . T))
-((((-1207)) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (((-1113)) . T))
+((((-1207)) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (((-1113)) . T))
(((|#2|) |has| |#2| (-1132)))
-((((-887)) -2304 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-632 (-887))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1132))) (((-1297 |#2|)) . T))
+((((-887)) -2196 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-632 (-887))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1132))) (((-1297 |#2|)) . T))
((($) . T))
((((-560)) . T) (($) . T) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
((((-1189) (-51)) . T))
(((|#2|) |has| |#2| (-175)))
-((($) -2304 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))) ((|#2|) |has| |#2| (-175)) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))) ((|#2|) |has| |#2| (-175)) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))))
((((-887)) . T))
(((|#2|) . T))
-((($) -2304 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))) ((|#2|) . T) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))) ((|#2|) . T) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))))
((((-560)) |has| #0=(-421 |#2|) (-660 (-560))) ((#0#) . T))
((($) . T) (((-560)) . T))
((((-560) (-146)) . T))
-((((-560) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T) ((|#1| |#2|) . T))
+((((-560) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T) ((|#1| |#2|) . T))
((((-421 (-560))) . T) (($) . T))
(((|#1|) . T))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
((((-887)) . T))
((((-935 |#1|)) . T))
(|has| |#1| (-376))
@@ -1423,11 +1423,11 @@
(|has| |#1| (-376))
(|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))
(|has| |#1| (-870))
-((($) -2304 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-571))) (((-421 (-560))) -2304 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
+((($) -2196 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-571))) (((-421 (-560))) -2196 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
(|has| |#1| (-376))
(((|#1|) . T) (($) . T))
(|has| |#1| (-870))
-((($) . T) (((-421 (-560))) -2304 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
+((($) . T) (((-421 (-560))) -2196 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
((((-1207)) |has| |#1| (-927 (-1207))))
(|has| |#1| (-870))
((((-520)) . T))
@@ -1443,7 +1443,7 @@
((((-549)) . T))
((((-887)) . T))
((($) . T))
-((((-560) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T) (((-1264 (-560)) $) . T) ((|#1| |#2|) . T))
+((((-560) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T) (((-1264 (-560)) $) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
(((|#1|) |has| |#1| (-175)))
@@ -1453,22 +1453,22 @@
(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
(((|#3|) . T))
(((|#1|) |has| |#1| (-175)))
-((($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-560)) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175)))
-((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
-((($) -2304 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-560)) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175)))
+((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
+((($) -2196 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(((|#1|) . T))
(((|#1|) . T))
((((-549)) |has| |#1| (-633 (-549))) (((-915 (-391))) |has| |#1| (-633 (-915 (-391)))) (((-915 (-560))) |has| |#1| (-633 (-915 (-560)))))
((((-887)) . T))
((((-893 |#1|)) . T) (($) . T) (((-421 (-560))) . T))
-(((|#2|) . T) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
((((-520)) . T))
((((-520)) . T))
-((((-1207)) -2304 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))))
-((((-1207)) -2304 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))))
+((((-1207)) -2196 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))))
+((((-1207)) -2196 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))))
(|has| |#1| (-571))
(-12 (|has| |#2| (-240)) (|has| |#2| (-1080)))
-(-2304 (|has| |#1| (-240)) (|has| |#1| (-239)))
+(-2196 (|has| |#1| (-240)) (|has| |#1| (-239)))
((((-893 |#1|)) . T) (((-421 (-560))) . T) (($) . T))
(|has| |#1| (-381))
(|has| |#1| (-381))
@@ -1477,7 +1477,7 @@
((((-1189) |#1|) . T))
(|has| |#1| (-1182))
((((-987 |#1|)) . T))
-(((#0=(-421 (-560)) #0#) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#1| |#1|) . T))
+(((#0=(-421 (-560)) #0#) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#1| |#1|) . T))
((((-421 (-560))) |has| |#1| (-1069 (-560))) (((-560)) |has| |#1| (-1069 (-560))) (((-1207)) |has| |#1| (-1069 (-1207))) ((|#1|) . T))
((($) . T))
((($) . T))
@@ -1485,7 +1485,7 @@
((((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) (((-560)) |has| |#1| (-1069 (-560))) ((|#1|) . T))
((($) . T) (((-560)) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T))
((((-560)) |has| |#1| (-911 (-560))) (((-391)) |has| |#1| (-911 (-391))))
-((((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#1|) . T))
+((((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T) (((-560)) . T))
((((-663 |#4|)) . T) (((-887)) . T))
@@ -1493,37 +1493,37 @@
((((-549)) |has| |#4| (-633 (-549))))
((((-887)) . T) (((-663 |#4|)) . T))
((($) |has| |#1| (-870)))
-((((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)) (((-560)) . T) (($) . T) ((|#1|) . T))
-((((-560)) -2304 (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) (|has| |#2| (-1080))) ((|#2|) |has| |#2| (-1132)) (((-421 (-560))) -12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))))
+((((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)) (((-560)) . T) (($) . T) ((|#1|) . T))
+((((-560)) -2196 (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) (|has| |#2| (-1080))) ((|#2|) |has| |#2| (-1132)) (((-421 (-560))) -12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))))
(((|#1|) . T))
(((|#1|) . T))
((((-663 |#4|)) . T) (((-887)) . T))
((((-549)) |has| |#4| (-633 (-549))))
(((|#1|) . T))
-(((|#1|) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-560)) . T) (($) . T))
+(((|#1|) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-560)) . T) (($) . T))
(((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) (((-560)) . T) (($) . T))
((((-1207)) |has| (-421 |#2|) (-927 (-1207))))
(((|#2|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((#0=(-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) #0#) |has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((#0=(-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) #0#) |has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))))
((($) . T))
-((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
-((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -2304 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
-((($) -2304 (|has| |#1| (-240)) (|has| |#1| (-239))))
-((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
+((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -2196 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+((($) -2196 (|has| |#1| (-240)) (|has| |#1| (-239))))
+((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
((($) . T))
((($) . T))
-((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
+((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
((($) . T))
((($) . T))
-((((-887)) -2304 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-632 (-887))) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-748)) (|has| |#3| (-815)) (|has| |#3| (-871)) (|has| |#3| (-1080)) (|has| |#3| (-1132))) (((-1297 |#3|)) . T))
+((((-887)) -2196 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-632 (-887))) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-748)) (|has| |#3| (-815)) (|has| |#3| (-871)) (|has| |#3| (-1080)) (|has| |#3| (-1132))) (((-1297 |#3|)) . T))
(((|#2|) . T))
((((-560) |#2|) . T))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1132)))
-(((|#2| |#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1132)))
+(((|#2| |#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))))
(((|#2|) . T) (((-560)) . T))
((((-887)) . T))
((((-887)) . T))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T) ((|#2|) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T) ((|#2|) . T))
((((-887)) . T))
((((-887)) . T))
((((-1189) (-1207) (-560) (-229) (-887)) . T))
@@ -1559,9 +1559,9 @@
((((-421 (-560))) . T) (($) . T))
((((-887)) . T))
((((-549)) |has| |#1| (-633 (-549))))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
((($) . T) (((-421 (-560))) . T))
-(((|#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))))
+(((|#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))))
(|has| $ (-149))
((((-421 |#2|)) . T))
((((-421 (-560))) |has| #0=(-421 |#2|) (-1069 (-421 (-560)))) (((-560)) |has| #0# (-1069 (-560))) ((#0#) . T))
@@ -1570,11 +1570,11 @@
(|has| |#2| (-149))
(|has| |#1| (-149))
(|has| |#1| (-147))
-(-2304 (|has| |#1| (-147)) (|has| |#1| (-381)))
+(-2196 (|has| |#1| (-147)) (|has| |#1| (-381)))
(|has| |#1| (-149))
-(-2304 (|has| |#1| (-147)) (|has| |#1| (-381)))
+(-2196 (|has| |#1| (-147)) (|has| |#1| (-381)))
(|has| |#1| (-149))
-(-2304 (|has| |#1| (-147)) (|has| |#1| (-381)))
+(-2196 (|has| |#1| (-147)) (|has| |#1| (-381)))
(|has| |#1| (-149))
(((|#1|) . T))
(|has| |#2| (-240))
@@ -1611,9 +1611,9 @@
((((-887)) . T))
((((-887)) . T))
((((-1027 |#1|)) . T) ((|#1|) . T))
-((((-1207)) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (((-840 (-1207))) . T))
+((((-1207)) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (((-840 (-1207))) . T))
((((-887)) . T))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
((((-421 (-560))) . T) (((-421 |#1|)) . T) ((|#1|) . T) (($) . T))
(((|#1| (-1201 |#1|)) . T))
((((-560)) . T) (($) . T) (((-421 (-560))) . T))
@@ -1622,8 +1622,8 @@
(((|#1|) . T) (((-560)) . T) (($) . T))
(((|#2|) . T))
((((-560)) . T) (($) . T) (((-421 (-560))) . T))
-((((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) . T))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
+((((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) . T))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
((((-560) |#2|) . T))
(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T))
((($) . T) (((-560)) . T) (((-421 (-560))) . T))
@@ -1636,30 +1636,30 @@
(((|#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))))
((((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)))
((((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)))
-(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((#0=(-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) #0#) |has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((#0=(-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) #0#) |has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))))
(((|#2| |#2|) . T))
-(-2304 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))))
+(-2196 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))))
(|has| |#2| (-376))
(((|#2|) . T) (((-560)) |has| |#2| (-1069 (-560))) (((-421 (-560))) |has| |#2| (-1069 (-421 (-560)))))
(|has| |#1| (-38 (-421 (-560))))
(((|#2|) . T))
(|has| |#1| (-38 (-421 (-560))))
(((|#1|) |has| |#1| (-175)))
-((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
-((($) -2304 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
+((($) -2196 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(|has| |#1| (-1132))
(|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))
(|has| |#1| (-38 (-421 (-560))))
((((-1189) (-51)) . T))
(((|#1|) . T))
-((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
-((($ (-1207)) -2304 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207)))) (($ (-1113)) . T))
+((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($ (-1207)) -2196 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207)))) (($ (-1113)) . T))
(|has| |#1| (-38 (-421 (-560))))
(|has| |#1| (-38 (-421 (-560))))
(((|#2|) |has| |#2| (-175)))
(((|#2|) . T))
-((((-560)) -2304 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))) ((|#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1080))) (($) |has| |#2| (-1080)))
+((((-560)) -2196 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))) ((|#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1080))) (($) |has| |#2| (-1080)))
(((|#1|) . T))
((((-560) |#3|) . T))
((((-560) (-146)) . T))
@@ -1675,7 +1675,7 @@
((((-560)) . T) (($) . T))
(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
(((|#1|) . T))
-((($ (-1207)) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))))
+((($ (-1207)) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))))
(((|#2|) . T) (((-560)) |has| |#2| (-660 (-560))))
((((-146)) . T))
((((-887)) . T))
@@ -1686,26 +1686,26 @@
(((|#1|) . T))
(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
(((|#1| |#2|) . T))
-(-2304 (|has| |#2| (-240)) (|has| |#2| (-239)))
+(-2196 (|has| |#2| (-240)) (|has| |#2| (-239)))
((((-560) (-146)) . T) (((-1264 (-560)) $) . T))
-(((#0=(-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) #0#) |has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))))
-((($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+(((#0=(-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) #0#) |has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))))
+((($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(|has| |#1| (-871))
(((|#2| (-793) (-1113)) . T))
(((|#1| |#2|) . T))
((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))))
(|has| |#1| (-813))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-571)))
-((((-1207)) -2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-571)))
+((((-1207)) -2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))))
((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))))
((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))))
(((|#1|) |has| |#1| (-175)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-2304 (|has| |#1| (-149)) (-12 (|has| |#1| (-376)) (|has| |#2| (-149))))
+(-2196 (|has| |#1| (-149)) (-12 (|has| |#1| (-376)) (|has| |#2| (-149))))
(((|#4|) . T))
-(-2304 (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| |#2| (-147))))
+(-2196 (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| |#2| (-147))))
((((-1189) |#1|) . T))
(|has| |#1| (-147))
(|has| |#1| (-149))
@@ -1719,24 +1719,24 @@
(((|#3|) . T))
((((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)))
((($) . T) (((-560)) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T))
-((((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) (((-560)) . T) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-560)) . T) (($) . T))
+((((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) (((-560)) . T) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-560)) . T) (($) . T))
((((-887)) . T))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1132)))
(((|#1|) . T))
(((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) (((-560)) . T) (($) . T))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))) (((-987 |#1|)) . T))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))) (((-987 |#1|)) . T))
(|has| |#1| (-870))
(|has| |#1| (-870))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
((((-987 |#1|)) . T))
-(((|#4|) -2304 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-748))))
-(((|#3|) -2304 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748))))
+(((|#4|) -2196 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-748))))
+(((|#3|) -2196 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748))))
(|has| |#2| (-376))
(((|#1|) |has| |#1| (-175)))
-(((|#4|) -2304 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-748)) (|has| |#4| (-1080))))
-(((|#3|) -2304 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748)) (|has| |#3| (-1080))))
+(((|#4|) -2196 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-748)) (|has| |#4| (-1080))))
+(((|#3|) -2196 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748)) (|has| |#3| (-1080))))
(((|#2|) |has| |#2| (-1080)))
(((|#2|) |has| |#2| (-1080)))
((((-1189) |#1|) . T))
@@ -1748,8 +1748,8 @@
((((-402) (-1189)) . T))
((($ (-1207)) . T))
((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
-((((-887)) -2304 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-632 (-887))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1132))) (((-1297 |#2|)) . T))
-(((#0=(-51)) . T) (((-2 (|:| -2968 (-1189)) (|:| -2460 #0#))) . T))
+((((-887)) -2196 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-632 (-887))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1132))) (((-1297 |#2|)) . T))
+(((#0=(-51)) . T) (((-2 (|:| -1438 (-1189)) (|:| -3067 #0#))) . T))
(((|#1|) . T))
((((-887)) . T))
(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))))
@@ -1758,7 +1758,7 @@
((((-560)) . T))
(|has| |#2| (-149))
(|has| |#1| (-487))
-(-2304 (|has| |#1| (-487)) (|has| |#1| (-748)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)))
+(-2196 (|has| |#1| (-487)) (|has| |#1| (-748)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)))
(|has| |#1| (-376))
((((-887)) . T))
(|has| |#1| (-38 (-421 (-560))))
@@ -1769,8 +1769,8 @@
(|has| |#1| (-870))
((((-887)) . T))
(((|#2|) . T))
-((((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175)))
-(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))))
+((((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175)))
+(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))))
((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(((|#2|) . T) (((-560)) . T) (((-841 |#1|)) . T))
(((|#1| |#2|) . T))
@@ -1779,8 +1779,8 @@
((((-935 |#1|)) . T) (((-421 (-560))) . T) (($) . T))
((((-887)) . T))
((((-887)) . T))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-1132)))
-(((|#2| (-496 (-1553 |#1|) (-793)) (-888 |#1|)) . T))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-1132)))
+(((|#2| (-496 (-2256 |#1|) (-793)) (-888 |#1|)) . T))
((((-421 (-560))) . #0=(|has| |#2| (-376))) (($) . #0#))
(((|#1| (-545 (-1207)) (-1207)) . T))
(((|#1|) . T))
@@ -1801,19 +1801,19 @@
(((|#2|) |has| |#2| (-175)))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) . T))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
(((|#2|) . T))
-((((-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) . T))
+((((-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) . T))
((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)))
((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
((((-1207) (-51)) . T))
((((-421 (-560)) |#1|) . T) (($ $) . T))
(((|#1| (-560)) . T))
((((-935 |#1|)) . T))
-(((|#1|) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1080))) (($) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080))))
-((((-1207)) -2304 (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080)))))
+(((|#1|) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1080))) (($) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080))))
+((((-1207)) -2196 (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080)))))
(((|#1|) . T) (((-560)) |has| |#1| (-1069 (-560))) (((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))))
(|has| |#1| (-871))
(|has| |#1| (-871))
@@ -1834,15 +1834,15 @@
(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))))
(((|#1|) |has| |#1| (-175)))
(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))))
-(((|#3|) -2304 (|has| |#3| (-175)) (|has| |#3| (-376))))
-((($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
-(-2304 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-939)))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+(((|#3|) -2196 (|has| |#3| (-175)) (|has| |#3| (-376))))
+((($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+(-2196 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-939)))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
((($ |#2|) . T))
-((($ (-1207)) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (($ (-1113)) . T))
+((($ (-1207)) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (($ (-1113)) . T))
((($ $) . T) ((#0=(-421 (-560)) #0#) . T))
((((-560) |#2|) . T))
-(((|#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-376))))
+(((|#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-376))))
(|has| |#1| (-363))
(((|#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))))
(((|#2|) . T) (((-560)) . T))
@@ -1851,7 +1851,7 @@
(|has| |#1| (-842))
(|has| |#1| (-842))
(((|#1|) . T))
-(-2304 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)))
+(-2196 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)))
(|has| |#1| (-870))
(|has| |#1| (-870))
(|has| |#1| (-870))
@@ -1860,14 +1860,14 @@
((((-560)) . T) (($) . T) (((-421 (-560))) . T))
(|has| |#1| (-38 (-421 (-560))))
(|has| |#1| (-38 (-421 (-560))))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-363)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-363)))
(|has| |#1| (-38 (-421 (-560))))
(|has| |#1| (-38 (-421 (-560))))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
((((-1207)) |has| |#1| (-927 (-1207))) (((-1113)) . T))
(((|#1|) . T))
(|has| |#1| (-870))
-(((#0=(-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) #0#) |has| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-321 (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))))))
+(((#0=(-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) #0#) |has| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-321 (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))))))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
(|has| |#1| (-1132))
((((-887)) . T) (((-1212)) . T))
@@ -1891,14 +1891,14 @@
(((|#3|) . T))
(((|#1| (-793) (-1113)) . T))
((((-146)) . T))
-((((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) (((-560)) -2304 (|has| |#1| (-870)) (|has| |#1| (-1069 (-560)))) ((|#1|) . T))
+((((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) (((-560)) -2196 (|has| |#1| (-870)) (|has| |#1| (-1069 (-560)))) ((|#1|) . T))
(((|#1|) . T))
(((|#2|) . T))
((((-146)) . T))
-((((-1207)) -2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))))
+((((-1207)) -2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))))
((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))))
((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))))
-(-2304 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1132)))
+(-2196 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1132)))
(((|#1|) . T))
(|has| |#1| (-147))
(|has| |#1| (-149))
@@ -1917,31 +1917,31 @@
((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571)))
((($) |has| |#1| (-571)))
(((|#2|) . T))
-((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -2304 (|has| |#1| (-175)) (|has| |#1| (-571))))
+((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -2196 (|has| |#1| (-175)) (|has| |#1| (-571))))
((($) |has| |#1| (-571)) ((|#1|) . T))
((($) |has| |#1| (-870)))
((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)))
(|has| |#1| (-939))
((((-1207)) . T))
((((-887)) . T))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T))
-((((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175)))
-(((|#1|) . T) (($) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))))
-(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T))
+((((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175)))
+(((|#1|) . T) (($) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))))
+(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))))
((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
((((-560) |#2|) . T))
-((($ (-1207)) -2304 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))))
-((($ (-1207)) -2304 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))))
-((($) -2304 (|has| |#1| (-240)) (|has| |#1| (-239))))
+((($ (-1207)) -2196 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))))
+((($ (-1207)) -2196 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))))
+((($) -2196 (|has| |#1| (-240)) (|has| |#1| (-239))))
((($) |has| |#1| (-381)))
((($) |has| |#1| (-381)))
((($) |has| |#1| (-381)))
(((|#1| |#2|) . T))
-(-2304 (|has| |#2| (-466)) (|has| |#2| (-939)))
-(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((#0=(-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) #0#) |has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-321 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))))
-(-2304 (|has| |#1| (-466)) (|has| |#1| (-939)))
+(-2196 (|has| |#2| (-466)) (|has| |#2| (-939)))
+(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((#0=(-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) #0#) |has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-321 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))))
+(-2196 (|has| |#1| (-466)) (|has| |#1| (-939)))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))))
@@ -1950,23 +1950,23 @@
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -2304 (|has| |#3| (-175)) (|has| |#3| (-376))))
+(((|#3|) -2196 (|has| |#3| (-175)) (|has| |#3| (-376))))
(|has| |#1| (-871))
(|has| |#1| (-571))
((((-595 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-2304 (-12 (|has| |#1| (-376)) (|has| |#2| (-842))) (-12 (|has| |#1| (-376)) (|has| |#2| (-871))))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (-12 (|has| |#1| (-376)) (|has| |#2| (-842))) (-12 (|has| |#1| (-376)) (|has| |#2| (-871))))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-571)))
((((-935 |#1|)) . T))
(((|#1| (-510 |#1| |#3|) (-510 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
(((|#1| (-793)) . T))
((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571)))
-((((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175)))
-(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))))
+((((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175)))
+(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))))
((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
-((((-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) . T))
+((((-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) . T))
((((-560)) |has| #0=(-421 |#2|) (-660 (-560))) ((#0#) . T) (((-421 (-560))) . T) (($) . T))
((((-694 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
@@ -1975,7 +1975,7 @@
((((-887)) . T))
(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
((((-887)) . T))
-((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
((((-1212)) . T))
((((-421 (-560))) . T) (($) . T) (((-421 |#1|)) . T) ((|#1|) . T) (((-560)) . T))
(((|#3|) . T) (((-560)) . T) (((-630 $)) . T))
@@ -1983,12 +1983,12 @@
((((-887)) . T))
((((-887)) . T))
(((|#2|) . T))
-(-2304 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-748)) (|has| |#3| (-815)) (|has| |#3| (-871)) (|has| |#3| (-1080)) (|has| |#3| (-1132)))
+(-2196 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-748)) (|has| |#3| (-815)) (|has| |#3| (-871)) (|has| |#3| (-1080)) (|has| |#3| (-1132)))
(|has| |#2| (-1080))
((((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) (((-560)) |has| |#1| (-1069 (-560))) ((|#1|) . T))
(|has| |#1| (-1233))
(|has| |#1| (-1233))
-(-2304 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1132)))
+(-2196 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1132)))
(|has| |#1| (-1233))
(|has| |#1| (-1233))
((($) . T) (((-560)) . T) (((-421 (-560))) . T))
@@ -2007,16 +2007,16 @@
((((-1189) (-51)) . T))
(|has| |#1| (-1132))
(((|#1|) |has| |#1| (-175)) (($) . T))
-(-2304 (|has| |#2| (-842)) (|has| |#2| (-871)))
+(-2196 (|has| |#2| (-842)) (|has| |#2| (-871)))
(((|#1|) . T) (($) . T) (((-421 (-560))) . T))
(((|#1|) . T) (((-421 (-560))) . T) (($) . T))
(((|#1|) . T))
((((-560)) . T) (($) . T) (((-421 (-560))) . T))
((((-560)) . T) (($) . T))
((((-793)) . T))
-(-2304 (|has| |#1| (-240)) (|has| |#1| (-239)) (|has| |#1| (-363)))
-((((-1207)) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))))
-(-2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
+(-2196 (|has| |#1| (-240)) (|has| |#1| (-239)) (|has| |#1| (-363)))
+((((-1207)) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))))
+(-2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
((((-887)) . T))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
(|has| |#2| (-939))
@@ -2024,32 +2024,32 @@
(((|#2|) |has| |#2| (-1132)))
((($) . T) (((-560)) . T))
((($) . T))
-(-2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
((((-549)) . T) (((-421 (-1201 (-560)))) . T) (((-229)) . T) (((-391)) . T))
((((-391)) . T) (((-229)) . T) (((-887)) . T))
(|has| |#1| (-939))
(|has| |#1| (-939))
-((($ (-1207)) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (($ (-840 (-1207))) . T))
+((($ (-1207)) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (($ (-840 (-1207))) . T))
((((-560)) . T) (((-421 (-560))) . T) (($) . T))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1132)))
-((($) -2304 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-421 (-560))) -2304 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-871)) (|has| |#1| (-1132)))
+((($) -2196 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-421 (-560))) -2196 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
(|has| |#1| (-939))
-(-2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
-(((|#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748))))
-(-2304 (|has| |#1| (-466)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(((|#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748))))
+(-2196 (|has| |#1| (-466)) (|has| |#1| (-939)))
((($) . T))
(((|#1|) . T))
((($) . T) ((|#2|) . T) (((-560)) |has| |#2| (-660 (-560))))
-(((|#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1080))))
+(((|#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1080))))
(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))))
((((-1205 |#1| |#2| |#3|)) -12 (|has| (-1205 |#1| |#2| |#3|) (-321 (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-939)))
((((-887)) . T))
((((-887)) . T))
((($ $) . T))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
-((($) -2304 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239)))))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
+((($) -2196 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239)))))
((($) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))))
((((-1002)) . T))
((((-1002)) . T) (((-887)) . T))
@@ -2058,7 +2058,7 @@
((($) . T))
(((|#1|) . T))
((((-114)) . T))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571)))
((((-560)) . T))
(((|#1| (-560)) . T))
((($) . T))
@@ -2081,7 +2081,7 @@
(((|#1| (-1257 |#1| |#2| |#3|)) . T))
((((-887)) . T))
(|has| |#1| (-1132))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
(((|#1| (-793)) . T))
((((-1189) |#1|) . T))
(((|#1|) . T))
@@ -2102,20 +2102,20 @@
((((-560)) . T))
((((-560)) . T))
((((-887)) . T))
-(-2304 (|has| |#1| (-147)) (|has| |#1| (-363)))
+(-2196 (|has| |#1| (-147)) (|has| |#1| (-363)))
((((-887)) . T))
(|has| |#1| (-149))
(((|#3|) . T))
((((-887)) . T))
(|has| |#3| (-1080))
-((($) -2304 (|has| |#2| (-240)) (|has| |#2| (-239))))
+((($) -2196 (|has| |#2| (-240)) (|has| |#2| (-239))))
((((-1278 |#2| |#3| |#4|)) . T) (((-1284 |#1| |#2| |#3| |#4|)) . T))
((((-887)) . T))
-((((-48)) -12 (|has| |#1| (-571)) (|has| |#1| (-1069 (-560)))) (((-630 $)) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1069 (-560))) (((-421 (-560))) -2304 (-12 (|has| |#1| (-571)) (|has| |#1| (-1069 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) (((-421 (-975 |#1|))) |has| |#1| (-571)) (((-975 |#1|)) |has| |#1| (-1080)) (((-1207)) . T))
+((((-48)) -12 (|has| |#1| (-571)) (|has| |#1| (-1069 (-560)))) (((-630 $)) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1069 (-560))) (((-421 (-560))) -2196 (-12 (|has| |#1| (-571)) (|has| |#1| (-1069 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) (((-421 (-975 |#1|))) |has| |#1| (-571)) (((-975 |#1|)) |has| |#1| (-1080)) (((-1207)) . T))
(((|#1|) . T) (($) . T))
(((|#1| (-793)) . T))
(((|#1|) . T))
-((($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175)))
+((($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175)))
(((|#1|) |has| |#1| (-321 |#1|)))
((((-1284 |#1| |#2| |#3| |#4|)) . T))
((((-560)) |has| |#1| (-911 (-560))) (((-391)) |has| |#1| (-911 (-391))))
@@ -2124,31 +2124,31 @@
(((|#1|) . T))
((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571)))
(((|#1|) . T))
-((((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175)))
-(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))))
+((((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175)))
+(((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))))
((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
-((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -2304 (|has| |#1| (-175)) (|has| |#1| (-571))))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T))
-(((|#1|) . T) (($) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
-(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) |has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))))
+((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -2196 (|has| |#1| (-175)) (|has| |#1| (-571))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T))
+(((|#1|) . T) (($) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) |has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))))
(((|#1|) |has| |#1| (-175)))
((((-887)) . T))
((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
(|has| |#1| (-571))
-((($ (-1294 |#2|)) . T) (($ (-1207)) -2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))))
+((($ (-1294 |#2|)) . T) (($ (-1207)) -2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))))
(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))))
((($ (-1294 |#2|)) . T) (($ (-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))))
((($ (-1294 |#2|)) . T) (($ (-1207)) -12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))))
(((|#1|) |has| |#1| (-175)) (($) . T) (((-560)) . T))
(((|#1|) . T))
-((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
-((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -2304 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -2196 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
(((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) (((-560)) . T) (($) . T))
(((|#3|) |has| |#3| (-1132)))
((((-935 |#1|)) . T) (((-421 (-560))) . T) (($) . T) (((-560)) . T))
-(((|#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-376))))
+(((|#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-376))))
((((-888 |#1|)) . T))
((((-1278 |#2| |#3| |#4|)) . T))
((((-114)) . T))
@@ -2159,8 +2159,8 @@
(|has| |#1| (-870))
(|has| |#1| (-870))
(((|#1| (-560) (-1113)) . T))
-(-2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+(-2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
(((|#1| (-421 (-560)) (-1113)) . T))
(((|#1| (-793) (-1113)) . T))
(|has| |#1| (-871))
@@ -2174,41 +2174,41 @@
((((-935 |#1|)) . T) (($) . T) (((-421 (-560))) . T))
(|has| |#1| (-1132))
((((-421 (-560))) |has| |#2| (-376)) (($) . T) (((-560)) . T))
-((((-560)) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080))))
+((((-560)) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080))))
(((|#1|) . T))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-1132)))
((((-560)) -12 (|has| |#1| (-376)) (|has| |#2| (-660 (-560)))) ((|#2|) |has| |#1| (-376)))
-(-2304 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1132)))
-((((-711 (-352 (-1592) (-1592 (QUOTE X) (QUOTE HESS)) (-721)))) . T))
+(-2196 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1132)))
+((((-711 (-352 (-3924) (-3924 (QUOTE X) (QUOTE HESS)) (-721)))) . T))
(((|#2|) |has| |#2| (-175)))
(((|#1|) |has| |#1| (-175)))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
-((((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
+((((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) . T))
((((-887)) . T))
((((-887)) . T))
((((-887)) . T))
((((-1278 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) . T))
-(((|#1| |#1|) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1080))))
+(((|#1| |#1|) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1080))))
(((|#1|) . T))
((((-560)) . T))
((((-560)) . T))
-(((|#1|) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1080))))
+(((|#1|) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1080))))
(((|#2|) |has| |#2| (-376)))
(((|#1|) . T))
((($) . T) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-376)) (((-560)) |has| |#1| (-660 (-560))))
(|has| |#1| (-871))
(((|#1|) . T))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
(((|#1|) . T) (((-560)) . T))
(((|#2|) . T))
((((-560)) . T) ((|#3|) . T))
-((((-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) |has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-321 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))))
-(-2304 (|has| |#1| (-466)) (|has| |#1| (-939)))
+((((-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) |has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-321 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))))
+(-2196 (|has| |#1| (-466)) (|has| |#1| (-939)))
(((|#2|) . T) (((-560)) |has| |#2| (-660 (-560))))
((((-887)) . T))
((((-887)) . T))
-((($ (-1207)) -2304 (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080)))))
-((((-560)) -2304 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))) ((|#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1080))) (($) |has| |#2| (-1080)))
+((($ (-1207)) -2196 (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080)))))
+((((-560)) -2196 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))) ((|#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1080))) (($) |has| |#2| (-1080)))
((((-549)) . T) (((-560)) . T) (((-915 (-560))) . T) (((-391)) . T) (((-229)) . T))
((((-887)) . T))
((($) |has| |#1| (-240)))
@@ -2243,12 +2243,12 @@
(|has| |#1| (-147))
((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(((|#1|) |has| |#1| (-175)))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
((((-560)) . T) ((|#1|) . T) (($) . T) (((-421 (-560))) . T) (((-1207)) |has| |#1| (-1069 (-1207))))
(((|#1| |#2|) . T))
-((((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) (((-560)) -2304 (|has| |#1| (-870)) (|has| |#1| (-1069 (-560)))) ((|#1|) . T))
-(-2304 (-12 (|has| |#4| (-240)) (|has| |#4| (-1080))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1080))))
-(-2304 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080))))
+((((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) (((-560)) -2196 (|has| |#1| (-870)) (|has| |#1| (-1069 (-560)))) ((|#1|) . T))
+(-2196 (-12 (|has| |#4| (-240)) (|has| |#4| (-1080))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1080))))
+(-2196 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080))))
((((-146)) . T))
(|has| |#1| (-38 (-421 (-560))))
(|has| |#1| (-38 (-421 (-560))))
@@ -2259,13 +2259,13 @@
((((-887)) . T))
(((|#1|) . T) (((-421 (-560))) . T) (($) . T))
((($) . T) (((-560)) |has| |#1| (-660 (-560))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
(|has| |#1| (-376))
(|has| |#1| (-376))
((($ |#2|) . T))
(|has| (-421 |#2|) (-240))
((((-663 |#1|)) . T))
-((($ (-1294 |#2|)) . T) (($ (-1207)) -2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))))
+((($ (-1294 |#2|)) . T) (($ (-1207)) -2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))))
((($ (-1294 |#2|)) . T) (($ (-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))))
((($ (-1294 |#2|)) . T) (($ (-1207)) -12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))))
(|has| |#1| (-939))
@@ -2273,7 +2273,7 @@
(((|#2|) |has| |#2| (-1080)))
(|has| |#1| (-376))
((($) . T))
-(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) |has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) |has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))))
(((|#1|) |has| |#1| (-175)))
((($ (-888 |#1|)) . T))
(((|#1| |#1|) . T))
@@ -2284,7 +2284,7 @@
(((|#1|) . T))
((((-421 |#2|)) . T) (((-421 (-560))) . T) (($) . T) (((-560)) . T))
((((-663 $)) . T) (((-1189)) . T) (((-1207)) . T) (((-560)) . T) (((-229)) . T) (((-887)) . T))
-((((-560)) -2304 (|has| |#3| (-21)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080))) ((|#3|) -2304 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748)) (|has| |#3| (-1080))) (($) |has| |#3| (-1080)))
+((((-560)) -2196 (|has| |#3| (-21)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080))) ((|#3|) -2196 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748)) (|has| |#3| (-1080))) (($) |has| |#3| (-1080)))
((((-421 (-560))) . T) (((-560)) . T) (((-630 $)) . T))
(((|#1|) . T))
((((-887)) . T))
@@ -2300,7 +2300,7 @@
(((|#1| (-793) (-1113)) . T))
((((-887)) . T))
(((#0=(-421 |#2|) #0#) . T) ((#1=(-421 (-560)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-560)) -2304 (|has| (-421 (-560)) (-1069 (-560))) (|has| |#1| (-1069 (-560)))) (((-421 (-560))) . T))
+(((|#1|) . T) (((-560)) -2196 (|has| (-421 (-560)) (-1069 (-560))) (|has| |#1| (-1069 (-560)))) (((-421 (-560))) . T))
(((|#1| (-616 |#1| |#3|) (-616 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-175)))
(((|#1|) . T))
@@ -2320,37 +2320,37 @@
((((-721)) . T))
((((-721)) . T))
(((|#2|) |has| |#2| (-175)))
-(-2304 (|has| |#1| (-240)) (|has| |#1| (-239)))
+(-2196 (|has| |#1| (-240)) (|has| |#1| (-239)))
((((-560)) . T) ((|#2|) . T) (((-421 (-560))) |has| |#2| (-1069 (-421 (-560)))))
-((((-114)) |has| |#1| (-1132)) (((-887)) -2304 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-487)) (|has| |#1| (-748)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)) (|has| |#1| (-1143)) (|has| |#1| (-1132))))
+((((-114)) |has| |#1| (-1132)) (((-887)) -2196 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-487)) (|has| |#1| (-748)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)) (|has| |#1| (-1143)) (|has| |#1| (-1132))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
((($) . T) (((-560)) . T) (((-421 (-560))) . T))
((((-560)) . T) (($) . T) (((-421 (-560))) . T))
-((((-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) . T))
+((((-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) . T))
(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T))
(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T))
(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T))
((((-560)) . T) (($) . T) (((-421 (-560))) . T))
((((-560)) . T) (((-421 (-560))) . T) (($) . T))
((((-887)) . T))
-((((-1207)) -2304 (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080)))))
+((((-1207)) -2196 (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080)))))
((((-560)) . T) (((-421 (-560))) . T) (($) . T))
((((-887)) . T))
((((-721)) . T) (((-421 (-560))) . T) (((-560)) . T))
(((|#1| |#1|) |has| |#1| (-175)))
(((|#2|) . T))
-((($) . T) (((-560)) . T) (((-421 (-560))) -2304 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
+((($) . T) (((-560)) . T) (((-421 (-560))) -2196 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
((((-560) |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) |has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) |has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))))
((((-391)) . T))
((((-721)) . T))
((((-421 (-560))) . #0=(|has| |#2| (-376))) (($) . #0#))
(((|#1|) |has| |#1| (-175)))
((((-421 (-975 |#1|))) . T))
(((|#2| |#2|) . T))
-(-2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
-(-2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(-2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
+(-2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
(((|#1|) . T))
(((|#2|) . T))
(((|#3|) |has| |#3| (-1080)))
@@ -2362,7 +2362,7 @@
((((-1207)) |has| |#2| (-927 (-1207))))
(|has| |#1| (-871))
((((-887)) . T))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
(|has| |#1| (-813))
((((-421 (-560))) . T) (($) . T))
(|has| |#1| (-487))
@@ -2370,8 +2370,8 @@
(|has| |#1| (-381))
(|has| |#1| (-381))
(|has| |#1| (-376))
-(-2304 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-487)) (|has| |#1| (-571)) (|has| |#1| (-1080)) (|has| |#1| (-1143)))
-((($) -2304 (|has| |#1| (-240)) (|has| |#1| (-239)) (|has| |#1| (-363))))
+(-2196 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-487)) (|has| |#1| (-571)) (|has| |#1| (-1080)) (|has| |#1| (-1143)))
+((($) -2196 (|has| |#1| (-240)) (|has| |#1| (-239)) (|has| |#1| (-363))))
((((-118 |#1|)) . T))
((((-118 |#1|)) . T))
(|has| |#1| (-363))
@@ -2383,7 +2383,7 @@
(|has| |#1| (-38 (-421 (-560))))
(((|#2|) . T) (((-887)) . T))
(((|#2|) . T) (((-887)) . T))
-((($ (-1207)) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))))
+((($ (-1207)) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))))
(|has| |#1| (-38 (-421 (-560))))
(|has| |#1| (-38 (-421 (-560))))
(|has| |#1| (-38 (-421 (-560))))
@@ -2393,18 +2393,18 @@
(|has| |#1| (-38 (-421 (-560))))
(|has| |#1| (-38 (-421 (-560))))
(|has| |#1| (-871))
-((((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) . T))
+((((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) . T))
(((|#1| |#2|) . T))
((($) . T) (((-560)) . T))
(|has| |#1| (-149))
(|has| |#1| (-147))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) |has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) ((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) |has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) ((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))))
(((|#2|) . T))
(|has| |#1| (-15 * (|#1| (-560) |#1|)))
(((|#3|) . T))
((((-118 |#1|)) . T))
(|has| |#1| (-381))
-(-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))
+(-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))
(|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))
(|has| |#1| (-871))
(((|#2|) . T) (((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) (((-560)) |has| |#1| (-1069 (-560))) ((|#1|) . T))
@@ -2423,17 +2423,17 @@
(((|#1|) |has| |#1| (-376)))
(((|#1|) |has| |#1| (-376)))
((((-887)) . T))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
((($ $) . T) (((-630 $) $) . T))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-571)))
((($) . T) (((-1284 |#1| |#2| |#3| |#4|)) . T) (((-421 (-560))) . T))
-((($) -2304 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1080))) ((|#1|) -2304 (|has| |#1| (-175)) (|has| |#1| (-1080))) (((-421 (-560))) |has| |#1| (-571)) (((-560)) -12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))))
-((($) . T) (((-560)) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) . T))
+((($) -2196 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1080))) ((|#1|) -2196 (|has| |#1| (-175)) (|has| |#1| (-1080))) (((-421 (-560))) |has| |#1| (-571)) (((-560)) -12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))))
+((($) . T) (((-560)) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) . T))
(|has| |#1| (-376))
(|has| |#1| (-376))
(|has| |#1| (-376))
((((-391)) . T) (((-560)) . T) (((-421 (-560))) . T))
-((((-1207)) -2304 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))))
+((((-1207)) -2196 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))))
((((-663 (-802 |#1| (-888 |#2|)))) . T) (((-887)) . T))
((((-549)) |has| (-802 |#1| (-888 |#2|)) (-633 (-549))))
(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
@@ -2442,17 +2442,17 @@
(((|#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))))
(((|#1|) |has| |#1| (-175)))
((((-887)) . T))
-(-2304 (|has| |#2| (-466)) (|has| |#2| (-939)))
+(-2196 (|has| |#2| (-466)) (|has| |#2| (-939)))
(((|#1|) . T))
((($) . T))
((($) |has| |#1| (-571)) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-571))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
((((-549)) |has| |#1| (-633 (-549))))
(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))))
((((-793)) . T))
(|has| |#1| (-1132))
-((((-560)) -2304 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))) ((|#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1080))) (($) |has| |#2| (-1080)))
+((((-560)) -2196 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080))) ((|#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1080))) (($) |has| |#2| (-1080)))
((((-887)) . T))
((((-1189)) . T) (((-1207)) . T) (((-887)) . T))
((((-560)) -12 (|has| |#1| (-21)) (|has| |#2| (-21))))
@@ -2460,13 +2460,13 @@
(|has| |#1| (-147))
(|has| |#1| (-149))
((((-560)) . T))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-571)))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-571)))
(((#0=(-1278 |#2| |#3| |#4|)) . T) (((-421 (-560))) |has| #0# (-38 (-421 (-560)))) (($) . T))
((((-560)) . T))
((($) . T))
-(-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-149)) (|has| |#1| (-376))) (|has| |#1| (-149)))
-(-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-147)) (|has| |#1| (-376))) (|has| |#1| (-147)))
+(-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-149)) (|has| |#1| (-376))) (|has| |#1| (-149)))
+(-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-147)) (|has| |#1| (-376))) (|has| |#1| (-147)))
(|has| |#1| (-376))
(|has| |#1| (-147))
(|has| |#1| (-149))
@@ -2488,29 +2488,29 @@
((((-421 (-560))) . #0=(|has| |#2| (-376))) (($) . #0#))
(|has| |#1| (-871))
((((-421 (-560))) |has| |#2| (-376)) (($) . T))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-1132)))
((((-1173 |#2| |#1|)) . T) ((|#1|) . T) (((-560)) . T))
(((|#1| |#2|) . T))
-((((-560)) . T) ((|#1|) . T) (((-421 (-560))) -2304 (|has| |#1| (-376)) (|has| |#1| (-1069 (-421 (-560))))))
-((((-1207)) -2304 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207))))))
+((((-560)) . T) ((|#1|) . T) (((-421 (-560))) -2196 (|has| |#1| (-376)) (|has| |#1| (-1069 (-421 (-560))))))
+((((-1207)) -2196 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207))))))
(((|#1|) . T) (((-560)) |has| |#1| (-660 (-560))))
(((|#2|) . T) (($) . T) (((-560)) . T))
(((|#1|) . T) (($) . T) (((-560)) . T))
-(-2304 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1132)))
+(-2196 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1132)))
((((-887)) . T))
((((-560)) . T))
-(-2304 (-12 (|has| |#2| (-240)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))))
+(-2196 (-12 (|has| |#2| (-240)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))))
(((|#1| $) |has| |#1| (-298 |#1| |#1|)))
((((-421 (-560))) . T) (($) . T) (((-421 |#1|)) . T) ((|#1|) . T))
((((-975 |#1|)) . T) (((-887)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -2304 (|has| |#1| (-302)) (|has| |#1| (-376))) ((#0=(-421 (-560)) #0#) |has| |#1| (-376)))
+(((|#1| |#1|) . T) (($ $) -2196 (|has| |#1| (-302)) (|has| |#1| (-376))) ((#0=(-421 (-560)) #0#) |has| |#1| (-376)))
((((-975 |#1|)) . T))
-((((-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) . T))
+((((-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) . T))
((($) . T))
((((-560) |#1|) . T))
((((-1207)) |has| (-421 |#2|) (-927 (-1207))))
-(((|#1|) . T) (($) -2304 (|has| |#1| (-302)) (|has| |#1| (-376))) (((-421 (-560))) |has| |#1| (-376)))
+(((|#1|) . T) (($) -2196 (|has| |#1| (-302)) (|has| |#1| (-376))) (((-421 (-560))) |has| |#1| (-376)))
((((-549)) |has| |#2| (-633 (-549))))
((((-711 |#2|)) . T) (((-887)) . T))
(((|#1|) . T))
@@ -2518,24 +2518,24 @@
(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))))
((((-893 |#1|)) . T))
(((|#1|) |has| |#1| (-175)))
-(-2304 (|has| |#4| (-815)) (|has| |#4| (-871)))
-(-2304 (|has| |#3| (-815)) (|has| |#3| (-871)))
+(-2196 (|has| |#4| (-815)) (|has| |#4| (-871)))
+(-2196 (|has| |#3| (-815)) (|has| |#3| (-871)))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
((((-887)) . T))
(((|#1|) . T))
((($) . T) (((-560)) . T) ((|#2|) . T))
((((-887)) . T))
(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))))
-(((|#3|) -2304 (|has| |#3| (-175)) (|has| |#3| (-376))))
+(((|#3|) -2196 (|has| |#3| (-175)) (|has| |#3| (-376))))
(((|#2|) |has| |#2| (-1080)))
(((|#2|) |has| |#2| (-1080)))
(((|#3|) . T))
((($) . T))
(((|#1|) . T))
((((-421 |#2|)) . T))
-(((|#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748))))
+(((|#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748))))
(((|#1|) . T))
-(((|#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1080))))
+(((|#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1080))))
(((|#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))))
((((-1264 (-560)) $) . T) (((-560) |#1|) . T))
(((|#1|) . T))
@@ -2544,16 +2544,16 @@
((((-421 (-560))) . T) (($) . T))
((((-421 (-560))) . T) (($) . T))
((((-421 (-560))) . T) (($) . T))
-(-2304 (|has| |#1| (-466)) (|has| |#1| (-1252)))
+(-2196 (|has| |#1| (-466)) (|has| |#1| (-1252)))
((($) . T))
((((-421 (-560))) |has| #0=(-421 |#2|) (-1069 (-421 (-560)))) (((-560)) |has| #0# (-1069 (-560))) ((#0#) . T))
(((|#2|) . T) (((-560)) |has| |#2| (-660 (-560))))
(((|#1| (-793)) . T))
(|has| |#1| (-871))
(((|#1|) . T) (((-560)) |has| |#1| (-660 (-560))))
-((($) -2304 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-421 (-560))) -2304 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
+((($) -2196 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-421 (-560))) -2196 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
((((-560)) . T))
-((((-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) |has| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-321 (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))))))
+((((-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) |has| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-321 (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))))))
(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
(|has| |#1| (-870))
((((-560) $) . T) (((-663 (-560)) $) . T))
@@ -2578,59 +2578,59 @@
(|has| |#1| (-38 (-421 (-560))))
(|has| |#1| (-38 (-421 (-560))))
((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))))
-(-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))
+(-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))
(|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))
(|has| |#1| (-15 * (|#1| (-793) |#1|)))
((((-1189)) . T) (((-520)) . T) (((-229)) . T) (((-560)) . T))
((((-887)) . T))
-(((|#2|) . T) (((-560)) . T) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) (((-1113)) . T) ((|#1|) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))))
+(((|#2|) . T) (((-560)) . T) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) (((-1113)) . T) ((|#1|) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))))
(((|#1| |#2|) . T))
((((-146)) . T))
((((-802 |#1| (-888 |#2|))) . T))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
(|has| |#1| (-1233))
((((-887)) . T))
(((|#1|) . T))
-(-2304 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-748)) (|has| |#3| (-815)) (|has| |#3| (-871)) (|has| |#3| (-1080)) (|has| |#3| (-1132)))
+(-2196 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-748)) (|has| |#3| (-815)) (|has| |#3| (-871)) (|has| |#3| (-1080)) (|has| |#3| (-1132)))
((((-1207) |#1|) |has| |#1| (-528 (-1207) |#1|)))
(((|#2|) . T))
(((|#2|) . T))
-((($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))))
+((($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))))
((((-935 |#1|)) . T))
-((($) -2304 (-12 (|has| |#4| (-240)) (|has| |#4| (-1080))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1080)))))
-((($) -2304 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080)))))
+((($) -2196 (-12 (|has| |#4| (-240)) (|has| |#4| (-1080))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1080)))))
+((($) -2196 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080)))))
((($) . T))
((((-421 (-975 |#1|))) . T))
(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
(|has| |#1| (-871))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
-((((-1207)) -2304 (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080)))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((((-1207)) -2196 (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080)))))
(|has| |#1| (-870))
((((-549)) |has| |#4| (-633 (-549))))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-1132)))
((((-887)) . T) (((-663 |#4|)) . T))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
(((|#1|) . T))
(|has| |#1| (-376))
-(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) (((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) |has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-321 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))))
-(-2304 (-12 (|has| |#1| (-376)) (|has| |#2| (-842))) (-12 (|has| |#1| (-376)) (|has| |#2| (-871))))
+(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) (((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) |has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-321 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))))
+(-2196 (-12 (|has| |#1| (-376)) (|has| |#2| (-842))) (-12 (|has| |#1| (-376)) (|has| |#2| (-871))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -2304 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748))))
+(((|#3|) -2196 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748))))
((((-694 |#1|)) . T))
-(((|#3|) -2304 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748)) (|has| |#3| (-1080))))
+(((|#3|) -2196 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-748)) (|has| |#3| (-1080))))
((((-560)) . T) (($) . T) (((-421 (-560))) . T))
-((($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175)))
+((($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175)))
(|has| |#1| (-147))
(|has| |#1| (-149))
-(-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-149)) (|has| |#1| (-376))) (|has| |#1| (-149)))
-(-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-147)) (|has| |#1| (-376))) (|has| |#1| (-147)))
+(-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-149)) (|has| |#1| (-376))) (|has| |#1| (-149)))
+(-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-147)) (|has| |#1| (-376))) (|has| |#1| (-147)))
(|has| |#1| (-147))
(|has| |#1| (-149))
(|has| |#1| (-149))
(|has| |#1| (-147))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
((((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)))
(|has| |#1| (-870))
(((|#1| |#2|) . T))
@@ -2642,13 +2642,13 @@
((((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((|#1|) . T) (((-560)) . T))
(|has| |#2| (-147))
(|has| |#2| (-149))
-(-2304 (|has| |#2| (-842)) (|has| |#2| (-871)))
+(-2196 (|has| |#2| (-842)) (|has| |#2| (-871)))
((((-935 |#1|)) . T) (((-421 (-560))) . T) (($) . T))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-1132)))
((((-560)) . T) ((|#1|) . T))
(((|#2|) . T) (($) . T) (((-560)) . T))
(((|#2|) . T))
-((((-1207)) -2304 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207)))))
+((((-1207)) -2196 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207)))))
(((|#1| |#1|) . T))
(((|#3|) |has| |#3| (-376)))
((((-421 |#2|)) . T))
@@ -2657,10 +2657,10 @@
((((-887)) . T))
((((-887)) . T))
((((-549)) |has| |#1| (-633 (-549))))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
((((-560)) . T) (($) . T) (((-421 (-560))) . T))
((((-1207) |#1|) |has| |#1| (-528 (-1207) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|)))
-(((|#1|) -2304 (|has| |#1| (-175)) (|has| |#1| (-376))))
+(((|#1|) -2196 (|has| |#1| (-175)) (|has| |#1| (-376))))
(((|#1|) . T) (((-421 (-560))) . T) (($) . T))
((((-560)) . T) (((-421 (-560))) . T) (($) . T))
(((|#1|) . T) (((-421 (-560))) . T) (($) . T))
@@ -2670,14 +2670,14 @@
(((|#1|) . T) (($) . T) (((-421 (-560))) . T))
(((|#1|) . T) (($) . T) (((-421 (-560))) . T))
(((|#2|) |has| |#2| (-376)))
-((($) -2304 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-421 (-560))) -2304 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
+((($) -2196 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-421 (-560))) -2196 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
(((|#2|) . T))
((((-421 (-560))) . T) (((-721)) . T) (($) . T))
-((($) . T) (((-421 (-560))) -2304 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
+((($) . T) (((-421 (-560))) -2196 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T))
(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
-(-2304 (|has| |#1| (-240)) (|has| |#1| (-239)))
+(-2196 (|has| |#1| (-240)) (|has| |#1| (-239)))
(((#0=(-802 |#1| (-888 |#2|)) #0#) |has| (-802 |#1| (-888 |#2|)) (-321 (-802 |#1| (-888 |#2|)))))
-((($) -2304 (|has| |#1| (-240)) (|has| |#1| (-239))))
+((($) -2196 (|has| |#1| (-240)) (|has| |#1| (-239))))
((((-560)) . T) (($) . T))
((((-888 |#1|)) . T))
(((|#2|) |has| |#2| (-175)))
@@ -2686,7 +2686,7 @@
((((-1207)) |has| |#1| (-927 (-1207))) (((-1113)) . T))
((((-1207)) |has| |#1| (-927 (-1207))) (((-1119 (-1207))) . T))
(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))))
-((($ (-1207)) -2304 (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080)))))
+((($ (-1207)) -2196 (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080)))))
((((-421 (-560))) . T) (((-560)) . T) (($) . T))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
(|has| |#1| (-38 (-421 (-560))))
@@ -2695,13 +2695,13 @@
(|has| |#1| (-147))
(|has| |#1| (-149))
((($ $) . T))
-(-2304 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-487)) (|has| |#1| (-748)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)) (|has| |#1| (-1143)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-487)) (|has| |#1| (-748)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)) (|has| |#1| (-1143)) (|has| |#1| (-1132)))
(|has| |#1| (-571))
(((|#2|) . T))
((((-560)) . T))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
(((|#1|) . T))
-(-2304 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1080)))
+(-2196 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1080)))
((((-595 |#1|)) . T))
((($) . T))
(((|#1| (-58 |#1|) (-58 |#1|)) . T))
@@ -2721,37 +2721,37 @@
(((|#1|) . T))
(((|#3|) . T) (((-560)) . T))
((((-1278 |#2| |#3| |#4|)) . T) (((-560)) . T) (((-1284 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-421 (-560))) . T))
-((((-48)) -12 (|has| |#1| (-571)) (|has| |#1| (-1069 (-560)))) (((-560)) -2304 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1069 (-560))) (|has| |#1| (-1080))) ((|#1|) . T) (((-630 $)) . T) (($) |has| |#1| (-571)) (((-421 (-560))) -2304 (|has| |#1| (-571)) (|has| |#1| (-1069 (-421 (-560))))) (((-421 (-975 |#1|))) |has| |#1| (-571)) (((-975 |#1|)) |has| |#1| (-1080)) (((-1207)) . T))
+((((-48)) -12 (|has| |#1| (-571)) (|has| |#1| (-1069 (-560)))) (((-560)) -2196 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1069 (-560))) (|has| |#1| (-1080))) ((|#1|) . T) (((-630 $)) . T) (($) |has| |#1| (-571)) (((-421 (-560))) -2196 (|has| |#1| (-571)) (|has| |#1| (-1069 (-421 (-560))))) (((-421 (-975 |#1|))) |has| |#1| (-571)) (((-975 |#1|)) |has| |#1| (-1080)) (((-1207)) . T))
((((-421 (-560))) |has| |#2| (-1069 (-421 (-560)))) (((-560)) |has| |#2| (-1069 (-560))) ((|#2|) . T) (((-888 |#1|)) . T))
((($) . T) (((-118 |#1|)) . T) (((-421 (-560))) . T))
((((-1156 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1069 (-560))) (((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))))
((((-1201 |#1|)) . T) (((-1113)) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1069 (-560))) (((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))))
((((-1156 |#1| (-1207))) . T) (((-1119 (-1207))) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1069 (-560))) (((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) (((-1207)) . T))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-1132)))
((($) . T))
(|has| |#1| (-1132))
((((-560)) -12 (|has| |#1| (-911 (-560))) (|has| |#2| (-911 (-560)))) (((-391)) -12 (|has| |#1| (-911 (-391))) (|has| |#2| (-911 (-391)))))
(((|#1| |#2|) . T))
((((-1207) |#1|) . T))
(((|#4|) . T))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-363)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-363)))
((((-1207) (-51)) . T))
((((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) (((-560)) |has| |#1| (-1069 (-560))) ((|#1|) . T))
((((-1278 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) . T))
((((-887)) . T))
-(-2304 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1132)))
+(-2196 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-748)) (|has| |#2| (-815)) (|has| |#2| (-871)) (|has| |#2| (-1080)) (|has| |#2| (-1132)))
(((#0=(-1284 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-421 (-560)) #1#) . T) (($ $) . T))
(((|#1| |#1|) |has| |#1| (-175)) ((#0=(-421 (-560)) #0#) |has| |#1| (-571)) (($ $) |has| |#1| (-571)))
((($) |has| |#1| (-15 * (|#1| (-560) |#1|))))
-((($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175)))
+((($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175)))
(((|#1|) . T) (($) . T) (((-421 (-560))) . T))
(((|#1| $) |has| |#1| (-298 |#1| |#1|)))
((((-1284 |#1| |#2| |#3| |#4|)) . T) (((-421 (-560))) . T) (($) . T))
(((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-571)) (($) |has| |#1| (-571)))
-((((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#1|) . T))
+((((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#1|) . T))
(|has| |#1| (-376))
-((($) |has| |#1| (-870)) (((-560)) -2304 (|has| |#1| (-21)) (|has| |#1| (-870))))
-((($) -2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))))
+((($) |has| |#1| (-870)) (((-560)) -2196 (|has| |#1| (-21)) (|has| |#1| (-870))))
+((($) -2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))))
((($) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))))
(|has| |#1| (-147))
(|has| |#1| (-149))
@@ -2770,16 +2770,16 @@
(((|#2| |#3|) . T))
(((|#1| (-545 |#2|)) . T))
(((|#1| (-793)) . T))
-(-2304 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
+(-2196 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
(((|#1| (-545 (-1119 (-1207)))) . T))
(((|#1|) |has| |#1| (-175)))
(((|#1|) . T))
(|has| |#2| (-939))
-(-2304 (|has| |#2| (-815)) (|has| |#2| (-871)))
+(-2196 (|has| |#2| (-815)) (|has| |#2| (-871)))
((((-887)) . T))
-(((|#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748))))
-(((|#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1080))))
-((($ (-1207)) -2304 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))))
+(((|#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748))))
+(((|#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-748)) (|has| |#2| (-1080))))
+((($ (-1207)) -2196 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))))
((($ $) . T) ((#0=(-1278 |#2| |#3| |#4|) #0#) . T) ((#1=(-421 (-560)) #1#) |has| #0# (-38 (-421 (-560)))))
((((-935 |#1|)) . T))
(-12 (|has| |#1| (-376)) (|has| |#2| (-842)))
@@ -2787,14 +2787,14 @@
((((-887)) . T))
((($) . T) (((-560)) . T))
((($) . T))
-(-2304 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-571)))
(|has| |#1| (-376))
(|has| |#1| (-376))
(((|#1| |#2|) . T))
((($) . T) ((#0=(-1278 |#2| |#3| |#4|)) . T) (((-421 (-560))) |has| #0# (-38 (-421 (-560)))))
((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)))
-(-2304 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-376)) (|has| |#1| (-363)))
-(-2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)))
+(-2196 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-376)) (|has| |#1| (-363)))
+(-2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)))
((((-560)) |has| |#1| (-660 (-560))) ((|#1|) . T))
(((|#1| |#2|) . T))
((((-887)) . T))
@@ -2832,7 +2832,7 @@
((($) . T))
(((|#4|) . T))
((($) . T))
-((($ (-1207)) -2304 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207))))))
+((($ (-1207)) -2196 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207))))))
((((-887)) . T))
(((|#1| (-545 (-1207))) . T))
((($ $) . T))
@@ -2842,29 +2842,29 @@
(((|#2|) . T))
(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))))
(((|#2|) . T))
-(((|#2|) -2304 (|has| |#2| (-6 (-4510 "*"))) (|has| |#2| (-175))))
-(-2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
-(-2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(((|#2|) -2196 (|has| |#2| (-6 (-4510 "*"))) (|has| |#2| (-175))))
+(-2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
+(-2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
(|has| |#2| (-939))
(|has| |#1| (-939))
-((($) -2304 (-12 (|has| |#2| (-240)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1080)))))
+((($) -2196 (-12 (|has| |#2| (-240)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1080)))))
(((|#2|) |has| |#2| (-175)))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
((((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)))
((((-887)) . T))
((((-887)) . T))
((((-549)) . T) (((-560)) . T) (((-915 (-560))) . T) (((-391)) . T) (((-229)) . T))
(((|#1| |#2|) . T))
((($) . T) (((-560)) . T))
-((((-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) . T))
+((((-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) . T))
(((|#1|) . T))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
((((-887)) . T))
(((|#1| |#2|) . T))
((($) . T) (((-560)) . T))
(((|#1| (-421 (-560))) . T))
(((|#1|) . T))
-(-2304 (|has| |#1| (-302)) (|has| |#1| (-376)))
+(-2196 (|has| |#1| (-302)) (|has| |#1| (-376)))
((((-146)) . T))
((((-560)) |has| #0=(-421 |#2|) (-660 (-560))) ((#0#) . T) (((-421 (-560))) . T) (($) . T))
(|has| |#1| (-870))
@@ -2880,7 +2880,7 @@
((((-887)) . T))
((((-887)) . T))
((((-186)) . T) (((-887)) . T))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
((((-887)) . T))
((((-887)) . T))
@@ -2897,8 +2897,8 @@
(|has| |#1| (-871))
((((-887)) . T))
((((-549)) |has| |#1| (-633 (-549))))
-((((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) . T))
-((($) -2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))))
+((((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) . T))
+((($) -2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))))
((((-887)) . T))
(((|#2|) |has| |#2| (-376)))
((((-887)) . T))
@@ -2913,19 +2913,19 @@
(|has| |#3| (-1080))
(|has| |#1| (-1132))
((((-1207) (-51)) . T))
-(-2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-2304 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080)))
-(-2304 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080)))
+(-2196 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080)))
+(-2196 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080)))
(|has| |#1| (-939))
((((-935 |#1|)) . T) (((-421 (-560))) . T) (($) . T) (((-560)) . T))
(|has| |#1| (-939))
(((|#1|) . T) (((-560)) . T) (((-421 (-560))) . T) (($) . T))
(((|#2|) . T))
-((($ (-1207)) -2304 (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080)))))
+((($ (-1207)) -2196 (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080)))))
(((#0=(-421 (-560)) #0#) . T) (($ $) . T))
((((-560)) . T))
(((|#1|) . T))
@@ -2937,12 +2937,12 @@
(|has| |#1| (-38 (-421 (-560))))
(|has| |#1| (-38 (-421 (-560))))
(|has| |#1| (-38 (-421 (-560))))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
(|has| |#1| (-842))
(((#0=(-935 |#1|) #0#) . T) (($ $) . T) ((#1=(-421 (-560)) #1#) . T))
((((-421 |#2|)) . T))
(|has| |#1| (-870))
-((((-1234 |#1|)) . T) (((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
+((((-1234 |#1|)) . T) (((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
(((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) . T) ((#1=(-560) #1#) . T) (($ $) . T))
((((-935 |#1|)) . T) (($) . T) (((-421 (-560))) . T))
(((|#2|) |has| |#2| (-1080)) (((-560)) -12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))))
@@ -2961,36 +2961,36 @@
(((|#2|) |has| |#2| (-175)))
(((|#1|) . T))
(((|#2|) . T))
-(-2304 (|has| |#1| (-147)) (|has| |#1| (-381)))
-(-2304 (|has| |#1| (-147)) (|has| |#1| (-381)))
-(-2304 (|has| |#1| (-147)) (|has| |#1| (-381)))
-((((-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) . T))
+(-2196 (|has| |#1| (-147)) (|has| |#1| (-381)))
+(-2196 (|has| |#1| (-147)) (|has| |#1| (-381)))
+(-2196 (|has| |#1| (-147)) (|has| |#1| (-381)))
+((((-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) . T))
((((-560) |#3|) . T))
(((|#1|) . T))
-(((#0=(-51)) . T) (((-2 (|:| -2968 (-1207)) (|:| -2460 #0#))) . T))
+(((#0=(-51)) . T) (((-2 (|:| -1438 (-1207)) (|:| -3067 #0#))) . T))
(|has| |#1| (-363))
((((-560)) . T))
((((-887)) . T))
(((|#1|) . T))
(((#0=(-1284 |#1| |#2| |#3| |#4|) $) |has| #0# (-298 #0# #0#)))
(|has| |#1| (-376))
-(-2304 (-12 (|has| |#2| (-240)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))))
-(((|#1|) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1080))) (($) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080))) (((-560)) -2304 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080))))
+(-2196 (-12 (|has| |#2| (-240)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))))
+(((|#1|) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1080))) (($) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080))) (((-560)) -2196 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080))))
(((#0=(-1113) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-363)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-363)))
(((#0=(-421 (-560)) #0#) . T) ((#1=(-721) #1#) . T) (($ $) . T))
((((-326 |#1|)) . T) (($) . T))
(((|#1|) . T) (((-421 (-560))) |has| |#1| (-376)))
((((-887)) . T))
(|has| |#1| (-1132))
(((|#1|) . T))
-(((|#1|) -2304 (|has| |#2| (-380 |#1|)) (|has| |#2| (-432 |#1|))))
-(((|#1|) -2304 (|has| |#2| (-380 |#1|)) (|has| |#2| (-432 |#1|))))
+(((|#1|) -2196 (|has| |#2| (-380 |#1|)) (|has| |#2| (-432 |#1|))))
+(((|#1|) -2196 (|has| |#2| (-380 |#1|)) (|has| |#2| (-432 |#1|))))
(((|#2|) . T))
((((-421 (-560))) . T) (((-721)) . T) (($) . T))
((((-593)) . T))
(((|#3| |#3|) . T))
-((($ (-1207)) -2304 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207)))))
+((($ (-1207)) -2196 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207)))))
(|has| |#1| (-871))
(|has| |#2| (-240))
((((-888 |#1|)) . T))
@@ -3011,10 +3011,10 @@
(|has| |#1| (-1132))
(((|#2|) . T))
(((|#1|) . T))
-((($) -2304 (|has| |#1| (-240)) (|has| |#1| (-239))))
+((($) -2196 (|has| |#1| (-240)) (|has| |#1| (-239))))
((((-560)) . T))
(((|#2|) . T) (((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((|#1|) . T) (($) . T) (((-560)) . T))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
(((|#2|) . T) (((-560)) |has| |#2| (-660 (-560))))
(((|#1| |#2|) . T))
((($) . T))
@@ -3057,7 +3057,7 @@
(|has| |#2| (-1051))
((($) . T))
(|has| |#1| (-939))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
(((|#4|) . T))
((($) . T))
(((|#2|) . T))
@@ -3067,32 +3067,32 @@
(|has| |#1| (-376))
((((-935 |#1|)) . T))
((($) . T) (((-560)) . T) ((|#1|) . T) (((-421 (-560))) . T))
-((($) -2304 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
-((($) |has| |#1| (-870)) (((-560)) -2304 (|has| |#1| (-21)) (|has| |#1| (-870))))
+((($) -2196 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) |has| |#1| (-870)) (((-560)) -2196 (|has| |#1| (-21)) (|has| |#1| (-870))))
((($ $) . T) ((#0=(-421 (-560)) #0#) . T))
-(-2304 (|has| |#1| (-381)) (|has| |#1| (-871)))
+(-2196 (|has| |#1| (-381)) (|has| |#1| (-871)))
(((|#1|) . T))
((((-793)) . T))
((((-887)) . T))
((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))))
((((-421 |#2|) |#3|) . T))
-(-2304 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080))))
+(-2196 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080))))
((($) . T) (((-421 (-560))) . T))
((($) . T) (((-560)) . T) (((-421 (-560))) . T) (((-630 $)) . T))
((((-560)) . T) (($) . T))
((((-560)) . T) (($) . T))
((((-793) |#1|) . T))
-(((|#2| (-246 (-1553 |#1|) (-793))) . T))
+(((|#2| (-246 (-2256 |#1|) (-793))) . T))
(((|#1| (-545 |#3|)) . T))
((((-421 (-560))) . T))
-(-2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
((((-1189)) . T) (((-887)) . T))
-(((#0=(-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) #0#) |has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-321 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))))
+(((#0=(-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) #0#) |has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-321 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))))
((((-1189)) . T))
(|has| |#1| (-939))
(|has| |#2| (-376))
(((|#1|) . T) (($) . T) (((-560)) . T))
-(-2304 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080)))
+(-2196 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080)))
((((-171 (-391))) . T) (((-229)) . T) (((-391)) . T))
((((-887)) . T))
(((|#1|) . T))
@@ -3109,12 +3109,12 @@
(|has| |#1| (-38 (-421 (-560))))
(|has| |#1| (-38 (-421 (-560))))
(|has| |#1| (-38 (-421 (-560))))
-(-2304 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)))
+(-2196 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)))
(|has| |#1| (-38 (-421 (-560))))
(-12 (|has| |#1| (-559)) (|has| |#1| (-843)))
((((-887)) . T))
(|has| |#1| (-376))
-((((-1207)) -2304 (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-927 (-1207))))))
+((((-1207)) -2196 (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-927 (-1207))))))
(|has| |#1| (-376))
((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))))
((((-421 (-560))) . T) (($) . T))
@@ -3126,13 +3126,13 @@
((((-560) |#1|) . T))
((((-1207)) |has| |#1| (-927 (-1207))))
(((|#1|) . T))
-(-2304 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363)))
+(-2196 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363)))
(((|#2|) |has| |#1| (-376)))
(((|#2|) |has| |#1| (-376)))
-(-2304 (|has| |#4| (-815)) (|has| |#4| (-871)))
-(-2304 (|has| |#3| (-815)) (|has| |#3| (-871)))
+(-2196 (|has| |#4| (-815)) (|has| |#4| (-871)))
+(-2196 (|has| |#3| (-815)) (|has| |#3| (-871)))
((((-560)) . T) (($) . T))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-175)))
@@ -3167,7 +3167,7 @@
(|has| |#1| (-871))
((((-887)) . T))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-571)))
(|has| |#1| (-376))
(((|#1|) . T))
((($) . T) (((-560)) . T) ((|#2|) . T))
@@ -3176,27 +3176,27 @@
(((|#3|) . T))
((((-1189)) . T) (((-520)) . T) (((-229)) . T) (((-560)) . T))
(((|#1|) . T))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-571)))
(|has| |#1| (-376))
(|has| |#1| (-571))
(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))))
((((-421 |#2|)) . T) (((-421 (-560))) . T) (($) . T) (((-560)) . T))
-(-2304 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080)))
+(-2196 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080)))
(((|#2|) . T))
(((|#2|) . T))
(|has| |#2| (-1080))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
-((((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) . T))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
+((((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
(|has| |#1| (-38 (-421 (-560))))
(((|#1| |#2|) . T))
(|has| |#1| (-38 (-421 (-560))))
-(-2304 (|has| |#1| (-147)) (|has| |#1| (-381)))
+(-2196 (|has| |#1| (-147)) (|has| |#1| (-381)))
((($) . T))
(|has| |#1| (-149))
-(-2304 (|has| |#1| (-147)) (|has| |#1| (-381)))
+(-2196 (|has| |#1| (-147)) (|has| |#1| (-381)))
(|has| |#1| (-149))
-(-2304 (|has| |#1| (-147)) (|has| |#1| (-381)))
+(-2196 (|has| |#1| (-147)) (|has| |#1| (-381)))
(|has| |#1| (-149))
((($) . T))
((((-595 |#1|)) . T))
@@ -3212,7 +3212,7 @@
((((-421 (-560))) |has| |#2| (-1069 (-560))) (((-560)) |has| |#2| (-1069 (-560))) (((-1207)) |has| |#2| (-1069 (-1207))) ((|#2|) . T))
(((#0=(-421 |#2|) #0#) . T) ((#1=(-421 (-560)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-(-2304 (|has| |#1| (-147)) (|has| |#1| (-363)))
+(-2196 (|has| |#1| (-147)) (|has| |#1| (-363)))
(|has| |#1| (-149))
((((-887)) . T))
((($) . T))
@@ -3232,15 +3232,15 @@
((((-421 |#2|)) . T))
((((-887)) . T))
(((|#1|) . T))
-((((-1207)) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-1132)))
+((((-1207)) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-1132)))
(|has| |#1| (-813))
(|has| |#1| (-813))
((((-887)) . T))
((((-935 |#1|)) . T) (((-421 (-560))) . T) (($) . T) (((-560)) . T))
((((-887)) . T))
((((-549)) |has| |#1| (-633 (-549))))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-871)) (|has| |#1| (-1132))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-871)) (|has| |#1| (-1132))))
((((-115)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
@@ -3250,7 +3250,7 @@
(((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571)) (((-421 (-560))) |has| |#1| (-571)))
((((-887)) . T))
((((-887)) . T))
-(-2304 (-12 (|has| |#2| (-240)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))))
+(-2196 (-12 (|has| |#2| (-240)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))))
(((#0=(-935 |#1|) #0#) . T) (($ $) . T) ((#1=(-421 (-560)) #1#) . T))
(((|#2|) . T))
(((|#1|) . T))
@@ -3262,10 +3262,10 @@
((((-887)) . T))
(((|#2|) . T))
((((-560)) . T))
-((((-1207)) -2304 (|has| (-421 |#2|) (-927 (-1207))) (|has| (-421 |#2|) (-929 (-1207)))))
+((((-1207)) -2196 (|has| (-421 |#2|) (-927 (-1207))) (|has| (-421 |#2|) (-929 (-1207)))))
((((-887)) . T))
((((-560)) . T))
-(-2304 (|has| |#2| (-815)) (|has| |#2| (-871)))
+(-2196 (|has| |#2| (-815)) (|has| |#2| (-871)))
((((-171 (-391))) . T) (((-229)) . T) (((-391)) . T))
((((-887)) . T))
((((-887)) . T))
@@ -3277,11 +3277,11 @@
(((|#1|) . T) (($) . T) (((-421 (-560))) . T))
(|has| |#1| (-376))
(|has| |#1| (-376))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
((((-887)) . T))
((((-560) $) . T) (((-663 (-560)) $) . T))
-(-2304 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-487)) (|has| |#1| (-748)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)) (|has| |#1| (-1143)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-487)) (|has| |#1| (-748)) (|has| |#1| (-927 (-1207))) (|has| |#1| (-1080)) (|has| |#1| (-1143)) (|has| |#1| (-1132)))
(|has| |#1| (-1182))
((((-935 |#1|)) . T) (((-421 (-560))) . T) (($) . T))
((($) . T))
@@ -3291,22 +3291,22 @@
(((#0=(-118 |#1|) $) |has| #0# (-298 #0# #0#)))
(((|#1|) |has| |#1| (-175)))
((((-326 |#1|)) . T) (((-560)) . T))
-(-2304 (|has| |#2| (-240)) (|has| |#2| (-239)))
+(-2196 (|has| |#2| (-240)) (|has| |#2| (-239)))
(((|#1|) . T))
(((|#1| |#1|) . T))
((((-887)) . T))
(((|#1|) . T))
((((-115)) . T) ((|#1|) . T))
((((-887)) . T))
-((((-1207)) -2304 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207)))))
+((((-1207)) -2196 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207)))))
(((|#1|) |has| |#1| (-321 |#1|)))
((((-560) |#1|) . T) (((-1264 (-560)) $) . T))
(((|#1| |#2|) . T))
((((-1207) |#1|) . T))
-(((|#1|) -2304 (|has| |#1| (-175)) (|has| |#1| (-376))))
+(((|#1|) -2196 (|has| |#1| (-175)) (|has| |#1| (-376))))
(((|#1|) . T))
((($ (-1207)) . T))
-(((|#1|) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1080))))
+(((|#1|) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1080))))
((((-560)) . T) (((-421 (-560))) . T))
(((|#1|) . T))
(|has| |#1| (-571))
@@ -3315,15 +3315,15 @@
(((|#1|) . T))
(((|#1|) . T))
((((-421 |#2|)) . T) (((-421 (-560))) . T) (($) . T))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-571)))
(|has| |#1| (-376))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-571)))
(|has| |#1| (-376))
(|has| |#1| (-571))
((($) . T))
(|has| |#1| (-1132))
((((-802 |#1| (-888 |#2|))) |has| (-802 |#1| (-888 |#2|)) (-321 (-802 |#1| (-888 |#2|)))))
-(-2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
+(-2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
(((|#1|) . T))
(((|#2| |#3|) . T))
(((|#1|) . T))
@@ -3332,17 +3332,17 @@
(((|#1| (-793)) . T))
(|has| |#1| (-240))
(((|#1| (-545 (-1119 (-1207)))) . T))
-((($) -2304 (-12 (|has| |#2| (-240)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1080)))))
+((($) -2196 (-12 (|has| |#2| (-240)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1080)))))
((((-595 |#1|)) . T) (((-421 (-560))) . T) (($) . T) (((-560)) . T))
((((-560)) . T) (((-421 (-560))) . T) (($) . T))
-((((-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) . T))
+((((-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) . T))
(((|#1|) . T))
(((|#1|) . T) (((-560)) . T))
(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
(|has| |#2| (-376))
((((-887)) . T))
((((-887)) . T))
-(-2304 (|has| |#3| (-815)) (|has| |#3| (-871)))
+(-2196 (|has| |#3| (-815)) (|has| |#3| (-871)))
((((-887)) . T))
((((-1151)) . T) (((-887)) . T))
((((-549)) . T) (((-887)) . T))
@@ -3353,14 +3353,14 @@
((((-560)) . T))
(((|#3|) . T))
((((-887)) . T))
-(-2304 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)))
-((((-560)) . T) (((-421 (-560))) -2304 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1069 (-421 (-560))))) ((|#2|) . T) (($) -2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))) (((-888 |#1|)) . T))
-((((-1156 |#1| |#2|)) . T) ((|#2|) . T) (($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) (((-560)) . T))
-((((-1201 |#1|)) . T) (((-560)) . T) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) (((-1113)) . T) ((|#1|) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))))
-(-2304 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1080)))
+(-2196 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)))
+((((-560)) . T) (((-421 (-560))) -2196 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1069 (-421 (-560))))) ((|#2|) . T) (($) -2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))) (((-888 |#1|)) . T))
+((((-1156 |#1| |#2|)) . T) ((|#2|) . T) (($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) (((-560)) . T))
+((((-1201 |#1|)) . T) (((-560)) . T) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) (((-1113)) . T) ((|#1|) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))))
+(-2196 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1080)))
(((#0=(-595 |#1|) #0#) . T) (($ $) . T) ((#1=(-421 (-560)) #1#) . T))
((($ $) . T) ((#0=(-421 (-560)) #0#) . T))
-((((-1156 |#1| (-1207))) . T) (((-560)) . T) (((-1119 (-1207))) . T) (($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) (((-1207)) . T))
+((((-1156 |#1| (-1207))) . T) (((-560)) . T) (((-1119 (-1207))) . T) (($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) (((-1207)) . T))
(((|#1|) |has| |#1| (-175)))
(((|#1| (-1297 |#1|) (-1297 |#1|)) . T))
((((-595 |#1|)) . T) (($) . T) (((-421 (-560))) . T))
@@ -3375,7 +3375,7 @@
((((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((|#1|) . T) (((-560)) . T))
(((|#1|) . T))
((((-887)) . T))
-(((#0=(-421 (-560)) #0#) |has| |#2| (-38 (-421 (-560)))) ((|#2| |#2|) . T) (($ $) -2304 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+(((#0=(-421 (-560)) #0#) |has| |#2| (-38 (-421 (-560)))) ((|#2| |#2|) . T) (($ $) -2196 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
((((-305 |#3|)) . T))
(((|#1|) . T))
@@ -3384,30 +3384,30 @@
(((|#1|) . T) (((-421 (-560))) . T) (($) . T))
(((|#1|) . T) (((-421 (-560))) . T) (($) . T))
(((|#1|) . T) (((-421 (-560))) . T) (($) . T))
-((($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))))
-((($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))))
+((($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))))
+((($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))))
(((|#2|) . T))
-((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -2304 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -2196 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))))
+((($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))))
((((-887)) . T))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(|has| |#2| (-939))
(|has| |#1| (-939))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
((((-887)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) . T))
+((((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-2304 (|has| |#2| (-815)) (|has| |#2| (-871)))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-1132)))
+(-2196 (|has| |#2| (-815)) (|has| |#2| (-871)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-1132)))
(((|#1|) . T))
(((|#1|) . T) (($) . T) (((-421 (-560))) . T))
((((-1207)) . T) ((|#1|) . T))
@@ -3419,15 +3419,15 @@
(((#0=(-421 (-560)) #0#) . T))
((((-421 (-560))) . T))
(((|#1|) |has| |#1| (-175)))
-(-2304 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080)))
+(-2196 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080)))
(((|#1|) . T))
(((|#1|) . T))
-(-2304 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080)))
+(-2196 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080)))
(((|#1|) . T))
((((-421 (-560))) . T) (((-560)) . T) (($) . T))
((((-549)) . T))
((((-887)) . T))
-((($) -2304 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080)))))
+((($) -2196 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080)))))
(|has| |#1| (-871))
((((-887)) . T))
((((-560)) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571)))
@@ -3443,21 +3443,21 @@
((($ $) . T) ((#0=(-421 (-560)) #0#) . T))
((((-1207)) |has| |#1| (-927 (-1207))))
((((-935 |#1|)) . T) (((-421 (-560))) . T) (($) . T))
-((($) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) . T))
-(((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))) ((|#1| |#1|) . T) (($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-571))))
+((($) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) . T))
+(((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))) ((|#1| |#1|) . T) (($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-571))))
((((-421 |#2|)) . T) (((-421 (-560))) . T) (($) . T))
((($) . T) (((-421 (-560))) . T))
(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T))
(((|#2|) |has| |#2| (-1080)) (((-560)) -12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))))
((((-421 |#2|)) . T) (((-421 (-560))) . T) (($) . T))
-((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -2304 (|has| |#1| (-175)) (|has| |#1| (-571))))
+((((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (($) -2196 (|has| |#1| (-175)) (|has| |#1| (-571))))
(|has| |#1| (-571))
(((|#1|) |has| |#1| (-376)))
((((-560)) . T))
((((-1207) #0=(-118 |#1|)) |has| #0# (-528 (-1207) #0#)) ((#0# #0#) |has| #0# (-321 #0#)))
(|has| |#1| (-813))
(|has| |#1| (-813))
-((((-1207)) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))))
+((((-1207)) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))))
(((|#2|) . T) (((-560)) |has| |#2| (-1069 (-560))) (((-421 (-560))) |has| |#2| (-1069 (-421 (-560)))))
((((-1113)) . T) ((|#2|) . T) (((-560)) |has| |#2| (-1069 (-560))) (((-421 (-560))) |has| |#2| (-1069 (-421 (-560)))))
(((|#1|) . T))
@@ -3477,11 +3477,11 @@
((($) |has| |#1| (-381)))
(|has| |#2| (-842))
(|has| |#2| (-842))
-((((-560)) -12 (|has| |#1| (-376)) (|has| |#2| (-660 (-560)))) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) (($) . T) ((|#1|) . T))
+((((-560)) -12 (|has| |#1| (-376)) (|has| |#2| (-660 (-560)))) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) (($) . T) ((|#1|) . T))
((($ (-1207)) |has| |#1| (-927 (-1207))))
(((|#1|) . T) (((-560)) |has| |#1| (-1069 (-560))) (((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))))
-((($) -2304 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))))
-(((|#1|) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) . T))
+((($) -2196 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))))
+(((|#1|) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) . T))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
((((-560)) |has| |#1| (-911 (-560))) (((-391)) |has| |#1| (-911 (-391))))
(((|#1|) . T))
@@ -3496,7 +3496,7 @@
(-12 (|has| |#1| (-376)) (|has| |#2| (-939)))
(|has| |#1| (-376))
(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))))
-(((|#2|) -2304 (|has| |#2| (-6 (-4510 "*"))) (|has| |#2| (-175))))
+(((|#2|) -2196 (|has| |#2| (-6 (-4510 "*"))) (|has| |#2| (-175))))
(((|#2|) . T))
(|has| |#1| (-376))
(((|#2|) . T))
@@ -3510,12 +3510,12 @@
(((|#2| (-793)) . T))
((((-1207)) . T))
((((-893 |#1|)) . T))
-(-2304 (|has| |#3| (-21)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080)))
-(-2304 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-815)) (|has| |#3| (-1080)))
+(-2196 (|has| |#3| (-21)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080)))
+(-2196 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-815)) (|has| |#3| (-1080)))
((((-887)) . T))
(((|#1|) . T))
-(-2304 (|has| |#2| (-815)) (|has| |#2| (-871)))
-(-2304 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871))))
+(-2196 (|has| |#2| (-815)) (|has| |#2| (-871)))
+(-2196 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871))))
((((-893 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-381))
@@ -3533,7 +3533,7 @@
(((|#1|) . T))
((((-887)) . T))
((($) . T) ((|#2|) . T) (((-421 (-560))) . T) (((-560)) |has| |#2| (-660 (-560))))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-1132)))
(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
@@ -3542,7 +3542,7 @@
(((|#1|) . T))
((((-887)) . T))
(|has| |#2| (-939))
-((((-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) . T))
+((((-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) . T))
((((-549)) |has| |#2| (-633 (-549))) (((-915 (-391))) |has| |#2| (-633 (-915 (-391)))) (((-915 (-560))) |has| |#2| (-633 (-915 (-560)))))
((((-887)) . T))
((((-887)) . T))
@@ -3553,7 +3553,7 @@
((((-1201 |#1|)) . T) (((-887)) . T))
((((-887)) . T))
((((-421 (-560))) |has| |#2| (-1069 (-421 (-560)))) (((-560)) |has| |#2| (-1069 (-560))) ((|#2|) . T) (((-888 |#1|)) . T))
-((((-1207)) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (((-1113)) . T))
+((((-1207)) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (((-1113)) . T))
((((-118 |#1|)) . T) (($) . T) (((-421 (-560))) . T))
((((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) (((-560)) |has| |#1| (-1069 (-560))) ((|#1|) . T) (((-1207)) . T))
((((-887)) . T))
@@ -3573,10 +3573,10 @@
((((-663 |#1|)) . T))
((($) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))))
((($) . T) (((-560)) . T) (((-1284 |#1| |#2| |#3| |#4|)) . T) (((-421 (-560))) . T))
-((((-560)) -2304 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1080))) (($) -2304 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1080))) ((|#1|) -2304 (|has| |#1| (-175)) (|has| |#1| (-1080))) (((-421 (-560))) |has| |#1| (-571)))
+((((-560)) -2196 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1080))) (($) -2196 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-571)) (|has| |#1| (-1080))) ((|#1|) -2196 (|has| |#1| (-175)) (|has| |#1| (-1080))) (((-421 (-560))) |has| |#1| (-571)))
((((-1212)) . T))
((((-560)) . T) (((-421 (-560))) . T))
-((($ (-1207)) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))))
+((($ (-1207)) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))))
(((|#1|) . T))
((((-1212)) . T))
((((-1212)) . T))
@@ -3591,16 +3591,16 @@
((((-421 |#2|) |#3|) . T))
(((|#1|) . T))
((((-887)) . T))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-1132)))
-(((|#2| (-496 (-1553 |#1|) (-793))) . T))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-1132)))
+(((|#2| (-496 (-2256 |#1|) (-793))) . T))
((((-560) |#1|) . T))
((((-1189)) . T) (((-887)) . T))
(((|#2| |#2|) . T))
(((|#1| (-545 (-1207))) . T))
-(-2304 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080)))
+(-2196 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080)))
((((-560)) . T))
(((|#2|) . T))
-((($) -2304 (-12 (|has| |#2| (-240)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1080)))))
+((($) -2196 (-12 (|has| |#2| (-240)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1080)))))
(((|#2|) . T))
((((-1207)) |has| |#1| (-927 (-1207))) (((-1113)) . T))
(((|#1|) . T) (((-560)) |has| |#1| (-660 (-560))))
@@ -3609,9 +3609,9 @@
((($) . T) (((-421 (-560))) . T))
((($) . T))
((($) . T))
-(-2304 (|has| |#1| (-871)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-871)) (|has| |#1| (-1132)))
(((|#1|) . T))
-((($) -2304 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
((((-887)) . T))
((((-146)) . T))
(((|#1|) . T) (((-421 (-560))) . T))
@@ -3620,7 +3620,7 @@
((((-887)) . T))
(((|#1|) . T))
(|has| |#1| (-1182))
-((($ (-1207)) -2304 (|has| (-421 |#2|) (-927 (-1207))) (|has| (-421 |#2|) (-929 (-1207)))))
+((($ (-1207)) -2196 (|has| (-421 |#2|) (-927 (-1207))) (|has| (-421 |#2|) (-929 (-1207)))))
(((|#1|) . T))
(((|#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|))) . T))
((((-421 $) (-421 $)) |has| |#1| (-571)) (($ $) . T) ((|#1| |#1|) . T))
@@ -3645,44 +3645,44 @@
(|has| |#1| (-1132))
(|has| |#1| (-1132))
(|has| |#2| (-376))
-(((|#1|) . T) (($) -2304 (|has| |#1| (-302)) (|has| |#1| (-376))) (((-421 (-560))) |has| |#1| (-376)))
+(((|#1|) . T) (($) -2196 (|has| |#1| (-302)) (|has| |#1| (-376))) (((-421 (-560))) |has| |#1| (-376)))
(|has| |#1| (-376))
(|has| |#1| (-376))
-((($) -2304 (|has| |#2| (-240)) (|has| |#2| (-239))))
+((($) -2196 (|has| |#2| (-240)) (|has| |#2| (-239))))
((((-560)) . T))
(|has| |#1| (-38 (-421 (-560))))
(|has| |#1| (-1132))
-((($ (-1207)) -2304 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207)))))
+((($ (-1207)) -2196 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207)))))
((((-1207)) -12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))))
((((-1207)) -12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))))
(((|#1|) . T))
(|has| |#1| (-240))
-(((|#2| (-246 (-1553 |#1|) (-793))) . T))
+(((|#2| (-246 (-2256 |#1|) (-793))) . T))
(((|#1| (-545 |#3|)) . T))
(|has| |#1| (-381))
(|has| |#1| (-381))
(|has| |#1| (-381))
(((|#1|) . T) (($) . T))
(((|#1| (-545 |#2|)) . T))
-(-2304 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080)))
+(-2196 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080)))
(((|#1| (-793)) . T))
(|has| |#1| (-571))
-(-2304 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080)))
-(-2304 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080)))
+(-2196 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1080)))
+(-2196 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
((((-887)) . T))
((((-560)) . T) (((-421 (-560))) . T) (($) . T))
-(-2304 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815))))
-(-2304 (|has| |#3| (-21)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-815)) (|has| |#3| (-1080)))
+(-2196 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815))))
+(-2196 (|has| |#3| (-21)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-815)) (|has| |#3| (-1080)))
(|has| |#2| (-1080))
(((|#1|) |has| |#1| (-175)))
(((|#4|) |has| |#4| (-1080)))
(((|#3|) |has| |#3| (-1080)))
(-12 (|has| |#1| (-376)) (|has| |#2| (-842)))
(-12 (|has| |#1| (-376)) (|has| |#2| (-842)))
-((((-560)) . T) (((-421 (-560))) -2304 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1069 (-421 (-560))))) ((|#2|) . T) (($) -2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))) (((-888 |#1|)) . T))
-((((-1156 |#1| |#2|)) . T) (((-560)) . T) ((|#3|) . T) (($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ((|#2|) . T))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-871)) (|has| |#1| (-1132))))
+((((-560)) . T) (((-421 (-560))) -2196 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1069 (-421 (-560))))) ((|#2|) . T) (($) -2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))) (((-888 |#1|)) . T))
+((((-1156 |#1| |#2|)) . T) (((-560)) . T) ((|#3|) . T) (($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ((|#2|) . T))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-871)) (|has| |#1| (-1132))))
((((-549)) |has| |#1| (-633 (-549))))
(((|#1|) . T) (((-421 (-560))) . T) (($) . T) (((-560)) . T))
(((|#1|) . T) (((-421 (-560))) . T) (($) . T) (((-560)) . T))
@@ -3701,18 +3701,18 @@
(((|#3|) |has| |#3| (-1132)) (((-560)) -12 (|has| |#3| (-1069 (-560))) (|has| |#3| (-1132))) (((-421 (-560))) -12 (|has| |#3| (-1069 (-421 (-560)))) (|has| |#3| (-1132))))
(|has| |#2| (-376))
(((|#2|) |has| |#2| (-1080)) (((-560)) -12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))))
-(-2304 (|has| |#1| (-381)) (|has| |#1| (-871)))
+(-2196 (|has| |#1| (-381)) (|has| |#1| (-871)))
(((|#1|) . T))
-(((#0=(-421 (-560)) #0#) |has| |#2| (-38 (-421 (-560)))) ((|#2| |#2|) . T) (($ $) -2304 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
-((($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))))
+(((#0=(-421 (-560)) #0#) |has| |#2| (-38 (-421 (-560)))) ((|#2| |#2|) . T) (($ $) -2196 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+((($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1| |#1|) . T) ((#0=(-421 (-560)) #0#) |has| |#1| (-38 (-421 (-560)))))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-421 (-560)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-421 (-560)) #0#) . T))
(((|#1| |#1|) . T) (($ $) . T) ((#0=(-421 (-560)) #0#) . T))
((((-1207)) |has| |#1| (-1080)))
(|has| |#2| (-376))
(((|#2| |#2|) . T))
-((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -2304 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (($) -2196 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(((|#1|) . T) (($) . T) (((-421 (-560))) . T))
(((|#1|) . T) (($) . T) (((-421 (-560))) . T))
(((|#1|) . T) (($) . T) (((-421 (-560))) . T))
@@ -3724,11 +3724,11 @@
(((|#1|) . T))
(|has| |#2| (-842))
(|has| |#2| (-842))
-((($) -2304 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(|has| |#1| (-376))
(|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))
(|has| |#1| (-376))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(|has| |#1| (-376))
(((|#1|) |has| |#2| (-432 |#1|)))
(((|#1|) |has| |#2| (-432 |#1|)))
@@ -3737,7 +3737,7 @@
((((-887)) . T) (((-1212)) . T))
((((-887)) . T) (((-1212)) . T))
((((-887)) . T) (((-1212)) . T))
-((((-663 |#1|)) . T) (((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-871)) (|has| |#1| (-1132))))
+((((-663 |#1|)) . T) (((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-871)) (|has| |#1| (-1132))))
((((-1212)) . T))
((((-1212)) . T))
((((-1212)) . T))
@@ -3752,19 +3752,19 @@
((((-1212)) . T))
((((-887)) . T) (((-1212)) . T))
((((-1212)) . T))
-((((-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) |has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-321 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))))
-(-2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
+((((-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) |has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-321 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))))
+(-2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
((((-560) |#1|) . T))
((((-560) |#1|) . T))
((((-560) |#1|) . T))
-(-2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
((((-560) |#1|) . T))
(((|#1|) . T))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
-(-2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
-((($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-560)) . T) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+((($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-560)) . T) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175)))
((((-1207)) |has| |#1| (-927 (-1207))) (((-840 (-1207))) . T))
-(-2304 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-815)) (|has| |#3| (-1080)))
+(-2196 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-815)) (|has| |#3| (-1080)))
((((-841 |#1|)) . T))
(((|#1| |#2|) . T))
((((-887)) . T))
@@ -3777,21 +3777,21 @@
(((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-571)) (((-421 (-560))) |has| |#1| (-571)))
(((|#2|) . T) (((-560)) |has| |#2| (-660 (-560))))
(|has| |#1| (-376))
-(-2304 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240))))
+(-2196 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240))))
(|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))
(|has| |#1| (-376))
(((|#1|) . T))
-(((#0=(-421 (-560)) #0#) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#1| |#1|) . T))
+(((#0=(-421 (-560)) #0#) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#1| |#1|) . T))
((((-1264 (-560)) $) . T) (((-560) |#1|) . T))
((((-326 |#1|)) . T))
((((-935 |#1|)) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T))
(((#0=(-721) (-1201 #0#)) . T))
-((((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#1|) . T))
+((((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((|#1|) . T))
(((|#1|) . T) (($) . T) (((-560)) . T) (((-421 (-560))) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-870))
-(((|#2|) . T) (((-1207)) -12 (|has| |#1| (-376)) (|has| |#2| (-1069 (-1207)))) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-560)) . T) ((|#1|) |has| |#1| (-175)))
-(((|#2|) . T) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-560)) . T) (($) -2304 (|has| |#1| (-376)) (|has| |#1| (-571))))
+(((|#2|) . T) (((-1207)) -12 (|has| |#1| (-376)) (|has| |#2| (-1069 (-1207)))) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))) (((-560)) . T) ((|#1|) |has| |#1| (-175)))
+(((|#2|) . T) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) (((-560)) . T) (($) -2196 (|has| |#1| (-376)) (|has| |#1| (-571))))
((($ $) . T) ((#0=(-888 |#1|) $) . T) ((#0# |#2|) . T))
((((-1156 |#1| (-1207))) . T) (((-840 (-1207))) . T) ((|#1|) . T) (((-560)) |has| |#1| (-1069 (-560))) (((-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) (((-1207)) . T))
((($) . T))
@@ -3810,12 +3810,12 @@
(((#0=(-1284 |#1| |#2| |#3| |#4|)) |has| #0# (-321 #0#)))
((($) . T))
(((|#1|) . T))
-((($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((#0=(-421 (-560)) #0#) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#2| |#2|) |has| |#1| (-376)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((#0=(-421 (-560)) #0#) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))))
+((($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((#0=(-421 (-560)) #0#) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#2| |#2|) |has| |#1| (-376)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) ((#0=(-421 (-560)) #0#) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))))
(|has| |#2| (-240))
(|has| $ (-149))
((((-887)) . T))
-((($) . T) (((-421 (-560))) -2304 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T) (((-560)) |has| |#1| (-660 (-560))))
+((($) . T) (((-421 (-560))) -2196 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T) (((-560)) |has| |#1| (-660 (-560))))
((((-887)) . T))
(|has| |#1| (-870))
((((-130)) . T))
@@ -3823,7 +3823,7 @@
((((-421 (-560))) . T) (((-721)) . T) (($) . T) (((-560)) . T))
(((|#1|) . T))
((((-130)) . T))
-((($ (-1207)) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))))
+((($ (-1207)) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))))
((((-887)) . T))
(-12 (|has| |#1| (-319)) (|has| |#1| (-939)))
(((|#2| (-694 |#1|)) . T))
@@ -3832,24 +3832,24 @@
((((-887)) |has| |#1| (-1132)))
(((|#4|) . T))
(|has| |#1| (-571))
-((((-1207)) -2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))))
-((($) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) ((|#1|) . T))
+((((-1207)) -2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))))
+((($) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) ((|#1|) . T))
((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))))
-(((|#1|) . T) (($) -2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))))
+(((|#1|) . T) (($) -2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-571))) (((-421 (-560))) -2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-376))))
((((-1264 (-560)) $) . T) (((-560) |#1|) . T))
-(-2304 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
+(-2196 (|has| |#2| (-175)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))))
(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))))
(((|#1|) . T))
(((|#1| (-545 (-840 (-1207)))) . T))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
((((-560)) . T) ((|#2|) . T) (($) . T) (((-421 (-560))) . T) (((-1207)) |has| |#2| (-1069 (-1207))))
(((|#1|) . T))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
(((|#1|) . T))
-(-2304 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080)))
-(-2304 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815))))
+(-2196 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080)))
+(-2196 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815))))
((((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)))
((($) . T) (((-893 |#1|)) . T) (((-421 (-560))) . T))
((((-1287 |#1| |#2| |#3|)) |has| |#1| (-376)))
@@ -3858,15 +3858,15 @@
(((|#1|) . T))
(((|#1|) . T))
((((-421 |#2|)) . T))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-363)))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-871)) (|has| |#1| (-1132))))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-363)))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-871)) (|has| |#1| (-1132))))
((((-549)) |has| |#1| (-633 (-549))))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-871)) (|has| |#1| (-1132))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-871)) (|has| |#1| (-1132))))
((((-549)) |has| |#1| (-633 (-549))))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-871)) (|has| |#1| (-1132))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-871)) (|has| |#1| (-1132))))
((((-549)) |has| |#1| (-633 (-549))))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
(((|#1|) . T))
(((|#2| |#2|) . T) ((#0=(-421 (-560)) #0#) . T) (($ $) . T))
(((|#2|) . T) (((-421 (-560))) . T) (($) . T))
@@ -3886,7 +3886,7 @@
((((-887)) . T))
((((-887)) . T))
((((-887)) . T))
-(-2304 (|has| |#1| (-240)) (|has| |#1| (-239)))
+(-2196 (|has| |#1| (-240)) (|has| |#1| (-239)))
(((|#1|) . T) (((-887)) . T) (((-1212)) . T))
((((-1212)) . T))
((((-887)) . T))
@@ -3895,21 +3895,21 @@
((((-657 |#2|)) . T))
(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
(((|#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|))) . T))
-((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
+((((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) |has| |#2| (-175)) (($) -2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))))
(((|#2|) . T) ((|#6|) . T))
((($) . T) (((-421 (-560))) |has| |#2| (-38 (-421 (-560)))) ((|#2|) . T) (((-560)) |has| |#2| (-660 (-560))))
((($) . T) (((-560)) . T))
-((($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
((((-1134)) . T))
((((-887)) . T))
((((-1212)) . T) (((-887)) . T))
((((-1212)) . T) (((-887)) . T))
((((-1212)) . T))
((((-1212)) . T))
-((($) -2304 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
((($) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (((-560)) |has| |#1| (-660 (-560))))
((($) . T) (((-560)) . T))
-((($) -2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
+((($) -2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939))) ((|#1|) |has| |#1| (-175)) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(|has| |#2| (-939))
(((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T))
((((-887)) . T))
@@ -3925,9 +3925,9 @@
(((|#1| |#1|) |has| |#1| (-175)))
((((-721)) . T))
((((-721)) . T))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
((((-1212)) . T))
-(-2304 (|has| |#2| (-815)) (|has| |#2| (-871)))
+(-2196 (|has| |#2| (-815)) (|has| |#2| (-871)))
(((|#1|) |has| |#1| (-175)))
((((-1212)) . T))
(((|#1| |#1|) . T))
@@ -3940,19 +3940,19 @@
(((|#1| (-560)) . T))
(((|#1|) . T))
((((-421 (-560))) . T) (((-560)) . T) (($) . T))
-((($ (-1207)) -2304 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (($ (-1113)) . T))
+((($ (-1207)) -2196 (|has| |#1| (-927 (-1207))) (|has| |#1| (-929 (-1207)))) (($ (-1113)) . T))
(((|#1|) |has| |#1| (-175)))
((((-1212)) . T))
((((-1212)) . T))
((((-1212)) . T))
((((-1212)) . T))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-363)))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-363)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-363)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-363)))
((((-1212)) . T))
((((-1212)) . T))
(|has| |#1| (-376))
(|has| |#1| (-376))
-(-2304 (|has| |#1| (-175)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-175)) (|has| |#1| (-571)))
(((|#1| (-560)) . T))
(((|#1| (-421 (-560))) . T))
(((|#1| (-793)) . T))
@@ -3960,24 +3960,24 @@
(((|#1| (-545 |#2|) |#2|) . T))
((((-560) |#1|) . T))
((((-560) |#1|) . T))
-(-2304 (|has| |#1| (-102)) (|has| |#1| (-1132)))
-(-2304 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-239)))
+(-2196 (|has| |#1| (-102)) (|has| |#1| (-1132)))
+(-2196 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-239)))
((((-560) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-915 (-391))) . T) (((-915 (-560))) . T) (((-1207)) . T) (((-549)) . T))
-(-2304 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080)))
-(-2304 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815))))
+(-2196 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1080)))
+(-2196 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815))))
((((-887)) . T))
((((-560)) . T))
((((-560)) . T))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
((((-1207)) -12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))))
(|has| |#2| (-1080))
-(-2304 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748))))
+(-2196 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748))))
(|has| |#1| (-147))
(|has| |#1| (-149))
(|has| |#1| (-376))
@@ -4010,7 +4010,7 @@
(((|#1| |#2|) . T))
((((-560)) . T) ((|#2|) |has| |#2| (-175)))
((((-115)) . T) ((|#1|) . T) (((-560)) . T))
-(-2304 (|has| |#1| (-363)) (|has| |#1| (-381)))
+(-2196 (|has| |#1| (-363)) (|has| |#1| (-381)))
(((|#1| |#2|) . T))
((((-229)) . T))
((((-421 (-560))) . T) (($) . T) (((-560)) . T))
@@ -4019,11 +4019,11 @@
((($) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((|#1|) . T) (((-560)) |has| |#1| (-660 (-560))))
((($) . T) (((-560)) |has| |#1| (-660 (-560))) ((|#1|) . T) (((-421 (-560))) |has| |#1| (-38 (-421 (-560)))))
(((|#2|) |has| |#2| (-1132)) (((-560)) -12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) (((-421 (-560))) -12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))))
-(-2304 (|has| |#2| (-240)) (|has| |#2| (-239)))
+(-2196 (|has| |#2| (-240)) (|has| |#2| (-239)))
(((|#1|) . T))
(((|#1|) . T))
((((-549)) |has| |#1| (-633 (-549))))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-871)) (|has| |#1| (-1132))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-871)) (|has| |#1| (-1132))))
((((-560) $) . T) (((-663 (-560)) $) . T))
((($) . T) (((-421 (-560))) . T))
(|has| |#1| (-939))
@@ -4035,14 +4035,14 @@
(((|#1| |#1|) |has| |#1| (-175)))
(((|#1|) . T) (((-560)) . T))
((((-1212)) . T))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-571)))
-(-2304 (|has| |#1| (-21)) (|has| |#1| (-870)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-571)))
+(-2196 (|has| |#1| (-21)) (|has| |#1| (-870)))
(((|#2|) . T))
-(-2304 (|has| |#1| (-21)) (|has| |#1| (-870)))
+(-2196 (|has| |#1| (-21)) (|has| |#1| (-870)))
(((|#1|) |has| |#1| (-175)))
(((|#1|) . T))
(((|#1|) . T))
-((((-887)) -2304 (-12 (|has| |#1| (-632 (-887))) (|has| |#2| (-632 (-887)))) (-12 (|has| |#1| (-1132)) (|has| |#2| (-1132)))))
+((((-887)) -2196 (-12 (|has| |#1| (-632 (-887))) (|has| |#2| (-632 (-887)))) (-12 (|has| |#1| (-1132)) (|has| |#2| (-1132)))))
((((-421 |#2|) |#3|) . T))
((((-421 (-560))) . T) (($) . T))
(|has| |#1| (-38 (-421 (-560))))
@@ -4051,7 +4051,7 @@
((($) . T) (((-560)) . T))
(|has| (-421 |#2|) (-149))
(|has| (-421 |#2|) (-147))
-(-2304 (|has| |#3| (-815)) (|has| |#3| (-871)))
+(-2196 (|has| |#3| (-815)) (|has| |#3| (-871)))
((($) . T))
((((-721)) . T))
(((|#1|) . T) (((-421 (-560))) . T) (((-560)) . T) (($) . T))
@@ -4067,7 +4067,7 @@
((((-1212)) . T))
((((-560)) . T))
(((|#2|) . T))
-((((-1207)) -2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))))
+((((-1207)) -2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))))
((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))))
((((-1207)) -12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))))
(((|#1| |#1|) . T) (($ $) . T))
@@ -4083,11 +4083,11 @@
((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)))
((((-1171 |#1| |#2|)) . T))
((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)))
-(((|#2|) . T) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
-((((-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) . T))
+(((|#2|) . T) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
+((((-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) . T))
((($) . T))
(|has| |#1| (-1051))
-(((|#2|) . T) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+(((|#2|) . T) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
((($) . T))
((((-887)) . T))
((((-549)) |has| |#2| (-633 (-549))) (((-915 (-560))) |has| |#2| (-633 (-915 (-560)))) (((-915 (-391))) |has| |#2| (-633 (-915 (-391)))) (((-391)) . #0=(|has| |#2| (-1051))) (((-229)) . #0#))
@@ -4096,7 +4096,7 @@
(((|#1|) . T))
(|has| |#1| (-38 (-421 (-560))))
(|has| |#1| (-38 (-421 (-560))))
-((((-1207)) -2304 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207)))))
+((((-1207)) -2196 (|has| |#2| (-927 (-1207))) (|has| |#2| (-929 (-1207)))))
((((-887)) . T))
(((|#2|) . T))
((((-887)) . T))
@@ -4106,15 +4106,15 @@
((((-1205 |#1| |#2| |#3|)) . T))
((((-1205 |#1| |#2| |#3|)) . T) (((-1198 |#1| |#2| |#3|)) . T))
((((-887)) . T))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
((((-560) |#1|) . T))
((((-1205 |#1| |#2| |#3|)) |has| |#1| (-376)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
(|has| |#2| (-376))
-(((|#3|) . T) ((|#2|) . T) ((|#4|) -2304 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1080))) (($) |has| |#4| (-1080)) (((-560)) -12 (|has| |#4| (-660 (-560))) (|has| |#4| (-1080))))
-(((|#2|) . T) ((|#3|) -2304 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080))) (($) |has| |#3| (-1080)) (((-560)) -12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1080))))
+(((|#3|) . T) ((|#2|) . T) ((|#4|) -2196 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1080))) (($) |has| |#4| (-1080)) (((-560)) -12 (|has| |#4| (-660 (-560))) (|has| |#4| (-1080))))
+(((|#2|) . T) ((|#3|) -2196 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1080))) (($) |has| |#3| (-1080)) (((-560)) -12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1080))))
(((|#1|) . T))
(((|#1|) . T))
((((-118 |#1|)) . T))
@@ -4128,7 +4128,7 @@
((((-186)) . T) (((-887)) . T))
((((-887)) . T))
(((|#1|) . T))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
((((-560) |#1|) . T) (((-1264 (-560)) $) . T))
((((-887)) . T))
(((|#1|) . T))
@@ -4136,14 +4136,14 @@
(((|#1|) . T))
(((|#2| $) -12 (|has| |#1| (-376)) (|has| |#2| (-298 |#2| |#2|))) (($ $) . T) (((-560) |#1|) . T))
((($ $) . T) (((-421 (-560)) |#1|) . T))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-939)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-466)) (|has| |#1| (-939)))
((($ (-1207)) |has| |#1| (-1080)))
-(-2304 (|has| |#1| (-871)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-871)) (|has| |#1| (-1132)))
((((-887)) . T))
((((-887)) . T))
((((-887)) . T))
(((|#1| (-545 |#2|)) . T))
-((((-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) . T))
+((((-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) . T))
((((-560) (-130)) . T))
(((|#1| (-560)) . T))
(((|#1| (-421 (-560))) . T))
@@ -4158,8 +4158,8 @@
((((-1212)) . T))
((((-887)) . T) (((-1212)) . T))
((((-887)) . T) (((-1212)) . T))
-(-2304 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
-(-2304 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
+(-2196 (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939)))
+(-2196 (|has| |#1| (-466)) (|has| |#1| (-571)) (|has| |#1| (-939)))
((($) . T))
(((|#2| (-545 (-888 |#1|))) . T))
((((-1212)) . T))
@@ -4174,7 +4174,7 @@
((((-1212)) . T))
((((-887)) . T) (((-1212)) . T))
((((-1212)) . T))
-((((-887)) -2304 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
+((((-887)) -2196 (|has| |#1| (-632 (-887))) (|has| |#1| (-1132))))
(((|#1| |#2|) . T))
(((|#1|) . T))
((((-1189) |#1|) . T))
@@ -4182,7 +4182,7 @@
((((-421 |#2|)) . T))
(|has| |#1| (-571))
(|has| |#1| (-571))
-((((-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T))
+((((-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T))
(((|#2| (-793)) . T))
((($) . T) ((|#2|) . T))
((($) . T) (((-421 (-560))) . T))
@@ -4192,14 +4192,14 @@
((((-560)) . T) (($) . T))
(((|#2| $) |has| |#2| (-298 |#2| |#2|)))
(((|#1| (-663 |#1|)) |has| |#1| (-870)))
-(-2304 (|has| |#1| (-240)) (|has| |#1| (-363)))
-(-2304 (|has| |#1| (-376)) (|has| |#1| (-363)))
+(-2196 (|has| |#1| (-240)) (|has| |#1| (-363)))
+(-2196 (|has| |#1| (-376)) (|has| |#1| (-363)))
((((-1294 |#1|)) . T) (((-560)) . T) ((|#2|) . T) (((-421 (-560))) |has| |#2| (-1069 (-421 (-560)))))
(|has| |#1| (-1132))
(((|#1|) . T))
((((-421 (-560))) . T) (($) . T))
-((((-1294 |#1|)) . T) (((-560)) . T) (($) -2304 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))) (((-1113)) . T) ((|#2|) . T) (((-421 (-560))) -2304 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1069 (-421 (-560))))))
-((((-1027 |#1|)) . T) ((|#1|) . T) (((-560)) -2304 (|has| (-1027 |#1|) (-1069 (-560))) (|has| |#1| (-1069 (-560)))) (((-421 (-560))) -2304 (|has| (-1027 |#1|) (-1069 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))))
+((((-1294 |#1|)) . T) (((-560)) . T) (($) -2196 (|has| |#2| (-376)) (|has| |#2| (-466)) (|has| |#2| (-571)) (|has| |#2| (-939))) (((-1113)) . T) ((|#2|) . T) (((-421 (-560))) -2196 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1069 (-421 (-560))))))
+((((-1027 |#1|)) . T) ((|#1|) . T) (((-560)) -2196 (|has| (-1027 |#1|) (-1069 (-560))) (|has| |#1| (-1069 (-560)))) (((-421 (-560))) -2196 (|has| (-1027 |#1|) (-1069 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))))
((((-935 |#1|)) . T) (((-421 (-560))) . T) (($) . T))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))))
@@ -4216,11 +4216,11 @@
(((|#1| |#2| |#3| |#4|) . T))
(((#0=(-1171 |#1| |#2|) #0#) |has| (-1171 |#1| |#2|) (-321 (-1171 |#1| |#2|))))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((#0=(-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) #0#) |has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))))
-(-2304 (|has| |#1| (-240)) (|has| |#1| (-239)))
+(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((#0=(-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) #0#) |has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))))
+(-2196 (|has| |#1| (-240)) (|has| |#1| (-239)))
(((#0=(-118 |#1|)) |has| #0# (-321 #0#)))
((($ $) . T))
-(-2304 (|has| |#1| (-871)) (|has| |#1| (-1132)))
+(-2196 (|has| |#1| (-871)) (|has| |#1| (-1132)))
((($ $) . T) ((#0=(-888 |#1|) $) . T) ((#0# |#2|) . T))
((($ $) . T) ((|#2| $) |has| |#1| (-240)) ((|#2| |#1|) |has| |#1| (-240)) ((|#3| |#1|) . T) ((|#3| $) . T))
(((-492 . -1132) T) ((-275 . -528) 205623) ((-255 . -528) 205566) ((-252 . -1132) 205516) ((-585 . -111) 205501) ((-545 . -23) T) ((-140 . -1132) T) ((-139 . -1132) T) ((-119 . -321) 205458) ((-135 . -1132) T) ((-1027 . -239) 205409) ((-820 . -1247) T) ((-493 . -528) 205201) ((-699 . -635) 205185) ((-716 . -102) T) ((-1172 . -528) 205104) ((-413 . -239) T) ((-404 . -133) T) ((-1311 . -1007) 205073) ((-1055 . -1082) 205010) ((-331 . -874) T) ((-1055 . -662) 204947) ((-31 . -93) T) ((-616 . -503) 204931) ((-841 . -868) T) ((-638 . -133) T) ((-626 . -102) T) ((-537 . -57) 204881) ((-621 . -102) T) ((-533 . -528) 204814) ((-365 . -236) 204801) ((-353 . -1082) 204746) ((-58 . -528) 204679) ((-530 . -528) 204612) ((-419 . -927) 204571) ((-171 . -1080) T) ((-511 . -528) 204504) ((-510 . -528) 204437) ((-353 . -662) 204382) ((-820 . -1069) 204162) ((-1266 . -635) 203910) ((-721 . -38) 203875) ((-1120 . -1125) 203859) ((-357 . -363) T) ((-482 . -1247) T) ((-1120 . -1132) 203837) ((-879 . -635) 203734) ((-171 . -250) 203685) ((-171 . -240) 203636) ((-1120 . -1126) 203594) ((-896 . -298) 203552) ((-229 . -819) T) ((-229 . -814) T) ((-716 . -296) NIL) ((-585 . -635) 203524) ((-1181 . -1224) 203503) ((-421 . -1022) 203487) ((-48 . -1082) 203452) ((-723 . -21) T) ((-723 . -25) T) ((-48 . -662) 203417) ((-1313 . -670) 203391) ((-1266 . -338) 203368) ((-1181 . -107) 203318) ((-326 . -162) 203297) ((-326 . -145) 203276) ((-118 . -21) T) ((-40 . -234) 203253) ((-40 . -274) 203230) ((-136 . -25) T) ((-118 . -25) T) ((-1266 . -240) T) ((-1266 . -1080) T) ((-627 . -300) 203206) ((-879 . -1080) T) ((-619 . -1247) T) ((-820 . -351) 203190) ((-489 . -300) 203169) ((-693 . -1247) T) ((-183 . -1247) T) ((-164 . -1247) T) ((-158 . -1247) T) ((-156 . -1247) T) ((-141 . -189) T) ((-119 . -1182) NIL) ((-91 . -632) 203101) ((-491 . -133) T) ((-1196 . -1247) T) ((-1127 . -504) 203082) ((-1127 . -632) 203048) ((-1122 . -504) 203029) ((-1122 . -632) 202995) ((-607 . -1247) T) ((-1104 . -504) 202976) ((-585 . -1080) T) ((-1104 . -632) 202942) ((-674 . -739) 202926) ((-1097 . -504) 202907) ((-1097 . -632) 202873) ((-987 . -300) 202850) ((-60 . -34) T) ((-1093 . -819) T) ((-1093 . -814) T) ((-1067 . -504) 202831) ((-1050 . -504) 202812) ((-838 . -748) T) ((-753 . -47) 202777) ((-642 . -38) 202764) ((-368 . -302) T) ((-366 . -302) T) ((-358 . -302) T) ((-275 . -302) 202695) ((-255 . -302) 202626) ((-1067 . -632) 202592) ((-1055 . -102) T) ((-1050 . -632) 202558) ((-645 . -504) 202539) ((-427 . -748) T) ((-119 . -38) 202484) ((-497 . -504) 202465) ((-645 . -632) 202431) ((-427 . -487) T) ((-222 . -504) 202412) ((-497 . -632) 202378) ((-353 . -102) T) ((-222 . -632) 202344) ((-1240 . -1088) T) ((-357 . -668) 202274) ((-733 . -1088) T) ((-1205 . -47) 202251) ((-1204 . -47) 202221) ((-1198 . -47) 202198) ((-131 . -300) 202173) ((-1066 . -153) 202119) ((-935 . -302) T) ((-1157 . -47) 202091) ((-716 . -321) NIL) ((-529 . -632) 202073) ((-525 . -632) 202055) ((-522 . -632) 202037) ((-499 . -1247) T) ((-339 . -1132) 201987) ((-326 . -921) 201951) ((-325 . -921) NIL) ((-734 . -466) 201882) ((-48 . -102) T) ((-1283 . -298) 201840) ((-1262 . -298) 201740) ((-663 . -688) 201724) ((-663 . -673) 201708) ((-352 . -21) T) ((-352 . -25) T) ((-40 . -363) NIL) ((-177 . -21) T) ((-177 . -25) T) ((-663 . -385) 201692) ((-659 . -632) 201674) ((-616 . -298) 201626) ((-402 . -102) T) ((-1151 . -145) T) ((-128 . -632) 201558) ((-898 . -1132) T) ((-676 . -426) 201542) ((-753 . -1247) T) ((-736 . -632) 201524) ((-257 . -632) 201491) ((-186 . -632) 201473) ((-163 . -632) 201455) ((-159 . -632) 201437) ((-1313 . -748) T) ((-1128 . -34) T) ((-895 . -819) NIL) ((-895 . -814) NIL) ((-882 . -871) T) ((-753 . -911) NIL) ((-1322 . -133) T) ((-395 . -133) T) ((-915 . -635) 201405) ((-934 . -102) T) ((-753 . -1069) 201281) ((-1205 . -1247) T) ((-1204 . -1247) T) ((-545 . -133) T) ((-1198 . -1247) T) ((-1118 . -426) 201265) ((-1031 . -503) 201249) ((-119 . -414) 201226) ((-1157 . -1247) T) ((-803 . -426) 201210) ((-802 . -426) 201194) ((-972 . -34) T) ((-716 . -1182) NIL) ((-260 . -670) 201014) ((-259 . -670) 200821) ((-839 . -950) 200800) ((-468 . -426) 200784) ((-657 . -871) T) ((-616 . -19) 200768) ((-1177 . -1242) 200737) ((-1198 . -911) NIL) ((-1198 . -909) 200689) ((-616 . -618) 200666) ((-108 . -874) T) ((-1234 . -632) 200598) ((-1206 . -632) 200580) ((-63 . -410) T) ((-1204 . -1069) 200515) ((-1198 . -1069) 200481) ((-716 . -38) 200431) ((-40 . -668) 200361) ((-488 . -298) 200319) ((-1254 . -632) 200301) ((-753 . -390) 200285) ((-860 . -632) 200267) ((-676 . -1088) T) ((-642 . -929) 200190) ((-1283 . -1033) 200156) ((-451 . -1247) T) ((-1262 . -1033) 200122) ((-258 . -1247) T) ((-1119 . -635) 200106) ((-1094 . -1224) 200081) ((-1106 . -635) 200058) ((-896 . -633) 199865) ((-896 . -632) 199847) ((-119 . -929) NIL) ((-723 . -236) 199834) ((-1219 . -503) 199771) ((-419 . -1051) 199749) ((-48 . -321) 199736) ((-1094 . -107) 199682) ((-493 . -503) 199619) ((-539 . -1247) T) ((-534 . -1247) T) ((-1198 . -351) 199571) ((-1172 . -503) 199542) ((-1198 . -390) 199494) ((-1118 . -1088) T) ((-450 . -102) T) ((-187 . -1132) T) ((-260 . -34) T) ((-259 . -34) T) ((-1189 . -874) T) ((-872 . -635) 199478) ((-803 . -1088) T) ((-802 . -1088) T) ((-753 . -927) 199455) ((-468 . -1088) T) ((-58 . -503) 199439) ((-1065 . -1087) 199413) ((-533 . -503) 199397) ((-530 . -503) 199381) ((-511 . -503) 199365) ((-510 . -503) 199349) ((-252 . -528) 199282) ((-1065 . -111) 199249) ((-1205 . -927) 199162) ((-1204 . -927) 199068) ((-692 . -1143) T) ((-1198 . -927) 198901) ((-667 . -93) T) ((-1157 . -927) 198885) ((-353 . -1182) T) ((-334 . -1087) 198867) ((-31 . -504) 198848) ((-260 . -816) 198827) ((-260 . -815) 198806) ((-259 . -816) 198785) ((-259 . -815) 198764) ((-31 . -632) 198730) ((-50 . -1088) T) ((-260 . -748) 198708) ((-259 . -748) 198686) ((-1240 . -1132) T) ((-692 . -23) T) ((-595 . -1088) T) ((-532 . -1088) T) ((-391 . -1087) 198651) ((-334 . -111) 198626) ((-73 . -396) T) ((-73 . -410) T) ((-1055 . -38) 198563) ((-716 . -414) 198545) ((-99 . -102) T) ((-1327 . -1082) 198532) ((-733 . -1132) T) ((-1144 . -874) 198483) ((-1034 . -147) 198455) ((-1034 . -149) 198427) ((-893 . -668) 198399) ((-391 . -111) 198355) ((-331 . -1252) 198334) ((-488 . -1033) 198300) ((-353 . -38) 198265) ((-40 . -383) 198237) ((-897 . -632) 198109) ((-129 . -127) 198093) ((-123 . -127) 198077) ((-856 . -1087) 198047) ((-854 . -21) 197999) ((-850 . -1087) 197983) ((-854 . -25) 197935) ((-331 . -571) 197886) ((-531 . -635) 197867) ((-560 . -843) T) ((-246 . -1247) T) ((-1065 . -635) 197836) ((-856 . -111) 197801) ((-850 . -111) 197780) ((-1283 . -632) 197762) ((-1262 . -632) 197744) ((-1262 . -633) 197415) ((-1201 . -939) 197394) ((-1156 . -939) 197373) ((-48 . -38) 197338) ((-1319 . -1143) T) ((-549 . -298) 197294) ((-616 . -632) 197206) ((-616 . -633) 197167) ((-1318 . -1143) T) ((-374 . -635) 197151) ((-334 . -635) 197135) ((-1173 . -239) 197086) ((-246 . -1069) 196913) ((-1201 . -670) 196802) ((-1156 . -670) 196691) ((-878 . -670) 196665) ((-740 . -632) 196647) ((-561 . -381) T) ((-1319 . -23) T) ((-716 . -929) NIL) ((-1318 . -23) T) ((-505 . -1132) T) ((-391 . -635) 196597) ((-391 . -637) 196579) ((-1065 . -1080) T) ((-889 . -102) T) ((-1219 . -298) 196558) ((-171 . -381) 196509) ((-1035 . -1247) T) ((-1002 . -1247) T) ((-943 . -1247) T) ((-856 . -635) 196463) ((-850 . -635) 196418) ((-44 . -23) T) ((-1327 . -102) T) ((-493 . -298) 196397) ((-597 . -1132) T) ((-1177 . -1140) 196366) ((-443 . -1247) T) ((-1134 . -1135) 196318) ((-404 . -21) T) ((-404 . -25) T) ((-154 . -1143) T) ((-1240 . -739) 196215) ((-1227 . -1132) T) ((-1035 . -909) 196197) ((-1035 . -911) 196179) ((-642 . -234) 196163) ((-642 . -274) 196147) ((-638 . -21) T) ((-301 . -571) T) ((-638 . -25) T) ((-1035 . -1069) 196107) ((-733 . -739) 196072) ((-246 . -390) 196041) ((-391 . -1080) T) ((-227 . -1088) T) ((-119 . -274) 196018) ((-119 . -234) 195995) ((-58 . -298) 195947) ((-154 . -23) T) ((-530 . -298) 195899) ((-339 . -528) 195832) ((-510 . -298) 195784) ((-391 . -250) T) ((-391 . -240) T) ((-856 . -1080) T) ((-850 . -1080) T) ((-734 . -979) 195753) ((-723 . -871) T) ((-630 . -874) T) ((-488 . -632) 195735) ((-1284 . -1082) 195640) ((-594 . -668) 195612) ((-560 . -668) 195584) ((-509 . -668) 195534) ((-850 . -240) 195513) ((-136 . -871) T) ((-1284 . -662) 195405) ((-676 . -1132) T) ((-1219 . -618) 195384) ((-565 . -1224) 195363) ((-346 . -1132) T) ((-331 . -376) 195342) ((-421 . -149) 195321) ((-421 . -147) 195300) ((-993 . -1143) 195199) ((-837 . -1143) 195177) ((-246 . -927) 195109) ((-678 . -876) 195093) ((-493 . -618) 195072) ((-110 . -874) T) ((-538 . -1247) T) ((-565 . -107) 195022) ((-1035 . -390) 195004) ((-1035 . -351) 194986) ((-1207 . -632) 194968) ((-97 . -1132) T) ((-993 . -23) 194779) ((-491 . -21) T) ((-491 . -25) T) ((-837 . -23) 194631) ((-1207 . -633) 194553) ((-58 . -19) 194537) ((-1201 . -748) T) ((-1156 . -748) T) ((-1118 . -1132) T) ((-530 . -19) 194521) ((-510 . -19) 194505) ((-58 . -618) 194482) ((-1034 . -239) 194419) ((-930 . -102) 194369) ((-878 . -748) T) ((-803 . -1132) T) ((-530 . -618) 194346) ((-510 . -618) 194323) ((-802 . -1132) T) ((-802 . -1096) 194290) ((-475 . -1132) T) ((-468 . -1132) T) ((-597 . -739) 194265) ((-671 . -1132) T) ((-1287 . -47) 194242) ((-1284 . -102) T) ((-1278 . -47) 194212) ((-1257 . -47) 194189) ((-1240 . -175) 194140) ((-1204 . -319) 194119) ((-1198 . -319) 194098) ((-1127 . -635) 194079) ((-1122 . -635) 194060) ((-1110 . -571) 194011) ((-1110 . -1252) 193962) ((-1104 . -635) 193943) ((-1035 . -927) NIL) ((-1097 . -635) 193924) ((-692 . -133) T) ((-646 . -1143) T) ((-1067 . -635) 193905) ((-1050 . -635) 193886) ((-736 . -1087) 193856) ((-734 . -921) 193759) ((-721 . -668) 193709) ((-286 . -1132) T) ((-86 . -455) T) ((-86 . -410) T) ((-733 . -175) T) ((-659 . -1087) 193693) ((-50 . -1132) T) ((-609 . -47) 193670) ((-229 . -670) 193635) ((-595 . -1132) T) ((-532 . -1132) T) ((-501 . -842) T) ((-501 . -950) T) ((-372 . -1252) T) ((-367 . -1252) T) ((-359 . -1252) T) ((-331 . -1143) T) ((-326 . -1082) 193545) ((-325 . -1082) 193474) ((-108 . -1252) T) ((-645 . -635) 193455) ((-372 . -571) T) ((-221 . -950) T) ((-221 . -842) T) ((-326 . -662) 193365) ((-325 . -662) 193294) ((-367 . -571) T) ((-359 . -571) T) ((-659 . -111) 193273) ((-497 . -635) 193254) ((-108 . -571) T) ((-1198 . -1051) NIL) ((-676 . -739) 193224) ((-496 . -874) 193175) ((-222 . -635) 193156) ((-331 . -23) T) ((-67 . -1247) T) ((-1031 . -632) 193088) ((-1327 . -1182) T) ((-716 . -274) 193070) ((-716 . -234) 193052) ((-1322 . -21) T) ((-736 . -111) 193017) ((-1322 . -25) T) ((-663 . -34) T) ((-252 . -503) 193001) ((-1319 . -133) T) ((-1318 . -133) T) ((-1311 . -102) T) ((-1294 . -632) 192967) ((-1128 . -1130) 192951) ((-174 . -1132) T) ((-1287 . -1247) T) ((-1278 . -1247) T) ((-1278 . -1069) 192886) ((-1257 . -1247) T) ((-1257 . -911) NIL) ((-975 . -939) 192865) ((-1257 . -909) 192817) ((-1257 . -1069) 192783) ((-1240 . -528) 192750) ((-529 . -635) 192734) ((-1219 . -633) NIL) ((-1219 . -632) 192716) ((-1173 . -1154) 192661) ((-495 . -939) 192640) ((-1118 . -739) 192489) ((-1093 . -670) 192461) ((-975 . -670) 192350) ((-840 . -874) T) ((-803 . -739) 192179) ((-611 . -504) 192160) ((-600 . -504) 192141) ((-611 . -632) 192107) ((-600 . -632) 192073) ((-549 . -632) 192055) ((-593 . -1247) T) ((-549 . -633) 192036) ((-802 . -739) 191885) ((-1108 . -102) T) ((-642 . -668) 191857) ((-395 . -25) T) ((-395 . -21) T) ((-495 . -670) 191746) ((-475 . -739) 191717) ((-468 . -739) 191566) ((-1017 . -102) T) ((-1077 . -1242) 191495) ((-930 . -321) 191433) ((-758 . -102) T) ((-659 . -635) 191410) ((-119 . -668) 191340) ((-900 . -93) T) ((-736 . -635) 191294) ((-703 . -93) T) ((-545 . -25) T) ((-698 . -93) T) ((-686 . -632) 191276) ((-667 . -504) 191257) ((-667 . -632) 191210) ((-143 . -102) T) ((-44 . -133) T) ((-610 . -1247) T) ((-609 . -1247) T) ((-357 . -1088) T) ((-301 . -1143) T) ((-492 . -93) T) ((-421 . -239) 191161) ((-368 . -632) 191143) ((-366 . -632) 191125) ((-358 . -632) 191107) ((-275 . -633) 190855) ((-275 . -632) 190837) ((-255 . -632) 190819) ((-255 . -633) 190680) ((-140 . -93) T) ((-139 . -93) T) ((-135 . -93) T) ((-1172 . -632) 190662) ((-1151 . -662) 190649) ((-1151 . -1082) 190636) ((-841 . -748) T) ((-841 . -881) T) ((-616 . -300) 190613) ((-595 . -739) 190578) ((-493 . -633) NIL) ((-493 . -632) 190560) ((-532 . -739) 190505) ((-326 . -102) T) ((-325 . -102) T) ((-301 . -23) T) ((-154 . -133) T) ((-935 . -632) 190487) ((-935 . -633) 190469) ((-400 . -748) T) ((-896 . -1087) 190421) ((-896 . -111) 190359) ((-736 . -1080) T) ((-734 . -1273) 190343) ((-716 . -363) NIL) ((-115 . -102) T) ((-141 . -102) T) ((-137 . -102) T) ((-533 . -632) 190275) ((-391 . -819) T) ((-170 . -1247) T) ((-227 . -1132) T) ((-391 . -814) T) ((-58 . -633) 190236) ((-229 . -816) T) ((-229 . -813) T) ((-58 . -632) 190148) ((-229 . -748) T) ((-530 . -633) 190109) ((-530 . -632) 190021) ((-511 . -632) 189953) ((-510 . -633) 189914) ((-510 . -632) 189826) ((-1110 . -376) 189777) ((-40 . -426) 189754) ((-78 . -1247) T) ((-895 . -939) NIL) ((-372 . -341) 189738) ((-372 . -376) T) ((-367 . -341) 189722) ((-367 . -376) T) ((-359 . -341) 189706) ((-359 . -376) T) ((-326 . -296) 189685) ((-108 . -376) T) ((-70 . -1247) T) ((-661 . -1132) T) ((-1257 . -351) 189637) ((-895 . -670) 189582) ((-1257 . -390) 189534) ((-993 . -133) 189389) ((-837 . -133) 189260) ((-45 . -874) NIL) ((-987 . -673) 189244) ((-1256 . -684) T) ((-1118 . -175) 189155) ((-987 . -385) 189139) ((-1093 . -816) T) ((-1093 . -813) T) ((-896 . -635) 189037) ((-803 . -175) 188928) ((-802 . -175) 188839) ((-838 . -47) 188801) ((-1093 . -748) T) ((-339 . -503) 188785) ((-975 . -748) T) ((-1311 . -321) 188723) ((-1287 . -927) 188636) ((-468 . -175) 188547) ((-252 . -298) 188499) ((-1283 . -1087) 188334) ((-1278 . -927) 188240) ((-1262 . -1087) 188048) ((-495 . -748) T) ((-1257 . -927) 187881) ((-1240 . -302) 187860) ((-1217 . -1247) T) ((-1214 . -381) T) ((-1213 . -381) T) ((-1177 . -153) 187844) ((-1151 . -102) T) ((-1146 . -1132) T) ((-1110 . -23) T) ((-1110 . -1143) T) ((-1107 . -102) T) ((-1089 . -632) 187811) ((-1034 . -424) 187783) ((-954 . -984) T) ((-758 . -321) 187721) ((-76 . -1247) T) ((-686 . -397) 187693) ((-171 . -939) 187646) ((-30 . -984) T) ((-114 . -866) T) ((-1 . -632) 187628) ((-1027 . -921) 187549) ((-131 . -673) 187531) ((-50 . -640) 187515) ((-716 . -668) 187450) ((-609 . -927) 187363) ((-452 . -102) T) ((-143 . -321) NIL) ((-131 . -385) 187345) ((-896 . -1080) T) ((-854 . -871) 187324) ((-81 . -1247) T) ((-733 . -302) T) ((-40 . -1088) T) ((-595 . -175) T) ((-532 . -175) T) ((-526 . -632) 187306) ((-171 . -670) 187180) ((-521 . -632) 187162) ((-365 . -149) 187144) ((-365 . -147) T) ((-372 . -1143) T) ((-367 . -1143) T) ((-359 . -1143) T) ((-1035 . -319) T) ((-943 . -319) T) ((-896 . -250) T) ((-108 . -1143) T) ((-896 . -240) 187123) ((-1283 . -111) 186944) ((-1262 . -111) 186733) ((-252 . -1286) 186717) ((-560 . -870) T) ((-372 . -23) T) ((-353 . -363) T) ((-326 . -321) 186704) ((-325 . -321) 186645) ((-367 . -23) T) ((-331 . -133) T) ((-359 . -23) T) ((-1035 . -1051) T) ((-31 . -635) 186626) ((-108 . -23) T) ((-678 . -1082) 186610) ((-252 . -618) 186587) ((-661 . -739) 186571) ((-345 . -1132) T) ((-678 . -662) 186541) ((-1284 . -38) 186433) ((-1266 . -939) 186412) ((-114 . -1132) T) ((-838 . -1247) T) ((-427 . -1247) T) ((-1066 . -102) T) ((-1266 . -670) 186301) ((-895 . -816) NIL) ((-879 . -670) 186275) ((-895 . -813) NIL) ((-838 . -911) NIL) ((-895 . -748) T) ((-1118 . -528) 186148) ((-803 . -528) 186095) ((-802 . -528) 186047) ((-585 . -670) 186034) ((-838 . -1069) 185862) ((-468 . -528) 185805) ((-402 . -403) T) ((-1283 . -635) 185618) ((-1262 . -635) 185366) ((-60 . -1247) T) ((-638 . -871) 185345) ((-514 . -684) T) ((-1177 . -1007) 185314) ((-1055 . -668) 185251) ((-1034 . -466) T) ((-721 . -870) T) ((-525 . -814) T) ((-488 . -1087) 185086) ((-514 . -113) T) ((-357 . -1132) T) ((-325 . -1182) NIL) ((-301 . -133) T) ((-407 . -1132) T) ((-893 . -1088) T) ((-716 . -383) 185053) ((-353 . -668) 184983) ((-227 . -640) 184960) ((-339 . -298) 184912) ((-488 . -111) 184733) ((-1283 . -1080) T) ((-1262 . -1080) T) ((-838 . -390) 184717) ((-848 . -1247) T) ((-171 . -748) T) ((-1313 . -1247) T) ((-678 . -102) T) ((-1283 . -250) 184696) ((-1283 . -240) 184648) ((-1262 . -240) 184553) ((-1262 . -250) 184532) ((-1034 . -416) NIL) ((-692 . -660) 184480) ((-326 . -38) 184390) ((-325 . -38) 184319) ((-69 . -632) 184301) ((-331 . -507) 184267) ((-48 . -668) 184217) ((-1219 . -300) 184196) ((-1256 . -871) T) ((-1144 . -1143) 184174) ((-84 . -1247) T) ((-62 . -632) 184156) ((-888 . -874) T) ((-493 . -300) 184135) ((-1313 . -1069) 184112) ((-1195 . -1132) T) ((-1144 . -23) 183964) ((-838 . -927) 183900) ((-1266 . -748) T) ((-1128 . -1247) T) ((-488 . -635) 183726) ((-365 . -239) T) ((-1118 . -302) 183657) ((-995 . -1132) T) ((-918 . -102) T) ((-803 . -302) 183568) ((-339 . -19) 183552) ((-58 . -300) 183529) ((-802 . -302) 183460) ((-879 . -748) T) ((-119 . -870) NIL) ((-530 . -300) 183437) ((-339 . -618) 183414) ((-510 . -300) 183391) ((-468 . -302) 183322) ((-1066 . -321) 183173) ((-900 . -504) 183154) ((-900 . -632) 183120) ((-703 . -504) 183101) ((-585 . -748) T) ((-698 . -504) 183082) ((-703 . -632) 183032) ((-698 . -632) 182998) ((-674 . -632) 182980) ((-492 . -504) 182961) ((-492 . -632) 182927) ((-252 . -633) 182888) ((-252 . -504) 182865) ((-140 . -504) 182846) ((-139 . -504) 182827) ((-135 . -504) 182808) ((-252 . -632) 182700) ((-216 . -102) T) ((-140 . -632) 182666) ((-139 . -632) 182632) ((-135 . -632) 182598) ((-1178 . -34) T) ((-972 . -1247) T) ((-357 . -739) 182543) ((-692 . -25) T) ((-692 . -21) T) ((-1207 . -635) 182524) ((-343 . -1247) T) ((-488 . -1080) T) ((-652 . -432) 182489) ((-620 . -432) 182454) ((-1151 . -1182) T) ((-1278 . -319) 182433) ((-734 . -1082) 182256) ((-595 . -302) T) ((-532 . -302) T) ((-1257 . -319) 182235) ((-488 . -240) 182187) ((-488 . -250) 182166) ((-453 . -1247) T) ((-734 . -662) 181995) ((-1257 . -1051) NIL) ((-1110 . -133) T) ((-896 . -819) 181974) ((-146 . -102) T) ((-40 . -1132) T) ((-896 . -814) 181953) ((-663 . -1041) 181937) ((-594 . -1088) T) ((-560 . -1088) T) ((-509 . -1088) T) ((-421 . -466) T) ((-372 . -133) T) ((-326 . -414) 181921) ((-325 . -414) 181882) ((-367 . -133) T) ((-359 . -133) T) ((-1212 . -1132) T) ((-1151 . -38) 181869) ((-1120 . -632) 181836) ((-108 . -133) T) ((-983 . -1132) T) ((-948 . -1132) T) ((-793 . -1132) T) ((-694 . -1132) T) ((-723 . -149) T) ((-623 . -102) T) ((-118 . -149) T) ((-1319 . -21) T) ((-1319 . -25) T) ((-1318 . -21) T) ((-1318 . -25) T) ((-686 . -1087) 181820) ((-545 . -871) T) ((-514 . -871) T) ((-377 . -1247) T) ((-368 . -1087) 181772) ((-366 . -1087) 181724) ((-358 . -1087) 181676) ((-260 . -1247) T) ((-259 . -1247) T) ((-275 . -1087) 181519) ((-255 . -1087) 181362) ((-686 . -111) 181341) ((-839 . -1252) 181320) ((-562 . -866) T) ((-326 . -929) 181286) ((-368 . -111) 181224) ((-366 . -111) 181162) ((-358 . -111) 181100) ((-275 . -111) 180929) ((-255 . -111) 180758) ((-325 . -929) NIL) ((-642 . -426) 180742) ((-44 . -21) T) ((-44 . -25) T) ((-931 . -874) 180693) ((-130 . -684) T) ((-837 . -660) 180599) ((-839 . -571) 180578) ((-501 . -874) T) ((-260 . -1069) 180405) ((-259 . -1069) 180232) ((-128 . -121) 180216) ((-221 . -874) T) ((-935 . -1087) 180181) ((-734 . -102) T) ((-721 . -1088) T) ((-611 . -635) 180162) ((-600 . -635) 180143) ((-549 . -637) 180046) ((-357 . -175) T) ((-154 . -21) T) ((-154 . -25) T) ((-87 . -632) 180028) ((-935 . -111) 179984) ((-40 . -739) 179929) ((-893 . -1132) T) ((-686 . -635) 179906) ((-667 . -635) 179887) ((-368 . -635) 179824) ((-366 . -635) 179761) ((-358 . -635) 179698) ((-562 . -1132) T) ((-339 . -633) 179659) ((-339 . -632) 179571) ((-275 . -635) 179324) ((-255 . -635) 179109) ((-190 . -1247) T) ((-1262 . -814) 179062) ((-1262 . -819) 179015) ((-260 . -390) 178984) ((-259 . -390) 178953) ((-564 . -874) T) ((-678 . -38) 178923) ((-627 . -34) T) ((-496 . -1143) 178901) ((-489 . -34) T) ((-1144 . -133) 178772) ((-993 . -25) 178583) ((-935 . -635) 178533) ((-898 . -632) 178515) ((-218 . -866) T) ((-993 . -21) 178470) ((-837 . -25) 178303) ((-837 . -21) 178214) ((-1254 . -381) T) ((-642 . -1088) T) ((-1209 . -571) 178193) ((-1201 . -47) 178170) ((-368 . -1080) T) ((-366 . -1080) T) ((-496 . -23) 178022) ((-358 . -1080) T) ((-275 . -1080) T) ((-255 . -1080) T) ((-1156 . -47) 177994) ((-119 . -1088) T) ((-1065 . -670) 177968) ((-987 . -34) T) ((-368 . -240) 177947) ((-368 . -250) T) ((-366 . -240) 177926) ((-366 . -250) T) ((-358 . -240) 177905) ((-358 . -250) T) ((-275 . -338) 177877) ((-255 . -338) 177834) ((-275 . -240) 177813) ((-1185 . -153) 177797) ((-260 . -927) 177729) ((-259 . -927) 177661) ((-1173 . -921) 177582) ((-1113 . -871) T) ((-1264 . -1247) 177560) ((-429 . -1143) T) ((-1240 . -1033) 177526) ((-1085 . -23) T) ((-1055 . -870) T) ((-935 . -1080) T) ((-334 . -670) 177508) ((-723 . -239) T) ((-692 . -236) 177453) ((-1204 . -950) 177432) ((-1198 . -950) 177411) ((-1198 . -842) NIL) ((-1027 . -1082) 177307) ((-996 . -1247) T) ((-935 . -250) T) ((-839 . -376) 177286) ((-218 . -1132) T) ((-394 . -23) T) ((-129 . -1132) 177264) ((-123 . -1132) 177242) ((-935 . -240) T) ((-131 . -34) T) ((-391 . -670) 177207) ((-1027 . -662) 177155) ((-893 . -739) 177142) ((-1327 . -668) 177114) ((-1077 . -153) 177079) ((-1024 . -1247) T) ((-887 . -1247) T) ((-40 . -175) T) ((-716 . -426) 177061) ((-734 . -321) 177048) ((-856 . -670) 177008) ((-850 . -670) 176982) ((-331 . -25) T) ((-331 . -21) T) ((-676 . -298) 176961) ((-594 . -1132) T) ((-560 . -1132) T) ((-509 . -1132) T) ((-1201 . -1247) T) ((-252 . -300) 176938) ((-1156 . -1247) T) ((-878 . -1247) T) ((-325 . -274) 176899) ((-325 . -234) 176860) ((-1253 . -874) T) ((-1201 . -911) NIL) ((-55 . -1132) T) ((-1156 . -911) 176719) ((-130 . -871) T) ((-1201 . -1069) 176599) ((-1156 . -1069) 176482) ((-187 . -632) 176464) ((-878 . -1069) 176360) ((-803 . -298) 176287) ((-839 . -1143) T) ((-1065 . -748) T) ((-1077 . -1007) 176216) ((-616 . -673) 176200) ((-1034 . -921) 176107) ((-1027 . -102) T) ((-839 . -23) T) ((-734 . -1182) 176085) ((-716 . -1088) T) ((-616 . -385) 176069) ((-365 . -466) T) ((-357 . -302) T) ((-1300 . -1132) T) ((-256 . -1132) T) ((-413 . -102) T) ((-301 . -21) T) ((-301 . -25) T) ((-374 . -748) T) ((-732 . -1132) T) ((-721 . -1132) T) ((-374 . -487) T) ((-1240 . -632) 176051) ((-1201 . -390) 176035) ((-1156 . -390) 176019) ((-1055 . -426) 175981) ((-143 . -233) 175963) ((-391 . -816) T) ((-391 . -813) T) ((-893 . -175) T) ((-391 . -748) T) ((-733 . -632) 175945) ((-734 . -38) 175774) ((-1297 . -1296) 175758) ((-365 . -416) T) ((-1297 . -1132) 175708) ((-1221 . -1132) T) ((-594 . -739) 175695) ((-560 . -739) 175682) ((-509 . -739) 175647) ((-1284 . -668) 175537) ((-326 . -649) 175516) ((-856 . -748) T) ((-850 . -748) T) ((-1147 . -1247) T) ((-663 . -1247) T) ((-1110 . -660) 175464) ((-1201 . -927) 175407) ((-1156 . -927) 175391) ((-837 . -236) 175282) ((-674 . -1087) 175266) ((-108 . -660) 175248) ((-496 . -133) 175119) ((-1209 . -1143) T) ((-841 . -1247) T) ((-975 . -47) 175088) ((-642 . -1132) T) ((-674 . -111) 175067) ((-505 . -632) 175033) ((-339 . -300) 175010) ((-400 . -1247) T) ((-336 . -1247) T) ((-495 . -47) 174967) ((-1209 . -23) T) ((-119 . -1132) T) ((-103 . -102) 174917) ((-1310 . -1143) T) ((-563 . -871) T) ((-229 . -1247) T) ((-1085 . -133) T) ((-1055 . -1088) T) ((-1310 . -23) T) ((-1227 . -632) 174899) ((-841 . -1069) 174883) ((-1151 . -843) T) ((-1034 . -746) 174855) ((-1136 . -1132) T) ((-721 . -739) 174820) ((-597 . -632) 174802) ((-400 . -1069) 174786) ((-353 . -1088) T) ((-394 . -133) T) ((-336 . -1069) 174770) ((-1110 . -21) T) ((-1110 . -25) T) ((-1035 . -842) T) ((-229 . -911) 174752) ((-1035 . -950) T) ((-91 . -34) T) ((-1027 . -321) 174717) ((-943 . -950) T) ((-900 . -635) 174698) ((-736 . -670) 174658) ((-501 . -1252) T) ((-703 . -635) 174639) ((-698 . -635) 174620) ((-659 . -670) 174604) ((-221 . -1252) T) ((-421 . -921) 174525) ((-229 . -1069) 174485) ((-40 . -302) T) ((-501 . -571) T) ((-492 . -635) 174466) ((-372 . -25) T) ((-326 . -668) 174121) ((-325 . -668) 174035) ((-372 . -21) T) ((-367 . -25) T) ((-367 . -21) T) ((-221 . -571) T) ((-359 . -25) T) ((-359 . -21) T) ((-331 . -236) 173981) ((-252 . -635) 173958) ((-140 . -635) 173939) ((-139 . -635) 173920) ((-135 . -635) 173901) ((-108 . -25) T) ((-108 . -21) T) ((-48 . -1088) T) ((-594 . -175) T) ((-560 . -175) T) ((-509 . -175) T) ((-1093 . -1247) T) ((-975 . -1247) T) ((-735 . -1247) T) ((-661 . -298) 173868) ((-676 . -632) 173850) ((-495 . -1247) T) ((-758 . -759) 173834) ((-346 . -632) 173816) ((-68 . -396) T) ((-68 . -410) T) ((-1128 . -107) 173800) ((-1093 . -911) 173782) ((-975 . -911) 173707) ((-677 . -1143) T) ((-642 . -739) 173694) ((-495 . -911) NIL) ((-1177 . -102) T) ((-1120 . -637) 173678) ((-1093 . -1069) 173660) ((-97 . -632) 173642) ((-491 . -149) T) ((-975 . -1069) 173522) ((-119 . -739) 173467) ((-734 . -929) 173374) ((-677 . -23) T) ((-495 . -1069) 173250) ((-1118 . -633) NIL) ((-1118 . -632) 173232) ((-803 . -633) NIL) ((-803 . -632) 173193) ((-802 . -633) 172827) ((-802 . -632) 172741) ((-1144 . -660) 172647) ((-820 . -874) 172626) ((-475 . -632) 172608) ((-468 . -632) 172590) ((-468 . -633) 172451) ((-1066 . -233) 172397) ((-896 . -939) 172376) ((-128 . -34) T) ((-839 . -133) T) ((-671 . -632) 172358) ((-592 . -102) T) ((-368 . -1316) 172342) ((-366 . -1316) 172326) ((-358 . -1316) 172310) ((-123 . -528) 172243) ((-129 . -528) 172176) ((-526 . -814) T) ((-526 . -819) T) ((-525 . -816) T) ((-103 . -321) 172114) ((-226 . -102) 172064) ((-721 . -175) T) ((-716 . -1132) T) ((-896 . -670) 171980) ((-65 . -398) T) ((-286 . -632) 171962) ((-65 . -410) T) ((-975 . -390) 171946) ((-893 . -302) T) ((-50 . -632) 171928) ((-1151 . -668) 171900) ((-1027 . -38) 171848) ((-626 . -1132) T) ((-621 . -1132) T) ((-595 . -632) 171830) ((-495 . -390) 171814) ((-595 . -633) 171796) ((-532 . -632) 171778) ((-935 . -1316) 171765) ((-895 . -1247) T) ((-723 . -466) T) ((-509 . -528) 171731) ((-1309 . -1247) T) ((-1308 . -1247) T) ((-501 . -376) T) ((-368 . -381) 171710) ((-366 . -381) 171689) ((-358 . -381) 171668) ((-736 . -748) T) ((-221 . -376) T) ((-118 . -466) T) ((-1321 . -1312) 171652) ((-895 . -909) 171629) ((-895 . -911) NIL) ((-993 . -871) 171528) ((-837 . -871) 171479) ((-1255 . -102) T) ((-678 . -680) 171463) ((-1234 . -34) T) ((-174 . -632) 171445) ((-1144 . -25) 171278) ((-1144 . -21) 171189) ((-895 . -1069) 171166) ((-975 . -927) 171147) ((-1266 . -47) 171124) ((-935 . -381) T) ((-607 . -874) T) ((-58 . -673) 171108) ((-530 . -673) 171092) ((-495 . -927) 171069) ((-71 . -455) T) ((-71 . -410) T) ((-510 . -673) 171053) ((-58 . -385) 171037) ((-642 . -175) T) ((-530 . -385) 171021) ((-510 . -385) 171005) ((-561 . -1247) T) ((-850 . -730) 170989) ((-1201 . -319) 170968) ((-1209 . -133) T) ((-1173 . -1082) 170952) ((-119 . -175) T) ((-1173 . -662) 170884) ((-1177 . -321) 170822) ((-171 . -1247) T) ((-1310 . -133) T) ((-1278 . -950) 170801) ((-1262 . -939) 170754) ((-1257 . -950) 170733) ((-890 . -1082) 170703) ((-652 . -766) 170687) ((-620 . -766) 170671) ((-1257 . -842) NIL) ((-1055 . -1132) T) ((-931 . -1143) T) ((-890 . -662) 170641) ((-716 . -739) 170591) ((-925 . -1247) T) ((-895 . -390) 170568) ((-895 . -351) 170545) ((-863 . -1247) T) ((-830 . -1247) T) ((-171 . -909) 170529) ((-171 . -911) 170454) ((-791 . -1247) T) ((-699 . -1247) T) ((-1297 . -528) 170387) ((-1283 . -670) 170284) ((-1110 . -236) 170157) ((-501 . -1143) T) ((-353 . -1132) T) ((-221 . -1143) T) ((-77 . -455) T) ((-77 . -410) T) ((-171 . -1069) 170053) ((-305 . -921) 170010) ((-331 . -871) T) ((-1262 . -670) 169818) ((-896 . -816) 169797) ((-896 . -813) 169776) ((-896 . -748) T) ((-501 . -23) T) ((-372 . -236) 169749) ((-367 . -236) 169722) ((-359 . -236) 169695) ((-177 . -466) T) ((-82 . -455) T) ((-226 . -321) 169633) ((-82 . -410) T) ((-227 . -632) 169615) ((-108 . -236) 169602) ((-221 . -23) T) ((-1322 . -1317) 169581) ((-699 . -1069) 169565) ((-594 . -302) T) ((-560 . -302) T) ((-509 . -302) T) ((-1266 . -1247) T) ((-137 . -484) 169520) ((-879 . -1247) T) ((-678 . -668) 169479) ((-48 . -1132) T) ((-734 . -274) 169463) ((-734 . -234) 169447) ((-895 . -927) NIL) ((-585 . -1247) T) ((-1266 . -911) NIL) ((-913 . -102) T) ((-910 . -102) T) ((-661 . -632) 169429) ((-402 . -1132) T) ((-171 . -390) 169413) ((-171 . -351) 169397) ((-1266 . -1069) 169277) ((-879 . -1069) 169173) ((-1173 . -102) T) ((-1027 . -929) 169096) ((-677 . -133) T) ((-674 . -814) 169075) ((-674 . -819) 169054) ((-119 . -528) 168962) ((-585 . -1069) 168944) ((-305 . -1305) 168914) ((-1198 . -874) NIL) ((-890 . -102) T) ((-985 . -571) 168893) ((-1240 . -1087) 168776) ((-1034 . -1082) 168721) ((-496 . -660) 168627) ((-934 . -1132) T) ((-1055 . -739) 168564) ((-733 . -1087) 168529) ((-1034 . -662) 168474) ((-636 . -102) T) ((-616 . -34) T) ((-1178 . -1247) T) ((-1240 . -111) 168343) ((-488 . -670) 168240) ((-353 . -739) 168185) ((-171 . -927) 168144) ((-721 . -302) T) ((-716 . -175) T) ((-733 . -111) 168100) ((-1327 . -1088) T) ((-1266 . -390) 168084) ((-419 . -1252) 168062) ((-1146 . -632) 168044) ((-325 . -870) NIL) ((-419 . -571) T) ((-229 . -319) T) ((-1262 . -813) 167997) ((-1262 . -816) 167950) ((-1283 . -748) T) ((-1262 . -748) T) ((-48 . -739) 167915) ((-229 . -1051) T) ((-1284 . -426) 167881) ((-1266 . -927) 167824) ((-365 . -1305) 167801) ((-1240 . -635) 167683) ((-740 . -748) T) ((-345 . -632) 167665) ((-534 . -874) 167644) ((-1144 . -236) 167535) ((-114 . -632) 167517) ((-114 . -633) 167499) ((-740 . -487) T) ((-733 . -635) 167449) ((-1321 . -1082) 167433) ((-496 . -25) 167266) ((-129 . -503) 167250) ((-123 . -503) 167234) ((-496 . -21) 167145) ((-1321 . -662) 167115) ((-642 . -302) T) ((-597 . -1087) 167090) ((-450 . -1132) T) ((-1093 . -319) T) ((-119 . -302) T) ((-1134 . -102) T) ((-1034 . -102) T) ((-597 . -111) 167058) ((-1240 . -1080) T) ((-1173 . -321) 166996) ((-1093 . -1051) T) ((-1085 . -25) T) ((-66 . -1247) T) ((-915 . -1247) T) ((-1085 . -21) T) ((-733 . -1080) T) ((-394 . -21) T) ((-394 . -25) T) ((-716 . -528) NIL) ((-1055 . -175) T) ((-733 . -250) T) ((-1093 . -559) T) ((-734 . -668) 166906) ((-520 . -102) T) ((-516 . -102) T) ((-357 . -632) 166888) ((-353 . -175) T) ((-421 . -1082) 166840) ((-407 . -632) 166822) ((-1151 . -870) T) ((-488 . -748) T) ((-915 . -1069) 166790) ((-421 . -662) 166742) ((-108 . -871) T) ((-676 . -1087) 166726) ((-501 . -133) T) ((-1284 . -1088) T) ((-221 . -133) T) ((-1185 . -102) 166676) ((-99 . -1132) T) ((-246 . -874) 166627) ((-252 . -688) 166611) ((-252 . -673) 166595) ((-676 . -111) 166574) ((-597 . -635) 166558) ((-326 . -426) 166542) ((-252 . -385) 166526) ((-1190 . -242) 166473) ((-1027 . -274) 166457) ((-1027 . -234) 166441) ((-74 . -1247) T) ((-48 . -175) T) ((-723 . -401) T) ((-723 . -145) T) ((-1321 . -102) T) ((-1229 . -1247) T) ((-1227 . -635) 166423) ((-1119 . -1247) T) ((-1118 . -1087) 166266) ((-1106 . -1247) T) ((-275 . -939) 166245) ((-255 . -939) 166224) ((-803 . -1087) 166047) ((-802 . -1087) 165890) ((-627 . -1247) T) ((-1195 . -632) 165872) ((-1118 . -111) 165701) ((-1077 . -102) T) ((-489 . -1247) T) ((-475 . -1087) 165672) ((-468 . -1087) 165515) ((-686 . -670) 165499) ((-895 . -319) T) ((-803 . -111) 165308) ((-802 . -111) 165137) ((-368 . -670) 165089) ((-366 . -670) 165041) ((-358 . -670) 164993) ((-275 . -670) 164882) ((-255 . -670) 164771) ((-1189 . -871) T) ((-1119 . -1069) 164755) ((-1106 . -1069) 164732) ((-1035 . -874) T) ((-1031 . -34) T) ((-475 . -111) 164693) ((-468 . -111) 164522) ((-1002 . -874) T) ((-995 . -632) 164504) ((-987 . -1247) T) ((-985 . -1143) T) ((-128 . -1041) 164488) ((-872 . -1247) T) ((-895 . -1051) NIL) ((-757 . -1143) T) ((-737 . -1143) T) ((-676 . -635) 164406) ((-1297 . -503) 164390) ((-1215 . -1247) T) ((-1214 . -1247) T) ((-1173 . -38) 164350) ((-985 . -23) T) ((-935 . -670) 164315) ((-889 . -1132) T) ((-864 . -102) T) ((-839 . -21) T) ((-652 . -1082) 164299) ((-620 . -1082) 164283) ((-839 . -25) T) ((-757 . -23) T) ((-737 . -23) T) ((-652 . -662) 164267) ((-110 . -684) T) ((-620 . -662) 164251) ((-595 . -1087) 164216) ((-532 . -1087) 164161) ((-231 . -57) 164119) ((-467 . -23) T) ((-421 . -102) T) ((-1213 . -1247) T) ((-270 . -102) T) ((-110 . -113) T) ((-716 . -302) T) ((-890 . -38) 164089) ((-1118 . -635) 163825) ((-595 . -111) 163781) ((-532 . -111) 163710) ((-419 . -1143) T) ((-326 . -1088) 163600) ((-325 . -1088) T) ((-132 . -1247) T) ((-131 . -1247) T) ((-803 . -635) 163348) ((-802 . -635) 163114) ((-676 . -1080) T) ((-1327 . -1132) T) ((-468 . -635) 162899) ((-171 . -319) 162830) ((-419 . -23) T) ((-40 . -632) 162812) ((-40 . -633) 162796) ((-108 . -1022) 162778) ((-118 . -894) 162762) ((-671 . -635) 162746) ((-48 . -528) 162712) ((-1234 . -1041) 162696) ((-1212 . -632) 162663) ((-1219 . -34) T) ((-983 . -632) 162629) ((-948 . -632) 162611) ((-1144 . -871) 162562) ((-793 . -632) 162544) ((-694 . -632) 162526) ((-531 . -1247) T) ((-1266 . -319) 162505) ((-1185 . -321) 162443) ((-1172 . -34) T) ((-493 . -34) T) ((-1123 . -1247) T) ((-491 . -466) T) ((-1065 . -1247) T) ((-1118 . -1080) T) ((-50 . -635) 162412) ((-803 . -1080) T) ((-802 . -1080) T) ((-669 . -242) 162396) ((-651 . -242) 162342) ((-1209 . -21) T) ((-595 . -635) 162292) ((-532 . -635) 162222) ((-496 . -236) 162113) ((-1209 . -25) T) ((-1118 . -338) 162074) ((-468 . -1080) T) ((-1118 . -240) 162053) ((-803 . -338) 162030) ((-803 . -240) T) ((-802 . -338) 162002) ((-753 . -1252) 161981) ((-533 . -34) T) ((-339 . -673) 161965) ((-530 . -34) T) ((-58 . -34) T) ((-511 . -34) T) ((-510 . -34) T) ((-468 . -338) 161944) ((-339 . -385) 161928) ((-374 . -1247) T) ((-334 . -1247) T) ((-1034 . -1182) NIL) ((-753 . -571) 161859) ((-652 . -102) T) ((-620 . -102) T) ((-368 . -748) T) ((-366 . -748) T) ((-358 . -748) T) ((-275 . -748) T) ((-255 . -748) T) ((-391 . -1247) T) ((-1310 . -21) T) ((-1077 . -321) 161767) ((-1310 . -25) T) ((-930 . -1132) 161745) ((-840 . -236) 161732) ((-50 . -1080) T) ((-1205 . -571) 161711) ((-1204 . -1252) 161690) ((-1204 . -571) 161641) ((-1198 . -1252) 161620) ((-1198 . -571) 161571) ((-1055 . -302) T) ((-595 . -1080) T) ((-532 . -1080) T) ((-1034 . -38) 161516) ((-374 . -1069) 161500) ((-334 . -1069) 161484) ((-1027 . -668) 161407) ((-391 . -911) 161389) ((-856 . -1247) T) ((-850 . -1247) T) ((-847 . -1247) T) ((-820 . -1143) T) ((-935 . -748) T) ((-595 . -250) T) ((-595 . -240) T) ((-532 . -240) T) ((-532 . -250) T) ((-1157 . -571) 161368) ((-353 . -302) T) ((-669 . -717) 161352) ((-391 . -1069) 161312) ((-305 . -1082) 161233) ((-352 . -921) 161212) ((-1151 . -1088) T) ((-103 . -127) 161196) ((-305 . -662) 161138) ((-820 . -23) T) ((-1319 . -1317) 161114) ((-1318 . -1317) 161093) ((-1297 . -298) 161045) ((-1284 . -1132) T) ((-421 . -321) 161010) ((-1173 . -929) 160933) ((-893 . -632) 160915) ((-856 . -1069) 160884) ((-661 . -1087) 160868) ((-206 . -809) T) ((-205 . -809) T) ((-204 . -809) T) ((-203 . -809) T) ((-202 . -809) T) ((-201 . -809) T) ((-200 . -809) T) ((-199 . -809) T) ((-198 . -809) T) ((-197 . -809) T) ((-562 . -632) 160850) ((-509 . -1033) T) ((-285 . -861) T) ((-284 . -861) T) ((-283 . -861) T) ((-282 . -861) T) ((-48 . -302) T) ((-281 . -861) T) ((-280 . -861) T) ((-279 . -861) T) ((-196 . -809) T) ((-661 . -111) 160829) ((-630 . -871) T) ((-678 . -426) 160813) ((-692 . -239) 160764) ((-227 . -635) 160726) ((-110 . -871) T) ((-677 . -21) T) ((-677 . -25) T) ((-1321 . -38) 160696) ((-119 . -298) 160647) ((-1297 . -19) 160631) ((-1257 . -874) NIL) ((-1297 . -618) 160608) ((-1311 . -1132) T) ((-365 . -1082) 160553) ((-1108 . -1132) T) ((-1017 . -1132) T) ((-985 . -133) T) ((-839 . -236) 160540) ((-758 . -1132) T) ((-365 . -662) 160485) ((-757 . -133) T) ((-737 . -133) T) ((-526 . -815) T) ((-526 . -816) T) ((-467 . -133) T) ((-421 . -1182) 160463) ((-227 . -1080) T) ((-305 . -102) 160245) ((-143 . -1132) T) ((-721 . -1033) T) ((-1136 . -298) 160201) ((-91 . -1247) T) ((-218 . -632) 160183) ((-129 . -632) 160115) ((-123 . -632) 160047) ((-1327 . -175) T) ((-1204 . -376) 160026) ((-1198 . -376) 160005) ((-326 . -1132) T) ((-419 . -133) T) ((-325 . -1132) T) ((-421 . -38) 159957) ((-1164 . -102) T) ((-1284 . -739) 159849) ((-1166 . -1293) T) ((-1127 . -1247) T) ((-1122 . -1247) T) ((-678 . -1088) T) ((-1104 . -1247) T) ((-1097 . -1247) T) ((-1067 . -1247) T) ((-1050 . -1247) T) ((-331 . -147) 159828) ((-331 . -149) 159807) ((-141 . -1132) T) ((-137 . -1132) T) ((-115 . -1132) T) ((-882 . -102) T) ((-645 . -1247) T) ((-497 . -1247) T) ((-594 . -632) 159789) ((-560 . -633) 159688) ((-560 . -632) 159670) ((-509 . -632) 159652) ((-509 . -633) 159597) ((-499 . -23) T) ((-222 . -1247) T) ((-496 . -871) 159548) ((-501 . -660) 159530) ((-994 . -632) 159512) ((-1034 . -929) 159421) ((-221 . -660) 159403) ((-229 . -418) T) ((-674 . -670) 159387) ((-55 . -632) 159369) ((-1201 . -950) 159348) ((-753 . -1143) T) ((-657 . -102) T) ((-529 . -1247) T) ((-525 . -1247) T) ((-522 . -1247) T) ((-365 . -102) T) ((-1248 . -1114) T) ((-1151 . -866) T) ((-840 . -871) T) ((-753 . -23) T) ((-357 . -1087) 159293) ((-1178 . -107) 159277) ((-1300 . -632) 159259) ((-1205 . -23) T) ((-1205 . -1143) T) ((-1204 . -1143) T) ((-659 . -1247) T) ((-1204 . -23) T) ((-1198 . -1143) T) ((-1198 . -23) T) ((-1173 . -274) 159243) ((-529 . -1069) 159227) ((-1173 . -234) 159211) ((-1157 . -1143) T) ((-357 . -111) 159140) ((-1035 . -1252) T) ((-128 . -1247) T) ((-943 . -1252) T) ((-1157 . -23) T) ((-1107 . -1132) T) ((-716 . -298) NIL) ((-736 . -1247) T) ((-1035 . -571) T) ((-943 . -571) T) ((-837 . -239) 159037) ((-625 . -684) T) ((-624 . -684) T) ((-257 . -1247) T) ((-186 . -1247) T) ((-163 . -1247) T) ((-159 . -1247) T) ((-256 . -632) 159019) ((-622 . -684) T) ((-820 . -133) T) ((-732 . -632) 159001) ((-326 . -739) 158911) ((-325 . -739) 158840) ((-721 . -632) 158822) ((-721 . -633) 158767) ((-421 . -414) 158751) ((-452 . -1132) T) ((-501 . -25) T) ((-501 . -21) T) ((-1151 . -1132) T) ((-221 . -25) T) ((-221 . -21) T) ((-734 . -426) 158735) ((-736 . -1069) 158704) ((-1297 . -632) 158616) ((-1297 . -633) 158577) ((-1284 . -175) T) ((-1221 . -632) 158559) ((-252 . -34) T) ((-357 . -635) 158489) ((-407 . -635) 158471) ((-956 . -1005) T) ((-1234 . -1247) T) ((-674 . -813) 158450) ((-674 . -816) 158429) ((-412 . -410) T) ((-537 . -102) 158379) ((-1254 . -1247) T) ((-1066 . -1132) T) ((-421 . -929) 158302) ((-226 . -1026) 158286) ((-860 . -1247) T) ((-518 . -102) T) ((-642 . -632) 158268) ((-45 . -871) NIL) ((-642 . -633) 158245) ((-1066 . -629) 158220) ((-930 . -528) 158153) ((-331 . -239) 158105) ((-357 . -1080) T) ((-119 . -633) NIL) ((-119 . -632) 158087) ((-896 . -1247) T) ((-692 . -432) 158071) ((-692 . -1154) 158016) ((-514 . -153) 157998) ((-357 . -240) T) ((-357 . -250) T) ((-40 . -1087) 157943) ((-896 . -909) 157927) ((-896 . -911) 157852) ((-734 . -1088) T) ((-716 . -1033) NIL) ((-1283 . -47) 157822) ((-1262 . -47) 157799) ((-1172 . -1041) 157770) ((-1151 . -739) 157757) ((-3 . |UnionCategory|) T) ((-1136 . -632) 157739) ((-1110 . -149) 157718) ((-1110 . -147) 157669) ((-1035 . -376) T) ((-995 . -635) 157653) ((-229 . -950) T) ((-40 . -111) 157582) ((-896 . -1069) 157446) ((-1034 . -234) 157423) ((-1034 . -274) 157400) ((-723 . -1082) 157387) ((-943 . -376) T) ((-723 . -662) 157374) ((-331 . -1236) 157340) ((-391 . -319) T) ((-331 . -1233) 157306) ((-326 . -175) 157285) ((-325 . -175) T) ((-627 . -1224) 157261) ((-595 . -1316) 157248) ((-532 . -1316) 157225) ((-118 . -1082) 157212) ((-372 . -149) 157191) ((-372 . -147) 157142) ((-367 . -149) 157121) ((-367 . -147) 157072) ((-359 . -149) 157051) ((-118 . -662) 157038) ((-359 . -147) 156989) ((-331 . -35) 156955) ((-489 . -1224) 156934) ((0 . |EnumerationCategory|) T) ((-331 . -95) 156900) ((-391 . -1051) T) ((-108 . -149) T) ((-108 . -147) NIL) ((-45 . -242) 156850) ((-678 . -1132) T) ((-627 . -107) 156797) ((-499 . -133) T) ((-489 . -107) 156747) ((-246 . -1143) 156725) ((-31 . -1247) T) ((-896 . -390) 156709) ((-896 . -351) 156693) ((-246 . -23) 156545) ((-40 . -635) 156475) ((-1311 . -528) 156408) ((-1093 . -950) T) ((-1093 . -842) T) ((-595 . -381) T) ((-532 . -381) T) ((-1287 . -571) 156387) ((-1283 . -1247) T) ((-1278 . -1252) 156366) ((-1278 . -571) 156317) ((-1262 . -1247) T) ((-365 . -1182) T) ((-339 . -34) T) ((-44 . -432) 156301) ((-1212 . -635) 156237) ((-897 . -1247) T) ((-404 . -766) 156221) ((-1262 . -911) 156094) ((-1262 . -909) 156064) ((-1173 . -668) 156023) ((-753 . -133) T) ((-694 . -635) 156007) ((-1257 . -1252) 155986) ((-1257 . -571) 155937) ((-1205 . -133) T) ((-1204 . -133) T) ((-1198 . -133) T) ((-1157 . -133) T) ((-324 . -1114) T) ((-1055 . -1033) T) ((-758 . -528) 155870) ((-1035 . -23) T) ((-1035 . -1143) T) ((-918 . -1132) T) ((-146 . -866) T) ((-1034 . -363) NIL) ((-713 . -632) 155852) ((-972 . -874) 155831) ((-537 . -321) 155769) ((-1002 . -23) T) ((-143 . -528) NIL) ((-890 . -668) 155714) ((-943 . -1143) T) ((-943 . -23) T) ((-896 . -927) 155673) ((-365 . -38) 155638) ((-893 . -1087) 155625) ((-343 . -874) T) ((-83 . -632) 155607) ((-40 . -1080) T) ((-893 . -111) 155592) ((-740 . -1247) T) ((-723 . -102) T) ((-716 . -632) 155574) ((-616 . -1247) T) ((-610 . -571) 155553) ((-443 . -1143) T) ((-352 . -1082) 155537) ((-216 . -1132) T) ((-177 . -1082) 155469) ((-488 . -47) 155439) ((-40 . -240) 155411) ((-40 . -250) T) ((-136 . -102) T) ((-118 . -102) T) ((-609 . -571) 155390) ((-352 . -662) 155374) ((-716 . -633) 155282) ((-326 . -528) 155248) ((-177 . -662) 155180) ((-325 . -528) 155072) ((-501 . -236) 155059) ((-1283 . -1069) 155043) ((-1262 . -1069) 154829) ((-1027 . -426) 154813) ((-221 . -236) 154800) ((-443 . -23) T) ((-1151 . -175) T) ((-626 . -504) 154767) ((-621 . -504) 154749) ((-626 . -632) 154701) ((-621 . -632) 154668) ((-1284 . -302) T) ((-678 . -739) 154638) ((-146 . -1132) T) ((-48 . -1033) T) ((-421 . -274) 154622) ((-421 . -234) 154606) ((-307 . -242) 154556) ((-895 . -950) T) ((-895 . -842) NIL) ((-893 . -635) 154528) ((-260 . -874) 154479) ((-259 . -874) 154430) ((-888 . -871) T) ((-623 . -1132) T) ((-1262 . -351) 154400) ((-1262 . -390) 154370) ((-1110 . -239) 154249) ((-226 . -1152) 154233) ((-305 . -929) 154192) ((-1297 . -300) 154169) ((-372 . -239) 154148) ((-367 . -239) 154127) ((-488 . -1247) T) ((-359 . -239) 154106) ((-108 . -239) T) ((-1240 . -670) 154031) ((-1034 . -668) 153961) ((-985 . -21) T) ((-985 . -25) T) ((-757 . -21) T) ((-757 . -25) T) ((-737 . -21) T) ((-737 . -25) T) ((-733 . -670) 153926) ((-467 . -21) T) ((-467 . -25) T) ((-352 . -102) T) ((-177 . -102) T) ((-1027 . -1088) T) ((-893 . -1080) T) ((-795 . -102) T) ((-1283 . -927) 153832) ((-1278 . -376) 153811) ((-1262 . -927) 153662) ((-1257 . -376) 153641) ((-1207 . -1247) T) ((-1055 . -632) 153623) ((-421 . -843) 153576) ((-1205 . -507) 153542) ((-171 . -950) 153473) ((-1204 . -507) 153439) ((-1198 . -507) 153405) ((-734 . -1132) T) ((-1157 . -507) 153371) ((-594 . -1087) 153358) ((-560 . -1087) 153345) ((-509 . -1087) 153310) ((-326 . -302) 153289) ((-325 . -302) T) ((-353 . -632) 153271) ((-419 . -25) T) ((-419 . -21) T) ((-99 . -298) 153250) ((-594 . -111) 153235) ((-560 . -111) 153220) ((-509 . -111) 153176) ((-1207 . -911) 153143) ((-930 . -503) 153127) ((-48 . -632) 153109) ((-48 . -633) 153054) ((-246 . -133) 152925) ((-1321 . -668) 152884) ((-1266 . -950) 152863) ((-838 . -1252) 152842) ((-402 . -504) 152823) ((-1066 . -528) 152667) ((-402 . -632) 152633) ((-838 . -571) 152564) ((-597 . -670) 152539) ((-275 . -47) 152511) ((-255 . -47) 152468) ((-545 . -523) 152445) ((-594 . -635) 152417) ((-560 . -635) 152389) ((-509 . -635) 152322) ((-1287 . -23) T) ((-1105 . -1247) T) ((-1031 . -1247) T) ((-1287 . -1143) T) ((-1278 . -1143) T) ((-1278 . -23) T) ((-1257 . -1143) T) ((-1257 . -23) T) ((-721 . -1087) 152287) ((-1253 . -684) T) ((-1240 . -748) T) ((-1151 . -302) T) ((-1144 . -239) 152184) ((-1035 . -133) T) ((-1034 . -383) 152156) ((-114 . -381) T) ((-488 . -927) 152062) ((-1002 . -133) T) ((-934 . -632) 152044) ((-55 . -635) 152026) ((-91 . -107) 152010) ((-943 . -133) T) ((-931 . -871) 151961) ((-723 . -1182) T) ((-721 . -111) 151917) ((-864 . -668) 151834) ((-610 . -1143) T) ((-609 . -1143) T) ((-734 . -739) 151663) ((-733 . -748) T) ((-820 . -25) T) ((-820 . -21) T) ((-501 . -871) T) ((-611 . -1247) T) ((-610 . -23) T) ((-600 . -1247) T) ((-221 . -871) T) ((-421 . -668) 151600) ((-594 . -1080) T) ((-560 . -1080) T) ((-549 . -1247) T) ((-509 . -1080) T) ((-357 . -1316) 151577) ((-331 . -466) 151556) ((-352 . -321) 151543) ((-609 . -23) T) ((-443 . -133) T) ((-676 . -670) 151517) ((-252 . -1041) 151501) ((-896 . -319) T) ((-1322 . -1312) 151485) ((-793 . -814) T) ((-793 . -819) T) ((-723 . -38) 151472) ((-560 . -240) T) ((-509 . -250) T) ((-509 . -240) T) ((-1311 . -503) 151456) ((-1294 . -1247) T) ((-1181 . -242) 151406) ((-1118 . -939) 151385) ((-118 . -38) 151372) ((-212 . -822) T) ((-211 . -822) T) ((-210 . -822) T) ((-209 . -822) T) ((-896 . -1051) 151350) ((-686 . -1247) T) ((-667 . -1247) T) ((-803 . -939) 151329) ((-802 . -939) 151308) ((-1219 . -1247) T) ((-368 . -1247) T) ((-366 . -1247) T) ((-358 . -1247) T) ((-275 . -1247) T) ((-255 . -1247) T) ((-468 . -939) 151287) ((-758 . -503) 151271) ((-1118 . -670) 151160) ((-721 . -635) 151095) ((-803 . -670) 150984) ((-642 . -1087) 150971) ((-493 . -1247) T) ((-357 . -381) T) ((-143 . -503) 150953) ((-802 . -670) 150842) ((-1172 . -1247) T) ((-564 . -871) T) ((-475 . -670) 150813) ((-275 . -911) 150672) ((-255 . -911) NIL) ((-119 . -1087) 150617) ((-468 . -670) 150506) ((-686 . -1069) 150483) ((-642 . -111) 150468) ((-404 . -1082) 150452) ((-368 . -1069) 150436) ((-366 . -1069) 150420) ((-358 . -1069) 150404) ((-275 . -1069) 150248) ((-255 . -1069) 150124) ((-935 . -1247) T) ((-119 . -111) 150053) ((-58 . -1247) T) ((-404 . -662) 150037) ((-638 . -1082) 150021) ((-533 . -1247) T) ((-530 . -1247) T) ((-511 . -1247) T) ((-510 . -1247) T) ((-450 . -632) 150003) ((-448 . -632) 149985) ((-638 . -662) 149969) ((-3 . -102) T) ((-1058 . -1242) 149938) ((-854 . -102) T) ((-711 . -57) 149896) ((-721 . -1080) T) ((-652 . -668) 149865) ((-620 . -668) 149834) ((-50 . -670) 149808) ((-301 . -466) T) ((-490 . -1242) 149777) ((0 . -102) T) ((-595 . -670) 149742) ((-532 . -670) 149687) ((-49 . -102) T) ((-935 . -1069) 149674) ((-721 . -250) T) ((-1110 . -424) 149653) ((-753 . -660) 149601) ((-1027 . -1132) T) ((-734 . -175) 149492) ((-642 . -635) 149387) ((-501 . -1022) 149369) ((-419 . -236) 149314) ((-275 . -390) 149298) ((-255 . -390) 149282) ((-413 . -1132) T) ((-1057 . -102) 149260) ((-352 . -38) 149244) ((-221 . -1022) 149226) ((-119 . -635) 149156) ((-177 . -38) 149088) ((-1283 . -319) 149067) ((-1262 . -319) 149046) ((-676 . -748) T) ((-99 . -632) 149028) ((-491 . -1082) 148993) ((-1198 . -660) 148945) ((-491 . -662) 148910) ((-663 . -874) 148889) ((-499 . -25) T) ((-499 . -21) T) ((-1262 . -1051) 148841) ((-1089 . -1247) T) ((-1 . -1247) T) ((-642 . -1080) T) ((-391 . -418) T) ((-404 . -102) T) ((-1136 . -637) 148756) ((-275 . -927) 148702) ((-255 . -927) 148679) ((-119 . -1080) T) ((-1118 . -748) T) ((-838 . -1143) T) ((-841 . -874) T) ((-642 . -240) 148658) ((-638 . -102) T) ((-526 . -1247) T) ((-521 . -1247) T) ((-803 . -748) T) ((-802 . -748) T) ((-1253 . -871) T) ((-427 . -1143) T) ((-119 . -250) T) ((-40 . -381) NIL) ((-119 . -240) NIL) ((-400 . -874) 148637) ((-468 . -748) T) ((-838 . -23) T) ((-753 . -25) T) ((-753 . -21) T) ((-692 . -921) 148558) ((-1108 . -298) 148537) ((-75 . -411) T) ((-75 . -410) T) ((-547 . -789) 148519) ((-229 . -874) T) ((-716 . -1087) 148469) ((-1323 . -102) T) ((-1287 . -133) T) ((-1278 . -133) T) ((-1257 . -133) T) ((-1205 . -25) T) ((-1173 . -426) 148453) ((-652 . -380) 148385) ((-620 . -380) 148317) ((-1185 . -1180) 148301) ((-103 . -1132) 148279) ((-1205 . -21) T) ((-1204 . -21) T) ((-889 . -632) 148261) ((-1027 . -739) 148209) ((-227 . -670) 148176) ((-716 . -111) 148110) ((-50 . -748) T) ((-1204 . -25) T) ((-365 . -363) T) ((-1198 . -21) T) ((-1110 . -466) 148061) ((-1198 . -25) T) ((-734 . -528) 148008) ((-595 . -748) T) ((-532 . -748) T) ((-1157 . -21) T) ((-1157 . -25) T) ((-610 . -133) T) ((-609 . -133) T) ((-305 . -668) 147743) ((-496 . -239) 147640) ((-372 . -466) T) ((-367 . -466) T) ((-359 . -466) T) ((-488 . -319) 147619) ((-1256 . -102) T) ((-325 . -298) 147554) ((-108 . -466) T) ((-79 . -455) T) ((-79 . -410) T) ((-491 . -102) T) ((-713 . -635) 147538) ((-1327 . -632) 147520) ((-1327 . -633) 147502) ((-1110 . -416) 147481) ((-1066 . -503) 147412) ((-661 . -670) 147396) ((-137 . -298) 147373) ((-560 . -819) T) ((-560 . -814) T) ((-1094 . -242) 147319) ((-1093 . -874) T) ((-735 . -874) T) ((-372 . -416) 147270) ((-367 . -416) 147221) ((-359 . -416) 147172) ((-1313 . -1143) T) ((-1322 . -1082) 147156) ((-395 . -1082) 147140) ((-1322 . -662) 147110) ((-840 . -239) T) ((-395 . -662) 147080) ((-716 . -635) 147015) ((-1313 . -23) T) ((-626 . -635) 146982) ((-621 . -635) 146964) ((-1301 . -102) T) ((-352 . -929) 146945) ((-178 . -632) 146927) ((-1173 . -1088) T) ((-562 . -381) T) ((-692 . -766) 146911) ((-1209 . -147) 146890) ((-1209 . -149) 146869) ((-1177 . -1132) T) ((-1177 . -1102) 146838) ((-69 . -1247) T) ((-1055 . -1087) 146775) ((-365 . -668) 146705) ((-890 . -1088) T) ((-246 . -660) 146611) ((-716 . -1080) T) ((-353 . -1087) 146556) ((-62 . -1247) T) ((-1055 . -111) 146472) ((-930 . -632) 146383) ((-716 . -250) T) ((-716 . -240) NIL) ((-864 . -870) 146362) ((-721 . -819) T) ((-721 . -814) T) ((-1034 . -426) 146339) ((-353 . -111) 146268) ((-391 . -950) T) ((-421 . -870) 146247) ((-734 . -302) 146158) ((-227 . -748) T) ((-1287 . -507) 146124) ((-1278 . -507) 146090) ((-1257 . -507) 146056) ((-592 . -1132) T) ((-326 . -1033) 146035) ((-226 . -1132) 146013) ((-1255 . -866) T) ((-331 . -1004) 145975) ((-105 . -102) T) ((-48 . -1087) 145940) ((-895 . -874) NIL) ((-1322 . -102) T) ((-395 . -102) T) ((-1284 . -632) 145922) ((-1164 . -1165) 145906) ((-1035 . -660) 145888) ((-900 . -1247) T) ((-48 . -111) 145844) ((-703 . -1247) T) ((-698 . -1247) T) ((-674 . -1247) T) ((-837 . -921) 145711) ((-492 . -1247) T) ((-252 . -1247) T) ((-545 . -102) T) ((-514 . -102) T) ((-154 . -1305) 145695) ((-140 . -1247) T) ((-139 . -1247) T) ((-135 . -1247) T) ((-1248 . -102) T) ((-1055 . -635) 145632) ((-839 . -239) T) ((-1201 . -1252) 145611) ((-218 . -381) T) ((-353 . -635) 145541) ((-1156 . -1252) 145520) ((-246 . -25) 145353) ((-246 . -21) 145264) ((-129 . -121) 145248) ((-123 . -121) 145232) ((-44 . -766) 145216) ((-1201 . -571) 145127) ((-1156 . -571) 145058) ((-1255 . -1132) T) ((-561 . -874) T) ((-1066 . -298) 145033) ((-1197 . -1114) T) ((-1025 . -1114) T) ((-838 . -133) T) ((-119 . -819) NIL) ((-119 . -814) NIL) ((-368 . -319) T) ((-366 . -319) T) ((-358 . -319) T) ((-1120 . -1247) 145011) ((-260 . -1143) 144989) ((-259 . -1143) 144967) ((-1055 . -1080) T) ((-1034 . -1088) T) ((-48 . -635) 144900) ((-357 . -670) 144845) ((-1311 . -632) 144807) ((-1311 . -633) 144768) ((-638 . -38) 144752) ((-1205 . -236) 144705) ((-1204 . -236) 144651) ((-1108 . -632) 144633) ((-1055 . -250) T) ((-353 . -1080) T) ((-837 . -1305) 144603) ((-260 . -23) T) ((-259 . -23) T) ((-1017 . -632) 144585) ((-1198 . -236) 144402) ((-1190 . -153) 144349) ((-758 . -633) 144310) ((-758 . -632) 144292) ((-1035 . -25) T) ((-820 . -871) 144271) ((-1027 . -528) 144183) ((-699 . -874) T) ((-353 . -240) T) ((-353 . -250) T) ((-402 . -635) 144164) ((-935 . -319) T) ((-143 . -632) 144146) ((-143 . -633) 144105) ((-331 . -921) 144009) ((-1035 . -21) T) ((-1002 . -25) T) ((-943 . -21) T) ((-943 . -25) T) ((-443 . -21) T) ((-443 . -25) T) ((-864 . -426) 143993) ((-48 . -1080) T) ((-1319 . -1312) 143977) ((-1318 . -1312) 143961) ((-1066 . -618) 143936) ((-326 . -633) 143797) ((-326 . -632) 143779) ((-325 . -633) NIL) ((-325 . -632) 143761) ((-48 . -250) T) ((-48 . -240) T) ((-678 . -298) 143722) ((-565 . -242) 143672) ((-585 . -874) T) ((-141 . -632) 143639) ((-137 . -632) 143621) ((-115 . -632) 143603) ((-491 . -38) 143568) ((-1322 . -1320) 143547) ((-1313 . -133) T) ((-1321 . -1088) T) ((-1113 . -102) T) ((-87 . -1247) T) ((-514 . -321) NIL) ((-1031 . -107) 143531) ((-913 . -1132) T) ((-910 . -1132) T) ((-1297 . -673) 143515) ((-1297 . -385) 143499) ((-339 . -1247) T) ((-607 . -871) T) ((-1173 . -1132) T) ((-1173 . -1084) 143439) ((-103 . -528) 143372) ((-954 . -632) 143354) ((-357 . -748) T) ((-30 . -632) 143336) ((-890 . -1132) T) ((-864 . -1088) 143315) ((-40 . -670) 143222) ((-229 . -1252) T) ((-421 . -1088) T) ((-1189 . -153) 143204) ((-1027 . -302) 143155) ((-898 . -1247) T) ((-636 . -1132) T) ((-229 . -571) T) ((-331 . -1280) 143139) ((-331 . -1276) 143109) ((-723 . -668) 143081) ((-1219 . -1224) 143060) ((-1107 . -632) 143042) ((-1219 . -107) 142992) ((-669 . -153) 142976) ((-651 . -153) 142922) ((-118 . -668) 142894) ((-493 . -1224) 142873) ((-501 . -149) T) ((-501 . -147) NIL) ((-1151 . -633) 142788) ((-452 . -632) 142770) ((-221 . -149) T) ((-221 . -147) NIL) ((-1151 . -632) 142752) ((-130 . -102) T) ((-51 . -102) T) ((-1257 . -660) 142704) ((-493 . -107) 142654) ((-1024 . -23) T) ((-1322 . -38) 142624) ((-1201 . -1143) T) ((-1156 . -1143) T) ((-1093 . -1252) T) ((-246 . -236) 142515) ((-324 . -102) T) ((-878 . -1143) T) ((-975 . -1252) 142494) ((-495 . -1252) 142473) ((-1093 . -571) T) ((-975 . -571) 142404) ((-1201 . -23) T) ((-1183 . -1114) T) ((-1156 . -23) T) ((-878 . -23) T) ((-495 . -571) 142335) ((-1173 . -739) 142267) ((-692 . -1082) 142251) ((-1177 . -528) 142184) ((-692 . -662) 142168) ((-1066 . -633) NIL) ((-1066 . -632) 142150) ((-96 . -1114) T) ((-1327 . -1087) 142137) ((-890 . -739) 142107) ((-1327 . -111) 142092) ((-1240 . -47) 142061) ((-1198 . -871) NIL) ((-260 . -133) T) ((-259 . -133) T) ((-1134 . -1132) T) ((-1034 . -1132) T) ((-63 . -632) 142043) ((-1110 . -921) 141912) ((-1055 . -814) T) ((-1055 . -819) T) ((-1287 . -25) T) ((-1287 . -21) T) ((-1278 . -21) T) ((-1278 . -25) T) ((-893 . -670) 141899) ((-1257 . -21) T) ((-1257 . -25) T) ((-1058 . -153) 141883) ((-1035 . -236) 141870) ((-896 . -842) 141849) ((-896 . -950) T) ((-734 . -298) 141776) ((-610 . -21) T) ((-352 . -668) 141735) ((-108 . -921) NIL) ((-610 . -25) T) ((-609 . -21) T) ((-177 . -668) 141652) ((-40 . -748) T) ((-226 . -528) 141585) ((-609 . -25) T) ((-490 . -153) 141569) ((-477 . -153) 141553) ((-187 . -1247) T) ((-948 . -816) T) ((-948 . -748) T) ((-793 . -815) T) ((-793 . -816) T) ((-520 . -1132) T) ((-516 . -1132) T) ((-793 . -748) T) ((-229 . -376) T) ((-1319 . -1082) 141537) ((-1318 . -1082) 141521) ((-1319 . -662) 141491) ((-1185 . -1132) 141469) ((-895 . -1252) T) ((-1318 . -662) 141439) ((-1119 . -874) T) ((-678 . -632) 141421) ((-895 . -571) T) ((-716 . -381) NIL) ((-44 . -1082) 141405) ((-1327 . -635) 141387) ((-1321 . -1132) T) ((-692 . -102) T) ((-372 . -1305) 141371) ((-367 . -1305) 141355) ((-44 . -662) 141339) ((-359 . -1305) 141323) ((-563 . -102) T) ((-1240 . -1247) T) ((-534 . -871) 141302) ((-733 . -1247) T) ((-987 . -874) 141281) ((-872 . -874) T) ((-501 . -239) T) ((-221 . -239) T) ((-1077 . -1132) T) ((-839 . -466) 141260) ((-154 . -1082) 141244) ((-1077 . -1102) 141173) ((-1058 . -1007) 141142) ((-841 . -1143) T) ((-1034 . -739) 141087) ((-154 . -662) 141071) ((-400 . -1143) T) ((-490 . -1007) 141040) ((-477 . -1007) 141009) ((-1214 . -874) T) ((-110 . -153) 140991) ((-73 . -632) 140973) ((-918 . -632) 140955) ((-1213 . -874) T) ((-1110 . -746) 140934) ((-1327 . -1080) T) ((-838 . -660) 140882) ((-305 . -1088) 140824) ((-171 . -1252) 140729) ((-229 . -1143) T) ((-336 . -23) T) ((-1198 . -1022) 140681) ((-1284 . -1087) 140586) ((-864 . -1132) T) ((-131 . -874) T) ((-1157 . -762) 140565) ((-1283 . -950) 140544) ((-1262 . -950) 140523) ((-893 . -748) T) ((-171 . -571) 140434) ((-594 . -670) 140421) ((-560 . -670) 140393) ((-421 . -1132) T) ((-270 . -1132) T) ((-216 . -632) 140375) ((-509 . -670) 140325) ((-229 . -23) T) ((-1262 . -842) 140278) ((-1319 . -102) T) ((-505 . -1247) T) ((-353 . -1316) 140255) ((-1318 . -102) T) ((-1284 . -111) 140147) ((-1144 . -921) 140014) ((-837 . -1082) 139915) ((-837 . -662) 139837) ((-146 . -632) 139819) ((-1024 . -133) T) ((-44 . -102) T) ((-246 . -871) 139770) ((-597 . -1247) T) ((-1266 . -1252) 139749) ((-103 . -503) 139733) ((-1321 . -739) 139703) ((-1118 . -47) 139664) ((-1093 . -1143) T) ((-975 . -1143) T) ((-129 . -34) T) ((-123 . -34) T) ((-1266 . -571) 139575) ((-803 . -47) 139552) ((-802 . -47) 139524) ((-1227 . -1247) T) ((-1201 . -133) T) ((-353 . -381) T) ((-495 . -1143) T) ((-1156 . -133) T) ((-895 . -376) T) ((-468 . -47) 139503) ((-878 . -133) T) ((-334 . -874) 139482) ((-154 . -102) T) ((-1093 . -23) T) ((-975 . -23) T) ((-585 . -571) T) ((-838 . -25) T) ((-838 . -21) T) ((-1173 . -528) 139415) ((-623 . -632) 139382) ((-606 . -1114) T) ((-597 . -1069) 139366) ((-1284 . -635) 139240) ((-495 . -23) T) ((-365 . -1088) T) ((-391 . -874) T) ((-1240 . -927) 139221) ((-692 . -321) 139159) ((-1287 . -236) 139112) ((-1144 . -1305) 139082) ((-721 . -670) 139047) ((-1035 . -871) T) ((-1034 . -175) T) ((-985 . -147) 139026) ((-652 . -1132) T) ((-620 . -1132) T) ((-985 . -149) 139005) ((-757 . -149) 138984) ((-757 . -147) 138963) ((-676 . -1247) T) ((-1002 . -871) T) ((-1278 . -236) 138909) ((-1257 . -236) 138726) ((-854 . -668) 138643) ((-488 . -950) 138622) ((-346 . -1247) T) ((-331 . -1082) 138457) ((-326 . -1087) 138367) ((-325 . -1087) 138296) ((-1027 . -298) 138254) ((-421 . -739) 138206) ((-331 . -662) 138047) ((-609 . -236) 138000) ((-723 . -870) T) ((-1284 . -1080) T) ((-326 . -111) 137896) ((-325 . -111) 137809) ((-97 . -1247) T) ((-993 . -102) T) ((-837 . -102) 137541) ((-734 . -633) NIL) ((-734 . -632) 137523) ((-1284 . -338) 137467) ((-676 . -1069) 137363) ((-1118 . -1247) T) ((-1066 . -300) 137338) ((-594 . -748) T) ((-560 . -816) T) ((-171 . -376) 137289) ((-560 . -813) T) ((-560 . -748) T) ((-509 . -748) T) ((-803 . -1247) T) ((-802 . -1247) T) ((-1177 . -503) 137273) ((-475 . -1247) T) ((-468 . -1247) T) ((-1319 . -1320) 137249) ((-1118 . -911) NIL) ((-895 . -1143) T) ((-119 . -939) NIL) ((-1318 . -1320) 137228) ((-671 . -1247) T) ((-803 . -911) NIL) ((-802 . -911) 137087) ((-1313 . -25) T) ((-1313 . -21) T) ((-1245 . -102) 137065) ((-1137 . -410) T) ((-642 . -670) 137052) ((-468 . -911) NIL) ((-697 . -102) 137002) ((-1118 . -1069) 136829) ((-895 . -23) T) ((-803 . -1069) 136688) ((-802 . -1069) 136545) ((-119 . -670) 136490) ((-468 . -1069) 136366) ((-286 . -1247) T) ((-326 . -635) 135930) ((-325 . -635) 135813) ((-50 . -1247) T) ((-404 . -668) 135782) ((-671 . -1069) 135766) ((-646 . -102) T) ((-595 . -1247) T) ((-532 . -1247) T) ((-226 . -503) 135750) ((-1297 . -34) T) ((-638 . -668) 135709) ((-301 . -1082) 135696) ((-137 . -635) 135680) ((-301 . -662) 135667) ((-652 . -739) 135651) ((-620 . -739) 135635) ((-692 . -38) 135595) ((-331 . -102) T) ((-1151 . -1087) 135582) ((-86 . -632) 135564) ((-50 . -1069) 135548) ((-1118 . -390) 135532) ((-803 . -390) 135516) ((-721 . -748) T) ((-721 . -816) T) ((-721 . -813) T) ((-60 . -57) 135478) ((-595 . -1069) 135465) ((-532 . -1069) 135442) ((-174 . -1247) T) ((-336 . -133) T) ((-326 . -1080) 135332) ((-325 . -1080) T) ((-171 . -1143) T) ((-802 . -390) 135316) ((-45 . -153) 135266) ((-1035 . -1022) 135248) ((-468 . -390) 135232) ((-421 . -175) T) ((-326 . -250) 135211) ((-325 . -250) T) ((-325 . -240) NIL) ((-305 . -1132) 134993) ((-229 . -133) T) ((-1151 . -111) 134978) ((-171 . -23) T) ((-820 . -149) 134957) ((-820 . -147) 134936) ((-260 . -660) 134842) ((-259 . -660) 134748) ((-331 . -296) 134714) ((-1185 . -528) 134647) ((-491 . -668) 134597) ((-657 . -866) T) ((-496 . -921) 134464) ((-1164 . -1132) T) ((-229 . -1091) T) ((-837 . -321) 134402) ((-1118 . -927) 134337) ((-803 . -927) 134280) ((-802 . -927) 134264) ((-1319 . -38) 134234) ((-1318 . -38) 134204) ((-1266 . -1143) T) ((-879 . -1143) T) ((-468 . -927) 134181) ((-882 . -1132) T) ((-1266 . -23) T) ((-1151 . -635) 134153) ((-1093 . -133) T) ((-879 . -23) T) ((-585 . -1143) T) ((-642 . -748) T) ((-525 . -874) T) ((-368 . -950) T) ((-366 . -950) T) ((-301 . -102) T) ((-358 . -950) T) ((-1001 . -1114) T) ((-975 . -133) T) ((-838 . -236) 134098) ((-119 . -816) NIL) ((-119 . -813) NIL) ((-119 . -748) T) ((-1077 . -528) 133999) ((-716 . -939) NIL) ((-585 . -23) T) ((-495 . -133) T) ((-419 . -239) 133950) ((-697 . -321) 133888) ((-227 . -1247) T) ((-657 . -1132) T) ((-652 . -783) T) ((-620 . -783) T) ((-1257 . -871) NIL) ((-1110 . -1082) 133798) ((-1034 . -302) T) ((-716 . -670) 133748) ((-260 . -25) T) ((-365 . -1132) T) ((-260 . -21) T) ((-259 . -25) T) ((-259 . -21) T) ((-154 . -38) 133732) ((-2 . -102) T) ((-935 . -950) T) ((-1110 . -662) 133600) ((-496 . -1305) 133570) ((-1151 . -1080) T) ((-733 . -319) T) ((-723 . -1088) T) ((-372 . -1082) 133522) ((-367 . -1082) 133474) ((-359 . -1082) 133426) ((-372 . -662) 133378) ((-227 . -1069) 133355) ((-367 . -662) 133307) ((-108 . -1082) 133257) ((-359 . -662) 133209) ((-305 . -739) 133151) ((-661 . -1247) T) ((-501 . -466) T) ((-421 . -528) 133063) ((-108 . -662) 133013) ((-221 . -466) T) ((-1151 . -240) T) ((-307 . -153) 132963) ((-1027 . -633) 132924) ((-1027 . -632) 132906) ((-1020 . -632) 132888) ((-118 . -1088) T) ((-678 . -1087) 132872) ((-229 . -507) T) ((-413 . -632) 132854) ((-413 . -633) 132831) ((-1085 . -1305) 132801) ((-678 . -111) 132780) ((-692 . -929) 132703) ((-1173 . -503) 132687) ((-1322 . -668) 132646) ((-395 . -668) 132615) ((-64 . -455) T) ((-64 . -410) T) ((-1190 . -102) T) ((-895 . -133) T) ((-498 . -102) 132565) ((-1146 . -1247) T) ((-1254 . -874) T) ((-1327 . -381) T) ((-1110 . -102) T) ((-1092 . -102) T) ((-365 . -739) 132510) ((-896 . -874) 132461) ((-753 . -149) 132440) ((-753 . -147) 132419) ((-678 . -635) 132337) ((-1055 . -670) 132274) ((-537 . -1132) 132252) ((-372 . -102) T) ((-367 . -102) T) ((-359 . -102) T) ((-108 . -102) T) ((-518 . -1132) T) ((-353 . -670) 132197) ((-1201 . -660) 132145) ((-1156 . -660) 132093) ((-394 . -523) 132072) ((-854 . -870) 132051) ((-716 . -748) T) ((-391 . -1252) T) ((-345 . -1247) T) ((-1257 . -1022) 132003) ((-352 . -1088) T) ((-114 . -1247) T) ((-177 . -1088) T) ((-103 . -632) 131935) ((-1205 . -147) 131914) ((-1205 . -149) 131893) ((-391 . -571) T) ((-1204 . -149) 131872) ((-1204 . -147) 131851) ((-1198 . -147) 131758) ((-421 . -302) T) ((-1198 . -149) 131665) ((-1157 . -149) 131644) ((-1157 . -147) 131623) ((-331 . -38) 131464) ((-171 . -133) T) ((-325 . -819) NIL) ((-325 . -814) NIL) ((-678 . -1080) T) ((-48 . -670) 131414) ((-1144 . -1082) 131315) ((-918 . -635) 131292) ((-1144 . -662) 131214) ((-1197 . -102) T) ((-1025 . -102) T) ((-1024 . -21) T) ((-129 . -1041) 131198) ((-123 . -1041) 131182) ((-1024 . -25) T) ((-930 . -121) 131166) ((-1189 . -102) T) ((-1266 . -133) T) ((-1262 . -874) 131065) ((-1201 . -25) T) ((-1201 . -21) T) ((-1190 . -321) 130860) ((-357 . -1247) T) ((-1156 . -25) T) ((-879 . -133) T) ((-407 . -1247) T) ((-1156 . -21) T) ((-878 . -25) T) ((-878 . -21) T) ((-803 . -319) 130839) ((-1185 . -503) 130823) ((-1181 . -153) 130773) ((-1177 . -632) 130735) ((-669 . -102) 130685) ((-651 . -102) T) ((-1177 . -633) 130646) ((-585 . -133) T) ((-638 . -870) 130625) ((-1055 . -813) T) ((-1055 . -816) T) ((-1055 . -748) T) ((-837 . -929) 130494) ((-734 . -1087) 130317) ((-616 . -874) 130296) ((-498 . -321) 130234) ((-467 . -432) 130204) ((-365 . -175) T) ((-301 . -38) 130191) ((-260 . -236) 130082) ((-259 . -236) 129973) ((-285 . -102) T) ((-284 . -102) T) ((-283 . -102) T) ((-282 . -102) T) ((-281 . -102) T) ((-280 . -102) T) ((-357 . -1069) 129950) ((-279 . -102) T) ((-215 . -102) T) ((-214 . -102) T) ((-212 . -102) T) ((-211 . -102) T) ((-210 . -102) T) ((-209 . -102) T) ((-206 . -102) T) ((-205 . -102) T) ((-204 . -102) T) ((-203 . -102) T) ((-202 . -102) T) ((-201 . -102) T) ((-200 . -102) T) ((-199 . -102) T) ((-198 . -102) T) ((-197 . -102) T) ((-196 . -102) T) ((-734 . -111) 129759) ((-353 . -748) T) ((-692 . -274) 129743) ((-692 . -234) 129727) ((-595 . -319) T) ((-532 . -319) T) ((-305 . -528) 129676) ((-1195 . -1247) T) ((-108 . -321) NIL) ((-72 . -410) T) ((-1144 . -102) 129408) ((-854 . -426) 129392) ((-1151 . -819) T) ((-1151 . -814) T) ((-723 . -1132) T) ((-592 . -632) 129374) ((-391 . -376) T) ((-171 . -507) 129352) ((-226 . -632) 129284) ((-136 . -1132) T) ((-118 . -1132) T) ((-995 . -1247) T) ((-48 . -748) T) ((-1077 . -503) 129249) ((-143 . -440) 129231) ((-143 . -381) T) ((-1058 . -102) T) ((-524 . -523) 129210) ((-734 . -635) 128966) ((-1255 . -632) 128948) ((-1212 . -1247) T) ((-1212 . -1069) 128884) ((-1205 . -239) 128843) ((-490 . -102) T) ((-477 . -102) T) ((-1204 . -239) 128795) ((-1198 . -239) 128618) ((-1065 . -1143) T) ((-331 . -929) 128524) ((-1207 . -874) T) ((-1205 . -35) 128490) ((-1205 . -95) 128456) ((-1205 . -1236) 128422) ((-1205 . -1233) 128388) ((-1204 . -1233) 128354) ((-1204 . -1236) 128320) ((-1204 . -95) 128286) ((-1204 . -35) 128252) ((-1198 . -1233) 128218) ((-1198 . -1236) 128184) ((-1189 . -321) NIL) ((-89 . -411) T) ((-89 . -410) T) ((-1110 . -1182) 128163) ((-40 . -1247) T) ((-1198 . -95) 128129) ((-1065 . -23) T) ((-1198 . -35) 128095) ((-585 . -507) T) ((-1157 . -35) 128061) ((-1157 . -95) 128027) ((-1157 . -1236) 127993) ((-1157 . -1233) 127959) ((-374 . -1143) T) ((-372 . -1182) 127938) ((-367 . -1182) 127917) ((-359 . -1182) 127896) ((-1134 . -298) 127852) ((-983 . -1247) T) ((-948 . -1247) T) ((-108 . -1182) T) ((-854 . -1088) 127831) ((-793 . -1247) T) ((-669 . -321) 127769) ((-651 . -321) 127620) ((-694 . -1247) T) ((-734 . -1080) T) ((-1093 . -660) 127602) ((-1110 . -38) 127470) ((-975 . -660) 127418) ((-1035 . -149) T) ((-1035 . -147) NIL) ((-391 . -1143) T) ((-336 . -25) T) ((-334 . -23) T) ((-972 . -871) 127397) ((-734 . -338) 127374) ((-495 . -660) 127322) ((-40 . -1069) 127210) ((-734 . -240) T) ((-723 . -739) 127197) ((-352 . -1132) T) ((-177 . -1132) T) ((-343 . -871) T) ((-419 . -466) 127147) ((-391 . -23) T) ((-372 . -38) 127112) ((-367 . -38) 127077) ((-359 . -38) 127042) ((-80 . -455) T) ((-80 . -410) T) ((-229 . -25) T) ((-229 . -21) T) ((-856 . -1143) T) ((-108 . -38) 126992) ((-850 . -1143) T) ((-795 . -1132) T) ((-118 . -739) 126979) ((-694 . -1069) 126963) ((-630 . -102) T) ((-856 . -23) T) ((-850 . -23) T) ((-1185 . -298) 126915) ((-1144 . -321) 126853) ((-496 . -1082) 126754) ((-1128 . -242) 126738) ((-61 . -411) T) ((-61 . -410) T) ((-1183 . -102) T) ((-110 . -102) T) ((-496 . -662) 126660) ((-40 . -390) 126637) ((-96 . -102) T) ((-677 . -876) 126621) ((-1201 . -236) 126608) ((-1166 . -1114) T) ((-1093 . -21) T) ((-1093 . -25) T) ((-1085 . -1082) 126592) ((-837 . -274) 126561) ((-837 . -234) 126530) ((-975 . -25) T) ((-975 . -21) T) ((-1151 . -381) T) ((-1085 . -662) 126472) ((-638 . -1088) T) ((-1058 . -321) 126410) ((-913 . -632) 126392) ((-692 . -668) 126351) ((-495 . -25) T) ((-495 . -21) T) ((-394 . -1082) 126335) ((-910 . -632) 126317) ((-893 . -1247) T) ((-537 . -528) 126250) ((-260 . -871) 126201) ((-259 . -871) 126152) ((-394 . -662) 126122) ((-895 . -660) 126099) ((-490 . -321) 126037) ((-562 . -1247) T) ((-477 . -321) 125975) ((-365 . -302) T) ((-1185 . -1286) 125959) ((-1173 . -632) 125921) ((-1173 . -633) 125882) ((-1171 . -102) T) ((-1027 . -1087) 125778) ((-40 . -927) 125730) ((-1185 . -618) 125707) ((-1327 . -670) 125694) ((-1094 . -153) 125640) ((-501 . -921) NIL) ((-890 . -504) 125617) ((-1027 . -111) 125499) ((-896 . -1252) T) ((-221 . -921) NIL) ((-352 . -739) 125483) ((-890 . -632) 125445) ((-177 . -739) 125377) ((-896 . -571) T) ((-421 . -298) 125335) ((-246 . -239) 125232) ((-108 . -414) 125214) ((-85 . -398) T) ((-85 . -410) T) ((-723 . -175) T) ((-636 . -632) 125196) ((-99 . -748) T) ((-496 . -102) 124928) ((-99 . -487) T) ((-118 . -175) T) ((-1319 . -668) 124887) ((-1318 . -668) 124846) ((-171 . -660) 124794) ((-1110 . -929) 124665) ((-1085 . -102) T) ((-1027 . -635) 124555) ((-895 . -25) T) ((-837 . -245) 124534) ((-895 . -21) T) ((-840 . -102) T) ((-1035 . -239) T) ((-44 . -668) 124477) ((-429 . -102) T) ((-394 . -102) T) ((-110 . -321) NIL) ((-231 . -102) 124427) ((-218 . -1247) T) ((-129 . -1247) T) ((-123 . -1247) T) ((-108 . -929) NIL) ((-839 . -1082) 124378) ((-58 . -874) 124357) ((-839 . -662) 124299) ((-530 . -874) 124278) ((-510 . -874) 124257) ((-1065 . -133) T) ((-692 . -380) 124241) ((-154 . -668) 124200) ((-1327 . -748) T) ((-652 . -298) 124158) ((-620 . -298) 124116) ((-1287 . -147) 124095) ((-1266 . -660) 124043) ((-1027 . -1080) T) ((-1134 . -632) 124025) ((-1034 . -632) 124007) ((-594 . -1247) T) ((-560 . -1247) T) ((-509 . -1247) T) ((-529 . -23) T) ((-525 . -23) T) ((-357 . -319) T) ((-522 . -23) T) ((-334 . -133) T) ((-3 . -1132) T) ((-1034 . -633) 123991) ((-1027 . -250) 123970) ((-1027 . -240) 123949) ((-1287 . -149) 123928) ((-1283 . -1252) 123907) ((-854 . -1132) T) ((-1278 . -149) 123886) ((-1278 . -147) 123865) ((-1262 . -1252) 123844) ((-1257 . -147) 123751) ((-1257 . -149) 123658) ((-391 . -133) T) ((-229 . -236) 123645) ((-177 . -175) T) ((-560 . -911) 123627) ((0 . -1132) T) ((-171 . -21) T) ((-171 . -25) T) ((-55 . -1247) T) ((-49 . -1132) T) ((-1284 . -670) 123532) ((-1283 . -571) 123483) ((-1262 . -571) 123434) ((-736 . -1143) T) ((-659 . -23) T) ((-560 . -1069) 123416) ((-609 . -149) 123395) ((-609 . -147) 123374) ((-509 . -1069) 123317) ((-1166 . -1168) T) ((-88 . -398) T) ((-88 . -410) T) ((-896 . -376) T) ((-856 . -133) T) ((-850 . -133) T) ((-993 . -668) 123261) ((-736 . -23) T) ((-520 . -632) 123211) ((-516 . -632) 123193) ((-837 . -668) 122972) ((-1322 . -1088) T) ((-391 . -1091) T) ((-1057 . -1132) 122950) ((-55 . -1069) 122932) ((-930 . -34) T) ((-496 . -321) 122870) ((-606 . -102) T) ((-1185 . -633) 122831) ((-1185 . -632) 122763) ((-1209 . -1082) 122646) ((-45 . -102) T) ((-839 . -102) T) ((-1209 . -662) 122543) ((-1300 . -1247) T) ((-1266 . -25) T) ((-1266 . -21) T) ((-1093 . -236) 122530) ((-879 . -25) T) ((-526 . -874) T) ((-256 . -1247) T) ((-44 . -380) 122514) ((-879 . -21) T) ((-753 . -466) 122465) ((-1321 . -632) 122447) ((-732 . -1247) T) ((-721 . -1247) T) ((-1310 . -1082) 122417) ((-1085 . -321) 122355) ((-693 . -1114) T) ((-619 . -1114) T) ((-404 . -1132) T) ((-585 . -25) T) ((-585 . -21) T) ((-183 . -1114) T) ((-164 . -1114) T) ((-158 . -1114) T) ((-156 . -1114) T) ((-1310 . -662) 122325) ((-638 . -1132) T) ((-721 . -911) 122307) ((-1297 . -1247) T) ((-231 . -321) 122245) ((-146 . -381) T) ((-1221 . -1247) T) ((-1077 . -633) 122187) ((-1077 . -632) 122130) ((-325 . -939) NIL) ((-1256 . -866) T) ((-1144 . -929) 121999) ((-721 . -1069) 121944) ((-733 . -950) T) ((-488 . -1252) 121923) ((-1204 . -466) 121902) ((-1198 . -466) 121881) ((-342 . -102) T) ((-896 . -1143) T) ((-331 . -668) 121763) ((-326 . -670) 121492) ((-325 . -670) 121421) ((-488 . -571) 121372) ((-352 . -528) 121338) ((-565 . -153) 121288) ((-40 . -319) T) ((-864 . -632) 121270) ((-723 . -302) T) ((-896 . -23) T) ((-391 . -507) T) ((-1110 . -274) 121240) ((-1110 . -234) 121210) ((-524 . -102) T) ((-421 . -633) 121017) ((-421 . -632) 120999) ((-270 . -632) 120981) ((-118 . -302) T) ((-1284 . -748) T) ((-642 . -1247) T) ((-1323 . -1132) T) ((-1283 . -376) 120960) ((-1262 . -376) 120939) ((-1311 . -34) T) ((-1256 . -1132) T) ((-119 . -1247) T) ((-108 . -274) 120921) ((-108 . -234) 120903) ((-1209 . -102) T) ((-491 . -1132) T) ((-537 . -503) 120887) ((-758 . -34) T) ((-677 . -1082) 120871) ((-677 . -662) 120841) ((-895 . -236) NIL) ((-143 . -34) T) ((-119 . -909) 120818) ((-119 . -911) NIL) ((-1310 . -102) T) ((-1287 . -239) 120777) ((-642 . -1069) 120660) ((-625 . -102) T) ((-624 . -102) T) ((-622 . -102) T) ((-663 . -871) 120639) ((-1278 . -239) 120591) ((-1257 . -239) 120414) ((-307 . -102) T) ((-734 . -381) 120393) ((-119 . -1069) 120370) ((-404 . -739) 120354) ((-609 . -239) 120313) ((-638 . -739) 120297) ((-1136 . -1247) T) ((-45 . -321) 120101) ((-838 . -147) 120080) ((-838 . -149) 120059) ((-301 . -668) 120031) ((-1321 . -397) 120010) ((-841 . -871) T) ((-1301 . -1132) T) ((-1190 . -233) 119957) ((-400 . -871) 119936) ((-1287 . -35) 119902) ((-1287 . -1236) 119868) ((-1287 . -1233) 119834) ((-1278 . -1233) 119800) ((-529 . -133) T) ((-1278 . -1236) 119766) ((-1257 . -1233) 119732) ((-1257 . -1236) 119698) ((-1287 . -95) 119664) ((-1283 . -1143) T) ((-419 . -921) 119585) ((-652 . -632) 119554) ((-620 . -632) 119523) ((-229 . -871) T) ((-1278 . -95) 119489) ((-1278 . -35) 119455) ((-1262 . -1143) T) ((-1151 . -670) 119427) ((-1257 . -95) 119393) ((-1257 . -35) 119359) ((-607 . -153) 119341) ((-1110 . -363) 119320) ((-177 . -302) T) ((-119 . -390) 119297) ((-119 . -351) 119274) ((-171 . -236) 119199) ((-893 . -319) T) ((-325 . -816) NIL) ((-325 . -813) NIL) ((-326 . -748) 119048) ((-325 . -748) T) ((-659 . -133) T) ((-488 . -376) 119027) ((-372 . -363) 119006) ((-367 . -363) 118985) ((-359 . -363) 118964) ((-326 . -487) 118943) ((-1283 . -23) T) ((-1262 . -23) T) ((-740 . -1143) T) ((-736 . -133) T) ((-677 . -102) T) ((-491 . -739) 118908) ((-674 . -874) 118887) ((-45 . -294) 118837) ((-105 . -1132) T) ((-68 . -632) 118819) ((-252 . -874) 118798) ((-1001 . -102) T) ((-888 . -102) T) ((-642 . -927) 118757) ((-1322 . -1132) T) ((-395 . -1132) T) ((-1266 . -236) 118744) ((-1248 . -1132) T) ((-83 . -1247) T) ((-1144 . -274) 118713) ((-1093 . -871) T) ((-119 . -927) NIL) ((-803 . -950) 118692) ((-735 . -871) T) ((-545 . -1132) T) ((-514 . -1132) T) ((-368 . -1252) T) ((-366 . -1252) T) ((-358 . -1252) T) ((-275 . -1252) 118671) ((-255 . -1252) 118650) ((-547 . -885) T) ((-1144 . -234) 118619) ((-1189 . -843) T) ((-1173 . -1087) 118603) ((-404 . -783) T) ((-716 . -1247) T) ((-713 . -1069) 118587) ((-368 . -571) T) ((-366 . -571) T) ((-358 . -571) T) ((-275 . -571) 118518) ((-255 . -571) 118449) ((-539 . -1114) T) ((-1173 . -111) 118428) ((-467 . -766) 118398) ((-890 . -1087) 118368) ((-839 . -38) 118310) ((-716 . -909) 118292) ((-626 . -1247) T) ((-621 . -1247) T) ((-716 . -911) 118274) ((-307 . -321) 118078) ((-1185 . -300) 118055) ((-935 . -1252) T) ((-1110 . -668) 117950) ((-1035 . -466) T) ((-692 . -426) 117934) ((-890 . -111) 117899) ((-943 . -466) T) ((-716 . -1069) 117844) ((-935 . -571) T) ((-547 . -632) 117826) ((-595 . -950) T) ((-501 . -1082) 117776) ((-488 . -1143) T) ((-532 . -950) T) ((-496 . -929) 117645) ((-65 . -632) 117627) ((-221 . -1082) 117577) ((-501 . -662) 117527) ((-372 . -668) 117464) ((-367 . -668) 117401) ((-359 . -668) 117338) ((-651 . -233) 117284) ((-221 . -662) 117234) ((-108 . -668) 117184) ((-488 . -23) T) ((-1151 . -816) T) ((-896 . -133) T) ((-1151 . -813) T) ((-1313 . -1317) 117163) ((-1151 . -748) T) ((-678 . -670) 117137) ((-305 . -632) 116878) ((-1173 . -635) 116796) ((-1066 . -34) T) ((-838 . -239) 116747) ((-594 . -319) T) ((-560 . -319) T) ((-509 . -319) T) ((-1322 . -739) 116717) ((-716 . -390) 116699) ((-716 . -351) 116681) ((-491 . -175) T) ((-395 . -739) 116651) ((-890 . -635) 116586) ((-895 . -871) NIL) ((-560 . -1051) T) ((-509 . -1051) T) ((-1164 . -632) 116568) ((-1144 . -245) 116547) ((-217 . -102) T) ((-1181 . -102) T) ((-71 . -632) 116529) ((-1055 . -1247) T) ((-1173 . -1080) T) ((-1209 . -38) 116426) ((-882 . -632) 116408) ((-560 . -559) T) ((-692 . -1088) T) ((-753 . -979) 116361) ((-1173 . -240) 116340) ((-353 . -1247) T) ((-1113 . -1132) T) ((-1065 . -25) T) ((-1065 . -21) T) ((-1034 . -1087) 116285) ((-339 . -874) 116264) ((-931 . -102) T) ((-890 . -1080) T) ((-716 . -927) NIL) ((-368 . -341) 116248) ((-368 . -376) T) ((-366 . -341) 116232) ((-366 . -376) T) ((-358 . -341) 116216) ((-358 . -376) T) ((-501 . -102) T) ((-1310 . -38) 116186) ((-561 . -871) T) ((-537 . -708) 116136) ((-221 . -102) T) ((-1055 . -1069) 116016) ((-1034 . -111) 115945) ((-657 . -632) 115927) ((-1205 . -1004) 115896) ((-1204 . -1004) 115858) ((-534 . -153) 115842) ((-1110 . -383) 115821) ((-365 . -632) 115803) ((-334 . -21) T) ((-353 . -1069) 115780) ((-334 . -25) T) ((-1198 . -1004) 115749) ((-48 . -1247) T) ((-77 . -632) 115731) ((-1157 . -1004) 115698) ((-721 . -319) T) ((-130 . -866) T) ((-935 . -376) T) ((-391 . -25) T) ((-391 . -21) T) ((-935 . -341) 115685) ((-82 . -632) 115667) ((-721 . -1051) T) ((-699 . -871) T) ((-402 . -1247) T) ((-1283 . -133) T) ((-1262 . -133) T) ((-930 . -1041) 115651) ((-856 . -21) T) ((-48 . -1069) 115594) ((-856 . -25) T) ((-850 . -25) T) ((-850 . -21) T) ((-1144 . -668) 115373) ((-1319 . -1088) T) ((-564 . -102) T) ((-1318 . -1088) T) ((-678 . -748) T) ((-1134 . -637) 115276) ((-1034 . -635) 115206) ((-1321 . -1087) 115190) ((-934 . -1247) T) ((-837 . -426) 115159) ((-103 . -121) 115143) ((-130 . -1132) T) ((-51 . -1132) T) ((-956 . -632) 115125) ((-895 . -1022) 115102) ((-846 . -102) T) ((-1321 . -111) 115081) ((-753 . -921) 115056) ((-677 . -38) 115026) ((-585 . -871) T) ((-368 . -1143) T) ((-366 . -1143) T) ((-358 . -1143) T) ((-275 . -1143) T) ((-255 . -1143) T) ((-1181 . -321) 114830) ((-1119 . -236) 114817) ((-642 . -319) 114796) ((-686 . -23) T) ((-538 . -1114) T) ((-324 . -1132) T) ((-496 . -274) 114765) ((-496 . -234) 114734) ((-154 . -1088) T) ((-368 . -23) T) ((-366 . -23) T) ((-358 . -23) T) ((-119 . -319) T) ((-275 . -23) T) ((-255 . -23) T) ((-1034 . -1080) T) ((-734 . -939) 114713) ((-1205 . -921) 114601) ((-1204 . -921) 114482) ((-1198 . -921) 114218) ((-1185 . -635) 114195) ((-1034 . -240) 114167) ((-1034 . -250) T) ((-1157 . -921) 114149) ((-119 . -1051) NIL) ((-935 . -1143) T) ((-1278 . -466) 114128) ((-1257 . -466) 114107) ((-537 . -632) 114039) ((-734 . -670) 113928) ((-421 . -1087) 113880) ((-518 . -632) 113862) ((-935 . -23) T) ((-501 . -321) NIL) ((-1321 . -635) 113818) ((-488 . -133) T) ((-221 . -321) NIL) ((-421 . -111) 113756) ((-837 . -1088) 113734) ((-758 . -1130) 113718) ((-1283 . -507) 113684) ((-1262 . -507) 113650) ((-450 . -1247) T) ((-563 . -866) T) ((-143 . -1130) 113632) ((-491 . -302) T) ((-1214 . -684) T) ((-1321 . -1080) T) ((-260 . -239) 113529) ((-259 . -239) 113426) ((-1253 . -102) T) ((-1094 . -102) T) ((-864 . -635) 113294) ((-514 . -528) NIL) ((-496 . -245) 113273) ((-421 . -635) 113171) ((-985 . -1082) 113054) ((-757 . -1082) 113024) ((-985 . -662) 112921) ((-1201 . -147) 112900) ((-757 . -662) 112870) ((-467 . -1082) 112840) ((-1201 . -149) 112819) ((-1156 . -149) 112798) ((-1156 . -147) 112777) ((-652 . -1087) 112761) ((-620 . -1087) 112745) ((-467 . -662) 112715) ((-1205 . -1290) 112699) ((-1205 . -1276) 112676) ((-1204 . -1282) 112637) ((-692 . -1132) T) ((-692 . -1084) 112577) ((-1204 . -1276) 112547) ((-563 . -1132) T) ((-501 . -1182) T) ((-1204 . -1280) 112531) ((-1198 . -1261) 112492) ((-840 . -277) 112476) ((-221 . -1182) T) ((-357 . -950) T) ((-99 . -1247) T) ((-652 . -111) 112455) ((-620 . -111) 112434) ((-1198 . -1276) 112411) ((-864 . -1080) 112390) ((-1198 . -1259) 112374) ((-529 . -25) T) ((-509 . -310) T) ((-526 . -23) T) ((-525 . -25) T) ((-522 . -25) T) ((-521 . -23) T) ((-421 . -1080) T) ((-419 . -1082) 112348) ((-331 . -1088) T) ((-716 . -319) T) ((-419 . -662) 112322) ((-108 . -870) T) ((-734 . -748) T) ((-421 . -250) T) ((-421 . -240) 112301) ((-391 . -236) 112288) ((-501 . -38) 112238) ((-221 . -38) 112188) ((-488 . -507) 112154) ((-659 . -21) T) ((-659 . -25) T) ((-1255 . -381) T) ((-1189 . -1175) T) ((-1133 . -102) T) ((-850 . -236) 112127) ((-723 . -632) 112109) ((-723 . -633) 112024) ((-736 . -21) T) ((-736 . -25) T) ((-1166 . -102) T) ((-496 . -668) 111803) ((-246 . -921) 111670) ((-136 . -632) 111652) ((-118 . -632) 111634) ((-159 . -25) T) ((-1319 . -1132) T) ((-896 . -660) 111582) ((-1318 . -1132) T) ((-889 . -1247) T) ((-985 . -102) T) ((-757 . -102) T) ((-737 . -102) T) ((-467 . -102) T) ((-838 . -466) 111533) ((-44 . -1132) T) ((-1119 . -871) T) ((-1094 . -321) 111384) ((-686 . -133) T) ((-1085 . -668) 111353) ((-692 . -739) 111337) ((-301 . -1088) T) ((-368 . -133) T) ((-366 . -133) T) ((-358 . -133) T) ((-275 . -133) T) ((-255 . -133) T) ((-394 . -668) 111306) ((-1327 . -1247) T) ((-419 . -102) T) ((-154 . -1132) T) ((-45 . -233) 111256) ((-1035 . -921) NIL) ((-820 . -1082) 111240) ((-987 . -871) 111219) ((-1027 . -670) 111121) ((-820 . -662) 111105) ((-246 . -1305) 111075) ((-1055 . -319) T) ((-305 . -1087) 110996) ((-935 . -133) T) ((-40 . -950) T) ((-501 . -414) 110978) ((-353 . -319) T) ((-221 . -414) 110960) ((-1110 . -426) 110944) ((-305 . -111) 110860) ((-1214 . -871) T) ((-1213 . -871) T) ((-896 . -25) T) ((-896 . -21) T) ((-1284 . -47) 110804) ((-352 . -632) 110786) ((-1201 . -239) T) ((-229 . -149) T) ((-177 . -632) 110768) ((-795 . -632) 110750) ((-131 . -871) T) ((-627 . -242) 110697) ((-489 . -242) 110647) ((-1319 . -739) 110617) ((-48 . -319) T) ((-1318 . -739) 110587) ((-65 . -635) 110516) ((-993 . -1132) T) ((-837 . -1132) 110268) ((-323 . -102) T) ((-930 . -1247) T) ((-48 . -1051) T) ((-1262 . -660) 110176) ((-711 . -102) 110126) ((-44 . -739) 110110) ((-565 . -102) T) ((-305 . -635) 110041) ((-67 . -396) T) ((-501 . -929) NIL) ((-67 . -410) T) ((-286 . -874) T) ((-221 . -929) NIL) ((-674 . -23) T) ((-839 . -668) 109977) ((-692 . -783) T) ((-1245 . -1132) 109955) ((-365 . -1087) 109900) ((-697 . -1132) 109878) ((-1093 . -149) T) ((-975 . -149) 109857) ((-975 . -147) 109836) ((-820 . -102) T) ((-154 . -739) 109820) ((-495 . -149) 109799) ((-495 . -147) 109778) ((-365 . -111) 109707) ((-1110 . -1088) T) ((-334 . -871) 109686) ((-1287 . -1004) 109655) ((-1284 . -1247) T) ((-646 . -1132) T) ((-1278 . -1004) 109617) ((-526 . -133) T) ((-521 . -133) T) ((-307 . -233) 109567) ((-372 . -1088) T) ((-367 . -1088) T) ((-359 . -1088) T) ((-305 . -1080) 109509) ((-1257 . -1004) 109478) ((-391 . -871) T) ((-108 . -1088) T) ((-1027 . -748) T) ((-893 . -950) T) ((-864 . -819) 109457) ((-864 . -814) 109436) ((-419 . -321) 109375) ((-482 . -102) T) ((-609 . -1004) 109344) ((-331 . -1132) T) ((-421 . -819) 109323) ((-421 . -814) 109302) ((-514 . -503) 109284) ((-1284 . -1069) 109250) ((-1283 . -21) T) ((-1283 . -25) T) ((-1262 . -21) T) ((-1262 . -25) T) ((-657 . -635) 109227) ((-837 . -739) 109169) ((-365 . -635) 109099) ((-721 . -418) T) ((-1311 . -1247) T) ((-1144 . -426) 109068) ((-1108 . -1247) T) ((-619 . -102) T) ((-1034 . -381) NIL) ((-1017 . -1247) T) ((-693 . -102) T) ((-183 . -102) T) ((-164 . -102) T) ((-158 . -102) T) ((-156 . -102) T) ((-103 . -34) T) ((-1209 . -668) 108978) ((-758 . -1247) T) ((-753 . -1082) 108821) ((-44 . -783) T) ((-753 . -662) 108670) ((-607 . -102) T) ((-677 . -680) 108654) ((-78 . -411) T) ((-78 . -410) T) ((-143 . -1247) T) ((-895 . -149) T) ((-895 . -147) NIL) ((-1310 . -668) 108599) ((-1287 . -921) 108487) ((-1278 . -921) 108368) ((-1248 . -93) T) ((-365 . -1080) T) ((-229 . -239) T) ((-70 . -396) T) ((-70 . -410) T) ((-1196 . -102) T) ((-692 . -528) 108301) ((-1257 . -921) 108037) ((-1240 . -571) 108016) ((-711 . -321) 107954) ((-985 . -38) 107851) ((-1211 . -632) 107833) ((-757 . -38) 107803) ((-565 . -321) 107607) ((-1205 . -1082) 107490) ((-326 . -1247) T) ((-365 . -240) T) ((-365 . -250) T) ((-325 . -1247) T) ((-301 . -1132) T) ((-1204 . -1082) 107325) ((-1198 . -1082) 107115) ((-1157 . -1082) 106998) ((-1205 . -662) 106895) ((-1204 . -662) 106736) ((-733 . -1252) T) ((-1198 . -662) 106532) ((-1185 . -673) 106516) ((-1157 . -662) 106413) ((-841 . -399) 106397) ((-733 . -571) T) ((-609 . -921) 106308) ((-326 . -909) 106292) ((-326 . -911) 106217) ((-325 . -909) 106178) ((-141 . -1247) T) ((-137 . -1247) T) ((-115 . -1247) T) ((-325 . -911) NIL) ((-820 . -321) 106143) ((-1254 . -684) T) ((-331 . -739) 105984) ((-400 . -399) 105968) ((-336 . -335) 105945) ((-499 . -102) T) ((-488 . -25) T) ((-488 . -21) T) ((-419 . -38) 105919) ((-326 . -1069) 105582) ((-229 . -1233) T) ((-229 . -1236) T) ((-3 . -632) 105564) ((-325 . -1069) 105494) ((-896 . -236) 105439) ((-2 . -1132) T) ((-2 . |RecordCategory|) T) ((-1144 . -1088) 105417) ((-854 . -632) 105399) ((-1093 . -239) T) ((-594 . -950) T) ((-560 . -842) T) ((-560 . -950) T) ((-509 . -950) T) ((-137 . -1069) 105383) ((-229 . -95) T) ((-171 . -149) 105362) ((-76 . -455) T) ((0 . -632) 105344) ((-76 . -410) T) ((-171 . -147) 105295) ((-229 . -35) T) ((-49 . -632) 105277) ((-491 . -1088) T) ((-501 . -274) 105259) ((-501 . -234) 105241) ((-498 . -999) 105225) ((-221 . -274) 105207) ((-221 . -234) 105189) ((-81 . -455) T) ((-81 . -410) T) ((-1177 . -34) T) ((-753 . -102) T) ((-677 . -668) 105148) ((-1057 . -632) 105115) ((-514 . -298) 105065) ((-326 . -390) 105034) ((-325 . -390) 104995) ((-325 . -351) 104956) ((-1116 . -632) 104938) ((-838 . -979) 104885) ((-674 . -133) T) ((-1266 . -147) 104864) ((-1266 . -149) 104843) ((-1205 . -102) T) ((-1204 . -102) T) ((-1198 . -102) T) ((-1190 . -1132) T) ((-1157 . -102) T) ((-1107 . -1247) T) ((-226 . -34) T) ((-301 . -739) 104830) ((-1287 . -1290) 104814) ((-1190 . -629) 104790) ((-607 . -321) NIL) ((-1287 . -1276) 104767) ((-1181 . -233) 104717) ((-498 . -1132) 104695) ((-452 . -1247) T) ((-404 . -632) 104677) ((-525 . -871) T) ((-1151 . -1247) T) ((-1278 . -1282) 104638) ((-1278 . -1276) 104608) ((-1278 . -1280) 104592) ((-1257 . -1261) 104553) ((-1257 . -1276) 104530) ((-1257 . -1259) 104514) ((-1205 . -296) 104480) ((-638 . -632) 104462) ((-1204 . -296) 104428) ((-721 . -950) T) ((-1198 . -296) 104394) ((-1157 . -296) 104360) ((-1151 . -911) 104342) ((-1110 . -1132) T) ((-1092 . -1132) T) ((-48 . -310) T) ((-326 . -927) 104308) ((-325 . -927) NIL) ((-1092 . -1099) 104287) ((-820 . -38) 104271) ((-275 . -660) 104219) ((-114 . -874) T) ((-255 . -660) 104167) ((-723 . -1087) 104154) ((-609 . -1276) 104131) ((-1151 . -1069) 104113) ((-331 . -175) 104044) ((-372 . -1132) T) ((-367 . -1132) T) ((-359 . -1132) T) ((-514 . -19) 104026) ((-1128 . -153) 104010) ((-895 . -239) NIL) ((-108 . -1132) T) ((-118 . -1087) 103997) ((-733 . -376) T) ((-514 . -618) 103972) ((-723 . -111) 103957) ((-1323 . -632) 103923) ((-1323 . -504) 103904) ((-1283 . -236) 103850) ((-1262 . -236) 103703) ((-451 . -102) T) ((-900 . -1293) T) ((-258 . -102) T) ((-45 . -1180) 103653) ((-118 . -111) 103638) ((-1301 . -632) 103620) ((-1266 . -239) T) ((-1256 . -632) 103602) ((-1254 . -871) T) ((-652 . -742) T) ((-620 . -742) T) ((-1240 . -1143) T) ((-1240 . -23) T) ((-1201 . -466) 103533) ((-1198 . -321) 103418) ((-1197 . -1132) T) ((-837 . -528) 103351) ((-1066 . -1247) T) ((-246 . -1082) 103252) ((-1189 . -1132) T) ((-1173 . -670) 103190) ((-972 . -153) 103174) ((-1157 . -321) 103161) ((-1156 . -466) 103112) ((-246 . -662) 103034) ((-1118 . -571) 102965) ((-1118 . -1252) 102944) ((-1110 . -739) 102812) ((-539 . -102) T) ((-534 . -102) 102742) ((-1035 . -1082) 102692) ((-1025 . -1132) T) ((-838 . -921) 102588) ((-803 . -1252) 102567) ((-802 . -1252) 102546) ((-63 . -1247) T) ((-491 . -632) 102498) ((-491 . -633) 102420) ((-803 . -571) 102331) ((-802 . -571) 102262) ((-753 . -321) 102249) ((-723 . -635) 102221) ((-496 . -426) 102190) ((-642 . -950) 102169) ((-468 . -1252) 102148) ((-697 . -528) 102081) ((-686 . -25) T) ((-412 . -632) 102063) ((-686 . -21) T) ((-468 . -571) 101994) ((-419 . -929) 101917) ((-368 . -25) T) ((-368 . -21) T) ((-366 . -25) T) ((-119 . -950) T) ((-119 . -842) NIL) ((-366 . -21) T) ((-358 . -25) T) ((-358 . -21) T) ((-275 . -25) T) ((-275 . -21) T) ((-255 . -25) T) ((-255 . -21) T) ((-171 . -239) 101848) ((-84 . -398) T) ((-84 . -410) T) ((-136 . -635) 101830) ((-118 . -635) 101802) ((-1035 . -662) 101752) ((-972 . -1011) 101736) ((-943 . -662) 101688) ((-943 . -1082) 101640) ((-935 . -21) T) ((-935 . -25) T) ((-896 . -871) 101591) ((-890 . -670) 101551) ((-733 . -1143) T) ((-733 . -23) T) ((-723 . -1080) T) ((-723 . -240) T) ((-301 . -175) T) ((-678 . -1247) T) ((-324 . -93) T) ((-669 . -1132) 101529) ((-651 . -629) 101504) ((-651 . -1132) T) ((-595 . -1252) T) ((-595 . -571) T) ((-532 . -1252) T) ((-532 . -571) T) ((-501 . -668) 101454) ((-488 . -236) 101400) ((-443 . -1082) 101384) ((-443 . -662) 101368) ((-372 . -739) 101320) ((-367 . -739) 101272) ((-352 . -1087) 101256) ((-359 . -739) 101208) ((-352 . -111) 101187) ((-177 . -1087) 101119) ((-177 . -111) 101030) ((-108 . -739) 100980) ((-221 . -668) 100930) ((-285 . -1132) T) ((-284 . -1132) T) ((-283 . -1132) T) ((-282 . -1132) T) ((-281 . -1132) T) ((-280 . -1132) T) ((-279 . -1132) T) ((-215 . -1132) T) ((-214 . -1132) T) ((-171 . -1236) 100908) ((-171 . -1233) 100886) ((-212 . -1132) T) ((-211 . -1132) T) ((-118 . -1080) T) ((-210 . -1132) T) ((-209 . -1132) T) ((-206 . -1132) T) ((-205 . -1132) T) ((-204 . -1132) T) ((-203 . -1132) T) ((-202 . -1132) T) ((-201 . -1132) T) ((-200 . -1132) T) ((-199 . -1132) T) ((-198 . -1132) T) ((-197 . -1132) T) ((-196 . -1132) T) ((-246 . -102) 100618) ((-171 . -35) 100596) ((-171 . -95) 100574) ((-678 . -1069) 100470) ((-496 . -1088) 100448) ((-1144 . -1132) 100200) ((-1173 . -34) T) ((-692 . -503) 100184) ((-73 . -1247) T) ((-105 . -632) 100166) ((-918 . -1247) T) ((-1322 . -632) 100148) ((-395 . -632) 100130) ((-352 . -635) 100082) ((-177 . -635) 99999) ((-1248 . -504) 99980) ((-753 . -38) 99829) ((-585 . -1236) T) ((-585 . -1233) T) ((-545 . -632) 99811) ((-534 . -321) 99749) ((-514 . -632) 99731) ((-514 . -633) 99713) ((-1248 . -632) 99679) ((-1198 . -1182) NIL) ((-216 . -1247) T) ((-1058 . -1102) 99648) ((-1058 . -1132) T) ((-1035 . -102) T) ((-1002 . -102) T) ((-943 . -102) T) ((-918 . -1069) 99625) ((-1173 . -748) T) ((-1034 . -670) 99532) ((-490 . -1132) T) ((-477 . -1132) T) ((-597 . -23) T) ((-585 . -35) T) ((-585 . -95) T) ((-443 . -102) T) ((-1094 . -233) 99478) ((-1205 . -38) 99375) ((-1204 . -38) 99216) ((-948 . -874) T) ((-890 . -748) T) ((-793 . -874) T) ((-716 . -950) T) ((-694 . -874) T) ((-526 . -25) T) ((-521 . -21) T) ((-521 . -25) T) ((-1198 . -38) 99012) ((-352 . -1080) T) ((-146 . -1247) T) ((-1110 . -175) T) ((-177 . -1080) T) ((-1157 . -38) 98909) ((-734 . -47) 98886) ((-372 . -175) T) ((-367 . -175) T) ((-533 . -57) 98860) ((-511 . -57) 98810) ((-365 . -1316) 98787) ((-229 . -466) T) ((-331 . -302) 98738) ((-359 . -175) T) ((-177 . -250) T) ((-1262 . -871) 98637) ((-108 . -175) T) ((-896 . -1022) 98621) ((-676 . -1143) T) ((-595 . -376) T) ((-595 . -341) 98608) ((-532 . -341) 98585) ((-532 . -376) T) ((-326 . -319) 98564) ((-325 . -319) T) ((-616 . -871) 98543) ((-1144 . -739) 98485) ((-623 . -1247) T) ((-534 . -294) 98469) ((-676 . -23) T) ((-419 . -234) 98453) ((-419 . -274) 98437) ((-325 . -1051) NIL) ((-346 . -23) T) ((-103 . -1041) 98421) ((-657 . -381) T) ((-45 . -36) 98400) ((-630 . -1132) T) ((-365 . -381) T) ((-538 . -102) T) ((-509 . -27) T) ((-246 . -321) 98338) ((-1118 . -1143) T) ((-1321 . -670) 98312) ((-803 . -1143) T) ((-802 . -1143) T) ((-1209 . -426) 98296) ((-468 . -1143) T) ((-1093 . -466) T) ((-1183 . -1132) T) ((-975 . -466) 98247) ((-1147 . -1114) T) ((-110 . -1132) T) ((-1118 . -23) T) ((-1190 . -528) 98030) ((-839 . -1088) T) ((-803 . -23) T) ((-802 . -23) T) ((-495 . -466) 97981) ((-475 . -23) T) ((-395 . -397) 97960) ((-368 . -236) 97933) ((-366 . -236) 97906) ((-358 . -236) 97879) ((-468 . -23) T) ((-275 . -236) 97824) ((-260 . -921) 97691) ((-259 . -921) 97558) ((-96 . -1132) T) ((-734 . -1247) T) ((-692 . -298) 97535) ((-498 . -528) 97468) ((-1287 . -1082) 97351) ((-1287 . -662) 97248) ((-1278 . -662) 97089) ((-1278 . -1082) 96924) ((-1257 . -662) 96720) ((-1257 . -1082) 96510) ((-301 . -302) T) ((-1113 . -632) 96492) ((-562 . -874) T) ((-1113 . -633) 96473) ((-421 . -939) 96452) ((-1240 . -133) T) ((-50 . -1143) T) ((-1198 . -414) 96404) ((-1055 . -950) T) ((-1034 . -748) T) ((-864 . -670) 96377) ((-734 . -911) NIL) ((-610 . -1082) 96337) ((-595 . -1143) T) ((-532 . -1143) T) ((-609 . -1082) 96220) ((-1185 . -34) T) ((-1035 . -321) NIL) ((-837 . -503) 96204) ((-610 . -662) 96177) ((-353 . -950) T) ((-609 . -662) 96074) ((-935 . -236) 96061) ((-421 . -670) 95977) ((-50 . -23) T) ((-733 . -133) T) ((-734 . -1069) 95857) ((-595 . -23) T) ((-108 . -528) NIL) ((-532 . -23) T) ((-171 . -424) 95828) ((-1171 . -1132) T) ((-1313 . -1312) 95812) ((-753 . -929) 95789) ((-723 . -819) T) ((-723 . -814) T) ((-1151 . -319) T) ((-391 . -149) T) ((-292 . -632) 95771) ((-291 . -632) 95753) ((-1262 . -1022) 95723) ((-48 . -950) T) ((-697 . -503) 95707) ((-260 . -1305) 95677) ((-259 . -1305) 95647) ((-1119 . -239) T) ((-1207 . -871) T) ((-1151 . -1051) T) ((-1077 . -34) T) ((-856 . -149) 95626) ((-856 . -147) 95605) ((-758 . -107) 95589) ((-630 . -134) T) ((-1209 . -1088) T) ((-496 . -1132) 95341) ((-1205 . -929) 95254) ((-1204 . -929) 95160) ((-1198 . -929) 94921) ((-895 . -466) T) ((-86 . -1247) T) ((-143 . -107) 94903) ((-1157 . -929) 94887) ((-734 . -390) 94871) ((-854 . -635) 94739) ((-1321 . -748) T) ((-1310 . -1088) T) ((-1287 . -102) T) ((-1278 . -102) T) ((-1151 . -559) T) ((-593 . -102) T) ((-130 . -504) 94721) ((-1201 . -979) 94690) ((-404 . -1087) 94674) ((-1156 . -979) 94641) ((-44 . -298) 94618) ((-130 . -632) 94585) ((-51 . -632) 94567) ((-218 . -874) T) ((-677 . -426) 94551) ((-1257 . -102) T) ((-1189 . -528) NIL) ((-674 . -25) T) ((-638 . -1087) 94535) ((-674 . -21) T) ((-985 . -668) 94445) ((-757 . -668) 94390) ((-737 . -668) 94362) ((-404 . -111) 94341) ((-226 . -263) 94325) ((-1085 . -1084) 94265) ((-1085 . -1132) T) ((-1035 . -1182) T) ((-840 . -1132) T) ((-467 . -668) 94180) ((-652 . -670) 94164) ((-638 . -111) 94143) ((-620 . -670) 94127) ((-610 . -102) T) ((-357 . -1252) T) ((-324 . -504) 94108) ((-597 . -133) T) ((-609 . -102) T) ((-429 . -1132) T) ((-394 . -1132) T) ((-324 . -632) 94074) ((-231 . -1132) 94052) ((-669 . -528) 93985) ((-651 . -528) 93829) ((-854 . -1080) 93808) ((-663 . -153) 93792) ((-357 . -571) T) ((-734 . -927) 93735) ((-565 . -233) 93685) ((-1287 . -296) 93651) ((-1278 . -296) 93617) ((-1110 . -302) 93568) ((-560 . -874) T) ((-501 . -870) T) ((-227 . -1143) T) ((-1257 . -296) 93534) ((-1240 . -507) 93500) ((-1035 . -38) 93450) ((-221 . -870) T) ((-419 . -668) 93409) ((-943 . -38) 93361) ((-864 . -816) 93340) ((-864 . -813) 93319) ((-864 . -748) 93298) ((-372 . -302) T) ((-367 . -302) T) ((-359 . -302) T) ((-171 . -466) 93229) ((-443 . -38) 93213) ((-227 . -23) T) ((-108 . -302) T) ((-421 . -816) 93192) ((-421 . -813) 93171) ((-421 . -748) T) ((-514 . -300) 93146) ((-491 . -1087) 93111) ((-676 . -133) T) ((-638 . -635) 93080) ((-1144 . -528) 93013) ((-346 . -133) T) ((-171 . -416) 92992) ((-496 . -739) 92934) ((-837 . -298) 92911) ((-491 . -111) 92867) ((-677 . -1088) T) ((-661 . -23) T) ((-1201 . -921) 92770) ((-1156 . -921) 92752) ((-838 . -1082) 92595) ((-1309 . -1114) T) ((-1266 . -466) 92526) ((-838 . -662) 92375) ((-1308 . -1114) T) ((-1118 . -133) T) ((-1085 . -739) 92317) ((-1058 . -528) 92250) ((-803 . -133) T) ((-802 . -133) T) ((-721 . -874) T) ((-585 . -466) T) ((-638 . -1080) T) ((-606 . -1132) T) ((-547 . -176) T) ((-475 . -133) T) ((-468 . -133) T) ((-391 . -239) T) ((-1027 . -1247) T) ((-45 . -1132) T) ((-394 . -739) 92220) ((-839 . -1132) T) ((-490 . -528) 92153) ((-477 . -528) 92086) ((-1323 . -635) 92067) ((-467 . -380) 92037) ((-45 . -629) 92016) ((-413 . -1247) T) ((-326 . -310) T) ((-1297 . -874) 91995) ((-850 . -239) 91974) ((-491 . -635) 91924) ((-1257 . -321) 91809) ((-692 . -632) 91771) ((-58 . -871) 91750) ((-1035 . -414) 91732) ((-563 . -632) 91714) ((-820 . -668) 91673) ((-837 . -618) 91650) ((-530 . -871) 91629) ((-510 . -871) 91608) ((-1027 . -1069) 91504) ((-40 . -1252) T) ((-246 . -929) 91373) ((-50 . -133) T) ((-595 . -133) T) ((-532 . -133) T) ((-305 . -670) 91233) ((-357 . -341) 91210) ((-357 . -376) T) ((-334 . -335) 91187) ((-331 . -298) 91145) ((-40 . -571) T) ((-391 . -1233) T) ((-391 . -1236) T) ((-1066 . -1224) 91120) ((-1219 . -242) 91070) ((-1198 . -234) 91022) ((-1198 . -274) 90974) ((-342 . -1132) T) ((-391 . -95) T) ((-391 . -35) T) ((-1066 . -107) 90920) ((-491 . -1080) T) ((-1322 . -1087) 90904) ((-493 . -242) 90854) ((-1190 . -503) 90788) ((-1313 . -1082) 90772) ((-395 . -1087) 90756) ((-1313 . -662) 90726) ((-838 . -102) T) ((-491 . -250) T) ((-736 . -149) 90705) ((-736 . -147) 90684) ((-119 . -874) NIL) ((-498 . -503) 90668) ((-499 . -349) 90637) ((-524 . -1132) 90588) ((-1322 . -111) 90567) ((-1027 . -390) 90551) ((-427 . -102) T) ((-395 . -111) 90530) ((-1027 . -351) 90514) ((-290 . -1014) 90498) ((-289 . -1014) 90482) ((-1035 . -929) NIL) ((-1319 . -632) 90464) ((-1318 . -632) 90446) ((-110 . -528) NIL) ((-1201 . -1273) 90430) ((-878 . -876) 90414) ((-1209 . -1132) T) ((-103 . -1247) T) ((-975 . -979) 90375) ((-839 . -739) 90317) ((-1257 . -1182) NIL) ((-495 . -979) 90262) ((-1093 . -145) T) ((-60 . -102) 90212) ((-44 . -632) 90194) ((-75 . -632) 90176) ((-365 . -670) 90121) ((-625 . -1132) T) ((-624 . -1132) T) ((-622 . -1132) T) ((-1310 . -1132) T) ((-526 . -871) T) ((-301 . -298) 90100) ((-357 . -1143) T) ((-307 . -1132) T) ((-1027 . -927) 90059) ((-307 . -629) 90038) ((-1322 . -635) 89987) ((-1287 . -38) 89884) ((-1278 . -38) 89725) ((-1257 . -38) 89521) ((-501 . -1088) T) ((-395 . -635) 89505) ((-221 . -1088) T) ((-357 . -23) T) ((-154 . -632) 89487) ((-854 . -819) 89466) ((-854 . -814) 89445) ((-1248 . -635) 89426) ((-610 . -38) 89399) ((-609 . -38) 89296) ((-893 . -571) T) ((-227 . -133) T) ((-331 . -1033) 89262) ((-79 . -632) 89244) ((-734 . -319) 89223) ((-305 . -748) 89125) ((-848 . -102) T) ((-888 . -866) T) ((-305 . -487) 89104) ((-1313 . -102) T) ((-40 . -376) T) ((-896 . -149) 89083) ((-499 . -668) 89065) ((-896 . -147) 89044) ((-1189 . -503) 89026) ((-1322 . -1080) T) ((-496 . -528) 88959) ((-661 . -133) T) ((-1177 . -1247) T) ((-993 . -632) 88941) ((-669 . -503) 88925) ((-651 . -503) 88856) ((-837 . -632) 88549) ((-48 . -27) T) ((-1209 . -739) 88446) ((-975 . -921) 88425) ((-677 . -1132) T) ((-886 . -885) T) ((-451 . -378) 88399) ((-753 . -668) 88309) ((-495 . -921) 88284) ((-1128 . -102) T) ((-1001 . -1132) T) ((-888 . -1132) T) ((-838 . -321) 88271) ((-547 . -541) T) ((-547 . -590) T) ((-1318 . -397) 88243) ((-716 . -874) T) ((-1085 . -528) 88176) ((-1190 . -298) 88152) ((-246 . -274) 88121) ((-246 . -234) 88090) ((-260 . -1082) 87991) ((-259 . -1082) 87892) ((-1310 . -739) 87862) ((-1197 . -93) T) ((-1025 . -93) T) ((-839 . -175) 87841) ((-260 . -662) 87763) ((-259 . -662) 87685) ((-1245 . -504) 87662) ((-592 . -1247) T) ((-231 . -528) 87595) ((-638 . -819) 87574) ((-638 . -814) 87553) ((-1245 . -632) 87465) ((-226 . -1247) T) ((-697 . -632) 87397) ((-1205 . -668) 87307) ((-1185 . -1041) 87291) ((-972 . -102) 87221) ((-365 . -748) T) ((-886 . -632) 87203) ((-1204 . -668) 87085) ((-1198 . -668) 86922) ((-1157 . -668) 86832) ((-1257 . -414) 86784) ((-1144 . -503) 86768) ((-60 . -321) 86706) ((-343 . -102) T) ((-1240 . -21) T) ((-1240 . -25) T) ((-40 . -1143) T) ((-733 . -21) T) ((-646 . -632) 86688) ((-529 . -335) 86667) ((-733 . -25) T) ((-453 . -102) T) ((-108 . -298) NIL) ((-948 . -1143) T) ((-40 . -23) T) ((-793 . -1143) T) ((-560 . -1252) T) ((-509 . -1252) T) ((-1035 . -274) 86649) ((-331 . -632) 86631) ((-1035 . -234) 86613) ((-171 . -168) 86597) ((-594 . -571) T) ((-560 . -571) T) ((-509 . -571) T) ((-793 . -23) T) ((-1283 . -149) 86576) ((-1283 . -147) 86555) ((-1190 . -618) 86531) ((-1262 . -147) 86456) ((-1058 . -503) 86440) ((-1255 . -1247) T) ((-1262 . -149) 86365) ((-1313 . -1320) 86344) ((-895 . -921) NIL) ((-490 . -503) 86328) ((-477 . -503) 86312) ((-537 . -34) T) ((-677 . -739) 86282) ((-1287 . -929) 86195) ((-1278 . -929) 86101) ((-1257 . -929) 85862) ((-114 . -998) T) ((-1209 . -175) 85813) ((-674 . -871) 85792) ((-377 . -102) T) ((-609 . -929) 85705) ((-246 . -245) 85684) ((-260 . -102) T) ((-259 . -102) T) ((-1266 . -979) 85653) ((-252 . -871) 85632) ((-1055 . -874) T) ((-838 . -38) 85481) ((-45 . -528) 85273) ((-1189 . -298) 85223) ((-217 . -1132) T) ((-1181 . -1132) T) ((-896 . -239) 85174) ((-1181 . -629) 85153) ((-597 . -25) T) ((-597 . -21) T) ((-1128 . -321) 85091) ((-985 . -426) 85075) ((-721 . -1252) T) ((-651 . -298) 85028) ((-1118 . -660) 84976) ((-931 . -1132) T) ((-803 . -660) 84924) ((-802 . -660) 84872) ((-357 . -133) T) ((-301 . -632) 84854) ((-893 . -1143) T) ((-721 . -571) T) ((-130 . -635) 84836) ((-468 . -660) 84784) ((-171 . -921) 84705) ((-931 . -933) 84689) ((-391 . -466) T) ((-501 . -1132) T) ((-972 . -321) 84627) ((-723 . -670) 84599) ((-564 . -866) T) ((-221 . -1132) T) ((-326 . -950) 84578) ((-325 . -950) T) ((-325 . -842) NIL) ((-404 . -742) T) ((-893 . -23) T) ((-118 . -670) 84565) ((-488 . -147) 84544) ((-419 . -426) 84528) ((-488 . -149) 84507) ((-110 . -503) 84489) ((-324 . -635) 84470) ((-2 . -632) 84452) ((-190 . -102) T) ((-1189 . -19) 84434) ((-1189 . -618) 84409) ((-676 . -21) T) ((-676 . -25) T) ((-607 . -1175) T) ((-1144 . -298) 84386) ((-346 . -25) T) ((-346 . -21) T) ((-913 . -1247) T) ((-910 . -1247) T) ((-1319 . -1087) 84370) ((-246 . -668) 84149) ((-509 . -376) T) ((-1318 . -1087) 84133) ((-1313 . -38) 84103) ((-1283 . -1233) 84069) ((-1283 . -1236) 84035) ((-1266 . -921) 83938) ((-1201 . -1082) 83761) ((-1173 . -1247) T) ((-1156 . -1082) 83604) ((-878 . -1082) 83588) ((-651 . -618) 83563) ((-1283 . -95) 83529) ((-1283 . -239) 83481) ((-1264 . -102) 83459) ((-1201 . -662) 83288) ((-1156 . -662) 83137) ((-878 . -662) 83107) ((-1262 . -1233) 83073) ((-1118 . -25) T) ((-564 . -1132) T) ((-1118 . -21) T) ((-985 . -1088) T) ((-545 . -814) T) ((-545 . -819) T) ((-119 . -1252) T) ((-890 . -1247) T) ((-642 . -571) T) ((-803 . -25) T) ((-803 . -21) T) ((-802 . -21) T) ((-802 . -25) T) ((-757 . -1088) T) ((-737 . -1088) T) ((-692 . -1087) 83057) ((-531 . -1114) T) ((-475 . -25) T) ((-119 . -571) T) ((-475 . -21) T) ((-468 . -25) T) ((-468 . -21) T) ((-1262 . -1236) 83023) ((-1183 . -93) T) ((-1173 . -1069) 82919) ((-839 . -302) 82898) ((-1262 . -239) 82757) ((-846 . -1132) T) ((-995 . -998) T) ((-692 . -111) 82736) ((-636 . -1247) T) ((-307 . -528) 82528) ((-1257 . -234) 82480) ((-1257 . -274) 82432) ((-1256 . -381) T) ((-260 . -321) 82370) ((-259 . -321) 82308) ((-1253 . -866) T) ((-1190 . -633) NIL) ((-1190 . -632) 82290) ((-1173 . -390) 82274) ((-1151 . -842) T) ((-1151 . -950) T) ((-96 . -93) T) ((-1144 . -618) 82251) ((-1110 . -633) 82235) ((-1110 . -632) 82217) ((-1035 . -668) 82167) ((-943 . -668) 82104) ((-837 . -300) 82081) ((-498 . -632) 82013) ((-627 . -153) 81960) ((-501 . -739) 81910) ((-419 . -1088) T) ((-496 . -503) 81894) ((-443 . -668) 81853) ((-339 . -871) 81832) ((-352 . -670) 81806) ((-50 . -21) T) ((-50 . -25) T) ((-221 . -739) 81756) ((-171 . -746) 81727) ((-177 . -670) 81659) ((-595 . -21) T) ((-595 . -25) T) ((-532 . -25) T) ((-532 . -21) T) ((-489 . -153) 81609) ((-1092 . -632) 81591) ((-1024 . -102) T) ((-887 . -102) T) ((-838 . -929) 81491) ((-820 . -426) 81454) ((-40 . -133) T) ((-721 . -376) T) ((-723 . -748) T) ((-723 . -816) T) ((-723 . -813) T) ((-215 . -922) T) ((-594 . -1143) T) ((-560 . -1143) T) ((-509 . -1143) T) ((-372 . -632) 81436) ((-367 . -632) 81418) ((-359 . -632) 81400) ((-66 . -411) T) ((-66 . -410) T) ((-108 . -633) 81330) ((-108 . -632) 81272) ((-214 . -922) T) ((-987 . -153) 81256) ((-793 . -133) T) ((-692 . -635) 81174) ((-136 . -748) T) ((-118 . -748) T) ((-1283 . -35) 81140) ((-1085 . -503) 81124) ((-594 . -23) T) ((-560 . -23) T) ((-509 . -23) T) ((-1262 . -95) 81090) ((-1262 . -35) 81056) ((-1201 . -102) T) ((-1156 . -102) T) ((-878 . -102) T) ((-231 . -503) 81040) ((-1319 . -111) 81019) ((-1318 . -111) 80998) ((-44 . -1087) 80982) ((-1321 . -1247) T) ((-1319 . -635) 80928) ((-1319 . -1080) T) ((-1318 . -635) 80857) ((-1318 . -1080) T) ((-1266 . -1273) 80841) ((-879 . -876) 80825) ((-1209 . -302) 80804) ((-1134 . -1247) T) ((-110 . -298) 80754) ((-1034 . -1247) T) ((-131 . -153) 80736) ((-1173 . -927) 80695) ((-44 . -111) 80674) ((-1253 . -1132) T) ((-1212 . -1293) T) ((-1198 . -870) NIL) ((-1197 . -504) 80655) ((-692 . -1080) T) ((-1197 . -632) 80621) ((-1189 . -632) 80603) ((-488 . -239) 80555) ((-1094 . -629) 80530) ((-1025 . -504) 80511) ((-74 . -455) T) ((-74 . -410) T) ((-1094 . -1132) T) ((-154 . -1087) 80495) ((-1025 . -632) 80461) ((-692 . -240) 80440) ((-585 . -569) 80424) ((-368 . -149) 80403) ((-368 . -147) 80354) ((-366 . -149) 80333) ((-366 . -147) 80284) ((-358 . -149) 80263) ((-358 . -147) 80214) ((-275 . -147) 80193) ((-275 . -149) 80172) ((-255 . -149) 80151) ((-119 . -376) T) ((-255 . -147) 80130) ((-1189 . -633) NIL) ((-154 . -111) 80109) ((-1034 . -1069) 79997) ((-1185 . -1247) T) ((-716 . -1252) T) ((-820 . -1088) T) ((-721 . -1143) T) ((-1034 . -390) 79974) ((-520 . -1247) T) ((-516 . -1247) T) ((-935 . -147) T) ((-935 . -149) 79956) ((-893 . -133) T) ((-837 . -1087) 79877) ((-721 . -23) T) ((-716 . -571) T) ((-229 . -1082) 79842) ((-669 . -632) 79774) ((-669 . -633) 79735) ((-651 . -633) NIL) ((-651 . -632) 79717) ((-501 . -175) T) ((-229 . -662) 79682) ((-221 . -175) T) ((-227 . -21) T) ((-227 . -25) T) ((-488 . -1236) 79648) ((-488 . -1233) 79614) ((-285 . -632) 79596) ((-284 . -632) 79578) ((-283 . -632) 79560) ((-282 . -632) 79542) ((-281 . -632) 79524) ((-514 . -673) 79506) ((-280 . -632) 79488) ((-352 . -748) T) ((-279 . -632) 79470) ((-110 . -19) 79452) ((-177 . -748) T) ((-514 . -385) 79434) ((-215 . -632) 79416) ((-534 . -1180) 79400) ((-514 . -125) T) ((-110 . -618) 79375) ((-214 . -632) 79357) ((-488 . -35) 79323) ((-488 . -95) 79289) ((-212 . -632) 79271) ((-211 . -632) 79253) ((-210 . -632) 79235) ((-209 . -632) 79217) ((-206 . -632) 79199) ((-205 . -632) 79181) ((-204 . -632) 79163) ((-203 . -632) 79145) ((-202 . -632) 79127) ((-201 . -632) 79109) ((-200 . -632) 79091) ((-549 . -1135) 79043) ((-199 . -632) 79025) ((-198 . -632) 79007) ((-45 . -503) 78944) ((-197 . -632) 78926) ((-196 . -632) 78908) ((-154 . -635) 78877) ((-1147 . -102) T) ((-837 . -111) 78793) ((-663 . -102) 78723) ((-661 . -21) T) ((-661 . -25) T) ((-496 . -298) 78700) ((-1321 . -1069) 78684) ((-1144 . -632) 78377) ((-1133 . -1132) T) ((-1077 . -1247) T) ((-1201 . -321) 78364) ((-1093 . -1082) 78351) ((-1166 . -1132) T) ((-975 . -1082) 78194) ((-1156 . -321) 78181) ((-1127 . -1114) T) ((-642 . -1143) T) ((-1093 . -662) 78168) ((-1122 . -1114) T) ((-975 . -662) 78017) ((-1118 . -236) 77962) ((-495 . -1082) 77805) ((-1104 . -1114) T) ((-1097 . -1114) T) ((-1067 . -1114) T) ((-1050 . -1114) T) ((-119 . -1143) T) ((-495 . -662) 77654) ((-803 . -236) 77641) ((-841 . -102) T) ((-645 . -1114) T) ((-642 . -23) T) ((-1181 . -528) 77433) ((-497 . -1114) T) ((-985 . -1132) T) ((-400 . -102) T) ((-336 . -102) T) ((-222 . -1114) T) ((-864 . -1247) T) ((-154 . -1080) T) ((-753 . -426) 77417) ((-119 . -23) T) ((-1034 . -927) 77369) ((-757 . -1132) T) ((-737 . -1132) T) ((-1287 . -668) 77279) ((-1278 . -668) 77161) ((-467 . -1132) T) ((-421 . -1247) T) ((-326 . -435) 77145) ((-606 . -93) T) ((-1058 . -633) 77106) ((-270 . -1247) T) ((-1055 . -1252) T) ((-229 . -102) T) ((-1058 . -632) 77068) ((-838 . -274) 77052) ((-838 . -234) 77036) ((-837 . -635) 76834) ((-1257 . -668) 76671) ((-1055 . -571) T) ((-854 . -670) 76644) ((-353 . -1252) T) ((-490 . -632) 76606) ((-490 . -633) 76567) ((-477 . -633) 76528) ((-477 . -632) 76490) ((-610 . -668) 76449) ((-421 . -909) 76433) ((-331 . -1087) 76268) ((-421 . -911) 76193) ((-609 . -668) 76103) ((-864 . -1069) 75999) ((-501 . -528) NIL) ((-496 . -618) 75976) ((-595 . -236) 75963) ((-353 . -571) T) ((-532 . -236) 75950) ((-221 . -528) NIL) ((-896 . -466) T) ((-419 . -1132) T) ((-421 . -1069) 75814) ((-331 . -111) 75635) ((-716 . -376) T) ((-229 . -296) T) ((-1245 . -635) 75612) ((-48 . -1252) T) ((-1201 . -1182) 75590) ((-1190 . -300) 75566) ((-1093 . -102) T) ((-975 . -102) T) ((-837 . -1080) 75544) ((-594 . -133) T) ((-560 . -133) T) ((-509 . -133) T) ((-368 . -239) 75523) ((-366 . -239) 75502) ((-358 . -239) 75481) ((-48 . -571) T) ((-895 . -1082) 75426) ((-275 . -239) 75377) ((-837 . -240) 75329) ((-326 . -27) 75308) ((-260 . -929) 75177) ((-259 . -929) 75046) ((-257 . -858) 75028) ((-186 . -858) 75010) ((-735 . -102) T) ((-307 . -503) 74947) ((-895 . -662) 74892) ((-495 . -102) T) ((-753 . -1088) T) ((-630 . -632) 74874) ((-630 . -633) 74735) ((-421 . -390) 74719) ((-421 . -351) 74703) ((-1201 . -38) 74532) ((-1156 . -38) 74381) ((-331 . -635) 74207) ((-935 . -239) T) ((-652 . -1247) T) ((-620 . -1247) T) ((-878 . -38) 74177) ((-404 . -670) 74161) ((-663 . -321) 74099) ((-1183 . -504) 74080) ((-1183 . -632) 74046) ((-985 . -739) 73943) ((-757 . -739) 73913) ((-638 . -670) 73887) ((-226 . -107) 73871) ((-45 . -298) 73771) ((-323 . -1132) T) ((-301 . -1087) 73758) ((-110 . -632) 73740) ((-110 . -633) 73722) ((-467 . -739) 73692) ((-838 . -262) 73631) ((-711 . -1132) 73609) ((-565 . -1132) T) ((-1205 . -1088) T) ((-1204 . -1088) T) ((-96 . -504) 73590) ((-1198 . -1088) T) ((-301 . -111) 73575) ((-1157 . -1088) T) ((-565 . -629) 73554) ((-96 . -632) 73520) ((-1035 . -870) T) ((-231 . -708) 73478) ((-716 . -1143) T) ((-1240 . -762) 73454) ((-1055 . -376) T) ((-860 . -858) 73436) ((-854 . -816) 73415) ((-421 . -927) 73374) ((-331 . -1080) T) ((-357 . -25) T) ((-357 . -21) T) ((-171 . -1082) 73284) ((-68 . -1247) T) ((-854 . -813) 73263) ((-419 . -739) 73237) ((-820 . -1132) T) ((-734 . -950) 73216) ((-721 . -133) T) ((-171 . -662) 73044) ((-716 . -23) T) ((-501 . -302) T) ((-854 . -748) 73023) ((-331 . -240) 72975) ((-331 . -250) 72954) ((-221 . -302) T) ((-130 . -381) T) ((-1283 . -466) 72933) ((-1262 . -466) 72912) ((-353 . -341) 72889) ((-353 . -376) T) ((-1171 . -632) 72871) ((-45 . -1286) 72821) ((-895 . -102) T) ((-663 . -294) 72805) ((-721 . -1091) T) ((-1309 . -102) T) ((-1308 . -102) T) ((-491 . -670) 72770) ((-482 . -1132) T) ((-45 . -618) 72695) ((-1189 . -300) 72670) ((-301 . -635) 72642) ((-40 . -660) 72581) ((-1266 . -1082) 72404) ((-879 . -1082) 72388) ((-48 . -376) T) ((-1137 . -632) 72370) ((-1266 . -662) 72199) ((-879 . -662) 72169) ((-651 . -300) 72144) ((-838 . -668) 72054) ((-585 . -1082) 72041) ((-496 . -632) 71734) ((-246 . -426) 71703) ((-1201 . -929) 71610) ((-1196 . -1132) T) ((-975 . -321) 71597) ((-585 . -662) 71584) ((-65 . -1247) T) ((-1164 . -1247) T) ((-1156 . -929) 71568) ((-1144 . -300) 71545) ((-1094 . -528) 71389) ((-693 . -1132) T) ((-642 . -133) T) ((-619 . -1132) T) ((-495 . -321) 71376) ((-561 . -102) T) ((-119 . -133) T) ((-301 . -1080) T) ((-183 . -1132) T) ((-164 . -1132) T) ((-158 . -1132) T) ((-156 . -1132) T) ((-467 . -783) T) ((-31 . -1114) T) ((-985 . -175) 71327) ((-1128 . -233) 71311) ((-1001 . -93) T) ((-1110 . -1087) 71221) ((-1085 . -632) 71183) ((-638 . -748) T) ((-638 . -816) 71162) ((-607 . -1132) T) ((-638 . -813) 71141) ((-307 . -298) 71120) ((-305 . -1247) T) ((-1085 . -633) 71081) ((-1055 . -1143) T) ((-325 . -874) NIL) ((-171 . -102) T) ((-286 . -871) T) ((-1110 . -111) 70977) ((-840 . -632) 70959) ((-1055 . -23) T) ((-1034 . -319) T) ((-925 . -102) T) ((-820 . -739) 70943) ((-372 . -1087) 70895) ((-367 . -1087) 70847) ((-353 . -1143) T) ((-429 . -632) 70829) ((-394 . -632) 70811) ((-359 . -1087) 70763) ((-231 . -632) 70695) ((-863 . -102) T) ((-830 . -102) T) ((-108 . -1087) 70645) ((-791 . -102) T) ((-699 . -102) T) ((-115 . -874) T) ((-488 . -466) 70624) ((-419 . -175) T) ((-372 . -111) 70562) ((-367 . -111) 70500) ((-359 . -111) 70438) ((-260 . -274) 70407) ((-260 . -234) 70376) ((-259 . -274) 70345) ((-259 . -234) 70314) ((-353 . -23) T) ((-71 . -1247) T) ((-229 . -38) 70279) ((-108 . -111) 70213) ((-40 . -25) T) ((-40 . -21) T) ((-692 . -742) T) ((-171 . -296) 70191) ((-48 . -1143) T) ((-882 . -1247) T) ((-948 . -25) T) ((-793 . -25) T) ((-1322 . -670) 70165) ((-1181 . -503) 70102) ((-499 . -1132) T) ((-1313 . -668) 70061) ((-1266 . -102) T) ((-1093 . -1182) T) ((-879 . -102) T) ((-246 . -1088) 70039) ((-993 . -814) 69992) ((-993 . -819) 69945) ((-395 . -670) 69929) ((-48 . -23) T) ((-837 . -819) 69908) ((-837 . -814) 69887) ((-563 . -381) T) ((-307 . -618) 69866) ((-491 . -748) T) ((-585 . -102) T) ((-1110 . -635) 69684) ((-257 . -189) T) ((-186 . -189) T) ((-895 . -321) 69641) ((-677 . -298) 69620) ((-657 . -1247) T) ((-114 . -684) T) ((-365 . -1247) T) ((-372 . -635) 69557) ((-367 . -635) 69494) ((-359 . -635) 69431) ((-77 . -1247) T) ((-108 . -635) 69381) ((-114 . -113) T) ((-1093 . -38) 69368) ((-686 . -387) 69347) ((-975 . -38) 69196) ((-753 . -1132) T) ((-495 . -38) 69045) ((-82 . -1247) T) ((-606 . -504) 69026) ((-1257 . -870) NIL) ((-1205 . -1132) T) ((-585 . -296) T) ((-1204 . -1132) T) ((-606 . -632) 68992) ((-1198 . -1132) T) ((-1151 . -874) T) ((-1110 . -1080) T) ((-365 . -1069) 68969) ((-839 . -504) 68953) ((-1035 . -1088) T) ((-45 . -632) 68935) ((-45 . -633) NIL) ((-943 . -1088) T) ((-839 . -632) 68904) ((-1178 . -102) 68854) ((-1110 . -250) 68805) ((-443 . -1088) T) ((-372 . -1080) T) ((-367 . -1080) T) ((-377 . -378) 68782) ((-359 . -1080) T) ((-357 . -236) 68769) ((-260 . -245) 68748) ((-259 . -245) 68727) ((-1110 . -240) 68652) ((-1157 . -1132) T) ((-305 . -927) 68611) ((-108 . -1080) T) ((-716 . -133) T) ((-419 . -528) 68453) ((-372 . -240) 68432) ((-372 . -250) T) ((-44 . -742) T) ((-367 . -240) 68411) ((-367 . -250) T) ((-359 . -240) 68390) ((-359 . -250) T) ((-1197 . -635) 68371) ((-171 . -321) 68336) ((-108 . -250) T) ((-108 . -240) T) ((-1025 . -635) 68317) ((-331 . -814) T) ((-893 . -21) T) ((-893 . -25) T) ((-421 . -319) T) ((-514 . -34) T) ((-110 . -300) 68292) ((-1144 . -1087) 68213) ((-895 . -1182) NIL) ((-342 . -632) 68195) ((-421 . -1051) 68173) ((-1144 . -111) 68089) ((-713 . -1293) T) ((-451 . -1132) T) ((-258 . -1132) T) ((-1322 . -748) T) ((-64 . -632) 68071) ((-895 . -38) 68016) ((-616 . -153) 68000) ((-537 . -1247) T) ((-524 . -632) 67940) ((-1266 . -321) 67927) ((-753 . -739) 67776) ((-545 . -815) T) ((-545 . -816) T) ((-560 . -660) 67758) ((-509 . -660) 67718) ((-518 . -1247) T) ((-659 . -1305) 67702) ((-368 . -466) T) ((-366 . -466) T) ((-358 . -466) T) ((-275 . -466) 67653) ((-539 . -1132) T) ((-534 . -1132) 67603) ((-255 . -466) 67554) ((-1181 . -298) 67533) ((-1209 . -632) 67515) ((-711 . -528) 67448) ((-985 . -302) 67427) ((-1310 . -632) 67396) ((-565 . -528) 67188) ((-260 . -668) 67036) ((-259 . -668) 66871) ((-1310 . -504) 66855) ((-1205 . -739) 66752) ((-1204 . -739) 66593) ((-995 . -684) T) ((-1201 . -274) 66577) ((-1201 . -234) 66561) ((-1198 . -739) 66357) ((-1185 . -696) 66341) ((-1144 . -635) 66139) ((-171 . -1182) 66118) ((-1157 . -739) 66015) ((-1055 . -133) T) ((-995 . -113) T) ((-915 . -102) T) ((-625 . -632) 65997) ((-624 . -632) 65979) ((-622 . -632) 65961) ((-368 . -416) 65912) ((-366 . -416) 65863) ((-358 . -416) 65814) ((-993 . -381) 65767) ((-820 . -528) 65679) ((-307 . -633) NIL) ((-307 . -632) 65661) ((-935 . -466) T) ((-931 . -298) 65640) ((-837 . -381) 65619) ((-525 . -523) 65598) ((-522 . -523) 65577) ((-896 . -921) 65498) ((-501 . -298) NIL) ((-496 . -300) 65475) ((-419 . -302) T) ((-353 . -133) T) ((-221 . -298) NIL) ((-716 . -507) NIL) ((-99 . -1143) T) ((-40 . -236) 65406) ((-171 . -38) 65234) ((-975 . -929) 65215) ((-1283 . -1004) 65177) ((-1262 . -1004) 65146) ((-1178 . -321) 65084) ((-495 . -929) 65061) ((-1144 . -1080) 65039) ((-935 . -416) T) ((-659 . -523) 65011) ((-1284 . -571) T) ((-1181 . -618) 64990) ((-114 . -871) T) ((-1094 . -503) 64921) ((-594 . -21) T) ((-594 . -25) T) ((-560 . -21) T) ((-560 . -25) T) ((-509 . -25) T) ((-509 . -21) T) ((-1266 . -1182) 64899) ((-1144 . -240) 64851) ((-48 . -133) T) ((-1229 . -102) T) ((-246 . -1132) 64603) ((-895 . -414) 64580) ((-1119 . -102) T) ((-1106 . -102) T) ((-918 . -874) T) ((-627 . -102) T) ((-489 . -102) T) ((-1266 . -38) 64409) ((-879 . -38) 64379) ((-1065 . -1082) 64353) ((-753 . -175) 64264) ((-677 . -632) 64246) ((-667 . -1114) T) ((-1065 . -662) 64230) ((-585 . -38) 64217) ((-1001 . -504) 64198) ((-1001 . -632) 64164) ((-987 . -102) 64094) ((-888 . -632) 64076) ((-888 . -633) 63998) ((-607 . -528) NIL) ((-872 . -102) T) ((-1327 . -1143) T) ((-1287 . -1088) T) ((-1283 . -921) 63902) ((-1278 . -1088) T) ((-1262 . -921) 63697) ((-1257 . -1088) T) ((-1240 . -149) 63676) ((-334 . -1082) 63658) ((-1240 . -147) 63637) ((-1215 . -102) T) ((-1214 . -102) T) ((-1213 . -102) T) ((-1205 . -175) 63588) ((-334 . -662) 63570) ((-723 . -1247) T) ((-1204 . -175) 63501) ((-1198 . -175) 63432) ((-1183 . -635) 63413) ((-1157 . -175) 63364) ((-610 . -1088) T) ((-609 . -1088) T) ((-1035 . -1132) T) ((-1002 . -1132) T) ((-391 . -1082) 63329) ((-136 . -1247) T) ((-118 . -1247) T) ((-943 . -1132) T) ((-895 . -929) NIL) ((-391 . -662) 63294) ((-146 . -874) T) ((-820 . -818) 63278) ((-721 . -25) T) ((-721 . -21) T) ((-119 . -660) 63255) ((-723 . -911) 63237) ((-443 . -1132) T) ((-326 . -1252) 63216) ((-325 . -1252) T) ((-171 . -414) 63200) ((-856 . -1082) 63170) ((-488 . -1004) 63132) ((-72 . -632) 63114) ((-132 . -102) T) ((-131 . -102) T) ((-850 . -1082) 63098) ((-108 . -819) T) ((-108 . -814) T) ((-723 . -1069) 63080) ((-326 . -571) 63059) ((-325 . -571) T) ((-856 . -662) 63029) ((-850 . -662) 62999) ((-1327 . -23) T) ((-136 . -1069) 62981) ((-96 . -635) 62962) ((-1024 . -668) 62944) ((-496 . -1087) 62865) ((-45 . -300) 62790) ((-246 . -739) 62732) ((-531 . -102) T) ((-496 . -111) 62648) ((-1123 . -102) 62618) ((-1065 . -102) T) ((-1201 . -668) 62528) ((-1156 . -668) 62438) ((-878 . -668) 62397) ((-663 . -843) 62376) ((-753 . -528) 62319) ((-1085 . -1087) 62303) ((-171 . -929) 62226) ((-1166 . -93) T) ((-1094 . -298) 62201) ((-642 . -21) T) ((-642 . -25) T) ((-538 . -1132) T) ((-692 . -670) 62139) ((-374 . -102) T) ((-334 . -102) T) ((-394 . -1087) 62123) ((-1085 . -111) 62102) ((-838 . -426) 62086) ((-119 . -25) T) ((-89 . -632) 62068) ((-119 . -21) T) ((-627 . -321) 61863) ((-1181 . -633) NIL) ((-489 . -321) 61667) ((-352 . -1247) T) ((-177 . -1247) T) ((-394 . -111) 61646) ((-391 . -102) T) ((-217 . -632) 61628) ((-1181 . -632) 61610) ((-795 . -1247) T) ((-1198 . -528) 61379) ((-1035 . -739) 61329) ((-1157 . -528) 61299) ((-943 . -739) 61251) ((-496 . -635) 61049) ((-365 . -319) T) ((-1219 . -153) 60999) ((-488 . -921) 60880) ((-987 . -321) 60818) ((-856 . -102) T) ((-443 . -739) 60802) ((-229 . -843) T) ((-850 . -102) T) ((-847 . -102) T) ((-1319 . -670) 60776) ((-1283 . -1282) 60755) ((-493 . -153) 60705) ((-1283 . -1276) 60675) ((-1151 . -1252) T) ((-352 . -1069) 60642) ((-1283 . -1280) 60626) ((-1266 . -929) 60533) ((-1262 . -1261) 60512) ((-80 . -632) 60494) ((-931 . -632) 60476) ((-1262 . -1276) 60453) ((-1151 . -571) T) ((-948 . -871) T) ((-793 . -871) T) ((-694 . -871) T) ((-501 . -633) 60383) ((-501 . -632) 60324) ((-391 . -296) T) ((-1262 . -1259) 60308) ((-1284 . -1143) T) ((-221 . -633) 60238) ((-221 . -632) 60179) ((-1094 . -618) 60154) ((-840 . -635) 60138) ((-560 . -236) 60125) ((-530 . -153) 60109) ((-58 . -153) 60093) ((-510 . -153) 60077) ((-509 . -236) 60064) ((-372 . -1316) 60048) ((-367 . -1316) 60032) ((-359 . -1316) 60016) ((-326 . -376) 59995) ((-325 . -376) T) ((-496 . -1080) 59973) ((-716 . -660) 59955) ((-1318 . -670) 59929) ((-131 . -321) NIL) ((-1284 . -23) T) ((-711 . -503) 59913) ((-61 . -632) 59895) ((-1144 . -819) 59874) ((-1144 . -814) 59853) ((-565 . -503) 59790) ((-692 . -34) T) ((-496 . -240) 59742) ((-307 . -300) 59721) ((-838 . -1088) T) ((-44 . -670) 59679) ((-1110 . -381) 59630) ((-753 . -302) 59561) ((-534 . -528) 59494) ((-839 . -1087) 59445) ((-1118 . -147) 59424) ((-564 . -632) 59406) ((-372 . -381) 59385) ((-367 . -381) 59364) ((-359 . -381) 59343) ((-1118 . -149) 59322) ((-997 . -1247) T) ((-895 . -274) 59299) ((-895 . -234) 59276) ((-839 . -111) 59218) ((-803 . -147) 59197) ((-275 . -979) 59164) ((-255 . -979) 59109) ((-803 . -149) 59088) ((-802 . -147) 59067) ((-802 . -149) 59046) ((-154 . -670) 59020) ((-593 . -1132) T) ((-467 . -298) 58983) ((-468 . -149) 58962) ((-468 . -147) 58941) ((-692 . -748) T) ((-846 . -632) 58923) ((-1287 . -1132) T) ((-1278 . -1132) T) ((-1257 . -1132) T) ((-1240 . -1236) 58889) ((-1240 . -1233) 58855) ((-1205 . -302) 58834) ((-1204 . -302) 58785) ((-1198 . -302) 58736) ((-1157 . -302) 58715) ((-1035 . -175) T) ((-352 . -927) 58696) ((-943 . -175) T) ((-716 . -21) T) ((-716 . -25) T) ((-659 . -1082) 58680) ((-659 . -662) 58664) ((-229 . -668) 58614) ((-610 . -1132) T) ((-609 . -1132) T) ((-488 . -1280) 58598) ((-488 . -1276) 58568) ((-419 . -298) 58496) ((-562 . -871) T) ((-326 . -1143) 58345) ((-325 . -1143) T) ((-1240 . -35) 58311) ((-1240 . -95) 58277) ((-85 . -632) 58259) ((-91 . -102) 58209) ((-1327 . -133) T) ((-736 . -1082) 58179) ((-606 . -635) 58160) ((-595 . -147) T) ((-595 . -149) 58142) ((-532 . -149) 58124) ((-532 . -147) T) ((-736 . -662) 58094) ((-326 . -23) 57946) ((-40 . -355) 57920) ((-325 . -23) T) ((-839 . -635) 57834) ((-1189 . -673) 57816) ((-1313 . -1088) T) ((-1189 . -385) 57798) ((-1127 . -102) T) ((-837 . -670) 57631) ((-1122 . -102) T) ((-1104 . -102) T) ((-171 . -274) 57615) ((-171 . -234) 57599) ((-1097 . -102) T) ((-1067 . -102) T) ((-1050 . -102) T) ((-607 . -503) 57581) ((-645 . -102) T) ((-246 . -528) 57514) ((-497 . -102) T) ((-1319 . -748) T) ((-1318 . -748) T) ((-222 . -102) T) ((-1209 . -1087) 57397) ((-1310 . -111) 57362) ((-1310 . -1087) 57332) ((-1287 . -739) 57229) ((-1093 . -668) 57201) ((-1278 . -739) 57042) ((-975 . -668) 56952) ((-1266 . -274) 56936) ((-1209 . -111) 56805) ((-1065 . -38) 56789) ((-900 . -1114) T) ((-886 . -176) T) ((-495 . -668) 56699) ((-275 . -921) 56605) ((-255 . -921) 56580) ((-839 . -1080) T) ((-703 . -1114) T) ((-698 . -1114) T) ((-642 . -236) 56525) ((-529 . -102) T) ((-525 . -102) T) ((-48 . -660) 56485) ((-522 . -102) T) ((-492 . -1114) T) ((-119 . -236) NIL) ((-3 . -1247) T) ((-140 . -1114) T) ((-139 . -1114) T) ((-135 . -1114) T) ((-854 . -1247) T) ((-839 . -240) T) ((-839 . -250) 56464) ((-1266 . -234) 56448) ((-1257 . -739) 56244) ((-1027 . -874) 56223) ((-1253 . -632) 56205) ((-565 . -298) 56184) ((-1094 . -633) NIL) ((-1094 . -632) 56166) ((-619 . -93) T) ((-693 . -93) T) ((0 . -1247) T) ((-49 . -1247) T) ((-183 . -93) T) ((-164 . -93) T) ((-158 . -93) T) ((-156 . -93) T) ((-218 . -871) T) ((-1034 . -950) T) ((-1209 . -635) 56019) ((-154 . -748) T) ((-1144 . -381) 55998) ((-659 . -102) T) ((-1055 . -25) T) ((-1035 . -528) NIL) ((-260 . -426) 55967) ((-259 . -426) 55936) ((-1055 . -21) T) ((-896 . -1082) 55888) ((-610 . -739) 55861) ((-609 . -739) 55758) ((-820 . -298) 55716) ((-128 . -102) 55666) ((-854 . -1069) 55562) ((-171 . -843) 55541) ((-331 . -670) 55438) ((-837 . -34) T) ((-736 . -102) T) ((-1151 . -1143) T) ((-1057 . -1247) T) ((-896 . -662) 55390) ((-391 . -38) 55355) ((-353 . -25) T) ((-353 . -21) T) ((-186 . -102) T) ((-163 . -102) T) ((-257 . -102) T) ((-159 . -102) T) ((-368 . -1305) 55339) ((-366 . -1305) 55323) ((-358 . -1305) 55307) ((-171 . -363) 55286) ((-560 . -871) T) ((-1118 . -239) 55237) ((-1151 . -23) T) ((-88 . -632) 55219) ((-803 . -239) T) ((-723 . -319) T) ((-856 . -38) 55189) ((-850 . -38) 55159) ((-1310 . -635) 55101) ((-1284 . -133) T) ((-1181 . -300) 55080) ((-993 . -748) 54979) ((-993 . -815) 54932) ((-993 . -816) 54885) ((-118 . -319) T) ((-91 . -321) 54823) ((-697 . -34) T) ((-565 . -618) 54802) ((-48 . -25) T) ((-48 . -21) T) ((-837 . -816) 54781) ((-837 . -815) 54760) ((-723 . -1051) T) ((-677 . -1087) 54744) ((-895 . -668) 54674) ((-837 . -748) 54652) ((-404 . -1247) T) ((-993 . -487) 54605) ((-496 . -819) 54584) ((-496 . -814) 54563) ((-935 . -1305) 54550) ((-1209 . -1080) T) ((-638 . -1247) T) ((-677 . -111) 54529) ((-1209 . -338) 54505) ((-1234 . -102) 54455) ((-1133 . -632) 54437) ((-723 . -559) T) ((-838 . -1132) T) ((-595 . -239) T) ((-532 . -239) T) ((-1310 . -1080) T) ((-1166 . -504) 54418) ((-1254 . -102) T) ((-427 . -1132) T) ((-1166 . -632) 54384) ((-260 . -1088) 54362) ((-259 . -1088) 54340) ((-860 . -102) T) ((-301 . -670) 54327) ((-607 . -298) 54277) ((-711 . -708) 54235) ((-1323 . -1247) T) ((-1297 . -871) 54214) ((-985 . -632) 54196) ((-896 . -102) T) ((-757 . -632) 54178) ((-737 . -632) 54160) ((-1287 . -175) 54111) ((-1278 . -175) 54042) ((-1257 . -175) 53973) ((-721 . -871) T) ((-1035 . -302) T) ((-467 . -632) 53955) ((-646 . -748) T) ((-60 . -1132) 53933) ((-252 . -153) 53917) ((-1283 . -662) 53758) ((-943 . -302) T) ((-1055 . -1043) T) ((-646 . -487) T) ((-734 . -1252) 53737) ((-716 . -236) NIL) ((-677 . -635) 53655) ((-171 . -668) 53550) ((-1283 . -1082) 53385) ((-610 . -175) 53364) ((-609 . -175) 53315) ((-1262 . -662) 53129) ((-1262 . -1082) 52937) ((-1256 . -1247) T) ((-734 . -571) 52848) ((-421 . -842) 52827) ((-421 . -950) T) ((-331 . -816) T) ((-491 . -1247) T) ((-1001 . -635) 52808) ((-331 . -748) T) ((-663 . -1180) 52792) ((-419 . -632) 52774) ((-419 . -633) 52681) ((-110 . -673) 52663) ((-326 . -133) 52534) ((-177 . -319) T) ((-128 . -321) 52472) ((-412 . -1247) T) ((-110 . -385) 52454) ((-325 . -133) T) ((-69 . -410) T) ((-110 . -125) T) ((-534 . -503) 52438) ((-678 . -1143) T) ((-607 . -19) 52420) ((-62 . -455) T) ((-62 . -410) T) ((-848 . -1132) T) ((-607 . -618) 52395) ((-491 . -1069) 52355) ((-677 . -1080) T) ((-678 . -23) T) ((-1313 . -1132) T) ((-31 . -102) T) ((-1266 . -668) 52265) ((-879 . -668) 52224) ((-838 . -739) 52073) ((-1301 . -1247) T) ((-591 . -885) T) ((-585 . -668) 52045) ((-119 . -871) NIL) ((-1201 . -426) 52029) ((-1156 . -426) 52013) ((-878 . -426) 51997) ((-897 . -102) 51948) ((-1283 . -102) T) ((-1262 . -102) T) ((-1257 . -528) 51717) ((-1234 . -321) 51655) ((-1205 . -298) 51620) ((-1204 . -298) 51578) ((-539 . -93) T) ((-1198 . -298) 51406) ((-323 . -632) 51388) ((-1128 . -1132) T) ((-1110 . -670) 51262) ((-733 . -466) T) ((-711 . -632) 51194) ((-301 . -748) T) ((-108 . -939) NIL) ((-711 . -633) 51155) ((-615 . -632) 51137) ((-591 . -632) 51119) ((-565 . -633) NIL) ((-565 . -632) 51101) ((-543 . -632) 51083) ((-526 . -523) 51062) ((-501 . -1087) 51012) ((-488 . -1082) 50847) ((-521 . -523) 50826) ((-488 . -662) 50667) ((-221 . -1087) 50617) ((-372 . -670) 50569) ((-367 . -670) 50521) ((-229 . -870) T) ((-359 . -670) 50473) ((-616 . -102) 50403) ((-501 . -111) 50337) ((-496 . -381) 50316) ((-108 . -670) 50266) ((-357 . -149) 50248) ((-246 . -503) 50232) ((-357 . -147) T) ((-353 . -236) 50219) ((-171 . -383) 50190) ((-972 . -1296) 50174) ((-105 . -1247) T) ((-221 . -111) 50108) ((-896 . -321) 50073) ((-972 . -1132) 50023) ((-820 . -633) 49984) ((-820 . -632) 49966) ((-740 . -102) T) ((-1322 . -1247) T) ((-395 . -1247) T) ((-343 . -1132) T) ((-217 . -635) 49943) ((-1151 . -133) T) ((-1313 . -739) 49913) ((-736 . -38) 49883) ((-326 . -507) 49862) ((-545 . -1247) T) ((-514 . -1247) T) ((-1283 . -296) 49828) ((-1262 . -296) 49794) ((-339 . -153) 49778) ((-453 . -1132) T) ((-1248 . -1247) T) ((-1094 . -300) 49753) ((-1255 . -874) T) ((-48 . -236) 49740) ((-1190 . -34) T) ((-1322 . -1069) 49717) ((-498 . -34) T) ((-482 . -632) 49699) ((-258 . -298) 49673) ((-395 . -1069) 49657) ((-1201 . -1088) T) ((-1156 . -1088) T) ((-878 . -1088) T) ((-1093 . -870) T) ((-501 . -635) 49607) ((-221 . -635) 49557) ((-838 . -175) 49468) ((-534 . -298) 49420) ((-1287 . -302) 49399) ((-1229 . -378) 49373) ((-1119 . -277) 49357) ((-693 . -504) 49338) ((-693 . -632) 49304) ((-619 . -504) 49285) ((-119 . -1022) 49262) ((-619 . -632) 49212) ((-488 . -102) T) ((-183 . -504) 49193) ((-183 . -632) 49159) ((-164 . -504) 49140) ((-164 . -632) 49106) ((-158 . -504) 49087) ((-156 . -504) 49068) ((-158 . -632) 49034) ((-377 . -1132) T) ((-260 . -1132) T) ((-259 . -1132) T) ((-156 . -632) 49000) ((-1278 . -302) 48951) ((-1257 . -302) 48902) ((-896 . -1182) 48880) ((-1205 . -1033) 48846) ((-627 . -378) 48786) ((-1204 . -1033) 48752) ((-627 . -233) 48699) ((-716 . -871) T) ((-607 . -632) 48681) ((-607 . -633) NIL) ((-489 . -233) 48631) ((-501 . -1080) T) ((-1198 . -1033) 48597) ((-87 . -454) T) ((-87 . -410) T) ((-221 . -1080) T) ((-1157 . -1033) 48563) ((-1110 . -748) T) ((-734 . -1143) T) ((-610 . -302) 48542) ((-609 . -302) 48521) ((-501 . -250) T) ((-501 . -240) T) ((-221 . -250) T) ((-221 . -240) T) ((-1196 . -632) 48503) ((-896 . -38) 48455) ((-372 . -748) T) ((-367 . -748) T) ((-359 . -748) T) ((-108 . -816) T) ((-108 . -813) T) ((-734 . -23) T) ((-108 . -748) T) ((-534 . -1286) 48439) ((-1327 . -25) T) ((-488 . -296) 48405) ((-1327 . -21) T) ((-1262 . -321) 48344) ((-1207 . -102) T) ((-40 . -147) 48316) ((-40 . -149) 48288) ((-534 . -618) 48265) ((-1144 . -670) 48098) ((-616 . -321) 48036) ((-45 . -673) 47986) ((-45 . -688) 47936) ((-45 . -385) 47886) ((-1189 . -34) T) ((-895 . -870) NIL) ((-678 . -133) T) ((-499 . -632) 47868) ((-246 . -298) 47845) ((-1113 . -1247) T) ((-190 . -1132) T) ((-1118 . -466) 47796) ((-838 . -528) 47670) ((-803 . -466) 47601) ((-686 . -1082) 47585) ((-669 . -34) T) ((-651 . -34) T) ((-686 . -662) 47569) ((-368 . -1082) 47521) ((-357 . -239) T) ((-366 . -1082) 47473) ((-358 . -1082) 47425) ((-275 . -1082) 47268) ((-255 . -1082) 47111) ((-802 . -466) 47062) ((-368 . -662) 47014) ((-366 . -662) 46966) ((-358 . -662) 46918) ((-275 . -662) 46767) ((-255 . -662) 46616) ((-468 . -466) 46567) ((-975 . -426) 46551) ((-753 . -632) 46533) ((-260 . -739) 46475) ((-259 . -739) 46417) ((-753 . -633) 46278) ((-495 . -426) 46262) ((-352 . -310) T) ((-538 . -93) T) ((-365 . -950) T) ((-1031 . -102) 46212) ((-935 . -1082) 46177) ((-1055 . -871) T) ((-60 . -528) 46110) ((-935 . -662) 46075) ((-1262 . -1182) 46027) ((-1035 . -298) NIL) ((-229 . -1088) T) ((-391 . -843) T) ((-1144 . -34) T) ((-595 . -466) T) ((-532 . -466) T) ((-1264 . -1125) 46011) ((-1264 . -1132) 45989) ((-246 . -618) 45966) ((-1264 . -1126) 45923) ((-1205 . -632) 45905) ((-1204 . -632) 45887) ((-1198 . -632) 45869) ((-1198 . -633) NIL) ((-1157 . -632) 45851) ((-896 . -414) 45835) ((-611 . -102) T) ((-600 . -102) T) ((-549 . -102) T) ((-1283 . -38) 45676) ((-1262 . -38) 45490) ((-130 . -1247) T) ((-51 . -1247) T) ((-893 . -149) T) ((-595 . -416) T) ((-532 . -416) T) ((-1294 . -102) T) ((-1284 . -21) T) ((-1284 . -25) T) ((-1219 . -102) T) ((-1144 . -816) 45469) ((-1144 . -815) 45448) ((-1024 . -1132) T) ((-1058 . -34) T) ((-887 . -1132) T) ((-1144 . -748) 45426) ((-686 . -102) T) ((-667 . -102) T) ((-565 . -300) 45405) ((-490 . -34) T) ((-477 . -34) T) ((-368 . -102) T) ((-366 . -102) T) ((-324 . -1247) T) ((-358 . -102) T) ((-275 . -102) T) ((-255 . -102) T) ((-491 . -319) T) ((-1093 . -1088) T) ((-975 . -1088) T) ((-326 . -660) 45311) ((-325 . -660) 45272) ((-1201 . -1132) T) ((-495 . -1088) T) ((-493 . -102) T) ((-451 . -632) 45254) ((-1156 . -1132) T) ((-258 . -632) 45236) ((-878 . -1132) T) ((-1172 . -102) T) ((-838 . -302) 45167) ((-985 . -1087) 45050) ((-491 . -1051) T) ((-896 . -929) 44973) ((-757 . -1087) 44943) ((-1065 . -668) 44902) ((-1178 . -1152) 44886) ((-467 . -1087) 44856) ((-1128 . -528) 44789) ((-985 . -111) 44658) ((-935 . -102) T) ((-40 . -239) 44595) ((-757 . -111) 44560) ((-539 . -504) 44541) ((-539 . -632) 44507) ((-58 . -102) 44437) ((-534 . -633) 44398) ((-534 . -632) 44310) ((-533 . -102) 44260) ((-530 . -102) 44190) ((-511 . -102) 44140) ((-510 . -102) 44070) ((-467 . -111) 44033) ((-334 . -668) 44015) ((-516 . -874) T) ((-419 . -1087) 43989) ((-1240 . -1004) 43951) ((-1027 . -1143) T) ((-391 . -668) 43901) ((-1166 . -635) 43882) ((-972 . -528) 43815) ((-501 . -819) T) ((-488 . -38) 43656) ((-419 . -111) 43623) ((-501 . -814) T) ((-1031 . -321) 43561) ((-221 . -819) T) ((-221 . -814) T) ((-1027 . -23) T) ((-734 . -133) T) ((-1262 . -414) 43531) ((-856 . -668) 43476) ((-850 . -668) 43435) ((-326 . -25) 43287) ((-171 . -426) 43271) ((-326 . -21) 43142) ((-325 . -25) T) ((-325 . -21) T) ((-888 . -381) T) ((-985 . -635) 42995) ((-110 . -34) T) ((-757 . -635) 42951) ((-737 . -635) 42933) ((-496 . -670) 42766) ((-895 . -1088) T) ((-607 . -300) 42741) ((-594 . -149) T) ((-560 . -149) T) ((-509 . -149) T) ((-1201 . -739) 42570) ((-1089 . -102) 42548) ((-1156 . -739) 42397) ((-1151 . -660) 42379) ((-878 . -739) 42349) ((-692 . -1247) T) ((-1 . -102) T) ((-563 . -1247) T) ((-419 . -635) 42257) ((-246 . -632) 41950) ((-1147 . -1132) T) ((-1266 . -426) 41934) ((-1219 . -321) 41738) ((-985 . -1080) T) ((-757 . -1080) T) ((-737 . -1080) T) ((-663 . -1132) 41688) ((-1085 . -670) 41672) ((-879 . -426) 41656) ((-526 . -102) T) ((-521 . -102) T) ((-275 . -321) 41643) ((-255 . -321) 41630) ((-1283 . -929) 41536) ((-985 . -338) 41515) ((-1262 . -929) 41312) ((-394 . -670) 41296) ((-864 . -874) 41275) ((-692 . -1069) 41171) ((-493 . -321) 40975) ((-260 . -528) 40908) ((-259 . -528) 40841) ((-1172 . -321) 40767) ((-421 . -874) 40718) ((-1240 . -921) 40697) ((-841 . -1132) T) ((-820 . -1087) 40681) ((-1287 . -298) 40646) ((-1278 . -298) 40604) ((-1257 . -298) 40432) ((-400 . -1132) T) ((-336 . -1132) T) ((-419 . -1080) T) ((-171 . -1088) T) ((-58 . -321) 40370) ((-820 . -111) 40349) ((-609 . -298) 40314) ((-533 . -321) 40252) ((-530 . -321) 40190) ((-511 . -321) 40128) ((-510 . -321) 40066) ((-419 . -240) 40045) ((-496 . -34) T) ((-229 . -1132) T) ((-1035 . -633) 39975) ((-1035 . -632) 39935) ((-1002 . -632) 39895) ((-943 . -632) 39877) ((-721 . -149) T) ((-1319 . -1247) T) ((-1318 . -1247) T) ((-723 . -950) T) ((-723 . -842) T) ((-443 . -632) 39859) ((-1151 . -21) T) ((-1151 . -25) T) ((-692 . -390) 39843) ((-118 . -950) T) ((-896 . -274) 39827) ((-896 . -234) 39811) ((-44 . -1247) T) ((-75 . -1247) T) ((-128 . -127) 39795) ((-1085 . -34) T) ((-1319 . -1069) 39769) ((-1318 . -1069) 39726) ((-1266 . -1088) T) ((-879 . -1088) T) ((-368 . -1182) 39705) ((-366 . -1182) 39684) ((-358 . -1182) 39663) ((-496 . -816) 39642) ((-496 . -815) 39621) ((-231 . -34) T) ((-496 . -748) 39599) ((-820 . -635) 39445) ((-674 . -1082) 39429) ((-60 . -503) 39413) ((-585 . -1088) T) ((-1201 . -175) 39304) ((-674 . -662) 39288) ((-488 . -929) 39194) ((-154 . -1247) T) ((-1156 . -175) 39105) ((-1093 . -1132) T) ((-1118 . -979) 39050) ((-975 . -1132) T) ((-839 . -670) 39001) ((-803 . -979) 38970) ((-735 . -1132) T) ((-802 . -979) 38937) ((-530 . -294) 38921) ((-692 . -927) 38880) ((-495 . -1132) T) ((-468 . -979) 38847) ((-79 . -1247) T) ((-368 . -38) 38812) ((-366 . -38) 38777) ((-358 . -38) 38742) ((-275 . -38) 38591) ((-255 . -38) 38440) ((-935 . -1182) T) ((-538 . -504) 38421) ((-642 . -149) 38400) ((-642 . -147) 38379) ((-538 . -632) 38345) ((-119 . -149) T) ((-119 . -147) NIL) ((-429 . -748) T) ((-820 . -1080) T) ((-560 . -239) T) ((-509 . -239) T) ((-357 . -466) T) ((-1287 . -1033) 38311) ((-1278 . -1033) 38277) ((-1257 . -1033) 38243) ((-935 . -38) 38208) ((-229 . -739) 38173) ((-1027 . -133) T) ((-659 . -668) 38142) ((-331 . -47) 38112) ((-40 . -424) 38084) ((-142 . -632) 38066) ((-993 . -1247) T) ((-837 . -1247) T) ((-177 . -950) T) ((-564 . -381) T) ((-736 . -668) 38011) ((-619 . -635) 37992) ((-357 . -416) T) ((-693 . -635) 37973) ((-325 . -236) NIL) ((-183 . -635) 37954) ((-164 . -635) 37935) ((-158 . -635) 37916) ((-156 . -635) 37897) ((-534 . -300) 37874) ((-1262 . -234) 37844) ((-1262 . -274) 37814) ((-1245 . -1247) 37792) ((-1209 . -670) 37717) ((-900 . -102) T) ((-837 . -1069) 37544) ((-45 . -34) T) ((-703 . -102) T) ((-698 . -102) T) ((-678 . -21) T) ((-674 . -102) T) ((-678 . -25) T) ((-1128 . -503) 37528) ((-697 . -1247) T) ((-492 . -102) T) ((-252 . -102) 37458) ((-561 . -866) T) ((-140 . -102) T) ((-139 . -102) T) ((-135 . -102) T) ((-1118 . -921) 37353) ((-895 . -1132) T) ((-1201 . -528) 37300) ((-1093 . -739) 37287) ((-803 . -921) 37190) ((-753 . -1087) 37033) ((-802 . -921) 37015) ((-975 . -739) 36864) ((-1156 . -528) 36816) ((-1309 . -1132) T) ((-1308 . -1132) T) ((-468 . -921) 36791) ((-495 . -739) 36640) ((-67 . -632) 36622) ((-646 . -1247) T) ((-753 . -111) 36451) ((-972 . -503) 36435) ((-1310 . -670) 36395) ((-1205 . -1087) 36278) ((-839 . -748) T) ((-1204 . -1087) 36113) ((-1198 . -1087) 35903) ((-331 . -1247) T) ((-1157 . -1087) 35786) ((-1034 . -1252) T) ((-1120 . -102) 35764) ((-837 . -390) 35733) ((-593 . -632) 35715) ((-561 . -1132) T) ((-1034 . -571) T) ((-1205 . -111) 35584) ((-1204 . -111) 35405) ((-1198 . -111) 35174) ((-1157 . -111) 35043) ((-1136 . -1135) 35007) ((-391 . -870) T) ((-1287 . -632) 34989) ((-1278 . -632) 34971) ((-896 . -668) 34908) ((-1257 . -632) 34890) ((-1257 . -633) NIL) ((-246 . -300) 34867) ((-40 . -466) T) ((-229 . -175) T) ((-171 . -1132) T) ((-753 . -635) 34652) ((-716 . -149) T) ((-716 . -147) NIL) ((-610 . -632) 34634) ((-609 . -632) 34616) ((-1151 . -236) 34603) ((-925 . -1132) T) ((-863 . -1132) T) ((-830 . -1132) T) ((-275 . -929) 34513) ((-255 . -929) 34490) ((-791 . -1132) T) ((-699 . -1132) T) ((-676 . -876) 34474) ((-642 . -239) 34425) ((-837 . -927) 34357) ((-882 . -874) T) ((-1253 . -381) T) ((-40 . -416) NIL) ((-119 . -239) NIL) ((-1205 . -635) 34239) ((-1151 . -684) T) ((-895 . -739) 34184) ((-260 . -503) 34168) ((-259 . -503) 34152) ((-1204 . -635) 33895) ((-1198 . -635) 33690) ((-734 . -660) 33638) ((-677 . -670) 33612) ((-1157 . -635) 33494) ((-307 . -34) T) ((-1151 . -113) T) ((-753 . -1080) T) ((-595 . -1305) 33481) ((-532 . -1305) 33458) ((-1266 . -1132) T) ((-1201 . -302) 33369) ((-1156 . -302) 33300) ((-657 . -874) T) ((-1093 . -175) T) ((-301 . -1247) T) ((-879 . -1132) T) ((-975 . -175) 33211) ((-803 . -1273) 33195) ((-663 . -528) 33128) ((-78 . -632) 33110) ((-753 . -338) 33075) ((-1209 . -748) T) ((-585 . -1132) T) ((-495 . -175) 32986) ((-252 . -321) 32924) ((-1173 . -1143) T) ((-70 . -632) 32906) ((-1310 . -748) T) ((-1205 . -1080) T) ((-1204 . -1080) T) ((-1198 . -1080) T) ((-339 . -102) 32836) ((-1173 . -23) T) ((-2 . -1247) T) ((-1157 . -1080) T) ((-91 . -1152) 32820) ((-890 . -1143) T) ((-1205 . -240) 32779) ((-1204 . -250) 32758) ((-1204 . -240) 32710) ((-1198 . -240) 32597) ((-1198 . -250) 32576) ((-331 . -927) 32482) ((-890 . -23) T) ((-171 . -739) 32310) ((-421 . -1252) T) ((-1133 . -381) T) ((-1034 . -376) T) ((-893 . -466) T) ((-1055 . -149) T) ((-972 . -298) 32262) ((-325 . -871) NIL) ((-1283 . -668) 32144) ((-898 . -102) T) ((-1262 . -668) 31999) ((-734 . -25) T) ((-421 . -571) T) ((-734 . -21) T) ((-539 . -635) 31980) ((-353 . -149) 31962) ((-353 . -147) T) ((-1178 . -1132) 31940) ((-467 . -742) T) ((-76 . -632) 31922) ((-115 . -871) T) ((-252 . -294) 31906) ((-246 . -1087) 31827) ((-81 . -632) 31809) ((-757 . -381) 31762) ((-1207 . -843) T) ((-758 . -242) 31746) ((-1190 . -1247) T) ((-143 . -242) 31728) ((-246 . -111) 31644) ((-1266 . -739) 31473) ((-48 . -149) T) ((-895 . -175) T) ((-879 . -739) 31443) ((-498 . -1247) T) ((-975 . -528) 31390) ((-677 . -748) T) ((-585 . -739) 31377) ((-1065 . -1088) T) ((-716 . -239) NIL) ((-495 . -528) 31320) ((-972 . -19) 31304) ((-972 . -618) 31281) ((-1110 . -1247) T) ((-1092 . -1247) T) ((-1240 . -662) 31178) ((-838 . -633) NIL) ((-838 . -632) 31160) ((-1240 . -1082) 31043) ((-1110 . -1069) 30939) ((-1035 . -1087) 30889) ((-427 . -632) 30871) ((-260 . -298) 30848) ((-372 . -1247) T) ((-367 . -1247) T) ((-359 . -1247) T) ((-259 . -298) 30825) ((-501 . -939) NIL) ((-326 . -29) 30795) ((-108 . -1247) T) ((-1034 . -1143) T) ((-221 . -939) NIL) ((-943 . -1087) 30747) ((-661 . -1305) 30731) ((-1035 . -111) 30665) ((-1034 . -23) T) ((-733 . -1082) 30630) ((-943 . -111) 30568) ((-758 . -717) 30552) ((-733 . -662) 30517) ((-275 . -274) 30501) ((-275 . -234) 30485) ((-443 . -1087) 30469) ((-391 . -1088) T) ((-246 . -635) 30267) ((-716 . -1236) NIL) ((-501 . -670) 30217) ((-488 . -668) 30099) ((-108 . -909) 30081) ((-108 . -911) 30063) ((-716 . -1233) NIL) ((-221 . -670) 30013) ((-372 . -1069) 29997) ((-367 . -1069) 29981) ((-339 . -321) 29919) ((-359 . -1069) 29903) ((-229 . -302) T) ((-443 . -111) 29882) ((-60 . -632) 29814) ((-171 . -175) T) ((-1151 . -871) T) ((-108 . -1069) 29774) ((-915 . -1132) T) ((-856 . -1088) T) ((-850 . -1088) T) ((-716 . -35) NIL) ((-716 . -95) NIL) ((-325 . -1022) 29735) ((-187 . -102) T) ((-1321 . -1143) T) ((-1321 . -23) T) ((-594 . -466) T) ((-560 . -466) T) ((-509 . -466) T) ((-1313 . -632) 29717) ((-1266 . -175) 29608) ((-1240 . -102) T) ((-421 . -376) T) ((-1229 . -1132) T) ((-1219 . -233) 29558) ((-1214 . -866) T) ((-1213 . -866) T) ((-1197 . -1247) T) ((-246 . -1080) 29536) ((-1025 . -1247) T) ((-1181 . -34) T) ((-1198 . -814) NIL) ((-1198 . -819) NIL) ((-1189 . -1247) T) ((-491 . -950) T) ((-1027 . -660) 29484) ((-260 . -618) 29461) ((-259 . -618) 29438) ((-1173 . -133) T) ((-1128 . -633) 29399) ((-1110 . -390) 29383) ((-895 . -528) 29291) ((-246 . -240) 29243) ((-1128 . -632) 29225) ((-1119 . -1132) T) ((-1035 . -635) 29175) ((-1110 . -927) 29108) ((-943 . -635) 29045) ((-848 . -632) 29027) ((-1106 . -1132) T) ((-1093 . -302) T) ((-1035 . -250) T) ((-1035 . -240) T) ((-1035 . -1080) T) ((-987 . -1132) 28977) ((-975 . -302) 28908) ((-443 . -635) 28877) ((-108 . -390) 28859) ((-108 . -351) 28841) ((-943 . -1080) T) ((-943 . -250) T) ((-820 . -381) 28820) ((-733 . -102) T) ((-723 . -874) T) ((-669 . -1247) T) ((-651 . -1247) T) ((-627 . -1132) T) ((-627 . -629) 28796) ((-597 . -1082) 28771) ((-495 . -302) 28702) ((-585 . -175) T) ((-339 . -294) 28686) ((-353 . -239) T) ((-597 . -662) 28661) ((-368 . -363) 28640) ((-366 . -363) 28619) ((-358 . -363) 28598) ((-215 . -1247) T) ((-84 . -632) 28580) ((-214 . -1247) T) ((-212 . -1247) T) ((-211 . -1247) T) ((-210 . -1247) T) ((-209 . -1247) T) ((-206 . -1247) T) ((-205 . -1247) T) ((-204 . -1247) T) ((-203 . -1247) T) ((-489 . -1132) T) ((-202 . -1247) T) ((-275 . -262) 28542) ((-201 . -1247) T) ((-200 . -1247) T) ((-199 . -1247) T) ((-198 . -1247) T) ((-197 . -1247) T) ((-489 . -629) 28521) ((-196 . -1247) T) ((-285 . -1247) T) ((-284 . -1247) T) ((-283 . -1247) T) ((-282 . -1247) T) ((-493 . -233) 28471) ((-281 . -1247) T) ((-280 . -1247) T) ((-279 . -1247) T) ((-443 . -1080) T) ((-890 . -133) T) ((-864 . -1143) 28450) ((-48 . -239) T) ((-721 . -466) T) ((-108 . -927) NIL) ((-136 . -874) T) ((-1240 . -296) 28416) ((-1144 . -1247) T) ((-896 . -870) 28395) ((-1027 . -25) T) ((-931 . -748) T) ((-171 . -528) 28307) ((-1027 . -21) T) ((-931 . -487) T) ((-421 . -1143) T) ((-501 . -816) T) ((-501 . -813) T) ((-935 . -363) T) ((-501 . -748) T) ((-221 . -816) T) ((-221 . -813) T) ((-734 . -236) 28294) ((-221 . -748) T) ((-864 . -23) 28246) ((-1215 . -1132) T) ((-676 . -1082) 28230) ((-1214 . -1132) T) ((-538 . -635) 28211) ((-1213 . -1132) T) ((-331 . -319) 28190) ((-1066 . -242) 28136) ((-676 . -662) 28106) ((-421 . -23) T) ((-972 . -633) 28067) ((-972 . -632) 27979) ((-663 . -503) 27963) ((-45 . -1041) 27913) ((-1144 . -1069) 27740) ((-636 . -998) T) ((-505 . -102) T) ((-343 . -632) 27722) ((-1024 . -298) 27689) ((-607 . -673) 27671) ((-132 . -1132) T) ((-131 . -1132) T) ((-607 . -385) 27653) ((-357 . -1305) 27630) ((-453 . -632) 27612) ((-1266 . -528) 27559) ((-1118 . -1082) 27402) ((-1058 . -1247) T) ((-895 . -302) T) ((-1201 . -298) 27329) ((-1118 . -662) 27178) ((-1031 . -1026) 27162) ((-803 . -1082) 26985) ((-802 . -1082) 26828) ((-803 . -662) 26657) ((-802 . -662) 26506) ((-490 . -1247) T) ((-477 . -1247) T) ((-597 . -102) T) ((-475 . -1082) 26477) ((-468 . -1082) 26320) ((-686 . -668) 26289) ((-642 . -466) 26268) ((-475 . -662) 26239) ((-468 . -662) 26088) ((-368 . -668) 26025) ((-366 . -668) 25962) ((-358 . -668) 25899) ((-275 . -668) 25809) ((-255 . -668) 25719) ((-1313 . -397) 25691) ((-531 . -1132) T) ((-119 . -466) T) ((-1227 . -102) T) ((-1123 . -1132) 25661) ((-1065 . -1132) T) ((-1147 . -93) T) ((-918 . -871) T) ((-1287 . -111) 25530) ((-365 . -1252) T) ((-1287 . -1087) 25413) ((-1144 . -390) 25382) ((-1278 . -1087) 25217) ((-1257 . -1087) 25007) ((-1278 . -111) 24828) ((-1257 . -111) 24597) ((-1240 . -321) 24584) ((-1034 . -133) T) ((-935 . -668) 24534) ((-377 . -632) 24516) ((-365 . -571) T) ((-301 . -319) T) ((-610 . -1087) 24476) ((-609 . -1087) 24359) ((-595 . -1082) 24324) ((-532 . -1082) 24269) ((-374 . -1132) T) ((-334 . -1132) T) ((-260 . -632) 24230) ((-259 . -632) 24191) ((-595 . -662) 24156) ((-532 . -662) 24101) ((-716 . -424) 24068) ((-652 . -23) T) ((-620 . -23) T) ((-40 . -921) 23975) ((-676 . -102) T) ((-610 . -111) 23928) ((-609 . -111) 23797) ((-391 . -1132) T) ((-346 . -102) T) ((-171 . -302) 23708) ((-1262 . -870) 23661) ((-736 . -1088) T) ((-630 . -1247) T) ((-1178 . -528) 23594) ((-1221 . -858) 23578) ((-1144 . -927) 23510) ((-856 . -1132) T) ((-850 . -1132) T) ((-847 . -1132) T) ((-97 . -102) T) ((-146 . -871) T) ((-630 . -909) 23494) ((-1183 . -1247) T) ((-110 . -1247) T) ((-1118 . -102) T) ((-1094 . -34) T) ((-803 . -102) T) ((-802 . -102) T) ((-1287 . -635) 23376) ((-1278 . -635) 23119) ((-475 . -102) T) ((-468 . -102) T) ((-1257 . -635) 22914) ((-96 . -1247) T) ((-246 . -819) 22893) ((-246 . -814) 22872) ((-671 . -102) T) ((-610 . -635) 22830) ((-609 . -635) 22712) ((-1266 . -302) 22623) ((-686 . -654) 22607) ((-190 . -632) 22589) ((-663 . -298) 22541) ((-1065 . -739) 22525) ((-585 . -302) T) ((-985 . -670) 22450) ((-1321 . -133) T) ((-757 . -670) 22410) ((-737 . -670) 22397) ((-286 . -102) T) ((-467 . -670) 22327) ((-50 . -102) T) ((-595 . -102) T) ((-532 . -102) T) ((-1287 . -1080) T) ((-1278 . -1080) T) ((-1257 . -1080) T) ((-1171 . -1247) T) ((-521 . -668) 22309) ((-334 . -739) 22291) ((-1287 . -240) 22250) ((-1278 . -250) 22229) ((-1278 . -240) 22181) ((-1257 . -240) 22068) ((-1257 . -250) 22047) ((-1240 . -38) 21944) ((-610 . -1080) T) ((-609 . -1080) T) ((-1035 . -819) T) ((-1035 . -814) T) ((-1002 . -819) T) ((-1002 . -814) T) ((-896 . -1088) T) ((-109 . -632) 21926) ((-716 . -466) T) ((-391 . -739) 21891) ((-419 . -670) 21865) ((-893 . -894) 21849) ((-733 . -38) 21814) ((-609 . -240) 21773) ((-40 . -746) 21745) ((-365 . -341) 21722) ((-365 . -376) T) ((-1110 . -319) 21673) ((-305 . -1143) 21554) ((-1137 . -1247) T) ((-1027 . -236) 21499) ((-174 . -102) T) ((-1264 . -632) 21466) ((-864 . -133) 21418) ((-856 . -739) 21388) ((-663 . -1286) 21372) ((-850 . -739) 21342) ((-663 . -618) 21319) ((-496 . -1247) T) ((-372 . -319) T) ((-367 . -319) T) ((-359 . -319) T) ((-413 . -236) 21306) ((-421 . -133) T) ((-534 . -688) 21290) ((-108 . -319) T) ((-305 . -23) 21173) ((-534 . -673) 21157) ((-716 . -416) NIL) ((-534 . -385) 21141) ((-661 . -1082) 21125) ((-661 . -662) 21109) ((-303 . -632) 21091) ((-91 . -1132) 21069) ((-108 . -1051) T) ((-560 . -145) T) ((-1297 . -153) 21053) ((-496 . -1069) 20880) ((-1284 . -147) 20841) ((-1284 . -149) 20802) ((-1085 . -1247) T) ((-1309 . -93) T) ((-1024 . -632) 20784) ((-840 . -1247) T) ((-887 . -632) 20766) ((-838 . -1087) 20609) ((-1308 . -93) T) ((-1201 . -633) NIL) ((-1127 . -1132) T) ((-1122 . -1132) T) ((-1118 . -321) 20596) ((-429 . -1247) T) ((-394 . -1247) T) ((-1104 . -1132) T) ((-231 . -1247) T) ((-1097 . -1132) T) ((-1067 . -1132) T) ((-1050 . -1132) T) ((-803 . -321) 20583) ((-802 . -321) 20570) ((-1201 . -632) 20552) ((-838 . -111) 20381) ((-1156 . -632) 20363) ((-645 . -1132) T) ((-591 . -176) T) ((-543 . -176) T) ((-468 . -321) 20350) ((-497 . -1132) T) ((-1156 . -633) 20098) ((-1065 . -175) T) ((-972 . -300) 20075) ((-222 . -1132) T) ((-878 . -632) 20057) ((-627 . -528) 19840) ((-81 . -635) 19781) ((-840 . -1069) 19765) ((-489 . -528) 19557) ((-854 . -874) 19536) ((-985 . -748) T) ((-757 . -748) T) ((-737 . -748) T) ((-365 . -1143) T) ((-1210 . -632) 19518) ((-227 . -102) T) ((-496 . -390) 19487) ((-529 . -1132) T) ((-525 . -1132) T) ((-522 . -1132) T) ((-820 . -670) 19461) ((-1055 . -466) T) ((-987 . -528) 19394) ((-365 . -23) T) ((-652 . -133) T) ((-620 . -133) T) ((-353 . -466) T) ((-246 . -381) 19373) ((-391 . -175) T) ((-1283 . -1088) T) ((-1262 . -1088) T) ((-229 . -1033) T) ((-838 . -635) 19110) ((-721 . -401) T) ((-419 . -748) T) ((-723 . -1252) T) ((-1173 . -660) 19058) ((-659 . -1132) T) ((-661 . -102) T) ((-594 . -894) 19042) ((-1313 . -1087) 19026) ((-1190 . -1224) 19002) ((-723 . -571) T) ((-128 . -1132) 18980) ((-736 . -1132) T) ((-676 . -38) 18950) ((-496 . -927) 18882) ((-257 . -1132) T) ((-186 . -1132) T) ((-353 . -416) T) ((-326 . -149) 18861) ((-326 . -147) 18840) ((-118 . -571) T) ((-131 . -528) NIL) ((-325 . -149) 18796) ((-325 . -147) 18752) ((-48 . -466) T) ((-163 . -1132) T) ((-159 . -1132) T) ((-1190 . -107) 18699) ((-803 . -1182) 18677) ((-1313 . -111) 18656) ((-711 . -34) T) ((-606 . -1247) T) ((-565 . -34) T) ((-498 . -107) 18640) ((-260 . -300) 18617) ((-259 . -300) 18594) ((-1254 . -866) T) ((-895 . -298) 18545) ((-45 . -1247) T) ((-1240 . -929) 18526) ((-839 . -1247) T) ((-838 . -1080) T) ((-638 . -874) 18505) ((-674 . -668) 18474) ((-1209 . -47) 18450) ((-838 . -338) 18412) ((-1118 . -38) 18261) ((-838 . -240) 18240) ((-803 . -38) 18069) ((-802 . -38) 17918) ((-1147 . -504) 17899) ((-468 . -38) 17748) ((-1147 . -632) 17714) ((-1146 . -102) T) ((-663 . -633) 17675) ((-663 . -632) 17587) ((-595 . -1182) T) ((-532 . -1182) T) ((-1178 . -503) 17571) ((-357 . -1082) 17516) ((-1234 . -1132) 17494) ((-1173 . -25) T) ((-1173 . -21) T) ((-357 . -662) 17439) ((-1313 . -635) 17388) ((-342 . -1247) T) ((-488 . -1088) T) ((-1254 . -1132) T) ((-1257 . -814) NIL) ((-1257 . -819) NIL) ((-1027 . -871) 17367) ((-890 . -21) T) ((-860 . -1132) T) ((-841 . -632) 17349) ((-890 . -25) T) ((-820 . -748) T) ((-659 . -739) 17333) ((-177 . -1252) T) ((-595 . -38) 17298) ((-532 . -38) 17263) ((-400 . -632) 17245) ((-345 . -102) T) ((-336 . -632) 17227) ((-171 . -298) 17185) ((-1256 . -874) T) ((-64 . -1247) T) ((-114 . -102) T) ((-896 . -1132) T) ((-524 . -1247) T) ((-177 . -571) T) ((-736 . -739) 17155) ((-305 . -133) 17038) ((-229 . -632) 17020) ((-229 . -633) 16950) ((-1034 . -660) 16889) ((-1313 . -1080) T) ((-1209 . -1247) T) ((-1151 . -149) T) ((-651 . -1224) 16864) ((-753 . -939) 16843) ((-607 . -34) T) ((-669 . -107) 16827) ((-651 . -107) 16773) ((-625 . -1247) T) ((-624 . -1247) T) ((-622 . -1247) T) ((-1310 . -1247) T) ((-642 . -921) 16694) ((-1266 . -298) 16621) ((-753 . -670) 16510) ((-307 . -1247) T) ((-1209 . -1069) 16406) ((-972 . -637) 16383) ((-591 . -590) T) ((-591 . -541) T) ((-543 . -541) T) ((-119 . -921) NIL) ((-1198 . -939) NIL) ((-1093 . -633) 16298) ((-1093 . -632) 16280) ((-975 . -632) 16262) ((-735 . -504) 16212) ((-357 . -102) T) ((-260 . -1087) 16133) ((-259 . -1087) 16054) ((-407 . -102) T) ((-31 . -1132) T) ((-975 . -633) 15915) ((-735 . -632) 15850) ((-1311 . -1242) 15819) ((-495 . -632) 15801) ((-495 . -633) 15662) ((-275 . -426) 15646) ((-255 . -426) 15630) ((-325 . -239) NIL) ((-260 . -111) 15546) ((-259 . -111) 15462) ((-1255 . -684) T) ((-1205 . -670) 15387) ((-1204 . -670) 15284) ((-1198 . -670) 15136) ((-1157 . -670) 15061) ((-365 . -133) T) ((-83 . -455) T) ((-83 . -410) T) ((-1034 . -25) T) ((-1034 . -21) T) ((-897 . -1132) 15012) ((-40 . -1082) 14957) ((-896 . -739) 14909) ((-40 . -662) 14854) ((-391 . -302) T) ((-171 . -1033) 14805) ((-1118 . -929) 14704) ((-716 . -401) T) ((-1027 . -1029) 14688) ((-723 . -1143) T) ((-716 . -168) 14670) ((-803 . -929) 14577) ((-802 . -929) 14561) ((-1283 . -1132) T) ((-1262 . -1132) T) ((-1195 . -102) T) ((-326 . -1233) 14540) ((-326 . -1236) 14519) ((-468 . -929) 14496) ((-326 . -989) 14475) ((-136 . -1143) T) ((-118 . -1143) T) ((-1001 . -1247) T) ((-888 . -1247) T) ((-723 . -23) T) ((-677 . -1247) T) ((-616 . -1296) 14459) ((-616 . -1132) 14409) ((-545 . -874) T) ((-514 . -874) T) ((-326 . -95) 14388) ((-91 . -528) 14321) ((-177 . -376) T) ((-260 . -635) 14119) ((-259 . -635) 13917) ((-326 . -35) 13896) ((-627 . -503) 13830) ((-136 . -23) T) ((-118 . -23) T) ((-995 . -102) T) ((-740 . -1132) T) ((-489 . -503) 13767) ((-421 . -660) 13715) ((-677 . -1069) 13611) ((-987 . -503) 13595) ((-368 . -1088) T) ((-366 . -1088) T) ((-358 . -1088) T) ((-275 . -1088) T) ((-255 . -1088) T) ((-895 . -633) NIL) ((-895 . -632) 13577) ((-1309 . -504) 13558) ((-1308 . -504) 13539) ((-1321 . -21) T) ((-1309 . -632) 13505) ((-1308 . -632) 13471) ((-585 . -1033) T) ((-753 . -748) T) ((-1321 . -25) T) ((-260 . -1080) 13449) ((-259 . -1080) 13427) ((-72 . -1247) T) ((-1173 . -236) 13372) ((-260 . -240) 13324) ((-259 . -240) 13276) ((-1151 . -239) T) ((-40 . -102) T) ((-935 . -1088) T) ((-716 . -921) NIL) ((-1212 . -102) T) ((-131 . -503) 13258) ((-1205 . -748) T) ((-1204 . -748) T) ((-1198 . -748) T) ((-1198 . -813) NIL) ((-1198 . -816) NIL) ((-983 . -102) T) ((-948 . -102) T) ((-893 . -1082) 13245) ((-1157 . -748) T) ((-793 . -102) T) ((-694 . -102) T) ((-893 . -662) 13232) ((-561 . -632) 13214) ((-488 . -1132) T) ((-352 . -1143) T) ((-177 . -1143) T) ((-331 . -950) 13193) ((-1283 . -739) 13034) ((-896 . -175) T) ((-1262 . -739) 12848) ((-864 . -21) 12800) ((-864 . -25) 12752) ((-252 . -1180) 12736) ((-128 . -528) 12669) ((-421 . -25) T) ((-421 . -21) T) ((-352 . -23) T) ((-171 . -633) 12435) ((-171 . -632) 12417) ((-177 . -23) T) ((-663 . -300) 12394) ((-534 . -34) T) ((-636 . -684) T) ((-925 . -632) 12376) ((-89 . -1247) T) ((-863 . -632) 12358) ((-830 . -632) 12340) ((-791 . -632) 12322) ((-699 . -632) 12304) ((-246 . -670) 12137) ((-636 . -113) T) ((-1207 . -1132) T) ((-1201 . -1087) 11960) ((-217 . -1247) T) ((-1181 . -1247) T) ((-1156 . -1087) 11803) ((-878 . -1087) 11787) ((-1113 . -874) T) ((-1264 . -637) 11771) ((-1201 . -111) 11580) ((-1156 . -111) 11409) ((-878 . -111) 11388) ((-1255 . -871) T) ((-1266 . -633) NIL) ((-1266 . -632) 11370) ((-357 . -1182) T) ((-879 . -632) 11352) ((-1106 . -298) 11331) ((-1240 . -668) 11241) ((-80 . -1247) T) ((-931 . -1247) T) ((-1234 . -528) 11174) ((-1035 . -939) NIL) ((-1118 . -274) 11158) ((-627 . -298) 11134) ((-1118 . -234) 11118) ((-501 . -1247) T) ((-585 . -632) 11100) ((-489 . -298) 11079) ((-1035 . -670) 11029) ((-531 . -93) T) ((-1034 . -236) 10960) ((-221 . -1247) T) ((-987 . -298) 10912) ((-893 . -102) T) ((-301 . -950) T) ((-839 . -319) 10891) ((-803 . -274) 10875) ((-803 . -234) 10859) ((-943 . -670) 10811) ((-733 . -668) 10761) ((-716 . -746) 10728) ((-652 . -21) T) ((-652 . -25) T) ((-620 . -21) T) ((-562 . -102) T) ((-357 . -38) 10693) ((-501 . -909) 10675) ((-501 . -911) 10657) ((-488 . -739) 10498) ((-61 . -1247) T) ((-221 . -909) 10480) ((-221 . -911) 10462) ((-620 . -25) T) ((-443 . -670) 10436) ((-1201 . -635) 10205) ((-501 . -1069) 10165) ((-896 . -528) 10077) ((-1156 . -635) 9869) ((-878 . -635) 9787) ((-221 . -1069) 9747) ((-246 . -34) T) ((-1031 . -1132) 9725) ((-594 . -1082) 9712) ((-560 . -1082) 9699) ((-509 . -1082) 9664) ((-1283 . -175) 9595) ((-1262 . -175) 9526) ((-594 . -662) 9513) ((-560 . -662) 9500) ((-509 . -662) 9465) ((-734 . -147) 9444) ((-734 . -149) 9423) ((-130 . -874) T) ((-723 . -133) T) ((-564 . -1247) T) ((-137 . -479) 9400) ((-1178 . -632) 9332) ((-676 . -680) 9316) ((-131 . -298) 9266) ((-118 . -133) T) ((-491 . -1252) T) ((-627 . -618) 9242) ((-489 . -618) 9221) ((-611 . -1132) T) ((-346 . -349) 9190) ((-600 . -1132) T) ((-549 . -1132) T) ((-491 . -571) T) ((-1201 . -1080) T) ((-1156 . -1080) T) ((-878 . -1080) T) ((-846 . -1247) T) ((-246 . -816) 9169) ((-246 . -815) 9148) ((-1201 . -338) 9125) ((-246 . -748) 9103) ((-987 . -19) 9087) ((-501 . -390) 9069) ((-501 . -351) 9051) ((-1156 . -338) 9023) ((-353 . -1305) 9000) ((-221 . -390) 8982) ((-221 . -351) 8964) ((-987 . -618) 8941) ((-1201 . -240) T) ((-1294 . -1132) T) ((-1219 . -1132) T) ((-686 . -1132) T) ((-667 . -1132) T) ((-1118 . -262) 8878) ((-597 . -668) 8838) ((-368 . -1132) T) ((-366 . -1132) T) ((-358 . -1132) T) ((-275 . -1132) T) ((-255 . -1132) T) ((-85 . -1247) T) ((-218 . -102) T) ((-129 . -102) 8788) ((-123 . -102) 8738) ((-1262 . -528) 8598) ((-1219 . -629) 8577) ((-1172 . -1132) T) ((-1147 . -635) 8558) ((-1110 . -950) 8509) ((-493 . -1132) T) ((-1035 . -816) T) ((-1035 . -813) T) ((-493 . -629) 8488) ((-260 . -819) 8467) ((-260 . -814) 8446) ((-259 . -819) 8425) ((-40 . -1182) NIL) ((-259 . -814) 8404) ((-1035 . -748) T) ((-131 . -19) 8386) ((-1002 . -816) T) ((-721 . -1082) 8351) ((-943 . -748) T) ((-935 . -1132) T) ((-915 . -632) 8333) ((-131 . -618) 8308) ((-721 . -662) 8273) ((-91 . -503) 8257) ((-501 . -927) NIL) ((-896 . -302) T) ((-229 . -1087) 8222) ((-856 . -298) 8201) ((-221 . -927) NIL) ((-854 . -1143) 8180) ((-58 . -1132) 8130) ((-533 . -1132) 8108) ((-530 . -1132) 8058) ((-511 . -1132) 8036) ((-510 . -1132) 7986) ((-594 . -102) T) ((-560 . -102) T) ((-509 . -102) T) ((-488 . -175) 7917) ((-372 . -950) T) ((-367 . -950) T) ((-359 . -950) T) ((-229 . -111) 7873) ((-854 . -23) 7825) ((-443 . -748) T) ((-108 . -950) T) ((-40 . -38) 7770) ((-108 . -842) T) ((-595 . -363) T) ((-532 . -363) T) ((-676 . -668) 7729) ((-326 . -466) 7708) ((-325 . -466) T) ((-616 . -528) 7641) ((-421 . -236) 7586) ((-352 . -133) T) ((-177 . -133) T) ((-305 . -25) 7450) ((-305 . -21) 7333) ((-45 . -1224) 7312) ((-66 . -632) 7294) ((-55 . -102) T) ((-346 . -668) 7276) ((-1300 . -102) T) ((-1297 . -102) 7206) ((-1287 . -670) 7131) ((-1278 . -670) 7028) ((-45 . -107) 6978) ((-841 . -635) 6962) ((-1257 . -670) 6814) ((-1257 . -939) NIL) ((-1253 . -1247) T) ((-1229 . -632) 6796) ((-1221 . -102) T) ((-1128 . -440) 6780) ((-1128 . -381) 6759) ((-400 . -635) 6743) ((-336 . -635) 6727) ((-1127 . -93) T) ((-1118 . -668) 6637) ((-1094 . -1247) T) ((-1093 . -1087) 6624) ((-1093 . -111) 6609) ((-975 . -111) 6438) ((-975 . -1087) 6281) ((-803 . -668) 6191) ((-802 . -668) 6101) ((-686 . -739) 6085) ((-642 . -1082) 6072) ((-642 . -662) 6059) ((-563 . -874) T) ((-495 . -1087) 5902) ((-491 . -376) T) ((-475 . -668) 5858) ((-468 . -668) 5768) ((-229 . -635) 5718) ((-368 . -739) 5670) ((-366 . -739) 5622) ((-119 . -1082) 5567) ((-358 . -739) 5519) ((-275 . -739) 5368) ((-255 . -739) 5217) ((-1122 . -93) T) ((-1104 . -93) T) ((-119 . -662) 5162) ((-1097 . -93) T) ((-972 . -673) 5146) ((-1089 . -1132) 5124) ((-495 . -111) 4953) ((-1067 . -93) T) ((-1050 . -93) T) ((-972 . -385) 4937) ((-256 . -102) T) ((-985 . -47) 4916) ((-74 . -632) 4898) ((-734 . -239) T) ((-732 . -102) T) ((-721 . -102) T) ((-1 . -1132) T) ((-638 . -1143) T) ((-1119 . -632) 4880) ((-645 . -93) T) ((-1106 . -632) 4862) ((-935 . -739) 4827) ((-128 . -503) 4811) ((-497 . -93) T) ((-638 . -23) T) ((-404 . -23) T) ((-88 . -1247) T) ((-222 . -93) T) ((-627 . -632) 4793) ((-627 . -633) NIL) ((-489 . -633) NIL) ((-489 . -632) 4775) ((-365 . -25) T) ((-365 . -21) T) ((-50 . -668) 4734) ((-526 . -1132) T) ((-521 . -1132) T) ((-123 . -321) 4672) ((-129 . -321) 4610) ((-610 . -670) 4584) ((-609 . -670) 4509) ((-595 . -668) 4459) ((-229 . -1080) T) ((-532 . -668) 4389) ((-1093 . -635) 4361) ((-391 . -1033) T) ((-229 . -250) T) ((-229 . -240) T) ((-872 . -504) 4345) ((-1093 . -637) 4326) ((-987 . -633) 4287) ((-987 . -632) 4199) ((-975 . -635) 3988) ((-872 . -632) 3936) ((-893 . -38) 3923) ((-735 . -635) 3873) ((-1283 . -302) 3824) ((-1262 . -302) 3775) ((-495 . -635) 3560) ((-1151 . -466) T) ((-516 . -871) T) ((-326 . -1170) 3539) ((-1133 . -1247) T) ((-1027 . -149) 3518) ((-1027 . -147) 3497) ((-509 . -321) 3484) ((-1215 . -632) 3466) ((-307 . -1224) 3445) ((-1214 . -632) 3427) ((-1166 . -1247) T) ((-1213 . -632) 3409) ((-895 . -1087) 3354) ((-491 . -1143) T) ((-141 . -858) 3336) ((-115 . -858) 3317) ((-1234 . -503) 3301) ((-1093 . -1080) T) ((-642 . -102) T) ((-985 . -1247) T) ((-975 . -1080) T) ((-260 . -381) 3280) ((-259 . -381) 3259) ((-895 . -111) 3188) ((-307 . -107) 3138) ((-132 . -632) 3120) ((-131 . -633) NIL) ((-131 . -632) 3064) ((-119 . -102) T) ((-757 . -1247) T) ((-737 . -1247) T) ((-491 . -23) T) ((-467 . -1247) T) ((-495 . -1080) T) ((-1093 . -240) T) ((-975 . -338) 3033) ((-40 . -929) 2942) ((-495 . -338) 2899) ((-368 . -175) T) ((-366 . -175) T) ((-358 . -175) T) ((-275 . -175) 2810) ((-255 . -175) 2721) ((-985 . -1069) 2617) ((-531 . -504) 2598) ((-757 . -1069) 2569) ((-531 . -632) 2535) ((-419 . -1247) T) ((-1136 . -102) T) ((-1123 . -632) 2494) ((-1065 . -632) 2476) ((-716 . -1082) 2426) ((-1311 . -153) 2410) ((-1309 . -635) 2391) ((-1308 . -635) 2372) ((-1303 . -632) 2354) ((-1287 . -748) T) ((-716 . -662) 2304) ((-1278 . -748) T) ((-1257 . -813) NIL) ((-1257 . -816) NIL) ((-171 . -1087) 2214) ((-935 . -175) T) ((-895 . -635) 2144) ((-1257 . -748) T) ((-1034 . -355) 2118) ((-227 . -668) 2070) ((-1031 . -528) 2003) ((-864 . -871) 1982) ((-560 . -1182) T) ((-488 . -302) 1933) ((-610 . -748) T) ((-374 . -632) 1915) ((-334 . -632) 1897) ((-419 . -1069) 1793) ((-609 . -748) T) ((-421 . -871) 1744) ((-171 . -111) 1640) ((-854 . -133) 1592) ((-1297 . -321) 1530) ((-758 . -153) 1514) ((-993 . -874) 1413) ((-837 . -874) 1364) ((-501 . -319) T) ((-391 . -632) 1331) ((-534 . -1041) 1315) ((-391 . -633) 1229) ((-221 . -319) T) ((-143 . -153) 1211) ((-736 . -298) 1190) ((-501 . -1051) T) ((-594 . -38) 1177) ((-560 . -38) 1164) ((-509 . -38) 1129) ((-661 . -668) 1098) ((-221 . -1051) T) ((-895 . -1080) T) ((-856 . -632) 1080) ((-850 . -632) 1062) ((-847 . -632) 1044) ((-838 . -939) 1023) ((-1322 . -1143) T) ((-323 . -1247) T) ((-1266 . -1087) 846) ((-879 . -1087) 830) ((-895 . -250) T) ((-895 . -240) NIL) ((-711 . -1247) T) ((-1322 . -23) T) ((-838 . -670) 719) ((-565 . -1247) T) ((-419 . -351) 703) ((-585 . -1087) 690) ((-1266 . -111) 499) ((-723 . -660) 481) ((-879 . -111) 460) ((-395 . -23) T) ((-171 . -635) 238) ((-1219 . -528) 30) ((-900 . -1132) T) ((-703 . -1132) T) ((-698 . -1132) T) ((-674 . -1132) T)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 1a15bbdb..fd1c1ff7 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,5 +1,5 @@
-(30 . 3500593096)
+(30 . 3501779183)
(4511 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
@@ -488,675 +488,679 @@
|XPolynomialsCat| |XPolynomialRing| |XRecursivePolynomial|
|YoungDiagram| |ParadoxicalCombinatorsForStreams|
|ZeroDimensionalSolvePackage| |IntegerLinearDependence| |IntegerMod|
- |Enumeration| |Mapping| |Record| |Union| |enqueue!| |OMgetVariable|
- |degreeSubResultant| |imag| |fTable| |quoted?| |overlap|
- |rootOfIrreduciblePoly| |s13adf| |newReduc| |aCubic| |directProduct|
- F2FG |ruleset| |wronskianMatrix| |increasePrecision| |htrigs| |c06fuf|
- |d03faf| |selectOrPolynomials| |iilog| |stFuncN| |assert|
- |resetAttributeButtons| |isImplies| |lazyVariations| GF2FG
- |possiblyNewVariety?| |setCondition!| |inrootof| |meshFun2Var|
- |var1StepsDefault| |brace| |directSum| |unexpand| |univariateSolve|
- |updateStatus!| |nary?| |extendIfCan| |subResultantsChain| |hex|
- |extendedResultant| |destruct| |suchThat| |setButtonValue|
- |bezoutDiscriminant| |taylorIfCan| |changeWeightLevel| |setErrorBound|
- |uncouplingMatrices| |reduceLODE| |d02ejf| |clearTable!| |Nul|
- |splitDenominator| |palgLODE| |tableau| |showSummary|
- |normalizedAssociate| |innerEigenvectors| |plus| |pquo|
- |exprHasWeightCosWXorSinWX| |f01mcf| |log10| |readUInt8!| |leftUnits|
- |complexLimit| |randnum| |nullity| |f07aef| |tanhIfCan| |upperBound|
- |antiCommutative?| |enumerate| |convert| |Si| |removeSquaresIfCan|
- |bitand| |localReal?| |moebius| |rotatez| |zeroSquareMatrix|
- |separateFactors| |normalDenom| |monomial| |associative?| |redPol|
- |rotate| |bitior| |numberOfVariables| |characteristicSet|
- |setprevious!| |terms| |trigs2explogs| |multivariate| |times|
- |nextPrime| |stoseInvertible?| |defineProperty| |saturate| |solve|
- |dominantTerm| |stFunc1| |mainContent| |nthFlag| |leftQuotient|
- |setProperty| |LiePoly| |compiledFunction| |e02zaf| |variables|
- |OMputObject| |key?| |simpleBounds?| |createIrreduciblePoly|
- |iCompose| |unitsColorDefault| |OMputApp| |prepareDecompose|
- |atrapezoidal| |nil?| |sh| |exponentialOrder| |octon| |coerceS|
- |graphCurves| |zeroVector| |hitherPlane| |asimpson| |poisson| |c02agf|
- |makeCrit| |OMconnectTCP| |trivialIdeal?| |errorKind| |maxRowIndex|
- |exprHasAlgebraicWeight| |OMputEndError| |monom| |newTypeLists|
- |viewport3D| |superscript| |c05nbf| |d01asf| |rewriteSetWithReduction|
- |rem| |nlde| |product| |leadingIdeal| |sturmVariationsOf| |nor|
- |chvar| |findConstructor| |brillhartIrreducible?| |variable?| |iiacot|
- |binaryFunction| |quo| |Gamma| |sortConstraints| |nonSingularModel|
- |ceiling| |ocf2ocdf| |taylor| |linearlyDependentOverZ?|
- |linearPolynomials| |integralAtInfinity?| |acothIfCan|
- |leftTraceMatrix| |cycleLength| |common| |tryFunctionalDecomposition?|
- |fillPascalTriangle| |lintgcd| |laurent| |polyRicDE|
- |cyclotomicDecomposition| |binarySearchTree| |getStream| |presuper|
- |split| |e02bef| |div| |innerSolve1| |OMputEndBind| |finite?|
- |puiseux| |scan| |unitVector| |idealiser| |numberOfDivisors| SEGMENT
- |s15aef| |dmpToP| |solveRetract| |exquo| |removeSinSq|
- |leftFactorIfCan| |youngGroup| |trim| |dmpToHdmp| |modularFactor|
- |internalZeroSetSplit| UTS2UP EQ ~= |nodeOf?| |multiplyCoefficients|
- |curveColor| |simplifyPower| |linearAssociatedOrder| |inv|
- |hostPlatform| |RittWuCompare| |cons| |associatorDependence| |in?|
- |symmetricSquare| |cothIfCan| |integers| |#| |ground?| |hasSolution?|
- |monomial?| |primlimintfrac| |enterPointData| |factorial| |notelem|
- |cAcos| ~ |headReduced?| |outputArgs| |OMencodingXML| |ground|
- |continuedFraction| |subscript| |green| |bringDown| |zeroDim?|
- |functionIsOscillatory| |showArrayValues| |extractIfCan| |intensity|
- |inspect| |lazyPseudoDivide| |coerce| |options| |df2ef| |one?|
- |coHeight| |leadingMonomial| |showTheRoutinesTable| |scopes|
- |divergence| |rangeIsFinite| |createMultiplicationTable|
- |integralMatrixAtInfinity| |euclideanNormalForm| |ravel| |construct|
- |eof?| |OMlistCDs| |boundOfCauchy| |sinhcosh| |leadingCoefficient|
- |complexElementary| |horizontalTab| |createNormalPoly| |digits| |/\\|
- |meatAxe| |lazyPseudoRemainder| |mdeg| |explicitlyEmpty?| |reshape|
- |primitiveMonomials| |tanh2trigh| |eigenMatrix| |resize| |external?|
- |source| |approximants| |sizeLess?| |\\/| |numerator| |fixedDivisor|
- |yCoord| |string| |dn| |topFortranOutputStack|
- |removeRedundantFactors| |reductum| |child| |setDifference| |hermite|
- |pushucoef| |getlo| |OMputInteger|
- |generalizedContinuumHypothesisAssumed?| |extendedint|
- |totalDifferential| |gradient| |iicosh| |cAcosh| |e02bcf|
- |endSubProgram| |digit| |duplicates?| |clipBoolean| |call|
- |showAttributes| |column| |irVar| |gderiv| |expint| |hasTopPredicate?|
- |Lazard2| |OMgetInteger| |polynomialZeros| |noValueMode| |subMatrix|
- |geometric| |localUnquote| |skewSFunction| |e04fdf| |bsolve|
- |OMputEndAttr| |target| |quasiRegular| |equiv| |empty?|
- |realEigenvalues| |makeop| |dflist| |unmakeSUP| |update|
- |selectOptimizationRoutines| |getGraph| |lllip| |numericalIntegration|
- |square?| |root?| |ref| |divideExponents| |monomialIntPoly|
- |chebyshevU| |getButtonValue| |hasoln| |qqq| |rowEchLocal|
- |setLabelValue| |nextsubResultant2| |genus| |internalInfRittWu?|
- |iicsch| |element?| |currentCategoryFrame| |splitLinear| |c06frf|
- |csubst| |chiSquare1| |lyndon?| |expandLog| |primeFrobenius|
- |OMputBind| |traceMatrix| |virtualDegree| |numericalOptimization|
- |gethi| |extractPoint| |sort!| |cLog| |identity| |limitedIntegrate|
- |drawToScale| |merge!| |nextPrimitivePoly| |zCoord| |pointLists|
- |LiePolyIfCan| |rightRecip| |partitions| |moduloP| |primlimitedint|
- |setMinPoints| |nilFactor| |sech2cosh| |clipWithRanges|
- |jordanAdmissible?| |position| |quasiComponent| |subst|
- |matrixConcat3D| |finiteBasis| |trapezoidalo| |any?|
- |ScanFloatIgnoreSpacesIfCan| |solid?| |genericLeftTrace|
- |exteriorDifferential| |round| |prolateSpheroidal| |infiniteProduct|
- |quotientByP| |even?| |qPot| |logpart| |red| |stoseInvertible?reg|
- |mapBivariate| |contract| |cExp| |atanhIfCan| |hexDigit|
- |solveLinearPolynomialEquationByFractions| GE |mapMatrixIfCan|
- |distance| |inRadical?| |constantCoefficientRicDE| |verticalTab|
- |nextNormalPrimitivePoly| |incr| |initials| |iiacoth| |birth|
- |factorAndSplit| GT |makeViewport2D| |minIndex| |cycleTail|
- |raisePolynomial| |delta| |solve1| |asecIfCan| |hi| |parametersOf|
- |swap| |edf2df| |normalizeAtInfinity| |setelt| |quotient| |transform|
- |super| LE |objects| |extractIndex| |optpair| |dioSolve| |testModulus|
- |e04ucf| |plenaryPower| |rewriteIdealWithQuasiMonicGenerators|
- |testDim| |minimalPolynomial| |e01sff| |e04naf| LT |f04axf| |base|
- |numberOfImproperPartitions| |noncommutativeJordanAlgebra?|
- |oddInfiniteProduct| |transcendenceDegree| |duplicates|
- |internalDecompose| |copy| |iflist2Result| |palgLODE0| |lexGroebner|
- |startTableInvSet!| |squareFreePart| |less?| |Vectorise| |ranges|
- |overset?| |c06gcf| |basicSet| |normDeriv2| |upDateBranches|
- |stronglyReduce| |changeName| |jokerMode| |reciprocalPolynomial|
- |OMReadError?| |constantToUnaryFunction| |idealiserMatrix| |s18aef|
- |tube| |rightMinimalPolynomial| |closed| |OMgetEndAttr|
- |OMUnknownSymbol?| |hue| |algintegrate| |bumptab1|
- |univariatePolynomials| |symmetricDifference| |monomialIntegrate|
- |fortranLinkerArgs| |linSolve| |dim| |prepareSubResAlgo| |iExquo|
- |radicalEigenvalues| |updatF| |torsionIfCan| |belong?| |lifting|
- |tab1| |startStats!| |figureUnits| |dAndcExp| |f02fjf| |e01bgf|
- |outerProduct| |irCtor| |set| |mindeg| |squareMatrix| |csch2sinh|
- |someBasis| |linGenPos| |autoCoerce| |s17aef| |roughBasicSet| |npcoef|
- |roughEqualIdeals?| |OMputEndObject| |match?| |lexico| |lowerCase?|
- |primeFactor| |rightPower| |quotedOperators| |iFTable|
- |integralLastSubResultant| |option?| |rightScalarTimes!| |complex?|
- |viewpoint| |goto| |rightFactorIfCan| |iiacsch| |radicalSolve|
- |formfeed| |leftDivide| |decimal| |prevPrime| |gcdPolynomial|
- |iisqrt2| |nullary| |supersub| |lowerPolynomial| |rationalPoints|
- |tracePowMod| |exponents| |hclf| |unitNormalize| |insertRoot!|
- |viewDeltaXDefault| |f02akf| |subPolSet?| |build| |iprint|
- |groebnerFactorize| |Is| |rightQuotient| |support| |convergents|
- |intersect| |areEquivalent?| |latex| |generate| |readByte!| |coord|
- |previous| |conjunction| |printStats!| |OMsetEncoding| |firstDenom|
- |selectAndPolynomials| |cycleSplit!| |Lazard| |lowerCase!|
- |mainVariables| |dequeue!| |carriageReturn| |numberOfFactors|
- |reorder| |ran| |null| |fibonacci| |HermiteIntegrate| |rightOne|
- |fortranDoubleComplex| |incrementBy| |resetVariableOrder| |e02ajf|
- |aQuartic| |bezoutResultant| |operation| |fullPartialFraction|
- |critBonD| |not| |mainForm| |semicolonSeparate| |predicate|
- |factorSquareFreePolynomial| |mapGen| |ddFact| |deref| |expand|
- |tan2trig| |transcendent?| |shiftRoots| |powmod| |d01anf| |e02dff|
- |showTheIFTable| |and| |basis| |mainVariable| |expenseOfEvaluation|
- |filterWhile| |BumInSepFFE| |hspace| |factorPolynomial| |or|
- |asechIfCan| |slex| |charthRoot| |decomposeFunc| |encodingDirectory|
- |filterUntil| |factorSquareFree| |iisin| |expextendedint| |fglmIfCan|
- |d01amf| |usingTable?| |composite| |function| |hdmpToDmp| |xor|
- |cyclic?| |symmetricTensors| |singularitiesOf| |doubleFloatFormat|
- |select| |region| |setScreenResolution3D| |rischDEsys|
- |squareFreeLexTriangular| |cot2tan| |redmat| |univariate?| |recip|
- |case| |list?| |OMgetBVar| |semiLastSubResultantEuclidean| |polygamma|
- |modTree| |isOr| |rightGcd| |padicallyExpand| |setOfMinN| |Zero|
- |minPoints| |compose| |lfinfieldint| |nthExpon|
- |resultantReduitEuclidean| |setClosed| |primextendedint| |nonQsign|
- |logGamma| |One| |resultantnaif| |commutator| |LagrangeInterpolation|
- |OMsupportsSymbol?| |floor| |integerIfCan| |airyBi| |normalDeriv|
- |OMputEndAtp| |var2Steps| |zeroDimPrime?| |setright!|
- |fractionFreeGauss!| |s17ahf| |predicates| |gbasis| |irDef|
- |rightRemainder| |putGraph| |monicRightDivide| |norm| |zeroMatrix|
- |readInt32!| |getGoodPrime| |kernel| |string?| |repSq| |jacobi|
- |parabolicCylindrical| |evaluate| |FormatRoman| |OMencodingBinary|
- |changeThreshhold| |list| |cross| |setsubMatrix!| |conditionP|
- |symbolTableOf| |morphism| |isQuotient| |asinIfCan| |content|
- |readLine!| |basisOfLeftNucloid| |meshPar1Var| |draw| |rowEch|
- |f02aff| |failed| |leftScalarTimes!| |e04dgf| |graphStates|
- |leadingTerm| |approxSqrt| |readInt8!| |schema| |computeCycleLength|
- |reify| |lookupFunction| |cycleRagits| |critMonD1| |s21bdf| |limit|
- |generic?| |s18adf| |drawStyle| |groebSolve| |modularGcd| |principal?|
- |patternVariable| |wordInStrongGenerators| |setchildren!| |getCode|
- |printStatement| |perfectSquare?| |macroExpand| |solveLinear|
- |jvmPublic| |tanAn| |printCode| |removeRoughlyRedundantFactorsInPols|
- |lcm| |leadingSupport| |diag| |changeMeasure| |limitPlus|
- |beauzamyBound| |makeObject| |quasiRegular?| |calcRanges| |setrest!|
- |numberOfHues| |log2| |tableForDiscreteLogarithm| |f01rdf| |height|
- |algebraicDecompose| |open| |expPot| |normalizeIfCan| |swapRows!|
- |e01baf| |argumentListOf| |coef| |tanintegrate| |LowTriBddDenomInv|
- |createPrimitiveNormalPoly| |genericRightTrace| |append| |OMputAtp|
- |deriv| |particularSolution| |drawComplex| |getPickedPoints|
- |qinterval| |d02raf| |central?| |rischNormalize| |f02bjf| |tRange|
- |gcd| |components| |d02kef| |contains?| |pdct| |exprex| |sign|
- |binaryTournament| |s18def| |inverse| |userOrdered?| |false|
- |leviCivitaSymbol| |goodnessOfFit| |nthRoot| |lazyIntegrate| |nand|
- |assign| |operations| |mathieu22| |clipSurface| |twist|
- |evaluateInverse| |OMgetObject| |orbit| |setImagSteps| |splitConstant|
- |reducedQPowers| |f04arf| |infLex?| |monicDecomposeIfCan|
- |OMconnInDevice| |closedCurve| |e01saf| |mapDown!| |linearMatrix|
- |vark| |createNormalPrimitivePoly| |selectIntegrationRoutines|
- |leftUnit| |changeBase| |OMputBVar| |oddintegers| |ef2edf|
- |returnTypeOf| |reopen!| |coordinates| |hMonic| |expintfldpoly|
- |parts| |minPol| |tanSum| |increase| |ignore?| |pseudoRemainder|
- |fixedPointExquo| |jvmInterface| |algebraicSort| |fixedPoint| |rk4|
- |log| |polar| |split!| |kroneckerDelta| |exprToUPS| |llprop| |btwFact|
- |inHallBasis?| |jvmStringConstantTag| |nil| |drawCurves|
- |modifyPointData| |typeForm| |divide| |axes| |ideal| |blankSeparate|
- |print| |dimensions| |e04jaf| |OMsupportsCD?| |baseRDE| |OMputEndBVar|
- |localIntegralBasis| |lepol| |jvmUTF8ConstantTag| |coerceImages|
- |perspective| |leftAlternative?| |resolve| |nextNormalPoly|
- |mightHaveRoots| |bubbleSort!| |jvmStrict| |readIfCan!| BY
- |chebyshevT| |rationalFunction| |makeTerm| |f02adf| |doubleResultant|
- |alphabetic?| |Ei| |iteratedInitials| |keys| |rdregime| |sample|
- |approximate| |cartesian| |d02bbf| |putProperty|
- |createPrimitiveElement| |multiple?| |complex| |pastel|
- |jvmFloatConstantTag| |univariatePolynomialsGcds| |delete!| |part?|
- |constantIfCan| |rotate!| |leftExactQuotient| |mapSolve|
- |fortranInteger| |mirror| |symbolIfCan| |An| |setTopPredicate|
- |countRealRootsMultiple| |fortran| |externalList| |lineColorDefault|
- |rootProduct| |addMatch| |pointPlot| |possiblyInfinite?|
- |outputBinaryFile| |nextsousResultant2| |tail| |mainMonomial|
- |branchIfCan| |cup| |subscriptedVariables| |before?| |schwerpunkt|
- |jvmSynchronized| |escape| |setProperties| |f04mbf| |contours| |abs|
- |computeInt| F |retractable?| |sort| |paraboloidal| |orbits|
- |SturmHabichtSequence| |factorGroebnerBasis| |rspace| NOT
- |removeSinhSq| |explimitedint| |f04jgf| |putProperties|
- |branchPointAtInfinity?| |yellow| |f07adf| |powers| |unknown| |e02dcf|
- |wordsForStrongGenerators| OR |coefficient| |parabolic| |stopTable!|
- |OMread| |normalForm| |random| |kmax| |withPredicates| |fintegrate|
- |complexNumericIfCan| |removeRedundantFactorsInPols| AND |points|
- |quatern| |ridHack1| |elRow1!| |member?| |distFact|
- |commonDenominator| |d03eef| |numberOfComponents| |rank|
- |nthRootIfCan| |laurentIfCan| |solveInField| |purelyTranscendental?|
- |shift| |makeEq| |tab| |maximumExponent| |viewWriteAvailable|
- |partition| |basisOfMiddleNucleus| |newLine|
- |internalSubQuasiComponent?| |radPoly| |remainder| |doublyTransitive?|
- |byteBuffer| |li| |selectsecond| |exists?| |setMaxPoints3D| |iomode|
- |double?| |showFortranOutputStack| |bivariatePolynomials|
- |fortranLiteralLine| |pop!| |critT| |lfintegrate| |sechIfCan|
- |KrullNumber| |factor1| |bindings| |euclideanGroebner| |setleft!|
- |listRepresentation| |eigenvectors| |discreteLog|
- |expenseOfEvaluationIF| |crushedSet| |isobaric?| |cCosh| |minColIndex|
- |vertConcat| |groebner?| |OMclose| |e02akf| |create3Space| |remove|
- |generalizedEigenvectors| |leadingIndex| |cSinh| |nsqfree|
- |youngDiagram| |discriminantEuclidean| |minPoints3D|
- |antisymmetricTensors| |eigenvector| |rightExtendedGcd|
- |highCommonTerms| |cyclePartition| |zero?| |sncndn| |character?|
- |bracket| |binomThmExpt| |linears| |OMgetAtp| |subNode?| |OMreadStr|
- |taylorRep| |last| |script| |outputSpacing| |prod| |upperCase?|
- |s18dcf| |makeViewport3D| |digit?| |uniform| |lists| |getMatch|
- |leaf?| |indicialEquation| |invertible?| |assoc| |expr| |vedf2vef|
- |PDESolve| |iisech| |cycles| |multinomial| |axesColorDefault|
- |purelyAlgebraic?| |compound?| * |alternative?| |rarrow| |exprToXXP|
- |maxint| |patternMatch| |janko2| |stopTableInvSet!| |rotatex| |units|
- |rightTraceMatrix| |harmonic| |generalInfiniteProduct| |univcase|
- |c06eaf| |tex| |computePowers| |setOrder| |rightLcm| |antisymmetric?|
- |leftNorm| |isAnd| |iibinom| |tubeRadius| |pushdown| |colorDef|
- |partialNumerators| |infieldIntegrate| |cCsc| |definingInequation|
- |createZechTable| |loadNativeModule| |nullSpace| |bezoutMatrix|
- |leftDiscriminant| |numberOfFractionalTerms| |pdf2df|
- |viewThetaDefault| |entry| |nthFactor| |variable| |realZeros|
- |rationalPower| |df2mf| |resultantEuclideannaif| |addBadValue|
- |neglist| |exQuo| |conjug| |optimize| |makingStats?| = |polygon?|
- |iterators| |minimize| |fixPredicate| |relerror| |lighting|
- |uniform01| |whitePoint| |alphanumeric?| |besselJ| |leftReducedSystem|
- |isAtom| |next| |readUInt32!| |primes| |unit| |qualifier| |code|
- |setLegalFortranSourceExtensions| |antiAssociative?| |midpoints| <
- |normalise| |SturmHabichtCoefficients| |separate| |readUInt16!|
- |OMcloseConn| |lazyEvaluate| |property| |quartic| |integerBound|
- |pointSizeDefault| |cubic| |outputAsTex| > |lazyIrreducibleFactors|
- |binding| |category| |jvmNative| |prefix| |binaryTree| |tubePoints|
- |bipolarCylindrical| |leftRegularRepresentation| |integrate|
- |OMgetBind| |setAdaptive3D| <= |triangularSystems| |datalist| |domain|
- |tree| |findBinding| |point?| |rewriteIdealWithHeadRemainder|
- |deepestTail| |d01fcf| |firstSubsetGray| |lllp| |mkPrim|
- |internalAugment| |makeGraphImage| >= |laplacian| |color|
- |retractIfCan| |stoseInvertible?sqfreg| |currentSubProgram|
- |pmintegrate| |listOfLists| |imports| |structuralConstants| |groebner|
- |weighted| |linefeed| |f02abf| |f02aaf| |initTable!| |upperCase| |zag|
- |LyndonWordsList1| |ODESolve| |innerint| |headRemainder|
- |dimensionsOf| |argscript| |df2st| |positiveSolve|
- |jvmInterfaceMethodConstantTag| |rootPower| |permanent| |divideIfCan!|
- |f02xef| + |maxdeg| |subresultantSequence| |subspace| |varList| |top|
- |copy!| |probablyZeroDim?| |curve?| |arrayStack| |setleaves!|
- |integralCoordinates| |OMgetEndError| -
- |generalizedContinuumHypothesisAssumed| |continue| |physicalLength!|
- |environment| |shape| |derivative| |constructor| |reduction| |matrix|
- |isPlus| |semiResultantEuclidean2| |output| |imagK| /
- |splitSquarefree| |B1solve| |plotPolar| |iiasin| |swapColumns!| |sub|
- |test| |elaborateFile| |zerosOf| |modifyPoint| |GospersMethod|
- |outputList| |queue| |certainlySubVariety?| |relativeApprox| |mapUp!|
- |preprocess| |top!| |setColumn!| |cosIfCan| |extract!|
- |clearTheIFTable| |check| |leadingExponent| |flexibleArray|
- |commutative?| |unaryFunction| |ode| |setRealSteps| |makeYoungTableau|
- |delay| |varselect| |Ci| |complexForm| |transpose|
- |characteristicPolynomial| |lazyPseudoQuotient| |maxColIndex|
- |unrankImproperPartitions1| |degreePartition| |laguerre| |nthr|
- |pair?| |computeCycleEntry| |imagi| |message| |polygon| |critMTonD1|
- |selectPDERoutines| |identitySquareMatrix| |genericLeftNorm| |pile|
- |polarCoordinates| |maxrow| |s19adf| |stopTableGcd!| |cAtanh|
- |fractionPart| |stoseInternalLastSubResultant| |permutationGroup|
- |package| |members| |host| |parseString| |rationalPoint?| |cPower|
- |expressIdealMember| |squareFreeFactors| |primPartElseUnitCanonical|
- |OMputVariable| |unknownEndian| |quadraticNorm| |generalSqFr|
- |elements| |writeLine!| |coerceListOfPairs| |pack!| |trunc| |nothing|
- |zoom| |denomRicDE| |genericLeftMinimalPolynomial| |rowEchelon|
- |imagj| |quadraticForm| |rk4qc| |partialFraction| |f2df| |solveid|
- |totolex| |exportedOperators| |cyclicSubmodule| |currentEnv|
- |showTheSymbolTable| |argumentList!| |discriminant| |symbol?| |cAcot|
- |iroot| |iiacsc| |polCase| |LyndonBasis| |updatD| |getProperties|
- |pushup| |safeFloor| |psolve| |weakBiRank| |meshPar2Var|
- |squareFreePolynomial| |complexNormalize| |getMultiplicationMatrix|
- |complexEigenvectors| |permutation| |e01daf| |sincos| |minRowIndex|
- |leftGcd| |Hausdorff| |extractTop!| |s18aff| |diagonal|
- |outputMeasure| |symbolTable| |rangePascalTriangle| |makeUnit|
- |taylorQuoByVar| |c06ecf| |genericLeftDiscriminant| |mainVariable?|
- |getZechTable| |createLowComplexityTable| |numberOfComputedEntries|
- |purelyAlgebraicLeadingMonomial?| |integer?| |messagePrint|
- |numberOfCycles| |explogs2trigs| |scalarMatrix|
- |pushFortranOutputStack| |OMwrite| |leftLcm| |closedCurve?| |pol|
- |mpsode| |limitedint| |lazyPquo| |cCos| |systemCommand| |normFactors|
- |pattern| |write!| |popFortranOutputStack| |generator| |fprindINFO|
- |rightFactorCandidate| |basisOfRightNucleus| |s19abf| |paren| |parent|
- |lex| |bfKeys| |times!| |makeResult| |outputAsFortran| |oddlambert|
- |stoseInvertibleSetsqfreg| |jvmClassConstantTag| |cosh2sech|
- |badValues| |splitNodeOf!| |solid| |makeSin| |setelt!| |clearCache|
- |setIntersection| |toroidal| |numericIfCan| |normal| |tValues|
- |orthonormalBasis| |stFunc2| |startPolynomial| |palgRDE| |baseRDEsys|
- |component| |cyclicCopy| |droot| |space| |is?| |factorByRecursion|
- |homogeneous?| |every?| |resultant| |normal01| |inputBinaryFile|
- |symmetricRemainder| |var1Steps| |hyperelliptic| |iiatanh|
- |currentScope| |augment| |associatedSystem| |realSolve|
- |extractBottom!| |simpsono| |cyclotomic| |aQuadratic| |realRoots|
- |divideIfCan| |s13aaf| |primitivePart| |iiatan| |coth2trigh| |bipolar|
- |whatInfinity| |integral| |linear?| |jvmAbstract| |mappingAst|
- |primaryDecomp| |inputOutputBinaryFile| |intermediateResultsIF|
- |invmod| |singular?| |max| |newSubProgram| |push!| |constantKernel|
- |plus!| |reverseLex| |maxrank| |alternating| |f01brf| |xCoord|
- |stosePrepareSubResAlgo| |voidMode| |f01bsf| |OMgetEndApp|
- |OMgetSymbol| |removeConstantTerm| |rightExactQuotient| |bat| |f02awf|
- |combineFeatureCompatibility| |cotIfCan| |removeZero| |idealSimplify|
- |wreath| |kovacic| |romberg| |secIfCan| |coercePreimagesImages| |char|
- |headAst| |lazyGintegrate| |ratDsolve| |rules| |pseudoQuotient|
- |viewSizeDefault| |nextPrimitiveNormalPoly| |yCoordinates|
- |wordInGenerators| |e02bbf| |endOfFile?| |thetaCoord| |f02ajf|
- |deleteProperty!| |normal?| |s19acf| |modulus| |functorData|
- |pushuconst| |pascalTriangle| |setvalue!| |elliptic| |cfirst|
- |composites| |real?| |OMputEndApp| |step| |hasHi| |genericPosition|
- |selectMultiDimensionalRoutines| |pleskenSplit| |setStatus!| |failed?|
- |internalIntegrate| |solveLinearlyOverQ| |lyndon| |vector|
- |collectQuasiMonic| |stirling1| |appendPoint| |pureLex| |trace2PowMod|
- |controlPanel| |flexible?| |specialTrigs| |differentiate|
- |getBadValues| |crest| |randomLC| |postfix| |sequence|
- |minimumExponent| |euclideanSize| |commaSeparate| |conjugates|
- |topPredicate| |integral?| |redPo| |palgextint0| |principalAncestors|
- |changeVar| |iicsc| |LyndonCoordinates| |f01qcf| |typeLists| |entry?|
- |gcdcofact| |irreducibleRepresentation| |float| |inconsistent?|
- |pmComplexintegrate| |superHeight| |integralRepresents| |anfactor|
- |rootNormalize| |e02aef| |infRittWu?| |patternMatchTimes|
- |lazyResidueClass| |positive?| |pow| |characteristic| |infinite?|
- |light| |unprotectedRemoveRedundantFactors| |curve| |OMgetError|
- |addPoint2| |maxIndex| |getOrder| |cscIfCan| |jacobiIdentity?|
- |diophantineSystem| |rquo| |operators| |removeDuplicates!| |declare|
- |pToHdmp| |factorials| |associates?| |signatureAst| |principalIdeal|
- |mr| |ramified?| |HenselLift| |viewZoomDefault| |unary?| |OMputAttr|
- |tablePow| |vspace| |lieAdmissible?| |negative?| |tanh2coth|
- |squareFreePrim| |totalfract| |cos2sec| |bottom!| |makeVariable|
- |rootDirectory| |key| |extensionDegree| |submod| |shufflein|
- |separant| |LazardQuotient| |readable?| |s21bcf| |f04mcf|
- |resultantEuclidean| |f04asf| |bytes| |isOp| |acoshIfCan| |cAcsch|
- |outputForm| |returns| |legendreP| |linearPart| |upperCase!|
- |filename| |se2rfi| |cot2trig| |integralMatrix| |mesh| |setClipValue|
- |flatten| |jordanAlgebra?| |elaboration| |child?| |clipPointsDefault|
- |dark| |selectfirst| |randomR| |aLinear| |fortranCarriageReturn|
- |mainDefiningPolynomial| |mainKernel| |readInt16!| |reset|
- |doubleDisc| |nextItem| |getDatabase| |minimumDegree| |f02wef| |parse|
- |OMreceive| |lambert| |mergeDifference| |enterInCache| |iipow|
- |quickSort| |eigenvalues| |jvmFinal| |multiplyExponents| |squareFree|
- |selectSumOfSquaresRoutines| |capacity| |symmetricProduct| |e02agf|
- |d01alf| |lp| |commutativeEquality| |write| |diagonal?|
- |toseInvertible?| |powerSum| |f2st| |stronglyReduced?| |fill!|
- |numberOfPrimitivePoly| |acosIfCan| |isConnected?| |save|
- |standardBasisOfCyclicSubmodule| |elaborate| |shellSort| |outputFixed|
- |overbar| |clip| |screenResolution| |horizConcat| |s17dgf| UP2UTS
- |smith| |coerceL| |Frobenius| |cyclic| |denominator| |factorFraction|
- |validExponential| |algSplitSimple| |gcdPrimitive| |singRicDE|
- |OMgetAttr| |dual| |moreAlgebraic?| |systemSizeIF| |weights| |besselK|
- |subtractIfCan| |fortranCompilerName| |primitivePart!| |lazyPrem|
- |style| |constantOpIfCan| |removeCosSq| |generalizedEigenvector|
- |zeroDimPrimary?| |heap| |cardinality| |e02adf| |diagonals| |constant|
- |d01ajf| |replaceKthElement| |qfactor| |jvmStatic| |makeCos|
- |jacobian| |e02ahf| |matrixGcd| |integralBasisAtInfinity| |clikeUniv|
- |nodes| |reduceByQuasiMonic| |doubleRank| |coth2tanh| |approxNthRoot|
- |laguerreL| |useNagFunctions| |sts2stst| |clipParametric|
- |triangular?| |iiasinh| |reducedContinuedFraction|
- |subresultantVector| |move| |divisor| |totalDegree| |minset|
- |firstNumer| |radix| |mainCoefficients| |degreeSubResultantEuclidean|
- |listLoops| |optional?| |bumprow| |iiasech| |frst| |innerSolve|
- |basisOfCenter| |problemPoints| |euler| |nthCoef| |processTemplate|
- |oblateSpheroidal| |clearTheFTable| |bfEntry| |sqfrFactor| |index|
- |SturmHabichtMultiple| |palgintegrate| |bitTruth| |setfirst!|
- |tanIfCan| |expintegrate| |rightRegularRepresentation|
- |seriesToOutputForm| |c06fpf| |cschIfCan| |complement| |UP2ifCan|
- |differentialVariables| |reducedSystem| |backspace| |hostByteOrder|
- |s14baf| |rdHack1| |createMultiplicationMatrix| |d02bhf|
- |closeComponent| |xn| |cAsech| |d02cjf| |denominators| |laurentRep|
- |alphanumeric| |tensorProduct| |powerAssociative?| |realEigenvectors|
- |writeBytes!| |pair| |init| |setEmpty!| |c05pbf| |resultantReduit|
- |separateDegrees| |parents| |e01bef| |sup| |setref| |mapmult|
- |headReduce| |has?| |OMgetFloat| |midpoint| |rationalApproximation|
- |iiasec| |adaptive?| |numberOfNormalPoly| |mappingMode| |ptFunc|
- |lastSubResultantEuclidean| |mapUnivariate| |d02gaf| |unparse|
- |lambda| |applyRules| |printInfo| |back| |resetBadValues|
- |iterationVar| |satisfy?| |eq| |seed| |att2Result| |diagonalProduct|
- |jvmLongConstantTag| |rational| |graphs| |finiteBound| |moduleSum|
- |fracPart| |iter| |indicialEquationAtInfinity| |phiCoord| |exponent|
- |flagFactor| |allRootsOf| |cCsch| |gramschmidt| |internalSubPolSet?|
- |d02gbf| |initiallyReduce| |setEpilogue!| |mathieu12| |prologue|
- |s20adf| |showAll?| |univariatePolynomial| |s17adf| |interpretString|
- |invertibleSet| |f02agf| |merge| |nonLinearPart|
- |jvmDoubleConstantTag| |henselFact| |dequeue| |d03edf| |high|
- |monicModulo| |findCycle| |dot| |repeatUntilLoop| |buildSyntax| |tanQ|
- |leftRecip| |triangulate| |OMmakeConn| |computeBasis| |sequences|
- |size| |ord| |countable?| |unitCanonical| |setFormula!| |insertTop!|
- |lowerCase| |changeNameToObjf| |stirling2| |unrankImproperPartitions0|
- |exp| |listexp| |OMencodingUnknown| |rename!| |sizePascalTriangle|
- |readBytes!| |low| |fortranReal| |imagJ| |addmod| |charClass|
- |completeEchelonBasis| |pushNewContour| |second| |iicot| |complete|
- |scanOneDimSubspaces| RF2UTS |viewPosDefault| |indices| |binomial|
- |create| |third| |f02axf| |nextPartition| |rootsOf| |mkcomm|
- |eisensteinIrreducible?| |c02aff| |void| |writable?| |adaptive3D?|
- |bernoulli| |f07fdf| |outlineRender| |physicalLength|
- |perfectNthPower?| |setMaxPoints| |sylvesterSequence| |exactQuotient!|
- |s21baf| |sin2csc| |fortranDouble| |balancedBinaryTree|
- |chainSubResultants| |leftZero| |debug| |removeZeroes| |evenlambert|
- |intPatternMatch| |float?| |asinhIfCan| |charpol| |complexEigenvalues|
- D |bumptab| |cSin| |completeSmith| |fixedPoints| |printTypes|
- |getProperty| |cycle| |ReduceOrder| |socf2socdf| |stop| |overlabel|
- |loopPoints| |completeEval| |front| |node| |bernoulliB|
- |useEisensteinCriterion| |diagonalMatrix| |realElementary| |rootOf|
- |palgextint| |diff| |unravel| |find| |retract| |powern| |show|
- |exponential1| |middle| |roman| |supRittWu?| |lagrange| |constantLeft|
- |iiperm| |cyclotomicFactorization| |module| |ParCond| |expandPower|
- |leftRank| |elRow2!| |rightTrace| |reseed| |normInvertible?| |trace|
- |push| |rootKerSimp| |monomRDEsys| |addiag| |pointData| |center|
- |printHeader| |f07fef| |bivariate?| |copies| |trigs|
- |getVariableOrder| |rule| |size?| |factorSFBRlcUnit| |debug3D|
- |besselY| |generalizedInverse| |setPrologue!|
- |transcendentalDecompose| |elliptic?| |mainCharacterization|
- |mapExpon| |SturmHabicht| |forLoop| |palglimint0| |bag|
- |numFunEvals3D| |iitan| |addMatchRestricted| |cyclicGroup|
- |functionIsContinuousAtEndPoints| |s17dhf| |subHeight|
- |linearAssociatedExp| |bit?| |internalIntegrate0| |erf| |null?|
- |rowEchelonLocal| |remove!| |lhs| |rightDiscriminant|
- |quasiMonicPolynomials| |setPoly| |fractRagits| |f01ref| |digamma|
- |node?| |setLength!| |d01akf| |rhs| |sparsityIF| |infix| |makeRecord|
- |addPointLast| |f04maf| |graeffe| |OMlistSymbols| |coefficients|
- |seriesSolve| |RemainderList| |rightCharacteristicPolynomial|
- |trueEqual| |complexSolve| |concat| |packageCall| |recoverAfterFail|
- |extendedIntegrate| |dilog| |edf2efi| |callForm?| |c06gqf| |width|
- |c05adf| |opeval| |primextintfrac| |credPol| |jvmIntegerConstantTag|
- |bitLength| |sin| |rewriteSetByReducingWithParticularGenerators|
- |getMultiplicationTable| |exprToGenUPS| |generalTwoFactor| |mantissa|
- |isPower| |genericLeftTraceForm| |backOldPos| |equation|
- |setMinPoints3D| |rename| |exponential| |cos| |nthExponent|
- |errorInfo| |subNodeOf?| |musserTrials| |decompose| |cCoth|
- |numberOfComposites| |cAtan| |totalGroebner| |coleman| |f04faf| |tan|
- |leftExtendedGcd| |basisOfNucleus| |cycleEntry| |mathieu23| |untab|
- |imaginary| |OMputError| |jvmTransient| |OMputFloat| |sinh2csch| |cot|
- |createRandomElement| |s13acf| |rational?| |depth| |range| |routines|
- |inR?| |numberOfOperations| |outputFloating| |createGenericMatrix|
- |sec| |quadratic?| |isTimes| |sinIfCan| |palginfieldint|
- |lastSubResultantElseSplit| |primintfldpoly| |rootBound| |e02ddf|
- |rightTrim| |scaleRoots| |csc| |algebraicOf| |leastAffineMultiple|
- |shiftRight| |zeroDimensional?| |s17dlf| |measure2Result| |isMult|
- |shuffle| |leftTrim| |vconcat| |asin| |select!| |level| |ipow|
- |identification| |optional| |ksec| |denomLODE| |recur|
- |selectODEIVPRoutines| |fortranLiteral| |regime| |multisect|
- |choosemon| |aspFilename| |ScanFloatIgnoreSpaces| |exptMod|
- |primPartElseUnitCanonical!| |basisOfRightAnnihilator|
- |basisOfLeftNucleus| |checkForZero| |leftPower| |resetNew| |binary|
- |imagE| |d01bbf| |graphState| |infinityNorm| |leftMult| |gcdprim|
- |quote| |setnext!| |numberOfMonomials| |s20acf| |cAsec| |f01qef|
- |minordet| |mkIntegral| |maxPoints| |bigEndian| |createPrimitivePoly|
- |critM| |symmetricGroup| |makeMulti| |pointColor| |normalized?|
- |simplifyExp| |weierstrass| |doubleComplex?| |initiallyReduced?|
- |screenResolution3D| |extractClosed| |perfectNthRoot| |irForm| |froot|
- |basisOfCentroid| |s17acf| |factorList| |frobenius| |countRealRoots|
- |monicDivide| |hconcat| |lSpaceBasis| |prem| |primintegrate| |rroot|
- |elem?| |polyred| |numerators| |rst| |leftCharacteristicPolynomial|
- |stiffnessAndStabilityOfODEIF| |entries| |chineseRemainder|
- |eyeDistance| |completeHermite| |hasPredicate?| |OMopenFile|
- |contractSolve| |mapUnivariateIfCan| |box| |over| |csc2sin|
- |deleteRoutine!| |inGroundField?| |cAsinh| |wholeRagits| |index?|
- |status| |littleEndian| |ratDenom| |clearDenominator| |f04adf|
- |ricDsolve| |leastMonomial| |rootPoly| |reducedForm| |leaves|
- |cyclicParents| |sylvesterMatrix| |iitanh| |showRegion|
- |associatedEquations| |algebraic?| |formula| |derivationCoordinates|
- |prinshINFO| |removeDuplicates| |mesh?| |rightUnit| |just|
- |removeRoughlyRedundantFactorsInContents| |inverseLaplace| |odd?|
- |measure| |name| |multMonom| |gcdcofactprim| |arity| |scalarTypeOf|
- |leftOne| |interpret| |airyAi| |sumOfDivisors| |pToDmp| |rootSplit|
- |body| |apply| |constantRight| |OMserve| |insert!| |degree| |subCase?|
- |modularGcdPrimitive| |nextColeman| |row| |bat1| |dmp2rfi| |first|
- |partialQuotients| |normalize| |copyInto!| |mainExpression| |s17dcf|
- |rationalIfCan| |radicalRoots| |insertBottom!| |groebnerIdeal|
- |fortranCharacter| |nrows| |rest| |cosSinInfo| |mulmod| |mix|
- |indicialEquations| |mergeFactors| |startTable!| |rotatey|
- |toseLastSubResultant| |ncols| |printInfo!| |restorePrecision|
- |complexExpand| |characteristicSerie| |partialDenominators|
- |putColorInfo| |mainValue| |factorsOfCyclicGroupSize|
- |OMunhandledSymbol| |leftFactor| |dimension| |rectangularMatrix|
- |mainPrimitivePart| |setVariableOrder| |label| |condition| |OMgetApp|
- |ode1| |factorSquareFreeByRecursion| |mathieu11| |internal?|
- |ellipticCylindrical| |exprHasLogarithmicWeights| |critB| |isExpt|
- |zeroOf| |decrease| |generalPosition| |prindINFO| |lflimitedint|
- |minus!| |distribute| |fortranLogical| |categoryMode| |logIfCan|
- |checkPrecision| |blue| |intChoose| |compactFraction| |s14aaf|
- |listYoungTableaus| |edf2fi| |integralDerivationMatrix| |coerceP|
- |quoByVar| |open?| |complexZeros| |rightAlternative?| |groebgen|
- |rischDE| |qelt| |rCoord| |port| |setPosition|
- |solveLinearPolynomialEquation| |jvmVolatile| |linear| |hessian|
- |qsetelt| |twoFactor| |viewWriteDefault| |writeByte!|
- |zeroSetSplitIntoTriangularSystems| |reduceBasisAtInfinity| |torsion?|
- |algDsolve| |largest| |corrPoly| |iiexp| |inc|
- |halfExtendedResultant1| |supDimElseRittWu?| |karatsubaOnce| |xRange|
- |difference| |getCurve| |t| |signature| |categoryFrame|
- |interactiveEnv| |polynomial| |writeUInt8!| |subSet| |heapSort|
- |point| |c06gsf| |roughBase?| |jvmSuper| |yRange| |s18acf|
- |cyclicEqual?| |interval| |firstUncouplingMatrix| |collectUpper|
- |lfextlimint| |eulerPhi| |cAcsc| |normalizedDivide| |numer|
- |subTriSet?| |zero| |zRange| |tanNa| |palgint| |outputGeneral|
- |factors| |recolor| |connect| |option| |map!| |dec| |substring?|
- |denom| LODO2FUN |d01aqf| |shade| |stopMusserTrials| |cRationalPower|
- |subQuasiComponent?| |c06ebf| |qsetelt!| |block| |series| |minGbasis|
- |curryLeft| |And| |UpTriBddDenomInv| |stoseIntegralLastSubResultant|
- |reindex| |precision| |equality| |monomRDE| |plot| |sumSquares|
- |bitCoef| |suffix?| |permutations| |pi| |toseSquareFreePart| |Or|
- |hypergeometric0F1| |number?| |colorFunction| |shiftLeft|
- |lexTriangular| |PollardSmallFactor| |OMputString| |infinity|
- |totalLex| |Not| |closed?| |pr2dmp| |cCot| |extendedEuclidean|
- |consnewpol| |isList| |prefix?| |coefChoose| |f04qaf| |laplace|
- |e04mbf| |curry| |implies| |mat| |makeFR| |cSech| |min|
- |getExplanations| |viewDefaults| |subResultantGcdEuclidean|
- |semiResultantEuclideannaif| |badNum| |stripCommentsAndBlanks|
- |nullary?| |plusInfinity| |Aleph| |OMgetEndAtp| |cSec| |acsch|
- |rombergo| |swap!| |c06ekf| |true| |jvmProtected| |quadratic|
- |argument| |cycleElt| |minusInfinity| |compile| |palgint0| |checkRur|
- |permutationRepresentation| |rk4a| |alphabetic| |value| |iisqrt3|
- |hash| |isOpen?| |insertMatch| |coordinate| |isEquiv| |generalLambert|
- |absolutelyIrreducible?| |directory| |OMencodingSGML|
- |lazyPremWithDefault| |count| |interpolate| |substitute|
- |antiCommutator| |genericRightMinimalPolynomial| |UnVectorise|
- |createThreeSpace| |minPoly| |cond| |iiabs| |explicitlyFinite?|
- |leftTrace| |biRank| |infix?| |prefixRagits| |sturmSequence|
- |isAbsolutelyIrreducible?| |branchPoint?| |freeOf?| |connectTo|
- |d01gbf| |typeList| |ratpart| |po| |hcrf| |mask|
- |nativeModuleExtension| |numFunEvals| |iiacosh| |linkToFortran|
- |polyRDE| |extractSplittingLeaf| |dictionary| |e01sbf| |type|
- |parameters| |lifting1| |e02daf| |clearTheSymbolTable| |zeroSetSplit|
- |parametric?| |rubiksGroup| |matrixDimensions| |invertIfCan| |bounds|
- |explicitEntries?| |expt| |inverseIntegralMatrixAtInfinity| |order|
- |getOperands| |sayLength| |imagk| |stoseInvertibleSet| |numeric|
- |f01qdf| |leadingBasisTerm| |sinhIfCan| |simplify| |addPoint| |elt|
- |divisorCascade| |any| |thenBranch| |brillhartTrials| |makeSeries|
- |radical| |lfextendedint| |integralBasis|
- |semiResultantReduitEuclidean| |ode2| |direction| |quasiAlgebraicSet|
- |minrank| |algebraicVariables| |hexDigit?| |leastPower| |wholePart|
- |pdf2ef| |clearFortranOutputStack| |read!|
- |semiDegreeSubResultantEuclidean| |moebiusMu| |f01maf| |padecf| |sin?|
- |setUnion| |d01apf| |acotIfCan| |imagI| |kind| |children|
- |selectPolynomials| |map| |irreducible?| |cAcoth| |completeHensel|
- |iicos| |graphImage| |subset?| |showAllElements|
- |linearDependenceOverZ| |myDegree| |op| |f04atf| |componentUpperBound|
- |knownInfBasis| |radicalOfLeftTraceForm| |palgRDE0| |toScale| |sqfree|
- |basisOfLeftAnnihilator| |primitive?| |monicRightFactorIfCan|
- |karatsuba| |invertibleElseSplit?| |basisOfRightNucloid| |setRow!|
- |deepExpand| |reflect| |getConstant| |comment| |empty| |lazy?|
- |createNormalElement| |reduced?| |leftRemainder| |initial| |cTan|
- |repeating?| |initializeGroupForWordProblem| |legendre| |insert|
- |monomials| |prinpolINFO| |insertionSort!| |karatsubaDivide|
- |stoseSquareFreePart| |e04ycf| |scripted?| |decreasePrecision|
- |showClipRegion| |autoReduced?| |getSyntaxFormsFromFile|
- |incrementKthElement| |viewport2D| |generic| |balancedFactorisation|
- |extension| |triangSolve| |genericRightNorm| |getMeasure|
- |nextSublist| |useEisensteinCriterion?| |nextLatticePermutation|
- |pointColorDefault| |coshIfCan| |SFunction| |shanksDiscLogAlgorithm|
- |fortranTypeOf| |polyPart| |showTheFTable| |bivariateSLPEBR|
- |rewriteIdealWithRemainder| |union| |iisinh| |epilogue| |s17agf| **
- |setValue!| |more?| |tryFunctionalDecomposition|
- |solveLinearPolynomialEquationByRecursion| |elseBranch| |lowerBound|
- |iidsum| |sorted?| |bombieriNorm| |noKaratsuba| |anticoord| |slash|
- |summation| |multiset| |OMgetString| |surface| |tan2cot| |s15adf|
- |factorset| |radicalSimplify| |rootSimp| |chiSquare|
- |trailingCoefficient| |OMconnOutDevice| |gensym| |lquo| |newline|
- |iisec| |sum| |tubeRadiusDefault| |shrinkable| Y |iiacos| |compBound|
- |attributeData| |cyclicEntries| |symmetricPower| |quasiMonic?|
- |listBranches| |adaptive| |halfExtendedSubResultantGcd2| |arguments|
- |refine| |spherical| |say| |dimensionOfIrreducibleRepresentation|
- |shallowCopy| |pointColorPalette| |deepestInitial| |e01bff| |table|
- |linearElement| |cap| |halfExtendedSubResultantGcd1|
- |curveColorPalette| |obj| |setAttributeButtonStep| |rootRadius|
- |unitNormal| |rightNorm| |unit?| |divisors| |new| |e02baf|
- |palglimint| |alternatingGroup| |getRef| |cache| |ldf2vmf|
- |linearDependence| |s17def| |irreducibleFactors| |df2fi|
- |conditionsForIdempotents| |rk4f| |length| |abelianGroup|
- |indiceSubResultant| |dualSignature| |BasicMethod| |monicLeftDivide|
- |presub| |removeIrreducibleRedundantFactors| |lift| |padicFraction|
- |iidprod| |prime| |ramifiedAtInfinity?| |perfectSqrt| |conjugate|
- |tubePlot| |eq?| |constantOperator| |rightUnits| |s19aaf| |associator|
- |reduce| |lastSubResultant| |extendedSubResultantGcd| |mvar|
- |leftRankPolynomial| |qroot| |shallowExpand| |mathieu24| |sdf2lst|
- |critpOrder| |bits| |showScalarValues| |aromberg| |strongGenerators|
- |represents| |dfRange| |mainMonomials| |wrregime| |iicoth| |rightMult|
- |elementary| |bandedHessian| |mkAnswer| |omError| |power!| |e02gaf|
- |indiceSubResultantEuclidean| |setPredicates| |OMgetEndBVar|
- |acscIfCan| |fortranComplex| |symFunc| |leftMinimalPolynomial|
- |OMgetEndObject| |bright| |iiGamma| |ListOfTerms| |scale| |atoms|
- |atanIfCan| |setAdaptive| |numberOfIrreduciblePoly|
- |leadingCoefficientRicDE| |oneDimensionalArray|
- |stiffnessAndStabilityFactor| |linearlyDependent?| |setTex!| |e01bhf|
- |comparison| |conical| |root| |mapCoef| |companionBlocks|
- |subResultantGcd| |rightZero| |infieldint| |e04gcf|
- |selectNonFiniteRoutines| |eval| |makeprod|
- |createLowComplexityNormalBasis| |expandTrigProducts| |power|
- |properties| |sPol| |ParCondList| |acschIfCan| |prinb| |OMsend| |left|
- |invmultisect| |replace| |iifact| |semiSubResultantGcdEuclidean2|
- |numberOfChildren| |basisOfCommutingElements| |translate| |arbitrary|
- |distdfact| |universe| |monicCompleteDecompose| |right| |rightDivide|
- |traverse| |scripts| |OMgetType| |radicalEigenvectors| |magnitude|
- |representationType| |algint| |multiEuclideanTree| |e01sef|
- |complexIntegrate| |removeCoshSq| |error| |ffactor| |signAround|
- |semiIndiceSubResultantEuclidean| |determinant| |irreducibleFactor|
- |sumOfKthPowerDivisors| |rightRankPolynomial| |simpson|
- |getIdentifier| |s14abf| |f02aef| |jvmFieldrefConstantTag| |isNot|
- |makeFloatFunction| |inf| |LyndonWordsList| |showIntensityFunctions|
- |inverseColeman| |selectFiniteRoutines| |identityMatrix|
- |relationsIdeal| |sec2cos| |roughSubIdeal?| |result| |byte|
- |cylindrical| |localAbs| |s01eaf| |acos| |OMParseError?| |exp1|
- |search| |constDsolve| |dihedral| |rur|
- |removeRoughlyRedundantFactorsInPol| |sumOfSquares| |whileLoop|
- |hermiteH| |atan| |variationOfParameters| |monic?|
- |useSingleFactorBound?| |truncate| |dihedralGroup| |stack|
- |reducedDiscriminant| |generateIrredPoly| |radicalEigenvector| |const|
- |semiDiscriminantEuclidean| |acot| |extractProperty|
- |nthFractionalTerm| |nextSubsetGray| |drawComplexVectorField|
- |pushdterm| |viewDeltaYDefault| |dom| |factorsOfDegree| |safetyMargin|
- |cTanh| |outputAsScript| |asec| |collectUnder| |double| |cn|
- |stoseInvertibleSetreg| |reverse| |medialSet| |increment|
- |removeSuperfluousQuasiComponents| |edf2ef| |tower|
- |singleFactorBound| |position!| |id| |c06gbf| |acsc| |mapdiv|
- |squareTop| |constant?| |setFieldInfo| |e02def| |besselI|
- |singularAtInfinity?| |f02bbf| |lo| |viewPhiDefault| |sinh|
- |stoseLastSubResultant| |toseInvertibleSet| |LazardQuotient2| |head|
- |simplifyLog| |setlast!| |lieAlgebra?| |mapExponents|
- |positiveRemainder| |OMUnknownCD?| |jvmMethodrefConstantTag| |cosh|
- |ratPoly| |symbol| |ldf2lst| |maxPoints3D| |prime?| |fullDisplay|
- |close| |regularRepresentation| |noLinearFactor?| |complementaryBasis|
- |primitiveElement| |tanh| |symmetric?| |int| |compdegd| |expression|
- |pomopo!| |elColumn2!| |adjoint| |logical?| |title| |optAttributes|
- |comp| FG2F |revert| |jvmPrivate| |coth| |integer| |concat!|
- |bandedJacobian| |car| |FormatArabic| |display| |evenInfiniteProduct|
- |goodPoint| |multiEuclidean| |complexNumeric| |sech| |OMreadFile|
- |pseudoDivide| |sizeMultiplication| |ScanRoman| |f01rcf| |fmecg|
- |jvmNameAndTypeConstantTag| |listOfMonoms| |extend| |csch| |Beta|
- |declare!| |readLineIfCan!| |curryRight| |deepCopy| |exactQuotient|
- |cdr| |makeSUP| |expIfCan| |e| |underscore| |kernels| |pole?| |asinh|
- |removeRedundantFactorsInContents| |startTableGcd!| |lprop| |reverse!|
- |returnType!| |lyndonIfCan| |definingPolynomial|
- |algebraicCoefficients?| |bothWays| |collect| |acosh| |operator|
- |disjunction| |mindegTerm| |listConjugateBases|
- |semiResultantEuclidean1| |cAsin| |pade| |internalLastSubResultant|
- |nextIrreduciblePoly| |genericRightTraceForm| |s17ajf| |complexRoots|
- |atanh| |atom?| |delete| |fi2df| |input| |e02bdf| |normalElement|
- |factorOfDegree| |lookup| |arg1| |printingInfo?| |univariate| |acoth|
- |generators| |halfExtendedResultant2| |s21bbf| |leader|
- |domainTemplate| |library| |ScanArabic| |linearForm| |categories|
- |safeCeiling| |arg2| |OMopenString| |roughUnitIdeal?| |d01gaf| |asech|
- |wholeRadix| |subResultantChain| |weight| |hdmpToP| |lfunc|
- |removeSuperfluousCases| |var2StepsDefault| |makeSketch|
- |OMgetEndBind| |ip4Address| |linearAssociatedLog|
- |functionIsFracPolynomial?| |redpps| |setStatus| |rightRank|
- |multiple| |getOperator| |interReduce| |factor| |segment| |conditions|
- |tubePointsDefault| |useSingleFactorBound| |ptree|
- |semiSubResultantGcdEuclidean1| |mainSquareFreePart|
- |setScreenResolution| |accuracyIF| |intcompBasis| |vectorise|
- |OMputSymbol| |inverseIntegralMatrix| |sqrt| |applyQuote| |match|
- |close!| |writeInt8!| |sn| |eulerE| |fractRadix| |OMbindTCP|
- |genericRightDiscriminant| |s17akf| |real| |trapezoidal|
- |definingEquations| |c06fqf| |s17aff| |unvectorise| |repeating| |nil|
- |infinite| |arbitraryExponent| |approximate| |complex|
- |shallowMutable| |canonical| |noetherian| |central|
- |partiallyOrderedSet| |arbitraryPrecision| |canonicalsClosed|
- |noZeroDivisors| |rightUnitary| |leftUnitary| |additiveValuation|
- |unitsKnown| |canonicalUnitNormal| |multiplicativeValuation|
- |finiteAggregate| |shallowlyMutable| |commutative|) \ No newline at end of file
+ |Enumeration| |Mapping| |Record| |Union| |blankSeparate| |low|
+ |voidMode| |lifting1| |makeCrit| |squareFreePrim| |subPolSet?|
+ |numerators| |deepestTail| |arbitrary| |fortranReal| |f01mcf| |e02daf|
+ |dimensions| |f01bsf| |t| |build| |totalfract| |OMconnectTCP| |center|
+ |rst| |d01fcf| |distdfact| |readUInt8!| |flatten| |e04jaf| |imagJ|
+ |OMgetEndApp| |clearTheSymbolTable| |iprint| |trivialIdeal?| |cos2sec|
+ |leftCharacteristicPolynomial| |firstSubsetGray| |universe|
+ |leftUnits| |times| |addmod| |OMsupportsCD?| |OMgetSymbol|
+ |zeroSetSplit| |bottom!| |groebnerFactorize|
+ |stiffnessAndStabilityOfODEIF| |lllp| |monicCompleteDecompose|
+ |charClass| |baseRDE| |removeConstantTerm| |parametric?| |mkPrim|
+ |entries| |rightDivide| |null| |OMputEndBVar| |completeEchelonBasis|
+ |rightExactQuotient| |rubiksGroup| |extractIndex| |chineseRemainder|
+ |internalAugment| |traverse| |not| |pushNewContour|
+ |localIntegralBasis| |matrixDimensions| |bat| |optpair|
+ |makeGraphImage| |plusInfinity| |eyeDistance| |OMgetType| |and|
+ |monom| |iicot| |lepol| |invertIfCan| |f02awf| |dioSolve| |laplacian|
+ |minusInfinity| |completeHermite| |radicalEigenvectors| |or|
+ |combineFeatureCompatibility| |bounds| |polyRicDE| |testModulus|
+ |hasPredicate?| |color| |magnitude| |xor| |printCode| |hostByteOrder|
+ |explicitEntries?| |cotIfCan| |e04ucf| |common| |value| |OMopenFile|
+ |stoseInvertible?sqfreg| |representationType| |nothing| |s14baf|
+ |case| |removeRoughlyRedundantFactorsInPols| |key| |expt| |removeZero|
+ |plenaryPower| |predicate| |contractSolve| |currentSubProgram|
+ |algint| |Zero| |leadingSupport| |rdHack1|
+ |inverseIntegralMatrixAtInfinity| |idealSimplify| |outerProduct|
+ |rewriteIdealWithQuasiMonicGenerators| |setprevious!|
+ |multiEuclideanTree| |createMultiplicationMatrix| |One| |filename|
+ |diag| |wreath| |order| |basisOfNucleus| |testDim| |uniform|
+ |errorKind| |terms| |e01sef| |d02bhf| |changeMeasure| |kovacic|
+ |getOperands| |minimalPolynomial| |trigs2explogs| |getMatch|
+ |cycleEntry| |maxRowIndex| |complexIntegrate| |closeComponent|
+ |limitPlus| |parse| |sayLength| |romberg| |exprHasAlgebraicWeight|
+ |e01sff| |mathieu23| |leaf?| |removeCoshSq| |dmpToHdmp|
+ |beauzamyBound| |xn| |next| EQ |e04naf| |indicialEquation| |untab|
+ |ffactor| |modularFactor| |cAsech| |quasiRegular?| |block|
+ |createLowComplexityTable| |f04axf| |imaginary| |invertible?|
+ |cyclotomicDecomposition| |signAround| |internalZeroSetSplit| |elt|
+ |d02cjf| |calcRanges| |minGbasis| |numberOfComputedEntries|
+ |numberOfImproperPartitions| |vedf2vef| |OMputError|
+ |semiIndiceSubResultantEuclidean| UTS2UP |denominators| |setrest!|
+ |curryLeft| |purelyAlgebraicLeadingMonomial?|
+ |noncommutativeJordanAlgebra?| |jvmTransient| |PDESolve|
+ |binarySearchTree| |nodeOf?| |numberOfHues| |laurentRep| |integer?|
+ |UpTriBddDenomInv| |oddInfiniteProduct| |iisech| |OMputFloat|
+ |parameters| |irreducibleFactors| |getStream| |alphanumeric|
+ |multiplyCoefficients| |sn| |log2| |messagePrint|
+ |stoseIntegralLastSubResultant| |transcendenceDegree| |cycles|
+ |sinh2csch| |df2fi| |presuper| |curveColor|
+ |tableForDiscreteLogarithm| |tensorProduct| |reindex| |numberOfCycles|
+ |multinomial| |duplicates| |createRandomElement| |nextPrime|
+ |conditionsForIdempotents| |simplifyPower| |powerAssociative?|
+ |f01rdf| |equality| |explogs2trigs| |s13acf| |internalDecompose|
+ |axesColorDefault| |stoseInvertible?| |rk4f| |linearAssociatedOrder|
+ |realEigenvectors| |algebraicDecompose| |monomRDE| |scalarMatrix|
+ |lfunc| |iflist2Result| |rational?| |purelyAlgebraic?|
+ |defineProperty| |abelianGroup| |hostPlatform| |expPot| |writeBytes!|
+ |OMwrite| |plot| |removeSuperfluousCases| |palgLODE0| |range|
+ |compound?| |mainContent| |indiceSubResultant| |normalizeIfCan|
+ |RittWuCompare| |index| |setEmpty!| |sumSquares| |leftLcm|
+ |var2StepsDefault| |lexGroebner| |alternative?| |routines|
+ |dualSignature| |nthFlag| |associatorDependence| |swapRows!| |c05pbf|
+ |rank| |bitCoef| |closedCurve?| |makeSketch| |function|
+ |startTableInvSet!| |rarrow| |inR?| |BasicMethod| |leftQuotient| |in?|
+ |e01baf| |resultantReduit| |pol| |permutations| |OMgetEndBind|
+ |numberOfOperations| |squareFreePart| |exprToXXP| Y |monicLeftDivide|
+ |separateDegrees| |split| |saturate| |symmetricSquare|
+ |argumentListOf| |pair| |toseSquareFreePart| |mpsode| |ip4Address|
+ |less?| |outputFloating| |maxint| |presub| |e02bef| |cothIfCan|
+ |tanintegrate| |e01bef| |hypergeometric0F1| |limitedint|
+ |linearAssociatedLog| |Vectorise| |patternMatch| |createGenericMatrix|
+ |removeIrreducibleRedundantFactors| |innerSolve1| |integers| |sup|
+ |solve| |LowTriBddDenomInv| |number?| |lazyPquo|
+ |functionIsFracPolynomial?| |ranges| |quadratic?| |janko2|
+ |padicFraction| |createPrimitiveNormalPoly| |hasSolution?| |setref|
+ |dominantTerm| |colorFunction| |cCos| |redpps| |overset?| |isTimes|
+ |stopTableInvSet!| |iidprod| |genericRightTrace| |monomial?| |mapmult|
+ |stFunc1| |normFactors| |shiftLeft| |setStatus| |c06gcf| |rotatex|
+ |sinIfCan| |prime| F |primlimintfrac| |OMputAtp| |headReduce| |write!|
+ |lexTriangular| |rightRank| |basicSet| |rightTraceMatrix|
+ |palginfieldint| |ramifiedAtInfinity?| |enterPointData| |has?| |deriv|
+ |fprindINFO| |PollardSmallFactor| |getOperator| |normDeriv2|
+ |harmonic| |lastSubResultantElseSplit| |perfectSqrt| |factorial|
+ |OMgetFloat| |particularSolution| |OMputString| |rightFactorCandidate|
+ |interReduce| |option| |upDateBranches| |primintfldpoly|
+ |generalInfiniteProduct| |conjugate| |notelem| |drawComplex|
+ |midpoint| |basisOfRightNucleus| |totalLex| |tubePointsDefault|
+ |double| |stronglyReduce| |rootBound| |univcase| |tubePlot| |leader|
+ |cAcos| |rationalApproximation| |getPickedPoints| |s19abf| |closed?|
+ |useSingleFactorBound| |changeName| |c06eaf| |e02ddf| |eq?|
+ |headReduced?| |iiasec| |qinterval| |paren| |pr2dmp|
+ |semiSubResultantGcdEuclidean1| |jokerMode| |scaleRoots|
+ |computePowers| |constantOperator| |outputArgs| |d02raf| |adaptive?|
+ |cCot| |parent| |mainSquareFreePart| |reciprocalPolynomial|
+ |algebraicOf| |setOrder| |rightUnits| |OMencodingXML| |central?|
+ |numberOfNormalPoly| |extendedEuclidean| |lex| |setScreenResolution|
+ |OMReadError?| |leastAffineMultiple| |rightLcm| |s19aaf| |lift|
+ |continuedFraction| |rischNormalize| |mappingMode| |bfKeys|
+ |consnewpol| |accuracyIF| |constantToUnaryFunction| |antisymmetric?|
+ |shiftRight| |associator| |reduce| |subscript| |ptFunc| |f02bjf|
+ |times!| |isList| |intcompBasis| |idealiserMatrix| |shift| |sort|
+ |leftNorm| |zeroDimensional?| |lastSubResultant| |dilog| |green|
+ |tRange| |lastSubResultantEuclidean| |coefChoose| |makeResult|
+ |vectorise| |declare!| |s18aef| |s17dlf| |isAnd|
+ |extendedSubResultantGcd| |bringDown| |mapUnivariate| |components|
+ |sin| |f04qaf| |oddlambert| |OMputSymbol| |createIrreduciblePoly|
+ |tube| |random| |fortran| |iibinom| |measure2Result| |mvar| |zeroDim?|
+ |d02gaf| |d02kef| |cos| |laplace| |stoseInvertibleSetsqfreg|
+ |inverseIntegralMatrix| |iCompose| |rightMinimalPolynomial|
+ |tubeRadius| |isMult| |leftRankPolynomial| |functionIsOscillatory|
+ |unparse| |contains?| |tan| |jvmClassConstantTag| |e04mbf| |close!|
+ |unitsColorDefault| |closed| |shuffle| |pushdown| |qroot| |applyRules|
+ |showArrayValues| |pdct| |cot| |curry| |cosh2sech| |writeInt8!|
+ |OMgetEndAttr| |vconcat| |colorDef| |shallowExpand| |exprex| |nlde|
+ |extractIfCan| |back| |sec| |badValues| |implies| |eulerE| |pattern|
+ |lcm| |OMUnknownSymbol?| |partialNumerators| |select!| |mathieu24|
+ |product| |intensity| |resetBadValues| |sign| |csc| |mat|
+ |splitNodeOf!| |fractRadix| |hue| |ipow| |infieldIntegrate| |sdf2lst|
+ |inspect| |binaryTournament| |leadingIdeal| |iterationVar| |asin|
+ |solid| |makeFR| |OMbindTCP| |segment| |algintegrate| |OMputEndError|
+ |cCsc| |identification| |critpOrder| |s18def| |lazyPseudoDivide|
+ |satisfy?| |acos| |makeSin| |cSech| |genericRightDiscriminant|
+ |bumptab1| |ksec| |definingInequation| |bits| |prefix| |df2ef| |seed|
+ |inverse| |atan| |setelt!| |getExplanations| |s17akf| |append|
+ |univariatePolynomials| |createZechTable| |denomLODE|
+ |showScalarValues| |att2Result| |setIntersection| |one?|
+ |userOrdered?| |acot| |level| |viewDefaults| |trapezoidal| |close|
+ |symmetricDifference| |recur| |nullSpace| |aromberg|
+ |leviCivitaSymbol| |coHeight| |diagonalProduct| |asec| |toroidal|
+ |subResultantGcdEuclidean| |definingEquations| |OMputApp|
+ |monomialIntegrate| |gcd| |bezoutMatrix| |selectODEIVPRoutines|
+ |strongGenerators| |jvmLongConstantTag| |showTheRoutinesTable|
+ |goodnessOfFit| |acsc| |numericIfCan| |semiResultantEuclideannaif|
+ |c06fqf| |prepareDecompose| |fortranLinkerArgs| |leftDiscriminant|
+ |fortranLiteral| |represents| |scopes| |concat| |nthRoot| |rational|
+ |sinh| |badNum| |tValues| |s17aff| |linSolve| |atrapezoidal| |false|
+ |script| |numberOfFractionalTerms| |regime| |dfRange| |divergence|
+ |lazyIntegrate| |graphs| |cosh| |orthonormalBasis|
+ |stripCommentsAndBlanks| |unvectorise| |prepareSubResAlgo| |pdf2df|
+ |multisect| |mainMonomials| |nand| |finiteBound| |tanh| |nullary?|
+ |stFunc2| |repeating| |iExquo| |choosemon| |viewThetaDefault|
+ |wrregime| |moduleSum| |assign| |coth| |Aleph| |startPolynomial|
+ |radicalEigenvalues| |tex| |nthFactor| |aspFilename| |iicoth| |update|
+ |fracPart| |mathieu22| |sech| |palgRDE| |OMgetEndAtp| |datalist|
+ |updatF| |ScanFloatIgnoreSpaces| |realZeros| |rightMult|
+ |indicialEquationAtInfinity| |clipSurface| |csch| |cSec| |baseRDEsys|
+ |output| |exptMod| |rationalPower| |elementary| |twist| |phiCoord|
+ |asinh| |component| |rombergo| |test| |LiePolyIfCan| |df2mf|
+ |primPartElseUnitCanonical!| |bandedHessian| |exponent|
+ |evaluateInverse| |acosh| |swap!| |cyclicCopy| |rightRecip|
+ |basisOfRightAnnihilator| |resultantEuclideannaif| |mkAnswer|
+ |loadNativeModule| |flagFactor| |OMgetObject| |atanh| |droot| |c06ekf|
+ |partitions| |basisOfLeftNucleus| |addBadValue| |mantissa| |omError|
+ |acoth| |space| |jvmProtected| |moduloP| |checkForZero| |neglist|
+ |power!| |jacobian| |rightRemainder| |asech| |is?| |quadratic|
+ |message| |primlimitedint| |exQuo| |leftPower| |e02gaf| |e02ahf|
+ |putGraph| |argument| |factorByRecursion| |setMinPoints| |conjug|
+ |resetNew| |indiceSubResultantEuclidean| |matrixGcd|
+ |monicRightDivide| |multiple| |cycleElt| |homogeneous?| |nilFactor|
+ |uncouplingMatrices| |setPredicates| |integralBasisAtInfinity| |norm|
+ |applyQuote| |every?| |palgint0| |exists?| |sech2cosh| |reduceLODE|
+ |remove!| |OMgetEndBVar| |zeroMatrix| |clikeUniv| |checkRur|
+ |resultant| |clipWithRanges| |rightDiscriminant| |d02ejf|
+ |setMaxPoints3D| |acscIfCan| |debug| |readInt32!| |nodes|
+ |permutationRepresentation| |normal01| |jordanAdmissible?| |iomode|
+ |quasiMonicPolynomials| |fortranComplex| D |getGoodPrime|
+ |reduceByQuasiMonic| |ruleset| |quasiComponent| |double?| |setPoly|
+ |symFunc| |doubleRank| |string?| |open?| |generalSqFr|
+ |matrixConcat3D| |showFortranOutputStack| |fractRagits|
+ |leftMinimalPolynomial| BY |complexZeros| |repSq| |coth2tanh| |type|
+ |elements| |finiteBasis| |f01ref| |bivariatePolynomials|
+ |OMgetEndObject| |rightAlternative?| |jacobi| |approxNthRoot|
+ |writeLine!| |suchThat| |trapezoidalo| |fortranLiteralLine| |digamma|
+ |parabolicCylindrical| |laguerreL| |groebgen| |coerceListOfPairs|
+ |any?| |node?| |pop!| |sorted?| |useNagFunctions| |evaluate| |pack!|
+ |rischDE| |ScanFloatIgnoreSpacesIfCan| |setLength!| |critT|
+ |bombieriNorm| |char| |FormatRoman| |sts2stst| |rCoord| |trunc|
+ |solid?| |printInfo| |lfintegrate| |d01akf| |noKaratsuba|
+ |clipParametric| |OMencodingBinary| |setPosition| |zoom|
+ |genericLeftTrace| |sparsityIF| |sechIfCan| |anticoord| |triangular?|
+ |changeThreshhold| |denomRicDE| |solveLinearPolynomialEquation|
+ |fmecg| NOT |exteriorDifferential| |rem| |infix| |KrullNumber| |slash|
+ |print| |iiasinh| |cross| |genericLeftMinimalPolynomial| |jvmVolatile|
+ |jvmNameAndTypeConstantTag| OR |quo| |round| |factor1| |addPointLast|
+ |summation| |reducedContinuedFraction| |resolve| |findConstructor|
+ |setsubMatrix!| |hessian| |rowEchelon| |listOfMonoms| AND
+ |prolateSpheroidal| |euclideanGroebner| |f04maf| |multiset|
+ |brillhartIrreducible?| |conditionP| |subresultantVector| |imagj|
+ |twoFactor| |extend| |setleft!| |div| |infiniteProduct| |graeffe|
+ SEGMENT |OMgetString| |variable?| |symbolTableOf| |move|
+ |quadraticForm| |viewWriteDefault| |Beta| |quotientByP| |exquo| |nil?|
+ |OMlistSymbols| |listRepresentation| |surface| |morphism| |divisor|
+ |rk4qc| |writeByte!| |readLineIfCan!| ~= |even?| |sh| |eigenvectors|
+ |coefficients| |tan2cot| |ravel| |totalDegree| |asinIfCan|
+ |partialFraction| |zeroSetSplitIntoTriangularSystems| |curryRight|
+ |qPot| |#| |seriesSolve| |discreteLog| |s15adf| |map|
+ |extendedResultant| |f2df| |minset| |content| |reduceBasisAtInfinity|
+ |reshape| |deepCopy| |logpart| ~ |expenseOfEvaluationIF|
+ |RemainderList| |factorset| |setButtonValue| |firstNumer| |readLine!|
+ |solveid| |torsion?| |exactQuotient| |red|
+ |rightCharacteristicPolynomial| |crushedSet| |assert|
+ |radicalSimplify| |bezoutDiscriminant| |basisOfLeftNucloid| |radix|
+ |totolex| |algDsolve| |cdr| |stoseInvertible?reg| |isobaric?|
+ |trueEqual| |rootSimp| |meshPar1Var| |mainCoefficients|
+ |exportedOperators| |largest| |makeSUP| |mapBivariate| |/\\|
+ |complexSolve| |cCosh| |chiSquare| |rowEch|
+ |degreeSubResultantEuclidean| |corrPoly| |cyclicSubmodule| |expIfCan|
+ * |contract| |\\/| |packageCall| |minColIndex| |trailingCoefficient|
+ |f02aff| |listLoops| |iiexp| |showTheSymbolTable| |underscore| |cExp|
+ |vertConcat| |recoverAfterFail| |OMconnOutDevice| |leftScalarTimes!|
+ |optional?| |halfExtendedResultant1| |argumentList!| |pole?|
+ |atanhIfCan| |groebner?| |extendedIntegrate| |gensym| |e04dgf|
+ |bumprow| |supDimElseRittWu?| |discriminant|
+ |removeRedundantFactorsInContents| |hexDigit| |lists| = |edf2efi|
+ |OMclose| |lquo| |iiasech| |graphStates| |bright| |symbol?|
+ |karatsubaOnce| |startTableGcd!|
+ |solveLinearPolynomialEquationByFractions| |callForm?| |e02akf|
+ |newline| |leadingTerm| |cAcot| |frst| |cache| |difference| |position|
+ |lprop| |mapMatrixIfCan| < |c06gqf| |create3Space| |iisec| |iroot|
+ |condition| |innerSolve| |approxSqrt| |getCurve| |eval| |reverse!| >
+ |distance| |generalizedEigenvectors| |c05adf| |tubeRadiusDefault|
+ |basisOfCenter| |macroExpand| |readInt8!| |result| |iiacsc|
+ |categoryFrame| |returnType!| |inRadical?| <= |leadingIndex| |opeval|
+ |shrinkable| |problemPoints| |schema| |interactiveEnv| |polCase|
+ |lyndonIfCan| |constantCoefficientRicDE| >= |primextintfrac| |cSinh|
+ |iiacos| |convert| |computeCycleLength| |units| |error| |euler|
+ |LyndonBasis| |writeUInt8!| |definingPolynomial| |verticalTab|
+ |credPol| |nsqfree| |compBound| |reify| |nthCoef| |updatD| |subSet|
+ |algebraicCoefficients?| |nextNormalPrimitivePoly|
+ |jvmIntegerConstantTag| |youngDiagram| |attributeData| |interpret|
+ |lookupFunction| |processTemplate| |removeSinSq| |getProperties|
+ |heapSort| |bothWays| |initials| + |bitLength| |discriminantEuclidean|
+ |cyclicEntries| |oblateSpheroidal| |cycleRagits| |leftFactorIfCan|
+ |c06gsf| |pushup| |collect| |eq| |iiacoth| - |minPoints3D|
+ |rewriteSetByReducingWithParticularGenerators| |symmetricPower|
+ |critMonD1| |clearTheFTable| |youngGroup| |safeFloor| |roughBase?|
+ |disjunction| |iter| |birth| / |getMultiplicationTable|
+ |antisymmetricTensors| |quasiMonic?| |bfEntry| |code| |s21bdf| |trim|
+ |jvmSuper| |psolve| |mindegTerm| |factorAndSplit| |eigenvector|
+ |exprToGenUPS| |listBranches| |sqfrFactor| |limit| |weakBiRank|
+ |s18acf| |listConjugateBases| |numer| |makeViewport2D|
+ |rightExtendedGcd| |generalTwoFactor| |adaptive| |generic?|
+ |SturmHabichtMultiple| |meshPar2Var| |cyclicEqual?|
+ |semiResultantEuclidean1| |minIndex| |denom| |highCommonTerms|
+ |isPower| |halfExtendedSubResultantGcd2| |palgintegrate| |s18adf|
+ |interval| |squareFreePolynomial| |cAsin| |cycleTail|
+ |genericLeftTraceForm| |cyclePartition| |refine| |bitTruth|
+ |drawStyle| |firstUncouplingMatrix| |complexNormalize| |pade|
+ |raisePolynomial| |pi| |backOldPos| |zero?| |spherical| |insert|
+ |groebSolve| |setfirst!| |getMultiplicationMatrix| |collectUpper|
+ |set| |internalLastSubResultant| |expr| |exp| |solve1| |infinity|
+ |sncndn| |setMinPoints3D| |dimensionOfIrreducibleRepresentation|
+ |modularGcd| |tanIfCan| |float| |lfextlimint| |complexEigenvectors|
+ |nextIrreduciblePoly| |asecIfCan| |character?| |rename| |shallowCopy|
+ |compile| |principal?| |expintegrate| |permutation| |eulerPhi|
+ |genericRightTraceForm| |parametersOf| |bracket| |exponential|
+ |pointColorPalette| |rightRegularRepresentation| |patternVariable|
+ |cAcsc| |e01daf| |s17ajf| |swap| |kernel| |binomThmExpt| |nthExponent|
+ |lp| |deepestInitial| |size| |seriesToOutputForm|
+ |wordInStrongGenerators| |normalizedDivide| |sincos| |complexRoots|
+ |variable| |edf2df| |list| |linears| |errorInfo| |operation| |e01bff|
+ |c06fpf| |setchildren!| |minRowIndex| |subTriSet?| |atom?| |iterators|
+ |draw| |normalizeAtInfinity| |OMgetAtp| |subNodeOf?| |linearElement|
+ |byte| |currentEnv| |getCode| |delete| |cschIfCan| |leftGcd| |tanNa|
+ |fi2df| |quotient| |musserTrials| |subNode?| |cap| |printStatement|
+ |complement| |palgint| |Hausdorff| |e02bdf| |transform| |OMreadStr|
+ |decompose| |halfExtendedSubResultantGcd1| |UP2ifCan| |perfectSquare?|
+ |extractTop!| |outputGeneral| |normalElement| |precision| |cCoth|
+ |taylorRep| |curveColorPalette| |differentialVariables| |subst|
+ |solveLinear| |factors| |s18aff| |factorOfDegree| |s15aef| |geometric|
+ |makeObject| |outputSpacing| |numberOfComposites|
+ |setAttributeButtonStep| |jvmPublic| |reducedSystem| |recolor|
+ |diagonal| |lookup| |localUnquote| |removeSquaresIfCan| |coef| |cAtan|
+ |prod| |rootRadius| |backspace| |iiacot| |categories| |tanAn|
+ |outputMeasure| |connect| |printingInfo?| |skewSFunction| |localReal?|
+ |upperCase?| |totalGroebner| |unitNormal| |binaryFunction|
+ |rangePascalTriangle| LODO2FUN |generators| |moebius| |e04fdf| |node|
+ |s18dcf| |coleman| |constant| |ocf2ocdf| |rightNorm|
+ |encodingDirectory| |makeUnit| |e02agf| |leaves| |d01aqf| |Gamma|
+ |objects| |int| |halfExtendedResultant2| |clearTable!| |arg1| |bsolve|
+ |f04faf| |makeViewport3D| |unit?| |d01alf| |factorSquareFree|
+ |taylorQuoByVar| |base| |shade| |Nul| |s21bbf| |arg2| |OMputEndAttr|
+ |digit?| |leftExtendedGcd| |divisors| |iisin| |commutativeEquality|
+ |stopMusserTrials| |c06ecf| |domainTemplate| |splitDenominator|
+ |quasiRegular| |e02baf| |setProperty| |initial| |expextendedint|
+ |diagonal?| |genericLeftDiscriminant| |cRationalPower| |ScanArabic|
+ |equiv| |conditions| |unravel| |f04mbf| |palglimint| |LiePoly|
+ |fglmIfCan| |toseInvertible?| |mainVariable?| |subQuasiComponent?|
+ |linearForm| |empty?| |match| |find| |contours| |alternatingGroup|
+ |powerSum| |compiledFunction| |d01amf| |getZechTable| |c06ebf|
+ |safeCeiling| |failed| |realEigenvalues| |abs| |powern| |getRef|
+ |f2st| |usingTable?| |OMopenString| |makeop| |computeInt|
+ |exponential1| |ldf2vmf| |stronglyReduced?| |composite| |s17dcf|
+ |relativeApprox| |roughUnitIdeal?| |dflist| |formula| |retractable?|
+ |middle| |linearDependence| |exponentialOrder| |fill!| |hdmpToDmp|
+ |mapUp!| |rationalIfCan| |d01gaf| |any| |unmakeSUP| |paraboloidal|
+ |roman| |s17def| |octon| |numberOfPrimitivePoly| |cyclic?|
+ |radicalRoots| |preprocess| |wholeRadix| |selectOptimizationRoutines|
+ |orbits| |supRittWu?| |insertBottom!| |coerceS| |acosIfCan|
+ |symmetricTensors| |top!| |rules| |subResultantChain| |getGraph|
+ |SturmHabichtSequence| |lagrange| |invertibleElseSplit?| |setColumn!|
+ |singularitiesOf| |isConnected?| |typeForm| |groebnerIdeal| |weight|
+ |dec| |nrows| |lllip| |factorGroebnerBasis| |constantLeft|
+ |basisOfRightNucloid| |doubleFloatFormat|
+ |standardBasisOfCyclicSubmodule| |fortranCharacter| |cosIfCan|
+ |previous| |hdmpToP| |numericalIntegration| |ncols| |iiperm| |rspace|
+ |setRow!| |equation| |elaborate| |region| |extract!| |cosSinInfo|
+ |square?| |cyclotomicFactorization| |removeSinhSq| |deepExpand|
+ |shellSort| |setScreenResolution3D| |mulmod| |clearTheIFTable|
+ |removeSuperfluousQuasiComponents| |dom| |module| |root?|
+ |explimitedint| |unknown| |reflect| |outputFixed| |rischDEsys| |mix|
+ |check| |edf2ef| |ref| |f04jgf| |ParCond| |getConstant| |cn|
+ |squareFreeLexTriangular| |overbar| |leadingExponent|
+ |indicialEquations| |singleFactorBound| |putProperties|
+ |divideExponents| |expandPower| |log| |empty| |clip| |cot2tan|
+ |mergeFactors| |flexibleArray| |position!| |rotate| |leftRank|
+ |monomialIntPoly| |label| |branchPointAtInfinity?| |point| |lazy?|
+ |linearlyDependentOverZ?| |redmat| |screenResolution| |commutative?|
+ |startTable!| |c06gbf| |numberOfVariables| |chebyshevU| |yellow|
+ |elRow2!| |createNormalElement| |linearPolynomials| |horizConcat|
+ |univariate?| |rotatey| |unaryFunction| |characteristicSet| |mapdiv|
+ |getButtonValue| |rotatez| |rightTrace| |nil| |f07adf| |title|
+ |reduced?| |integralAtInfinity?| |s17dgf| |reset| |recip|
+ |toseLastSubResultant| |ode| |directory| |squareTop|
+ |zeroSquareMatrix| |powers| |hasoln| |reseed| |series| |leftRemainder|
+ |list?| UP2UTS |setRealSteps| |printInfo!| |open| |constant?|
+ |separateFactors| |qqq| |e02dcf| |normInvertible?| |cTan| |write|
+ |OMgetBVar| |smith| |restorePrecision| |makeYoungTableau|
+ |setFieldInfo| |OMputEndBind| |e| |string| |rowEchLocal| |approximate|
+ |push| |wordsForStrongGenerators| |repeating?| |save|
+ |innerEigenvectors| |coerceL| |semiLastSubResultantEuclidean|
+ |complexExpand| |delay| |e02def| |finite?| |complex| |setLabelValue|
+ |rootKerSimp| |coefficient| |initializeGroupForWordProblem|
+ |acothIfCan| |varselect| |polygamma| |Frobenius| |characteristicSerie|
+ |pquo| |scan| |besselI| |parabolic| |nextsubResultant2| |min|
+ |monomRDEsys| |legendre| |partialDenominators| |taylor| |modTree|
+ |cyclic| |exprHasWeightCosWXorSinWX| |Ci| |operations|
+ |singularAtInfinity?| |genus| |stopTable!| |addiag| |length|
+ |monomials| |constructor| |laurent| |isOr| |denominator|
+ |putColorInfo| |complexForm| |f02bbf| |OMread| |internalInfRittWu?|
+ |pointData| |scripts| |prinpolINFO| |properties| |sum| |puiseux|
+ |rightGcd| |factorFraction| |mainValue| |transpose| |viewPhiDefault|
+ |palgLODE| |iicsch| |normalForm| |printHeader| |insertionSort!|
+ |substring?| |validExponential| |cond| |factorsOfCyclicGroupSize|
+ |padicallyExpand| |characteristicPolynomial| |translate|
+ |stoseLastSubResultant| |tableau| |element?| |kmax| |f07fef|
+ |karatsubaDivide| |inv| |algSplitSimple| |setOfMinN|
+ |lazyPseudoQuotient| |OMunhandledSymbol| |toseInvertibleSet|
+ |normalizedAssociate| |symbolTable| |currentCategoryFrame|
+ |withPredicates| |bivariate?| |stoseSquareFreePart| |suffix?|
+ |leftTraceMatrix| |ground?| |gcdPrimitive| |minPoints| |leftFactor|
+ |maxColIndex| |LazardQuotient2| |splitLinear| |copies| |fintegrate|
+ |e04ycf| |cycleLength| |ground| |singRicDE| |compose|
+ |unrankImproperPartitions1| |dimension| |head|
+ |pushFortranOutputStack| |c06frf| |complexNumericIfCan| |trigs|
+ |prefix?| |scripted?| |tryFunctionalDecomposition?| |leadingMonomial|
+ |lfinfieldint| |OMgetAttr| |degreePartition| |rectangularMatrix|
+ |simplifyLog| |popFortranOutputStack| |removeRedundantFactorsInPols|
+ |csubst| |remove| |getVariableOrder| |stop| |decreasePrecision|
+ |leadingCoefficient| |nthExpon| |dual| |laguerre| |mainPrimitivePart|
+ |setlast!| |outputAsFortran| |chiSquare1| |size?| |points|
+ |showClipRegion| |primitiveMonomials| |resultantReduitEuclidean|
+ |moreAlgebraic?| |nthr| |setVariableOrder| |lieAlgebra?| |lyndon?|
+ |factorSFBRlcUnit| |quatern| |last| |autoReduced?| |systemSizeIF|
+ |mapExponents| |box| |reductum| |depth| |setClosed| |OMgetApp| |pair?|
+ |entry| |zero| |assoc| |expandLog| |debug3D| |ridHack1|
+ |getSyntaxFormsFromFile| |weights| |primextendedint|
+ |computeCycleEntry| |ode1| |positiveRemainder| |primeFrobenius|
+ |elRow1!| |besselY| |incrementKthElement| |besselK| |nonQsign| |imagi|
+ |factorSquareFreeByRecursion| |OMUnknownCD?| |And| |OMputBind|
+ |generalizedInverse| |member?| |infix?| |viewport2D| |subtractIfCan|
+ |logGamma| |mathieu11| |polygon| |jvmMethodrefConstantTag| |Or|
+ |traceMatrix| |unitVector| |distFact| |setPrologue!| |generic| |mask|
+ |fortranCompilerName| |resultantnaif| |critMTonD1| |internal?|
+ |ratPoly| |Not| |virtualDegree| |transcendentalDecompose|
+ |commonDenominator| |balancedFactorisation| |fillPascalTriangle|
+ |commutator| |primitivePart!| |ellipticCylindrical|
+ |selectPDERoutines| |ldf2lst| |numericalOptimization| |elliptic?|
+ |d03eef| |extension| |lintgcd| |LagrangeInterpolation| |lazyPrem|
+ |exprHasLogarithmicWeights| |identitySquareMatrix| |maxPoints3D|
+ |optimize| |gethi| |mainCharacterization| |numberOfComponents|
+ |triangSolve| |style| |OMsupportsSymbol?| |critB| |genericLeftNorm|
+ |prime?| |extractPoint| |mapExpon| |nthRootIfCan| |genericRightNorm|
+ |constantOpIfCan| |floor| |pile| |isExpt| |fullDisplay| |vector|
+ |sort!| |SturmHabicht| |laurentIfCan| |getMeasure| |integerIfCan|
+ |removeCosSq| |zeroOf| |polarCoordinates| |regularRepresentation|
+ |differentiate| |forLoop| |cLog| |rule| |solveInField| |nextSublist|
+ |generalizedEigenvector| |airyBi| |decrease| |maxrow|
+ |noLinearFactor?| |top| |identity| |palglimint0|
+ |purelyTranscendental?| |useEisensteinCriterion?| |normalDeriv|
+ |zeroDimPrimary?| |generalPosition| |s19adf| |continue|
+ |complementaryBasis| |limitedIntegrate| |bag| |makeEq|
+ |nextLatticePermutation| |heap| |OMputEndAtp| |prindINFO|
+ |stopTableGcd!| |primitiveElement| |complexLimit| |drawToScale|
+ |numFunEvals3D| |tab| |comp| |pointColorDefault| |var2Steps|
+ |cardinality| |lflimitedint| |cAtanh| |symmetric?| |randnum| |merge!|
+ |iitan| |maximumExponent| |coshIfCan| |zeroDimPrime?| |e02adf|
+ |minus!| |fractionPart| |compdegd| |nullity| |nextPrimitivePoly|
+ |addMatchRestricted| |signature| |viewWriteAvailable| |SFunction|
+ |cons| |setright!| |diagonals| |distribute|
+ |stoseInternalLastSubResultant| |pomopo!| |zCoord| |cyclicGroup|
+ |partition| |shanksDiscLogAlgorithm| |fractionFreeGauss!| |d01ajf|
+ |void| |fortranLogical| |permutationGroup| |elColumn2!| |pointLists|
+ |basisOfMiddleNucleus| |functionIsContinuousAtEndPoints|
+ |fortranTypeOf| |init| |s17ahf| |replaceKthElement| |categoryMode|
+ |members| |adjoint| |newLine| |s17dhf| |polyPart| |qfactor|
+ |predicates| |host| |logIfCan| |logical?| |rangeIsFinite| |subHeight|
+ |internalSubQuasiComponent?| |showTheFTable| |gbasis| |jvmStatic|
+ |parseString| |blue| |optAttributes| |createMultiplicationTable|
+ |radPoly| |linearAssociatedExp| |bivariateSLPEBR| |source| |makeCos|
+ |irDef| |rationalPoint?| |intChoose| |category| FG2F
+ |integralMatrixAtInfinity| |qelt| |bit?| |remainder|
+ |rewriteIdealWithRemainder| |cPower| |compactFraction| |domain|
+ |revert| |qsetelt| |euclideanNormalForm| |doublyTransitive?|
+ |arguments| |internalIntegrate0| |iisinh| |makeVariable| |Is| |s14aaf|
+ |expressIdealMember| |package| |jvmPrivate| |eof?| |xRange|
+ |byteBuffer| |enumerate| |null?| |epilogue| |target| |rightQuotient|
+ |rootDirectory| |squareFreeFactors| |listYoungTableaus| |concat!|
+ |OMlistCDs| |yRange| |Si| |rowEchelonLocal| |selectsecond| |s17agf|
+ |support| |extensionDegree| |edf2fi| |primPartElseUnitCanonical|
+ |bandedJacobian| |boundOfCauchy| |zRange| |setValue!| |convergents|
+ |submod| |integralDerivationMatrix| |OMputVariable| |map!| |car|
+ |sinhcosh| |delta| |jvmUTF8ConstantTag| |complete| |bindings|
+ |sturmVariationsOf| |more?| |shufflein| |intersect| |unknownEndian|
+ |coerceP| |FormatArabic| |qsetelt!| |complexElementary| |coerceImages|
+ |scanOneDimSubspaces| |nor| |tryFunctionalDecomposition| |dmpToP|
+ |separant| |areEquivalent?| |quadraticNorm| |quoByVar|
+ |evenInfiniteProduct| |horizontalTab| RF2UTS |perspective| |chvar|
+ |solveLinearPolynomialEquationByRecursion| |idealiser| |solveRetract|
+ |LazardQuotient| |latex| |goodPoint| |createNormalPoly|
+ |leftAlternative?| |viewPosDefault| |elseBranch| |numberOfDivisors|
+ |readable?| |readByte!| |mapUnivariateIfCan| |pmintegrate|
+ |multiEuclidean| |digits| |nextNormalPoly| |indices| |lowerBound|
+ |coord| |s21bcf| |hash| |over| |listOfLists| |OMreadFile| |meatAxe|
+ |binomial| |mightHaveRoots| |iidsum| |count| |f04mcf| |conjunction|
+ |imports| |csc2sin| |checkPrecision| |pseudoDivide|
+ |lazyPseudoRemainder| |acsch| |create| |bubbleSort!|
+ |resultantEuclidean| |printStats!| |deleteRoutine!|
+ |structuralConstants| |sizeMultiplication| |clearCache| |lambda|
+ |mdeg| |jvmStrict| |f02axf| |imagk| |secIfCan| |f04asf|
+ |OMsetEncoding| |groebner| |inGroundField?| |ScanRoman|
+ |explicitlyEmpty?| |nextPartition| |readIfCan!|
+ |coercePreimagesImages| |stoseInvertibleSet| |bytes| |firstDenom|
+ |cAsinh| |weighted| |f01rcf| |tanh2trigh| |rootsOf| |chebyshevT|
+ |headAst| |f01qdf| |isOp| |selectAndPolynomials| |linefeed|
+ |wholeRagits| |declare| |eigenMatrix| |mkcomm| |rationalFunction|
+ |leadingBasisTerm| |lazyGintegrate| |acoshIfCan| |cycleSplit!|
+ |index?| |f02abf| |determinant| |eisensteinIrreducible?| |resize|
+ |makeTerm| |ptree| |ratDsolve| |sinhIfCan| |cAcsch| |Lazard| |f02aaf|
+ |status| |irreducibleFactor| |external?| |c02aff| |f02adf| |simplify|
+ |pseudoQuotient| |lowerCase!| |outputForm| |littleEndian| |initTable!|
+ |sumOfKthPowerDivisors| |approximants| |enqueue!| |doubleResultant|
+ |writable?| |addPoint| |viewSizeDefault| |ratDenom| |returns|
+ |mainVariables| |li| |upperCase| |rightRankPolynomial| |alphabetic?|
+ |sizeLess?| |OMgetVariable| |divisorCascade| |adaptive3D?| |kind|
+ |nextPrimitiveNormalPoly| |legendreP| |dequeue!| |match?| |zag|
+ |clearDenominator| |simpson| |yCoordinates| |degreeSubResultant|
+ |numerator| |Ei| |bernoulli| |thenBranch| |op| |carriageReturn|
+ |linearPart| |LyndonWordsList1| |f04adf| |getIdentifier| |fTable|
+ |fixedDivisor| |f07fdf| |iteratedInitials| |brillhartTrials|
+ |wordInGenerators| |numberOfFactors| |upperCase!| |ODESolve|
+ |ricDsolve| |s14abf| |quoted?| |yCoord| |rdregime| |outlineRender|
+ |makeSeries| |e02bbf| |reorder| |se2rfi| |innerint| |leastMonomial|
+ |f02aef| |dn| |overlap| |physicalLength| |sample| |lfextendedint|
+ |endOfFile?| |ran| |cot2trig| |rootPoly| |headRemainder|
+ |jvmFieldrefConstantTag| |rootOfIrreduciblePoly|
+ |topFortranOutputStack| |cartesian| |perfectNthPower?| |thetaCoord|
+ |integralBasis| |integralMatrix| |fibonacci| |erf| |reducedForm|
+ |dimensionsOf| |isNot| |d02bbf| |s13adf| |removeRedundantFactors|
+ |f02ajf| |setMaxPoints| |semiResultantReduitEuclidean| |matrix|
+ |HermiteIntegrate| |mesh| |argscript| |cyclicParents|
+ |makeFloatFunction| |newReduc| |child| |putProperty|
+ |sylvesterSequence| |deleteProperty!| |ode2| |e02zaf| |setClipValue|
+ |rightOne| |sylvesterMatrix| |df2st| |inf| |createPrimitiveElement|
+ |setDifference| |aCubic| |normal?| |exactQuotient!| |union|
+ |direction| |f07aef| |jordanAlgebra?| |fortranDoubleComplex| |step|
+ |iitanh| |positiveSolve| |LyndonWordsList| |generator| F2FG |hermite|
+ |s21baf| |multiple?| |s19acf| |quasiAlgebraicSet| |tanhIfCan|
+ |sortConstraints| |elaboration| |resetVariableOrder|
+ |jvmInterfaceMethodConstantTag| |showRegion| |showIntensityFunctions|
+ |pushucoef| |wronskianMatrix| |pastel| |sin2csc| |modulus| |minrank|
+ |upperBound| |rootPower| |e02ajf| |child?| |associatedEquations|
+ |nonSingularModel| |inverseColeman| |getlo| |increasePrecision|
+ |newTypeLists| |fortranDouble| |jvmFloatConstantTag| |functorData|
+ |algebraicVariables| |clipPointsDefault| |outputList| |aQuartic|
+ |permanent| |algebraic?| |ceiling| |selectFiniteRoutines| |viewport3D|
+ |OMputInteger| |htrigs| |balancedBinaryTree|
+ |univariatePolynomialsGcds| |hexDigit?| |pushuconst| |bezoutResultant|
+ |dark| |divideIfCan!| |derivationCoordinates| |identityMatrix|
+ |generalizedContinuumHypothesisAssumed?| |c06fuf| |superscript|
+ |delete!| |chainSubResultants| |pascalTriangle| |leastPower| |say|
+ |fullPartialFraction| |selectfirst| |prinshINFO| |f02xef|
+ |relationsIdeal| |retract| |extendedint| |d03faf| |leftZero| |part?|
+ |setvalue!| |wholePart| |critBonD| |randomR| |removeDuplicates|
+ |maxdeg| |sec2cos| |totalDifferential| |dim| |selectOrPolynomials|
+ |constantIfCan| |removeZeroes| |pdf2ef| |elliptic| |mainForm|
+ |aLinear| |subresultantSequence| |mesh?| |roughSubIdeal?| |iilog|
+ |gradient| |rotate!| |evenlambert| |clearFortranOutputStack| |cfirst|
+ |fortranCarriageReturn| |semicolonSeparate| |rightUnit| |subspace|
+ |cylindrical| |iicosh| |stFuncN| |intPatternMatch| |leftExactQuotient|
+ |read!| |composites| |factorSquareFreePolynomial|
+ |mainDefiningPolynomial| |copy!| |just| |localAbs| |incr|
+ |resetAttributeButtons| |cAcosh| |float?| |mapSolve|
+ |semiDegreeSubResultantEuclidean| |real?| |mainKernel| |mapGen|
+ |probablyZeroDim?| |removeRoughlyRedundantFactorsInContents| |s01eaf|
+ |hi| |e02bcf| |isImplies| |fortranInteger| |asinhIfCan| |moebiusMu|
+ |OMputEndApp| |readInt16!| |ddFact| |inverseLaplace| |curve?|
+ |OMParseError?| |charpol| |lazyVariations| |endSubProgram| |mr|
+ |mirror| |f01maf| |hasHi| |doubleDisc| |deref| |arrayStack| |odd?|
+ |exp1| |digit| GF2FG |symbolIfCan| |complexEigenvalues|
+ |genericPosition| |padecf| |parts| |nextItem| |tan2trig| |setleaves!|
+ |measure| |constDsolve| |duplicates?| |normalDenom| |id|
+ |possiblyNewVariety?| |An| |bumptab| |sin?|
+ |selectMultiDimensionalRoutines| |getDatabase| |transcendent?|
+ |integralCoordinates| |multMonom| |dihedral| |clipBoolean|
+ |associative?| |cSin| |setCondition!| |lo| |setTopPredicate|
+ |pleskenSplit| |setUnion| |shiftRoots| |minimumDegree| |gcdcofactprim|
+ |OMgetEndError| |isQuotient| |rur| |redPol| |inrootof| |call|
+ |countRealRootsMultiple| |completeSmith| |d01apf| |setStatus!|
+ |powmod| |f02wef| |generalizedContinuumHypothesisAssumed| |arity|
+ |removeRoughlyRedundantFactorsInPol| |meshFun2Var| |column|
+ |fixedPoints| |externalList| |failed?| |acotIfCan| |d01anf|
+ |OMreceive| |scalarTypeOf| |physicalLength!| |sumOfSquares| |irVar|
+ |var1StepsDefault| |printTypes| |lineColorDefault| |internalIntegrate|
+ |imagI| |search| |e02dff| |lambert| |environment| |leftOne|
+ |whileLoop| |directSum| |gderiv| |rootProduct| |getProperty|
+ |children| |solveLinearlyOverQ| |mergeDifference| |showTheIFTable|
+ |airyAi| |shape| |hermiteH| |expint| |unexpand| |addMatch| |cycle|
+ |lyndon| |selectPolynomials| |basis| |enterInCache| |derivative|
+ |sumOfDivisors| |variationOfParameters| |height| |hasTopPredicate?|
+ |univariateSolve| |pointPlot| |ReduceOrder| |irreducible?|
+ |collectQuasiMonic| |iipow| |mainVariable| |reduction| |pToDmp|
+ |monic?| |second| |Lazard2| |updateStatus!| |socf2socdf|
+ |possiblyInfinite?| |stirling1| |cAcoth| |expenseOfEvaluation|
+ |quickSort| |rootSplit| |isPlus| |useSingleFactorBound?| |nary?|
+ |generate| |third| |OMgetInteger| |outputBinaryFile| |overlabel|
+ |completeHensel| |appendPoint| |tower| |eigenvalues| |BumInSepFFE|
+ |constantRight| |semiResultantEuclidean2| |truncate| |parents|
+ |polynomialZeros| |extendIfCan| |nextsousResultant2| |loopPoints|
+ |iicos| |pureLex| |jvmFinal| |hspace| |OMserve| |imagK|
+ |dihedralGroup| |incrementBy| |noValueMode| |subResultantsChain|
+ |completeEval| |mainMonomial| |trace2PowMod| |graphImage| |display|
+ |factorPolynomial| |multiplyExponents| |splitSquarefree| |insert!|
+ |reducedDiscriminant| |expand| |hex| |subMatrix| |front| |branchIfCan|
+ |subset?| |controlPanel| |asechIfCan| |squareFree| |B1solve| |degree|
+ |generateIrredPoly| |filterWhile| |cup| |bernoulliB| |flexible?|
+ |showAllElements| |selectSumOfSquaresRoutines| |slex| |plotPolar|
+ |subCase?| |radicalEigenvector| |filterUntil| |coerce|
+ |subscriptedVariables| |useEisensteinCriterion| |specialTrigs|
+ |linearDependenceOverZ| |capacity| |charthRoot| |iiasin|
+ |modularGcdPrimitive| |const| |select| |construct| |before?|
+ |diagonalMatrix| |myDegree| |getBadValues| |retractIfCan|
+ |complexNumeric| |symmetricProduct| |decomposeFunc| |swapColumns!|
+ |nextColeman| |semiDiscriminantEuclidean| |schwerpunkt|
+ |realElementary| |f04atf| |crest| |input| |sub| |row|
+ |extractProperty| |systemCommand| |jvmSynchronized| |rootOf|
+ |randomLC| |componentUpperBound| |kernels| |library| |palgextint0|
+ |torsionIfCan| |elaborateFile| |bat1| |nthFractionalTerm|
+ |knownInfBasis| |escape| |palgextint| |postfix| |true|
+ |principalAncestors| |belong?| |operator| |zerosOf| |dmp2rfi|
+ |nextSubsetGray| |normal| |setProperties| |diff|
+ |radicalOfLeftTraceForm| |sequence| |lifting| |changeVar|
+ |partialQuotients| |modifyPoint| |drawComplexVectorField| |palgRDE0|
+ |minimumExponent| |iicsc| |tab1| |univariate| |GospersMethod|
+ |normalize| |pushdterm| |makeRecord| |orbit| |allRootsOf| |toScale|
+ |euclideanSize| |tail| |LyndonCoordinates| |startStats!| |copyInto!|
+ |queue| |viewDeltaYDefault| |setImagSteps| |cCsch| |commaSeparate|
+ |sqfree| |figureUnits| |f01qcf| |certainlySubVariety?|
+ |mainExpression| |taylorIfCan| |factorsOfDegree| |splitConstant|
+ |gramschmidt| |basisOfLeftAnnihilator| |conjugates| |dAndcExp|
+ |typeLists| |factor| |changeWeightLevel| |safetyMargin|
+ |reducedQPowers| |internalSubPolSet?| |primitive?| |topPredicate|
+ |entry?| |f02fjf| |sqrt| |binary| |makingStats?| |setErrorBound|
+ |cTanh| ** |tree| |d02gbf| |f04arf| |integral?|
+ |monicRightFactorIfCan| |gcdcofact| |e01bgf| |real| |imagE| |polygon?|
+ |outputAsScript| |infLex?| |initiallyReduce| |redPo| |karatsuba|
+ |irCtor| |irreducibleRepresentation| |imag| |minimize| |d01bbf|
+ |collectUnder| |setEpilogue!| |monicDecomposeIfCan| |directProduct|
+ |inconsistent?| |mindeg| |fixPredicate| |graphState|
+ |stoseInvertibleSetreg| |obj| |OMconnInDevice| |mathieu12|
+ |inputBinaryFile| |rk4a| |pmComplexintegrate| |squareMatrix| GE
+ |relerror| |infinityNorm| |medialSet| |alphabetic| |closedCurve|
+ |prologue| |log10| |symmetricRemainder| |superHeight| |csch2sinh|
+ |brace| |leftMult| |lighting| |var1Steps| |increment| |inc| |c05nbf|
+ |e01saf| |s20adf| |setelt| |iisqrt3| |bitand| |integralRepresents|
+ |someBasis| |show| GT |destruct| |gcdprim| |uniform01| |mapDown!|
+ |hyperelliptic| |d01asf| |showAll?| |isOpen?| |bitior| |anfactor|
+ |linGenPos| |quote| |whitePoint| |antiCommutative?| |iiGamma|
+ |linearMatrix| |univariatePolynomial| |copy| |rewriteSetWithReduction|
+ |iiatanh| |insertMatch| |rootNormalize| |s17aef| |trace| LE
+ |OMputObject| |alphanumeric?| |setnext!| |ListOfTerms| |vark| |s17adf|
+ |lhs| |coordinate| |currentScope| |key?| |e02aef| |roughBasicSet|
+ |numberOfMonomials| |besselJ| |linear| |scale|
+ |createNormalPrimitivePoly| |interpretString| |rhs| |isEquiv|
+ |augment| |simpleBounds?| |npcoef| |infRittWu?| |monomial|
+ |leftReducedSystem| |s20acf| |atoms| |selectIntegrationRoutines|
+ |invertibleSet| |associatedSystem| |generalLambert|
+ |patternMatchTimes| |roughEqualIdeals?| |multivariate| |cAsec|
+ |isAtom| |atanIfCan| |polynomial| |absolutelyIrreducible?| |options|
+ |leftUnit| |f02agf| |width| |realSolve| |OMputEndObject|
+ |lazyResidueClass| |variables| |readUInt32!| |f01qef| |setAdaptive|
+ |changeBase| |merge| |autoCoerce| |extractBottom!| |OMencodingSGML|
+ |lexico| |positive?| |primes| |minordet| |numberOfIrreduciblePoly|
+ |nonLinearPart| |OMputBVar| |simpsono| |lazyPremWithDefault|
+ |lowerCase?| |pow| LT |mkIntegral| |unit| |leadingCoefficientRicDE|
+ |jvmDoubleConstantTag| |oddintegers| |cyclotomic| |interpolate|
+ |primeFactor| |characteristic| |maxPoints| |qualifier|
+ |oneDimensionalArray| |ef2edf| |comment| |henselFact| |substitute|
+ |aQuadratic| |bigEndian| |rightPower| |infinite?|
+ |setLegalFortranSourceExtensions| |rightTrim|
+ |stiffnessAndStabilityFactor| |dequeue| |returnTypeOf| |realRoots|
+ |antiCommutator| |createPrimitivePoly| |light| |quotedOperators|
+ |antiAssociative?| |leftTrim| |linearlyDependent?| |reopen!| |d03edf|
+ |genericRightMinimalPolynomial| |divideIfCan| |iFTable|
+ |unprotectedRemoveRedundantFactors| |critM| |midpoints| |setTex!|
+ |UnVectorise| |coordinates| |high| |s13aaf| |optional|
+ |integralLastSubResultant| |curve| |symmetricGroup| |normalise|
+ |e01bhf| |showSummary| |table| |hMonic| |monicModulo| |primitivePart|
+ |createThreeSpace| |option?| |OMgetError| |makeMulti|
+ |SturmHabichtCoefficients| |comparison| |new| |expintfldpoly|
+ |findCycle| |iiatan| |minPoly| |rightScalarTimes!| |addPoint2|
+ |pointColor| |separate| |conical| |showAttributes| |minPol| |dot|
+ |iiabs| |coth2trigh| |complex?| |readUInt16!| |maxIndex| |normalized?|
+ |stack| |root| |repeatUntilLoop| |tanSum| |bipolar|
+ |explicitlyFinite?| |getOrder| |viewpoint| |OMcloseConn| |simplifyExp|
+ |mapCoef| |increase| |buildSyntax| |leftTrace| |whatInfinity| |goto|
+ |cscIfCan| |lazyEvaluate| |weierstrass| |companionBlocks| |ignore?|
+ |tanQ| |biRank| |integral| |jacobiIdentity?| |rightFactorIfCan|
+ |doubleComplex?| |property| |subResultantGcd| |leftRecip|
+ |pseudoRemainder| |linear?| |prefixRagits| |iiacsch|
+ |diophantineSystem| |quartic| |initiallyReduced?| |rightZero|
+ |triangulate| |fixedPointExquo| |jvmAbstract| |sturmSequence|
+ |radicalSolve| |rquo| |integerBound| |screenResolution3D| |infieldint|
+ |numeric| |jvmInterface| |OMmakeConn| |mappingAst|
+ |isAbsolutelyIrreducible?| |formfeed| |operators| |extractClosed|
+ |pointSizeDefault| |radical| |e04gcf| |apply| |computeBasis| |keys|
+ |algebraicSort| |branchPoint?| |primaryDecomp| |removeDuplicates!|
+ |leftDivide| |perfectNthRoot| |cubic| |selectNonFiniteRoutines|
+ |first| |left| |fixedPoint| |sequences| |freeOf?|
+ |inputOutputBinaryFile| |decimal| |pToHdmp| |irForm| |outputAsTex|
+ |makeprod| |rest| |right| |ord| |rk4| |intermediateResultsIF|
+ |connectTo| |factorials| |prevPrime| |froot| |lazyIrreducibleFactors|
+ |createLowComplexityNormalBasis| |varList| |countable?| |polar|
+ |invmod| |d01gbf| |associates?| |gcdPolynomial| |basisOfCentroid|
+ |binding| |expandTrigProducts| |unitCanonical| |split!| |singular?|
+ |typeList| |iisqrt2| |signatureAst| |jvmNative| |s17acf| |reverse|
+ |power| |kroneckerDelta| |setFormula!| |ratpart| |max| |nullary|
+ |asimpson| |principalIdeal| |binaryTree| |factorList| |sPol|
+ |insertTop!| |exprToUPS| |po| |name| |newSubProgram| |ramified?|
+ |poisson| |supersub| |tubePoints| |frobenius| |ParCondList| |hcrf|
+ |llprop| |lowerCase| |body| |push!| |lowerPolynomial| |HenselLift|
+ |c02agf| |bipolarCylindrical| |countRealRoots| |acschIfCan|
+ |changeNameToObjf| |btwFact| |constantKernel| |nativeModuleExtension|
+ |rationalPoints| |viewZoomDefault| |leftRegularRepresentation|
+ |monicDivide| |prinb| |stirling2| |inHallBasis?| |plus!| |numFunEvals|
+ |unary?| |tracePowMod| |hconcat| |integrate| |OMsend|
+ |jvmStringConstantTag| |unrankImproperPartitions0| |iiacosh|
+ |reverseLex| |exponents| |OMputAttr| |lSpaceBasis| |OMgetBind|
+ |invmultisect| |listexp| |drawCurves| |linkToFortran| |maxrank| |hclf|
+ |tablePow| |setAdaptive3D| |prem| |replace| |OMencodingUnknown|
+ |modifyPointData| |alternating| |polyRDE| |unitNormalize|
+ |primintegrate| |vspace| |triangularSystems| |super| |iifact| |symbol|
+ |divide| |rename!| |f01brf| |extractSplittingLeaf| |insertRoot!|
+ |lieAdmissible?| |rroot| |findBinding| |semiSubResultantGcdEuclidean2|
+ |sizePascalTriangle| |expression| |graphCurves| |axes| |dictionary|
+ |xCoord| |negative?| |viewDeltaXDefault| |elem?| |point?|
+ |numberOfChildren| |zeroVector| |ideal| |integer| |readBytes!|
+ |e01sbf| |port| |stosePrepareSubResAlgo| |f02akf| |tanh2coth|
+ |polyred| |rewriteIdealWithHeadRemainder| |basisOfCommutingElements|
+ |plus| |hitherPlane| |nil| |infinite| |arbitraryExponent|
+ |approximate| |complex| |shallowMutable| |canonical| |noetherian|
+ |central| |partiallyOrderedSet| |arbitraryPrecision|
+ |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary|
+ |additiveValuation| |unitsKnown| |canonicalUnitNormal|
+ |multiplicativeValuation| |finiteAggregate| |shallowlyMutable|
+ |commutative|) \ No newline at end of file
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index 6651647a..5fc5cfec 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,5471 +1,5471 @@
-(3472769 . 3500593117)
-((-4040 (((-114) (-1 (-114) |#2| |#2|) $) 86 T ELT) (((-114) $) NIL T ELT)) (-1703 (($ (-1 (-114) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-1773 ((|#2| $ (-560) |#2|) NIL T ELT) ((|#2| $ (-1264 (-560)) |#2|) 44 T ELT)) (-4391 (($ $) 80 T ELT)) (-4129 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-1722 (((-560) (-1 (-114) |#2|) $) 27 T ELT) (((-560) |#2| $) NIL T ELT) (((-560) |#2| $ (-560)) 96 T ELT)) (-2181 (((-663 |#2|) $) 13 T ELT)) (-3223 (($ (-1 (-114) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-3768 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-3996 (($ |#2| $ (-560)) NIL T ELT) (($ $ $ (-560)) 67 T ELT)) (-3329 (((-3 |#2| "failed") (-1 (-114) |#2|) $) 29 T ELT)) (-2787 (((-114) (-1 (-114) |#2|) $) 23 T ELT)) (-3924 ((|#2| $ (-560) |#2|) NIL T ELT) ((|#2| $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) 66 T ELT)) (-4413 (($ $ (-560)) 76 T ELT) (($ $ (-1264 (-560))) 75 T ELT)) (-3865 (((-793) (-1 (-114) |#2|) $) 34 T ELT) (((-793) |#2| $) NIL T ELT)) (-3640 (($ $ $ (-560)) 69 T ELT)) (-1799 (($ $) 68 T ELT)) (-1592 (($ (-663 |#2|)) 73 T ELT)) (-3415 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-663 $)) 85 T ELT)) (-1578 (((-887) $) 92 T ELT)) (-1728 (((-114) (-1 (-114) |#2|) $) 22 T ELT)) (-2473 (((-114) $ $) 95 T ELT)) (-2495 (((-114) $ $) 99 T ELT)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -2473 ((-114) |#1| |#1|)) (-15 -1578 ((-887) |#1|)) (-15 -2495 ((-114) |#1| |#1|)) (-15 -1703 (|#1| |#1|)) (-15 -1703 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -4391 (|#1| |#1|)) (-15 -3640 (|#1| |#1| |#1| (-560))) (-15 -4040 ((-114) |#1|)) (-15 -3223 (|#1| |#1| |#1|)) (-15 -1722 ((-560) |#2| |#1| (-560))) (-15 -1722 ((-560) |#2| |#1|)) (-15 -1722 ((-560) (-1 (-114) |#2|) |#1|)) (-15 -4040 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -3223 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -1773 (|#2| |#1| (-1264 (-560)) |#2|)) (-15 -3996 (|#1| |#1| |#1| (-560))) (-15 -3996 (|#1| |#2| |#1| (-560))) (-15 -4413 (|#1| |#1| (-1264 (-560)))) (-15 -4413 (|#1| |#1| (-560))) (-15 -3957 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3415 (|#1| (-663 |#1|))) (-15 -3415 (|#1| |#1| |#1|)) (-15 -3415 (|#1| |#2| |#1|)) (-15 -3415 (|#1| |#1| |#2|)) (-15 -3924 (|#1| |#1| (-1264 (-560)))) (-15 -1592 (|#1| (-663 |#2|))) (-15 -3329 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -4129 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4129 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4129 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3924 (|#2| |#1| (-560))) (-15 -3924 (|#2| |#1| (-560) |#2|)) (-15 -1773 (|#2| |#1| (-560) |#2|)) (-15 -3865 ((-793) |#2| |#1|)) (-15 -2181 ((-663 |#2|) |#1|)) (-15 -3865 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2787 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -1728 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -3768 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1799 (|#1| |#1|))) (-19 |#2|) (-1247)) (T -18))
+(3472769 . 3501779200)
+((-2152 (((-114) (-1 (-114) |#2| |#2|) $) 86 T ELT) (((-114) $) NIL T ELT)) (-3152 (($ (-1 (-114) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-4083 ((|#2| $ (-560) |#2|) NIL T ELT) ((|#2| $ (-1264 (-560)) |#2|) 44 T ELT)) (-2372 (($ $) 80 T ELT)) (-1778 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-2359 (((-560) (-1 (-114) |#2|) $) 27 T ELT) (((-560) |#2| $) NIL T ELT) (((-560) |#2| $ (-560)) 96 T ELT)) (-3737 (((-663 |#2|) $) 13 T ELT)) (-4167 (($ (-1 (-114) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-3324 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-2260 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2507 (($ |#2| $ (-560)) NIL T ELT) (($ $ $ (-560)) 67 T ELT)) (-2708 (((-3 |#2| "failed") (-1 (-114) |#2|) $) 29 T ELT)) (-2086 (((-114) (-1 (-114) |#2|) $) 23 T ELT)) (-1507 ((|#2| $ (-560) |#2|) NIL T ELT) ((|#2| $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) 66 T ELT)) (-2579 (($ $ (-560)) 76 T ELT) (($ $ (-1264 (-560))) 75 T ELT)) (-3384 (((-793) (-1 (-114) |#2|) $) 34 T ELT) (((-793) |#2| $) NIL T ELT)) (-3993 (($ $ $ (-560)) 69 T ELT)) (-4107 (($ $) 68 T ELT)) (-3924 (($ (-663 |#2|)) 73 T ELT)) (-1955 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-663 $)) 85 T ELT)) (-3913 (((-887) $) 92 T ELT)) (-2149 (((-114) (-1 (-114) |#2|) $) 22 T ELT)) (-2340 (((-114) $ $) 95 T ELT)) (-2362 (((-114) $ $) 99 T ELT)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -2340 ((-114) |#1| |#1|)) (-15 -3913 ((-887) |#1|)) (-15 -2362 ((-114) |#1| |#1|)) (-15 -3152 (|#1| |#1|)) (-15 -3152 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -2372 (|#1| |#1|)) (-15 -3993 (|#1| |#1| |#1| (-560))) (-15 -2152 ((-114) |#1|)) (-15 -4167 (|#1| |#1| |#1|)) (-15 -2359 ((-560) |#2| |#1| (-560))) (-15 -2359 ((-560) |#2| |#1|)) (-15 -2359 ((-560) (-1 (-114) |#2|) |#1|)) (-15 -2152 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -4167 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -4083 (|#2| |#1| (-1264 (-560)) |#2|)) (-15 -2507 (|#1| |#1| |#1| (-560))) (-15 -2507 (|#1| |#2| |#1| (-560))) (-15 -2579 (|#1| |#1| (-1264 (-560)))) (-15 -2579 (|#1| |#1| (-560))) (-15 -2260 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1955 (|#1| (-663 |#1|))) (-15 -1955 (|#1| |#1| |#1|)) (-15 -1955 (|#1| |#2| |#1|)) (-15 -1955 (|#1| |#1| |#2|)) (-15 -1507 (|#1| |#1| (-1264 (-560)))) (-15 -3924 (|#1| (-663 |#2|))) (-15 -2708 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -1778 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1778 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1778 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1507 (|#2| |#1| (-560))) (-15 -1507 (|#2| |#1| (-560) |#2|)) (-15 -4083 (|#2| |#1| (-560) |#2|)) (-15 -3384 ((-793) |#2| |#1|)) (-15 -3737 ((-663 |#2|) |#1|)) (-15 -3384 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2086 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2149 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -3324 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2260 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4107 (|#1| |#1|))) (-19 |#2|) (-1247)) (T -18))
NIL
-(-10 -8 (-15 -2473 ((-114) |#1| |#1|)) (-15 -1578 ((-887) |#1|)) (-15 -2495 ((-114) |#1| |#1|)) (-15 -1703 (|#1| |#1|)) (-15 -1703 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -4391 (|#1| |#1|)) (-15 -3640 (|#1| |#1| |#1| (-560))) (-15 -4040 ((-114) |#1|)) (-15 -3223 (|#1| |#1| |#1|)) (-15 -1722 ((-560) |#2| |#1| (-560))) (-15 -1722 ((-560) |#2| |#1|)) (-15 -1722 ((-560) (-1 (-114) |#2|) |#1|)) (-15 -4040 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -3223 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -1773 (|#2| |#1| (-1264 (-560)) |#2|)) (-15 -3996 (|#1| |#1| |#1| (-560))) (-15 -3996 (|#1| |#2| |#1| (-560))) (-15 -4413 (|#1| |#1| (-1264 (-560)))) (-15 -4413 (|#1| |#1| (-560))) (-15 -3957 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3415 (|#1| (-663 |#1|))) (-15 -3415 (|#1| |#1| |#1|)) (-15 -3415 (|#1| |#2| |#1|)) (-15 -3415 (|#1| |#1| |#2|)) (-15 -3924 (|#1| |#1| (-1264 (-560)))) (-15 -1592 (|#1| (-663 |#2|))) (-15 -3329 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -4129 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4129 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4129 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3924 (|#2| |#1| (-560))) (-15 -3924 (|#2| |#1| (-560) |#2|)) (-15 -1773 (|#2| |#1| (-560) |#2|)) (-15 -3865 ((-793) |#2| |#1|)) (-15 -2181 ((-663 |#2|) |#1|)) (-15 -3865 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2787 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -1728 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -3768 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1799 (|#1| |#1|)))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3839 (((-1303) $ (-560) (-560)) 41 (|has| $ (-6 -4509)) ELT)) (-4040 (((-114) (-1 (-114) |#1| |#1|) $) 101 T ELT) (((-114) $) 95 (|has| |#1| (-871)) ELT)) (-1703 (($ (-1 (-114) |#1| |#1|) $) 92 (|has| $ (-6 -4509)) ELT) (($ $) 91 (-12 (|has| |#1| (-871)) (|has| $ (-6 -4509))) ELT)) (-2286 (($ (-1 (-114) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-871)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-1773 ((|#1| $ (-560) |#1|) 53 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) 60 (|has| $ (-6 -4509)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) 77 (|has| $ (-6 -4508)) ELT)) (-2238 (($) 7 T CONST)) (-4391 (($ $) 93 (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) 103 T ELT)) (-3606 (($ $) 80 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2375 (($ |#1| $) 79 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 76 (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4508)) ELT)) (-3779 ((|#1| $ (-560) |#1|) 54 (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-560)) 52 T ELT)) (-1722 (((-560) (-1 (-114) |#1|) $) 100 T ELT) (((-560) |#1| $) 99 (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) 98 (|has| |#1| (-1132)) ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-4095 (($ (-793) |#1|) 70 T ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-1762 (((-560) $) 44 (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) 85 (|has| |#1| (-871)) ELT)) (-3223 (($ (-1 (-114) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-871)) ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2937 (((-560) $) 45 (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) 86 (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3996 (($ |#1| $ (-560)) 62 T ELT) (($ $ $ (-560)) 61 T ELT)) (-3270 (((-663 (-560)) $) 47 T ELT)) (-3586 (((-114) (-560) $) 48 T ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-3637 ((|#1| $) 43 (|has| (-560) (-871)) ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 73 T ELT)) (-3037 (($ $ |#1|) 42 (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-2914 (((-114) |#1| $) 46 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) 49 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3924 ((|#1| $ (-560) |#1|) 51 T ELT) ((|#1| $ (-560)) 50 T ELT) (($ $ (-1264 (-560))) 71 T ELT)) (-4413 (($ $ (-560)) 64 T ELT) (($ $ (-1264 (-560))) 63 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3640 (($ $ $ (-560)) 94 (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) 81 (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 72 T ELT)) (-3415 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-663 $)) 66 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2536 (((-114) $ $) 87 (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) 89 (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2521 (((-114) $ $) 88 (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) 90 (|has| |#1| (-871)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+(-10 -8 (-15 -2340 ((-114) |#1| |#1|)) (-15 -3913 ((-887) |#1|)) (-15 -2362 ((-114) |#1| |#1|)) (-15 -3152 (|#1| |#1|)) (-15 -3152 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -2372 (|#1| |#1|)) (-15 -3993 (|#1| |#1| |#1| (-560))) (-15 -2152 ((-114) |#1|)) (-15 -4167 (|#1| |#1| |#1|)) (-15 -2359 ((-560) |#2| |#1| (-560))) (-15 -2359 ((-560) |#2| |#1|)) (-15 -2359 ((-560) (-1 (-114) |#2|) |#1|)) (-15 -2152 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -4167 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -4083 (|#2| |#1| (-1264 (-560)) |#2|)) (-15 -2507 (|#1| |#1| |#1| (-560))) (-15 -2507 (|#1| |#2| |#1| (-560))) (-15 -2579 (|#1| |#1| (-1264 (-560)))) (-15 -2579 (|#1| |#1| (-560))) (-15 -2260 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -1955 (|#1| (-663 |#1|))) (-15 -1955 (|#1| |#1| |#1|)) (-15 -1955 (|#1| |#2| |#1|)) (-15 -1955 (|#1| |#1| |#2|)) (-15 -1507 (|#1| |#1| (-1264 (-560)))) (-15 -3924 (|#1| (-663 |#2|))) (-15 -2708 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -1778 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1778 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1778 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1507 (|#2| |#1| (-560))) (-15 -1507 (|#2| |#1| (-560) |#2|)) (-15 -4083 (|#2| |#1| (-560) |#2|)) (-15 -3384 ((-793) |#2| |#1|)) (-15 -3737 ((-663 |#2|) |#1|)) (-15 -3384 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2086 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2149 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -3324 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2260 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4107 (|#1| |#1|)))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2033 (((-1303) $ (-560) (-560)) 41 (|has| $ (-6 -4509)) ELT)) (-2152 (((-114) (-1 (-114) |#1| |#1|) $) 101 T ELT) (((-114) $) 95 (|has| |#1| (-871)) ELT)) (-3152 (($ (-1 (-114) |#1| |#1|) $) 92 (|has| $ (-6 -4509)) ELT) (($ $) 91 (-12 (|has| |#1| (-871)) (|has| $ (-6 -4509))) ELT)) (-1787 (($ (-1 (-114) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-871)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-4083 ((|#1| $ (-560) |#1|) 53 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) 60 (|has| $ (-6 -4509)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) 77 (|has| $ (-6 -4508)) ELT)) (-3525 (($) 7 T CONST)) (-2372 (($ $) 93 (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) 103 T ELT)) (-3658 (($ $) 80 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3033 (($ |#1| $) 79 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 76 (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4508)) ELT)) (-3338 ((|#1| $ (-560) |#1|) 54 (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-560)) 52 T ELT)) (-2359 (((-560) (-1 (-114) |#1|) $) 100 T ELT) (((-560) |#1| $) 99 (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) 98 (|has| |#1| (-1132)) ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-4246 (($ (-793) |#1|) 70 T ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-2483 (((-560) $) 44 (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) 85 (|has| |#1| (-871)) ELT)) (-4167 (($ (-1 (-114) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-871)) ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4263 (((-560) $) 45 (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) 86 (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-2507 (($ |#1| $ (-560)) 62 T ELT) (($ $ $ (-560)) 61 T ELT)) (-3372 (((-663 (-560)) $) 47 T ELT)) (-3439 (((-114) (-560) $) 48 T ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-4334 ((|#1| $) 43 (|has| (-560) (-871)) ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 73 T ELT)) (-2740 (($ $ |#1|) 42 (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-4019 (((-114) |#1| $) 46 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) 49 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1507 ((|#1| $ (-560) |#1|) 51 T ELT) ((|#1| $ (-560)) 50 T ELT) (($ $ (-1264 (-560))) 71 T ELT)) (-2579 (($ $ (-560)) 64 T ELT) (($ $ (-1264 (-560))) 63 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3993 (($ $ $ (-560)) 94 (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) 81 (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 72 T ELT)) (-1955 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-663 $)) 66 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2396 (((-114) $ $) 87 (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) 89 (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2386 (((-114) $ $) 88 (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) 90 (|has| |#1| (-871)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-19 |#1|) (-142) (-1247)) (T -19))
NIL
(-13 (-385 |t#1|) (-10 -7 (-6 -4509)))
-(((-34) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-871)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-871)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #0=(-560) |#1|) . T) ((-298 (-1264 (-560)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-385 |#1|) . T) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-673 |#1|) . T) ((-871) |has| |#1| (-871)) ((-874) |has| |#1| (-871)) ((-1132) -2304 (|has| |#1| (-1132)) (|has| |#1| (-871))) ((-1247) . T))
-((-3068 (((-3 $ "failed") $ $) 12 T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 26 T ELT)))
-(((-20 |#1|) (-10 -8 (-15 -2580 (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -3068 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|))) (-21)) (T -20))
+(((-34) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-871)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-871)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #0=(-560) |#1|) . T) ((-298 (-1264 (-560)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-385 |#1|) . T) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-673 |#1|) . T) ((-871) |has| |#1| (-871)) ((-874) |has| |#1| (-871)) ((-1132) -2196 (|has| |#1| (-1132)) (|has| |#1| (-871))) ((-1247) . T))
+((-3094 (((-3 $ "failed") $ $) 12 T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 26 T ELT)))
+(((-20 |#1|) (-10 -8 (-15 -2441 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -3094 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|))) (-21)) (T -20))
NIL
-(-10 -8 (-15 -2580 (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -3068 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT)))
+(-10 -8 (-15 -2441 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -3094 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT)))
(((-21) (-142)) (T -21))
-((-2580 (*1 *1 *1) (-4 *1 (-21))) (-2580 (*1 *1 *1 *1) (-4 *1 (-21))))
-(-13 (-133) (-668 (-560)) (-10 -8 (-15 -2580 ($ $)) (-15 -2580 ($ $ $))))
+((-2441 (*1 *1 *1) (-4 *1 (-21))) (-2441 (*1 *1 *1 *1) (-4 *1 (-21))))
+(-13 (-133) (-668 (-560)) (-10 -8 (-15 -2441 ($ $)) (-15 -2441 ($ $ $))))
(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-1132) . T) ((-1247) . T))
-((-2388 (((-114) $) 10 T ELT)) (-2238 (($) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 19 T ELT)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-793) |#1|)) (-15 -2388 ((-114) |#1|)) (-15 -2238 (|#1|)) (-15 * (|#1| (-948) |#1|))) (-23)) (T -22))
+((-2505 (((-114) $) 10 T ELT)) (-3525 (($) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 19 T ELT)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-793) |#1|)) (-15 -2505 ((-114) |#1|)) (-15 -3525 (|#1|)) (-15 * (|#1| (-948) |#1|))) (-23)) (T -22))
NIL
-(-10 -8 (-15 * (|#1| (-793) |#1|)) (-15 -2388 ((-114) |#1|)) (-15 -2238 (|#1|)) (-15 * (|#1| (-948) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-2238 (($) 18 T CONST)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT)))
+(-10 -8 (-15 * (|#1| (-793) |#1|)) (-15 -2505 ((-114) |#1|)) (-15 -3525 (|#1|)) (-15 * (|#1| (-948) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3525 (($) 18 T CONST)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT)))
(((-23) (-142)) (T -23))
-((-2001 (*1 *1) (-4 *1 (-23))) (-2238 (*1 *1) (-4 *1 (-23))) (-2388 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-114)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-793)))))
-(-13 (-25) (-10 -8 (-15 (-2001) ($) -3081) (-15 -2238 ($) -3081) (-15 -2388 ((-114) $)) (-15 * ($ (-793) $))))
+((-1446 (*1 *1) (-4 *1 (-23))) (-3525 (*1 *1) (-4 *1 (-23))) (-2505 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-114)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-793)))))
+(-13 (-25) (-10 -8 (-15 (-1446) ($) -2650) (-15 -3525 ($) -2650) (-15 -2505 ((-114) $)) (-15 * ($ (-793) $))))
(((-25) . T) ((-102) . T) ((-632 (-887)) . T) ((-1132) . T) ((-1247) . T))
((* (($ (-948) $) 10 T ELT)))
(((-24 |#1|) (-10 -8 (-15 * (|#1| (-948) |#1|))) (-25)) (T -24))
NIL
(-10 -8 (-15 * (|#1| (-948) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT)))
(((-25) (-142)) (T -25))
-((-2567 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-948)))))
-(-13 (-1132) (-10 -8 (-15 -2567 ($ $ $)) (-15 * ($ (-948) $))))
+((-2429 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-948)))))
+(-13 (-1132) (-10 -8 (-15 -2429 ($ $ $)) (-15 * ($ (-948) $))))
(((-102) . T) ((-632 (-887)) . T) ((-1132) . T) ((-1247) . T))
-((-2603 (((-663 $) (-975 $)) 32 T ELT) (((-663 $) (-1201 $)) 16 T ELT) (((-663 $) (-1201 $) (-1207)) 20 T ELT)) (-3684 (($ (-975 $)) 30 T ELT) (($ (-1201 $)) 11 T ELT) (($ (-1201 $) (-1207)) 60 T ELT)) (-3276 (((-663 $) (-975 $)) 33 T ELT) (((-663 $) (-1201 $)) 18 T ELT) (((-663 $) (-1201 $) (-1207)) 19 T ELT)) (-3325 (($ (-975 $)) 31 T ELT) (($ (-1201 $)) 13 T ELT) (($ (-1201 $) (-1207)) NIL T ELT)))
-(((-26 |#1|) (-10 -8 (-15 -2603 ((-663 |#1|) (-1201 |#1|) (-1207))) (-15 -2603 ((-663 |#1|) (-1201 |#1|))) (-15 -2603 ((-663 |#1|) (-975 |#1|))) (-15 -3684 (|#1| (-1201 |#1|) (-1207))) (-15 -3684 (|#1| (-1201 |#1|))) (-15 -3684 (|#1| (-975 |#1|))) (-15 -3276 ((-663 |#1|) (-1201 |#1|) (-1207))) (-15 -3276 ((-663 |#1|) (-1201 |#1|))) (-15 -3276 ((-663 |#1|) (-975 |#1|))) (-15 -3325 (|#1| (-1201 |#1|) (-1207))) (-15 -3325 (|#1| (-1201 |#1|))) (-15 -3325 (|#1| (-975 |#1|)))) (-27)) (T -26))
+((-3964 (((-663 $) (-975 $)) 32 T ELT) (((-663 $) (-1201 $)) 16 T ELT) (((-663 $) (-1201 $) (-1207)) 20 T ELT)) (-3158 (($ (-975 $)) 30 T ELT) (($ (-1201 $)) 11 T ELT) (($ (-1201 $) (-1207)) 60 T ELT)) (-3423 (((-663 $) (-975 $)) 33 T ELT) (((-663 $) (-1201 $)) 18 T ELT) (((-663 $) (-1201 $) (-1207)) 19 T ELT)) (-3946 (($ (-975 $)) 31 T ELT) (($ (-1201 $)) 13 T ELT) (($ (-1201 $) (-1207)) NIL T ELT)))
+(((-26 |#1|) (-10 -8 (-15 -3964 ((-663 |#1|) (-1201 |#1|) (-1207))) (-15 -3964 ((-663 |#1|) (-1201 |#1|))) (-15 -3964 ((-663 |#1|) (-975 |#1|))) (-15 -3158 (|#1| (-1201 |#1|) (-1207))) (-15 -3158 (|#1| (-1201 |#1|))) (-15 -3158 (|#1| (-975 |#1|))) (-15 -3423 ((-663 |#1|) (-1201 |#1|) (-1207))) (-15 -3423 ((-663 |#1|) (-1201 |#1|))) (-15 -3423 ((-663 |#1|) (-975 |#1|))) (-15 -3946 (|#1| (-1201 |#1|) (-1207))) (-15 -3946 (|#1| (-1201 |#1|))) (-15 -3946 (|#1| (-975 |#1|)))) (-27)) (T -26))
NIL
-(-10 -8 (-15 -2603 ((-663 |#1|) (-1201 |#1|) (-1207))) (-15 -2603 ((-663 |#1|) (-1201 |#1|))) (-15 -2603 ((-663 |#1|) (-975 |#1|))) (-15 -3684 (|#1| (-1201 |#1|) (-1207))) (-15 -3684 (|#1| (-1201 |#1|))) (-15 -3684 (|#1| (-975 |#1|))) (-15 -3276 ((-663 |#1|) (-1201 |#1|) (-1207))) (-15 -3276 ((-663 |#1|) (-1201 |#1|))) (-15 -3276 ((-663 |#1|) (-975 |#1|))) (-15 -3325 (|#1| (-1201 |#1|) (-1207))) (-15 -3325 (|#1| (-1201 |#1|))) (-15 -3325 (|#1| (-975 |#1|))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2603 (((-663 $) (-975 $)) 88 T ELT) (((-663 $) (-1201 $)) 87 T ELT) (((-663 $) (-1201 $) (-1207)) 86 T ELT)) (-3684 (($ (-975 $)) 91 T ELT) (($ (-1201 $)) 90 T ELT) (($ (-1201 $) (-1207)) 89 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-3244 (($ $) 46 T ELT)) (-4093 (((-114) $) 44 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-1804 (($ $) 81 T ELT)) (-3023 (((-419 $) $) 80 T ELT)) (-4471 (($ $) 100 T ELT)) (-1615 (((-114) $ $) 65 T ELT)) (-2238 (($) 18 T CONST)) (-3276 (((-663 $) (-975 $)) 94 T ELT) (((-663 $) (-1201 $)) 93 T ELT) (((-663 $) (-1201 $) (-1207)) 92 T ELT)) (-3325 (($ (-975 $)) 97 T ELT) (($ (-1201 $)) 96 T ELT) (($ (-1201 $) (-1207)) 95 T ELT)) (-1478 (($ $ $) 61 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1490 (($ $ $) 62 T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 57 T ELT)) (-4330 (((-114) $) 79 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-2146 (($ $ (-560)) 99 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-2093 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-1544 (($ $) 78 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-2132 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-4457 (((-419 $) $) 82 T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-1528 (((-3 $ "failed") $ $) 48 T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-2901 (((-793) $) 64 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 63 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-560))) 74 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 45 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ $) 73 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 77 T ELT) (($ $ (-421 (-560))) 98 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 76 T ELT) (($ (-421 (-560)) $) 75 T ELT)))
+(-10 -8 (-15 -3964 ((-663 |#1|) (-1201 |#1|) (-1207))) (-15 -3964 ((-663 |#1|) (-1201 |#1|))) (-15 -3964 ((-663 |#1|) (-975 |#1|))) (-15 -3158 (|#1| (-1201 |#1|) (-1207))) (-15 -3158 (|#1| (-1201 |#1|))) (-15 -3158 (|#1| (-975 |#1|))) (-15 -3423 ((-663 |#1|) (-1201 |#1|) (-1207))) (-15 -3423 ((-663 |#1|) (-1201 |#1|))) (-15 -3423 ((-663 |#1|) (-975 |#1|))) (-15 -3946 (|#1| (-1201 |#1|) (-1207))) (-15 -3946 (|#1| (-1201 |#1|))) (-15 -3946 (|#1| (-975 |#1|))))
+((-2243 (((-114) $ $) 7 T ELT)) (-3964 (((-663 $) (-975 $)) 88 T ELT) (((-663 $) (-1201 $)) 87 T ELT) (((-663 $) (-1201 $) (-1207)) 86 T ELT)) (-3158 (($ (-975 $)) 91 T ELT) (($ (-1201 $)) 90 T ELT) (($ (-1201 $) (-1207)) 89 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-4366 (($ $) 46 T ELT)) (-2667 (((-114) $) 44 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-1621 (($ $) 81 T ELT)) (-3898 (((-419 $) $) 80 T ELT)) (-4021 (($ $) 100 T ELT)) (-3476 (((-114) $ $) 65 T ELT)) (-3525 (($) 18 T CONST)) (-3423 (((-663 $) (-975 $)) 94 T ELT) (((-663 $) (-1201 $)) 93 T ELT) (((-663 $) (-1201 $) (-1207)) 92 T ELT)) (-3946 (($ (-975 $)) 97 T ELT) (($ (-1201 $)) 96 T ELT) (($ (-1201 $) (-1207)) 95 T ELT)) (-2186 (($ $ $) 61 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-2197 (($ $ $) 62 T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 57 T ELT)) (-3141 (((-114) $) 79 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-1956 (($ $ (-560)) 99 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-1861 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2986 (($ $) 78 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-1938 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-4012 (((-419 $) $) 82 T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-2233 (((-3 $ "failed") $ $) 48 T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-3989 (((-793) $) 64 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 63 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-560))) 74 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 45 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ $) 73 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 77 T ELT) (($ $ (-421 (-560))) 98 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 76 T ELT) (($ (-421 (-560)) $) 75 T ELT)))
(((-27) (-142)) (T -27))
-((-3325 (*1 *1 *2) (-12 (-5 *2 (-975 *1)) (-4 *1 (-27)))) (-3325 (*1 *1 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-27)))) (-3325 (*1 *1 *2 *3) (-12 (-5 *2 (-1201 *1)) (-5 *3 (-1207)) (-4 *1 (-27)))) (-3276 (*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1)))) (-3276 (*1 *2 *3) (-12 (-5 *3 (-1201 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1)))) (-3276 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 *1)) (-5 *4 (-1207)) (-4 *1 (-27)) (-5 *2 (-663 *1)))) (-3684 (*1 *1 *2) (-12 (-5 *2 (-975 *1)) (-4 *1 (-27)))) (-3684 (*1 *1 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-27)))) (-3684 (*1 *1 *2 *3) (-12 (-5 *2 (-1201 *1)) (-5 *3 (-1207)) (-4 *1 (-27)))) (-2603 (*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1)))) (-2603 (*1 *2 *3) (-12 (-5 *3 (-1201 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1)))) (-2603 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 *1)) (-5 *4 (-1207)) (-4 *1 (-27)) (-5 *2 (-663 *1)))))
-(-13 (-376) (-1033) (-10 -8 (-15 -3325 ($ (-975 $))) (-15 -3325 ($ (-1201 $))) (-15 -3325 ($ (-1201 $) (-1207))) (-15 -3276 ((-663 $) (-975 $))) (-15 -3276 ((-663 $) (-1201 $))) (-15 -3276 ((-663 $) (-1201 $) (-1207))) (-15 -3684 ($ (-975 $))) (-15 -3684 ($ (-1201 $))) (-15 -3684 ($ (-1201 $) (-1207))) (-15 -2603 ((-663 $) (-975 $))) (-15 -2603 ((-663 $) (-1201 $))) (-15 -2603 ((-663 $) (-1201 $) (-1207)))))
+((-3946 (*1 *1 *2) (-12 (-5 *2 (-975 *1)) (-4 *1 (-27)))) (-3946 (*1 *1 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-27)))) (-3946 (*1 *1 *2 *3) (-12 (-5 *2 (-1201 *1)) (-5 *3 (-1207)) (-4 *1 (-27)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-1201 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1)))) (-3423 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 *1)) (-5 *4 (-1207)) (-4 *1 (-27)) (-5 *2 (-663 *1)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-975 *1)) (-4 *1 (-27)))) (-3158 (*1 *1 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-27)))) (-3158 (*1 *1 *2 *3) (-12 (-5 *2 (-1201 *1)) (-5 *3 (-1207)) (-4 *1 (-27)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1)))) (-3964 (*1 *2 *3) (-12 (-5 *3 (-1201 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1)))) (-3964 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 *1)) (-5 *4 (-1207)) (-4 *1 (-27)) (-5 *2 (-663 *1)))))
+(-13 (-376) (-1033) (-10 -8 (-15 -3946 ($ (-975 $))) (-15 -3946 ($ (-1201 $))) (-15 -3946 ($ (-1201 $) (-1207))) (-15 -3423 ((-663 $) (-975 $))) (-15 -3423 ((-663 $) (-1201 $))) (-15 -3423 ((-663 $) (-1201 $) (-1207))) (-15 -3158 ($ (-975 $))) (-15 -3158 ($ (-1201 $))) (-15 -3158 ($ (-1201 $) (-1207))) (-15 -3964 ((-663 $) (-975 $))) (-15 -3964 ((-663 $) (-1201 $))) (-15 -3964 ((-663 $) (-1201 $) (-1207)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-133) . T) ((-635 #0#) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-466) . T) ((-571) . T) ((-668 #0#) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 $) . T) ((-739 #0#) . T) ((-739 $) . T) ((-748) . T) ((-950) . T) ((-1033) . T) ((-1082 #0#) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T) ((-1252) . T))
-((-2603 (((-663 $) (-975 $)) NIL T ELT) (((-663 $) (-1201 $)) NIL T ELT) (((-663 $) (-1201 $) (-1207)) 55 T ELT) (((-663 $) $) 22 T ELT) (((-663 $) $ (-1207)) 46 T ELT)) (-3684 (($ (-975 $)) NIL T ELT) (($ (-1201 $)) NIL T ELT) (($ (-1201 $) (-1207)) 57 T ELT) (($ $) 20 T ELT) (($ $ (-1207)) 40 T ELT)) (-3276 (((-663 $) (-975 $)) NIL T ELT) (((-663 $) (-1201 $)) NIL T ELT) (((-663 $) (-1201 $) (-1207)) 53 T ELT) (((-663 $) $) 18 T ELT) (((-663 $) $ (-1207)) 48 T ELT)) (-3325 (($ (-975 $)) NIL T ELT) (($ (-1201 $)) NIL T ELT) (($ (-1201 $) (-1207)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1207)) 42 T ELT)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -2603 ((-663 |#1|) |#1| (-1207))) (-15 -3684 (|#1| |#1| (-1207))) (-15 -2603 ((-663 |#1|) |#1|)) (-15 -3684 (|#1| |#1|)) (-15 -3276 ((-663 |#1|) |#1| (-1207))) (-15 -3325 (|#1| |#1| (-1207))) (-15 -3276 ((-663 |#1|) |#1|)) (-15 -3325 (|#1| |#1|)) (-15 -2603 ((-663 |#1|) (-1201 |#1|) (-1207))) (-15 -2603 ((-663 |#1|) (-1201 |#1|))) (-15 -2603 ((-663 |#1|) (-975 |#1|))) (-15 -3684 (|#1| (-1201 |#1|) (-1207))) (-15 -3684 (|#1| (-1201 |#1|))) (-15 -3684 (|#1| (-975 |#1|))) (-15 -3276 ((-663 |#1|) (-1201 |#1|) (-1207))) (-15 -3276 ((-663 |#1|) (-1201 |#1|))) (-15 -3276 ((-663 |#1|) (-975 |#1|))) (-15 -3325 (|#1| (-1201 |#1|) (-1207))) (-15 -3325 (|#1| (-1201 |#1|))) (-15 -3325 (|#1| (-975 |#1|)))) (-29 |#2|) (-571)) (T -28))
+((-3964 (((-663 $) (-975 $)) NIL T ELT) (((-663 $) (-1201 $)) NIL T ELT) (((-663 $) (-1201 $) (-1207)) 55 T ELT) (((-663 $) $) 22 T ELT) (((-663 $) $ (-1207)) 46 T ELT)) (-3158 (($ (-975 $)) NIL T ELT) (($ (-1201 $)) NIL T ELT) (($ (-1201 $) (-1207)) 57 T ELT) (($ $) 20 T ELT) (($ $ (-1207)) 40 T ELT)) (-3423 (((-663 $) (-975 $)) NIL T ELT) (((-663 $) (-1201 $)) NIL T ELT) (((-663 $) (-1201 $) (-1207)) 53 T ELT) (((-663 $) $) 18 T ELT) (((-663 $) $ (-1207)) 48 T ELT)) (-3946 (($ (-975 $)) NIL T ELT) (($ (-1201 $)) NIL T ELT) (($ (-1201 $) (-1207)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1207)) 42 T ELT)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -3964 ((-663 |#1|) |#1| (-1207))) (-15 -3158 (|#1| |#1| (-1207))) (-15 -3964 ((-663 |#1|) |#1|)) (-15 -3158 (|#1| |#1|)) (-15 -3423 ((-663 |#1|) |#1| (-1207))) (-15 -3946 (|#1| |#1| (-1207))) (-15 -3423 ((-663 |#1|) |#1|)) (-15 -3946 (|#1| |#1|)) (-15 -3964 ((-663 |#1|) (-1201 |#1|) (-1207))) (-15 -3964 ((-663 |#1|) (-1201 |#1|))) (-15 -3964 ((-663 |#1|) (-975 |#1|))) (-15 -3158 (|#1| (-1201 |#1|) (-1207))) (-15 -3158 (|#1| (-1201 |#1|))) (-15 -3158 (|#1| (-975 |#1|))) (-15 -3423 ((-663 |#1|) (-1201 |#1|) (-1207))) (-15 -3423 ((-663 |#1|) (-1201 |#1|))) (-15 -3423 ((-663 |#1|) (-975 |#1|))) (-15 -3946 (|#1| (-1201 |#1|) (-1207))) (-15 -3946 (|#1| (-1201 |#1|))) (-15 -3946 (|#1| (-975 |#1|)))) (-29 |#2|) (-571)) (T -28))
NIL
-(-10 -8 (-15 -2603 ((-663 |#1|) |#1| (-1207))) (-15 -3684 (|#1| |#1| (-1207))) (-15 -2603 ((-663 |#1|) |#1|)) (-15 -3684 (|#1| |#1|)) (-15 -3276 ((-663 |#1|) |#1| (-1207))) (-15 -3325 (|#1| |#1| (-1207))) (-15 -3276 ((-663 |#1|) |#1|)) (-15 -3325 (|#1| |#1|)) (-15 -2603 ((-663 |#1|) (-1201 |#1|) (-1207))) (-15 -2603 ((-663 |#1|) (-1201 |#1|))) (-15 -2603 ((-663 |#1|) (-975 |#1|))) (-15 -3684 (|#1| (-1201 |#1|) (-1207))) (-15 -3684 (|#1| (-1201 |#1|))) (-15 -3684 (|#1| (-975 |#1|))) (-15 -3276 ((-663 |#1|) (-1201 |#1|) (-1207))) (-15 -3276 ((-663 |#1|) (-1201 |#1|))) (-15 -3276 ((-663 |#1|) (-975 |#1|))) (-15 -3325 (|#1| (-1201 |#1|) (-1207))) (-15 -3325 (|#1| (-1201 |#1|))) (-15 -3325 (|#1| (-975 |#1|))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2603 (((-663 $) (-975 $)) 88 T ELT) (((-663 $) (-1201 $)) 87 T ELT) (((-663 $) (-1201 $) (-1207)) 86 T ELT) (((-663 $) $) 138 T ELT) (((-663 $) $ (-1207)) 136 T ELT)) (-3684 (($ (-975 $)) 91 T ELT) (($ (-1201 $)) 90 T ELT) (($ (-1201 $) (-1207)) 89 T ELT) (($ $) 139 T ELT) (($ $ (-1207)) 137 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-1443 (((-663 (-1207)) $) 207 T ELT)) (-4422 (((-421 (-1201 $)) $ (-630 $)) 239 (|has| |#1| (-571)) ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-3244 (($ $) 46 T ELT)) (-4093 (((-114) $) 44 T ELT)) (-4297 (((-663 (-630 $)) $) 170 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-1724 (($ $ (-663 (-630 $)) (-663 $)) 160 T ELT) (($ $ (-663 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT)) (-1804 (($ $) 81 T ELT)) (-3023 (((-419 $) $) 80 T ELT)) (-4471 (($ $) 100 T ELT)) (-1615 (((-114) $ $) 65 T ELT)) (-2238 (($) 18 T CONST)) (-3276 (((-663 $) (-975 $)) 94 T ELT) (((-663 $) (-1201 $)) 93 T ELT) (((-663 $) (-1201 $) (-1207)) 92 T ELT) (((-663 $) $) 142 T ELT) (((-663 $) $ (-1207)) 140 T ELT)) (-3325 (($ (-975 $)) 97 T ELT) (($ (-1201 $)) 96 T ELT) (($ (-1201 $) (-1207)) 95 T ELT) (($ $) 143 T ELT) (($ $ (-1207)) 141 T ELT)) (-2539 (((-3 (-975 |#1|) "failed") $) 258 (|has| |#1| (-1080)) ELT) (((-3 (-421 (-975 |#1|)) "failed") $) 241 (|has| |#1| (-571)) ELT) (((-3 |#1| "failed") $) 203 T ELT) (((-3 (-560) "failed") $) 200 (|has| |#1| (-1069 (-560))) ELT) (((-3 (-1207) "failed") $) 194 T ELT) (((-3 (-630 $) "failed") $) 145 T ELT) (((-3 (-421 (-560)) "failed") $) 133 (-2304 (-12 (|has| |#1| (-1069 (-560))) (|has| |#1| (-571))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-3330 (((-975 |#1|) $) 257 (|has| |#1| (-1080)) ELT) (((-421 (-975 |#1|)) $) 240 (|has| |#1| (-571)) ELT) ((|#1| $) 202 T ELT) (((-560) $) 201 (|has| |#1| (-1069 (-560))) ELT) (((-1207) $) 193 T ELT) (((-630 $) $) 144 T ELT) (((-421 (-560)) $) 134 (-2304 (-12 (|has| |#1| (-1069 (-560))) (|has| |#1| (-571))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-1478 (($ $ $) 61 T ELT)) (-3142 (((-711 |#1|) (-711 $)) 246 (|has| |#1| (-1080)) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 245 (|has| |#1| (-1080)) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 132 (-2304 (-1953 (|has| |#1| (-1080)) (|has| |#1| (-660 (-560)))) (-1953 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT) (((-711 (-560)) (-711 $)) 131 (-2304 (-1953 (|has| |#1| (-1080)) (|has| |#1| (-660 (-560)))) (-1953 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1490 (($ $ $) 62 T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 57 T ELT)) (-4330 (((-114) $) 79 T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 199 (|has| |#1| (-911 (-391))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 198 (|has| |#1| (-911 (-560))) ELT)) (-2753 (($ (-663 $)) 164 T ELT) (($ $) 163 T ELT)) (-2943 (((-663 (-115)) $) 171 T ELT)) (-4399 (((-115) (-115)) 172 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-3612 (((-114) $) 192 (|has| $ (-1069 (-560))) ELT)) (-1617 (($ $) 224 (|has| |#1| (-1080)) ELT)) (-3757 (((-1156 |#1| (-630 $)) $) 223 (|has| |#1| (-1080)) ELT)) (-2146 (($ $ (-560)) 99 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-3872 (((-1201 $) (-630 $)) 189 (|has| $ (-1080)) ELT)) (-3957 (($ (-1 $ $) (-630 $)) 178 T ELT)) (-3005 (((-3 (-630 $) "failed") $) 168 T ELT)) (-2484 (((-711 |#1|) (-1297 $)) 248 (|has| |#1| (-1080)) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 247 (|has| |#1| (-1080)) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 130 (-2304 (-1953 (|has| |#1| (-1080)) (|has| |#1| (-660 (-560)))) (-1953 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT) (((-711 (-560)) (-1297 $)) 129 (-2304 (-1953 (|has| |#1| (-1080)) (|has| |#1| (-660 (-560)))) (-1953 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT)) (-2093 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-4385 (((-663 (-630 $)) $) 169 T ELT)) (-2036 (($ (-115) (-663 $)) 177 T ELT) (($ (-115) $) 176 T ELT)) (-3479 (((-3 (-663 $) "failed") $) 218 (|has| |#1| (-1143)) ELT)) (-3436 (((-3 (-2 (|:| |val| $) (|:| -3205 (-560))) "failed") $) 227 (|has| |#1| (-1080)) ELT)) (-2590 (((-3 (-663 $) "failed") $) 220 (|has| |#1| (-25)) ELT)) (-3495 (((-3 (-2 (|:| -2115 (-560)) (|:| |var| (-630 $))) "failed") $) 221 (|has| |#1| (-25)) ELT)) (-3683 (((-3 (-2 (|:| |var| (-630 $)) (|:| -3205 (-560))) "failed") $ (-1207)) 226 (|has| |#1| (-1080)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -3205 (-560))) "failed") $ (-115)) 225 (|has| |#1| (-1080)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -3205 (-560))) "failed") $) 219 (|has| |#1| (-1143)) ELT)) (-2784 (((-114) $ (-1207)) 175 T ELT) (((-114) $ (-115)) 174 T ELT)) (-1544 (($ $) 78 T ELT)) (-2107 (((-793) $) 167 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1554 (((-114) $) 205 T ELT)) (-1566 ((|#1| $) 206 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-2132 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-3883 (((-114) $ (-1207)) 180 T ELT) (((-114) $ $) 179 T ELT)) (-4457 (((-419 $) $) 82 T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-1528 (((-3 $ "failed") $ $) 48 T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-1737 (((-114) $) 191 (|has| $ (-1069 (-560))) ELT)) (-4187 (($ $ (-1207) (-793) (-1 $ $)) 231 (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793) (-1 $ (-663 $))) 230 (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793)) (-663 (-1 $ (-663 $)))) 229 (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793)) (-663 (-1 $ $))) 228 (|has| |#1| (-1080)) ELT) (($ $ (-663 (-115)) (-663 $) (-1207)) 217 (|has| |#1| (-633 (-549))) ELT) (($ $ (-115) $ (-1207)) 216 (|has| |#1| (-633 (-549))) ELT) (($ $) 215 (|has| |#1| (-633 (-549))) ELT) (($ $ (-663 (-1207))) 214 (|has| |#1| (-633 (-549))) ELT) (($ $ (-1207)) 213 (|has| |#1| (-633 (-549))) ELT) (($ $ (-115) (-1 $ $)) 188 T ELT) (($ $ (-115) (-1 $ (-663 $))) 187 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) 186 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) 185 T ELT) (($ $ (-1207) (-1 $ $)) 184 T ELT) (($ $ (-1207) (-1 $ (-663 $))) 183 T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ (-663 $)))) 182 T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ $))) 181 T ELT) (($ $ (-663 $) (-663 $)) 152 T ELT) (($ $ $ $) 151 T ELT) (($ $ (-305 $)) 150 T ELT) (($ $ (-663 (-305 $))) 149 T ELT) (($ $ (-663 (-630 $)) (-663 $)) 148 T ELT) (($ $ (-630 $) $) 147 T ELT)) (-2901 (((-793) $) 64 T ELT)) (-3924 (($ (-115) (-663 $)) 157 T ELT) (($ (-115) $ $ $ $) 156 T ELT) (($ (-115) $ $ $) 155 T ELT) (($ (-115) $ $) 154 T ELT) (($ (-115) $) 153 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 63 T ELT)) (-3690 (($ $ $) 166 T ELT) (($ $) 165 T ELT)) (-2894 (($ $ (-663 (-1207)) (-663 (-793))) 253 (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793)) 252 (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207))) 251 (|has| |#1| (-1080)) ELT) (($ $ (-1207)) 249 (|has| |#1| (-1080)) ELT)) (-3056 (($ $) 234 (|has| |#1| (-571)) ELT)) (-3771 (((-1156 |#1| (-630 $)) $) 233 (|has| |#1| (-571)) ELT)) (-4394 (($ $) 190 (|has| $ (-1080)) ELT)) (-1407 (((-549) $) 262 (|has| |#1| (-633 (-549))) ELT) (($ (-419 $)) 232 (|has| |#1| (-571)) ELT) (((-915 (-391)) $) 197 (|has| |#1| (-633 (-915 (-391)))) ELT) (((-915 (-560)) $) 196 (|has| |#1| (-633 (-915 (-560)))) ELT)) (-4122 (($ $ $) 261 (|has| |#1| (-487)) ELT)) (-2013 (($ $ $) 260 (|has| |#1| (-487)) ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-560))) 74 T ELT) (($ (-975 |#1|)) 259 (|has| |#1| (-1080)) ELT) (($ (-421 (-975 |#1|))) 242 (|has| |#1| (-571)) ELT) (($ (-421 (-975 (-421 |#1|)))) 238 (|has| |#1| (-571)) ELT) (($ (-975 (-421 |#1|))) 237 (|has| |#1| (-571)) ELT) (($ (-421 |#1|)) 236 (|has| |#1| (-571)) ELT) (($ (-1156 |#1| (-630 $))) 222 (|has| |#1| (-1080)) ELT) (($ |#1|) 204 T ELT) (($ (-1207)) 195 T ELT) (($ (-630 $)) 146 T ELT)) (-1964 (((-3 $ "failed") $) 244 (|has| |#1| (-147)) ELT)) (-2930 (((-793)) 32 T CONST)) (-3579 (($ (-663 $)) 162 T ELT) (($ $) 161 T ELT)) (-1840 (((-114) (-115)) 173 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 45 T ELT)) (-4472 (($ (-1207) (-663 $)) 212 T ELT) (($ (-1207) $ $ $ $) 211 T ELT) (($ (-1207) $ $ $) 210 T ELT) (($ (-1207) $ $) 209 T ELT) (($ (-1207) $) 208 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($ $ (-663 (-1207)) (-663 (-793))) 256 (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793)) 255 (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207))) 254 (|has| |#1| (-1080)) ELT) (($ $ (-1207)) 250 (|has| |#1| (-1080)) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ $) 73 T ELT) (($ (-1156 |#1| (-630 $)) (-1156 |#1| (-630 $))) 235 (|has| |#1| (-571)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 77 T ELT) (($ $ (-421 (-560))) 98 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 76 T ELT) (($ (-421 (-560)) $) 75 T ELT) (($ $ |#1|) 243 (|has| |#1| (-175)) ELT) (($ |#1| $) 135 (|has| |#1| (-1080)) ELT)))
+(-10 -8 (-15 -3964 ((-663 |#1|) |#1| (-1207))) (-15 -3158 (|#1| |#1| (-1207))) (-15 -3964 ((-663 |#1|) |#1|)) (-15 -3158 (|#1| |#1|)) (-15 -3423 ((-663 |#1|) |#1| (-1207))) (-15 -3946 (|#1| |#1| (-1207))) (-15 -3423 ((-663 |#1|) |#1|)) (-15 -3946 (|#1| |#1|)) (-15 -3964 ((-663 |#1|) (-1201 |#1|) (-1207))) (-15 -3964 ((-663 |#1|) (-1201 |#1|))) (-15 -3964 ((-663 |#1|) (-975 |#1|))) (-15 -3158 (|#1| (-1201 |#1|) (-1207))) (-15 -3158 (|#1| (-1201 |#1|))) (-15 -3158 (|#1| (-975 |#1|))) (-15 -3423 ((-663 |#1|) (-1201 |#1|) (-1207))) (-15 -3423 ((-663 |#1|) (-1201 |#1|))) (-15 -3423 ((-663 |#1|) (-975 |#1|))) (-15 -3946 (|#1| (-1201 |#1|) (-1207))) (-15 -3946 (|#1| (-1201 |#1|))) (-15 -3946 (|#1| (-975 |#1|))))
+((-2243 (((-114) $ $) 7 T ELT)) (-3964 (((-663 $) (-975 $)) 88 T ELT) (((-663 $) (-1201 $)) 87 T ELT) (((-663 $) (-1201 $) (-1207)) 86 T ELT) (((-663 $) $) 138 T ELT) (((-663 $) $ (-1207)) 136 T ELT)) (-3158 (($ (-975 $)) 91 T ELT) (($ (-1201 $)) 90 T ELT) (($ (-1201 $) (-1207)) 89 T ELT) (($ $) 139 T ELT) (($ $ (-1207)) 137 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-4162 (((-663 (-1207)) $) 207 T ELT)) (-3981 (((-421 (-1201 $)) $ (-630 $)) 239 (|has| |#1| (-571)) ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-4366 (($ $) 46 T ELT)) (-2667 (((-114) $) 44 T ELT)) (-3859 (((-663 (-630 $)) $) 170 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-2607 (($ $ (-663 (-630 $)) (-663 $)) 160 T ELT) (($ $ (-663 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT)) (-1621 (($ $) 81 T ELT)) (-3898 (((-419 $) $) 80 T ELT)) (-4021 (($ $) 100 T ELT)) (-3476 (((-114) $ $) 65 T ELT)) (-3525 (($) 18 T CONST)) (-3423 (((-663 $) (-975 $)) 94 T ELT) (((-663 $) (-1201 $)) 93 T ELT) (((-663 $) (-1201 $) (-1207)) 92 T ELT) (((-663 $) $) 142 T ELT) (((-663 $) $ (-1207)) 140 T ELT)) (-3946 (($ (-975 $)) 97 T ELT) (($ (-1201 $)) 96 T ELT) (($ (-1201 $) (-1207)) 95 T ELT) (($ $) 143 T ELT) (($ $ (-1207)) 141 T ELT)) (-3929 (((-3 (-975 |#1|) "failed") $) 258 (|has| |#1| (-1080)) ELT) (((-3 (-421 (-975 |#1|)) "failed") $) 241 (|has| |#1| (-571)) ELT) (((-3 |#1| "failed") $) 203 T ELT) (((-3 (-560) "failed") $) 200 (|has| |#1| (-1069 (-560))) ELT) (((-3 (-1207) "failed") $) 194 T ELT) (((-3 (-630 $) "failed") $) 145 T ELT) (((-3 (-421 (-560)) "failed") $) 133 (-2196 (-12 (|has| |#1| (-1069 (-560))) (|has| |#1| (-571))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-3649 (((-975 |#1|) $) 257 (|has| |#1| (-1080)) ELT) (((-421 (-975 |#1|)) $) 240 (|has| |#1| (-571)) ELT) ((|#1| $) 202 T ELT) (((-560) $) 201 (|has| |#1| (-1069 (-560))) ELT) (((-1207) $) 193 T ELT) (((-630 $) $) 144 T ELT) (((-421 (-560)) $) 134 (-2196 (-12 (|has| |#1| (-1069 (-560))) (|has| |#1| (-571))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-2186 (($ $ $) 61 T ELT)) (-2619 (((-711 |#1|) (-711 $)) 246 (|has| |#1| (-1080)) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 245 (|has| |#1| (-1080)) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 132 (-2196 (-1404 (|has| |#1| (-1080)) (|has| |#1| (-660 (-560)))) (-1404 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT) (((-711 (-560)) (-711 $)) 131 (-2196 (-1404 (|has| |#1| (-1080)) (|has| |#1| (-660 (-560)))) (-1404 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-2197 (($ $ $) 62 T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 57 T ELT)) (-3141 (((-114) $) 79 T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 199 (|has| |#1| (-911 (-391))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 198 (|has| |#1| (-911 (-560))) ELT)) (-1740 (($ (-663 $)) 164 T ELT) (($ $) 163 T ELT)) (-4318 (((-663 (-115)) $) 171 T ELT)) (-3963 (((-115) (-115)) 172 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3729 (((-114) $) 192 (|has| $ (-1069 (-560))) ELT)) (-3490 (($ $) 224 (|has| |#1| (-1080)) ELT)) (-2473 (((-1156 |#1| (-630 $)) $) 223 (|has| |#1| (-1080)) ELT)) (-1956 (($ $ (-560)) 99 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-4250 (((-1201 $) (-630 $)) 189 (|has| $ (-1080)) ELT)) (-2260 (($ (-1 $ $) (-630 $)) 178 T ELT)) (-3702 (((-3 (-630 $) "failed") $) 168 T ELT)) (-4140 (((-711 |#1|) (-1297 $)) 248 (|has| |#1| (-1080)) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 247 (|has| |#1| (-1080)) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 130 (-2196 (-1404 (|has| |#1| (-1080)) (|has| |#1| (-660 (-560)))) (-1404 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT) (((-711 (-560)) (-1297 $)) 129 (-2196 (-1404 (|has| |#1| (-1080)) (|has| |#1| (-660 (-560)))) (-1404 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT)) (-1861 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3949 (((-663 (-630 $)) $) 169 T ELT)) (-2547 (($ (-115) (-663 $)) 177 T ELT) (($ (-115) $) 176 T ELT)) (-1669 (((-3 (-663 $) "failed") $) 218 (|has| |#1| (-1143)) ELT)) (-2486 (((-3 (-2 (|:| |val| $) (|:| -2030 (-560))) "failed") $) 227 (|has| |#1| (-1080)) ELT)) (-3849 (((-3 (-663 $) "failed") $) 220 (|has| |#1| (-25)) ELT)) (-1827 (((-3 (-2 (|:| -2625 (-560)) (|:| |var| (-630 $))) "failed") $) 221 (|has| |#1| (-25)) ELT)) (-3149 (((-3 (-2 (|:| |var| (-630 $)) (|:| -2030 (-560))) "failed") $ (-1207)) 226 (|has| |#1| (-1080)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2030 (-560))) "failed") $ (-115)) 225 (|has| |#1| (-1080)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2030 (-560))) "failed") $) 219 (|has| |#1| (-1143)) ELT)) (-2060 (((-114) $ (-1207)) 175 T ELT) (((-114) $ (-115)) 174 T ELT)) (-2986 (($ $) 78 T ELT)) (-3827 (((-793) $) 167 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3000 (((-114) $) 205 T ELT)) (-3011 ((|#1| $) 206 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-1938 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-4338 (((-114) $ (-1207)) 180 T ELT) (((-114) $ $) 179 T ELT)) (-4012 (((-419 $) $) 82 T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-2233 (((-3 $ "failed") $ $) 48 T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-2244 (((-114) $) 191 (|has| $ (-1069 (-560))) ELT)) (-2371 (($ $ (-1207) (-793) (-1 $ $)) 231 (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793) (-1 $ (-663 $))) 230 (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793)) (-663 (-1 $ (-663 $)))) 229 (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793)) (-663 (-1 $ $))) 228 (|has| |#1| (-1080)) ELT) (($ $ (-663 (-115)) (-663 $) (-1207)) 217 (|has| |#1| (-633 (-549))) ELT) (($ $ (-115) $ (-1207)) 216 (|has| |#1| (-633 (-549))) ELT) (($ $) 215 (|has| |#1| (-633 (-549))) ELT) (($ $ (-663 (-1207))) 214 (|has| |#1| (-633 (-549))) ELT) (($ $ (-1207)) 213 (|has| |#1| (-633 (-549))) ELT) (($ $ (-115) (-1 $ $)) 188 T ELT) (($ $ (-115) (-1 $ (-663 $))) 187 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) 186 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) 185 T ELT) (($ $ (-1207) (-1 $ $)) 184 T ELT) (($ $ (-1207) (-1 $ (-663 $))) 183 T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ (-663 $)))) 182 T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ $))) 181 T ELT) (($ $ (-663 $) (-663 $)) 152 T ELT) (($ $ $ $) 151 T ELT) (($ $ (-305 $)) 150 T ELT) (($ $ (-663 (-305 $))) 149 T ELT) (($ $ (-663 (-630 $)) (-663 $)) 148 T ELT) (($ $ (-630 $) $) 147 T ELT)) (-3989 (((-793) $) 64 T ELT)) (-1507 (($ (-115) (-663 $)) 157 T ELT) (($ (-115) $ $ $ $) 156 T ELT) (($ (-115) $ $ $) 155 T ELT) (($ (-115) $ $) 154 T ELT) (($ (-115) $) 153 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 63 T ELT)) (-3222 (($ $ $) 166 T ELT) (($ $) 165 T ELT)) (-3161 (($ $ (-663 (-1207)) (-663 (-793))) 253 (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793)) 252 (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207))) 251 (|has| |#1| (-1080)) ELT) (($ $ (-1207)) 249 (|has| |#1| (-1080)) ELT)) (-2951 (($ $) 234 (|has| |#1| (-571)) ELT)) (-2484 (((-1156 |#1| (-630 $)) $) 233 (|has| |#1| (-571)) ELT)) (-2407 (($ $) 190 (|has| $ (-1080)) ELT)) (-2400 (((-549) $) 262 (|has| |#1| (-633 (-549))) ELT) (($ (-419 $)) 232 (|has| |#1| (-571)) ELT) (((-915 (-391)) $) 197 (|has| |#1| (-633 (-915 (-391)))) ELT) (((-915 (-560)) $) 196 (|has| |#1| (-633 (-915 (-560)))) ELT)) (-1714 (($ $ $) 261 (|has| |#1| (-487)) ELT)) (-3117 (($ $ $) 260 (|has| |#1| (-487)) ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-560))) 74 T ELT) (($ (-975 |#1|)) 259 (|has| |#1| (-1080)) ELT) (($ (-421 (-975 |#1|))) 242 (|has| |#1| (-571)) ELT) (($ (-421 (-975 (-421 |#1|)))) 238 (|has| |#1| (-571)) ELT) (($ (-975 (-421 |#1|))) 237 (|has| |#1| (-571)) ELT) (($ (-421 |#1|)) 236 (|has| |#1| (-571)) ELT) (($ (-1156 |#1| (-630 $))) 222 (|has| |#1| (-1080)) ELT) (($ |#1|) 204 T ELT) (($ (-1207)) 195 T ELT) (($ (-630 $)) 146 T ELT)) (-3919 (((-3 $ "failed") $) 244 (|has| |#1| (-147)) ELT)) (-4191 (((-793)) 32 T CONST)) (-3061 (($ (-663 $)) 162 T ELT) (($ $) 161 T ELT)) (-3962 (((-114) (-115)) 173 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 45 T ELT)) (-2085 (($ (-1207) (-663 $)) 212 T ELT) (($ (-1207) $ $ $ $) 211 T ELT) (($ (-1207) $ $ $) 210 T ELT) (($ (-1207) $ $) 209 T ELT) (($ (-1207) $) 208 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($ $ (-663 (-1207)) (-663 (-793))) 256 (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793)) 255 (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207))) 254 (|has| |#1| (-1080)) ELT) (($ $ (-1207)) 250 (|has| |#1| (-1080)) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ $) 73 T ELT) (($ (-1156 |#1| (-630 $)) (-1156 |#1| (-630 $))) 235 (|has| |#1| (-571)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 77 T ELT) (($ $ (-421 (-560))) 98 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 76 T ELT) (($ (-421 (-560)) $) 75 T ELT) (($ $ |#1|) 243 (|has| |#1| (-175)) ELT) (($ |#1| $) 135 (|has| |#1| (-1080)) ELT)))
(((-29 |#1|) (-142) (-571)) (T -29))
-((-3325 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-571)))) (-3276 (*1 *2 *1) (-12 (-4 *3 (-571)) (-5 *2 (-663 *1)) (-4 *1 (-29 *3)))) (-3325 (*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-4 *1 (-29 *3)) (-4 *3 (-571)))) (-3276 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *2 (-663 *1)) (-4 *1 (-29 *4)))) (-3684 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-571)))) (-2603 (*1 *2 *1) (-12 (-4 *3 (-571)) (-5 *2 (-663 *1)) (-4 *1 (-29 *3)))) (-3684 (*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-4 *1 (-29 *3)) (-4 *3 (-571)))) (-2603 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *2 (-663 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-435 |t#1|) (-10 -8 (-15 -3325 ($ $)) (-15 -3276 ((-663 $) $)) (-15 -3325 ($ $ (-1207))) (-15 -3276 ((-663 $) $ (-1207))) (-15 -3684 ($ $)) (-15 -2603 ((-663 $) $)) (-15 -3684 ($ $ (-1207))) (-15 -2603 ((-663 $) $ (-1207)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) . T) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-175)) ((-111 $ $) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) . T) ((-635 #1=(-421 (-975 |#1|))) |has| |#1| (-571)) ((-635 (-560)) . T) ((-635 #2=(-630 $)) . T) ((-635 #3=(-975 |#1|)) |has| |#1| (-1080)) ((-635 #4=(-1207)) . T) ((-635 |#1|) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-633 (-915 (-391))) |has| |#1| (-633 (-915 (-391)))) ((-633 (-915 (-560))) |has| |#1| (-633 (-915 (-560)))) ((-250) . T) ((-302) . T) ((-319) . T) ((-321 $) . T) ((-310) . T) ((-376) . T) ((-390 |#1|) |has| |#1| (-1080)) ((-414 |#1|) . T) ((-426 |#1|) . T) ((-435 |#1|) . T) ((-466) . T) ((-487) |has| |#1| (-487)) ((-528 (-630 $) $) . T) ((-528 $ $) . T) ((-571) . T) ((-668 #0#) . T) ((-668 (-560)) . T) ((-668 |#1|) -2304 (|has| |#1| (-1080)) (|has| |#1| (-175))) ((-668 $) . T) ((-670 #0#) . T) ((-670 #5=(-560)) -12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ((-670 |#1|) -2304 (|has| |#1| (-1080)) (|has| |#1| (-175))) ((-670 $) . T) ((-662 #0#) . T) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) . T) ((-660 #5#) -12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ((-660 |#1|) |has| |#1| (-1080)) ((-739 #0#) . T) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) . T) ((-748) . T) ((-921 $ #6=(-1207)) |has| |#1| (-1080)) ((-927 #6#) |has| |#1| (-1080)) ((-929 #6#) |has| |#1| (-1080)) ((-911 (-391)) |has| |#1| (-911 (-391))) ((-911 (-560)) |has| |#1| (-911 (-560))) ((-909 |#1|) . T) ((-950) . T) ((-1033) . T) ((-1069 (-421 (-560))) -2304 (|has| |#1| (-1069 (-421 (-560)))) (-12 (|has| |#1| (-571)) (|has| |#1| (-1069 (-560))))) ((-1069 #1#) |has| |#1| (-571)) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 #2#) . T) ((-1069 #3#) |has| |#1| (-1080)) ((-1069 #4#) . T) ((-1069 |#1|) . T) ((-1082 #0#) . T) ((-1082 |#1|) |has| |#1| (-175)) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 |#1|) |has| |#1| (-175)) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T) ((-1252) . T))
-((-3747 (((-1120 (-229)) $) NIL T ELT)) (-3732 (((-1120 (-229)) $) NIL T ELT)) (-4075 (($ $ (-229)) 164 T ELT)) (-4446 (($ (-975 (-560)) (-1207) (-1207) (-1120 (-421 (-560))) (-1120 (-421 (-560)))) 104 T ELT)) (-4071 (((-663 (-663 (-972 (-229)))) $) 180 T ELT)) (-1578 (((-887) $) 194 T ELT)))
-(((-30) (-13 (-984) (-10 -8 (-15 -4446 ($ (-975 (-560)) (-1207) (-1207) (-1120 (-421 (-560))) (-1120 (-421 (-560))))) (-15 -4075 ($ $ (-229)))))) (T -30))
-((-4446 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-975 (-560))) (-5 *3 (-1207)) (-5 *4 (-1120 (-421 (-560)))) (-5 *1 (-30)))) (-4075 (*1 *1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-30)))))
-(-13 (-984) (-10 -8 (-15 -4446 ($ (-975 (-560)) (-1207) (-1207) (-1120 (-421 (-560))) (-1120 (-421 (-560))))) (-15 -4075 ($ $ (-229)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3625 (((-1166) $) 11 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1792 (((-1166) $) 9 T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-31) (-13 (-1114) (-10 -8 (-15 -1792 ((-1166) $)) (-15 -3625 ((-1166) $))))) (T -31))
-((-1792 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-31)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-31)))))
-(-13 (-1114) (-10 -8 (-15 -1792 ((-1166) $)) (-15 -3625 ((-1166) $))))
-((-3325 ((|#2| (-1201 |#2|) (-1207)) 41 T ELT)) (-4399 (((-115) (-115)) 55 T ELT)) (-3872 (((-1201 |#2|) (-630 |#2|)) 149 (|has| |#1| (-1069 (-560))) ELT)) (-2693 ((|#2| |#1| (-560)) 137 (|has| |#1| (-1069 (-560))) ELT)) (-1361 ((|#2| (-1201 |#2|) |#2|) 29 T ELT)) (-2782 (((-887) (-663 |#2|)) 86 T ELT)) (-4394 ((|#2| |#2|) 144 (|has| |#1| (-1069 (-560))) ELT)) (-1840 (((-114) (-115)) 17 T ELT)) (** ((|#2| |#2| (-421 (-560))) 103 (|has| |#1| (-1069 (-560))) ELT)))
-(((-32 |#1| |#2|) (-10 -7 (-15 -3325 (|#2| (-1201 |#2|) (-1207))) (-15 -4399 ((-115) (-115))) (-15 -1840 ((-114) (-115))) (-15 -1361 (|#2| (-1201 |#2|) |#2|)) (-15 -2782 ((-887) (-663 |#2|))) (IF (|has| |#1| (-1069 (-560))) (PROGN (-15 ** (|#2| |#2| (-421 (-560)))) (-15 -3872 ((-1201 |#2|) (-630 |#2|))) (-15 -4394 (|#2| |#2|)) (-15 -2693 (|#2| |#1| (-560)))) |%noBranch|)) (-571) (-435 |#1|)) (T -32))
-((-2693 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *2 (-435 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1069 *4)) (-4 *3 (-571)))) (-4394 (*1 *2 *2) (-12 (-4 *3 (-1069 (-560))) (-4 *3 (-571)) (-5 *1 (-32 *3 *2)) (-4 *2 (-435 *3)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-630 *5)) (-4 *5 (-435 *4)) (-4 *4 (-1069 (-560))) (-4 *4 (-571)) (-5 *2 (-1201 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-421 (-560))) (-4 *4 (-1069 (-560))) (-4 *4 (-571)) (-5 *1 (-32 *4 *2)) (-4 *2 (-435 *4)))) (-2782 (*1 *2 *3) (-12 (-5 *3 (-663 *5)) (-4 *5 (-435 *4)) (-4 *4 (-571)) (-5 *2 (-887)) (-5 *1 (-32 *4 *5)))) (-1361 (*1 *2 *3 *2) (-12 (-5 *3 (-1201 *2)) (-4 *2 (-435 *4)) (-4 *4 (-571)) (-5 *1 (-32 *4 *2)))) (-1840 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-32 *4 *5)) (-4 *5 (-435 *4)))) (-4399 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-32 *3 *4)) (-4 *4 (-435 *3)))) (-3325 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 *2)) (-5 *4 (-1207)) (-4 *2 (-435 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-571)))))
-(-10 -7 (-15 -3325 (|#2| (-1201 |#2|) (-1207))) (-15 -4399 ((-115) (-115))) (-15 -1840 ((-114) (-115))) (-15 -1361 (|#2| (-1201 |#2|) |#2|)) (-15 -2782 ((-887) (-663 |#2|))) (IF (|has| |#1| (-1069 (-560))) (PROGN (-15 ** (|#2| |#2| (-421 (-560)))) (-15 -3872 ((-1201 |#2|) (-630 |#2|))) (-15 -4394 (|#2| |#2|)) (-15 -2693 (|#2| |#1| (-560)))) |%noBranch|))
-((-3363 (((-114) $ (-793)) 20 T ELT)) (-2238 (($) 10 T ELT)) (-4034 (((-114) $ (-793)) 19 T ELT)) (-1805 (((-114) $ (-793)) 17 T ELT)) (-4124 (((-114) $ $) 8 T ELT)) (-1663 (((-114) $) 15 T ELT)))
-(((-33 |#1|) (-10 -8 (-15 -2238 (|#1|)) (-15 -3363 ((-114) |#1| (-793))) (-15 -4034 ((-114) |#1| (-793))) (-15 -1805 ((-114) |#1| (-793))) (-15 -1663 ((-114) |#1|)) (-15 -4124 ((-114) |#1| |#1|))) (-34)) (T -33))
-NIL
-(-10 -8 (-15 -2238 (|#1|)) (-15 -3363 ((-114) |#1| (-793))) (-15 -4034 ((-114) |#1| (-793))) (-15 -1805 ((-114) |#1| (-793))) (-15 -1663 ((-114) |#1|)) (-15 -4124 ((-114) |#1| |#1|)))
-((-3363 (((-114) $ (-793)) 8 T ELT)) (-2238 (($) 7 T CONST)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-1799 (($ $) 13 T ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-3946 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-571)))) (-3423 (*1 *2 *1) (-12 (-4 *3 (-571)) (-5 *2 (-663 *1)) (-4 *1 (-29 *3)))) (-3946 (*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-4 *1 (-29 *3)) (-4 *3 (-571)))) (-3423 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *2 (-663 *1)) (-4 *1 (-29 *4)))) (-3158 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-571)))) (-3964 (*1 *2 *1) (-12 (-4 *3 (-571)) (-5 *2 (-663 *1)) (-4 *1 (-29 *3)))) (-3158 (*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-4 *1 (-29 *3)) (-4 *3 (-571)))) (-3964 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *2 (-663 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-435 |t#1|) (-10 -8 (-15 -3946 ($ $)) (-15 -3423 ((-663 $) $)) (-15 -3946 ($ $ (-1207))) (-15 -3423 ((-663 $) $ (-1207))) (-15 -3158 ($ $)) (-15 -3964 ((-663 $) $)) (-15 -3158 ($ $ (-1207))) (-15 -3964 ((-663 $) $ (-1207)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) . T) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) |has| |#1| (-175)) ((-111 $ $) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) . T) ((-635 #1=(-421 (-975 |#1|))) |has| |#1| (-571)) ((-635 (-560)) . T) ((-635 #2=(-630 $)) . T) ((-635 #3=(-975 |#1|)) |has| |#1| (-1080)) ((-635 #4=(-1207)) . T) ((-635 |#1|) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-633 (-915 (-391))) |has| |#1| (-633 (-915 (-391)))) ((-633 (-915 (-560))) |has| |#1| (-633 (-915 (-560)))) ((-250) . T) ((-302) . T) ((-319) . T) ((-321 $) . T) ((-310) . T) ((-376) . T) ((-390 |#1|) |has| |#1| (-1080)) ((-414 |#1|) . T) ((-426 |#1|) . T) ((-435 |#1|) . T) ((-466) . T) ((-487) |has| |#1| (-487)) ((-528 (-630 $) $) . T) ((-528 $ $) . T) ((-571) . T) ((-668 #0#) . T) ((-668 (-560)) . T) ((-668 |#1|) -2196 (|has| |#1| (-1080)) (|has| |#1| (-175))) ((-668 $) . T) ((-670 #0#) . T) ((-670 #5=(-560)) -12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ((-670 |#1|) -2196 (|has| |#1| (-1080)) (|has| |#1| (-175))) ((-670 $) . T) ((-662 #0#) . T) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) . T) ((-660 #5#) -12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ((-660 |#1|) |has| |#1| (-1080)) ((-739 #0#) . T) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) . T) ((-748) . T) ((-921 $ #6=(-1207)) |has| |#1| (-1080)) ((-927 #6#) |has| |#1| (-1080)) ((-929 #6#) |has| |#1| (-1080)) ((-911 (-391)) |has| |#1| (-911 (-391))) ((-911 (-560)) |has| |#1| (-911 (-560))) ((-909 |#1|) . T) ((-950) . T) ((-1033) . T) ((-1069 (-421 (-560))) -2196 (|has| |#1| (-1069 (-421 (-560)))) (-12 (|has| |#1| (-571)) (|has| |#1| (-1069 (-560))))) ((-1069 #1#) |has| |#1| (-571)) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 #2#) . T) ((-1069 #3#) |has| |#1| (-1080)) ((-1069 #4#) . T) ((-1069 |#1|) . T) ((-1082 #0#) . T) ((-1082 |#1|) |has| |#1| (-175)) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 |#1|) |has| |#1| (-175)) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T) ((-1252) . T))
+((-3307 (((-1120 (-229)) $) NIL T ELT)) (-3295 (((-1120 (-229)) $) NIL T ELT)) (-2496 (($ $ (-229)) 164 T ELT)) (-1607 (($ (-975 (-560)) (-1207) (-1207) (-1120 (-421 (-560))) (-1120 (-421 (-560)))) 104 T ELT)) (-2467 (((-663 (-663 (-972 (-229)))) $) 180 T ELT)) (-3913 (((-887) $) 194 T ELT)))
+(((-30) (-13 (-984) (-10 -8 (-15 -1607 ($ (-975 (-560)) (-1207) (-1207) (-1120 (-421 (-560))) (-1120 (-421 (-560))))) (-15 -2496 ($ $ (-229)))))) (T -30))
+((-1607 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-975 (-560))) (-5 *3 (-1207)) (-5 *4 (-1120 (-421 (-560)))) (-5 *1 (-30)))) (-2496 (*1 *1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-30)))))
+(-13 (-984) (-10 -8 (-15 -1607 ($ (-975 (-560)) (-1207) (-1207) (-1120 (-421 (-560))) (-1120 (-421 (-560))))) (-15 -2496 ($ $ (-229)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-4400 (((-1166) $) 11 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2671 (((-1166) $) 9 T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-31) (-13 (-1114) (-10 -8 (-15 -2671 ((-1166) $)) (-15 -4400 ((-1166) $))))) (T -31))
+((-2671 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-31)))) (-4400 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-31)))))
+(-13 (-1114) (-10 -8 (-15 -2671 ((-1166) $)) (-15 -4400 ((-1166) $))))
+((-3946 ((|#2| (-1201 |#2|) (-1207)) 41 T ELT)) (-3963 (((-115) (-115)) 55 T ELT)) (-4250 (((-1201 |#2|) (-630 |#2|)) 149 (|has| |#1| (-1069 (-560))) ELT)) (-2366 ((|#2| |#1| (-560)) 137 (|has| |#1| (-1069 (-560))) ELT)) (-3771 ((|#2| (-1201 |#2|) |#2|) 29 T ELT)) (-2043 (((-887) (-663 |#2|)) 86 T ELT)) (-2407 ((|#2| |#2|) 144 (|has| |#1| (-1069 (-560))) ELT)) (-3962 (((-114) (-115)) 17 T ELT)) (** ((|#2| |#2| (-421 (-560))) 103 (|has| |#1| (-1069 (-560))) ELT)))
+(((-32 |#1| |#2|) (-10 -7 (-15 -3946 (|#2| (-1201 |#2|) (-1207))) (-15 -3963 ((-115) (-115))) (-15 -3962 ((-114) (-115))) (-15 -3771 (|#2| (-1201 |#2|) |#2|)) (-15 -2043 ((-887) (-663 |#2|))) (IF (|has| |#1| (-1069 (-560))) (PROGN (-15 ** (|#2| |#2| (-421 (-560)))) (-15 -4250 ((-1201 |#2|) (-630 |#2|))) (-15 -2407 (|#2| |#2|)) (-15 -2366 (|#2| |#1| (-560)))) |%noBranch|)) (-571) (-435 |#1|)) (T -32))
+((-2366 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *2 (-435 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1069 *4)) (-4 *3 (-571)))) (-2407 (*1 *2 *2) (-12 (-4 *3 (-1069 (-560))) (-4 *3 (-571)) (-5 *1 (-32 *3 *2)) (-4 *2 (-435 *3)))) (-4250 (*1 *2 *3) (-12 (-5 *3 (-630 *5)) (-4 *5 (-435 *4)) (-4 *4 (-1069 (-560))) (-4 *4 (-571)) (-5 *2 (-1201 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-421 (-560))) (-4 *4 (-1069 (-560))) (-4 *4 (-571)) (-5 *1 (-32 *4 *2)) (-4 *2 (-435 *4)))) (-2043 (*1 *2 *3) (-12 (-5 *3 (-663 *5)) (-4 *5 (-435 *4)) (-4 *4 (-571)) (-5 *2 (-887)) (-5 *1 (-32 *4 *5)))) (-3771 (*1 *2 *3 *2) (-12 (-5 *3 (-1201 *2)) (-4 *2 (-435 *4)) (-4 *4 (-571)) (-5 *1 (-32 *4 *2)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-32 *4 *5)) (-4 *5 (-435 *4)))) (-3963 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-32 *3 *4)) (-4 *4 (-435 *3)))) (-3946 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 *2)) (-5 *4 (-1207)) (-4 *2 (-435 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-571)))))
+(-10 -7 (-15 -3946 (|#2| (-1201 |#2|) (-1207))) (-15 -3963 ((-115) (-115))) (-15 -3962 ((-114) (-115))) (-15 -3771 (|#2| (-1201 |#2|) |#2|)) (-15 -2043 ((-887) (-663 |#2|))) (IF (|has| |#1| (-1069 (-560))) (PROGN (-15 ** (|#2| |#2| (-421 (-560)))) (-15 -4250 ((-1201 |#2|) (-630 |#2|))) (-15 -2407 (|#2| |#2|)) (-15 -2366 (|#2| |#1| (-560)))) |%noBranch|))
+((-3045 (((-114) $ (-793)) 20 T ELT)) (-3525 (($) 10 T ELT)) (-3332 (((-114) $ (-793)) 19 T ELT)) (-1634 (((-114) $ (-793)) 17 T ELT)) (-1736 (((-114) $ $) 8 T ELT)) (-2706 (((-114) $) 15 T ELT)))
+(((-33 |#1|) (-10 -8 (-15 -3525 (|#1|)) (-15 -3045 ((-114) |#1| (-793))) (-15 -3332 ((-114) |#1| (-793))) (-15 -1634 ((-114) |#1| (-793))) (-15 -2706 ((-114) |#1|)) (-15 -1736 ((-114) |#1| |#1|))) (-34)) (T -33))
+NIL
+(-10 -8 (-15 -3525 (|#1|)) (-15 -3045 ((-114) |#1| (-793))) (-15 -3332 ((-114) |#1| (-793))) (-15 -1634 ((-114) |#1| (-793))) (-15 -2706 ((-114) |#1|)) (-15 -1736 ((-114) |#1| |#1|)))
+((-3045 (((-114) $ (-793)) 8 T ELT)) (-3525 (($) 7 T CONST)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-4107 (($ $) 13 T ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-34) (-142)) (T -34))
-((-4124 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114)))) (-1799 (*1 *1 *1) (-4 *1 (-34))) (-3986 (*1 *1) (-4 *1 (-34))) (-1663 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114)))) (-1805 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-793)) (-5 *2 (-114)))) (-4034 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-793)) (-5 *2 (-114)))) (-3363 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-793)) (-5 *2 (-114)))) (-2238 (*1 *1) (-4 *1 (-34))) (-1553 (*1 *2 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-34)) (-5 *2 (-793)))))
-(-13 (-1247) (-10 -8 (-15 -4124 ((-114) $ $)) (-15 -1799 ($ $)) (-15 -3986 ($)) (-15 -1663 ((-114) $)) (-15 -1805 ((-114) $ (-793))) (-15 -4034 ((-114) $ (-793))) (-15 -3363 ((-114) $ (-793))) (-15 -2238 ($) -3081) (IF (|has| $ (-6 -4508)) (-15 -1553 ((-793) $)) |%noBranch|)))
+((-1736 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114)))) (-4107 (*1 *1 *1) (-4 *1 (-34))) (-2832 (*1 *1) (-4 *1 (-34))) (-2706 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114)))) (-1634 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-793)) (-5 *2 (-114)))) (-3332 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-793)) (-5 *2 (-114)))) (-3045 (*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-793)) (-5 *2 (-114)))) (-3525 (*1 *1) (-4 *1 (-34))) (-2256 (*1 *2 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-34)) (-5 *2 (-793)))))
+(-13 (-1247) (-10 -8 (-15 -1736 ((-114) $ $)) (-15 -4107 ($ $)) (-15 -2832 ($)) (-15 -2706 ((-114) $)) (-15 -1634 ((-114) $ (-793))) (-15 -3332 ((-114) $ (-793))) (-15 -3045 ((-114) $ (-793))) (-15 -3525 ($) -2650) (IF (|has| $ (-6 -4508)) (-15 -2256 ((-793) $)) |%noBranch|)))
(((-1247) . T))
-((-4411 (($ $) 11 T ELT)) (-4387 (($ $) 10 T ELT)) (-4438 (($ $) 9 T ELT)) (-3837 (($ $) 8 T ELT)) (-4423 (($ $) 7 T ELT)) (-4398 (($ $) 6 T ELT)))
+((-2042 (($ $) 11 T ELT)) (-2022 (($ $) 10 T ELT)) (-2059 (($ $) 9 T ELT)) (-3392 (($ $) 8 T ELT)) (-2050 (($ $) 7 T ELT)) (-2032 (($ $) 6 T ELT)))
(((-35) (-142)) (T -35))
-((-4411 (*1 *1 *1) (-4 *1 (-35))) (-4387 (*1 *1 *1) (-4 *1 (-35))) (-4438 (*1 *1 *1) (-4 *1 (-35))) (-3837 (*1 *1 *1) (-4 *1 (-35))) (-4423 (*1 *1 *1) (-4 *1 (-35))) (-4398 (*1 *1 *1) (-4 *1 (-35))))
-(-13 (-10 -8 (-15 -4398 ($ $)) (-15 -4423 ($ $)) (-15 -3837 ($ $)) (-15 -4438 ($ $)) (-15 -4387 ($ $)) (-15 -4411 ($ $))))
-((-1538 (((-114) $ $) 20 (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102))) ELT)) (-3853 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 127 T ELT)) (-3273 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 150 T ELT)) (-2270 (($ $) 148 T ELT)) (-4083 (($) 73 T ELT) (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) 72 T ELT)) (-3839 (((-1303) $ |#1| |#1|) 100 (|has| $ (-6 -4509)) ELT) (((-1303) $ (-560) (-560)) 180 (|has| $ (-6 -4509)) ELT)) (-2194 (($ $ (-560)) 161 (|has| $ (-6 -4509)) ELT)) (-4040 (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 211 T ELT) (((-114) $) 205 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) ELT)) (-1703 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 202 (|has| $ (-6 -4509)) ELT) (($ $) 201 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) (|has| $ (-6 -4509))) ELT)) (-2286 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 212 T ELT) (($ $) 206 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-2869 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 136 (|has| $ (-6 -4509)) ELT)) (-2102 (($ $ $) 157 (|has| $ (-6 -4509)) ELT)) (-4319 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 159 (|has| $ (-6 -4509)) ELT)) (-3132 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 155 (|has| $ (-6 -4509)) ELT)) (-1773 ((|#2| $ |#1| |#2|) 74 T ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-560) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 191 (|has| $ (-6 -4509)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-1264 (-560)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 162 (|has| $ (-6 -4509)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ "last" (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 160 (|has| $ (-6 -4509)) ELT) (($ $ "rest" $) 158 (|has| $ (-6 -4509)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ "first" (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 156 (|has| $ (-6 -4509)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ "value" (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 135 (|has| $ (-6 -4509)) ELT)) (-2083 (($ $ (-663 $)) 134 (|has| $ (-6 -4509)) ELT)) (-3500 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 46 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 218 T ELT)) (-1982 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 56 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 177 (|has| $ (-6 -4508)) ELT)) (-3264 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 149 T ELT)) (-4255 (((-3 |#2| "failed") |#1| $) 62 T ELT)) (-2238 (($) 7 T CONST)) (-4391 (($ $) 203 (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) 213 T ELT)) (-3649 (($ $ (-793)) 144 T ELT) (($ $) 142 T ELT)) (-2944 (($ $) 216 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) ELT)) (-3606 (($ $) 59 (-2304 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| $ (-6 -4508))) (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| $ (-6 -4508)))) ELT)) (-3390 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 48 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 47 (|has| $ (-6 -4508)) ELT) (((-3 |#2| "failed") |#1| $) 63 T ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 222 T ELT) (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 217 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) ELT)) (-2375 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 55 (|has| $ (-6 -4508)) ELT) (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 179 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 176 (|has| $ (-6 -4508)) ELT)) (-4129 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 57 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 54 (|has| $ (-6 -4508)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 53 (|has| $ (-6 -4508)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 178 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 175 (|has| $ (-6 -4508)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 174 (|has| $ (-6 -4508)) ELT)) (-3779 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4509)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-560) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 192 (|has| $ (-6 -4509)) ELT)) (-3709 ((|#2| $ |#1|) 89 T ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-560)) 190 T ELT)) (-2267 (((-114) $) 194 T ELT)) (-1722 (((-560) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 210 T ELT) (((-560) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 209 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) ELT) (((-560) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-560)) 208 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) ELT)) (-2181 (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 31 (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) 80 (|has| $ (-6 -4508)) ELT) (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 116 (|has| $ (-6 -4508)) ELT)) (-3092 (((-663 $) $) 125 T ELT)) (-3398 (((-114) $ $) 133 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) ELT)) (-4095 (($ (-793) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 170 T ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-1762 ((|#1| $) 97 (|has| |#1| (-871)) ELT) (((-560) $) 182 (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) 195 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) ELT)) (-1708 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ $) 219 T ELT) (($ $ $) 215 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) ELT)) (-3223 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ $) 214 T ELT) (($ $ $) 207 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) ELT)) (-2656 (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 30 (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) 81 (|has| $ (-6 -4508)) ELT) (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 117 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (((-114) |#2| $) 83 (-12 (|has| |#2| (-1132)) (|has| $ (-6 -4508))) ELT) (((-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 119 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT)) (-2937 ((|#1| $) 96 (|has| |#1| (-871)) ELT) (((-560) $) 183 (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) 196 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) ELT)) (-3768 (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 35 (|has| $ (-6 -4509)) ELT) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4509)) ELT) (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 112 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 36 T ELT) (($ (-1 |#2| |#2|) $) 75 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 71 T ELT) (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ $) 167 T ELT) (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 111 T ELT)) (-2045 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 227 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-3596 (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 130 T ELT)) (-2409 (((-114) $) 126 T ELT)) (-1905 (((-1189) $) 23 (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| |#2| (-1132)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT)) (-2398 (($ $ (-793)) 147 T ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 145 T ELT)) (-2236 (((-663 |#1|) $) 64 T ELT)) (-1445 (((-114) |#1| $) 65 T ELT)) (-1576 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 40 T ELT)) (-3629 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 41 T ELT) (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-560)) 221 T ELT) (($ $ $ (-560)) 220 T ELT)) (-3996 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-560)) 164 T ELT) (($ $ $ (-560)) 163 T ELT)) (-3270 (((-663 |#1|) $) 94 T ELT) (((-663 (-560)) $) 185 T ELT)) (-3586 (((-114) |#1| $) 93 T ELT) (((-114) (-560) $) 186 T ELT)) (-3855 (((-1151) $) 22 (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| |#2| (-1132)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT)) (-3637 ((|#2| $) 98 (|has| |#1| (-871)) ELT) (($ $ (-793)) 141 T ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 139 T ELT)) (-3329 (((-3 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) "failed") (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 52 T ELT) (((-3 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) "failed") (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 173 T ELT)) (-3037 (($ $ |#2|) 99 (|has| $ (-6 -4509)) ELT) (($ $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 181 (|has| $ (-6 -4509)) ELT)) (-2615 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 42 T ELT)) (-3875 (((-114) $) 193 T ELT)) (-2787 (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 33 (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) 78 (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 114 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))))) 27 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) 26 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 25 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) 24 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) 87 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) 85 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 (-305 |#2|))) 84 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) 123 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 122 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) 121 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-663 (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))))) 120 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-2914 (((-114) |#2| $) 95 (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT) (((-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 184 (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT)) (-3571 (((-663 |#2|) $) 92 T ELT) (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 187 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3924 ((|#2| $ |#1|) 91 T ELT) ((|#2| $ |#1| |#2|) 90 T ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-560) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 189 T ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-560)) 188 T ELT) (($ $ (-1264 (-560))) 171 T ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ "last") 146 T ELT) (($ $ "rest") 143 T ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ "first") 140 T ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ "value") 128 T ELT)) (-1750 (((-560) $ $) 131 T ELT)) (-3897 (($) 50 T ELT) (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) 49 T ELT)) (-2249 (($ $ (-560)) 224 T ELT) (($ $ (-1264 (-560))) 223 T ELT)) (-4413 (($ $ (-560)) 166 T ELT) (($ $ (-1264 (-560))) 165 T ELT)) (-1978 (((-114) $) 129 T ELT)) (-1763 (($ $) 153 T ELT)) (-1915 (($ $) 154 (|has| $ (-6 -4509)) ELT)) (-1502 (((-793) $) 152 T ELT)) (-3458 (($ $) 151 T ELT)) (-3865 (((-793) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) |#2| $) 82 (-12 (|has| |#2| (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) |#2|) $) 79 (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 118 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 115 (|has| $ (-6 -4508)) ELT)) (-3640 (($ $ $ (-560)) 204 (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) 60 (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-633 (-549))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-633 (-549)))) ELT)) (-1592 (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) 51 T ELT) (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) 172 T ELT)) (-4354 (($ $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 226 T ELT) (($ $ $) 225 T ELT)) (-3415 (($ $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 169 T ELT) (($ (-663 $)) 168 T ELT) (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 138 T ELT) (($ $ $) 137 T ELT)) (-1578 (((-887) $) 18 (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-632 (-887))) (|has| |#2| (-632 (-887))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-632 (-887)))) ELT)) (-3955 (((-663 $) $) 124 T ELT)) (-2997 (((-114) $ $) 132 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) ELT)) (-2275 (((-114) $ $) 21 (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102))) ELT)) (-3376 (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) 43 T ELT)) (-2412 (((-3 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) "failed") |#1| $) 110 T ELT)) (-1728 (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 34 (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) 77 (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 113 (|has| $ (-6 -4508)) ELT)) (-2536 (((-114) $ $) 197 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) ELT)) (-2508 (((-114) $ $) 199 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) ELT)) (-2473 (((-114) $ $) 19 (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102))) ELT)) (-2521 (((-114) $ $) 198 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) ELT)) (-2495 (((-114) $ $) 200 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-2042 (*1 *1 *1) (-4 *1 (-35))) (-2022 (*1 *1 *1) (-4 *1 (-35))) (-2059 (*1 *1 *1) (-4 *1 (-35))) (-3392 (*1 *1 *1) (-4 *1 (-35))) (-2050 (*1 *1 *1) (-4 *1 (-35))) (-2032 (*1 *1 *1) (-4 *1 (-35))))
+(-13 (-10 -8 (-15 -2032 ($ $)) (-15 -2050 ($ $)) (-15 -3392 ($ $)) (-15 -2059 ($ $)) (-15 -2022 ($ $)) (-15 -2042 ($ $))))
+((-2243 (((-114) $ $) 20 (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102))) ELT)) (-1430 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 127 T ELT)) (-3853 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 150 T ELT)) (-3990 (($ $) 148 T ELT)) (-4236 (($) 73 T ELT) (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) 72 T ELT)) (-2033 (((-1303) $ |#1| |#1|) 100 (|has| $ (-6 -4509)) ELT) (((-1303) $ (-560) (-560)) 180 (|has| $ (-6 -4509)) ELT)) (-4367 (($ $ (-560)) 161 (|has| $ (-6 -4509)) ELT)) (-2152 (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 211 T ELT) (((-114) $) 205 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) ELT)) (-3152 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 202 (|has| $ (-6 -4509)) ELT) (($ $) 201 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) (|has| $ (-6 -4509))) ELT)) (-1787 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 212 T ELT) (($ $) 206 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-3654 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 136 (|has| $ (-6 -4509)) ELT)) (-1518 (($ $ $) 157 (|has| $ (-6 -4509)) ELT)) (-3042 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 159 (|has| $ (-6 -4509)) ELT)) (-2509 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 155 (|has| $ (-6 -4509)) ELT)) (-4083 ((|#2| $ |#1| |#2|) 74 T ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-560) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 191 (|has| $ (-6 -4509)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-1264 (-560)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 162 (|has| $ (-6 -4509)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ "last" (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 160 (|has| $ (-6 -4509)) ELT) (($ $ "rest" $) 158 (|has| $ (-6 -4509)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ "first" (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 156 (|has| $ (-6 -4509)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ "value" (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 135 (|has| $ (-6 -4509)) ELT)) (-2566 (($ $ (-663 $)) 134 (|has| $ (-6 -4509)) ELT)) (-1864 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 46 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 218 T ELT)) (-3923 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 56 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 177 (|has| $ (-6 -4508)) ELT)) (-3839 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 149 T ELT)) (-3799 (((-3 |#2| "failed") |#1| $) 62 T ELT)) (-3525 (($) 7 T CONST)) (-2372 (($ $) 203 (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) 213 T ELT)) (-4345 (($ $ (-793)) 144 T ELT) (($ $) 142 T ELT)) (-4329 (($ $) 216 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) ELT)) (-3658 (($ $) 59 (-2196 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| $ (-6 -4508))) (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| $ (-6 -4508)))) ELT)) (-2091 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 48 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 47 (|has| $ (-6 -4508)) ELT) (((-3 |#2| "failed") |#1| $) 63 T ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 222 T ELT) (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 217 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) ELT)) (-3033 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 55 (|has| $ (-6 -4508)) ELT) (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 179 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 176 (|has| $ (-6 -4508)) ELT)) (-1778 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 57 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 54 (|has| $ (-6 -4508)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 53 (|has| $ (-6 -4508)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 178 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 175 (|has| $ (-6 -4508)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 174 (|has| $ (-6 -4508)) ELT)) (-3338 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4509)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-560) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 192 (|has| $ (-6 -4509)) ELT)) (-3274 ((|#2| $ |#1|) 89 T ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-560)) 190 T ELT)) (-3843 (((-114) $) 194 T ELT)) (-2359 (((-560) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 210 T ELT) (((-560) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 209 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) ELT) (((-560) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-560)) 208 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) ELT)) (-3737 (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 31 (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) 80 (|has| $ (-6 -4508)) ELT) (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 116 (|has| $ (-6 -4508)) ELT)) (-2104 (((-663 $) $) 125 T ELT)) (-2150 (((-114) $ $) 133 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) ELT)) (-4246 (($ (-793) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 170 T ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-2483 ((|#1| $) 97 (|has| |#1| (-871)) ELT) (((-560) $) 182 (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) 195 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) ELT)) (-3204 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ $) 219 T ELT) (($ $ $) 215 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) ELT)) (-4167 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ $) 214 T ELT) (($ $ $) 207 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) ELT)) (-3243 (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 30 (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) 81 (|has| $ (-6 -4508)) ELT) (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 117 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (((-114) |#2| $) 83 (-12 (|has| |#2| (-1132)) (|has| $ (-6 -4508))) ELT) (((-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 119 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT)) (-4263 ((|#1| $) 96 (|has| |#1| (-871)) ELT) (((-560) $) 183 (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) 196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) ELT)) (-3324 (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 35 (|has| $ (-6 -4509)) ELT) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4509)) ELT) (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 112 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 36 T ELT) (($ (-1 |#2| |#2|) $) 75 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 71 T ELT) (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ $) 167 T ELT) (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 111 T ELT)) (-2560 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 227 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-2656 (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 130 T ELT)) (-1485 (((-114) $) 126 T ELT)) (-3358 (((-1189) $) 23 (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| |#2| (-1132)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT)) (-3057 (($ $ (-793)) 147 T ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 145 T ELT)) (-4325 (((-663 |#1|) $) 64 T ELT)) (-4124 (((-114) |#1| $) 65 T ELT)) (-1878 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 40 T ELT)) (-3888 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 41 T ELT) (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-560)) 221 T ELT) (($ $ $ (-560)) 220 T ELT)) (-2507 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-560)) 164 T ELT) (($ $ $ (-560)) 163 T ELT)) (-3372 (((-663 |#1|) $) 94 T ELT) (((-663 (-560)) $) 185 T ELT)) (-3439 (((-114) |#1| $) 93 T ELT) (((-114) (-560) $) 186 T ELT)) (-3376 (((-1151) $) 22 (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| |#2| (-1132)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT)) (-4334 ((|#2| $) 98 (|has| |#1| (-871)) ELT) (($ $ (-793)) 141 T ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 139 T ELT)) (-2708 (((-3 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) "failed") (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 52 T ELT) (((-3 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) "failed") (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 173 T ELT)) (-2740 (($ $ |#2|) 99 (|has| $ (-6 -4509)) ELT) (($ $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 181 (|has| $ (-6 -4509)) ELT)) (-2796 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 42 T ELT)) (-4270 (((-114) $) 193 T ELT)) (-2086 (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 33 (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) 78 (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 114 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))))) 27 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) 26 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 25 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) 24 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) 87 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) 85 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 (-305 |#2|))) 84 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) 123 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 122 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) 121 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-663 (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))))) 120 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-4019 (((-114) |#2| $) 95 (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT) (((-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 184 (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT)) (-1383 (((-663 |#2|) $) 92 T ELT) (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 187 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1507 ((|#2| $ |#1|) 91 T ELT) ((|#2| $ |#1| |#2|) 90 T ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-560) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 189 T ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-560)) 188 T ELT) (($ $ (-1264 (-560))) 171 T ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ "last") 146 T ELT) (($ $ "rest") 143 T ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ "first") 140 T ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ "value") 128 T ELT)) (-2374 (((-560) $ $) 131 T ELT)) (-4468 (($) 50 T ELT) (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) 49 T ELT)) (-3639 (($ $ (-560)) 224 T ELT) (($ $ (-1264 (-560))) 223 T ELT)) (-2579 (($ $ (-560)) 166 T ELT) (($ $ (-1264 (-560))) 165 T ELT)) (-2752 (((-114) $) 129 T ELT)) (-2493 (($ $) 153 T ELT)) (-3438 (($ $) 154 (|has| $ (-6 -4509)) ELT)) (-3010 (((-793) $) 152 T ELT)) (-1474 (($ $) 151 T ELT)) (-3384 (((-793) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) |#2| $) 82 (-12 (|has| |#2| (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) |#2|) $) 79 (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 118 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 115 (|has| $ (-6 -4508)) ELT)) (-3993 (($ $ $ (-560)) 204 (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) 60 (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-633 (-549))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-633 (-549)))) ELT)) (-3924 (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) 51 T ELT) (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) 172 T ELT)) (-3305 (($ $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 226 T ELT) (($ $ $) 225 T ELT)) (-1955 (($ $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 169 T ELT) (($ (-663 $)) 168 T ELT) (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 138 T ELT) (($ $ $) 137 T ELT)) (-3913 (((-887) $) 18 (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-632 (-887))) (|has| |#2| (-632 (-887))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-632 (-887)))) ELT)) (-3809 (((-663 $) $) 124 T ELT)) (-3606 (((-114) $ $) 132 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) ELT)) (-3925 (((-114) $ $) 21 (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102))) ELT)) (-3184 (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) 43 T ELT)) (-3069 (((-3 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) "failed") |#1| $) 110 T ELT)) (-2149 (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 34 (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) 77 (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 113 (|has| $ (-6 -4508)) ELT)) (-2396 (((-114) $ $) 197 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) ELT)) (-2373 (((-114) $ $) 199 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) ELT)) (-2340 (((-114) $ $) 19 (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102))) ELT)) (-2386 (((-114) $ $) 198 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) ELT)) (-2362 (((-114) $ $) 200 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-36 |#1| |#2|) (-142) (-1132) (-1132)) (T -36))
-((-2412 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-5 *2 (-2 (|:| -2968 *3) (|:| -2460 *4))))))
-(-13 (-1224 |t#1| |t#2|) (-688 (-2 (|:| -2968 |t#1|) (|:| -2460 |t#2|))) (-10 -8 (-15 -2412 ((-3 (-2 (|:| -2968 |t#1|) (|:| -2460 |t#2|)) "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T) ((-102) -2304 (|has| |#2| (-1132)) (|has| |#2| (-102)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102))) ((-632 (-887)) -2304 (|has| |#2| (-1132)) (|has| |#2| (-632 (-887))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-632 (-887)))) ((-153 #1=(-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T) ((-633 (-549)) |has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-633 (-549))) ((-233 #0#) . T) ((-242 #0#) . T) ((-298 #2=(-560) #1#) . T) ((-298 (-1264 (-560)) $) . T) ((-298 |#1| |#2|) . T) ((-300 #2# #1#) . T) ((-300 |#1| |#2|) . T) ((-321 #1#) -12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((-294 #1#) . T) ((-385 #1#) . T) ((-503 #1#) . T) ((-503 |#2|) . T) ((-618 #2# #1#) . T) ((-618 |#1| |#2|) . T) ((-528 #1# #1#) -12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ((-528 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((-629 |#1| |#2|) . T) ((-673 #1#) . T) ((-688 #1#) . T) ((-871) |has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) ((-874) |has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) ((-1041 #1#) . T) ((-1132) -2304 (|has| |#2| (-1132)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871))) ((-1180 #1#) . T) ((-1224 |#1| |#2|) . T) ((-1247) . T) ((-1286 #1#) . T))
-((-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) 10 T ELT)))
-(((-37 |#1| |#2|) (-10 -8 (-15 -1578 (|#1| |#2|)) (-15 -1578 (|#1| (-560))) (-15 -1578 ((-887) |#1|))) (-38 |#2|) (-175)) (T -37))
-NIL
-(-10 -8 (-15 -1578 (|#1| |#2|)) (-15 -1578 (|#1| (-560))) (-15 -1578 ((-887) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 44 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
+((-3069 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-5 *2 (-2 (|:| -1438 *3) (|:| -3067 *4))))))
+(-13 (-1224 |t#1| |t#2|) (-688 (-2 (|:| -1438 |t#1|) (|:| -3067 |t#2|))) (-10 -8 (-15 -3069 ((-3 (-2 (|:| -1438 |t#1|) (|:| -3067 |t#2|)) "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T) ((-102) -2196 (|has| |#2| (-1132)) (|has| |#2| (-102)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102))) ((-632 (-887)) -2196 (|has| |#2| (-1132)) (|has| |#2| (-632 (-887))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-632 (-887)))) ((-153 #1=(-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T) ((-633 (-549)) |has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-633 (-549))) ((-233 #0#) . T) ((-242 #0#) . T) ((-298 #2=(-560) #1#) . T) ((-298 (-1264 (-560)) $) . T) ((-298 |#1| |#2|) . T) ((-300 #2# #1#) . T) ((-300 |#1| |#2|) . T) ((-321 #1#) -12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((-294 #1#) . T) ((-385 #1#) . T) ((-503 #1#) . T) ((-503 |#2|) . T) ((-618 #2# #1#) . T) ((-618 |#1| |#2|) . T) ((-528 #1# #1#) -12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ((-528 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((-629 |#1| |#2|) . T) ((-673 #1#) . T) ((-688 #1#) . T) ((-871) |has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) ((-874) |has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) ((-1041 #1#) . T) ((-1132) -2196 (|has| |#2| (-1132)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871))) ((-1180 #1#) . T) ((-1224 |#1| |#2|) . T) ((-1247) . T) ((-1286 #1#) . T))
+((-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) 10 T ELT)))
+(((-37 |#1| |#2|) (-10 -8 (-15 -3913 (|#1| |#2|)) (-15 -3913 (|#1| (-560))) (-15 -3913 ((-887) |#1|))) (-38 |#2|) (-175)) (T -37))
+NIL
+(-10 -8 (-15 -3913 (|#1| |#2|)) (-15 -3913 (|#1| (-560))) (-15 -3913 ((-887) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 44 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
(((-38 |#1|) (-142) (-175)) (T -38))
NIL
(-13 (-1080) (-739 |t#1|) (-635 |t#1|))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-748) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-1513 (((-419 |#1|) |#1|) 41 T ELT)) (-4457 (((-419 |#1|) |#1|) 30 T ELT) (((-419 |#1|) |#1| (-663 (-48))) 33 T ELT)) (-2342 (((-114) |#1|) 59 T ELT)))
-(((-39 |#1|) (-10 -7 (-15 -4457 ((-419 |#1|) |#1| (-663 (-48)))) (-15 -4457 ((-419 |#1|) |#1|)) (-15 -1513 ((-419 |#1|) |#1|)) (-15 -2342 ((-114) |#1|))) (-1273 (-48))) (T -39))
-((-2342 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))) (-1513 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))) (-4457 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))) (-4457 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-48))) (-5 *2 (-419 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))))
-(-10 -7 (-15 -4457 ((-419 |#1|) |#1| (-663 (-48)))) (-15 -4457 ((-419 |#1|) |#1|)) (-15 -1513 ((-419 |#1|) |#1|)) (-15 -2342 ((-114) |#1|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-2856 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3244 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4093 (((-114) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1698 (((-711 (-421 |#2|)) (-1297 $)) NIL T ELT) (((-711 (-421 |#2|))) NIL T ELT)) (-3349 (((-421 |#2|) $) NIL T ELT)) (-2105 (((-1219 (-948) (-793)) (-560)) NIL (|has| (-421 |#2|) (-363)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3023 (((-419 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1615 (((-114) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3241 (((-793)) NIL (|has| (-421 |#2|) (-381)) ELT)) (-4309 (((-114)) NIL T ELT)) (-2819 (((-114) |#1|) NIL T ELT) (((-114) |#2|) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) NIL (|has| (-421 |#2|) (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| (-421 |#2|) (-1069 (-421 (-560)))) ELT) (((-3 (-421 |#2|) "failed") $) NIL T ELT)) (-3330 (((-560) $) NIL (|has| (-421 |#2|) (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| (-421 |#2|) (-1069 (-421 (-560)))) ELT) (((-421 |#2|) $) NIL T ELT)) (-4143 (($ (-1297 (-421 |#2|)) (-1297 $)) NIL T ELT) (($ (-1297 (-421 |#2|))) 61 T ELT) (($ (-1297 |#2|) |#2|) 131 T ELT)) (-4217 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-421 |#2|) (-363)) ELT)) (-1478 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4333 (((-711 (-421 |#2|)) $ (-1297 $)) NIL T ELT) (((-711 (-421 |#2|)) $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-421 |#2|))) (|:| |vec| (-1297 (-421 |#2|)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-421 |#2|)) (-711 $)) NIL T ELT)) (-3722 (((-1297 $) (-1297 $)) NIL T ELT)) (-4129 (($ |#3|) NIL T ELT) (((-3 $ "failed") (-421 |#3|)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1887 (((-663 (-663 |#1|))) NIL (|has| |#1| (-381)) ELT)) (-2659 (((-114) |#1| |#1|) NIL T ELT)) (-2326 (((-948)) NIL T ELT)) (-2310 (($) NIL (|has| (-421 |#2|) (-381)) ELT)) (-4120 (((-114)) NIL T ELT)) (-2952 (((-114) |#1|) NIL T ELT) (((-114) |#2|) NIL T ELT)) (-1490 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2806 (($ $) NIL T ELT)) (-4336 (($) NIL (|has| (-421 |#2|) (-363)) ELT)) (-3976 (((-114) $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-1696 (($ $ (-793)) NIL (|has| (-421 |#2|) (-363)) ELT) (($ $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-4330 (((-114) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3913 (((-948) $) NIL (|has| (-421 |#2|) (-363)) ELT) (((-854 (-948)) $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-1581 (((-114) $) NIL T ELT)) (-2325 (((-793)) NIL T ELT)) (-1772 (((-1297 $) (-1297 $)) 106 T ELT)) (-2032 (((-421 |#2|) $) NIL T ELT)) (-1493 (((-663 (-975 |#1|)) (-1207)) NIL (|has| |#1| (-376)) ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1787 ((|#3| $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4419 (((-948) $) NIL (|has| (-421 |#2|) (-381)) ELT)) (-4116 ((|#3| $) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-421 |#2|))) (|:| |vec| (-1297 (-421 |#2|)))) (-1297 $) $) NIL T ELT) (((-711 (-421 |#2|)) (-1297 $)) NIL T ELT)) (-2093 (($ (-663 $)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3970 (((-1303) (-793)) 84 T ELT)) (-3912 (((-711 (-421 |#2|))) 56 T ELT)) (-4470 (((-711 (-421 |#2|))) 49 T ELT)) (-1544 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2921 (($ (-1297 |#2|) |#2|) 132 T ELT)) (-1589 (((-711 (-421 |#2|))) 50 T ELT)) (-2991 (((-711 (-421 |#2|))) 48 T ELT)) (-3701 (((-2 (|:| |num| (-711 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130 T ELT)) (-2578 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) 68 T ELT)) (-3090 (((-1297 $)) 47 T ELT)) (-3932 (((-1297 $)) 46 T ELT)) (-1499 (((-114) $) NIL T ELT)) (-2905 (((-114) $) NIL T ELT) (((-114) $ |#1|) NIL T ELT) (((-114) $ |#2|) NIL T ELT)) (-3161 (($) NIL (|has| (-421 |#2|) (-363)) CONST)) (-3128 (($ (-948)) NIL (|has| (-421 |#2|) (-381)) ELT)) (-2793 (((-3 |#2| "failed")) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1685 (((-793)) NIL T ELT)) (-2748 (($) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2132 (($ (-663 $)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3666 (((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))) NIL (|has| (-421 |#2|) (-363)) ELT)) (-4457 (((-419 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-421 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1528 (((-3 $ "failed") $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2901 (((-793) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3924 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2870 (((-3 |#2| "failed")) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2690 (((-421 |#2|) (-1297 $)) NIL T ELT) (((-421 |#2|)) 44 T ELT)) (-2364 (((-793) $) NIL (|has| (-421 |#2|) (-363)) ELT) (((-3 (-793) "failed") $ $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-2894 (($ $ (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) 126 T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2304 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2304 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-663 (-1207))) NIL (-2304 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-793)) NIL (-2304 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT) (($ $) NIL (-2304 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT)) (-3604 (((-711 (-421 |#2|)) (-1297 $) (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4394 ((|#3|) 55 T ELT)) (-2243 (($) NIL (|has| (-421 |#2|) (-363)) ELT)) (-2178 (((-1297 (-421 |#2|)) $ (-1297 $)) NIL T ELT) (((-711 (-421 |#2|)) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 (-421 |#2|)) $) 62 T ELT) (((-711 (-421 |#2|)) (-1297 $)) 107 T ELT)) (-1407 (((-1297 (-421 |#2|)) $) NIL T ELT) (($ (-1297 (-421 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| (-421 |#2|) (-363)) ELT)) (-4335 (((-1297 $) (-1297 $)) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 |#2|)) NIL T ELT) (($ (-421 (-560))) NIL (-2304 (|has| (-421 |#2|) (-1069 (-421 (-560)))) (|has| (-421 |#2|) (-376))) ELT) (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1964 (($ $) NIL (|has| (-421 |#2|) (-363)) ELT) (((-3 $ "failed") $) NIL (|has| (-421 |#2|) (-147)) ELT)) (-2630 ((|#3| $) NIL T ELT)) (-2930 (((-793)) NIL T CONST)) (-2297 (((-114)) 42 T ELT)) (-3882 (((-114) |#1|) 54 T ELT) (((-114) |#2|) 138 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1954 (((-1297 $)) NIL T ELT)) (-2948 (((-114) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3059 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-3861 (((-114)) NIL T ELT)) (-2001 (($) 17 T CONST)) (-2011 (($) 27 T CONST)) (-3305 (($ $ (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2304 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2304 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-663 (-1207))) NIL (-2304 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-793)) NIL (-2304 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT) (($ $) NIL (-2304 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| (-421 |#2|) (-376)) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 |#2|)) NIL T ELT) (($ (-421 |#2|) $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-421 (-560))) NIL (|has| (-421 |#2|) (-376)) ELT)))
-(((-40 |#1| |#2| |#3| |#4|) (-13 (-355 |#1| |#2| |#3|) (-10 -7 (-15 -3970 ((-1303) (-793))))) (-376) (-1273 |#1|) (-1273 (-421 |#2|)) |#3|) (T -40))
-((-3970 (*1 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-376)) (-4 *5 (-1273 *4)) (-5 *2 (-1303)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1273 (-421 *5))) (-14 *7 *6))))
-(-13 (-355 |#1| |#2| |#3|) (-10 -7 (-15 -3970 ((-1303) (-793)))))
-((-3624 ((|#2| |#2|) 47 T ELT)) (-4053 ((|#2| |#2|) 139 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-466) (-1069 (-560))))) ELT)) (-2264 ((|#2| |#2|) 100 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-466) (-1069 (-560))))) ELT)) (-2563 ((|#2| |#2|) 101 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-466) (-1069 (-560))))) ELT)) (-3351 ((|#2| (-115) |#2| (-793)) 135 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-466) (-1069 (-560))))) ELT)) (-4326 (((-1201 |#2|) |#2|) 44 T ELT)) (-3589 ((|#2| |#2| (-663 (-630 |#2|))) 18 T ELT) ((|#2| |#2| (-663 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT)))
-(((-41 |#1| |#2|) (-10 -7 (-15 -3624 (|#2| |#2|)) (-15 -3589 (|#2| |#2|)) (-15 -3589 (|#2| |#2| |#2|)) (-15 -3589 (|#2| |#2| (-663 |#2|))) (-15 -3589 (|#2| |#2| (-663 (-630 |#2|)))) (-15 -4326 ((-1201 |#2|) |#2|)) (IF (|has| |#1| (-13 (-466) (-1069 (-560)))) (IF (|has| |#2| (-435 |#1|)) (PROGN (-15 -2563 (|#2| |#2|)) (-15 -2264 (|#2| |#2|)) (-15 -4053 (|#2| |#2|)) (-15 -3351 (|#2| (-115) |#2| (-793)))) |%noBranch|) |%noBranch|)) (-571) (-13 (-376) (-310) (-10 -8 (-15 -3757 ((-1156 |#1| (-630 $)) $)) (-15 -3771 ((-1156 |#1| (-630 $)) $)) (-15 -1578 ($ (-1156 |#1| (-630 $))))))) (T -41))
-((-3351 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-793)) (-4 *5 (-13 (-466) (-1069 (-560)))) (-4 *5 (-571)) (-5 *1 (-41 *5 *2)) (-4 *2 (-435 *5)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3757 ((-1156 *5 (-630 $)) $)) (-15 -3771 ((-1156 *5 (-630 $)) $)) (-15 -1578 ($ (-1156 *5 (-630 $))))))))) (-4053 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-560)))) (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3757 ((-1156 *3 (-630 $)) $)) (-15 -3771 ((-1156 *3 (-630 $)) $)) (-15 -1578 ($ (-1156 *3 (-630 $))))))))) (-2264 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-560)))) (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3757 ((-1156 *3 (-630 $)) $)) (-15 -3771 ((-1156 *3 (-630 $)) $)) (-15 -1578 ($ (-1156 *3 (-630 $))))))))) (-2563 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-560)))) (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3757 ((-1156 *3 (-630 $)) $)) (-15 -3771 ((-1156 *3 (-630 $)) $)) (-15 -1578 ($ (-1156 *3 (-630 $))))))))) (-4326 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-1201 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-376) (-310) (-10 -8 (-15 -3757 ((-1156 *4 (-630 $)) $)) (-15 -3771 ((-1156 *4 (-630 $)) $)) (-15 -1578 ($ (-1156 *4 (-630 $))))))))) (-3589 (*1 *2 *2 *3) (-12 (-5 *3 (-663 (-630 *2))) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3757 ((-1156 *4 (-630 $)) $)) (-15 -3771 ((-1156 *4 (-630 $)) $)) (-15 -1578 ($ (-1156 *4 (-630 $))))))) (-4 *4 (-571)) (-5 *1 (-41 *4 *2)))) (-3589 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3757 ((-1156 *4 (-630 $)) $)) (-15 -3771 ((-1156 *4 (-630 $)) $)) (-15 -1578 ($ (-1156 *4 (-630 $))))))) (-4 *4 (-571)) (-5 *1 (-41 *4 *2)))) (-3589 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3757 ((-1156 *3 (-630 $)) $)) (-15 -3771 ((-1156 *3 (-630 $)) $)) (-15 -1578 ($ (-1156 *3 (-630 $))))))))) (-3589 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3757 ((-1156 *3 (-630 $)) $)) (-15 -3771 ((-1156 *3 (-630 $)) $)) (-15 -1578 ($ (-1156 *3 (-630 $))))))))) (-3624 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3757 ((-1156 *3 (-630 $)) $)) (-15 -3771 ((-1156 *3 (-630 $)) $)) (-15 -1578 ($ (-1156 *3 (-630 $))))))))))
-(-10 -7 (-15 -3624 (|#2| |#2|)) (-15 -3589 (|#2| |#2|)) (-15 -3589 (|#2| |#2| |#2|)) (-15 -3589 (|#2| |#2| (-663 |#2|))) (-15 -3589 (|#2| |#2| (-663 (-630 |#2|)))) (-15 -4326 ((-1201 |#2|) |#2|)) (IF (|has| |#1| (-13 (-466) (-1069 (-560)))) (IF (|has| |#2| (-435 |#1|)) (PROGN (-15 -2563 (|#2| |#2|)) (-15 -2264 (|#2| |#2|)) (-15 -4053 (|#2| |#2|)) (-15 -3351 (|#2| (-115) |#2| (-793)))) |%noBranch|) |%noBranch|))
-((-4457 (((-419 (-1201 |#3|)) (-1201 |#3|) (-663 (-48))) 23 T ELT) (((-419 |#3|) |#3| (-663 (-48))) 19 T ELT)))
-(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4457 ((-419 |#3|) |#3| (-663 (-48)))) (-15 -4457 ((-419 (-1201 |#3|)) (-1201 |#3|) (-663 (-48))))) (-871) (-815) (-979 (-48) |#2| |#1|)) (T -42))
-((-4457 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-48))) (-4 *5 (-871)) (-4 *6 (-815)) (-4 *7 (-979 (-48) *6 *5)) (-5 *2 (-419 (-1201 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1201 *7)))) (-4457 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-48))) (-4 *5 (-871)) (-4 *6 (-815)) (-5 *2 (-419 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-979 (-48) *6 *5)))))
-(-10 -7 (-15 -4457 ((-419 |#3|) |#3| (-663 (-48)))) (-15 -4457 ((-419 (-1201 |#3|)) (-1201 |#3|) (-663 (-48)))))
-((-2702 (((-793) |#2|) 70 T ELT)) (-4453 (((-793) |#2|) 74 T ELT)) (-3971 (((-663 |#2|)) 37 T ELT)) (-3344 (((-793) |#2|) 73 T ELT)) (-3094 (((-793) |#2|) 69 T ELT)) (-3877 (((-793) |#2|) 72 T ELT)) (-3980 (((-663 (-711 |#1|))) 65 T ELT)) (-2751 (((-663 |#2|)) 60 T ELT)) (-3517 (((-663 |#2|) |#2|) 48 T ELT)) (-3457 (((-663 |#2|)) 62 T ELT)) (-2337 (((-663 |#2|)) 61 T ELT)) (-2055 (((-663 (-711 |#1|))) 53 T ELT)) (-3518 (((-663 |#2|)) 59 T ELT)) (-3975 (((-663 |#2|) |#2|) 47 T ELT)) (-4204 (((-663 |#2|)) 55 T ELT)) (-3554 (((-663 (-711 |#1|))) 66 T ELT)) (-3119 (((-663 |#2|)) 64 T ELT)) (-1954 (((-1297 |#2|) (-1297 |#2|)) 99 (|has| |#1| (-319)) ELT)))
-(((-43 |#1| |#2|) (-10 -7 (-15 -3344 ((-793) |#2|)) (-15 -4453 ((-793) |#2|)) (-15 -3094 ((-793) |#2|)) (-15 -2702 ((-793) |#2|)) (-15 -3877 ((-793) |#2|)) (-15 -4204 ((-663 |#2|))) (-15 -3975 ((-663 |#2|) |#2|)) (-15 -3517 ((-663 |#2|) |#2|)) (-15 -3518 ((-663 |#2|))) (-15 -2751 ((-663 |#2|))) (-15 -2337 ((-663 |#2|))) (-15 -3457 ((-663 |#2|))) (-15 -3119 ((-663 |#2|))) (-15 -2055 ((-663 (-711 |#1|)))) (-15 -3980 ((-663 (-711 |#1|)))) (-15 -3554 ((-663 (-711 |#1|)))) (-15 -3971 ((-663 |#2|))) (IF (|has| |#1| (-319)) (-15 -1954 ((-1297 |#2|) (-1297 |#2|))) |%noBranch|)) (-571) (-432 |#1|)) (T -43))
-((-1954 (*1 *2 *2) (-12 (-5 *2 (-1297 *4)) (-4 *4 (-432 *3)) (-4 *3 (-319)) (-4 *3 (-571)) (-5 *1 (-43 *3 *4)))) (-3971 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-3554 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 (-711 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-3980 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 (-711 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-2055 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 (-711 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-3119 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-3457 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-2337 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-2751 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-3518 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-3517 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-663 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4)))) (-3975 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-663 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4)))) (-4204 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-3877 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4)))) (-2702 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4)))) (-3094 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4)))) (-4453 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4)))) (-3344 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4)))))
-(-10 -7 (-15 -3344 ((-793) |#2|)) (-15 -4453 ((-793) |#2|)) (-15 -3094 ((-793) |#2|)) (-15 -2702 ((-793) |#2|)) (-15 -3877 ((-793) |#2|)) (-15 -4204 ((-663 |#2|))) (-15 -3975 ((-663 |#2|) |#2|)) (-15 -3517 ((-663 |#2|) |#2|)) (-15 -3518 ((-663 |#2|))) (-15 -2751 ((-663 |#2|))) (-15 -2337 ((-663 |#2|))) (-15 -3457 ((-663 |#2|))) (-15 -3119 ((-663 |#2|))) (-15 -2055 ((-663 (-711 |#1|)))) (-15 -3980 ((-663 (-711 |#1|)))) (-15 -3554 ((-663 (-711 |#1|)))) (-15 -3971 ((-663 |#2|))) (IF (|has| |#1| (-319)) (-15 -1954 ((-1297 |#2|) (-1297 |#2|))) |%noBranch|))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-2489 (((-3 $ "failed")) NIL (|has| |#1| (-571)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2545 (((-1297 (-711 |#1|)) (-1297 $)) NIL T ELT) (((-1297 (-711 |#1|))) 24 T ELT)) (-1854 (((-1297 $)) 52 T ELT)) (-2238 (($) NIL T CONST)) (-4126 (((-3 (-2 (|:| |particular| $) (|:| -1954 (-663 $))) "failed")) NIL (|has| |#1| (-571)) ELT)) (-3608 (((-3 $ "failed")) NIL (|has| |#1| (-571)) ELT)) (-2432 (((-711 |#1|) (-1297 $)) NIL T ELT) (((-711 |#1|)) NIL T ELT)) (-3346 ((|#1| $) NIL T ELT)) (-3135 (((-711 |#1|) $ (-1297 $)) NIL T ELT) (((-711 |#1|) $) NIL T ELT)) (-1713 (((-3 $ "failed") $) NIL (|has| |#1| (-571)) ELT)) (-4230 (((-1201 (-975 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-1866 (($ $ (-948)) NIL T ELT)) (-4092 ((|#1| $) NIL T ELT)) (-1822 (((-1201 |#1|) $) NIL (|has| |#1| (-571)) ELT)) (-3392 ((|#1| (-1297 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-3412 (((-1201 |#1|) $) NIL T ELT)) (-3706 (((-114)) 99 T ELT)) (-4143 (($ (-1297 |#1|) (-1297 $)) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT)) (-1990 (((-3 $ "failed") $) 14 (|has| |#1| (-571)) ELT)) (-2326 (((-948)) 53 T ELT)) (-3157 (((-114)) NIL T ELT)) (-1784 (($ $ (-948)) NIL T ELT)) (-1794 (((-114)) NIL T ELT)) (-4320 (((-114)) NIL T ELT)) (-2959 (((-114)) 101 T ELT)) (-1398 (((-3 (-2 (|:| |particular| $) (|:| -1954 (-663 $))) "failed")) NIL (|has| |#1| (-571)) ELT)) (-2171 (((-3 $ "failed")) NIL (|has| |#1| (-571)) ELT)) (-1501 (((-711 |#1|) (-1297 $)) NIL T ELT) (((-711 |#1|)) NIL T ELT)) (-3876 ((|#1| $) NIL T ELT)) (-2517 (((-711 |#1|) $ (-1297 $)) NIL T ELT) (((-711 |#1|) $) NIL T ELT)) (-3236 (((-3 $ "failed") $) NIL (|has| |#1| (-571)) ELT)) (-4133 (((-1201 (-975 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-3520 (($ $ (-948)) NIL T ELT)) (-2442 ((|#1| $) NIL T ELT)) (-4161 (((-1201 |#1|) $) NIL (|has| |#1| (-571)) ELT)) (-2456 ((|#1| (-1297 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-3569 (((-1201 |#1|) $) NIL T ELT)) (-2220 (((-114)) 98 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2995 (((-114)) 106 T ELT)) (-1721 (((-114)) 105 T ELT)) (-2940 (((-114)) 107 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2892 (((-114)) 100 T ELT)) (-3924 ((|#1| $ (-560)) 55 T ELT)) (-2178 (((-1297 |#1|) $ (-1297 $)) 48 T ELT) (((-711 |#1|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#1|) $) 28 T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-1407 (((-1297 |#1|) $) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT)) (-4106 (((-663 (-975 |#1|)) (-1297 $)) NIL T ELT) (((-663 (-975 |#1|))) NIL T ELT)) (-2013 (($ $ $) NIL T ELT)) (-2620 (((-114)) 95 T ELT)) (-1578 (((-887) $) 71 T ELT) (($ (-1297 |#1|)) 22 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1954 (((-1297 $)) 51 T ELT)) (-1548 (((-663 (-1297 |#1|))) NIL (|has| |#1| (-571)) ELT)) (-4128 (($ $ $ $) NIL T ELT)) (-1418 (((-114)) 91 T ELT)) (-3626 (($ (-711 |#1|) $) 18 T ELT)) (-3868 (($ $ $) NIL T ELT)) (-1405 (((-114)) 97 T ELT)) (-2493 (((-114)) 92 T ELT)) (-2423 (((-114)) 90 T ELT)) (-2001 (($) NIL T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1173 |#2| |#1|) $) 19 T ELT)))
-(((-44 |#1| |#2| |#3| |#4|) (-13 (-432 |#1|) (-670 (-1173 |#2| |#1|)) (-10 -8 (-15 -1578 ($ (-1297 |#1|))))) (-376) (-948) (-663 (-1207)) (-1297 (-711 |#1|))) (T -44))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-376)) (-14 *6 (-1297 (-711 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))))))
-(-13 (-432 |#1|) (-670 (-1173 |#2| |#1|)) (-10 -8 (-15 -1578 ($ (-1297 |#1|)))))
-((-1538 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3853 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-3273 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-2270 (($ $) NIL T ELT)) (-4083 (($) NIL T ELT) (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-3839 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4509)) ELT) (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-2194 (($ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4040 (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL T ELT) (((-114) $) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) ELT)) (-1703 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871))) ELT)) (-2286 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-2869 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (|has| $ (-6 -4509)) ELT)) (-2102 (($ $ $) 33 (|has| $ (-6 -4509)) ELT)) (-4319 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (|has| $ (-6 -4509)) ELT)) (-3132 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 35 (|has| $ (-6 -4509)) ELT)) (-1773 ((|#2| $ |#1| |#2|) 53 T ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-560) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (|has| $ (-6 -4509)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-1264 (-560)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (|has| $ (-6 -4509)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ "last" (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (|has| $ (-6 -4509)) ELT) (($ $ "rest" $) NIL (|has| $ (-6 -4509)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ "first" (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (|has| $ (-6 -4509)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ "value" (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (|has| $ (-6 -4509)) ELT)) (-2083 (($ $ (-663 $)) NIL (|has| $ (-6 -4509)) ELT)) (-3500 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL T ELT)) (-1982 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3264 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-4255 (((-3 |#2| "failed") |#1| $) 43 T ELT)) (-2238 (($) NIL T CONST)) (-4391 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) NIL T ELT)) (-3649 (($ $ (-793)) NIL T ELT) (($ $) 29 T ELT)) (-2944 (($ $) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT)) (-3390 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#2| "failed") |#1| $) 56 T ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL T ELT) (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) ELT)) (-2375 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3779 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4509)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-560) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-560)) NIL T ELT)) (-2267 (((-114) $) NIL T ELT)) (-1722 (((-560) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL T ELT) (((-560) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) ELT) (((-560) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-560)) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) ELT)) (-2181 (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 20 (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 20 (|has| $ (-6 -4508)) ELT)) (-3092 (((-663 $) $) NIL T ELT)) (-3398 (((-114) $ $) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) ELT)) (-4095 (($ (-793) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 ((|#1| $) NIL (|has| |#1| (-871)) ELT) (((-560) $) 38 (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) ELT)) (-1708 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) ELT)) (-3223 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) ELT)) (-2656 (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT) (((-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT)) (-2937 ((|#1| $) NIL (|has| |#1| (-871)) ELT) (((-560) $) 40 (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) ELT)) (-3768 (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL T ELT)) (-2045 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-3596 (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL T ELT)) (-2409 (((-114) $) NIL T ELT)) (-1905 (((-1189) $) 49 (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-2398 (($ $ (-793)) NIL T ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-2236 (((-663 |#1|) $) 22 T ELT)) (-1445 (((-114) |#1| $) NIL T ELT)) (-1576 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-3629 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT) (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3996 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3270 (((-663 |#1|) $) NIL T ELT) (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) |#1| $) NIL T ELT) (((-114) (-560) $) NIL T ELT)) (-3855 (((-1151) $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-3637 ((|#2| $) NIL (|has| |#1| (-871)) ELT) (($ $ (-793)) NIL T ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 27 T ELT)) (-3329 (((-3 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) "failed") (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) "failed") (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL T ELT)) (-3037 (($ $ |#2|) NIL (|has| $ (-6 -4509)) ELT) (($ $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (|has| $ (-6 -4509)) ELT)) (-2615 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-3875 (((-114) $) NIL T ELT)) (-2787 (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-663 (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT) (((-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT)) (-3571 (((-663 |#2|) $) NIL T ELT) (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 19 T ELT)) (-1663 (((-114) $) 18 T ELT)) (-3986 (($) 14 T ELT)) (-3924 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-560) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL T ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ "last") NIL T ELT) (($ $ "rest") NIL T ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ "first") NIL T ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $ "value") NIL T ELT)) (-1750 (((-560) $ $) NIL T ELT)) (-3897 (($) 13 T ELT) (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-2249 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-4413 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-1978 (((-114) $) NIL T ELT)) (-1763 (($ $) NIL T ELT)) (-1915 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-1502 (((-793) $) NIL T ELT)) (-3458 (($ $) NIL T ELT)) (-3865 (((-793) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT) (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-793) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3640 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-633 (-549))) ELT)) (-1592 (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT) (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-4354 (($ $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-3415 (($ $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL T ELT) (($ (-663 $)) NIL T ELT) (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 31 T ELT) (($ $ $) NIL T ELT)) (-1578 (((-887) $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-632 (-887))) (|has| |#2| (-632 (-887)))) ELT)) (-3955 (((-663 $) $) NIL T ELT)) (-2997 (((-114) $ $) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) ELT)) (-2275 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3376 (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-2412 (((-3 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) "failed") |#1| $) 51 T ELT)) (-1728 (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-2536 (((-114) $ $) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) ELT)) (-2473 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-2521 (((-114) $ $) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-871)) ELT)) (-1553 (((-793) $) 25 (|has| $ (-6 -4508)) ELT)))
+((-1626 (((-419 |#1|) |#1|) 41 T ELT)) (-4012 (((-419 |#1|) |#1|) 30 T ELT) (((-419 |#1|) |#1| (-663 (-48))) 33 T ELT)) (-3284 (((-114) |#1|) 59 T ELT)))
+(((-39 |#1|) (-10 -7 (-15 -4012 ((-419 |#1|) |#1| (-663 (-48)))) (-15 -4012 ((-419 |#1|) |#1|)) (-15 -1626 ((-419 |#1|) |#1|)) (-15 -3284 ((-114) |#1|))) (-1273 (-48))) (T -39))
+((-3284 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))) (-1626 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))) (-4012 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))) (-4012 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-48))) (-5 *2 (-419 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))))
+(-10 -7 (-15 -4012 ((-419 |#1|) |#1| (-663 (-48)))) (-15 -4012 ((-419 |#1|) |#1|)) (-15 -1626 ((-419 |#1|) |#1|)) (-15 -3284 ((-114) |#1|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3488 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4366 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2667 (((-114) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3100 (((-711 (-421 |#2|)) (-1297 $)) NIL T ELT) (((-711 (-421 |#2|))) NIL T ELT)) (-4113 (((-421 |#2|) $) NIL T ELT)) (-1548 (((-1219 (-948) (-793)) (-560)) NIL (|has| (-421 |#2|) (-363)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3898 (((-419 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3476 (((-114) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2552 (((-793)) NIL (|has| (-421 |#2|) (-381)) ELT)) (-2942 (((-114)) NIL T ELT)) (-4368 (((-114) |#1|) NIL T ELT) (((-114) |#2|) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) NIL (|has| (-421 |#2|) (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| (-421 |#2|) (-1069 (-421 (-560)))) ELT) (((-3 (-421 |#2|) "failed") $) NIL T ELT)) (-3649 (((-560) $) NIL (|has| (-421 |#2|) (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| (-421 |#2|) (-1069 (-421 (-560)))) ELT) (((-421 |#2|) $) NIL T ELT)) (-1953 (($ (-1297 (-421 |#2|)) (-1297 $)) NIL T ELT) (($ (-1297 (-421 |#2|))) 61 T ELT) (($ (-1297 |#2|) |#2|) 131 T ELT)) (-1433 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-421 |#2|) (-363)) ELT)) (-2186 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3160 (((-711 (-421 |#2|)) $ (-1297 $)) NIL T ELT) (((-711 (-421 |#2|)) $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-421 |#2|))) (|:| |vec| (-1297 (-421 |#2|)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-421 |#2|)) (-711 $)) NIL T ELT)) (-2265 (((-1297 $) (-1297 $)) NIL T ELT)) (-1778 (($ |#3|) NIL T ELT) (((-3 $ "failed") (-421 |#3|)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4412 (((-663 (-663 |#1|))) NIL (|has| |#1| (-381)) ELT)) (-3269 (((-114) |#1| |#1|) NIL T ELT)) (-1604 (((-948)) NIL T ELT)) (-1812 (($) NIL (|has| (-421 |#2|) (-381)) ELT)) (-1693 (((-114)) NIL T ELT)) (-4391 (((-114) |#1|) NIL T ELT) (((-114) |#2|) NIL T ELT)) (-2197 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4239 (($ $) NIL T ELT)) (-3191 (($) NIL (|has| (-421 |#2|) (-363)) ELT)) (-4017 (((-114) $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-3079 (($ $ (-793)) NIL (|has| (-421 |#2|) (-363)) ELT) (($ $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-3141 (((-114) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1460 (((-948) $) NIL (|has| (-421 |#2|) (-363)) ELT) (((-854 (-948)) $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-1918 (((-114) $) NIL T ELT)) (-3135 (((-793)) NIL T ELT)) (-2572 (((-1297 $) (-1297 $)) 106 T ELT)) (-2084 (((-421 |#2|) $) NIL T ELT)) (-3608 (((-663 (-975 |#1|)) (-1207)) NIL (|has| |#1| (-376)) ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1471 ((|#3| $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2622 (((-948) $) NIL (|has| (-421 |#2|) (-381)) ELT)) (-1767 ((|#3| $) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-421 |#2|))) (|:| |vec| (-1297 (-421 |#2|)))) (-1297 $) $) NIL T ELT) (((-711 (-421 |#2|)) (-1297 $)) NIL T ELT)) (-1861 (($ (-663 $)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3956 (((-1303) (-793)) 84 T ELT)) (-1449 (((-711 (-421 |#2|))) 56 T ELT)) (-1823 (((-711 (-421 |#2|))) 49 T ELT)) (-2986 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4086 (($ (-1297 |#2|) |#2|) 132 T ELT)) (-3273 (((-711 (-421 |#2|))) 50 T ELT)) (-3539 (((-711 (-421 |#2|))) 48 T ELT)) (-3322 (((-2 (|:| |num| (-711 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130 T ELT)) (-3753 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) 68 T ELT)) (-2083 (((-1297 $)) 47 T ELT)) (-3538 (((-1297 $)) 46 T ELT)) (-2870 (((-114) $) NIL T ELT)) (-4030 (((-114) $) NIL T ELT) (((-114) $ |#1|) NIL T ELT) (((-114) $ |#2|) NIL T ELT)) (-3239 (($) NIL (|has| (-421 |#2|) (-363)) CONST)) (-1591 (($ (-948)) NIL (|has| (-421 |#2|) (-381)) ELT)) (-4094 (((-3 |#2| "failed")) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2943 (((-793)) NIL T ELT)) (-3583 (($) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1938 (($ (-663 $)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2976 (((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))) NIL (|has| (-421 |#2|) (-363)) ELT)) (-4012 (((-419 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-421 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2233 (((-3 $ "failed") $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3989 (((-793) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1507 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3667 (((-3 |#2| "failed")) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2336 (((-421 |#2|) (-1297 $)) NIL T ELT) (((-421 |#2|)) 44 T ELT)) (-2258 (((-793) $) NIL (|has| (-421 |#2|) (-363)) ELT) (((-3 (-793) "failed") $ $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-3161 (($ $ (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) 126 T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2196 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2196 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-663 (-1207))) NIL (-2196 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-793)) NIL (-2196 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT) (($ $) NIL (-2196 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT)) (-3634 (((-711 (-421 |#2|)) (-1297 $) (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2407 ((|#3|) 55 T ELT)) (-3569 (($) NIL (|has| (-421 |#2|) (-363)) ELT)) (-4226 (((-1297 (-421 |#2|)) $ (-1297 $)) NIL T ELT) (((-711 (-421 |#2|)) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 (-421 |#2|)) $) 62 T ELT) (((-711 (-421 |#2|)) (-1297 $)) 107 T ELT)) (-2400 (((-1297 (-421 |#2|)) $) NIL T ELT) (($ (-1297 (-421 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| (-421 |#2|) (-363)) ELT)) (-3182 (((-1297 $) (-1297 $)) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 |#2|)) NIL T ELT) (($ (-421 (-560))) NIL (-2196 (|has| (-421 |#2|) (-1069 (-421 (-560)))) (|has| (-421 |#2|) (-376))) ELT) (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3919 (($ $) NIL (|has| (-421 |#2|) (-363)) ELT) (((-3 $ "failed") $) NIL (|has| (-421 |#2|) (-147)) ELT)) (-2978 ((|#3| $) NIL T ELT)) (-4191 (((-793)) NIL T CONST)) (-2842 (((-114)) 42 T ELT)) (-4327 (((-114) |#1|) 54 T ELT) (((-114) |#2|) 138 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3822 (((-1297 $)) NIL T ELT)) (-4361 (((-114) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2987 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-4154 (((-114)) NIL T ELT)) (-1446 (($) 17 T CONST)) (-1456 (($) 27 T CONST)) (-2111 (($ $ (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2196 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2196 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-663 (-1207))) NIL (-2196 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-793)) NIL (-2196 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT) (($ $) NIL (-2196 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| (-421 |#2|) (-376)) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 |#2|)) NIL T ELT) (($ (-421 |#2|) $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-421 (-560))) NIL (|has| (-421 |#2|) (-376)) ELT)))
+(((-40 |#1| |#2| |#3| |#4|) (-13 (-355 |#1| |#2| |#3|) (-10 -7 (-15 -3956 ((-1303) (-793))))) (-376) (-1273 |#1|) (-1273 (-421 |#2|)) |#3|) (T -40))
+((-3956 (*1 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-376)) (-4 *5 (-1273 *4)) (-5 *2 (-1303)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1273 (-421 *5))) (-14 *7 *6))))
+(-13 (-355 |#1| |#2| |#3|) (-10 -7 (-15 -3956 ((-1303) (-793)))))
+((-3848 ((|#2| |#2|) 47 T ELT)) (-2293 ((|#2| |#2|) 139 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-466) (-1069 (-560))))) ELT)) (-3807 ((|#2| |#2|) 100 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-466) (-1069 (-560))))) ELT)) (-3604 ((|#2| |#2|) 101 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-466) (-1069 (-560))))) ELT)) (-2919 ((|#2| (-115) |#2| (-793)) 135 (-12 (|has| |#2| (-435 |#1|)) (|has| |#1| (-13 (-466) (-1069 (-560))))) ELT)) (-3110 (((-1201 |#2|) |#2|) 44 T ELT)) (-3469 ((|#2| |#2| (-663 (-630 |#2|))) 18 T ELT) ((|#2| |#2| (-663 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT)))
+(((-41 |#1| |#2|) (-10 -7 (-15 -3848 (|#2| |#2|)) (-15 -3469 (|#2| |#2|)) (-15 -3469 (|#2| |#2| |#2|)) (-15 -3469 (|#2| |#2| (-663 |#2|))) (-15 -3469 (|#2| |#2| (-663 (-630 |#2|)))) (-15 -3110 ((-1201 |#2|) |#2|)) (IF (|has| |#1| (-13 (-466) (-1069 (-560)))) (IF (|has| |#2| (-435 |#1|)) (PROGN (-15 -3604 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -2293 (|#2| |#2|)) (-15 -2919 (|#2| (-115) |#2| (-793)))) |%noBranch|) |%noBranch|)) (-571) (-13 (-376) (-310) (-10 -8 (-15 -2473 ((-1156 |#1| (-630 $)) $)) (-15 -2484 ((-1156 |#1| (-630 $)) $)) (-15 -3913 ($ (-1156 |#1| (-630 $))))))) (T -41))
+((-2919 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-793)) (-4 *5 (-13 (-466) (-1069 (-560)))) (-4 *5 (-571)) (-5 *1 (-41 *5 *2)) (-4 *2 (-435 *5)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -2473 ((-1156 *5 (-630 $)) $)) (-15 -2484 ((-1156 *5 (-630 $)) $)) (-15 -3913 ($ (-1156 *5 (-630 $))))))))) (-2293 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-560)))) (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -2473 ((-1156 *3 (-630 $)) $)) (-15 -2484 ((-1156 *3 (-630 $)) $)) (-15 -3913 ($ (-1156 *3 (-630 $))))))))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-560)))) (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -2473 ((-1156 *3 (-630 $)) $)) (-15 -2484 ((-1156 *3 (-630 $)) $)) (-15 -3913 ($ (-1156 *3 (-630 $))))))))) (-3604 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-560)))) (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -2473 ((-1156 *3 (-630 $)) $)) (-15 -2484 ((-1156 *3 (-630 $)) $)) (-15 -3913 ($ (-1156 *3 (-630 $))))))))) (-3110 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-1201 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-376) (-310) (-10 -8 (-15 -2473 ((-1156 *4 (-630 $)) $)) (-15 -2484 ((-1156 *4 (-630 $)) $)) (-15 -3913 ($ (-1156 *4 (-630 $))))))))) (-3469 (*1 *2 *2 *3) (-12 (-5 *3 (-663 (-630 *2))) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -2473 ((-1156 *4 (-630 $)) $)) (-15 -2484 ((-1156 *4 (-630 $)) $)) (-15 -3913 ($ (-1156 *4 (-630 $))))))) (-4 *4 (-571)) (-5 *1 (-41 *4 *2)))) (-3469 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -2473 ((-1156 *4 (-630 $)) $)) (-15 -2484 ((-1156 *4 (-630 $)) $)) (-15 -3913 ($ (-1156 *4 (-630 $))))))) (-4 *4 (-571)) (-5 *1 (-41 *4 *2)))) (-3469 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -2473 ((-1156 *3 (-630 $)) $)) (-15 -2484 ((-1156 *3 (-630 $)) $)) (-15 -3913 ($ (-1156 *3 (-630 $))))))))) (-3469 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -2473 ((-1156 *3 (-630 $)) $)) (-15 -2484 ((-1156 *3 (-630 $)) $)) (-15 -3913 ($ (-1156 *3 (-630 $))))))))) (-3848 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -2473 ((-1156 *3 (-630 $)) $)) (-15 -2484 ((-1156 *3 (-630 $)) $)) (-15 -3913 ($ (-1156 *3 (-630 $))))))))))
+(-10 -7 (-15 -3848 (|#2| |#2|)) (-15 -3469 (|#2| |#2|)) (-15 -3469 (|#2| |#2| |#2|)) (-15 -3469 (|#2| |#2| (-663 |#2|))) (-15 -3469 (|#2| |#2| (-663 (-630 |#2|)))) (-15 -3110 ((-1201 |#2|) |#2|)) (IF (|has| |#1| (-13 (-466) (-1069 (-560)))) (IF (|has| |#2| (-435 |#1|)) (PROGN (-15 -3604 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -2293 (|#2| |#2|)) (-15 -2919 (|#2| (-115) |#2| (-793)))) |%noBranch|) |%noBranch|))
+((-4012 (((-419 (-1201 |#3|)) (-1201 |#3|) (-663 (-48))) 23 T ELT) (((-419 |#3|) |#3| (-663 (-48))) 19 T ELT)))
+(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4012 ((-419 |#3|) |#3| (-663 (-48)))) (-15 -4012 ((-419 (-1201 |#3|)) (-1201 |#3|) (-663 (-48))))) (-871) (-815) (-979 (-48) |#2| |#1|)) (T -42))
+((-4012 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-48))) (-4 *5 (-871)) (-4 *6 (-815)) (-4 *7 (-979 (-48) *6 *5)) (-5 *2 (-419 (-1201 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1201 *7)))) (-4012 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-48))) (-4 *5 (-871)) (-4 *6 (-815)) (-5 *2 (-419 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-979 (-48) *6 *5)))))
+(-10 -7 (-15 -4012 ((-419 |#3|) |#3| (-663 (-48)))) (-15 -4012 ((-419 (-1201 |#3|)) (-1201 |#3|) (-663 (-48)))))
+((-2470 (((-793) |#2|) 70 T ELT)) (-1689 (((-793) |#2|) 74 T ELT)) (-3970 (((-663 |#2|)) 37 T ELT)) (-2839 (((-793) |#2|) 73 T ELT)) (-2119 (((-793) |#2|) 69 T ELT)) (-4287 (((-793) |#2|) 72 T ELT)) (-2781 (((-663 (-711 |#1|))) 65 T ELT)) (-1718 (((-663 |#2|)) 60 T ELT)) (-2036 (((-663 |#2|) |#2|) 48 T ELT)) (-1461 (((-663 |#2|)) 62 T ELT)) (-3236 (((-663 |#2|)) 61 T ELT)) (-2285 (((-663 (-711 |#1|))) 53 T ELT)) (-2046 (((-663 |#2|)) 59 T ELT)) (-4008 (((-663 |#2|) |#2|) 47 T ELT)) (-4486 (((-663 |#2|)) 55 T ELT)) (-4363 (((-663 (-711 |#1|))) 66 T ELT)) (-2378 (((-663 |#2|)) 64 T ELT)) (-3822 (((-1297 |#2|) (-1297 |#2|)) 99 (|has| |#1| (-319)) ELT)))
+(((-43 |#1| |#2|) (-10 -7 (-15 -2839 ((-793) |#2|)) (-15 -1689 ((-793) |#2|)) (-15 -2119 ((-793) |#2|)) (-15 -2470 ((-793) |#2|)) (-15 -4287 ((-793) |#2|)) (-15 -4486 ((-663 |#2|))) (-15 -4008 ((-663 |#2|) |#2|)) (-15 -2036 ((-663 |#2|) |#2|)) (-15 -2046 ((-663 |#2|))) (-15 -1718 ((-663 |#2|))) (-15 -3236 ((-663 |#2|))) (-15 -1461 ((-663 |#2|))) (-15 -2378 ((-663 |#2|))) (-15 -2285 ((-663 (-711 |#1|)))) (-15 -2781 ((-663 (-711 |#1|)))) (-15 -4363 ((-663 (-711 |#1|)))) (-15 -3970 ((-663 |#2|))) (IF (|has| |#1| (-319)) (-15 -3822 ((-1297 |#2|) (-1297 |#2|))) |%noBranch|)) (-571) (-432 |#1|)) (T -43))
+((-3822 (*1 *2 *2) (-12 (-5 *2 (-1297 *4)) (-4 *4 (-432 *3)) (-4 *3 (-319)) (-4 *3 (-571)) (-5 *1 (-43 *3 *4)))) (-3970 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-4363 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 (-711 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-2781 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 (-711 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-2285 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 (-711 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-2378 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-1461 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-3236 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-1718 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-2046 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-2036 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-663 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4)))) (-4008 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-663 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4)))) (-4486 (*1 *2) (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-432 *3)))) (-4287 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4)))) (-2470 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4)))) (-2119 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4)))) (-1689 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4)))) (-2839 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3)) (-4 *3 (-432 *4)))))
+(-10 -7 (-15 -2839 ((-793) |#2|)) (-15 -1689 ((-793) |#2|)) (-15 -2119 ((-793) |#2|)) (-15 -2470 ((-793) |#2|)) (-15 -4287 ((-793) |#2|)) (-15 -4486 ((-663 |#2|))) (-15 -4008 ((-663 |#2|) |#2|)) (-15 -2036 ((-663 |#2|) |#2|)) (-15 -2046 ((-663 |#2|))) (-15 -1718 ((-663 |#2|))) (-15 -3236 ((-663 |#2|))) (-15 -1461 ((-663 |#2|))) (-15 -2378 ((-663 |#2|))) (-15 -2285 ((-663 (-711 |#1|)))) (-15 -2781 ((-663 (-711 |#1|)))) (-15 -4363 ((-663 (-711 |#1|)))) (-15 -3970 ((-663 |#2|))) (IF (|has| |#1| (-319)) (-15 -3822 ((-1297 |#2|) (-1297 |#2|))) |%noBranch|))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-4184 (((-3 $ "failed")) NIL (|has| |#1| (-571)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3398 (((-1297 (-711 |#1|)) (-1297 $)) NIL T ELT) (((-1297 (-711 |#1|))) 24 T ELT)) (-4087 (((-1297 $)) 52 T ELT)) (-3525 (($) NIL T CONST)) (-1756 (((-3 (-2 (|:| |particular| $) (|:| -3822 (-663 $))) "failed")) NIL (|has| |#1| (-571)) ELT)) (-3681 (((-3 $ "failed")) NIL (|has| |#1| (-571)) ELT)) (-1691 (((-711 |#1|) (-1297 $)) NIL T ELT) (((-711 |#1|)) NIL T ELT)) (-2865 ((|#1| $) NIL T ELT)) (-2541 (((-711 |#1|) $ (-1297 $)) NIL T ELT) (((-711 |#1|) $) NIL T ELT)) (-2035 (((-3 $ "failed") $) NIL (|has| |#1| (-571)) ELT)) (-3474 (((-1201 (-975 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-4201 (($ $ (-948)) NIL T ELT)) (-2652 ((|#1| $) NIL T ELT)) (-1825 (((-1201 |#1|) $) NIL (|has| |#1| (-571)) ELT)) (-2098 ((|#1| (-1297 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-2280 (((-1201 |#1|) $) NIL T ELT)) (-2137 (((-114)) 99 T ELT)) (-1953 (($ (-1297 |#1|) (-1297 $)) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT)) (-2873 (((-3 $ "failed") $) 14 (|has| |#1| (-571)) ELT)) (-1604 (((-948)) 53 T ELT)) (-1558 (((-114)) NIL T ELT)) (-1441 (($ $ (-948)) NIL T ELT)) (-1521 (((-114)) NIL T ELT)) (-3053 (((-114)) NIL T ELT)) (-4460 (((-114)) 101 T ELT)) (-1367 (((-3 (-2 (|:| |particular| $) (|:| -3822 (-663 $))) "failed")) NIL (|has| |#1| (-571)) ELT)) (-4156 (((-3 $ "failed")) NIL (|has| |#1| (-571)) ELT)) (-2999 (((-711 |#1|) (-1297 $)) NIL T ELT) (((-711 |#1|)) NIL T ELT)) (-4278 ((|#1| $) NIL T ELT)) (-4414 (((-711 |#1|) $ (-1297 $)) NIL T ELT) (((-711 |#1|) $) NIL T ELT)) (-4294 (((-3 $ "failed") $) NIL (|has| |#1| (-571)) ELT)) (-1828 (((-1201 (-975 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-2065 (($ $ (-948)) NIL T ELT)) (-1788 ((|#1| $) NIL T ELT)) (-2126 (((-1201 |#1|) $) NIL (|has| |#1| (-571)) ELT)) (-1951 ((|#1| (-1297 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1364 (((-1201 |#1|) $) NIL T ELT)) (-3361 (((-114)) 98 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3577 (((-114)) 106 T ELT)) (-2107 (((-114)) 105 T ELT)) (-4289 (((-114)) 107 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3905 (((-114)) 100 T ELT)) (-1507 ((|#1| $ (-560)) 55 T ELT)) (-4226 (((-1297 |#1|) $ (-1297 $)) 48 T ELT) (((-711 |#1|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#1|) $) 28 T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-2400 (((-1297 |#1|) $) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT)) (-1556 (((-663 (-975 |#1|)) (-1297 $)) NIL T ELT) (((-663 (-975 |#1|))) NIL T ELT)) (-3117 (($ $ $) NIL T ELT)) (-2848 (((-114)) 95 T ELT)) (-3913 (((-887) $) 71 T ELT) (($ (-1297 |#1|)) 22 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3822 (((-1297 $)) 51 T ELT)) (-1601 (((-663 (-1297 |#1|))) NIL (|has| |#1| (-571)) ELT)) (-1777 (($ $ $ $) NIL T ELT)) (-3757 (((-114)) 91 T ELT)) (-4323 (($ (-711 |#1|) $) 18 T ELT)) (-4209 (($ $ $) NIL T ELT)) (-4103 (((-114)) 97 T ELT)) (-4213 (((-114)) 92 T ELT)) (-1597 (((-114)) 90 T ELT)) (-1446 (($) NIL T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1173 |#2| |#1|) $) 19 T ELT)))
+(((-44 |#1| |#2| |#3| |#4|) (-13 (-432 |#1|) (-670 (-1173 |#2| |#1|)) (-10 -8 (-15 -3913 ($ (-1297 |#1|))))) (-376) (-948) (-663 (-1207)) (-1297 (-711 |#1|))) (T -44))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-376)) (-14 *6 (-1297 (-711 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))))))
+(-13 (-432 |#1|) (-670 (-1173 |#2| |#1|)) (-10 -8 (-15 -3913 ($ (-1297 |#1|)))))
+((-2243 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1430 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-3853 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-3990 (($ $) NIL T ELT)) (-4236 (($) NIL T ELT) (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-2033 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4509)) ELT) (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4367 (($ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-2152 (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL T ELT) (((-114) $) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) ELT)) (-3152 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871))) ELT)) (-1787 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3654 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (|has| $ (-6 -4509)) ELT)) (-1518 (($ $ $) 33 (|has| $ (-6 -4509)) ELT)) (-3042 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (|has| $ (-6 -4509)) ELT)) (-2509 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 35 (|has| $ (-6 -4509)) ELT)) (-4083 ((|#2| $ |#1| |#2|) 53 T ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-560) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (|has| $ (-6 -4509)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-1264 (-560)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (|has| $ (-6 -4509)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ "last" (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (|has| $ (-6 -4509)) ELT) (($ $ "rest" $) NIL (|has| $ (-6 -4509)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ "first" (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (|has| $ (-6 -4509)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ "value" (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (|has| $ (-6 -4509)) ELT)) (-2566 (($ $ (-663 $)) NIL (|has| $ (-6 -4509)) ELT)) (-1864 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL T ELT)) (-3923 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3839 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-3799 (((-3 |#2| "failed") |#1| $) 43 T ELT)) (-3525 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) NIL T ELT)) (-4345 (($ $ (-793)) NIL T ELT) (($ $) 29 T ELT)) (-4329 (($ $) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT)) (-2091 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#2| "failed") |#1| $) 56 T ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL T ELT) (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) ELT)) (-3033 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3338 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4509)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-560) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-560)) NIL T ELT)) (-3843 (((-114) $) NIL T ELT)) (-2359 (((-560) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL T ELT) (((-560) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) ELT) (((-560) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-560)) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) ELT)) (-3737 (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 20 (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 20 (|has| $ (-6 -4508)) ELT)) (-2104 (((-663 $) $) NIL T ELT)) (-2150 (((-114) $ $) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) ELT)) (-4246 (($ (-793) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 ((|#1| $) NIL (|has| |#1| (-871)) ELT) (((-560) $) 38 (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) ELT)) (-3204 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) ELT)) (-4167 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) ELT)) (-3243 (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT) (((-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT)) (-4263 ((|#1| $) NIL (|has| |#1| (-871)) ELT) (((-560) $) 40 (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) ELT)) (-3324 (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL T ELT)) (-2560 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL T ELT)) (-1485 (((-114) $) NIL T ELT)) (-3358 (((-1189) $) 49 (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-3057 (($ $ (-793)) NIL T ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-4325 (((-663 |#1|) $) 22 T ELT)) (-4124 (((-114) |#1| $) NIL T ELT)) (-1878 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-3888 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT) (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-2507 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3372 (((-663 |#1|) $) NIL T ELT) (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) |#1| $) NIL T ELT) (((-114) (-560) $) NIL T ELT)) (-3376 (((-1151) $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-4334 ((|#2| $) NIL (|has| |#1| (-871)) ELT) (($ $ (-793)) NIL T ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 27 T ELT)) (-2708 (((-3 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) "failed") (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) "failed") (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL T ELT)) (-2740 (($ $ |#2|) NIL (|has| $ (-6 -4509)) ELT) (($ $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (|has| $ (-6 -4509)) ELT)) (-2796 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-4270 (((-114) $) NIL T ELT)) (-2086 (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-663 (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT) (((-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT)) (-1383 (((-663 |#2|) $) NIL T ELT) (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 19 T ELT)) (-2706 (((-114) $) 18 T ELT)) (-2832 (($) 14 T ELT)) (-1507 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-560) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL T ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ "last") NIL T ELT) (($ $ "rest") NIL T ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ "first") NIL T ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $ "value") NIL T ELT)) (-2374 (((-560) $ $) NIL T ELT)) (-4468 (($) 13 T ELT) (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-3639 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-2579 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-2752 (((-114) $) NIL T ELT)) (-2493 (($ $) NIL T ELT)) (-3438 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-3010 (((-793) $) NIL T ELT)) (-1474 (($ $) NIL T ELT)) (-3384 (((-793) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT) (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-793) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3993 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-633 (-549))) ELT)) (-3924 (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT) (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-3305 (($ $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-1955 (($ $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL T ELT) (($ (-663 $)) NIL T ELT) (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 31 T ELT) (($ $ $) NIL T ELT)) (-3913 (((-887) $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-632 (-887))) (|has| |#2| (-632 (-887)))) ELT)) (-3809 (((-663 $) $) NIL T ELT)) (-3606 (((-114) $ $) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) ELT)) (-3925 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3184 (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-3069 (((-3 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) "failed") |#1| $) 51 T ELT)) (-2149 (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-2396 (((-114) $ $) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) ELT)) (-2340 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-2386 (((-114) $ $) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-871)) ELT)) (-2256 (((-793) $) 25 (|has| $ (-6 -4508)) ELT)))
(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1132) (-1132)) (T -45))
NIL
(-36 |#1| |#2|)
-((-1556 (((-114) $) 12 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-421 (-560)) $) 25 T ELT) (($ $ (-421 (-560))) NIL T ELT)))
-(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -1556 ((-114) |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|))) (-47 |#2| |#3|) (-1080) (-814)) (T -46))
+((-1673 (((-114) $) 12 T ELT)) (-2260 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-421 (-560)) $) 25 T ELT) (($ $ (-421 (-560))) NIL T ELT)))
+(((-46 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -1673 ((-114) |#1|)) (-15 -2260 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|))) (-47 |#2| |#3|) (-1080) (-814)) (T -46))
NIL
-(-10 -8 (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -1556 ((-114) |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 63 (|has| |#1| (-571)) ELT)) (-3244 (($ $) 64 (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) 66 (|has| |#1| (-571)) ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1624 (($ $) 72 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-1556 (((-114) $) 74 T ELT)) (-1417 (($ |#1| |#2|) 73 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-1583 (($ $) 77 T ELT)) (-1597 ((|#1| $) 78 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1528 (((-3 $ "failed") $ $) 62 (|has| |#1| (-571)) ELT)) (-3630 ((|#2| $) 76 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ (-421 (-560))) 69 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 61 (|has| |#1| (-571)) ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT)) (-2305 ((|#1| $ |#2|) 71 T ELT)) (-1964 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 65 (|has| |#1| (-571)) ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-560)) $) 68 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 67 (|has| |#1| (-38 (-421 (-560)))) ELT)))
+(-10 -8 (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -1673 ((-114) |#1|)) (-15 -2260 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 63 (|has| |#1| (-571)) ELT)) (-4366 (($ $) 64 (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) 66 (|has| |#1| (-571)) ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-3062 (($ $) 72 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-1673 (((-114) $) 74 T ELT)) (-4139 (($ |#1| |#2|) 73 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3024 (($ $) 77 T ELT)) (-3037 ((|#1| $) 78 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2233 (((-3 $ "failed") $ $) 62 (|has| |#1| (-571)) ELT)) (-3900 ((|#2| $) 76 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ (-421 (-560))) 69 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 61 (|has| |#1| (-571)) ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT)) (-2920 ((|#1| $ |#2|) 71 T ELT)) (-3919 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 65 (|has| |#1| (-571)) ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-560)) $) 68 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 67 (|has| |#1| (-38 (-421 (-560)))) ELT)))
(((-47 |#1| |#2|) (-142) (-1080) (-814)) (T -47))
-((-1597 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080)))) (-1583 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (-5 *2 (-114)))) (-1417 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)))) (-1624 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080)))) (-2594 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)) (-4 *2 (-376)))))
-(-13 (-1080) (-111 |t#1| |t#1|) (-10 -8 (-15 -1597 (|t#1| $)) (-15 -1583 ($ $)) (-15 -3630 (|t#2| $)) (-15 -3957 ($ (-1 |t#1| |t#1|) $)) (-15 -1556 ((-114) $)) (-15 -1417 ($ |t#1| |t#2|)) (-15 -1624 ($ $)) (-15 -2305 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-376)) (-15 -2594 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-6 (-175)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-571)) (-6 (-571)) |%noBranch|) (IF (|has| |t#1| (-38 (-421 (-560)))) (-6 (-38 (-421 (-560)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-571)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) |has| |#1| (-38 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) |has| |#1| (-571)) ((-632 (-887)) . T) ((-175) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-302) |has| |#1| (-571)) ((-571) |has| |#1| (-571)) ((-668 #0#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-38 (-421 (-560)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-571)) ((-739 #0#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-571)) ((-748) . T) ((-1082 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1082 |#1|) . T) ((-1082 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1087 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1087 |#1|) . T) ((-1087 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2603 (((-663 $) (-1201 $) (-1207)) NIL T ELT) (((-663 $) (-1201 $)) NIL T ELT) (((-663 $) (-975 $)) NIL T ELT)) (-3684 (($ (-1201 $) (-1207)) NIL T ELT) (($ (-1201 $)) NIL T ELT) (($ (-975 $)) NIL T ELT)) (-2388 (((-114) $) 9 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-4297 (((-663 (-630 $)) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1724 (($ $ (-305 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-4471 (($ $) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-3276 (((-663 $) (-1201 $) (-1207)) NIL T ELT) (((-663 $) (-1201 $)) NIL T ELT) (((-663 $) (-975 $)) NIL T ELT)) (-3325 (($ (-1201 $) (-1207)) NIL T ELT) (($ (-1201 $)) NIL T ELT) (($ (-975 $)) NIL T ELT)) (-2539 (((-3 (-630 $) "failed") $) NIL T ELT) (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT)) (-3330 (((-630 $) $) NIL T ELT) (((-560) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT)) (-1478 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT) (((-2 (|:| -3822 (-711 (-421 (-560)))) (|:| |vec| (-1297 (-421 (-560))))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-421 (-560))) (-711 $)) NIL T ELT)) (-4129 (($ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-2753 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2943 (((-663 (-115)) $) NIL T ELT)) (-4399 (((-115) (-115)) NIL T ELT)) (-1581 (((-114) $) 11 T ELT)) (-3612 (((-114) $) NIL (|has| $ (-1069 (-560))) ELT)) (-3757 (((-1156 (-560) (-630 $)) $) NIL T ELT)) (-2146 (($ $ (-560)) NIL T ELT)) (-2032 (((-1201 $) (-1201 $) (-630 $)) NIL T ELT) (((-1201 $) (-1201 $) (-663 (-630 $))) NIL T ELT) (($ $ (-630 $)) NIL T ELT) (($ $ (-663 (-630 $))) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3872 (((-1201 $) (-630 $)) NIL (|has| $ (-1080)) ELT)) (-3957 (($ (-1 $ $) (-630 $)) NIL T ELT)) (-3005 (((-3 (-630 $) "failed") $) NIL T ELT)) (-2484 (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL T ELT) (((-711 (-560)) (-1297 $)) NIL T ELT) (((-2 (|:| -3822 (-711 (-421 (-560)))) (|:| |vec| (-1297 (-421 (-560))))) (-1297 $) $) NIL T ELT) (((-711 (-421 (-560))) (-1297 $)) NIL T ELT)) (-2093 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-4385 (((-663 (-630 $)) $) NIL T ELT)) (-2036 (($ (-115) $) NIL T ELT) (($ (-115) (-663 $)) NIL T ELT)) (-2784 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1207)) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-2107 (((-793) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3883 (((-114) $ $) NIL T ELT) (((-114) $ (-1207)) NIL T ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1737 (((-114) $) NIL (|has| $ (-1069 (-560))) ELT)) (-4187 (($ $ (-630 $) $) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-1207) (-1 $ (-663 $))) NIL T ELT) (($ $ (-1207) (-1 $ $)) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-663 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-3924 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-663 $)) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-3690 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2894 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3771 (((-1156 (-560) (-630 $)) $) NIL T ELT)) (-4394 (($ $) NIL (|has| $ (-1080)) ELT)) (-1407 (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (((-171 (-391)) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-630 $)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-1156 (-560) (-630 $))) NIL T ELT)) (-2930 (((-793)) NIL T CONST)) (-3579 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1840 (((-114) (-115)) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2001 (($) 6 T CONST)) (-2011 (($) 10 T CONST)) (-3305 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2473 (((-114) $ $) 13 T ELT)) (-2594 (($ $ $) NIL T ELT)) (-2580 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-421 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-948)) NIL T ELT)) (* (($ (-421 (-560)) $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-948) $) NIL T ELT)))
-(((-48) (-13 (-310) (-27) (-1069 (-560)) (-1069 (-421 (-560))) (-660 (-560)) (-1051) (-660 (-421 (-560))) (-149) (-633 (-171 (-391))) (-240) (-10 -8 (-15 -1578 ($ (-1156 (-560) (-630 $)))) (-15 -3757 ((-1156 (-560) (-630 $)) $)) (-15 -3771 ((-1156 (-560) (-630 $)) $)) (-15 -4129 ($ $)) (-15 -2032 ((-1201 $) (-1201 $) (-630 $))) (-15 -2032 ((-1201 $) (-1201 $) (-663 (-630 $)))) (-15 -2032 ($ $ (-630 $))) (-15 -2032 ($ $ (-663 (-630 $))))))) (T -48))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1156 (-560) (-630 (-48)))) (-5 *1 (-48)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-1156 (-560) (-630 (-48)))) (-5 *1 (-48)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-1156 (-560) (-630 (-48)))) (-5 *1 (-48)))) (-4129 (*1 *1 *1) (-5 *1 (-48))) (-2032 (*1 *2 *2 *3) (-12 (-5 *2 (-1201 (-48))) (-5 *3 (-630 (-48))) (-5 *1 (-48)))) (-2032 (*1 *2 *2 *3) (-12 (-5 *2 (-1201 (-48))) (-5 *3 (-663 (-630 (-48)))) (-5 *1 (-48)))) (-2032 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-48))) (-5 *1 (-48)))) (-2032 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-630 (-48)))) (-5 *1 (-48)))))
-(-13 (-310) (-27) (-1069 (-560)) (-1069 (-421 (-560))) (-660 (-560)) (-1051) (-660 (-421 (-560))) (-149) (-633 (-171 (-391))) (-240) (-10 -8 (-15 -1578 ($ (-1156 (-560) (-630 $)))) (-15 -3757 ((-1156 (-560) (-630 $)) $)) (-15 -3771 ((-1156 (-560) (-630 $)) $)) (-15 -4129 ($ $)) (-15 -2032 ((-1201 $) (-1201 $) (-630 $))) (-15 -2032 ((-1201 $) (-1201 $) (-663 (-630 $)))) (-15 -2032 ($ $ (-630 $))) (-15 -2032 ($ $ (-663 (-630 $))))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3900 (((-663 (-520)) $) 17 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 7 T ELT)) (-3625 (((-1212) $) 18 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-49) (-13 (-1132) (-10 -8 (-15 -3900 ((-663 (-520)) $)) (-15 -3625 ((-1212) $))))) (T -49))
-((-3900 (*1 *2 *1) (-12 (-5 *2 (-663 (-520))) (-5 *1 (-49)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-49)))))
-(-13 (-1132) (-10 -8 (-15 -3900 ((-663 (-520)) $)) (-15 -3625 ((-1212) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 85 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2285 (((-114) $) 30 T ELT)) (-2539 (((-3 |#1| "failed") $) 33 T ELT)) (-3330 ((|#1| $) 34 T ELT)) (-1624 (($ $) 40 T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1597 ((|#1| $) 31 T ELT)) (-3920 (($ $) 74 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2786 (((-114) $) 43 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2748 (($ (-793)) 72 T ELT)) (-3251 (($ (-663 (-560))) 73 T ELT)) (-3630 (((-793) $) 44 T ELT)) (-1578 (((-887) $) 91 T ELT) (($ (-560)) 69 T ELT) (($ |#1|) 67 T ELT)) (-2305 ((|#1| $ $) 28 T ELT)) (-2930 (((-793)) 71 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 45 T CONST)) (-2011 (($) 17 T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 64 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 65 T ELT) (($ |#1| $) 58 T ELT)))
-(((-50 |#1| |#2|) (-13 (-640 |#1|) (-1069 |#1|) (-10 -8 (-15 -1597 (|#1| $)) (-15 -3920 ($ $)) (-15 -1624 ($ $)) (-15 -2305 (|#1| $ $)) (-15 -2748 ($ (-793))) (-15 -3251 ($ (-663 (-560)))) (-15 -2786 ((-114) $)) (-15 -2285 ((-114) $)) (-15 -3630 ((-793) $)) (-15 -3957 ($ (-1 |#1| |#1|) $)))) (-1080) (-663 (-1207))) (T -50))
-((-1597 (*1 *2 *1) (-12 (-4 *2 (-1080)) (-5 *1 (-50 *2 *3)) (-14 *3 (-663 (-1207))))) (-3920 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1080)) (-14 *3 (-663 (-1207))))) (-1624 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1080)) (-14 *3 (-663 (-1207))))) (-2305 (*1 *2 *1 *1) (-12 (-4 *2 (-1080)) (-5 *1 (-50 *2 *3)) (-14 *3 (-663 (-1207))))) (-2748 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080)) (-14 *4 (-663 (-1207))))) (-3251 (*1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080)) (-14 *4 (-663 (-1207))))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080)) (-14 *4 (-663 (-1207))))) (-2285 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080)) (-14 *4 (-663 (-1207))))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080)) (-14 *4 (-663 (-1207))))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-50 *3 *4)) (-14 *4 (-663 (-1207))))))
-(-13 (-640 |#1|) (-1069 |#1|) (-10 -8 (-15 -1597 (|#1| $)) (-15 -3920 ($ $)) (-15 -1624 ($ $)) (-15 -2305 (|#1| $ $)) (-15 -2748 ($ (-793))) (-15 -3251 ($ (-663 (-560)))) (-15 -2786 ((-114) $)) (-15 -2285 ((-114) $)) (-15 -3630 ((-793) $)) (-15 -3957 ($ (-1 |#1| |#1|) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-4088 (((-795) $) 8 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4282 (((-1134) $) 10 T ELT)) (-1578 (((-887) $) 15 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-3926 (($ (-1134) (-795)) 16 T ELT)) (-2473 (((-114) $ $) 12 T ELT)))
-(((-51) (-13 (-1132) (-10 -8 (-15 -3926 ($ (-1134) (-795))) (-15 -4282 ((-1134) $)) (-15 -4088 ((-795) $))))) (T -51))
-((-3926 (*1 *1 *2 *3) (-12 (-5 *2 (-1134)) (-5 *3 (-795)) (-5 *1 (-51)))) (-4282 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-51)))) (-4088 (*1 *2 *1) (-12 (-5 *2 (-795)) (-5 *1 (-51)))))
-(-13 (-1132) (-10 -8 (-15 -3926 ($ (-1134) (-795))) (-15 -4282 ((-1134) $)) (-15 -4088 ((-795) $))))
-((-2285 (((-114) (-51)) 18 T ELT)) (-2539 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3330 ((|#1| (-51)) 21 T ELT)) (-1578 (((-51) |#1|) 14 T ELT)))
-(((-52 |#1|) (-10 -7 (-15 -1578 ((-51) |#1|)) (-15 -2539 ((-3 |#1| "failed") (-51))) (-15 -2285 ((-114) (-51))) (-15 -3330 (|#1| (-51)))) (-1247)) (T -52))
-((-3330 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1247)))) (-2285 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-114)) (-5 *1 (-52 *4)) (-4 *4 (-1247)))) (-2539 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1247)))) (-1578 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1247)))))
-(-10 -7 (-15 -1578 ((-51) |#1|)) (-15 -2539 ((-3 |#1| "failed") (-51))) (-15 -2285 ((-114) (-51))) (-15 -3330 (|#1| (-51))))
-((-3626 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3626 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1080) (-670 |#1|) (-876 |#1|)) (T -53))
-((-3626 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-670 *5)) (-4 *5 (-1080)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-876 *5)))))
-(-10 -7 (-15 -3626 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-1655 ((|#3| |#3| (-663 (-1207))) 44 T ELT)) (-3186 ((|#3| (-663 (-1106 |#1| |#2| |#3|)) |#3| (-948)) 32 T ELT) ((|#3| (-663 (-1106 |#1| |#2| |#3|)) |#3|) 31 T ELT)))
-(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -3186 (|#3| (-663 (-1106 |#1| |#2| |#3|)) |#3|)) (-15 -3186 (|#3| (-663 (-1106 |#1| |#2| |#3|)) |#3| (-948))) (-15 -1655 (|#3| |#3| (-663 (-1207))))) (-1132) (-13 (-1080) (-911 |#1|) (-633 (-915 |#1|))) (-13 (-435 |#2|) (-911 |#1|) (-633 (-915 |#1|)))) (T -54))
-((-1655 (*1 *2 *2 *3) (-12 (-5 *3 (-663 (-1207))) (-4 *4 (-1132)) (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-911 *4) (-633 (-915 *4)))))) (-3186 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-663 (-1106 *5 *6 *2))) (-5 *4 (-948)) (-4 *5 (-1132)) (-4 *6 (-13 (-1080) (-911 *5) (-633 (-915 *5)))) (-4 *2 (-13 (-435 *6) (-911 *5) (-633 (-915 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-3186 (*1 *2 *3 *2) (-12 (-5 *3 (-663 (-1106 *4 *5 *2))) (-4 *4 (-1132)) (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4)))) (-4 *2 (-13 (-435 *5) (-911 *4) (-633 (-915 *4)))) (-5 *1 (-54 *4 *5 *2)))))
-(-10 -7 (-15 -3186 (|#3| (-663 (-1106 |#1| |#2| |#3|)) |#3|)) (-15 -3186 (|#3| (-663 (-1106 |#1| |#2| |#3|)) |#3| (-948))) (-15 -1655 (|#3| |#3| (-663 (-1207)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 14 T ELT)) (-2539 (((-3 (-793) "failed") $) 34 T ELT)) (-3330 (((-793) $) NIL T ELT)) (-1581 (((-114) $) 16 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) 18 T ELT)) (-1578 (((-887) $) 23 T ELT) (($ (-793)) 29 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-4206 (($) 11 T CONST)) (-2473 (((-114) $ $) 20 T ELT)))
-(((-55) (-13 (-1132) (-1069 (-793)) (-10 -8 (-15 -4206 ($) -3081) (-15 -2388 ((-114) $)) (-15 -1581 ((-114) $))))) (T -55))
-((-4206 (*1 *1) (-5 *1 (-55))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55)))) (-1581 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55)))))
-(-13 (-1132) (-1069 (-793)) (-10 -8 (-15 -4206 ($) -3081) (-15 -2388 ((-114) $)) (-15 -1581 ((-114) $))))
-((-3363 (((-114) $ (-793)) 27 T ELT)) (-3981 (($ $ (-560) |#3|) 66 T ELT)) (-2613 (($ $ (-560) |#4|) 70 T ELT)) (-3634 ((|#3| $ (-560)) 79 T ELT)) (-2181 (((-663 |#2|) $) 47 T ELT)) (-4034 (((-114) $ (-793)) 31 T ELT)) (-2321 (((-114) |#2| $) 74 T ELT)) (-3768 (($ (-1 |#2| |#2|) $) 55 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 54 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 58 T ELT) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62 T ELT)) (-1805 (((-114) $ (-793)) 29 T ELT)) (-3037 (($ $ |#2|) 52 T ELT)) (-2787 (((-114) (-1 (-114) |#2|) $) 21 T ELT)) (-3924 ((|#2| $ (-560) (-560)) NIL T ELT) ((|#2| $ (-560) (-560) |#2|) 35 T ELT)) (-3865 (((-793) (-1 (-114) |#2|) $) 41 T ELT) (((-793) |#2| $) 76 T ELT)) (-1799 (($ $) 51 T ELT)) (-1644 ((|#4| $ (-560)) 82 T ELT)) (-1578 (((-887) $) 88 T ELT)) (-1728 (((-114) (-1 (-114) |#2|) $) 20 T ELT)) (-2473 (((-114) $ $) 73 T ELT)) (-1553 (((-793) $) 32 T ELT)))
-(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2473 ((-114) |#1| |#1|)) (-15 -1578 ((-887) |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3957 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3768 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2613 (|#1| |#1| (-560) |#4|)) (-15 -3981 (|#1| |#1| (-560) |#3|)) (-15 -2181 ((-663 |#2|) |#1|)) (-15 -1644 (|#4| |#1| (-560))) (-15 -3634 (|#3| |#1| (-560))) (-15 -3924 (|#2| |#1| (-560) (-560) |#2|)) (-15 -3924 (|#2| |#1| (-560) (-560))) (-15 -3037 (|#1| |#1| |#2|)) (-15 -2321 ((-114) |#2| |#1|)) (-15 -3865 ((-793) |#2| |#1|)) (-15 -3865 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2787 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -1728 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1553 ((-793) |#1|)) (-15 -3363 ((-114) |#1| (-793))) (-15 -4034 ((-114) |#1| (-793))) (-15 -1805 ((-114) |#1| (-793))) (-15 -1799 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1247) (-385 |#2|) (-385 |#2|)) (T -56))
-NIL
-(-10 -8 (-15 -2473 ((-114) |#1| |#1|)) (-15 -1578 ((-887) |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3957 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3768 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2613 (|#1| |#1| (-560) |#4|)) (-15 -3981 (|#1| |#1| (-560) |#3|)) (-15 -2181 ((-663 |#2|) |#1|)) (-15 -1644 (|#4| |#1| (-560))) (-15 -3634 (|#3| |#1| (-560))) (-15 -3924 (|#2| |#1| (-560) (-560) |#2|)) (-15 -3924 (|#2| |#1| (-560) (-560))) (-15 -3037 (|#1| |#1| |#2|)) (-15 -2321 ((-114) |#2| |#1|)) (-15 -3865 ((-793) |#2| |#1|)) (-15 -3865 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2787 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -1728 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1553 ((-793) |#1|)) (-15 -3363 ((-114) |#1| (-793))) (-15 -4034 ((-114) |#1| (-793))) (-15 -1805 ((-114) |#1| (-793))) (-15 -1799 (|#1| |#1|)))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-1773 ((|#1| $ (-560) (-560) |#1|) 45 T ELT)) (-3981 (($ $ (-560) |#2|) 43 T ELT)) (-2613 (($ $ (-560) |#3|) 42 T ELT)) (-2238 (($) 7 T CONST)) (-3634 ((|#2| $ (-560)) 47 T ELT)) (-3779 ((|#1| $ (-560) (-560) |#1|) 44 T ELT)) (-3709 ((|#1| $ (-560) (-560)) 49 T ELT)) (-2181 (((-663 |#1|) $) 31 T ELT)) (-3648 (((-793) $) 52 T ELT)) (-4095 (($ (-793) (-793) |#1|) 58 T ELT)) (-3658 (((-793) $) 51 T ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-2711 (((-560) $) 56 T ELT)) (-2369 (((-560) $) 54 T ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1468 (((-560) $) 55 T ELT)) (-2632 (((-560) $) 53 T ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 41 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-3037 (($ $ |#1|) 57 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3924 ((|#1| $ (-560) (-560)) 50 T ELT) ((|#1| $ (-560) (-560) |#1|) 48 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1644 ((|#3| $ (-560)) 46 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-3037 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080)))) (-3024 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) (-2260 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)))) (-1673 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (-5 *2 (-114)))) (-4139 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)))) (-3062 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)))) (-2920 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080)))) (-2453 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)) (-4 *2 (-376)))))
+(-13 (-1080) (-111 |t#1| |t#1|) (-10 -8 (-15 -3037 (|t#1| $)) (-15 -3024 ($ $)) (-15 -3900 (|t#2| $)) (-15 -2260 ($ (-1 |t#1| |t#1|) $)) (-15 -1673 ((-114) $)) (-15 -4139 ($ |t#1| |t#2|)) (-15 -3062 ($ $)) (-15 -2920 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-376)) (-15 -2453 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-6 (-175)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-571)) (-6 (-571)) |%noBranch|) (IF (|has| |t#1| (-38 (-421 (-560)))) (-6 (-38 (-421 (-560)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-571)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) |has| |#1| (-38 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) |has| |#1| (-571)) ((-632 (-887)) . T) ((-175) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-302) |has| |#1| (-571)) ((-571) |has| |#1| (-571)) ((-668 #0#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-38 (-421 (-560)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-571)) ((-739 #0#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-571)) ((-748) . T) ((-1082 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1082 |#1|) . T) ((-1082 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1087 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1087 |#1|) . T) ((-1087 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
+((-2243 (((-114) $ $) NIL T ELT)) (-3964 (((-663 $) (-1201 $) (-1207)) NIL T ELT) (((-663 $) (-1201 $)) NIL T ELT) (((-663 $) (-975 $)) NIL T ELT)) (-3158 (($ (-1201 $) (-1207)) NIL T ELT) (($ (-1201 $)) NIL T ELT) (($ (-975 $)) NIL T ELT)) (-2505 (((-114) $) 9 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3859 (((-663 (-630 $)) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2607 (($ $ (-305 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-4021 (($ $) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3423 (((-663 $) (-1201 $) (-1207)) NIL T ELT) (((-663 $) (-1201 $)) NIL T ELT) (((-663 $) (-975 $)) NIL T ELT)) (-3946 (($ (-1201 $) (-1207)) NIL T ELT) (($ (-1201 $)) NIL T ELT) (($ (-975 $)) NIL T ELT)) (-3929 (((-3 (-630 $) "failed") $) NIL T ELT) (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT)) (-3649 (((-630 $) $) NIL T ELT) (((-560) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT)) (-2186 (($ $ $) NIL T ELT)) (-2619 (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT) (((-2 (|:| -1871 (-711 (-421 (-560)))) (|:| |vec| (-1297 (-421 (-560))))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-421 (-560))) (-711 $)) NIL T ELT)) (-1778 (($ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-1740 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-4318 (((-663 (-115)) $) NIL T ELT)) (-3963 (((-115) (-115)) NIL T ELT)) (-1918 (((-114) $) 11 T ELT)) (-3729 (((-114) $) NIL (|has| $ (-1069 (-560))) ELT)) (-2473 (((-1156 (-560) (-630 $)) $) NIL T ELT)) (-1956 (($ $ (-560)) NIL T ELT)) (-2084 (((-1201 $) (-1201 $) (-630 $)) NIL T ELT) (((-1201 $) (-1201 $) (-663 (-630 $))) NIL T ELT) (($ $ (-630 $)) NIL T ELT) (($ $ (-663 (-630 $))) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-4250 (((-1201 $) (-630 $)) NIL (|has| $ (-1080)) ELT)) (-2260 (($ (-1 $ $) (-630 $)) NIL T ELT)) (-3702 (((-3 (-630 $) "failed") $) NIL T ELT)) (-4140 (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL T ELT) (((-711 (-560)) (-1297 $)) NIL T ELT) (((-2 (|:| -1871 (-711 (-421 (-560)))) (|:| |vec| (-1297 (-421 (-560))))) (-1297 $) $) NIL T ELT) (((-711 (-421 (-560))) (-1297 $)) NIL T ELT)) (-1861 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3949 (((-663 (-630 $)) $) NIL T ELT)) (-2547 (($ (-115) $) NIL T ELT) (($ (-115) (-663 $)) NIL T ELT)) (-2060 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1207)) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3827 (((-793) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-4338 (((-114) $ $) NIL T ELT) (((-114) $ (-1207)) NIL T ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2244 (((-114) $) NIL (|has| $ (-1069 (-560))) ELT)) (-2371 (($ $ (-630 $) $) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-1207) (-1 $ (-663 $))) NIL T ELT) (($ $ (-1207) (-1 $ $)) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-663 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-1507 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-663 $)) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3222 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3161 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2484 (((-1156 (-560) (-630 $)) $) NIL T ELT)) (-2407 (($ $) NIL (|has| $ (-1080)) ELT)) (-2400 (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (((-171 (-391)) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-630 $)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-1156 (-560) (-630 $))) NIL T ELT)) (-4191 (((-793)) NIL T CONST)) (-3061 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3962 (((-114) (-115)) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-1446 (($) 6 T CONST)) (-1456 (($) 10 T CONST)) (-2111 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2340 (((-114) $ $) 13 T ELT)) (-2453 (($ $ $) NIL T ELT)) (-2441 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-421 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-948)) NIL T ELT)) (* (($ (-421 (-560)) $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-948) $) NIL T ELT)))
+(((-48) (-13 (-310) (-27) (-1069 (-560)) (-1069 (-421 (-560))) (-660 (-560)) (-1051) (-660 (-421 (-560))) (-149) (-633 (-171 (-391))) (-240) (-10 -8 (-15 -3913 ($ (-1156 (-560) (-630 $)))) (-15 -2473 ((-1156 (-560) (-630 $)) $)) (-15 -2484 ((-1156 (-560) (-630 $)) $)) (-15 -1778 ($ $)) (-15 -2084 ((-1201 $) (-1201 $) (-630 $))) (-15 -2084 ((-1201 $) (-1201 $) (-663 (-630 $)))) (-15 -2084 ($ $ (-630 $))) (-15 -2084 ($ $ (-663 (-630 $))))))) (T -48))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1156 (-560) (-630 (-48)))) (-5 *1 (-48)))) (-2473 (*1 *2 *1) (-12 (-5 *2 (-1156 (-560) (-630 (-48)))) (-5 *1 (-48)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-1156 (-560) (-630 (-48)))) (-5 *1 (-48)))) (-1778 (*1 *1 *1) (-5 *1 (-48))) (-2084 (*1 *2 *2 *3) (-12 (-5 *2 (-1201 (-48))) (-5 *3 (-630 (-48))) (-5 *1 (-48)))) (-2084 (*1 *2 *2 *3) (-12 (-5 *2 (-1201 (-48))) (-5 *3 (-663 (-630 (-48)))) (-5 *1 (-48)))) (-2084 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-48))) (-5 *1 (-48)))) (-2084 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-630 (-48)))) (-5 *1 (-48)))))
+(-13 (-310) (-27) (-1069 (-560)) (-1069 (-421 (-560))) (-660 (-560)) (-1051) (-660 (-421 (-560))) (-149) (-633 (-171 (-391))) (-240) (-10 -8 (-15 -3913 ($ (-1156 (-560) (-630 $)))) (-15 -2473 ((-1156 (-560) (-630 $)) $)) (-15 -2484 ((-1156 (-560) (-630 $)) $)) (-15 -1778 ($ $)) (-15 -2084 ((-1201 $) (-1201 $) (-630 $))) (-15 -2084 ((-1201 $) (-1201 $) (-663 (-630 $)))) (-15 -2084 ($ $ (-630 $))) (-15 -2084 ($ $ (-663 (-630 $))))))
+((-2243 (((-114) $ $) NIL T ELT)) (-1533 (((-663 (-520)) $) 17 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 7 T ELT)) (-4400 (((-1212) $) 18 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-49) (-13 (-1132) (-10 -8 (-15 -1533 ((-663 (-520)) $)) (-15 -4400 ((-1212) $))))) (T -49))
+((-1533 (*1 *2 *1) (-12 (-5 *2 (-663 (-520))) (-5 *1 (-49)))) (-4400 (*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-49)))))
+(-13 (-1132) (-10 -8 (-15 -1533 ((-663 (-520)) $)) (-15 -4400 ((-1212) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 85 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2736 (((-114) $) 30 T ELT)) (-3929 (((-3 |#1| "failed") $) 33 T ELT)) (-3649 ((|#1| $) 34 T ELT)) (-3062 (($ $) 40 T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3037 ((|#1| $) 31 T ELT)) (-3435 (($ $) 74 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2079 (((-114) $) 43 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3583 (($ (-793)) 72 T ELT)) (-2515 (($ (-663 (-560))) 73 T ELT)) (-3900 (((-793) $) 44 T ELT)) (-3913 (((-887) $) 91 T ELT) (($ (-560)) 69 T ELT) (($ |#1|) 67 T ELT)) (-2920 ((|#1| $ $) 28 T ELT)) (-4191 (((-793)) 71 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 45 T CONST)) (-1456 (($) 17 T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 64 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 65 T ELT) (($ |#1| $) 58 T ELT)))
+(((-50 |#1| |#2|) (-13 (-640 |#1|) (-1069 |#1|) (-10 -8 (-15 -3037 (|#1| $)) (-15 -3435 ($ $)) (-15 -3062 ($ $)) (-15 -2920 (|#1| $ $)) (-15 -3583 ($ (-793))) (-15 -2515 ($ (-663 (-560)))) (-15 -2079 ((-114) $)) (-15 -2736 ((-114) $)) (-15 -3900 ((-793) $)) (-15 -2260 ($ (-1 |#1| |#1|) $)))) (-1080) (-663 (-1207))) (T -50))
+((-3037 (*1 *2 *1) (-12 (-4 *2 (-1080)) (-5 *1 (-50 *2 *3)) (-14 *3 (-663 (-1207))))) (-3435 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1080)) (-14 *3 (-663 (-1207))))) (-3062 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1080)) (-14 *3 (-663 (-1207))))) (-2920 (*1 *2 *1 *1) (-12 (-4 *2 (-1080)) (-5 *1 (-50 *2 *3)) (-14 *3 (-663 (-1207))))) (-3583 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080)) (-14 *4 (-663 (-1207))))) (-2515 (*1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080)) (-14 *4 (-663 (-1207))))) (-2079 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080)) (-14 *4 (-663 (-1207))))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080)) (-14 *4 (-663 (-1207))))) (-3900 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080)) (-14 *4 (-663 (-1207))))) (-2260 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-50 *3 *4)) (-14 *4 (-663 (-1207))))))
+(-13 (-640 |#1|) (-1069 |#1|) (-10 -8 (-15 -3037 (|#1| $)) (-15 -3435 ($ $)) (-15 -3062 ($ $)) (-15 -2920 (|#1| $ $)) (-15 -3583 ($ (-793))) (-15 -2515 ($ (-663 (-560)))) (-15 -2079 ((-114) $)) (-15 -2736 ((-114) $)) (-15 -3900 ((-793) $)) (-15 -2260 ($ (-1 |#1| |#1|) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-4056 (((-795) $) 8 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2807 (((-1134) $) 10 T ELT)) (-3913 (((-887) $) 15 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2745 (($ (-1134) (-795)) 16 T ELT)) (-2340 (((-114) $ $) 12 T ELT)))
+(((-51) (-13 (-1132) (-10 -8 (-15 -2745 ($ (-1134) (-795))) (-15 -2807 ((-1134) $)) (-15 -4056 ((-795) $))))) (T -51))
+((-2745 (*1 *1 *2 *3) (-12 (-5 *2 (-1134)) (-5 *3 (-795)) (-5 *1 (-51)))) (-2807 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-51)))) (-4056 (*1 *2 *1) (-12 (-5 *2 (-795)) (-5 *1 (-51)))))
+(-13 (-1132) (-10 -8 (-15 -2745 ($ (-1134) (-795))) (-15 -2807 ((-1134) $)) (-15 -4056 ((-795) $))))
+((-2736 (((-114) (-51)) 18 T ELT)) (-3929 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3649 ((|#1| (-51)) 21 T ELT)) (-3913 (((-51) |#1|) 14 T ELT)))
+(((-52 |#1|) (-10 -7 (-15 -3913 ((-51) |#1|)) (-15 -3929 ((-3 |#1| "failed") (-51))) (-15 -2736 ((-114) (-51))) (-15 -3649 (|#1| (-51)))) (-1247)) (T -52))
+((-3649 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1247)))) (-2736 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-114)) (-5 *1 (-52 *4)) (-4 *4 (-1247)))) (-3929 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1247)))) (-3913 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1247)))))
+(-10 -7 (-15 -3913 ((-51) |#1|)) (-15 -3929 ((-3 |#1| "failed") (-51))) (-15 -2736 ((-114) (-51))) (-15 -3649 (|#1| (-51))))
+((-4323 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -4323 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1080) (-670 |#1|) (-876 |#1|)) (T -53))
+((-4323 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-670 *5)) (-4 *5 (-1080)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-876 *5)))))
+(-10 -7 (-15 -4323 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-2623 ((|#3| |#3| (-663 (-1207))) 44 T ELT)) (-1841 ((|#3| (-663 (-1106 |#1| |#2| |#3|)) |#3| (-948)) 32 T ELT) ((|#3| (-663 (-1106 |#1| |#2| |#3|)) |#3|) 31 T ELT)))
+(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1841 (|#3| (-663 (-1106 |#1| |#2| |#3|)) |#3|)) (-15 -1841 (|#3| (-663 (-1106 |#1| |#2| |#3|)) |#3| (-948))) (-15 -2623 (|#3| |#3| (-663 (-1207))))) (-1132) (-13 (-1080) (-911 |#1|) (-633 (-915 |#1|))) (-13 (-435 |#2|) (-911 |#1|) (-633 (-915 |#1|)))) (T -54))
+((-2623 (*1 *2 *2 *3) (-12 (-5 *3 (-663 (-1207))) (-4 *4 (-1132)) (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-911 *4) (-633 (-915 *4)))))) (-1841 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-663 (-1106 *5 *6 *2))) (-5 *4 (-948)) (-4 *5 (-1132)) (-4 *6 (-13 (-1080) (-911 *5) (-633 (-915 *5)))) (-4 *2 (-13 (-435 *6) (-911 *5) (-633 (-915 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1841 (*1 *2 *3 *2) (-12 (-5 *3 (-663 (-1106 *4 *5 *2))) (-4 *4 (-1132)) (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4)))) (-4 *2 (-13 (-435 *5) (-911 *4) (-633 (-915 *4)))) (-5 *1 (-54 *4 *5 *2)))))
+(-10 -7 (-15 -1841 (|#3| (-663 (-1106 |#1| |#2| |#3|)) |#3|)) (-15 -1841 (|#3| (-663 (-1106 |#1| |#2| |#3|)) |#3| (-948))) (-15 -2623 (|#3| |#3| (-663 (-1207)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 14 T ELT)) (-3929 (((-3 (-793) "failed") $) 34 T ELT)) (-3649 (((-793) $) NIL T ELT)) (-1918 (((-114) $) 16 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) 18 T ELT)) (-3913 (((-887) $) 23 T ELT) (($ (-793)) 29 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1341 (($) 11 T CONST)) (-2340 (((-114) $ $) 20 T ELT)))
+(((-55) (-13 (-1132) (-1069 (-793)) (-10 -8 (-15 -1341 ($) -2650) (-15 -2505 ((-114) $)) (-15 -1918 ((-114) $))))) (T -55))
+((-1341 (*1 *1) (-5 *1 (-55))) (-2505 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55)))) (-1918 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55)))))
+(-13 (-1132) (-1069 (-793)) (-10 -8 (-15 -1341 ($) -2650) (-15 -2505 ((-114) $)) (-15 -1918 ((-114) $))))
+((-3045 (((-114) $ (-793)) 27 T ELT)) (-2792 (($ $ (-560) |#3|) 66 T ELT)) (-2770 (($ $ (-560) |#4|) 70 T ELT)) (-3942 ((|#3| $ (-560)) 79 T ELT)) (-3737 (((-663 |#2|) $) 47 T ELT)) (-3332 (((-114) $ (-793)) 31 T ELT)) (-3091 (((-114) |#2| $) 74 T ELT)) (-3324 (($ (-1 |#2| |#2|) $) 55 T ELT)) (-2260 (($ (-1 |#2| |#2|) $) 54 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 58 T ELT) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 62 T ELT)) (-1634 (((-114) $ (-793)) 29 T ELT)) (-2740 (($ $ |#2|) 52 T ELT)) (-2086 (((-114) (-1 (-114) |#2|) $) 21 T ELT)) (-1507 ((|#2| $ (-560) (-560)) NIL T ELT) ((|#2| $ (-560) (-560) |#2|) 35 T ELT)) (-3384 (((-793) (-1 (-114) |#2|) $) 41 T ELT) (((-793) |#2| $) 76 T ELT)) (-4107 (($ $) 51 T ELT)) (-3783 ((|#4| $ (-560)) 82 T ELT)) (-3913 (((-887) $) 88 T ELT)) (-2149 (((-114) (-1 (-114) |#2|) $) 20 T ELT)) (-2340 (((-114) $ $) 73 T ELT)) (-2256 (((-793) $) 32 T ELT)))
+(((-56 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2340 ((-114) |#1| |#1|)) (-15 -3913 ((-887) |#1|)) (-15 -2260 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2260 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3324 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2770 (|#1| |#1| (-560) |#4|)) (-15 -2792 (|#1| |#1| (-560) |#3|)) (-15 -3737 ((-663 |#2|) |#1|)) (-15 -3783 (|#4| |#1| (-560))) (-15 -3942 (|#3| |#1| (-560))) (-15 -1507 (|#2| |#1| (-560) (-560) |#2|)) (-15 -1507 (|#2| |#1| (-560) (-560))) (-15 -2740 (|#1| |#1| |#2|)) (-15 -3091 ((-114) |#2| |#1|)) (-15 -3384 ((-793) |#2| |#1|)) (-15 -3384 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2086 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2149 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2260 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2256 ((-793) |#1|)) (-15 -3045 ((-114) |#1| (-793))) (-15 -3332 ((-114) |#1| (-793))) (-15 -1634 ((-114) |#1| (-793))) (-15 -4107 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1247) (-385 |#2|) (-385 |#2|)) (T -56))
+NIL
+(-10 -8 (-15 -2340 ((-114) |#1| |#1|)) (-15 -3913 ((-887) |#1|)) (-15 -2260 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -2260 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3324 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2770 (|#1| |#1| (-560) |#4|)) (-15 -2792 (|#1| |#1| (-560) |#3|)) (-15 -3737 ((-663 |#2|) |#1|)) (-15 -3783 (|#4| |#1| (-560))) (-15 -3942 (|#3| |#1| (-560))) (-15 -1507 (|#2| |#1| (-560) (-560) |#2|)) (-15 -1507 (|#2| |#1| (-560) (-560))) (-15 -2740 (|#1| |#1| |#2|)) (-15 -3091 ((-114) |#2| |#1|)) (-15 -3384 ((-793) |#2| |#1|)) (-15 -3384 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2086 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2149 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2260 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2256 ((-793) |#1|)) (-15 -3045 ((-114) |#1| (-793))) (-15 -3332 ((-114) |#1| (-793))) (-15 -1634 ((-114) |#1| (-793))) (-15 -4107 (|#1| |#1|)))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-4083 ((|#1| $ (-560) (-560) |#1|) 45 T ELT)) (-2792 (($ $ (-560) |#2|) 43 T ELT)) (-2770 (($ $ (-560) |#3|) 42 T ELT)) (-3525 (($) 7 T CONST)) (-3942 ((|#2| $ (-560)) 47 T ELT)) (-3338 ((|#1| $ (-560) (-560) |#1|) 44 T ELT)) (-3274 ((|#1| $ (-560) (-560)) 49 T ELT)) (-3737 (((-663 |#1|) $) 31 T ELT)) (-2777 (((-793) $) 52 T ELT)) (-4246 (($ (-793) (-793) |#1|) 58 T ELT)) (-2789 (((-793) $) 51 T ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-2567 (((-560) $) 56 T ELT)) (-2313 (((-560) $) 54 T ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1475 (((-560) $) 55 T ELT)) (-3004 (((-560) $) 53 T ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 41 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2740 (($ $ |#1|) 57 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1507 ((|#1| $ (-560) (-560)) 50 T ELT) ((|#1| $ (-560) (-560) |#1|) 48 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-3783 ((|#3| $ (-560)) 46 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-57 |#1| |#2| |#3|) (-142) (-1247) (-385 |t#1|) (-385 |t#1|)) (T -57))
-((-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4095 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-793)) (-4 *3 (-1247)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3037 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1247)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2711 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-560)))) (-1468 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-560)))) (-2369 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-560)))) (-2632 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-560)))) (-3648 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-793)))) (-3658 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-793)))) (-3924 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-1247)))) (-3709 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-1247)))) (-3924 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-3634 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1247)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) (-1644 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1247)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) (-2181 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-663 *3)))) (-1773 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-3779 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-3981 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-560)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1247)) (-4 *3 (-385 *4)) (-4 *5 (-385 *4)))) (-2613 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-560)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1247)) (-4 *5 (-385 *4)) (-4 *3 (-385 *4)))) (-3768 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3957 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3957 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))))
-(-13 (-503 |t#1|) (-10 -8 (-6 -4509) (-6 -4508) (-15 -4095 ($ (-793) (-793) |t#1|)) (-15 -3037 ($ $ |t#1|)) (-15 -2711 ((-560) $)) (-15 -1468 ((-560) $)) (-15 -2369 ((-560) $)) (-15 -2632 ((-560) $)) (-15 -3648 ((-793) $)) (-15 -3658 ((-793) $)) (-15 -3924 (|t#1| $ (-560) (-560))) (-15 -3709 (|t#1| $ (-560) (-560))) (-15 -3924 (|t#1| $ (-560) (-560) |t#1|)) (-15 -3634 (|t#2| $ (-560))) (-15 -1644 (|t#3| $ (-560))) (-15 -2181 ((-663 |t#1|) $)) (-15 -1773 (|t#1| $ (-560) (-560) |t#1|)) (-15 -3779 (|t#1| $ (-560) (-560) |t#1|)) (-15 -3981 ($ $ (-560) |t#2|)) (-15 -2613 ($ $ (-560) |t#3|)) (-15 -3957 ($ (-1 |t#1| |t#1|) $)) (-15 -3768 ($ (-1 |t#1| |t#1|) $)) (-15 -3957 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3957 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-34) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3839 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4040 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-1703 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| |#1| (-871))) ELT)) (-2286 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2238 (($) NIL T CONST)) (-4391 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) NIL T ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2375 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3779 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-560)) NIL T ELT)) (-1722 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1132)) ELT)) (-2181 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4172 (($ (-663 |#1|)) 11 T ELT) (($ (-793) |#1|) 14 T ELT)) (-4095 (($ (-793) |#1|) 13 T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3223 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2937 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3996 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) NIL T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3637 ((|#1| $) NIL (|has| (-560) (-871)) ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-3037 (($ $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-4413 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3640 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 10 T ELT)) (-3415 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1578 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2536 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2521 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -4172 ($ (-663 |#1|))) (-15 -4172 ($ (-793) |#1|)))) (-1247)) (T -58))
-((-4172 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-58 *3)))) (-4172 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *1 (-58 *3)) (-4 *3 (-1247)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -4172 ($ (-663 |#1|))) (-15 -4172 ($ (-793) |#1|))))
-((-1520 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-4129 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-3957 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT)))
-(((-59 |#1| |#2|) (-10 -7 (-15 -1520 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4129 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3957 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1247) (-1247)) (T -59))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-4129 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-59 *5 *2)))) (-1520 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))))
-(-10 -7 (-15 -1520 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4129 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -3957 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|))))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-3981 (($ $ (-560) (-58 |#1|)) NIL T ELT)) (-2613 (($ $ (-560) (-58 |#1|)) NIL T ELT)) (-2238 (($) NIL T CONST)) (-3634 (((-58 |#1|) $ (-560)) NIL T ELT)) (-3779 ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-3709 ((|#1| $ (-560) (-560)) NIL T ELT)) (-2181 (((-663 |#1|) $) NIL T ELT)) (-3648 (((-793) $) NIL T ELT)) (-4095 (($ (-793) (-793) |#1|) NIL T ELT)) (-3658 (((-793) $) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2711 (((-560) $) NIL T ELT)) (-2369 (((-560) $) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1468 (((-560) $) NIL T ELT)) (-2632 (((-560) $) NIL T ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3037 (($ $ |#1|) NIL T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#1| $ (-560) (-560)) NIL T ELT) ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1799 (($ $) NIL T ELT)) (-1644 (((-58 |#1|) $ (-560)) NIL T ELT)) (-1578 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+((-2260 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4246 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-793)) (-4 *3 (-1247)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2740 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1247)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2567 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-560)))) (-1475 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-560)))) (-2313 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-560)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-560)))) (-2777 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-793)))) (-2789 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-793)))) (-1507 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-1247)))) (-3274 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-1247)))) (-1507 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-3942 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1247)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) (-3783 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1247)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) (-3737 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-663 *3)))) (-4083 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-3338 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-2792 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-560)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1247)) (-4 *3 (-385 *4)) (-4 *5 (-385 *4)))) (-2770 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-560)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1247)) (-4 *5 (-385 *4)) (-4 *3 (-385 *4)))) (-3324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2260 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2260 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))))
+(-13 (-503 |t#1|) (-10 -8 (-6 -4509) (-6 -4508) (-15 -4246 ($ (-793) (-793) |t#1|)) (-15 -2740 ($ $ |t#1|)) (-15 -2567 ((-560) $)) (-15 -1475 ((-560) $)) (-15 -2313 ((-560) $)) (-15 -3004 ((-560) $)) (-15 -2777 ((-793) $)) (-15 -2789 ((-793) $)) (-15 -1507 (|t#1| $ (-560) (-560))) (-15 -3274 (|t#1| $ (-560) (-560))) (-15 -1507 (|t#1| $ (-560) (-560) |t#1|)) (-15 -3942 (|t#2| $ (-560))) (-15 -3783 (|t#3| $ (-560))) (-15 -3737 ((-663 |t#1|) $)) (-15 -4083 (|t#1| $ (-560) (-560) |t#1|)) (-15 -3338 (|t#1| $ (-560) (-560) |t#1|)) (-15 -2792 ($ $ (-560) |t#2|)) (-15 -2770 ($ $ (-560) |t#3|)) (-15 -2260 ($ (-1 |t#1| |t#1|) $)) (-15 -3324 ($ (-1 |t#1| |t#1|) $)) (-15 -2260 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2260 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-34) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2033 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-2152 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-3152 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| |#1| (-871))) ELT)) (-1787 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3525 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) NIL T ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3033 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3338 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-560)) NIL T ELT)) (-2359 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1132)) ELT)) (-3737 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4194 (($ (-663 |#1|)) 11 T ELT) (($ (-793) |#1|) 14 T ELT)) (-4246 (($ (-793) |#1|) 13 T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-4167 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4263 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-2507 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) NIL T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-4334 ((|#1| $) NIL (|has| (-560) (-871)) ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2740 (($ $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-2579 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3993 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 10 T ELT)) (-1955 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3913 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2396 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2386 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -4194 ($ (-663 |#1|))) (-15 -4194 ($ (-793) |#1|)))) (-1247)) (T -58))
+((-4194 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-58 *3)))) (-4194 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *1 (-58 *3)) (-4 *3 (-1247)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -4194 ($ (-663 |#1|))) (-15 -4194 ($ (-793) |#1|))))
+((-2928 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-1778 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-2260 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT)))
+(((-59 |#1| |#2|) (-10 -7 (-15 -2928 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -1778 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2260 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1247) (-1247)) (T -59))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-1778 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-59 *5 *2)))) (-2928 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))))
+(-10 -7 (-15 -2928 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -1778 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -2260 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|))))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-2792 (($ $ (-560) (-58 |#1|)) NIL T ELT)) (-2770 (($ $ (-560) (-58 |#1|)) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3942 (((-58 |#1|) $ (-560)) NIL T ELT)) (-3338 ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-3274 ((|#1| $ (-560) (-560)) NIL T ELT)) (-3737 (((-663 |#1|) $) NIL T ELT)) (-2777 (((-793) $) NIL T ELT)) (-4246 (($ (-793) (-793) |#1|) NIL T ELT)) (-2789 (((-793) $) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2567 (((-560) $) NIL T ELT)) (-2313 (((-560) $) NIL T ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1475 (((-560) $) NIL T ELT)) (-3004 (((-560) $) NIL T ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2740 (($ $ |#1|) NIL T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#1| $ (-560) (-560)) NIL T ELT) ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4107 (($ $) NIL T ELT)) (-3783 (((-58 |#1|) $ (-560)) NIL T ELT)) (-3913 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4509))) (-1247)) (T -60))
NIL
(-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4509)))
-((-2539 (((-3 $ "failed") (-326 (-391))) 41 T ELT) (((-3 $ "failed") (-326 (-560))) 46 T ELT) (((-3 $ "failed") (-975 (-391))) 50 T ELT) (((-3 $ "failed") (-975 (-560))) 54 T ELT) (((-3 $ "failed") (-421 (-975 (-391)))) 36 T ELT) (((-3 $ "failed") (-421 (-975 (-560)))) 29 T ELT)) (-3330 (($ (-326 (-391))) 39 T ELT) (($ (-326 (-560))) 44 T ELT) (($ (-975 (-391))) 48 T ELT) (($ (-975 (-560))) 52 T ELT) (($ (-421 (-975 (-391)))) 34 T ELT) (($ (-421 (-975 (-560)))) 26 T ELT)) (-2759 (((-1303) $) 76 T ELT)) (-1578 (((-887) $) 69 T ELT) (($ (-663 (-342))) 61 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 64 T ELT) (($ (-352 (-1592 (QUOTE X)) (-1592) (-721))) 25 T ELT)))
-(((-61 |#1|) (-13 (-411) (-10 -8 (-15 -1578 ($ (-352 (-1592 (QUOTE X)) (-1592) (-721)))))) (-1207)) (T -61))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-352 (-1592 (QUOTE X)) (-1592) (-721))) (-5 *1 (-61 *3)) (-14 *3 (-1207)))))
-(-13 (-411) (-10 -8 (-15 -1578 ($ (-352 (-1592 (QUOTE X)) (-1592) (-721))))))
-((-2539 (((-3 $ "failed") (-1297 (-326 (-391)))) 74 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 63 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 94 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 84 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 52 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 39 T ELT)) (-3330 (($ (-1297 (-326 (-391)))) 70 T ELT) (($ (-1297 (-326 (-560)))) 59 T ELT) (($ (-1297 (-975 (-391)))) 90 T ELT) (($ (-1297 (-975 (-560)))) 80 T ELT) (($ (-1297 (-421 (-975 (-391))))) 48 T ELT) (($ (-1297 (-421 (-975 (-560))))) 32 T ELT)) (-2759 (((-1303) $) 124 T ELT)) (-1578 (((-887) $) 118 T ELT) (($ (-663 (-342))) 103 T ELT) (($ (-342)) 97 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 101 T ELT) (($ (-1297 (-352 (-1592 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1592) (-721)))) 31 T ELT)))
-(((-62 |#1|) (-13 (-455) (-10 -8 (-15 -1578 ($ (-1297 (-352 (-1592 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1592) (-721))))))) (-1207)) (T -62))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-1592 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1592) (-721)))) (-5 *1 (-62 *3)) (-14 *3 (-1207)))))
-(-13 (-455) (-10 -8 (-15 -1578 ($ (-1297 (-352 (-1592 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-1592) (-721)))))))
-((-2759 (((-1303) $) 54 T ELT) (((-1303)) 55 T ELT)) (-1578 (((-887) $) 51 T ELT)))
-(((-63 |#1|) (-13 (-410) (-10 -7 (-15 -2759 ((-1303))))) (-1207)) (T -63))
-((-2759 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-63 *3)) (-14 *3 (-1207)))))
-(-13 (-410) (-10 -7 (-15 -2759 ((-1303)))))
-((-2539 (((-3 $ "failed") (-1297 (-326 (-391)))) 150 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 140 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 170 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 160 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 129 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 117 T ELT)) (-3330 (($ (-1297 (-326 (-391)))) 146 T ELT) (($ (-1297 (-326 (-560)))) 136 T ELT) (($ (-1297 (-975 (-391)))) 166 T ELT) (($ (-1297 (-975 (-560)))) 156 T ELT) (($ (-1297 (-421 (-975 (-391))))) 125 T ELT) (($ (-1297 (-421 (-975 (-560))))) 110 T ELT)) (-2759 (((-1303) $) 103 T ELT)) (-1578 (((-887) $) 97 T ELT) (($ (-663 (-342))) 30 T ELT) (($ (-342)) 35 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 33 T ELT) (($ (-1297 (-352 (-1592) (-1592 (QUOTE XC)) (-721)))) 95 T ELT)))
-(((-64 |#1|) (-13 (-455) (-10 -8 (-15 -1578 ($ (-1297 (-352 (-1592) (-1592 (QUOTE XC)) (-721))))))) (-1207)) (T -64))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-1592) (-1592 (QUOTE XC)) (-721)))) (-5 *1 (-64 *3)) (-14 *3 (-1207)))))
-(-13 (-455) (-10 -8 (-15 -1578 ($ (-1297 (-352 (-1592) (-1592 (QUOTE XC)) (-721)))))))
-((-2539 (((-3 $ "failed") (-711 (-326 (-391)))) 111 T ELT) (((-3 $ "failed") (-711 (-326 (-560)))) 99 T ELT) (((-3 $ "failed") (-711 (-975 (-391)))) 133 T ELT) (((-3 $ "failed") (-711 (-975 (-560)))) 122 T ELT) (((-3 $ "failed") (-711 (-421 (-975 (-391))))) 87 T ELT) (((-3 $ "failed") (-711 (-421 (-975 (-560))))) 73 T ELT)) (-3330 (($ (-711 (-326 (-391)))) 107 T ELT) (($ (-711 (-326 (-560)))) 95 T ELT) (($ (-711 (-975 (-391)))) 129 T ELT) (($ (-711 (-975 (-560)))) 118 T ELT) (($ (-711 (-421 (-975 (-391))))) 83 T ELT) (($ (-711 (-421 (-975 (-560))))) 66 T ELT)) (-2759 (((-1303) $) 141 T ELT)) (-1578 (((-887) $) 135 T ELT) (($ (-663 (-342))) 29 T ELT) (($ (-342)) 34 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 32 T ELT) (($ (-711 (-352 (-1592) (-1592 (QUOTE X) (QUOTE HESS)) (-721)))) 56 T ELT)))
-(((-65 |#1|) (-13 (-398) (-635 (-711 (-352 (-1592) (-1592 (QUOTE X) (QUOTE HESS)) (-721))))) (-1207)) (T -65))
-NIL
-(-13 (-398) (-635 (-711 (-352 (-1592) (-1592 (QUOTE X) (QUOTE HESS)) (-721)))))
-((-2539 (((-3 $ "failed") (-326 (-391))) 60 T ELT) (((-3 $ "failed") (-326 (-560))) 65 T ELT) (((-3 $ "failed") (-975 (-391))) 69 T ELT) (((-3 $ "failed") (-975 (-560))) 73 T ELT) (((-3 $ "failed") (-421 (-975 (-391)))) 55 T ELT) (((-3 $ "failed") (-421 (-975 (-560)))) 48 T ELT)) (-3330 (($ (-326 (-391))) 58 T ELT) (($ (-326 (-560))) 63 T ELT) (($ (-975 (-391))) 67 T ELT) (($ (-975 (-560))) 71 T ELT) (($ (-421 (-975 (-391)))) 53 T ELT) (($ (-421 (-975 (-560)))) 45 T ELT)) (-2759 (((-1303) $) 82 T ELT)) (-1578 (((-887) $) 76 T ELT) (($ (-663 (-342))) 29 T ELT) (($ (-342)) 34 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 32 T ELT) (($ (-352 (-1592) (-1592 (QUOTE XC)) (-721))) 40 T ELT)))
-(((-66 |#1|) (-13 (-411) (-10 -8 (-15 -1578 ($ (-352 (-1592) (-1592 (QUOTE XC)) (-721)))))) (-1207)) (T -66))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-352 (-1592) (-1592 (QUOTE XC)) (-721))) (-5 *1 (-66 *3)) (-14 *3 (-1207)))))
-(-13 (-411) (-10 -8 (-15 -1578 ($ (-352 (-1592) (-1592 (QUOTE XC)) (-721))))))
-((-2759 (((-1303) $) 65 T ELT)) (-1578 (((-887) $) 59 T ELT) (($ (-711 (-721))) 51 T ELT) (($ (-663 (-342))) 50 T ELT) (($ (-342)) 57 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 55 T ELT)))
+((-3929 (((-3 $ "failed") (-326 (-391))) 41 T ELT) (((-3 $ "failed") (-326 (-560))) 46 T ELT) (((-3 $ "failed") (-975 (-391))) 50 T ELT) (((-3 $ "failed") (-975 (-560))) 54 T ELT) (((-3 $ "failed") (-421 (-975 (-391)))) 36 T ELT) (((-3 $ "failed") (-421 (-975 (-560)))) 29 T ELT)) (-3649 (($ (-326 (-391))) 39 T ELT) (($ (-326 (-560))) 44 T ELT) (($ (-975 (-391))) 48 T ELT) (($ (-975 (-560))) 52 T ELT) (($ (-421 (-975 (-391)))) 34 T ELT) (($ (-421 (-975 (-560)))) 26 T ELT)) (-3043 (((-1303) $) 76 T ELT)) (-3913 (((-887) $) 69 T ELT) (($ (-663 (-342))) 61 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 64 T ELT) (($ (-352 (-3924 (QUOTE X)) (-3924) (-721))) 25 T ELT)))
+(((-61 |#1|) (-13 (-411) (-10 -8 (-15 -3913 ($ (-352 (-3924 (QUOTE X)) (-3924) (-721)))))) (-1207)) (T -61))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-352 (-3924 (QUOTE X)) (-3924) (-721))) (-5 *1 (-61 *3)) (-14 *3 (-1207)))))
+(-13 (-411) (-10 -8 (-15 -3913 ($ (-352 (-3924 (QUOTE X)) (-3924) (-721))))))
+((-3929 (((-3 $ "failed") (-1297 (-326 (-391)))) 74 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 63 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 94 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 84 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 52 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 39 T ELT)) (-3649 (($ (-1297 (-326 (-391)))) 70 T ELT) (($ (-1297 (-326 (-560)))) 59 T ELT) (($ (-1297 (-975 (-391)))) 90 T ELT) (($ (-1297 (-975 (-560)))) 80 T ELT) (($ (-1297 (-421 (-975 (-391))))) 48 T ELT) (($ (-1297 (-421 (-975 (-560))))) 32 T ELT)) (-3043 (((-1303) $) 124 T ELT)) (-3913 (((-887) $) 118 T ELT) (($ (-663 (-342))) 103 T ELT) (($ (-342)) 97 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 101 T ELT) (($ (-1297 (-352 (-3924 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3924) (-721)))) 31 T ELT)))
+(((-62 |#1|) (-13 (-455) (-10 -8 (-15 -3913 ($ (-1297 (-352 (-3924 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3924) (-721))))))) (-1207)) (T -62))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-3924 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3924) (-721)))) (-5 *1 (-62 *3)) (-14 *3 (-1207)))))
+(-13 (-455) (-10 -8 (-15 -3913 ($ (-1297 (-352 (-3924 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3924) (-721)))))))
+((-3043 (((-1303) $) 54 T ELT) (((-1303)) 55 T ELT)) (-3913 (((-887) $) 51 T ELT)))
+(((-63 |#1|) (-13 (-410) (-10 -7 (-15 -3043 ((-1303))))) (-1207)) (T -63))
+((-3043 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-63 *3)) (-14 *3 (-1207)))))
+(-13 (-410) (-10 -7 (-15 -3043 ((-1303)))))
+((-3929 (((-3 $ "failed") (-1297 (-326 (-391)))) 150 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 140 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 170 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 160 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 129 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 117 T ELT)) (-3649 (($ (-1297 (-326 (-391)))) 146 T ELT) (($ (-1297 (-326 (-560)))) 136 T ELT) (($ (-1297 (-975 (-391)))) 166 T ELT) (($ (-1297 (-975 (-560)))) 156 T ELT) (($ (-1297 (-421 (-975 (-391))))) 125 T ELT) (($ (-1297 (-421 (-975 (-560))))) 110 T ELT)) (-3043 (((-1303) $) 103 T ELT)) (-3913 (((-887) $) 97 T ELT) (($ (-663 (-342))) 30 T ELT) (($ (-342)) 35 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 33 T ELT) (($ (-1297 (-352 (-3924) (-3924 (QUOTE XC)) (-721)))) 95 T ELT)))
+(((-64 |#1|) (-13 (-455) (-10 -8 (-15 -3913 ($ (-1297 (-352 (-3924) (-3924 (QUOTE XC)) (-721))))))) (-1207)) (T -64))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-3924) (-3924 (QUOTE XC)) (-721)))) (-5 *1 (-64 *3)) (-14 *3 (-1207)))))
+(-13 (-455) (-10 -8 (-15 -3913 ($ (-1297 (-352 (-3924) (-3924 (QUOTE XC)) (-721)))))))
+((-3929 (((-3 $ "failed") (-711 (-326 (-391)))) 111 T ELT) (((-3 $ "failed") (-711 (-326 (-560)))) 99 T ELT) (((-3 $ "failed") (-711 (-975 (-391)))) 133 T ELT) (((-3 $ "failed") (-711 (-975 (-560)))) 122 T ELT) (((-3 $ "failed") (-711 (-421 (-975 (-391))))) 87 T ELT) (((-3 $ "failed") (-711 (-421 (-975 (-560))))) 73 T ELT)) (-3649 (($ (-711 (-326 (-391)))) 107 T ELT) (($ (-711 (-326 (-560)))) 95 T ELT) (($ (-711 (-975 (-391)))) 129 T ELT) (($ (-711 (-975 (-560)))) 118 T ELT) (($ (-711 (-421 (-975 (-391))))) 83 T ELT) (($ (-711 (-421 (-975 (-560))))) 66 T ELT)) (-3043 (((-1303) $) 141 T ELT)) (-3913 (((-887) $) 135 T ELT) (($ (-663 (-342))) 29 T ELT) (($ (-342)) 34 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 32 T ELT) (($ (-711 (-352 (-3924) (-3924 (QUOTE X) (QUOTE HESS)) (-721)))) 56 T ELT)))
+(((-65 |#1|) (-13 (-398) (-635 (-711 (-352 (-3924) (-3924 (QUOTE X) (QUOTE HESS)) (-721))))) (-1207)) (T -65))
+NIL
+(-13 (-398) (-635 (-711 (-352 (-3924) (-3924 (QUOTE X) (QUOTE HESS)) (-721)))))
+((-3929 (((-3 $ "failed") (-326 (-391))) 60 T ELT) (((-3 $ "failed") (-326 (-560))) 65 T ELT) (((-3 $ "failed") (-975 (-391))) 69 T ELT) (((-3 $ "failed") (-975 (-560))) 73 T ELT) (((-3 $ "failed") (-421 (-975 (-391)))) 55 T ELT) (((-3 $ "failed") (-421 (-975 (-560)))) 48 T ELT)) (-3649 (($ (-326 (-391))) 58 T ELT) (($ (-326 (-560))) 63 T ELT) (($ (-975 (-391))) 67 T ELT) (($ (-975 (-560))) 71 T ELT) (($ (-421 (-975 (-391)))) 53 T ELT) (($ (-421 (-975 (-560)))) 45 T ELT)) (-3043 (((-1303) $) 82 T ELT)) (-3913 (((-887) $) 76 T ELT) (($ (-663 (-342))) 29 T ELT) (($ (-342)) 34 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 32 T ELT) (($ (-352 (-3924) (-3924 (QUOTE XC)) (-721))) 40 T ELT)))
+(((-66 |#1|) (-13 (-411) (-10 -8 (-15 -3913 ($ (-352 (-3924) (-3924 (QUOTE XC)) (-721)))))) (-1207)) (T -66))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-352 (-3924) (-3924 (QUOTE XC)) (-721))) (-5 *1 (-66 *3)) (-14 *3 (-1207)))))
+(-13 (-411) (-10 -8 (-15 -3913 ($ (-352 (-3924) (-3924 (QUOTE XC)) (-721))))))
+((-3043 (((-1303) $) 65 T ELT)) (-3913 (((-887) $) 59 T ELT) (($ (-711 (-721))) 51 T ELT) (($ (-663 (-342))) 50 T ELT) (($ (-342)) 57 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 55 T ELT)))
(((-67 |#1|) (-396) (-1207)) (T -67))
NIL
(-396)
-((-2759 (((-1303) $) 66 T ELT)) (-1578 (((-887) $) 60 T ELT) (($ (-711 (-721))) 52 T ELT) (($ (-663 (-342))) 51 T ELT) (($ (-342)) 54 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 57 T ELT)))
+((-3043 (((-1303) $) 66 T ELT)) (-3913 (((-887) $) 60 T ELT) (($ (-711 (-721))) 52 T ELT) (($ (-663 (-342))) 51 T ELT) (($ (-342)) 54 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 57 T ELT)))
(((-68 |#1|) (-396) (-1207)) (T -68))
NIL
(-396)
-((-2759 (((-1303) $) NIL T ELT) (((-1303)) 33 T ELT)) (-1578 (((-887) $) NIL T ELT)))
-(((-69 |#1|) (-13 (-410) (-10 -7 (-15 -2759 ((-1303))))) (-1207)) (T -69))
-((-2759 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-69 *3)) (-14 *3 (-1207)))))
-(-13 (-410) (-10 -7 (-15 -2759 ((-1303)))))
-((-2759 (((-1303) $) 75 T ELT)) (-1578 (((-887) $) 69 T ELT) (($ (-711 (-721))) 61 T ELT) (($ (-663 (-342))) 63 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 60 T ELT)))
+((-3043 (((-1303) $) NIL T ELT) (((-1303)) 33 T ELT)) (-3913 (((-887) $) NIL T ELT)))
+(((-69 |#1|) (-13 (-410) (-10 -7 (-15 -3043 ((-1303))))) (-1207)) (T -69))
+((-3043 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-69 *3)) (-14 *3 (-1207)))))
+(-13 (-410) (-10 -7 (-15 -3043 ((-1303)))))
+((-3043 (((-1303) $) 75 T ELT)) (-3913 (((-887) $) 69 T ELT) (($ (-711 (-721))) 61 T ELT) (($ (-663 (-342))) 63 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 60 T ELT)))
(((-70 |#1|) (-396) (-1207)) (T -70))
NIL
(-396)
-((-2539 (((-3 $ "failed") (-1297 (-326 (-391)))) 109 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 98 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 129 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 119 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 87 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 74 T ELT)) (-3330 (($ (-1297 (-326 (-391)))) 105 T ELT) (($ (-1297 (-326 (-560)))) 94 T ELT) (($ (-1297 (-975 (-391)))) 125 T ELT) (($ (-1297 (-975 (-560)))) 115 T ELT) (($ (-1297 (-421 (-975 (-391))))) 83 T ELT) (($ (-1297 (-421 (-975 (-560))))) 67 T ELT)) (-2759 (((-1303) $) 142 T ELT)) (-1578 (((-887) $) 136 T ELT) (($ (-663 (-342))) 131 T ELT) (($ (-342)) 134 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 59 T ELT) (($ (-1297 (-352 (-1592 (QUOTE X)) (-1592 (QUOTE -4064)) (-721)))) 60 T ELT)))
-(((-71 |#1|) (-13 (-455) (-10 -8 (-15 -1578 ($ (-1297 (-352 (-1592 (QUOTE X)) (-1592 (QUOTE -4064)) (-721))))))) (-1207)) (T -71))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-1592 (QUOTE X)) (-1592 (QUOTE -4064)) (-721)))) (-5 *1 (-71 *3)) (-14 *3 (-1207)))))
-(-13 (-455) (-10 -8 (-15 -1578 ($ (-1297 (-352 (-1592 (QUOTE X)) (-1592 (QUOTE -4064)) (-721)))))))
-((-2759 (((-1303) $) 33 T ELT) (((-1303)) 32 T ELT)) (-1578 (((-887) $) 36 T ELT)))
-(((-72 |#1|) (-13 (-410) (-10 -7 (-15 -2759 ((-1303))))) (-1207)) (T -72))
-((-2759 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-72 *3)) (-14 *3 (-1207)))))
-(-13 (-410) (-10 -7 (-15 -2759 ((-1303)))))
-((-2759 (((-1303) $) 65 T ELT)) (-1578 (((-887) $) 59 T ELT) (($ (-711 (-721))) 51 T ELT) (($ (-663 (-342))) 53 T ELT) (($ (-342)) 56 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 50 T ELT)))
+((-3929 (((-3 $ "failed") (-1297 (-326 (-391)))) 109 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 98 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 129 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 119 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 87 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 74 T ELT)) (-3649 (($ (-1297 (-326 (-391)))) 105 T ELT) (($ (-1297 (-326 (-560)))) 94 T ELT) (($ (-1297 (-975 (-391)))) 125 T ELT) (($ (-1297 (-975 (-560)))) 115 T ELT) (($ (-1297 (-421 (-975 (-391))))) 83 T ELT) (($ (-1297 (-421 (-975 (-560))))) 67 T ELT)) (-3043 (((-1303) $) 142 T ELT)) (-3913 (((-887) $) 136 T ELT) (($ (-663 (-342))) 131 T ELT) (($ (-342)) 134 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 59 T ELT) (($ (-1297 (-352 (-3924 (QUOTE X)) (-3924 (QUOTE -1623)) (-721)))) 60 T ELT)))
+(((-71 |#1|) (-13 (-455) (-10 -8 (-15 -3913 ($ (-1297 (-352 (-3924 (QUOTE X)) (-3924 (QUOTE -1623)) (-721))))))) (-1207)) (T -71))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-3924 (QUOTE X)) (-3924 (QUOTE -1623)) (-721)))) (-5 *1 (-71 *3)) (-14 *3 (-1207)))))
+(-13 (-455) (-10 -8 (-15 -3913 ($ (-1297 (-352 (-3924 (QUOTE X)) (-3924 (QUOTE -1623)) (-721)))))))
+((-3043 (((-1303) $) 33 T ELT) (((-1303)) 32 T ELT)) (-3913 (((-887) $) 36 T ELT)))
+(((-72 |#1|) (-13 (-410) (-10 -7 (-15 -3043 ((-1303))))) (-1207)) (T -72))
+((-3043 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-72 *3)) (-14 *3 (-1207)))))
+(-13 (-410) (-10 -7 (-15 -3043 ((-1303)))))
+((-3043 (((-1303) $) 65 T ELT)) (-3913 (((-887) $) 59 T ELT) (($ (-711 (-721))) 51 T ELT) (($ (-663 (-342))) 53 T ELT) (($ (-342)) 56 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 50 T ELT)))
(((-73 |#1|) (-396) (-1207)) (T -73))
NIL
(-396)
-((-2539 (((-3 $ "failed") (-1297 (-326 (-391)))) 127 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 117 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 147 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 137 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 107 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 95 T ELT)) (-3330 (($ (-1297 (-326 (-391)))) 123 T ELT) (($ (-1297 (-326 (-560)))) 113 T ELT) (($ (-1297 (-975 (-391)))) 143 T ELT) (($ (-1297 (-975 (-560)))) 133 T ELT) (($ (-1297 (-421 (-975 (-391))))) 103 T ELT) (($ (-1297 (-421 (-975 (-560))))) 88 T ELT)) (-2759 (((-1303) $) 80 T ELT)) (-1578 (((-887) $) 28 T ELT) (($ (-663 (-342))) 70 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 73 T ELT) (($ (-1297 (-352 (-1592) (-1592 (QUOTE X)) (-721)))) 67 T ELT)))
-(((-74 |#1|) (-13 (-455) (-10 -8 (-15 -1578 ($ (-1297 (-352 (-1592) (-1592 (QUOTE X)) (-721))))))) (-1207)) (T -74))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-1592) (-1592 (QUOTE X)) (-721)))) (-5 *1 (-74 *3)) (-14 *3 (-1207)))))
-(-13 (-455) (-10 -8 (-15 -1578 ($ (-1297 (-352 (-1592) (-1592 (QUOTE X)) (-721)))))))
-((-2539 (((-3 $ "failed") (-326 (-391))) 47 T ELT) (((-3 $ "failed") (-326 (-560))) 52 T ELT) (((-3 $ "failed") (-975 (-391))) 56 T ELT) (((-3 $ "failed") (-975 (-560))) 60 T ELT) (((-3 $ "failed") (-421 (-975 (-391)))) 42 T ELT) (((-3 $ "failed") (-421 (-975 (-560)))) 35 T ELT)) (-3330 (($ (-326 (-391))) 45 T ELT) (($ (-326 (-560))) 50 T ELT) (($ (-975 (-391))) 54 T ELT) (($ (-975 (-560))) 58 T ELT) (($ (-421 (-975 (-391)))) 40 T ELT) (($ (-421 (-975 (-560)))) 32 T ELT)) (-2759 (((-1303) $) 81 T ELT)) (-1578 (((-887) $) 75 T ELT) (($ (-663 (-342))) 67 T ELT) (($ (-342)) 72 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 70 T ELT) (($ (-352 (-1592) (-1592 (QUOTE X)) (-721))) 31 T ELT)))
-(((-75 |#1|) (-13 (-411) (-10 -8 (-15 -1578 ($ (-352 (-1592) (-1592 (QUOTE X)) (-721)))))) (-1207)) (T -75))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-352 (-1592) (-1592 (QUOTE X)) (-721))) (-5 *1 (-75 *3)) (-14 *3 (-1207)))))
-(-13 (-411) (-10 -8 (-15 -1578 ($ (-352 (-1592) (-1592 (QUOTE X)) (-721))))))
-((-2539 (((-3 $ "failed") (-1297 (-326 (-391)))) 132 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 121 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 152 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 142 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 110 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 97 T ELT)) (-3330 (($ (-1297 (-326 (-391)))) 128 T ELT) (($ (-1297 (-326 (-560)))) 117 T ELT) (($ (-1297 (-975 (-391)))) 148 T ELT) (($ (-1297 (-975 (-560)))) 138 T ELT) (($ (-1297 (-421 (-975 (-391))))) 106 T ELT) (($ (-1297 (-421 (-975 (-560))))) 90 T ELT)) (-2759 (((-1303) $) 82 T ELT)) (-1578 (((-887) $) 74 T ELT) (($ (-663 (-342))) NIL T ELT) (($ (-342)) NIL T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) NIL T ELT) (($ (-1297 (-352 (-1592 (QUOTE X) (QUOTE EPS)) (-1592 (QUOTE -4064)) (-721)))) 69 T ELT)))
-(((-76 |#1| |#2| |#3|) (-13 (-455) (-10 -8 (-15 -1578 ($ (-1297 (-352 (-1592 (QUOTE X) (QUOTE EPS)) (-1592 (QUOTE -4064)) (-721))))))) (-1207) (-1207) (-1207)) (T -76))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-1592 (QUOTE X) (QUOTE EPS)) (-1592 (QUOTE -4064)) (-721)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1207)) (-14 *4 (-1207)) (-14 *5 (-1207)))))
-(-13 (-455) (-10 -8 (-15 -1578 ($ (-1297 (-352 (-1592 (QUOTE X) (QUOTE EPS)) (-1592 (QUOTE -4064)) (-721)))))))
-((-2539 (((-3 $ "failed") (-1297 (-326 (-391)))) 138 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 127 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 158 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 148 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 116 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 103 T ELT)) (-3330 (($ (-1297 (-326 (-391)))) 134 T ELT) (($ (-1297 (-326 (-560)))) 123 T ELT) (($ (-1297 (-975 (-391)))) 154 T ELT) (($ (-1297 (-975 (-560)))) 144 T ELT) (($ (-1297 (-421 (-975 (-391))))) 112 T ELT) (($ (-1297 (-421 (-975 (-560))))) 96 T ELT)) (-2759 (((-1303) $) 88 T ELT)) (-1578 (((-887) $) 80 T ELT) (($ (-663 (-342))) NIL T ELT) (($ (-342)) NIL T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) NIL T ELT) (($ (-1297 (-352 (-1592 (QUOTE EPS)) (-1592 (QUOTE YA) (QUOTE YB)) (-721)))) 75 T ELT)))
-(((-77 |#1| |#2| |#3|) (-13 (-455) (-10 -8 (-15 -1578 ($ (-1297 (-352 (-1592 (QUOTE EPS)) (-1592 (QUOTE YA) (QUOTE YB)) (-721))))))) (-1207) (-1207) (-1207)) (T -77))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-1592 (QUOTE EPS)) (-1592 (QUOTE YA) (QUOTE YB)) (-721)))) (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1207)) (-14 *4 (-1207)) (-14 *5 (-1207)))))
-(-13 (-455) (-10 -8 (-15 -1578 ($ (-1297 (-352 (-1592 (QUOTE EPS)) (-1592 (QUOTE YA) (QUOTE YB)) (-721)))))))
-((-2539 (((-3 $ "failed") (-326 (-391))) 83 T ELT) (((-3 $ "failed") (-326 (-560))) 88 T ELT) (((-3 $ "failed") (-975 (-391))) 92 T ELT) (((-3 $ "failed") (-975 (-560))) 96 T ELT) (((-3 $ "failed") (-421 (-975 (-391)))) 78 T ELT) (((-3 $ "failed") (-421 (-975 (-560)))) 71 T ELT)) (-3330 (($ (-326 (-391))) 81 T ELT) (($ (-326 (-560))) 86 T ELT) (($ (-975 (-391))) 90 T ELT) (($ (-975 (-560))) 94 T ELT) (($ (-421 (-975 (-391)))) 76 T ELT) (($ (-421 (-975 (-560)))) 68 T ELT)) (-2759 (((-1303) $) 63 T ELT)) (-1578 (((-887) $) 51 T ELT) (($ (-663 (-342))) 47 T ELT) (($ (-342)) 57 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 55 T ELT) (($ (-352 (-1592) (-1592 (QUOTE X)) (-721))) 48 T ELT)))
-(((-78 |#1|) (-13 (-411) (-10 -8 (-15 -1578 ($ (-352 (-1592) (-1592 (QUOTE X)) (-721)))))) (-1207)) (T -78))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-352 (-1592) (-1592 (QUOTE X)) (-721))) (-5 *1 (-78 *3)) (-14 *3 (-1207)))))
-(-13 (-411) (-10 -8 (-15 -1578 ($ (-352 (-1592) (-1592 (QUOTE X)) (-721))))))
-((-2539 (((-3 $ "failed") (-1297 (-326 (-391)))) 90 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 79 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 110 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 100 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 68 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 55 T ELT)) (-3330 (($ (-1297 (-326 (-391)))) 86 T ELT) (($ (-1297 (-326 (-560)))) 75 T ELT) (($ (-1297 (-975 (-391)))) 106 T ELT) (($ (-1297 (-975 (-560)))) 96 T ELT) (($ (-1297 (-421 (-975 (-391))))) 64 T ELT) (($ (-1297 (-421 (-975 (-560))))) 48 T ELT)) (-2759 (((-1303) $) 126 T ELT)) (-1578 (((-887) $) 120 T ELT) (($ (-663 (-342))) 113 T ELT) (($ (-342)) 38 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 116 T ELT) (($ (-1297 (-352 (-1592) (-1592 (QUOTE XC)) (-721)))) 39 T ELT)))
-(((-79 |#1|) (-13 (-455) (-10 -8 (-15 -1578 ($ (-1297 (-352 (-1592) (-1592 (QUOTE XC)) (-721))))))) (-1207)) (T -79))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-1592) (-1592 (QUOTE XC)) (-721)))) (-5 *1 (-79 *3)) (-14 *3 (-1207)))))
-(-13 (-455) (-10 -8 (-15 -1578 ($ (-1297 (-352 (-1592) (-1592 (QUOTE XC)) (-721)))))))
-((-2539 (((-3 $ "failed") (-1297 (-326 (-391)))) 151 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 141 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 171 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 161 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 131 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 119 T ELT)) (-3330 (($ (-1297 (-326 (-391)))) 147 T ELT) (($ (-1297 (-326 (-560)))) 137 T ELT) (($ (-1297 (-975 (-391)))) 167 T ELT) (($ (-1297 (-975 (-560)))) 157 T ELT) (($ (-1297 (-421 (-975 (-391))))) 127 T ELT) (($ (-1297 (-421 (-975 (-560))))) 112 T ELT)) (-2759 (((-1303) $) 105 T ELT)) (-1578 (((-887) $) 99 T ELT) (($ (-663 (-342))) 90 T ELT) (($ (-342)) 97 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 95 T ELT) (($ (-1297 (-352 (-1592) (-1592 (QUOTE X)) (-721)))) 91 T ELT)))
-(((-80 |#1|) (-13 (-455) (-10 -8 (-15 -1578 ($ (-1297 (-352 (-1592) (-1592 (QUOTE X)) (-721))))))) (-1207)) (T -80))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-1592) (-1592 (QUOTE X)) (-721)))) (-5 *1 (-80 *3)) (-14 *3 (-1207)))))
-(-13 (-455) (-10 -8 (-15 -1578 ($ (-1297 (-352 (-1592) (-1592 (QUOTE X)) (-721)))))))
-((-2539 (((-3 $ "failed") (-1297 (-326 (-391)))) 79 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 68 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 99 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 89 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 57 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 44 T ELT)) (-3330 (($ (-1297 (-326 (-391)))) 75 T ELT) (($ (-1297 (-326 (-560)))) 64 T ELT) (($ (-1297 (-975 (-391)))) 95 T ELT) (($ (-1297 (-975 (-560)))) 85 T ELT) (($ (-1297 (-421 (-975 (-391))))) 53 T ELT) (($ (-1297 (-421 (-975 (-560))))) 37 T ELT)) (-2759 (((-1303) $) 125 T ELT)) (-1578 (((-887) $) 119 T ELT) (($ (-663 (-342))) 110 T ELT) (($ (-342)) 116 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 114 T ELT) (($ (-1297 (-352 (-1592) (-1592 (QUOTE X)) (-721)))) 36 T ELT)))
-(((-81 |#1|) (-13 (-455) (-635 (-1297 (-352 (-1592) (-1592 (QUOTE X)) (-721))))) (-1207)) (T -81))
-NIL
-(-13 (-455) (-635 (-1297 (-352 (-1592) (-1592 (QUOTE X)) (-721)))))
-((-2539 (((-3 $ "failed") (-1297 (-326 (-391)))) 80 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 69 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 100 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 90 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 58 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 45 T ELT)) (-3330 (($ (-1297 (-326 (-391)))) 76 T ELT) (($ (-1297 (-326 (-560)))) 65 T ELT) (($ (-1297 (-975 (-391)))) 96 T ELT) (($ (-1297 (-975 (-560)))) 86 T ELT) (($ (-1297 (-421 (-975 (-391))))) 54 T ELT) (($ (-1297 (-421 (-975 (-560))))) 38 T ELT)) (-2759 (((-1303) $) 126 T ELT)) (-1578 (((-887) $) 120 T ELT) (($ (-663 (-342))) 111 T ELT) (($ (-342)) 117 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 115 T ELT) (($ (-1297 (-352 (-1592 (QUOTE X)) (-1592 (QUOTE -4064)) (-721)))) 37 T ELT)))
-(((-82 |#1|) (-13 (-455) (-10 -8 (-15 -1578 ($ (-1297 (-352 (-1592 (QUOTE X)) (-1592 (QUOTE -4064)) (-721))))))) (-1207)) (T -82))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-1592 (QUOTE X)) (-1592 (QUOTE -4064)) (-721)))) (-5 *1 (-82 *3)) (-14 *3 (-1207)))))
-(-13 (-455) (-10 -8 (-15 -1578 ($ (-1297 (-352 (-1592 (QUOTE X)) (-1592 (QUOTE -4064)) (-721)))))))
-((-2539 (((-3 $ "failed") (-1297 (-326 (-391)))) 98 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 87 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 118 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 108 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 76 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 63 T ELT)) (-3330 (($ (-1297 (-326 (-391)))) 94 T ELT) (($ (-1297 (-326 (-560)))) 83 T ELT) (($ (-1297 (-975 (-391)))) 114 T ELT) (($ (-1297 (-975 (-560)))) 104 T ELT) (($ (-1297 (-421 (-975 (-391))))) 72 T ELT) (($ (-1297 (-421 (-975 (-560))))) 56 T ELT)) (-2759 (((-1303) $) 48 T ELT)) (-1578 (((-887) $) 42 T ELT) (($ (-663 (-342))) 32 T ELT) (($ (-342)) 35 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 38 T ELT) (($ (-1297 (-352 (-1592 (QUOTE X) (QUOTE -4064)) (-1592) (-721)))) 33 T ELT)))
-(((-83 |#1|) (-13 (-455) (-10 -8 (-15 -1578 ($ (-1297 (-352 (-1592 (QUOTE X) (QUOTE -4064)) (-1592) (-721))))))) (-1207)) (T -83))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-1592 (QUOTE X) (QUOTE -4064)) (-1592) (-721)))) (-5 *1 (-83 *3)) (-14 *3 (-1207)))))
-(-13 (-455) (-10 -8 (-15 -1578 ($ (-1297 (-352 (-1592 (QUOTE X) (QUOTE -4064)) (-1592) (-721)))))))
-((-2539 (((-3 $ "failed") (-711 (-326 (-391)))) 118 T ELT) (((-3 $ "failed") (-711 (-326 (-560)))) 107 T ELT) (((-3 $ "failed") (-711 (-975 (-391)))) 140 T ELT) (((-3 $ "failed") (-711 (-975 (-560)))) 129 T ELT) (((-3 $ "failed") (-711 (-421 (-975 (-391))))) 96 T ELT) (((-3 $ "failed") (-711 (-421 (-975 (-560))))) 83 T ELT)) (-3330 (($ (-711 (-326 (-391)))) 114 T ELT) (($ (-711 (-326 (-560)))) 103 T ELT) (($ (-711 (-975 (-391)))) 136 T ELT) (($ (-711 (-975 (-560)))) 125 T ELT) (($ (-711 (-421 (-975 (-391))))) 92 T ELT) (($ (-711 (-421 (-975 (-560))))) 76 T ELT)) (-2759 (((-1303) $) 66 T ELT)) (-1578 (((-887) $) 53 T ELT) (($ (-663 (-342))) 60 T ELT) (($ (-342)) 49 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 58 T ELT) (($ (-711 (-352 (-1592 (QUOTE X) (QUOTE -4064)) (-1592) (-721)))) 50 T ELT)))
-(((-84 |#1|) (-13 (-398) (-10 -8 (-15 -1578 ($ (-711 (-352 (-1592 (QUOTE X) (QUOTE -4064)) (-1592) (-721))))))) (-1207)) (T -84))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-711 (-352 (-1592 (QUOTE X) (QUOTE -4064)) (-1592) (-721)))) (-5 *1 (-84 *3)) (-14 *3 (-1207)))))
-(-13 (-398) (-10 -8 (-15 -1578 ($ (-711 (-352 (-1592 (QUOTE X) (QUOTE -4064)) (-1592) (-721)))))))
-((-2539 (((-3 $ "failed") (-711 (-326 (-391)))) 113 T ELT) (((-3 $ "failed") (-711 (-326 (-560)))) 101 T ELT) (((-3 $ "failed") (-711 (-975 (-391)))) 135 T ELT) (((-3 $ "failed") (-711 (-975 (-560)))) 124 T ELT) (((-3 $ "failed") (-711 (-421 (-975 (-391))))) 89 T ELT) (((-3 $ "failed") (-711 (-421 (-975 (-560))))) 75 T ELT)) (-3330 (($ (-711 (-326 (-391)))) 109 T ELT) (($ (-711 (-326 (-560)))) 97 T ELT) (($ (-711 (-975 (-391)))) 131 T ELT) (($ (-711 (-975 (-560)))) 120 T ELT) (($ (-711 (-421 (-975 (-391))))) 85 T ELT) (($ (-711 (-421 (-975 (-560))))) 68 T ELT)) (-2759 (((-1303) $) 60 T ELT)) (-1578 (((-887) $) 54 T ELT) (($ (-663 (-342))) 48 T ELT) (($ (-342)) 51 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 45 T ELT) (($ (-711 (-352 (-1592 (QUOTE X)) (-1592) (-721)))) 46 T ELT)))
-(((-85 |#1|) (-13 (-398) (-10 -8 (-15 -1578 ($ (-711 (-352 (-1592 (QUOTE X)) (-1592) (-721))))))) (-1207)) (T -85))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-711 (-352 (-1592 (QUOTE X)) (-1592) (-721)))) (-5 *1 (-85 *3)) (-14 *3 (-1207)))))
-(-13 (-398) (-10 -8 (-15 -1578 ($ (-711 (-352 (-1592 (QUOTE X)) (-1592) (-721)))))))
-((-2539 (((-3 $ "failed") (-1297 (-326 (-391)))) 105 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 94 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 125 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 115 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 83 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 70 T ELT)) (-3330 (($ (-1297 (-326 (-391)))) 101 T ELT) (($ (-1297 (-326 (-560)))) 90 T ELT) (($ (-1297 (-975 (-391)))) 121 T ELT) (($ (-1297 (-975 (-560)))) 111 T ELT) (($ (-1297 (-421 (-975 (-391))))) 79 T ELT) (($ (-1297 (-421 (-975 (-560))))) 63 T ELT)) (-2759 (((-1303) $) 47 T ELT)) (-1578 (((-887) $) 41 T ELT) (($ (-663 (-342))) 50 T ELT) (($ (-342)) 37 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 53 T ELT) (($ (-1297 (-352 (-1592 (QUOTE X)) (-1592) (-721)))) 38 T ELT)))
-(((-86 |#1|) (-13 (-455) (-10 -8 (-15 -1578 ($ (-1297 (-352 (-1592 (QUOTE X)) (-1592) (-721))))))) (-1207)) (T -86))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-1592 (QUOTE X)) (-1592) (-721)))) (-5 *1 (-86 *3)) (-14 *3 (-1207)))))
-(-13 (-455) (-10 -8 (-15 -1578 ($ (-1297 (-352 (-1592 (QUOTE X)) (-1592) (-721)))))))
-((-2759 (((-1303) $) 45 T ELT)) (-1578 (((-887) $) 39 T ELT) (($ (-1297 (-721))) 100 T ELT) (($ (-663 (-342))) 31 T ELT) (($ (-342)) 36 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 34 T ELT)))
+((-3929 (((-3 $ "failed") (-1297 (-326 (-391)))) 127 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 117 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 147 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 137 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 107 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 95 T ELT)) (-3649 (($ (-1297 (-326 (-391)))) 123 T ELT) (($ (-1297 (-326 (-560)))) 113 T ELT) (($ (-1297 (-975 (-391)))) 143 T ELT) (($ (-1297 (-975 (-560)))) 133 T ELT) (($ (-1297 (-421 (-975 (-391))))) 103 T ELT) (($ (-1297 (-421 (-975 (-560))))) 88 T ELT)) (-3043 (((-1303) $) 80 T ELT)) (-3913 (((-887) $) 28 T ELT) (($ (-663 (-342))) 70 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 73 T ELT) (($ (-1297 (-352 (-3924) (-3924 (QUOTE X)) (-721)))) 67 T ELT)))
+(((-74 |#1|) (-13 (-455) (-10 -8 (-15 -3913 ($ (-1297 (-352 (-3924) (-3924 (QUOTE X)) (-721))))))) (-1207)) (T -74))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-3924) (-3924 (QUOTE X)) (-721)))) (-5 *1 (-74 *3)) (-14 *3 (-1207)))))
+(-13 (-455) (-10 -8 (-15 -3913 ($ (-1297 (-352 (-3924) (-3924 (QUOTE X)) (-721)))))))
+((-3929 (((-3 $ "failed") (-326 (-391))) 47 T ELT) (((-3 $ "failed") (-326 (-560))) 52 T ELT) (((-3 $ "failed") (-975 (-391))) 56 T ELT) (((-3 $ "failed") (-975 (-560))) 60 T ELT) (((-3 $ "failed") (-421 (-975 (-391)))) 42 T ELT) (((-3 $ "failed") (-421 (-975 (-560)))) 35 T ELT)) (-3649 (($ (-326 (-391))) 45 T ELT) (($ (-326 (-560))) 50 T ELT) (($ (-975 (-391))) 54 T ELT) (($ (-975 (-560))) 58 T ELT) (($ (-421 (-975 (-391)))) 40 T ELT) (($ (-421 (-975 (-560)))) 32 T ELT)) (-3043 (((-1303) $) 81 T ELT)) (-3913 (((-887) $) 75 T ELT) (($ (-663 (-342))) 67 T ELT) (($ (-342)) 72 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 70 T ELT) (($ (-352 (-3924) (-3924 (QUOTE X)) (-721))) 31 T ELT)))
+(((-75 |#1|) (-13 (-411) (-10 -8 (-15 -3913 ($ (-352 (-3924) (-3924 (QUOTE X)) (-721)))))) (-1207)) (T -75))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-352 (-3924) (-3924 (QUOTE X)) (-721))) (-5 *1 (-75 *3)) (-14 *3 (-1207)))))
+(-13 (-411) (-10 -8 (-15 -3913 ($ (-352 (-3924) (-3924 (QUOTE X)) (-721))))))
+((-3929 (((-3 $ "failed") (-1297 (-326 (-391)))) 132 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 121 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 152 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 142 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 110 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 97 T ELT)) (-3649 (($ (-1297 (-326 (-391)))) 128 T ELT) (($ (-1297 (-326 (-560)))) 117 T ELT) (($ (-1297 (-975 (-391)))) 148 T ELT) (($ (-1297 (-975 (-560)))) 138 T ELT) (($ (-1297 (-421 (-975 (-391))))) 106 T ELT) (($ (-1297 (-421 (-975 (-560))))) 90 T ELT)) (-3043 (((-1303) $) 82 T ELT)) (-3913 (((-887) $) 74 T ELT) (($ (-663 (-342))) NIL T ELT) (($ (-342)) NIL T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) NIL T ELT) (($ (-1297 (-352 (-3924 (QUOTE X) (QUOTE EPS)) (-3924 (QUOTE -1623)) (-721)))) 69 T ELT)))
+(((-76 |#1| |#2| |#3|) (-13 (-455) (-10 -8 (-15 -3913 ($ (-1297 (-352 (-3924 (QUOTE X) (QUOTE EPS)) (-3924 (QUOTE -1623)) (-721))))))) (-1207) (-1207) (-1207)) (T -76))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-3924 (QUOTE X) (QUOTE EPS)) (-3924 (QUOTE -1623)) (-721)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1207)) (-14 *4 (-1207)) (-14 *5 (-1207)))))
+(-13 (-455) (-10 -8 (-15 -3913 ($ (-1297 (-352 (-3924 (QUOTE X) (QUOTE EPS)) (-3924 (QUOTE -1623)) (-721)))))))
+((-3929 (((-3 $ "failed") (-1297 (-326 (-391)))) 138 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 127 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 158 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 148 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 116 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 103 T ELT)) (-3649 (($ (-1297 (-326 (-391)))) 134 T ELT) (($ (-1297 (-326 (-560)))) 123 T ELT) (($ (-1297 (-975 (-391)))) 154 T ELT) (($ (-1297 (-975 (-560)))) 144 T ELT) (($ (-1297 (-421 (-975 (-391))))) 112 T ELT) (($ (-1297 (-421 (-975 (-560))))) 96 T ELT)) (-3043 (((-1303) $) 88 T ELT)) (-3913 (((-887) $) 80 T ELT) (($ (-663 (-342))) NIL T ELT) (($ (-342)) NIL T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) NIL T ELT) (($ (-1297 (-352 (-3924 (QUOTE EPS)) (-3924 (QUOTE YA) (QUOTE YB)) (-721)))) 75 T ELT)))
+(((-77 |#1| |#2| |#3|) (-13 (-455) (-10 -8 (-15 -3913 ($ (-1297 (-352 (-3924 (QUOTE EPS)) (-3924 (QUOTE YA) (QUOTE YB)) (-721))))))) (-1207) (-1207) (-1207)) (T -77))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-3924 (QUOTE EPS)) (-3924 (QUOTE YA) (QUOTE YB)) (-721)))) (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1207)) (-14 *4 (-1207)) (-14 *5 (-1207)))))
+(-13 (-455) (-10 -8 (-15 -3913 ($ (-1297 (-352 (-3924 (QUOTE EPS)) (-3924 (QUOTE YA) (QUOTE YB)) (-721)))))))
+((-3929 (((-3 $ "failed") (-326 (-391))) 83 T ELT) (((-3 $ "failed") (-326 (-560))) 88 T ELT) (((-3 $ "failed") (-975 (-391))) 92 T ELT) (((-3 $ "failed") (-975 (-560))) 96 T ELT) (((-3 $ "failed") (-421 (-975 (-391)))) 78 T ELT) (((-3 $ "failed") (-421 (-975 (-560)))) 71 T ELT)) (-3649 (($ (-326 (-391))) 81 T ELT) (($ (-326 (-560))) 86 T ELT) (($ (-975 (-391))) 90 T ELT) (($ (-975 (-560))) 94 T ELT) (($ (-421 (-975 (-391)))) 76 T ELT) (($ (-421 (-975 (-560)))) 68 T ELT)) (-3043 (((-1303) $) 63 T ELT)) (-3913 (((-887) $) 51 T ELT) (($ (-663 (-342))) 47 T ELT) (($ (-342)) 57 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 55 T ELT) (($ (-352 (-3924) (-3924 (QUOTE X)) (-721))) 48 T ELT)))
+(((-78 |#1|) (-13 (-411) (-10 -8 (-15 -3913 ($ (-352 (-3924) (-3924 (QUOTE X)) (-721)))))) (-1207)) (T -78))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-352 (-3924) (-3924 (QUOTE X)) (-721))) (-5 *1 (-78 *3)) (-14 *3 (-1207)))))
+(-13 (-411) (-10 -8 (-15 -3913 ($ (-352 (-3924) (-3924 (QUOTE X)) (-721))))))
+((-3929 (((-3 $ "failed") (-1297 (-326 (-391)))) 90 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 79 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 110 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 100 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 68 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 55 T ELT)) (-3649 (($ (-1297 (-326 (-391)))) 86 T ELT) (($ (-1297 (-326 (-560)))) 75 T ELT) (($ (-1297 (-975 (-391)))) 106 T ELT) (($ (-1297 (-975 (-560)))) 96 T ELT) (($ (-1297 (-421 (-975 (-391))))) 64 T ELT) (($ (-1297 (-421 (-975 (-560))))) 48 T ELT)) (-3043 (((-1303) $) 126 T ELT)) (-3913 (((-887) $) 120 T ELT) (($ (-663 (-342))) 113 T ELT) (($ (-342)) 38 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 116 T ELT) (($ (-1297 (-352 (-3924) (-3924 (QUOTE XC)) (-721)))) 39 T ELT)))
+(((-79 |#1|) (-13 (-455) (-10 -8 (-15 -3913 ($ (-1297 (-352 (-3924) (-3924 (QUOTE XC)) (-721))))))) (-1207)) (T -79))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-3924) (-3924 (QUOTE XC)) (-721)))) (-5 *1 (-79 *3)) (-14 *3 (-1207)))))
+(-13 (-455) (-10 -8 (-15 -3913 ($ (-1297 (-352 (-3924) (-3924 (QUOTE XC)) (-721)))))))
+((-3929 (((-3 $ "failed") (-1297 (-326 (-391)))) 151 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 141 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 171 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 161 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 131 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 119 T ELT)) (-3649 (($ (-1297 (-326 (-391)))) 147 T ELT) (($ (-1297 (-326 (-560)))) 137 T ELT) (($ (-1297 (-975 (-391)))) 167 T ELT) (($ (-1297 (-975 (-560)))) 157 T ELT) (($ (-1297 (-421 (-975 (-391))))) 127 T ELT) (($ (-1297 (-421 (-975 (-560))))) 112 T ELT)) (-3043 (((-1303) $) 105 T ELT)) (-3913 (((-887) $) 99 T ELT) (($ (-663 (-342))) 90 T ELT) (($ (-342)) 97 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 95 T ELT) (($ (-1297 (-352 (-3924) (-3924 (QUOTE X)) (-721)))) 91 T ELT)))
+(((-80 |#1|) (-13 (-455) (-10 -8 (-15 -3913 ($ (-1297 (-352 (-3924) (-3924 (QUOTE X)) (-721))))))) (-1207)) (T -80))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-3924) (-3924 (QUOTE X)) (-721)))) (-5 *1 (-80 *3)) (-14 *3 (-1207)))))
+(-13 (-455) (-10 -8 (-15 -3913 ($ (-1297 (-352 (-3924) (-3924 (QUOTE X)) (-721)))))))
+((-3929 (((-3 $ "failed") (-1297 (-326 (-391)))) 79 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 68 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 99 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 89 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 57 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 44 T ELT)) (-3649 (($ (-1297 (-326 (-391)))) 75 T ELT) (($ (-1297 (-326 (-560)))) 64 T ELT) (($ (-1297 (-975 (-391)))) 95 T ELT) (($ (-1297 (-975 (-560)))) 85 T ELT) (($ (-1297 (-421 (-975 (-391))))) 53 T ELT) (($ (-1297 (-421 (-975 (-560))))) 37 T ELT)) (-3043 (((-1303) $) 125 T ELT)) (-3913 (((-887) $) 119 T ELT) (($ (-663 (-342))) 110 T ELT) (($ (-342)) 116 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 114 T ELT) (($ (-1297 (-352 (-3924) (-3924 (QUOTE X)) (-721)))) 36 T ELT)))
+(((-81 |#1|) (-13 (-455) (-635 (-1297 (-352 (-3924) (-3924 (QUOTE X)) (-721))))) (-1207)) (T -81))
+NIL
+(-13 (-455) (-635 (-1297 (-352 (-3924) (-3924 (QUOTE X)) (-721)))))
+((-3929 (((-3 $ "failed") (-1297 (-326 (-391)))) 80 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 69 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 100 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 90 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 58 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 45 T ELT)) (-3649 (($ (-1297 (-326 (-391)))) 76 T ELT) (($ (-1297 (-326 (-560)))) 65 T ELT) (($ (-1297 (-975 (-391)))) 96 T ELT) (($ (-1297 (-975 (-560)))) 86 T ELT) (($ (-1297 (-421 (-975 (-391))))) 54 T ELT) (($ (-1297 (-421 (-975 (-560))))) 38 T ELT)) (-3043 (((-1303) $) 126 T ELT)) (-3913 (((-887) $) 120 T ELT) (($ (-663 (-342))) 111 T ELT) (($ (-342)) 117 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 115 T ELT) (($ (-1297 (-352 (-3924 (QUOTE X)) (-3924 (QUOTE -1623)) (-721)))) 37 T ELT)))
+(((-82 |#1|) (-13 (-455) (-10 -8 (-15 -3913 ($ (-1297 (-352 (-3924 (QUOTE X)) (-3924 (QUOTE -1623)) (-721))))))) (-1207)) (T -82))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-3924 (QUOTE X)) (-3924 (QUOTE -1623)) (-721)))) (-5 *1 (-82 *3)) (-14 *3 (-1207)))))
+(-13 (-455) (-10 -8 (-15 -3913 ($ (-1297 (-352 (-3924 (QUOTE X)) (-3924 (QUOTE -1623)) (-721)))))))
+((-3929 (((-3 $ "failed") (-1297 (-326 (-391)))) 98 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 87 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 118 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 108 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 76 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 63 T ELT)) (-3649 (($ (-1297 (-326 (-391)))) 94 T ELT) (($ (-1297 (-326 (-560)))) 83 T ELT) (($ (-1297 (-975 (-391)))) 114 T ELT) (($ (-1297 (-975 (-560)))) 104 T ELT) (($ (-1297 (-421 (-975 (-391))))) 72 T ELT) (($ (-1297 (-421 (-975 (-560))))) 56 T ELT)) (-3043 (((-1303) $) 48 T ELT)) (-3913 (((-887) $) 42 T ELT) (($ (-663 (-342))) 32 T ELT) (($ (-342)) 35 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 38 T ELT) (($ (-1297 (-352 (-3924 (QUOTE X) (QUOTE -1623)) (-3924) (-721)))) 33 T ELT)))
+(((-83 |#1|) (-13 (-455) (-10 -8 (-15 -3913 ($ (-1297 (-352 (-3924 (QUOTE X) (QUOTE -1623)) (-3924) (-721))))))) (-1207)) (T -83))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-3924 (QUOTE X) (QUOTE -1623)) (-3924) (-721)))) (-5 *1 (-83 *3)) (-14 *3 (-1207)))))
+(-13 (-455) (-10 -8 (-15 -3913 ($ (-1297 (-352 (-3924 (QUOTE X) (QUOTE -1623)) (-3924) (-721)))))))
+((-3929 (((-3 $ "failed") (-711 (-326 (-391)))) 118 T ELT) (((-3 $ "failed") (-711 (-326 (-560)))) 107 T ELT) (((-3 $ "failed") (-711 (-975 (-391)))) 140 T ELT) (((-3 $ "failed") (-711 (-975 (-560)))) 129 T ELT) (((-3 $ "failed") (-711 (-421 (-975 (-391))))) 96 T ELT) (((-3 $ "failed") (-711 (-421 (-975 (-560))))) 83 T ELT)) (-3649 (($ (-711 (-326 (-391)))) 114 T ELT) (($ (-711 (-326 (-560)))) 103 T ELT) (($ (-711 (-975 (-391)))) 136 T ELT) (($ (-711 (-975 (-560)))) 125 T ELT) (($ (-711 (-421 (-975 (-391))))) 92 T ELT) (($ (-711 (-421 (-975 (-560))))) 76 T ELT)) (-3043 (((-1303) $) 66 T ELT)) (-3913 (((-887) $) 53 T ELT) (($ (-663 (-342))) 60 T ELT) (($ (-342)) 49 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 58 T ELT) (($ (-711 (-352 (-3924 (QUOTE X) (QUOTE -1623)) (-3924) (-721)))) 50 T ELT)))
+(((-84 |#1|) (-13 (-398) (-10 -8 (-15 -3913 ($ (-711 (-352 (-3924 (QUOTE X) (QUOTE -1623)) (-3924) (-721))))))) (-1207)) (T -84))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-711 (-352 (-3924 (QUOTE X) (QUOTE -1623)) (-3924) (-721)))) (-5 *1 (-84 *3)) (-14 *3 (-1207)))))
+(-13 (-398) (-10 -8 (-15 -3913 ($ (-711 (-352 (-3924 (QUOTE X) (QUOTE -1623)) (-3924) (-721)))))))
+((-3929 (((-3 $ "failed") (-711 (-326 (-391)))) 113 T ELT) (((-3 $ "failed") (-711 (-326 (-560)))) 101 T ELT) (((-3 $ "failed") (-711 (-975 (-391)))) 135 T ELT) (((-3 $ "failed") (-711 (-975 (-560)))) 124 T ELT) (((-3 $ "failed") (-711 (-421 (-975 (-391))))) 89 T ELT) (((-3 $ "failed") (-711 (-421 (-975 (-560))))) 75 T ELT)) (-3649 (($ (-711 (-326 (-391)))) 109 T ELT) (($ (-711 (-326 (-560)))) 97 T ELT) (($ (-711 (-975 (-391)))) 131 T ELT) (($ (-711 (-975 (-560)))) 120 T ELT) (($ (-711 (-421 (-975 (-391))))) 85 T ELT) (($ (-711 (-421 (-975 (-560))))) 68 T ELT)) (-3043 (((-1303) $) 60 T ELT)) (-3913 (((-887) $) 54 T ELT) (($ (-663 (-342))) 48 T ELT) (($ (-342)) 51 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 45 T ELT) (($ (-711 (-352 (-3924 (QUOTE X)) (-3924) (-721)))) 46 T ELT)))
+(((-85 |#1|) (-13 (-398) (-10 -8 (-15 -3913 ($ (-711 (-352 (-3924 (QUOTE X)) (-3924) (-721))))))) (-1207)) (T -85))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-711 (-352 (-3924 (QUOTE X)) (-3924) (-721)))) (-5 *1 (-85 *3)) (-14 *3 (-1207)))))
+(-13 (-398) (-10 -8 (-15 -3913 ($ (-711 (-352 (-3924 (QUOTE X)) (-3924) (-721)))))))
+((-3929 (((-3 $ "failed") (-1297 (-326 (-391)))) 105 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 94 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 125 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 115 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 83 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 70 T ELT)) (-3649 (($ (-1297 (-326 (-391)))) 101 T ELT) (($ (-1297 (-326 (-560)))) 90 T ELT) (($ (-1297 (-975 (-391)))) 121 T ELT) (($ (-1297 (-975 (-560)))) 111 T ELT) (($ (-1297 (-421 (-975 (-391))))) 79 T ELT) (($ (-1297 (-421 (-975 (-560))))) 63 T ELT)) (-3043 (((-1303) $) 47 T ELT)) (-3913 (((-887) $) 41 T ELT) (($ (-663 (-342))) 50 T ELT) (($ (-342)) 37 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 53 T ELT) (($ (-1297 (-352 (-3924 (QUOTE X)) (-3924) (-721)))) 38 T ELT)))
+(((-86 |#1|) (-13 (-455) (-10 -8 (-15 -3913 ($ (-1297 (-352 (-3924 (QUOTE X)) (-3924) (-721))))))) (-1207)) (T -86))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1297 (-352 (-3924 (QUOTE X)) (-3924) (-721)))) (-5 *1 (-86 *3)) (-14 *3 (-1207)))))
+(-13 (-455) (-10 -8 (-15 -3913 ($ (-1297 (-352 (-3924 (QUOTE X)) (-3924) (-721)))))))
+((-3043 (((-1303) $) 45 T ELT)) (-3913 (((-887) $) 39 T ELT) (($ (-1297 (-721))) 100 T ELT) (($ (-663 (-342))) 31 T ELT) (($ (-342)) 36 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 34 T ELT)))
(((-87 |#1|) (-454) (-1207)) (T -87))
NIL
(-454)
-((-2539 (((-3 $ "failed") (-711 (-326 (-391)))) 117 T ELT) (((-3 $ "failed") (-711 (-326 (-560)))) 105 T ELT) (((-3 $ "failed") (-711 (-975 (-391)))) 139 T ELT) (((-3 $ "failed") (-711 (-975 (-560)))) 128 T ELT) (((-3 $ "failed") (-711 (-421 (-975 (-391))))) 93 T ELT) (((-3 $ "failed") (-711 (-421 (-975 (-560))))) 79 T ELT)) (-3330 (($ (-711 (-326 (-391)))) 113 T ELT) (($ (-711 (-326 (-560)))) 101 T ELT) (($ (-711 (-975 (-391)))) 135 T ELT) (($ (-711 (-975 (-560)))) 124 T ELT) (($ (-711 (-421 (-975 (-391))))) 89 T ELT) (($ (-711 (-421 (-975 (-560))))) 72 T ELT)) (-2759 (((-1303) $) 63 T ELT)) (-1578 (((-887) $) 57 T ELT) (($ (-663 (-342))) 47 T ELT) (($ (-342)) 54 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 52 T ELT) (($ (-711 (-352 (-1592 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1592) (-721)))) 48 T ELT)))
-(((-88 |#1|) (-13 (-398) (-10 -8 (-15 -1578 ($ (-711 (-352 (-1592 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1592) (-721))))))) (-1207)) (T -88))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-711 (-352 (-1592 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1592) (-721)))) (-5 *1 (-88 *3)) (-14 *3 (-1207)))))
-(-13 (-398) (-10 -8 (-15 -1578 ($ (-711 (-352 (-1592 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-1592) (-721)))))))
-((-2539 (((-3 $ "failed") (-326 (-391))) 48 T ELT) (((-3 $ "failed") (-326 (-560))) 53 T ELT) (((-3 $ "failed") (-975 (-391))) 57 T ELT) (((-3 $ "failed") (-975 (-560))) 61 T ELT) (((-3 $ "failed") (-421 (-975 (-391)))) 43 T ELT) (((-3 $ "failed") (-421 (-975 (-560)))) 36 T ELT)) (-3330 (($ (-326 (-391))) 46 T ELT) (($ (-326 (-560))) 51 T ELT) (($ (-975 (-391))) 55 T ELT) (($ (-975 (-560))) 59 T ELT) (($ (-421 (-975 (-391)))) 41 T ELT) (($ (-421 (-975 (-560)))) 33 T ELT)) (-2759 (((-1303) $) 91 T ELT)) (-1578 (((-887) $) 85 T ELT) (($ (-663 (-342))) 79 T ELT) (($ (-342)) 82 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 77 T ELT) (($ (-352 (-1592 (QUOTE X)) (-1592 (QUOTE -4064)) (-721))) 32 T ELT)))
-(((-89 |#1|) (-13 (-411) (-10 -8 (-15 -1578 ($ (-352 (-1592 (QUOTE X)) (-1592 (QUOTE -4064)) (-721)))))) (-1207)) (T -89))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-352 (-1592 (QUOTE X)) (-1592 (QUOTE -4064)) (-721))) (-5 *1 (-89 *3)) (-14 *3 (-1207)))))
-(-13 (-411) (-10 -8 (-15 -1578 ($ (-352 (-1592 (QUOTE X)) (-1592 (QUOTE -4064)) (-721))))))
-((-1381 (((-1297 (-711 |#1|)) (-711 |#1|)) 61 T ELT)) (-2797 (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 (-663 (-948))))) |#2| (-948)) 49 T ELT)) (-3601 (((-2 (|:| |minor| (-663 (-948))) (|:| -3192 |#2|) (|:| |minors| (-663 (-663 (-948)))) (|:| |ops| (-663 |#2|))) |#2| (-948)) 72 (|has| |#1| (-376)) ELT)))
-(((-90 |#1| |#2|) (-10 -7 (-15 -2797 ((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 (-663 (-948))))) |#2| (-948))) (-15 -1381 ((-1297 (-711 |#1|)) (-711 |#1|))) (IF (|has| |#1| (-376)) (-15 -3601 ((-2 (|:| |minor| (-663 (-948))) (|:| -3192 |#2|) (|:| |minors| (-663 (-663 (-948)))) (|:| |ops| (-663 |#2|))) |#2| (-948))) |%noBranch|)) (-571) (-680 |#1|)) (T -90))
-((-3601 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *5 (-571)) (-5 *2 (-2 (|:| |minor| (-663 (-948))) (|:| -3192 *3) (|:| |minors| (-663 (-663 (-948)))) (|:| |ops| (-663 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-948)) (-4 *3 (-680 *5)))) (-1381 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-1297 (-711 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-711 *4)) (-4 *5 (-680 *4)))) (-2797 (*1 *2 *3 *4) (-12 (-4 *5 (-571)) (-5 *2 (-2 (|:| -3822 (-711 *5)) (|:| |vec| (-1297 (-663 (-948)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-948)) (-4 *3 (-680 *5)))))
-(-10 -7 (-15 -2797 ((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 (-663 (-948))))) |#2| (-948))) (-15 -1381 ((-1297 (-711 |#1|)) (-711 |#1|))) (IF (|has| |#1| (-376)) (-15 -3601 ((-2 (|:| |minor| (-663 (-948))) (|:| -3192 |#2|) (|:| |minors| (-663 (-663 (-948)))) (|:| |ops| (-663 |#2|))) |#2| (-948))) |%noBranch|))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2572 ((|#1| $) 40 T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2822 ((|#1| |#1| $) 35 T ELT)) (-2353 ((|#1| $) 33 T ELT)) (-2181 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-1576 ((|#1| $) NIL T ELT)) (-3629 (($ |#1| $) 36 T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2615 ((|#1| $) 34 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) 18 T ELT)) (-3986 (($) 45 T ELT)) (-3470 (((-793) $) 31 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1799 (($ $) 17 T ELT)) (-1578 (((-887) $) 30 (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3376 (($ (-663 |#1|)) NIL T ELT)) (-2576 (($ (-663 |#1|)) 42 T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 15 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 12 (|has| $ (-6 -4508)) ELT)))
-(((-91 |#1|) (-13 (-1152 |#1|) (-10 -8 (-15 -2576 ($ (-663 |#1|))))) (-1132)) (T -91))
-((-2576 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-91 *3)))))
-(-13 (-1152 |#1|) (-10 -8 (-15 -2576 ($ (-663 |#1|)))))
-((-1578 (((-887) $) 13 T ELT) (($ (-1212)) 9 T ELT) (((-1212) $) 8 T ELT)))
-(((-92 |#1|) (-10 -8 (-15 -1578 ((-1212) |#1|)) (-15 -1578 (|#1| (-1212))) (-15 -1578 ((-887) |#1|))) (-93)) (T -92))
-NIL
-(-10 -8 (-15 -1578 ((-1212) |#1|)) (-15 -1578 (|#1| (-1212))) (-15 -1578 ((-887) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-1212)) 17 T ELT) (((-1212) $) 16 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2473 (((-114) $ $) 8 T ELT)))
+((-3929 (((-3 $ "failed") (-711 (-326 (-391)))) 117 T ELT) (((-3 $ "failed") (-711 (-326 (-560)))) 105 T ELT) (((-3 $ "failed") (-711 (-975 (-391)))) 139 T ELT) (((-3 $ "failed") (-711 (-975 (-560)))) 128 T ELT) (((-3 $ "failed") (-711 (-421 (-975 (-391))))) 93 T ELT) (((-3 $ "failed") (-711 (-421 (-975 (-560))))) 79 T ELT)) (-3649 (($ (-711 (-326 (-391)))) 113 T ELT) (($ (-711 (-326 (-560)))) 101 T ELT) (($ (-711 (-975 (-391)))) 135 T ELT) (($ (-711 (-975 (-560)))) 124 T ELT) (($ (-711 (-421 (-975 (-391))))) 89 T ELT) (($ (-711 (-421 (-975 (-560))))) 72 T ELT)) (-3043 (((-1303) $) 63 T ELT)) (-3913 (((-887) $) 57 T ELT) (($ (-663 (-342))) 47 T ELT) (($ (-342)) 54 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 52 T ELT) (($ (-711 (-352 (-3924 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3924) (-721)))) 48 T ELT)))
+(((-88 |#1|) (-13 (-398) (-10 -8 (-15 -3913 ($ (-711 (-352 (-3924 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3924) (-721))))))) (-1207)) (T -88))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-711 (-352 (-3924 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3924) (-721)))) (-5 *1 (-88 *3)) (-14 *3 (-1207)))))
+(-13 (-398) (-10 -8 (-15 -3913 ($ (-711 (-352 (-3924 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3924) (-721)))))))
+((-3929 (((-3 $ "failed") (-326 (-391))) 48 T ELT) (((-3 $ "failed") (-326 (-560))) 53 T ELT) (((-3 $ "failed") (-975 (-391))) 57 T ELT) (((-3 $ "failed") (-975 (-560))) 61 T ELT) (((-3 $ "failed") (-421 (-975 (-391)))) 43 T ELT) (((-3 $ "failed") (-421 (-975 (-560)))) 36 T ELT)) (-3649 (($ (-326 (-391))) 46 T ELT) (($ (-326 (-560))) 51 T ELT) (($ (-975 (-391))) 55 T ELT) (($ (-975 (-560))) 59 T ELT) (($ (-421 (-975 (-391)))) 41 T ELT) (($ (-421 (-975 (-560)))) 33 T ELT)) (-3043 (((-1303) $) 91 T ELT)) (-3913 (((-887) $) 85 T ELT) (($ (-663 (-342))) 79 T ELT) (($ (-342)) 82 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 77 T ELT) (($ (-352 (-3924 (QUOTE X)) (-3924 (QUOTE -1623)) (-721))) 32 T ELT)))
+(((-89 |#1|) (-13 (-411) (-10 -8 (-15 -3913 ($ (-352 (-3924 (QUOTE X)) (-3924 (QUOTE -1623)) (-721)))))) (-1207)) (T -89))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-352 (-3924 (QUOTE X)) (-3924 (QUOTE -1623)) (-721))) (-5 *1 (-89 *3)) (-14 *3 (-1207)))))
+(-13 (-411) (-10 -8 (-15 -3913 ($ (-352 (-3924 (QUOTE X)) (-3924 (QUOTE -1623)) (-721))))))
+((-2081 (((-1297 (-711 |#1|)) (-711 |#1|)) 61 T ELT)) (-4145 (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 (-663 (-948))))) |#2| (-948)) 49 T ELT)) (-3607 (((-2 (|:| |minor| (-663 (-948))) (|:| -2439 |#2|) (|:| |minors| (-663 (-663 (-948)))) (|:| |ops| (-663 |#2|))) |#2| (-948)) 72 (|has| |#1| (-376)) ELT)))
+(((-90 |#1| |#2|) (-10 -7 (-15 -4145 ((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 (-663 (-948))))) |#2| (-948))) (-15 -2081 ((-1297 (-711 |#1|)) (-711 |#1|))) (IF (|has| |#1| (-376)) (-15 -3607 ((-2 (|:| |minor| (-663 (-948))) (|:| -2439 |#2|) (|:| |minors| (-663 (-663 (-948)))) (|:| |ops| (-663 |#2|))) |#2| (-948))) |%noBranch|)) (-571) (-680 |#1|)) (T -90))
+((-3607 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *5 (-571)) (-5 *2 (-2 (|:| |minor| (-663 (-948))) (|:| -2439 *3) (|:| |minors| (-663 (-663 (-948)))) (|:| |ops| (-663 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-948)) (-4 *3 (-680 *5)))) (-2081 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-1297 (-711 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-711 *4)) (-4 *5 (-680 *4)))) (-4145 (*1 *2 *3 *4) (-12 (-4 *5 (-571)) (-5 *2 (-2 (|:| -1871 (-711 *5)) (|:| |vec| (-1297 (-663 (-948)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-948)) (-4 *3 (-680 *5)))))
+(-10 -7 (-15 -4145 ((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 (-663 (-948))))) |#2| (-948))) (-15 -2081 ((-1297 (-711 |#1|)) (-711 |#1|))) (IF (|has| |#1| (-376)) (-15 -3607 ((-2 (|:| |minor| (-663 (-948))) (|:| -2439 |#2|) (|:| |minors| (-663 (-663 (-948)))) (|:| |ops| (-663 |#2|))) |#2| (-948))) |%noBranch|))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3172 ((|#1| $) 40 T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3525 (($) NIL T CONST)) (-4401 ((|#1| |#1| $) 35 T ELT)) (-2151 ((|#1| $) 33 T ELT)) (-3737 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-1878 ((|#1| $) NIL T ELT)) (-3888 (($ |#1| $) 36 T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2796 ((|#1| $) 34 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) 18 T ELT)) (-2832 (($) 45 T ELT)) (-3063 (((-793) $) 31 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4107 (($ $) 17 T ELT)) (-3913 (((-887) $) 30 (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3184 (($ (-663 |#1|)) NIL T ELT)) (-3728 (($ (-663 |#1|)) 42 T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 15 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 12 (|has| $ (-6 -4508)) ELT)))
+(((-91 |#1|) (-13 (-1152 |#1|) (-10 -8 (-15 -3728 ($ (-663 |#1|))))) (-1132)) (T -91))
+((-3728 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-91 *3)))))
+(-13 (-1152 |#1|) (-10 -8 (-15 -3728 ($ (-663 |#1|)))))
+((-3913 (((-887) $) 13 T ELT) (($ (-1212)) 9 T ELT) (((-1212) $) 8 T ELT)))
+(((-92 |#1|) (-10 -8 (-15 -3913 ((-1212) |#1|)) (-15 -3913 (|#1| (-1212))) (-15 -3913 ((-887) |#1|))) (-93)) (T -92))
+NIL
+(-10 -8 (-15 -3913 ((-1212) |#1|)) (-15 -3913 (|#1| (-1212))) (-15 -3913 ((-887) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-1212)) 17 T ELT) (((-1212) $) 16 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2340 (((-114) $ $) 8 T ELT)))
(((-93) (-142)) (T -93))
NIL
(-13 (-1132) (-504 (-1212)))
(((-102) . T) ((-635 #0=(-1212)) . T) ((-632 (-887)) . T) ((-632 #0#) . T) ((-504 #0#) . T) ((-1132) . T) ((-1247) . T))
-((-4287 (($ $) 10 T ELT)) (-4302 (($ $) 12 T ELT)))
-(((-94 |#1|) (-10 -8 (-15 -4302 (|#1| |#1|)) (-15 -4287 (|#1| |#1|))) (-95)) (T -94))
+((-1932 (($ $) 10 T ELT)) (-1945 (($ $) 12 T ELT)))
+(((-94 |#1|) (-10 -8 (-15 -1945 (|#1| |#1|)) (-15 -1932 (|#1| |#1|))) (-95)) (T -94))
NIL
-(-10 -8 (-15 -4302 (|#1| |#1|)) (-15 -4287 (|#1| |#1|)))
-((-4263 (($ $) 11 T ELT)) (-3499 (($ $) 10 T ELT)) (-4287 (($ $) 9 T ELT)) (-4302 (($ $) 8 T ELT)) (-4275 (($ $) 7 T ELT)) (-4252 (($ $) 6 T ELT)))
+(-10 -8 (-15 -1945 (|#1| |#1|)) (-15 -1932 (|#1| |#1|)))
+((-1907 (($ $) 11 T ELT)) (-1882 (($ $) 10 T ELT)) (-1932 (($ $) 9 T ELT)) (-1945 (($ $) 8 T ELT)) (-1920 (($ $) 7 T ELT)) (-1895 (($ $) 6 T ELT)))
(((-95) (-142)) (T -95))
-((-4263 (*1 *1 *1) (-4 *1 (-95))) (-3499 (*1 *1 *1) (-4 *1 (-95))) (-4287 (*1 *1 *1) (-4 *1 (-95))) (-4302 (*1 *1 *1) (-4 *1 (-95))) (-4275 (*1 *1 *1) (-4 *1 (-95))) (-4252 (*1 *1 *1) (-4 *1 (-95))))
-(-13 (-10 -8 (-15 -4252 ($ $)) (-15 -4275 ($ $)) (-15 -4302 ($ $)) (-15 -4287 ($ $)) (-15 -3499 ($ $)) (-15 -4263 ($ $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3614 (((-1166) $) 9 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 15 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-96) (-13 (-1114) (-10 -8 (-15 -3614 ((-1166) $))))) (T -96))
-((-3614 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-96)))))
-(-13 (-1114) (-10 -8 (-15 -3614 ((-1166) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1376 (((-391) (-1189) (-391)) 46 T ELT) (((-391) (-1189) (-1189) (-391)) 44 T ELT)) (-4089 (((-391) (-391)) 35 T ELT)) (-1355 (((-1303)) 37 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2184 (((-391) (-1189) (-1189)) 50 T ELT) (((-391) (-1189)) 52 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1679 (((-391) (-1189) (-1189)) 51 T ELT)) (-3685 (((-391) (-1189) (-1189)) 53 T ELT) (((-391) (-1189)) 54 T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-97) (-13 (-1132) (-10 -7 (-15 -2184 ((-391) (-1189) (-1189))) (-15 -2184 ((-391) (-1189))) (-15 -3685 ((-391) (-1189) (-1189))) (-15 -3685 ((-391) (-1189))) (-15 -1679 ((-391) (-1189) (-1189))) (-15 -1355 ((-1303))) (-15 -4089 ((-391) (-391))) (-15 -1376 ((-391) (-1189) (-391))) (-15 -1376 ((-391) (-1189) (-1189) (-391))) (-6 -4508)))) (T -97))
-((-2184 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))) (-2184 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))) (-3685 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))) (-3685 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1679 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1355 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-97)))) (-4089 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-97)))) (-1376 (*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1189)) (-5 *1 (-97)))) (-1376 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1189)) (-5 *1 (-97)))))
-(-13 (-1132) (-10 -7 (-15 -2184 ((-391) (-1189) (-1189))) (-15 -2184 ((-391) (-1189))) (-15 -3685 ((-391) (-1189) (-1189))) (-15 -3685 ((-391) (-1189))) (-15 -1679 ((-391) (-1189) (-1189))) (-15 -1355 ((-1303))) (-15 -4089 ((-391) (-391))) (-15 -1376 ((-391) (-1189) (-391))) (-15 -1376 ((-391) (-1189) (-1189) (-391))) (-6 -4508)))
+((-1907 (*1 *1 *1) (-4 *1 (-95))) (-1882 (*1 *1 *1) (-4 *1 (-95))) (-1932 (*1 *1 *1) (-4 *1 (-95))) (-1945 (*1 *1 *1) (-4 *1 (-95))) (-1920 (*1 *1 *1) (-4 *1 (-95))) (-1895 (*1 *1 *1) (-4 *1 (-95))))
+(-13 (-10 -8 (-15 -1895 ($ $)) (-15 -1920 ($ $)) (-15 -1945 ($ $)) (-15 -1932 ($ $)) (-15 -1882 ($ $)) (-15 -1907 ($ $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-4389 (((-1166) $) 9 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 15 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-96) (-13 (-1114) (-10 -8 (-15 -4389 ((-1166) $))))) (T -96))
+((-4389 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-96)))))
+(-13 (-1114) (-10 -8 (-15 -4389 ((-1166) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2273 (((-391) (-1189) (-391)) 46 T ELT) (((-391) (-1189) (-1189) (-391)) 44 T ELT)) (-2617 (((-391) (-391)) 35 T ELT)) (-3696 (((-1303)) 37 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-4276 (((-391) (-1189) (-1189)) 50 T ELT) (((-391) (-1189)) 52 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2863 (((-391) (-1189) (-1189)) 51 T ELT)) (-3169 (((-391) (-1189) (-1189)) 53 T ELT) (((-391) (-1189)) 54 T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-97) (-13 (-1132) (-10 -7 (-15 -4276 ((-391) (-1189) (-1189))) (-15 -4276 ((-391) (-1189))) (-15 -3169 ((-391) (-1189) (-1189))) (-15 -3169 ((-391) (-1189))) (-15 -2863 ((-391) (-1189) (-1189))) (-15 -3696 ((-1303))) (-15 -2617 ((-391) (-391))) (-15 -2273 ((-391) (-1189) (-391))) (-15 -2273 ((-391) (-1189) (-1189) (-391))) (-6 -4508)))) (T -97))
+((-4276 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))) (-4276 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))) (-3169 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))) (-3169 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))) (-2863 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))) (-3696 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-97)))) (-2617 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-97)))) (-2273 (*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1189)) (-5 *1 (-97)))) (-2273 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1189)) (-5 *1 (-97)))))
+(-13 (-1132) (-10 -7 (-15 -4276 ((-391) (-1189) (-1189))) (-15 -4276 ((-391) (-1189))) (-15 -3169 ((-391) (-1189) (-1189))) (-15 -3169 ((-391) (-1189))) (-15 -2863 ((-391) (-1189) (-1189))) (-15 -3696 ((-1303))) (-15 -2617 ((-391) (-391))) (-15 -2273 ((-391) (-1189) (-391))) (-15 -2273 ((-391) (-1189) (-1189) (-391))) (-6 -4508)))
NIL
(((-98) (-142)) (T -98))
NIL
(-13 (-10 -7 (-6 -4508) (-6 (-4510 "*")) (-6 -4509) (-6 -4505) (-6 -4503) (-6 -4502) (-6 -4501) (-6 -4506) (-6 -4500) (-6 -4499) (-6 -4498) (-6 -4497) (-6 -4496) (-6 -4504) (-6 -4507) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4495)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-2050 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-560))) 24 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) 16 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3924 ((|#1| $ |#1|) 13 T ELT)) (-4122 (($ $ $) NIL T ELT)) (-2013 (($ $ $) NIL T ELT)) (-1578 (((-887) $) 22 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2011 (($) 8 T CONST)) (-2473 (((-114) $ $) 10 T ELT)) (-2594 (($ $ $) NIL T ELT)) (** (($ $ (-948)) 32 T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 18 T ELT)) (* (($ $ $) 33 T ELT)))
-(((-99 |#1|) (-13 (-487) (-298 |#1| |#1|) (-10 -8 (-15 -2050 ($ (-1 |#1| |#1|))) (-15 -2050 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2050 ($ (-1 |#1| |#1| (-560)))))) (-1080)) (T -99))
-((-2050 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-99 *3)))) (-2050 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-99 *3)))) (-2050 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-560))) (-4 *3 (-1080)) (-5 *1 (-99 *3)))))
-(-13 (-487) (-298 |#1| |#1|) (-10 -8 (-15 -2050 ($ (-1 |#1| |#1|))) (-15 -2050 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2050 ($ (-1 |#1| |#1| (-560))))))
-((-4011 (((-419 |#2|) |#2| (-663 |#2|)) 10 T ELT) (((-419 |#2|) |#2| |#2|) 11 T ELT)))
-(((-100 |#1| |#2|) (-10 -7 (-15 -4011 ((-419 |#2|) |#2| |#2|)) (-15 -4011 ((-419 |#2|) |#2| (-663 |#2|)))) (-13 (-466) (-149)) (-1273 |#1|)) (T -100))
-((-4011 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-13 (-466) (-149))) (-5 *2 (-419 *3)) (-5 *1 (-100 *5 *3)))) (-4011 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-466) (-149))) (-5 *2 (-419 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1273 *4)))))
-(-10 -7 (-15 -4011 ((-419 |#2|) |#2| |#2|)) (-15 -4011 ((-419 |#2|) |#2| (-663 |#2|))))
-((-1538 (((-114) $ $) 13 T ELT)) (-2275 (((-114) $ $) 14 T ELT)) (-2473 (((-114) $ $) 11 T ELT)))
-(((-101 |#1|) (-10 -8 (-15 -2275 ((-114) |#1| |#1|)) (-15 -1538 ((-114) |#1| |#1|)) (-15 -2473 ((-114) |#1| |#1|))) (-102)) (T -101))
-NIL
-(-10 -8 (-15 -2275 ((-114) |#1| |#1|)) (-15 -1538 ((-114) |#1| |#1|)) (-15 -2473 ((-114) |#1| |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2473 (((-114) $ $) 8 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-2238 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-560))) 24 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) 16 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1507 ((|#1| $ |#1|) 13 T ELT)) (-1714 (($ $ $) NIL T ELT)) (-3117 (($ $ $) NIL T ELT)) (-3913 (((-887) $) 22 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1456 (($) 8 T CONST)) (-2340 (((-114) $ $) 10 T ELT)) (-2453 (($ $ $) NIL T ELT)) (** (($ $ (-948)) 32 T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 18 T ELT)) (* (($ $ $) 33 T ELT)))
+(((-99 |#1|) (-13 (-487) (-298 |#1| |#1|) (-10 -8 (-15 -2238 ($ (-1 |#1| |#1|))) (-15 -2238 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2238 ($ (-1 |#1| |#1| (-560)))))) (-1080)) (T -99))
+((-2238 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-99 *3)))) (-2238 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-99 *3)))) (-2238 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-560))) (-4 *3 (-1080)) (-5 *1 (-99 *3)))))
+(-13 (-487) (-298 |#1| |#1|) (-10 -8 (-15 -2238 ($ (-1 |#1| |#1|))) (-15 -2238 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2238 ($ (-1 |#1| |#1| (-560))))))
+((-3115 (((-419 |#2|) |#2| (-663 |#2|)) 10 T ELT) (((-419 |#2|) |#2| |#2|) 11 T ELT)))
+(((-100 |#1| |#2|) (-10 -7 (-15 -3115 ((-419 |#2|) |#2| |#2|)) (-15 -3115 ((-419 |#2|) |#2| (-663 |#2|)))) (-13 (-466) (-149)) (-1273 |#1|)) (T -100))
+((-3115 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-13 (-466) (-149))) (-5 *2 (-419 *3)) (-5 *1 (-100 *5 *3)))) (-3115 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-466) (-149))) (-5 *2 (-419 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1273 *4)))))
+(-10 -7 (-15 -3115 ((-419 |#2|) |#2| |#2|)) (-15 -3115 ((-419 |#2|) |#2| (-663 |#2|))))
+((-2243 (((-114) $ $) 13 T ELT)) (-3925 (((-114) $ $) 14 T ELT)) (-2340 (((-114) $ $) 11 T ELT)))
+(((-101 |#1|) (-10 -8 (-15 -3925 ((-114) |#1| |#1|)) (-15 -2243 ((-114) |#1| |#1|)) (-15 -2340 ((-114) |#1| |#1|))) (-102)) (T -101))
+NIL
+(-10 -8 (-15 -3925 ((-114) |#1| |#1|)) (-15 -2243 ((-114) |#1| |#1|)) (-15 -2340 ((-114) |#1| |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2340 (((-114) $ $) 8 T ELT)))
(((-102) (-142)) (T -102))
-((-2473 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))) (-1538 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))) (-2275 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))))
-(-13 (-1247) (-10 -8 (-15 -2473 ((-114) $ $)) (-15 -1538 ((-114) $ $)) (-15 -2275 ((-114) $ $))))
+((-2340 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))) (-2243 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))) (-3925 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))))
+(-13 (-1247) (-10 -8 (-15 -2340 ((-114) $ $)) (-15 -2243 ((-114) $ $)) (-15 -3925 ((-114) $ $))))
(((-1247) . T))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3853 ((|#1| $) NIL T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-2869 ((|#1| $ |#1|) 24 (|has| $ (-6 -4509)) ELT)) (-2023 (($ $ $) NIL (|has| $ (-6 -4509)) ELT)) (-2361 (($ $ $) NIL (|has| $ (-6 -4509)) ELT)) (-2577 (($ $ (-663 |#1|)) 30 T ELT)) (-1773 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4509)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4509)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4509)) ELT)) (-2083 (($ $ (-663 $)) NIL (|has| $ (-6 -4509)) ELT)) (-2238 (($) NIL T CONST)) (-4210 (($ $) 12 T ELT)) (-2181 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3092 (((-663 $) $) NIL T ELT)) (-3398 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-3320 (($ $ |#1| $) 32 T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2610 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-2166 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-663 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-4198 (($ $) 11 T ELT)) (-3596 (((-663 |#1|) $) NIL T ELT)) (-2409 (((-114) $) 13 T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) 9 T ELT)) (-3986 (($) 31 T ELT)) (-3924 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-1750 (((-560) $ $) NIL T ELT)) (-1978 (((-114) $) NIL T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1799 (($ $) NIL T ELT)) (-1578 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3955 (((-663 $) $) NIL T ELT)) (-2997 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3294 (($ (-793) |#1|) 33 T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-103 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4508) (-6 -4509) (-15 -3294 ($ (-793) |#1|)) (-15 -2577 ($ $ (-663 |#1|))) (-15 -2610 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2610 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2166 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2166 ($ $ |#1| (-1 (-663 |#1|) |#1| |#1| |#1|))))) (-1132)) (T -103))
-((-3294 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *1 (-103 *3)) (-4 *3 (-1132)))) (-2577 (*1 *1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-103 *3)))) (-2610 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1132)))) (-2610 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1132)) (-5 *1 (-103 *3)))) (-2166 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1132)) (-5 *1 (-103 *2)))) (-2166 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-663 *2) *2 *2 *2)) (-4 *2 (-1132)) (-5 *1 (-103 *2)))))
-(-13 (-127 |#1|) (-10 -8 (-6 -4508) (-6 -4509) (-15 -3294 ($ (-793) |#1|)) (-15 -2577 ($ $ (-663 |#1|))) (-15 -2610 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2610 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -2166 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -2166 ($ $ |#1| (-1 (-663 |#1|) |#1| |#1| |#1|)))))
-((-3598 ((|#3| |#2| |#2|) 34 T ELT)) (-1933 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4510 "*"))) ELT)) (-2455 ((|#3| |#2| |#2|) 36 T ELT)) (-1377 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4510 "*"))) ELT)))
-(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3598 (|#3| |#2| |#2|)) (-15 -2455 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4510 "*"))) (PROGN (-15 -1933 (|#1| |#2| |#2|)) (-15 -1377 (|#1| |#2|))) |%noBranch|)) (-1080) (-1273 |#1|) (-708 |#1| |#4| |#5|) (-385 |#1|) (-385 |#1|)) (T -104))
-((-1377 (*1 *2 *3) (-12 (|has| *2 (-6 (-4510 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) (-4 *2 (-1080)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1273 *2)) (-4 *4 (-708 *2 *5 *6)))) (-1933 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4510 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) (-4 *2 (-1080)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1273 *2)) (-4 *4 (-708 *2 *5 *6)))) (-2455 (*1 *2 *3 *3) (-12 (-4 *4 (-1080)) (-4 *2 (-708 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1273 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) (-3598 (*1 *2 *3 *3) (-12 (-4 *4 (-1080)) (-4 *2 (-708 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1273 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))))
-(-10 -7 (-15 -3598 (|#3| |#2| |#2|)) (-15 -2455 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4510 "*"))) (PROGN (-15 -1933 (|#1| |#2| |#2|)) (-15 -1377 (|#1| |#2|))) |%noBranch|))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2756 (((-663 (-1207))) 37 T ELT)) (-3126 (((-2 (|:| |zeros| (-1185 (-229))) (|:| |ones| (-1185 (-229))) (|:| |singularities| (-1185 (-229)))) (-1207)) 39 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-105) (-13 (-1132) (-10 -7 (-15 -2756 ((-663 (-1207)))) (-15 -3126 ((-2 (|:| |zeros| (-1185 (-229))) (|:| |ones| (-1185 (-229))) (|:| |singularities| (-1185 (-229)))) (-1207))) (-6 -4508)))) (T -105))
-((-2756 (*1 *2) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-105)))) (-3126 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-2 (|:| |zeros| (-1185 (-229))) (|:| |ones| (-1185 (-229))) (|:| |singularities| (-1185 (-229))))) (-5 *1 (-105)))))
-(-13 (-1132) (-10 -7 (-15 -2756 ((-663 (-1207)))) (-15 -3126 ((-2 (|:| |zeros| (-1185 (-229))) (|:| |ones| (-1185 (-229))) (|:| |singularities| (-1185 (-229)))) (-1207))) (-6 -4508)))
-((-3376 (($ (-663 |#2|)) 11 T ELT)))
-(((-106 |#1| |#2|) (-10 -8 (-15 -3376 (|#1| (-663 |#2|)))) (-107 |#2|) (-1247)) (T -106))
-NIL
-(-10 -8 (-15 -3376 (|#1| (-663 |#2|))))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-2238 (($) 7 T CONST)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-1576 ((|#1| $) 40 T ELT)) (-3629 (($ |#1| $) 41 T ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2615 ((|#1| $) 42 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-3376 (($ (-663 |#1|)) 43 T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1430 ((|#1| $) NIL T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3654 ((|#1| $ |#1|) 24 (|has| $ (-6 -4509)) ELT)) (-3220 (($ $ $) NIL (|has| $ (-6 -4509)) ELT)) (-2220 (($ $ $) NIL (|has| $ (-6 -4509)) ELT)) (-3740 (($ $ (-663 |#1|)) 30 T ELT)) (-4083 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4509)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4509)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4509)) ELT)) (-2566 (($ $ (-663 $)) NIL (|has| $ (-6 -4509)) ELT)) (-3525 (($) NIL T CONST)) (-4346 (($ $) 12 T ELT)) (-3737 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2104 (((-663 $) $) NIL T ELT)) (-2150 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2647 (($ $ |#1| $) 32 T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2742 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-4093 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-663 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-4335 (($ $) 11 T ELT)) (-2656 (((-663 |#1|) $) NIL T ELT)) (-1485 (((-114) $) 13 T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) 9 T ELT)) (-2832 (($) 31 T ELT)) (-1507 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-2374 (((-560) $ $) NIL T ELT)) (-2752 (((-114) $) NIL T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4107 (($ $) NIL T ELT)) (-3913 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3809 (((-663 $) $) NIL T ELT)) (-3606 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3627 (($ (-793) |#1|) 33 T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-103 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4508) (-6 -4509) (-15 -3627 ($ (-793) |#1|)) (-15 -3740 ($ $ (-663 |#1|))) (-15 -2742 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2742 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4093 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4093 ($ $ |#1| (-1 (-663 |#1|) |#1| |#1| |#1|))))) (-1132)) (T -103))
+((-3627 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *1 (-103 *3)) (-4 *3 (-1132)))) (-3740 (*1 *1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-103 *3)))) (-2742 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1132)))) (-2742 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1132)) (-5 *1 (-103 *3)))) (-4093 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1132)) (-5 *1 (-103 *2)))) (-4093 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-663 *2) *2 *2 *2)) (-4 *2 (-1132)) (-5 *1 (-103 *2)))))
+(-13 (-127 |#1|) (-10 -8 (-6 -4508) (-6 -4509) (-15 -3627 ($ (-793) |#1|)) (-15 -3740 ($ $ (-663 |#1|))) (-15 -2742 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -2742 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -4093 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -4093 ($ $ |#1| (-1 (-663 |#1|) |#1| |#1| |#1|)))))
+((-3566 ((|#3| |#2| |#2|) 34 T ELT)) (-3631 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4510 "*"))) ELT)) (-1939 ((|#3| |#2| |#2|) 36 T ELT)) (-2284 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4510 "*"))) ELT)))
+(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3566 (|#3| |#2| |#2|)) (-15 -1939 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4510 "*"))) (PROGN (-15 -3631 (|#1| |#2| |#2|)) (-15 -2284 (|#1| |#2|))) |%noBranch|)) (-1080) (-1273 |#1|) (-708 |#1| |#4| |#5|) (-385 |#1|) (-385 |#1|)) (T -104))
+((-2284 (*1 *2 *3) (-12 (|has| *2 (-6 (-4510 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) (-4 *2 (-1080)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1273 *2)) (-4 *4 (-708 *2 *5 *6)))) (-3631 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4510 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) (-4 *2 (-1080)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1273 *2)) (-4 *4 (-708 *2 *5 *6)))) (-1939 (*1 *2 *3 *3) (-12 (-4 *4 (-1080)) (-4 *2 (-708 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1273 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) (-3566 (*1 *2 *3 *3) (-12 (-4 *4 (-1080)) (-4 *2 (-708 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1273 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))))
+(-10 -7 (-15 -3566 (|#3| |#2| |#2|)) (-15 -1939 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4510 "*"))) (PROGN (-15 -3631 (|#1| |#2| |#2|)) (-15 -2284 (|#1| |#2|))) |%noBranch|))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-1771 (((-663 (-1207))) 37 T ELT)) (-2457 (((-2 (|:| |zeros| (-1185 (-229))) (|:| |ones| (-1185 (-229))) (|:| |singularities| (-1185 (-229)))) (-1207)) 39 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-105) (-13 (-1132) (-10 -7 (-15 -1771 ((-663 (-1207)))) (-15 -2457 ((-2 (|:| |zeros| (-1185 (-229))) (|:| |ones| (-1185 (-229))) (|:| |singularities| (-1185 (-229)))) (-1207))) (-6 -4508)))) (T -105))
+((-1771 (*1 *2) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-105)))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-2 (|:| |zeros| (-1185 (-229))) (|:| |ones| (-1185 (-229))) (|:| |singularities| (-1185 (-229))))) (-5 *1 (-105)))))
+(-13 (-1132) (-10 -7 (-15 -1771 ((-663 (-1207)))) (-15 -2457 ((-2 (|:| |zeros| (-1185 (-229))) (|:| |ones| (-1185 (-229))) (|:| |singularities| (-1185 (-229)))) (-1207))) (-6 -4508)))
+((-3184 (($ (-663 |#2|)) 11 T ELT)))
+(((-106 |#1| |#2|) (-10 -8 (-15 -3184 (|#1| (-663 |#2|)))) (-107 |#2|) (-1247)) (T -106))
+NIL
+(-10 -8 (-15 -3184 (|#1| (-663 |#2|))))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-3525 (($) 7 T CONST)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-1878 ((|#1| $) 40 T ELT)) (-3888 (($ |#1| $) 41 T ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2796 ((|#1| $) 42 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-3184 (($ (-663 |#1|)) 43 T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-107 |#1|) (-142) (-1247)) (T -107))
-((-3376 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-4 *1 (-107 *3)))) (-2615 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247)))) (-3629 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247)))) (-1576 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247)))))
-(-13 (-503 |t#1|) (-10 -8 (-6 -4509) (-15 -3376 ($ (-663 |t#1|))) (-15 -2615 (|t#1| $)) (-15 -3629 ($ |t#1| $)) (-15 -1576 (|t#1| $))))
-(((-34) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3941 (((-560) $) NIL (|has| (-560) (-319)) ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2138 (((-560) $) NIL (|has| (-560) (-842)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| (-560) (-1069 (-560))) ELT) (((-3 (-560) "failed") $) NIL (|has| (-560) (-1069 (-560))) ELT)) (-3330 (((-560) $) NIL T ELT) (((-1207) $) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-421 (-560)) $) NIL (|has| (-560) (-1069 (-560))) ELT) (((-560) $) NIL (|has| (-560) (-1069 (-560))) ELT)) (-1478 (($ $ $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2310 (($) NIL (|has| (-560) (-559)) ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-2928 (((-114) $) NIL (|has| (-560) (-842)) ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (|has| (-560) (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (|has| (-560) (-911 (-391))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-1617 (($ $) NIL T ELT)) (-3757 (((-560) $) NIL T ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| (-560) (-1182)) ELT)) (-2960 (((-114) $) NIL (|has| (-560) (-842)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3825 (($ $ $) NIL (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| (-560) (-871)) ELT)) (-3957 (($ (-1 (-560) (-560)) $) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL T ELT) (((-711 (-560)) (-1297 $)) NIL T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-3161 (($) NIL (|has| (-560) (-1182)) CONST)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2652 (($ $) NIL (|has| (-560) (-319)) ELT) (((-421 (-560)) $) NIL T ELT)) (-2016 (((-560) $) NIL (|has| (-560) (-559)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-4187 (($ $ (-663 (-560)) (-663 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-560) (-560)) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-305 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-305 (-560)))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-1207)) (-663 (-560))) NIL (|has| (-560) (-528 (-1207) (-560))) ELT) (($ $ (-1207) (-560)) NIL (|has| (-560) (-528 (-1207) (-560))) ELT)) (-2901 (((-793) $) NIL T ELT)) (-3924 (($ $ (-560)) NIL (|has| (-560) (-298 (-560) (-560))) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2894 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $) NIL (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-3056 (($ $) NIL T ELT)) (-3771 (((-560) $) NIL T ELT)) (-1407 (((-915 (-560)) $) NIL (|has| (-560) (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) NIL (|has| (-560) (-633 (-915 (-391)))) ELT) (((-549) $) NIL (|has| (-560) (-633 (-549))) ELT) (((-391) $) NIL (|has| (-560) (-1051)) ELT) (((-229) $) NIL (|has| (-560) (-1051)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-560) (-939))) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 8 T ELT) (($ (-560)) NIL T ELT) (($ (-1207)) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-421 (-560)) $) NIL T ELT) (((-1035 2) $) 10 T ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| (-560) (-939))) (|has| (-560) (-147))) ELT)) (-2930 (((-793)) NIL T CONST)) (-1494 (((-560) $) NIL (|has| (-560) (-559)) ELT)) (-3522 (($ (-421 (-560))) 9 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2282 (($ $) NIL (|has| (-560) (-842)) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $) NIL (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-2536 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2594 (($ $ $) NIL T ELT) (($ (-560) (-560)) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ (-560)) NIL T ELT)))
-(((-108) (-13 (-1022 (-560)) (-632 (-421 (-560))) (-632 (-1035 2)) (-10 -8 (-15 -2652 ((-421 (-560)) $)) (-15 -3522 ($ (-421 (-560))))))) (T -108))
-((-2652 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-108)))) (-3522 (*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-108)))))
-(-13 (-1022 (-560)) (-632 (-421 (-560))) (-632 (-1035 2)) (-10 -8 (-15 -2652 ((-421 (-560)) $)) (-15 -3522 ($ (-421 (-560))))))
-((-4192 (((-663 (-994)) $) 13 T ELT)) (-3614 (((-520) $) 9 T ELT)) (-1578 (((-887) $) 20 T ELT)) (-2510 (($ (-520) (-663 (-994))) 15 T ELT)))
-(((-109) (-13 (-632 (-887)) (-10 -8 (-15 -3614 ((-520) $)) (-15 -4192 ((-663 (-994)) $)) (-15 -2510 ($ (-520) (-663 (-994))))))) (T -109))
-((-3614 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-109)))) (-4192 (*1 *2 *1) (-12 (-5 *2 (-663 (-994))) (-5 *1 (-109)))) (-2510 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-663 (-994))) (-5 *1 (-109)))))
-(-13 (-632 (-887)) (-10 -8 (-15 -3614 ((-520) $)) (-15 -4192 ((-663 (-994)) $)) (-15 -2510 ($ (-520) (-663 (-994))))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1562 (($ $) NIL T ELT)) (-1977 (($ $ $) NIL T ELT)) (-3839 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4040 (((-114) $) NIL (|has| (-114) (-871)) ELT) (((-114) (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-1703 (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| (-114) (-871))) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4509)) ELT)) (-2286 (($ $) NIL (|has| (-114) (-871)) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 (((-114) $ (-1264 (-560)) (-114)) NIL (|has| $ (-6 -4509)) ELT) (((-114) $ (-560) (-114)) NIL (|has| $ (-6 -4509)) ELT)) (-1982 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2238 (($) NIL T CONST)) (-4391 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) NIL T ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT)) (-2375 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-114) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT)) (-4129 (((-114) (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT)) (-3779 (((-114) $ (-560) (-114)) NIL (|has| $ (-6 -4509)) ELT)) (-3709 (((-114) $ (-560)) NIL T ELT)) (-1722 (((-560) (-114) $ (-560)) NIL (|has| (-114) (-1132)) ELT) (((-560) (-114) $) NIL (|has| (-114) (-1132)) ELT) (((-560) (-1 (-114) (-114)) $) NIL T ELT)) (-2181 (((-663 (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-1961 (($ $ $) NIL T ELT)) (-1937 (($ $) NIL T ELT)) (-1483 (($ $ $) NIL T ELT)) (-4095 (($ (-793) (-114)) 10 T ELT)) (-2148 (($ $ $) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL T ELT)) (-3223 (($ $ $) NIL (|has| (-114) (-871)) ELT) (($ (-1 (-114) (-114) (-114)) $ $) NIL T ELT)) (-2656 (((-663 (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT)) (-2937 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL T ELT)) (-3768 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-114) (-114) (-114)) $ $) NIL T ELT) (($ (-1 (-114) (-114)) $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3996 (($ $ $ (-560)) NIL T ELT) (($ (-114) $ (-560)) NIL T ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3637 (((-114) $) NIL (|has| (-560) (-871)) ELT)) (-3329 (((-3 (-114) "failed") (-1 (-114) (-114)) $) NIL T ELT)) (-3037 (($ $ (-114)) NIL (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-114)) (-663 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT) (($ $ (-114) (-114)) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT) (($ $ (-305 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT) (($ $ (-663 (-305 (-114)))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT)) (-3571 (((-663 (-114)) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 (($ $ (-1264 (-560))) NIL T ELT) (((-114) $ (-560)) NIL T ELT) (((-114) $ (-560) (-114)) NIL T ELT)) (-4413 (($ $ (-1264 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-3865 (((-793) (-114) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT) (((-793) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3640 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) NIL (|has| (-114) (-633 (-549))) ELT)) (-1592 (($ (-663 (-114))) NIL T ELT)) (-3415 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-114) $) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-4139 (($ (-793) (-114)) 11 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1728 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-1953 (($ $ $) NIL T ELT)) (-1616 (($ $ $) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) NIL T ELT)) (-1602 (($ $ $) NIL T ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-110) (-13 (-125) (-10 -8 (-15 -4139 ($ (-793) (-114)))))) (T -110))
-((-4139 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-114)) (-5 *1 (-110)))))
-(-13 (-125) (-10 -8 (-15 -4139 ($ (-793) (-114)))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#2|) 31 T ELT)))
+((-3184 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-4 *1 (-107 *3)))) (-2796 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247)))) (-3888 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247)))) (-1878 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247)))))
+(-13 (-503 |t#1|) (-10 -8 (-6 -4509) (-15 -3184 ($ (-663 |t#1|))) (-15 -2796 (|t#1| $)) (-15 -3888 ($ |t#1| $)) (-15 -1878 (|t#1| $))))
+(((-34) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3655 (((-560) $) NIL (|has| (-560) (-319)) ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-1869 (((-560) $) NIL (|has| (-560) (-842)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| (-560) (-1069 (-560))) ELT) (((-3 (-560) "failed") $) NIL (|has| (-560) (-1069 (-560))) ELT)) (-3649 (((-560) $) NIL T ELT) (((-1207) $) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-421 (-560)) $) NIL (|has| (-560) (-1069 (-560))) ELT) (((-560) $) NIL (|has| (-560) (-1069 (-560))) ELT)) (-2186 (($ $ $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1812 (($) NIL (|has| (-560) (-559)) ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-4172 (((-114) $) NIL (|has| (-560) (-842)) ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (|has| (-560) (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (|has| (-560) (-911 (-391))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-3490 (($ $) NIL T ELT)) (-2473 (((-560) $) NIL T ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| (-560) (-1182)) ELT)) (-4470 (((-114) $) NIL (|has| (-560) (-842)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2932 (($ $ $) NIL (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| (-560) (-871)) ELT)) (-2260 (($ (-1 (-560) (-560)) $) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL T ELT) (((-711 (-560)) (-1297 $)) NIL T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3239 (($) NIL (|has| (-560) (-1182)) CONST)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3211 (($ $) NIL (|has| (-560) (-319)) ELT) (((-421 (-560)) $) NIL T ELT)) (-3147 (((-560) $) NIL (|has| (-560) (-559)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2371 (($ $ (-663 (-560)) (-663 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-560) (-560)) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-305 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-305 (-560)))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-1207)) (-663 (-560))) NIL (|has| (-560) (-528 (-1207) (-560))) ELT) (($ $ (-1207) (-560)) NIL (|has| (-560) (-528 (-1207) (-560))) ELT)) (-3989 (((-793) $) NIL T ELT)) (-1507 (($ $ (-560)) NIL (|has| (-560) (-298 (-560) (-560))) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3161 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $) NIL (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-2951 (($ $) NIL T ELT)) (-2484 (((-560) $) NIL T ELT)) (-2400 (((-915 (-560)) $) NIL (|has| (-560) (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) NIL (|has| (-560) (-633 (-915 (-391)))) ELT) (((-549) $) NIL (|has| (-560) (-633 (-549))) ELT) (((-391) $) NIL (|has| (-560) (-1051)) ELT) (((-229) $) NIL (|has| (-560) (-1051)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-560) (-939))) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 8 T ELT) (($ (-560)) NIL T ELT) (($ (-1207)) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-421 (-560)) $) NIL T ELT) (((-1035 2) $) 10 T ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| (-560) (-939))) (|has| (-560) (-147))) ELT)) (-4191 (((-793)) NIL T CONST)) (-3622 (((-560) $) NIL (|has| (-560) (-559)) ELT)) (-4022 (($ (-421 (-560))) 9 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-2719 (($ $) NIL (|has| (-560) (-842)) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $) NIL (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-2396 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2453 (($ $ $) NIL T ELT) (($ (-560) (-560)) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ (-560)) NIL T ELT)))
+(((-108) (-13 (-1022 (-560)) (-632 (-421 (-560))) (-632 (-1035 2)) (-10 -8 (-15 -3211 ((-421 (-560)) $)) (-15 -4022 ($ (-421 (-560))))))) (T -108))
+((-3211 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-108)))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-108)))))
+(-13 (-1022 (-560)) (-632 (-421 (-560))) (-632 (-1035 2)) (-10 -8 (-15 -3211 ((-421 (-560)) $)) (-15 -4022 ($ (-421 (-560))))))
+((-2960 (((-663 (-994)) $) 13 T ELT)) (-4389 (((-520) $) 9 T ELT)) (-3913 (((-887) $) 20 T ELT)) (-4364 (($ (-520) (-663 (-994))) 15 T ELT)))
+(((-109) (-13 (-632 (-887)) (-10 -8 (-15 -4389 ((-520) $)) (-15 -2960 ((-663 (-994)) $)) (-15 -4364 ($ (-520) (-663 (-994))))))) (T -109))
+((-4389 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-109)))) (-2960 (*1 *2 *1) (-12 (-5 *2 (-663 (-994))) (-5 *1 (-109)))) (-4364 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-663 (-994))) (-5 *1 (-109)))))
+(-13 (-632 (-887)) (-10 -8 (-15 -4389 ((-520) $)) (-15 -2960 ((-663 (-994)) $)) (-15 -4364 ($ (-520) (-663 (-994))))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2269 (($ $) NIL T ELT)) (-1423 (($ $ $) NIL T ELT)) (-2033 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-2152 (((-114) $) NIL (|has| (-114) (-871)) ELT) (((-114) (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-3152 (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| (-114) (-871))) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4509)) ELT)) (-1787 (($ $) NIL (|has| (-114) (-871)) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 (((-114) $ (-1264 (-560)) (-114)) NIL (|has| $ (-6 -4509)) ELT) (((-114) $ (-560) (-114)) NIL (|has| $ (-6 -4509)) ELT)) (-3923 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3525 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) NIL T ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT)) (-3033 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-114) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT)) (-1778 (((-114) (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT)) (-3338 (((-114) $ (-560) (-114)) NIL (|has| $ (-6 -4509)) ELT)) (-3274 (((-114) $ (-560)) NIL T ELT)) (-2359 (((-560) (-114) $ (-560)) NIL (|has| (-114) (-1132)) ELT) (((-560) (-114) $) NIL (|has| (-114) (-1132)) ELT) (((-560) (-1 (-114) (-114)) $) NIL T ELT)) (-3737 (((-663 (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-1415 (($ $ $) NIL T ELT)) (-1394 (($ $) NIL T ELT)) (-3342 (($ $ $) NIL T ELT)) (-4246 (($ (-793) (-114)) 10 T ELT)) (-1980 (($ $ $) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL (|has| (-114) (-871)) ELT) (($ (-1 (-114) (-114) (-114)) $ $) NIL T ELT)) (-3243 (((-663 (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT)) (-4263 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL T ELT)) (-3324 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-114) (-114) (-114)) $ $) NIL T ELT) (($ (-1 (-114) (-114)) $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2507 (($ $ $ (-560)) NIL T ELT) (($ (-114) $ (-560)) NIL T ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4334 (((-114) $) NIL (|has| (-560) (-871)) ELT)) (-2708 (((-3 (-114) "failed") (-1 (-114) (-114)) $) NIL T ELT)) (-2740 (($ $ (-114)) NIL (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-114)) (-663 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT) (($ $ (-114) (-114)) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT) (($ $ (-305 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT) (($ $ (-663 (-305 (-114)))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT)) (-1383 (((-663 (-114)) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 (($ $ (-1264 (-560))) NIL T ELT) (((-114) $ (-560)) NIL T ELT) (((-114) $ (-560) (-114)) NIL T ELT)) (-2579 (($ $ (-1264 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-3384 (((-793) (-114) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT) (((-793) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3993 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) NIL (|has| (-114) (-633 (-549))) ELT)) (-3924 (($ (-663 (-114))) NIL T ELT)) (-1955 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-114) $) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-1902 (($ (-793) (-114)) 11 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2149 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-1404 (($ $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) NIL T ELT)) (-2300 (($ $ $) NIL T ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-110) (-13 (-125) (-10 -8 (-15 -1902 ($ (-793) (-114)))))) (T -110))
+((-1902 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-114)) (-5 *1 (-110)))))
+(-13 (-125) (-10 -8 (-15 -1902 ($ (-793) (-114)))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#2|) 31 T ELT)))
(((-111 |#1| |#2|) (-142) (-1080) (-1080)) (T -111))
NIL
(-13 (-670 |t#1|) (-1087 |t#2|) (-10 -7 (-6 -4503) (-6 -4502)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-1082 |#2|) . T) ((-1087 |#2|) . T) ((-1132) . T) ((-1247) . T))
-((-1562 (($ $) 8 T ELT)))
-(((-112 |#1|) (-10 -8 (-15 -1562 (|#1| |#1|))) (-113)) (T -112))
+((-2269 (($ $) 8 T ELT)))
+(((-112 |#1|) (-10 -8 (-15 -2269 (|#1| |#1|))) (-113)) (T -112))
NIL
-(-10 -8 (-15 -1562 (|#1| |#1|)))
-((-1562 (($ $) 8 T ELT)) (-1961 (($ $ $) 9 T ELT)) (-1937 (($ $) 11 T ELT)) (-1953 (($ $ $) 10 T ELT)) (-1616 (($ $ $) 6 T ELT)) (-1602 (($ $ $) 7 T ELT)))
+(-10 -8 (-15 -2269 (|#1| |#1|)))
+((-2269 (($ $) 8 T ELT)) (-1415 (($ $ $) 9 T ELT)) (-1394 (($ $) 11 T ELT)) (-1404 (($ $ $) 10 T ELT)) (-2311 (($ $ $) 6 T ELT)) (-2300 (($ $ $) 7 T ELT)))
(((-113) (-142)) (T -113))
-((-1937 (*1 *1 *1) (-4 *1 (-113))) (-1953 (*1 *1 *1 *1) (-4 *1 (-113))) (-1961 (*1 *1 *1 *1) (-4 *1 (-113))))
-(-13 (-684) (-10 -8 (-15 -1937 ($ $)) (-15 -1953 ($ $ $)) (-15 -1961 ($ $ $))))
+((-1394 (*1 *1 *1) (-4 *1 (-113))) (-1404 (*1 *1 *1 *1) (-4 *1 (-113))) (-1415 (*1 *1 *1 *1) (-4 *1 (-113))))
+(-13 (-684) (-10 -8 (-15 -1394 ($ $)) (-15 -1404 ($ $ $)) (-15 -1415 ($ $ $))))
(((-684) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-1562 (($ $) 10 T ELT)) (-1977 (($ $ $) 15 T ELT)) (-3841 (($) 7 T CONST)) (-2601 (($ $) 6 T ELT)) (-3241 (((-793)) 24 T ELT)) (-2310 (($) 32 T ELT)) (-1961 (($ $ $) 13 T ELT)) (-1937 (($ $) 9 T ELT)) (-1483 (($ $ $) 16 T ELT)) (-2148 (($ $ $) 17 T ELT)) (-3825 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2820 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4419 (((-948) $) 30 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3128 (($ (-948)) 28 T ELT)) (-3821 (($ $ $) 20 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2143 (($) 8 T CONST)) (-1662 (($ $ $) 21 T ELT)) (-1407 (((-549) $) 34 T ELT)) (-1578 (((-887) $) 36 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1953 (($ $ $) 11 T ELT)) (-1616 (($ $ $) 14 T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 19 T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 22 T ELT)) (-1602 (($ $ $) 12 T ELT)))
-(((-114) (-13 (-866) (-998) (-633 (-549)) (-10 -8 (-15 -1977 ($ $ $)) (-15 -2148 ($ $ $)) (-15 -1483 ($ $ $)) (-15 -2601 ($ $))))) (T -114))
-((-1977 (*1 *1 *1 *1) (-5 *1 (-114))) (-2148 (*1 *1 *1 *1) (-5 *1 (-114))) (-1483 (*1 *1 *1 *1) (-5 *1 (-114))) (-2601 (*1 *1 *1) (-5 *1 (-114))))
-(-13 (-866) (-998) (-633 (-549)) (-10 -8 (-15 -1977 ($ $ $)) (-15 -2148 ($ $ $)) (-15 -1483 ($ $ $)) (-15 -2601 ($ $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-4441 (((-793) $) 92 T ELT) (($ $ (-793)) 37 T ELT)) (-2955 (((-114) $) 41 T ELT)) (-1439 (($ $ (-1189) (-795)) 59 T ELT) (($ $ (-520) (-795)) 33 T ELT)) (-2279 (($ $ (-45 (-1189) (-795))) 16 T ELT)) (-2502 (((-3 (-795) "failed") $ (-1189)) 27 T ELT) (((-713 (-795)) $ (-520)) 32 T ELT)) (-4192 (((-45 (-1189) (-795)) $) 15 T ELT)) (-4399 (($ (-1207)) 20 T ELT) (($ (-1207) (-793)) 23 T ELT) (($ (-1207) (-55)) 24 T ELT)) (-3832 (((-114) $) 39 T ELT)) (-1369 (((-114) $) 43 T ELT)) (-3614 (((-1207) $) 8 T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2784 (((-114) $ (-1207)) 11 T ELT)) (-4415 (($ $ (-1 (-549) (-663 (-549)))) 65 T ELT) (((-3 (-1 (-549) (-663 (-549))) "failed") $) 72 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3172 (((-114) $ (-520)) 36 T ELT)) (-3789 (($ $ (-1 (-114) $ $)) 45 T ELT)) (-4358 (((-3 (-1 (-887) (-663 (-887))) "failed") $) 70 T ELT) (($ $ (-1 (-887) (-663 (-887)))) 51 T ELT) (($ $ (-1 (-887) (-887))) 53 T ELT)) (-2862 (($ $ (-1189)) 55 T ELT) (($ $ (-520)) 57 T ELT)) (-1799 (($ $) 78 T ELT)) (-4177 (($ $ (-1 (-114) $ $)) 46 T ELT)) (-1578 (((-887) $) 61 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1354 (($ $ (-520)) 34 T ELT)) (-3617 (((-55) $) 73 T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 90 T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 104 T ELT)))
-(((-115) (-13 (-871) (-858 (-1207)) (-10 -8 (-15 -4192 ((-45 (-1189) (-795)) $)) (-15 -1799 ($ $)) (-15 -4399 ($ (-1207))) (-15 -4399 ($ (-1207) (-793))) (-15 -4399 ($ (-1207) (-55))) (-15 -3832 ((-114) $)) (-15 -2955 ((-114) $)) (-15 -1369 ((-114) $)) (-15 -4441 ((-793) $)) (-15 -4441 ($ $ (-793))) (-15 -3789 ($ $ (-1 (-114) $ $))) (-15 -4177 ($ $ (-1 (-114) $ $))) (-15 -4358 ((-3 (-1 (-887) (-663 (-887))) "failed") $)) (-15 -4358 ($ $ (-1 (-887) (-663 (-887))))) (-15 -4358 ($ $ (-1 (-887) (-887)))) (-15 -4415 ($ $ (-1 (-549) (-663 (-549))))) (-15 -4415 ((-3 (-1 (-549) (-663 (-549))) "failed") $)) (-15 -3172 ((-114) $ (-520))) (-15 -1354 ($ $ (-520))) (-15 -2862 ($ $ (-1189))) (-15 -2862 ($ $ (-520))) (-15 -2502 ((-3 (-795) "failed") $ (-1189))) (-15 -2502 ((-713 (-795)) $ (-520))) (-15 -1439 ($ $ (-1189) (-795))) (-15 -1439 ($ $ (-520) (-795))) (-15 -2279 ($ $ (-45 (-1189) (-795))))))) (T -115))
-((-4192 (*1 *2 *1) (-12 (-5 *2 (-45 (-1189) (-795))) (-5 *1 (-115)))) (-1799 (*1 *1 *1) (-5 *1 (-115))) (-4399 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-115)))) (-4399 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-793)) (-5 *1 (-115)))) (-4399 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-55)) (-5 *1 (-115)))) (-3832 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))) (-2955 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))) (-1369 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))) (-4441 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-115)))) (-4441 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-115)))) (-3789 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-114) (-115) (-115))) (-5 *1 (-115)))) (-4177 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-114) (-115) (-115))) (-5 *1 (-115)))) (-4358 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-887) (-663 (-887)))) (-5 *1 (-115)))) (-4358 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-887) (-663 (-887)))) (-5 *1 (-115)))) (-4358 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-887) (-887))) (-5 *1 (-115)))) (-4415 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-549) (-663 (-549)))) (-5 *1 (-115)))) (-4415 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-549) (-663 (-549)))) (-5 *1 (-115)))) (-3172 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-114)) (-5 *1 (-115)))) (-1354 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-115)))) (-2862 (*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-115)))) (-2862 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-115)))) (-2502 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1189)) (-5 *2 (-795)) (-5 *1 (-115)))) (-2502 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-795))) (-5 *1 (-115)))) (-1439 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-795)) (-5 *1 (-115)))) (-1439 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-795)) (-5 *1 (-115)))) (-2279 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1189) (-795))) (-5 *1 (-115)))))
-(-13 (-871) (-858 (-1207)) (-10 -8 (-15 -4192 ((-45 (-1189) (-795)) $)) (-15 -1799 ($ $)) (-15 -4399 ($ (-1207))) (-15 -4399 ($ (-1207) (-793))) (-15 -4399 ($ (-1207) (-55))) (-15 -3832 ((-114) $)) (-15 -2955 ((-114) $)) (-15 -1369 ((-114) $)) (-15 -4441 ((-793) $)) (-15 -4441 ($ $ (-793))) (-15 -3789 ($ $ (-1 (-114) $ $))) (-15 -4177 ($ $ (-1 (-114) $ $))) (-15 -4358 ((-3 (-1 (-887) (-663 (-887))) "failed") $)) (-15 -4358 ($ $ (-1 (-887) (-663 (-887))))) (-15 -4358 ($ $ (-1 (-887) (-887)))) (-15 -4415 ($ $ (-1 (-549) (-663 (-549))))) (-15 -4415 ((-3 (-1 (-549) (-663 (-549))) "failed") $)) (-15 -3172 ((-114) $ (-520))) (-15 -1354 ($ $ (-520))) (-15 -2862 ($ $ (-1189))) (-15 -2862 ($ $ (-520))) (-15 -2502 ((-3 (-795) "failed") $ (-1189))) (-15 -2502 ((-713 (-795)) $ (-520))) (-15 -1439 ($ $ (-1189) (-795))) (-15 -1439 ($ $ (-520) (-795))) (-15 -2279 ($ $ (-45 (-1189) (-795))))))
-((-2041 (((-3 (-1 |#1| (-663 |#1|)) "failed") (-115)) 23 T ELT) (((-115) (-115) (-1 |#1| |#1|)) 13 T ELT) (((-115) (-115) (-1 |#1| (-663 |#1|))) 11 T ELT) (((-3 |#1| "failed") (-115) (-663 |#1|)) 25 T ELT)) (-2586 (((-3 (-663 (-1 |#1| (-663 |#1|))) "failed") (-115)) 29 T ELT) (((-115) (-115) (-1 |#1| |#1|)) 33 T ELT) (((-115) (-115) (-663 (-1 |#1| (-663 |#1|)))) 30 T ELT)) (-4125 (((-115) |#1|) 63 T ELT)) (-3073 (((-3 |#1| "failed") (-115)) 58 T ELT)))
-(((-116 |#1|) (-10 -7 (-15 -2041 ((-3 |#1| "failed") (-115) (-663 |#1|))) (-15 -2041 ((-115) (-115) (-1 |#1| (-663 |#1|)))) (-15 -2041 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2041 ((-3 (-1 |#1| (-663 |#1|)) "failed") (-115))) (-15 -2586 ((-115) (-115) (-663 (-1 |#1| (-663 |#1|))))) (-15 -2586 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2586 ((-3 (-663 (-1 |#1| (-663 |#1|))) "failed") (-115))) (-15 -4125 ((-115) |#1|)) (-15 -3073 ((-3 |#1| "failed") (-115)))) (-1132)) (T -116))
-((-3073 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-116 *2)) (-4 *2 (-1132)))) (-4125 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-116 *3)) (-4 *3 (-1132)))) (-2586 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-663 (-1 *4 (-663 *4)))) (-5 *1 (-116 *4)) (-4 *4 (-1132)))) (-2586 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1132)) (-5 *1 (-116 *4)))) (-2586 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-663 (-1 *4 (-663 *4)))) (-4 *4 (-1132)) (-5 *1 (-116 *4)))) (-2041 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-663 *4))) (-5 *1 (-116 *4)) (-4 *4 (-1132)))) (-2041 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1132)) (-5 *1 (-116 *4)))) (-2041 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-663 *4))) (-4 *4 (-1132)) (-5 *1 (-116 *4)))) (-2041 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-663 *2)) (-5 *1 (-116 *2)) (-4 *2 (-1132)))))
-(-10 -7 (-15 -2041 ((-3 |#1| "failed") (-115) (-663 |#1|))) (-15 -2041 ((-115) (-115) (-1 |#1| (-663 |#1|)))) (-15 -2041 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2041 ((-3 (-1 |#1| (-663 |#1|)) "failed") (-115))) (-15 -2586 ((-115) (-115) (-663 (-1 |#1| (-663 |#1|))))) (-15 -2586 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2586 ((-3 (-663 (-1 |#1| (-663 |#1|))) "failed") (-115))) (-15 -4125 ((-115) |#1|)) (-15 -3073 ((-3 |#1| "failed") (-115))))
-((-2504 (((-560) |#2|) 41 T ELT)))
-(((-117 |#1| |#2|) (-10 -7 (-15 -2504 ((-560) |#2|))) (-13 (-376) (-1069 (-421 (-560)))) (-1273 |#1|)) (T -117))
-((-2504 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-1069 (-421 *2)))) (-5 *2 (-560)) (-5 *1 (-117 *4 *3)) (-4 *3 (-1273 *4)))))
-(-10 -7 (-15 -2504 ((-560) |#2|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-4471 (($ $ (-560)) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-4179 (($ (-1201 (-560)) (-560)) NIL T ELT)) (-1478 (($ $ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1736 (($ $) NIL T ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-3913 (((-793) $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2865 (((-560)) NIL T ELT)) (-1715 (((-560) $) NIL T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-4372 (($ $ (-560)) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-1601 (((-1185 (-560)) $) NIL T ELT)) (-3266 (($ $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2239 (((-560) $ (-560)) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2269 (($ $) 10 T ELT)) (-1423 (($ $ $) 15 T ELT)) (-3960 (($) 7 T CONST)) (-2025 (($ $) 6 T ELT)) (-2552 (((-793)) 24 T ELT)) (-1812 (($) 32 T ELT)) (-1415 (($ $ $) 13 T ELT)) (-1394 (($ $) 9 T ELT)) (-3342 (($ $ $) 16 T ELT)) (-1980 (($ $ $) 17 T ELT)) (-2932 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4379 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2622 (((-948) $) 30 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1591 (($ (-948)) 28 T ELT)) (-1858 (($ $ $) 20 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1964 (($) 8 T CONST)) (-2695 (($ $ $) 21 T ELT)) (-2400 (((-549) $) 34 T ELT)) (-3913 (((-887) $) 36 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1404 (($ $ $) 11 T ELT)) (-2311 (($ $ $) 14 T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 19 T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 22 T ELT)) (-2300 (($ $ $) 12 T ELT)))
+(((-114) (-13 (-866) (-998) (-633 (-549)) (-10 -8 (-15 -1423 ($ $ $)) (-15 -1980 ($ $ $)) (-15 -3342 ($ $ $)) (-15 -2025 ($ $))))) (T -114))
+((-1423 (*1 *1 *1 *1) (-5 *1 (-114))) (-1980 (*1 *1 *1 *1) (-5 *1 (-114))) (-3342 (*1 *1 *1 *1) (-5 *1 (-114))) (-2025 (*1 *1 *1) (-5 *1 (-114))))
+(-13 (-866) (-998) (-633 (-549)) (-10 -8 (-15 -1423 ($ $ $)) (-15 -1980 ($ $ $)) (-15 -3342 ($ $ $)) (-15 -2025 ($ $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2775 (((-793) $) 92 T ELT) (($ $ (-793)) 37 T ELT)) (-4421 (((-114) $) 41 T ELT)) (-2688 (($ $ (-1189) (-795)) 59 T ELT) (($ $ (-520) (-795)) 33 T ELT)) (-3968 (($ $ (-45 (-1189) (-795))) 16 T ELT)) (-4292 (((-3 (-795) "failed") $ (-1189)) 27 T ELT) (((-713 (-795)) $ (-520)) 32 T ELT)) (-2960 (((-45 (-1189) (-795)) $) 15 T ELT)) (-3963 (($ (-1207)) 20 T ELT) (($ (-1207) (-793)) 23 T ELT) (($ (-1207) (-55)) 24 T ELT)) (-1983 (((-114) $) 39 T ELT)) (-3851 (((-114) $) 43 T ELT)) (-4389 (((-1207) $) 8 T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2060 (((-114) $ (-1207)) 11 T ELT)) (-3940 (($ $ (-1 (-549) (-663 (-549)))) 65 T ELT) (((-3 (-1 (-549) (-663 (-549))) "failed") $) 72 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1695 (((-114) $ (-520)) 36 T ELT)) (-1560 (($ $ (-1 (-114) $ $)) 45 T ELT)) (-3884 (((-3 (-1 (-887) (-663 (-887))) "failed") $) 70 T ELT) (($ $ (-1 (-887) (-663 (-887)))) 51 T ELT) (($ $ (-1 (-887) (-887))) 53 T ELT)) (-3561 (($ $ (-1189)) 55 T ELT) (($ $ (-520)) 57 T ELT)) (-4107 (($ $) 78 T ELT)) (-4245 (($ $ (-1 (-114) $ $)) 46 T ELT)) (-3913 (((-887) $) 61 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2282 (($ $ (-520)) 34 T ELT)) (-3780 (((-55) $) 73 T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 90 T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 104 T ELT)))
+(((-115) (-13 (-871) (-858 (-1207)) (-10 -8 (-15 -2960 ((-45 (-1189) (-795)) $)) (-15 -4107 ($ $)) (-15 -3963 ($ (-1207))) (-15 -3963 ($ (-1207) (-793))) (-15 -3963 ($ (-1207) (-55))) (-15 -1983 ((-114) $)) (-15 -4421 ((-114) $)) (-15 -3851 ((-114) $)) (-15 -2775 ((-793) $)) (-15 -2775 ($ $ (-793))) (-15 -1560 ($ $ (-1 (-114) $ $))) (-15 -4245 ($ $ (-1 (-114) $ $))) (-15 -3884 ((-3 (-1 (-887) (-663 (-887))) "failed") $)) (-15 -3884 ($ $ (-1 (-887) (-663 (-887))))) (-15 -3884 ($ $ (-1 (-887) (-887)))) (-15 -3940 ($ $ (-1 (-549) (-663 (-549))))) (-15 -3940 ((-3 (-1 (-549) (-663 (-549))) "failed") $)) (-15 -1695 ((-114) $ (-520))) (-15 -2282 ($ $ (-520))) (-15 -3561 ($ $ (-1189))) (-15 -3561 ($ $ (-520))) (-15 -4292 ((-3 (-795) "failed") $ (-1189))) (-15 -4292 ((-713 (-795)) $ (-520))) (-15 -2688 ($ $ (-1189) (-795))) (-15 -2688 ($ $ (-520) (-795))) (-15 -3968 ($ $ (-45 (-1189) (-795))))))) (T -115))
+((-2960 (*1 *2 *1) (-12 (-5 *2 (-45 (-1189) (-795))) (-5 *1 (-115)))) (-4107 (*1 *1 *1) (-5 *1 (-115))) (-3963 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-115)))) (-3963 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-793)) (-5 *1 (-115)))) (-3963 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-55)) (-5 *1 (-115)))) (-1983 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))) (-4421 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))) (-3851 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))) (-2775 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-115)))) (-2775 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-115)))) (-1560 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-114) (-115) (-115))) (-5 *1 (-115)))) (-4245 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-114) (-115) (-115))) (-5 *1 (-115)))) (-3884 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-887) (-663 (-887)))) (-5 *1 (-115)))) (-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-887) (-663 (-887)))) (-5 *1 (-115)))) (-3884 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-887) (-887))) (-5 *1 (-115)))) (-3940 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-549) (-663 (-549)))) (-5 *1 (-115)))) (-3940 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-549) (-663 (-549)))) (-5 *1 (-115)))) (-1695 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-114)) (-5 *1 (-115)))) (-2282 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-115)))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-115)))) (-3561 (*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-115)))) (-4292 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1189)) (-5 *2 (-795)) (-5 *1 (-115)))) (-4292 (*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-795))) (-5 *1 (-115)))) (-2688 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-795)) (-5 *1 (-115)))) (-2688 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-795)) (-5 *1 (-115)))) (-3968 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1189) (-795))) (-5 *1 (-115)))))
+(-13 (-871) (-858 (-1207)) (-10 -8 (-15 -2960 ((-45 (-1189) (-795)) $)) (-15 -4107 ($ $)) (-15 -3963 ($ (-1207))) (-15 -3963 ($ (-1207) (-793))) (-15 -3963 ($ (-1207) (-55))) (-15 -1983 ((-114) $)) (-15 -4421 ((-114) $)) (-15 -3851 ((-114) $)) (-15 -2775 ((-793) $)) (-15 -2775 ($ $ (-793))) (-15 -1560 ($ $ (-1 (-114) $ $))) (-15 -4245 ($ $ (-1 (-114) $ $))) (-15 -3884 ((-3 (-1 (-887) (-663 (-887))) "failed") $)) (-15 -3884 ($ $ (-1 (-887) (-663 (-887))))) (-15 -3884 ($ $ (-1 (-887) (-887)))) (-15 -3940 ($ $ (-1 (-549) (-663 (-549))))) (-15 -3940 ((-3 (-1 (-549) (-663 (-549))) "failed") $)) (-15 -1695 ((-114) $ (-520))) (-15 -2282 ($ $ (-520))) (-15 -3561 ($ $ (-1189))) (-15 -3561 ($ $ (-520))) (-15 -4292 ((-3 (-795) "failed") $ (-1189))) (-15 -4292 ((-713 (-795)) $ (-520))) (-15 -2688 ($ $ (-1189) (-795))) (-15 -2688 ($ $ (-520) (-795))) (-15 -3968 ($ $ (-45 (-1189) (-795))))))
+((-2154 (((-3 (-1 |#1| (-663 |#1|)) "failed") (-115)) 23 T ELT) (((-115) (-115) (-1 |#1| |#1|)) 13 T ELT) (((-115) (-115) (-1 |#1| (-663 |#1|))) 11 T ELT) (((-3 |#1| "failed") (-115) (-663 |#1|)) 25 T ELT)) (-3824 (((-3 (-663 (-1 |#1| (-663 |#1|))) "failed") (-115)) 29 T ELT) (((-115) (-115) (-1 |#1| |#1|)) 33 T ELT) (((-115) (-115) (-663 (-1 |#1| (-663 |#1|)))) 30 T ELT)) (-1746 (((-115) |#1|) 63 T ELT)) (-3146 (((-3 |#1| "failed") (-115)) 58 T ELT)))
+(((-116 |#1|) (-10 -7 (-15 -2154 ((-3 |#1| "failed") (-115) (-663 |#1|))) (-15 -2154 ((-115) (-115) (-1 |#1| (-663 |#1|)))) (-15 -2154 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2154 ((-3 (-1 |#1| (-663 |#1|)) "failed") (-115))) (-15 -3824 ((-115) (-115) (-663 (-1 |#1| (-663 |#1|))))) (-15 -3824 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3824 ((-3 (-663 (-1 |#1| (-663 |#1|))) "failed") (-115))) (-15 -1746 ((-115) |#1|)) (-15 -3146 ((-3 |#1| "failed") (-115)))) (-1132)) (T -116))
+((-3146 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-116 *2)) (-4 *2 (-1132)))) (-1746 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-116 *3)) (-4 *3 (-1132)))) (-3824 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-663 (-1 *4 (-663 *4)))) (-5 *1 (-116 *4)) (-4 *4 (-1132)))) (-3824 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1132)) (-5 *1 (-116 *4)))) (-3824 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-663 (-1 *4 (-663 *4)))) (-4 *4 (-1132)) (-5 *1 (-116 *4)))) (-2154 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-663 *4))) (-5 *1 (-116 *4)) (-4 *4 (-1132)))) (-2154 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1132)) (-5 *1 (-116 *4)))) (-2154 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-663 *4))) (-4 *4 (-1132)) (-5 *1 (-116 *4)))) (-2154 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-663 *2)) (-5 *1 (-116 *2)) (-4 *2 (-1132)))))
+(-10 -7 (-15 -2154 ((-3 |#1| "failed") (-115) (-663 |#1|))) (-15 -2154 ((-115) (-115) (-1 |#1| (-663 |#1|)))) (-15 -2154 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2154 ((-3 (-1 |#1| (-663 |#1|)) "failed") (-115))) (-15 -3824 ((-115) (-115) (-663 (-1 |#1| (-663 |#1|))))) (-15 -3824 ((-115) (-115) (-1 |#1| |#1|))) (-15 -3824 ((-3 (-663 (-1 |#1| (-663 |#1|))) "failed") (-115))) (-15 -1746 ((-115) |#1|)) (-15 -3146 ((-3 |#1| "failed") (-115))))
+((-4309 (((-560) |#2|) 41 T ELT)))
+(((-117 |#1| |#2|) (-10 -7 (-15 -4309 ((-560) |#2|))) (-13 (-376) (-1069 (-421 (-560)))) (-1273 |#1|)) (T -117))
+((-4309 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-1069 (-421 *2)))) (-5 *2 (-560)) (-5 *1 (-117 *4 *3)) (-4 *3 (-1273 *4)))))
+(-10 -7 (-15 -4309 ((-560) |#2|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-4021 (($ $ (-560)) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-4266 (($ (-1201 (-560)) (-560)) NIL T ELT)) (-2186 (($ $ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-2232 (($ $) NIL T ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-1460 (((-793) $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3601 (((-560)) NIL T ELT)) (-2053 (((-560) $) NIL T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2219 (($ $ (-560)) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3370 (((-1185 (-560)) $) NIL T ELT)) (-3329 (($ $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-2905 (((-560) $ (-560)) NIL T ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT)))
(((-118 |#1|) (-894 |#1|) (-560)) (T -118))
NIL
(-894 |#1|)
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3941 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-319)) ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-118 |#1|) (-939)) ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| (-118 |#1|) (-939)) ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2138 (((-560) $) NIL (|has| (-118 |#1|) (-842)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-118 |#1|) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (|has| (-118 |#1|) (-1069 (-1207))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| (-118 |#1|) (-1069 (-560))) ELT) (((-3 (-560) "failed") $) NIL (|has| (-118 |#1|) (-1069 (-560))) ELT)) (-3330 (((-118 |#1|) $) NIL T ELT) (((-1207) $) NIL (|has| (-118 |#1|) (-1069 (-1207))) ELT) (((-421 (-560)) $) NIL (|has| (-118 |#1|) (-1069 (-560))) ELT) (((-560) $) NIL (|has| (-118 |#1|) (-1069 (-560))) ELT)) (-3298 (($ $) NIL T ELT) (($ (-560) $) NIL T ELT)) (-1478 (($ $ $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| (-118 |#1|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| (-118 |#1|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-118 |#1|))) (|:| |vec| (-1297 (-118 |#1|)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-118 |#1|)) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2310 (($) NIL (|has| (-118 |#1|) (-559)) ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-2928 (((-114) $) NIL (|has| (-118 |#1|) (-842)) ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (|has| (-118 |#1|) (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (|has| (-118 |#1|) (-911 (-391))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-1617 (($ $) NIL T ELT)) (-3757 (((-118 |#1|) $) NIL T ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| (-118 |#1|) (-1182)) ELT)) (-2960 (((-114) $) NIL (|has| (-118 |#1|) (-842)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3825 (($ $ $) NIL (|has| (-118 |#1|) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| (-118 |#1|) (-871)) ELT)) (-3957 (($ (-1 (-118 |#1|) (-118 |#1|)) $) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| (-118 |#1|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| (-118 |#1|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-118 |#1|))) (|:| |vec| (-1297 (-118 |#1|)))) (-1297 $) $) NIL T ELT) (((-711 (-118 |#1|)) (-1297 $)) NIL T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-3161 (($) NIL (|has| (-118 |#1|) (-1182)) CONST)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2652 (($ $) NIL (|has| (-118 |#1|) (-319)) ELT)) (-2016 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-559)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-118 |#1|) (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-118 |#1|) (-939)) ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-4187 (($ $ (-663 (-118 |#1|)) (-663 (-118 |#1|))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-118 |#1|) (-118 |#1|)) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-305 (-118 |#1|))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-663 (-305 (-118 |#1|)))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-663 (-1207)) (-663 (-118 |#1|))) NIL (|has| (-118 |#1|) (-528 (-1207) (-118 |#1|))) ELT) (($ $ (-1207) (-118 |#1|)) NIL (|has| (-118 |#1|) (-528 (-1207) (-118 |#1|))) ELT)) (-2901 (((-793) $) NIL T ELT)) (-3924 (($ $ (-118 |#1|)) NIL (|has| (-118 |#1|) (-298 (-118 |#1|) (-118 |#1|))) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2894 (($ $ (-1 (-118 |#1|) (-118 |#1|))) NIL T ELT) (($ $ (-1 (-118 |#1|) (-118 |#1|)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $) NIL (|has| (-118 |#1|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-118 |#1|) (-239)) ELT)) (-3056 (($ $) NIL T ELT)) (-3771 (((-118 |#1|) $) NIL T ELT)) (-1407 (((-915 (-560)) $) NIL (|has| (-118 |#1|) (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) NIL (|has| (-118 |#1|) (-633 (-915 (-391)))) ELT) (((-549) $) NIL (|has| (-118 |#1|) (-633 (-549))) ELT) (((-391) $) NIL (|has| (-118 |#1|) (-1051)) ELT) (((-229) $) NIL (|has| (-118 |#1|) (-1051)) ELT)) (-1567 (((-177 (-421 (-560))) $) NIL T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-118 |#1|) (-939))) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-118 |#1|)) NIL T ELT) (($ (-1207)) NIL (|has| (-118 |#1|) (-1069 (-1207))) ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| (-118 |#1|) (-939))) (|has| (-118 |#1|) (-147))) ELT)) (-2930 (((-793)) NIL T CONST)) (-1494 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-559)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2239 (((-421 (-560)) $ (-560)) NIL T ELT)) (-2282 (($ $) NIL (|has| (-118 |#1|) (-842)) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $ (-1 (-118 |#1|) (-118 |#1|))) NIL T ELT) (($ $ (-1 (-118 |#1|) (-118 |#1|)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $) NIL (|has| (-118 |#1|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-118 |#1|) (-239)) ELT)) (-2536 (((-114) $ $) NIL (|has| (-118 |#1|) (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| (-118 |#1|) (-871)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL (|has| (-118 |#1|) (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| (-118 |#1|) (-871)) ELT)) (-2594 (($ $ $) NIL T ELT) (($ (-118 |#1|) (-118 |#1|)) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ (-118 |#1|) $) NIL T ELT) (($ $ (-118 |#1|)) NIL T ELT)))
-(((-119 |#1|) (-13 (-1022 (-118 |#1|)) (-10 -8 (-15 -2239 ((-421 (-560)) $ (-560))) (-15 -1567 ((-177 (-421 (-560))) $)) (-15 -3298 ($ $)) (-15 -3298 ($ (-560) $)))) (-560)) (T -119))
-((-2239 (*1 *2 *1 *3) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-119 *4)) (-14 *4 *3) (-5 *3 (-560)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-177 (-421 (-560)))) (-5 *1 (-119 *3)) (-14 *3 (-560)))) (-3298 (*1 *1 *1) (-12 (-5 *1 (-119 *2)) (-14 *2 (-560)))) (-3298 (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-119 *3)) (-14 *3 *2))))
-(-13 (-1022 (-118 |#1|)) (-10 -8 (-15 -2239 ((-421 (-560)) $ (-560))) (-15 -1567 ((-177 (-421 (-560))) $)) (-15 -3298 ($ $)) (-15 -3298 ($ (-560) $))))
-((-1773 ((|#2| $ "value" |#2|) NIL T ELT) (($ $ "left" $) 61 T ELT) (($ $ "right" $) 63 T ELT)) (-3092 (((-663 $) $) 31 T ELT)) (-3398 (((-114) $ $) 36 T ELT)) (-2321 (((-114) |#2| $) 40 T ELT)) (-3596 (((-663 |#2|) $) 25 T ELT)) (-2409 (((-114) $) 18 T ELT)) (-3924 ((|#2| $ "value") NIL T ELT) (($ $ "left") 10 T ELT) (($ $ "right") 13 T ELT)) (-1978 (((-114) $) 57 T ELT)) (-1578 (((-887) $) 47 T ELT)) (-3955 (((-663 $) $) 32 T ELT)) (-2473 (((-114) $ $) 38 T ELT)) (-1553 (((-793) $) 50 T ELT)))
-(((-120 |#1| |#2|) (-10 -8 (-15 -2473 ((-114) |#1| |#1|)) (-15 -1578 ((-887) |#1|)) (-15 -1773 (|#1| |#1| "right" |#1|)) (-15 -1773 (|#1| |#1| "left" |#1|)) (-15 -3924 (|#1| |#1| "right")) (-15 -3924 (|#1| |#1| "left")) (-15 -1773 (|#2| |#1| "value" |#2|)) (-15 -3398 ((-114) |#1| |#1|)) (-15 -3596 ((-663 |#2|) |#1|)) (-15 -1978 ((-114) |#1|)) (-15 -3924 (|#2| |#1| "value")) (-15 -2409 ((-114) |#1|)) (-15 -3092 ((-663 |#1|) |#1|)) (-15 -3955 ((-663 |#1|) |#1|)) (-15 -2321 ((-114) |#2| |#1|)) (-15 -1553 ((-793) |#1|))) (-121 |#2|) (-1247)) (T -120))
-NIL
-(-10 -8 (-15 -2473 ((-114) |#1| |#1|)) (-15 -1578 ((-887) |#1|)) (-15 -1773 (|#1| |#1| "right" |#1|)) (-15 -1773 (|#1| |#1| "left" |#1|)) (-15 -3924 (|#1| |#1| "right")) (-15 -3924 (|#1| |#1| "left")) (-15 -1773 (|#2| |#1| "value" |#2|)) (-15 -3398 ((-114) |#1| |#1|)) (-15 -3596 ((-663 |#2|) |#1|)) (-15 -1978 ((-114) |#1|)) (-15 -3924 (|#2| |#1| "value")) (-15 -2409 ((-114) |#1|)) (-15 -3092 ((-663 |#1|) |#1|)) (-15 -3955 ((-663 |#1|) |#1|)) (-15 -2321 ((-114) |#2| |#1|)) (-15 -1553 ((-793) |#1|)))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3853 ((|#1| $) 49 T ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-2869 ((|#1| $ |#1|) 40 (|has| $ (-6 -4509)) ELT)) (-2023 (($ $ $) 53 (|has| $ (-6 -4509)) ELT)) (-2361 (($ $ $) 55 (|has| $ (-6 -4509)) ELT)) (-1773 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4509)) ELT) (($ $ "left" $) 56 (|has| $ (-6 -4509)) ELT) (($ $ "right" $) 54 (|has| $ (-6 -4509)) ELT)) (-2083 (($ $ (-663 $)) 42 (|has| $ (-6 -4509)) ELT)) (-2238 (($) 7 T CONST)) (-4210 (($ $) 58 T ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-3092 (((-663 $) $) 51 T ELT)) (-3398 (((-114) $ $) 43 (|has| |#1| (-1132)) ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-4198 (($ $) 60 T ELT)) (-3596 (((-663 |#1|) $) 46 T ELT)) (-2409 (((-114) $) 50 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3924 ((|#1| $ "value") 48 T ELT) (($ $ "left") 59 T ELT) (($ $ "right") 57 T ELT)) (-1750 (((-560) $ $) 45 T ELT)) (-1978 (((-114) $) 47 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3955 (((-663 $) $) 52 T ELT)) (-2997 (((-114) $ $) 44 (|has| |#1| (-1132)) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3655 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-319)) ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-118 |#1|) (-939)) ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| (-118 |#1|) (-939)) ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-1869 (((-560) $) NIL (|has| (-118 |#1|) (-842)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-118 |#1|) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (|has| (-118 |#1|) (-1069 (-1207))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| (-118 |#1|) (-1069 (-560))) ELT) (((-3 (-560) "failed") $) NIL (|has| (-118 |#1|) (-1069 (-560))) ELT)) (-3649 (((-118 |#1|) $) NIL T ELT) (((-1207) $) NIL (|has| (-118 |#1|) (-1069 (-1207))) ELT) (((-421 (-560)) $) NIL (|has| (-118 |#1|) (-1069 (-560))) ELT) (((-560) $) NIL (|has| (-118 |#1|) (-1069 (-560))) ELT)) (-3665 (($ $) NIL T ELT) (($ (-560) $) NIL T ELT)) (-2186 (($ $ $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| (-118 |#1|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| (-118 |#1|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-118 |#1|))) (|:| |vec| (-1297 (-118 |#1|)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-118 |#1|)) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1812 (($) NIL (|has| (-118 |#1|) (-559)) ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-4172 (((-114) $) NIL (|has| (-118 |#1|) (-842)) ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (|has| (-118 |#1|) (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (|has| (-118 |#1|) (-911 (-391))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-3490 (($ $) NIL T ELT)) (-2473 (((-118 |#1|) $) NIL T ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| (-118 |#1|) (-1182)) ELT)) (-4470 (((-114) $) NIL (|has| (-118 |#1|) (-842)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2932 (($ $ $) NIL (|has| (-118 |#1|) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| (-118 |#1|) (-871)) ELT)) (-2260 (($ (-1 (-118 |#1|) (-118 |#1|)) $) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| (-118 |#1|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| (-118 |#1|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-118 |#1|))) (|:| |vec| (-1297 (-118 |#1|)))) (-1297 $) $) NIL T ELT) (((-711 (-118 |#1|)) (-1297 $)) NIL T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3239 (($) NIL (|has| (-118 |#1|) (-1182)) CONST)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3211 (($ $) NIL (|has| (-118 |#1|) (-319)) ELT)) (-3147 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-559)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-118 |#1|) (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-118 |#1|) (-939)) ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2371 (($ $ (-663 (-118 |#1|)) (-663 (-118 |#1|))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-118 |#1|) (-118 |#1|)) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-305 (-118 |#1|))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-663 (-305 (-118 |#1|)))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-663 (-1207)) (-663 (-118 |#1|))) NIL (|has| (-118 |#1|) (-528 (-1207) (-118 |#1|))) ELT) (($ $ (-1207) (-118 |#1|)) NIL (|has| (-118 |#1|) (-528 (-1207) (-118 |#1|))) ELT)) (-3989 (((-793) $) NIL T ELT)) (-1507 (($ $ (-118 |#1|)) NIL (|has| (-118 |#1|) (-298 (-118 |#1|) (-118 |#1|))) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3161 (($ $ (-1 (-118 |#1|) (-118 |#1|))) NIL T ELT) (($ $ (-1 (-118 |#1|) (-118 |#1|)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $) NIL (|has| (-118 |#1|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-118 |#1|) (-239)) ELT)) (-2951 (($ $) NIL T ELT)) (-2484 (((-118 |#1|) $) NIL T ELT)) (-2400 (((-915 (-560)) $) NIL (|has| (-118 |#1|) (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) NIL (|has| (-118 |#1|) (-633 (-915 (-391)))) ELT) (((-549) $) NIL (|has| (-118 |#1|) (-633 (-549))) ELT) (((-391) $) NIL (|has| (-118 |#1|) (-1051)) ELT) (((-229) $) NIL (|has| (-118 |#1|) (-1051)) ELT)) (-1768 (((-177 (-421 (-560))) $) NIL T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-118 |#1|) (-939))) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-118 |#1|)) NIL T ELT) (($ (-1207)) NIL (|has| (-118 |#1|) (-1069 (-1207))) ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| (-118 |#1|) (-939))) (|has| (-118 |#1|) (-147))) ELT)) (-4191 (((-793)) NIL T CONST)) (-3622 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-559)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-2905 (((-421 (-560)) $ (-560)) NIL T ELT)) (-2719 (($ $) NIL (|has| (-118 |#1|) (-842)) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $ (-1 (-118 |#1|) (-118 |#1|))) NIL T ELT) (($ $ (-1 (-118 |#1|) (-118 |#1|)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-118 |#1|) (-929 (-1207))) ELT) (($ $) NIL (|has| (-118 |#1|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-118 |#1|) (-239)) ELT)) (-2396 (((-114) $ $) NIL (|has| (-118 |#1|) (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| (-118 |#1|) (-871)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL (|has| (-118 |#1|) (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| (-118 |#1|) (-871)) ELT)) (-2453 (($ $ $) NIL T ELT) (($ (-118 |#1|) (-118 |#1|)) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ (-118 |#1|) $) NIL T ELT) (($ $ (-118 |#1|)) NIL T ELT)))
+(((-119 |#1|) (-13 (-1022 (-118 |#1|)) (-10 -8 (-15 -2905 ((-421 (-560)) $ (-560))) (-15 -1768 ((-177 (-421 (-560))) $)) (-15 -3665 ($ $)) (-15 -3665 ($ (-560) $)))) (-560)) (T -119))
+((-2905 (*1 *2 *1 *3) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-119 *4)) (-14 *4 *3) (-5 *3 (-560)))) (-1768 (*1 *2 *1) (-12 (-5 *2 (-177 (-421 (-560)))) (-5 *1 (-119 *3)) (-14 *3 (-560)))) (-3665 (*1 *1 *1) (-12 (-5 *1 (-119 *2)) (-14 *2 (-560)))) (-3665 (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-119 *3)) (-14 *3 *2))))
+(-13 (-1022 (-118 |#1|)) (-10 -8 (-15 -2905 ((-421 (-560)) $ (-560))) (-15 -1768 ((-177 (-421 (-560))) $)) (-15 -3665 ($ $)) (-15 -3665 ($ (-560) $))))
+((-4083 ((|#2| $ "value" |#2|) NIL T ELT) (($ $ "left" $) 61 T ELT) (($ $ "right" $) 63 T ELT)) (-2104 (((-663 $) $) 31 T ELT)) (-2150 (((-114) $ $) 36 T ELT)) (-3091 (((-114) |#2| $) 40 T ELT)) (-2656 (((-663 |#2|) $) 25 T ELT)) (-1485 (((-114) $) 18 T ELT)) (-1507 ((|#2| $ "value") NIL T ELT) (($ $ "left") 10 T ELT) (($ $ "right") 13 T ELT)) (-2752 (((-114) $) 57 T ELT)) (-3913 (((-887) $) 47 T ELT)) (-3809 (((-663 $) $) 32 T ELT)) (-2340 (((-114) $ $) 38 T ELT)) (-2256 (((-793) $) 50 T ELT)))
+(((-120 |#1| |#2|) (-10 -8 (-15 -2340 ((-114) |#1| |#1|)) (-15 -3913 ((-887) |#1|)) (-15 -4083 (|#1| |#1| "right" |#1|)) (-15 -4083 (|#1| |#1| "left" |#1|)) (-15 -1507 (|#1| |#1| "right")) (-15 -1507 (|#1| |#1| "left")) (-15 -4083 (|#2| |#1| "value" |#2|)) (-15 -2150 ((-114) |#1| |#1|)) (-15 -2656 ((-663 |#2|) |#1|)) (-15 -2752 ((-114) |#1|)) (-15 -1507 (|#2| |#1| "value")) (-15 -1485 ((-114) |#1|)) (-15 -2104 ((-663 |#1|) |#1|)) (-15 -3809 ((-663 |#1|) |#1|)) (-15 -3091 ((-114) |#2| |#1|)) (-15 -2256 ((-793) |#1|))) (-121 |#2|) (-1247)) (T -120))
+NIL
+(-10 -8 (-15 -2340 ((-114) |#1| |#1|)) (-15 -3913 ((-887) |#1|)) (-15 -4083 (|#1| |#1| "right" |#1|)) (-15 -4083 (|#1| |#1| "left" |#1|)) (-15 -1507 (|#1| |#1| "right")) (-15 -1507 (|#1| |#1| "left")) (-15 -4083 (|#2| |#1| "value" |#2|)) (-15 -2150 ((-114) |#1| |#1|)) (-15 -2656 ((-663 |#2|) |#1|)) (-15 -2752 ((-114) |#1|)) (-15 -1507 (|#2| |#1| "value")) (-15 -1485 ((-114) |#1|)) (-15 -2104 ((-663 |#1|) |#1|)) (-15 -3809 ((-663 |#1|) |#1|)) (-15 -3091 ((-114) |#2| |#1|)) (-15 -2256 ((-793) |#1|)))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1430 ((|#1| $) 49 T ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-3654 ((|#1| $ |#1|) 40 (|has| $ (-6 -4509)) ELT)) (-3220 (($ $ $) 53 (|has| $ (-6 -4509)) ELT)) (-2220 (($ $ $) 55 (|has| $ (-6 -4509)) ELT)) (-4083 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4509)) ELT) (($ $ "left" $) 56 (|has| $ (-6 -4509)) ELT) (($ $ "right" $) 54 (|has| $ (-6 -4509)) ELT)) (-2566 (($ $ (-663 $)) 42 (|has| $ (-6 -4509)) ELT)) (-3525 (($) 7 T CONST)) (-4346 (($ $) 58 T ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-2104 (((-663 $) $) 51 T ELT)) (-2150 (((-114) $ $) 43 (|has| |#1| (-1132)) ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-4335 (($ $) 60 T ELT)) (-2656 (((-663 |#1|) $) 46 T ELT)) (-1485 (((-114) $) 50 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1507 ((|#1| $ "value") 48 T ELT) (($ $ "left") 59 T ELT) (($ $ "right") 57 T ELT)) (-2374 (((-560) $ $) 45 T ELT)) (-2752 (((-114) $) 47 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3809 (((-663 $) $) 52 T ELT)) (-3606 (((-114) $ $) 44 (|has| |#1| (-1132)) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-121 |#1|) (-142) (-1247)) (T -121))
-((-4198 (*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1247)))) (-3924 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-121 *3)) (-4 *3 (-1247)))) (-4210 (*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1247)))) (-3924 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-121 *3)) (-4 *3 (-1247)))) (-1773 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4509)) (-4 *1 (-121 *3)) (-4 *3 (-1247)))) (-2361 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-121 *2)) (-4 *2 (-1247)))) (-1773 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4509)) (-4 *1 (-121 *3)) (-4 *3 (-1247)))) (-2023 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-121 *2)) (-4 *2 (-1247)))))
-(-13 (-1041 |t#1|) (-10 -8 (-15 -4198 ($ $)) (-15 -3924 ($ $ "left")) (-15 -4210 ($ $)) (-15 -3924 ($ $ "right")) (IF (|has| $ (-6 -4509)) (PROGN (-15 -1773 ($ $ "left" $)) (-15 -2361 ($ $ $)) (-15 -1773 ($ $ "right" $)) (-15 -2023 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1041 |#1|) . T) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
-((-4334 (((-114) |#1|) 29 T ELT)) (-3928 (((-793) (-793)) 28 T ELT) (((-793)) 27 T ELT)) (-1486 (((-114) |#1| (-114)) 30 T ELT) (((-114) |#1|) 31 T ELT)))
-(((-122 |#1|) (-10 -7 (-15 -1486 ((-114) |#1|)) (-15 -1486 ((-114) |#1| (-114))) (-15 -3928 ((-793))) (-15 -3928 ((-793) (-793))) (-15 -4334 ((-114) |#1|))) (-1273 (-560))) (T -122))
-((-4334 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-560))))) (-3928 (*1 *2 *2) (-12 (-5 *2 (-793)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-560))))) (-3928 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-560))))) (-1486 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-560))))) (-1486 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-560))))))
-(-10 -7 (-15 -1486 ((-114) |#1|)) (-15 -1486 ((-114) |#1| (-114))) (-15 -3928 ((-793))) (-15 -3928 ((-793) (-793))) (-15 -4334 ((-114) |#1|)))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3853 ((|#1| $) 18 T ELT)) (-1513 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-2869 ((|#1| $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2023 (($ $ $) 21 (|has| $ (-6 -4509)) ELT)) (-2361 (($ $ $) 23 (|has| $ (-6 -4509)) ELT)) (-1773 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4509)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4509)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4509)) ELT)) (-2083 (($ $ (-663 $)) NIL (|has| $ (-6 -4509)) ELT)) (-2238 (($) NIL T CONST)) (-4210 (($ $) 20 T ELT)) (-2181 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3092 (((-663 $) $) NIL T ELT)) (-3398 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-3320 (($ $ |#1| $) 27 T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-4198 (($ $) 22 T ELT)) (-3596 (((-663 |#1|) $) NIL T ELT)) (-2409 (((-114) $) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-1892 (($ |#1| $) 28 T ELT)) (-3629 (($ |#1| $) 15 T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) 17 T ELT)) (-3986 (($) 11 T ELT)) (-3924 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-1750 (((-560) $ $) NIL T ELT)) (-1978 (((-114) $) NIL T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1799 (($ $) NIL T ELT)) (-1578 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3955 (((-663 $) $) NIL T ELT)) (-2997 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-1510 (($ (-663 |#1|)) 16 T ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-123 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4509) (-6 -4508) (-15 -1510 ($ (-663 |#1|))) (-15 -3629 ($ |#1| $)) (-15 -1892 ($ |#1| $)) (-15 -1513 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-871)) (T -123))
-((-1510 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-123 *3)))) (-3629 (*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-871)))) (-1892 (*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-871)))) (-1513 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-123 *3)) (|:| |greater| (-123 *3)))) (-5 *1 (-123 *3)) (-4 *3 (-871)))))
-(-13 (-127 |#1|) (-10 -8 (-6 -4509) (-6 -4508) (-15 -1510 ($ (-663 |#1|))) (-15 -3629 ($ |#1| $)) (-15 -1892 ($ |#1| $)) (-15 -1513 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-1562 (($ $) 13 T ELT)) (-1937 (($ $) 11 T ELT)) (-1483 (($ $ $) 23 T ELT)) (-2148 (($ $ $) 21 T ELT)) (-1616 (($ $ $) 19 T ELT)) (-1602 (($ $ $) 17 T ELT)))
-(((-124 |#1|) (-10 -8 (-15 -1483 (|#1| |#1| |#1|)) (-15 -2148 (|#1| |#1| |#1|)) (-15 -1562 (|#1| |#1|)) (-15 -1602 (|#1| |#1| |#1|)) (-15 -1616 (|#1| |#1| |#1|)) (-15 -1937 (|#1| |#1|))) (-125)) (T -124))
-NIL
-(-10 -8 (-15 -1483 (|#1| |#1| |#1|)) (-15 -2148 (|#1| |#1| |#1|)) (-15 -1562 (|#1| |#1|)) (-15 -1602 (|#1| |#1| |#1|)) (-15 -1616 (|#1| |#1| |#1|)) (-15 -1937 (|#1| |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-1562 (($ $) 103 T ELT)) (-1977 (($ $ $) 28 T ELT)) (-3839 (((-1303) $ (-560) (-560)) 66 (|has| $ (-6 -4509)) ELT)) (-4040 (((-114) $) 98 (|has| (-114) (-871)) ELT) (((-114) (-1 (-114) (-114) (-114)) $) 92 T ELT)) (-1703 (($ $) 102 (-12 (|has| (-114) (-871)) (|has| $ (-6 -4509))) ELT) (($ (-1 (-114) (-114) (-114)) $) 101 (|has| $ (-6 -4509)) ELT)) (-2286 (($ $) 97 (|has| (-114) (-871)) ELT) (($ (-1 (-114) (-114) (-114)) $) 91 T ELT)) (-3363 (((-114) $ (-793)) 37 T ELT)) (-1773 (((-114) $ (-1264 (-560)) (-114)) 88 (|has| $ (-6 -4509)) ELT) (((-114) $ (-560) (-114)) 54 (|has| $ (-6 -4509)) ELT)) (-1982 (($ (-1 (-114) (-114)) $) 71 (|has| $ (-6 -4508)) ELT)) (-2238 (($) 38 T CONST)) (-4391 (($ $) 100 (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) 90 T ELT)) (-3606 (($ $) 68 (-12 (|has| (-114) (-1132)) (|has| $ (-6 -4508))) ELT)) (-2375 (($ (-1 (-114) (-114)) $) 72 (|has| $ (-6 -4508)) ELT) (($ (-114) $) 69 (-12 (|has| (-114) (-1132)) (|has| $ (-6 -4508))) ELT)) (-4129 (((-114) (-1 (-114) (-114) (-114)) $) 74 (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) 73 (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) 70 (-12 (|has| (-114) (-1132)) (|has| $ (-6 -4508))) ELT)) (-3779 (((-114) $ (-560) (-114)) 53 (|has| $ (-6 -4509)) ELT)) (-3709 (((-114) $ (-560)) 55 T ELT)) (-1722 (((-560) (-114) $ (-560)) 95 (|has| (-114) (-1132)) ELT) (((-560) (-114) $) 94 (|has| (-114) (-1132)) ELT) (((-560) (-1 (-114) (-114)) $) 93 T ELT)) (-2181 (((-663 (-114)) $) 45 (|has| $ (-6 -4508)) ELT)) (-1961 (($ $ $) 108 T ELT)) (-1937 (($ $) 106 T ELT)) (-1483 (($ $ $) 29 T ELT)) (-4095 (($ (-793) (-114)) 78 T ELT)) (-2148 (($ $ $) 30 T ELT)) (-4034 (((-114) $ (-793)) 36 T ELT)) (-1762 (((-560) $) 63 (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) 20 T ELT)) (-3223 (($ $ $) 96 (|has| (-114) (-871)) ELT) (($ (-1 (-114) (-114) (-114)) $ $) 89 T ELT)) (-2656 (((-663 (-114)) $) 46 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-114) $) 48 (-12 (|has| (-114) (-1132)) (|has| $ (-6 -4508))) ELT)) (-2937 (((-560) $) 62 (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) 19 T ELT)) (-3768 (($ (-1 (-114) (-114)) $) 41 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-114) (-114) (-114)) $ $) 83 T ELT) (($ (-1 (-114) (-114)) $) 40 T ELT)) (-1805 (((-114) $ (-793)) 35 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3996 (($ $ $ (-560)) 87 T ELT) (($ (-114) $ (-560)) 86 T ELT)) (-3270 (((-663 (-560)) $) 60 T ELT)) (-3586 (((-114) (-560) $) 59 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-3637 (((-114) $) 64 (|has| (-560) (-871)) ELT)) (-3329 (((-3 (-114) "failed") (-1 (-114) (-114)) $) 75 T ELT)) (-3037 (($ $ (-114)) 65 (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) (-114)) $) 43 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-114)) (-663 (-114))) 52 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT) (($ $ (-114) (-114)) 51 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT) (($ $ (-305 (-114))) 50 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT) (($ $ (-663 (-305 (-114)))) 49 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT)) (-4124 (((-114) $ $) 31 T ELT)) (-2914 (((-114) (-114) $) 61 (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT)) (-3571 (((-663 (-114)) $) 58 T ELT)) (-1663 (((-114) $) 34 T ELT)) (-3986 (($) 33 T ELT)) (-3924 (($ $ (-1264 (-560))) 77 T ELT) (((-114) $ (-560)) 57 T ELT) (((-114) $ (-560) (-114)) 56 T ELT)) (-4413 (($ $ (-1264 (-560))) 85 T ELT) (($ $ (-560)) 84 T ELT)) (-3865 (((-793) (-114) $) 47 (-12 (|has| (-114) (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) (-114)) $) 44 (|has| $ (-6 -4508)) ELT)) (-3640 (($ $ $ (-560)) 99 (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) 32 T ELT)) (-1407 (((-549) $) 67 (|has| (-114) (-633 (-549))) ELT)) (-1592 (($ (-663 (-114))) 76 T ELT)) (-3415 (($ (-663 $)) 82 T ELT) (($ $ $) 81 T ELT) (($ (-114) $) 80 T ELT) (($ $ (-114)) 79 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-1728 (((-114) (-1 (-114) (-114)) $) 42 (|has| $ (-6 -4508)) ELT)) (-1953 (($ $ $) 107 T ELT)) (-1616 (($ $ $) 105 T ELT)) (-2536 (((-114) $ $) 18 T ELT)) (-2508 (((-114) $ $) 16 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 17 T ELT)) (-2495 (((-114) $ $) 15 T ELT)) (-1602 (($ $ $) 104 T ELT)) (-1553 (((-793) $) 39 (|has| $ (-6 -4508)) ELT)))
+((-4335 (*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1247)))) (-1507 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-121 *3)) (-4 *3 (-1247)))) (-4346 (*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1247)))) (-1507 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-121 *3)) (-4 *3 (-1247)))) (-4083 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4509)) (-4 *1 (-121 *3)) (-4 *3 (-1247)))) (-2220 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-121 *2)) (-4 *2 (-1247)))) (-4083 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4509)) (-4 *1 (-121 *3)) (-4 *3 (-1247)))) (-3220 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-121 *2)) (-4 *2 (-1247)))))
+(-13 (-1041 |t#1|) (-10 -8 (-15 -4335 ($ $)) (-15 -1507 ($ $ "left")) (-15 -4346 ($ $)) (-15 -1507 ($ $ "right")) (IF (|has| $ (-6 -4509)) (PROGN (-15 -4083 ($ $ "left" $)) (-15 -2220 ($ $ $)) (-15 -4083 ($ $ "right" $)) (-15 -3220 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1041 |#1|) . T) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
+((-3171 (((-114) |#1|) 29 T ELT)) (-3504 (((-793) (-793)) 28 T ELT) (((-793)) 27 T ELT)) (-2214 (((-114) |#1| (-114)) 30 T ELT) (((-114) |#1|) 31 T ELT)))
+(((-122 |#1|) (-10 -7 (-15 -2214 ((-114) |#1|)) (-15 -2214 ((-114) |#1| (-114))) (-15 -3504 ((-793))) (-15 -3504 ((-793) (-793))) (-15 -3171 ((-114) |#1|))) (-1273 (-560))) (T -122))
+((-3171 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-560))))) (-3504 (*1 *2 *2) (-12 (-5 *2 (-793)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-560))))) (-3504 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-560))))) (-2214 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-560))))) (-2214 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-560))))))
+(-10 -7 (-15 -2214 ((-114) |#1|)) (-15 -2214 ((-114) |#1| (-114))) (-15 -3504 ((-793))) (-15 -3504 ((-793) (-793))) (-15 -3171 ((-114) |#1|)))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1430 ((|#1| $) 18 T ELT)) (-1626 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3654 ((|#1| $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3220 (($ $ $) 21 (|has| $ (-6 -4509)) ELT)) (-2220 (($ $ $) 23 (|has| $ (-6 -4509)) ELT)) (-4083 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4509)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4509)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4509)) ELT)) (-2566 (($ $ (-663 $)) NIL (|has| $ (-6 -4509)) ELT)) (-3525 (($) NIL T CONST)) (-4346 (($ $) 20 T ELT)) (-3737 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2104 (((-663 $) $) NIL T ELT)) (-2150 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2647 (($ $ |#1| $) 27 T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-4335 (($ $) 22 T ELT)) (-2656 (((-663 |#1|) $) NIL T ELT)) (-1485 (((-114) $) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-4459 (($ |#1| $) 28 T ELT)) (-3888 (($ |#1| $) 15 T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) 17 T ELT)) (-2832 (($) 11 T ELT)) (-1507 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-2374 (((-560) $ $) NIL T ELT)) (-2752 (((-114) $) NIL T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4107 (($ $) NIL T ELT)) (-3913 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3809 (((-663 $) $) NIL T ELT)) (-3606 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-1524 (($ (-663 |#1|)) 16 T ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-123 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4509) (-6 -4508) (-15 -1524 ($ (-663 |#1|))) (-15 -3888 ($ |#1| $)) (-15 -4459 ($ |#1| $)) (-15 -1626 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-871)) (T -123))
+((-1524 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-123 *3)))) (-3888 (*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-871)))) (-4459 (*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-871)))) (-1626 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-123 *3)) (|:| |greater| (-123 *3)))) (-5 *1 (-123 *3)) (-4 *3 (-871)))))
+(-13 (-127 |#1|) (-10 -8 (-6 -4509) (-6 -4508) (-15 -1524 ($ (-663 |#1|))) (-15 -3888 ($ |#1| $)) (-15 -4459 ($ |#1| $)) (-15 -1626 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-2269 (($ $) 13 T ELT)) (-1394 (($ $) 11 T ELT)) (-3342 (($ $ $) 23 T ELT)) (-1980 (($ $ $) 21 T ELT)) (-2311 (($ $ $) 19 T ELT)) (-2300 (($ $ $) 17 T ELT)))
+(((-124 |#1|) (-10 -8 (-15 -3342 (|#1| |#1| |#1|)) (-15 -1980 (|#1| |#1| |#1|)) (-15 -2269 (|#1| |#1|)) (-15 -2300 (|#1| |#1| |#1|)) (-15 -2311 (|#1| |#1| |#1|)) (-15 -1394 (|#1| |#1|))) (-125)) (T -124))
+NIL
+(-10 -8 (-15 -3342 (|#1| |#1| |#1|)) (-15 -1980 (|#1| |#1| |#1|)) (-15 -2269 (|#1| |#1|)) (-15 -2300 (|#1| |#1| |#1|)) (-15 -2311 (|#1| |#1| |#1|)) (-15 -1394 (|#1| |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2269 (($ $) 103 T ELT)) (-1423 (($ $ $) 28 T ELT)) (-2033 (((-1303) $ (-560) (-560)) 66 (|has| $ (-6 -4509)) ELT)) (-2152 (((-114) $) 98 (|has| (-114) (-871)) ELT) (((-114) (-1 (-114) (-114) (-114)) $) 92 T ELT)) (-3152 (($ $) 102 (-12 (|has| (-114) (-871)) (|has| $ (-6 -4509))) ELT) (($ (-1 (-114) (-114) (-114)) $) 101 (|has| $ (-6 -4509)) ELT)) (-1787 (($ $) 97 (|has| (-114) (-871)) ELT) (($ (-1 (-114) (-114) (-114)) $) 91 T ELT)) (-3045 (((-114) $ (-793)) 37 T ELT)) (-4083 (((-114) $ (-1264 (-560)) (-114)) 88 (|has| $ (-6 -4509)) ELT) (((-114) $ (-560) (-114)) 54 (|has| $ (-6 -4509)) ELT)) (-3923 (($ (-1 (-114) (-114)) $) 71 (|has| $ (-6 -4508)) ELT)) (-3525 (($) 38 T CONST)) (-2372 (($ $) 100 (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) 90 T ELT)) (-3658 (($ $) 68 (-12 (|has| (-114) (-1132)) (|has| $ (-6 -4508))) ELT)) (-3033 (($ (-1 (-114) (-114)) $) 72 (|has| $ (-6 -4508)) ELT) (($ (-114) $) 69 (-12 (|has| (-114) (-1132)) (|has| $ (-6 -4508))) ELT)) (-1778 (((-114) (-1 (-114) (-114) (-114)) $) 74 (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) 73 (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) 70 (-12 (|has| (-114) (-1132)) (|has| $ (-6 -4508))) ELT)) (-3338 (((-114) $ (-560) (-114)) 53 (|has| $ (-6 -4509)) ELT)) (-3274 (((-114) $ (-560)) 55 T ELT)) (-2359 (((-560) (-114) $ (-560)) 95 (|has| (-114) (-1132)) ELT) (((-560) (-114) $) 94 (|has| (-114) (-1132)) ELT) (((-560) (-1 (-114) (-114)) $) 93 T ELT)) (-3737 (((-663 (-114)) $) 45 (|has| $ (-6 -4508)) ELT)) (-1415 (($ $ $) 108 T ELT)) (-1394 (($ $) 106 T ELT)) (-3342 (($ $ $) 29 T ELT)) (-4246 (($ (-793) (-114)) 78 T ELT)) (-1980 (($ $ $) 30 T ELT)) (-3332 (((-114) $ (-793)) 36 T ELT)) (-2483 (((-560) $) 63 (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) 20 T ELT)) (-4167 (($ $ $) 96 (|has| (-114) (-871)) ELT) (($ (-1 (-114) (-114) (-114)) $ $) 89 T ELT)) (-3243 (((-663 (-114)) $) 46 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-114) $) 48 (-12 (|has| (-114) (-1132)) (|has| $ (-6 -4508))) ELT)) (-4263 (((-560) $) 62 (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) 19 T ELT)) (-3324 (($ (-1 (-114) (-114)) $) 41 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-114) (-114) (-114)) $ $) 83 T ELT) (($ (-1 (-114) (-114)) $) 40 T ELT)) (-1634 (((-114) $ (-793)) 35 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2507 (($ $ $ (-560)) 87 T ELT) (($ (-114) $ (-560)) 86 T ELT)) (-3372 (((-663 (-560)) $) 60 T ELT)) (-3439 (((-114) (-560) $) 59 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4334 (((-114) $) 64 (|has| (-560) (-871)) ELT)) (-2708 (((-3 (-114) "failed") (-1 (-114) (-114)) $) 75 T ELT)) (-2740 (($ $ (-114)) 65 (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) (-114)) $) 43 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-114)) (-663 (-114))) 52 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT) (($ $ (-114) (-114)) 51 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT) (($ $ (-305 (-114))) 50 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT) (($ $ (-663 (-305 (-114)))) 49 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT)) (-1736 (((-114) $ $) 31 T ELT)) (-4019 (((-114) (-114) $) 61 (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT)) (-1383 (((-663 (-114)) $) 58 T ELT)) (-2706 (((-114) $) 34 T ELT)) (-2832 (($) 33 T ELT)) (-1507 (($ $ (-1264 (-560))) 77 T ELT) (((-114) $ (-560)) 57 T ELT) (((-114) $ (-560) (-114)) 56 T ELT)) (-2579 (($ $ (-1264 (-560))) 85 T ELT) (($ $ (-560)) 84 T ELT)) (-3384 (((-793) (-114) $) 47 (-12 (|has| (-114) (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) (-114)) $) 44 (|has| $ (-6 -4508)) ELT)) (-3993 (($ $ $ (-560)) 99 (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) 32 T ELT)) (-2400 (((-549) $) 67 (|has| (-114) (-633 (-549))) ELT)) (-3924 (($ (-663 (-114))) 76 T ELT)) (-1955 (($ (-663 $)) 82 T ELT) (($ $ $) 81 T ELT) (($ (-114) $) 80 T ELT) (($ $ (-114)) 79 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2149 (((-114) (-1 (-114) (-114)) $) 42 (|has| $ (-6 -4508)) ELT)) (-1404 (($ $ $) 107 T ELT)) (-2311 (($ $ $) 105 T ELT)) (-2396 (((-114) $ $) 18 T ELT)) (-2373 (((-114) $ $) 16 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 17 T ELT)) (-2362 (((-114) $ $) 15 T ELT)) (-2300 (($ $ $) 104 T ELT)) (-2256 (((-793) $) 39 (|has| $ (-6 -4508)) ELT)))
(((-125) (-142)) (T -125))
-((-2148 (*1 *1 *1 *1) (-4 *1 (-125))) (-1483 (*1 *1 *1 *1) (-4 *1 (-125))) (-1977 (*1 *1 *1 *1) (-4 *1 (-125))))
-(-13 (-871) (-113) (-684) (-19 (-114)) (-10 -8 (-15 -2148 ($ $ $)) (-15 -1483 ($ $ $)) (-15 -1977 ($ $ $))))
+((-1980 (*1 *1 *1 *1) (-4 *1 (-125))) (-3342 (*1 *1 *1 *1) (-4 *1 (-125))) (-1423 (*1 *1 *1 *1) (-4 *1 (-125))))
+(-13 (-871) (-113) (-684) (-19 (-114)) (-10 -8 (-15 -1980 ($ $ $)) (-15 -3342 ($ $ $)) (-15 -1423 ($ $ $))))
(((-34) . T) ((-102) . T) ((-113) . T) ((-632 (-887)) . T) ((-153 #0=(-114)) . T) ((-633 (-549)) |has| (-114) (-633 (-549))) ((-298 #1=(-560) #0#) . T) ((-298 (-1264 (-560)) $) . T) ((-300 #1# #0#) . T) ((-321 #0#) -12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ((-385 #0#) . T) ((-503 #0#) . T) ((-618 #1# #0#) . T) ((-528 #0# #0#) -12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ((-673 #0#) . T) ((-684) . T) ((-19 #0#) . T) ((-871) . T) ((-874) . T) ((-1132) . T) ((-1247) . T))
-((-3768 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-1799 (($ $) 16 T ELT)) (-1553 (((-793) $) 25 T ELT)))
-(((-126 |#1| |#2|) (-10 -8 (-15 -3768 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1553 ((-793) |#1|)) (-15 -1799 (|#1| |#1|))) (-127 |#2|) (-1132)) (T -126))
+((-3324 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-4107 (($ $) 16 T ELT)) (-2256 (((-793) $) 25 T ELT)))
+(((-126 |#1| |#2|) (-10 -8 (-15 -3324 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2256 ((-793) |#1|)) (-15 -4107 (|#1| |#1|))) (-127 |#2|) (-1132)) (T -126))
NIL
-(-10 -8 (-15 -3768 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1553 ((-793) |#1|)) (-15 -1799 (|#1| |#1|)))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3853 ((|#1| $) 49 T ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-2869 ((|#1| $ |#1|) 40 (|has| $ (-6 -4509)) ELT)) (-2023 (($ $ $) 53 (|has| $ (-6 -4509)) ELT)) (-2361 (($ $ $) 55 (|has| $ (-6 -4509)) ELT)) (-1773 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4509)) ELT) (($ $ "left" $) 56 (|has| $ (-6 -4509)) ELT) (($ $ "right" $) 54 (|has| $ (-6 -4509)) ELT)) (-2083 (($ $ (-663 $)) 42 (|has| $ (-6 -4509)) ELT)) (-2238 (($) 7 T CONST)) (-4210 (($ $) 58 T ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-3092 (((-663 $) $) 51 T ELT)) (-3398 (((-114) $ $) 43 (|has| |#1| (-1132)) ELT)) (-3320 (($ $ |#1| $) 61 T ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-4198 (($ $) 60 T ELT)) (-3596 (((-663 |#1|) $) 46 T ELT)) (-2409 (((-114) $) 50 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3924 ((|#1| $ "value") 48 T ELT) (($ $ "left") 59 T ELT) (($ $ "right") 57 T ELT)) (-1750 (((-560) $ $) 45 T ELT)) (-1978 (((-114) $) 47 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3955 (((-663 $) $) 52 T ELT)) (-2997 (((-114) $ $) 44 (|has| |#1| (-1132)) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+(-10 -8 (-15 -3324 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2256 ((-793) |#1|)) (-15 -4107 (|#1| |#1|)))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1430 ((|#1| $) 49 T ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-3654 ((|#1| $ |#1|) 40 (|has| $ (-6 -4509)) ELT)) (-3220 (($ $ $) 53 (|has| $ (-6 -4509)) ELT)) (-2220 (($ $ $) 55 (|has| $ (-6 -4509)) ELT)) (-4083 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4509)) ELT) (($ $ "left" $) 56 (|has| $ (-6 -4509)) ELT) (($ $ "right" $) 54 (|has| $ (-6 -4509)) ELT)) (-2566 (($ $ (-663 $)) 42 (|has| $ (-6 -4509)) ELT)) (-3525 (($) 7 T CONST)) (-4346 (($ $) 58 T ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-2104 (((-663 $) $) 51 T ELT)) (-2150 (((-114) $ $) 43 (|has| |#1| (-1132)) ELT)) (-2647 (($ $ |#1| $) 61 T ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-4335 (($ $) 60 T ELT)) (-2656 (((-663 |#1|) $) 46 T ELT)) (-1485 (((-114) $) 50 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1507 ((|#1| $ "value") 48 T ELT) (($ $ "left") 59 T ELT) (($ $ "right") 57 T ELT)) (-2374 (((-560) $ $) 45 T ELT)) (-2752 (((-114) $) 47 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3809 (((-663 $) $) 52 T ELT)) (-3606 (((-114) $ $) 44 (|has| |#1| (-1132)) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-127 |#1|) (-142) (-1132)) (T -127))
-((-3320 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-127 *2)) (-4 *2 (-1132)))))
-(-13 (-121 |t#1|) (-10 -8 (-6 -4509) (-6 -4508) (-15 -3320 ($ $ |t#1| $))))
-(((-34) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-121 |#1|) . T) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1041 |#1|) . T) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3853 ((|#1| $) 18 T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-2869 ((|#1| $ |#1|) 22 (|has| $ (-6 -4509)) ELT)) (-2023 (($ $ $) 23 (|has| $ (-6 -4509)) ELT)) (-2361 (($ $ $) 21 (|has| $ (-6 -4509)) ELT)) (-1773 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4509)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4509)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4509)) ELT)) (-2083 (($ $ (-663 $)) NIL (|has| $ (-6 -4509)) ELT)) (-2238 (($) NIL T CONST)) (-4210 (($ $) 24 T ELT)) (-2181 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3092 (((-663 $) $) NIL T ELT)) (-3398 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-3320 (($ $ |#1| $) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-4198 (($ $) NIL T ELT)) (-3596 (((-663 |#1|) $) NIL T ELT)) (-2409 (((-114) $) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3629 (($ |#1| $) 15 T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) 17 T ELT)) (-3986 (($) 11 T ELT)) (-3924 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-1750 (((-560) $ $) NIL T ELT)) (-1978 (((-114) $) NIL T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1799 (($ $) 20 T ELT)) (-1578 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3955 (((-663 $) $) NIL T ELT)) (-2997 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2139 (($ (-663 |#1|)) 16 T ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-128 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4509) (-15 -2139 ($ (-663 |#1|))) (-15 -3629 ($ |#1| $)))) (-871)) (T -128))
-((-2139 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-128 *3)))) (-3629 (*1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-871)))))
-(-13 (-127 |#1|) (-10 -8 (-6 -4509) (-15 -2139 ($ (-663 |#1|))) (-15 -3629 ($ |#1| $))))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3853 ((|#1| $) 30 T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-2869 ((|#1| $ |#1|) 32 (|has| $ (-6 -4509)) ELT)) (-2023 (($ $ $) 36 (|has| $ (-6 -4509)) ELT)) (-2361 (($ $ $) 34 (|has| $ (-6 -4509)) ELT)) (-1773 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4509)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4509)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4509)) ELT)) (-2083 (($ $ (-663 $)) NIL (|has| $ (-6 -4509)) ELT)) (-2238 (($) NIL T CONST)) (-4210 (($ $) 23 T ELT)) (-2181 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3092 (((-663 $) $) NIL T ELT)) (-3398 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-3320 (($ $ |#1| $) 16 T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-4198 (($ $) 22 T ELT)) (-3596 (((-663 |#1|) $) NIL T ELT)) (-2409 (((-114) $) 25 T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) 20 T ELT)) (-3986 (($) 11 T ELT)) (-3924 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-1750 (((-560) $ $) NIL T ELT)) (-1978 (((-114) $) NIL T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1799 (($ $) NIL T ELT)) (-1578 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3955 (((-663 $) $) NIL T ELT)) (-2997 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2514 (($ |#1|) 18 T ELT) (($ $ |#1| $) 17 T ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 10 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-129 |#1|) (-13 (-127 |#1|) (-10 -8 (-15 -2514 ($ |#1|)) (-15 -2514 ($ $ |#1| $)))) (-1132)) (T -129))
-((-2514 (*1 *1 *2) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1132)))) (-2514 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1132)))))
-(-13 (-127 |#1|) (-10 -8 (-15 -2514 ($ |#1|)) (-15 -2514 ($ $ |#1| $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1562 (($ $) 40 T ELT)) (-3241 (((-793)) 26 T ELT)) (-2238 (($) NIL T CONST)) (-2310 (($) 35 T ELT)) (-3825 (($ $ $) NIL T ELT) (($) 24 T CONST)) (-2820 (($ $ $) NIL T ELT) (($) 25 T CONST)) (-4419 (((-948) $) 33 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3128 (($ (-948)) 31 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-146)) 15 T ELT) (((-146) $) 17 T ELT)) (-4248 (($ (-793)) 8 T ELT)) (-1421 (($ $ $) 37 T ELT)) (-1410 (($ $ $) 36 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1616 (($ $ $) 39 T ELT)) (-2536 (((-114) $ $) 22 T ELT)) (-2508 (((-114) $ $) 20 T ELT)) (-2473 (((-114) $ $) 18 T ELT)) (-2521 (((-114) $ $) 21 T ELT)) (-2495 (((-114) $ $) 19 T ELT)) (-1602 (($ $ $) 38 T ELT)))
-(((-130) (-13 (-866) (-504 (-146)) (-684) (-10 -8 (-15 -4248 ($ (-793))) (-15 -1410 ($ $ $)) (-15 -1421 ($ $ $)) (-15 -2238 ($) -3081)))) (T -130))
-((-4248 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-130)))) (-1410 (*1 *1 *1 *1) (-5 *1 (-130))) (-1421 (*1 *1 *1 *1) (-5 *1 (-130))) (-2238 (*1 *1) (-5 *1 (-130))))
-(-13 (-866) (-504 (-146)) (-684) (-10 -8 (-15 -4248 ($ (-793))) (-15 -1410 ($ $ $)) (-15 -1421 ($ $ $)) (-15 -2238 ($) -3081)))
+((-2647 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-127 *2)) (-4 *2 (-1132)))))
+(-13 (-121 |t#1|) (-10 -8 (-6 -4509) (-6 -4508) (-15 -2647 ($ $ |t#1| $))))
+(((-34) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-121 |#1|) . T) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1041 |#1|) . T) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1430 ((|#1| $) 18 T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3654 ((|#1| $ |#1|) 22 (|has| $ (-6 -4509)) ELT)) (-3220 (($ $ $) 23 (|has| $ (-6 -4509)) ELT)) (-2220 (($ $ $) 21 (|has| $ (-6 -4509)) ELT)) (-4083 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4509)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4509)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4509)) ELT)) (-2566 (($ $ (-663 $)) NIL (|has| $ (-6 -4509)) ELT)) (-3525 (($) NIL T CONST)) (-4346 (($ $) 24 T ELT)) (-3737 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2104 (((-663 $) $) NIL T ELT)) (-2150 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2647 (($ $ |#1| $) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-4335 (($ $) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL T ELT)) (-1485 (((-114) $) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3888 (($ |#1| $) 15 T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) 17 T ELT)) (-2832 (($) 11 T ELT)) (-1507 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-2374 (((-560) $ $) NIL T ELT)) (-2752 (((-114) $) NIL T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4107 (($ $) 20 T ELT)) (-3913 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3809 (((-663 $) $) NIL T ELT)) (-3606 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-1879 (($ (-663 |#1|)) 16 T ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-128 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4509) (-15 -1879 ($ (-663 |#1|))) (-15 -3888 ($ |#1| $)))) (-871)) (T -128))
+((-1879 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-128 *3)))) (-3888 (*1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-871)))))
+(-13 (-127 |#1|) (-10 -8 (-6 -4509) (-15 -1879 ($ (-663 |#1|))) (-15 -3888 ($ |#1| $))))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1430 ((|#1| $) 30 T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3654 ((|#1| $ |#1|) 32 (|has| $ (-6 -4509)) ELT)) (-3220 (($ $ $) 36 (|has| $ (-6 -4509)) ELT)) (-2220 (($ $ $) 34 (|has| $ (-6 -4509)) ELT)) (-4083 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4509)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4509)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4509)) ELT)) (-2566 (($ $ (-663 $)) NIL (|has| $ (-6 -4509)) ELT)) (-3525 (($) NIL T CONST)) (-4346 (($ $) 23 T ELT)) (-3737 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2104 (((-663 $) $) NIL T ELT)) (-2150 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2647 (($ $ |#1| $) 16 T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-4335 (($ $) 22 T ELT)) (-2656 (((-663 |#1|) $) NIL T ELT)) (-1485 (((-114) $) 25 T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) 20 T ELT)) (-2832 (($) 11 T ELT)) (-1507 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-2374 (((-560) $ $) NIL T ELT)) (-2752 (((-114) $) NIL T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4107 (($ $) NIL T ELT)) (-3913 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3809 (((-663 $) $) NIL T ELT)) (-3606 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-4383 (($ |#1|) 18 T ELT) (($ $ |#1| $) 17 T ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 10 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-129 |#1|) (-13 (-127 |#1|) (-10 -8 (-15 -4383 ($ |#1|)) (-15 -4383 ($ $ |#1| $)))) (-1132)) (T -129))
+((-4383 (*1 *1 *2) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1132)))) (-4383 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1132)))))
+(-13 (-127 |#1|) (-10 -8 (-15 -4383 ($ |#1|)) (-15 -4383 ($ $ |#1| $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2269 (($ $) 40 T ELT)) (-2552 (((-793)) 26 T ELT)) (-3525 (($) NIL T CONST)) (-1812 (($) 35 T ELT)) (-2932 (($ $ $) NIL T ELT) (($) 24 T CONST)) (-4379 (($ $ $) NIL T ELT) (($) 25 T CONST)) (-2622 (((-948) $) 33 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1591 (($ (-948)) 31 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-146)) 15 T ELT) (((-146) $) 17 T ELT)) (-2576 (($ (-793)) 8 T ELT)) (-4098 (($ $ $) 37 T ELT)) (-4085 (($ $ $) 36 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2311 (($ $ $) 39 T ELT)) (-2396 (((-114) $ $) 22 T ELT)) (-2373 (((-114) $ $) 20 T ELT)) (-2340 (((-114) $ $) 18 T ELT)) (-2386 (((-114) $ $) 21 T ELT)) (-2362 (((-114) $ $) 19 T ELT)) (-2300 (($ $ $) 38 T ELT)))
+(((-130) (-13 (-866) (-504 (-146)) (-684) (-10 -8 (-15 -2576 ($ (-793))) (-15 -4085 ($ $ $)) (-15 -4098 ($ $ $)) (-15 -3525 ($) -2650)))) (T -130))
+((-2576 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-130)))) (-4085 (*1 *1 *1 *1) (-5 *1 (-130))) (-4098 (*1 *1 *1 *1) (-5 *1 (-130))) (-3525 (*1 *1) (-5 *1 (-130))))
+(-13 (-866) (-504 (-146)) (-684) (-10 -8 (-15 -2576 ($ (-793))) (-15 -4085 ($ $ $)) (-15 -4098 ($ $ $)) (-15 -3525 ($) -2650)))
((|NonNegativeInteger|) (|%ilt| |#1| 256))
-((-1538 (((-114) $ $) NIL (|has| (-130) (-102)) ELT)) (-3839 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4040 (((-114) (-1 (-114) (-130) (-130)) $) NIL T ELT) (((-114) $) NIL (|has| (-130) (-871)) ELT)) (-1703 (($ (-1 (-114) (-130) (-130)) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| (-130) (-871))) ELT)) (-2286 (($ (-1 (-114) (-130) (-130)) $) NIL T ELT) (($ $) NIL (|has| (-130) (-871)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 (((-130) $ (-560) (-130)) 26 (|has| $ (-6 -4509)) ELT) (((-130) $ (-1264 (-560)) (-130)) NIL (|has| $ (-6 -4509)) ELT)) (-3399 (((-793) $ (-793)) 34 T ELT)) (-1982 (($ (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2238 (($) NIL T CONST)) (-4391 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) NIL T ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-130) (-1132))) ELT)) (-2375 (($ (-130) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-130) (-1132))) ELT) (($ (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4508)) (|has| (-130) (-1132))) ELT) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4508)) ELT) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3779 (((-130) $ (-560) (-130)) 25 (|has| $ (-6 -4509)) ELT)) (-3709 (((-130) $ (-560)) 20 T ELT)) (-1722 (((-560) (-1 (-114) (-130)) $) NIL T ELT) (((-560) (-130) $) NIL (|has| (-130) (-1132)) ELT) (((-560) (-130) $ (-560)) NIL (|has| (-130) (-1132)) ELT)) (-2181 (((-663 (-130)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4095 (($ (-793) (-130)) 14 T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) 27 (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL (|has| (-130) (-871)) ELT)) (-3223 (($ (-1 (-114) (-130) (-130)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-130) (-871)) ELT)) (-2656 (((-663 (-130)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-130) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-130) (-1132))) ELT)) (-2937 (((-560) $) 30 (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| (-130) (-871)) ELT)) (-3768 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-130) (-130)) $) NIL T ELT) (($ (-1 (-130) (-130) (-130)) $ $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| (-130) (-1132)) ELT)) (-3996 (($ (-130) $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) NIL T ELT)) (-3855 (((-1151) $) NIL (|has| (-130) (-1132)) ELT)) (-3637 (((-130) $) NIL (|has| (-560) (-871)) ELT)) (-3329 (((-3 (-130) "failed") (-1 (-114) (-130)) $) NIL T ELT)) (-3037 (($ $ (-130)) NIL (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 (-130)))) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1132))) ELT) (($ $ (-305 (-130))) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1132))) ELT) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1132))) ELT) (($ $ (-663 (-130)) (-663 (-130))) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) (-130) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-130) (-1132))) ELT)) (-3571 (((-663 (-130)) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) 12 T ELT)) (-3924 (((-130) $ (-560) (-130)) NIL T ELT) (((-130) $ (-560)) 23 T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-4413 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-3865 (((-793) (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-130) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-130) (-1132))) ELT)) (-3640 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) NIL (|has| (-130) (-633 (-549))) ELT)) (-1592 (($ (-663 (-130))) 46 T ELT)) (-3415 (($ $ (-130)) NIL T ELT) (($ (-130) $) NIL T ELT) (($ $ $) 47 T ELT) (($ (-663 $)) NIL T ELT)) (-1578 (((-987 (-130)) $) 35 T ELT) (((-1189) $) 43 T ELT) (((-887) $) NIL (|has| (-130) (-632 (-887))) ELT)) (-3025 (((-793) $) 18 T ELT)) (-2343 (($ (-793)) 8 T ELT)) (-2275 (((-114) $ $) NIL (|has| (-130) (-102)) ELT)) (-1728 (((-114) (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2536 (((-114) $ $) NIL (|has| (-130) (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| (-130) (-871)) ELT)) (-2473 (((-114) $ $) 32 (|has| (-130) (-102)) ELT)) (-2521 (((-114) $ $) NIL (|has| (-130) (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| (-130) (-871)) ELT)) (-1553 (((-793) $) 15 (|has| $ (-6 -4508)) ELT)))
-(((-131) (-13 (-19 (-130)) (-632 (-987 (-130))) (-632 (-1189)) (-10 -8 (-15 -2343 ($ (-793))) (-15 -3025 ((-793) $)) (-15 -3399 ((-793) $ (-793))) (-6 -4508)))) (T -131))
-((-2343 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-131)))) (-3025 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-131)))) (-3399 (*1 *2 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-131)))))
-(-13 (-19 (-130)) (-632 (-987 (-130))) (-632 (-1189)) (-10 -8 (-15 -2343 ($ (-793))) (-15 -3025 ((-793) $)) (-15 -3399 ((-793) $ (-793))) (-6 -4508)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2665 (($) 6 T CONST)) (-3588 (($) 7 T CONST)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 14 T ELT)) (-3538 (($) 8 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 10 T ELT)))
-(((-132) (-13 (-1132) (-10 -8 (-15 -3588 ($) -3081) (-15 -3538 ($) -3081) (-15 -2665 ($) -3081)))) (T -132))
-((-3588 (*1 *1) (-5 *1 (-132))) (-3538 (*1 *1) (-5 *1 (-132))) (-2665 (*1 *1) (-5 *1 (-132))))
-(-13 (-1132) (-10 -8 (-15 -3588 ($) -3081) (-15 -3538 ($) -3081) (-15 -2665 ($) -3081)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT)))
+((-2243 (((-114) $ $) NIL (|has| (-130) (-102)) ELT)) (-2033 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-2152 (((-114) (-1 (-114) (-130) (-130)) $) NIL T ELT) (((-114) $) NIL (|has| (-130) (-871)) ELT)) (-3152 (($ (-1 (-114) (-130) (-130)) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| (-130) (-871))) ELT)) (-1787 (($ (-1 (-114) (-130) (-130)) $) NIL T ELT) (($ $) NIL (|has| (-130) (-871)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 (((-130) $ (-560) (-130)) 26 (|has| $ (-6 -4509)) ELT) (((-130) $ (-1264 (-560)) (-130)) NIL (|has| $ (-6 -4509)) ELT)) (-2158 (((-793) $ (-793)) 34 T ELT)) (-3923 (($ (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3525 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) NIL T ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-130) (-1132))) ELT)) (-3033 (($ (-130) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-130) (-1132))) ELT) (($ (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4508)) (|has| (-130) (-1132))) ELT) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4508)) ELT) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3338 (((-130) $ (-560) (-130)) 25 (|has| $ (-6 -4509)) ELT)) (-3274 (((-130) $ (-560)) 20 T ELT)) (-2359 (((-560) (-1 (-114) (-130)) $) NIL T ELT) (((-560) (-130) $) NIL (|has| (-130) (-1132)) ELT) (((-560) (-130) $ (-560)) NIL (|has| (-130) (-1132)) ELT)) (-3737 (((-663 (-130)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4246 (($ (-793) (-130)) 14 T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) 27 (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL (|has| (-130) (-871)) ELT)) (-4167 (($ (-1 (-114) (-130) (-130)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-130) (-871)) ELT)) (-3243 (((-663 (-130)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-130) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-130) (-1132))) ELT)) (-4263 (((-560) $) 30 (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| (-130) (-871)) ELT)) (-3324 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-130) (-130)) $) NIL T ELT) (($ (-1 (-130) (-130) (-130)) $ $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| (-130) (-1132)) ELT)) (-2507 (($ (-130) $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) NIL T ELT)) (-3376 (((-1151) $) NIL (|has| (-130) (-1132)) ELT)) (-4334 (((-130) $) NIL (|has| (-560) (-871)) ELT)) (-2708 (((-3 (-130) "failed") (-1 (-114) (-130)) $) NIL T ELT)) (-2740 (($ $ (-130)) NIL (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 (-130)))) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1132))) ELT) (($ $ (-305 (-130))) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1132))) ELT) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1132))) ELT) (($ $ (-663 (-130)) (-663 (-130))) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) (-130) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-130) (-1132))) ELT)) (-1383 (((-663 (-130)) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) 12 T ELT)) (-1507 (((-130) $ (-560) (-130)) NIL T ELT) (((-130) $ (-560)) 23 T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-2579 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-3384 (((-793) (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-130) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-130) (-1132))) ELT)) (-3993 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) NIL (|has| (-130) (-633 (-549))) ELT)) (-3924 (($ (-663 (-130))) 46 T ELT)) (-1955 (($ $ (-130)) NIL T ELT) (($ (-130) $) NIL T ELT) (($ $ $) 47 T ELT) (($ (-663 $)) NIL T ELT)) (-3913 (((-987 (-130)) $) 35 T ELT) (((-1189) $) 43 T ELT) (((-887) $) NIL (|has| (-130) (-632 (-887))) ELT)) (-3918 (((-793) $) 18 T ELT)) (-3296 (($ (-793)) 8 T ELT)) (-3925 (((-114) $ $) NIL (|has| (-130) (-102)) ELT)) (-2149 (((-114) (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2396 (((-114) $ $) NIL (|has| (-130) (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| (-130) (-871)) ELT)) (-2340 (((-114) $ $) 32 (|has| (-130) (-102)) ELT)) (-2386 (((-114) $ $) NIL (|has| (-130) (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| (-130) (-871)) ELT)) (-2256 (((-793) $) 15 (|has| $ (-6 -4508)) ELT)))
+(((-131) (-13 (-19 (-130)) (-632 (-987 (-130))) (-632 (-1189)) (-10 -8 (-15 -3296 ($ (-793))) (-15 -3918 ((-793) $)) (-15 -2158 ((-793) $ (-793))) (-6 -4508)))) (T -131))
+((-3296 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-131)))) (-3918 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-131)))) (-2158 (*1 *2 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-131)))))
+(-13 (-19 (-130)) (-632 (-987 (-130))) (-632 (-1189)) (-10 -8 (-15 -3296 ($ (-793))) (-15 -3918 ((-793) $)) (-15 -2158 ((-793) $ (-793))) (-6 -4508)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3335 (($) 6 T CONST)) (-3460 (($) 7 T CONST)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 14 T ELT)) (-4200 (($) 8 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 10 T ELT)))
+(((-132) (-13 (-1132) (-10 -8 (-15 -3460 ($) -2650) (-15 -4200 ($) -2650) (-15 -3335 ($) -2650)))) (T -132))
+((-3460 (*1 *1) (-5 *1 (-132))) (-4200 (*1 *1) (-5 *1 (-132))) (-3335 (*1 *1) (-5 *1 (-132))))
+(-13 (-1132) (-10 -8 (-15 -3460 ($) -2650) (-15 -4200 ($) -2650) (-15 -3335 ($) -2650)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT)))
(((-133) (-142)) (T -133))
-((-3068 (*1 *1 *1 *1) (|partial| -4 *1 (-133))))
-(-13 (-23) (-10 -8 (-15 -3068 ((-3 $ "failed") $ $))))
+((-3094 (*1 *1 *1 *1) (|partial| -4 *1 (-133))))
+(-13 (-23) (-10 -8 (-15 -3094 ((-3 $ "failed") $ $))))
(((-23) . T) ((-25) . T) ((-102) . T) ((-632 (-887)) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) 7 T ELT)) (-3712 (((-1303) $ (-793)) 14 T ELT)) (-1722 (((-793) $) 15 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2473 (((-114) $ $) 8 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2173 (((-1303) $ (-793)) 14 T ELT)) (-2359 (((-793) $) 15 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2340 (((-114) $ $) 8 T ELT)))
(((-134) (-142)) (T -134))
-((-1722 (*1 *2 *1) (-12 (-4 *1 (-134)) (-5 *2 (-793)))) (-3712 (*1 *2 *1 *3) (-12 (-4 *1 (-134)) (-5 *3 (-793)) (-5 *2 (-1303)))))
-(-13 (-1132) (-10 -8 (-15 -1722 ((-793) $)) (-15 -3712 ((-1303) $ (-793)))))
+((-2359 (*1 *2 *1) (-12 (-4 *1 (-134)) (-5 *2 (-793)))) (-2173 (*1 *2 *1 *3) (-12 (-4 *1 (-134)) (-5 *3 (-793)) (-5 *2 (-1303)))))
+(-13 (-1132) (-10 -8 (-15 -2359 ((-793) $)) (-15 -2173 ((-1303) $ (-793)))))
(((-102) . T) ((-632 (-887)) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 16 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3625 (((-663 (-1166)) $) 10 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-135) (-13 (-1114) (-10 -8 (-15 -3625 ((-663 (-1166)) $))))) (T -135))
-((-3625 (*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-135)))))
-(-13 (-1114) (-10 -8 (-15 -3625 ((-663 (-1166)) $))))
-((-1538 (((-114) $ $) 49 T ELT)) (-2388 (((-114) $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-793) "failed") $) 58 T ELT)) (-3330 (((-793) $) 56 T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) 37 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1631 (((-114)) 59 T ELT)) (-2581 (((-114) (-114)) 61 T ELT)) (-1518 (((-114) $) 30 T ELT)) (-3243 (((-114) $) 55 T ELT)) (-1578 (((-887) $) 28 T ELT) (($ (-793)) 20 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 18 T CONST)) (-2011 (($) 19 T CONST)) (-3834 (($ (-793)) 21 T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) 40 T ELT)) (-2473 (((-114) $ $) 32 T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 35 T ELT)) (-2580 (((-3 $ "failed") $ $) 42 T ELT)) (-2567 (($ $ $) 38 T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-948)) NIL T ELT) (($ $ $) 54 T ELT)) (* (($ (-793) $) 48 T ELT) (($ (-948) $) NIL T ELT) (($ $ $) 45 T ELT)))
-(((-136) (-13 (-871) (-23) (-748) (-1069 (-793)) (-10 -8 (-6 (-4510 "*")) (-15 -2580 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3834 ($ (-793))) (-15 -1518 ((-114) $)) (-15 -3243 ((-114) $)) (-15 -1631 ((-114))) (-15 -2581 ((-114) (-114)))))) (T -136))
-((-2580 (*1 *1 *1 *1) (|partial| -5 *1 (-136))) (** (*1 *1 *1 *1) (-5 *1 (-136))) (-3834 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-136)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) (-3243 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) (-1631 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) (-2581 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136)))))
-(-13 (-871) (-23) (-748) (-1069 (-793)) (-10 -8 (-6 (-4510 "*")) (-15 -2580 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -3834 ($ (-793))) (-15 -1518 ((-114) $)) (-15 -3243 ((-114) $)) (-15 -1631 ((-114))) (-15 -2581 ((-114) (-114)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3328 (($ (-663 |#3|)) 61 T ELT)) (-2629 (($ $) 123 T ELT) (($ $ (-560) (-560)) 122 T ELT)) (-2238 (($) 20 T ELT)) (-2539 (((-3 |#3| "failed") $) 83 T ELT)) (-3330 ((|#3| $) NIL T ELT)) (-3787 (($ $ (-663 (-560))) 124 T ELT)) (-1591 (((-663 |#3|) $) 56 T ELT)) (-2326 (((-793) $) 66 T ELT)) (-1480 (($ $ $) 117 T ELT)) (-2144 (($) 65 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2195 (($) 19 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3924 ((|#3| $ (-560)) 69 T ELT) ((|#3| $) 68 T ELT) ((|#3| $ (-560) (-560)) 70 T ELT) ((|#3| $ (-560) (-560) (-560)) 71 T ELT) ((|#3| $ (-560) (-560) (-560) (-560)) 72 T ELT) ((|#3| $ (-663 (-560))) 73 T ELT)) (-3630 (((-793) $) 67 T ELT)) (-1743 (($ $ (-560) $ (-560)) 118 T ELT) (($ $ (-560) (-560)) 120 T ELT)) (-1578 (((-887) $) 91 T ELT) (($ |#3|) 92 T ELT) (($ (-246 |#2| |#3|)) 99 T ELT) (($ (-1173 |#2| |#3|)) 102 T ELT) (($ (-663 |#3|)) 74 T ELT) (($ (-663 $)) 80 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 93 T CONST)) (-2011 (($) 94 T CONST)) (-2473 (((-114) $ $) 104 T ELT)) (-2580 (($ $) 110 T ELT) (($ $ $) 108 T ELT)) (-2567 (($ $ $) 106 T ELT)) (* (($ |#3| $) 115 T ELT) (($ $ |#3|) 116 T ELT) (($ $ (-560)) 113 T ELT) (($ (-560) $) 112 T ELT) (($ $ $) 119 T ELT)))
-(((-137 |#1| |#2| |#3|) (-13 (-479 |#3| (-793)) (-484 (-560) (-793)) (-298 (-560) |#3|) (-10 -8 (-15 -1578 ($ (-246 |#2| |#3|))) (-15 -1578 ($ (-1173 |#2| |#3|))) (-15 -1578 ($ (-663 |#3|))) (-15 -1578 ($ (-663 $))) (-15 -2326 ((-793) $)) (-15 -3924 (|#3| $)) (-15 -3924 (|#3| $ (-560) (-560))) (-15 -3924 (|#3| $ (-560) (-560) (-560))) (-15 -3924 (|#3| $ (-560) (-560) (-560) (-560))) (-15 -3924 (|#3| $ (-663 (-560)))) (-15 -1480 ($ $ $)) (-15 * ($ $ $)) (-15 -1743 ($ $ (-560) $ (-560))) (-15 -1743 ($ $ (-560) (-560))) (-15 -2629 ($ $)) (-15 -2629 ($ $ (-560) (-560))) (-15 -3787 ($ $ (-663 (-560)))) (-15 -2195 ($)) (-15 -2144 ($)) (-15 -1591 ((-663 |#3|) $)) (-15 -3328 ($ (-663 |#3|))) (-15 -2238 ($)))) (-560) (-793) (-175)) (T -137))
-((-1480 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-793)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-1173 *4 *5)) (-14 *4 (-793)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-663 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-793)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-663 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-793)) (-4 *5 (-175)))) (-2326 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 *2) (-4 *5 (-175)))) (-3924 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-560)) (-14 *4 (-793)))) (-3924 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-793)))) (-3924 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-560)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-793)))) (-3924 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-560)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-793)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 (-663 (-560))) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-560)) (-14 *5 (-793)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175)))) (-1743 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-793)) (-4 *5 (-175)))) (-1743 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-793)) (-4 *5 (-175)))) (-2629 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175)))) (-2629 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-793)) (-4 *5 (-175)))) (-3787 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-793)) (-4 *5 (-175)))) (-2195 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175)))) (-2144 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175)))) (-1591 (*1 *2 *1) (-12 (-5 *2 (-663 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-793)) (-4 *5 (-175)))) (-3328 (*1 *1 *2) (-12 (-5 *2 (-663 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-793)))) (-2238 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175)))))
-(-13 (-479 |#3| (-793)) (-484 (-560) (-793)) (-298 (-560) |#3|) (-10 -8 (-15 -1578 ($ (-246 |#2| |#3|))) (-15 -1578 ($ (-1173 |#2| |#3|))) (-15 -1578 ($ (-663 |#3|))) (-15 -1578 ($ (-663 $))) (-15 -2326 ((-793) $)) (-15 -3924 (|#3| $)) (-15 -3924 (|#3| $ (-560) (-560))) (-15 -3924 (|#3| $ (-560) (-560) (-560))) (-15 -3924 (|#3| $ (-560) (-560) (-560) (-560))) (-15 -3924 (|#3| $ (-663 (-560)))) (-15 -1480 ($ $ $)) (-15 * ($ $ $)) (-15 -1743 ($ $ (-560) $ (-560))) (-15 -1743 ($ $ (-560) (-560))) (-15 -2629 ($ $)) (-15 -2629 ($ $ (-560) (-560))) (-15 -3787 ($ $ (-663 (-560)))) (-15 -2195 ($)) (-15 -2144 ($)) (-15 -1591 ((-663 |#3|) $)) (-15 -3328 ($ (-663 |#3|))) (-15 -2238 ($))))
-((-1607 (((-137 |#1| |#2| |#4|) (-663 |#4|) (-137 |#1| |#2| |#3|)) 14 T ELT)) (-3957 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18 T ELT)))
-(((-138 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1607 ((-137 |#1| |#2| |#4|) (-663 |#4|) (-137 |#1| |#2| |#3|))) (-15 -3957 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-560) (-793) (-175) (-175)) (T -138))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-560)) (-14 *6 (-793)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-138 *5 *6 *7 *8)))) (-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-560)) (-14 *6 (-793)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-138 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1607 ((-137 |#1| |#2| |#4|) (-663 |#4|) (-137 |#1| |#2| |#3|))) (-15 -3957 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3401 (((-1166) $) 11 T ELT)) (-3391 (((-1166) $) 9 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-139) (-13 (-1114) (-10 -8 (-15 -3391 ((-1166) $)) (-15 -3401 ((-1166) $))))) (T -139))
-((-3391 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-139)))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-139)))))
-(-13 (-1114) (-10 -8 (-15 -3391 ((-1166) $)) (-15 -3401 ((-1166) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3954 (((-190) $) 10 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 20 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3625 (((-663 (-1166)) $) 13 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-140) (-13 (-1114) (-10 -8 (-15 -3954 ((-190) $)) (-15 -3625 ((-663 (-1166)) $))))) (T -140))
-((-3954 (*1 *2 *1) (-12 (-5 *2 (-190)) (-5 *1 (-140)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-140)))))
-(-13 (-1114) (-10 -8 (-15 -3954 ((-190) $)) (-15 -3625 ((-663 (-1166)) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2150 (((-663 (-889)) $) NIL T ELT)) (-3614 (((-520) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3954 (((-190) $) NIL T ELT)) (-2784 (((-114) $ (-520)) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4111 (((-663 (-114)) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (((-186) $) 6 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-3617 (((-55) $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 16 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-4400 (((-663 (-1166)) $) 10 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-135) (-13 (-1114) (-10 -8 (-15 -4400 ((-663 (-1166)) $))))) (T -135))
+((-4400 (*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-135)))))
+(-13 (-1114) (-10 -8 (-15 -4400 ((-663 (-1166)) $))))
+((-2243 (((-114) $ $) 49 T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-793) "failed") $) 58 T ELT)) (-3649 (((-793) $) 56 T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) 37 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3636 (((-114)) 59 T ELT)) (-3779 (((-114) (-114)) 61 T ELT)) (-2916 (((-114) $) 30 T ELT)) (-4357 (((-114) $) 55 T ELT)) (-3913 (((-887) $) 28 T ELT) (($ (-793)) 20 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 18 T CONST)) (-1456 (($) 19 T CONST)) (-1993 (($ (-793)) 21 T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) 40 T ELT)) (-2340 (((-114) $ $) 32 T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 35 T ELT)) (-2441 (((-3 $ "failed") $ $) 42 T ELT)) (-2429 (($ $ $) 38 T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-948)) NIL T ELT) (($ $ $) 54 T ELT)) (* (($ (-793) $) 48 T ELT) (($ (-948) $) NIL T ELT) (($ $ $) 45 T ELT)))
+(((-136) (-13 (-871) (-23) (-748) (-1069 (-793)) (-10 -8 (-6 (-4510 "*")) (-15 -2441 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1993 ($ (-793))) (-15 -2916 ((-114) $)) (-15 -4357 ((-114) $)) (-15 -3636 ((-114))) (-15 -3779 ((-114) (-114)))))) (T -136))
+((-2441 (*1 *1 *1 *1) (|partial| -5 *1 (-136))) (** (*1 *1 *1 *1) (-5 *1 (-136))) (-1993 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-136)))) (-2916 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) (-4357 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) (-3636 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) (-3779 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136)))))
+(-13 (-871) (-23) (-748) (-1069 (-793)) (-10 -8 (-6 (-4510 "*")) (-15 -2441 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1993 ($ (-793))) (-15 -2916 ((-114) $)) (-15 -4357 ((-114) $)) (-15 -3636 ((-114))) (-15 -3779 ((-114) (-114)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2697 (($ (-663 |#3|)) 61 T ELT)) (-2966 (($ $) 123 T ELT) (($ $ (-560) (-560)) 122 T ELT)) (-3525 (($) 20 T ELT)) (-3929 (((-3 |#3| "failed") $) 83 T ELT)) (-3649 ((|#3| $) NIL T ELT)) (-1550 (($ $ (-663 (-560))) 124 T ELT)) (-2249 (((-663 |#3|) $) 56 T ELT)) (-1604 (((-793) $) 66 T ELT)) (-1866 (($ $ $) 117 T ELT)) (-1929 (($) 65 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-4376 (($) 19 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1507 ((|#3| $ (-560)) 69 T ELT) ((|#3| $) 68 T ELT) ((|#3| $ (-560) (-560)) 70 T ELT) ((|#3| $ (-560) (-560) (-560)) 71 T ELT) ((|#3| $ (-560) (-560) (-560) (-560)) 72 T ELT) ((|#3| $ (-663 (-560))) 73 T ELT)) (-3900 (((-793) $) 67 T ELT)) (-2310 (($ $ (-560) $ (-560)) 118 T ELT) (($ $ (-560) (-560)) 120 T ELT)) (-3913 (((-887) $) 91 T ELT) (($ |#3|) 92 T ELT) (($ (-246 |#2| |#3|)) 99 T ELT) (($ (-1173 |#2| |#3|)) 102 T ELT) (($ (-663 |#3|)) 74 T ELT) (($ (-663 $)) 80 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 93 T CONST)) (-1456 (($) 94 T CONST)) (-2340 (((-114) $ $) 104 T ELT)) (-2441 (($ $) 110 T ELT) (($ $ $) 108 T ELT)) (-2429 (($ $ $) 106 T ELT)) (* (($ |#3| $) 115 T ELT) (($ $ |#3|) 116 T ELT) (($ $ (-560)) 113 T ELT) (($ (-560) $) 112 T ELT) (($ $ $) 119 T ELT)))
+(((-137 |#1| |#2| |#3|) (-13 (-479 |#3| (-793)) (-484 (-560) (-793)) (-298 (-560) |#3|) (-10 -8 (-15 -3913 ($ (-246 |#2| |#3|))) (-15 -3913 ($ (-1173 |#2| |#3|))) (-15 -3913 ($ (-663 |#3|))) (-15 -3913 ($ (-663 $))) (-15 -1604 ((-793) $)) (-15 -1507 (|#3| $)) (-15 -1507 (|#3| $ (-560) (-560))) (-15 -1507 (|#3| $ (-560) (-560) (-560))) (-15 -1507 (|#3| $ (-560) (-560) (-560) (-560))) (-15 -1507 (|#3| $ (-663 (-560)))) (-15 -1866 ($ $ $)) (-15 * ($ $ $)) (-15 -2310 ($ $ (-560) $ (-560))) (-15 -2310 ($ $ (-560) (-560))) (-15 -2966 ($ $)) (-15 -2966 ($ $ (-560) (-560))) (-15 -1550 ($ $ (-663 (-560)))) (-15 -4376 ($)) (-15 -1929 ($)) (-15 -2249 ((-663 |#3|) $)) (-15 -2697 ($ (-663 |#3|))) (-15 -3525 ($)))) (-560) (-793) (-175)) (T -137))
+((-1866 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-793)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-1173 *4 *5)) (-14 *4 (-793)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-663 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-793)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-663 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-793)) (-4 *5 (-175)))) (-1604 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 *2) (-4 *5 (-175)))) (-1507 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-560)) (-14 *4 (-793)))) (-1507 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-793)))) (-1507 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-560)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-793)))) (-1507 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-560)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-793)))) (-1507 (*1 *2 *1 *3) (-12 (-5 *3 (-663 (-560))) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-560)) (-14 *5 (-793)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175)))) (-2310 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-793)) (-4 *5 (-175)))) (-2310 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-793)) (-4 *5 (-175)))) (-2966 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175)))) (-2966 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-793)) (-4 *5 (-175)))) (-1550 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-793)) (-4 *5 (-175)))) (-4376 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175)))) (-1929 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175)))) (-2249 (*1 *2 *1) (-12 (-5 *2 (-663 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-793)) (-4 *5 (-175)))) (-2697 (*1 *1 *2) (-12 (-5 *2 (-663 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560)) (-14 *4 (-793)))) (-3525 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793)) (-4 *4 (-175)))))
+(-13 (-479 |#3| (-793)) (-484 (-560) (-793)) (-298 (-560) |#3|) (-10 -8 (-15 -3913 ($ (-246 |#2| |#3|))) (-15 -3913 ($ (-1173 |#2| |#3|))) (-15 -3913 ($ (-663 |#3|))) (-15 -3913 ($ (-663 $))) (-15 -1604 ((-793) $)) (-15 -1507 (|#3| $)) (-15 -1507 (|#3| $ (-560) (-560))) (-15 -1507 (|#3| $ (-560) (-560) (-560))) (-15 -1507 (|#3| $ (-560) (-560) (-560) (-560))) (-15 -1507 (|#3| $ (-663 (-560)))) (-15 -1866 ($ $ $)) (-15 * ($ $ $)) (-15 -2310 ($ $ (-560) $ (-560))) (-15 -2310 ($ $ (-560) (-560))) (-15 -2966 ($ $)) (-15 -2966 ($ $ (-560) (-560))) (-15 -1550 ($ $ (-663 (-560)))) (-15 -4376 ($)) (-15 -1929 ($)) (-15 -2249 ((-663 |#3|) $)) (-15 -2697 ($ (-663 |#3|))) (-15 -3525 ($))))
+((-2266 (((-137 |#1| |#2| |#4|) (-663 |#4|) (-137 |#1| |#2| |#3|)) 14 T ELT)) (-2260 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18 T ELT)))
+(((-138 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2266 ((-137 |#1| |#2| |#4|) (-663 |#4|) (-137 |#1| |#2| |#3|))) (-15 -2260 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-560) (-793) (-175) (-175)) (T -138))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-560)) (-14 *6 (-793)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-138 *5 *6 *7 *8)))) (-2266 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-560)) (-14 *6 (-793)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-138 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2266 ((-137 |#1| |#2| |#4|) (-663 |#4|) (-137 |#1| |#2| |#3|))) (-15 -2260 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-4133 (((-1166) $) 11 T ELT)) (-4121 (((-1166) $) 9 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-139) (-13 (-1114) (-10 -8 (-15 -4121 ((-1166) $)) (-15 -4133 ((-1166) $))))) (T -139))
+((-4121 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-139)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-139)))))
+(-13 (-1114) (-10 -8 (-15 -4121 ((-1166) $)) (-15 -4133 ((-1166) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3480 (((-190) $) 10 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 20 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-4400 (((-663 (-1166)) $) 13 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-140) (-13 (-1114) (-10 -8 (-15 -3480 ((-190) $)) (-15 -4400 ((-663 (-1166)) $))))) (T -140))
+((-3480 (*1 *2 *1) (-12 (-5 *2 (-190)) (-5 *1 (-140)))) (-4400 (*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-140)))))
+(-13 (-1114) (-10 -8 (-15 -3480 ((-190) $)) (-15 -4400 ((-663 (-1166)) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2941 (((-663 (-889)) $) NIL T ELT)) (-4389 (((-520) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3480 (((-190) $) NIL T ELT)) (-2060 (((-114) $ (-520)) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1599 (((-663 (-114)) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (((-186) $) 6 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3780 (((-55) $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-141) (-13 (-189) (-632 (-186)))) (T -141))
NIL
(-13 (-189) (-632 (-186)))
-((-2908 (((-663 (-187 (-141))) $) 13 T ELT)) (-3166 (((-663 (-187 (-141))) $) 14 T ELT)) (-2685 (((-663 (-860)) $) 10 T ELT)) (-2587 (((-141) $) 7 T ELT)) (-1578 (((-887) $) 16 T ELT)))
-(((-142) (-13 (-632 (-887)) (-10 -8 (-15 -2587 ((-141) $)) (-15 -2685 ((-663 (-860)) $)) (-15 -2908 ((-663 (-187 (-141))) $)) (-15 -3166 ((-663 (-187 (-141))) $))))) (T -142))
-((-2587 (*1 *2 *1) (-12 (-5 *2 (-141)) (-5 *1 (-142)))) (-2685 (*1 *2 *1) (-12 (-5 *2 (-663 (-860))) (-5 *1 (-142)))) (-2908 (*1 *2 *1) (-12 (-5 *2 (-663 (-187 (-141)))) (-5 *1 (-142)))) (-3166 (*1 *2 *1) (-12 (-5 *2 (-663 (-187 (-141)))) (-5 *1 (-142)))))
-(-13 (-632 (-887)) (-10 -8 (-15 -2587 ((-141) $)) (-15 -2685 ((-663 (-860)) $)) (-15 -2908 ((-663 (-187 (-141))) $)) (-15 -3166 ((-663 (-187 (-141))) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2552 (($) 17 T CONST)) (-4208 (($) NIL (|has| (-146) (-381)) ELT)) (-4028 (($ $ $) 19 T ELT) (($ $ (-146)) NIL T ELT) (($ (-146) $) NIL T ELT)) (-1830 (($ $ $) NIL T ELT)) (-3963 (((-114) $ $) NIL T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-3241 (((-793)) NIL (|has| (-146) (-381)) ELT)) (-1850 (($) NIL T ELT) (($ (-663 (-146))) NIL T ELT)) (-3500 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2238 (($) NIL T CONST)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-3390 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-146) $) 60 (|has| $ (-6 -4508)) ELT)) (-2375 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-146) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-4129 (((-146) (-1 (-146) (-146) (-146)) $) NIL (|has| $ (-6 -4508)) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) NIL (|has| $ (-6 -4508)) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-2310 (($) NIL (|has| (-146) (-381)) ELT)) (-2181 (((-663 (-146)) $) 69 (|has| $ (-6 -4508)) ELT)) (-2250 (((-114) $ $) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-3825 (((-146) $) NIL (|has| (-146) (-871)) ELT)) (-2656 (((-663 (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-146) $) 27 (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-2820 (((-146) $) NIL (|has| (-146) (-871)) ELT)) (-3768 (($ (-1 (-146) (-146)) $) 68 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-146) (-146)) $) 64 T ELT)) (-3247 (($) 18 T CONST)) (-4419 (((-948) $) NIL (|has| (-146) (-381)) ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1903 (($ $ $) 30 T ELT)) (-1576 (((-146) $) 61 T ELT)) (-3629 (($ (-146) $) 59 T ELT)) (-3128 (($ (-948)) NIL (|has| (-146) (-381)) ELT)) (-1746 (($) 16 T CONST)) (-3855 (((-1151) $) NIL T ELT)) (-3329 (((-3 (-146) "failed") (-1 (-114) (-146)) $) NIL T ELT)) (-2615 (((-146) $) 62 T ELT)) (-2787 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-146)) (-663 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-146) (-146)) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-305 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-663 (-305 (-146)))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) 57 T ELT)) (-1639 (($) 15 T CONST)) (-3733 (($ $ $) 32 T ELT) (($ $ (-146)) NIL T ELT)) (-3897 (($ (-663 (-146))) NIL T ELT) (($) NIL T ELT)) (-3865 (((-793) (-146) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT) (((-793) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-1189) $) 37 T ELT) (((-549) $) NIL (|has| (-146) (-633 (-549))) ELT) (((-663 (-146)) $) 35 T ELT)) (-1592 (($ (-663 (-146))) NIL T ELT)) (-3139 (($ $) 33 (|has| (-146) (-381)) ELT)) (-1578 (((-887) $) 53 T ELT)) (-3261 (($ (-1189)) 14 T ELT) (($ (-663 (-146))) 50 T ELT)) (-3078 (((-793) $) NIL T ELT)) (-1364 (($) 58 T ELT) (($ (-663 (-146))) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-3376 (($ (-663 (-146))) NIL T ELT)) (-1728 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3155 (($) 21 T CONST)) (-3852 (($) 20 T CONST)) (-2473 (((-114) $ $) 24 T ELT)) (-1553 (((-793) $) 56 (|has| $ (-6 -4508)) ELT)))
-(((-143) (-13 (-1132) (-633 (-1189)) (-440 (-146)) (-633 (-663 (-146))) (-10 -8 (-15 -3261 ($ (-1189))) (-15 -3261 ($ (-663 (-146)))) (-15 -1639 ($) -3081) (-15 -1746 ($) -3081) (-15 -2552 ($) -3081) (-15 -3247 ($) -3081) (-15 -3852 ($) -3081) (-15 -3155 ($) -3081)))) (T -143))
-((-3261 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-143)))) (-3261 (*1 *1 *2) (-12 (-5 *2 (-663 (-146))) (-5 *1 (-143)))) (-1639 (*1 *1) (-5 *1 (-143))) (-1746 (*1 *1) (-5 *1 (-143))) (-2552 (*1 *1) (-5 *1 (-143))) (-3247 (*1 *1) (-5 *1 (-143))) (-3852 (*1 *1) (-5 *1 (-143))) (-3155 (*1 *1) (-5 *1 (-143))))
-(-13 (-1132) (-633 (-1189)) (-440 (-146)) (-633 (-663 (-146))) (-10 -8 (-15 -3261 ($ (-1189))) (-15 -3261 ($ (-663 (-146)))) (-15 -1639 ($) -3081) (-15 -1746 ($) -3081) (-15 -2552 ($) -3081) (-15 -3247 ($) -3081) (-15 -3852 ($) -3081) (-15 -3155 ($) -3081)))
-((-1386 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-2323 ((|#1| |#3|) 9 T ELT)) (-3590 ((|#3| |#3|) 15 T ELT)))
-(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -2323 (|#1| |#3|)) (-15 -3590 (|#3| |#3|)) (-15 -1386 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-571) (-1022 |#1|) (-385 |#2|)) (T -144))
-((-1386 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-1022 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-144 *4 *5 *3)) (-4 *3 (-385 *5)))) (-3590 (*1 *2 *2) (-12 (-4 *3 (-571)) (-4 *4 (-1022 *3)) (-5 *1 (-144 *3 *4 *2)) (-4 *2 (-385 *4)))) (-2323 (*1 *2 *3) (-12 (-4 *4 (-1022 *2)) (-4 *2 (-571)) (-5 *1 (-144 *2 *4 *3)) (-4 *3 (-385 *4)))))
-(-10 -7 (-15 -2323 (|#1| |#3|)) (-15 -3590 (|#3| |#3|)) (-15 -1386 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-2708 (($ $ $) 8 T ELT)) (-1559 (($ $) 7 T ELT)) (-3271 (($ $ $) 6 T ELT)))
+((-3961 (((-663 (-187 (-141))) $) 13 T ELT)) (-3865 (((-663 (-187 (-141))) $) 14 T ELT)) (-2296 (((-663 (-860)) $) 10 T ELT)) (-2948 (((-141) $) 7 T ELT)) (-3913 (((-887) $) 16 T ELT)))
+(((-142) (-13 (-632 (-887)) (-10 -8 (-15 -2948 ((-141) $)) (-15 -2296 ((-663 (-860)) $)) (-15 -3961 ((-663 (-187 (-141))) $)) (-15 -3865 ((-663 (-187 (-141))) $))))) (T -142))
+((-2948 (*1 *2 *1) (-12 (-5 *2 (-141)) (-5 *1 (-142)))) (-2296 (*1 *2 *1) (-12 (-5 *2 (-663 (-860))) (-5 *1 (-142)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-663 (-187 (-141)))) (-5 *1 (-142)))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-663 (-187 (-141)))) (-5 *1 (-142)))))
+(-13 (-632 (-887)) (-10 -8 (-15 -2948 ((-141) $)) (-15 -2296 ((-663 (-860)) $)) (-15 -3961 ((-663 (-187 (-141))) $)) (-15 -3865 ((-663 (-187 (-141))) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3473 (($) 17 T CONST)) (-1366 (($) NIL (|has| (-146) (-381)) ELT)) (-3574 (($ $ $) 19 T ELT) (($ $ (-146)) NIL T ELT) (($ (-146) $) NIL T ELT)) (-1925 (($ $ $) NIL T ELT)) (-3895 (((-114) $ $) NIL T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-2552 (((-793)) NIL (|has| (-146) (-381)) ELT)) (-2512 (($) NIL T ELT) (($ (-663 (-146))) NIL T ELT)) (-1864 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3525 (($) NIL T CONST)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-2091 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-146) $) 60 (|has| $ (-6 -4508)) ELT)) (-3033 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-146) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-1778 (((-146) (-1 (-146) (-146) (-146)) $) NIL (|has| $ (-6 -4508)) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) NIL (|has| $ (-6 -4508)) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-1812 (($) NIL (|has| (-146) (-381)) ELT)) (-3737 (((-663 (-146)) $) 69 (|has| $ (-6 -4508)) ELT)) (-3653 (((-114) $ $) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2932 (((-146) $) NIL (|has| (-146) (-871)) ELT)) (-3243 (((-663 (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-146) $) 27 (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-4379 (((-146) $) NIL (|has| (-146) (-871)) ELT)) (-3324 (($ (-1 (-146) (-146)) $) 68 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-146) (-146)) $) 64 T ELT)) (-4399 (($) 18 T CONST)) (-2622 (((-948) $) NIL (|has| (-146) (-381)) ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3334 (($ $ $) 30 T ELT)) (-1878 (((-146) $) 61 T ELT)) (-3888 (($ (-146) $) 59 T ELT)) (-1591 (($ (-948)) NIL (|has| (-146) (-381)) ELT)) (-2338 (($) 16 T CONST)) (-3376 (((-1151) $) NIL T ELT)) (-2708 (((-3 (-146) "failed") (-1 (-114) (-146)) $) NIL T ELT)) (-2796 (((-146) $) 62 T ELT)) (-2086 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-146)) (-663 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-146) (-146)) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-305 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-663 (-305 (-146)))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) 57 T ELT)) (-3731 (($) 15 T CONST)) (-2358 (($ $ $) 32 T ELT) (($ $ (-146)) NIL T ELT)) (-4468 (($ (-663 (-146))) NIL T ELT) (($) NIL T ELT)) (-3384 (((-793) (-146) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT) (((-793) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-1189) $) 37 T ELT) (((-549) $) NIL (|has| (-146) (-633 (-549))) ELT) (((-663 (-146)) $) 35 T ELT)) (-3924 (($ (-663 (-146))) NIL T ELT)) (-2589 (($ $) 33 (|has| (-146) (-381)) ELT)) (-3913 (((-887) $) 53 T ELT)) (-1378 (($ (-1189)) 14 T ELT) (($ (-663 (-146))) 50 T ELT)) (-3199 (((-793) $) NIL T ELT)) (-4074 (($) 58 T ELT) (($ (-663 (-146))) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3184 (($ (-663 (-146))) NIL T ELT)) (-2149 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-1536 (($) 21 T CONST)) (-4067 (($) 20 T CONST)) (-2340 (((-114) $ $) 24 T ELT)) (-2256 (((-793) $) 56 (|has| $ (-6 -4508)) ELT)))
+(((-143) (-13 (-1132) (-633 (-1189)) (-440 (-146)) (-633 (-663 (-146))) (-10 -8 (-15 -1378 ($ (-1189))) (-15 -1378 ($ (-663 (-146)))) (-15 -3731 ($) -2650) (-15 -2338 ($) -2650) (-15 -3473 ($) -2650) (-15 -4399 ($) -2650) (-15 -4067 ($) -2650) (-15 -1536 ($) -2650)))) (T -143))
+((-1378 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-143)))) (-1378 (*1 *1 *2) (-12 (-5 *2 (-663 (-146))) (-5 *1 (-143)))) (-3731 (*1 *1) (-5 *1 (-143))) (-2338 (*1 *1) (-5 *1 (-143))) (-3473 (*1 *1) (-5 *1 (-143))) (-4399 (*1 *1) (-5 *1 (-143))) (-4067 (*1 *1) (-5 *1 (-143))) (-1536 (*1 *1) (-5 *1 (-143))))
+(-13 (-1132) (-633 (-1189)) (-440 (-146)) (-633 (-663 (-146))) (-10 -8 (-15 -1378 ($ (-1189))) (-15 -1378 ($ (-663 (-146)))) (-15 -3731 ($) -2650) (-15 -2338 ($) -2650) (-15 -3473 ($) -2650) (-15 -4399 ($) -2650) (-15 -4067 ($) -2650) (-15 -1536 ($) -2650)))
+((-2685 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-3114 ((|#1| |#3|) 9 T ELT)) (-3486 ((|#3| |#3|) 15 T ELT)))
+(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -3114 (|#1| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -2685 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-571) (-1022 |#1|) (-385 |#2|)) (T -144))
+((-2685 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-1022 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-144 *4 *5 *3)) (-4 *3 (-385 *5)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-571)) (-4 *4 (-1022 *3)) (-5 *1 (-144 *3 *4 *2)) (-4 *2 (-385 *4)))) (-3114 (*1 *2 *3) (-12 (-4 *4 (-1022 *2)) (-4 *2 (-571)) (-5 *1 (-144 *2 *4 *3)) (-4 *3 (-385 *4)))))
+(-10 -7 (-15 -3114 (|#1| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -2685 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-2534 (($ $ $) 8 T ELT)) (-1704 (($ $) 7 T ELT)) (-3381 (($ $ $) 6 T ELT)))
(((-145) (-142)) (T -145))
-((-2708 (*1 *1 *1 *1) (-4 *1 (-145))) (-1559 (*1 *1 *1) (-4 *1 (-145))) (-3271 (*1 *1 *1 *1) (-4 *1 (-145))))
-(-13 (-10 -8 (-15 -3271 ($ $ $)) (-15 -1559 ($ $)) (-15 -2708 ($ $ $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1753 (($) 35 T CONST)) (-2402 (((-114) $) 47 T ELT)) (-2552 (($ $) 59 T ELT)) (-4384 (($) 28 T CONST)) (-2783 (($) 26 T CONST)) (-3241 (((-793)) 13 T ELT)) (-2310 (($) 25 T ELT)) (-3529 (($) 27 T CONST)) (-3242 (((-793) $) 21 T ELT)) (-4059 (($) 29 T CONST)) (-3825 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2820 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1864 (((-114) $) 49 T ELT)) (-3247 (($ $) 60 T ELT)) (-4419 (((-948) $) 23 T ELT)) (-2548 (($) 31 T CONST)) (-1905 (((-1189) $) 57 T ELT)) (-3128 (($ (-948)) 20 T ELT)) (-1599 (($) 34 T CONST)) (-3939 (((-114) $) 45 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1878 (($) 32 T CONST)) (-2278 (($) 36 T CONST)) (-2405 (((-114) $) 43 T ELT)) (-1578 (((-887) $) 38 T ELT)) (-2848 (($ (-793)) 19 T ELT) (($ (-1189)) 58 T ELT)) (-1920 (($) 30 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-3143 (($) 33 T CONST)) (-2482 (((-114) $) 53 T ELT)) (-2233 (((-114) $) 51 T ELT)) (-2536 (((-114) $ $) 11 T ELT)) (-2508 (((-114) $ $) 9 T ELT)) (-2473 (((-114) $ $) 7 T ELT)) (-2521 (((-114) $ $) 10 T ELT)) (-2495 (((-114) $ $) 8 T ELT)))
-(((-146) (-13 (-866) (-10 -8 (-15 -3242 ((-793) $)) (-15 -2848 ($ (-793))) (-15 -2848 ($ (-1189))) (-15 -2783 ($) -3081) (-15 -3529 ($) -3081) (-15 -4384 ($) -3081) (-15 -4059 ($) -3081) (-15 -1920 ($) -3081) (-15 -2548 ($) -3081) (-15 -1878 ($) -3081) (-15 -3143 ($) -3081) (-15 -1599 ($) -3081) (-15 -1753 ($) -3081) (-15 -2278 ($) -3081) (-15 -2552 ($ $)) (-15 -3247 ($ $)) (-15 -2405 ((-114) $)) (-15 -3939 ((-114) $)) (-15 -2233 ((-114) $)) (-15 -2402 ((-114) $)) (-15 -1864 ((-114) $)) (-15 -2482 ((-114) $))))) (T -146))
-((-3242 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-146)))) (-2848 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-146)))) (-2848 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-146)))) (-2783 (*1 *1) (-5 *1 (-146))) (-3529 (*1 *1) (-5 *1 (-146))) (-4384 (*1 *1) (-5 *1 (-146))) (-4059 (*1 *1) (-5 *1 (-146))) (-1920 (*1 *1) (-5 *1 (-146))) (-2548 (*1 *1) (-5 *1 (-146))) (-1878 (*1 *1) (-5 *1 (-146))) (-3143 (*1 *1) (-5 *1 (-146))) (-1599 (*1 *1) (-5 *1 (-146))) (-1753 (*1 *1) (-5 *1 (-146))) (-2278 (*1 *1) (-5 *1 (-146))) (-2552 (*1 *1 *1) (-5 *1 (-146))) (-3247 (*1 *1 *1) (-5 *1 (-146))) (-2405 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-3939 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-2233 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-2402 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1864 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-2482 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))))
-(-13 (-866) (-10 -8 (-15 -3242 ((-793) $)) (-15 -2848 ($ (-793))) (-15 -2848 ($ (-1189))) (-15 -2783 ($) -3081) (-15 -3529 ($) -3081) (-15 -4384 ($) -3081) (-15 -4059 ($) -3081) (-15 -1920 ($) -3081) (-15 -2548 ($) -3081) (-15 -1878 ($) -3081) (-15 -3143 ($) -3081) (-15 -1599 ($) -3081) (-15 -1753 ($) -3081) (-15 -2278 ($) -3081) (-15 -2552 ($ $)) (-15 -3247 ($ $)) (-15 -2405 ((-114) $)) (-15 -3939 ((-114) $)) (-15 -2233 ((-114) $)) (-15 -2402 ((-114) $)) (-15 -1864 ((-114) $)) (-15 -2482 ((-114) $))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT)) (-1964 (((-3 $ "failed") $) 39 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
+((-2534 (*1 *1 *1 *1) (-4 *1 (-145))) (-1704 (*1 *1 *1) (-4 *1 (-145))) (-3381 (*1 *1 *1 *1) (-4 *1 (-145))))
+(-13 (-10 -8 (-15 -3381 ($ $ $)) (-15 -1704 ($ $)) (-15 -2534 ($ $ $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2408 (($) 35 T CONST)) (-2638 (((-114) $) 47 T ELT)) (-3473 (($ $) 59 T ELT)) (-2319 (($) 28 T CONST)) (-2051 (($) 26 T CONST)) (-2552 (((-793)) 13 T ELT)) (-1812 (($) 25 T ELT)) (-4101 (($) 27 T CONST)) (-4347 (((-793) $) 21 T ELT)) (-2353 (($) 29 T CONST)) (-2932 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4379 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4180 (((-114) $) 49 T ELT)) (-4399 (($ $) 60 T ELT)) (-2622 (((-948) $) 23 T ELT)) (-3429 (($) 31 T CONST)) (-3358 (((-1189) $) 57 T ELT)) (-1591 (($ (-948)) 20 T ELT)) (-3350 (($) 34 T CONST)) (-3629 (((-114) $) 45 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4317 (($) 32 T CONST)) (-3957 (($) 36 T CONST)) (-2677 (((-114) $) 43 T ELT)) (-3913 (((-887) $) 38 T ELT)) (-2161 (($ (-793)) 19 T ELT) (($ (-1189)) 58 T ELT)) (-3495 (($) 30 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-2629 (($) 33 T CONST)) (-4116 (((-114) $) 53 T ELT)) (-3475 (((-114) $) 51 T ELT)) (-2396 (((-114) $ $) 11 T ELT)) (-2373 (((-114) $ $) 9 T ELT)) (-2340 (((-114) $ $) 7 T ELT)) (-2386 (((-114) $ $) 10 T ELT)) (-2362 (((-114) $ $) 8 T ELT)))
+(((-146) (-13 (-866) (-10 -8 (-15 -4347 ((-793) $)) (-15 -2161 ($ (-793))) (-15 -2161 ($ (-1189))) (-15 -2051 ($) -2650) (-15 -4101 ($) -2650) (-15 -2319 ($) -2650) (-15 -2353 ($) -2650) (-15 -3495 ($) -2650) (-15 -3429 ($) -2650) (-15 -4317 ($) -2650) (-15 -2629 ($) -2650) (-15 -3350 ($) -2650) (-15 -2408 ($) -2650) (-15 -3957 ($) -2650) (-15 -3473 ($ $)) (-15 -4399 ($ $)) (-15 -2677 ((-114) $)) (-15 -3629 ((-114) $)) (-15 -3475 ((-114) $)) (-15 -2638 ((-114) $)) (-15 -4180 ((-114) $)) (-15 -4116 ((-114) $))))) (T -146))
+((-4347 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-146)))) (-2161 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-146)))) (-2161 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-146)))) (-2051 (*1 *1) (-5 *1 (-146))) (-4101 (*1 *1) (-5 *1 (-146))) (-2319 (*1 *1) (-5 *1 (-146))) (-2353 (*1 *1) (-5 *1 (-146))) (-3495 (*1 *1) (-5 *1 (-146))) (-3429 (*1 *1) (-5 *1 (-146))) (-4317 (*1 *1) (-5 *1 (-146))) (-2629 (*1 *1) (-5 *1 (-146))) (-3350 (*1 *1) (-5 *1 (-146))) (-2408 (*1 *1) (-5 *1 (-146))) (-3957 (*1 *1) (-5 *1 (-146))) (-3473 (*1 *1 *1) (-5 *1 (-146))) (-4399 (*1 *1 *1) (-5 *1 (-146))) (-2677 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-3629 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-2638 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-4180 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-4116 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))))
+(-13 (-866) (-10 -8 (-15 -4347 ((-793) $)) (-15 -2161 ($ (-793))) (-15 -2161 ($ (-1189))) (-15 -2051 ($) -2650) (-15 -4101 ($) -2650) (-15 -2319 ($) -2650) (-15 -2353 ($) -2650) (-15 -3495 ($) -2650) (-15 -3429 ($) -2650) (-15 -4317 ($) -2650) (-15 -2629 ($) -2650) (-15 -3350 ($) -2650) (-15 -2408 ($) -2650) (-15 -3957 ($) -2650) (-15 -3473 ($ $)) (-15 -4399 ($ $)) (-15 -2677 ((-114) $)) (-15 -3629 ((-114) $)) (-15 -3475 ((-114) $)) (-15 -2638 ((-114) $)) (-15 -4180 ((-114) $)) (-15 -4116 ((-114) $))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT)) (-3919 (((-3 $ "failed") $) 39 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
(((-147) (-142)) (T -147))
-((-1964 (*1 *1 *1) (|partial| -4 *1 (-147))))
-(-13 (-1080) (-10 -8 (-15 -1964 ((-3 $ "failed") $))))
+((-3919 (*1 *1 *1) (|partial| -4 *1 (-147))))
+(-13 (-1080) (-10 -8 (-15 -3919 ((-3 $ "failed") $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-560)) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-2630 ((|#1| (-711 |#1|) |#1|) 19 T ELT)))
-(((-148 |#1|) (-10 -7 (-15 -2630 (|#1| (-711 |#1|) |#1|))) (-175)) (T -148))
-((-2630 (*1 *2 *3 *2) (-12 (-5 *3 (-711 *2)) (-4 *2 (-175)) (-5 *1 (-148 *2)))))
-(-10 -7 (-15 -2630 (|#1| (-711 |#1|) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
+((-2978 ((|#1| (-711 |#1|) |#1|) 19 T ELT)))
+(((-148 |#1|) (-10 -7 (-15 -2978 (|#1| (-711 |#1|) |#1|))) (-175)) (T -148))
+((-2978 (*1 *2 *3 *2) (-12 (-5 *3 (-711 *2)) (-4 *2 (-175)) (-5 *1 (-148 *2)))))
+(-10 -7 (-15 -2978 (|#1| (-711 |#1|) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
(((-149) (-142)) (T -149))
NIL
(-13 (-1080))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-560)) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-3594 (((-2 (|:| -3205 (-793)) (|:| -2115 (-421 |#2|)) (|:| |radicand| |#2|)) (-421 |#2|) (-793)) 76 T ELT)) (-2340 (((-3 (-2 (|:| |radicand| (-421 |#2|)) (|:| |deg| (-793))) "failed") |#3|) 56 T ELT)) (-3536 (((-2 (|:| -2115 (-421 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-4360 ((|#1| |#3| |#3|) 44 T ELT)) (-4187 ((|#3| |#3| (-421 |#2|) (-421 |#2|)) 20 T ELT)) (-1484 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| |deg| (-793))) |#3| |#3|) 53 T ELT)))
-(((-150 |#1| |#2| |#3|) (-10 -7 (-15 -3536 ((-2 (|:| -2115 (-421 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2340 ((-3 (-2 (|:| |radicand| (-421 |#2|)) (|:| |deg| (-793))) "failed") |#3|)) (-15 -3594 ((-2 (|:| -3205 (-793)) (|:| -2115 (-421 |#2|)) (|:| |radicand| |#2|)) (-421 |#2|) (-793))) (-15 -4360 (|#1| |#3| |#3|)) (-15 -4187 (|#3| |#3| (-421 |#2|) (-421 |#2|))) (-15 -1484 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| |deg| (-793))) |#3| |#3|))) (-1252) (-1273 |#1|) (-1273 (-421 |#2|))) (T -150))
-((-1484 (*1 *2 *3 *3) (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-421 *5)) (|:| |c2| (-421 *5)) (|:| |deg| (-793)))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1273 (-421 *5))))) (-4187 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-421 *5)) (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-5 *1 (-150 *4 *5 *2)) (-4 *2 (-1273 *3)))) (-4360 (*1 *2 *3 *3) (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1252)) (-5 *1 (-150 *2 *4 *3)) (-4 *3 (-1273 (-421 *4))))) (-3594 (*1 *2 *3 *4) (-12 (-5 *3 (-421 *6)) (-4 *5 (-1252)) (-4 *6 (-1273 *5)) (-5 *2 (-2 (|:| -3205 (-793)) (|:| -2115 *3) (|:| |radicand| *6))) (-5 *1 (-150 *5 *6 *7)) (-5 *4 (-793)) (-4 *7 (-1273 *3)))) (-2340 (*1 *2 *3) (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| |radicand| (-421 *5)) (|:| |deg| (-793)))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1273 (-421 *5))))) (-3536 (*1 *2 *3) (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -2115 (-421 *5)) (|:| |poly| *3))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1273 (-421 *5))))))
-(-10 -7 (-15 -3536 ((-2 (|:| -2115 (-421 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2340 ((-3 (-2 (|:| |radicand| (-421 |#2|)) (|:| |deg| (-793))) "failed") |#3|)) (-15 -3594 ((-2 (|:| -3205 (-793)) (|:| -2115 (-421 |#2|)) (|:| |radicand| |#2|)) (-421 |#2|) (-793))) (-15 -4360 (|#1| |#3| |#3|)) (-15 -4187 (|#3| |#3| (-421 |#2|) (-421 |#2|))) (-15 -1484 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| |deg| (-793))) |#3| |#3|)))
-((-3713 (((-3 (-663 (-1201 |#2|)) "failed") (-663 (-1201 |#2|)) (-1201 |#2|)) 35 T ELT)))
-(((-151 |#1| |#2|) (-10 -7 (-15 -3713 ((-3 (-663 (-1201 |#2|)) "failed") (-663 (-1201 |#2|)) (-1201 |#2|)))) (-559) (-168 |#1|)) (T -151))
-((-3713 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 (-1201 *5))) (-5 *3 (-1201 *5)) (-4 *5 (-168 *4)) (-4 *4 (-559)) (-5 *1 (-151 *4 *5)))))
-(-10 -7 (-15 -3713 ((-3 (-663 (-1201 |#2|)) "failed") (-663 (-1201 |#2|)) (-1201 |#2|))))
-((-1982 (($ (-1 (-114) |#2|) $) 37 T ELT)) (-3606 (($ $) 44 T ELT)) (-2375 (($ (-1 (-114) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-4129 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-3329 (((-3 |#2| "failed") (-1 (-114) |#2|) $) 27 T ELT)) (-2787 (((-114) (-1 (-114) |#2|) $) 24 T ELT)) (-3865 (((-793) (-1 (-114) |#2|) $) 18 T ELT) (((-793) |#2| $) NIL T ELT)) (-1728 (((-114) (-1 (-114) |#2|) $) 21 T ELT)) (-1553 (((-793) $) 12 T ELT)))
-(((-152 |#1| |#2|) (-10 -8 (-15 -3606 (|#1| |#1|)) (-15 -2375 (|#1| |#2| |#1|)) (-15 -4129 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1982 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -2375 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4129 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4129 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3329 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -3865 ((-793) |#2| |#1|)) (-15 -3865 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2787 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -1728 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -1553 ((-793) |#1|))) (-153 |#2|) (-1247)) (T -152))
-NIL
-(-10 -8 (-15 -3606 (|#1| |#1|)) (-15 -2375 (|#1| |#2| |#1|)) (-15 -4129 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1982 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -2375 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4129 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4129 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3329 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -3865 ((-793) |#2| |#1|)) (-15 -3865 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2787 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -1728 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -1553 ((-793) |#1|)))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-1982 (($ (-1 (-114) |#1|) $) 45 (|has| $ (-6 -4508)) ELT)) (-2238 (($) 7 T CONST)) (-3606 (($ $) 42 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2375 (($ (-1 (-114) |#1|) $) 46 (|has| $ (-6 -4508)) ELT) (($ |#1| $) 43 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 49 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) 41 (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 50 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-3530 (((-2 (|:| -2030 (-793)) (|:| -2625 (-421 |#2|)) (|:| |radicand| |#2|)) (-421 |#2|) (-793)) 76 T ELT)) (-3263 (((-3 (-2 (|:| |radicand| (-421 |#2|)) (|:| |deg| (-793))) "failed") |#3|) 56 T ELT)) (-4183 (((-2 (|:| -2625 (-421 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-3359 ((|#1| |#3| |#3|) 44 T ELT)) (-2371 ((|#3| |#3| (-421 |#2|) (-421 |#2|)) 20 T ELT)) (-3353 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| |deg| (-793))) |#3| |#3|) 53 T ELT)))
+(((-150 |#1| |#2| |#3|) (-10 -7 (-15 -4183 ((-2 (|:| -2625 (-421 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3263 ((-3 (-2 (|:| |radicand| (-421 |#2|)) (|:| |deg| (-793))) "failed") |#3|)) (-15 -3530 ((-2 (|:| -2030 (-793)) (|:| -2625 (-421 |#2|)) (|:| |radicand| |#2|)) (-421 |#2|) (-793))) (-15 -3359 (|#1| |#3| |#3|)) (-15 -2371 (|#3| |#3| (-421 |#2|) (-421 |#2|))) (-15 -3353 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| |deg| (-793))) |#3| |#3|))) (-1252) (-1273 |#1|) (-1273 (-421 |#2|))) (T -150))
+((-3353 (*1 *2 *3 *3) (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-421 *5)) (|:| |c2| (-421 *5)) (|:| |deg| (-793)))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1273 (-421 *5))))) (-2371 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-421 *5)) (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-5 *1 (-150 *4 *5 *2)) (-4 *2 (-1273 *3)))) (-3359 (*1 *2 *3 *3) (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1252)) (-5 *1 (-150 *2 *4 *3)) (-4 *3 (-1273 (-421 *4))))) (-3530 (*1 *2 *3 *4) (-12 (-5 *3 (-421 *6)) (-4 *5 (-1252)) (-4 *6 (-1273 *5)) (-5 *2 (-2 (|:| -2030 (-793)) (|:| -2625 *3) (|:| |radicand| *6))) (-5 *1 (-150 *5 *6 *7)) (-5 *4 (-793)) (-4 *7 (-1273 *3)))) (-3263 (*1 *2 *3) (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| |radicand| (-421 *5)) (|:| |deg| (-793)))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1273 (-421 *5))))) (-4183 (*1 *2 *3) (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -2625 (-421 *5)) (|:| |poly| *3))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1273 (-421 *5))))))
+(-10 -7 (-15 -4183 ((-2 (|:| -2625 (-421 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -3263 ((-3 (-2 (|:| |radicand| (-421 |#2|)) (|:| |deg| (-793))) "failed") |#3|)) (-15 -3530 ((-2 (|:| -2030 (-793)) (|:| -2625 (-421 |#2|)) (|:| |radicand| |#2|)) (-421 |#2|) (-793))) (-15 -3359 (|#1| |#3| |#3|)) (-15 -2371 (|#3| |#3| (-421 |#2|) (-421 |#2|))) (-15 -3353 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| |deg| (-793))) |#3| |#3|)))
+((-2182 (((-3 (-663 (-1201 |#2|)) "failed") (-663 (-1201 |#2|)) (-1201 |#2|)) 35 T ELT)))
+(((-151 |#1| |#2|) (-10 -7 (-15 -2182 ((-3 (-663 (-1201 |#2|)) "failed") (-663 (-1201 |#2|)) (-1201 |#2|)))) (-559) (-168 |#1|)) (T -151))
+((-2182 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 (-1201 *5))) (-5 *3 (-1201 *5)) (-4 *5 (-168 *4)) (-4 *4 (-559)) (-5 *1 (-151 *4 *5)))))
+(-10 -7 (-15 -2182 ((-3 (-663 (-1201 |#2|)) "failed") (-663 (-1201 |#2|)) (-1201 |#2|))))
+((-3923 (($ (-1 (-114) |#2|) $) 37 T ELT)) (-3658 (($ $) 44 T ELT)) (-3033 (($ (-1 (-114) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-1778 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-2708 (((-3 |#2| "failed") (-1 (-114) |#2|) $) 27 T ELT)) (-2086 (((-114) (-1 (-114) |#2|) $) 24 T ELT)) (-3384 (((-793) (-1 (-114) |#2|) $) 18 T ELT) (((-793) |#2| $) NIL T ELT)) (-2149 (((-114) (-1 (-114) |#2|) $) 21 T ELT)) (-2256 (((-793) $) 12 T ELT)))
+(((-152 |#1| |#2|) (-10 -8 (-15 -3658 (|#1| |#1|)) (-15 -3033 (|#1| |#2| |#1|)) (-15 -1778 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3923 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3033 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -1778 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1778 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2708 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -3384 ((-793) |#2| |#1|)) (-15 -3384 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2086 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2149 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2256 ((-793) |#1|))) (-153 |#2|) (-1247)) (T -152))
+NIL
+(-10 -8 (-15 -3658 (|#1| |#1|)) (-15 -3033 (|#1| |#2| |#1|)) (-15 -1778 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3923 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3033 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -1778 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1778 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2708 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -3384 ((-793) |#2| |#1|)) (-15 -3384 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2086 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2149 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2256 ((-793) |#1|)))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-3923 (($ (-1 (-114) |#1|) $) 45 (|has| $ (-6 -4508)) ELT)) (-3525 (($) 7 T CONST)) (-3658 (($ $) 42 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3033 (($ (-1 (-114) |#1|) $) 46 (|has| $ (-6 -4508)) ELT) (($ |#1| $) 43 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $) 48 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 47 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 44 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 49 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) 41 (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 50 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-153 |#1|) (-142) (-1247)) (T -153))
-((-1592 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-4 *1 (-153 *3)))) (-3329 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-114) *2)) (-4 *1 (-153 *2)) (-4 *2 (-1247)))) (-4129 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4508)) (-4 *1 (-153 *2)) (-4 *2 (-1247)))) (-4129 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4508)) (-4 *1 (-153 *2)) (-4 *2 (-1247)))) (-2375 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4508)) (-4 *1 (-153 *3)) (-4 *3 (-1247)))) (-1982 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4508)) (-4 *1 (-153 *3)) (-4 *3 (-1247)))) (-4129 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1132)) (|has| *1 (-6 -4508)) (-4 *1 (-153 *2)) (-4 *2 (-1247)))) (-2375 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-153 *2)) (-4 *2 (-1247)) (-4 *2 (-1132)))) (-3606 (*1 *1 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-153 *2)) (-4 *2 (-1247)) (-4 *2 (-1132)))))
-(-13 (-503 |t#1|) (-10 -8 (-15 -1592 ($ (-663 |t#1|))) (-15 -3329 ((-3 |t#1| "failed") (-1 (-114) |t#1|) $)) (IF (|has| $ (-6 -4508)) (PROGN (-15 -4129 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4129 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2375 ($ (-1 (-114) |t#1|) $)) (-15 -1982 ($ (-1 (-114) |t#1|) $)) (IF (|has| |t#1| (-1132)) (PROGN (-15 -4129 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2375 ($ |t#1| $)) (-15 -3606 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|)))
-(((-34) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-1990 (((-3 $ "failed") $) 111 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-1417 (($ |#2| (-663 (-948))) 71 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4383 (($ (-948)) 57 T ELT)) (-3669 (((-136)) 23 T ELT)) (-1578 (((-887) $) 86 T ELT) (($ (-560)) 53 T ELT) (($ |#2|) 54 T ELT)) (-2305 ((|#2| $ (-663 (-948))) 74 T ELT)) (-2930 (((-793)) 20 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 47 T CONST)) (-2011 (($) 51 T CONST)) (-2473 (((-114) $ $) 33 T ELT)) (-2594 (($ $ |#2|) NIL T ELT)) (-2580 (($ $) 42 T ELT) (($ $ $) 40 T ELT)) (-2567 (($ $ $) 38 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 44 T ELT) (($ $ $) 63 T ELT) (($ |#2| $) 46 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-154 |#1| |#2| |#3|) (-13 (-1080) (-38 |#2|) (-1305 |#2|) (-10 -8 (-15 -4383 ($ (-948))) (-15 -1417 ($ |#2| (-663 (-948)))) (-15 -2305 (|#2| $ (-663 (-948)))) (-15 -1990 ((-3 $ "failed") $)))) (-948) (-376) (-1024 |#1| |#2|)) (T -154))
-((-1990 (*1 *1 *1) (|partial| -12 (-5 *1 (-154 *2 *3 *4)) (-14 *2 (-948)) (-4 *3 (-376)) (-14 *4 (-1024 *2 *3)))) (-4383 (*1 *1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-154 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-376)) (-14 *5 (-1024 *3 *4)))) (-1417 (*1 *1 *2 *3) (-12 (-5 *3 (-663 (-948))) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-948)) (-4 *2 (-376)) (-14 *5 (-1024 *4 *2)))) (-2305 (*1 *2 *1 *3) (-12 (-5 *3 (-663 (-948))) (-4 *2 (-376)) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-948)) (-14 *5 (-1024 *4 *2)))))
-(-13 (-1080) (-38 |#2|) (-1305 |#2|) (-10 -8 (-15 -4383 ($ (-948))) (-15 -1417 ($ |#2| (-663 (-948)))) (-15 -2305 (|#2| $ (-663 (-948)))) (-15 -1990 ((-3 $ "failed") $))))
-((-1720 (((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-663 (-663 (-972 (-229)))) (-229) (-229) (-229) (-229)) 59 T ELT)) (-3100 (((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954) (-421 (-560)) (-421 (-560))) 95 T ELT) (((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954)) 96 T ELT)) (-3047 (((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-663 (-663 (-972 (-229))))) 99 T ELT) (((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-663 (-972 (-229)))) 98 T ELT) (((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954) (-421 (-560)) (-421 (-560))) 90 T ELT) (((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954)) 91 T ELT)))
-(((-155) (-10 -7 (-15 -3047 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954))) (-15 -3047 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954) (-421 (-560)) (-421 (-560)))) (-15 -3100 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954))) (-15 -3100 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954) (-421 (-560)) (-421 (-560)))) (-15 -1720 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-663 (-663 (-972 (-229)))) (-229) (-229) (-229) (-229))) (-15 -3047 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-663 (-972 (-229))))) (-15 -3047 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-663 (-663 (-972 (-229)))))))) (T -155))
-((-3047 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229))))) (-5 *1 (-155)) (-5 *3 (-663 (-663 (-972 (-229))))))) (-3047 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229))))) (-5 *1 (-155)) (-5 *3 (-663 (-972 (-229)))))) (-1720 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-229)) (-5 *2 (-2 (|:| |brans| (-663 (-663 (-972 *4)))) (|:| |xValues| (-1120 *4)) (|:| |yValues| (-1120 *4)))) (-5 *1 (-155)) (-5 *3 (-663 (-663 (-972 *4)))))) (-3100 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-954)) (-5 *4 (-421 (-560))) (-5 *2 (-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229))))) (-5 *1 (-155)))) (-3100 (*1 *2 *3) (-12 (-5 *3 (-954)) (-5 *2 (-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229))))) (-5 *1 (-155)))) (-3047 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-954)) (-5 *4 (-421 (-560))) (-5 *2 (-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229))))) (-5 *1 (-155)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-954)) (-5 *2 (-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229))))) (-5 *1 (-155)))))
-(-10 -7 (-15 -3047 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954))) (-15 -3047 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954) (-421 (-560)) (-421 (-560)))) (-15 -3100 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954))) (-15 -3100 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954) (-421 (-560)) (-421 (-560)))) (-15 -1720 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-663 (-663 (-972 (-229)))) (-229) (-229) (-229) (-229))) (-15 -3047 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-663 (-972 (-229))))) (-15 -3047 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-663 (-663 (-972 (-229)))))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2475 (((-663 (-1166)) $) 20 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 27 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3625 (((-1166) $) 9 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-156) (-13 (-1114) (-10 -8 (-15 -2475 ((-663 (-1166)) $)) (-15 -3625 ((-1166) $))))) (T -156))
-((-2475 (*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-156)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-156)))))
-(-13 (-1114) (-10 -8 (-15 -2475 ((-663 (-1166)) $)) (-15 -3625 ((-1166) $))))
-((-3705 (((-663 (-171 |#2|)) |#1| |#2|) 50 T ELT)))
-(((-157 |#1| |#2|) (-10 -7 (-15 -3705 ((-663 (-171 |#2|)) |#1| |#2|))) (-1273 (-171 (-560))) (-13 (-376) (-870))) (T -157))
-((-3705 (*1 *2 *3 *4) (-12 (-5 *2 (-663 (-171 *4))) (-5 *1 (-157 *3 *4)) (-4 *3 (-1273 (-171 (-560)))) (-4 *4 (-13 (-376) (-870))))))
-(-10 -7 (-15 -3705 ((-663 (-171 |#2|)) |#1| |#2|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-3401 (((-1248) $) 12 T ELT)) (-3391 (((-1166) $) 9 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 19 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-158) (-13 (-1114) (-10 -8 (-15 -3391 ((-1166) $)) (-15 -3401 ((-1248) $))))) (T -158))
-((-3391 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-158)))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-158)))))
-(-13 (-1114) (-10 -8 (-15 -3391 ((-1166) $)) (-15 -3401 ((-1248) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2298 (($) 41 T ELT)) (-1740 (($) 40 T ELT)) (-2103 (((-948)) 46 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1826 (((-560) $) 44 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1569 (($) 42 T ELT)) (-2538 (($ (-560)) 47 T ELT)) (-1578 (((-887) $) 53 T ELT)) (-3695 (($) 43 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 38 T ELT)) (-2567 (($ $ $) 35 T ELT)) (* (($ (-948) $) 45 T ELT) (($ (-229) $) 11 T ELT)))
-(((-159) (-13 (-25) (-10 -8 (-15 * ($ (-948) $)) (-15 * ($ (-229) $)) (-15 -2567 ($ $ $)) (-15 -1740 ($)) (-15 -2298 ($)) (-15 -1569 ($)) (-15 -3695 ($)) (-15 -1826 ((-560) $)) (-15 -2103 ((-948))) (-15 -2538 ($ (-560)))))) (T -159))
-((-2567 (*1 *1 *1 *1) (-5 *1 (-159))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-948)) (-5 *1 (-159)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-159)))) (-1740 (*1 *1) (-5 *1 (-159))) (-2298 (*1 *1) (-5 *1 (-159))) (-1569 (*1 *1) (-5 *1 (-159))) (-3695 (*1 *1) (-5 *1 (-159))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-159)))) (-2103 (*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-159)))) (-2538 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-159)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-948) $)) (-15 * ($ (-229) $)) (-15 -2567 ($ $ $)) (-15 -1740 ($)) (-15 -2298 ($)) (-15 -1569 ($)) (-15 -3695 ($)) (-15 -1826 ((-560) $)) (-15 -2103 ((-948))) (-15 -2538 ($ (-560)))))
-((-4045 ((|#2| |#2| (-1123 |#2|)) 98 T ELT) ((|#2| |#2| (-1207)) 75 T ELT)) (-1480 ((|#2| |#2| (-1123 |#2|)) 97 T ELT) ((|#2| |#2| (-1207)) 74 T ELT)) (-2708 ((|#2| |#2| |#2|) 25 T ELT)) (-4399 (((-115) (-115)) 111 T ELT)) (-3502 ((|#2| (-663 |#2|)) 130 T ELT)) (-3018 ((|#2| (-663 |#2|)) 151 T ELT)) (-3339 ((|#2| (-663 |#2|)) 138 T ELT)) (-4201 ((|#2| |#2|) 136 T ELT)) (-4039 ((|#2| (-663 |#2|)) 124 T ELT)) (-4118 ((|#2| (-663 |#2|)) 125 T ELT)) (-2444 ((|#2| (-663 |#2|)) 149 T ELT)) (-2947 ((|#2| |#2| (-1207)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1559 ((|#2| |#2|) 21 T ELT)) (-3271 ((|#2| |#2| |#2|) 24 T ELT)) (-1840 (((-114) (-115)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT)))
-(((-160 |#1| |#2|) (-10 -7 (-15 -1840 ((-114) (-115))) (-15 -4399 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3271 (|#2| |#2| |#2|)) (-15 -2708 (|#2| |#2| |#2|)) (-15 -1559 (|#2| |#2|)) (-15 -2947 (|#2| |#2|)) (-15 -2947 (|#2| |#2| (-1207))) (-15 -4045 (|#2| |#2| (-1207))) (-15 -4045 (|#2| |#2| (-1123 |#2|))) (-15 -1480 (|#2| |#2| (-1207))) (-15 -1480 (|#2| |#2| (-1123 |#2|))) (-15 -4201 (|#2| |#2|)) (-15 -2444 (|#2| (-663 |#2|))) (-15 -3339 (|#2| (-663 |#2|))) (-15 -3018 (|#2| (-663 |#2|))) (-15 -4039 (|#2| (-663 |#2|))) (-15 -4118 (|#2| (-663 |#2|))) (-15 -3502 (|#2| (-663 |#2|)))) (-571) (-435 |#1|)) (T -160))
-((-3502 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-571)))) (-4118 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-571)))) (-4039 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-571)))) (-3018 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-571)))) (-3339 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-571)))) (-2444 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-571)))) (-4201 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) (-1480 (*1 *2 *2 *3) (-12 (-5 *3 (-1123 *2)) (-4 *2 (-435 *4)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2)))) (-1480 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2)) (-4 *2 (-435 *4)))) (-4045 (*1 *2 *2 *3) (-12 (-5 *3 (-1123 *2)) (-4 *2 (-435 *4)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2)))) (-4045 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2)) (-4 *2 (-435 *4)))) (-2947 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2)) (-4 *2 (-435 *4)))) (-2947 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) (-1559 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) (-2708 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) (-3271 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) (-4399 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-160 *3 *4)) (-4 *4 (-435 *3)))) (-1840 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-160 *4 *5)) (-4 *5 (-435 *4)))))
-(-10 -7 (-15 -1840 ((-114) (-115))) (-15 -4399 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3271 (|#2| |#2| |#2|)) (-15 -2708 (|#2| |#2| |#2|)) (-15 -1559 (|#2| |#2|)) (-15 -2947 (|#2| |#2|)) (-15 -2947 (|#2| |#2| (-1207))) (-15 -4045 (|#2| |#2| (-1207))) (-15 -4045 (|#2| |#2| (-1123 |#2|))) (-15 -1480 (|#2| |#2| (-1207))) (-15 -1480 (|#2| |#2| (-1123 |#2|))) (-15 -4201 (|#2| |#2|)) (-15 -2444 (|#2| (-663 |#2|))) (-15 -3339 (|#2| (-663 |#2|))) (-15 -3018 (|#2| (-663 |#2|))) (-15 -4039 (|#2| (-663 |#2|))) (-15 -4118 (|#2| (-663 |#2|))) (-15 -3502 (|#2| (-663 |#2|))))
-((-3249 ((|#1| |#1| |#1|) 64 T ELT)) (-2887 ((|#1| |#1| |#1|) 61 T ELT)) (-2708 ((|#1| |#1| |#1|) 55 T ELT)) (-2336 ((|#1| |#1|) 42 T ELT)) (-2418 ((|#1| |#1| (-663 |#1|)) 53 T ELT)) (-1559 ((|#1| |#1|) 46 T ELT)) (-3271 ((|#1| |#1| |#1|) 49 T ELT)))
-(((-161 |#1|) (-10 -7 (-15 -3271 (|#1| |#1| |#1|)) (-15 -1559 (|#1| |#1|)) (-15 -2418 (|#1| |#1| (-663 |#1|))) (-15 -2336 (|#1| |#1|)) (-15 -2708 (|#1| |#1| |#1|)) (-15 -2887 (|#1| |#1| |#1|)) (-15 -3249 (|#1| |#1| |#1|))) (-559)) (T -161))
-((-3249 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) (-2887 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) (-2708 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) (-2336 (*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) (-2418 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-559)) (-5 *1 (-161 *2)))) (-1559 (*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) (-3271 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))))
-(-10 -7 (-15 -3271 (|#1| |#1| |#1|)) (-15 -1559 (|#1| |#1|)) (-15 -2418 (|#1| |#1| (-663 |#1|))) (-15 -2336 (|#1| |#1|)) (-15 -2708 (|#1| |#1| |#1|)) (-15 -2887 (|#1| |#1| |#1|)) (-15 -3249 (|#1| |#1| |#1|)))
-((-4045 (($ $ (-1207)) 12 T ELT) (($ $ (-1123 $)) 11 T ELT)) (-1480 (($ $ (-1207)) 10 T ELT) (($ $ (-1123 $)) 9 T ELT)) (-2708 (($ $ $) 8 T ELT)) (-2947 (($ $) 14 T ELT) (($ $ (-1207)) 13 T ELT)) (-1559 (($ $) 7 T ELT)) (-3271 (($ $ $) 6 T ELT)))
+((-3924 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-4 *1 (-153 *3)))) (-2708 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-114) *2)) (-4 *1 (-153 *2)) (-4 *2 (-1247)))) (-1778 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4508)) (-4 *1 (-153 *2)) (-4 *2 (-1247)))) (-1778 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4508)) (-4 *1 (-153 *2)) (-4 *2 (-1247)))) (-3033 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4508)) (-4 *1 (-153 *3)) (-4 *3 (-1247)))) (-3923 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4508)) (-4 *1 (-153 *3)) (-4 *3 (-1247)))) (-1778 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1132)) (|has| *1 (-6 -4508)) (-4 *1 (-153 *2)) (-4 *2 (-1247)))) (-3033 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-153 *2)) (-4 *2 (-1247)) (-4 *2 (-1132)))) (-3658 (*1 *1 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-153 *2)) (-4 *2 (-1247)) (-4 *2 (-1132)))))
+(-13 (-503 |t#1|) (-10 -8 (-15 -3924 ($ (-663 |t#1|))) (-15 -2708 ((-3 |t#1| "failed") (-1 (-114) |t#1|) $)) (IF (|has| $ (-6 -4508)) (PROGN (-15 -1778 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -1778 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3033 ($ (-1 (-114) |t#1|) $)) (-15 -3923 ($ (-1 (-114) |t#1|) $)) (IF (|has| |t#1| (-1132)) (PROGN (-15 -1778 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3033 ($ |t#1| $)) (-15 -3658 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|)))
+(((-34) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2873 (((-3 $ "failed") $) 111 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-4139 (($ |#2| (-663 (-948))) 71 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2902 (($ (-948)) 57 T ELT)) (-3015 (((-136)) 23 T ELT)) (-3913 (((-887) $) 86 T ELT) (($ (-560)) 53 T ELT) (($ |#2|) 54 T ELT)) (-2920 ((|#2| $ (-663 (-948))) 74 T ELT)) (-4191 (((-793)) 20 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 47 T CONST)) (-1456 (($) 51 T CONST)) (-2340 (((-114) $ $) 33 T ELT)) (-2453 (($ $ |#2|) NIL T ELT)) (-2441 (($ $) 42 T ELT) (($ $ $) 40 T ELT)) (-2429 (($ $ $) 38 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 44 T ELT) (($ $ $) 63 T ELT) (($ |#2| $) 46 T ELT) (($ $ |#2|) NIL T ELT)))
+(((-154 |#1| |#2| |#3|) (-13 (-1080) (-38 |#2|) (-1305 |#2|) (-10 -8 (-15 -2902 ($ (-948))) (-15 -4139 ($ |#2| (-663 (-948)))) (-15 -2920 (|#2| $ (-663 (-948)))) (-15 -2873 ((-3 $ "failed") $)))) (-948) (-376) (-1024 |#1| |#2|)) (T -154))
+((-2873 (*1 *1 *1) (|partial| -12 (-5 *1 (-154 *2 *3 *4)) (-14 *2 (-948)) (-4 *3 (-376)) (-14 *4 (-1024 *2 *3)))) (-2902 (*1 *1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-154 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-376)) (-14 *5 (-1024 *3 *4)))) (-4139 (*1 *1 *2 *3) (-12 (-5 *3 (-663 (-948))) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-948)) (-4 *2 (-376)) (-14 *5 (-1024 *4 *2)))) (-2920 (*1 *2 *1 *3) (-12 (-5 *3 (-663 (-948))) (-4 *2 (-376)) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-948)) (-14 *5 (-1024 *4 *2)))))
+(-13 (-1080) (-38 |#2|) (-1305 |#2|) (-10 -8 (-15 -2902 ($ (-948))) (-15 -4139 ($ |#2| (-663 (-948)))) (-15 -2920 (|#2| $ (-663 (-948)))) (-15 -2873 ((-3 $ "failed") $))))
+((-2097 (((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-663 (-663 (-972 (-229)))) (-229) (-229) (-229) (-229)) 59 T ELT)) (-2171 (((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954) (-421 (-560)) (-421 (-560))) 95 T ELT) (((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954)) 96 T ELT)) (-2833 (((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-663 (-663 (-972 (-229))))) 99 T ELT) (((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-663 (-972 (-229)))) 98 T ELT) (((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954) (-421 (-560)) (-421 (-560))) 90 T ELT) (((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954)) 91 T ELT)))
+(((-155) (-10 -7 (-15 -2833 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954))) (-15 -2833 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954) (-421 (-560)) (-421 (-560)))) (-15 -2171 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954))) (-15 -2171 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954) (-421 (-560)) (-421 (-560)))) (-15 -2097 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-663 (-663 (-972 (-229)))) (-229) (-229) (-229) (-229))) (-15 -2833 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-663 (-972 (-229))))) (-15 -2833 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-663 (-663 (-972 (-229)))))))) (T -155))
+((-2833 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229))))) (-5 *1 (-155)) (-5 *3 (-663 (-663 (-972 (-229))))))) (-2833 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229))))) (-5 *1 (-155)) (-5 *3 (-663 (-972 (-229)))))) (-2097 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-229)) (-5 *2 (-2 (|:| |brans| (-663 (-663 (-972 *4)))) (|:| |xValues| (-1120 *4)) (|:| |yValues| (-1120 *4)))) (-5 *1 (-155)) (-5 *3 (-663 (-663 (-972 *4)))))) (-2171 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-954)) (-5 *4 (-421 (-560))) (-5 *2 (-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229))))) (-5 *1 (-155)))) (-2171 (*1 *2 *3) (-12 (-5 *3 (-954)) (-5 *2 (-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229))))) (-5 *1 (-155)))) (-2833 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-954)) (-5 *4 (-421 (-560))) (-5 *2 (-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229))))) (-5 *1 (-155)))) (-2833 (*1 *2 *3) (-12 (-5 *3 (-954)) (-5 *2 (-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229))))) (-5 *1 (-155)))))
+(-10 -7 (-15 -2833 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954))) (-15 -2833 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954) (-421 (-560)) (-421 (-560)))) (-15 -2171 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954))) (-15 -2171 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-954) (-421 (-560)) (-421 (-560)))) (-15 -2097 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-663 (-663 (-972 (-229)))) (-229) (-229) (-229) (-229))) (-15 -2833 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-663 (-972 (-229))))) (-15 -2833 ((-2 (|:| |brans| (-663 (-663 (-972 (-229))))) (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))) (-663 (-663 (-972 (-229)))))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2570 (((-663 (-1166)) $) 20 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 27 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-4400 (((-1166) $) 9 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-156) (-13 (-1114) (-10 -8 (-15 -2570 ((-663 (-1166)) $)) (-15 -4400 ((-1166) $))))) (T -156))
+((-2570 (*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-156)))) (-4400 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-156)))))
+(-13 (-1114) (-10 -8 (-15 -2570 ((-663 (-1166)) $)) (-15 -4400 ((-1166) $))))
+((-2128 (((-663 (-171 |#2|)) |#1| |#2|) 50 T ELT)))
+(((-157 |#1| |#2|) (-10 -7 (-15 -2128 ((-663 (-171 |#2|)) |#1| |#2|))) (-1273 (-171 (-560))) (-13 (-376) (-870))) (T -157))
+((-2128 (*1 *2 *3 *4) (-12 (-5 *2 (-663 (-171 *4))) (-5 *1 (-157 *3 *4)) (-4 *3 (-1273 (-171 (-560)))) (-4 *4 (-13 (-376) (-870))))))
+(-10 -7 (-15 -2128 ((-663 (-171 |#2|)) |#1| |#2|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-4133 (((-1248) $) 12 T ELT)) (-4121 (((-1166) $) 9 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 19 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-158) (-13 (-1114) (-10 -8 (-15 -4121 ((-1166) $)) (-15 -4133 ((-1248) $))))) (T -158))
+((-4121 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-158)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-158)))))
+(-13 (-1114) (-10 -8 (-15 -4121 ((-1166) $)) (-15 -4133 ((-1248) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2853 (($) 41 T ELT)) (-2279 (($) 40 T ELT)) (-1526 (((-948)) 46 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1874 (((-560) $) 44 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1792 (($) 42 T ELT)) (-1421 (($ (-560)) 47 T ELT)) (-3913 (((-887) $) 53 T ELT)) (-3260 (($) 43 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 38 T ELT)) (-2429 (($ $ $) 35 T ELT)) (* (($ (-948) $) 45 T ELT) (($ (-229) $) 11 T ELT)))
+(((-159) (-13 (-25) (-10 -8 (-15 * ($ (-948) $)) (-15 * ($ (-229) $)) (-15 -2429 ($ $ $)) (-15 -2279 ($)) (-15 -2853 ($)) (-15 -1792 ($)) (-15 -3260 ($)) (-15 -1874 ((-560) $)) (-15 -1526 ((-948))) (-15 -1421 ($ (-560)))))) (T -159))
+((-2429 (*1 *1 *1 *1) (-5 *1 (-159))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-948)) (-5 *1 (-159)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-159)))) (-2279 (*1 *1) (-5 *1 (-159))) (-2853 (*1 *1) (-5 *1 (-159))) (-1792 (*1 *1) (-5 *1 (-159))) (-3260 (*1 *1) (-5 *1 (-159))) (-1874 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-159)))) (-1526 (*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-159)))) (-1421 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-159)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-948) $)) (-15 * ($ (-229) $)) (-15 -2429 ($ $ $)) (-15 -2279 ($)) (-15 -2853 ($)) (-15 -1792 ($)) (-15 -3260 ($)) (-15 -1874 ((-560) $)) (-15 -1526 ((-948))) (-15 -1421 ($ (-560)))))
+((-2201 ((|#2| |#2| (-1123 |#2|)) 98 T ELT) ((|#2| |#2| (-1207)) 75 T ELT)) (-1866 ((|#2| |#2| (-1123 |#2|)) 97 T ELT) ((|#2| |#2| (-1207)) 74 T ELT)) (-2534 ((|#2| |#2| |#2|) 25 T ELT)) (-3963 (((-115) (-115)) 111 T ELT)) (-1875 ((|#2| (-663 |#2|)) 130 T ELT)) (-3834 ((|#2| (-663 |#2|)) 151 T ELT)) (-2790 ((|#2| (-663 |#2|)) 138 T ELT)) (-4453 ((|#2| |#2|) 136 T ELT)) (-3383 ((|#2| (-663 |#2|)) 124 T ELT)) (-1671 ((|#2| (-663 |#2|)) 125 T ELT)) (-1814 ((|#2| (-663 |#2|)) 149 T ELT)) (-4351 ((|#2| |#2| (-1207)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1704 ((|#2| |#2|) 21 T ELT)) (-3381 ((|#2| |#2| |#2|) 24 T ELT)) (-3962 (((-114) (-115)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT)))
+(((-160 |#1| |#2|) (-10 -7 (-15 -3962 ((-114) (-115))) (-15 -3963 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3381 (|#2| |#2| |#2|)) (-15 -2534 (|#2| |#2| |#2|)) (-15 -1704 (|#2| |#2|)) (-15 -4351 (|#2| |#2|)) (-15 -4351 (|#2| |#2| (-1207))) (-15 -2201 (|#2| |#2| (-1207))) (-15 -2201 (|#2| |#2| (-1123 |#2|))) (-15 -1866 (|#2| |#2| (-1207))) (-15 -1866 (|#2| |#2| (-1123 |#2|))) (-15 -4453 (|#2| |#2|)) (-15 -1814 (|#2| (-663 |#2|))) (-15 -2790 (|#2| (-663 |#2|))) (-15 -3834 (|#2| (-663 |#2|))) (-15 -3383 (|#2| (-663 |#2|))) (-15 -1671 (|#2| (-663 |#2|))) (-15 -1875 (|#2| (-663 |#2|)))) (-571) (-435 |#1|)) (T -160))
+((-1875 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-571)))) (-1671 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-571)))) (-3383 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-571)))) (-3834 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-571)))) (-2790 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-571)))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-571)))) (-4453 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) (-1866 (*1 *2 *2 *3) (-12 (-5 *3 (-1123 *2)) (-4 *2 (-435 *4)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2)))) (-1866 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2)) (-4 *2 (-435 *4)))) (-2201 (*1 *2 *2 *3) (-12 (-5 *3 (-1123 *2)) (-4 *2 (-435 *4)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2)))) (-2201 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2)) (-4 *2 (-435 *4)))) (-4351 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2)) (-4 *2 (-435 *4)))) (-4351 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) (-1704 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) (-2534 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) (-3381 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))) (-3963 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-160 *3 *4)) (-4 *4 (-435 *3)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-160 *4 *5)) (-4 *5 (-435 *4)))))
+(-10 -7 (-15 -3962 ((-114) (-115))) (-15 -3963 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3381 (|#2| |#2| |#2|)) (-15 -2534 (|#2| |#2| |#2|)) (-15 -1704 (|#2| |#2|)) (-15 -4351 (|#2| |#2|)) (-15 -4351 (|#2| |#2| (-1207))) (-15 -2201 (|#2| |#2| (-1207))) (-15 -2201 (|#2| |#2| (-1123 |#2|))) (-15 -1866 (|#2| |#2| (-1207))) (-15 -1866 (|#2| |#2| (-1123 |#2|))) (-15 -4453 (|#2| |#2|)) (-15 -1814 (|#2| (-663 |#2|))) (-15 -2790 (|#2| (-663 |#2|))) (-15 -3834 (|#2| (-663 |#2|))) (-15 -3383 (|#2| (-663 |#2|))) (-15 -1671 (|#2| (-663 |#2|))) (-15 -1875 (|#2| (-663 |#2|))))
+((-4417 ((|#1| |#1| |#1|) 64 T ELT)) (-3844 ((|#1| |#1| |#1|) 61 T ELT)) (-2534 ((|#1| |#1| |#1|) 55 T ELT)) (-3227 ((|#1| |#1|) 42 T ELT)) (-1552 ((|#1| |#1| (-663 |#1|)) 53 T ELT)) (-1704 ((|#1| |#1|) 46 T ELT)) (-3381 ((|#1| |#1| |#1|) 49 T ELT)))
+(((-161 |#1|) (-10 -7 (-15 -3381 (|#1| |#1| |#1|)) (-15 -1704 (|#1| |#1|)) (-15 -1552 (|#1| |#1| (-663 |#1|))) (-15 -3227 (|#1| |#1|)) (-15 -2534 (|#1| |#1| |#1|)) (-15 -3844 (|#1| |#1| |#1|)) (-15 -4417 (|#1| |#1| |#1|))) (-559)) (T -161))
+((-4417 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) (-3844 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) (-2534 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) (-3227 (*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) (-1552 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-559)) (-5 *1 (-161 *2)))) (-1704 (*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))) (-3381 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))))
+(-10 -7 (-15 -3381 (|#1| |#1| |#1|)) (-15 -1704 (|#1| |#1|)) (-15 -1552 (|#1| |#1| (-663 |#1|))) (-15 -3227 (|#1| |#1|)) (-15 -2534 (|#1| |#1| |#1|)) (-15 -3844 (|#1| |#1| |#1|)) (-15 -4417 (|#1| |#1| |#1|)))
+((-2201 (($ $ (-1207)) 12 T ELT) (($ $ (-1123 $)) 11 T ELT)) (-1866 (($ $ (-1207)) 10 T ELT) (($ $ (-1123 $)) 9 T ELT)) (-2534 (($ $ $) 8 T ELT)) (-4351 (($ $) 14 T ELT) (($ $ (-1207)) 13 T ELT)) (-1704 (($ $) 7 T ELT)) (-3381 (($ $ $) 6 T ELT)))
(((-162) (-142)) (T -162))
-((-2947 (*1 *1 *1) (-4 *1 (-162))) (-2947 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207)))) (-4045 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207)))) (-4045 (*1 *1 *1 *2) (-12 (-5 *2 (-1123 *1)) (-4 *1 (-162)))) (-1480 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207)))) (-1480 (*1 *1 *1 *2) (-12 (-5 *2 (-1123 *1)) (-4 *1 (-162)))))
-(-13 (-145) (-10 -8 (-15 -2947 ($ $)) (-15 -2947 ($ $ (-1207))) (-15 -4045 ($ $ (-1207))) (-15 -4045 ($ $ (-1123 $))) (-15 -1480 ($ $ (-1207))) (-15 -1480 ($ $ (-1123 $)))))
+((-4351 (*1 *1 *1) (-4 *1 (-162))) (-4351 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207)))) (-2201 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207)))) (-2201 (*1 *1 *1 *2) (-12 (-5 *2 (-1123 *1)) (-4 *1 (-162)))) (-1866 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207)))) (-1866 (*1 *1 *1 *2) (-12 (-5 *2 (-1123 *1)) (-4 *1 (-162)))))
+(-13 (-145) (-10 -8 (-15 -4351 ($ $)) (-15 -4351 ($ $ (-1207))) (-15 -2201 ($ $ (-1207))) (-15 -2201 ($ $ (-1123 $))) (-15 -1866 ($ $ (-1207))) (-15 -1866 ($ $ (-1123 $)))))
(((-145) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-3277 (($ (-560)) 14 T ELT) (($ $ $) 15 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 18 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 9 T ELT)))
-(((-163) (-13 (-1132) (-10 -8 (-15 -3277 ($ (-560))) (-15 -3277 ($ $ $))))) (T -163))
-((-3277 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-163)))) (-3277 (*1 *1 *1 *1) (-5 *1 (-163))))
-(-13 (-1132) (-10 -8 (-15 -3277 ($ (-560))) (-15 -3277 ($ $ $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 16 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3625 (((-663 (-1166)) $) 10 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-164) (-13 (-1114) (-10 -8 (-15 -3625 ((-663 (-1166)) $))))) (T -164))
-((-3625 (*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-164)))))
-(-13 (-1114) (-10 -8 (-15 -3625 ((-663 (-1166)) $))))
-((-4399 (((-115) (-1207)) 102 T ELT)))
-(((-165) (-10 -7 (-15 -4399 ((-115) (-1207))))) (T -165))
-((-4399 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-115)) (-5 *1 (-165)))))
-(-10 -7 (-15 -4399 ((-115) (-1207))))
-((-1770 ((|#3| |#3|) 19 T ELT)))
-(((-166 |#1| |#2| |#3|) (-10 -7 (-15 -1770 (|#3| |#3|))) (-1080) (-1273 |#1|) (-1273 |#2|)) (T -166))
-((-1770 (*1 *2 *2) (-12 (-4 *3 (-1080)) (-4 *4 (-1273 *3)) (-5 *1 (-166 *3 *4 *2)) (-4 *2 (-1273 *4)))))
-(-10 -7 (-15 -1770 (|#3| |#3|)))
-((-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 223 T ELT)) (-3349 ((|#2| $) 102 T ELT)) (-4337 (($ $) 256 T ELT)) (-3455 (($ $) 250 T ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 47 T ELT)) (-4313 (($ $) 254 T ELT)) (-3430 (($ $) 248 T ELT)) (-2539 (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 146 T ELT)) (-3330 (((-560) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-1478 (($ $ $) 229 T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL T ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) 160 T ELT) (((-711 |#2|) (-711 $)) 154 T ELT)) (-4129 (($ (-1201 |#2|)) 125 T ELT) (((-3 $ "failed") (-421 (-1201 |#2|))) NIL T ELT)) (-1990 (((-3 $ "failed") $) 214 T ELT)) (-3643 (((-3 (-421 (-560)) "failed") $) 204 T ELT)) (-3469 (((-114) $) 199 T ELT)) (-3197 (((-421 (-560)) $) 202 T ELT)) (-2326 (((-948)) 96 T ELT)) (-1490 (($ $ $) 231 T ELT)) (-2647 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269 T ELT)) (-3796 (($) 245 T ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 193 T ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 198 T ELT)) (-2032 ((|#2| $) 100 T ELT)) (-1787 (((-1201 |#2|) $) 127 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-2192 (($ $) 247 T ELT)) (-4116 (((-1201 |#2|) $) 126 T ELT)) (-1544 (($ $) 207 T ELT)) (-3461 (($) 103 T ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) 95 T ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) 64 T ELT)) (-1528 (((-3 $ "failed") $ |#2|) 209 T ELT) (((-3 $ "failed") $ $) 212 T ELT)) (-3251 (($ $) 246 T ELT)) (-2901 (((-793) $) 226 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 236 T ELT)) (-2690 ((|#2| (-1297 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-2894 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-4394 (((-1201 |#2|)) 120 T ELT)) (-4325 (($ $) 255 T ELT)) (-3443 (($ $) 249 T ELT)) (-2178 (((-1297 |#2|) $ (-1297 $)) 136 T ELT) (((-711 |#2|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#2|) $) 116 T ELT) (((-711 |#2|) (-1297 $)) NIL T ELT)) (-1407 (((-1297 |#2|) $) NIL T ELT) (($ (-1297 |#2|)) NIL T ELT) (((-1201 |#2|) $) NIL T ELT) (($ (-1201 |#2|)) NIL T ELT) (((-915 (-560)) $) 184 T ELT) (((-915 (-391)) $) 188 T ELT) (((-171 (-391)) $) 172 T ELT) (((-171 (-229)) $) 167 T ELT) (((-549) $) 180 T ELT)) (-4122 (($ $) 104 T ELT)) (-1578 (((-887) $) 143 T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT)) (-2630 (((-1201 |#2|) $) 32 T ELT)) (-2930 (((-793)) 106 T ELT)) (-2275 (((-114) $ $) 13 T ELT)) (-4411 (($ $) 259 T ELT)) (-4263 (($ $) 253 T ELT)) (-4387 (($ $) 257 T ELT)) (-3499 (($ $) 251 T ELT)) (-3844 ((|#2| $) 242 T ELT)) (-4398 (($ $) 258 T ELT)) (-4252 (($ $) 252 T ELT)) (-2282 (($ $) 162 T ELT)) (-2473 (((-114) $ $) 110 T ELT)) (-2580 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 111 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-421 (-560))) 276 T ELT) (($ $ $) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT)))
-(((-167 |#1| |#2|) (-10 -8 (-15 -2894 (|#1| |#1|)) (-15 -2894 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1| (-1207))) (-15 -2894 (|#1| |#1| (-663 (-1207)))) (-15 -2894 (|#1| |#1| (-1207) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -1578 (|#1| |#1|)) (-15 -1528 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4091 ((-2 (|:| -2489 |#1|) (|:| -4495 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2901 ((-793) |#1|)) (-15 -2205 ((-2 (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1|)) (-15 -1490 (|#1| |#1| |#1|)) (-15 -1478 (|#1| |#1| |#1|)) (-15 -1544 (|#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -1407 ((-549) |#1|)) (-15 -1407 ((-171 (-229)) |#1|)) (-15 -1407 ((-171 (-391)) |#1|)) (-15 -3455 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 -3443 (|#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -4263 (|#1| |#1|)) (-15 -4325 (|#1| |#1|)) (-15 -4313 (|#1| |#1|)) (-15 -4337 (|#1| |#1|)) (-15 -4398 (|#1| |#1|)) (-15 -4387 (|#1| |#1|)) (-15 -4411 (|#1| |#1|)) (-15 -2192 (|#1| |#1|)) (-15 -3251 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3796 (|#1|)) (-15 ** (|#1| |#1| (-421 (-560)))) (-15 -1960 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -1941 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -3713 ((-3 (-663 (-1201 |#1|)) "failed") (-663 (-1201 |#1|)) (-1201 |#1|))) (-15 -3643 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3197 ((-421 (-560)) |#1|)) (-15 -3469 ((-114) |#1|)) (-15 -2647 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3844 (|#2| |#1|)) (-15 -2282 (|#1| |#1|)) (-15 -1528 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4122 (|#1| |#1|)) (-15 -3461 (|#1|)) (-15 -1407 ((-915 (-391)) |#1|)) (-15 -1407 ((-915 (-560)) |#1|)) (-15 -2427 ((-913 (-391) |#1|) |#1| (-915 (-391)) (-913 (-391) |#1|))) (-15 -2427 ((-913 (-560) |#1|) |#1| (-915 (-560)) (-913 (-560) |#1|))) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 ((-3 |#1| "failed") (-421 (-1201 |#2|)))) (-15 -4116 ((-1201 |#2|) |#1|)) (-15 -1407 (|#1| (-1201 |#2|))) (-15 -4129 (|#1| (-1201 |#2|))) (-15 -4394 ((-1201 |#2|))) (-15 -3142 ((-711 |#2|) (-711 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 |#1|) (-1297 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -3142 ((-711 (-560)) (-711 |#1|))) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3330 ((-560) |#1|)) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -1407 ((-1201 |#2|) |#1|)) (-15 -2690 (|#2|)) (-15 -1407 (|#1| (-1297 |#2|))) (-15 -1407 ((-1297 |#2|) |#1|)) (-15 -2178 ((-711 |#2|) (-1297 |#1|))) (-15 -2178 ((-1297 |#2|) |#1|)) (-15 -1787 ((-1201 |#2|) |#1|)) (-15 -2630 ((-1201 |#2|) |#1|)) (-15 -2690 (|#2| (-1297 |#1|))) (-15 -2178 ((-711 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -2178 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -2032 (|#2| |#1|)) (-15 -3349 (|#2| |#1|)) (-15 -2326 ((-948))) (-15 -1578 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2930 ((-793))) (-15 -1578 (|#1| (-560))) (-15 ** (|#1| |#1| (-793))) (-15 -1990 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-948))) (-15 -2580 (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|)) (-15 -2567 (|#1| |#1| |#1|)) (-15 -1578 ((-887) |#1|)) (-15 -2275 ((-114) |#1| |#1|)) (-15 -2473 ((-114) |#1| |#1|))) (-168 |#2|) (-175)) (T -167))
-((-2930 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) (-2326 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-948)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) (-2690 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-167 *3 *2)) (-4 *3 (-168 *2)))) (-4394 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1201 *4)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))))
-(-10 -8 (-15 -2894 (|#1| |#1|)) (-15 -2894 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1| (-1207))) (-15 -2894 (|#1| |#1| (-663 (-1207)))) (-15 -2894 (|#1| |#1| (-1207) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -1578 (|#1| |#1|)) (-15 -1528 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4091 ((-2 (|:| -2489 |#1|) (|:| -4495 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2901 ((-793) |#1|)) (-15 -2205 ((-2 (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1|)) (-15 -1490 (|#1| |#1| |#1|)) (-15 -1478 (|#1| |#1| |#1|)) (-15 -1544 (|#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -1407 ((-549) |#1|)) (-15 -1407 ((-171 (-229)) |#1|)) (-15 -1407 ((-171 (-391)) |#1|)) (-15 -3455 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 -3443 (|#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -4263 (|#1| |#1|)) (-15 -4325 (|#1| |#1|)) (-15 -4313 (|#1| |#1|)) (-15 -4337 (|#1| |#1|)) (-15 -4398 (|#1| |#1|)) (-15 -4387 (|#1| |#1|)) (-15 -4411 (|#1| |#1|)) (-15 -2192 (|#1| |#1|)) (-15 -3251 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -3796 (|#1|)) (-15 ** (|#1| |#1| (-421 (-560)))) (-15 -1960 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -1941 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -3713 ((-3 (-663 (-1201 |#1|)) "failed") (-663 (-1201 |#1|)) (-1201 |#1|))) (-15 -3643 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3197 ((-421 (-560)) |#1|)) (-15 -3469 ((-114) |#1|)) (-15 -2647 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3844 (|#2| |#1|)) (-15 -2282 (|#1| |#1|)) (-15 -1528 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4122 (|#1| |#1|)) (-15 -3461 (|#1|)) (-15 -1407 ((-915 (-391)) |#1|)) (-15 -1407 ((-915 (-560)) |#1|)) (-15 -2427 ((-913 (-391) |#1|) |#1| (-915 (-391)) (-913 (-391) |#1|))) (-15 -2427 ((-913 (-560) |#1|) |#1| (-915 (-560)) (-913 (-560) |#1|))) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4129 ((-3 |#1| "failed") (-421 (-1201 |#2|)))) (-15 -4116 ((-1201 |#2|) |#1|)) (-15 -1407 (|#1| (-1201 |#2|))) (-15 -4129 (|#1| (-1201 |#2|))) (-15 -4394 ((-1201 |#2|))) (-15 -3142 ((-711 |#2|) (-711 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 |#1|) (-1297 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -3142 ((-711 (-560)) (-711 |#1|))) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3330 ((-560) |#1|)) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -1407 ((-1201 |#2|) |#1|)) (-15 -2690 (|#2|)) (-15 -1407 (|#1| (-1297 |#2|))) (-15 -1407 ((-1297 |#2|) |#1|)) (-15 -2178 ((-711 |#2|) (-1297 |#1|))) (-15 -2178 ((-1297 |#2|) |#1|)) (-15 -1787 ((-1201 |#2|) |#1|)) (-15 -2630 ((-1201 |#2|) |#1|)) (-15 -2690 (|#2| (-1297 |#1|))) (-15 -2178 ((-711 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -2178 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -2032 (|#2| |#1|)) (-15 -3349 (|#2| |#1|)) (-15 -2326 ((-948))) (-15 -1578 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2930 ((-793))) (-15 -1578 (|#1| (-560))) (-15 ** (|#1| |#1| (-793))) (-15 -1990 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-948))) (-15 -2580 (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|)) (-15 -2567 (|#1| |#1| |#1|)) (-15 -1578 ((-887) |#1|)) (-15 -2275 ((-114) |#1| |#1|)) (-15 -2473 ((-114) |#1| |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 105 (-2304 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) ELT)) (-3244 (($ $) 106 (-2304 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) ELT)) (-4093 (((-114) $) 108 (-2304 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) ELT)) (-1698 (((-711 |#1|) (-1297 $)) 53 T ELT) (((-711 |#1|)) 68 T ELT)) (-3349 ((|#1| $) 59 T ELT)) (-4337 (($ $) 236 (|has| |#1| (-1233)) ELT)) (-3455 (($ $) 219 (|has| |#1| (-1233)) ELT)) (-2105 (((-1219 (-948) (-793)) (-560)) 158 (|has| |#1| (-363)) ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) 250 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) ELT)) (-1804 (($ $) 125 (-2304 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-376))) ELT)) (-3023 (((-419 $) $) 126 (-2304 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-376))) ELT)) (-4471 (($ $) 249 (-12 (|has| |#1| (-1033)) (|has| |#1| (-1233))) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 253 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) ELT)) (-1615 (((-114) $ $) 116 (|has| |#1| (-319)) ELT)) (-3241 (((-793)) 99 (|has| |#1| (-381)) ELT)) (-4313 (($ $) 235 (|has| |#1| (-1233)) ELT)) (-3430 (($ $) 220 (|has| |#1| (-1233)) ELT)) (-4363 (($ $) 234 (|has| |#1| (-1233)) ELT)) (-3477 (($ $) 221 (|has| |#1| (-1233)) ELT)) (-2238 (($) 18 T CONST)) (-2539 (((-3 (-560) "failed") $) 185 (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) 183 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 180 T ELT)) (-3330 (((-560) $) 184 (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) 182 (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) 181 T ELT)) (-4143 (($ (-1297 |#1|) (-1297 $)) 55 T ELT) (($ (-1297 |#1|)) 71 T ELT)) (-4217 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-363)) ELT)) (-1478 (($ $ $) 120 (|has| |#1| (-319)) ELT)) (-4333 (((-711 |#1|) $ (-1297 $)) 60 T ELT) (((-711 |#1|) $) 66 T ELT)) (-3142 (((-711 (-560)) (-711 $)) 177 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 176 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 175 T ELT) (((-711 |#1|) (-711 $)) 174 T ELT)) (-4129 (($ (-1201 |#1|)) 169 T ELT) (((-3 $ "failed") (-421 (-1201 |#1|))) 166 (|has| |#1| (-376)) ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-4482 ((|#1| $) 261 T ELT)) (-3643 (((-3 (-421 (-560)) "failed") $) 254 (|has| |#1| (-559)) ELT)) (-3469 (((-114) $) 256 (|has| |#1| (-559)) ELT)) (-3197 (((-421 (-560)) $) 255 (|has| |#1| (-559)) ELT)) (-2326 (((-948)) 61 T ELT)) (-2310 (($) 102 (|has| |#1| (-381)) ELT)) (-1490 (($ $ $) 119 (|has| |#1| (-319)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 114 (|has| |#1| (-319)) ELT)) (-4336 (($) 160 (|has| |#1| (-363)) ELT)) (-3976 (((-114) $) 161 (|has| |#1| (-363)) ELT)) (-1696 (($ $ (-793)) 152 (|has| |#1| (-363)) ELT) (($ $) 151 (|has| |#1| (-363)) ELT)) (-4330 (((-114) $) 127 (-2304 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-376))) ELT)) (-2647 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 257 (-12 (|has| |#1| (-1091)) (|has| |#1| (-1233))) ELT)) (-3796 (($) 246 (|has| |#1| (-1233)) ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 269 (|has| |#1| (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 268 (|has| |#1| (-911 (-391))) ELT)) (-3913 (((-948) $) 163 (|has| |#1| (-363)) ELT) (((-854 (-948)) $) 149 (|has| |#1| (-363)) ELT)) (-1581 (((-114) $) 35 T ELT)) (-2146 (($ $ (-560)) 248 (-12 (|has| |#1| (-1033)) (|has| |#1| (-1233))) ELT)) (-2032 ((|#1| $) 58 T ELT)) (-3009 (((-3 $ "failed") $) 153 (|has| |#1| (-363)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 123 (|has| |#1| (-319)) ELT)) (-1787 (((-1201 |#1|) $) 51 (|has| |#1| (-376)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 270 T ELT)) (-4419 (((-948) $) 101 (|has| |#1| (-381)) ELT)) (-2192 (($ $) 243 (|has| |#1| (-1233)) ELT)) (-4116 (((-1201 |#1|) $) 167 T ELT)) (-2484 (((-711 (-560)) (-1297 $)) 179 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 178 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 173 T ELT) (((-711 |#1|) (-1297 $)) 172 T ELT)) (-2093 (($ (-663 $)) 112 (-2304 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) ELT) (($ $ $) 111 (-2304 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) ELT)) (-1905 (((-1189) $) 10 T ELT)) (-1544 (($ $) 128 (|has| |#1| (-376)) ELT)) (-3161 (($) 154 (|has| |#1| (-363)) CONST)) (-3128 (($ (-948)) 100 (|has| |#1| (-381)) ELT)) (-3461 (($) 265 T ELT)) (-1335 ((|#1| $) 262 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-2748 (($) 171 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 113 (-2304 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) ELT)) (-2132 (($ (-663 $)) 110 (-2304 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) ELT) (($ $ $) 109 (-2304 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) ELT)) (-3666 (((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))) 157 (|has| |#1| (-363)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) 252 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) 251 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) ELT)) (-4457 (((-419 $) $) 124 (-2304 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-376))) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 121 (|has| |#1| (-319)) ELT)) (-1528 (((-3 $ "failed") $ |#1|) 260 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 104 (-2304 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 115 (|has| |#1| (-319)) ELT)) (-3251 (($ $) 244 (|has| |#1| (-1233)) ELT)) (-4187 (($ $ (-663 |#1|) (-663 |#1|)) 276 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 275 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 274 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) 273 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) 272 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) 271 (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-2901 (((-793) $) 117 (|has| |#1| (-319)) ELT)) (-3924 (($ $ |#1|) 277 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 118 (|has| |#1| (-319)) ELT)) (-2690 ((|#1| (-1297 $)) 54 T ELT) ((|#1|) 67 T ELT)) (-2364 (((-793) $) 162 (|has| |#1| (-363)) ELT) (((-3 (-793) "failed") $ $) 150 (|has| |#1| (-363)) ELT)) (-2894 (($ $ (-1 |#1| |#1|)) 136 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 135 T ELT) (($ $ (-663 (-1207)) (-663 (-793))) 141 (-2304 (-1953 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-1953 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) 140 (-2304 (-1953 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-1953 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-663 (-1207))) 139 (-2304 (-1953 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-1953 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207)) 137 (-2304 (-1953 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-1953 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-793)) 147 (-2304 (-1953 (|has| |#1| (-376)) (|has| |#1| (-239))) (-1953 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-1953 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT) (($ $) 145 (-2304 (-1953 (|has| |#1| (-376)) (|has| |#1| (-239))) (-1953 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-1953 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT)) (-3604 (((-711 |#1|) (-1297 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-376)) ELT)) (-4394 (((-1201 |#1|)) 170 T ELT)) (-4373 (($ $) 233 (|has| |#1| (-1233)) ELT)) (-3488 (($ $) 222 (|has| |#1| (-1233)) ELT)) (-2243 (($) 159 (|has| |#1| (-363)) ELT)) (-4352 (($ $) 232 (|has| |#1| (-1233)) ELT)) (-3466 (($ $) 223 (|has| |#1| (-1233)) ELT)) (-4325 (($ $) 231 (|has| |#1| (-1233)) ELT)) (-3443 (($ $) 224 (|has| |#1| (-1233)) ELT)) (-2178 (((-1297 |#1|) $ (-1297 $)) 57 T ELT) (((-711 |#1|) (-1297 $) (-1297 $)) 56 T ELT) (((-1297 |#1|) $) 73 T ELT) (((-711 |#1|) (-1297 $)) 72 T ELT)) (-1407 (((-1297 |#1|) $) 70 T ELT) (($ (-1297 |#1|)) 69 T ELT) (((-1201 |#1|) $) 186 T ELT) (($ (-1201 |#1|)) 168 T ELT) (((-915 (-560)) $) 267 (|has| |#1| (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) 266 (|has| |#1| (-633 (-915 (-391)))) ELT) (((-171 (-391)) $) 218 (|has| |#1| (-1051)) ELT) (((-171 (-229)) $) 217 (|has| |#1| (-1051)) ELT) (((-549) $) 216 (|has| |#1| (-633 (-549))) ELT)) (-4122 (($ $) 264 T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) 156 (-2304 (-1953 (|has| $ (-147)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) (|has| |#1| (-363))) ELT)) (-2245 (($ |#1| |#1|) 263 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 44 T ELT) (($ (-421 (-560))) 98 (-2304 (|has| |#1| (-376)) (|has| |#1| (-1069 (-421 (-560))))) ELT) (($ $) 103 (-2304 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) ELT)) (-1964 (($ $) 155 (|has| |#1| (-363)) ELT) (((-3 $ "failed") $) 50 (-2304 (-1953 (|has| $ (-147)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) (|has| |#1| (-147))) ELT)) (-2630 (((-1201 |#1|) $) 52 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-1954 (((-1297 $)) 74 T ELT)) (-4411 (($ $) 242 (|has| |#1| (-1233)) ELT)) (-4263 (($ $) 230 (|has| |#1| (-1233)) ELT)) (-2948 (((-114) $ $) 107 (-2304 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) ELT)) (-4387 (($ $) 241 (|has| |#1| (-1233)) ELT)) (-3499 (($ $) 229 (|has| |#1| (-1233)) ELT)) (-4438 (($ $) 240 (|has| |#1| (-1233)) ELT)) (-4287 (($ $) 228 (|has| |#1| (-1233)) ELT)) (-3844 ((|#1| $) 258 (|has| |#1| (-1233)) ELT)) (-3837 (($ $) 239 (|has| |#1| (-1233)) ELT)) (-4302 (($ $) 227 (|has| |#1| (-1233)) ELT)) (-4423 (($ $) 238 (|has| |#1| (-1233)) ELT)) (-4275 (($ $) 226 (|has| |#1| (-1233)) ELT)) (-4398 (($ $) 237 (|has| |#1| (-1233)) ELT)) (-4252 (($ $) 225 (|has| |#1| (-1233)) ELT)) (-2282 (($ $) 259 (|has| |#1| (-1091)) ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($ $ (-1 |#1| |#1|)) 134 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 133 T ELT) (($ $ (-663 (-1207)) (-663 (-793))) 144 (-2304 (-1953 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-1953 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) 143 (-2304 (-1953 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-1953 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-663 (-1207))) 142 (-2304 (-1953 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-1953 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207)) 138 (-2304 (-1953 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-1953 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-793)) 148 (-2304 (-1953 (|has| |#1| (-376)) (|has| |#1| (-239))) (-1953 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-1953 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT) (($ $) 146 (-2304 (-1953 (|has| |#1| (-376)) (|has| |#1| (-239))) (-1953 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-1953 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ $) 132 (|has| |#1| (-376)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-421 (-560))) 247 (-12 (|has| |#1| (-1033)) (|has| |#1| (-1233))) ELT) (($ $ $) 245 (|has| |#1| (-1233)) ELT) (($ $ (-560)) 129 (|has| |#1| (-376)) ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT) (($ (-421 (-560)) $) 131 (|has| |#1| (-376)) ELT) (($ $ (-421 (-560))) 130 (|has| |#1| (-376)) ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3433 (($ (-560)) 14 T ELT) (($ $ $) 15 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 18 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 9 T ELT)))
+(((-163) (-13 (-1132) (-10 -8 (-15 -3433 ($ (-560))) (-15 -3433 ($ $ $))))) (T -163))
+((-3433 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-163)))) (-3433 (*1 *1 *1 *1) (-5 *1 (-163))))
+(-13 (-1132) (-10 -8 (-15 -3433 ($ (-560))) (-15 -3433 ($ $ $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 16 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-4400 (((-663 (-1166)) $) 10 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-164) (-13 (-1114) (-10 -8 (-15 -4400 ((-663 (-1166)) $))))) (T -164))
+((-4400 (*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-164)))))
+(-13 (-1114) (-10 -8 (-15 -4400 ((-663 (-1166)) $))))
+((-3963 (((-115) (-1207)) 102 T ELT)))
+(((-165) (-10 -7 (-15 -3963 ((-115) (-1207))))) (T -165))
+((-3963 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-115)) (-5 *1 (-165)))))
+(-10 -7 (-15 -3963 ((-115) (-1207))))
+((-2546 ((|#3| |#3|) 19 T ELT)))
+(((-166 |#1| |#2| |#3|) (-10 -7 (-15 -2546 (|#3| |#3|))) (-1080) (-1273 |#1|) (-1273 |#2|)) (T -166))
+((-2546 (*1 *2 *2) (-12 (-4 *3 (-1080)) (-4 *4 (-1273 *3)) (-5 *1 (-166 *3 *4 *2)) (-4 *2 (-1273 *4)))))
+(-10 -7 (-15 -2546 (|#3| |#3|)))
+((-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 223 T ELT)) (-4113 ((|#2| $) 102 T ELT)) (-1982 (($ $) 256 T ELT)) (-1832 (($ $) 250 T ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 47 T ELT)) (-1958 (($ $) 254 T ELT)) (-1806 (($ $) 248 T ELT)) (-3929 (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 146 T ELT)) (-3649 (((-560) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2186 (($ $ $) 229 T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL T ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) 160 T ELT) (((-711 |#2|) (-711 $)) 154 T ELT)) (-1778 (($ (-1201 |#2|)) 125 T ELT) (((-3 $ "failed") (-421 (-1201 |#2|))) NIL T ELT)) (-2873 (((-3 $ "failed") $) 214 T ELT)) (-2743 (((-3 (-421 (-560)) "failed") $) 204 T ELT)) (-1574 (((-114) $) 199 T ELT)) (-1957 (((-421 (-560)) $) 202 T ELT)) (-1604 (((-948)) 96 T ELT)) (-2197 (($ $ $) 231 T ELT)) (-3159 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 269 T ELT)) (-2503 (($) 245 T ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 193 T ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 198 T ELT)) (-2084 ((|#2| $) 100 T ELT)) (-1471 (((-1201 |#2|) $) 127 T ELT)) (-2260 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-2831 (($ $) 247 T ELT)) (-1767 (((-1201 |#2|) $) 126 T ELT)) (-2986 (($ $) 207 T ELT)) (-1502 (($) 103 T ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) 95 T ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) 64 T ELT)) (-2233 (((-3 $ "failed") $ |#2|) 209 T ELT) (((-3 $ "failed") $ $) 212 T ELT)) (-2515 (($ $) 246 T ELT)) (-3989 (((-793) $) 226 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 236 T ELT)) (-2336 ((|#2| (-1297 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-3161 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-2407 (((-1201 |#2|)) 120 T ELT)) (-1972 (($ $) 255 T ELT)) (-1820 (($ $) 249 T ELT)) (-4226 (((-1297 |#2|) $ (-1297 $)) 136 T ELT) (((-711 |#2|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#2|) $) 116 T ELT) (((-711 |#2|) (-1297 $)) NIL T ELT)) (-2400 (((-1297 |#2|) $) NIL T ELT) (($ (-1297 |#2|)) NIL T ELT) (((-1201 |#2|) $) NIL T ELT) (($ (-1201 |#2|)) NIL T ELT) (((-915 (-560)) $) 184 T ELT) (((-915 (-391)) $) 188 T ELT) (((-171 (-391)) $) 172 T ELT) (((-171 (-229)) $) 167 T ELT) (((-549) $) 180 T ELT)) (-1714 (($ $) 104 T ELT)) (-3913 (((-887) $) 143 T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT)) (-2978 (((-1201 |#2|) $) 32 T ELT)) (-4191 (((-793)) 106 T ELT)) (-3925 (((-114) $ $) 13 T ELT)) (-2042 (($ $) 259 T ELT)) (-1907 (($ $) 253 T ELT)) (-2022 (($ $) 257 T ELT)) (-1882 (($ $) 251 T ELT)) (-2069 ((|#2| $) 242 T ELT)) (-2032 (($ $) 258 T ELT)) (-1895 (($ $) 252 T ELT)) (-2719 (($ $) 162 T ELT)) (-2340 (((-114) $ $) 110 T ELT)) (-2441 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 111 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-421 (-560))) 276 T ELT) (($ $ $) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT)))
+(((-167 |#1| |#2|) (-10 -8 (-15 -3161 (|#1| |#1|)) (-15 -3161 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1| (-1207))) (-15 -3161 (|#1| |#1| (-663 (-1207)))) (-15 -3161 (|#1| |#1| (-1207) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -3913 (|#1| |#1|)) (-15 -2233 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2640 ((-2 (|:| -4184 |#1|) (|:| -4495 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3989 ((-793) |#1|)) (-15 -4455 ((-2 (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1|)) (-15 -2197 (|#1| |#1| |#1|)) (-15 -2186 (|#1| |#1| |#1|)) (-15 -2986 (|#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -2400 ((-549) |#1|)) (-15 -2400 ((-171 (-229)) |#1|)) (-15 -2400 ((-171 (-391)) |#1|)) (-15 -1832 (|#1| |#1|)) (-15 -1806 (|#1| |#1|)) (-15 -1820 (|#1| |#1|)) (-15 -1895 (|#1| |#1|)) (-15 -1882 (|#1| |#1|)) (-15 -1907 (|#1| |#1|)) (-15 -1972 (|#1| |#1|)) (-15 -1958 (|#1| |#1|)) (-15 -1982 (|#1| |#1|)) (-15 -2032 (|#1| |#1|)) (-15 -2022 (|#1| |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2831 (|#1| |#1|)) (-15 -2515 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2503 (|#1|)) (-15 ** (|#1| |#1| (-421 (-560)))) (-15 -3885 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -3690 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -2182 ((-3 (-663 (-1201 |#1|)) "failed") (-663 (-1201 |#1|)) (-1201 |#1|))) (-15 -2743 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -1957 ((-421 (-560)) |#1|)) (-15 -1574 ((-114) |#1|)) (-15 -3159 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2069 (|#2| |#1|)) (-15 -2719 (|#1| |#1|)) (-15 -2233 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1714 (|#1| |#1|)) (-15 -1502 (|#1|)) (-15 -2400 ((-915 (-391)) |#1|)) (-15 -2400 ((-915 (-560)) |#1|)) (-15 -1646 ((-913 (-391) |#1|) |#1| (-915 (-391)) (-913 (-391) |#1|))) (-15 -1646 ((-913 (-560) |#1|) |#1| (-915 (-560)) (-913 (-560) |#1|))) (-15 -2260 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1778 ((-3 |#1| "failed") (-421 (-1201 |#2|)))) (-15 -1767 ((-1201 |#2|) |#1|)) (-15 -2400 (|#1| (-1201 |#2|))) (-15 -1778 (|#1| (-1201 |#2|))) (-15 -2407 ((-1201 |#2|))) (-15 -2619 ((-711 |#2|) (-711 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 |#1|) (-1297 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -2619 ((-711 (-560)) (-711 |#1|))) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3649 ((-560) |#1|)) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -2400 ((-1201 |#2|) |#1|)) (-15 -2336 (|#2|)) (-15 -2400 (|#1| (-1297 |#2|))) (-15 -2400 ((-1297 |#2|) |#1|)) (-15 -4226 ((-711 |#2|) (-1297 |#1|))) (-15 -4226 ((-1297 |#2|) |#1|)) (-15 -1471 ((-1201 |#2|) |#1|)) (-15 -2978 ((-1201 |#2|) |#1|)) (-15 -2336 (|#2| (-1297 |#1|))) (-15 -4226 ((-711 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -4226 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -2084 (|#2| |#1|)) (-15 -4113 (|#2| |#1|)) (-15 -1604 ((-948))) (-15 -3913 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4191 ((-793))) (-15 -3913 (|#1| (-560))) (-15 ** (|#1| |#1| (-793))) (-15 -2873 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-948))) (-15 -2441 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|)) (-15 -2429 (|#1| |#1| |#1|)) (-15 -3913 ((-887) |#1|)) (-15 -3925 ((-114) |#1| |#1|)) (-15 -2340 ((-114) |#1| |#1|))) (-168 |#2|) (-175)) (T -167))
+((-4191 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) (-1604 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-948)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) (-2336 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-167 *3 *2)) (-4 *3 (-168 *2)))) (-2407 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1201 *4)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))))
+(-10 -8 (-15 -3161 (|#1| |#1|)) (-15 -3161 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1| (-1207))) (-15 -3161 (|#1| |#1| (-663 (-1207)))) (-15 -3161 (|#1| |#1| (-1207) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -3913 (|#1| |#1|)) (-15 -2233 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2640 ((-2 (|:| -4184 |#1|) (|:| -4495 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3989 ((-793) |#1|)) (-15 -4455 ((-2 (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1|)) (-15 -2197 (|#1| |#1| |#1|)) (-15 -2186 (|#1| |#1| |#1|)) (-15 -2986 (|#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -2400 ((-549) |#1|)) (-15 -2400 ((-171 (-229)) |#1|)) (-15 -2400 ((-171 (-391)) |#1|)) (-15 -1832 (|#1| |#1|)) (-15 -1806 (|#1| |#1|)) (-15 -1820 (|#1| |#1|)) (-15 -1895 (|#1| |#1|)) (-15 -1882 (|#1| |#1|)) (-15 -1907 (|#1| |#1|)) (-15 -1972 (|#1| |#1|)) (-15 -1958 (|#1| |#1|)) (-15 -1982 (|#1| |#1|)) (-15 -2032 (|#1| |#1|)) (-15 -2022 (|#1| |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2831 (|#1| |#1|)) (-15 -2515 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -2503 (|#1|)) (-15 ** (|#1| |#1| (-421 (-560)))) (-15 -3885 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -3690 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -2182 ((-3 (-663 (-1201 |#1|)) "failed") (-663 (-1201 |#1|)) (-1201 |#1|))) (-15 -2743 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -1957 ((-421 (-560)) |#1|)) (-15 -1574 ((-114) |#1|)) (-15 -3159 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2069 (|#2| |#1|)) (-15 -2719 (|#1| |#1|)) (-15 -2233 ((-3 |#1| "failed") |#1| |#2|)) (-15 -1714 (|#1| |#1|)) (-15 -1502 (|#1|)) (-15 -2400 ((-915 (-391)) |#1|)) (-15 -2400 ((-915 (-560)) |#1|)) (-15 -1646 ((-913 (-391) |#1|) |#1| (-915 (-391)) (-913 (-391) |#1|))) (-15 -1646 ((-913 (-560) |#1|) |#1| (-915 (-560)) (-913 (-560) |#1|))) (-15 -2260 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|))) (-15 -1778 ((-3 |#1| "failed") (-421 (-1201 |#2|)))) (-15 -1767 ((-1201 |#2|) |#1|)) (-15 -2400 (|#1| (-1201 |#2|))) (-15 -1778 (|#1| (-1201 |#2|))) (-15 -2407 ((-1201 |#2|))) (-15 -2619 ((-711 |#2|) (-711 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 |#1|) (-1297 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -2619 ((-711 (-560)) (-711 |#1|))) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3649 ((-560) |#1|)) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -2400 ((-1201 |#2|) |#1|)) (-15 -2336 (|#2|)) (-15 -2400 (|#1| (-1297 |#2|))) (-15 -2400 ((-1297 |#2|) |#1|)) (-15 -4226 ((-711 |#2|) (-1297 |#1|))) (-15 -4226 ((-1297 |#2|) |#1|)) (-15 -1471 ((-1201 |#2|) |#1|)) (-15 -2978 ((-1201 |#2|) |#1|)) (-15 -2336 (|#2| (-1297 |#1|))) (-15 -4226 ((-711 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -4226 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -2084 (|#2| |#1|)) (-15 -4113 (|#2| |#1|)) (-15 -1604 ((-948))) (-15 -3913 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4191 ((-793))) (-15 -3913 (|#1| (-560))) (-15 ** (|#1| |#1| (-793))) (-15 -2873 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-948))) (-15 -2441 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|)) (-15 -2429 (|#1| |#1| |#1|)) (-15 -3913 ((-887) |#1|)) (-15 -3925 ((-114) |#1| |#1|)) (-15 -2340 ((-114) |#1| |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 105 (-2196 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) ELT)) (-4366 (($ $) 106 (-2196 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) ELT)) (-2667 (((-114) $) 108 (-2196 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) ELT)) (-3100 (((-711 |#1|) (-1297 $)) 53 T ELT) (((-711 |#1|)) 68 T ELT)) (-4113 ((|#1| $) 59 T ELT)) (-1982 (($ $) 236 (|has| |#1| (-1233)) ELT)) (-1832 (($ $) 219 (|has| |#1| (-1233)) ELT)) (-1548 (((-1219 (-948) (-793)) (-560)) 158 (|has| |#1| (-363)) ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) 250 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) ELT)) (-1621 (($ $) 125 (-2196 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-376))) ELT)) (-3898 (((-419 $) $) 126 (-2196 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-376))) ELT)) (-4021 (($ $) 249 (-12 (|has| |#1| (-1033)) (|has| |#1| (-1233))) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 253 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) ELT)) (-3476 (((-114) $ $) 116 (|has| |#1| (-319)) ELT)) (-2552 (((-793)) 99 (|has| |#1| (-381)) ELT)) (-1958 (($ $) 235 (|has| |#1| (-1233)) ELT)) (-1806 (($ $) 220 (|has| |#1| (-1233)) ELT)) (-2003 (($ $) 234 (|has| |#1| (-1233)) ELT)) (-1856 (($ $) 221 (|has| |#1| (-1233)) ELT)) (-3525 (($) 18 T CONST)) (-3929 (((-3 (-560) "failed") $) 185 (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) 183 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 180 T ELT)) (-3649 (((-560) $) 184 (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) 182 (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) 181 T ELT)) (-1953 (($ (-1297 |#1|) (-1297 $)) 55 T ELT) (($ (-1297 |#1|)) 71 T ELT)) (-1433 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-363)) ELT)) (-2186 (($ $ $) 120 (|has| |#1| (-319)) ELT)) (-3160 (((-711 |#1|) $ (-1297 $)) 60 T ELT) (((-711 |#1|) $) 66 T ELT)) (-2619 (((-711 (-560)) (-711 $)) 177 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 176 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 175 T ELT) (((-711 |#1|) (-711 $)) 174 T ELT)) (-1778 (($ (-1201 |#1|)) 169 T ELT) (((-3 $ "failed") (-421 (-1201 |#1|))) 166 (|has| |#1| (-376)) ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-4034 ((|#1| $) 261 T ELT)) (-2743 (((-3 (-421 (-560)) "failed") $) 254 (|has| |#1| (-559)) ELT)) (-1574 (((-114) $) 256 (|has| |#1| (-559)) ELT)) (-1957 (((-421 (-560)) $) 255 (|has| |#1| (-559)) ELT)) (-1604 (((-948)) 61 T ELT)) (-1812 (($) 102 (|has| |#1| (-381)) ELT)) (-2197 (($ $ $) 119 (|has| |#1| (-319)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 114 (|has| |#1| (-319)) ELT)) (-3191 (($) 160 (|has| |#1| (-363)) ELT)) (-4017 (((-114) $) 161 (|has| |#1| (-363)) ELT)) (-3079 (($ $ (-793)) 152 (|has| |#1| (-363)) ELT) (($ $) 151 (|has| |#1| (-363)) ELT)) (-3141 (((-114) $) 127 (-2196 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-376))) ELT)) (-3159 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 257 (-12 (|has| |#1| (-1091)) (|has| |#1| (-1233))) ELT)) (-2503 (($) 246 (|has| |#1| (-1233)) ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 269 (|has| |#1| (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 268 (|has| |#1| (-911 (-391))) ELT)) (-1460 (((-948) $) 163 (|has| |#1| (-363)) ELT) (((-854 (-948)) $) 149 (|has| |#1| (-363)) ELT)) (-1918 (((-114) $) 35 T ELT)) (-1956 (($ $ (-560)) 248 (-12 (|has| |#1| (-1033)) (|has| |#1| (-1233))) ELT)) (-2084 ((|#1| $) 58 T ELT)) (-3738 (((-3 $ "failed") $) 153 (|has| |#1| (-363)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 123 (|has| |#1| (-319)) ELT)) (-1471 (((-1201 |#1|) $) 51 (|has| |#1| (-376)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 270 T ELT)) (-2622 (((-948) $) 101 (|has| |#1| (-381)) ELT)) (-2831 (($ $) 243 (|has| |#1| (-1233)) ELT)) (-1767 (((-1201 |#1|) $) 167 T ELT)) (-4140 (((-711 (-560)) (-1297 $)) 179 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 178 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 173 T ELT) (((-711 |#1|) (-1297 $)) 172 T ELT)) (-1861 (($ (-663 $)) 112 (-2196 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) ELT) (($ $ $) 111 (-2196 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2986 (($ $) 128 (|has| |#1| (-376)) ELT)) (-3239 (($) 154 (|has| |#1| (-363)) CONST)) (-1591 (($ (-948)) 100 (|has| |#1| (-381)) ELT)) (-1502 (($) 265 T ELT)) (-4044 ((|#1| $) 262 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3583 (($) 171 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 113 (-2196 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) ELT)) (-1938 (($ (-663 $)) 110 (-2196 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) ELT) (($ $ $) 109 (-2196 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) ELT)) (-2976 (((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))) 157 (|has| |#1| (-363)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) 252 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) 251 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) ELT)) (-4012 (((-419 $) $) 124 (-2196 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-376))) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 121 (|has| |#1| (-319)) ELT)) (-2233 (((-3 $ "failed") $ |#1|) 260 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 104 (-2196 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 115 (|has| |#1| (-319)) ELT)) (-2515 (($ $) 244 (|has| |#1| (-1233)) ELT)) (-2371 (($ $ (-663 |#1|) (-663 |#1|)) 276 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 275 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 274 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) 273 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) 272 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) 271 (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-3989 (((-793) $) 117 (|has| |#1| (-319)) ELT)) (-1507 (($ $ |#1|) 277 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 118 (|has| |#1| (-319)) ELT)) (-2336 ((|#1| (-1297 $)) 54 T ELT) ((|#1|) 67 T ELT)) (-2258 (((-793) $) 162 (|has| |#1| (-363)) ELT) (((-3 (-793) "failed") $ $) 150 (|has| |#1| (-363)) ELT)) (-3161 (($ $ (-1 |#1| |#1|)) 136 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 135 T ELT) (($ $ (-663 (-1207)) (-663 (-793))) 141 (-2196 (-1404 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-1404 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) 140 (-2196 (-1404 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-1404 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-663 (-1207))) 139 (-2196 (-1404 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-1404 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207)) 137 (-2196 (-1404 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-1404 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-793)) 147 (-2196 (-1404 (|has| |#1| (-376)) (|has| |#1| (-239))) (-1404 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-1404 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT) (($ $) 145 (-2196 (-1404 (|has| |#1| (-376)) (|has| |#1| (-239))) (-1404 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-1404 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT)) (-3634 (((-711 |#1|) (-1297 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-376)) ELT)) (-2407 (((-1201 |#1|)) 170 T ELT)) (-2013 (($ $) 233 (|has| |#1| (-1233)) ELT)) (-1870 (($ $) 222 (|has| |#1| (-1233)) ELT)) (-3569 (($) 159 (|has| |#1| (-363)) ELT)) (-1992 (($ $) 232 (|has| |#1| (-1233)) ELT)) (-1844 (($ $) 223 (|has| |#1| (-1233)) ELT)) (-1972 (($ $) 231 (|has| |#1| (-1233)) ELT)) (-1820 (($ $) 224 (|has| |#1| (-1233)) ELT)) (-4226 (((-1297 |#1|) $ (-1297 $)) 57 T ELT) (((-711 |#1|) (-1297 $) (-1297 $)) 56 T ELT) (((-1297 |#1|) $) 73 T ELT) (((-711 |#1|) (-1297 $)) 72 T ELT)) (-2400 (((-1297 |#1|) $) 70 T ELT) (($ (-1297 |#1|)) 69 T ELT) (((-1201 |#1|) $) 186 T ELT) (($ (-1201 |#1|)) 168 T ELT) (((-915 (-560)) $) 267 (|has| |#1| (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) 266 (|has| |#1| (-633 (-915 (-391)))) ELT) (((-171 (-391)) $) 218 (|has| |#1| (-1051)) ELT) (((-171 (-229)) $) 217 (|has| |#1| (-1051)) ELT) (((-549) $) 216 (|has| |#1| (-633 (-549))) ELT)) (-1714 (($ $) 264 T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) 156 (-2196 (-1404 (|has| $ (-147)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) (|has| |#1| (-363))) ELT)) (-2917 (($ |#1| |#1|) 263 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 44 T ELT) (($ (-421 (-560))) 98 (-2196 (|has| |#1| (-376)) (|has| |#1| (-1069 (-421 (-560))))) ELT) (($ $) 103 (-2196 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) ELT)) (-3919 (($ $) 155 (|has| |#1| (-363)) ELT) (((-3 $ "failed") $) 50 (-2196 (-1404 (|has| $ (-147)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) (|has| |#1| (-147))) ELT)) (-2978 (((-1201 |#1|) $) 52 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-3822 (((-1297 $)) 74 T ELT)) (-2042 (($ $) 242 (|has| |#1| (-1233)) ELT)) (-1907 (($ $) 230 (|has| |#1| (-1233)) ELT)) (-4361 (((-114) $ $) 107 (-2196 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) ELT)) (-2022 (($ $) 241 (|has| |#1| (-1233)) ELT)) (-1882 (($ $) 229 (|has| |#1| (-1233)) ELT)) (-2059 (($ $) 240 (|has| |#1| (-1233)) ELT)) (-1932 (($ $) 228 (|has| |#1| (-1233)) ELT)) (-2069 ((|#1| $) 258 (|has| |#1| (-1233)) ELT)) (-3392 (($ $) 239 (|has| |#1| (-1233)) ELT)) (-1945 (($ $) 227 (|has| |#1| (-1233)) ELT)) (-2050 (($ $) 238 (|has| |#1| (-1233)) ELT)) (-1920 (($ $) 226 (|has| |#1| (-1233)) ELT)) (-2032 (($ $) 237 (|has| |#1| (-1233)) ELT)) (-1895 (($ $) 225 (|has| |#1| (-1233)) ELT)) (-2719 (($ $) 259 (|has| |#1| (-1091)) ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($ $ (-1 |#1| |#1|)) 134 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 133 T ELT) (($ $ (-663 (-1207)) (-663 (-793))) 144 (-2196 (-1404 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-1404 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) 143 (-2196 (-1404 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-1404 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-663 (-1207))) 142 (-2196 (-1404 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-1404 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207)) 138 (-2196 (-1404 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-1404 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-793)) 148 (-2196 (-1404 (|has| |#1| (-376)) (|has| |#1| (-239))) (-1404 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-1404 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT) (($ $) 146 (-2196 (-1404 (|has| |#1| (-376)) (|has| |#1| (-239))) (-1404 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-1404 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ $) 132 (|has| |#1| (-376)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-421 (-560))) 247 (-12 (|has| |#1| (-1033)) (|has| |#1| (-1233))) ELT) (($ $ $) 245 (|has| |#1| (-1233)) ELT) (($ $ (-560)) 129 (|has| |#1| (-376)) ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT) (($ (-421 (-560)) $) 131 (|has| |#1| (-376)) ELT) (($ $ (-421 (-560))) 130 (|has| |#1| (-376)) ELT)))
(((-168 |#1|) (-142) (-175)) (T -168))
-((-2032 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-3461 (*1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-4122 (*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-2245 (*1 *1 *2 *2) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-1335 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-4482 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-1528 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-571)))) (-2282 (*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1091)))) (-3844 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1233)))) (-2647 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-1091)) (-4 *3 (-1233)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-114)))) (-3197 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-560))))) (-3643 (*1 *2 *1) (|partial| -12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-560))))))
-(-13 (-746 |t#1| (-1201 |t#1|)) (-426 |t#1|) (-234 |t#1|) (-351 |t#1|) (-414 |t#1|) (-909 |t#1|) (-390 |t#1|) (-175) (-10 -8 (-6 -2245) (-15 -3461 ($)) (-15 -4122 ($ $)) (-15 -2245 ($ |t#1| |t#1|)) (-15 -1335 (|t#1| $)) (-15 -4482 (|t#1| $)) (-15 -2032 (|t#1| $)) (IF (|has| |t#1| (-571)) (PROGN (-6 (-571)) (-15 -1528 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-319)) (-6 (-319)) |%noBranch|) (IF (|has| |t#1| (-6 -4507)) (-6 -4507) |%noBranch|) (IF (|has| |t#1| (-6 -4504)) (-6 -4504) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|) (IF (|has| |t#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1051)) (PROGN (-6 (-633 (-171 (-229)))) (-6 (-633 (-171 (-391))))) |%noBranch|) (IF (|has| |t#1| (-1091)) (-15 -2282 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1233)) (PROGN (-6 (-1233)) (-15 -3844 (|t#1| $)) (IF (|has| |t#1| (-1033)) (-6 (-1033)) |%noBranch|) (IF (|has| |t#1| (-1091)) (-15 -2647 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -3469 ((-114) $)) (-15 -3197 ((-421 (-560)) $)) (-15 -3643 ((-3 (-421 (-560)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-939)) (IF (|has| |t#1| (-319)) (-6 (-939)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-38 |#1|) . T) ((-38 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-35) |has| |#1| (-1233)) ((-95) |has| |#1| (-1233)) ((-102) . T) ((-111 #0# #0#) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -2304 (|has| |#1| (-363)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-635 #0#) -2304 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-363)) (|has| |#1| (-376))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-632 (-887)) . T) ((-175) . T) ((-633 (-171 (-229))) |has| |#1| (-1051)) ((-633 (-171 (-391))) |has| |#1| (-1051)) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-633 (-915 (-391))) |has| |#1| (-633 (-915 (-391)))) ((-633 (-915 (-560))) |has| |#1| (-633 (-915 (-560)))) ((-633 #1=(-1201 |#1|)) . T) ((-236 $) -2304 (|has| |#1| (-363)) (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) -2304 (|has| |#1| (-363)) (|has| |#1| (-240))) ((-239) -2304 (|has| |#1| (-363)) (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-296) |has| |#1| (-1233)) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) -2304 (|has| |#1| (-571)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-319) -2304 (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-376) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-416) |has| |#1| (-363)) ((-381) -2304 (|has| |#1| (-381)) (|has| |#1| (-363))) ((-363) |has| |#1| (-363)) ((-383 |#1| #1#) . T) ((-424 |#1| #1#) . T) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-414 |#1|) . T) ((-426 |#1|) . T) ((-466) -2304 (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-507) |has| |#1| (-1233)) ((-528 (-1207) |#1|) |has| |#1| (-528 (-1207) |#1|)) ((-528 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-571) -2304 (|has| |#1| (-571)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-668 #0#) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-670 #2=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-662 |#1|) . T) ((-662 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-660 #2#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #0#) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-739 |#1|) . T) ((-739 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-746 |#1| #1#) . T) ((-748) . T) ((-921 $ #3=(-1207)) -2304 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-927 (-1207)) |has| |#1| (-927 (-1207))) ((-929 #3#) -2304 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-911 (-391)) |has| |#1| (-911 (-391))) ((-911 (-560)) |has| |#1| (-911 (-560))) ((-909 |#1|) . T) ((-939) -12 (|has| |#1| (-319)) (|has| |#1| (-939))) ((-950) -2304 (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-1033) -12 (|has| |#1| (-1033)) (|has| |#1| (-1233))) ((-1069 (-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 |#1|) . T) ((-1082 #0#) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1082 |#1|) . T) ((-1082 $) . T) ((-1087 #0#) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1087 |#1|) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1182) |has| |#1| (-363)) ((-1233) |has| |#1| (-1233)) ((-1236) |has| |#1| (-1233)) ((-1247) . T) ((-1252) -2304 (|has| |#1| (-363)) (|has| |#1| (-376)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))))
-((-4457 (((-419 |#2|) |#2|) 67 T ELT)))
-(((-169 |#1| |#2|) (-10 -7 (-15 -4457 ((-419 |#2|) |#2|))) (-319) (-1273 (-171 |#1|))) (T -169))
-((-4457 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-419 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1273 (-171 *4))))))
-(-10 -7 (-15 -4457 ((-419 |#2|) |#2|)))
-((-2087 (((-1166) (-1166) (-303)) 8 T ELT)) (-2602 (((-663 (-713 (-292))) (-1189)) 81 T ELT)) (-3043 (((-713 (-292)) (-1166)) 76 T ELT)))
-(((-170) (-13 (-1247) (-10 -7 (-15 -2087 ((-1166) (-1166) (-303))) (-15 -3043 ((-713 (-292)) (-1166))) (-15 -2602 ((-663 (-713 (-292))) (-1189)))))) (T -170))
-((-2087 (*1 *2 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-303)) (-5 *1 (-170)))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-713 (-292))) (-5 *1 (-170)))) (-2602 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-663 (-713 (-292)))) (-5 *1 (-170)))))
-(-13 (-1247) (-10 -7 (-15 -2087 ((-1166) (-1166) (-303))) (-15 -3043 ((-713 (-292)) (-1166))) (-15 -2602 ((-663 (-713 (-292))) (-1189)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 34 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (-2304 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-571))) ELT)) (-3244 (($ $) NIL (-2304 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-571))) ELT)) (-4093 (((-114) $) NIL (-2304 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-571))) ELT)) (-1698 (((-711 |#1|) (-1297 $)) NIL T ELT) (((-711 |#1|)) NIL T ELT)) (-3349 ((|#1| $) NIL T ELT)) (-4337 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3455 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-2105 (((-1219 (-948) (-793)) (-560)) NIL (|has| |#1| (-363)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) ELT)) (-1804 (($ $) NIL (-2304 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-376))) ELT)) (-3023 (((-419 $) $) NIL (-2304 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-376))) ELT)) (-4471 (($ $) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1233))) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) ELT)) (-1615 (((-114) $ $) NIL (|has| |#1| (-319)) ELT)) (-3241 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-4313 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3430 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4363 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3477 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3330 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-4143 (($ (-1297 |#1|) (-1297 $)) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT)) (-4217 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)) ELT)) (-1478 (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-4333 (((-711 |#1|) $ (-1297 $)) NIL T ELT) (((-711 |#1|) $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-4129 (($ (-1201 |#1|)) NIL T ELT) (((-3 $ "failed") (-421 (-1201 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-4482 ((|#1| $) 13 T ELT)) (-3643 (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-559)) ELT)) (-3469 (((-114) $) NIL (|has| |#1| (-559)) ELT)) (-3197 (((-421 (-560)) $) NIL (|has| |#1| (-559)) ELT)) (-2326 (((-948)) NIL T ELT)) (-2310 (($) NIL (|has| |#1| (-381)) ELT)) (-1490 (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL (|has| |#1| (-319)) ELT)) (-4336 (($) NIL (|has| |#1| (-363)) ELT)) (-3976 (((-114) $) NIL (|has| |#1| (-363)) ELT)) (-1696 (($ $ (-793)) NIL (|has| |#1| (-363)) ELT) (($ $) NIL (|has| |#1| (-363)) ELT)) (-4330 (((-114) $) NIL (-2304 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-376))) ELT)) (-2647 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1091)) (|has| |#1| (-1233))) ELT)) (-3796 (($) NIL (|has| |#1| (-1233)) ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (|has| |#1| (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (|has| |#1| (-911 (-391))) ELT)) (-3913 (((-948) $) NIL (|has| |#1| (-363)) ELT) (((-854 (-948)) $) NIL (|has| |#1| (-363)) ELT)) (-1581 (((-114) $) 36 T ELT)) (-2146 (($ $ (-560)) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1233))) ELT)) (-2032 ((|#1| $) 47 T ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| |#1| (-363)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-319)) ELT)) (-1787 (((-1201 |#1|) $) NIL (|has| |#1| (-376)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4419 (((-948) $) NIL (|has| |#1| (-381)) ELT)) (-2192 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4116 (((-1201 |#1|) $) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#1| (-319)) ELT) (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3161 (($) NIL (|has| |#1| (-363)) CONST)) (-3128 (($ (-948)) NIL (|has| |#1| (-381)) ELT)) (-3461 (($) NIL T ELT)) (-1335 ((|#1| $) 15 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2748 (($) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-319)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#1| (-319)) ELT) (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-3666 (((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))) NIL (|has| |#1| (-363)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) ELT)) (-4457 (((-419 $) $) NIL (-2304 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-376))) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-319)) ELT)) (-1528 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 48 (-2304 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-571))) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-319)) ELT)) (-3251 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4187 (($ $ (-663 |#1|) (-663 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-2901 (((-793) $) NIL (|has| |#1| (-319)) ELT)) (-3924 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-319)) ELT)) (-2690 ((|#1| (-1297 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-2364 (((-793) $) NIL (|has| |#1| (-363)) ELT) (((-3 (-793) "failed") $ $) NIL (|has| |#1| (-363)) ELT)) (-2894 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2304 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-2304 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-2304 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-793)) NIL (-2304 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT) (($ $) NIL (-2304 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT)) (-3604 (((-711 |#1|) (-1297 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT)) (-4394 (((-1201 |#1|)) NIL T ELT)) (-4373 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3488 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-2243 (($) NIL (|has| |#1| (-363)) ELT)) (-4352 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3466 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4325 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3443 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-2178 (((-1297 |#1|) $ (-1297 $)) NIL T ELT) (((-711 |#1|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#1|) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-1407 (((-1297 |#1|) $) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT) (((-1201 |#1|) $) NIL T ELT) (($ (-1201 |#1|)) NIL T ELT) (((-915 (-560)) $) NIL (|has| |#1| (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) NIL (|has| |#1| (-633 (-915 (-391)))) ELT) (((-171 (-391)) $) NIL (|has| |#1| (-1051)) ELT) (((-171 (-229)) $) NIL (|has| |#1| (-1051)) ELT) (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-4122 (($ $) 46 T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-2304 (-12 (|has| $ (-147)) (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-363))) ELT)) (-2245 (($ |#1| |#1|) 38 T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) 37 T ELT) (($ (-421 (-560))) NIL (-2304 (|has| |#1| (-376)) (|has| |#1| (-1069 (-421 (-560))))) ELT) (($ $) NIL (-2304 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-571))) ELT)) (-1964 (($ $) NIL (|has| |#1| (-363)) ELT) (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-2630 (((-1201 |#1|) $) NIL T ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-1954 (((-1297 $)) NIL T ELT)) (-4411 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4263 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-2948 (((-114) $ $) NIL (-2304 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-571))) ELT)) (-4387 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3499 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4438 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4287 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3844 ((|#1| $) NIL (|has| |#1| (-1233)) ELT)) (-3837 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4302 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4423 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4275 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4398 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4252 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-2282 (($ $) NIL (|has| |#1| (-1091)) ELT)) (-2001 (($) 28 T CONST)) (-2011 (($) 30 T CONST)) (-2735 (((-1189) $) 23 (|has| |#1| (-843)) ELT) (((-1189) $ (-114)) 25 (|has| |#1| (-843)) ELT) (((-1303) (-845) $) 26 (|has| |#1| (-843)) ELT) (((-1303) (-845) $ (-114)) 27 (|has| |#1| (-843)) ELT)) (-3305 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2304 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-2304 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-2304 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-793)) NIL (-2304 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT) (($ $) NIL (-2304 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 40 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-421 (-560))) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1233))) ELT) (($ $ $) NIL (|has| |#1| (-1233)) ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 43 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-376)) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-376)) ELT)))
+((-2084 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-1502 (*1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-1714 (*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-2917 (*1 *1 *2 *2) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-4044 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-4034 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-2233 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-571)))) (-2719 (*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1091)))) (-2069 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1233)))) (-3159 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-1091)) (-4 *3 (-1233)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-1574 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-114)))) (-1957 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-560))))) (-2743 (*1 *2 *1) (|partial| -12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-560))))))
+(-13 (-746 |t#1| (-1201 |t#1|)) (-426 |t#1|) (-234 |t#1|) (-351 |t#1|) (-414 |t#1|) (-909 |t#1|) (-390 |t#1|) (-175) (-10 -8 (-6 -2917) (-15 -1502 ($)) (-15 -1714 ($ $)) (-15 -2917 ($ |t#1| |t#1|)) (-15 -4044 (|t#1| $)) (-15 -4034 (|t#1| $)) (-15 -2084 (|t#1| $)) (IF (|has| |t#1| (-571)) (PROGN (-6 (-571)) (-15 -2233 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-319)) (-6 (-319)) |%noBranch|) (IF (|has| |t#1| (-6 -4507)) (-6 -4507) |%noBranch|) (IF (|has| |t#1| (-6 -4504)) (-6 -4504) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|) (IF (|has| |t#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1051)) (PROGN (-6 (-633 (-171 (-229)))) (-6 (-633 (-171 (-391))))) |%noBranch|) (IF (|has| |t#1| (-1091)) (-15 -2719 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1233)) (PROGN (-6 (-1233)) (-15 -2069 (|t#1| $)) (IF (|has| |t#1| (-1033)) (-6 (-1033)) |%noBranch|) (IF (|has| |t#1| (-1091)) (-15 -3159 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -1574 ((-114) $)) (-15 -1957 ((-421 (-560)) $)) (-15 -2743 ((-3 (-421 (-560)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-939)) (IF (|has| |t#1| (-319)) (-6 (-939)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-38 |#1|) . T) ((-38 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-35) |has| |#1| (-1233)) ((-95) |has| |#1| (-1233)) ((-102) . T) ((-111 #0# #0#) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -2196 (|has| |#1| (-363)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-635 #0#) -2196 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-363)) (|has| |#1| (-376))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-632 (-887)) . T) ((-175) . T) ((-633 (-171 (-229))) |has| |#1| (-1051)) ((-633 (-171 (-391))) |has| |#1| (-1051)) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-633 (-915 (-391))) |has| |#1| (-633 (-915 (-391)))) ((-633 (-915 (-560))) |has| |#1| (-633 (-915 (-560)))) ((-633 #1=(-1201 |#1|)) . T) ((-236 $) -2196 (|has| |#1| (-363)) (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) -2196 (|has| |#1| (-363)) (|has| |#1| (-240))) ((-239) -2196 (|has| |#1| (-363)) (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-296) |has| |#1| (-1233)) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) -2196 (|has| |#1| (-571)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-319) -2196 (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-376) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-416) |has| |#1| (-363)) ((-381) -2196 (|has| |#1| (-381)) (|has| |#1| (-363))) ((-363) |has| |#1| (-363)) ((-383 |#1| #1#) . T) ((-424 |#1| #1#) . T) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-414 |#1|) . T) ((-426 |#1|) . T) ((-466) -2196 (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-507) |has| |#1| (-1233)) ((-528 (-1207) |#1|) |has| |#1| (-528 (-1207) |#1|)) ((-528 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-571) -2196 (|has| |#1| (-571)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-668 #0#) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-670 #2=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-662 |#1|) . T) ((-662 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-660 #2#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #0#) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-739 |#1|) . T) ((-739 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-746 |#1| #1#) . T) ((-748) . T) ((-921 $ #3=(-1207)) -2196 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-927 (-1207)) |has| |#1| (-927 (-1207))) ((-929 #3#) -2196 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-911 (-391)) |has| |#1| (-911 (-391))) ((-911 (-560)) |has| |#1| (-911 (-560))) ((-909 |#1|) . T) ((-939) -12 (|has| |#1| (-319)) (|has| |#1| (-939))) ((-950) -2196 (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-1033) -12 (|has| |#1| (-1033)) (|has| |#1| (-1233))) ((-1069 (-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 |#1|) . T) ((-1082 #0#) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1082 |#1|) . T) ((-1082 $) . T) ((-1087 #0#) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1087 |#1|) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1182) |has| |#1| (-363)) ((-1233) |has| |#1| (-1233)) ((-1236) |has| |#1| (-1233)) ((-1247) . T) ((-1252) -2196 (|has| |#1| (-363)) (|has| |#1| (-376)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))))
+((-4012 (((-419 |#2|) |#2|) 67 T ELT)))
+(((-169 |#1| |#2|) (-10 -7 (-15 -4012 ((-419 |#2|) |#2|))) (-319) (-1273 (-171 |#1|))) (T -169))
+((-4012 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-419 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1273 (-171 *4))))))
+(-10 -7 (-15 -4012 ((-419 |#2|) |#2|)))
+((-2379 (((-1166) (-1166) (-303)) 8 T ELT)) (-3953 (((-663 (-713 (-292))) (-1189)) 81 T ELT)) (-2794 (((-713 (-292)) (-1166)) 76 T ELT)))
+(((-170) (-13 (-1247) (-10 -7 (-15 -2379 ((-1166) (-1166) (-303))) (-15 -2794 ((-713 (-292)) (-1166))) (-15 -3953 ((-663 (-713 (-292))) (-1189)))))) (T -170))
+((-2379 (*1 *2 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-303)) (-5 *1 (-170)))) (-2794 (*1 *2 *3) (-12 (-5 *3 (-1166)) (-5 *2 (-713 (-292))) (-5 *1 (-170)))) (-3953 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-663 (-713 (-292)))) (-5 *1 (-170)))))
+(-13 (-1247) (-10 -7 (-15 -2379 ((-1166) (-1166) (-303))) (-15 -2794 ((-713 (-292)) (-1166))) (-15 -3953 ((-663 (-713 (-292))) (-1189)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 34 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (-2196 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-571))) ELT)) (-4366 (($ $) NIL (-2196 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-571))) ELT)) (-2667 (((-114) $) NIL (-2196 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-571))) ELT)) (-3100 (((-711 |#1|) (-1297 $)) NIL T ELT) (((-711 |#1|)) NIL T ELT)) (-4113 ((|#1| $) NIL T ELT)) (-1982 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1832 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1548 (((-1219 (-948) (-793)) (-560)) NIL (|has| |#1| (-363)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) ELT)) (-1621 (($ $) NIL (-2196 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-376))) ELT)) (-3898 (((-419 $) $) NIL (-2196 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-376))) ELT)) (-4021 (($ $) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1233))) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) ELT)) (-3476 (((-114) $ $) NIL (|has| |#1| (-319)) ELT)) (-2552 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-1958 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1806 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-2003 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1856 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3649 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-1953 (($ (-1297 |#1|) (-1297 $)) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT)) (-1433 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)) ELT)) (-2186 (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-3160 (((-711 |#1|) $ (-1297 $)) NIL T ELT) (((-711 |#1|) $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-1778 (($ (-1201 |#1|)) NIL T ELT) (((-3 $ "failed") (-421 (-1201 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4034 ((|#1| $) 13 T ELT)) (-2743 (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-559)) ELT)) (-1574 (((-114) $) NIL (|has| |#1| (-559)) ELT)) (-1957 (((-421 (-560)) $) NIL (|has| |#1| (-559)) ELT)) (-1604 (((-948)) NIL T ELT)) (-1812 (($) NIL (|has| |#1| (-381)) ELT)) (-2197 (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL (|has| |#1| (-319)) ELT)) (-3191 (($) NIL (|has| |#1| (-363)) ELT)) (-4017 (((-114) $) NIL (|has| |#1| (-363)) ELT)) (-3079 (($ $ (-793)) NIL (|has| |#1| (-363)) ELT) (($ $) NIL (|has| |#1| (-363)) ELT)) (-3141 (((-114) $) NIL (-2196 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-376))) ELT)) (-3159 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1091)) (|has| |#1| (-1233))) ELT)) (-2503 (($) NIL (|has| |#1| (-1233)) ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (|has| |#1| (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (|has| |#1| (-911 (-391))) ELT)) (-1460 (((-948) $) NIL (|has| |#1| (-363)) ELT) (((-854 (-948)) $) NIL (|has| |#1| (-363)) ELT)) (-1918 (((-114) $) 36 T ELT)) (-1956 (($ $ (-560)) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1233))) ELT)) (-2084 ((|#1| $) 47 T ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| |#1| (-363)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-319)) ELT)) (-1471 (((-1201 |#1|) $) NIL (|has| |#1| (-376)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2622 (((-948) $) NIL (|has| |#1| (-381)) ELT)) (-2831 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1767 (((-1201 |#1|) $) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#1| (-319)) ELT) (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3239 (($) NIL (|has| |#1| (-363)) CONST)) (-1591 (($ (-948)) NIL (|has| |#1| (-381)) ELT)) (-1502 (($) NIL T ELT)) (-4044 ((|#1| $) 15 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3583 (($) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-319)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#1| (-319)) ELT) (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-2976 (((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))) NIL (|has| |#1| (-363)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) ELT)) (-4012 (((-419 $) $) NIL (-2196 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-376))) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-319)) ELT)) (-2233 (((-3 $ "failed") $ |#1|) 45 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 48 (-2196 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-571))) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-319)) ELT)) (-2515 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-2371 (($ $ (-663 |#1|) (-663 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-3989 (((-793) $) NIL (|has| |#1| (-319)) ELT)) (-1507 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-319)) ELT)) (-2336 ((|#1| (-1297 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-2258 (((-793) $) NIL (|has| |#1| (-363)) ELT) (((-3 (-793) "failed") $ $) NIL (|has| |#1| (-363)) ELT)) (-3161 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2196 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-2196 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-2196 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-793)) NIL (-2196 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT) (($ $) NIL (-2196 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT)) (-3634 (((-711 |#1|) (-1297 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT)) (-2407 (((-1201 |#1|)) NIL T ELT)) (-2013 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1870 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-3569 (($) NIL (|has| |#1| (-363)) ELT)) (-1992 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1844 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1972 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1820 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4226 (((-1297 |#1|) $ (-1297 $)) NIL T ELT) (((-711 |#1|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#1|) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-2400 (((-1297 |#1|) $) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT) (((-1201 |#1|) $) NIL T ELT) (($ (-1201 |#1|)) NIL T ELT) (((-915 (-560)) $) NIL (|has| |#1| (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) NIL (|has| |#1| (-633 (-915 (-391)))) ELT) (((-171 (-391)) $) NIL (|has| |#1| (-1051)) ELT) (((-171 (-229)) $) NIL (|has| |#1| (-1051)) ELT) (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-1714 (($ $) 46 T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-2196 (-12 (|has| $ (-147)) (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-363))) ELT)) (-2917 (($ |#1| |#1|) 38 T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) 37 T ELT) (($ (-421 (-560))) NIL (-2196 (|has| |#1| (-376)) (|has| |#1| (-1069 (-421 (-560))))) ELT) (($ $) NIL (-2196 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-571))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-363)) ELT) (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-2978 (((-1201 |#1|) $) NIL T ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-3822 (((-1297 $)) NIL T ELT)) (-2042 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1907 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-4361 (((-114) $ $) NIL (-2196 (-12 (|has| |#1| (-319)) (|has| |#1| (-939))) (|has| |#1| (-571))) ELT)) (-2022 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1882 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-2059 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1932 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-2069 ((|#1| $) NIL (|has| |#1| (-1233)) ELT)) (-3392 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1945 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-2050 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1920 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-2032 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-1895 (($ $) NIL (|has| |#1| (-1233)) ELT)) (-2719 (($ $) NIL (|has| |#1| (-1091)) ELT)) (-1446 (($) 28 T CONST)) (-1456 (($) 30 T CONST)) (-1581 (((-1189) $) 23 (|has| |#1| (-843)) ELT) (((-1189) $ (-114)) 25 (|has| |#1| (-843)) ELT) (((-1303) (-845) $) 26 (|has| |#1| (-843)) ELT) (((-1303) (-845) $ (-114)) 27 (|has| |#1| (-843)) ELT)) (-2111 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2196 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-2196 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-2196 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-793)) NIL (-2196 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT) (($ $) NIL (-2196 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 40 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-421 (-560))) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1233))) ELT) (($ $ $) NIL (|has| |#1| (-1233)) ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 43 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-376)) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-376)) ELT)))
(((-171 |#1|) (-13 (-168 |#1|) (-10 -7 (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|))) (-175)) (T -171))
NIL
(-13 (-168 |#1|) (-10 -7 (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|)))
-((-3957 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14 T ELT)))
-(((-172 |#1| |#2|) (-10 -7 (-15 -3957 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-175) (-175)) (T -172))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-5 *2 (-171 *6)) (-5 *1 (-172 *5 *6)))))
-(-10 -7 (-15 -3957 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|))))
-((-1407 (((-915 |#1|) |#3|) 22 T ELT)))
-(((-173 |#1| |#2| |#3|) (-10 -7 (-15 -1407 ((-915 |#1|) |#3|))) (-1132) (-13 (-633 (-915 |#1|)) (-175)) (-168 |#2|)) (T -173))
-((-1407 (*1 *2 *3) (-12 (-4 *5 (-13 (-633 *2) (-175))) (-5 *2 (-915 *4)) (-5 *1 (-173 *4 *5 *3)) (-4 *4 (-1132)) (-4 *3 (-168 *5)))))
-(-10 -7 (-15 -1407 ((-915 |#1|) |#3|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-1730 (((-114) $) 9 T ELT)) (-2766 (((-114) $ (-114)) 11 T ELT)) (-4095 (($) 13 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1799 (($ $) 14 T ELT)) (-1578 (((-887) $) 18 T ELT)) (-3809 (((-114) $) 8 T ELT)) (-4332 (((-114) $ (-114)) 10 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-174) (-13 (-1132) (-10 -8 (-15 -4095 ($)) (-15 -3809 ((-114) $)) (-15 -1730 ((-114) $)) (-15 -4332 ((-114) $ (-114))) (-15 -2766 ((-114) $ (-114))) (-15 -1799 ($ $))))) (T -174))
-((-4095 (*1 *1) (-5 *1 (-174))) (-3809 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-1730 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-4332 (*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-2766 (*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-1799 (*1 *1 *1) (-5 *1 (-174))))
-(-13 (-1132) (-10 -8 (-15 -4095 ($)) (-15 -3809 ((-114) $)) (-15 -1730 ((-114) $)) (-15 -4332 ((-114) $ (-114))) (-15 -2766 ((-114) $ (-114))) (-15 -1799 ($ $))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
+((-2260 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14 T ELT)))
+(((-172 |#1| |#2|) (-10 -7 (-15 -2260 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-175) (-175)) (T -172))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-5 *2 (-171 *6)) (-5 *1 (-172 *5 *6)))))
+(-10 -7 (-15 -2260 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|))))
+((-2400 (((-915 |#1|) |#3|) 22 T ELT)))
+(((-173 |#1| |#2| |#3|) (-10 -7 (-15 -2400 ((-915 |#1|) |#3|))) (-1132) (-13 (-633 (-915 |#1|)) (-175)) (-168 |#2|)) (T -173))
+((-2400 (*1 *2 *3) (-12 (-4 *5 (-13 (-633 *2) (-175))) (-5 *2 (-915 *4)) (-5 *1 (-173 *4 *5 *3)) (-4 *4 (-1132)) (-4 *3 (-168 *5)))))
+(-10 -7 (-15 -2400 ((-915 |#1|) |#3|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2166 (((-114) $) 9 T ELT)) (-1883 (((-114) $ (-114)) 11 T ELT)) (-4246 (($) 13 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4107 (($ $) 14 T ELT)) (-3913 (((-887) $) 18 T ELT)) (-1731 (((-114) $) 8 T ELT)) (-1924 (((-114) $ (-114)) 10 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-174) (-13 (-1132) (-10 -8 (-15 -4246 ($)) (-15 -1731 ((-114) $)) (-15 -2166 ((-114) $)) (-15 -1924 ((-114) $ (-114))) (-15 -1883 ((-114) $ (-114))) (-15 -4107 ($ $))))) (T -174))
+((-4246 (*1 *1) (-5 *1 (-174))) (-1731 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-2166 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-1924 (*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-1883 (*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-4107 (*1 *1 *1) (-5 *1 (-174))))
+(-13 (-1132) (-10 -8 (-15 -4246 ($)) (-15 -1731 ((-114) $)) (-15 -2166 ((-114) $)) (-15 -1924 ((-114) $ (-114))) (-15 -1883 ((-114) $ (-114))) (-15 -4107 ($ $))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
(((-175) (-142)) (T -175))
NIL
(-13 (-1080) (-111 $ $) (-10 -7 (-6 (-4510 "*"))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-560)) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-4474 (($ $) 6 T ELT)))
+((-1835 (($ $) 6 T ELT)))
(((-176) (-142)) (T -176))
-((-4474 (*1 *1 *1) (-4 *1 (-176))))
-(-13 (-10 -8 (-15 -4474 ($ $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3941 ((|#1| $) 81 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-1478 (($ $ $) NIL T ELT)) (-3595 (($ $) 21 T ELT)) (-3103 (($ |#1| (-1185 |#1|)) 50 T ELT)) (-1990 (((-3 $ "failed") $) 123 T ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-3638 (((-1185 |#1|) $) 88 T ELT)) (-2448 (((-1185 |#1|) $) 85 T ELT)) (-3663 (((-1185 |#1|) $) 86 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-3567 (((-1185 |#1|) $) 94 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2093 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT)) (-4372 (($ $ (-560)) 97 T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-3153 (((-1185 |#1|) $) 95 T ELT)) (-1902 (((-1185 (-421 |#1|)) $) 14 T ELT)) (-1567 (($ (-421 |#1|)) 17 T ELT) (($ |#1| (-1185 |#1|) (-1185 |#1|)) 40 T ELT)) (-3266 (($ $) 99 T ELT)) (-1578 (((-887) $) 139 T ELT) (($ (-560)) 53 T ELT) (($ |#1|) 54 T ELT) (($ (-421 |#1|)) 38 T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT)) (-2930 (((-793)) 69 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-1614 (((-1185 (-421 |#1|)) $) 20 T ELT)) (-2001 (($) 27 T CONST)) (-2011 (($) 30 T CONST)) (-2473 (((-114) $ $) 37 T ELT)) (-2594 (($ $ $) 121 T ELT)) (-2580 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-2567 (($ $ $) 107 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-421 |#1|) $) 117 T ELT) (($ $ (-421 |#1|)) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT)))
-(((-177 |#1|) (-13 (-38 |#1|) (-38 (-421 |#1|)) (-376) (-10 -8 (-15 -1567 ($ (-421 |#1|))) (-15 -1567 ($ |#1| (-1185 |#1|) (-1185 |#1|))) (-15 -3103 ($ |#1| (-1185 |#1|))) (-15 -2448 ((-1185 |#1|) $)) (-15 -3663 ((-1185 |#1|) $)) (-15 -3638 ((-1185 |#1|) $)) (-15 -3941 (|#1| $)) (-15 -3595 ($ $)) (-15 -1614 ((-1185 (-421 |#1|)) $)) (-15 -1902 ((-1185 (-421 |#1|)) $)) (-15 -3567 ((-1185 |#1|) $)) (-15 -3153 ((-1185 |#1|) $)) (-15 -4372 ($ $ (-560))) (-15 -3266 ($ $)))) (-319)) (T -177))
-((-1567 (*1 *1 *2) (-12 (-5 *2 (-421 *3)) (-4 *3 (-319)) (-5 *1 (-177 *3)))) (-1567 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1185 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))) (-3103 (*1 *1 *2 *3) (-12 (-5 *3 (-1185 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))) (-2448 (*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3663 (*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3638 (*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3941 (*1 *2 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) (-3595 (*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) (-1614 (*1 *2 *1) (-12 (-5 *2 (-1185 (-421 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1902 (*1 *2 *1) (-12 (-5 *2 (-1185 (-421 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3567 (*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3153 (*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-4372 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3266 (*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))))
-(-13 (-38 |#1|) (-38 (-421 |#1|)) (-376) (-10 -8 (-15 -1567 ($ (-421 |#1|))) (-15 -1567 ($ |#1| (-1185 |#1|) (-1185 |#1|))) (-15 -3103 ($ |#1| (-1185 |#1|))) (-15 -2448 ((-1185 |#1|) $)) (-15 -3663 ((-1185 |#1|) $)) (-15 -3638 ((-1185 |#1|) $)) (-15 -3941 (|#1| $)) (-15 -3595 ($ $)) (-15 -1614 ((-1185 (-421 |#1|)) $)) (-15 -1902 ((-1185 (-421 |#1|)) $)) (-15 -3567 ((-1185 |#1|) $)) (-15 -3153 ((-1185 |#1|) $)) (-15 -4372 ($ $ (-560))) (-15 -3266 ($ $))))
-((-3350 (($ (-109) $) 15 T ELT)) (-2526 (((-713 (-109)) (-520) $) 14 T ELT)) (-1578 (((-887) $) 18 T ELT)) (-2359 (((-663 (-109)) $) 8 T ELT)))
-(((-178) (-13 (-632 (-887)) (-10 -8 (-15 -2359 ((-663 (-109)) $)) (-15 -3350 ($ (-109) $)) (-15 -2526 ((-713 (-109)) (-520) $))))) (T -178))
-((-2359 (*1 *2 *1) (-12 (-5 *2 (-663 (-109))) (-5 *1 (-178)))) (-3350 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-178)))) (-2526 (*1 *2 *3 *1) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-109))) (-5 *1 (-178)))))
-(-13 (-632 (-887)) (-10 -8 (-15 -2359 ((-663 (-109)) $)) (-15 -3350 ($ (-109) $)) (-15 -2526 ((-713 (-109)) (-520) $))))
-((-2771 (((-1 (-972 |#1|) (-972 |#1|)) |#1|) 38 T ELT)) (-4076 (((-972 |#1|) (-972 |#1|)) 22 T ELT)) (-1734 (((-1 (-972 |#1|) (-972 |#1|)) |#1|) 34 T ELT)) (-2193 (((-972 |#1|) (-972 |#1|)) 20 T ELT)) (-2287 (((-972 |#1|) (-972 |#1|)) 28 T ELT)) (-2040 (((-972 |#1|) (-972 |#1|)) 27 T ELT)) (-2306 (((-972 |#1|) (-972 |#1|)) 26 T ELT)) (-3124 (((-1 (-972 |#1|) (-972 |#1|)) |#1|) 35 T ELT)) (-3680 (((-1 (-972 |#1|) (-972 |#1|)) |#1|) 33 T ELT)) (-2870 (((-1 (-972 |#1|) (-972 |#1|)) |#1|) 32 T ELT)) (-4249 (((-972 |#1|) (-972 |#1|)) 21 T ELT)) (-4178 (((-1 (-972 |#1|) (-972 |#1|)) |#1| |#1|) 41 T ELT)) (-2240 (((-972 |#1|) (-972 |#1|)) 8 T ELT)) (-2516 (((-1 (-972 |#1|) (-972 |#1|)) |#1|) 37 T ELT)) (-2809 (((-1 (-972 |#1|) (-972 |#1|)) |#1|) 36 T ELT)))
-(((-179 |#1|) (-10 -7 (-15 -2240 ((-972 |#1|) (-972 |#1|))) (-15 -2193 ((-972 |#1|) (-972 |#1|))) (-15 -4249 ((-972 |#1|) (-972 |#1|))) (-15 -4076 ((-972 |#1|) (-972 |#1|))) (-15 -2306 ((-972 |#1|) (-972 |#1|))) (-15 -2040 ((-972 |#1|) (-972 |#1|))) (-15 -2287 ((-972 |#1|) (-972 |#1|))) (-15 -2870 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -3680 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -1734 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -3124 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -2809 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -2516 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -2771 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -4178 ((-1 (-972 |#1|) (-972 |#1|)) |#1| |#1|))) (-13 (-376) (-1233) (-1033))) (T -179))
-((-4178 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-2771 (*1 *2 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-2516 (*1 *2 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-2809 (*1 *2 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-3124 (*1 *2 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-1734 (*1 *2 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-3680 (*1 *2 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-2870 (*1 *2 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-2287 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) (-5 *1 (-179 *3)))) (-2040 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) (-5 *1 (-179 *3)))) (-2306 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) (-5 *1 (-179 *3)))) (-4076 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) (-5 *1 (-179 *3)))) (-4249 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) (-5 *1 (-179 *3)))) (-2193 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) (-5 *1 (-179 *3)))) (-2240 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) (-5 *1 (-179 *3)))))
-(-10 -7 (-15 -2240 ((-972 |#1|) (-972 |#1|))) (-15 -2193 ((-972 |#1|) (-972 |#1|))) (-15 -4249 ((-972 |#1|) (-972 |#1|))) (-15 -4076 ((-972 |#1|) (-972 |#1|))) (-15 -2306 ((-972 |#1|) (-972 |#1|))) (-15 -2040 ((-972 |#1|) (-972 |#1|))) (-15 -2287 ((-972 |#1|) (-972 |#1|))) (-15 -2870 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -3680 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -1734 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -3124 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -2809 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -2516 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -2771 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -4178 ((-1 (-972 |#1|) (-972 |#1|)) |#1| |#1|)))
-((-2630 ((|#2| |#3|) 28 T ELT)))
-(((-180 |#1| |#2| |#3|) (-10 -7 (-15 -2630 (|#2| |#3|))) (-175) (-1273 |#1|) (-746 |#1| |#2|)) (T -180))
-((-2630 (*1 *2 *3) (-12 (-4 *4 (-175)) (-4 *2 (-1273 *4)) (-5 *1 (-180 *4 *2 *3)) (-4 *3 (-746 *4 *2)))))
-(-10 -7 (-15 -2630 (|#2| |#3|)))
-((-2427 (((-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|)) 44 (|has| (-975 |#2|) (-911 |#1|)) ELT)))
-(((-181 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-975 |#2|) (-911 |#1|)) (-15 -2427 ((-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|))) |%noBranch|)) (-1132) (-13 (-911 |#1|) (-175)) (-168 |#2|)) (T -181))
-((-2427 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *3)) (-5 *4 (-915 *5)) (-4 *5 (-1132)) (-4 *3 (-168 *6)) (-4 (-975 *6) (-911 *5)) (-4 *6 (-13 (-911 *5) (-175))) (-5 *1 (-181 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-975 |#2|) (-911 |#1|)) (-15 -2427 ((-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|))) |%noBranch|))
-((-4219 (((-663 |#1|) (-663 |#1|) |#1|) 41 T ELT)) (-1996 (((-663 |#1|) |#1| (-663 |#1|)) 20 T ELT)) (-3572 (((-663 |#1|) (-663 (-663 |#1|)) (-663 |#1|)) 36 T ELT) ((|#1| (-663 |#1|) (-663 |#1|)) 32 T ELT)))
-(((-182 |#1|) (-10 -7 (-15 -1996 ((-663 |#1|) |#1| (-663 |#1|))) (-15 -3572 (|#1| (-663 |#1|) (-663 |#1|))) (-15 -3572 ((-663 |#1|) (-663 (-663 |#1|)) (-663 |#1|))) (-15 -4219 ((-663 |#1|) (-663 |#1|) |#1|))) (-319)) (T -182))
-((-4219 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3)))) (-3572 (*1 *2 *3 *2) (-12 (-5 *3 (-663 (-663 *4))) (-5 *2 (-663 *4)) (-4 *4 (-319)) (-5 *1 (-182 *4)))) (-3572 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *2)) (-5 *1 (-182 *2)) (-4 *2 (-319)))) (-1996 (*1 *2 *3 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3)))))
-(-10 -7 (-15 -1996 ((-663 |#1|) |#1| (-663 |#1|))) (-15 -3572 (|#1| (-663 |#1|) (-663 |#1|))) (-15 -3572 ((-663 |#1|) (-663 (-663 |#1|)) (-663 |#1|))) (-15 -4219 ((-663 |#1|) (-663 |#1|) |#1|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-1660 (((-1248) $) 13 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4341 (((-1166) $) 10 T ELT)) (-1578 (((-887) $) 20 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-183) (-13 (-1114) (-10 -8 (-15 -4341 ((-1166) $)) (-15 -1660 ((-1248) $))))) (T -183))
-((-4341 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-183)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-183)))))
-(-13 (-1114) (-10 -8 (-15 -4341 ((-1166) $)) (-15 -1660 ((-1248) $))))
-((-2777 (((-2 (|:| |start| |#2|) (|:| -3764 (-419 |#2|))) |#2|) 66 T ELT)) (-1380 ((|#1| |#1|) 58 T ELT)) (-2276 (((-171 |#1|) |#2|) 93 T ELT)) (-4090 ((|#1| |#2|) 136 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1816 ((|#2| |#2|) 91 T ELT)) (-2879 (((-419 |#2|) |#2| |#1|) 118 T ELT) (((-419 |#2|) |#2| |#1| (-114)) 88 T ELT)) (-2032 ((|#1| |#2|) 117 T ELT)) (-3407 ((|#2| |#2|) 130 T ELT)) (-4457 (((-419 |#2|) |#2|) 153 T ELT) (((-419 |#2|) |#2| |#1|) 33 T ELT) (((-419 |#2|) |#2| |#1| (-114)) 152 T ELT)) (-3925 (((-663 (-2 (|:| -3764 (-663 |#2|)) (|:| -4223 |#1|))) |#2| |#2|) 151 T ELT) (((-663 (-2 (|:| -3764 (-663 |#2|)) (|:| -4223 |#1|))) |#2| |#2| (-114)) 81 T ELT)) (-3705 (((-663 (-171 |#1|)) |#2| |#1|) 42 T ELT) (((-663 (-171 |#1|)) |#2|) 43 T ELT)))
-(((-184 |#1| |#2|) (-10 -7 (-15 -3705 ((-663 (-171 |#1|)) |#2|)) (-15 -3705 ((-663 (-171 |#1|)) |#2| |#1|)) (-15 -3925 ((-663 (-2 (|:| -3764 (-663 |#2|)) (|:| -4223 |#1|))) |#2| |#2| (-114))) (-15 -3925 ((-663 (-2 (|:| -3764 (-663 |#2|)) (|:| -4223 |#1|))) |#2| |#2|)) (-15 -4457 ((-419 |#2|) |#2| |#1| (-114))) (-15 -4457 ((-419 |#2|) |#2| |#1|)) (-15 -4457 ((-419 |#2|) |#2|)) (-15 -3407 (|#2| |#2|)) (-15 -2032 (|#1| |#2|)) (-15 -2879 ((-419 |#2|) |#2| |#1| (-114))) (-15 -2879 ((-419 |#2|) |#2| |#1|)) (-15 -1816 (|#2| |#2|)) (-15 -4090 (|#1| |#2| |#1|)) (-15 -4090 (|#1| |#2|)) (-15 -2276 ((-171 |#1|) |#2|)) (-15 -1380 (|#1| |#1|)) (-15 -2777 ((-2 (|:| |start| |#2|) (|:| -3764 (-419 |#2|))) |#2|))) (-13 (-376) (-870)) (-1273 (-171 |#1|))) (T -184))
-((-2777 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-2 (|:| |start| *3) (|:| -3764 (-419 *3)))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-1380 (*1 *2 *2) (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1273 (-171 *2))))) (-2276 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-184 *4 *3)) (-4 *4 (-13 (-376) (-870))) (-4 *3 (-1273 *2)))) (-4090 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1273 (-171 *2))))) (-4090 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1273 (-171 *2))))) (-1816 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-870))) (-5 *1 (-184 *3 *2)) (-4 *2 (-1273 (-171 *3))))) (-2879 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-419 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-2879 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-870))) (-5 *2 (-419 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-2032 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1273 (-171 *2))))) (-3407 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-870))) (-5 *1 (-184 *3 *2)) (-4 *2 (-1273 (-171 *3))))) (-4457 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-419 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-4457 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-419 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-4457 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-870))) (-5 *2 (-419 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-3925 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-663 (-2 (|:| -3764 (-663 *3)) (|:| -4223 *4)))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-3925 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-376) (-870))) (-5 *2 (-663 (-2 (|:| -3764 (-663 *3)) (|:| -4223 *5)))) (-5 *1 (-184 *5 *3)) (-4 *3 (-1273 (-171 *5))))) (-3705 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-663 (-171 *4))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-3705 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-663 (-171 *4))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))))
-(-10 -7 (-15 -3705 ((-663 (-171 |#1|)) |#2|)) (-15 -3705 ((-663 (-171 |#1|)) |#2| |#1|)) (-15 -3925 ((-663 (-2 (|:| -3764 (-663 |#2|)) (|:| -4223 |#1|))) |#2| |#2| (-114))) (-15 -3925 ((-663 (-2 (|:| -3764 (-663 |#2|)) (|:| -4223 |#1|))) |#2| |#2|)) (-15 -4457 ((-419 |#2|) |#2| |#1| (-114))) (-15 -4457 ((-419 |#2|) |#2| |#1|)) (-15 -4457 ((-419 |#2|) |#2|)) (-15 -3407 (|#2| |#2|)) (-15 -2032 (|#1| |#2|)) (-15 -2879 ((-419 |#2|) |#2| |#1| (-114))) (-15 -2879 ((-419 |#2|) |#2| |#1|)) (-15 -1816 (|#2| |#2|)) (-15 -4090 (|#1| |#2| |#1|)) (-15 -4090 (|#1| |#2|)) (-15 -2276 ((-171 |#1|) |#2|)) (-15 -1380 (|#1| |#1|)) (-15 -2777 ((-2 (|:| |start| |#2|) (|:| -3764 (-419 |#2|))) |#2|)))
-((-3845 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-2068 (((-793) |#2|) 18 T ELT)) (-2638 ((|#2| |#2| |#2|) 20 T ELT)))
-(((-185 |#1| |#2|) (-10 -7 (-15 -3845 ((-3 |#2| "failed") |#2|)) (-15 -2068 ((-793) |#2|)) (-15 -2638 (|#2| |#2| |#2|))) (-1247) (-696 |#1|)) (T -185))
-((-2638 (*1 *2 *2 *2) (-12 (-4 *3 (-1247)) (-5 *1 (-185 *3 *2)) (-4 *2 (-696 *3)))) (-2068 (*1 *2 *3) (-12 (-4 *4 (-1247)) (-5 *2 (-793)) (-5 *1 (-185 *4 *3)) (-4 *3 (-696 *4)))) (-3845 (*1 *2 *2) (|partial| -12 (-4 *3 (-1247)) (-5 *1 (-185 *3 *2)) (-4 *2 (-696 *3)))))
-(-10 -7 (-15 -3845 ((-3 |#2| "failed") |#2|)) (-15 -2068 ((-793) |#2|)) (-15 -2638 (|#2| |#2| |#2|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2150 (((-663 (-889)) $) NIL T ELT)) (-3614 (((-520) $) 8 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3954 (((-190) $) 10 T ELT)) (-2784 (((-114) $ (-520)) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1485 (((-713 $) (-520)) 17 T ELT)) (-4111 (((-663 (-114)) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-3617 (((-55) $) 12 T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-186) (-13 (-189) (-10 -8 (-15 -1485 ((-713 $) (-520)))))) (T -186))
-((-1485 (*1 *2 *3) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-186))) (-5 *1 (-186)))))
-(-13 (-189) (-10 -8 (-15 -1485 ((-713 $) (-520)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2587 ((|#1| $) 7 T ELT)) (-1578 (((-887) $) 14 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-4074 (((-663 (-1212)) $) 10 T ELT)) (-2473 (((-114) $ $) 12 T ELT)))
-(((-187 |#1|) (-13 (-1132) (-10 -8 (-15 -2587 (|#1| $)) (-15 -4074 ((-663 (-1212)) $)))) (-189)) (T -187))
-((-2587 (*1 *2 *1) (-12 (-5 *1 (-187 *2)) (-4 *2 (-189)))) (-4074 (*1 *2 *1) (-12 (-5 *2 (-663 (-1212))) (-5 *1 (-187 *3)) (-4 *3 (-189)))))
-(-13 (-1132) (-10 -8 (-15 -2587 (|#1| $)) (-15 -4074 ((-663 (-1212)) $))))
-((-2150 (((-663 (-889)) $) 16 T ELT)) (-3954 (((-190) $) 8 T ELT)) (-4111 (((-663 (-114)) $) 13 T ELT)) (-3617 (((-55) $) 10 T ELT)))
-(((-188 |#1|) (-10 -8 (-15 -2150 ((-663 (-889)) |#1|)) (-15 -4111 ((-663 (-114)) |#1|)) (-15 -3954 ((-190) |#1|)) (-15 -3617 ((-55) |#1|))) (-189)) (T -188))
-NIL
-(-10 -8 (-15 -2150 ((-663 (-889)) |#1|)) (-15 -4111 ((-663 (-114)) |#1|)) (-15 -3954 ((-190) |#1|)) (-15 -3617 ((-55) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2150 (((-663 (-889)) $) 19 T ELT)) (-3614 (((-520) $) 16 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3954 (((-190) $) 21 T ELT)) (-2784 (((-114) $ (-520)) 14 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-4111 (((-663 (-114)) $) 20 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-3617 (((-55) $) 15 T ELT)) (-2473 (((-114) $ $) 8 T ELT)))
+((-1835 (*1 *1 *1) (-4 *1 (-176))))
+(-13 (-10 -8 (-15 -1835 ($ $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3655 ((|#1| $) 81 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2186 (($ $ $) NIL T ELT)) (-3542 (($ $) 21 T ELT)) (-2202 (($ |#1| (-1185 |#1|)) 50 T ELT)) (-2873 (((-3 $ "failed") $) 123 T ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-3974 (((-1185 |#1|) $) 88 T ELT)) (-1863 (((-1185 |#1|) $) 85 T ELT)) (-2935 (((-1185 |#1|) $) 86 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-1339 (((-1185 |#1|) $) 94 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1861 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT)) (-2219 (($ $ (-560)) 97 T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-1517 (((-1185 |#1|) $) 95 T ELT)) (-3320 (((-1185 (-421 |#1|)) $) 14 T ELT)) (-1768 (($ (-421 |#1|)) 17 T ELT) (($ |#1| (-1185 |#1|) (-1185 |#1|)) 40 T ELT)) (-3329 (($ $) 99 T ELT)) (-3913 (((-887) $) 139 T ELT) (($ (-560)) 53 T ELT) (($ |#1|) 54 T ELT) (($ (-421 |#1|)) 38 T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT)) (-4191 (((-793)) 69 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-3463 (((-1185 (-421 |#1|)) $) 20 T ELT)) (-1446 (($) 27 T CONST)) (-1456 (($) 30 T CONST)) (-2340 (((-114) $ $) 37 T ELT)) (-2453 (($ $ $) 121 T ELT)) (-2441 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-2429 (($ $ $) 107 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-421 |#1|) $) 117 T ELT) (($ $ (-421 |#1|)) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT)))
+(((-177 |#1|) (-13 (-38 |#1|) (-38 (-421 |#1|)) (-376) (-10 -8 (-15 -1768 ($ (-421 |#1|))) (-15 -1768 ($ |#1| (-1185 |#1|) (-1185 |#1|))) (-15 -2202 ($ |#1| (-1185 |#1|))) (-15 -1863 ((-1185 |#1|) $)) (-15 -2935 ((-1185 |#1|) $)) (-15 -3974 ((-1185 |#1|) $)) (-15 -3655 (|#1| $)) (-15 -3542 ($ $)) (-15 -3463 ((-1185 (-421 |#1|)) $)) (-15 -3320 ((-1185 (-421 |#1|)) $)) (-15 -1339 ((-1185 |#1|) $)) (-15 -1517 ((-1185 |#1|) $)) (-15 -2219 ($ $ (-560))) (-15 -3329 ($ $)))) (-319)) (T -177))
+((-1768 (*1 *1 *2) (-12 (-5 *2 (-421 *3)) (-4 *3 (-319)) (-5 *1 (-177 *3)))) (-1768 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1185 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))) (-2202 (*1 *1 *2 *3) (-12 (-5 *3 (-1185 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))) (-1863 (*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3974 (*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3655 (*1 *2 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) (-3542 (*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-1185 (-421 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3320 (*1 *2 *1) (-12 (-5 *2 (-1185 (-421 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1339 (*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1517 (*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-2219 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3329 (*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))))
+(-13 (-38 |#1|) (-38 (-421 |#1|)) (-376) (-10 -8 (-15 -1768 ($ (-421 |#1|))) (-15 -1768 ($ |#1| (-1185 |#1|) (-1185 |#1|))) (-15 -2202 ($ |#1| (-1185 |#1|))) (-15 -1863 ((-1185 |#1|) $)) (-15 -2935 ((-1185 |#1|) $)) (-15 -3974 ((-1185 |#1|) $)) (-15 -3655 (|#1| $)) (-15 -3542 ($ $)) (-15 -3463 ((-1185 (-421 |#1|)) $)) (-15 -3320 ((-1185 (-421 |#1|)) $)) (-15 -1339 ((-1185 |#1|) $)) (-15 -1517 ((-1185 |#1|) $)) (-15 -2219 ($ $ (-560))) (-15 -3329 ($ $))))
+((-2906 (($ (-109) $) 15 T ELT)) (-4462 (((-713 (-109)) (-520) $) 14 T ELT)) (-3913 (((-887) $) 18 T ELT)) (-3330 (((-663 (-109)) $) 8 T ELT)))
+(((-178) (-13 (-632 (-887)) (-10 -8 (-15 -3330 ((-663 (-109)) $)) (-15 -2906 ($ (-109) $)) (-15 -4462 ((-713 (-109)) (-520) $))))) (T -178))
+((-3330 (*1 *2 *1) (-12 (-5 *2 (-663 (-109))) (-5 *1 (-178)))) (-2906 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-178)))) (-4462 (*1 *2 *3 *1) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-109))) (-5 *1 (-178)))))
+(-13 (-632 (-887)) (-10 -8 (-15 -3330 ((-663 (-109)) $)) (-15 -2906 ($ (-109) $)) (-15 -4462 ((-713 (-109)) (-520) $))))
+((-1933 (((-1 (-972 |#1|) (-972 |#1|)) |#1|) 38 T ELT)) (-2506 (((-972 |#1|) (-972 |#1|)) 22 T ELT)) (-2210 (((-1 (-972 |#1|) (-972 |#1|)) |#1|) 34 T ELT)) (-4358 (((-972 |#1|) (-972 |#1|)) 20 T ELT)) (-2747 (((-972 |#1|) (-972 |#1|)) 28 T ELT)) (-2145 (((-972 |#1|) (-972 |#1|)) 27 T ELT)) (-2930 (((-972 |#1|) (-972 |#1|)) 26 T ELT)) (-2433 (((-1 (-972 |#1|) (-972 |#1|)) |#1|) 35 T ELT)) (-3119 (((-1 (-972 |#1|) (-972 |#1|)) |#1|) 33 T ELT)) (-3667 (((-1 (-972 |#1|) (-972 |#1|)) |#1|) 32 T ELT)) (-3683 (((-972 |#1|) (-972 |#1|)) 21 T ELT)) (-4255 (((-1 (-972 |#1|) (-972 |#1|)) |#1| |#1|) 41 T ELT)) (-3535 (((-972 |#1|) (-972 |#1|)) 8 T ELT)) (-4405 (((-1 (-972 |#1|) (-972 |#1|)) |#1|) 37 T ELT)) (-4269 (((-1 (-972 |#1|) (-972 |#1|)) |#1|) 36 T ELT)))
+(((-179 |#1|) (-10 -7 (-15 -3535 ((-972 |#1|) (-972 |#1|))) (-15 -4358 ((-972 |#1|) (-972 |#1|))) (-15 -3683 ((-972 |#1|) (-972 |#1|))) (-15 -2506 ((-972 |#1|) (-972 |#1|))) (-15 -2930 ((-972 |#1|) (-972 |#1|))) (-15 -2145 ((-972 |#1|) (-972 |#1|))) (-15 -2747 ((-972 |#1|) (-972 |#1|))) (-15 -3667 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -3119 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -2210 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -2433 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -4269 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -4405 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -1933 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -4255 ((-1 (-972 |#1|) (-972 |#1|)) |#1| |#1|))) (-13 (-376) (-1233) (-1033))) (T -179))
+((-4255 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-1933 (*1 *2 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-4405 (*1 *2 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-4269 (*1 *2 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-2433 (*1 *2 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-2210 (*1 *2 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-3119 (*1 *2 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-3667 (*1 *2 *3) (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))))) (-2747 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) (-5 *1 (-179 *3)))) (-2145 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) (-5 *1 (-179 *3)))) (-2930 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) (-5 *1 (-179 *3)))) (-2506 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) (-5 *1 (-179 *3)))) (-3683 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) (-5 *1 (-179 *3)))) (-4358 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) (-5 *1 (-179 *3)))) (-3535 (*1 *2 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033))) (-5 *1 (-179 *3)))))
+(-10 -7 (-15 -3535 ((-972 |#1|) (-972 |#1|))) (-15 -4358 ((-972 |#1|) (-972 |#1|))) (-15 -3683 ((-972 |#1|) (-972 |#1|))) (-15 -2506 ((-972 |#1|) (-972 |#1|))) (-15 -2930 ((-972 |#1|) (-972 |#1|))) (-15 -2145 ((-972 |#1|) (-972 |#1|))) (-15 -2747 ((-972 |#1|) (-972 |#1|))) (-15 -3667 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -3119 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -2210 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -2433 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -4269 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -4405 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -1933 ((-1 (-972 |#1|) (-972 |#1|)) |#1|)) (-15 -4255 ((-1 (-972 |#1|) (-972 |#1|)) |#1| |#1|)))
+((-2978 ((|#2| |#3|) 28 T ELT)))
+(((-180 |#1| |#2| |#3|) (-10 -7 (-15 -2978 (|#2| |#3|))) (-175) (-1273 |#1|) (-746 |#1| |#2|)) (T -180))
+((-2978 (*1 *2 *3) (-12 (-4 *4 (-175)) (-4 *2 (-1273 *4)) (-5 *1 (-180 *4 *2 *3)) (-4 *3 (-746 *4 *2)))))
+(-10 -7 (-15 -2978 (|#2| |#3|)))
+((-1646 (((-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|)) 44 (|has| (-975 |#2|) (-911 |#1|)) ELT)))
+(((-181 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-975 |#2|) (-911 |#1|)) (-15 -1646 ((-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|))) |%noBranch|)) (-1132) (-13 (-911 |#1|) (-175)) (-168 |#2|)) (T -181))
+((-1646 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *3)) (-5 *4 (-915 *5)) (-4 *5 (-1132)) (-4 *3 (-168 *6)) (-4 (-975 *6) (-911 *5)) (-4 *6 (-13 (-911 *5) (-175))) (-5 *1 (-181 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-975 |#2|) (-911 |#1|)) (-15 -1646 ((-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|))) |%noBranch|))
+((-1454 (((-663 |#1|) (-663 |#1|) |#1|) 41 T ELT)) (-2937 (((-663 |#1|) |#1| (-663 |#1|)) 20 T ELT)) (-1391 (((-663 |#1|) (-663 (-663 |#1|)) (-663 |#1|)) 36 T ELT) ((|#1| (-663 |#1|) (-663 |#1|)) 32 T ELT)))
+(((-182 |#1|) (-10 -7 (-15 -2937 ((-663 |#1|) |#1| (-663 |#1|))) (-15 -1391 (|#1| (-663 |#1|) (-663 |#1|))) (-15 -1391 ((-663 |#1|) (-663 (-663 |#1|)) (-663 |#1|))) (-15 -1454 ((-663 |#1|) (-663 |#1|) |#1|))) (-319)) (T -182))
+((-1454 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3)))) (-1391 (*1 *2 *3 *2) (-12 (-5 *3 (-663 (-663 *4))) (-5 *2 (-663 *4)) (-4 *4 (-319)) (-5 *1 (-182 *4)))) (-1391 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *2)) (-5 *1 (-182 *2)) (-4 *2 (-319)))) (-2937 (*1 *2 *3 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3)))))
+(-10 -7 (-15 -2937 ((-663 |#1|) |#1| (-663 |#1|))) (-15 -1391 (|#1| (-663 |#1|) (-663 |#1|))) (-15 -1391 ((-663 |#1|) (-663 (-663 |#1|)) (-663 |#1|))) (-15 -1454 ((-663 |#1|) (-663 |#1|) |#1|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3300 (((-1248) $) 13 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4465 (((-1166) $) 10 T ELT)) (-3913 (((-887) $) 20 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-183) (-13 (-1114) (-10 -8 (-15 -4465 ((-1166) $)) (-15 -3300 ((-1248) $))))) (T -183))
+((-4465 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-183)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-183)))))
+(-13 (-1114) (-10 -8 (-15 -4465 ((-1166) $)) (-15 -3300 ((-1248) $))))
+((-1994 (((-2 (|:| |start| |#2|) (|:| -2609 (-419 |#2|))) |#2|) 66 T ELT)) (-4024 ((|#1| |#1|) 58 T ELT)) (-3936 (((-171 |#1|) |#2|) 93 T ELT)) (-2628 ((|#1| |#2|) 136 T ELT) ((|#1| |#2| |#1|) 90 T ELT)) (-1753 ((|#2| |#2|) 91 T ELT)) (-3762 (((-419 |#2|) |#2| |#1|) 118 T ELT) (((-419 |#2|) |#2| |#1| (-114)) 88 T ELT)) (-2084 ((|#1| |#2|) 117 T ELT)) (-2223 ((|#2| |#2|) 130 T ELT)) (-4012 (((-419 |#2|) |#2|) 153 T ELT) (((-419 |#2|) |#2| |#1|) 33 T ELT) (((-419 |#2|) |#2| |#1| (-114)) 152 T ELT)) (-3478 (((-663 (-2 (|:| -2609 (-663 |#2|)) (|:| -2403 |#1|))) |#2| |#2|) 151 T ELT) (((-663 (-2 (|:| -2609 (-663 |#2|)) (|:| -2403 |#1|))) |#2| |#2| (-114)) 81 T ELT)) (-2128 (((-663 (-171 |#1|)) |#2| |#1|) 42 T ELT) (((-663 (-171 |#1|)) |#2|) 43 T ELT)))
+(((-184 |#1| |#2|) (-10 -7 (-15 -2128 ((-663 (-171 |#1|)) |#2|)) (-15 -2128 ((-663 (-171 |#1|)) |#2| |#1|)) (-15 -3478 ((-663 (-2 (|:| -2609 (-663 |#2|)) (|:| -2403 |#1|))) |#2| |#2| (-114))) (-15 -3478 ((-663 (-2 (|:| -2609 (-663 |#2|)) (|:| -2403 |#1|))) |#2| |#2|)) (-15 -4012 ((-419 |#2|) |#2| |#1| (-114))) (-15 -4012 ((-419 |#2|) |#2| |#1|)) (-15 -4012 ((-419 |#2|) |#2|)) (-15 -2223 (|#2| |#2|)) (-15 -2084 (|#1| |#2|)) (-15 -3762 ((-419 |#2|) |#2| |#1| (-114))) (-15 -3762 ((-419 |#2|) |#2| |#1|)) (-15 -1753 (|#2| |#2|)) (-15 -2628 (|#1| |#2| |#1|)) (-15 -2628 (|#1| |#2|)) (-15 -3936 ((-171 |#1|) |#2|)) (-15 -4024 (|#1| |#1|)) (-15 -1994 ((-2 (|:| |start| |#2|) (|:| -2609 (-419 |#2|))) |#2|))) (-13 (-376) (-870)) (-1273 (-171 |#1|))) (T -184))
+((-1994 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-2 (|:| |start| *3) (|:| -2609 (-419 *3)))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-4024 (*1 *2 *2) (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1273 (-171 *2))))) (-3936 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-184 *4 *3)) (-4 *4 (-13 (-376) (-870))) (-4 *3 (-1273 *2)))) (-2628 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1273 (-171 *2))))) (-2628 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1273 (-171 *2))))) (-1753 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-870))) (-5 *1 (-184 *3 *2)) (-4 *2 (-1273 (-171 *3))))) (-3762 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-419 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-3762 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-870))) (-5 *2 (-419 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-2084 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1273 (-171 *2))))) (-2223 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-870))) (-5 *1 (-184 *3 *2)) (-4 *2 (-1273 (-171 *3))))) (-4012 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-419 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-4012 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-419 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-4012 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-870))) (-5 *2 (-419 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-3478 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-663 (-2 (|:| -2609 (-663 *3)) (|:| -2403 *4)))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-3478 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-376) (-870))) (-5 *2 (-663 (-2 (|:| -2609 (-663 *3)) (|:| -2403 *5)))) (-5 *1 (-184 *5 *3)) (-4 *3 (-1273 (-171 *5))))) (-2128 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-663 (-171 *4))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))) (-2128 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-663 (-171 *4))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))))
+(-10 -7 (-15 -2128 ((-663 (-171 |#1|)) |#2|)) (-15 -2128 ((-663 (-171 |#1|)) |#2| |#1|)) (-15 -3478 ((-663 (-2 (|:| -2609 (-663 |#2|)) (|:| -2403 |#1|))) |#2| |#2| (-114))) (-15 -3478 ((-663 (-2 (|:| -2609 (-663 |#2|)) (|:| -2403 |#1|))) |#2| |#2|)) (-15 -4012 ((-419 |#2|) |#2| |#1| (-114))) (-15 -4012 ((-419 |#2|) |#2| |#1|)) (-15 -4012 ((-419 |#2|) |#2|)) (-15 -2223 (|#2| |#2|)) (-15 -2084 (|#1| |#2|)) (-15 -3762 ((-419 |#2|) |#2| |#1| (-114))) (-15 -3762 ((-419 |#2|) |#2| |#1|)) (-15 -1753 (|#2| |#2|)) (-15 -2628 (|#1| |#2| |#1|)) (-15 -2628 (|#1| |#2|)) (-15 -3936 ((-171 |#1|) |#2|)) (-15 -4024 (|#1| |#1|)) (-15 -1994 ((-2 (|:| |start| |#2|) (|:| -2609 (-419 |#2|))) |#2|)))
+((-2078 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-2401 (((-793) |#2|) 18 T ELT)) (-3076 ((|#2| |#2| |#2|) 20 T ELT)))
+(((-185 |#1| |#2|) (-10 -7 (-15 -2078 ((-3 |#2| "failed") |#2|)) (-15 -2401 ((-793) |#2|)) (-15 -3076 (|#2| |#2| |#2|))) (-1247) (-696 |#1|)) (T -185))
+((-3076 (*1 *2 *2 *2) (-12 (-4 *3 (-1247)) (-5 *1 (-185 *3 *2)) (-4 *2 (-696 *3)))) (-2401 (*1 *2 *3) (-12 (-4 *4 (-1247)) (-5 *2 (-793)) (-5 *1 (-185 *4 *3)) (-4 *3 (-696 *4)))) (-2078 (*1 *2 *2) (|partial| -12 (-4 *3 (-1247)) (-5 *1 (-185 *3 *2)) (-4 *2 (-696 *3)))))
+(-10 -7 (-15 -2078 ((-3 |#2| "failed") |#2|)) (-15 -2401 ((-793) |#2|)) (-15 -3076 (|#2| |#2| |#2|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2941 (((-663 (-889)) $) NIL T ELT)) (-4389 (((-520) $) 8 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3480 (((-190) $) 10 T ELT)) (-2060 (((-114) $ (-520)) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2204 (((-713 $) (-520)) 17 T ELT)) (-1599 (((-663 (-114)) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3780 (((-55) $) 12 T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-186) (-13 (-189) (-10 -8 (-15 -2204 ((-713 $) (-520)))))) (T -186))
+((-2204 (*1 *2 *3) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-186))) (-5 *1 (-186)))))
+(-13 (-189) (-10 -8 (-15 -2204 ((-713 $) (-520)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2948 ((|#1| $) 7 T ELT)) (-3913 (((-887) $) 14 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3285 (((-663 (-1212)) $) 10 T ELT)) (-2340 (((-114) $ $) 12 T ELT)))
+(((-187 |#1|) (-13 (-1132) (-10 -8 (-15 -2948 (|#1| $)) (-15 -3285 ((-663 (-1212)) $)))) (-189)) (T -187))
+((-2948 (*1 *2 *1) (-12 (-5 *1 (-187 *2)) (-4 *2 (-189)))) (-3285 (*1 *2 *1) (-12 (-5 *2 (-663 (-1212))) (-5 *1 (-187 *3)) (-4 *3 (-189)))))
+(-13 (-1132) (-10 -8 (-15 -2948 (|#1| $)) (-15 -3285 ((-663 (-1212)) $))))
+((-2941 (((-663 (-889)) $) 16 T ELT)) (-3480 (((-190) $) 8 T ELT)) (-1599 (((-663 (-114)) $) 13 T ELT)) (-3780 (((-55) $) 10 T ELT)))
+(((-188 |#1|) (-10 -8 (-15 -2941 ((-663 (-889)) |#1|)) (-15 -1599 ((-663 (-114)) |#1|)) (-15 -3480 ((-190) |#1|)) (-15 -3780 ((-55) |#1|))) (-189)) (T -188))
+NIL
+(-10 -8 (-15 -2941 ((-663 (-889)) |#1|)) (-15 -1599 ((-663 (-114)) |#1|)) (-15 -3480 ((-190) |#1|)) (-15 -3780 ((-55) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2941 (((-663 (-889)) $) 19 T ELT)) (-4389 (((-520) $) 16 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3480 (((-190) $) 21 T ELT)) (-2060 (((-114) $ (-520)) 14 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-1599 (((-663 (-114)) $) 20 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-3780 (((-55) $) 15 T ELT)) (-2340 (((-114) $ $) 8 T ELT)))
(((-189) (-142)) (T -189))
-((-3954 (*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-190)))) (-4111 (*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-663 (-114))))) (-2150 (*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-663 (-889))))))
-(-13 (-858 (-520)) (-10 -8 (-15 -3954 ((-190) $)) (-15 -4111 ((-663 (-114)) $)) (-15 -2150 ((-663 (-889)) $))))
+((-3480 (*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-190)))) (-1599 (*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-663 (-114))))) (-2941 (*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-663 (-889))))))
+(-13 (-858 (-520)) (-10 -8 (-15 -3480 ((-190) $)) (-15 -1599 ((-663 (-114)) $)) (-15 -2941 ((-663 (-889)) $))))
(((-102) . T) ((-632 (-887)) . T) ((-858 (-520)) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-1578 (((-887) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 10 T ELT)))
-(((-190) (-13 (-1132) (-10 -8 (-15 -9 ($) -3081) (-15 -8 ($) -3081) (-15 -7 ($) -3081)))) (T -190))
+((-2243 (((-114) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-3913 (((-887) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 10 T ELT)))
+(((-190) (-13 (-1132) (-10 -8 (-15 -9 ($) -2650) (-15 -8 ($) -2650) (-15 -7 ($) -2650)))) (T -190))
((-9 (*1 *1) (-5 *1 (-190))) (-8 (*1 *1) (-5 *1 (-190))) (-7 (*1 *1) (-5 *1 (-190))))
-(-13 (-1132) (-10 -8 (-15 -9 ($) -3081) (-15 -8 ($) -3081) (-15 -7 ($) -3081)))
-((-3360 ((|#2| |#2|) 28 T ELT)) (-2873 (((-114) |#2|) 19 T ELT)) (-4482 (((-326 |#1|) |#2|) 12 T ELT)) (-1335 (((-326 |#1|) |#2|) 14 T ELT)) (-2705 ((|#2| |#2| (-1207)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-2628 (((-171 (-326 |#1|)) |#2|) 10 T ELT)) (-1598 ((|#2| |#2| (-1207)) 66 T ELT) ((|#2| |#2|) 60 T ELT)))
-(((-191 |#1| |#2|) (-10 -7 (-15 -2705 (|#2| |#2|)) (-15 -2705 (|#2| |#2| (-1207))) (-15 -1598 (|#2| |#2|)) (-15 -1598 (|#2| |#2| (-1207))) (-15 -4482 ((-326 |#1|) |#2|)) (-15 -1335 ((-326 |#1|) |#2|)) (-15 -2873 ((-114) |#2|)) (-15 -3360 (|#2| |#2|)) (-15 -2628 ((-171 (-326 |#1|)) |#2|))) (-13 (-571) (-1069 (-560))) (-13 (-27) (-1233) (-435 (-171 |#1|)))) (T -191))
-((-2628 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-171 (-326 *4))) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 (-171 *4)))))) (-3360 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-1069 (-560)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 (-171 *3)))))) (-2873 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-114)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 (-171 *4)))))) (-1335 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-326 *4)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 (-171 *4)))))) (-4482 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-326 *4)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 (-171 *4)))))) (-1598 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *1 (-191 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 (-171 *4)))))) (-1598 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-1069 (-560)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 (-171 *3)))))) (-2705 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *1 (-191 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 (-171 *4)))))) (-2705 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-1069 (-560)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 (-171 *3)))))))
-(-10 -7 (-15 -2705 (|#2| |#2|)) (-15 -2705 (|#2| |#2| (-1207))) (-15 -1598 (|#2| |#2|)) (-15 -1598 (|#2| |#2| (-1207))) (-15 -4482 ((-326 |#1|) |#2|)) (-15 -1335 ((-326 |#1|) |#2|)) (-15 -2873 ((-114) |#2|)) (-15 -3360 (|#2| |#2|)) (-15 -2628 ((-171 (-326 |#1|)) |#2|)))
-((-3702 (((-1297 (-711 (-975 |#1|))) (-1297 (-711 |#1|))) 26 T ELT)) (-1578 (((-1297 (-711 (-421 (-975 |#1|)))) (-1297 (-711 |#1|))) 37 T ELT)))
-(((-192 |#1|) (-10 -7 (-15 -3702 ((-1297 (-711 (-975 |#1|))) (-1297 (-711 |#1|)))) (-15 -1578 ((-1297 (-711 (-421 (-975 |#1|)))) (-1297 (-711 |#1|))))) (-175)) (T -192))
-((-1578 (*1 *2 *3) (-12 (-5 *3 (-1297 (-711 *4))) (-4 *4 (-175)) (-5 *2 (-1297 (-711 (-421 (-975 *4))))) (-5 *1 (-192 *4)))) (-3702 (*1 *2 *3) (-12 (-5 *3 (-1297 (-711 *4))) (-4 *4 (-175)) (-5 *2 (-1297 (-711 (-975 *4)))) (-5 *1 (-192 *4)))))
-(-10 -7 (-15 -3702 ((-1297 (-711 (-975 |#1|))) (-1297 (-711 |#1|)))) (-15 -1578 ((-1297 (-711 (-421 (-975 |#1|)))) (-1297 (-711 |#1|)))))
-((-2843 (((-1209 (-421 (-560))) (-1209 (-421 (-560))) (-1209 (-421 (-560)))) 93 T ELT)) (-1656 (((-1209 (-421 (-560))) (-663 (-560)) (-663 (-560))) 107 T ELT)) (-3034 (((-1209 (-421 (-560))) (-948)) 54 T ELT)) (-3198 (((-1209 (-421 (-560))) (-948)) 79 T ELT)) (-4187 (((-421 (-560)) (-1209 (-421 (-560)))) 89 T ELT)) (-4149 (((-1209 (-421 (-560))) (-948)) 37 T ELT)) (-4257 (((-1209 (-421 (-560))) (-948)) 66 T ELT)) (-3055 (((-1209 (-421 (-560))) (-948)) 61 T ELT)) (-2273 (((-1209 (-421 (-560))) (-1209 (-421 (-560))) (-1209 (-421 (-560)))) 87 T ELT)) (-3266 (((-1209 (-421 (-560))) (-948)) 29 T ELT)) (-4085 (((-421 (-560)) (-1209 (-421 (-560))) (-1209 (-421 (-560)))) 91 T ELT)) (-2827 (((-1209 (-421 (-560))) (-948)) 35 T ELT)) (-4021 (((-1209 (-421 (-560))) (-663 (-948))) 100 T ELT)))
-(((-193) (-10 -7 (-15 -3266 ((-1209 (-421 (-560))) (-948))) (-15 -3034 ((-1209 (-421 (-560))) (-948))) (-15 -4149 ((-1209 (-421 (-560))) (-948))) (-15 -2827 ((-1209 (-421 (-560))) (-948))) (-15 -3055 ((-1209 (-421 (-560))) (-948))) (-15 -4257 ((-1209 (-421 (-560))) (-948))) (-15 -3198 ((-1209 (-421 (-560))) (-948))) (-15 -4085 ((-421 (-560)) (-1209 (-421 (-560))) (-1209 (-421 (-560))))) (-15 -2273 ((-1209 (-421 (-560))) (-1209 (-421 (-560))) (-1209 (-421 (-560))))) (-15 -4187 ((-421 (-560)) (-1209 (-421 (-560))))) (-15 -2843 ((-1209 (-421 (-560))) (-1209 (-421 (-560))) (-1209 (-421 (-560))))) (-15 -4021 ((-1209 (-421 (-560))) (-663 (-948)))) (-15 -1656 ((-1209 (-421 (-560))) (-663 (-560)) (-663 (-560)))))) (T -193))
-((-1656 (*1 *2 *3 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))) (-4021 (*1 *2 *3) (-12 (-5 *3 (-663 (-948))) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))) (-2843 (*1 *2 *2 *2) (-12 (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))) (-4187 (*1 *2 *3) (-12 (-5 *3 (-1209 (-421 (-560)))) (-5 *2 (-421 (-560))) (-5 *1 (-193)))) (-2273 (*1 *2 *2 *2) (-12 (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))) (-4085 (*1 *2 *3 *3) (-12 (-5 *3 (-1209 (-421 (-560)))) (-5 *2 (-421 (-560))) (-5 *1 (-193)))) (-3198 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))) (-4257 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))) (-3055 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))) (-2827 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))) (-4149 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))) (-3034 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))) (-3266 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))))
-(-10 -7 (-15 -3266 ((-1209 (-421 (-560))) (-948))) (-15 -3034 ((-1209 (-421 (-560))) (-948))) (-15 -4149 ((-1209 (-421 (-560))) (-948))) (-15 -2827 ((-1209 (-421 (-560))) (-948))) (-15 -3055 ((-1209 (-421 (-560))) (-948))) (-15 -4257 ((-1209 (-421 (-560))) (-948))) (-15 -3198 ((-1209 (-421 (-560))) (-948))) (-15 -4085 ((-421 (-560)) (-1209 (-421 (-560))) (-1209 (-421 (-560))))) (-15 -2273 ((-1209 (-421 (-560))) (-1209 (-421 (-560))) (-1209 (-421 (-560))))) (-15 -4187 ((-421 (-560)) (-1209 (-421 (-560))))) (-15 -2843 ((-1209 (-421 (-560))) (-1209 (-421 (-560))) (-1209 (-421 (-560))))) (-15 -4021 ((-1209 (-421 (-560))) (-663 (-948)))) (-15 -1656 ((-1209 (-421 (-560))) (-663 (-560)) (-663 (-560)))))
-((-3340 (((-419 (-1201 (-560))) (-560)) 38 T ELT)) (-1509 (((-663 (-1201 (-560))) (-560)) 33 T ELT)) (-2801 (((-1201 (-560)) (-560)) 28 T ELT)))
-(((-194) (-10 -7 (-15 -1509 ((-663 (-1201 (-560))) (-560))) (-15 -2801 ((-1201 (-560)) (-560))) (-15 -3340 ((-419 (-1201 (-560))) (-560))))) (T -194))
-((-3340 (*1 *2 *3) (-12 (-5 *2 (-419 (-1201 (-560)))) (-5 *1 (-194)) (-5 *3 (-560)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-194)) (-5 *3 (-560)))) (-1509 (*1 *2 *3) (-12 (-5 *2 (-663 (-1201 (-560)))) (-5 *1 (-194)) (-5 *3 (-560)))))
-(-10 -7 (-15 -1509 ((-663 (-1201 (-560))) (-560))) (-15 -2801 ((-1201 (-560)) (-560))) (-15 -3340 ((-419 (-1201 (-560))) (-560))))
-((-1980 (((-1185 (-229)) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 132 T ELT)) (-4137 (((-663 (-1189)) (-1185 (-229))) NIL T ELT)) (-1587 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 109 T ELT)) (-3120 (((-663 (-229)) (-326 (-229)) (-1207) (-1120 (-864 (-229)))) NIL T ELT)) (-4328 (((-663 (-1189)) (-663 (-229))) NIL T ELT)) (-1629 (((-229) (-1120 (-864 (-229)))) 31 T ELT)) (-1701 (((-229) (-1120 (-864 (-229)))) 32 T ELT)) (-1572 (((-391) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 126 T ELT)) (-3381 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 67 T ELT)) (-2560 (((-1189) (-229)) NIL T ELT)) (-2902 (((-1189) (-663 (-1189))) 27 T ELT)) (-1814 (((-1066) (-1207) (-1207) (-1066)) 13 T ELT)))
-(((-195) (-10 -7 (-15 -1587 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3381 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1629 ((-229) (-1120 (-864 (-229))))) (-15 -1701 ((-229) (-1120 (-864 (-229))))) (-15 -1572 ((-391) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3120 ((-663 (-229)) (-326 (-229)) (-1207) (-1120 (-864 (-229))))) (-15 -1980 ((-1185 (-229)) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2560 ((-1189) (-229))) (-15 -4328 ((-663 (-1189)) (-663 (-229)))) (-15 -4137 ((-663 (-1189)) (-1185 (-229)))) (-15 -2902 ((-1189) (-663 (-1189)))) (-15 -1814 ((-1066) (-1207) (-1207) (-1066))))) (T -195))
-((-1814 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1066)) (-5 *3 (-1207)) (-5 *1 (-195)))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-1189)) (-5 *1 (-195)))) (-4137 (*1 *2 *3) (-12 (-5 *3 (-1185 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-195)))) (-4328 (*1 *2 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-195)))) (-2560 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-195)))) (-1980 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-1185 (-229))) (-5 *1 (-195)))) (-3120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1207)) (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-663 (-229))) (-5 *1 (-195)))) (-1572 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-195)))) (-1701 (*1 *2 *3) (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) (-3381 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-195)))) (-1587 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-195)))))
-(-10 -7 (-15 -1587 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3381 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1629 ((-229) (-1120 (-864 (-229))))) (-15 -1701 ((-229) (-1120 (-864 (-229))))) (-15 -1572 ((-391) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3120 ((-663 (-229)) (-326 (-229)) (-1207) (-1120 (-864 (-229))))) (-15 -1980 ((-1185 (-229)) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2560 ((-1189) (-229))) (-15 -4328 ((-663 (-1189)) (-663 (-229)))) (-15 -4137 ((-663 (-1189)) (-1185 (-229)))) (-15 -2902 ((-1189) (-663 (-1189)))) (-15 -1814 ((-1066) (-1207) (-1207) (-1066))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1672 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 61 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 33 T ELT) (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+(-13 (-1132) (-10 -8 (-15 -9 ($) -2650) (-15 -8 ($) -2650) (-15 -7 ($) -2650)))
+((-3020 ((|#2| |#2|) 28 T ELT)) (-3701 (((-114) |#2|) 19 T ELT)) (-4034 (((-326 |#1|) |#2|) 12 T ELT)) (-4044 (((-326 |#1|) |#2|) 14 T ELT)) (-2500 ((|#2| |#2| (-1207)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-2953 (((-171 (-326 |#1|)) |#2|) 10 T ELT)) (-3339 ((|#2| |#2| (-1207)) 66 T ELT) ((|#2| |#2|) 60 T ELT)))
+(((-191 |#1| |#2|) (-10 -7 (-15 -2500 (|#2| |#2|)) (-15 -2500 (|#2| |#2| (-1207))) (-15 -3339 (|#2| |#2|)) (-15 -3339 (|#2| |#2| (-1207))) (-15 -4034 ((-326 |#1|) |#2|)) (-15 -4044 ((-326 |#1|) |#2|)) (-15 -3701 ((-114) |#2|)) (-15 -3020 (|#2| |#2|)) (-15 -2953 ((-171 (-326 |#1|)) |#2|))) (-13 (-571) (-1069 (-560))) (-13 (-27) (-1233) (-435 (-171 |#1|)))) (T -191))
+((-2953 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-171 (-326 *4))) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 (-171 *4)))))) (-3020 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-1069 (-560)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 (-171 *3)))))) (-3701 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-114)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 (-171 *4)))))) (-4044 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-326 *4)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 (-171 *4)))))) (-4034 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-326 *4)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 (-171 *4)))))) (-3339 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *1 (-191 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 (-171 *4)))))) (-3339 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-1069 (-560)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 (-171 *3)))))) (-2500 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *1 (-191 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 (-171 *4)))))) (-2500 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-1069 (-560)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 (-171 *3)))))))
+(-10 -7 (-15 -2500 (|#2| |#2|)) (-15 -2500 (|#2| |#2| (-1207))) (-15 -3339 (|#2| |#2|)) (-15 -3339 (|#2| |#2| (-1207))) (-15 -4034 ((-326 |#1|) |#2|)) (-15 -4044 ((-326 |#1|) |#2|)) (-15 -3701 ((-114) |#2|)) (-15 -3020 (|#2| |#2|)) (-15 -2953 ((-171 (-326 |#1|)) |#2|)))
+((-3336 (((-1297 (-711 (-975 |#1|))) (-1297 (-711 |#1|))) 26 T ELT)) (-3913 (((-1297 (-711 (-421 (-975 |#1|)))) (-1297 (-711 |#1|))) 37 T ELT)))
+(((-192 |#1|) (-10 -7 (-15 -3336 ((-1297 (-711 (-975 |#1|))) (-1297 (-711 |#1|)))) (-15 -3913 ((-1297 (-711 (-421 (-975 |#1|)))) (-1297 (-711 |#1|))))) (-175)) (T -192))
+((-3913 (*1 *2 *3) (-12 (-5 *3 (-1297 (-711 *4))) (-4 *4 (-175)) (-5 *2 (-1297 (-711 (-421 (-975 *4))))) (-5 *1 (-192 *4)))) (-3336 (*1 *2 *3) (-12 (-5 *3 (-1297 (-711 *4))) (-4 *4 (-175)) (-5 *2 (-1297 (-711 (-975 *4)))) (-5 *1 (-192 *4)))))
+(-10 -7 (-15 -3336 ((-1297 (-711 (-975 |#1|))) (-1297 (-711 |#1|)))) (-15 -3913 ((-1297 (-711 (-421 (-975 |#1|)))) (-1297 (-711 |#1|)))))
+((-1459 (((-1209 (-421 (-560))) (-1209 (-421 (-560))) (-1209 (-421 (-560)))) 93 T ELT)) (-2636 (((-1209 (-421 (-560))) (-663 (-560)) (-663 (-560))) 107 T ELT)) (-2711 (((-1209 (-421 (-560))) (-948)) 54 T ELT)) (-1971 (((-1209 (-421 (-560))) (-948)) 79 T ELT)) (-2371 (((-421 (-560)) (-1209 (-421 (-560)))) 89 T ELT)) (-2019 (((-1209 (-421 (-560))) (-948)) 37 T ELT)) (-3755 (((-1209 (-421 (-560))) (-948)) 66 T ELT)) (-2938 (((-1209 (-421 (-560))) (-948)) 61 T ELT)) (-3903 (((-1209 (-421 (-560))) (-1209 (-421 (-560))) (-1209 (-421 (-560)))) 87 T ELT)) (-3329 (((-1209 (-421 (-560))) (-948)) 29 T ELT)) (-2587 (((-421 (-560)) (-1209 (-421 (-560))) (-1209 (-421 (-560)))) 91 T ELT)) (-4446 (((-1209 (-421 (-560))) (-948)) 35 T ELT)) (-3218 (((-1209 (-421 (-560))) (-663 (-948))) 100 T ELT)))
+(((-193) (-10 -7 (-15 -3329 ((-1209 (-421 (-560))) (-948))) (-15 -2711 ((-1209 (-421 (-560))) (-948))) (-15 -2019 ((-1209 (-421 (-560))) (-948))) (-15 -4446 ((-1209 (-421 (-560))) (-948))) (-15 -2938 ((-1209 (-421 (-560))) (-948))) (-15 -3755 ((-1209 (-421 (-560))) (-948))) (-15 -1971 ((-1209 (-421 (-560))) (-948))) (-15 -2587 ((-421 (-560)) (-1209 (-421 (-560))) (-1209 (-421 (-560))))) (-15 -3903 ((-1209 (-421 (-560))) (-1209 (-421 (-560))) (-1209 (-421 (-560))))) (-15 -2371 ((-421 (-560)) (-1209 (-421 (-560))))) (-15 -1459 ((-1209 (-421 (-560))) (-1209 (-421 (-560))) (-1209 (-421 (-560))))) (-15 -3218 ((-1209 (-421 (-560))) (-663 (-948)))) (-15 -2636 ((-1209 (-421 (-560))) (-663 (-560)) (-663 (-560)))))) (T -193))
+((-2636 (*1 *2 *3 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-663 (-948))) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))) (-1459 (*1 *2 *2 *2) (-12 (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))) (-2371 (*1 *2 *3) (-12 (-5 *3 (-1209 (-421 (-560)))) (-5 *2 (-421 (-560))) (-5 *1 (-193)))) (-3903 (*1 *2 *2 *2) (-12 (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))) (-2587 (*1 *2 *3 *3) (-12 (-5 *3 (-1209 (-421 (-560)))) (-5 *2 (-421 (-560))) (-5 *1 (-193)))) (-1971 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))) (-3755 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))) (-2938 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))) (-4446 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))) (-2019 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))) (-2711 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))) (-3329 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))))
+(-10 -7 (-15 -3329 ((-1209 (-421 (-560))) (-948))) (-15 -2711 ((-1209 (-421 (-560))) (-948))) (-15 -2019 ((-1209 (-421 (-560))) (-948))) (-15 -4446 ((-1209 (-421 (-560))) (-948))) (-15 -2938 ((-1209 (-421 (-560))) (-948))) (-15 -3755 ((-1209 (-421 (-560))) (-948))) (-15 -1971 ((-1209 (-421 (-560))) (-948))) (-15 -2587 ((-421 (-560)) (-1209 (-421 (-560))) (-1209 (-421 (-560))))) (-15 -3903 ((-1209 (-421 (-560))) (-1209 (-421 (-560))) (-1209 (-421 (-560))))) (-15 -2371 ((-421 (-560)) (-1209 (-421 (-560))))) (-15 -1459 ((-1209 (-421 (-560))) (-1209 (-421 (-560))) (-1209 (-421 (-560))))) (-15 -3218 ((-1209 (-421 (-560))) (-663 (-948)))) (-15 -2636 ((-1209 (-421 (-560))) (-663 (-560)) (-663 (-560)))))
+((-2799 (((-419 (-1201 (-560))) (-560)) 38 T ELT)) (-1504 (((-663 (-1201 (-560))) (-560)) 33 T ELT)) (-4188 (((-1201 (-560)) (-560)) 28 T ELT)))
+(((-194) (-10 -7 (-15 -1504 ((-663 (-1201 (-560))) (-560))) (-15 -4188 ((-1201 (-560)) (-560))) (-15 -2799 ((-419 (-1201 (-560))) (-560))))) (T -194))
+((-2799 (*1 *2 *3) (-12 (-5 *2 (-419 (-1201 (-560)))) (-5 *1 (-194)) (-5 *3 (-560)))) (-4188 (*1 *2 *3) (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-194)) (-5 *3 (-560)))) (-1504 (*1 *2 *3) (-12 (-5 *2 (-663 (-1201 (-560)))) (-5 *1 (-194)) (-5 *3 (-560)))))
+(-10 -7 (-15 -1504 ((-663 (-1201 (-560))) (-560))) (-15 -4188 ((-1201 (-560)) (-560))) (-15 -2799 ((-419 (-1201 (-560))) (-560))))
+((-2771 (((-1185 (-229)) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 132 T ELT)) (-1877 (((-663 (-1189)) (-1185 (-229))) NIL T ELT)) (-3253 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 109 T ELT)) (-2390 (((-663 (-229)) (-326 (-229)) (-1207) (-1120 (-864 (-229)))) NIL T ELT)) (-3121 (((-663 (-1189)) (-663 (-229))) NIL T ELT)) (-3610 (((-229) (-1120 (-864 (-229)))) 31 T ELT)) (-3133 (((-229) (-1120 (-864 (-229)))) 32 T ELT)) (-1829 (((-391) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 126 T ELT)) (-3237 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 67 T ELT)) (-3567 (((-1189) (-229)) NIL T ELT)) (-3998 (((-1189) (-663 (-1189))) 27 T ELT)) (-1733 (((-1066) (-1207) (-1207) (-1066)) 13 T ELT)))
+(((-195) (-10 -7 (-15 -3253 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3237 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3610 ((-229) (-1120 (-864 (-229))))) (-15 -3133 ((-229) (-1120 (-864 (-229))))) (-15 -1829 ((-391) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2390 ((-663 (-229)) (-326 (-229)) (-1207) (-1120 (-864 (-229))))) (-15 -2771 ((-1185 (-229)) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3567 ((-1189) (-229))) (-15 -3121 ((-663 (-1189)) (-663 (-229)))) (-15 -1877 ((-663 (-1189)) (-1185 (-229)))) (-15 -3998 ((-1189) (-663 (-1189)))) (-15 -1733 ((-1066) (-1207) (-1207) (-1066))))) (T -195))
+((-1733 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1066)) (-5 *3 (-1207)) (-5 *1 (-195)))) (-3998 (*1 *2 *3) (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-1189)) (-5 *1 (-195)))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-1185 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-195)))) (-3121 (*1 *2 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-195)))) (-3567 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-195)))) (-2771 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-1185 (-229))) (-5 *1 (-195)))) (-2390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1207)) (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-663 (-229))) (-5 *1 (-195)))) (-1829 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-195)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) (-3610 (*1 *2 *3) (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) (-3237 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-195)))) (-3253 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-195)))))
+(-10 -7 (-15 -3253 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3237 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3610 ((-229) (-1120 (-864 (-229))))) (-15 -3133 ((-229) (-1120 (-864 (-229))))) (-15 -1829 ((-391) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2390 ((-663 (-229)) (-326 (-229)) (-1207) (-1120 (-864 (-229))))) (-15 -2771 ((-1185 (-229)) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3567 ((-1189) (-229))) (-15 -3121 ((-663 (-1189)) (-663 (-229)))) (-15 -1877 ((-663 (-1189)) (-1185 (-229)))) (-15 -3998 ((-1189) (-663 (-1189)))) (-15 -1733 ((-1066) (-1207) (-1207) (-1066))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2788 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 61 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 33 T ELT) (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-196) (-809)) (T -196))
NIL
(-809)
-((-1538 (((-114) $ $) NIL T ELT)) (-1672 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 66 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 44 T ELT) (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2788 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 66 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 44 T ELT) (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-197) (-809)) (T -197))
NIL
(-809)
-((-1538 (((-114) $ $) NIL T ELT)) (-1672 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 81 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 46 T ELT) (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2788 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 81 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 46 T ELT) (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-198) (-809)) (T -198))
NIL
(-809)
-((-1538 (((-114) $ $) NIL T ELT)) (-1672 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 63 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 36 T ELT) (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2788 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 63 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 36 T ELT) (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-199) (-809)) (T -199))
NIL
(-809)
-((-1538 (((-114) $ $) NIL T ELT)) (-1672 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 76 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 40 T ELT) (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2788 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 76 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 40 T ELT) (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-200) (-809)) (T -200))
NIL
(-809)
-((-1538 (((-114) $ $) NIL T ELT)) (-1672 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 93 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 49 T ELT) (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2788 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 93 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 49 T ELT) (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-201) (-809)) (T -201))
NIL
(-809)
-((-1538 (((-114) $ $) NIL T ELT)) (-1672 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 90 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 51 T ELT) (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2788 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 90 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 51 T ELT) (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-202) (-809)) (T -202))
NIL
(-809)
-((-1538 (((-114) $ $) NIL T ELT)) (-1672 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 78 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 44 T ELT) (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2788 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 78 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 44 T ELT) (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-203) (-809)) (T -203))
NIL
(-809)
-((-1538 (((-114) $ $) NIL T ELT)) (-1672 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 76 T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT) (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 35 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2788 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 76 T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT) (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 35 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-204) (-809)) (T -204))
NIL
(-809)
-((-1538 (((-114) $ $) NIL T ELT)) (-1672 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 77 T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT) (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 42 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2788 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 77 T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT) (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 42 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-205) (-809)) (T -205))
NIL
(-809)
-((-1538 (((-114) $ $) NIL T ELT)) (-1672 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 105 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 86 T ELT) (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2788 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 105 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) NIL T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 86 T ELT) (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-206) (-809)) (T -206))
NIL
(-809)
-((-1394 (((-3 (-2 (|:| -3967 (-115)) (|:| |w| (-229))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 109 T ELT)) (-3681 (((-560) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 59 T ELT)) (-1469 (((-3 (-663 (-229)) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 90 T ELT)))
-(((-207) (-10 -7 (-15 -1394 ((-3 (-2 (|:| -3967 (-115)) (|:| |w| (-229))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1469 ((-3 (-663 (-229)) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3681 ((-560) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -207))
-((-3681 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-560)) (-5 *1 (-207)))) (-1469 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-663 (-229))) (-5 *1 (-207)))) (-1394 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3967 (-115)) (|:| |w| (-229)))) (-5 *1 (-207)))))
-(-10 -7 (-15 -1394 ((-3 (-2 (|:| -3967 (-115)) (|:| |w| (-229))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1469 ((-3 (-663 (-229)) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3681 ((-560) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))
-((-3065 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 49 T ELT)) (-3570 (((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 157 T ELT)) (-4173 (((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-711 (-326 (-229)))) 112 T ELT)) (-3402 (((-391) (-711 (-326 (-229)))) 140 T ELT)) (-3087 (((-711 (-326 (-229))) (-1297 (-326 (-229))) (-663 (-1207))) 136 T ELT)) (-2817 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 37 T ELT)) (-2365 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 53 T ELT)) (-4187 (((-711 (-326 (-229))) (-711 (-326 (-229))) (-663 (-1207)) (-1297 (-326 (-229)))) 125 T ELT)) (-2839 (((-391) (-391) (-663 (-391))) 133 T ELT) (((-391) (-391) (-391)) 128 T ELT)) (-4466 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 45 T ELT)))
-(((-208) (-10 -7 (-15 -2839 ((-391) (-391) (-391))) (-15 -2839 ((-391) (-391) (-663 (-391)))) (-15 -3402 ((-391) (-711 (-326 (-229))))) (-15 -3087 ((-711 (-326 (-229))) (-1297 (-326 (-229))) (-663 (-1207)))) (-15 -4187 ((-711 (-326 (-229))) (-711 (-326 (-229))) (-663 (-1207)) (-1297 (-326 (-229))))) (-15 -4173 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-711 (-326 (-229))))) (-15 -3570 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3065 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2365 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4466 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2817 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -208))
-((-2817 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-4466 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-2365 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-3065 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-3570 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-208)))) (-4173 (*1 *2 *3) (-12 (-5 *3 (-711 (-326 (-229)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-208)))) (-4187 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-711 (-326 (-229)))) (-5 *3 (-663 (-1207))) (-5 *4 (-1297 (-326 (-229)))) (-5 *1 (-208)))) (-3087 (*1 *2 *3 *4) (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *4 (-663 (-1207))) (-5 *2 (-711 (-326 (-229)))) (-5 *1 (-208)))) (-3402 (*1 *2 *3) (-12 (-5 *3 (-711 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-2839 (*1 *2 *2 *3) (-12 (-5 *3 (-663 (-391))) (-5 *2 (-391)) (-5 *1 (-208)))) (-2839 (*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-208)))))
-(-10 -7 (-15 -2839 ((-391) (-391) (-391))) (-15 -2839 ((-391) (-391) (-663 (-391)))) (-15 -3402 ((-391) (-711 (-326 (-229))))) (-15 -3087 ((-711 (-326 (-229))) (-1297 (-326 (-229))) (-663 (-1207)))) (-15 -4187 ((-711 (-326 (-229))) (-711 (-326 (-229))) (-663 (-1207)) (-1297 (-326 (-229))))) (-15 -4173 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-711 (-326 (-229))))) (-15 -3570 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3065 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2365 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4466 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2817 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 43 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2555 (((-1066) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 75 T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2939 (((-3 (-2 (|:| -3494 (-115)) (|:| |w| (-229))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 109 T ELT)) (-3129 (((-560) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 59 T ELT)) (-1482 (((-3 (-663 (-229)) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 90 T ELT)))
+(((-207) (-10 -7 (-15 -2939 ((-3 (-2 (|:| -3494 (-115)) (|:| |w| (-229))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1482 ((-3 (-663 (-229)) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3129 ((-560) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -207))
+((-3129 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-560)) (-5 *1 (-207)))) (-1482 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-663 (-229))) (-5 *1 (-207)))) (-2939 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3494 (-115)) (|:| |w| (-229)))) (-5 *1 (-207)))))
+(-10 -7 (-15 -2939 ((-3 (-2 (|:| -3494 (-115)) (|:| |w| (-229))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1482 ((-3 (-663 (-229)) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3129 ((-560) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))
+((-3059 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 49 T ELT)) (-1375 (((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 157 T ELT)) (-4205 (((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-711 (-326 (-229)))) 112 T ELT)) (-2176 (((-391) (-711 (-326 (-229)))) 140 T ELT)) (-2057 (((-711 (-326 (-229))) (-1297 (-326 (-229))) (-663 (-1207))) 136 T ELT)) (-4349 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 37 T ELT)) (-2270 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 53 T ELT)) (-2371 (((-711 (-326 (-229))) (-711 (-326 (-229))) (-663 (-1207)) (-1297 (-326 (-229)))) 125 T ELT)) (-1416 (((-391) (-391) (-663 (-391))) 133 T ELT) (((-391) (-391) (-391)) 128 T ELT)) (-1773 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 45 T ELT)))
+(((-208) (-10 -7 (-15 -1416 ((-391) (-391) (-391))) (-15 -1416 ((-391) (-391) (-663 (-391)))) (-15 -2176 ((-391) (-711 (-326 (-229))))) (-15 -2057 ((-711 (-326 (-229))) (-1297 (-326 (-229))) (-663 (-1207)))) (-15 -2371 ((-711 (-326 (-229))) (-711 (-326 (-229))) (-663 (-1207)) (-1297 (-326 (-229))))) (-15 -4205 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-711 (-326 (-229))))) (-15 -1375 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3059 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2270 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1773 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4349 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -208))
+((-4349 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-2270 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-3059 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1375 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-208)))) (-4205 (*1 *2 *3) (-12 (-5 *3 (-711 (-326 (-229)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-208)))) (-2371 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-711 (-326 (-229)))) (-5 *3 (-663 (-1207))) (-5 *4 (-1297 (-326 (-229)))) (-5 *1 (-208)))) (-2057 (*1 *2 *3 *4) (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *4 (-663 (-1207))) (-5 *2 (-711 (-326 (-229)))) (-5 *1 (-208)))) (-2176 (*1 *2 *3) (-12 (-5 *3 (-711 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1416 (*1 *2 *2 *3) (-12 (-5 *3 (-663 (-391))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1416 (*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-208)))))
+(-10 -7 (-15 -1416 ((-391) (-391) (-391))) (-15 -1416 ((-391) (-391) (-663 (-391)))) (-15 -2176 ((-391) (-711 (-326 (-229))))) (-15 -2057 ((-711 (-326 (-229))) (-1297 (-326 (-229))) (-663 (-1207)))) (-15 -2371 ((-711 (-326 (-229))) (-711 (-326 (-229))) (-663 (-1207)) (-1297 (-326 (-229))))) (-15 -4205 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-711 (-326 (-229))))) (-15 -1375 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3059 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2270 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1773 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4349 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 43 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3508 (((-1066) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 75 T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-209) (-822)) (T -209))
NIL
(-822)
-((-1538 (((-114) $ $) NIL T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 43 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2555 (((-1066) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 73 T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 43 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3508 (((-1066) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 73 T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-210) (-822)) (T -210))
NIL
(-822)
-((-1538 (((-114) $ $) NIL T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 40 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2555 (((-1066) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 76 T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 40 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3508 (((-1066) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 76 T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-211) (-822)) (T -211))
NIL
(-822)
-((-1538 (((-114) $ $) NIL T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 48 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2555 (((-1066) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 88 T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 48 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3508 (((-1066) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 88 T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-212) (-822)) (T -212))
NIL
(-822)
-((-2571 (((-663 (-1207)) (-1207) (-793)) 26 T ELT)) (-2274 (((-326 (-229)) (-326 (-229))) 35 T ELT)) (-3370 (((-114) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 87 T ELT)) (-2128 (((-114) (-229) (-229) (-663 (-326 (-229)))) 47 T ELT)))
-(((-213) (-10 -7 (-15 -2571 ((-663 (-1207)) (-1207) (-793))) (-15 -2274 ((-326 (-229)) (-326 (-229)))) (-15 -2128 ((-114) (-229) (-229) (-663 (-326 (-229))))) (-15 -3370 ((-114) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))))))) (T -213))
-((-3370 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) (-5 *2 (-114)) (-5 *1 (-213)))) (-2128 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-663 (-326 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-213)))) (-2274 (*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-213)))) (-2571 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-5 *2 (-663 (-1207))) (-5 *1 (-213)) (-5 *3 (-1207)))))
-(-10 -7 (-15 -2571 ((-663 (-1207)) (-1207) (-793))) (-15 -2274 ((-326 (-229)) (-326 (-229)))) (-15 -2128 ((-114) (-229) (-229) (-663 (-326 (-229))))) (-15 -3370 ((-114) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 28 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2415 (((-1066) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 70 T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-4356 (((-663 (-1207)) (-1207) (-793)) 26 T ELT)) (-3914 (((-326 (-229)) (-326 (-229))) 35 T ELT)) (-3123 (((-114) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 87 T ELT)) (-1758 (((-114) (-229) (-229) (-663 (-326 (-229)))) 47 T ELT)))
+(((-213) (-10 -7 (-15 -4356 ((-663 (-1207)) (-1207) (-793))) (-15 -3914 ((-326 (-229)) (-326 (-229)))) (-15 -1758 ((-114) (-229) (-229) (-663 (-326 (-229))))) (-15 -3123 ((-114) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))))))) (T -213))
+((-3123 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) (-5 *2 (-114)) (-5 *1 (-213)))) (-1758 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-663 (-326 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-213)))) (-3914 (*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-213)))) (-4356 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-5 *2 (-663 (-1207))) (-5 *1 (-213)) (-5 *3 (-1207)))))
+(-10 -7 (-15 -4356 ((-663 (-1207)) (-1207) (-793))) (-15 -3914 ((-326 (-229)) (-326 (-229)))) (-15 -1758 ((-114) (-229) (-229) (-663 (-326 (-229))))) (-15 -3123 ((-114) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 28 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1523 (((-1066) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 70 T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-214) (-922)) (T -214))
NIL
(-922)
-((-1538 (((-114) $ $) NIL T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 24 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2415 (((-1066) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 24 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1523 (((-1066) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-215) (-922)) (T -215))
NIL
(-922)
-((-1538 (((-114) $ $) NIL T ELT)) (-3717 ((|#2| $ (-793) |#2|) 11 T ELT)) (-3709 ((|#2| $ (-793)) 10 T ELT)) (-4095 (($) 8 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 23 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 13 T ELT)))
-(((-216 |#1| |#2|) (-13 (-1132) (-10 -8 (-15 -4095 ($)) (-15 -3709 (|#2| $ (-793))) (-15 -3717 (|#2| $ (-793) |#2|)))) (-948) (-1132)) (T -216))
-((-4095 (*1 *1) (-12 (-5 *1 (-216 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1132)))) (-3709 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *2 (-1132)) (-5 *1 (-216 *4 *2)) (-14 *4 (-948)))) (-3717 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-216 *4 *2)) (-14 *4 (-948)) (-4 *2 (-1132)))))
-(-13 (-1132) (-10 -8 (-15 -4095 ($)) (-15 -3709 (|#2| $ (-793))) (-15 -3717 (|#2| $ (-793) |#2|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4331 (((-1303) $) 37 T ELT) (((-1303) $ (-948) (-948)) 41 T ELT)) (-3924 (($ $ (-1020)) 19 T ELT) (((-252 (-1189)) $ (-1207)) 15 T ELT)) (-4358 (((-1303) $) 35 T ELT)) (-1578 (((-887) $) 32 T ELT) (($ (-663 |#1|)) 8 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $ $) 27 T ELT)) (-2567 (($ $ $) 22 T ELT)))
-(((-217 |#1|) (-13 (-1132) (-635 (-663 |#1|)) (-10 -8 (-15 -3924 ($ $ (-1020))) (-15 -3924 ((-252 (-1189)) $ (-1207))) (-15 -2567 ($ $ $)) (-15 -2580 ($ $ $)) (-15 -4358 ((-1303) $)) (-15 -4331 ((-1303) $)) (-15 -4331 ((-1303) $ (-948) (-948))))) (-13 (-871) (-10 -8 (-15 -3924 ((-1189) $ (-1207))) (-15 -4358 ((-1303) $)) (-15 -4331 ((-1303) $))))) (T -217))
-((-3924 (*1 *1 *1 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-871) (-10 -8 (-15 -3924 ((-1189) $ (-1207))) (-15 -4358 ((-1303) $)) (-15 -4331 ((-1303) $))))))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-252 (-1189))) (-5 *1 (-217 *4)) (-4 *4 (-13 (-871) (-10 -8 (-15 -3924 ((-1189) $ *3)) (-15 -4358 ((-1303) $)) (-15 -4331 ((-1303) $))))))) (-2567 (*1 *1 *1 *1) (-12 (-5 *1 (-217 *2)) (-4 *2 (-13 (-871) (-10 -8 (-15 -3924 ((-1189) $ (-1207))) (-15 -4358 ((-1303) $)) (-15 -4331 ((-1303) $))))))) (-2580 (*1 *1 *1 *1) (-12 (-5 *1 (-217 *2)) (-4 *2 (-13 (-871) (-10 -8 (-15 -3924 ((-1189) $ (-1207))) (-15 -4358 ((-1303) $)) (-15 -4331 ((-1303) $))))))) (-4358 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-871) (-10 -8 (-15 -3924 ((-1189) $ (-1207))) (-15 -4358 (*2 $)) (-15 -4331 (*2 $))))))) (-4331 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-871) (-10 -8 (-15 -3924 ((-1189) $ (-1207))) (-15 -4358 (*2 $)) (-15 -4331 (*2 $))))))) (-4331 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1303)) (-5 *1 (-217 *4)) (-4 *4 (-13 (-871) (-10 -8 (-15 -3924 ((-1189) $ (-1207))) (-15 -4358 (*2 $)) (-15 -4331 (*2 $))))))))
-(-13 (-1132) (-635 (-663 |#1|)) (-10 -8 (-15 -3924 ($ $ (-1020))) (-15 -3924 ((-252 (-1189)) $ (-1207))) (-15 -2567 ($ $ $)) (-15 -2580 ($ $ $)) (-15 -4358 ((-1303) $)) (-15 -4331 ((-1303) $)) (-15 -4331 ((-1303) $ (-948) (-948)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3241 (((-793)) NIL T ELT)) (-2310 (($) NIL T ELT)) (-3825 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2820 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4419 (((-948) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3128 (($ (-948)) 10 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3063 (($ (-657 |#1|)) 11 T ELT)) (-1578 (((-887) $) 18 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) NIL T ELT)))
-(((-218 |#1|) (-13 (-866) (-10 -8 (-15 -3063 ($ (-657 |#1|))))) (-663 (-1207))) (T -218))
-((-3063 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-14 *3 (-663 (-1207))) (-5 *1 (-218 *3)))))
-(-13 (-866) (-10 -8 (-15 -3063 ($ (-657 |#1|)))))
-((-2232 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT)))
-(((-219 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2232 (|#2| |#4| (-1 |#2| |#2|)))) (-376) (-1273 |#1|) (-1273 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -219))
-((-2232 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-376)) (-4 *6 (-1273 (-421 *2))) (-4 *2 (-1273 *5)) (-5 *1 (-219 *5 *2 *6 *3)) (-4 *3 (-355 *5 *2 *6)))))
-(-10 -7 (-15 -2232 (|#2| |#4| (-1 |#2| |#2|))))
-((-1888 ((|#2| |#2| (-793) |#2|) 55 T ELT)) (-2890 ((|#2| |#2| (-793) |#2|) 51 T ELT)) (-1415 (((-663 |#2|) (-663 (-2 (|:| |deg| (-793)) (|:| -2401 |#2|)))) 79 T ELT)) (-3165 (((-663 (-2 (|:| |deg| (-793)) (|:| -2401 |#2|))) |#2|) 73 T ELT)) (-3958 (((-114) |#2|) 71 T ELT)) (-1968 (((-419 |#2|) |#2|) 91 T ELT)) (-4457 (((-419 |#2|) |#2|) 90 T ELT)) (-3515 ((|#2| |#2| (-793) |#2|) 49 T ELT)) (-4207 (((-2 (|:| |cont| |#1|) (|:| -3764 (-663 (-2 (|:| |irr| |#2|) (|:| -2929 (-560)))))) |#2| (-114)) 85 T ELT)))
-(((-220 |#1| |#2|) (-10 -7 (-15 -4457 ((-419 |#2|) |#2|)) (-15 -1968 ((-419 |#2|) |#2|)) (-15 -4207 ((-2 (|:| |cont| |#1|) (|:| -3764 (-663 (-2 (|:| |irr| |#2|) (|:| -2929 (-560)))))) |#2| (-114))) (-15 -3165 ((-663 (-2 (|:| |deg| (-793)) (|:| -2401 |#2|))) |#2|)) (-15 -1415 ((-663 |#2|) (-663 (-2 (|:| |deg| (-793)) (|:| -2401 |#2|))))) (-15 -3515 (|#2| |#2| (-793) |#2|)) (-15 -2890 (|#2| |#2| (-793) |#2|)) (-15 -1888 (|#2| |#2| (-793) |#2|)) (-15 -3958 ((-114) |#2|))) (-363) (-1273 |#1|)) (T -220))
-((-3958 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1273 *4)))) (-1888 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-793)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1273 *4)))) (-2890 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-793)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1273 *4)))) (-3515 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-793)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1273 *4)))) (-1415 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| |deg| (-793)) (|:| -2401 *5)))) (-4 *5 (-1273 *4)) (-4 *4 (-363)) (-5 *2 (-663 *5)) (-5 *1 (-220 *4 *5)))) (-3165 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-663 (-2 (|:| |deg| (-793)) (|:| -2401 *3)))) (-5 *1 (-220 *4 *3)) (-4 *3 (-1273 *4)))) (-4207 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3764 (-663 (-2 (|:| |irr| *3) (|:| -2929 (-560))))))) (-5 *1 (-220 *5 *3)) (-4 *3 (-1273 *5)))) (-1968 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-419 *3)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1273 *4)))) (-4457 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-419 *3)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1273 *4)))))
-(-10 -7 (-15 -4457 ((-419 |#2|) |#2|)) (-15 -1968 ((-419 |#2|) |#2|)) (-15 -4207 ((-2 (|:| |cont| |#1|) (|:| -3764 (-663 (-2 (|:| |irr| |#2|) (|:| -2929 (-560)))))) |#2| (-114))) (-15 -3165 ((-663 (-2 (|:| |deg| (-793)) (|:| -2401 |#2|))) |#2|)) (-15 -1415 ((-663 |#2|) (-663 (-2 (|:| |deg| (-793)) (|:| -2401 |#2|))))) (-15 -3515 (|#2| |#2| (-793) |#2|)) (-15 -2890 (|#2| |#2| (-793) |#2|)) (-15 -1888 (|#2| |#2| (-793) |#2|)) (-15 -3958 ((-114) |#2|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3941 (((-560) $) NIL (|has| (-560) (-319)) ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2138 (((-560) $) NIL (|has| (-560) (-842)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| (-560) (-1069 (-560))) ELT) (((-3 (-560) "failed") $) NIL (|has| (-560) (-1069 (-560))) ELT)) (-3330 (((-560) $) NIL T ELT) (((-1207) $) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-421 (-560)) $) NIL (|has| (-560) (-1069 (-560))) ELT) (((-560) $) NIL (|has| (-560) (-1069 (-560))) ELT)) (-1478 (($ $ $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2310 (($) NIL (|has| (-560) (-559)) ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-2928 (((-114) $) NIL (|has| (-560) (-842)) ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (|has| (-560) (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (|has| (-560) (-911 (-391))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-1617 (($ $) NIL T ELT)) (-3757 (((-560) $) NIL T ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| (-560) (-1182)) ELT)) (-2960 (((-114) $) NIL (|has| (-560) (-842)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3825 (($ $ $) NIL (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| (-560) (-871)) ELT)) (-3957 (($ (-1 (-560) (-560)) $) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL T ELT) (((-711 (-560)) (-1297 $)) NIL T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-3161 (($) NIL (|has| (-560) (-1182)) CONST)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2652 (($ $) NIL (|has| (-560) (-319)) ELT) (((-421 (-560)) $) NIL T ELT)) (-2016 (((-560) $) NIL (|has| (-560) (-559)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-4187 (($ $ (-663 (-560)) (-663 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-560) (-560)) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-305 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-305 (-560)))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-1207)) (-663 (-560))) NIL (|has| (-560) (-528 (-1207) (-560))) ELT) (($ $ (-1207) (-560)) NIL (|has| (-560) (-528 (-1207) (-560))) ELT)) (-2901 (((-793) $) NIL T ELT)) (-3924 (($ $ (-560)) NIL (|has| (-560) (-298 (-560) (-560))) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2894 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $) NIL (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-3056 (($ $) NIL T ELT)) (-3771 (((-560) $) NIL T ELT)) (-1880 (($ (-421 (-560))) 9 T ELT)) (-1407 (((-915 (-560)) $) NIL (|has| (-560) (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) NIL (|has| (-560) (-633 (-915 (-391)))) ELT) (((-549) $) NIL (|has| (-560) (-633 (-549))) ELT) (((-391) $) NIL (|has| (-560) (-1051)) ELT) (((-229) $) NIL (|has| (-560) (-1051)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-560) (-939))) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 8 T ELT) (($ (-560)) NIL T ELT) (($ (-1207)) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-421 (-560)) $) NIL T ELT) (((-1035 10) $) 10 T ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| (-560) (-939))) (|has| (-560) (-147))) ELT)) (-2930 (((-793)) NIL T CONST)) (-1494 (((-560) $) NIL (|has| (-560) (-559)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2282 (($ $) NIL (|has| (-560) (-842)) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $) NIL (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-2536 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2594 (($ $ $) NIL T ELT) (($ (-560) (-560)) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ (-560)) NIL T ELT)))
-(((-221) (-13 (-1022 (-560)) (-632 (-421 (-560))) (-632 (-1035 10)) (-10 -8 (-15 -2652 ((-421 (-560)) $)) (-15 -1880 ($ (-421 (-560))))))) (T -221))
-((-2652 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-221)))) (-1880 (*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-221)))))
-(-13 (-1022 (-560)) (-632 (-421 (-560))) (-632 (-1035 10)) (-10 -8 (-15 -2652 ((-421 (-560)) $)) (-15 -1880 ($ (-421 (-560))))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3736 (((-1146) $) 13 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-4317 (((-497) $) 10 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 23 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3625 (((-1166) $) 15 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-222) (-13 (-1114) (-10 -8 (-15 -4317 ((-497) $)) (-15 -3736 ((-1146) $)) (-15 -3625 ((-1166) $))))) (T -222))
-((-4317 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-222)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-222)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-222)))))
-(-13 (-1114) (-10 -8 (-15 -4317 ((-497) $)) (-15 -3736 ((-1146) $)) (-15 -3625 ((-1166) $))))
-((-2518 (((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-663 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1123 (-864 |#2|)) (-1189)) 29 T ELT) (((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-663 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1123 (-864 |#2|))) 25 T ELT)) (-2556 (((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-663 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1207) (-864 |#2|) (-864 |#2|) (-114)) 17 T ELT)))
-(((-223 |#1| |#2|) (-10 -7 (-15 -2518 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-663 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1123 (-864 |#2|)))) (-15 -2518 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-663 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1123 (-864 |#2|)) (-1189))) (-15 -2556 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-663 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1207) (-864 |#2|) (-864 |#2|) (-114)))) (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))) (-13 (-1233) (-989) (-29 |#1|))) (T -223))
-((-2556 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1207)) (-5 *6 (-114)) (-4 *7 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-4 *3 (-13 (-1233) (-989) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-663 (-864 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *7 *3)) (-5 *5 (-864 *3)))) (-2518 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1123 (-864 *3))) (-5 *5 (-1189)) (-4 *3 (-13 (-1233) (-989) (-29 *6))) (-4 *6 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-663 (-864 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *6 *3)))) (-2518 (*1 *2 *3 *4) (-12 (-5 *4 (-1123 (-864 *3))) (-4 *3 (-13 (-1233) (-989) (-29 *5))) (-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-663 (-864 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *5 *3)))))
-(-10 -7 (-15 -2518 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-663 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1123 (-864 |#2|)))) (-15 -2518 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-663 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1123 (-864 |#2|)) (-1189))) (-15 -2556 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-663 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1207) (-864 |#2|) (-864 |#2|) (-114))))
-((-2518 (((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-421 (-975 |#1|)))) (-1189)) 49 T ELT) (((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-421 (-975 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-326 |#1|))) (-1189)) 50 T ELT) (((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-326 |#1|)))) 22 T ELT)))
-(((-224 |#1|) (-10 -7 (-15 -2518 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-326 |#1|))))) (-15 -2518 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-326 |#1|))) (-1189))) (-15 -2518 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-421 (-975 |#1|)))))) (-15 -2518 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-421 (-975 |#1|)))) (-1189)))) (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (T -224))
-((-2518 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1123 (-864 (-421 (-975 *6))))) (-5 *5 (-1189)) (-5 *3 (-421 (-975 *6))) (-4 *6 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-3 (|:| |f1| (-864 (-326 *6))) (|:| |f2| (-663 (-864 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-224 *6)))) (-2518 (*1 *2 *3 *4) (-12 (-5 *4 (-1123 (-864 (-421 (-975 *5))))) (-5 *3 (-421 (-975 *5))) (-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-3 (|:| |f1| (-864 (-326 *5))) (|:| |f2| (-663 (-864 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-224 *5)))) (-2518 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-421 (-975 *6))) (-5 *4 (-1123 (-864 (-326 *6)))) (-5 *5 (-1189)) (-4 *6 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-3 (|:| |f1| (-864 (-326 *6))) (|:| |f2| (-663 (-864 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-224 *6)))) (-2518 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1123 (-864 (-326 *5)))) (-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-3 (|:| |f1| (-864 (-326 *5))) (|:| |f2| (-663 (-864 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-224 *5)))))
-(-10 -7 (-15 -2518 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-326 |#1|))))) (-15 -2518 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-326 |#1|))) (-1189))) (-15 -2518 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-421 (-975 |#1|)))))) (-15 -2518 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-421 (-975 |#1|)))) (-1189))))
-((-4129 (((-2 (|:| -2738 (-1201 |#1|)) (|:| |deg| (-948))) (-1201 |#1|)) 26 T ELT)) (-1945 (((-663 (-326 |#2|)) (-326 |#2|) (-948)) 51 T ELT)))
-(((-225 |#1| |#2|) (-10 -7 (-15 -4129 ((-2 (|:| -2738 (-1201 |#1|)) (|:| |deg| (-948))) (-1201 |#1|))) (-15 -1945 ((-663 (-326 |#2|)) (-326 |#2|) (-948)))) (-1080) (-571)) (T -225))
-((-1945 (*1 *2 *3 *4) (-12 (-5 *4 (-948)) (-4 *6 (-571)) (-5 *2 (-663 (-326 *6))) (-5 *1 (-225 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1080)))) (-4129 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-5 *2 (-2 (|:| -2738 (-1201 *4)) (|:| |deg| (-948)))) (-5 *1 (-225 *4 *5)) (-5 *3 (-1201 *4)) (-4 *5 (-571)))))
-(-10 -7 (-15 -4129 ((-2 (|:| -2738 (-1201 |#1|)) (|:| |deg| (-948))) (-1201 |#1|))) (-15 -1945 ((-663 (-326 |#2|)) (-326 |#2|) (-948))))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2612 ((|#1| $) NIL T ELT)) (-2572 ((|#1| $) 30 T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2252 (($ $) NIL T ELT)) (-4391 (($ $) 39 T ELT)) (-2822 ((|#1| |#1| $) NIL T ELT)) (-2353 ((|#1| $) NIL T ELT)) (-2181 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-4108 (((-793) $) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-1576 ((|#1| $) NIL T ELT)) (-3246 ((|#1| |#1| $) 35 T ELT)) (-3645 ((|#1| |#1| $) 37 T ELT)) (-3629 (($ |#1| $) NIL T ELT)) (-2107 (((-793) $) 33 T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3319 ((|#1| $) NIL T ELT)) (-2714 ((|#1| $) 31 T ELT)) (-2799 ((|#1| $) 29 T ELT)) (-2615 ((|#1| $) NIL T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1332 ((|#1| |#1| $) NIL T ELT)) (-1663 (((-114) $) 9 T ELT)) (-3986 (($) NIL T ELT)) (-1919 ((|#1| $) NIL T ELT)) (-3227 (($) NIL T ELT) (($ (-663 |#1|)) 16 T ELT)) (-3470 (((-793) $) NIL T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1799 (($ $) NIL T ELT)) (-1578 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-2965 ((|#1| $) 13 T ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3376 (($ (-663 |#1|)) NIL T ELT)) (-3188 ((|#1| $) NIL T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-226 |#1|) (-13 (-263 |#1|) (-10 -8 (-15 -3227 ($ (-663 |#1|))))) (-1132)) (T -226))
-((-3227 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-226 *3)))))
-(-13 (-263 |#1|) (-10 -8 (-15 -3227 ($ (-663 |#1|)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1633 (($ (-326 |#1|)) 24 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2285 (((-114) $) NIL T ELT)) (-2539 (((-3 (-326 |#1|) "failed") $) NIL T ELT)) (-3330 (((-326 |#1|) $) NIL T ELT)) (-1624 (($ $) 32 T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-3957 (($ (-1 (-326 |#1|) (-326 |#1|)) $) NIL T ELT)) (-1597 (((-326 |#1|) $) NIL T ELT)) (-3920 (($ $) 31 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2786 (((-114) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2748 (($ (-793)) NIL T ELT)) (-1732 (($ $) 33 T ELT)) (-3630 (((-560) $) NIL T ELT)) (-1578 (((-887) $) 65 T ELT) (($ (-560)) NIL T ELT) (($ (-326 |#1|)) NIL T ELT)) (-2305 (((-326 |#1|) $ $) NIL T ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 26 T CONST)) (-2011 (($) NIL T CONST)) (-2473 (((-114) $ $) 29 T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 20 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-326 |#1|) $) 19 T ELT)))
-(((-227 |#1| |#2|) (-13 (-640 (-326 |#1|)) (-1069 (-326 |#1|)) (-10 -8 (-15 -1597 ((-326 |#1|) $)) (-15 -3920 ($ $)) (-15 -1624 ($ $)) (-15 -2305 ((-326 |#1|) $ $)) (-15 -2748 ($ (-793))) (-15 -2786 ((-114) $)) (-15 -2285 ((-114) $)) (-15 -3630 ((-560) $)) (-15 -3957 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -1633 ($ (-326 |#1|))) (-15 -1732 ($ $)))) (-13 (-1080) (-871)) (-663 (-1207))) (T -227))
-((-1597 (*1 *2 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-663 (-1207))))) (-3920 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1080) (-871))) (-14 *3 (-663 (-1207))))) (-1624 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1080) (-871))) (-14 *3 (-663 (-1207))))) (-2305 (*1 *2 *1 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-663 (-1207))))) (-2748 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-663 (-1207))))) (-2786 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-663 (-1207))))) (-2285 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-663 (-1207))))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-663 (-1207))))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1080) (-871))) (-5 *1 (-227 *3 *4)) (-14 *4 (-663 (-1207))))) (-1633 (*1 *1 *2) (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1080) (-871))) (-5 *1 (-227 *3 *4)) (-14 *4 (-663 (-1207))))) (-1732 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1080) (-871))) (-14 *3 (-663 (-1207))))))
-(-13 (-640 (-326 |#1|)) (-1069 (-326 |#1|)) (-10 -8 (-15 -1597 ((-326 |#1|) $)) (-15 -3920 ($ $)) (-15 -1624 ($ $)) (-15 -2305 ((-326 |#1|) $ $)) (-15 -2748 ($ (-793))) (-15 -2786 ((-114) $)) (-15 -2285 ((-114) $)) (-15 -3630 ((-560) $)) (-15 -3957 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -1633 ($ (-326 |#1|))) (-15 -1732 ($ $))))
-((-2185 (((-114) (-1189)) 26 T ELT)) (-2283 (((-3 (-864 |#2|) "failed") (-630 |#2|) |#2| (-864 |#2|) (-864 |#2|) (-114)) 35 T ELT)) (-3519 (((-3 (-114) "failed") (-1201 |#2|) (-864 |#2|) (-864 |#2|) (-114)) 84 T ELT) (((-3 (-114) "failed") (-975 |#1|) (-1207) (-864 |#2|) (-864 |#2|) (-114)) 85 T ELT)))
-(((-228 |#1| |#2|) (-10 -7 (-15 -2185 ((-114) (-1189))) (-15 -2283 ((-3 (-864 |#2|) "failed") (-630 |#2|) |#2| (-864 |#2|) (-864 |#2|) (-114))) (-15 -3519 ((-3 (-114) "failed") (-975 |#1|) (-1207) (-864 |#2|) (-864 |#2|) (-114))) (-15 -3519 ((-3 (-114) "failed") (-1201 |#2|) (-864 |#2|) (-864 |#2|) (-114)))) (-13 (-466) (-1069 (-560)) (-660 (-560))) (-13 (-1233) (-29 |#1|))) (T -228))
-((-3519 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-114)) (-5 *3 (-1201 *6)) (-5 *4 (-864 *6)) (-4 *6 (-13 (-1233) (-29 *5))) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-228 *5 *6)))) (-3519 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-114)) (-5 *3 (-975 *6)) (-5 *4 (-1207)) (-5 *5 (-864 *7)) (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-4 *7 (-13 (-1233) (-29 *6))) (-5 *1 (-228 *6 *7)))) (-2283 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-864 *4)) (-5 *3 (-630 *4)) (-5 *5 (-114)) (-4 *4 (-13 (-1233) (-29 *6))) (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-228 *6 *4)))) (-2185 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-114)) (-5 *1 (-228 *4 *5)) (-4 *5 (-13 (-1233) (-29 *4))))))
-(-10 -7 (-15 -2185 ((-114) (-1189))) (-15 -2283 ((-3 (-864 |#2|) "failed") (-630 |#2|) |#2| (-864 |#2|) (-864 |#2|) (-114))) (-15 -3519 ((-3 (-114) "failed") (-975 |#1|) (-1207) (-864 |#2|) (-864 |#2|) (-114))) (-15 -3519 ((-3 (-114) "failed") (-1201 |#2|) (-864 |#2|) (-864 |#2|) (-114))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 98 T ELT)) (-3941 (((-560) $) 33 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-4267 (($ $) NIL T ELT)) (-4337 (($ $) 87 T ELT)) (-3455 (($ $) 75 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-4471 (($ $) 66 T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-4313 (($ $) 85 T ELT)) (-3430 (($ $) 73 T ELT)) (-2138 (((-560) $) 127 T ELT)) (-4363 (($ $) 90 T ELT)) (-3477 (($ $) 77 T ELT)) (-2238 (($) NIL T CONST)) (-1733 (($ $) NIL T ELT)) (-2539 (((-3 (-560) "failed") $) 126 T ELT) (((-3 (-421 (-560)) "failed") $) 123 T ELT)) (-3330 (((-560) $) 124 T ELT) (((-421 (-560)) $) 121 T ELT)) (-1478 (($ $ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) 103 T ELT)) (-3175 (((-421 (-560)) $ (-793)) 117 T ELT) (((-421 (-560)) $ (-793) (-793)) 116 T ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-3788 (((-948)) 28 T ELT) (((-948) (-948)) NIL (|has| $ (-6 -4499)) ELT)) (-2928 (((-114) $) NIL T ELT)) (-3796 (($) 46 T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL T ELT)) (-3913 (((-560) $) 40 T ELT)) (-1581 (((-114) $) 99 T ELT)) (-2146 (($ $ (-560)) NIL T ELT)) (-2032 (($ $) NIL T ELT)) (-2960 (((-114) $) 97 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3825 (($ $ $) 63 T ELT) (($) 36 (-12 (-1937 (|has| $ (-6 -4491))) (-1937 (|has| $ (-6 -4499)))) ELT)) (-2820 (($ $ $) 62 T ELT) (($) 35 (-12 (-1937 (|has| $ (-6 -4491))) (-1937 (|has| $ (-6 -4499)))) ELT)) (-3435 (((-560) $) 26 T ELT)) (-2104 (($ $) 31 T ELT)) (-1396 (($ $) 67 T ELT)) (-2192 (($ $) 72 T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-1347 (((-948) (-560)) NIL (|has| $ (-6 -4499)) ELT)) (-3855 (((-1151) $) 101 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2652 (($ $) NIL T ELT)) (-2016 (($ $) NIL T ELT)) (-2917 (($ (-560) (-560)) NIL T ELT) (($ (-560) (-560) (-948)) 110 T ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3205 (((-560) $) 27 T ELT)) (-4254 (($) 45 T ELT)) (-3251 (($ $) 71 T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-1601 (((-948)) NIL T ELT) (((-948) (-948)) NIL (|has| $ (-6 -4499)) ELT)) (-2894 (($ $) 104 T ELT) (($ $ (-793)) NIL T ELT)) (-4004 (((-948) (-560)) NIL (|has| $ (-6 -4499)) ELT)) (-4373 (($ $) 88 T ELT)) (-3488 (($ $) 78 T ELT)) (-4352 (($ $) 89 T ELT)) (-3466 (($ $) 76 T ELT)) (-4325 (($ $) 86 T ELT)) (-3443 (($ $) 74 T ELT)) (-1407 (((-391) $) 113 T ELT) (((-229) $) 14 T ELT) (((-915 (-391)) $) NIL T ELT) (((-549) $) 52 T ELT)) (-1578 (((-887) $) 49 T ELT) (($ (-560)) 152 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-560)) 152 T ELT) (($ (-421 (-560))) NIL T ELT)) (-2930 (((-793)) NIL T CONST)) (-1494 (($ $) NIL T ELT)) (-4139 (((-948)) 34 T ELT) (((-948) (-948)) NIL (|has| $ (-6 -4499)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1792 (((-948)) 24 T ELT)) (-4411 (($ $) 93 T ELT)) (-4263 (($ $) 81 T ELT) (($ $ $) 119 T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-4387 (($ $) 91 T ELT)) (-3499 (($ $) 79 T ELT)) (-4438 (($ $) 96 T ELT)) (-4287 (($ $) 84 T ELT)) (-3837 (($ $) 94 T ELT)) (-4302 (($ $) 82 T ELT)) (-4423 (($ $) 95 T ELT)) (-4275 (($ $) 83 T ELT)) (-4398 (($ $) 92 T ELT)) (-4252 (($ $) 80 T ELT)) (-2282 (($ $) 118 T ELT)) (-2001 (($) 42 T CONST)) (-2011 (($) 43 T CONST)) (-2735 (((-1189) $) 18 T ELT) (((-1189) $ (-114)) 20 T ELT) (((-1303) (-845) $) 21 T ELT) (((-1303) (-845) $ (-114)) 22 T ELT)) (-1491 (($ $) 107 T ELT)) (-3305 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-4374 (($ $ $) 109 T ELT)) (-2536 (((-114) $ $) 56 T ELT)) (-2508 (((-114) $ $) 54 T ELT)) (-2473 (((-114) $ $) 64 T ELT)) (-2521 (((-114) $ $) 55 T ELT)) (-2495 (((-114) $ $) 53 T ELT)) (-2594 (($ $ $) 44 T ELT) (($ $ (-560)) 65 T ELT)) (-2580 (($ $) 57 T ELT) (($ $ $) 59 T ELT)) (-2567 (($ $ $) 58 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 68 T ELT) (($ $ (-421 (-560))) 151 T ELT) (($ $ $) 69 T ELT)) (* (($ (-948) $) 32 T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 61 T ELT) (($ $ $) 60 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT)))
-(((-229) (-13 (-418) (-240) (-843) (-1233) (-633 (-549)) (-10 -8 (-15 -2594 ($ $ (-560))) (-15 ** ($ $ $)) (-15 -4254 ($)) (-15 -2104 ($ $)) (-15 -1396 ($ $)) (-15 -4263 ($ $ $)) (-15 -1491 ($ $)) (-15 -4374 ($ $ $)) (-15 -3175 ((-421 (-560)) $ (-793))) (-15 -3175 ((-421 (-560)) $ (-793) (-793)))))) (T -229))
-((** (*1 *1 *1 *1) (-5 *1 (-229))) (-2594 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-229)))) (-4254 (*1 *1) (-5 *1 (-229))) (-2104 (*1 *1 *1) (-5 *1 (-229))) (-1396 (*1 *1 *1) (-5 *1 (-229))) (-4263 (*1 *1 *1 *1) (-5 *1 (-229))) (-1491 (*1 *1 *1) (-5 *1 (-229))) (-4374 (*1 *1 *1 *1) (-5 *1 (-229))) (-3175 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-229)))) (-3175 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-229)))))
-(-13 (-418) (-240) (-843) (-1233) (-633 (-549)) (-10 -8 (-15 -2594 ($ $ (-560))) (-15 ** ($ $ $)) (-15 -4254 ($)) (-15 -2104 ($ $)) (-15 -1396 ($ $)) (-15 -4263 ($ $ $)) (-15 -1491 ($ $)) (-15 -4374 ($ $ $)) (-15 -3175 ((-421 (-560)) $ (-793))) (-15 -3175 ((-421 (-560)) $ (-793) (-793)))))
-((-1995 (((-171 (-229)) (-793) (-171 (-229))) 11 T ELT) (((-229) (-793) (-229)) 12 T ELT)) (-2010 (((-171 (-229)) (-171 (-229))) 13 T ELT) (((-229) (-229)) 14 T ELT)) (-3799 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 19 T ELT) (((-229) (-229) (-229)) 22 T ELT)) (-3397 (((-171 (-229)) (-171 (-229))) 27 T ELT) (((-229) (-229)) 26 T ELT)) (-3366 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 57 T ELT) (((-229) (-229) (-229)) 49 T ELT)) (-3067 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 62 T ELT) (((-229) (-229) (-229)) 60 T ELT)) (-2483 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 15 T ELT) (((-229) (-229) (-229)) 16 T ELT)) (-4308 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 17 T ELT) (((-229) (-229) (-229)) 18 T ELT)) (-2018 (((-171 (-229)) (-171 (-229))) 74 T ELT) (((-229) (-229)) 73 T ELT)) (-3621 (((-229) (-229)) 68 T ELT) (((-171 (-229)) (-171 (-229))) 72 T ELT)) (-1491 (((-171 (-229)) (-171 (-229))) 8 T ELT) (((-229) (-229)) 9 T ELT)) (-4374 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 35 T ELT) (((-229) (-229) (-229)) 31 T ELT)))
-(((-230) (-10 -7 (-15 -1491 ((-229) (-229))) (-15 -1491 ((-171 (-229)) (-171 (-229)))) (-15 -4374 ((-229) (-229) (-229))) (-15 -4374 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -2010 ((-229) (-229))) (-15 -2010 ((-171 (-229)) (-171 (-229)))) (-15 -3397 ((-229) (-229))) (-15 -3397 ((-171 (-229)) (-171 (-229)))) (-15 -1995 ((-229) (-793) (-229))) (-15 -1995 ((-171 (-229)) (-793) (-171 (-229)))) (-15 -2483 ((-229) (-229) (-229))) (-15 -2483 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3366 ((-229) (-229) (-229))) (-15 -3366 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -4308 ((-229) (-229) (-229))) (-15 -4308 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3067 ((-229) (-229) (-229))) (-15 -3067 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3621 ((-171 (-229)) (-171 (-229)))) (-15 -3621 ((-229) (-229))) (-15 -2018 ((-229) (-229))) (-15 -2018 ((-171 (-229)) (-171 (-229)))) (-15 -3799 ((-229) (-229) (-229))) (-15 -3799 ((-171 (-229)) (-171 (-229)) (-171 (-229)))))) (T -230))
-((-3799 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3799 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-2018 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-2018 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3621 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3621 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3067 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3067 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-4308 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-4308 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3366 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3366 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-2483 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-2483 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-1995 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-229))) (-5 *3 (-793)) (-5 *1 (-230)))) (-1995 (*1 *2 *3 *2) (-12 (-5 *2 (-229)) (-5 *3 (-793)) (-5 *1 (-230)))) (-3397 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3397 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-2010 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-2010 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-4374 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-4374 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-1491 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-1491 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))))
-(-10 -7 (-15 -1491 ((-229) (-229))) (-15 -1491 ((-171 (-229)) (-171 (-229)))) (-15 -4374 ((-229) (-229) (-229))) (-15 -4374 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -2010 ((-229) (-229))) (-15 -2010 ((-171 (-229)) (-171 (-229)))) (-15 -3397 ((-229) (-229))) (-15 -3397 ((-171 (-229)) (-171 (-229)))) (-15 -1995 ((-229) (-793) (-229))) (-15 -1995 ((-171 (-229)) (-793) (-171 (-229)))) (-15 -2483 ((-229) (-229) (-229))) (-15 -2483 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3366 ((-229) (-229) (-229))) (-15 -3366 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -4308 ((-229) (-229) (-229))) (-15 -4308 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3067 ((-229) (-229) (-229))) (-15 -3067 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3621 ((-171 (-229)) (-171 (-229)))) (-15 -3621 ((-229) (-229))) (-15 -2018 ((-229) (-229))) (-15 -2018 ((-171 (-229)) (-171 (-229)))) (-15 -3799 ((-229) (-229) (-229))) (-15 -3799 ((-171 (-229)) (-171 (-229)) (-171 (-229)))))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3759 (($ (-793) (-793)) NIL T ELT)) (-2370 (($ $ $) NIL T ELT)) (-2629 (($ (-1297 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-4205 (($ |#1| |#1| |#1|) 33 T ELT)) (-4338 (((-114) $) NIL T ELT)) (-2112 (($ $ (-560) (-560)) NIL T ELT)) (-2599 (($ $ (-560) (-560)) NIL T ELT)) (-1653 (($ $ (-560) (-560) (-560) (-560)) NIL T ELT)) (-4304 (($ $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-2047 (($ $ (-560) (-560) $) NIL T ELT)) (-1773 ((|#1| $ (-560) (-560) |#1|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560)) $) NIL T ELT)) (-3981 (($ $ (-560) (-1297 |#1|)) NIL T ELT)) (-2613 (($ $ (-560) (-1297 |#1|)) NIL T ELT)) (-4166 (($ |#1| |#1| |#1|) 32 T ELT)) (-2733 (($ (-793) |#1|) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2677 (($ $) NIL (|has| |#1| (-319)) ELT)) (-3634 (((-1297 |#1|) $ (-560)) NIL T ELT)) (-1413 (($ |#1|) 31 T ELT)) (-3656 (($ |#1|) 30 T ELT)) (-2430 (($ |#1|) 29 T ELT)) (-2326 (((-793) $) NIL (|has| |#1| (-571)) ELT)) (-3779 ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-3709 ((|#1| $ (-560) (-560)) NIL T ELT)) (-2181 (((-663 |#1|) $) NIL T ELT)) (-1401 (((-793) $) NIL (|has| |#1| (-571)) ELT)) (-2454 (((-663 (-1297 |#1|)) $) NIL (|has| |#1| (-571)) ELT)) (-3648 (((-793) $) NIL T ELT)) (-4095 (($ (-793) (-793) |#1|) NIL T ELT)) (-3658 (((-793) $) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-3535 ((|#1| $) NIL (|has| |#1| (-6 (-4510 "*"))) ELT)) (-2711 (((-560) $) NIL T ELT)) (-2369 (((-560) $) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1468 (((-560) $) NIL T ELT)) (-2632 (((-560) $) NIL T ELT)) (-2589 (($ (-663 (-663 |#1|))) 11 T ELT) (($ (-793) (-793) (-1 |#1| (-560) (-560))) NIL T ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-2543 (((-663 (-663 |#1|)) $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-2141 (((-3 $ "failed") $) NIL (|has| |#1| (-376)) ELT)) (-1705 (($) 12 T ELT)) (-3049 (($ $ $) NIL T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3037 (($ $ |#1|) NIL T ELT)) (-1528 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#1| $ (-560) (-560)) NIL T ELT) ((|#1| $ (-560) (-560) |#1|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560))) NIL T ELT)) (-3323 (($ (-663 |#1|)) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3032 (((-114) $) NIL T ELT)) (-4227 ((|#1| $) NIL (|has| |#1| (-6 (-4510 "*"))) ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1799 (($ $) NIL T ELT)) (-1644 (((-1297 |#1|) $ (-560)) NIL T ELT)) (-1578 (($ (-1297 |#1|)) NIL T ELT) (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2441 (((-114) $) NIL T ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-560) $) NIL T ELT) (((-1297 |#1|) $ (-1297 |#1|)) 15 T ELT) (((-1297 |#1|) (-1297 |#1|) $) NIL T ELT) (((-972 |#1|) $ (-972 |#1|)) 21 T ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-231 |#1|) (-13 (-708 |#1| (-1297 |#1|) (-1297 |#1|)) (-10 -8 (-15 * ((-972 |#1|) $ (-972 |#1|))) (-15 -1705 ($)) (-15 -2430 ($ |#1|)) (-15 -3656 ($ |#1|)) (-15 -1413 ($ |#1|)) (-15 -4166 ($ |#1| |#1| |#1|)) (-15 -4205 ($ |#1| |#1| |#1|)))) (-13 (-376) (-1233))) (T -231))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233))) (-5 *1 (-231 *3)))) (-1705 (*1 *1) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) (-2430 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) (-3656 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) (-1413 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) (-4166 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) (-4205 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))))
-(-13 (-708 |#1| (-1297 |#1|) (-1297 |#1|)) (-10 -8 (-15 * ((-972 |#1|) $ (-972 |#1|))) (-15 -1705 ($)) (-15 -2430 ($ |#1|)) (-15 -3656 ($ |#1|)) (-15 -1413 ($ |#1|)) (-15 -4166 ($ |#1| |#1| |#1|)) (-15 -4205 ($ |#1| |#1| |#1|))))
-((-3500 (($ (-1 (-114) |#2|) $) 16 T ELT)) (-3390 (($ |#2| $) NIL T ELT) (($ (-1 (-114) |#2|) $) 28 T ELT)) (-3897 (($) NIL T ELT) (($ (-663 |#2|)) 11 T ELT)) (-2473 (((-114) $ $) 26 T ELT)))
-(((-232 |#1| |#2|) (-10 -8 (-15 -2473 ((-114) |#1| |#1|)) (-15 -3500 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3390 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3390 (|#1| |#2| |#1|)) (-15 -3897 (|#1| (-663 |#2|))) (-15 -3897 (|#1|))) (-233 |#2|) (-1132)) (T -232))
-NIL
-(-10 -8 (-15 -2473 ((-114) |#1| |#1|)) (-15 -3500 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3390 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3390 (|#1| |#2| |#1|)) (-15 -3897 (|#1| (-663 |#2|))) (-15 -3897 (|#1|)))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-3500 (($ (-1 (-114) |#1|) $) 46 (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) 56 (|has| $ (-6 -4508)) ELT)) (-2238 (($) 7 T CONST)) (-3606 (($ $) 59 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3390 (($ |#1| $) 48 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) |#1|) $) 47 (|has| $ (-6 -4508)) ELT)) (-2375 (($ |#1| $) 58 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 55 (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4508)) ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-1576 ((|#1| $) 40 T ELT)) (-3629 (($ |#1| $) 41 T ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 52 T ELT)) (-2615 ((|#1| $) 42 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3897 (($) 50 T ELT) (($ (-663 |#1|)) 49 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) 60 (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 51 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-3376 (($ (-663 |#1|)) 43 T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3282 ((|#2| $ (-793) |#2|) 11 T ELT)) (-3274 ((|#2| $ (-793)) 10 T ELT)) (-4246 (($) 8 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 23 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 13 T ELT)))
+(((-216 |#1| |#2|) (-13 (-1132) (-10 -8 (-15 -4246 ($)) (-15 -3274 (|#2| $ (-793))) (-15 -3282 (|#2| $ (-793) |#2|)))) (-948) (-1132)) (T -216))
+((-4246 (*1 *1) (-12 (-5 *1 (-216 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1132)))) (-3274 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *2 (-1132)) (-5 *1 (-216 *4 *2)) (-14 *4 (-948)))) (-3282 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-216 *4 *2)) (-14 *4 (-948)) (-4 *2 (-1132)))))
+(-13 (-1132) (-10 -8 (-15 -4246 ($)) (-15 -3274 (|#2| $ (-793))) (-15 -3282 (|#2| $ (-793) |#2|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3150 (((-1303) $) 37 T ELT) (((-1303) $ (-948) (-948)) 41 T ELT)) (-1507 (($ $ (-1020)) 19 T ELT) (((-252 (-1189)) $ (-1207)) 15 T ELT)) (-3884 (((-1303) $) 35 T ELT)) (-3913 (((-887) $) 32 T ELT) (($ (-663 |#1|)) 8 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $ $) 27 T ELT)) (-2429 (($ $ $) 22 T ELT)))
+(((-217 |#1|) (-13 (-1132) (-635 (-663 |#1|)) (-10 -8 (-15 -1507 ($ $ (-1020))) (-15 -1507 ((-252 (-1189)) $ (-1207))) (-15 -2429 ($ $ $)) (-15 -2441 ($ $ $)) (-15 -3884 ((-1303) $)) (-15 -3150 ((-1303) $)) (-15 -3150 ((-1303) $ (-948) (-948))))) (-13 (-871) (-10 -8 (-15 -1507 ((-1189) $ (-1207))) (-15 -3884 ((-1303) $)) (-15 -3150 ((-1303) $))))) (T -217))
+((-1507 (*1 *1 *1 *2) (-12 (-5 *2 (-1020)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-871) (-10 -8 (-15 -1507 ((-1189) $ (-1207))) (-15 -3884 ((-1303) $)) (-15 -3150 ((-1303) $))))))) (-1507 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-252 (-1189))) (-5 *1 (-217 *4)) (-4 *4 (-13 (-871) (-10 -8 (-15 -1507 ((-1189) $ *3)) (-15 -3884 ((-1303) $)) (-15 -3150 ((-1303) $))))))) (-2429 (*1 *1 *1 *1) (-12 (-5 *1 (-217 *2)) (-4 *2 (-13 (-871) (-10 -8 (-15 -1507 ((-1189) $ (-1207))) (-15 -3884 ((-1303) $)) (-15 -3150 ((-1303) $))))))) (-2441 (*1 *1 *1 *1) (-12 (-5 *1 (-217 *2)) (-4 *2 (-13 (-871) (-10 -8 (-15 -1507 ((-1189) $ (-1207))) (-15 -3884 ((-1303) $)) (-15 -3150 ((-1303) $))))))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-871) (-10 -8 (-15 -1507 ((-1189) $ (-1207))) (-15 -3884 (*2 $)) (-15 -3150 (*2 $))))))) (-3150 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-871) (-10 -8 (-15 -1507 ((-1189) $ (-1207))) (-15 -3884 (*2 $)) (-15 -3150 (*2 $))))))) (-3150 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1303)) (-5 *1 (-217 *4)) (-4 *4 (-13 (-871) (-10 -8 (-15 -1507 ((-1189) $ (-1207))) (-15 -3884 (*2 $)) (-15 -3150 (*2 $))))))))
+(-13 (-1132) (-635 (-663 |#1|)) (-10 -8 (-15 -1507 ($ $ (-1020))) (-15 -1507 ((-252 (-1189)) $ (-1207))) (-15 -2429 ($ $ $)) (-15 -2441 ($ $ $)) (-15 -3884 ((-1303) $)) (-15 -3150 ((-1303) $)) (-15 -3150 ((-1303) $ (-948) (-948)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2552 (((-793)) NIL T ELT)) (-1812 (($) NIL T ELT)) (-2932 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4379 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2622 (((-948) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1591 (($ (-948)) 10 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3039 (($ (-657 |#1|)) 11 T ELT)) (-3913 (((-887) $) 18 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) NIL T ELT)))
+(((-218 |#1|) (-13 (-866) (-10 -8 (-15 -3039 ($ (-657 |#1|))))) (-663 (-1207))) (T -218))
+((-3039 (*1 *1 *2) (-12 (-5 *2 (-657 *3)) (-14 *3 (-663 (-1207))) (-5 *1 (-218 *3)))))
+(-13 (-866) (-10 -8 (-15 -3039 ($ (-657 |#1|)))))
+((-3465 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT)))
+(((-219 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3465 (|#2| |#4| (-1 |#2| |#2|)))) (-376) (-1273 |#1|) (-1273 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -219))
+((-3465 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-376)) (-4 *6 (-1273 (-421 *2))) (-4 *2 (-1273 *5)) (-5 *1 (-219 *5 *2 *6 *3)) (-4 *3 (-355 *5 *2 *6)))))
+(-10 -7 (-15 -3465 (|#2| |#4| (-1 |#2| |#2|))))
+((-4422 ((|#2| |#2| (-793) |#2|) 55 T ELT)) (-3882 ((|#2| |#2| (-793) |#2|) 51 T ELT)) (-2890 (((-663 |#2|) (-663 (-2 (|:| |deg| (-793)) (|:| -2627 |#2|)))) 79 T ELT)) (-1625 (((-663 (-2 (|:| |deg| (-793)) (|:| -2627 |#2|))) |#2|) 73 T ELT)) (-3832 (((-114) |#2|) 71 T ELT)) (-2669 (((-419 |#2|) |#2|) 91 T ELT)) (-4012 (((-419 |#2|) |#2|) 90 T ELT)) (-2017 ((|#2| |#2| (-793) |#2|) 49 T ELT)) (-1354 (((-2 (|:| |cont| |#1|) (|:| -2609 (-663 (-2 (|:| |irr| |#2|) (|:| -4181 (-560)))))) |#2| (-114)) 85 T ELT)))
+(((-220 |#1| |#2|) (-10 -7 (-15 -4012 ((-419 |#2|) |#2|)) (-15 -2669 ((-419 |#2|) |#2|)) (-15 -1354 ((-2 (|:| |cont| |#1|) (|:| -2609 (-663 (-2 (|:| |irr| |#2|) (|:| -4181 (-560)))))) |#2| (-114))) (-15 -1625 ((-663 (-2 (|:| |deg| (-793)) (|:| -2627 |#2|))) |#2|)) (-15 -2890 ((-663 |#2|) (-663 (-2 (|:| |deg| (-793)) (|:| -2627 |#2|))))) (-15 -2017 (|#2| |#2| (-793) |#2|)) (-15 -3882 (|#2| |#2| (-793) |#2|)) (-15 -4422 (|#2| |#2| (-793) |#2|)) (-15 -3832 ((-114) |#2|))) (-363) (-1273 |#1|)) (T -220))
+((-3832 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1273 *4)))) (-4422 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-793)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1273 *4)))) (-3882 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-793)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1273 *4)))) (-2017 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-793)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1273 *4)))) (-2890 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| |deg| (-793)) (|:| -2627 *5)))) (-4 *5 (-1273 *4)) (-4 *4 (-363)) (-5 *2 (-663 *5)) (-5 *1 (-220 *4 *5)))) (-1625 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-663 (-2 (|:| |deg| (-793)) (|:| -2627 *3)))) (-5 *1 (-220 *4 *3)) (-4 *3 (-1273 *4)))) (-1354 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2609 (-663 (-2 (|:| |irr| *3) (|:| -4181 (-560))))))) (-5 *1 (-220 *5 *3)) (-4 *3 (-1273 *5)))) (-2669 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-419 *3)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1273 *4)))) (-4012 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-419 *3)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1273 *4)))))
+(-10 -7 (-15 -4012 ((-419 |#2|) |#2|)) (-15 -2669 ((-419 |#2|) |#2|)) (-15 -1354 ((-2 (|:| |cont| |#1|) (|:| -2609 (-663 (-2 (|:| |irr| |#2|) (|:| -4181 (-560)))))) |#2| (-114))) (-15 -1625 ((-663 (-2 (|:| |deg| (-793)) (|:| -2627 |#2|))) |#2|)) (-15 -2890 ((-663 |#2|) (-663 (-2 (|:| |deg| (-793)) (|:| -2627 |#2|))))) (-15 -2017 (|#2| |#2| (-793) |#2|)) (-15 -3882 (|#2| |#2| (-793) |#2|)) (-15 -4422 (|#2| |#2| (-793) |#2|)) (-15 -3832 ((-114) |#2|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3655 (((-560) $) NIL (|has| (-560) (-319)) ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-1869 (((-560) $) NIL (|has| (-560) (-842)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| (-560) (-1069 (-560))) ELT) (((-3 (-560) "failed") $) NIL (|has| (-560) (-1069 (-560))) ELT)) (-3649 (((-560) $) NIL T ELT) (((-1207) $) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-421 (-560)) $) NIL (|has| (-560) (-1069 (-560))) ELT) (((-560) $) NIL (|has| (-560) (-1069 (-560))) ELT)) (-2186 (($ $ $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1812 (($) NIL (|has| (-560) (-559)) ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-4172 (((-114) $) NIL (|has| (-560) (-842)) ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (|has| (-560) (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (|has| (-560) (-911 (-391))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-3490 (($ $) NIL T ELT)) (-2473 (((-560) $) NIL T ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| (-560) (-1182)) ELT)) (-4470 (((-114) $) NIL (|has| (-560) (-842)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2932 (($ $ $) NIL (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| (-560) (-871)) ELT)) (-2260 (($ (-1 (-560) (-560)) $) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL T ELT) (((-711 (-560)) (-1297 $)) NIL T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3239 (($) NIL (|has| (-560) (-1182)) CONST)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3211 (($ $) NIL (|has| (-560) (-319)) ELT) (((-421 (-560)) $) NIL T ELT)) (-3147 (((-560) $) NIL (|has| (-560) (-559)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2371 (($ $ (-663 (-560)) (-663 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-560) (-560)) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-305 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-305 (-560)))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-1207)) (-663 (-560))) NIL (|has| (-560) (-528 (-1207) (-560))) ELT) (($ $ (-1207) (-560)) NIL (|has| (-560) (-528 (-1207) (-560))) ELT)) (-3989 (((-793) $) NIL T ELT)) (-1507 (($ $ (-560)) NIL (|has| (-560) (-298 (-560) (-560))) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3161 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $) NIL (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-2951 (($ $) NIL T ELT)) (-2484 (((-560) $) NIL T ELT)) (-4340 (($ (-421 (-560))) 9 T ELT)) (-2400 (((-915 (-560)) $) NIL (|has| (-560) (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) NIL (|has| (-560) (-633 (-915 (-391)))) ELT) (((-549) $) NIL (|has| (-560) (-633 (-549))) ELT) (((-391) $) NIL (|has| (-560) (-1051)) ELT) (((-229) $) NIL (|has| (-560) (-1051)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-560) (-939))) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 8 T ELT) (($ (-560)) NIL T ELT) (($ (-1207)) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-421 (-560)) $) NIL T ELT) (((-1035 10) $) 10 T ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| (-560) (-939))) (|has| (-560) (-147))) ELT)) (-4191 (((-793)) NIL T CONST)) (-3622 (((-560) $) NIL (|has| (-560) (-559)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-2719 (($ $) NIL (|has| (-560) (-842)) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $) NIL (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-2396 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2453 (($ $ $) NIL T ELT) (($ (-560) (-560)) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ (-560)) NIL T ELT)))
+(((-221) (-13 (-1022 (-560)) (-632 (-421 (-560))) (-632 (-1035 10)) (-10 -8 (-15 -3211 ((-421 (-560)) $)) (-15 -4340 ($ (-421 (-560))))))) (T -221))
+((-3211 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-221)))) (-4340 (*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-221)))))
+(-13 (-1022 (-560)) (-632 (-421 (-560))) (-632 (-1035 10)) (-10 -8 (-15 -3211 ((-421 (-560)) $)) (-15 -4340 ($ (-421 (-560))))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3216 (((-1146) $) 13 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3016 (((-497) $) 10 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 23 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-4400 (((-1166) $) 15 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-222) (-13 (-1114) (-10 -8 (-15 -3016 ((-497) $)) (-15 -3216 ((-1146) $)) (-15 -4400 ((-1166) $))))) (T -222))
+((-3016 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-222)))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-222)))) (-4400 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-222)))))
+(-13 (-1114) (-10 -8 (-15 -3016 ((-497) $)) (-15 -3216 ((-1146) $)) (-15 -4400 ((-1166) $))))
+((-4424 (((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-663 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1123 (-864 |#2|)) (-1189)) 29 T ELT) (((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-663 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1123 (-864 |#2|))) 25 T ELT)) (-3519 (((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-663 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1207) (-864 |#2|) (-864 |#2|) (-114)) 17 T ELT)))
+(((-223 |#1| |#2|) (-10 -7 (-15 -4424 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-663 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1123 (-864 |#2|)))) (-15 -4424 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-663 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1123 (-864 |#2|)) (-1189))) (-15 -3519 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-663 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1207) (-864 |#2|) (-864 |#2|) (-114)))) (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))) (-13 (-1233) (-989) (-29 |#1|))) (T -223))
+((-3519 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1207)) (-5 *6 (-114)) (-4 *7 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-4 *3 (-13 (-1233) (-989) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-663 (-864 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *7 *3)) (-5 *5 (-864 *3)))) (-4424 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1123 (-864 *3))) (-5 *5 (-1189)) (-4 *3 (-13 (-1233) (-989) (-29 *6))) (-4 *6 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-663 (-864 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *6 *3)))) (-4424 (*1 *2 *3 *4) (-12 (-5 *4 (-1123 (-864 *3))) (-4 *3 (-13 (-1233) (-989) (-29 *5))) (-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-663 (-864 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-223 *5 *3)))))
+(-10 -7 (-15 -4424 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-663 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1123 (-864 |#2|)))) (-15 -4424 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-663 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1123 (-864 |#2|)) (-1189))) (-15 -3519 ((-3 (|:| |f1| (-864 |#2|)) (|:| |f2| (-663 (-864 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1207) (-864 |#2|) (-864 |#2|) (-114))))
+((-4424 (((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-421 (-975 |#1|)))) (-1189)) 49 T ELT) (((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-421 (-975 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-326 |#1|))) (-1189)) 50 T ELT) (((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-326 |#1|)))) 22 T ELT)))
+(((-224 |#1|) (-10 -7 (-15 -4424 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-326 |#1|))))) (-15 -4424 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-326 |#1|))) (-1189))) (-15 -4424 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-421 (-975 |#1|)))))) (-15 -4424 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-421 (-975 |#1|)))) (-1189)))) (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (T -224))
+((-4424 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1123 (-864 (-421 (-975 *6))))) (-5 *5 (-1189)) (-5 *3 (-421 (-975 *6))) (-4 *6 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-3 (|:| |f1| (-864 (-326 *6))) (|:| |f2| (-663 (-864 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-224 *6)))) (-4424 (*1 *2 *3 *4) (-12 (-5 *4 (-1123 (-864 (-421 (-975 *5))))) (-5 *3 (-421 (-975 *5))) (-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-3 (|:| |f1| (-864 (-326 *5))) (|:| |f2| (-663 (-864 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-224 *5)))) (-4424 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-421 (-975 *6))) (-5 *4 (-1123 (-864 (-326 *6)))) (-5 *5 (-1189)) (-4 *6 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-3 (|:| |f1| (-864 (-326 *6))) (|:| |f2| (-663 (-864 (-326 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-224 *6)))) (-4424 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1123 (-864 (-326 *5)))) (-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-3 (|:| |f1| (-864 (-326 *5))) (|:| |f2| (-663 (-864 (-326 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-224 *5)))))
+(-10 -7 (-15 -4424 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-326 |#1|))))) (-15 -4424 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-326 |#1|))) (-1189))) (-15 -4424 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-421 (-975 |#1|)))))) (-15 -4424 ((-3 (|:| |f1| (-864 (-326 |#1|))) (|:| |f2| (-663 (-864 (-326 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-421 (-975 |#1|)) (-1123 (-864 (-421 (-975 |#1|)))) (-1189))))
+((-1778 (((-2 (|:| -1617 (-1201 |#1|)) (|:| |deg| (-948))) (-1201 |#1|)) 26 T ELT)) (-3890 (((-663 (-326 |#2|)) (-326 |#2|) (-948)) 51 T ELT)))
+(((-225 |#1| |#2|) (-10 -7 (-15 -1778 ((-2 (|:| -1617 (-1201 |#1|)) (|:| |deg| (-948))) (-1201 |#1|))) (-15 -3890 ((-663 (-326 |#2|)) (-326 |#2|) (-948)))) (-1080) (-571)) (T -225))
+((-3890 (*1 *2 *3 *4) (-12 (-5 *4 (-948)) (-4 *6 (-571)) (-5 *2 (-663 (-326 *6))) (-5 *1 (-225 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1080)))) (-1778 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-5 *2 (-2 (|:| -1617 (-1201 *4)) (|:| |deg| (-948)))) (-5 *1 (-225 *4 *5)) (-5 *3 (-1201 *4)) (-4 *5 (-571)))))
+(-10 -7 (-15 -1778 ((-2 (|:| -1617 (-1201 |#1|)) (|:| |deg| (-948))) (-1201 |#1|))) (-15 -3890 ((-663 (-326 |#2|)) (-326 |#2|) (-948))))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2763 ((|#1| $) NIL T ELT)) (-3172 ((|#1| $) 30 T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3675 (($ $) NIL T ELT)) (-2372 (($ $) 39 T ELT)) (-4401 ((|#1| |#1| $) NIL T ELT)) (-2151 ((|#1| $) NIL T ELT)) (-3737 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-2946 (((-793) $) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-1878 ((|#1| $) NIL T ELT)) (-4386 ((|#1| |#1| $) 35 T ELT)) (-2759 ((|#1| |#1| $) 37 T ELT)) (-3888 (($ |#1| $) NIL T ELT)) (-3827 (((-793) $) 33 T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3893 ((|#1| $) NIL T ELT)) (-2599 ((|#1| $) 31 T ELT)) (-4169 ((|#1| $) 29 T ELT)) (-2796 ((|#1| $) NIL T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-3464 ((|#1| |#1| $) NIL T ELT)) (-2706 (((-114) $) 9 T ELT)) (-2832 (($) NIL T ELT)) (-3483 ((|#1| $) NIL T ELT)) (-4206 (($) NIL T ELT) (($ (-663 |#1|)) 16 T ELT)) (-3063 (((-793) $) NIL T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4107 (($ $) NIL T ELT)) (-3913 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-1373 ((|#1| $) 13 T ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3184 (($ (-663 |#1|)) NIL T ELT)) (-1855 ((|#1| $) NIL T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-226 |#1|) (-13 (-263 |#1|) (-10 -8 (-15 -4206 ($ (-663 |#1|))))) (-1132)) (T -226))
+((-4206 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-226 *3)))))
+(-13 (-263 |#1|) (-10 -8 (-15 -4206 ($ (-663 |#1|)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3661 (($ (-326 |#1|)) 24 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2736 (((-114) $) NIL T ELT)) (-3929 (((-3 (-326 |#1|) "failed") $) NIL T ELT)) (-3649 (((-326 |#1|) $) NIL T ELT)) (-3062 (($ $) 32 T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-2260 (($ (-1 (-326 |#1|) (-326 |#1|)) $) NIL T ELT)) (-3037 (((-326 |#1|) $) NIL T ELT)) (-3435 (($ $) 31 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2079 (((-114) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3583 (($ (-793)) NIL T ELT)) (-2185 (($ $) 33 T ELT)) (-3900 (((-560) $) NIL T ELT)) (-3913 (((-887) $) 65 T ELT) (($ (-560)) NIL T ELT) (($ (-326 |#1|)) NIL T ELT)) (-2920 (((-326 |#1|) $ $) NIL T ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 26 T CONST)) (-1456 (($) NIL T CONST)) (-2340 (((-114) $ $) 29 T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 20 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-326 |#1|) $) 19 T ELT)))
+(((-227 |#1| |#2|) (-13 (-640 (-326 |#1|)) (-1069 (-326 |#1|)) (-10 -8 (-15 -3037 ((-326 |#1|) $)) (-15 -3435 ($ $)) (-15 -3062 ($ $)) (-15 -2920 ((-326 |#1|) $ $)) (-15 -3583 ($ (-793))) (-15 -2079 ((-114) $)) (-15 -2736 ((-114) $)) (-15 -3900 ((-560) $)) (-15 -2260 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -3661 ($ (-326 |#1|))) (-15 -2185 ($ $)))) (-13 (-1080) (-871)) (-663 (-1207))) (T -227))
+((-3037 (*1 *2 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-663 (-1207))))) (-3435 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1080) (-871))) (-14 *3 (-663 (-1207))))) (-3062 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1080) (-871))) (-14 *3 (-663 (-1207))))) (-2920 (*1 *2 *1 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-663 (-1207))))) (-3583 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-663 (-1207))))) (-2079 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-663 (-1207))))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-663 (-1207))))) (-3900 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-663 (-1207))))) (-2260 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1080) (-871))) (-5 *1 (-227 *3 *4)) (-14 *4 (-663 (-1207))))) (-3661 (*1 *1 *2) (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1080) (-871))) (-5 *1 (-227 *3 *4)) (-14 *4 (-663 (-1207))))) (-2185 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1080) (-871))) (-14 *3 (-663 (-1207))))))
+(-13 (-640 (-326 |#1|)) (-1069 (-326 |#1|)) (-10 -8 (-15 -3037 ((-326 |#1|) $)) (-15 -3435 ($ $)) (-15 -3062 ($ $)) (-15 -2920 ((-326 |#1|) $ $)) (-15 -3583 ($ (-793))) (-15 -2079 ((-114) $)) (-15 -2736 ((-114) $)) (-15 -3900 ((-560) $)) (-15 -2260 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -3661 ($ (-326 |#1|))) (-15 -2185 ($ $))))
+((-4285 (((-114) (-1189)) 26 T ELT)) (-2726 (((-3 (-864 |#2|) "failed") (-630 |#2|) |#2| (-864 |#2|) (-864 |#2|) (-114)) 35 T ELT)) (-2054 (((-3 (-114) "failed") (-1201 |#2|) (-864 |#2|) (-864 |#2|) (-114)) 84 T ELT) (((-3 (-114) "failed") (-975 |#1|) (-1207) (-864 |#2|) (-864 |#2|) (-114)) 85 T ELT)))
+(((-228 |#1| |#2|) (-10 -7 (-15 -4285 ((-114) (-1189))) (-15 -2726 ((-3 (-864 |#2|) "failed") (-630 |#2|) |#2| (-864 |#2|) (-864 |#2|) (-114))) (-15 -2054 ((-3 (-114) "failed") (-975 |#1|) (-1207) (-864 |#2|) (-864 |#2|) (-114))) (-15 -2054 ((-3 (-114) "failed") (-1201 |#2|) (-864 |#2|) (-864 |#2|) (-114)))) (-13 (-466) (-1069 (-560)) (-660 (-560))) (-13 (-1233) (-29 |#1|))) (T -228))
+((-2054 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-114)) (-5 *3 (-1201 *6)) (-5 *4 (-864 *6)) (-4 *6 (-13 (-1233) (-29 *5))) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-228 *5 *6)))) (-2054 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-114)) (-5 *3 (-975 *6)) (-5 *4 (-1207)) (-5 *5 (-864 *7)) (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-4 *7 (-13 (-1233) (-29 *6))) (-5 *1 (-228 *6 *7)))) (-2726 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-864 *4)) (-5 *3 (-630 *4)) (-5 *5 (-114)) (-4 *4 (-13 (-1233) (-29 *6))) (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-228 *6 *4)))) (-4285 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-114)) (-5 *1 (-228 *4 *5)) (-4 *5 (-13 (-1233) (-29 *4))))))
+(-10 -7 (-15 -4285 ((-114) (-1189))) (-15 -2726 ((-3 (-864 |#2|) "failed") (-630 |#2|) |#2| (-864 |#2|) (-864 |#2|) (-114))) (-15 -2054 ((-3 (-114) "failed") (-975 |#1|) (-1207) (-864 |#2|) (-864 |#2|) (-114))) (-15 -2054 ((-3 (-114) "failed") (-1201 |#2|) (-864 |#2|) (-864 |#2|) (-114))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 98 T ELT)) (-3655 (((-560) $) 33 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3864 (($ $) NIL T ELT)) (-1982 (($ $) 87 T ELT)) (-1832 (($ $) 75 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-4021 (($ $) 66 T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-1958 (($ $) 85 T ELT)) (-1806 (($ $) 73 T ELT)) (-1869 (((-560) $) 127 T ELT)) (-2003 (($ $) 90 T ELT)) (-1856 (($ $) 77 T ELT)) (-3525 (($) NIL T CONST)) (-2198 (($ $) NIL T ELT)) (-3929 (((-3 (-560) "failed") $) 126 T ELT) (((-3 (-421 (-560)) "failed") $) 123 T ELT)) (-3649 (((-560) $) 124 T ELT) (((-421 (-560)) $) 121 T ELT)) (-2186 (($ $ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) 103 T ELT)) (-1728 (((-421 (-560)) $ (-793)) 117 T ELT) (((-421 (-560)) $ (-793) (-793)) 116 T ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-2602 (((-948)) 28 T ELT) (((-948) (-948)) NIL (|has| $ (-6 -4499)) ELT)) (-4172 (((-114) $) NIL T ELT)) (-2503 (($) 46 T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL T ELT)) (-1460 (((-560) $) 40 T ELT)) (-1918 (((-114) $) 99 T ELT)) (-1956 (($ $ (-560)) NIL T ELT)) (-2084 (($ $) NIL T ELT)) (-4470 (((-114) $) 97 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2932 (($ $ $) 63 T ELT) (($) 36 (-12 (-1394 (|has| $ (-6 -4491))) (-1394 (|has| $ (-6 -4499)))) ELT)) (-4379 (($ $ $) 62 T ELT) (($) 35 (-12 (-1394 (|has| $ (-6 -4491))) (-1394 (|has| $ (-6 -4499)))) ELT)) (-2048 (((-560) $) 26 T ELT)) (-1539 (($ $) 31 T ELT)) (-4070 (($ $) 67 T ELT)) (-2831 (($ $) 72 T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3611 (((-948) (-560)) NIL (|has| $ (-6 -4499)) ELT)) (-3376 (((-1151) $) 101 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3211 (($ $) NIL T ELT)) (-3147 (($ $) NIL T ELT)) (-2523 (($ (-560) (-560)) NIL T ELT) (($ (-560) (-560) (-948)) 110 T ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2030 (((-560) $) 27 T ELT)) (-3730 (($) 45 T ELT)) (-2515 (($ $) 71 T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3370 (((-948)) NIL T ELT) (((-948) (-948)) NIL (|has| $ (-6 -4499)) ELT)) (-3161 (($ $) 104 T ELT) (($ $ (-793)) NIL T ELT)) (-3036 (((-948) (-560)) NIL (|has| $ (-6 -4499)) ELT)) (-2013 (($ $) 88 T ELT)) (-1870 (($ $) 78 T ELT)) (-1992 (($ $) 89 T ELT)) (-1844 (($ $) 76 T ELT)) (-1972 (($ $) 86 T ELT)) (-1820 (($ $) 74 T ELT)) (-2400 (((-391) $) 113 T ELT) (((-229) $) 14 T ELT) (((-915 (-391)) $) NIL T ELT) (((-549) $) 52 T ELT)) (-3913 (((-887) $) 49 T ELT) (($ (-560)) 152 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-560)) 152 T ELT) (($ (-421 (-560))) NIL T ELT)) (-4191 (((-793)) NIL T CONST)) (-3622 (($ $) NIL T ELT)) (-1902 (((-948)) 34 T ELT) (((-948) (-948)) NIL (|has| $ (-6 -4499)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2671 (((-948)) 24 T ELT)) (-2042 (($ $) 93 T ELT)) (-1907 (($ $) 81 T ELT) (($ $ $) 119 T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-2022 (($ $) 91 T ELT)) (-1882 (($ $) 79 T ELT)) (-2059 (($ $) 96 T ELT)) (-1932 (($ $) 84 T ELT)) (-3392 (($ $) 94 T ELT)) (-1945 (($ $) 82 T ELT)) (-2050 (($ $) 95 T ELT)) (-1920 (($ $) 83 T ELT)) (-2032 (($ $) 92 T ELT)) (-1895 (($ $) 80 T ELT)) (-2719 (($ $) 118 T ELT)) (-1446 (($) 42 T CONST)) (-1456 (($) 43 T CONST)) (-1581 (((-1189) $) 18 T ELT) (((-1189) $ (-114)) 20 T ELT) (((-1303) (-845) $) 21 T ELT) (((-1303) (-845) $ (-114)) 22 T ELT)) (-2658 (($ $) 107 T ELT)) (-2111 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2231 (($ $ $) 109 T ELT)) (-2396 (((-114) $ $) 56 T ELT)) (-2373 (((-114) $ $) 54 T ELT)) (-2340 (((-114) $ $) 64 T ELT)) (-2386 (((-114) $ $) 55 T ELT)) (-2362 (((-114) $ $) 53 T ELT)) (-2453 (($ $ $) 44 T ELT) (($ $ (-560)) 65 T ELT)) (-2441 (($ $) 57 T ELT) (($ $ $) 59 T ELT)) (-2429 (($ $ $) 58 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 68 T ELT) (($ $ (-421 (-560))) 151 T ELT) (($ $ $) 69 T ELT)) (* (($ (-948) $) 32 T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 61 T ELT) (($ $ $) 60 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT)))
+(((-229) (-13 (-418) (-240) (-843) (-1233) (-633 (-549)) (-10 -8 (-15 -2453 ($ $ (-560))) (-15 ** ($ $ $)) (-15 -3730 ($)) (-15 -1539 ($ $)) (-15 -4070 ($ $)) (-15 -1907 ($ $ $)) (-15 -2658 ($ $)) (-15 -2231 ($ $ $)) (-15 -1728 ((-421 (-560)) $ (-793))) (-15 -1728 ((-421 (-560)) $ (-793) (-793)))))) (T -229))
+((** (*1 *1 *1 *1) (-5 *1 (-229))) (-2453 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-229)))) (-3730 (*1 *1) (-5 *1 (-229))) (-1539 (*1 *1 *1) (-5 *1 (-229))) (-4070 (*1 *1 *1) (-5 *1 (-229))) (-1907 (*1 *1 *1 *1) (-5 *1 (-229))) (-2658 (*1 *1 *1) (-5 *1 (-229))) (-2231 (*1 *1 *1 *1) (-5 *1 (-229))) (-1728 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-229)))) (-1728 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-229)))))
+(-13 (-418) (-240) (-843) (-1233) (-633 (-549)) (-10 -8 (-15 -2453 ($ $ (-560))) (-15 ** ($ $ $)) (-15 -3730 ($)) (-15 -1539 ($ $)) (-15 -4070 ($ $)) (-15 -1907 ($ $ $)) (-15 -2658 ($ $)) (-15 -2231 ($ $ $)) (-15 -1728 ((-421 (-560)) $ (-793))) (-15 -1728 ((-421 (-560)) $ (-793) (-793)))))
+((-2924 (((-171 (-229)) (-793) (-171 (-229))) 11 T ELT) (((-229) (-793) (-229)) 12 T ELT)) (-3095 (((-171 (-229)) (-171 (-229))) 13 T ELT) (((-229) (-229)) 14 T ELT)) (-1642 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 19 T ELT) (((-229) (-229) (-229)) 22 T ELT)) (-2144 (((-171 (-229)) (-171 (-229))) 27 T ELT) (((-229) (-229)) 26 T ELT)) (-3081 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 57 T ELT) (((-229) (-229) (-229)) 49 T ELT)) (-3083 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 62 T ELT) (((-229) (-229) (-229)) 60 T ELT)) (-4128 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 15 T ELT) (((-229) (-229) (-229)) 16 T ELT)) (-2929 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 17 T ELT) (((-229) (-229) (-229)) 18 T ELT)) (-3168 (((-171 (-229)) (-171 (-229))) 74 T ELT) (((-229) (-229)) 73 T ELT)) (-3813 (((-229) (-229)) 68 T ELT) (((-171 (-229)) (-171 (-229))) 72 T ELT)) (-2658 (((-171 (-229)) (-171 (-229))) 8 T ELT) (((-229) (-229)) 9 T ELT)) (-2231 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 35 T ELT) (((-229) (-229) (-229)) 31 T ELT)))
+(((-230) (-10 -7 (-15 -2658 ((-229) (-229))) (-15 -2658 ((-171 (-229)) (-171 (-229)))) (-15 -2231 ((-229) (-229) (-229))) (-15 -2231 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3095 ((-229) (-229))) (-15 -3095 ((-171 (-229)) (-171 (-229)))) (-15 -2144 ((-229) (-229))) (-15 -2144 ((-171 (-229)) (-171 (-229)))) (-15 -2924 ((-229) (-793) (-229))) (-15 -2924 ((-171 (-229)) (-793) (-171 (-229)))) (-15 -4128 ((-229) (-229) (-229))) (-15 -4128 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3081 ((-229) (-229) (-229))) (-15 -3081 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -2929 ((-229) (-229) (-229))) (-15 -2929 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3083 ((-229) (-229) (-229))) (-15 -3083 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3813 ((-171 (-229)) (-171 (-229)))) (-15 -3813 ((-229) (-229))) (-15 -3168 ((-229) (-229))) (-15 -3168 ((-171 (-229)) (-171 (-229)))) (-15 -1642 ((-229) (-229) (-229))) (-15 -1642 ((-171 (-229)) (-171 (-229)) (-171 (-229)))))) (T -230))
+((-1642 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-1642 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3168 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3168 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3813 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3813 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3083 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3083 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-2929 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-2929 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3081 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3081 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-4128 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-4128 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-2924 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-229))) (-5 *3 (-793)) (-5 *1 (-230)))) (-2924 (*1 *2 *3 *2) (-12 (-5 *2 (-229)) (-5 *3 (-793)) (-5 *1 (-230)))) (-2144 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-2144 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3095 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3095 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-2231 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-2231 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-2658 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-2658 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))))
+(-10 -7 (-15 -2658 ((-229) (-229))) (-15 -2658 ((-171 (-229)) (-171 (-229)))) (-15 -2231 ((-229) (-229) (-229))) (-15 -2231 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3095 ((-229) (-229))) (-15 -3095 ((-171 (-229)) (-171 (-229)))) (-15 -2144 ((-229) (-229))) (-15 -2144 ((-171 (-229)) (-171 (-229)))) (-15 -2924 ((-229) (-793) (-229))) (-15 -2924 ((-171 (-229)) (-793) (-171 (-229)))) (-15 -4128 ((-229) (-229) (-229))) (-15 -4128 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3081 ((-229) (-229) (-229))) (-15 -3081 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -2929 ((-229) (-229) (-229))) (-15 -2929 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3083 ((-229) (-229) (-229))) (-15 -3083 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3813 ((-171 (-229)) (-171 (-229)))) (-15 -3813 ((-229) (-229))) (-15 -3168 ((-229) (-229))) (-15 -3168 ((-171 (-229)) (-171 (-229)))) (-15 -1642 ((-229) (-229) (-229))) (-15 -1642 ((-171 (-229)) (-171 (-229)) (-171 (-229)))))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3068 (($ (-793) (-793)) NIL T ELT)) (-2321 (($ $ $) NIL T ELT)) (-2966 (($ (-1297 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-2979 (($ |#1| |#1| |#1|) 33 T ELT)) (-3202 (((-114) $) NIL T ELT)) (-1602 (($ $ (-560) (-560)) NIL T ELT)) (-3933 (($ $ (-560) (-560)) NIL T ELT)) (-3892 (($ $ (-560) (-560) (-560) (-560)) NIL T ELT)) (-2877 (($ $) NIL T ELT)) (-2798 (((-114) $) NIL T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-2205 (($ $ (-560) (-560) $) NIL T ELT)) (-4083 ((|#1| $ (-560) (-560) |#1|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560)) $) NIL T ELT)) (-2792 (($ $ (-560) (-1297 |#1|)) NIL T ELT)) (-2770 (($ $ (-560) (-1297 |#1|)) NIL T ELT)) (-4130 (($ |#1| |#1| |#1|) 32 T ELT)) (-1571 (($ (-793) |#1|) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2207 (($ $) NIL (|has| |#1| (-319)) ELT)) (-3942 (((-1297 |#1|) $ (-560)) NIL T ELT)) (-2864 (($ |#1|) 31 T ELT)) (-2859 (($ |#1|) 30 T ELT)) (-1680 (($ |#1|) 29 T ELT)) (-1604 (((-793) $) NIL (|has| |#1| (-571)) ELT)) (-3338 ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-3274 ((|#1| $ (-560) (-560)) NIL T ELT)) (-3737 (((-663 |#1|) $) NIL T ELT)) (-3213 (((-793) $) NIL (|has| |#1| (-571)) ELT)) (-1927 (((-663 (-1297 |#1|)) $) NIL (|has| |#1| (-571)) ELT)) (-2777 (((-793) $) NIL T ELT)) (-4246 (($ (-793) (-793) |#1|) NIL T ELT)) (-2789 (((-793) $) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-4174 ((|#1| $) NIL (|has| |#1| (-6 (-4510 "*"))) ELT)) (-2567 (((-560) $) NIL T ELT)) (-2313 (((-560) $) NIL T ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1475 (((-560) $) NIL T ELT)) (-3004 (((-560) $) NIL T ELT)) (-3551 (($ (-663 (-663 |#1|))) 11 T ELT) (($ (-793) (-793) (-1 |#1| (-560) (-560))) NIL T ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3378 (((-663 (-663 |#1|)) $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-1906 (((-3 $ "failed") $) NIL (|has| |#1| (-376)) ELT)) (-3173 (($) 12 T ELT)) (-2857 (($ $ $) NIL T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2740 (($ $ |#1|) NIL T ELT)) (-2233 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#1| $ (-560) (-560)) NIL T ELT) ((|#1| $ (-560) (-560) |#1|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560))) NIL T ELT)) (-3926 (($ (-663 |#1|)) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2691 (((-114) $) NIL T ELT)) (-3441 ((|#1| $) NIL (|has| |#1| (-6 (-4510 "*"))) ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4107 (($ $) NIL T ELT)) (-3783 (((-1297 |#1|) $ (-560)) NIL T ELT)) (-3913 (($ (-1297 |#1|)) NIL T ELT) (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1775 (((-114) $) NIL T ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-560) $) NIL T ELT) (((-1297 |#1|) $ (-1297 |#1|)) 15 T ELT) (((-1297 |#1|) (-1297 |#1|) $) NIL T ELT) (((-972 |#1|) $ (-972 |#1|)) 21 T ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-231 |#1|) (-13 (-708 |#1| (-1297 |#1|) (-1297 |#1|)) (-10 -8 (-15 * ((-972 |#1|) $ (-972 |#1|))) (-15 -3173 ($)) (-15 -1680 ($ |#1|)) (-15 -2859 ($ |#1|)) (-15 -2864 ($ |#1|)) (-15 -4130 ($ |#1| |#1| |#1|)) (-15 -2979 ($ |#1| |#1| |#1|)))) (-13 (-376) (-1233))) (T -231))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233))) (-5 *1 (-231 *3)))) (-3173 (*1 *1) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) (-1680 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) (-2859 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) (-2864 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) (-4130 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))) (-2979 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))))
+(-13 (-708 |#1| (-1297 |#1|) (-1297 |#1|)) (-10 -8 (-15 * ((-972 |#1|) $ (-972 |#1|))) (-15 -3173 ($)) (-15 -1680 ($ |#1|)) (-15 -2859 ($ |#1|)) (-15 -2864 ($ |#1|)) (-15 -4130 ($ |#1| |#1| |#1|)) (-15 -2979 ($ |#1| |#1| |#1|))))
+((-1864 (($ (-1 (-114) |#2|) $) 16 T ELT)) (-2091 (($ |#2| $) NIL T ELT) (($ (-1 (-114) |#2|) $) 28 T ELT)) (-4468 (($) NIL T ELT) (($ (-663 |#2|)) 11 T ELT)) (-2340 (((-114) $ $) 26 T ELT)))
+(((-232 |#1| |#2|) (-10 -8 (-15 -2340 ((-114) |#1| |#1|)) (-15 -1864 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -2091 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -2091 (|#1| |#2| |#1|)) (-15 -4468 (|#1| (-663 |#2|))) (-15 -4468 (|#1|))) (-233 |#2|) (-1132)) (T -232))
+NIL
+(-10 -8 (-15 -2340 ((-114) |#1| |#1|)) (-15 -1864 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -2091 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -2091 (|#1| |#2| |#1|)) (-15 -4468 (|#1| (-663 |#2|))) (-15 -4468 (|#1|)))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-1864 (($ (-1 (-114) |#1|) $) 46 (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) 56 (|has| $ (-6 -4508)) ELT)) (-3525 (($) 7 T CONST)) (-3658 (($ $) 59 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2091 (($ |#1| $) 48 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) |#1|) $) 47 (|has| $ (-6 -4508)) ELT)) (-3033 (($ |#1| $) 58 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 55 (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4508)) ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-1878 ((|#1| $) 40 T ELT)) (-3888 (($ |#1| $) 41 T ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 52 T ELT)) (-2796 ((|#1| $) 42 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-4468 (($) 50 T ELT) (($ (-663 |#1|)) 49 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) 60 (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 51 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-3184 (($ (-663 |#1|)) 43 T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-233 |#1|) (-142) (-1132)) (T -233))
NIL
(-13 (-242 |t#1|))
-(((-34) . T) ((-107 |#1|) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-2894 (($ $ (-1 |#1| |#1|) (-793)) 57 T ELT) (($ $ (-1 |#1| |#1|)) 56 T ELT) (($ $ (-1207)) 55 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 53 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 52 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 51 (|has| |#1| (-929 (-1207))) ELT) (($ $) 47 (|has| |#1| (-239)) ELT) (($ $ (-793)) 45 (|has| |#1| (-239)) ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($ $ (-1 |#1| |#1|) (-793)) 59 T ELT) (($ $ (-1 |#1| |#1|)) 58 T ELT) (($ $ (-1207)) 54 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 50 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 49 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 48 (|has| |#1| (-929 (-1207))) ELT) (($ $) 46 (|has| |#1| (-239)) ELT) (($ $ (-793)) 44 (|has| |#1| (-239)) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3161 (($ $ (-1 |#1| |#1|) (-793)) 57 T ELT) (($ $ (-1 |#1| |#1|)) 56 T ELT) (($ $ (-1207)) 55 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 53 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 52 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 51 (|has| |#1| (-929 (-1207))) ELT) (($ $) 47 (|has| |#1| (-239)) ELT) (($ $ (-793)) 45 (|has| |#1| (-239)) ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($ $ (-1 |#1| |#1|) (-793)) 59 T ELT) (($ $ (-1 |#1| |#1|)) 58 T ELT) (($ $ (-1207)) 54 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 50 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 49 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 48 (|has| |#1| (-929 (-1207))) ELT) (($ $) 46 (|has| |#1| (-239)) ELT) (($ $ (-793)) 44 (|has| |#1| (-239)) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
(((-234 |#1|) (-142) (-1080)) (T -234))
NIL
(-13 (-1080) (-274 |t#1|) (-10 -7 (IF (|has| |t#1| (-240)) (-6 (-240)) |%noBranch|) (IF (|has| |t#1| (-927 (-1207))) (-6 (-927 (-1207))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-560)) . T) ((-632 (-887)) . T) ((-236 $) -2304 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-240) |has| |#1| (-240)) ((-239) -2304 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-921 $ #0=(-1207)) -2304 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-927 (-1207)) |has| |#1| (-927 (-1207))) ((-929 #0#) -2304 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-3305 ((|#2| $) 9 T ELT)))
-(((-235 |#1| |#2|) (-10 -8 (-15 -3305 (|#2| |#1|))) (-236 |#2|) (-1247)) (T -235))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-560)) . T) ((-632 (-887)) . T) ((-236 $) -2196 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-240) |has| |#1| (-240)) ((-239) -2196 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-921 $ #0=(-1207)) -2196 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-927 (-1207)) |has| |#1| (-927 (-1207))) ((-929 #0#) -2196 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
+((-2111 ((|#2| $) 9 T ELT)))
+(((-235 |#1| |#2|) (-10 -8 (-15 -2111 (|#2| |#1|))) (-236 |#2|) (-1247)) (T -235))
NIL
-(-10 -8 (-15 -3305 (|#2| |#1|)))
-((-2894 ((|#1| $) 7 T ELT)) (-3305 ((|#1| $) 6 T ELT)))
+(-10 -8 (-15 -2111 (|#2| |#1|)))
+((-3161 ((|#1| $) 7 T ELT)) (-2111 ((|#1| $) 6 T ELT)))
(((-236 |#1|) (-142) (-1247)) (T -236))
-((-2894 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1247)))) (-3305 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1247)))))
-(-13 (-1247) (-10 -8 (-15 -2894 (|t#1| $)) (-15 -3305 (|t#1| $))))
+((-3161 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1247)))) (-2111 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1247)))))
+(-13 (-1247) (-10 -8 (-15 -3161 (|t#1| $)) (-15 -2111 (|t#1| $))))
(((-1247) . T))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-2894 (($ $ (-793)) 37 T ELT) (($ $) 35 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-3305 (($ $ (-793)) 38 T ELT) (($ $) 36 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3161 (($ $ (-793)) 37 T ELT) (($ $) 35 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-2111 (($ $ (-793)) 38 T ELT) (($ $) 36 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT)))
(((-237 |#1|) (-142) (-1080)) (T -237))
NIL
(-13 (-111 |t#1| |t#1|) (-239) (-10 -7 (IF (|has| |t#1| (-175)) (-6 (-739 |t#1|)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-887)) . T) ((-236 $) . T) ((-239) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) |has| |#1| (-175)) ((-739 |#1|) |has| |#1| (-175)) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1132) . T) ((-1247) . T))
-((-2894 (($ $) NIL T ELT) (($ $ (-793)) 9 T ELT)) (-3305 (($ $) NIL T ELT) (($ $ (-793)) 11 T ELT)))
-(((-238 |#1|) (-10 -8 (-15 -3305 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1| (-793))) (-15 -3305 (|#1| |#1|)) (-15 -2894 (|#1| |#1|))) (-239)) (T -238))
+((-3161 (($ $) NIL T ELT) (($ $ (-793)) 9 T ELT)) (-2111 (($ $) NIL T ELT) (($ $ (-793)) 11 T ELT)))
+(((-238 |#1|) (-10 -8 (-15 -2111 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1| (-793))) (-15 -2111 (|#1| |#1|)) (-15 -3161 (|#1| |#1|))) (-239)) (T -238))
NIL
-(-10 -8 (-15 -3305 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1| (-793))) (-15 -3305 (|#1| |#1|)) (-15 -2894 (|#1| |#1|)))
-((-2894 (($ $) 7 T ELT) (($ $ (-793)) 10 T ELT)) (-3305 (($ $) 6 T ELT) (($ $ (-793)) 9 T ELT)))
+(-10 -8 (-15 -2111 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1| (-793))) (-15 -2111 (|#1| |#1|)) (-15 -3161 (|#1| |#1|)))
+((-3161 (($ $) 7 T ELT) (($ $ (-793)) 10 T ELT)) (-2111 (($ $) 6 T ELT) (($ $ (-793)) 9 T ELT)))
(((-239) (-142)) (T -239))
-((-2894 (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-793)))) (-3305 (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-793)))))
-(-13 (-236 $) (-10 -8 (-15 -2894 ($ $ (-793))) (-15 -3305 ($ $ (-793)))))
+((-3161 (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-793)))) (-2111 (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-793)))))
+(-13 (-236 $) (-10 -8 (-15 -3161 ($ $ (-793))) (-15 -2111 ($ $ (-793)))))
(((-236 $) . T) ((-1247) . T))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-2894 (($ $ (-793)) 42 T ELT) (($ $) 40 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($ $ (-793)) 43 T ELT) (($ $) 41 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3161 (($ $ (-793)) 42 T ELT) (($ $) 40 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($ $ (-793)) 43 T ELT) (($ $) 41 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
(((-240) (-142)) (T -240))
NIL
(-13 (-1080) (-239))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-560)) . T) ((-632 (-887)) . T) ((-236 $) . T) ((-239) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-3897 (($) 12 T ELT) (($ (-663 |#2|)) NIL T ELT)) (-1799 (($ $) 14 T ELT)) (-1592 (($ (-663 |#2|)) 10 T ELT)) (-1578 (((-887) $) 21 T ELT)))
-(((-241 |#1| |#2|) (-10 -8 (-15 -1578 ((-887) |#1|)) (-15 -3897 (|#1| (-663 |#2|))) (-15 -3897 (|#1|)) (-15 -1592 (|#1| (-663 |#2|))) (-15 -1799 (|#1| |#1|))) (-242 |#2|) (-1132)) (T -241))
+((-4468 (($) 12 T ELT) (($ (-663 |#2|)) NIL T ELT)) (-4107 (($ $) 14 T ELT)) (-3924 (($ (-663 |#2|)) 10 T ELT)) (-3913 (((-887) $) 21 T ELT)))
+(((-241 |#1| |#2|) (-10 -8 (-15 -3913 ((-887) |#1|)) (-15 -4468 (|#1| (-663 |#2|))) (-15 -4468 (|#1|)) (-15 -3924 (|#1| (-663 |#2|))) (-15 -4107 (|#1| |#1|))) (-242 |#2|) (-1132)) (T -241))
NIL
-(-10 -8 (-15 -1578 ((-887) |#1|)) (-15 -3897 (|#1| (-663 |#2|))) (-15 -3897 (|#1|)) (-15 -1592 (|#1| (-663 |#2|))) (-15 -1799 (|#1| |#1|)))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-3500 (($ (-1 (-114) |#1|) $) 46 (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) 56 (|has| $ (-6 -4508)) ELT)) (-2238 (($) 7 T CONST)) (-3606 (($ $) 59 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3390 (($ |#1| $) 48 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) |#1|) $) 47 (|has| $ (-6 -4508)) ELT)) (-2375 (($ |#1| $) 58 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 55 (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4508)) ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-1576 ((|#1| $) 40 T ELT)) (-3629 (($ |#1| $) 41 T ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 52 T ELT)) (-2615 ((|#1| $) 42 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3897 (($) 50 T ELT) (($ (-663 |#1|)) 49 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) 60 (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 51 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-3376 (($ (-663 |#1|)) 43 T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+(-10 -8 (-15 -3913 ((-887) |#1|)) (-15 -4468 (|#1| (-663 |#2|))) (-15 -4468 (|#1|)) (-15 -3924 (|#1| (-663 |#2|))) (-15 -4107 (|#1| |#1|)))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-1864 (($ (-1 (-114) |#1|) $) 46 (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) 56 (|has| $ (-6 -4508)) ELT)) (-3525 (($) 7 T CONST)) (-3658 (($ $) 59 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2091 (($ |#1| $) 48 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) |#1|) $) 47 (|has| $ (-6 -4508)) ELT)) (-3033 (($ |#1| $) 58 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 55 (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4508)) ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-1878 ((|#1| $) 40 T ELT)) (-3888 (($ |#1| $) 41 T ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 52 T ELT)) (-2796 ((|#1| $) 42 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-4468 (($) 50 T ELT) (($ (-663 |#1|)) 49 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) 60 (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 51 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-3184 (($ (-663 |#1|)) 43 T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-242 |#1|) (-142) (-1132)) (T -242))
-((-3897 (*1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1132)))) (-3897 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-4 *1 (-242 *3)))) (-3390 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-242 *2)) (-4 *2 (-1132)))) (-3390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4508)) (-4 *1 (-242 *3)) (-4 *3 (-1132)))) (-3500 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4508)) (-4 *1 (-242 *3)) (-4 *3 (-1132)))))
-(-13 (-107 |t#1|) (-153 |t#1|) (-10 -8 (-15 -3897 ($)) (-15 -3897 ($ (-663 |t#1|))) (IF (|has| $ (-6 -4508)) (PROGN (-15 -3390 ($ |t#1| $)) (-15 -3390 ($ (-1 (-114) |t#1|) $)) (-15 -3500 ($ (-1 (-114) |t#1|) $))) |%noBranch|)))
-(((-34) . T) ((-107 |#1|) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
-((-1781 (((-2 (|:| |varOrder| (-663 (-1207))) (|:| |inhom| (-3 (-663 (-1297 (-793))) "failed")) (|:| |hom| (-663 (-1297 (-793))))) (-305 (-975 (-560)))) 42 T ELT)))
-(((-243) (-10 -7 (-15 -1781 ((-2 (|:| |varOrder| (-663 (-1207))) (|:| |inhom| (-3 (-663 (-1297 (-793))) "failed")) (|:| |hom| (-663 (-1297 (-793))))) (-305 (-975 (-560))))))) (T -243))
-((-1781 (*1 *2 *3) (-12 (-5 *3 (-305 (-975 (-560)))) (-5 *2 (-2 (|:| |varOrder| (-663 (-1207))) (|:| |inhom| (-3 (-663 (-1297 (-793))) "failed")) (|:| |hom| (-663 (-1297 (-793)))))) (-5 *1 (-243)))))
-(-10 -7 (-15 -1781 ((-2 (|:| |varOrder| (-663 (-1207))) (|:| |inhom| (-3 (-663 (-1297 (-793))) "failed")) (|:| |hom| (-663 (-1297 (-793))))) (-305 (-975 (-560))))))
-((-3241 (((-793)) 56 T ELT)) (-3142 (((-2 (|:| -3822 (-711 |#3|)) (|:| |vec| (-1297 |#3|))) (-711 $) (-1297 $)) 53 T ELT) (((-711 |#3|) (-711 $)) 44 T ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT)) (-3669 (((-136)) 62 T ELT)) (-2894 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-1578 (((-1297 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-887) $) NIL T ELT) (($ (-560)) 12 T ELT) (($ (-421 (-560))) NIL T ELT)) (-2930 (((-793)) 15 T ELT)) (-2594 (($ $ |#3|) 59 T ELT)))
-(((-244 |#1| |#2| |#3|) (-10 -8 (-15 -1578 (|#1| (-421 (-560)))) (-15 -1578 (|#1| (-560))) (-15 -2894 (|#1| |#1|)) (-15 -2894 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1| (-1207))) (-15 -2894 (|#1| |#1| (-663 (-1207)))) (-15 -2894 (|#1| |#1| (-1207) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -1578 ((-887) |#1|)) (-15 -2930 ((-793))) (-15 -3142 ((-711 (-560)) (-711 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -1578 (|#1| |#3|)) (-15 -2894 (|#1| |#1| (-1 |#3| |#3|) (-793))) (-15 -2894 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3142 ((-711 |#3|) (-711 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 |#3|)) (|:| |vec| (-1297 |#3|))) (-711 |#1|) (-1297 |#1|))) (-15 -3241 ((-793))) (-15 -2594 (|#1| |#1| |#3|)) (-15 -3669 ((-136))) (-15 -1578 ((-1297 |#3|) |#1|))) (-245 |#2| |#3|) (-793) (-1247)) (T -244))
-((-3669 (*1 *2) (-12 (-14 *4 (-793)) (-4 *5 (-1247)) (-5 *2 (-136)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) (-3241 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1247)) (-5 *2 (-793)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) (-2930 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1247)) (-5 *2 (-793)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))))
-(-10 -8 (-15 -1578 (|#1| (-421 (-560)))) (-15 -1578 (|#1| (-560))) (-15 -2894 (|#1| |#1|)) (-15 -2894 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1| (-1207))) (-15 -2894 (|#1| |#1| (-663 (-1207)))) (-15 -2894 (|#1| |#1| (-1207) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -1578 ((-887) |#1|)) (-15 -2930 ((-793))) (-15 -3142 ((-711 (-560)) (-711 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -1578 (|#1| |#3|)) (-15 -2894 (|#1| |#1| (-1 |#3| |#3|) (-793))) (-15 -2894 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3142 ((-711 |#3|) (-711 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 |#3|)) (|:| |vec| (-1297 |#3|))) (-711 |#1|) (-1297 |#1|))) (-15 -3241 ((-793))) (-15 -2594 (|#1| |#1| |#3|)) (-15 -3669 ((-136))) (-15 -1578 ((-1297 |#3|) |#1|)))
-((-1538 (((-114) $ $) 20 (|has| |#2| (-102)) ELT)) (-2388 (((-114) $) 76 (|has| |#2| (-23)) ELT)) (-1521 (($ (-948)) 129 (|has| |#2| (-1080)) ELT)) (-3839 (((-1303) $ (-560) (-560)) 41 (|has| $ (-6 -4509)) ELT)) (-3168 (($ $ $) 125 (|has| |#2| (-815)) ELT)) (-3068 (((-3 $ "failed") $ $) 78 (|has| |#2| (-133)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-3241 (((-793)) 115 (|has| |#2| (-381)) ELT)) (-1773 ((|#2| $ (-560) |#2|) 53 (|has| $ (-6 -4509)) ELT)) (-2238 (($) 7 T CONST)) (-2539 (((-3 (-560) "failed") $) 71 (-1953 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) ELT) (((-3 (-421 (-560)) "failed") $) 68 (-1953 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) (((-3 |#2| "failed") $) 65 (|has| |#2| (-1132)) ELT)) (-3330 (((-560) $) 70 (-1953 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) ELT) (((-421 (-560)) $) 67 (-1953 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) ((|#2| $) 66 (|has| |#2| (-1132)) ELT)) (-3142 (((-711 (-560)) (-711 $)) 112 (-1953 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 111 (-1953 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) 110 (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-711 $)) 109 (|has| |#2| (-1080)) ELT)) (-1990 (((-3 $ "failed") $) 86 (|has| |#2| (-1080)) ELT)) (-2310 (($) 118 (|has| |#2| (-381)) ELT)) (-3779 ((|#2| $ (-560) |#2|) 54 (|has| $ (-6 -4509)) ELT)) (-3709 ((|#2| $ (-560)) 52 T ELT)) (-2181 (((-663 |#2|) $) 31 (|has| $ (-6 -4508)) ELT)) (-1581 (((-114) $) 88 (|has| |#2| (-1080)) ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-1762 (((-560) $) 44 (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) 119 (|has| |#2| (-871)) ELT)) (-2656 (((-663 |#2|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#2| $) 28 (-12 (|has| |#2| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2937 (((-560) $) 45 (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) 120 (|has| |#2| (-871)) ELT)) (-3768 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#2| |#2|) $) 36 T ELT)) (-4419 (((-948) $) 117 (|has| |#2| (-381)) ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-2484 (((-711 (-560)) (-1297 $)) 114 (-1953 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 113 (-1953 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) 108 (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-1297 $)) 107 (|has| |#2| (-1080)) ELT)) (-1905 (((-1189) $) 23 (|has| |#2| (-1132)) ELT)) (-3270 (((-663 (-560)) $) 47 T ELT)) (-3586 (((-114) (-560) $) 48 T ELT)) (-3128 (($ (-948)) 116 (|has| |#2| (-381)) ELT)) (-3855 (((-1151) $) 22 (|has| |#2| (-1132)) ELT)) (-3637 ((|#2| $) 43 (|has| (-560) (-871)) ELT)) (-3037 (($ $ |#2|) 42 (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) |#2|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#2|))) 27 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) 26 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) 24 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-2914 (((-114) |#2| $) 46 (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-3571 (((-663 |#2|) $) 49 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3924 ((|#2| $ (-560) |#2|) 51 T ELT) ((|#2| $ (-560)) 50 T ELT)) (-3232 ((|#2| $ $) 128 (|has| |#2| (-1080)) ELT)) (-1343 (($ (-1297 |#2|)) 130 T ELT)) (-3669 (((-136)) 127 (|has| |#2| (-376)) ELT)) (-2894 (($ $ (-793)) 105 (-1953 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) 103 (-1953 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 99 (-1953 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) 98 (-1953 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207))) 97 (-1953 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) 95 (-1953 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) 94 (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) 93 (|has| |#2| (-1080)) ELT)) (-3865 (((-793) (-1 (-114) |#2|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#2| $) 29 (-12 (|has| |#2| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1578 (((-1297 |#2|) $) 131 T ELT) (($ (-560)) 72 (-2304 (-1953 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) (|has| |#2| (-1080))) ELT) (($ (-421 (-560))) 69 (-1953 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) (($ |#2|) 64 (|has| |#2| (-1132)) ELT) (((-887) $) 18 (|has| |#2| (-632 (-887))) ELT)) (-2930 (((-793)) 90 (|has| |#2| (-1080)) CONST)) (-2275 (((-114) $ $) 21 (|has| |#2| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#2|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2001 (($) 75 (|has| |#2| (-23)) CONST)) (-2011 (($) 89 (|has| |#2| (-1080)) CONST)) (-3305 (($ $ (-793)) 106 (-1953 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) 104 (-1953 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 102 (-1953 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) 101 (-1953 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207))) 100 (-1953 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) 96 (-1953 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) 91 (|has| |#2| (-1080)) ELT)) (-2536 (((-114) $ $) 121 (|has| |#2| (-871)) ELT)) (-2508 (((-114) $ $) 123 (|has| |#2| (-871)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#2| (-102)) ELT)) (-2521 (((-114) $ $) 122 (|has| |#2| (-871)) ELT)) (-2495 (((-114) $ $) 124 (|has| |#2| (-871)) ELT)) (-2594 (($ $ |#2|) 126 (|has| |#2| (-376)) ELT)) (-2580 (($ $ $) 81 (|has| |#2| (-21)) ELT) (($ $) 80 (|has| |#2| (-21)) ELT)) (-2567 (($ $ $) 73 (|has| |#2| (-25)) ELT)) (** (($ $ (-793)) 87 (|has| |#2| (-1080)) ELT) (($ $ (-948)) 84 (|has| |#2| (-1080)) ELT)) (* (($ $ $) 85 (|has| |#2| (-1080)) ELT) (($ $ |#2|) 83 (|has| |#2| (-748)) ELT) (($ |#2| $) 82 (|has| |#2| (-748)) ELT) (($ (-560) $) 79 (|has| |#2| (-21)) ELT) (($ (-793) $) 77 (|has| |#2| (-23)) ELT) (($ (-948) $) 74 (|has| |#2| (-25)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-4468 (*1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1132)))) (-4468 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-4 *1 (-242 *3)))) (-2091 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-242 *2)) (-4 *2 (-1132)))) (-2091 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4508)) (-4 *1 (-242 *3)) (-4 *3 (-1132)))) (-1864 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4508)) (-4 *1 (-242 *3)) (-4 *3 (-1132)))))
+(-13 (-107 |t#1|) (-153 |t#1|) (-10 -8 (-15 -4468 ($)) (-15 -4468 ($ (-663 |t#1|))) (IF (|has| $ (-6 -4508)) (PROGN (-15 -2091 ($ |t#1| $)) (-15 -2091 ($ (-1 (-114) |t#1|) $)) (-15 -1864 ($ (-1 (-114) |t#1|) $))) |%noBranch|)))
+(((-34) . T) ((-107 |#1|) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
+((-1410 (((-2 (|:| |varOrder| (-663 (-1207))) (|:| |inhom| (-3 (-663 (-1297 (-793))) "failed")) (|:| |hom| (-663 (-1297 (-793))))) (-305 (-975 (-560)))) 42 T ELT)))
+(((-243) (-10 -7 (-15 -1410 ((-2 (|:| |varOrder| (-663 (-1207))) (|:| |inhom| (-3 (-663 (-1297 (-793))) "failed")) (|:| |hom| (-663 (-1297 (-793))))) (-305 (-975 (-560))))))) (T -243))
+((-1410 (*1 *2 *3) (-12 (-5 *3 (-305 (-975 (-560)))) (-5 *2 (-2 (|:| |varOrder| (-663 (-1207))) (|:| |inhom| (-3 (-663 (-1297 (-793))) "failed")) (|:| |hom| (-663 (-1297 (-793)))))) (-5 *1 (-243)))))
+(-10 -7 (-15 -1410 ((-2 (|:| |varOrder| (-663 (-1207))) (|:| |inhom| (-3 (-663 (-1297 (-793))) "failed")) (|:| |hom| (-663 (-1297 (-793))))) (-305 (-975 (-560))))))
+((-2552 (((-793)) 56 T ELT)) (-2619 (((-2 (|:| -1871 (-711 |#3|)) (|:| |vec| (-1297 |#3|))) (-711 $) (-1297 $)) 53 T ELT) (((-711 |#3|) (-711 $)) 44 T ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT)) (-3015 (((-136)) 62 T ELT)) (-3161 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-3913 (((-1297 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-887) $) NIL T ELT) (($ (-560)) 12 T ELT) (($ (-421 (-560))) NIL T ELT)) (-4191 (((-793)) 15 T ELT)) (-2453 (($ $ |#3|) 59 T ELT)))
+(((-244 |#1| |#2| |#3|) (-10 -8 (-15 -3913 (|#1| (-421 (-560)))) (-15 -3913 (|#1| (-560))) (-15 -3161 (|#1| |#1|)) (-15 -3161 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1| (-1207))) (-15 -3161 (|#1| |#1| (-663 (-1207)))) (-15 -3161 (|#1| |#1| (-1207) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -3913 ((-887) |#1|)) (-15 -4191 ((-793))) (-15 -2619 ((-711 (-560)) (-711 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -3913 (|#1| |#3|)) (-15 -3161 (|#1| |#1| (-1 |#3| |#3|) (-793))) (-15 -3161 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2619 ((-711 |#3|) (-711 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 |#3|)) (|:| |vec| (-1297 |#3|))) (-711 |#1|) (-1297 |#1|))) (-15 -2552 ((-793))) (-15 -2453 (|#1| |#1| |#3|)) (-15 -3015 ((-136))) (-15 -3913 ((-1297 |#3|) |#1|))) (-245 |#2| |#3|) (-793) (-1247)) (T -244))
+((-3015 (*1 *2) (-12 (-14 *4 (-793)) (-4 *5 (-1247)) (-5 *2 (-136)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) (-2552 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1247)) (-5 *2 (-793)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) (-4191 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1247)) (-5 *2 (-793)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))))
+(-10 -8 (-15 -3913 (|#1| (-421 (-560)))) (-15 -3913 (|#1| (-560))) (-15 -3161 (|#1| |#1|)) (-15 -3161 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1| (-1207))) (-15 -3161 (|#1| |#1| (-663 (-1207)))) (-15 -3161 (|#1| |#1| (-1207) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -3913 ((-887) |#1|)) (-15 -4191 ((-793))) (-15 -2619 ((-711 (-560)) (-711 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -3913 (|#1| |#3|)) (-15 -3161 (|#1| |#1| (-1 |#3| |#3|) (-793))) (-15 -3161 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2619 ((-711 |#3|) (-711 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 |#3|)) (|:| |vec| (-1297 |#3|))) (-711 |#1|) (-1297 |#1|))) (-15 -2552 ((-793))) (-15 -2453 (|#1| |#1| |#3|)) (-15 -3015 ((-136))) (-15 -3913 ((-1297 |#3|) |#1|)))
+((-2243 (((-114) $ $) 20 (|has| |#2| (-102)) ELT)) (-2505 (((-114) $) 76 (|has| |#2| (-23)) ELT)) (-3101 (($ (-948)) 129 (|has| |#2| (-1080)) ELT)) (-2033 (((-1303) $ (-560) (-560)) 41 (|has| $ (-6 -4509)) ELT)) (-1651 (($ $ $) 125 (|has| |#2| (-815)) ELT)) (-3094 (((-3 $ "failed") $ $) 78 (|has| |#2| (-133)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-2552 (((-793)) 115 (|has| |#2| (-381)) ELT)) (-4083 ((|#2| $ (-560) |#2|) 53 (|has| $ (-6 -4509)) ELT)) (-3525 (($) 7 T CONST)) (-3929 (((-3 (-560) "failed") $) 71 (-1404 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) ELT) (((-3 (-421 (-560)) "failed") $) 68 (-1404 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) (((-3 |#2| "failed") $) 65 (|has| |#2| (-1132)) ELT)) (-3649 (((-560) $) 70 (-1404 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) ELT) (((-421 (-560)) $) 67 (-1404 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) ((|#2| $) 66 (|has| |#2| (-1132)) ELT)) (-2619 (((-711 (-560)) (-711 $)) 112 (-1404 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 111 (-1404 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) 110 (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-711 $)) 109 (|has| |#2| (-1080)) ELT)) (-2873 (((-3 $ "failed") $) 86 (|has| |#2| (-1080)) ELT)) (-1812 (($) 118 (|has| |#2| (-381)) ELT)) (-3338 ((|#2| $ (-560) |#2|) 54 (|has| $ (-6 -4509)) ELT)) (-3274 ((|#2| $ (-560)) 52 T ELT)) (-3737 (((-663 |#2|) $) 31 (|has| $ (-6 -4508)) ELT)) (-1918 (((-114) $) 88 (|has| |#2| (-1080)) ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-2483 (((-560) $) 44 (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) 119 (|has| |#2| (-871)) ELT)) (-3243 (((-663 |#2|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#2| $) 28 (-12 (|has| |#2| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4263 (((-560) $) 45 (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) 120 (|has| |#2| (-871)) ELT)) (-3324 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#2| |#2|) $) 36 T ELT)) (-2622 (((-948) $) 117 (|has| |#2| (-381)) ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-4140 (((-711 (-560)) (-1297 $)) 114 (-1404 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 113 (-1404 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) 108 (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-1297 $)) 107 (|has| |#2| (-1080)) ELT)) (-3358 (((-1189) $) 23 (|has| |#2| (-1132)) ELT)) (-3372 (((-663 (-560)) $) 47 T ELT)) (-3439 (((-114) (-560) $) 48 T ELT)) (-1591 (($ (-948)) 116 (|has| |#2| (-381)) ELT)) (-3376 (((-1151) $) 22 (|has| |#2| (-1132)) ELT)) (-4334 ((|#2| $) 43 (|has| (-560) (-871)) ELT)) (-2740 (($ $ |#2|) 42 (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) |#2|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#2|))) 27 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) 26 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) 24 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-4019 (((-114) |#2| $) 46 (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-1383 (((-663 |#2|) $) 49 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1507 ((|#2| $ (-560) |#2|) 51 T ELT) ((|#2| $ (-560)) 50 T ELT)) (-4258 ((|#2| $ $) 128 (|has| |#2| (-1080)) ELT)) (-4050 (($ (-1297 |#2|)) 130 T ELT)) (-3015 (((-136)) 127 (|has| |#2| (-376)) ELT)) (-3161 (($ $ (-793)) 105 (-1404 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) 103 (-1404 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 99 (-1404 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) 98 (-1404 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207))) 97 (-1404 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) 95 (-1404 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) 94 (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) 93 (|has| |#2| (-1080)) ELT)) (-3384 (((-793) (-1 (-114) |#2|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#2| $) 29 (-12 (|has| |#2| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-3913 (((-1297 |#2|) $) 131 T ELT) (($ (-560)) 72 (-2196 (-1404 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) (|has| |#2| (-1080))) ELT) (($ (-421 (-560))) 69 (-1404 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) (($ |#2|) 64 (|has| |#2| (-1132)) ELT) (((-887) $) 18 (|has| |#2| (-632 (-887))) ELT)) (-4191 (((-793)) 90 (|has| |#2| (-1080)) CONST)) (-3925 (((-114) $ $) 21 (|has| |#2| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#2|) $) 34 (|has| $ (-6 -4508)) ELT)) (-1446 (($) 75 (|has| |#2| (-23)) CONST)) (-1456 (($) 89 (|has| |#2| (-1080)) CONST)) (-2111 (($ $ (-793)) 106 (-1404 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) 104 (-1404 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 102 (-1404 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) 101 (-1404 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207))) 100 (-1404 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) 96 (-1404 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) 92 (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) 91 (|has| |#2| (-1080)) ELT)) (-2396 (((-114) $ $) 121 (|has| |#2| (-871)) ELT)) (-2373 (((-114) $ $) 123 (|has| |#2| (-871)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#2| (-102)) ELT)) (-2386 (((-114) $ $) 122 (|has| |#2| (-871)) ELT)) (-2362 (((-114) $ $) 124 (|has| |#2| (-871)) ELT)) (-2453 (($ $ |#2|) 126 (|has| |#2| (-376)) ELT)) (-2441 (($ $ $) 81 (|has| |#2| (-21)) ELT) (($ $) 80 (|has| |#2| (-21)) ELT)) (-2429 (($ $ $) 73 (|has| |#2| (-25)) ELT)) (** (($ $ (-793)) 87 (|has| |#2| (-1080)) ELT) (($ $ (-948)) 84 (|has| |#2| (-1080)) ELT)) (* (($ $ $) 85 (|has| |#2| (-1080)) ELT) (($ $ |#2|) 83 (|has| |#2| (-748)) ELT) (($ |#2| $) 82 (|has| |#2| (-748)) ELT) (($ (-560) $) 79 (|has| |#2| (-21)) ELT) (($ (-793) $) 77 (|has| |#2| (-23)) ELT) (($ (-948) $) 74 (|has| |#2| (-25)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-245 |#1| |#2|) (-142) (-793) (-1247)) (T -245))
-((-1343 (*1 *1 *2) (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1247)) (-4 *1 (-245 *3 *4)))) (-1521 (*1 *1 *2) (-12 (-5 *2 (-948)) (-4 *1 (-245 *3 *4)) (-4 *4 (-1080)) (-4 *4 (-1247)))) (-3232 (*1 *2 *1 *1) (-12 (-4 *1 (-245 *3 *2)) (-4 *2 (-1247)) (-4 *2 (-1080)))))
-(-13 (-618 (-560) |t#2|) (-632 (-1297 |t#2|)) (-10 -8 (-6 -4508) (-15 -1343 ($ (-1297 |t#2|))) (IF (|has| |t#2| (-1132)) (-6 (-426 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1080)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-234 |t#2|)) (-6 (-390 |t#2|)) (-15 -1521 ($ (-948))) (-15 -3232 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-748)) (-6 (-662 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#2| (-175)) (-6 (-739 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4505)) (-6 -4505) |%noBranch|) (IF (|has| |t#2| (-871)) (-6 (-871)) |%noBranch|) (IF (|has| |t#2| (-815)) (-6 (-815)) |%noBranch|) (IF (|has| |t#2| (-376)) (-6 (-1305 |t#2|)) |%noBranch|)))
-(((-21) -2304 (|has| |#2| (-1080)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-21))) ((-23) -2304 (|has| |#2| (-1080)) (|has| |#2| (-815)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -2304 (|has| |#2| (-1080)) (|has| |#2| (-815)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -2304 (|has| |#2| (-1132)) (|has| |#2| (-1080)) (|has| |#2| (-871)) (|has| |#2| (-815)) (|has| |#2| (-748)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -2304 (|has| |#2| (-1080)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-133) -2304 (|has| |#2| (-1080)) (|has| |#2| (-815)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-21))) ((-635 #0=(-421 (-560))) -12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ((-635 (-560)) -2304 (|has| |#2| (-1080)) (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132)))) ((-635 |#2|) |has| |#2| (-1132)) ((-632 (-887)) -2304 (|has| |#2| (-1132)) (|has| |#2| (-1080)) (|has| |#2| (-871)) (|has| |#2| (-815)) (|has| |#2| (-748)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-632 (-887))) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-632 (-1297 |#2|)) . T) ((-236 $) -2304 (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-240)) (|has| |#2| (-1080)))) ((-234 |#2|) |has| |#2| (-1080)) ((-240) -12 (|has| |#2| (-240)) (|has| |#2| (-1080))) ((-239) -2304 (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-240)) (|has| |#2| (-1080)))) ((-274 |#2|) |has| |#2| (-1080)) ((-298 #1=(-560) |#2|) . T) ((-300 #1# |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((-381) |has| |#2| (-381)) ((-390 |#2|) |has| |#2| (-1080)) ((-426 |#2|) |has| |#2| (-1132)) ((-503 |#2|) . T) ((-618 #1# |#2|) . T) ((-528 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((-668 (-560)) -2304 (|has| |#2| (-1080)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-21))) ((-668 |#2|) -2304 (|has| |#2| (-1080)) (|has| |#2| (-748)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-668 $) |has| |#2| (-1080)) ((-670 #2=(-560)) -12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ((-670 |#2|) -2304 (|has| |#2| (-1080)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-670 $) |has| |#2| (-1080)) ((-662 |#2|) -2304 (|has| |#2| (-748)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-660 #2#) -12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ((-660 |#2|) |has| |#2| (-1080)) ((-739 |#2|) -2304 (|has| |#2| (-376)) (|has| |#2| (-175))) ((-748) |has| |#2| (-1080)) ((-814) |has| |#2| (-815)) ((-815) |has| |#2| (-815)) ((-816) |has| |#2| (-815)) ((-819) |has| |#2| (-815)) ((-871) -2304 (|has| |#2| (-871)) (|has| |#2| (-815))) ((-874) -2304 (|has| |#2| (-871)) (|has| |#2| (-815))) ((-921 $ #3=(-1207)) -2304 (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080)))) ((-927 (-1207)) -12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))) ((-929 #3#) -2304 (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080)))) ((-1069 #0#) -12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ((-1069 (-560)) -12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) ((-1069 |#2|) |has| |#2| (-1132)) ((-1082 |#2|) -2304 (|has| |#2| (-1080)) (|has| |#2| (-748)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-1087 |#2|) -2304 (|has| |#2| (-1080)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-1080) |has| |#2| (-1080)) ((-1088) |has| |#2| (-1080)) ((-1143) |has| |#2| (-1080)) ((-1132) -2304 (|has| |#2| (-1132)) (|has| |#2| (-1080)) (|has| |#2| (-871)) (|has| |#2| (-815)) (|has| |#2| (-748)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1247) . T) ((-1305 |#2|) |has| |#2| (-376)))
-((-1538 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2388 (((-114) $) NIL (|has| |#2| (-23)) ELT)) (-1521 (($ (-948)) 62 (|has| |#2| (-1080)) ELT)) (-3839 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-3168 (($ $ $) 68 (|has| |#2| (-815)) ELT)) (-3068 (((-3 $ "failed") $ $) 53 (|has| |#2| (-133)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-3241 (((-793)) NIL (|has| |#2| (-381)) ELT)) (-1773 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) NIL (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (-12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1132)) ELT)) (-3330 (((-560) $) NIL (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) ELT) (((-421 (-560)) $) NIL (-12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) ((|#2| $) 28 (|has| |#2| (-1132)) ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-711 $)) NIL (|has| |#2| (-1080)) ELT)) (-1990 (((-3 $ "failed") $) 58 (|has| |#2| (-1080)) ELT)) (-2310 (($) NIL (|has| |#2| (-381)) ELT)) (-3779 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#2| $ (-560)) 56 T ELT)) (-2181 (((-663 |#2|) $) 14 (|has| $ (-6 -4508)) ELT)) (-1581 (((-114) $) NIL (|has| |#2| (-1080)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) 19 (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-2656 (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-2937 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-3768 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4419 (((-948) $) NIL (|has| |#2| (-381)) ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-1297 $)) NIL (|has| |#2| (-1080)) ELT)) (-1905 (((-1189) $) NIL (|has| |#2| (-1132)) ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) NIL T ELT)) (-3128 (($ (-948)) NIL (|has| |#2| (-381)) ELT)) (-3855 (((-1151) $) NIL (|has| |#2| (-1132)) ELT)) (-3637 ((|#2| $) NIL (|has| (-560) (-871)) ELT)) (-3037 (($ $ |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) |#2|) $) 23 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-3571 (((-663 |#2|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#2| $ (-560) |#2|) NIL T ELT) ((|#2| $ (-560)) 20 T ELT)) (-3232 ((|#2| $ $) NIL (|has| |#2| (-1080)) ELT)) (-1343 (($ (-1297 |#2|)) 17 T ELT)) (-3669 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-2894 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1080)) ELT)) (-3865 (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-1799 (($ $) NIL T ELT)) (-1578 (((-1297 |#2|) $) 9 T ELT) (($ (-560)) NIL (-2304 (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) (|has| |#2| (-1080))) ELT) (($ (-421 (-560))) NIL (-12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) (($ |#2|) 12 (|has| |#2| (-1132)) ELT) (((-887) $) NIL (|has| |#2| (-632 (-887))) ELT)) (-2930 (((-793)) NIL (|has| |#2| (-1080)) CONST)) (-2275 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2001 (($) 36 (|has| |#2| (-23)) CONST)) (-2011 (($) 40 (|has| |#2| (-1080)) CONST)) (-3305 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1080)) ELT)) (-2536 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2473 (((-114) $ $) 27 (|has| |#2| (-102)) ELT)) (-2521 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2495 (((-114) $ $) 66 (|has| |#2| (-871)) ELT)) (-2594 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2580 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-2567 (($ $ $) 34 (|has| |#2| (-25)) ELT)) (** (($ $ (-793)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-948)) NIL (|has| |#2| (-1080)) ELT)) (* (($ $ $) 46 (|has| |#2| (-1080)) ELT) (($ $ |#2|) 44 (|has| |#2| (-748)) ELT) (($ |#2| $) 45 (|has| |#2| (-748)) ELT) (($ (-560) $) NIL (|has| |#2| (-21)) ELT) (($ (-793) $) NIL (|has| |#2| (-23)) ELT) (($ (-948) $) NIL (|has| |#2| (-25)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+((-4050 (*1 *1 *2) (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1247)) (-4 *1 (-245 *3 *4)))) (-3101 (*1 *1 *2) (-12 (-5 *2 (-948)) (-4 *1 (-245 *3 *4)) (-4 *4 (-1080)) (-4 *4 (-1247)))) (-4258 (*1 *2 *1 *1) (-12 (-4 *1 (-245 *3 *2)) (-4 *2 (-1247)) (-4 *2 (-1080)))))
+(-13 (-618 (-560) |t#2|) (-632 (-1297 |t#2|)) (-10 -8 (-6 -4508) (-15 -4050 ($ (-1297 |t#2|))) (IF (|has| |t#2| (-1132)) (-6 (-426 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1080)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-234 |t#2|)) (-6 (-390 |t#2|)) (-15 -3101 ($ (-948))) (-15 -4258 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-748)) (-6 (-662 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#2| (-175)) (-6 (-739 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4505)) (-6 -4505) |%noBranch|) (IF (|has| |t#2| (-871)) (-6 (-871)) |%noBranch|) (IF (|has| |t#2| (-815)) (-6 (-815)) |%noBranch|) (IF (|has| |t#2| (-376)) (-6 (-1305 |t#2|)) |%noBranch|)))
+(((-21) -2196 (|has| |#2| (-1080)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-21))) ((-23) -2196 (|has| |#2| (-1080)) (|has| |#2| (-815)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -2196 (|has| |#2| (-1080)) (|has| |#2| (-815)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -2196 (|has| |#2| (-1132)) (|has| |#2| (-1080)) (|has| |#2| (-871)) (|has| |#2| (-815)) (|has| |#2| (-748)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -2196 (|has| |#2| (-1080)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-133) -2196 (|has| |#2| (-1080)) (|has| |#2| (-815)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-21))) ((-635 #0=(-421 (-560))) -12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ((-635 (-560)) -2196 (|has| |#2| (-1080)) (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132)))) ((-635 |#2|) |has| |#2| (-1132)) ((-632 (-887)) -2196 (|has| |#2| (-1132)) (|has| |#2| (-1080)) (|has| |#2| (-871)) (|has| |#2| (-815)) (|has| |#2| (-748)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-632 (-887))) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-632 (-1297 |#2|)) . T) ((-236 $) -2196 (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-240)) (|has| |#2| (-1080)))) ((-234 |#2|) |has| |#2| (-1080)) ((-240) -12 (|has| |#2| (-240)) (|has| |#2| (-1080))) ((-239) -2196 (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) (-12 (|has| |#2| (-240)) (|has| |#2| (-1080)))) ((-274 |#2|) |has| |#2| (-1080)) ((-298 #1=(-560) |#2|) . T) ((-300 #1# |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((-381) |has| |#2| (-381)) ((-390 |#2|) |has| |#2| (-1080)) ((-426 |#2|) |has| |#2| (-1132)) ((-503 |#2|) . T) ((-618 #1# |#2|) . T) ((-528 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((-668 (-560)) -2196 (|has| |#2| (-1080)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-21))) ((-668 |#2|) -2196 (|has| |#2| (-1080)) (|has| |#2| (-748)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-668 $) |has| |#2| (-1080)) ((-670 #2=(-560)) -12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ((-670 |#2|) -2196 (|has| |#2| (-1080)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-670 $) |has| |#2| (-1080)) ((-662 |#2|) -2196 (|has| |#2| (-748)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-660 #2#) -12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ((-660 |#2|) |has| |#2| (-1080)) ((-739 |#2|) -2196 (|has| |#2| (-376)) (|has| |#2| (-175))) ((-748) |has| |#2| (-1080)) ((-814) |has| |#2| (-815)) ((-815) |has| |#2| (-815)) ((-816) |has| |#2| (-815)) ((-819) |has| |#2| (-815)) ((-871) -2196 (|has| |#2| (-871)) (|has| |#2| (-815))) ((-874) -2196 (|has| |#2| (-871)) (|has| |#2| (-815))) ((-921 $ #3=(-1207)) -2196 (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080)))) ((-927 (-1207)) -12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080))) ((-929 #3#) -2196 (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) (-12 (|has| |#2| (-927 (-1207))) (|has| |#2| (-1080)))) ((-1069 #0#) -12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ((-1069 (-560)) -12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) ((-1069 |#2|) |has| |#2| (-1132)) ((-1082 |#2|) -2196 (|has| |#2| (-1080)) (|has| |#2| (-748)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-1087 |#2|) -2196 (|has| |#2| (-1080)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-1080) |has| |#2| (-1080)) ((-1088) |has| |#2| (-1080)) ((-1143) |has| |#2| (-1080)) ((-1132) -2196 (|has| |#2| (-1132)) (|has| |#2| (-1080)) (|has| |#2| (-871)) (|has| |#2| (-815)) (|has| |#2| (-748)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1247) . T) ((-1305 |#2|) |has| |#2| (-376)))
+((-2243 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2505 (((-114) $) NIL (|has| |#2| (-23)) ELT)) (-3101 (($ (-948)) 62 (|has| |#2| (-1080)) ELT)) (-2033 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-1651 (($ $ $) 68 (|has| |#2| (-815)) ELT)) (-3094 (((-3 $ "failed") $ $) 53 (|has| |#2| (-133)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-2552 (((-793)) NIL (|has| |#2| (-381)) ELT)) (-4083 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) NIL (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (-12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) (((-3 |#2| "failed") $) 30 (|has| |#2| (-1132)) ELT)) (-3649 (((-560) $) NIL (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) ELT) (((-421 (-560)) $) NIL (-12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) ((|#2| $) 28 (|has| |#2| (-1132)) ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-711 $)) NIL (|has| |#2| (-1080)) ELT)) (-2873 (((-3 $ "failed") $) 58 (|has| |#2| (-1080)) ELT)) (-1812 (($) NIL (|has| |#2| (-381)) ELT)) (-3338 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#2| $ (-560)) 56 T ELT)) (-3737 (((-663 |#2|) $) 14 (|has| $ (-6 -4508)) ELT)) (-1918 (((-114) $) NIL (|has| |#2| (-1080)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) 19 (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-3243 (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-4263 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-3324 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2622 (((-948) $) NIL (|has| |#2| (-381)) ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-1297 $)) NIL (|has| |#2| (-1080)) ELT)) (-3358 (((-1189) $) NIL (|has| |#2| (-1132)) ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) NIL T ELT)) (-1591 (($ (-948)) NIL (|has| |#2| (-381)) ELT)) (-3376 (((-1151) $) NIL (|has| |#2| (-1132)) ELT)) (-4334 ((|#2| $) NIL (|has| (-560) (-871)) ELT)) (-2740 (($ $ |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) |#2|) $) 23 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-1383 (((-663 |#2|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#2| $ (-560) |#2|) NIL T ELT) ((|#2| $ (-560)) 20 T ELT)) (-4258 ((|#2| $ $) NIL (|has| |#2| (-1080)) ELT)) (-4050 (($ (-1297 |#2|)) 17 T ELT)) (-3015 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-3161 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1080)) ELT)) (-3384 (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-4107 (($ $) NIL T ELT)) (-3913 (((-1297 |#2|) $) 9 T ELT) (($ (-560)) NIL (-2196 (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) (|has| |#2| (-1080))) ELT) (($ (-421 (-560))) NIL (-12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) (($ |#2|) 12 (|has| |#2| (-1132)) ELT) (((-887) $) NIL (|has| |#2| (-632 (-887))) ELT)) (-4191 (((-793)) NIL (|has| |#2| (-1080)) CONST)) (-3925 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1446 (($) 36 (|has| |#2| (-23)) CONST)) (-1456 (($) 40 (|has| |#2| (-1080)) CONST)) (-2111 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1080)) ELT)) (-2396 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2340 (((-114) $ $) 27 (|has| |#2| (-102)) ELT)) (-2386 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2362 (((-114) $ $) 66 (|has| |#2| (-871)) ELT)) (-2453 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2441 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-2429 (($ $ $) 34 (|has| |#2| (-25)) ELT)) (** (($ $ (-793)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-948)) NIL (|has| |#2| (-1080)) ELT)) (* (($ $ $) 46 (|has| |#2| (-1080)) ELT) (($ $ |#2|) 44 (|has| |#2| (-748)) ELT) (($ |#2| $) 45 (|has| |#2| (-748)) ELT) (($ (-560) $) NIL (|has| |#2| (-21)) ELT) (($ (-793) $) NIL (|has| |#2| (-23)) ELT) (($ (-948) $) NIL (|has| |#2| (-25)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
(((-246 |#1| |#2|) (-245 |#1| |#2|) (-793) (-1247)) (T -246))
NIL
(-245 |#1| |#2|)
-((-1520 (((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 21 T ELT)) (-4129 ((|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 23 T ELT)) (-3957 (((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)) 18 T ELT)))
-(((-247 |#1| |#2| |#3|) (-10 -7 (-15 -1520 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -4129 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -3957 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) (-793) (-1247) (-1247)) (T -247))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-793)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-5 *2 (-246 *5 *7)) (-5 *1 (-247 *5 *6 *7)))) (-4129 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-793)) (-4 *6 (-1247)) (-4 *2 (-1247)) (-5 *1 (-247 *5 *6 *2)))) (-1520 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-793)) (-4 *7 (-1247)) (-4 *5 (-1247)) (-5 *2 (-246 *6 *5)) (-5 *1 (-247 *6 *7 *5)))))
-(-10 -7 (-15 -1520 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -4129 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -3957 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|))))
-((-3915 (((-560) (-663 (-1189))) 36 T ELT) (((-560) (-1189)) 29 T ELT)) (-4077 (((-1303) (-663 (-1189))) 40 T ELT) (((-1303) (-1189)) 39 T ELT)) (-2338 (((-1189)) 16 T ELT)) (-3359 (((-1189) (-560) (-1189)) 23 T ELT)) (-3355 (((-663 (-1189)) (-663 (-1189)) (-560) (-1189)) 37 T ELT) (((-1189) (-1189) (-560) (-1189)) 35 T ELT)) (-4163 (((-663 (-1189)) (-663 (-1189))) 15 T ELT) (((-663 (-1189)) (-1189)) 11 T ELT)))
-(((-248) (-10 -7 (-15 -4163 ((-663 (-1189)) (-1189))) (-15 -4163 ((-663 (-1189)) (-663 (-1189)))) (-15 -2338 ((-1189))) (-15 -3359 ((-1189) (-560) (-1189))) (-15 -3355 ((-1189) (-1189) (-560) (-1189))) (-15 -3355 ((-663 (-1189)) (-663 (-1189)) (-560) (-1189))) (-15 -4077 ((-1303) (-1189))) (-15 -4077 ((-1303) (-663 (-1189)))) (-15 -3915 ((-560) (-1189))) (-15 -3915 ((-560) (-663 (-1189)))))) (T -248))
-((-3915 (*1 *2 *3) (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-560)) (-5 *1 (-248)))) (-3915 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-560)) (-5 *1 (-248)))) (-4077 (*1 *2 *3) (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-1303)) (-5 *1 (-248)))) (-4077 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-248)))) (-3355 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-663 (-1189))) (-5 *3 (-560)) (-5 *4 (-1189)) (-5 *1 (-248)))) (-3355 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-560)) (-5 *1 (-248)))) (-3359 (*1 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-560)) (-5 *1 (-248)))) (-2338 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-248)))) (-4163 (*1 *2 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-248)))) (-4163 (*1 *2 *3) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-248)) (-5 *3 (-1189)))))
-(-10 -7 (-15 -4163 ((-663 (-1189)) (-1189))) (-15 -4163 ((-663 (-1189)) (-663 (-1189)))) (-15 -2338 ((-1189))) (-15 -3359 ((-1189) (-560) (-1189))) (-15 -3355 ((-1189) (-1189) (-560) (-1189))) (-15 -3355 ((-663 (-1189)) (-663 (-1189)) (-560) (-1189))) (-15 -4077 ((-1303) (-1189))) (-15 -4077 ((-1303) (-663 (-1189)))) (-15 -3915 ((-560) (-1189))) (-15 -3915 ((-560) (-663 (-1189)))))
+((-2928 (((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 21 T ELT)) (-1778 ((|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 23 T ELT)) (-2260 (((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)) 18 T ELT)))
+(((-247 |#1| |#2| |#3|) (-10 -7 (-15 -2928 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -1778 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2260 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) (-793) (-1247) (-1247)) (T -247))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-793)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-5 *2 (-246 *5 *7)) (-5 *1 (-247 *5 *6 *7)))) (-1778 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-793)) (-4 *6 (-1247)) (-4 *2 (-1247)) (-5 *1 (-247 *5 *6 *2)))) (-2928 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-793)) (-4 *7 (-1247)) (-4 *5 (-1247)) (-5 *2 (-246 *6 *5)) (-5 *1 (-247 *6 *7 *5)))))
+(-10 -7 (-15 -2928 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -1778 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -2260 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|))))
+((-1480 (((-560) (-663 (-1189))) 36 T ELT) (((-560) (-1189)) 29 T ELT)) (-3643 (((-1303) (-663 (-1189))) 40 T ELT) (((-1303) (-1189)) 39 T ELT)) (-3245 (((-1189)) 16 T ELT)) (-3007 (((-1189) (-560) (-1189)) 23 T ELT)) (-1351 (((-663 (-1189)) (-663 (-1189)) (-560) (-1189)) 37 T ELT) (((-1189) (-1189) (-560) (-1189)) 35 T ELT)) (-2346 (((-663 (-1189)) (-663 (-1189))) 15 T ELT) (((-663 (-1189)) (-1189)) 11 T ELT)))
+(((-248) (-10 -7 (-15 -2346 ((-663 (-1189)) (-1189))) (-15 -2346 ((-663 (-1189)) (-663 (-1189)))) (-15 -3245 ((-1189))) (-15 -3007 ((-1189) (-560) (-1189))) (-15 -1351 ((-1189) (-1189) (-560) (-1189))) (-15 -1351 ((-663 (-1189)) (-663 (-1189)) (-560) (-1189))) (-15 -3643 ((-1303) (-1189))) (-15 -3643 ((-1303) (-663 (-1189)))) (-15 -1480 ((-560) (-1189))) (-15 -1480 ((-560) (-663 (-1189)))))) (T -248))
+((-1480 (*1 *2 *3) (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-560)) (-5 *1 (-248)))) (-1480 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-560)) (-5 *1 (-248)))) (-3643 (*1 *2 *3) (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-1303)) (-5 *1 (-248)))) (-3643 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-248)))) (-1351 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-663 (-1189))) (-5 *3 (-560)) (-5 *4 (-1189)) (-5 *1 (-248)))) (-1351 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-560)) (-5 *1 (-248)))) (-3007 (*1 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-560)) (-5 *1 (-248)))) (-3245 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-248)))) (-2346 (*1 *2 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-248)))) (-2346 (*1 *2 *3) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-248)) (-5 *3 (-1189)))))
+(-10 -7 (-15 -2346 ((-663 (-1189)) (-1189))) (-15 -2346 ((-663 (-1189)) (-663 (-1189)))) (-15 -3245 ((-1189))) (-15 -3007 ((-1189) (-560) (-1189))) (-15 -1351 ((-1189) (-1189) (-560) (-1189))) (-15 -1351 ((-663 (-1189)) (-663 (-1189)) (-560) (-1189))) (-15 -3643 ((-1303) (-1189))) (-15 -3643 ((-1303) (-663 (-1189)))) (-15 -1480 ((-560) (-1189))) (-15 -1480 ((-560) (-663 (-1189)))))
((** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 20 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-421 (-560)) $) 27 T ELT) (($ $ (-421 (-560))) NIL T ELT)))
(((-249 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-560))) (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 ** (|#1| |#1| (-793))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-948))) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|))) (-250)) (T -249))
NIL
(-10 -8 (-15 ** (|#1| |#1| (-560))) (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 ** (|#1| |#1| (-793))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-948))) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-1544 (($ $) 47 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ (-421 (-560))) 51 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 48 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ (-421 (-560)) $) 50 T ELT) (($ $ (-421 (-560))) 49 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2986 (($ $) 47 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ (-421 (-560))) 51 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 48 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ (-421 (-560)) $) 50 T ELT) (($ $ (-421 (-560))) 49 T ELT)))
(((-250) (-142)) (T -250))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-250)) (-5 *2 (-560)))) (-1544 (*1 *1 *1) (-4 *1 (-250))))
-(-13 (-302) (-38 (-421 (-560))) (-10 -8 (-15 ** ($ $ (-560))) (-15 -1544 ($ $))))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-250)) (-5 *2 (-560)))) (-2986 (*1 *1 *1) (-4 *1 (-250))))
+(-13 (-302) (-38 (-421 (-560))) (-10 -8 (-15 ** ($ $ (-560))) (-15 -2986 ($ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-133) . T) ((-635 #0#) . T) ((-635 (-560)) . T) ((-632 (-887)) . T) ((-302) . T) ((-668 #0#) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 $) . T) ((-662 #0#) . T) ((-739 #0#) . T) ((-748) . T) ((-1082 #0#) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3853 ((|#1| $) 49 T ELT)) (-2270 (($ $) 58 T ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-2869 ((|#1| $ |#1|) 40 (|has| $ (-6 -4509)) ELT)) (-1424 (($ $ $) 54 (|has| $ (-6 -4509)) ELT)) (-3530 (($ $ $) 53 (|has| $ (-6 -4509)) ELT)) (-1773 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4509)) ELT)) (-2083 (($ $ (-663 $)) 42 (|has| $ (-6 -4509)) ELT)) (-2238 (($) 7 T CONST)) (-1909 (($ $) 57 T ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-3092 (((-663 $) $) 51 T ELT)) (-3398 (((-114) $ $) 43 (|has| |#1| (-1132)) ELT)) (-2486 (($ $) 56 T ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-3596 (((-663 |#1|) $) 46 T ELT)) (-2409 (((-114) $) 50 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-2398 ((|#1| $) 60 T ELT)) (-4317 (($ $) 59 T ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3924 ((|#1| $ "value") 48 T ELT)) (-1750 (((-560) $ $) 45 T ELT)) (-1978 (((-114) $) 47 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-4354 (($ $ $) 55 (|has| $ (-6 -4509)) ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3955 (((-663 $) $) 52 T ELT)) (-2997 (((-114) $ $) 44 (|has| |#1| (-1132)) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1430 ((|#1| $) 49 T ELT)) (-3990 (($ $) 58 T ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-3654 ((|#1| $ |#1|) 40 (|has| $ (-6 -4509)) ELT)) (-1453 (($ $ $) 54 (|has| $ (-6 -4509)) ELT)) (-4117 (($ $ $) 53 (|has| $ (-6 -4509)) ELT)) (-4083 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4509)) ELT)) (-2566 (($ $ (-663 $)) 42 (|has| $ (-6 -4509)) ELT)) (-3525 (($) 7 T CONST)) (-2786 (($ $) 57 T ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-2104 (((-663 $) $) 51 T ELT)) (-2150 (((-114) $ $) 43 (|has| |#1| (-1132)) ELT)) (-1490 (($ $) 56 T ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-2656 (((-663 |#1|) $) 46 T ELT)) (-1485 (((-114) $) 50 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3057 ((|#1| $) 60 T ELT)) (-3016 (($ $) 59 T ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1507 ((|#1| $ "value") 48 T ELT)) (-2374 (((-560) $ $) 45 T ELT)) (-2752 (((-114) $) 47 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-3305 (($ $ $) 55 (|has| $ (-6 -4509)) ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3809 (((-663 $) $) 52 T ELT)) (-3606 (((-114) $ $) 44 (|has| |#1| (-1132)) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-251 |#1|) (-142) (-1247)) (T -251))
-((-2398 (*1 *2 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247)))) (-4317 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247)))) (-2270 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247)))) (-1909 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247)))) (-2486 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247)))) (-4354 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-251 *2)) (-4 *2 (-1247)))) (-1424 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-251 *2)) (-4 *2 (-1247)))) (-3530 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-251 *2)) (-4 *2 (-1247)))))
-(-13 (-1041 |t#1|) (-10 -8 (-15 -2398 (|t#1| $)) (-15 -4317 ($ $)) (-15 -2270 ($ $)) (-15 -1909 ($ $)) (-15 -2486 ($ $)) (IF (|has| $ (-6 -4509)) (PROGN (-15 -4354 ($ $ $)) (-15 -1424 ($ $ $)) (-15 -3530 ($ $ $))) |%noBranch|)))
-(((-34) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1041 |#1|) . T) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3853 ((|#1| $) NIL T ELT)) (-3273 ((|#1| $) NIL T ELT)) (-2270 (($ $) NIL T ELT)) (-3839 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-2194 (($ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4040 (((-114) $) NIL (|has| |#1| (-871)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-1703 (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| |#1| (-871))) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2286 (($ $) 10 (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-2869 ((|#1| $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2102 (($ $ $) NIL (|has| $ (-6 -4509)) ELT)) (-4319 ((|#1| $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3132 ((|#1| $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-1773 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4509)) ELT) (($ $ "rest" $) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2083 (($ $ (-663 $)) NIL (|has| $ (-6 -4509)) ELT)) (-3500 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-1982 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3264 ((|#1| $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-4391 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) NIL T ELT)) (-3649 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2944 (($ $) NIL (|has| |#1| (-1132)) ELT)) (-3606 (($ $) 7 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3390 (($ |#1| $) NIL (|has| |#1| (-1132)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-2375 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3779 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-560)) NIL T ELT)) (-2267 (((-114) $) NIL T ELT)) (-1722 (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1132)) ELT) (((-560) |#1| $) NIL (|has| |#1| (-1132)) ELT) (((-560) (-1 (-114) |#1|) $) NIL T ELT)) (-2181 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3092 (((-663 $) $) NIL T ELT)) (-3398 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-4095 (($ (-793) |#1|) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-1708 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3223 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2937 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-2045 (($ |#1|) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-3596 (((-663 |#1|) $) NIL T ELT)) (-2409 (((-114) $) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-2398 ((|#1| $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3629 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-3996 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) NIL T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3637 ((|#1| $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-3037 (($ $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3875 (((-114) $) NIL T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT) ((|#1| $ (-560)) NIL T ELT) ((|#1| $ (-560) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-793) $ "count") 16 T ELT)) (-1750 (((-560) $ $) NIL T ELT)) (-2249 (($ $ (-1264 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-4413 (($ $ (-1264 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-2523 (($ (-663 |#1|)) 22 T ELT)) (-1978 (((-114) $) NIL T ELT)) (-1763 (($ $) NIL T ELT)) (-1915 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-1502 (((-793) $) NIL T ELT)) (-3458 (($ $) NIL T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3640 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) NIL T ELT)) (-4354 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3415 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-663 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-1578 (($ (-663 |#1|)) 17 T ELT) (((-663 |#1|) $) 18 T ELT) (((-887) $) 21 (|has| |#1| (-632 (-887))) ELT)) (-3955 (((-663 $) $) NIL T ELT)) (-2997 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2536 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2521 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-1553 (((-793) $) 14 (|has| $ (-6 -4508)) ELT)))
-(((-252 |#1|) (-13 (-688 |#1|) (-504 (-663 |#1|)) (-10 -8 (-15 -2523 ($ (-663 |#1|))) (-15 -3924 ($ $ "unique")) (-15 -3924 ($ $ "sort")) (-15 -3924 ((-793) $ "count")))) (-871)) (T -252))
-((-2523 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-252 *3)))) (-3924 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-252 *3)) (-4 *3 (-871)))) (-3924 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-252 *3)) (-4 *3 (-871)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-793)) (-5 *1 (-252 *4)) (-4 *4 (-871)))))
-(-13 (-688 |#1|) (-504 (-663 |#1|)) (-10 -8 (-15 -2523 ($ (-663 |#1|))) (-15 -3924 ($ $ "unique")) (-15 -3924 ($ $ "sort")) (-15 -3924 ((-793) $ "count"))))
-((-4022 (((-3 (-793) "failed") |#1| |#1| (-793)) 40 T ELT)))
-(((-253 |#1|) (-10 -7 (-15 -4022 ((-3 (-793) "failed") |#1| |#1| (-793)))) (-13 (-748) (-381) (-10 -7 (-15 ** (|#1| |#1| (-560)))))) (T -253))
-((-4022 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-793)) (-4 *3 (-13 (-748) (-381) (-10 -7 (-15 ** (*3 *3 (-560)))))) (-5 *1 (-253 *3)))))
-(-10 -7 (-15 -4022 ((-3 (-793) "failed") |#1| |#1| (-793))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-2894 (($ $) 54 (|has| |#1| (-239)) ELT) (($ $ (-793)) 52 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 50 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 48 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 47 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 46 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1 |#1| |#1|) (-793)) 40 T ELT) (($ $ (-1 |#1| |#1|)) 39 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-3305 (($ $) 53 (|has| |#1| (-239)) ELT) (($ $ (-793)) 51 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 49 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 45 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 44 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 43 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1 |#1| |#1|) (-793)) 42 T ELT) (($ $ (-1 |#1| |#1|)) 41 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT)))
+((-3057 (*1 *2 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247)))) (-3016 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247)))) (-3990 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247)))) (-2786 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247)))) (-1490 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247)))) (-3305 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-251 *2)) (-4 *2 (-1247)))) (-1453 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-251 *2)) (-4 *2 (-1247)))) (-4117 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-251 *2)) (-4 *2 (-1247)))))
+(-13 (-1041 |t#1|) (-10 -8 (-15 -3057 (|t#1| $)) (-15 -3016 ($ $)) (-15 -3990 ($ $)) (-15 -2786 ($ $)) (-15 -1490 ($ $)) (IF (|has| $ (-6 -4509)) (PROGN (-15 -3305 ($ $ $)) (-15 -1453 ($ $ $)) (-15 -4117 ($ $ $))) |%noBranch|)))
+(((-34) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1041 |#1|) . T) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1430 ((|#1| $) NIL T ELT)) (-3853 ((|#1| $) NIL T ELT)) (-3990 (($ $) NIL T ELT)) (-2033 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4367 (($ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-2152 (((-114) $) NIL (|has| |#1| (-871)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3152 (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| |#1| (-871))) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-1787 (($ $) 10 (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3654 ((|#1| $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-1518 (($ $ $) NIL (|has| $ (-6 -4509)) ELT)) (-3042 ((|#1| $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2509 ((|#1| $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-4083 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4509)) ELT) (($ $ "rest" $) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2566 (($ $ (-663 $)) NIL (|has| $ (-6 -4509)) ELT)) (-1864 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3923 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3839 ((|#1| $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) NIL T ELT)) (-4345 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-4329 (($ $) NIL (|has| |#1| (-1132)) ELT)) (-3658 (($ $) 7 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2091 (($ |#1| $) NIL (|has| |#1| (-1132)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3033 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3338 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-560)) NIL T ELT)) (-3843 (((-114) $) NIL T ELT)) (-2359 (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1132)) ELT) (((-560) |#1| $) NIL (|has| |#1| (-1132)) ELT) (((-560) (-1 (-114) |#1|) $) NIL T ELT)) (-3737 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2104 (((-663 $) $) NIL T ELT)) (-2150 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-4246 (($ (-793) |#1|) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3204 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4263 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-2560 (($ |#1|) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL T ELT)) (-1485 (((-114) $) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3057 ((|#1| $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3888 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-2507 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) NIL T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-4334 ((|#1| $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2740 (($ $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-4270 (((-114) $) NIL T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT) ((|#1| $ (-560)) NIL T ELT) ((|#1| $ (-560) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-793) $ "count") 16 T ELT)) (-2374 (((-560) $ $) NIL T ELT)) (-3639 (($ $ (-1264 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-2579 (($ $ (-1264 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-2006 (($ (-663 |#1|)) 22 T ELT)) (-2752 (((-114) $) NIL T ELT)) (-2493 (($ $) NIL T ELT)) (-3438 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-3010 (((-793) $) NIL T ELT)) (-1474 (($ $) NIL T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3993 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) NIL T ELT)) (-3305 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-1955 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-663 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3913 (($ (-663 |#1|)) 17 T ELT) (((-663 |#1|) $) 18 T ELT) (((-887) $) 21 (|has| |#1| (-632 (-887))) ELT)) (-3809 (((-663 $) $) NIL T ELT)) (-3606 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2396 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2386 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2256 (((-793) $) 14 (|has| $ (-6 -4508)) ELT)))
+(((-252 |#1|) (-13 (-688 |#1|) (-504 (-663 |#1|)) (-10 -8 (-15 -2006 ($ (-663 |#1|))) (-15 -1507 ($ $ "unique")) (-15 -1507 ($ $ "sort")) (-15 -1507 ((-793) $ "count")))) (-871)) (T -252))
+((-2006 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-252 *3)))) (-1507 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-252 *3)) (-4 *3 (-871)))) (-1507 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-252 *3)) (-4 *3 (-871)))) (-1507 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-793)) (-5 *1 (-252 *4)) (-4 *4 (-871)))))
+(-13 (-688 |#1|) (-504 (-663 |#1|)) (-10 -8 (-15 -2006 ($ (-663 |#1|))) (-15 -1507 ($ $ "unique")) (-15 -1507 ($ $ "sort")) (-15 -1507 ((-793) $ "count"))))
+((-3228 (((-3 (-793) "failed") |#1| |#1| (-793)) 40 T ELT)))
+(((-253 |#1|) (-10 -7 (-15 -3228 ((-3 (-793) "failed") |#1| |#1| (-793)))) (-13 (-748) (-381) (-10 -7 (-15 ** (|#1| |#1| (-560)))))) (T -253))
+((-3228 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-793)) (-4 *3 (-13 (-748) (-381) (-10 -7 (-15 ** (*3 *3 (-560)))))) (-5 *1 (-253 *3)))))
+(-10 -7 (-15 -3228 ((-3 (-793) "failed") |#1| |#1| (-793))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3161 (($ $) 54 (|has| |#1| (-239)) ELT) (($ $ (-793)) 52 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 50 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 48 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 47 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 46 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1 |#1| |#1|) (-793)) 40 T ELT) (($ $ (-1 |#1| |#1|)) 39 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-2111 (($ $) 53 (|has| |#1| (-239)) ELT) (($ $ (-793)) 51 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 49 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 45 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 44 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 43 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1 |#1| |#1|) (-793)) 42 T ELT) (($ $ (-1 |#1| |#1|)) 41 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT)))
(((-254 |#1|) (-142) (-1080)) (T -254))
NIL
(-13 (-111 |t#1| |t#1|) (-274 |t#1|) (-10 -7 (IF (|has| |t#1| (-239)) (-6 (-237 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-929 (-1207))) (-6 (-926 |t#1| (-1207))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-887)) . T) ((-236 $) |has| |#1| (-239)) ((-237 |#1|) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-274 |#1|) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) -2304 (-12 (|has| |#1| (-175)) (|has| |#1| (-929 (-1207)))) (-12 (|has| |#1| (-175)) (|has| |#1| (-239)))) ((-739 |#1|) -2304 (-12 (|has| |#1| (-175)) (|has| |#1| (-929 (-1207)))) (-12 (|has| |#1| (-175)) (|has| |#1| (-239)))) ((-921 $ #0=(-1207)) |has| |#1| (-929 (-1207))) ((-926 |#1| (-1207)) |has| |#1| (-929 (-1207))) ((-929 #0#) |has| |#1| (-929 (-1207))) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1443 (((-663 (-888 |#1|)) $) NIL T ELT)) (-4422 (((-1201 $) $ (-888 |#1|)) NIL T ELT) (((-1201 |#2|) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#2| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#2| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#2| (-571)) ELT)) (-3107 (((-793) $) NIL T ELT) (((-793) $ (-663 (-888 |#1|))) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-1804 (($ $) NIL (|has| |#2| (-466)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#2| (-466)) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-3 (-888 |#1|) "failed") $) NIL T ELT)) (-3330 ((|#2| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-888 |#1|) $) NIL T ELT)) (-2788 (($ $ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-1922 (($ $ (-663 (-560))) NIL T ELT)) (-1624 (($ $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2806 (($ $) NIL (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-1608 (((-663 $) $) NIL T ELT)) (-4330 (((-114) $) NIL (|has| |#2| (-939)) ELT)) (-4342 (($ $ |#2| (-246 (-1553 |#1|) (-793)) $) NIL T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-391))) (|has| |#2| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-560))) (|has| |#2| (-911 (-560)))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-3531 (((-793) $) NIL T ELT)) (-1427 (($ (-1201 |#2|) (-888 |#1|)) NIL T ELT) (($ (-1201 $) (-888 |#1|)) NIL T ELT)) (-3997 (((-663 $) $) NIL T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#2| (-246 (-1553 |#1|) (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT)) (-3559 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $ (-888 |#1|)) NIL T ELT)) (-3011 (((-246 (-1553 |#1|) (-793)) $) NIL T ELT) (((-793) $ (-888 |#1|)) NIL T ELT) (((-663 (-793)) $ (-663 (-888 |#1|))) NIL T ELT)) (-4321 (($ (-1 (-246 (-1553 |#1|) (-793)) (-246 (-1553 |#1|) (-793))) $) NIL T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-1955 (((-3 (-888 |#1|) "failed") $) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-711 |#2|) (-1297 $)) NIL T ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#2| $) NIL T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3479 (((-3 (-663 $) "failed") $) NIL T ELT)) (-2590 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3683 (((-3 (-2 (|:| |var| (-888 |#1|)) (|:| -3205 (-793))) "failed") $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1554 (((-114) $) NIL T ELT)) (-1566 ((|#2| $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#2| (-466)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-4457 (((-419 $) $) NIL (|has| |#2| (-939)) ELT)) (-1528 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-571)) ELT)) (-4187 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-888 |#1|) |#2|) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 |#2|)) NIL T ELT) (($ $ (-888 |#1|) $) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 $)) NIL T ELT)) (-2690 (($ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2894 (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) NIL T ELT)) (-3630 (((-246 (-1553 |#1|) (-793)) $) NIL T ELT) (((-793) $ (-888 |#1|)) NIL T ELT) (((-663 (-793)) $ (-663 (-888 |#1|))) NIL T ELT)) (-1407 (((-915 (-391)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-915 (-391)))) (|has| |#2| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-915 (-560)))) (|has| |#2| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-888 |#1|) (-633 (-549))) (|has| |#2| (-633 (-549)))) ELT)) (-2053 ((|#2| $) NIL (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-939))) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-888 |#1|)) NIL T ELT) (($ (-421 (-560))) NIL (-2304 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#2| (-571)) ELT)) (-3409 (((-663 |#2|) $) NIL T ELT)) (-2305 ((|#2| $ (-246 (-1553 |#1|) (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| |#2| (-939))) (|has| |#2| (-147))) ELT)) (-2930 (((-793)) NIL T CONST)) (-2392 (($ $ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL (|has| |#2| (-571)) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
-(((-255 |#1| |#2|) (-13 (-979 |#2| (-246 (-1553 |#1|) (-793)) (-888 |#1|)) (-10 -8 (-15 -1922 ($ $ (-663 (-560)))))) (-663 (-1207)) (-1080)) (T -255))
-((-1922 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-255 *3 *4)) (-14 *3 (-663 (-1207))) (-4 *4 (-1080)))))
-(-13 (-979 |#2| (-246 (-1553 |#1|) (-793)) (-888 |#1|)) (-10 -8 (-15 -1922 ($ $ (-663 (-560))))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1389 (((-1303) $) 17 T ELT)) (-2069 (((-187 (-257)) $) 11 T ELT)) (-3983 (($ (-187 (-257))) 12 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2587 (((-257) $) 7 T ELT)) (-1578 (((-887) $) 9 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 15 T ELT)))
-(((-256) (-13 (-1132) (-10 -8 (-15 -2587 ((-257) $)) (-15 -2069 ((-187 (-257)) $)) (-15 -3983 ($ (-187 (-257)))) (-15 -1389 ((-1303) $))))) (T -256))
-((-2587 (*1 *2 *1) (-12 (-5 *2 (-257)) (-5 *1 (-256)))) (-2069 (*1 *2 *1) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256)))) (-3983 (*1 *1 *2) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256)))) (-1389 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-256)))))
-(-13 (-1132) (-10 -8 (-15 -2587 ((-257) $)) (-15 -2069 ((-187 (-257)) $)) (-15 -3983 ($ (-187 (-257)))) (-15 -1389 ((-1303) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2150 (((-663 (-889)) $) NIL T ELT)) (-3614 (((-520) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3954 (((-190) $) NIL T ELT)) (-2784 (((-114) $ (-520)) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2866 (((-345) $) 7 T ELT)) (-4111 (((-663 (-114)) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (((-186) $) 8 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-3617 (((-55) $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-257) (-13 (-189) (-632 (-186)) (-10 -8 (-15 -2866 ((-345) $))))) (T -257))
-((-2866 (*1 *2 *1) (-12 (-5 *2 (-345)) (-5 *1 (-257)))))
-(-13 (-189) (-632 (-186)) (-10 -8 (-15 -2866 ((-345) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3924 (((-1212) $ (-793)) 13 T ELT)) (-1578 (((-887) $) 20 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 16 T ELT)) (-1553 (((-793) $) 9 T ELT)))
-(((-258) (-13 (-1132) (-298 (-793) (-1212)) (-10 -8 (-15 -1553 ((-793) $))))) (T -258))
-((-1553 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-258)))))
-(-13 (-1132) (-298 (-793) (-1212)) (-10 -8 (-15 -1553 ((-793) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1521 (($ (-948)) NIL (|has| |#4| (-1080)) ELT)) (-3839 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-3168 (($ $ $) NIL (|has| |#4| (-815)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-3241 (((-793)) NIL (|has| |#4| (-381)) ELT)) (-1773 ((|#4| $ (-560) |#4|) NIL (|has| $ (-6 -4509)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1132)) ELT) (((-3 (-560) "failed") $) NIL (-12 (|has| |#4| (-1069 (-560))) (|has| |#4| (-1132))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (-12 (|has| |#4| (-1069 (-421 (-560)))) (|has| |#4| (-1132))) ELT)) (-3330 ((|#4| $) NIL (|has| |#4| (-1132)) ELT) (((-560) $) NIL (-12 (|has| |#4| (-1069 (-560))) (|has| |#4| (-1132))) ELT) (((-421 (-560)) $) NIL (-12 (|has| |#4| (-1069 (-421 (-560)))) (|has| |#4| (-1132))) ELT)) (-3142 (((-2 (|:| -3822 (-711 |#4|)) (|:| |vec| (-1297 |#4|))) (-711 $) (-1297 $)) NIL (|has| |#4| (-1080)) ELT) (((-711 |#4|) (-711 $)) NIL (|has| |#4| (-1080)) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (-12 (|has| |#4| (-660 (-560))) (|has| |#4| (-1080))) ELT) (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#4| (-660 (-560))) (|has| |#4| (-1080))) ELT)) (-1990 (((-3 $ "failed") $) NIL (|has| |#4| (-1080)) ELT)) (-2310 (($) NIL (|has| |#4| (-381)) ELT)) (-3779 ((|#4| $ (-560) |#4|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#4| $ (-560)) NIL T ELT)) (-2181 (((-663 |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1581 (((-114) $) NIL (|has| |#4| (-1080)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL (|has| |#4| (-871)) ELT)) (-2656 (((-663 |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-2937 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#4| (-871)) ELT)) (-3768 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-4419 (((-948) $) NIL (|has| |#4| (-381)) ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-2484 (((-2 (|:| -3822 (-711 |#4|)) (|:| |vec| (-1297 |#4|))) (-1297 $) $) NIL (|has| |#4| (-1080)) ELT) (((-711 |#4|) (-1297 $)) NIL (|has| |#4| (-1080)) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (-12 (|has| |#4| (-660 (-560))) (|has| |#4| (-1080))) ELT) (((-711 (-560)) (-1297 $)) NIL (-12 (|has| |#4| (-660 (-560))) (|has| |#4| (-1080))) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) NIL T ELT)) (-3128 (($ (-948)) NIL (|has| |#4| (-381)) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3637 ((|#4| $) NIL (|has| (-560) (-871)) ELT)) (-3037 (($ $ |#4|) NIL (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 |#4|) (-663 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-3571 (((-663 |#4|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#4| $ (-560) |#4|) NIL T ELT) ((|#4| $ (-560)) 12 T ELT)) (-3232 ((|#4| $ $) NIL (|has| |#4| (-1080)) ELT)) (-1343 (($ (-1297 |#4|)) NIL T ELT)) (-3669 (((-136)) NIL (|has| |#4| (-376)) ELT)) (-2894 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1080)) ELT) (($ $ (-1 |#4| |#4|) (-793)) NIL (|has| |#4| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2304 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-1207) (-793)) NIL (-2304 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-663 (-1207))) NIL (-2304 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-793)) NIL (-2304 (-12 (|has| |#4| (-240)) (|has| |#4| (-1080))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1080)))) ELT) (($ $) NIL (-2304 (-12 (|has| |#4| (-240)) (|has| |#4| (-1080))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1080)))) ELT)) (-3865 (((-793) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-1799 (($ $) NIL T ELT)) (-1578 (((-1297 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1132)) ELT) (((-887) $) NIL T ELT) (($ (-560)) NIL (-2304 (-12 (|has| |#4| (-1069 (-560))) (|has| |#4| (-1132))) (|has| |#4| (-1080))) ELT) (($ (-421 (-560))) NIL (-12 (|has| |#4| (-1069 (-421 (-560)))) (|has| |#4| (-1132))) ELT)) (-2930 (((-793)) NIL (|has| |#4| (-1080)) CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-1728 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL (|has| |#4| (-1080)) CONST)) (-3305 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1080)) ELT) (($ $ (-1 |#4| |#4|) (-793)) NIL (|has| |#4| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2304 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-1207) (-793)) NIL (-2304 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-663 (-1207))) NIL (-2304 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-793)) NIL (-2304 (-12 (|has| |#4| (-240)) (|has| |#4| (-1080))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1080)))) ELT) (($ $) NIL (-2304 (-12 (|has| |#4| (-240)) (|has| |#4| (-1080))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1080)))) ELT)) (-2536 (((-114) $ $) NIL (|has| |#4| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#4| (-871)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL (|has| |#4| (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| |#4| (-871)) ELT)) (-2594 (($ $ |#4|) NIL (|has| |#4| (-376)) ELT)) (-2580 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL (|has| |#4| (-1080)) ELT) (($ $ (-948)) NIL (|has| |#4| (-1080)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-560) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-948) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-748)) ELT) (($ |#4| $) NIL (|has| |#4| (-748)) ELT) (($ $ $) NIL (|has| |#4| (-1080)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-887)) . T) ((-236 $) |has| |#1| (-239)) ((-237 |#1|) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-274 |#1|) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) -2196 (-12 (|has| |#1| (-175)) (|has| |#1| (-929 (-1207)))) (-12 (|has| |#1| (-175)) (|has| |#1| (-239)))) ((-739 |#1|) -2196 (-12 (|has| |#1| (-175)) (|has| |#1| (-929 (-1207)))) (-12 (|has| |#1| (-175)) (|has| |#1| (-239)))) ((-921 $ #0=(-1207)) |has| |#1| (-929 (-1207))) ((-926 |#1| (-1207)) |has| |#1| (-929 (-1207))) ((-929 #0#) |has| |#1| (-929 (-1207))) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1132) . T) ((-1247) . T))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-4162 (((-663 (-888 |#1|)) $) NIL T ELT)) (-3981 (((-1201 $) $ (-888 |#1|)) NIL T ELT) (((-1201 |#2|) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#2| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#2| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#2| (-571)) ELT)) (-2250 (((-793) $) NIL T ELT) (((-793) $ (-663 (-888 |#1|))) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-1621 (($ $) NIL (|has| |#2| (-466)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#2| (-466)) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-3 (-888 |#1|) "failed") $) NIL T ELT)) (-3649 ((|#2| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-888 |#1|) $) NIL T ELT)) (-2096 (($ $ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-3517 (($ $ (-663 (-560))) NIL T ELT)) (-3062 (($ $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4239 (($ $) NIL (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-3048 (((-663 $) $) NIL T ELT)) (-3141 (((-114) $) NIL (|has| |#2| (-939)) ELT)) (-3224 (($ $ |#2| (-246 (-2256 |#1|) (-793)) $) NIL T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-391))) (|has| |#2| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-560))) (|has| |#2| (-911 (-560)))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-4127 (((-793) $) NIL T ELT)) (-4149 (($ (-1201 |#2|) (-888 |#1|)) NIL T ELT) (($ (-1201 $) (-888 |#1|)) NIL T ELT)) (-2947 (((-663 $) $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#2| (-246 (-2256 |#1|) (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT)) (-4415 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $ (-888 |#1|)) NIL T ELT)) (-3765 (((-246 (-2256 |#1|) (-793)) $) NIL T ELT) (((-793) $ (-888 |#1|)) NIL T ELT) (((-663 (-793)) $ (-663 (-888 |#1|))) NIL T ELT)) (-3060 (($ (-1 (-246 (-2256 |#1|) (-793)) (-246 (-2256 |#1|) (-793))) $) NIL T ELT)) (-2260 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3835 (((-3 (-888 |#1|) "failed") $) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-711 |#2|) (-1297 $)) NIL T ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#2| $) NIL T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1669 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3849 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3149 (((-3 (-2 (|:| |var| (-888 |#1|)) (|:| -2030 (-793))) "failed") $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3000 (((-114) $) NIL T ELT)) (-3011 ((|#2| $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#2| (-466)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-4012 (((-419 $) $) NIL (|has| |#2| (-939)) ELT)) (-2233 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-571)) ELT)) (-2371 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-888 |#1|) |#2|) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 |#2|)) NIL T ELT) (($ $ (-888 |#1|) $) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 $)) NIL T ELT)) (-2336 (($ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-3161 (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) NIL T ELT)) (-3900 (((-246 (-2256 |#1|) (-793)) $) NIL T ELT) (((-793) $ (-888 |#1|)) NIL T ELT) (((-663 (-793)) $ (-663 (-888 |#1|))) NIL T ELT)) (-2400 (((-915 (-391)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-915 (-391)))) (|has| |#2| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-915 (-560)))) (|has| |#2| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-888 |#1|) (-633 (-549))) (|has| |#2| (-633 (-549)))) ELT)) (-2264 ((|#2| $) NIL (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-939))) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-888 |#1|)) NIL T ELT) (($ (-421 (-560))) NIL (-2196 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#2| (-571)) ELT)) (-2247 (((-663 |#2|) $) NIL T ELT)) (-2920 ((|#2| $ (-246 (-2256 |#1|) (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| |#2| (-939))) (|has| |#2| (-147))) ELT)) (-4191 (((-793)) NIL T CONST)) (-2548 (($ $ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL (|has| |#2| (-571)) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
+(((-255 |#1| |#2|) (-13 (-979 |#2| (-246 (-2256 |#1|) (-793)) (-888 |#1|)) (-10 -8 (-15 -3517 ($ $ (-663 (-560)))))) (-663 (-1207)) (-1080)) (T -255))
+((-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-255 *3 *4)) (-14 *3 (-663 (-1207))) (-4 *4 (-1080)))))
+(-13 (-979 |#2| (-246 (-2256 |#1|) (-793)) (-888 |#1|)) (-10 -8 (-15 -3517 ($ $ (-663 (-560))))))
+((-2243 (((-114) $ $) NIL T ELT)) (-4235 (((-1303) $) 17 T ELT)) (-2412 (((-187 (-257)) $) 11 T ELT)) (-2812 (($ (-187 (-257))) 12 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2948 (((-257) $) 7 T ELT)) (-3913 (((-887) $) 9 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 15 T ELT)))
+(((-256) (-13 (-1132) (-10 -8 (-15 -2948 ((-257) $)) (-15 -2412 ((-187 (-257)) $)) (-15 -2812 ($ (-187 (-257)))) (-15 -4235 ((-1303) $))))) (T -256))
+((-2948 (*1 *2 *1) (-12 (-5 *2 (-257)) (-5 *1 (-256)))) (-2412 (*1 *2 *1) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256)))) (-2812 (*1 *1 *2) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256)))) (-4235 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-256)))))
+(-13 (-1132) (-10 -8 (-15 -2948 ((-257) $)) (-15 -2412 ((-187 (-257)) $)) (-15 -2812 ($ (-187 (-257)))) (-15 -4235 ((-1303) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2941 (((-663 (-889)) $) NIL T ELT)) (-4389 (((-520) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3480 (((-190) $) NIL T ELT)) (-2060 (((-114) $ (-520)) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3615 (((-345) $) 7 T ELT)) (-1599 (((-663 (-114)) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (((-186) $) 8 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3780 (((-55) $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-257) (-13 (-189) (-632 (-186)) (-10 -8 (-15 -3615 ((-345) $))))) (T -257))
+((-3615 (*1 *2 *1) (-12 (-5 *2 (-345)) (-5 *1 (-257)))))
+(-13 (-189) (-632 (-186)) (-10 -8 (-15 -3615 ((-345) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1507 (((-1212) $ (-793)) 13 T ELT)) (-3913 (((-887) $) 20 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 16 T ELT)) (-2256 (((-793) $) 9 T ELT)))
+(((-258) (-13 (-1132) (-298 (-793) (-1212)) (-10 -8 (-15 -2256 ((-793) $))))) (T -258))
+((-2256 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-258)))))
+(-13 (-1132) (-298 (-793) (-1212)) (-10 -8 (-15 -2256 ((-793) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3101 (($ (-948)) NIL (|has| |#4| (-1080)) ELT)) (-2033 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-1651 (($ $ $) NIL (|has| |#4| (-815)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-2552 (((-793)) NIL (|has| |#4| (-381)) ELT)) (-4083 ((|#4| $ (-560) |#4|) NIL (|has| $ (-6 -4509)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1132)) ELT) (((-3 (-560) "failed") $) NIL (-12 (|has| |#4| (-1069 (-560))) (|has| |#4| (-1132))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (-12 (|has| |#4| (-1069 (-421 (-560)))) (|has| |#4| (-1132))) ELT)) (-3649 ((|#4| $) NIL (|has| |#4| (-1132)) ELT) (((-560) $) NIL (-12 (|has| |#4| (-1069 (-560))) (|has| |#4| (-1132))) ELT) (((-421 (-560)) $) NIL (-12 (|has| |#4| (-1069 (-421 (-560)))) (|has| |#4| (-1132))) ELT)) (-2619 (((-2 (|:| -1871 (-711 |#4|)) (|:| |vec| (-1297 |#4|))) (-711 $) (-1297 $)) NIL (|has| |#4| (-1080)) ELT) (((-711 |#4|) (-711 $)) NIL (|has| |#4| (-1080)) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (-12 (|has| |#4| (-660 (-560))) (|has| |#4| (-1080))) ELT) (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#4| (-660 (-560))) (|has| |#4| (-1080))) ELT)) (-2873 (((-3 $ "failed") $) NIL (|has| |#4| (-1080)) ELT)) (-1812 (($) NIL (|has| |#4| (-381)) ELT)) (-3338 ((|#4| $ (-560) |#4|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#4| $ (-560)) NIL T ELT)) (-3737 (((-663 |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1918 (((-114) $) NIL (|has| |#4| (-1080)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL (|has| |#4| (-871)) ELT)) (-3243 (((-663 |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-4263 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#4| (-871)) ELT)) (-3324 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2622 (((-948) $) NIL (|has| |#4| (-381)) ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-4140 (((-2 (|:| -1871 (-711 |#4|)) (|:| |vec| (-1297 |#4|))) (-1297 $) $) NIL (|has| |#4| (-1080)) ELT) (((-711 |#4|) (-1297 $)) NIL (|has| |#4| (-1080)) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (-12 (|has| |#4| (-660 (-560))) (|has| |#4| (-1080))) ELT) (((-711 (-560)) (-1297 $)) NIL (-12 (|has| |#4| (-660 (-560))) (|has| |#4| (-1080))) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) NIL T ELT)) (-1591 (($ (-948)) NIL (|has| |#4| (-381)) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4334 ((|#4| $) NIL (|has| (-560) (-871)) ELT)) (-2740 (($ $ |#4|) NIL (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 |#4|) (-663 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-1383 (((-663 |#4|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#4| $ (-560) |#4|) NIL T ELT) ((|#4| $ (-560)) 12 T ELT)) (-4258 ((|#4| $ $) NIL (|has| |#4| (-1080)) ELT)) (-4050 (($ (-1297 |#4|)) NIL T ELT)) (-3015 (((-136)) NIL (|has| |#4| (-376)) ELT)) (-3161 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1080)) ELT) (($ $ (-1 |#4| |#4|) (-793)) NIL (|has| |#4| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2196 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-1207) (-793)) NIL (-2196 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-663 (-1207))) NIL (-2196 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-793)) NIL (-2196 (-12 (|has| |#4| (-240)) (|has| |#4| (-1080))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1080)))) ELT) (($ $) NIL (-2196 (-12 (|has| |#4| (-240)) (|has| |#4| (-1080))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1080)))) ELT)) (-3384 (((-793) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-4107 (($ $) NIL T ELT)) (-3913 (((-1297 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1132)) ELT) (((-887) $) NIL T ELT) (($ (-560)) NIL (-2196 (-12 (|has| |#4| (-1069 (-560))) (|has| |#4| (-1132))) (|has| |#4| (-1080))) ELT) (($ (-421 (-560))) NIL (-12 (|has| |#4| (-1069 (-421 (-560)))) (|has| |#4| (-1132))) ELT)) (-4191 (((-793)) NIL (|has| |#4| (-1080)) CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-2149 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL (|has| |#4| (-1080)) CONST)) (-2111 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1080)) ELT) (($ $ (-1 |#4| |#4|) (-793)) NIL (|has| |#4| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2196 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-1207) (-793)) NIL (-2196 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-663 (-1207))) NIL (-2196 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| |#4| (-927 (-1207))) (|has| |#4| (-1080))) (-12 (|has| |#4| (-929 (-1207))) (|has| |#4| (-1080)))) ELT) (($ $ (-793)) NIL (-2196 (-12 (|has| |#4| (-240)) (|has| |#4| (-1080))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1080)))) ELT) (($ $) NIL (-2196 (-12 (|has| |#4| (-240)) (|has| |#4| (-1080))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1080)))) ELT)) (-2396 (((-114) $ $) NIL (|has| |#4| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#4| (-871)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL (|has| |#4| (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| |#4| (-871)) ELT)) (-2453 (($ $ |#4|) NIL (|has| |#4| (-376)) ELT)) (-2441 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL (|has| |#4| (-1080)) ELT) (($ $ (-948)) NIL (|has| |#4| (-1080)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-560) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-948) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-748)) ELT) (($ |#4| $) NIL (|has| |#4| (-748)) ELT) (($ $ $) NIL (|has| |#4| (-1080)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
(((-259 |#1| |#2| |#3| |#4|) (-13 (-245 |#1| |#4|) (-670 |#2|) (-670 |#3|)) (-948) (-1080) (-1154 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-670 |#2|)) (T -259))
NIL
(-13 (-245 |#1| |#4|) (-670 |#2|) (-670 |#3|))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1521 (($ (-948)) NIL (|has| |#3| (-1080)) ELT)) (-3839 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-3168 (($ $ $) NIL (|has| |#3| (-815)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-3241 (((-793)) NIL (|has| |#3| (-381)) ELT)) (-1773 ((|#3| $ (-560) |#3|) NIL (|has| $ (-6 -4509)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1132)) ELT) (((-3 (-560) "failed") $) NIL (-12 (|has| |#3| (-1069 (-560))) (|has| |#3| (-1132))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (-12 (|has| |#3| (-1069 (-421 (-560)))) (|has| |#3| (-1132))) ELT)) (-3330 ((|#3| $) NIL (|has| |#3| (-1132)) ELT) (((-560) $) NIL (-12 (|has| |#3| (-1069 (-560))) (|has| |#3| (-1132))) ELT) (((-421 (-560)) $) NIL (-12 (|has| |#3| (-1069 (-421 (-560)))) (|has| |#3| (-1132))) ELT)) (-3142 (((-2 (|:| -3822 (-711 |#3|)) (|:| |vec| (-1297 |#3|))) (-711 $) (-1297 $)) NIL (|has| |#3| (-1080)) ELT) (((-711 |#3|) (-711 $)) NIL (|has| |#3| (-1080)) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1080))) ELT) (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1080))) ELT)) (-1990 (((-3 $ "failed") $) NIL (|has| |#3| (-1080)) ELT)) (-2310 (($) NIL (|has| |#3| (-381)) ELT)) (-3779 ((|#3| $ (-560) |#3|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#3| $ (-560)) NIL T ELT)) (-2181 (((-663 |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1581 (((-114) $) NIL (|has| |#3| (-1080)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL (|has| |#3| (-871)) ELT)) (-2656 (((-663 |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#3| (-1132))) ELT)) (-2937 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#3| (-871)) ELT)) (-3768 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-4419 (((-948) $) NIL (|has| |#3| (-381)) ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-2484 (((-2 (|:| -3822 (-711 |#3|)) (|:| |vec| (-1297 |#3|))) (-1297 $) $) NIL (|has| |#3| (-1080)) ELT) (((-711 |#3|) (-1297 $)) NIL (|has| |#3| (-1080)) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1080))) ELT) (((-711 (-560)) (-1297 $)) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1080))) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) NIL T ELT)) (-3128 (($ (-948)) NIL (|has| |#3| (-381)) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3637 ((|#3| $) NIL (|has| (-560) (-871)) ELT)) (-3037 (($ $ |#3|) NIL (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ (-663 |#3|) (-663 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#3| (-1132))) ELT)) (-3571 (((-663 |#3|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#3| $ (-560) |#3|) NIL T ELT) ((|#3| $ (-560)) 11 T ELT)) (-3232 ((|#3| $ $) NIL (|has| |#3| (-1080)) ELT)) (-1343 (($ (-1297 |#3|)) NIL T ELT)) (-3669 (((-136)) NIL (|has| |#3| (-376)) ELT)) (-2894 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-1 |#3| |#3|) (-793)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2304 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-1207) (-793)) NIL (-2304 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-663 (-1207))) NIL (-2304 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-793)) NIL (-2304 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080)))) ELT) (($ $) NIL (-2304 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080)))) ELT)) (-3865 (((-793) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#3| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#3| (-1132))) ELT)) (-1799 (($ $) NIL T ELT)) (-1578 (((-1297 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1132)) ELT) (((-887) $) NIL T ELT) (($ (-560)) NIL (-2304 (-12 (|has| |#3| (-1069 (-560))) (|has| |#3| (-1132))) (|has| |#3| (-1080))) ELT) (($ (-421 (-560))) NIL (-12 (|has| |#3| (-1069 (-421 (-560)))) (|has| |#3| (-1132))) ELT)) (-2930 (((-793)) NIL (|has| |#3| (-1080)) CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-1728 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL (|has| |#3| (-1080)) CONST)) (-3305 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-1 |#3| |#3|) (-793)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2304 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-1207) (-793)) NIL (-2304 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-663 (-1207))) NIL (-2304 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-793)) NIL (-2304 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080)))) ELT) (($ $) NIL (-2304 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080)))) ELT)) (-2536 (((-114) $ $) NIL (|has| |#3| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#3| (-871)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL (|has| |#3| (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| |#3| (-871)) ELT)) (-2594 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-2580 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-948)) NIL (|has| |#3| (-1080)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-560) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-948) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-748)) ELT) (($ |#3| $) NIL (|has| |#3| (-748)) ELT) (($ $ $) NIL (|has| |#3| (-1080)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3101 (($ (-948)) NIL (|has| |#3| (-1080)) ELT)) (-2033 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-1651 (($ $ $) NIL (|has| |#3| (-815)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-2552 (((-793)) NIL (|has| |#3| (-381)) ELT)) (-4083 ((|#3| $ (-560) |#3|) NIL (|has| $ (-6 -4509)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1132)) ELT) (((-3 (-560) "failed") $) NIL (-12 (|has| |#3| (-1069 (-560))) (|has| |#3| (-1132))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (-12 (|has| |#3| (-1069 (-421 (-560)))) (|has| |#3| (-1132))) ELT)) (-3649 ((|#3| $) NIL (|has| |#3| (-1132)) ELT) (((-560) $) NIL (-12 (|has| |#3| (-1069 (-560))) (|has| |#3| (-1132))) ELT) (((-421 (-560)) $) NIL (-12 (|has| |#3| (-1069 (-421 (-560)))) (|has| |#3| (-1132))) ELT)) (-2619 (((-2 (|:| -1871 (-711 |#3|)) (|:| |vec| (-1297 |#3|))) (-711 $) (-1297 $)) NIL (|has| |#3| (-1080)) ELT) (((-711 |#3|) (-711 $)) NIL (|has| |#3| (-1080)) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1080))) ELT) (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1080))) ELT)) (-2873 (((-3 $ "failed") $) NIL (|has| |#3| (-1080)) ELT)) (-1812 (($) NIL (|has| |#3| (-381)) ELT)) (-3338 ((|#3| $ (-560) |#3|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#3| $ (-560)) NIL T ELT)) (-3737 (((-663 |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1918 (((-114) $) NIL (|has| |#3| (-1080)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL (|has| |#3| (-871)) ELT)) (-3243 (((-663 |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#3| (-1132))) ELT)) (-4263 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#3| (-871)) ELT)) (-3324 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2622 (((-948) $) NIL (|has| |#3| (-381)) ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-4140 (((-2 (|:| -1871 (-711 |#3|)) (|:| |vec| (-1297 |#3|))) (-1297 $) $) NIL (|has| |#3| (-1080)) ELT) (((-711 |#3|) (-1297 $)) NIL (|has| |#3| (-1080)) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1080))) ELT) (((-711 (-560)) (-1297 $)) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1080))) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) NIL T ELT)) (-1591 (($ (-948)) NIL (|has| |#3| (-381)) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4334 ((|#3| $) NIL (|has| (-560) (-871)) ELT)) (-2740 (($ $ |#3|) NIL (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ (-663 |#3|) (-663 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#3| (-1132))) ELT)) (-1383 (((-663 |#3|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#3| $ (-560) |#3|) NIL T ELT) ((|#3| $ (-560)) 11 T ELT)) (-4258 ((|#3| $ $) NIL (|has| |#3| (-1080)) ELT)) (-4050 (($ (-1297 |#3|)) NIL T ELT)) (-3015 (((-136)) NIL (|has| |#3| (-376)) ELT)) (-3161 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-1 |#3| |#3|) (-793)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2196 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-1207) (-793)) NIL (-2196 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-663 (-1207))) NIL (-2196 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-793)) NIL (-2196 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080)))) ELT) (($ $) NIL (-2196 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080)))) ELT)) (-3384 (((-793) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#3| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#3| (-1132))) ELT)) (-4107 (($ $) NIL T ELT)) (-3913 (((-1297 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1132)) ELT) (((-887) $) NIL T ELT) (($ (-560)) NIL (-2196 (-12 (|has| |#3| (-1069 (-560))) (|has| |#3| (-1132))) (|has| |#3| (-1080))) ELT) (($ (-421 (-560))) NIL (-12 (|has| |#3| (-1069 (-421 (-560)))) (|has| |#3| (-1132))) ELT)) (-4191 (((-793)) NIL (|has| |#3| (-1080)) CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-2149 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL (|has| |#3| (-1080)) CONST)) (-2111 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-1 |#3| |#3|) (-793)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2196 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-1207) (-793)) NIL (-2196 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-663 (-1207))) NIL (-2196 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| |#3| (-927 (-1207))) (|has| |#3| (-1080))) (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080)))) ELT) (($ $ (-793)) NIL (-2196 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080)))) ELT) (($ $) NIL (-2196 (-12 (|has| |#3| (-240)) (|has| |#3| (-1080))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1080)))) ELT)) (-2396 (((-114) $ $) NIL (|has| |#3| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#3| (-871)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL (|has| |#3| (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| |#3| (-871)) ELT)) (-2453 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-2441 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-948)) NIL (|has| |#3| (-1080)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-560) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-948) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-748)) ELT) (($ |#3| $) NIL (|has| |#3| (-748)) ELT) (($ $ $) NIL (|has| |#3| (-1080)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
(((-260 |#1| |#2| |#3|) (-13 (-245 |#1| |#3|) (-670 |#2|)) (-793) (-1080) (-670 |#2|)) (T -260))
NIL
(-13 (-245 |#1| |#3|) (-670 |#2|))
-((-3066 (((-663 (-793)) $) 56 T ELT) (((-663 (-793)) $ |#3|) 59 T ELT)) (-4441 (((-793) $) 58 T ELT) (((-793) $ |#3|) 61 T ELT)) (-2972 (($ $) 76 T ELT)) (-2539 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 (-560) "failed") $) NIL T ELT) (((-3 |#4| "failed") $) NIL T ELT) (((-3 |#3| "failed") $) 83 T ELT)) (-3913 (((-793) $ |#3|) 43 T ELT) (((-793) $) 38 T ELT)) (-2966 (((-1 $ (-793)) |#3|) 15 T ELT) (((-1 $ (-793)) $) 88 T ELT)) (-4427 ((|#4| $) 69 T ELT)) (-2367 (((-114) $) 67 T ELT)) (-3991 (($ $) 75 T ELT)) (-4187 (($ $ (-663 (-305 $))) 111 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-663 |#4|) (-663 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-663 |#4|) (-663 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-663 |#3|) (-663 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-663 |#3|) (-663 |#2|)) 97 T ELT)) (-2894 (($ $ (-663 |#4|) (-663 (-793))) NIL T ELT) (($ $ |#4| (-793)) NIL T ELT) (($ $ (-663 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3141 (((-663 |#3|) $) 86 T ELT)) (-3630 ((|#5| $) NIL T ELT) (((-793) $ |#4|) NIL T ELT) (((-663 (-793)) $ (-663 |#4|)) NIL T ELT) (((-793) $ |#3|) 49 T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT)))
-(((-261 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2894 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1|)) (-15 -2894 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -2894 (|#1| |#1| (-1207) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1207)))) (-15 -2894 (|#1| |#1| (-1207))) (-15 -1578 (|#1| |#1|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -4187 (|#1| |#1| (-663 |#3|) (-663 |#2|))) (-15 -4187 (|#1| |#1| |#3| |#2|)) (-15 -4187 (|#1| |#1| (-663 |#3|) (-663 |#1|))) (-15 -4187 (|#1| |#1| |#3| |#1|)) (-15 -2966 ((-1 |#1| (-793)) |#1|)) (-15 -2972 (|#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -4427 (|#4| |#1|)) (-15 -2367 ((-114) |#1|)) (-15 -4441 ((-793) |#1| |#3|)) (-15 -3066 ((-663 (-793)) |#1| |#3|)) (-15 -4441 ((-793) |#1|)) (-15 -3066 ((-663 (-793)) |#1|)) (-15 -3630 ((-793) |#1| |#3|)) (-15 -3913 ((-793) |#1|)) (-15 -3913 ((-793) |#1| |#3|)) (-15 -3141 ((-663 |#3|) |#1|)) (-15 -2966 ((-1 |#1| (-793)) |#3|)) (-15 -1578 (|#1| |#3|)) (-15 -2539 ((-3 |#3| "failed") |#1|)) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3630 ((-663 (-793)) |#1| (-663 |#4|))) (-15 -3630 ((-793) |#1| |#4|)) (-15 -1578 (|#1| |#4|)) (-15 -2539 ((-3 |#4| "failed") |#1|)) (-15 -4187 (|#1| |#1| (-663 |#4|) (-663 |#1|))) (-15 -4187 (|#1| |#1| |#4| |#1|)) (-15 -4187 (|#1| |#1| (-663 |#4|) (-663 |#2|))) (-15 -4187 (|#1| |#1| |#4| |#2|)) (-15 -4187 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -4187 (|#1| |#1| |#1| |#1|)) (-15 -4187 (|#1| |#1| (-305 |#1|))) (-15 -4187 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -3630 (|#5| |#1|)) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -1578 (|#1| |#2|)) (-15 -2894 (|#1| |#1| |#4|)) (-15 -2894 (|#1| |#1| (-663 |#4|))) (-15 -2894 (|#1| |#1| |#4| (-793))) (-15 -2894 (|#1| |#1| (-663 |#4|) (-663 (-793)))) (-15 -1578 (|#1| (-560))) (-15 -1578 ((-887) |#1|))) (-262 |#2| |#3| |#4| |#5|) (-1080) (-871) (-277 |#3|) (-815)) (T -261))
+((-3074 (((-663 (-793)) $) 56 T ELT) (((-663 (-793)) $ |#3|) 59 T ELT)) (-2775 (((-793) $) 58 T ELT) (((-793) $ |#3|) 61 T ELT)) (-3345 (($ $) 76 T ELT)) (-3929 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 (-560) "failed") $) NIL T ELT) (((-3 |#4| "failed") $) NIL T ELT) (((-3 |#3| "failed") $) 83 T ELT)) (-1460 (((-793) $ |#3|) 43 T ELT) (((-793) $) 38 T ELT)) (-3288 (((-1 $ (-793)) |#3|) 15 T ELT) (((-1 $ (-793)) $) 88 T ELT)) (-1726 ((|#4| $) 69 T ELT)) (-2291 (((-114) $) 67 T ELT)) (-2689 (($ $) 75 T ELT)) (-2371 (($ $ (-663 (-305 $))) 111 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-663 |#4|) (-663 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-663 |#4|) (-663 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-663 |#3|) (-663 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-663 |#3|) (-663 |#2|)) 97 T ELT)) (-3161 (($ $ (-663 |#4|) (-663 (-793))) NIL T ELT) (($ $ |#4| (-793)) NIL T ELT) (($ $ (-663 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2606 (((-663 |#3|) $) 86 T ELT)) (-3900 ((|#5| $) NIL T ELT) (((-793) $ |#4|) NIL T ELT) (((-663 (-793)) $ (-663 |#4|)) NIL T ELT) (((-793) $ |#3|) 49 T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT)))
+(((-261 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3161 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1|)) (-15 -3161 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -3161 (|#1| |#1| (-1207) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1207)))) (-15 -3161 (|#1| |#1| (-1207))) (-15 -3913 (|#1| |#1|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -2371 (|#1| |#1| (-663 |#3|) (-663 |#2|))) (-15 -2371 (|#1| |#1| |#3| |#2|)) (-15 -2371 (|#1| |#1| (-663 |#3|) (-663 |#1|))) (-15 -2371 (|#1| |#1| |#3| |#1|)) (-15 -3288 ((-1 |#1| (-793)) |#1|)) (-15 -3345 (|#1| |#1|)) (-15 -2689 (|#1| |#1|)) (-15 -1726 (|#4| |#1|)) (-15 -2291 ((-114) |#1|)) (-15 -2775 ((-793) |#1| |#3|)) (-15 -3074 ((-663 (-793)) |#1| |#3|)) (-15 -2775 ((-793) |#1|)) (-15 -3074 ((-663 (-793)) |#1|)) (-15 -3900 ((-793) |#1| |#3|)) (-15 -1460 ((-793) |#1|)) (-15 -1460 ((-793) |#1| |#3|)) (-15 -2606 ((-663 |#3|) |#1|)) (-15 -3288 ((-1 |#1| (-793)) |#3|)) (-15 -3913 (|#1| |#3|)) (-15 -3929 ((-3 |#3| "failed") |#1|)) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3900 ((-663 (-793)) |#1| (-663 |#4|))) (-15 -3900 ((-793) |#1| |#4|)) (-15 -3913 (|#1| |#4|)) (-15 -3929 ((-3 |#4| "failed") |#1|)) (-15 -2371 (|#1| |#1| (-663 |#4|) (-663 |#1|))) (-15 -2371 (|#1| |#1| |#4| |#1|)) (-15 -2371 (|#1| |#1| (-663 |#4|) (-663 |#2|))) (-15 -2371 (|#1| |#1| |#4| |#2|)) (-15 -2371 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -2371 (|#1| |#1| |#1| |#1|)) (-15 -2371 (|#1| |#1| (-305 |#1|))) (-15 -2371 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -3900 (|#5| |#1|)) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3913 (|#1| |#2|)) (-15 -3161 (|#1| |#1| |#4|)) (-15 -3161 (|#1| |#1| (-663 |#4|))) (-15 -3161 (|#1| |#1| |#4| (-793))) (-15 -3161 (|#1| |#1| (-663 |#4|) (-663 (-793)))) (-15 -3913 (|#1| (-560))) (-15 -3913 ((-887) |#1|))) (-262 |#2| |#3| |#4| |#5|) (-1080) (-871) (-277 |#3|) (-815)) (T -261))
NIL
-(-10 -8 (-15 -2894 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1|)) (-15 -2894 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -2894 (|#1| |#1| (-1207) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1207)))) (-15 -2894 (|#1| |#1| (-1207))) (-15 -1578 (|#1| |#1|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -4187 (|#1| |#1| (-663 |#3|) (-663 |#2|))) (-15 -4187 (|#1| |#1| |#3| |#2|)) (-15 -4187 (|#1| |#1| (-663 |#3|) (-663 |#1|))) (-15 -4187 (|#1| |#1| |#3| |#1|)) (-15 -2966 ((-1 |#1| (-793)) |#1|)) (-15 -2972 (|#1| |#1|)) (-15 -3991 (|#1| |#1|)) (-15 -4427 (|#4| |#1|)) (-15 -2367 ((-114) |#1|)) (-15 -4441 ((-793) |#1| |#3|)) (-15 -3066 ((-663 (-793)) |#1| |#3|)) (-15 -4441 ((-793) |#1|)) (-15 -3066 ((-663 (-793)) |#1|)) (-15 -3630 ((-793) |#1| |#3|)) (-15 -3913 ((-793) |#1|)) (-15 -3913 ((-793) |#1| |#3|)) (-15 -3141 ((-663 |#3|) |#1|)) (-15 -2966 ((-1 |#1| (-793)) |#3|)) (-15 -1578 (|#1| |#3|)) (-15 -2539 ((-3 |#3| "failed") |#1|)) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3630 ((-663 (-793)) |#1| (-663 |#4|))) (-15 -3630 ((-793) |#1| |#4|)) (-15 -1578 (|#1| |#4|)) (-15 -2539 ((-3 |#4| "failed") |#1|)) (-15 -4187 (|#1| |#1| (-663 |#4|) (-663 |#1|))) (-15 -4187 (|#1| |#1| |#4| |#1|)) (-15 -4187 (|#1| |#1| (-663 |#4|) (-663 |#2|))) (-15 -4187 (|#1| |#1| |#4| |#2|)) (-15 -4187 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -4187 (|#1| |#1| |#1| |#1|)) (-15 -4187 (|#1| |#1| (-305 |#1|))) (-15 -4187 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -3630 (|#5| |#1|)) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -1578 (|#1| |#2|)) (-15 -2894 (|#1| |#1| |#4|)) (-15 -2894 (|#1| |#1| (-663 |#4|))) (-15 -2894 (|#1| |#1| |#4| (-793))) (-15 -2894 (|#1| |#1| (-663 |#4|) (-663 (-793)))) (-15 -1578 (|#1| (-560))) (-15 -1578 ((-887) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3066 (((-663 (-793)) $) 236 T ELT) (((-663 (-793)) $ |#2|) 234 T ELT)) (-4441 (((-793) $) 235 T ELT) (((-793) $ |#2|) 233 T ELT)) (-1443 (((-663 |#3|) $) 113 T ELT)) (-4422 (((-1201 $) $ |#3|) 128 T ELT) (((-1201 |#1|) $) 127 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 90 (|has| |#1| (-571)) ELT)) (-3244 (($ $) 91 (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) 93 (|has| |#1| (-571)) ELT)) (-3107 (((-793) $) 115 T ELT) (((-793) $ (-663 |#3|)) 114 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) 103 (|has| |#1| (-939)) ELT)) (-1804 (($ $) 101 (|has| |#1| (-466)) ELT)) (-3023 (((-419 $) $) 100 (|has| |#1| (-466)) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 106 (|has| |#1| (-939)) ELT)) (-2972 (($ $) 229 T ELT)) (-2238 (($) 18 T CONST)) (-2539 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-421 (-560)) "failed") $) 168 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) 166 (|has| |#1| (-1069 (-560))) ELT) (((-3 |#3| "failed") $) 143 T ELT) (((-3 |#2| "failed") $) 243 T ELT)) (-3330 ((|#1| $) 170 T ELT) (((-421 (-560)) $) 169 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) 167 (|has| |#1| (-1069 (-560))) ELT) ((|#3| $) 144 T ELT) ((|#2| $) 244 T ELT)) (-2788 (($ $ $ |#3|) 111 (|has| |#1| (-175)) ELT)) (-1624 (($ $) 161 T ELT)) (-3142 (((-711 (-560)) (-711 $)) 139 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 138 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 137 T ELT) (((-711 |#1|) (-711 $)) 136 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-2806 (($ $) 183 (|has| |#1| (-466)) ELT) (($ $ |#3|) 108 (|has| |#1| (-466)) ELT)) (-1608 (((-663 $) $) 112 T ELT)) (-4330 (((-114) $) 99 (|has| |#1| (-939)) ELT)) (-4342 (($ $ |#1| |#4| $) 179 T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 87 (-12 (|has| |#3| (-911 (-391))) (|has| |#1| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 86 (-12 (|has| |#3| (-911 (-560))) (|has| |#1| (-911 (-560)))) ELT)) (-3913 (((-793) $ |#2|) 239 T ELT) (((-793) $) 238 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-3531 (((-793) $) 176 T ELT)) (-1427 (($ (-1201 |#1|) |#3|) 120 T ELT) (($ (-1201 $) |#3|) 119 T ELT)) (-3997 (((-663 $) $) 129 T ELT)) (-1556 (((-114) $) 159 T ELT)) (-1417 (($ |#1| |#4|) 160 T ELT) (($ $ |#3| (-793)) 122 T ELT) (($ $ (-663 |#3|) (-663 (-793))) 121 T ELT)) (-3559 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $ |#3|) 123 T ELT)) (-3011 ((|#4| $) 177 T ELT) (((-793) $ |#3|) 125 T ELT) (((-663 (-793)) $ (-663 |#3|)) 124 T ELT)) (-4321 (($ (-1 |#4| |#4|) $) 178 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-2966 (((-1 $ (-793)) |#2|) 241 T ELT) (((-1 $ (-793)) $) 228 (|has| |#1| (-240)) ELT)) (-1955 (((-3 |#3| "failed") $) 126 T ELT)) (-2484 (((-711 (-560)) (-1297 $)) 141 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 140 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 135 T ELT) (((-711 |#1|) (-1297 $)) 134 T ELT)) (-1583 (($ $) 156 T ELT)) (-1597 ((|#1| $) 155 T ELT)) (-4427 ((|#3| $) 231 T ELT)) (-2093 (($ (-663 $)) 97 (|has| |#1| (-466)) ELT) (($ $ $) 96 (|has| |#1| (-466)) ELT)) (-1905 (((-1189) $) 10 T ELT)) (-2367 (((-114) $) 232 T ELT)) (-3479 (((-3 (-663 $) "failed") $) 117 T ELT)) (-2590 (((-3 (-663 $) "failed") $) 118 T ELT)) (-3683 (((-3 (-2 (|:| |var| |#3|) (|:| -3205 (-793))) "failed") $) 116 T ELT)) (-3991 (($ $) 230 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1554 (((-114) $) 173 T ELT)) (-1566 ((|#1| $) 174 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 98 (|has| |#1| (-466)) ELT)) (-2132 (($ (-663 $)) 95 (|has| |#1| (-466)) ELT) (($ $ $) 94 (|has| |#1| (-466)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) 105 (|has| |#1| (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) 104 (|has| |#1| (-939)) ELT)) (-4457 (((-419 $) $) 102 (|has| |#1| (-939)) ELT)) (-1528 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-571)) ELT)) (-4187 (($ $ (-663 (-305 $))) 152 T ELT) (($ $ (-305 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-663 $) (-663 $)) 149 T ELT) (($ $ |#3| |#1|) 148 T ELT) (($ $ (-663 |#3|) (-663 |#1|)) 147 T ELT) (($ $ |#3| $) 146 T ELT) (($ $ (-663 |#3|) (-663 $)) 145 T ELT) (($ $ |#2| $) 227 (|has| |#1| (-240)) ELT) (($ $ (-663 |#2|) (-663 $)) 226 (|has| |#1| (-240)) ELT) (($ $ |#2| |#1|) 225 (|has| |#1| (-240)) ELT) (($ $ (-663 |#2|) (-663 |#1|)) 224 (|has| |#1| (-240)) ELT)) (-2690 (($ $ |#3|) 110 (|has| |#1| (-175)) ELT)) (-2894 (($ $ (-663 |#3|) (-663 (-793))) 44 T ELT) (($ $ |#3| (-793)) 43 T ELT) (($ $ (-663 |#3|)) 42 T ELT) (($ $ |#3|) 40 T ELT) (($ $ (-1 |#1| |#1|)) 248 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 247 T ELT) (($ $) 223 (|has| |#1| (-239)) ELT) (($ $ (-793)) 221 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 219 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 217 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 216 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 215 (|has| |#1| (-929 (-1207))) ELT)) (-3141 (((-663 |#2|) $) 240 T ELT)) (-3630 ((|#4| $) 157 T ELT) (((-793) $ |#3|) 133 T ELT) (((-663 (-793)) $ (-663 |#3|)) 132 T ELT) (((-793) $ |#2|) 237 T ELT)) (-1407 (((-915 (-391)) $) 85 (-12 (|has| |#3| (-633 (-915 (-391)))) (|has| |#1| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) 84 (-12 (|has| |#3| (-633 (-915 (-560)))) (|has| |#1| (-633 (-915 (-560))))) ELT) (((-549) $) 83 (-12 (|has| |#3| (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-2053 ((|#1| $) 182 (|has| |#1| (-466)) ELT) (($ $ |#3|) 109 (|has| |#1| (-466)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) 107 (-1953 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 172 T ELT) (($ |#3|) 142 T ELT) (($ |#2|) 242 T ELT) (($ (-421 (-560))) 81 (-2304 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ELT) (($ $) 88 (|has| |#1| (-571)) ELT)) (-3409 (((-663 |#1|) $) 175 T ELT)) (-2305 ((|#1| $ |#4|) 162 T ELT) (($ $ |#3| (-793)) 131 T ELT) (($ $ (-663 |#3|) (-663 (-793))) 130 T ELT)) (-1964 (((-3 $ "failed") $) 82 (-2304 (-1953 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-2930 (((-793)) 32 T CONST)) (-2392 (($ $ $ (-793)) 180 (|has| |#1| (-175)) ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 92 (|has| |#1| (-571)) ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($ $ (-663 |#3|) (-663 (-793))) 47 T ELT) (($ $ |#3| (-793)) 46 T ELT) (($ $ (-663 |#3|)) 45 T ELT) (($ $ |#3|) 41 T ELT) (($ $ (-1 |#1| |#1|)) 246 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 245 T ELT) (($ $) 222 (|has| |#1| (-239)) ELT) (($ $ (-793)) 220 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 218 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 214 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 213 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 212 (|has| |#1| (-929 (-1207))) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ |#1|) 163 (|has| |#1| (-376)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 165 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) 164 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT)))
+(-10 -8 (-15 -3161 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1|)) (-15 -3161 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -3161 (|#1| |#1| (-1207) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1207)))) (-15 -3161 (|#1| |#1| (-1207))) (-15 -3913 (|#1| |#1|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -2371 (|#1| |#1| (-663 |#3|) (-663 |#2|))) (-15 -2371 (|#1| |#1| |#3| |#2|)) (-15 -2371 (|#1| |#1| (-663 |#3|) (-663 |#1|))) (-15 -2371 (|#1| |#1| |#3| |#1|)) (-15 -3288 ((-1 |#1| (-793)) |#1|)) (-15 -3345 (|#1| |#1|)) (-15 -2689 (|#1| |#1|)) (-15 -1726 (|#4| |#1|)) (-15 -2291 ((-114) |#1|)) (-15 -2775 ((-793) |#1| |#3|)) (-15 -3074 ((-663 (-793)) |#1| |#3|)) (-15 -2775 ((-793) |#1|)) (-15 -3074 ((-663 (-793)) |#1|)) (-15 -3900 ((-793) |#1| |#3|)) (-15 -1460 ((-793) |#1|)) (-15 -1460 ((-793) |#1| |#3|)) (-15 -2606 ((-663 |#3|) |#1|)) (-15 -3288 ((-1 |#1| (-793)) |#3|)) (-15 -3913 (|#1| |#3|)) (-15 -3929 ((-3 |#3| "failed") |#1|)) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3900 ((-663 (-793)) |#1| (-663 |#4|))) (-15 -3900 ((-793) |#1| |#4|)) (-15 -3913 (|#1| |#4|)) (-15 -3929 ((-3 |#4| "failed") |#1|)) (-15 -2371 (|#1| |#1| (-663 |#4|) (-663 |#1|))) (-15 -2371 (|#1| |#1| |#4| |#1|)) (-15 -2371 (|#1| |#1| (-663 |#4|) (-663 |#2|))) (-15 -2371 (|#1| |#1| |#4| |#2|)) (-15 -2371 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -2371 (|#1| |#1| |#1| |#1|)) (-15 -2371 (|#1| |#1| (-305 |#1|))) (-15 -2371 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -3900 (|#5| |#1|)) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3913 (|#1| |#2|)) (-15 -3161 (|#1| |#1| |#4|)) (-15 -3161 (|#1| |#1| (-663 |#4|))) (-15 -3161 (|#1| |#1| |#4| (-793))) (-15 -3161 (|#1| |#1| (-663 |#4|) (-663 (-793)))) (-15 -3913 (|#1| (-560))) (-15 -3913 ((-887) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3074 (((-663 (-793)) $) 236 T ELT) (((-663 (-793)) $ |#2|) 234 T ELT)) (-2775 (((-793) $) 235 T ELT) (((-793) $ |#2|) 233 T ELT)) (-4162 (((-663 |#3|) $) 113 T ELT)) (-3981 (((-1201 $) $ |#3|) 128 T ELT) (((-1201 |#1|) $) 127 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 90 (|has| |#1| (-571)) ELT)) (-4366 (($ $) 91 (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) 93 (|has| |#1| (-571)) ELT)) (-2250 (((-793) $) 115 T ELT) (((-793) $ (-663 |#3|)) 114 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) 103 (|has| |#1| (-939)) ELT)) (-1621 (($ $) 101 (|has| |#1| (-466)) ELT)) (-3898 (((-419 $) $) 100 (|has| |#1| (-466)) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 106 (|has| |#1| (-939)) ELT)) (-3345 (($ $) 229 T ELT)) (-3525 (($) 18 T CONST)) (-3929 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-421 (-560)) "failed") $) 168 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) 166 (|has| |#1| (-1069 (-560))) ELT) (((-3 |#3| "failed") $) 143 T ELT) (((-3 |#2| "failed") $) 243 T ELT)) (-3649 ((|#1| $) 170 T ELT) (((-421 (-560)) $) 169 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) 167 (|has| |#1| (-1069 (-560))) ELT) ((|#3| $) 144 T ELT) ((|#2| $) 244 T ELT)) (-2096 (($ $ $ |#3|) 111 (|has| |#1| (-175)) ELT)) (-3062 (($ $) 161 T ELT)) (-2619 (((-711 (-560)) (-711 $)) 139 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 138 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 137 T ELT) (((-711 |#1|) (-711 $)) 136 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-4239 (($ $) 183 (|has| |#1| (-466)) ELT) (($ $ |#3|) 108 (|has| |#1| (-466)) ELT)) (-3048 (((-663 $) $) 112 T ELT)) (-3141 (((-114) $) 99 (|has| |#1| (-939)) ELT)) (-3224 (($ $ |#1| |#4| $) 179 T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 87 (-12 (|has| |#3| (-911 (-391))) (|has| |#1| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 86 (-12 (|has| |#3| (-911 (-560))) (|has| |#1| (-911 (-560)))) ELT)) (-1460 (((-793) $ |#2|) 239 T ELT) (((-793) $) 238 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-4127 (((-793) $) 176 T ELT)) (-4149 (($ (-1201 |#1|) |#3|) 120 T ELT) (($ (-1201 $) |#3|) 119 T ELT)) (-2947 (((-663 $) $) 129 T ELT)) (-1673 (((-114) $) 159 T ELT)) (-4139 (($ |#1| |#4|) 160 T ELT) (($ $ |#3| (-793)) 122 T ELT) (($ $ (-663 |#3|) (-663 (-793))) 121 T ELT)) (-4415 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $ |#3|) 123 T ELT)) (-3765 ((|#4| $) 177 T ELT) (((-793) $ |#3|) 125 T ELT) (((-663 (-793)) $ (-663 |#3|)) 124 T ELT)) (-3060 (($ (-1 |#4| |#4|) $) 178 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-3288 (((-1 $ (-793)) |#2|) 241 T ELT) (((-1 $ (-793)) $) 228 (|has| |#1| (-240)) ELT)) (-3835 (((-3 |#3| "failed") $) 126 T ELT)) (-4140 (((-711 (-560)) (-1297 $)) 141 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 140 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 135 T ELT) (((-711 |#1|) (-1297 $)) 134 T ELT)) (-3024 (($ $) 156 T ELT)) (-3037 ((|#1| $) 155 T ELT)) (-1726 ((|#3| $) 231 T ELT)) (-1861 (($ (-663 $)) 97 (|has| |#1| (-466)) ELT) (($ $ $) 96 (|has| |#1| (-466)) ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2291 (((-114) $) 232 T ELT)) (-1669 (((-3 (-663 $) "failed") $) 117 T ELT)) (-3849 (((-3 (-663 $) "failed") $) 118 T ELT)) (-3149 (((-3 (-2 (|:| |var| |#3|) (|:| -2030 (-793))) "failed") $) 116 T ELT)) (-2689 (($ $) 230 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3000 (((-114) $) 173 T ELT)) (-3011 ((|#1| $) 174 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 98 (|has| |#1| (-466)) ELT)) (-1938 (($ (-663 $)) 95 (|has| |#1| (-466)) ELT) (($ $ $) 94 (|has| |#1| (-466)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) 105 (|has| |#1| (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) 104 (|has| |#1| (-939)) ELT)) (-4012 (((-419 $) $) 102 (|has| |#1| (-939)) ELT)) (-2233 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-571)) ELT)) (-2371 (($ $ (-663 (-305 $))) 152 T ELT) (($ $ (-305 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-663 $) (-663 $)) 149 T ELT) (($ $ |#3| |#1|) 148 T ELT) (($ $ (-663 |#3|) (-663 |#1|)) 147 T ELT) (($ $ |#3| $) 146 T ELT) (($ $ (-663 |#3|) (-663 $)) 145 T ELT) (($ $ |#2| $) 227 (|has| |#1| (-240)) ELT) (($ $ (-663 |#2|) (-663 $)) 226 (|has| |#1| (-240)) ELT) (($ $ |#2| |#1|) 225 (|has| |#1| (-240)) ELT) (($ $ (-663 |#2|) (-663 |#1|)) 224 (|has| |#1| (-240)) ELT)) (-2336 (($ $ |#3|) 110 (|has| |#1| (-175)) ELT)) (-3161 (($ $ (-663 |#3|) (-663 (-793))) 44 T ELT) (($ $ |#3| (-793)) 43 T ELT) (($ $ (-663 |#3|)) 42 T ELT) (($ $ |#3|) 40 T ELT) (($ $ (-1 |#1| |#1|)) 248 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 247 T ELT) (($ $) 223 (|has| |#1| (-239)) ELT) (($ $ (-793)) 221 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 219 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 217 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 216 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 215 (|has| |#1| (-929 (-1207))) ELT)) (-2606 (((-663 |#2|) $) 240 T ELT)) (-3900 ((|#4| $) 157 T ELT) (((-793) $ |#3|) 133 T ELT) (((-663 (-793)) $ (-663 |#3|)) 132 T ELT) (((-793) $ |#2|) 237 T ELT)) (-2400 (((-915 (-391)) $) 85 (-12 (|has| |#3| (-633 (-915 (-391)))) (|has| |#1| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) 84 (-12 (|has| |#3| (-633 (-915 (-560)))) (|has| |#1| (-633 (-915 (-560))))) ELT) (((-549) $) 83 (-12 (|has| |#3| (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-2264 ((|#1| $) 182 (|has| |#1| (-466)) ELT) (($ $ |#3|) 109 (|has| |#1| (-466)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) 107 (-1404 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 172 T ELT) (($ |#3|) 142 T ELT) (($ |#2|) 242 T ELT) (($ (-421 (-560))) 81 (-2196 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ELT) (($ $) 88 (|has| |#1| (-571)) ELT)) (-2247 (((-663 |#1|) $) 175 T ELT)) (-2920 ((|#1| $ |#4|) 162 T ELT) (($ $ |#3| (-793)) 131 T ELT) (($ $ (-663 |#3|) (-663 (-793))) 130 T ELT)) (-3919 (((-3 $ "failed") $) 82 (-2196 (-1404 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-4191 (((-793)) 32 T CONST)) (-2548 (($ $ $ (-793)) 180 (|has| |#1| (-175)) ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 92 (|has| |#1| (-571)) ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($ $ (-663 |#3|) (-663 (-793))) 47 T ELT) (($ $ |#3| (-793)) 46 T ELT) (($ $ (-663 |#3|)) 45 T ELT) (($ $ |#3|) 41 T ELT) (($ $ (-1 |#1| |#1|)) 246 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 245 T ELT) (($ $) 222 (|has| |#1| (-239)) ELT) (($ $ (-793)) 220 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 218 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 214 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 213 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 212 (|has| |#1| (-929 (-1207))) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ |#1|) 163 (|has| |#1| (-376)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 165 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) 164 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT)))
(((-262 |#1| |#2| |#3| |#4|) (-142) (-1080) (-871) (-277 |t#2|) (-815)) (T -262))
-((-2966 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *3 (-871)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-1 *1 (-793))) (-4 *1 (-262 *4 *3 *5 *6)))) (-3141 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-663 *4)))) (-3913 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1080)) (-4 *3 (-871)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-793)))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-793)))) (-3630 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1080)) (-4 *3 (-871)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-793)))) (-3066 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-663 (-793))))) (-4441 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-793)))) (-3066 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1080)) (-4 *3 (-871)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-663 (-793))))) (-4441 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1080)) (-4 *3 (-871)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-793)))) (-2367 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-114)))) (-4427 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-815)) (-4 *2 (-277 *4)))) (-3991 (*1 *1 *1) (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1080)) (-4 *3 (-871)) (-4 *4 (-277 *3)) (-4 *5 (-815)))) (-2972 (*1 *1 *1) (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1080)) (-4 *3 (-871)) (-4 *4 (-277 *3)) (-4 *5 (-815)))) (-2966 (*1 *2 *1) (-12 (-4 *3 (-240)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-1 *1 (-793))) (-4 *1 (-262 *3 *4 *5 *6)))))
-(-13 (-979 |t#1| |t#4| |t#3|) (-234 |t#1|) (-1069 |t#2|) (-10 -8 (-15 -2966 ((-1 $ (-793)) |t#2|)) (-15 -3141 ((-663 |t#2|) $)) (-15 -3913 ((-793) $ |t#2|)) (-15 -3913 ((-793) $)) (-15 -3630 ((-793) $ |t#2|)) (-15 -3066 ((-663 (-793)) $)) (-15 -4441 ((-793) $)) (-15 -3066 ((-663 (-793)) $ |t#2|)) (-15 -4441 ((-793) $ |t#2|)) (-15 -2367 ((-114) $)) (-15 -4427 (|t#3| $)) (-15 -3991 ($ $)) (-15 -2972 ($ $)) (IF (|has| |t#1| (-240)) (PROGN (-6 (-528 |t#2| |t#1|)) (-6 (-528 |t#2| $)) (-6 (-321 $)) (-15 -2966 ((-1 $ (-793)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) -2304 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 |#2|) . T) ((-635 |#3|) . T) ((-635 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-632 (-887)) . T) ((-175) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-633 (-549)) -12 (|has| |#1| (-633 (-549))) (|has| |#3| (-633 (-549)))) ((-633 (-915 (-391))) -12 (|has| |#1| (-633 (-915 (-391)))) (|has| |#3| (-633 (-915 (-391))))) ((-633 (-915 (-560))) -12 (|has| |#1| (-633 (-915 (-560)))) (|has| |#3| (-633 (-915 (-560))))) ((-236 $) -2304 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -2304 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-302) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-321 $) . T) ((-338 |#1| |#4|) . T) ((-390 |#1|) . T) ((-426 |#1|) . T) ((-466) -2304 (|has| |#1| (-939)) (|has| |#1| (-466))) ((-528 |#2| |#1|) |has| |#1| (-240)) ((-528 |#2| $) |has| |#1| (-240)) ((-528 |#3| |#1|) . T) ((-528 |#3| $) . T) ((-528 $ $) . T) ((-571) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-668 #0#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-38 (-421 (-560)))) ((-670 #1=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-660 #1#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #0#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-748) . T) ((-921 $ #2=(-1207)) -2304 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-921 $ |#3|) . T) ((-927 (-1207)) |has| |#1| (-927 (-1207))) ((-927 |#3|) . T) ((-929 #2#) -2304 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-929 |#3|) . T) ((-911 (-391)) -12 (|has| |#1| (-911 (-391))) (|has| |#3| (-911 (-391)))) ((-911 (-560)) -12 (|has| |#1| (-911 (-560))) (|has| |#3| (-911 (-560)))) ((-979 |#1| |#4| |#3|) . T) ((-939) |has| |#1| (-939)) ((-1069 (-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 |#1|) . T) ((-1069 |#2|) . T) ((-1069 |#3|) . T) ((-1082 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1082 |#1|) . T) ((-1082 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1087 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1087 |#1|) . T) ((-1087 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T) ((-1252) |has| |#1| (-939)))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2612 ((|#1| $) 55 T ELT)) (-2572 ((|#1| $) 45 T ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-2238 (($) 7 T CONST)) (-2252 (($ $) 61 T ELT)) (-4391 (($ $) 49 T ELT)) (-2822 ((|#1| |#1| $) 47 T ELT)) (-2353 ((|#1| $) 46 T ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-4108 (((-793) $) 62 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-1576 ((|#1| $) 40 T ELT)) (-3246 ((|#1| |#1| $) 53 T ELT)) (-3645 ((|#1| |#1| $) 52 T ELT)) (-3629 (($ |#1| $) 41 T ELT)) (-2107 (((-793) $) 56 T ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-3319 ((|#1| $) 63 T ELT)) (-2714 ((|#1| $) 51 T ELT)) (-2799 ((|#1| $) 50 T ELT)) (-2615 ((|#1| $) 42 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-1332 ((|#1| |#1| $) 59 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-1919 ((|#1| $) 60 T ELT)) (-3227 (($) 58 T ELT) (($ (-663 |#1|)) 57 T ELT)) (-3470 (((-793) $) 44 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-2965 ((|#1| $) 54 T ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-3376 (($ (-663 |#1|)) 43 T ELT)) (-3188 ((|#1| $) 64 T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-3288 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *3 (-871)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-1 *1 (-793))) (-4 *1 (-262 *4 *3 *5 *6)))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-663 *4)))) (-1460 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1080)) (-4 *3 (-871)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-793)))) (-1460 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-793)))) (-3900 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1080)) (-4 *3 (-871)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-793)))) (-3074 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-663 (-793))))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-793)))) (-3074 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1080)) (-4 *3 (-871)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-663 (-793))))) (-2775 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1080)) (-4 *3 (-871)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-793)))) (-2291 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-114)))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-815)) (-4 *2 (-277 *4)))) (-2689 (*1 *1 *1) (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1080)) (-4 *3 (-871)) (-4 *4 (-277 *3)) (-4 *5 (-815)))) (-3345 (*1 *1 *1) (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1080)) (-4 *3 (-871)) (-4 *4 (-277 *3)) (-4 *5 (-815)))) (-3288 (*1 *2 *1) (-12 (-4 *3 (-240)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-1 *1 (-793))) (-4 *1 (-262 *3 *4 *5 *6)))))
+(-13 (-979 |t#1| |t#4| |t#3|) (-234 |t#1|) (-1069 |t#2|) (-10 -8 (-15 -3288 ((-1 $ (-793)) |t#2|)) (-15 -2606 ((-663 |t#2|) $)) (-15 -1460 ((-793) $ |t#2|)) (-15 -1460 ((-793) $)) (-15 -3900 ((-793) $ |t#2|)) (-15 -3074 ((-663 (-793)) $)) (-15 -2775 ((-793) $)) (-15 -3074 ((-663 (-793)) $ |t#2|)) (-15 -2775 ((-793) $ |t#2|)) (-15 -2291 ((-114) $)) (-15 -1726 (|t#3| $)) (-15 -2689 ($ $)) (-15 -3345 ($ $)) (IF (|has| |t#1| (-240)) (PROGN (-6 (-528 |t#2| |t#1|)) (-6 (-528 |t#2| $)) (-6 (-321 $)) (-15 -3288 ((-1 $ (-793)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 #0=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) -2196 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 |#2|) . T) ((-635 |#3|) . T) ((-635 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-632 (-887)) . T) ((-175) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-633 (-549)) -12 (|has| |#1| (-633 (-549))) (|has| |#3| (-633 (-549)))) ((-633 (-915 (-391))) -12 (|has| |#1| (-633 (-915 (-391)))) (|has| |#3| (-633 (-915 (-391))))) ((-633 (-915 (-560))) -12 (|has| |#1| (-633 (-915 (-560)))) (|has| |#3| (-633 (-915 (-560))))) ((-236 $) -2196 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -2196 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-302) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-321 $) . T) ((-338 |#1| |#4|) . T) ((-390 |#1|) . T) ((-426 |#1|) . T) ((-466) -2196 (|has| |#1| (-939)) (|has| |#1| (-466))) ((-528 |#2| |#1|) |has| |#1| (-240)) ((-528 |#2| $) |has| |#1| (-240)) ((-528 |#3| |#1|) . T) ((-528 |#3| $) . T) ((-528 $ $) . T) ((-571) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-668 #0#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-38 (-421 (-560)))) ((-670 #1=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-660 #1#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #0#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-748) . T) ((-921 $ #2=(-1207)) -2196 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-921 $ |#3|) . T) ((-927 (-1207)) |has| |#1| (-927 (-1207))) ((-927 |#3|) . T) ((-929 #2#) -2196 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-929 |#3|) . T) ((-911 (-391)) -12 (|has| |#1| (-911 (-391))) (|has| |#3| (-911 (-391)))) ((-911 (-560)) -12 (|has| |#1| (-911 (-560))) (|has| |#3| (-911 (-560)))) ((-979 |#1| |#4| |#3|) . T) ((-939) |has| |#1| (-939)) ((-1069 (-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 |#1|) . T) ((-1069 |#2|) . T) ((-1069 |#3|) . T) ((-1082 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1082 |#1|) . T) ((-1082 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1087 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1087 |#1|) . T) ((-1087 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T) ((-1252) |has| |#1| (-939)))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2763 ((|#1| $) 55 T ELT)) (-3172 ((|#1| $) 45 T ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-3525 (($) 7 T CONST)) (-3675 (($ $) 61 T ELT)) (-2372 (($ $) 49 T ELT)) (-4401 ((|#1| |#1| $) 47 T ELT)) (-2151 ((|#1| $) 46 T ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-2946 (((-793) $) 62 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-1878 ((|#1| $) 40 T ELT)) (-4386 ((|#1| |#1| $) 53 T ELT)) (-2759 ((|#1| |#1| $) 52 T ELT)) (-3888 (($ |#1| $) 41 T ELT)) (-3827 (((-793) $) 56 T ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-3893 ((|#1| $) 63 T ELT)) (-2599 ((|#1| $) 51 T ELT)) (-4169 ((|#1| $) 50 T ELT)) (-2796 ((|#1| $) 42 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-3464 ((|#1| |#1| $) 59 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-3483 ((|#1| $) 60 T ELT)) (-4206 (($) 58 T ELT) (($ (-663 |#1|)) 57 T ELT)) (-3063 (((-793) $) 44 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-1373 ((|#1| $) 54 T ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-3184 (($ (-663 |#1|)) 43 T ELT)) (-1855 ((|#1| $) 64 T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-263 |#1|) (-142) (-1247)) (T -263))
-((-3227 (*1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))) (-3227 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-4 *1 (-263 *3)))) (-2107 (*1 *2 *1) (-12 (-4 *1 (-263 *3)) (-4 *3 (-1247)) (-5 *2 (-793)))) (-2612 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))) (-2965 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))) (-3246 (*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))) (-3645 (*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))) (-2714 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))) (-2799 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))) (-4391 (*1 *1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))))
-(-13 (-1152 |t#1|) (-1026 |t#1|) (-10 -8 (-15 -3227 ($)) (-15 -3227 ($ (-663 |t#1|))) (-15 -2107 ((-793) $)) (-15 -2612 (|t#1| $)) (-15 -2965 (|t#1| $)) (-15 -3246 (|t#1| |t#1| $)) (-15 -3645 (|t#1| |t#1| $)) (-15 -2714 (|t#1| $)) (-15 -2799 (|t#1| $)) (-15 -4391 ($ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1026 |#1|) . T) ((-1132) |has| |#1| (-1132)) ((-1152 |#1|) . T) ((-1247) . T))
-((-2099 (((-1164 (-229)) (-907 |#1|) (-1123 (-391)) (-1123 (-391))) 75 T ELT) (((-1164 (-229)) (-907 |#1|) (-1123 (-391)) (-1123 (-391)) (-663 (-270))) 74 T ELT) (((-1164 (-229)) |#1| (-1123 (-391)) (-1123 (-391))) 65 T ELT) (((-1164 (-229)) |#1| (-1123 (-391)) (-1123 (-391)) (-663 (-270))) 64 T ELT) (((-1164 (-229)) (-904 |#1|) (-1123 (-391))) 56 T ELT) (((-1164 (-229)) (-904 |#1|) (-1123 (-391)) (-663 (-270))) 55 T ELT)) (-2057 (((-1301) (-907 |#1|) (-1123 (-391)) (-1123 (-391))) 78 T ELT) (((-1301) (-907 |#1|) (-1123 (-391)) (-1123 (-391)) (-663 (-270))) 77 T ELT) (((-1301) |#1| (-1123 (-391)) (-1123 (-391))) 68 T ELT) (((-1301) |#1| (-1123 (-391)) (-1123 (-391)) (-663 (-270))) 67 T ELT) (((-1301) (-904 |#1|) (-1123 (-391))) 60 T ELT) (((-1301) (-904 |#1|) (-1123 (-391)) (-663 (-270))) 59 T ELT) (((-1300) (-902 |#1|) (-1123 (-391))) 47 T ELT) (((-1300) (-902 |#1|) (-1123 (-391)) (-663 (-270))) 46 T ELT) (((-1300) |#1| (-1123 (-391))) 38 T ELT) (((-1300) |#1| (-1123 (-391)) (-663 (-270))) 36 T ELT)))
-(((-264 |#1|) (-10 -7 (-15 -2057 ((-1300) |#1| (-1123 (-391)) (-663 (-270)))) (-15 -2057 ((-1300) |#1| (-1123 (-391)))) (-15 -2057 ((-1300) (-902 |#1|) (-1123 (-391)) (-663 (-270)))) (-15 -2057 ((-1300) (-902 |#1|) (-1123 (-391)))) (-15 -2057 ((-1301) (-904 |#1|) (-1123 (-391)) (-663 (-270)))) (-15 -2057 ((-1301) (-904 |#1|) (-1123 (-391)))) (-15 -2099 ((-1164 (-229)) (-904 |#1|) (-1123 (-391)) (-663 (-270)))) (-15 -2099 ((-1164 (-229)) (-904 |#1|) (-1123 (-391)))) (-15 -2057 ((-1301) |#1| (-1123 (-391)) (-1123 (-391)) (-663 (-270)))) (-15 -2057 ((-1301) |#1| (-1123 (-391)) (-1123 (-391)))) (-15 -2099 ((-1164 (-229)) |#1| (-1123 (-391)) (-1123 (-391)) (-663 (-270)))) (-15 -2099 ((-1164 (-229)) |#1| (-1123 (-391)) (-1123 (-391)))) (-15 -2057 ((-1301) (-907 |#1|) (-1123 (-391)) (-1123 (-391)) (-663 (-270)))) (-15 -2057 ((-1301) (-907 |#1|) (-1123 (-391)) (-1123 (-391)))) (-15 -2099 ((-1164 (-229)) (-907 |#1|) (-1123 (-391)) (-1123 (-391)) (-663 (-270)))) (-15 -2099 ((-1164 (-229)) (-907 |#1|) (-1123 (-391)) (-1123 (-391))))) (-13 (-633 (-549)) (-1132))) (T -264))
-((-2099 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-907 *5)) (-5 *4 (-1123 (-391))) (-4 *5 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1164 (-229))) (-5 *1 (-264 *5)))) (-2099 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-907 *6)) (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270))) (-4 *6 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1164 (-229))) (-5 *1 (-264 *6)))) (-2057 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-907 *5)) (-5 *4 (-1123 (-391))) (-4 *5 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1301)) (-5 *1 (-264 *5)))) (-2057 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-907 *6)) (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270))) (-4 *6 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1301)) (-5 *1 (-264 *6)))) (-2099 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1123 (-391))) (-5 *2 (-1164 (-229))) (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1132))))) (-2099 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1132))))) (-2057 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1123 (-391))) (-5 *2 (-1301)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1132))))) (-2057 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1132))))) (-2099 (*1 *2 *3 *4) (-12 (-5 *3 (-904 *5)) (-5 *4 (-1123 (-391))) (-4 *5 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1164 (-229))) (-5 *1 (-264 *5)))) (-2099 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-904 *6)) (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270))) (-4 *6 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1164 (-229))) (-5 *1 (-264 *6)))) (-2057 (*1 *2 *3 *4) (-12 (-5 *3 (-904 *5)) (-5 *4 (-1123 (-391))) (-4 *5 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1301)) (-5 *1 (-264 *5)))) (-2057 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-904 *6)) (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270))) (-4 *6 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1301)) (-5 *1 (-264 *6)))) (-2057 (*1 *2 *3 *4) (-12 (-5 *3 (-902 *5)) (-5 *4 (-1123 (-391))) (-4 *5 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1300)) (-5 *1 (-264 *5)))) (-2057 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-902 *6)) (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270))) (-4 *6 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1300)) (-5 *1 (-264 *6)))) (-2057 (*1 *2 *3 *4) (-12 (-5 *4 (-1123 (-391))) (-5 *2 (-1300)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1132))))) (-2057 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1300)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1132))))))
-(-10 -7 (-15 -2057 ((-1300) |#1| (-1123 (-391)) (-663 (-270)))) (-15 -2057 ((-1300) |#1| (-1123 (-391)))) (-15 -2057 ((-1300) (-902 |#1|) (-1123 (-391)) (-663 (-270)))) (-15 -2057 ((-1300) (-902 |#1|) (-1123 (-391)))) (-15 -2057 ((-1301) (-904 |#1|) (-1123 (-391)) (-663 (-270)))) (-15 -2057 ((-1301) (-904 |#1|) (-1123 (-391)))) (-15 -2099 ((-1164 (-229)) (-904 |#1|) (-1123 (-391)) (-663 (-270)))) (-15 -2099 ((-1164 (-229)) (-904 |#1|) (-1123 (-391)))) (-15 -2057 ((-1301) |#1| (-1123 (-391)) (-1123 (-391)) (-663 (-270)))) (-15 -2057 ((-1301) |#1| (-1123 (-391)) (-1123 (-391)))) (-15 -2099 ((-1164 (-229)) |#1| (-1123 (-391)) (-1123 (-391)) (-663 (-270)))) (-15 -2099 ((-1164 (-229)) |#1| (-1123 (-391)) (-1123 (-391)))) (-15 -2057 ((-1301) (-907 |#1|) (-1123 (-391)) (-1123 (-391)) (-663 (-270)))) (-15 -2057 ((-1301) (-907 |#1|) (-1123 (-391)) (-1123 (-391)))) (-15 -2099 ((-1164 (-229)) (-907 |#1|) (-1123 (-391)) (-1123 (-391)) (-663 (-270)))) (-15 -2099 ((-1164 (-229)) (-907 |#1|) (-1123 (-391)) (-1123 (-391)))))
-((-3765 (((-1 (-972 (-229)) (-229) (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229) (-229))) 153 T ELT)) (-2099 (((-1164 (-229)) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391))) 173 T ELT) (((-1164 (-229)) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391)) (-663 (-270))) 171 T ELT) (((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391))) 176 T ELT) (((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270))) 172 T ELT) (((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391))) 164 T ELT) (((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270))) 163 T ELT) (((-1164 (-229)) (-1 (-972 (-229)) (-229)) (-1120 (-391))) 145 T ELT) (((-1164 (-229)) (-1 (-972 (-229)) (-229)) (-1120 (-391)) (-663 (-270))) 143 T ELT) (((-1164 (-229)) (-904 (-1 (-229) (-229))) (-1120 (-391))) 144 T ELT) (((-1164 (-229)) (-904 (-1 (-229) (-229))) (-1120 (-391)) (-663 (-270))) 141 T ELT)) (-2057 (((-1301) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391))) 175 T ELT) (((-1301) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391)) (-663 (-270))) 174 T ELT) (((-1301) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391))) 178 T ELT) (((-1301) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270))) 177 T ELT) (((-1301) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391))) 166 T ELT) (((-1301) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270))) 165 T ELT) (((-1301) (-1 (-972 (-229)) (-229)) (-1120 (-391))) 151 T ELT) (((-1301) (-1 (-972 (-229)) (-229)) (-1120 (-391)) (-663 (-270))) 150 T ELT) (((-1301) (-904 (-1 (-229) (-229))) (-1120 (-391))) 149 T ELT) (((-1301) (-904 (-1 (-229) (-229))) (-1120 (-391)) (-663 (-270))) 148 T ELT) (((-1300) (-902 (-1 (-229) (-229))) (-1120 (-391))) 113 T ELT) (((-1300) (-902 (-1 (-229) (-229))) (-1120 (-391)) (-663 (-270))) 112 T ELT) (((-1300) (-1 (-229) (-229)) (-1120 (-391))) 107 T ELT) (((-1300) (-1 (-229) (-229)) (-1120 (-391)) (-663 (-270))) 105 T ELT)))
-(((-265) (-10 -7 (-15 -2057 ((-1300) (-1 (-229) (-229)) (-1120 (-391)) (-663 (-270)))) (-15 -2057 ((-1300) (-1 (-229) (-229)) (-1120 (-391)))) (-15 -2057 ((-1300) (-902 (-1 (-229) (-229))) (-1120 (-391)) (-663 (-270)))) (-15 -2057 ((-1300) (-902 (-1 (-229) (-229))) (-1120 (-391)))) (-15 -2057 ((-1301) (-904 (-1 (-229) (-229))) (-1120 (-391)) (-663 (-270)))) (-15 -2057 ((-1301) (-904 (-1 (-229) (-229))) (-1120 (-391)))) (-15 -2057 ((-1301) (-1 (-972 (-229)) (-229)) (-1120 (-391)) (-663 (-270)))) (-15 -2057 ((-1301) (-1 (-972 (-229)) (-229)) (-1120 (-391)))) (-15 -2099 ((-1164 (-229)) (-904 (-1 (-229) (-229))) (-1120 (-391)) (-663 (-270)))) (-15 -2099 ((-1164 (-229)) (-904 (-1 (-229) (-229))) (-1120 (-391)))) (-15 -2099 ((-1164 (-229)) (-1 (-972 (-229)) (-229)) (-1120 (-391)) (-663 (-270)))) (-15 -2099 ((-1164 (-229)) (-1 (-972 (-229)) (-229)) (-1120 (-391)))) (-15 -2057 ((-1301) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2057 ((-1301) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391)))) (-15 -2099 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2099 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391)))) (-15 -2057 ((-1301) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2057 ((-1301) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391)))) (-15 -2099 ((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2099 ((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391)))) (-15 -2057 ((-1301) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2057 ((-1301) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391)))) (-15 -2099 ((-1164 (-229)) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2099 ((-1164 (-229)) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391)))) (-15 -3765 ((-1 (-972 (-229)) (-229) (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229) (-229)))))) (T -265))
-((-3765 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-972 (-229)) (-229) (-229))) (-5 *3 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-265)))) (-2099 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1120 (-391))) (-5 *2 (-1164 (-229))) (-5 *1 (-265)))) (-2099 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-265)))) (-2057 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1120 (-391))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-2057 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-2099 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1120 (-391))) (-5 *2 (-1164 (-229))) (-5 *1 (-265)))) (-2099 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-265)))) (-2057 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1120 (-391))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-2057 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-2099 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1120 (-391))) (-5 *2 (-1164 (-229))) (-5 *1 (-265)))) (-2099 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-265)))) (-2057 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1120 (-391))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-2057 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-2099 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1120 (-391))) (-5 *2 (-1164 (-229))) (-5 *1 (-265)))) (-2099 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-265)))) (-2099 (*1 *2 *3 *4) (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391))) (-5 *2 (-1164 (-229))) (-5 *1 (-265)))) (-2099 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-265)))) (-2057 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1120 (-391))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-2057 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-2057 (*1 *2 *3 *4) (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-2057 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-2057 (*1 *2 *3 *4) (-12 (-5 *3 (-902 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391))) (-5 *2 (-1300)) (-5 *1 (-265)))) (-2057 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-902 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1300)) (-5 *1 (-265)))) (-2057 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1120 (-391))) (-5 *2 (-1300)) (-5 *1 (-265)))) (-2057 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1300)) (-5 *1 (-265)))))
-(-10 -7 (-15 -2057 ((-1300) (-1 (-229) (-229)) (-1120 (-391)) (-663 (-270)))) (-15 -2057 ((-1300) (-1 (-229) (-229)) (-1120 (-391)))) (-15 -2057 ((-1300) (-902 (-1 (-229) (-229))) (-1120 (-391)) (-663 (-270)))) (-15 -2057 ((-1300) (-902 (-1 (-229) (-229))) (-1120 (-391)))) (-15 -2057 ((-1301) (-904 (-1 (-229) (-229))) (-1120 (-391)) (-663 (-270)))) (-15 -2057 ((-1301) (-904 (-1 (-229) (-229))) (-1120 (-391)))) (-15 -2057 ((-1301) (-1 (-972 (-229)) (-229)) (-1120 (-391)) (-663 (-270)))) (-15 -2057 ((-1301) (-1 (-972 (-229)) (-229)) (-1120 (-391)))) (-15 -2099 ((-1164 (-229)) (-904 (-1 (-229) (-229))) (-1120 (-391)) (-663 (-270)))) (-15 -2099 ((-1164 (-229)) (-904 (-1 (-229) (-229))) (-1120 (-391)))) (-15 -2099 ((-1164 (-229)) (-1 (-972 (-229)) (-229)) (-1120 (-391)) (-663 (-270)))) (-15 -2099 ((-1164 (-229)) (-1 (-972 (-229)) (-229)) (-1120 (-391)))) (-15 -2057 ((-1301) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2057 ((-1301) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391)))) (-15 -2099 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2099 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391)))) (-15 -2057 ((-1301) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2057 ((-1301) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391)))) (-15 -2099 ((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2099 ((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391)))) (-15 -2057 ((-1301) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2057 ((-1301) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391)))) (-15 -2099 ((-1164 (-229)) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2099 ((-1164 (-229)) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391)))) (-15 -3765 ((-1 (-972 (-229)) (-229) (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229) (-229)))))
-((-2057 (((-1300) (-305 |#2|) (-1207) (-1207) (-663 (-270))) 101 T ELT)))
-(((-266 |#1| |#2|) (-10 -7 (-15 -2057 ((-1300) (-305 |#2|) (-1207) (-1207) (-663 (-270))))) (-13 (-571) (-871) (-1069 (-560))) (-435 |#1|)) (T -266))
-((-2057 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-1207)) (-5 *5 (-663 (-270))) (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-871) (-1069 (-560)))) (-5 *2 (-1300)) (-5 *1 (-266 *6 *7)))))
-(-10 -7 (-15 -2057 ((-1300) (-305 |#2|) (-1207) (-1207) (-663 (-270)))))
-((-2623 (((-560) (-560)) 71 T ELT)) (-2157 (((-560) (-560)) 72 T ELT)) (-2993 (((-229) (-229)) 73 T ELT)) (-4279 (((-1301) (-1 (-171 (-229)) (-171 (-229))) (-1120 (-229)) (-1120 (-229))) 70 T ELT)) (-2124 (((-1301) (-1 (-171 (-229)) (-171 (-229))) (-1120 (-229)) (-1120 (-229)) (-114)) 68 T ELT)))
-(((-267) (-10 -7 (-15 -2124 ((-1301) (-1 (-171 (-229)) (-171 (-229))) (-1120 (-229)) (-1120 (-229)) (-114))) (-15 -4279 ((-1301) (-1 (-171 (-229)) (-171 (-229))) (-1120 (-229)) (-1120 (-229)))) (-15 -2623 ((-560) (-560))) (-15 -2157 ((-560) (-560))) (-15 -2993 ((-229) (-229))))) (T -267))
-((-2993 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-267)))) (-2157 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-267)))) (-2623 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-267)))) (-4279 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1120 (-229))) (-5 *2 (-1301)) (-5 *1 (-267)))) (-2124 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1120 (-229))) (-5 *5 (-114)) (-5 *2 (-1301)) (-5 *1 (-267)))))
-(-10 -7 (-15 -2124 ((-1301) (-1 (-171 (-229)) (-171 (-229))) (-1120 (-229)) (-1120 (-229)) (-114))) (-15 -4279 ((-1301) (-1 (-171 (-229)) (-171 (-229))) (-1120 (-229)) (-1120 (-229)))) (-15 -2623 ((-560) (-560))) (-15 -2157 ((-560) (-560))) (-15 -2993 ((-229) (-229))))
-((-1578 (((-1123 (-391)) (-1123 (-326 |#1|))) 16 T ELT)))
-(((-268 |#1|) (-10 -7 (-15 -1578 ((-1123 (-391)) (-1123 (-326 |#1|))))) (-13 (-871) (-571) (-633 (-391)))) (T -268))
-((-1578 (*1 *2 *3) (-12 (-5 *3 (-1123 (-326 *4))) (-4 *4 (-13 (-871) (-571) (-633 (-391)))) (-5 *2 (-1123 (-391))) (-5 *1 (-268 *4)))))
-(-10 -7 (-15 -1578 ((-1123 (-391)) (-1123 (-326 |#1|)))))
-((-2057 (((-1301) (-663 (-229)) (-663 (-229)) (-663 (-229)) (-663 (-270))) 23 T ELT) (((-1301) (-663 (-229)) (-663 (-229)) (-663 (-229))) 24 T ELT) (((-1300) (-663 (-972 (-229))) (-663 (-270))) 16 T ELT) (((-1300) (-663 (-972 (-229)))) 17 T ELT) (((-1300) (-663 (-229)) (-663 (-229)) (-663 (-270))) 20 T ELT) (((-1300) (-663 (-229)) (-663 (-229))) 21 T ELT)))
-(((-269) (-10 -7 (-15 -2057 ((-1300) (-663 (-229)) (-663 (-229)))) (-15 -2057 ((-1300) (-663 (-229)) (-663 (-229)) (-663 (-270)))) (-15 -2057 ((-1300) (-663 (-972 (-229))))) (-15 -2057 ((-1300) (-663 (-972 (-229))) (-663 (-270)))) (-15 -2057 ((-1301) (-663 (-229)) (-663 (-229)) (-663 (-229)))) (-15 -2057 ((-1301) (-663 (-229)) (-663 (-229)) (-663 (-229)) (-663 (-270)))))) (T -269))
-((-2057 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-663 (-229))) (-5 *4 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-269)))) (-2057 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-1301)) (-5 *1 (-269)))) (-2057 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-972 (-229)))) (-5 *4 (-663 (-270))) (-5 *2 (-1300)) (-5 *1 (-269)))) (-2057 (*1 *2 *3) (-12 (-5 *3 (-663 (-972 (-229)))) (-5 *2 (-1300)) (-5 *1 (-269)))) (-2057 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-663 (-229))) (-5 *4 (-663 (-270))) (-5 *2 (-1300)) (-5 *1 (-269)))) (-2057 (*1 *2 *3 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-1300)) (-5 *1 (-269)))))
-(-10 -7 (-15 -2057 ((-1300) (-663 (-229)) (-663 (-229)))) (-15 -2057 ((-1300) (-663 (-229)) (-663 (-229)) (-663 (-270)))) (-15 -2057 ((-1300) (-663 (-972 (-229))))) (-15 -2057 ((-1300) (-663 (-972 (-229))) (-663 (-270)))) (-15 -2057 ((-1301) (-663 (-229)) (-663 (-229)) (-663 (-229)))) (-15 -2057 ((-1301) (-663 (-229)) (-663 (-229)) (-663 (-229)) (-663 (-270)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1873 (($ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 24 T ELT)) (-2021 (($ (-948)) 81 T ELT)) (-2792 (($ (-948)) 80 T ELT)) (-2489 (($ (-663 (-391))) 87 T ELT)) (-2445 (($ (-391)) 66 T ELT)) (-2515 (($ (-948)) 82 T ELT)) (-3973 (($ (-114)) 33 T ELT)) (-4346 (($ (-1189)) 28 T ELT)) (-3072 (($ (-1189)) 29 T ELT)) (-2783 (($ (-1164 (-229))) 76 T ELT)) (-1807 (($ (-663 (-1120 (-391)))) 72 T ELT)) (-3471 (($ (-663 (-1120 (-391)))) 68 T ELT) (($ (-663 (-1120 (-421 (-560))))) 71 T ELT)) (-3543 (($ (-391)) 38 T ELT) (($ (-898)) 42 T ELT)) (-1870 (((-114) (-663 $) (-1207)) 100 T ELT)) (-3767 (((-3 (-51) "failed") (-663 $) (-1207)) 102 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1541 (($ (-391)) 43 T ELT) (($ (-898)) 44 T ELT)) (-2178 (($ (-1 (-972 (-229)) (-972 (-229)))) 65 T ELT)) (-1908 (($ (-1 (-972 (-229)) (-972 (-229)))) 83 T ELT)) (-3801 (($ (-1 (-229) (-229))) 48 T ELT) (($ (-1 (-229) (-229) (-229))) 52 T ELT) (($ (-1 (-229) (-229) (-229) (-229))) 56 T ELT)) (-1578 (((-887) $) 93 T ELT)) (-3047 (($ (-114)) 34 T ELT) (($ (-663 (-1120 (-391)))) 60 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-4072 (($ (-114)) 35 T ELT)) (-2473 (((-114) $ $) 97 T ELT)))
-(((-270) (-13 (-1132) (-10 -8 (-15 -4072 ($ (-114))) (-15 -3047 ($ (-114))) (-15 -1873 ($ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4346 ($ (-1189))) (-15 -3072 ($ (-1189))) (-15 -3973 ($ (-114))) (-15 -3047 ($ (-663 (-1120 (-391))))) (-15 -2178 ($ (-1 (-972 (-229)) (-972 (-229))))) (-15 -3543 ($ (-391))) (-15 -3543 ($ (-898))) (-15 -1541 ($ (-391))) (-15 -1541 ($ (-898))) (-15 -3801 ($ (-1 (-229) (-229)))) (-15 -3801 ($ (-1 (-229) (-229) (-229)))) (-15 -3801 ($ (-1 (-229) (-229) (-229) (-229)))) (-15 -2445 ($ (-391))) (-15 -3471 ($ (-663 (-1120 (-391))))) (-15 -3471 ($ (-663 (-1120 (-421 (-560)))))) (-15 -1807 ($ (-663 (-1120 (-391))))) (-15 -2783 ($ (-1164 (-229)))) (-15 -2792 ($ (-948))) (-15 -2021 ($ (-948))) (-15 -2515 ($ (-948))) (-15 -1908 ($ (-1 (-972 (-229)) (-972 (-229))))) (-15 -2489 ($ (-663 (-391)))) (-15 -3767 ((-3 (-51) "failed") (-663 $) (-1207))) (-15 -1870 ((-114) (-663 $) (-1207)))))) (T -270))
-((-4072 (*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) (-3047 (*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) (-1873 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *1 (-270)))) (-4346 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-270)))) (-3072 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-270)))) (-3973 (*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) (-3047 (*1 *1 *2) (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *1 (-270)))) (-2178 (*1 *1 *2) (-12 (-5 *2 (-1 (-972 (-229)) (-972 (-229)))) (-5 *1 (-270)))) (-3543 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) (-3543 (*1 *1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-270)))) (-1541 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) (-1541 (*1 *1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-270)))) (-3801 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-270)))) (-3801 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-270)))) (-3801 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-270)))) (-2445 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) (-3471 (*1 *1 *2) (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *1 (-270)))) (-3471 (*1 *1 *2) (-12 (-5 *2 (-663 (-1120 (-421 (-560))))) (-5 *1 (-270)))) (-1807 (*1 *1 *2) (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *1 (-270)))) (-2783 (*1 *1 *2) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-270)))) (-2792 (*1 *1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-270)))) (-2021 (*1 *1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-270)))) (-2515 (*1 *1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-270)))) (-1908 (*1 *1 *2) (-12 (-5 *2 (-1 (-972 (-229)) (-972 (-229)))) (-5 *1 (-270)))) (-2489 (*1 *1 *2) (-12 (-5 *2 (-663 (-391))) (-5 *1 (-270)))) (-3767 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-663 (-270))) (-5 *4 (-1207)) (-5 *2 (-51)) (-5 *1 (-270)))) (-1870 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-270))) (-5 *4 (-1207)) (-5 *2 (-114)) (-5 *1 (-270)))))
-(-13 (-1132) (-10 -8 (-15 -4072 ($ (-114))) (-15 -3047 ($ (-114))) (-15 -1873 ($ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4346 ($ (-1189))) (-15 -3072 ($ (-1189))) (-15 -3973 ($ (-114))) (-15 -3047 ($ (-663 (-1120 (-391))))) (-15 -2178 ($ (-1 (-972 (-229)) (-972 (-229))))) (-15 -3543 ($ (-391))) (-15 -3543 ($ (-898))) (-15 -1541 ($ (-391))) (-15 -1541 ($ (-898))) (-15 -3801 ($ (-1 (-229) (-229)))) (-15 -3801 ($ (-1 (-229) (-229) (-229)))) (-15 -3801 ($ (-1 (-229) (-229) (-229) (-229)))) (-15 -2445 ($ (-391))) (-15 -3471 ($ (-663 (-1120 (-391))))) (-15 -3471 ($ (-663 (-1120 (-421 (-560)))))) (-15 -1807 ($ (-663 (-1120 (-391))))) (-15 -2783 ($ (-1164 (-229)))) (-15 -2792 ($ (-948))) (-15 -2021 ($ (-948))) (-15 -2515 ($ (-948))) (-15 -1908 ($ (-1 (-972 (-229)) (-972 (-229))))) (-15 -2489 ($ (-663 (-391)))) (-15 -3767 ((-3 (-51) "failed") (-663 $) (-1207))) (-15 -1870 ((-114) (-663 $) (-1207)))))
-((-1873 (((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) (-663 (-270)) (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 25 T ELT)) (-2021 (((-948) (-663 (-270)) (-948)) 52 T ELT)) (-2792 (((-948) (-663 (-270)) (-948)) 51 T ELT)) (-2431 (((-663 (-391)) (-663 (-270)) (-663 (-391))) 68 T ELT)) (-2445 (((-391) (-663 (-270)) (-391)) 57 T ELT)) (-2515 (((-948) (-663 (-270)) (-948)) 53 T ELT)) (-3973 (((-114) (-663 (-270)) (-114)) 27 T ELT)) (-4346 (((-1189) (-663 (-270)) (-1189)) 19 T ELT)) (-3072 (((-1189) (-663 (-270)) (-1189)) 26 T ELT)) (-2783 (((-1164 (-229)) (-663 (-270))) 46 T ELT)) (-1807 (((-663 (-1120 (-391))) (-663 (-270)) (-663 (-1120 (-391)))) 40 T ELT)) (-4080 (((-898) (-663 (-270)) (-898)) 32 T ELT)) (-4087 (((-898) (-663 (-270)) (-898)) 33 T ELT)) (-1908 (((-1 (-972 (-229)) (-972 (-229))) (-663 (-270)) (-1 (-972 (-229)) (-972 (-229)))) 63 T ELT)) (-1641 (((-114) (-663 (-270)) (-114)) 14 T ELT)) (-4072 (((-114) (-663 (-270)) (-114)) 13 T ELT)))
-(((-271) (-10 -7 (-15 -4072 ((-114) (-663 (-270)) (-114))) (-15 -1641 ((-114) (-663 (-270)) (-114))) (-15 -1873 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) (-663 (-270)) (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4346 ((-1189) (-663 (-270)) (-1189))) (-15 -3072 ((-1189) (-663 (-270)) (-1189))) (-15 -3973 ((-114) (-663 (-270)) (-114))) (-15 -4080 ((-898) (-663 (-270)) (-898))) (-15 -4087 ((-898) (-663 (-270)) (-898))) (-15 -1807 ((-663 (-1120 (-391))) (-663 (-270)) (-663 (-1120 (-391))))) (-15 -2792 ((-948) (-663 (-270)) (-948))) (-15 -2021 ((-948) (-663 (-270)) (-948))) (-15 -2783 ((-1164 (-229)) (-663 (-270)))) (-15 -2515 ((-948) (-663 (-270)) (-948))) (-15 -2445 ((-391) (-663 (-270)) (-391))) (-15 -1908 ((-1 (-972 (-229)) (-972 (-229))) (-663 (-270)) (-1 (-972 (-229)) (-972 (-229))))) (-15 -2431 ((-663 (-391)) (-663 (-270)) (-663 (-391)))))) (T -271))
-((-2431 (*1 *2 *3 *2) (-12 (-5 *2 (-663 (-391))) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-1908 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-972 (-229)) (-972 (-229)))) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-2445 (*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-2515 (*1 *2 *3 *2) (-12 (-5 *2 (-948)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-2783 (*1 *2 *3) (-12 (-5 *3 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-271)))) (-2021 (*1 *2 *3 *2) (-12 (-5 *2 (-948)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-2792 (*1 *2 *3 *2) (-12 (-5 *2 (-948)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-1807 (*1 *2 *3 *2) (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-4087 (*1 *2 *3 *2) (-12 (-5 *2 (-898)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-4080 (*1 *2 *3 *2) (-12 (-5 *2 (-898)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-3973 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-3072 (*1 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-4346 (*1 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-1873 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-1641 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-4072 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))))
-(-10 -7 (-15 -4072 ((-114) (-663 (-270)) (-114))) (-15 -1641 ((-114) (-663 (-270)) (-114))) (-15 -1873 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) (-663 (-270)) (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4346 ((-1189) (-663 (-270)) (-1189))) (-15 -3072 ((-1189) (-663 (-270)) (-1189))) (-15 -3973 ((-114) (-663 (-270)) (-114))) (-15 -4080 ((-898) (-663 (-270)) (-898))) (-15 -4087 ((-898) (-663 (-270)) (-898))) (-15 -1807 ((-663 (-1120 (-391))) (-663 (-270)) (-663 (-1120 (-391))))) (-15 -2792 ((-948) (-663 (-270)) (-948))) (-15 -2021 ((-948) (-663 (-270)) (-948))) (-15 -2783 ((-1164 (-229)) (-663 (-270)))) (-15 -2515 ((-948) (-663 (-270)) (-948))) (-15 -2445 ((-391) (-663 (-270)) (-391))) (-15 -1908 ((-1 (-972 (-229)) (-972 (-229))) (-663 (-270)) (-1 (-972 (-229)) (-972 (-229))))) (-15 -2431 ((-663 (-391)) (-663 (-270)) (-663 (-391)))))
-((-3767 (((-3 |#1| "failed") (-663 (-270)) (-1207)) 17 T ELT)))
-(((-272 |#1|) (-10 -7 (-15 -3767 ((-3 |#1| "failed") (-663 (-270)) (-1207)))) (-1247)) (T -272))
-((-3767 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-663 (-270))) (-5 *4 (-1207)) (-5 *1 (-272 *2)) (-4 *2 (-1247)))))
-(-10 -7 (-15 -3767 ((-3 |#1| "failed") (-663 (-270)) (-1207))))
-((-2894 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-793)) 11 T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207)) 19 T ELT) (($ $ (-793)) NIL T ELT) (($ $) 16 T ELT)) (-3305 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-793)) 14 T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)))
-(((-273 |#1| |#2|) (-10 -8 (-15 -2894 (|#1| |#1|)) (-15 -3305 (|#1| |#1|)) (-15 -2894 (|#1| |#1| (-793))) (-15 -3305 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1| (-1207))) (-15 -3305 (|#1| |#1| (-1207))) (-15 -2894 (|#1| |#1| (-663 (-1207)))) (-15 -2894 (|#1| |#1| (-1207) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -3305 (|#1| |#1| (-663 (-1207)))) (-15 -3305 (|#1| |#1| (-1207) (-793))) (-15 -3305 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -3305 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -3305 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|)))) (-274 |#2|) (-1247)) (T -273))
-NIL
-(-10 -8 (-15 -2894 (|#1| |#1|)) (-15 -3305 (|#1| |#1|)) (-15 -2894 (|#1| |#1| (-793))) (-15 -3305 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1| (-1207))) (-15 -3305 (|#1| |#1| (-1207))) (-15 -2894 (|#1| |#1| (-663 (-1207)))) (-15 -2894 (|#1| |#1| (-1207) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -3305 (|#1| |#1| (-663 (-1207)))) (-15 -3305 (|#1| |#1| (-1207) (-793))) (-15 -3305 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -3305 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -3305 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|))))
-((-2894 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 22 T ELT) (($ $ (-663 (-1207)) (-663 (-793))) 16 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 15 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 14 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207)) 12 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-793)) 10 (|has| |#1| (-239)) ELT) (($ $) 8 (|has| |#1| (-239)) ELT)) (-3305 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 20 T ELT) (($ $ (-663 (-1207)) (-663 (-793))) 19 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 18 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 17 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207)) 13 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-793)) 11 (|has| |#1| (-239)) ELT) (($ $) 9 (|has| |#1| (-239)) ELT)))
+((-4206 (*1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))) (-4206 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-4 *1 (-263 *3)))) (-3827 (*1 *2 *1) (-12 (-4 *1 (-263 *3)) (-4 *3 (-1247)) (-5 *2 (-793)))) (-2763 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))) (-1373 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))) (-4386 (*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))) (-2759 (*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))) (-2599 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))) (-4169 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))) (-2372 (*1 *1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))))
+(-13 (-1152 |t#1|) (-1026 |t#1|) (-10 -8 (-15 -4206 ($)) (-15 -4206 ($ (-663 |t#1|))) (-15 -3827 ((-793) $)) (-15 -2763 (|t#1| $)) (-15 -1373 (|t#1| $)) (-15 -4386 (|t#1| |t#1| $)) (-15 -2759 (|t#1| |t#1| $)) (-15 -2599 (|t#1| $)) (-15 -4169 (|t#1| $)) (-15 -2372 ($ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1026 |#1|) . T) ((-1132) |has| |#1| (-1132)) ((-1152 |#1|) . T) ((-1247) . T))
+((-2614 (((-1164 (-229)) (-907 |#1|) (-1123 (-391)) (-1123 (-391))) 75 T ELT) (((-1164 (-229)) (-907 |#1|) (-1123 (-391)) (-1123 (-391)) (-663 (-270))) 74 T ELT) (((-1164 (-229)) |#1| (-1123 (-391)) (-1123 (-391))) 65 T ELT) (((-1164 (-229)) |#1| (-1123 (-391)) (-1123 (-391)) (-663 (-270))) 64 T ELT) (((-1164 (-229)) (-904 |#1|) (-1123 (-391))) 56 T ELT) (((-1164 (-229)) (-904 |#1|) (-1123 (-391)) (-663 (-270))) 55 T ELT)) (-2571 (((-1301) (-907 |#1|) (-1123 (-391)) (-1123 (-391))) 78 T ELT) (((-1301) (-907 |#1|) (-1123 (-391)) (-1123 (-391)) (-663 (-270))) 77 T ELT) (((-1301) |#1| (-1123 (-391)) (-1123 (-391))) 68 T ELT) (((-1301) |#1| (-1123 (-391)) (-1123 (-391)) (-663 (-270))) 67 T ELT) (((-1301) (-904 |#1|) (-1123 (-391))) 60 T ELT) (((-1301) (-904 |#1|) (-1123 (-391)) (-663 (-270))) 59 T ELT) (((-1300) (-902 |#1|) (-1123 (-391))) 47 T ELT) (((-1300) (-902 |#1|) (-1123 (-391)) (-663 (-270))) 46 T ELT) (((-1300) |#1| (-1123 (-391))) 38 T ELT) (((-1300) |#1| (-1123 (-391)) (-663 (-270))) 36 T ELT)))
+(((-264 |#1|) (-10 -7 (-15 -2571 ((-1300) |#1| (-1123 (-391)) (-663 (-270)))) (-15 -2571 ((-1300) |#1| (-1123 (-391)))) (-15 -2571 ((-1300) (-902 |#1|) (-1123 (-391)) (-663 (-270)))) (-15 -2571 ((-1300) (-902 |#1|) (-1123 (-391)))) (-15 -2571 ((-1301) (-904 |#1|) (-1123 (-391)) (-663 (-270)))) (-15 -2571 ((-1301) (-904 |#1|) (-1123 (-391)))) (-15 -2614 ((-1164 (-229)) (-904 |#1|) (-1123 (-391)) (-663 (-270)))) (-15 -2614 ((-1164 (-229)) (-904 |#1|) (-1123 (-391)))) (-15 -2571 ((-1301) |#1| (-1123 (-391)) (-1123 (-391)) (-663 (-270)))) (-15 -2571 ((-1301) |#1| (-1123 (-391)) (-1123 (-391)))) (-15 -2614 ((-1164 (-229)) |#1| (-1123 (-391)) (-1123 (-391)) (-663 (-270)))) (-15 -2614 ((-1164 (-229)) |#1| (-1123 (-391)) (-1123 (-391)))) (-15 -2571 ((-1301) (-907 |#1|) (-1123 (-391)) (-1123 (-391)) (-663 (-270)))) (-15 -2571 ((-1301) (-907 |#1|) (-1123 (-391)) (-1123 (-391)))) (-15 -2614 ((-1164 (-229)) (-907 |#1|) (-1123 (-391)) (-1123 (-391)) (-663 (-270)))) (-15 -2614 ((-1164 (-229)) (-907 |#1|) (-1123 (-391)) (-1123 (-391))))) (-13 (-633 (-549)) (-1132))) (T -264))
+((-2614 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-907 *5)) (-5 *4 (-1123 (-391))) (-4 *5 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1164 (-229))) (-5 *1 (-264 *5)))) (-2614 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-907 *6)) (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270))) (-4 *6 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1164 (-229))) (-5 *1 (-264 *6)))) (-2571 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-907 *5)) (-5 *4 (-1123 (-391))) (-4 *5 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1301)) (-5 *1 (-264 *5)))) (-2571 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-907 *6)) (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270))) (-4 *6 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1301)) (-5 *1 (-264 *6)))) (-2614 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1123 (-391))) (-5 *2 (-1164 (-229))) (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1132))))) (-2614 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1132))))) (-2571 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1123 (-391))) (-5 *2 (-1301)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1132))))) (-2571 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1132))))) (-2614 (*1 *2 *3 *4) (-12 (-5 *3 (-904 *5)) (-5 *4 (-1123 (-391))) (-4 *5 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1164 (-229))) (-5 *1 (-264 *5)))) (-2614 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-904 *6)) (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270))) (-4 *6 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1164 (-229))) (-5 *1 (-264 *6)))) (-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-904 *5)) (-5 *4 (-1123 (-391))) (-4 *5 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1301)) (-5 *1 (-264 *5)))) (-2571 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-904 *6)) (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270))) (-4 *6 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1301)) (-5 *1 (-264 *6)))) (-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-902 *5)) (-5 *4 (-1123 (-391))) (-4 *5 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1300)) (-5 *1 (-264 *5)))) (-2571 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-902 *6)) (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270))) (-4 *6 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1300)) (-5 *1 (-264 *6)))) (-2571 (*1 *2 *3 *4) (-12 (-5 *4 (-1123 (-391))) (-5 *2 (-1300)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1132))))) (-2571 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1300)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1132))))))
+(-10 -7 (-15 -2571 ((-1300) |#1| (-1123 (-391)) (-663 (-270)))) (-15 -2571 ((-1300) |#1| (-1123 (-391)))) (-15 -2571 ((-1300) (-902 |#1|) (-1123 (-391)) (-663 (-270)))) (-15 -2571 ((-1300) (-902 |#1|) (-1123 (-391)))) (-15 -2571 ((-1301) (-904 |#1|) (-1123 (-391)) (-663 (-270)))) (-15 -2571 ((-1301) (-904 |#1|) (-1123 (-391)))) (-15 -2614 ((-1164 (-229)) (-904 |#1|) (-1123 (-391)) (-663 (-270)))) (-15 -2614 ((-1164 (-229)) (-904 |#1|) (-1123 (-391)))) (-15 -2571 ((-1301) |#1| (-1123 (-391)) (-1123 (-391)) (-663 (-270)))) (-15 -2571 ((-1301) |#1| (-1123 (-391)) (-1123 (-391)))) (-15 -2614 ((-1164 (-229)) |#1| (-1123 (-391)) (-1123 (-391)) (-663 (-270)))) (-15 -2614 ((-1164 (-229)) |#1| (-1123 (-391)) (-1123 (-391)))) (-15 -2571 ((-1301) (-907 |#1|) (-1123 (-391)) (-1123 (-391)) (-663 (-270)))) (-15 -2571 ((-1301) (-907 |#1|) (-1123 (-391)) (-1123 (-391)))) (-15 -2614 ((-1164 (-229)) (-907 |#1|) (-1123 (-391)) (-1123 (-391)) (-663 (-270)))) (-15 -2614 ((-1164 (-229)) (-907 |#1|) (-1123 (-391)) (-1123 (-391)))))
+((-2620 (((-1 (-972 (-229)) (-229) (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229) (-229))) 153 T ELT)) (-2614 (((-1164 (-229)) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391))) 173 T ELT) (((-1164 (-229)) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391)) (-663 (-270))) 171 T ELT) (((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391))) 176 T ELT) (((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270))) 172 T ELT) (((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391))) 164 T ELT) (((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270))) 163 T ELT) (((-1164 (-229)) (-1 (-972 (-229)) (-229)) (-1120 (-391))) 145 T ELT) (((-1164 (-229)) (-1 (-972 (-229)) (-229)) (-1120 (-391)) (-663 (-270))) 143 T ELT) (((-1164 (-229)) (-904 (-1 (-229) (-229))) (-1120 (-391))) 144 T ELT) (((-1164 (-229)) (-904 (-1 (-229) (-229))) (-1120 (-391)) (-663 (-270))) 141 T ELT)) (-2571 (((-1301) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391))) 175 T ELT) (((-1301) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391)) (-663 (-270))) 174 T ELT) (((-1301) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391))) 178 T ELT) (((-1301) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270))) 177 T ELT) (((-1301) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391))) 166 T ELT) (((-1301) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270))) 165 T ELT) (((-1301) (-1 (-972 (-229)) (-229)) (-1120 (-391))) 151 T ELT) (((-1301) (-1 (-972 (-229)) (-229)) (-1120 (-391)) (-663 (-270))) 150 T ELT) (((-1301) (-904 (-1 (-229) (-229))) (-1120 (-391))) 149 T ELT) (((-1301) (-904 (-1 (-229) (-229))) (-1120 (-391)) (-663 (-270))) 148 T ELT) (((-1300) (-902 (-1 (-229) (-229))) (-1120 (-391))) 113 T ELT) (((-1300) (-902 (-1 (-229) (-229))) (-1120 (-391)) (-663 (-270))) 112 T ELT) (((-1300) (-1 (-229) (-229)) (-1120 (-391))) 107 T ELT) (((-1300) (-1 (-229) (-229)) (-1120 (-391)) (-663 (-270))) 105 T ELT)))
+(((-265) (-10 -7 (-15 -2571 ((-1300) (-1 (-229) (-229)) (-1120 (-391)) (-663 (-270)))) (-15 -2571 ((-1300) (-1 (-229) (-229)) (-1120 (-391)))) (-15 -2571 ((-1300) (-902 (-1 (-229) (-229))) (-1120 (-391)) (-663 (-270)))) (-15 -2571 ((-1300) (-902 (-1 (-229) (-229))) (-1120 (-391)))) (-15 -2571 ((-1301) (-904 (-1 (-229) (-229))) (-1120 (-391)) (-663 (-270)))) (-15 -2571 ((-1301) (-904 (-1 (-229) (-229))) (-1120 (-391)))) (-15 -2571 ((-1301) (-1 (-972 (-229)) (-229)) (-1120 (-391)) (-663 (-270)))) (-15 -2571 ((-1301) (-1 (-972 (-229)) (-229)) (-1120 (-391)))) (-15 -2614 ((-1164 (-229)) (-904 (-1 (-229) (-229))) (-1120 (-391)) (-663 (-270)))) (-15 -2614 ((-1164 (-229)) (-904 (-1 (-229) (-229))) (-1120 (-391)))) (-15 -2614 ((-1164 (-229)) (-1 (-972 (-229)) (-229)) (-1120 (-391)) (-663 (-270)))) (-15 -2614 ((-1164 (-229)) (-1 (-972 (-229)) (-229)) (-1120 (-391)))) (-15 -2571 ((-1301) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2571 ((-1301) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391)))) (-15 -2614 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2614 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391)))) (-15 -2571 ((-1301) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2571 ((-1301) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391)))) (-15 -2614 ((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2614 ((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391)))) (-15 -2571 ((-1301) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2571 ((-1301) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391)))) (-15 -2614 ((-1164 (-229)) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2614 ((-1164 (-229)) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391)))) (-15 -2620 ((-1 (-972 (-229)) (-229) (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229) (-229)))))) (T -265))
+((-2620 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-972 (-229)) (-229) (-229))) (-5 *3 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-265)))) (-2614 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1120 (-391))) (-5 *2 (-1164 (-229))) (-5 *1 (-265)))) (-2614 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-265)))) (-2571 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1120 (-391))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-2571 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-2614 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1120 (-391))) (-5 *2 (-1164 (-229))) (-5 *1 (-265)))) (-2614 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-265)))) (-2571 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1120 (-391))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-2571 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-2614 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1120 (-391))) (-5 *2 (-1164 (-229))) (-5 *1 (-265)))) (-2614 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-265)))) (-2571 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1120 (-391))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-2571 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-2614 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1120 (-391))) (-5 *2 (-1164 (-229))) (-5 *1 (-265)))) (-2614 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-265)))) (-2614 (*1 *2 *3 *4) (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391))) (-5 *2 (-1164 (-229))) (-5 *1 (-265)))) (-2614 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-265)))) (-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1120 (-391))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-2571 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-2571 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-265)))) (-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-902 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391))) (-5 *2 (-1300)) (-5 *1 (-265)))) (-2571 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-902 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1300)) (-5 *1 (-265)))) (-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1120 (-391))) (-5 *2 (-1300)) (-5 *1 (-265)))) (-2571 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1120 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1300)) (-5 *1 (-265)))))
+(-10 -7 (-15 -2571 ((-1300) (-1 (-229) (-229)) (-1120 (-391)) (-663 (-270)))) (-15 -2571 ((-1300) (-1 (-229) (-229)) (-1120 (-391)))) (-15 -2571 ((-1300) (-902 (-1 (-229) (-229))) (-1120 (-391)) (-663 (-270)))) (-15 -2571 ((-1300) (-902 (-1 (-229) (-229))) (-1120 (-391)))) (-15 -2571 ((-1301) (-904 (-1 (-229) (-229))) (-1120 (-391)) (-663 (-270)))) (-15 -2571 ((-1301) (-904 (-1 (-229) (-229))) (-1120 (-391)))) (-15 -2571 ((-1301) (-1 (-972 (-229)) (-229)) (-1120 (-391)) (-663 (-270)))) (-15 -2571 ((-1301) (-1 (-972 (-229)) (-229)) (-1120 (-391)))) (-15 -2614 ((-1164 (-229)) (-904 (-1 (-229) (-229))) (-1120 (-391)) (-663 (-270)))) (-15 -2614 ((-1164 (-229)) (-904 (-1 (-229) (-229))) (-1120 (-391)))) (-15 -2614 ((-1164 (-229)) (-1 (-972 (-229)) (-229)) (-1120 (-391)) (-663 (-270)))) (-15 -2614 ((-1164 (-229)) (-1 (-972 (-229)) (-229)) (-1120 (-391)))) (-15 -2571 ((-1301) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2571 ((-1301) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391)))) (-15 -2614 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2614 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1120 (-391)) (-1120 (-391)))) (-15 -2571 ((-1301) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2571 ((-1301) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391)))) (-15 -2614 ((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2614 ((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-391)) (-1120 (-391)))) (-15 -2571 ((-1301) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2571 ((-1301) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391)))) (-15 -2614 ((-1164 (-229)) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391)) (-663 (-270)))) (-15 -2614 ((-1164 (-229)) (-907 (-1 (-229) (-229) (-229))) (-1120 (-391)) (-1120 (-391)))) (-15 -2620 ((-1 (-972 (-229)) (-229) (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229) (-229)))))
+((-2571 (((-1300) (-305 |#2|) (-1207) (-1207) (-663 (-270))) 101 T ELT)))
+(((-266 |#1| |#2|) (-10 -7 (-15 -2571 ((-1300) (-305 |#2|) (-1207) (-1207) (-663 (-270))))) (-13 (-571) (-871) (-1069 (-560))) (-435 |#1|)) (T -266))
+((-2571 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-1207)) (-5 *5 (-663 (-270))) (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-871) (-1069 (-560)))) (-5 *2 (-1300)) (-5 *1 (-266 *6 *7)))))
+(-10 -7 (-15 -2571 ((-1300) (-305 |#2|) (-1207) (-1207) (-663 (-270)))))
+((-2886 (((-560) (-560)) 71 T ELT)) (-3996 (((-560) (-560)) 72 T ELT)) (-3564 (((-229) (-229)) 73 T ELT)) (-3976 (((-1301) (-1 (-171 (-229)) (-171 (-229))) (-1120 (-229)) (-1120 (-229))) 70 T ELT)) (-1716 (((-1301) (-1 (-171 (-229)) (-171 (-229))) (-1120 (-229)) (-1120 (-229)) (-114)) 68 T ELT)))
+(((-267) (-10 -7 (-15 -1716 ((-1301) (-1 (-171 (-229)) (-171 (-229))) (-1120 (-229)) (-1120 (-229)) (-114))) (-15 -3976 ((-1301) (-1 (-171 (-229)) (-171 (-229))) (-1120 (-229)) (-1120 (-229)))) (-15 -2886 ((-560) (-560))) (-15 -3996 ((-560) (-560))) (-15 -3564 ((-229) (-229))))) (T -267))
+((-3564 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-267)))) (-3996 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-267)))) (-2886 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-267)))) (-3976 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1120 (-229))) (-5 *2 (-1301)) (-5 *1 (-267)))) (-1716 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1120 (-229))) (-5 *5 (-114)) (-5 *2 (-1301)) (-5 *1 (-267)))))
+(-10 -7 (-15 -1716 ((-1301) (-1 (-171 (-229)) (-171 (-229))) (-1120 (-229)) (-1120 (-229)) (-114))) (-15 -3976 ((-1301) (-1 (-171 (-229)) (-171 (-229))) (-1120 (-229)) (-1120 (-229)))) (-15 -2886 ((-560) (-560))) (-15 -3996 ((-560) (-560))) (-15 -3564 ((-229) (-229))))
+((-3913 (((-1123 (-391)) (-1123 (-326 |#1|))) 16 T ELT)))
+(((-268 |#1|) (-10 -7 (-15 -3913 ((-1123 (-391)) (-1123 (-326 |#1|))))) (-13 (-871) (-571) (-633 (-391)))) (T -268))
+((-3913 (*1 *2 *3) (-12 (-5 *3 (-1123 (-326 *4))) (-4 *4 (-13 (-871) (-571) (-633 (-391)))) (-5 *2 (-1123 (-391))) (-5 *1 (-268 *4)))))
+(-10 -7 (-15 -3913 ((-1123 (-391)) (-1123 (-326 |#1|)))))
+((-2571 (((-1301) (-663 (-229)) (-663 (-229)) (-663 (-229)) (-663 (-270))) 23 T ELT) (((-1301) (-663 (-229)) (-663 (-229)) (-663 (-229))) 24 T ELT) (((-1300) (-663 (-972 (-229))) (-663 (-270))) 16 T ELT) (((-1300) (-663 (-972 (-229)))) 17 T ELT) (((-1300) (-663 (-229)) (-663 (-229)) (-663 (-270))) 20 T ELT) (((-1300) (-663 (-229)) (-663 (-229))) 21 T ELT)))
+(((-269) (-10 -7 (-15 -2571 ((-1300) (-663 (-229)) (-663 (-229)))) (-15 -2571 ((-1300) (-663 (-229)) (-663 (-229)) (-663 (-270)))) (-15 -2571 ((-1300) (-663 (-972 (-229))))) (-15 -2571 ((-1300) (-663 (-972 (-229))) (-663 (-270)))) (-15 -2571 ((-1301) (-663 (-229)) (-663 (-229)) (-663 (-229)))) (-15 -2571 ((-1301) (-663 (-229)) (-663 (-229)) (-663 (-229)) (-663 (-270)))))) (T -269))
+((-2571 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-663 (-229))) (-5 *4 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-269)))) (-2571 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-1301)) (-5 *1 (-269)))) (-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-972 (-229)))) (-5 *4 (-663 (-270))) (-5 *2 (-1300)) (-5 *1 (-269)))) (-2571 (*1 *2 *3) (-12 (-5 *3 (-663 (-972 (-229)))) (-5 *2 (-1300)) (-5 *1 (-269)))) (-2571 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-663 (-229))) (-5 *4 (-663 (-270))) (-5 *2 (-1300)) (-5 *1 (-269)))) (-2571 (*1 *2 *3 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-1300)) (-5 *1 (-269)))))
+(-10 -7 (-15 -2571 ((-1300) (-663 (-229)) (-663 (-229)))) (-15 -2571 ((-1300) (-663 (-229)) (-663 (-229)) (-663 (-270)))) (-15 -2571 ((-1300) (-663 (-972 (-229))))) (-15 -2571 ((-1300) (-663 (-972 (-229))) (-663 (-270)))) (-15 -2571 ((-1301) (-663 (-229)) (-663 (-229)) (-663 (-229)))) (-15 -2571 ((-1301) (-663 (-229)) (-663 (-229)) (-663 (-229)) (-663 (-270)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-4272 (($ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 24 T ELT)) (-3198 (($ (-948)) 81 T ELT)) (-4077 (($ (-948)) 80 T ELT)) (-4184 (($ (-663 (-391))) 87 T ELT)) (-1826 (($ (-391)) 66 T ELT)) (-4394 (($ (-948)) 82 T ELT)) (-3988 (($ (-114)) 33 T ELT)) (-2868 (($ (-1189)) 28 T ELT)) (-3137 (($ (-1189)) 29 T ELT)) (-2051 (($ (-1164 (-229))) 76 T ELT)) (-1657 (($ (-663 (-1120 (-391)))) 72 T ELT)) (-1585 (($ (-663 (-1120 (-391)))) 68 T ELT) (($ (-663 (-1120 (-421 (-560))))) 71 T ELT)) (-4253 (($ (-391)) 38 T ELT) (($ (-898)) 42 T ELT)) (-4241 (((-114) (-663 $) (-1207)) 100 T ELT)) (-1710 (((-3 (-51) "failed") (-663 $) (-1207)) 102 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1547 (($ (-391)) 43 T ELT) (($ (-898)) 44 T ELT)) (-4226 (($ (-1 (-972 (-229)) (-972 (-229)))) 65 T ELT)) (-3374 (($ (-1 (-972 (-229)) (-972 (-229)))) 83 T ELT)) (-1665 (($ (-1 (-229) (-229))) 48 T ELT) (($ (-1 (-229) (-229) (-229))) 52 T ELT) (($ (-1 (-229) (-229) (-229) (-229))) 56 T ELT)) (-3913 (((-887) $) 93 T ELT)) (-2833 (($ (-114)) 34 T ELT) (($ (-663 (-1120 (-391)))) 60 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2477 (($ (-114)) 35 T ELT)) (-2340 (((-114) $ $) 97 T ELT)))
+(((-270) (-13 (-1132) (-10 -8 (-15 -2477 ($ (-114))) (-15 -2833 ($ (-114))) (-15 -4272 ($ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -2868 ($ (-1189))) (-15 -3137 ($ (-1189))) (-15 -3988 ($ (-114))) (-15 -2833 ($ (-663 (-1120 (-391))))) (-15 -4226 ($ (-1 (-972 (-229)) (-972 (-229))))) (-15 -4253 ($ (-391))) (-15 -4253 ($ (-898))) (-15 -1547 ($ (-391))) (-15 -1547 ($ (-898))) (-15 -1665 ($ (-1 (-229) (-229)))) (-15 -1665 ($ (-1 (-229) (-229) (-229)))) (-15 -1665 ($ (-1 (-229) (-229) (-229) (-229)))) (-15 -1826 ($ (-391))) (-15 -1585 ($ (-663 (-1120 (-391))))) (-15 -1585 ($ (-663 (-1120 (-421 (-560)))))) (-15 -1657 ($ (-663 (-1120 (-391))))) (-15 -2051 ($ (-1164 (-229)))) (-15 -4077 ($ (-948))) (-15 -3198 ($ (-948))) (-15 -4394 ($ (-948))) (-15 -3374 ($ (-1 (-972 (-229)) (-972 (-229))))) (-15 -4184 ($ (-663 (-391)))) (-15 -1710 ((-3 (-51) "failed") (-663 $) (-1207))) (-15 -4241 ((-114) (-663 $) (-1207)))))) (T -270))
+((-2477 (*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) (-2833 (*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) (-4272 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *1 (-270)))) (-2868 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-270)))) (-3137 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-270)))) (-3988 (*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) (-2833 (*1 *1 *2) (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *1 (-270)))) (-4226 (*1 *1 *2) (-12 (-5 *2 (-1 (-972 (-229)) (-972 (-229)))) (-5 *1 (-270)))) (-4253 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) (-4253 (*1 *1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-270)))) (-1547 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) (-1547 (*1 *1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-270)))) (-1665 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-270)))) (-1665 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-270)))) (-1665 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-270)))) (-1826 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) (-1585 (*1 *1 *2) (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *1 (-270)))) (-1585 (*1 *1 *2) (-12 (-5 *2 (-663 (-1120 (-421 (-560))))) (-5 *1 (-270)))) (-1657 (*1 *1 *2) (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *1 (-270)))) (-2051 (*1 *1 *2) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-270)))) (-4077 (*1 *1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-270)))) (-3198 (*1 *1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-270)))) (-4394 (*1 *1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-270)))) (-3374 (*1 *1 *2) (-12 (-5 *2 (-1 (-972 (-229)) (-972 (-229)))) (-5 *1 (-270)))) (-4184 (*1 *1 *2) (-12 (-5 *2 (-663 (-391))) (-5 *1 (-270)))) (-1710 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-663 (-270))) (-5 *4 (-1207)) (-5 *2 (-51)) (-5 *1 (-270)))) (-4241 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-270))) (-5 *4 (-1207)) (-5 *2 (-114)) (-5 *1 (-270)))))
+(-13 (-1132) (-10 -8 (-15 -2477 ($ (-114))) (-15 -2833 ($ (-114))) (-15 -4272 ($ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -2868 ($ (-1189))) (-15 -3137 ($ (-1189))) (-15 -3988 ($ (-114))) (-15 -2833 ($ (-663 (-1120 (-391))))) (-15 -4226 ($ (-1 (-972 (-229)) (-972 (-229))))) (-15 -4253 ($ (-391))) (-15 -4253 ($ (-898))) (-15 -1547 ($ (-391))) (-15 -1547 ($ (-898))) (-15 -1665 ($ (-1 (-229) (-229)))) (-15 -1665 ($ (-1 (-229) (-229) (-229)))) (-15 -1665 ($ (-1 (-229) (-229) (-229) (-229)))) (-15 -1826 ($ (-391))) (-15 -1585 ($ (-663 (-1120 (-391))))) (-15 -1585 ($ (-663 (-1120 (-421 (-560)))))) (-15 -1657 ($ (-663 (-1120 (-391))))) (-15 -2051 ($ (-1164 (-229)))) (-15 -4077 ($ (-948))) (-15 -3198 ($ (-948))) (-15 -4394 ($ (-948))) (-15 -3374 ($ (-1 (-972 (-229)) (-972 (-229))))) (-15 -4184 ($ (-663 (-391)))) (-15 -1710 ((-3 (-51) "failed") (-663 $) (-1207))) (-15 -4241 ((-114) (-663 $) (-1207)))))
+((-4272 (((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) (-663 (-270)) (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 25 T ELT)) (-3198 (((-948) (-663 (-270)) (-948)) 52 T ELT)) (-4077 (((-948) (-663 (-270)) (-948)) 51 T ELT)) (-2402 (((-663 (-391)) (-663 (-270)) (-663 (-391))) 68 T ELT)) (-1826 (((-391) (-663 (-270)) (-391)) 57 T ELT)) (-4394 (((-948) (-663 (-270)) (-948)) 53 T ELT)) (-3988 (((-114) (-663 (-270)) (-114)) 27 T ELT)) (-2868 (((-1189) (-663 (-270)) (-1189)) 19 T ELT)) (-3137 (((-1189) (-663 (-270)) (-1189)) 26 T ELT)) (-2051 (((-1164 (-229)) (-663 (-270))) 46 T ELT)) (-1657 (((-663 (-1120 (-391))) (-663 (-270)) (-663 (-1120 (-391)))) 40 T ELT)) (-2540 (((-898) (-663 (-270)) (-898)) 32 T ELT)) (-2605 (((-898) (-663 (-270)) (-898)) 33 T ELT)) (-3374 (((-1 (-972 (-229)) (-972 (-229))) (-663 (-270)) (-1 (-972 (-229)) (-972 (-229)))) 63 T ELT)) (-3756 (((-114) (-663 (-270)) (-114)) 14 T ELT)) (-2477 (((-114) (-663 (-270)) (-114)) 13 T ELT)))
+(((-271) (-10 -7 (-15 -2477 ((-114) (-663 (-270)) (-114))) (-15 -3756 ((-114) (-663 (-270)) (-114))) (-15 -4272 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) (-663 (-270)) (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -2868 ((-1189) (-663 (-270)) (-1189))) (-15 -3137 ((-1189) (-663 (-270)) (-1189))) (-15 -3988 ((-114) (-663 (-270)) (-114))) (-15 -2540 ((-898) (-663 (-270)) (-898))) (-15 -2605 ((-898) (-663 (-270)) (-898))) (-15 -1657 ((-663 (-1120 (-391))) (-663 (-270)) (-663 (-1120 (-391))))) (-15 -4077 ((-948) (-663 (-270)) (-948))) (-15 -3198 ((-948) (-663 (-270)) (-948))) (-15 -2051 ((-1164 (-229)) (-663 (-270)))) (-15 -4394 ((-948) (-663 (-270)) (-948))) (-15 -1826 ((-391) (-663 (-270)) (-391))) (-15 -3374 ((-1 (-972 (-229)) (-972 (-229))) (-663 (-270)) (-1 (-972 (-229)) (-972 (-229))))) (-15 -2402 ((-663 (-391)) (-663 (-270)) (-663 (-391)))))) (T -271))
+((-2402 (*1 *2 *3 *2) (-12 (-5 *2 (-663 (-391))) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-3374 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-972 (-229)) (-972 (-229)))) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-1826 (*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-4394 (*1 *2 *3 *2) (-12 (-5 *2 (-948)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-2051 (*1 *2 *3) (-12 (-5 *3 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-271)))) (-3198 (*1 *2 *3 *2) (-12 (-5 *2 (-948)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-4077 (*1 *2 *3 *2) (-12 (-5 *2 (-948)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-1657 (*1 *2 *3 *2) (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-2605 (*1 *2 *3 *2) (-12 (-5 *2 (-898)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-2540 (*1 *2 *3 *2) (-12 (-5 *2 (-898)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-3988 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-3137 (*1 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-2868 (*1 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-4272 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-3756 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))) (-2477 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))))
+(-10 -7 (-15 -2477 ((-114) (-663 (-270)) (-114))) (-15 -3756 ((-114) (-663 (-270)) (-114))) (-15 -4272 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) (-663 (-270)) (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -2868 ((-1189) (-663 (-270)) (-1189))) (-15 -3137 ((-1189) (-663 (-270)) (-1189))) (-15 -3988 ((-114) (-663 (-270)) (-114))) (-15 -2540 ((-898) (-663 (-270)) (-898))) (-15 -2605 ((-898) (-663 (-270)) (-898))) (-15 -1657 ((-663 (-1120 (-391))) (-663 (-270)) (-663 (-1120 (-391))))) (-15 -4077 ((-948) (-663 (-270)) (-948))) (-15 -3198 ((-948) (-663 (-270)) (-948))) (-15 -2051 ((-1164 (-229)) (-663 (-270)))) (-15 -4394 ((-948) (-663 (-270)) (-948))) (-15 -1826 ((-391) (-663 (-270)) (-391))) (-15 -3374 ((-1 (-972 (-229)) (-972 (-229))) (-663 (-270)) (-1 (-972 (-229)) (-972 (-229))))) (-15 -2402 ((-663 (-391)) (-663 (-270)) (-663 (-391)))))
+((-1710 (((-3 |#1| "failed") (-663 (-270)) (-1207)) 17 T ELT)))
+(((-272 |#1|) (-10 -7 (-15 -1710 ((-3 |#1| "failed") (-663 (-270)) (-1207)))) (-1247)) (T -272))
+((-1710 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-663 (-270))) (-5 *4 (-1207)) (-5 *1 (-272 *2)) (-4 *2 (-1247)))))
+(-10 -7 (-15 -1710 ((-3 |#1| "failed") (-663 (-270)) (-1207))))
+((-3161 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-793)) 11 T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207)) 19 T ELT) (($ $ (-793)) NIL T ELT) (($ $) 16 T ELT)) (-2111 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-793)) 14 T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)))
+(((-273 |#1| |#2|) (-10 -8 (-15 -3161 (|#1| |#1|)) (-15 -2111 (|#1| |#1|)) (-15 -3161 (|#1| |#1| (-793))) (-15 -2111 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1| (-1207))) (-15 -2111 (|#1| |#1| (-1207))) (-15 -3161 (|#1| |#1| (-663 (-1207)))) (-15 -3161 (|#1| |#1| (-1207) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -2111 (|#1| |#1| (-663 (-1207)))) (-15 -2111 (|#1| |#1| (-1207) (-793))) (-15 -2111 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -2111 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2111 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|)))) (-274 |#2|) (-1247)) (T -273))
+NIL
+(-10 -8 (-15 -3161 (|#1| |#1|)) (-15 -2111 (|#1| |#1|)) (-15 -3161 (|#1| |#1| (-793))) (-15 -2111 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1| (-1207))) (-15 -2111 (|#1| |#1| (-1207))) (-15 -3161 (|#1| |#1| (-663 (-1207)))) (-15 -3161 (|#1| |#1| (-1207) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -2111 (|#1| |#1| (-663 (-1207)))) (-15 -2111 (|#1| |#1| (-1207) (-793))) (-15 -2111 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -2111 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2111 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|))))
+((-3161 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 22 T ELT) (($ $ (-663 (-1207)) (-663 (-793))) 16 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 15 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 14 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207)) 12 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-793)) 10 (|has| |#1| (-239)) ELT) (($ $) 8 (|has| |#1| (-239)) ELT)) (-2111 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 20 T ELT) (($ $ (-663 (-1207)) (-663 (-793))) 19 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 18 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 17 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207)) 13 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-793)) 11 (|has| |#1| (-239)) ELT) (($ $) 9 (|has| |#1| (-239)) ELT)))
(((-274 |#1|) (-142) (-1247)) (T -274))
-((-2894 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1247)))) (-2894 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-793)) (-4 *1 (-274 *4)) (-4 *4 (-1247)))) (-3305 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1247)))) (-3305 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-793)) (-4 *1 (-274 *4)) (-4 *4 (-1247)))))
-(-13 (-1247) (-10 -8 (-15 -2894 ($ $ (-1 |t#1| |t#1|))) (-15 -2894 ($ $ (-1 |t#1| |t#1|) (-793))) (-15 -3305 ($ $ (-1 |t#1| |t#1|))) (-15 -3305 ($ $ (-1 |t#1| |t#1|) (-793))) (IF (|has| |t#1| (-239)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-929 (-1207))) (-6 (-929 (-1207))) |%noBranch|)))
+((-3161 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1247)))) (-3161 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-793)) (-4 *1 (-274 *4)) (-4 *4 (-1247)))) (-2111 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1247)))) (-2111 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-793)) (-4 *1 (-274 *4)) (-4 *4 (-1247)))))
+(-13 (-1247) (-10 -8 (-15 -3161 ($ $ (-1 |t#1| |t#1|))) (-15 -3161 ($ $ (-1 |t#1| |t#1|) (-793))) (-15 -2111 ($ $ (-1 |t#1| |t#1|))) (-15 -2111 ($ $ (-1 |t#1| |t#1|) (-793))) (IF (|has| |t#1| (-239)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-929 (-1207))) (-6 (-929 (-1207))) |%noBranch|)))
(((-236 $) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-921 $ #0=(-1207)) |has| |#1| (-929 (-1207))) ((-929 #0#) |has| |#1| (-929 (-1207))) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3066 (((-663 (-793)) $) NIL T ELT) (((-663 (-793)) $ |#2|) NIL T ELT)) (-4441 (((-793) $) NIL T ELT) (((-793) $ |#2|) NIL T ELT)) (-1443 (((-663 |#3|) $) NIL T ELT)) (-4422 (((-1201 $) $ |#3|) NIL T ELT) (((-1201 |#1|) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3107 (((-793) $) NIL T ELT) (((-793) $ (-663 |#3|)) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1804 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-2972 (($ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 |#3| "failed") $) NIL T ELT) (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-1156 |#1| |#2|) "failed") $) 23 T ELT)) (-3330 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1156 |#1| |#2|) $) NIL T ELT)) (-2788 (($ $ $ |#3|) NIL (|has| |#1| (-175)) ELT)) (-1624 (($ $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2806 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ |#3|) NIL (|has| |#1| (-466)) ELT)) (-1608 (((-663 $) $) NIL T ELT)) (-4330 (((-114) $) NIL (|has| |#1| (-939)) ELT)) (-4342 (($ $ |#1| (-545 |#3|) $) NIL T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| |#1| (-911 (-391))) (|has| |#3| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| |#1| (-911 (-560))) (|has| |#3| (-911 (-560)))) ELT)) (-3913 (((-793) $ |#2|) NIL T ELT) (((-793) $) 10 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-3531 (((-793) $) NIL T ELT)) (-1427 (($ (-1201 |#1|) |#3|) NIL T ELT) (($ (-1201 $) |#3|) NIL T ELT)) (-3997 (((-663 $) $) NIL T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-545 |#3|)) NIL T ELT) (($ $ |#3| (-793)) NIL T ELT) (($ $ (-663 |#3|) (-663 (-793))) NIL T ELT)) (-3559 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $ |#3|) NIL T ELT)) (-3011 (((-545 |#3|) $) NIL T ELT) (((-793) $ |#3|) NIL T ELT) (((-663 (-793)) $ (-663 |#3|)) NIL T ELT)) (-4321 (($ (-1 (-545 |#3|) (-545 |#3|)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2966 (((-1 $ (-793)) |#2|) NIL T ELT) (((-1 $ (-793)) $) NIL (|has| |#1| (-240)) ELT)) (-1955 (((-3 |#3| "failed") $) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-4427 ((|#3| $) NIL T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2367 (((-114) $) NIL T ELT)) (-3479 (((-3 (-663 $) "failed") $) NIL T ELT)) (-2590 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3683 (((-3 (-2 (|:| |var| |#3|) (|:| -3205 (-793))) "failed") $) NIL T ELT)) (-3991 (($ $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1554 (((-114) $) NIL T ELT)) (-1566 ((|#1| $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-466)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-4457 (((-419 $) $) NIL (|has| |#1| (-939)) ELT)) (-1528 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-4187 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-663 |#3|) (-663 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-663 |#3|) (-663 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-240)) ELT) (($ $ (-663 |#2|) (-663 $)) NIL (|has| |#1| (-240)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-663 |#2|) (-663 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-2690 (($ $ |#3|) NIL (|has| |#1| (-175)) ELT)) (-2894 (($ $ (-663 |#3|) (-663 (-793))) NIL T ELT) (($ $ |#3| (-793)) NIL T ELT) (($ $ (-663 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-3141 (((-663 |#2|) $) NIL T ELT)) (-3630 (((-545 |#3|) $) NIL T ELT) (((-793) $ |#3|) NIL T ELT) (((-663 (-793)) $ (-663 |#3|)) NIL T ELT) (((-793) $ |#2|) NIL T ELT)) (-1407 (((-915 (-391)) $) NIL (-12 (|has| |#1| (-633 (-915 (-391)))) (|has| |#3| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| |#1| (-633 (-915 (-560)))) (|has| |#3| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| |#1| (-633 (-549))) (|has| |#3| (-633 (-549)))) ELT)) (-2053 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ |#3|) NIL (|has| |#1| (-466)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1156 |#1| |#2|)) 32 T ELT) (($ (-421 (-560))) NIL (-2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-3409 (((-663 |#1|) $) NIL T ELT)) (-2305 ((|#1| $ (-545 |#3|)) NIL T ELT) (($ $ |#3| (-793)) NIL T ELT) (($ $ (-663 |#3|) (-663 (-793))) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-2930 (((-793)) NIL T CONST)) (-2392 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $ (-663 |#3|) (-663 (-793))) NIL T ELT) (($ $ |#3| (-793)) NIL T ELT) (($ $ (-663 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3074 (((-663 (-793)) $) NIL T ELT) (((-663 (-793)) $ |#2|) NIL T ELT)) (-2775 (((-793) $) NIL T ELT) (((-793) $ |#2|) NIL T ELT)) (-4162 (((-663 |#3|) $) NIL T ELT)) (-3981 (((-1201 $) $ |#3|) NIL T ELT) (((-1201 |#1|) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-2250 (((-793) $) NIL T ELT) (((-793) $ (-663 |#3|)) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1621 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-3345 (($ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 |#3| "failed") $) NIL T ELT) (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-1156 |#1| |#2|) "failed") $) 23 T ELT)) (-3649 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1156 |#1| |#2|) $) NIL T ELT)) (-2096 (($ $ $ |#3|) NIL (|has| |#1| (-175)) ELT)) (-3062 (($ $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4239 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ |#3|) NIL (|has| |#1| (-466)) ELT)) (-3048 (((-663 $) $) NIL T ELT)) (-3141 (((-114) $) NIL (|has| |#1| (-939)) ELT)) (-3224 (($ $ |#1| (-545 |#3|) $) NIL T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| |#1| (-911 (-391))) (|has| |#3| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| |#1| (-911 (-560))) (|has| |#3| (-911 (-560)))) ELT)) (-1460 (((-793) $ |#2|) NIL T ELT) (((-793) $) 10 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-4127 (((-793) $) NIL T ELT)) (-4149 (($ (-1201 |#1|) |#3|) NIL T ELT) (($ (-1201 $) |#3|) NIL T ELT)) (-2947 (((-663 $) $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-545 |#3|)) NIL T ELT) (($ $ |#3| (-793)) NIL T ELT) (($ $ (-663 |#3|) (-663 (-793))) NIL T ELT)) (-4415 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $ |#3|) NIL T ELT)) (-3765 (((-545 |#3|) $) NIL T ELT) (((-793) $ |#3|) NIL T ELT) (((-663 (-793)) $ (-663 |#3|)) NIL T ELT)) (-3060 (($ (-1 (-545 |#3|) (-545 |#3|)) $) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3288 (((-1 $ (-793)) |#2|) NIL T ELT) (((-1 $ (-793)) $) NIL (|has| |#1| (-240)) ELT)) (-3835 (((-3 |#3| "failed") $) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-1726 ((|#3| $) NIL T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2291 (((-114) $) NIL T ELT)) (-1669 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3849 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3149 (((-3 (-2 (|:| |var| |#3|) (|:| -2030 (-793))) "failed") $) NIL T ELT)) (-2689 (($ $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3000 (((-114) $) NIL T ELT)) (-3011 ((|#1| $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-466)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-4012 (((-419 $) $) NIL (|has| |#1| (-939)) ELT)) (-2233 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-2371 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-663 |#3|) (-663 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-663 |#3|) (-663 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-240)) ELT) (($ $ (-663 |#2|) (-663 $)) NIL (|has| |#1| (-240)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-663 |#2|) (-663 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-2336 (($ $ |#3|) NIL (|has| |#1| (-175)) ELT)) (-3161 (($ $ (-663 |#3|) (-663 (-793))) NIL T ELT) (($ $ |#3| (-793)) NIL T ELT) (($ $ (-663 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-2606 (((-663 |#2|) $) NIL T ELT)) (-3900 (((-545 |#3|) $) NIL T ELT) (((-793) $ |#3|) NIL T ELT) (((-663 (-793)) $ (-663 |#3|)) NIL T ELT) (((-793) $ |#2|) NIL T ELT)) (-2400 (((-915 (-391)) $) NIL (-12 (|has| |#1| (-633 (-915 (-391)))) (|has| |#3| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| |#1| (-633 (-915 (-560)))) (|has| |#3| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| |#1| (-633 (-549))) (|has| |#3| (-633 (-549)))) ELT)) (-2264 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ |#3|) NIL (|has| |#1| (-466)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1156 |#1| |#2|)) 32 T ELT) (($ (-421 (-560))) NIL (-2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-2247 (((-663 |#1|) $) NIL T ELT)) (-2920 ((|#1| $ (-545 |#3|)) NIL T ELT) (($ $ |#3| (-793)) NIL T ELT) (($ $ (-663 |#3|) (-663 (-793))) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-4191 (((-793)) NIL T CONST)) (-2548 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $ (-663 |#3|) (-663 (-793))) NIL T ELT) (($ $ |#3| (-793)) NIL T ELT) (($ $ (-663 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
(((-275 |#1| |#2| |#3|) (-13 (-262 |#1| |#2| |#3| (-545 |#3|)) (-1069 (-1156 |#1| |#2|))) (-1080) (-871) (-277 |#2|)) (T -275))
NIL
(-13 (-262 |#1| |#2| |#3| (-545 |#3|)) (-1069 (-1156 |#1| |#2|)))
-((-4441 (((-793) $) 37 T ELT)) (-2539 (((-3 |#2| "failed") $) 22 T ELT)) (-3330 ((|#2| $) 33 T ELT)) (-2894 (($ $ (-793)) 18 T ELT) (($ $) 14 T ELT)) (-1578 (((-887) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-2473 (((-114) $ $) 26 T ELT)) (-2495 (((-114) $ $) 36 T ELT)))
-(((-276 |#1| |#2|) (-10 -8 (-15 -4441 ((-793) |#1|)) (-15 -1578 (|#1| |#2|)) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -2894 (|#1| |#1|)) (-15 -2894 (|#1| |#1| (-793))) (-15 -2495 ((-114) |#1| |#1|)) (-15 -1578 ((-887) |#1|)) (-15 -2473 ((-114) |#1| |#1|))) (-277 |#2|) (-871)) (T -276))
+((-2775 (((-793) $) 37 T ELT)) (-3929 (((-3 |#2| "failed") $) 22 T ELT)) (-3649 ((|#2| $) 33 T ELT)) (-3161 (($ $ (-793)) 18 T ELT) (($ $) 14 T ELT)) (-3913 (((-887) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-2340 (((-114) $ $) 26 T ELT)) (-2362 (((-114) $ $) 36 T ELT)))
+(((-276 |#1| |#2|) (-10 -8 (-15 -2775 ((-793) |#1|)) (-15 -3913 (|#1| |#2|)) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3161 (|#1| |#1|)) (-15 -3161 (|#1| |#1| (-793))) (-15 -2362 ((-114) |#1| |#1|)) (-15 -3913 ((-887) |#1|)) (-15 -2340 ((-114) |#1| |#1|))) (-277 |#2|) (-871)) (T -276))
NIL
-(-10 -8 (-15 -4441 ((-793) |#1|)) (-15 -1578 (|#1| |#2|)) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -2894 (|#1| |#1|)) (-15 -2894 (|#1| |#1| (-793))) (-15 -2495 ((-114) |#1| |#1|)) (-15 -1578 ((-887) |#1|)) (-15 -2473 ((-114) |#1| |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-4441 (((-793) $) 23 T ELT)) (-2462 ((|#1| $) 24 T ELT)) (-2539 (((-3 |#1| "failed") $) 28 T ELT)) (-3330 ((|#1| $) 29 T ELT)) (-3913 (((-793) $) 25 T ELT)) (-3825 (($ $ $) 20 T ELT)) (-2820 (($ $ $) 19 T ELT)) (-2966 (($ |#1| (-793)) 26 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-2894 (($ $ (-793)) 32 T ELT) (($ $) 30 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ |#1|) 27 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-3305 (($ $ (-793)) 33 T ELT) (($ $) 31 T ELT)) (-2536 (((-114) $ $) 18 T ELT)) (-2508 (((-114) $ $) 16 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 17 T ELT)) (-2495 (((-114) $ $) 15 T ELT)))
+(-10 -8 (-15 -2775 ((-793) |#1|)) (-15 -3913 (|#1| |#2|)) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3161 (|#1| |#1|)) (-15 -3161 (|#1| |#1| (-793))) (-15 -2362 ((-114) |#1| |#1|)) (-15 -3913 ((-887) |#1|)) (-15 -2340 ((-114) |#1| |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2775 (((-793) $) 23 T ELT)) (-2558 ((|#1| $) 24 T ELT)) (-3929 (((-3 |#1| "failed") $) 28 T ELT)) (-3649 ((|#1| $) 29 T ELT)) (-1460 (((-793) $) 25 T ELT)) (-2932 (($ $ $) 20 T ELT)) (-4379 (($ $ $) 19 T ELT)) (-3288 (($ |#1| (-793)) 26 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3161 (($ $ (-793)) 32 T ELT) (($ $) 30 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ |#1|) 27 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2111 (($ $ (-793)) 33 T ELT) (($ $) 31 T ELT)) (-2396 (((-114) $ $) 18 T ELT)) (-2373 (((-114) $ $) 16 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 17 T ELT)) (-2362 (((-114) $ $) 15 T ELT)))
(((-277 |#1|) (-142) (-871)) (T -277))
-((-1578 (*1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-871)))) (-2966 (*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-277 *2)) (-4 *2 (-871)))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-871)) (-5 *2 (-793)))) (-2462 (*1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-871)))) (-4441 (*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-871)) (-5 *2 (-793)))))
-(-13 (-871) (-239) (-1069 |t#1|) (-10 -8 (-15 -2966 ($ |t#1| (-793))) (-15 -3913 ((-793) $)) (-15 -2462 (|t#1| $)) (-15 -4441 ((-793) $)) (-15 -1578 ($ |t#1|))))
+((-3913 (*1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-871)))) (-3288 (*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-277 *2)) (-4 *2 (-871)))) (-1460 (*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-871)) (-5 *2 (-793)))) (-2558 (*1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-871)))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-871)) (-5 *2 (-793)))))
+(-13 (-871) (-239) (-1069 |t#1|) (-10 -8 (-15 -3288 ($ |t#1| (-793))) (-15 -1460 ((-793) $)) (-15 -2558 (|t#1| $)) (-15 -2775 ((-793) $)) (-15 -3913 ($ |t#1|))))
(((-102) . T) ((-635 |#1|) . T) ((-632 (-887)) . T) ((-236 $) . T) ((-239) . T) ((-871) . T) ((-874) . T) ((-1069 |#1|) . T) ((-1132) . T) ((-1247) . T))
-((-1443 (((-663 (-1207)) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) 53 T ELT)) (-2571 (((-663 (-1207)) (-326 (-229)) (-793)) 94 T ELT)) (-4260 (((-3 (-326 (-229)) "failed") (-326 (-229))) 63 T ELT)) (-1690 (((-326 (-229)) (-326 (-229))) 79 T ELT)) (-1492 (((-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229))))) (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 38 T ELT)) (-1446 (((-114) (-663 (-326 (-229)))) 104 T ELT)) (-3478 (((-114) (-326 (-229))) 36 T ELT)) (-4347 (((-663 (-1189)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))))) 132 T ELT)) (-3224 (((-663 (-326 (-229))) (-663 (-326 (-229)))) 108 T ELT)) (-2986 (((-663 (-326 (-229))) (-663 (-326 (-229)))) 106 T ELT)) (-2167 (((-711 (-229)) (-663 (-326 (-229))) (-793)) 120 T ELT)) (-2812 (((-114) (-326 (-229))) 31 T ELT) (((-114) (-663 (-326 (-229)))) 105 T ELT)) (-3199 (((-663 (-229)) (-663 (-864 (-229))) (-229)) 15 T ELT)) (-1956 (((-391) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) 126 T ELT)) (-3248 (((-1066) (-1207) (-1066)) 46 T ELT)))
-(((-278) (-10 -7 (-15 -3199 ((-663 (-229)) (-663 (-864 (-229))) (-229))) (-15 -1492 ((-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229))))) (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229))))))) (-15 -4260 ((-3 (-326 (-229)) "failed") (-326 (-229)))) (-15 -1690 ((-326 (-229)) (-326 (-229)))) (-15 -1446 ((-114) (-663 (-326 (-229))))) (-15 -2812 ((-114) (-663 (-326 (-229))))) (-15 -2812 ((-114) (-326 (-229)))) (-15 -2167 ((-711 (-229)) (-663 (-326 (-229))) (-793))) (-15 -2986 ((-663 (-326 (-229))) (-663 (-326 (-229))))) (-15 -3224 ((-663 (-326 (-229))) (-663 (-326 (-229))))) (-15 -3478 ((-114) (-326 (-229)))) (-15 -1443 ((-663 (-1207)) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229)))))) (-15 -2571 ((-663 (-1207)) (-326 (-229)) (-793))) (-15 -3248 ((-1066) (-1207) (-1066))) (-15 -1956 ((-391) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229)))))) (-15 -4347 ((-663 (-1189)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229)))))))))) (T -278))
-((-4347 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))))) (-5 *2 (-663 (-1189))) (-5 *1 (-278)))) (-1956 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) (-5 *2 (-391)) (-5 *1 (-278)))) (-3248 (*1 *2 *3 *2) (-12 (-5 *2 (-1066)) (-5 *3 (-1207)) (-5 *1 (-278)))) (-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-793)) (-5 *2 (-663 (-1207))) (-5 *1 (-278)))) (-1443 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) (-5 *2 (-663 (-1207))) (-5 *1 (-278)))) (-3478 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278)))) (-3224 (*1 *2 *2) (-12 (-5 *2 (-663 (-326 (-229)))) (-5 *1 (-278)))) (-2986 (*1 *2 *2) (-12 (-5 *2 (-663 (-326 (-229)))) (-5 *1 (-278)))) (-2167 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-326 (-229)))) (-5 *4 (-793)) (-5 *2 (-711 (-229))) (-5 *1 (-278)))) (-2812 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278)))) (-2812 (*1 *2 *3) (-12 (-5 *3 (-663 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278)))) (-1446 (*1 *2 *3) (-12 (-5 *3 (-663 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278)))) (-1690 (*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-278)))) (-4260 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-278)))) (-1492 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (-5 *1 (-278)))) (-3199 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-864 (-229)))) (-5 *4 (-229)) (-5 *2 (-663 *4)) (-5 *1 (-278)))))
-(-10 -7 (-15 -3199 ((-663 (-229)) (-663 (-864 (-229))) (-229))) (-15 -1492 ((-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229))))) (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229))))))) (-15 -4260 ((-3 (-326 (-229)) "failed") (-326 (-229)))) (-15 -1690 ((-326 (-229)) (-326 (-229)))) (-15 -1446 ((-114) (-663 (-326 (-229))))) (-15 -2812 ((-114) (-663 (-326 (-229))))) (-15 -2812 ((-114) (-326 (-229)))) (-15 -2167 ((-711 (-229)) (-663 (-326 (-229))) (-793))) (-15 -2986 ((-663 (-326 (-229))) (-663 (-326 (-229))))) (-15 -3224 ((-663 (-326 (-229))) (-663 (-326 (-229))))) (-15 -3478 ((-114) (-326 (-229)))) (-15 -1443 ((-663 (-1207)) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229)))))) (-15 -2571 ((-663 (-1207)) (-326 (-229)) (-793))) (-15 -3248 ((-1066) (-1207) (-1066))) (-15 -1956 ((-391) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229)))))) (-15 -4347 ((-663 (-1189)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229)))))))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1700 (((-1066) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) NIL T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 56 T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 32 T ELT) (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-4162 (((-663 (-1207)) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) 53 T ELT)) (-4356 (((-663 (-1207)) (-326 (-229)) (-793)) 94 T ELT)) (-3792 (((-3 (-326 (-229)) "failed") (-326 (-229))) 63 T ELT)) (-3006 (((-326 (-229)) (-326 (-229))) 79 T ELT)) (-3591 (((-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229))))) (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 38 T ELT)) (-4136 (((-114) (-663 (-326 (-229)))) 104 T ELT)) (-1658 (((-114) (-326 (-229))) 36 T ELT)) (-3261 (((-663 (-1189)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))))) 132 T ELT)) (-4176 (((-663 (-326 (-229))) (-663 (-326 (-229)))) 108 T ELT)) (-3496 (((-663 (-326 (-229))) (-663 (-326 (-229)))) 106 T ELT)) (-4105 (((-711 (-229)) (-663 (-326 (-229))) (-793)) 120 T ELT)) (-4296 (((-114) (-326 (-229))) 31 T ELT) (((-114) (-663 (-326 (-229)))) 105 T ELT)) (-1981 (((-663 (-229)) (-663 (-864 (-229))) (-229)) 15 T ELT)) (-3846 (((-391) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) 126 T ELT)) (-4408 (((-1066) (-1207) (-1066)) 46 T ELT)))
+(((-278) (-10 -7 (-15 -1981 ((-663 (-229)) (-663 (-864 (-229))) (-229))) (-15 -3591 ((-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229))))) (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229))))))) (-15 -3792 ((-3 (-326 (-229)) "failed") (-326 (-229)))) (-15 -3006 ((-326 (-229)) (-326 (-229)))) (-15 -4136 ((-114) (-663 (-326 (-229))))) (-15 -4296 ((-114) (-663 (-326 (-229))))) (-15 -4296 ((-114) (-326 (-229)))) (-15 -4105 ((-711 (-229)) (-663 (-326 (-229))) (-793))) (-15 -3496 ((-663 (-326 (-229))) (-663 (-326 (-229))))) (-15 -4176 ((-663 (-326 (-229))) (-663 (-326 (-229))))) (-15 -1658 ((-114) (-326 (-229)))) (-15 -4162 ((-663 (-1207)) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229)))))) (-15 -4356 ((-663 (-1207)) (-326 (-229)) (-793))) (-15 -4408 ((-1066) (-1207) (-1066))) (-15 -3846 ((-391) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229)))))) (-15 -3261 ((-663 (-1189)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229)))))))))) (T -278))
+((-3261 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))))) (-5 *2 (-663 (-1189))) (-5 *1 (-278)))) (-3846 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) (-5 *2 (-391)) (-5 *1 (-278)))) (-4408 (*1 *2 *3 *2) (-12 (-5 *2 (-1066)) (-5 *3 (-1207)) (-5 *1 (-278)))) (-4356 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-793)) (-5 *2 (-663 (-1207))) (-5 *1 (-278)))) (-4162 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) (-5 *2 (-663 (-1207))) (-5 *1 (-278)))) (-1658 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278)))) (-4176 (*1 *2 *2) (-12 (-5 *2 (-663 (-326 (-229)))) (-5 *1 (-278)))) (-3496 (*1 *2 *2) (-12 (-5 *2 (-663 (-326 (-229)))) (-5 *1 (-278)))) (-4105 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-326 (-229)))) (-5 *4 (-793)) (-5 *2 (-711 (-229))) (-5 *1 (-278)))) (-4296 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278)))) (-4296 (*1 *2 *3) (-12 (-5 *3 (-663 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278)))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-663 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278)))) (-3006 (*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-278)))) (-3792 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-278)))) (-3591 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (-5 *1 (-278)))) (-1981 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-864 (-229)))) (-5 *4 (-229)) (-5 *2 (-663 *4)) (-5 *1 (-278)))))
+(-10 -7 (-15 -1981 ((-663 (-229)) (-663 (-864 (-229))) (-229))) (-15 -3591 ((-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229))))) (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229))))))) (-15 -3792 ((-3 (-326 (-229)) "failed") (-326 (-229)))) (-15 -3006 ((-326 (-229)) (-326 (-229)))) (-15 -4136 ((-114) (-663 (-326 (-229))))) (-15 -4296 ((-114) (-663 (-326 (-229))))) (-15 -4296 ((-114) (-326 (-229)))) (-15 -4105 ((-711 (-229)) (-663 (-326 (-229))) (-793))) (-15 -3496 ((-663 (-326 (-229))) (-663 (-326 (-229))))) (-15 -4176 ((-663 (-326 (-229))) (-663 (-326 (-229))))) (-15 -1658 ((-114) (-326 (-229)))) (-15 -4162 ((-663 (-1207)) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229)))))) (-15 -4356 ((-663 (-1207)) (-326 (-229)) (-793))) (-15 -4408 ((-1066) (-1207) (-1066))) (-15 -3846 ((-391) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229)))))) (-15 -3261 ((-663 (-1189)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229)))))))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3122 (((-1066) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) NIL T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 56 T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 32 T ELT) (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-279) (-861)) (T -279))
NIL
(-861)
-((-1538 (((-114) $ $) NIL T ELT)) (-1700 (((-1066) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) 72 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 63 T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 41 T ELT) (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) 43 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3122 (((-1066) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) 72 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 63 T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 41 T ELT) (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) 43 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-280) (-861)) (T -280))
NIL
(-861)
-((-1538 (((-114) $ $) NIL T ELT)) (-1700 (((-1066) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) 90 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 85 T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 52 T ELT) (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) 65 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3122 (((-1066) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) 90 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 85 T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 52 T ELT) (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) 65 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-281) (-861)) (T -281))
NIL
(-861)
-((-1538 (((-114) $ $) NIL T ELT)) (-1700 (((-1066) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) NIL T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 73 T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 45 T ELT) (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3122 (((-1066) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) NIL T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 73 T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 45 T ELT) (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-282) (-861)) (T -282))
NIL
(-861)
-((-1538 (((-114) $ $) NIL T ELT)) (-1700 (((-1066) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) NIL T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 65 T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 31 T ELT) (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3122 (((-1066) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) NIL T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 65 T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 31 T ELT) (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-283) (-861)) (T -283))
NIL
(-861)
-((-1538 (((-114) $ $) NIL T ELT)) (-1700 (((-1066) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) NIL T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 90 T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 33 T ELT) (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3122 (((-1066) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) NIL T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 90 T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 33 T ELT) (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-284) (-861)) (T -284))
NIL
(-861)
-((-1538 (((-114) $ $) NIL T ELT)) (-1700 (((-1066) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) NIL T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 87 T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 32 T ELT) (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3122 (((-1066) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) NIL T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 87 T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 32 T ELT) (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-285) (-861)) (T -285))
NIL
(-861)
-((-1538 (((-114) $ $) NIL T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1889 (((-663 (-560)) $) 29 T ELT)) (-3630 (((-793) $) 27 T ELT)) (-1578 (((-887) $) 33 T ELT) (($ (-663 (-560))) 23 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1385 (($ (-793)) 30 T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 9 T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 17 T ELT)))
-(((-286) (-13 (-871) (-10 -8 (-15 -1578 ($ (-663 (-560)))) (-15 -3630 ((-793) $)) (-15 -1889 ((-663 (-560)) $)) (-15 -1385 ($ (-793)))))) (T -286))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-286)))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-286)))) (-1889 (*1 *2 *1) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-286)))) (-1385 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-286)))))
-(-13 (-871) (-10 -8 (-15 -1578 ($ (-663 (-560)))) (-15 -3630 ((-793) $)) (-15 -1889 ((-663 (-560)) $)) (-15 -1385 ($ (-793)))))
-((-4337 ((|#2| |#2|) 77 T ELT)) (-3455 ((|#2| |#2|) 65 T ELT)) (-2893 (((-3 |#2| "failed") |#2| (-663 (-2 (|:| |func| |#2|) (|:| |pole| (-114))))) 125 T ELT)) (-4313 ((|#2| |#2|) 75 T ELT)) (-3430 ((|#2| |#2|) 63 T ELT)) (-4363 ((|#2| |#2|) 79 T ELT)) (-3477 ((|#2| |#2|) 67 T ELT)) (-3796 ((|#2|) 46 T ELT)) (-4399 (((-115) (-115)) 100 T ELT)) (-2192 ((|#2| |#2|) 61 T ELT)) (-1411 (((-114) |#2|) 147 T ELT)) (-3599 ((|#2| |#2|) 195 T ELT)) (-3378 ((|#2| |#2|) 171 T ELT)) (-3854 ((|#2|) 59 T ELT)) (-1883 ((|#2|) 58 T ELT)) (-4029 ((|#2| |#2|) 191 T ELT)) (-1969 ((|#2| |#2|) 167 T ELT)) (-2416 ((|#2| |#2|) 199 T ELT)) (-4060 ((|#2| |#2|) 175 T ELT)) (-1352 ((|#2| |#2|) 163 T ELT)) (-3727 ((|#2| |#2|) 165 T ELT)) (-1687 ((|#2| |#2|) 201 T ELT)) (-2910 ((|#2| |#2|) 177 T ELT)) (-4147 ((|#2| |#2|) 197 T ELT)) (-3265 ((|#2| |#2|) 173 T ELT)) (-1635 ((|#2| |#2|) 193 T ELT)) (-3961 ((|#2| |#2|) 169 T ELT)) (-2794 ((|#2| |#2|) 207 T ELT)) (-2807 ((|#2| |#2|) 183 T ELT)) (-3102 ((|#2| |#2|) 203 T ELT)) (-2598 ((|#2| |#2|) 179 T ELT)) (-3116 ((|#2| |#2|) 211 T ELT)) (-3176 ((|#2| |#2|) 187 T ELT)) (-1876 ((|#2| |#2|) 213 T ELT)) (-2694 ((|#2| |#2|) 189 T ELT)) (-1757 ((|#2| |#2|) 209 T ELT)) (-1488 ((|#2| |#2|) 185 T ELT)) (-3893 ((|#2| |#2|) 205 T ELT)) (-4065 ((|#2| |#2|) 181 T ELT)) (-3251 ((|#2| |#2|) 62 T ELT)) (-4373 ((|#2| |#2|) 80 T ELT)) (-3488 ((|#2| |#2|) 68 T ELT)) (-4352 ((|#2| |#2|) 78 T ELT)) (-3466 ((|#2| |#2|) 66 T ELT)) (-4325 ((|#2| |#2|) 76 T ELT)) (-3443 ((|#2| |#2|) 64 T ELT)) (-1840 (((-114) (-115)) 98 T ELT)) (-4411 ((|#2| |#2|) 83 T ELT)) (-4263 ((|#2| |#2|) 71 T ELT)) (-4387 ((|#2| |#2|) 81 T ELT)) (-3499 ((|#2| |#2|) 69 T ELT)) (-4438 ((|#2| |#2|) 85 T ELT)) (-4287 ((|#2| |#2|) 73 T ELT)) (-3837 ((|#2| |#2|) 86 T ELT)) (-4302 ((|#2| |#2|) 74 T ELT)) (-4423 ((|#2| |#2|) 84 T ELT)) (-4275 ((|#2| |#2|) 72 T ELT)) (-4398 ((|#2| |#2|) 82 T ELT)) (-4252 ((|#2| |#2|) 70 T ELT)))
-(((-287 |#1| |#2|) (-10 -7 (-15 -3251 (|#2| |#2|)) (-15 -2192 (|#2| |#2|)) (-15 -3430 (|#2| |#2|)) (-15 -3443 (|#2| |#2|)) (-15 -3455 (|#2| |#2|)) (-15 -3466 (|#2| |#2|)) (-15 -3477 (|#2| |#2|)) (-15 -3488 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -4252 (|#2| |#2|)) (-15 -4263 (|#2| |#2|)) (-15 -4275 (|#2| |#2|)) (-15 -4287 (|#2| |#2|)) (-15 -4302 (|#2| |#2|)) (-15 -4313 (|#2| |#2|)) (-15 -4325 (|#2| |#2|)) (-15 -4337 (|#2| |#2|)) (-15 -4352 (|#2| |#2|)) (-15 -4363 (|#2| |#2|)) (-15 -4373 (|#2| |#2|)) (-15 -4387 (|#2| |#2|)) (-15 -4398 (|#2| |#2|)) (-15 -4411 (|#2| |#2|)) (-15 -4423 (|#2| |#2|)) (-15 -4438 (|#2| |#2|)) (-15 -3837 (|#2| |#2|)) (-15 -3796 (|#2|)) (-15 -1840 ((-114) (-115))) (-15 -4399 ((-115) (-115))) (-15 -1883 (|#2|)) (-15 -3854 (|#2|)) (-15 -3727 (|#2| |#2|)) (-15 -1352 (|#2| |#2|)) (-15 -1969 (|#2| |#2|)) (-15 -3961 (|#2| |#2|)) (-15 -3378 (|#2| |#2|)) (-15 -3265 (|#2| |#2|)) (-15 -4060 (|#2| |#2|)) (-15 -2910 (|#2| |#2|)) (-15 -2598 (|#2| |#2|)) (-15 -4065 (|#2| |#2|)) (-15 -2807 (|#2| |#2|)) (-15 -1488 (|#2| |#2|)) (-15 -3176 (|#2| |#2|)) (-15 -2694 (|#2| |#2|)) (-15 -4029 (|#2| |#2|)) (-15 -1635 (|#2| |#2|)) (-15 -3599 (|#2| |#2|)) (-15 -4147 (|#2| |#2|)) (-15 -2416 (|#2| |#2|)) (-15 -1687 (|#2| |#2|)) (-15 -3102 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -1757 (|#2| |#2|)) (-15 -3116 (|#2| |#2|)) (-15 -1876 (|#2| |#2|)) (-15 -2893 ((-3 |#2| "failed") |#2| (-663 (-2 (|:| |func| |#2|) (|:| |pole| (-114)))))) (-15 -1411 ((-114) |#2|))) (-571) (-13 (-435 |#1|) (-1033))) (T -287))
-((-1411 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-287 *4 *3)) (-4 *3 (-13 (-435 *4) (-1033))))) (-2893 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-663 (-2 (|:| |func| *2) (|:| |pole| (-114))))) (-4 *2 (-13 (-435 *4) (-1033))) (-4 *4 (-571)) (-5 *1 (-287 *4 *2)))) (-1876 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3116 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1757 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2794 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3893 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3102 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1687 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2416 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4147 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3599 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1635 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4029 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2694 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3176 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1488 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2807 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4065 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2598 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2910 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4060 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3265 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3378 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3961 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1969 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1352 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3727 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3854 (*1 *2) (-12 (-4 *2 (-13 (-435 *3) (-1033))) (-5 *1 (-287 *3 *2)) (-4 *3 (-571)))) (-1883 (*1 *2) (-12 (-4 *2 (-13 (-435 *3) (-1033))) (-5 *1 (-287 *3 *2)) (-4 *3 (-571)))) (-4399 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-287 *3 *4)) (-4 *4 (-13 (-435 *3) (-1033))))) (-1840 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-287 *4 *5)) (-4 *5 (-13 (-435 *4) (-1033))))) (-3796 (*1 *2) (-12 (-4 *2 (-13 (-435 *3) (-1033))) (-5 *1 (-287 *3 *2)) (-4 *3 (-571)))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4438 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4423 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4411 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4398 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4387 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4373 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4363 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4352 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4337 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4325 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4313 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4302 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4287 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4275 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4263 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4252 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3477 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3466 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3455 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3443 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3430 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2192 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3251 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))))
-(-10 -7 (-15 -3251 (|#2| |#2|)) (-15 -2192 (|#2| |#2|)) (-15 -3430 (|#2| |#2|)) (-15 -3443 (|#2| |#2|)) (-15 -3455 (|#2| |#2|)) (-15 -3466 (|#2| |#2|)) (-15 -3477 (|#2| |#2|)) (-15 -3488 (|#2| |#2|)) (-15 -3499 (|#2| |#2|)) (-15 -4252 (|#2| |#2|)) (-15 -4263 (|#2| |#2|)) (-15 -4275 (|#2| |#2|)) (-15 -4287 (|#2| |#2|)) (-15 -4302 (|#2| |#2|)) (-15 -4313 (|#2| |#2|)) (-15 -4325 (|#2| |#2|)) (-15 -4337 (|#2| |#2|)) (-15 -4352 (|#2| |#2|)) (-15 -4363 (|#2| |#2|)) (-15 -4373 (|#2| |#2|)) (-15 -4387 (|#2| |#2|)) (-15 -4398 (|#2| |#2|)) (-15 -4411 (|#2| |#2|)) (-15 -4423 (|#2| |#2|)) (-15 -4438 (|#2| |#2|)) (-15 -3837 (|#2| |#2|)) (-15 -3796 (|#2|)) (-15 -1840 ((-114) (-115))) (-15 -4399 ((-115) (-115))) (-15 -1883 (|#2|)) (-15 -3854 (|#2|)) (-15 -3727 (|#2| |#2|)) (-15 -1352 (|#2| |#2|)) (-15 -1969 (|#2| |#2|)) (-15 -3961 (|#2| |#2|)) (-15 -3378 (|#2| |#2|)) (-15 -3265 (|#2| |#2|)) (-15 -4060 (|#2| |#2|)) (-15 -2910 (|#2| |#2|)) (-15 -2598 (|#2| |#2|)) (-15 -4065 (|#2| |#2|)) (-15 -2807 (|#2| |#2|)) (-15 -1488 (|#2| |#2|)) (-15 -3176 (|#2| |#2|)) (-15 -2694 (|#2| |#2|)) (-15 -4029 (|#2| |#2|)) (-15 -1635 (|#2| |#2|)) (-15 -3599 (|#2| |#2|)) (-15 -4147 (|#2| |#2|)) (-15 -2416 (|#2| |#2|)) (-15 -1687 (|#2| |#2|)) (-15 -3102 (|#2| |#2|)) (-15 -3893 (|#2| |#2|)) (-15 -2794 (|#2| |#2|)) (-15 -1757 (|#2| |#2|)) (-15 -3116 (|#2| |#2|)) (-15 -1876 (|#2| |#2|)) (-15 -2893 ((-3 |#2| "failed") |#2| (-663 (-2 (|:| |func| |#2|) (|:| |pole| (-114)))))) (-15 -1411 ((-114) |#2|)))
-((-3058 (((-3 |#2| "failed") (-663 (-630 |#2|)) |#2| (-1207)) 151 T ELT)) (-3235 ((|#2| (-421 (-560)) |#2|) 49 T ELT)) (-2923 ((|#2| |#2| (-630 |#2|)) 144 T ELT)) (-2129 (((-2 (|:| |func| |#2|) (|:| |kers| (-663 (-630 |#2|))) (|:| |vals| (-663 |#2|))) |#2| (-1207)) 143 T ELT)) (-3324 ((|#2| |#2| (-1207)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-3639 ((|#2| |#2| (-1207)) 157 T ELT) ((|#2| |#2|) 155 T ELT)))
-(((-288 |#1| |#2|) (-10 -7 (-15 -3639 (|#2| |#2|)) (-15 -3639 (|#2| |#2| (-1207))) (-15 -2129 ((-2 (|:| |func| |#2|) (|:| |kers| (-663 (-630 |#2|))) (|:| |vals| (-663 |#2|))) |#2| (-1207))) (-15 -3324 (|#2| |#2|)) (-15 -3324 (|#2| |#2| (-1207))) (-15 -3058 ((-3 |#2| "failed") (-663 (-630 |#2|)) |#2| (-1207))) (-15 -2923 (|#2| |#2| (-630 |#2|))) (-15 -3235 (|#2| (-421 (-560)) |#2|))) (-13 (-571) (-1069 (-560)) (-660 (-560))) (-13 (-27) (-1233) (-435 |#1|))) (T -288))
-((-3235 (*1 *2 *3 *2) (-12 (-5 *3 (-421 (-560))) (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))))) (-2923 (*1 *2 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))) (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-288 *4 *2)))) (-3058 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-663 (-630 *2))) (-5 *4 (-1207)) (-4 *2 (-13 (-27) (-1233) (-435 *5))) (-4 *5 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-288 *5 *2)))) (-3324 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))))) (-3324 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-288 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3))))) (-2129 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-663 (-630 *3))) (|:| |vals| (-663 *3)))) (-5 *1 (-288 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))) (-3639 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-288 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3))))))
-(-10 -7 (-15 -3639 (|#2| |#2|)) (-15 -3639 (|#2| |#2| (-1207))) (-15 -2129 ((-2 (|:| |func| |#2|) (|:| |kers| (-663 (-630 |#2|))) (|:| |vals| (-663 |#2|))) |#2| (-1207))) (-15 -3324 (|#2| |#2|)) (-15 -3324 (|#2| |#2| (-1207))) (-15 -3058 ((-3 |#2| "failed") (-663 (-630 |#2|)) |#2| (-1207))) (-15 -2923 (|#2| |#2| (-630 |#2|))) (-15 -3235 (|#2| (-421 (-560)) |#2|)))
-((-1403 (((-3 |#3| "failed") |#3|) 120 T ELT)) (-4337 ((|#3| |#3|) 142 T ELT)) (-3133 (((-3 |#3| "failed") |#3|) 89 T ELT)) (-3455 ((|#3| |#3|) 132 T ELT)) (-3921 (((-3 |#3| "failed") |#3|) 65 T ELT)) (-4313 ((|#3| |#3|) 140 T ELT)) (-3480 (((-3 |#3| "failed") |#3|) 53 T ELT)) (-3430 ((|#3| |#3|) 130 T ELT)) (-2356 (((-3 |#3| "failed") |#3|) 122 T ELT)) (-4363 ((|#3| |#3|) 144 T ELT)) (-2846 (((-3 |#3| "failed") |#3|) 91 T ELT)) (-3477 ((|#3| |#3|) 134 T ELT)) (-2327 (((-3 |#3| "failed") |#3| (-793)) 41 T ELT)) (-3693 (((-3 |#3| "failed") |#3|) 81 T ELT)) (-2192 ((|#3| |#3|) 129 T ELT)) (-4382 (((-3 |#3| "failed") |#3|) 51 T ELT)) (-3251 ((|#3| |#3|) 128 T ELT)) (-3138 (((-3 |#3| "failed") |#3|) 123 T ELT)) (-4373 ((|#3| |#3|) 145 T ELT)) (-2939 (((-3 |#3| "failed") |#3|) 92 T ELT)) (-3488 ((|#3| |#3|) 135 T ELT)) (-1551 (((-3 |#3| "failed") |#3|) 121 T ELT)) (-4352 ((|#3| |#3|) 143 T ELT)) (-2840 (((-3 |#3| "failed") |#3|) 90 T ELT)) (-3466 ((|#3| |#3|) 133 T ELT)) (-4020 (((-3 |#3| "failed") |#3|) 67 T ELT)) (-4325 ((|#3| |#3|) 141 T ELT)) (-2614 (((-3 |#3| "failed") |#3|) 55 T ELT)) (-3443 ((|#3| |#3|) 131 T ELT)) (-1745 (((-3 |#3| "failed") |#3|) 73 T ELT)) (-4411 ((|#3| |#3|) 148 T ELT)) (-4168 (((-3 |#3| "failed") |#3|) 114 T ELT)) (-4263 ((|#3| |#3|) 152 T ELT)) (-3302 (((-3 |#3| "failed") |#3|) 69 T ELT)) (-4387 ((|#3| |#3|) 146 T ELT)) (-2052 (((-3 |#3| "failed") |#3|) 57 T ELT)) (-3499 ((|#3| |#3|) 136 T ELT)) (-1962 (((-3 |#3| "failed") |#3|) 77 T ELT)) (-4438 ((|#3| |#3|) 150 T ELT)) (-1767 (((-3 |#3| "failed") |#3|) 61 T ELT)) (-4287 ((|#3| |#3|) 138 T ELT)) (-4195 (((-3 |#3| "failed") |#3|) 79 T ELT)) (-3837 ((|#3| |#3|) 151 T ELT)) (-4158 (((-3 |#3| "failed") |#3|) 63 T ELT)) (-4302 ((|#3| |#3|) 139 T ELT)) (-1500 (((-3 |#3| "failed") |#3|) 75 T ELT)) (-4423 ((|#3| |#3|) 149 T ELT)) (-3952 (((-3 |#3| "failed") |#3|) 117 T ELT)) (-4275 ((|#3| |#3|) 153 T ELT)) (-2981 (((-3 |#3| "failed") |#3|) 71 T ELT)) (-4398 ((|#3| |#3|) 147 T ELT)) (-3039 (((-3 |#3| "failed") |#3|) 59 T ELT)) (-4252 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-421 (-560))) 47 (|has| |#1| (-376)) ELT)))
-(((-289 |#1| |#2| |#3|) (-13 (-1014 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-421 (-560)))) |%noBranch|) (-15 -3251 (|#3| |#3|)) (-15 -2192 (|#3| |#3|)) (-15 -3430 (|#3| |#3|)) (-15 -3443 (|#3| |#3|)) (-15 -3455 (|#3| |#3|)) (-15 -3466 (|#3| |#3|)) (-15 -3477 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -4252 (|#3| |#3|)) (-15 -4263 (|#3| |#3|)) (-15 -4275 (|#3| |#3|)) (-15 -4287 (|#3| |#3|)) (-15 -4302 (|#3| |#3|)) (-15 -4313 (|#3| |#3|)) (-15 -4325 (|#3| |#3|)) (-15 -4337 (|#3| |#3|)) (-15 -4352 (|#3| |#3|)) (-15 -4363 (|#3| |#3|)) (-15 -4373 (|#3| |#3|)) (-15 -4387 (|#3| |#3|)) (-15 -4398 (|#3| |#3|)) (-15 -4411 (|#3| |#3|)) (-15 -4423 (|#3| |#3|)) (-15 -4438 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)))) (-38 (-421 (-560))) (-1290 |#1|) (-1261 |#1| |#2|)) (T -289))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-421 (-560))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1290 *4)) (-5 *1 (-289 *4 *5 *2)) (-4 *2 (-1261 *4 *5)))) (-3251 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-2192 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3430 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3443 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3455 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3466 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3477 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4252 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4263 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4275 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4287 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4302 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4313 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4325 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4337 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4352 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4363 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4373 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4387 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4398 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4411 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4423 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-4438 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))))
-(-13 (-1014 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-421 (-560)))) |%noBranch|) (-15 -3251 (|#3| |#3|)) (-15 -2192 (|#3| |#3|)) (-15 -3430 (|#3| |#3|)) (-15 -3443 (|#3| |#3|)) (-15 -3455 (|#3| |#3|)) (-15 -3466 (|#3| |#3|)) (-15 -3477 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -4252 (|#3| |#3|)) (-15 -4263 (|#3| |#3|)) (-15 -4275 (|#3| |#3|)) (-15 -4287 (|#3| |#3|)) (-15 -4302 (|#3| |#3|)) (-15 -4313 (|#3| |#3|)) (-15 -4325 (|#3| |#3|)) (-15 -4337 (|#3| |#3|)) (-15 -4352 (|#3| |#3|)) (-15 -4363 (|#3| |#3|)) (-15 -4373 (|#3| |#3|)) (-15 -4387 (|#3| |#3|)) (-15 -4398 (|#3| |#3|)) (-15 -4411 (|#3| |#3|)) (-15 -4423 (|#3| |#3|)) (-15 -4438 (|#3| |#3|)) (-15 -3837 (|#3| |#3|))))
-((-1403 (((-3 |#3| "failed") |#3|) 70 T ELT)) (-4337 ((|#3| |#3|) 137 T ELT)) (-3133 (((-3 |#3| "failed") |#3|) 54 T ELT)) (-3455 ((|#3| |#3|) 125 T ELT)) (-3921 (((-3 |#3| "failed") |#3|) 66 T ELT)) (-4313 ((|#3| |#3|) 135 T ELT)) (-3480 (((-3 |#3| "failed") |#3|) 50 T ELT)) (-3430 ((|#3| |#3|) 123 T ELT)) (-2356 (((-3 |#3| "failed") |#3|) 74 T ELT)) (-4363 ((|#3| |#3|) 139 T ELT)) (-2846 (((-3 |#3| "failed") |#3|) 58 T ELT)) (-3477 ((|#3| |#3|) 127 T ELT)) (-2327 (((-3 |#3| "failed") |#3| (-793)) 38 T ELT)) (-3693 (((-3 |#3| "failed") |#3|) 48 T ELT)) (-2192 ((|#3| |#3|) 111 T ELT)) (-4382 (((-3 |#3| "failed") |#3|) 46 T ELT)) (-3251 ((|#3| |#3|) 122 T ELT)) (-3138 (((-3 |#3| "failed") |#3|) 76 T ELT)) (-4373 ((|#3| |#3|) 140 T ELT)) (-2939 (((-3 |#3| "failed") |#3|) 60 T ELT)) (-3488 ((|#3| |#3|) 128 T ELT)) (-1551 (((-3 |#3| "failed") |#3|) 72 T ELT)) (-4352 ((|#3| |#3|) 138 T ELT)) (-2840 (((-3 |#3| "failed") |#3|) 56 T ELT)) (-3466 ((|#3| |#3|) 126 T ELT)) (-4020 (((-3 |#3| "failed") |#3|) 68 T ELT)) (-4325 ((|#3| |#3|) 136 T ELT)) (-2614 (((-3 |#3| "failed") |#3|) 52 T ELT)) (-3443 ((|#3| |#3|) 124 T ELT)) (-1745 (((-3 |#3| "failed") |#3|) 78 T ELT)) (-4411 ((|#3| |#3|) 143 T ELT)) (-4168 (((-3 |#3| "failed") |#3|) 62 T ELT)) (-4263 ((|#3| |#3|) 131 T ELT)) (-3302 (((-3 |#3| "failed") |#3|) 112 T ELT)) (-4387 ((|#3| |#3|) 141 T ELT)) (-2052 (((-3 |#3| "failed") |#3|) 100 T ELT)) (-3499 ((|#3| |#3|) 129 T ELT)) (-1962 (((-3 |#3| "failed") |#3|) 116 T ELT)) (-4438 ((|#3| |#3|) 145 T ELT)) (-1767 (((-3 |#3| "failed") |#3|) 107 T ELT)) (-4287 ((|#3| |#3|) 133 T ELT)) (-4195 (((-3 |#3| "failed") |#3|) 117 T ELT)) (-3837 ((|#3| |#3|) 146 T ELT)) (-4158 (((-3 |#3| "failed") |#3|) 109 T ELT)) (-4302 ((|#3| |#3|) 134 T ELT)) (-1500 (((-3 |#3| "failed") |#3|) 80 T ELT)) (-4423 ((|#3| |#3|) 144 T ELT)) (-3952 (((-3 |#3| "failed") |#3|) 64 T ELT)) (-4275 ((|#3| |#3|) 132 T ELT)) (-2981 (((-3 |#3| "failed") |#3|) 113 T ELT)) (-4398 ((|#3| |#3|) 142 T ELT)) (-3039 (((-3 |#3| "failed") |#3|) 103 T ELT)) (-4252 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-421 (-560))) 44 (|has| |#1| (-376)) ELT)))
-(((-290 |#1| |#2| |#3| |#4|) (-13 (-1014 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-421 (-560)))) |%noBranch|) (-15 -3251 (|#3| |#3|)) (-15 -2192 (|#3| |#3|)) (-15 -3430 (|#3| |#3|)) (-15 -3443 (|#3| |#3|)) (-15 -3455 (|#3| |#3|)) (-15 -3466 (|#3| |#3|)) (-15 -3477 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -4252 (|#3| |#3|)) (-15 -4263 (|#3| |#3|)) (-15 -4275 (|#3| |#3|)) (-15 -4287 (|#3| |#3|)) (-15 -4302 (|#3| |#3|)) (-15 -4313 (|#3| |#3|)) (-15 -4325 (|#3| |#3|)) (-15 -4337 (|#3| |#3|)) (-15 -4352 (|#3| |#3|)) (-15 -4363 (|#3| |#3|)) (-15 -4373 (|#3| |#3|)) (-15 -4387 (|#3| |#3|)) (-15 -4398 (|#3| |#3|)) (-15 -4411 (|#3| |#3|)) (-15 -4423 (|#3| |#3|)) (-15 -4438 (|#3| |#3|)) (-15 -3837 (|#3| |#3|)))) (-38 (-421 (-560))) (-1259 |#1|) (-1282 |#1| |#2|) (-1014 |#2|)) (T -290))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-421 (-560))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1259 *4)) (-5 *1 (-290 *4 *5 *2 *6)) (-4 *2 (-1282 *4 *5)) (-4 *6 (-1014 *5)))) (-3251 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-2192 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-3430 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-3443 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-3455 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-3466 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-3477 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-3488 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-3499 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-4252 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-4263 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-4275 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-4287 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-4302 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-4313 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-4325 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-4337 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-4352 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-4363 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-4373 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-4387 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-4398 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-4411 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-4423 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-4438 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-3837 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))))
-(-13 (-1014 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-421 (-560)))) |%noBranch|) (-15 -3251 (|#3| |#3|)) (-15 -2192 (|#3| |#3|)) (-15 -3430 (|#3| |#3|)) (-15 -3443 (|#3| |#3|)) (-15 -3455 (|#3| |#3|)) (-15 -3466 (|#3| |#3|)) (-15 -3477 (|#3| |#3|)) (-15 -3488 (|#3| |#3|)) (-15 -3499 (|#3| |#3|)) (-15 -4252 (|#3| |#3|)) (-15 -4263 (|#3| |#3|)) (-15 -4275 (|#3| |#3|)) (-15 -4287 (|#3| |#3|)) (-15 -4302 (|#3| |#3|)) (-15 -4313 (|#3| |#3|)) (-15 -4325 (|#3| |#3|)) (-15 -4337 (|#3| |#3|)) (-15 -4352 (|#3| |#3|)) (-15 -4363 (|#3| |#3|)) (-15 -4373 (|#3| |#3|)) (-15 -4387 (|#3| |#3|)) (-15 -4398 (|#3| |#3|)) (-15 -4411 (|#3| |#3|)) (-15 -4423 (|#3| |#3|)) (-15 -4438 (|#3| |#3|)) (-15 -3837 (|#3| |#3|))))
-((-1487 (((-114) $) 20 T ELT)) (-3899 (((-1212) $) 7 T ELT)) (-4455 (((-3 (-520) "failed") $) 14 T ELT)) (-3914 (((-3 (-663 $) "failed") $) NIL T ELT)) (-4232 (((-3 (-520) "failed") $) 21 T ELT)) (-3984 (((-3 (-1134) "failed") $) 18 T ELT)) (-4305 (((-114) $) 16 T ELT)) (-1578 (((-887) $) NIL T ELT)) (-3421 (((-114) $) 9 T ELT)))
-(((-291) (-13 (-632 (-887)) (-10 -8 (-15 -3899 ((-1212) $)) (-15 -4305 ((-114) $)) (-15 -3984 ((-3 (-1134) "failed") $)) (-15 -1487 ((-114) $)) (-15 -4232 ((-3 (-520) "failed") $)) (-15 -3421 ((-114) $)) (-15 -4455 ((-3 (-520) "failed") $)) (-15 -3914 ((-3 (-663 $) "failed") $))))) (T -291))
-((-3899 (*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-291)))) (-4305 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) (-3984 (*1 *2 *1) (|partial| -12 (-5 *2 (-1134)) (-5 *1 (-291)))) (-1487 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) (-4232 (*1 *2 *1) (|partial| -12 (-5 *2 (-520)) (-5 *1 (-291)))) (-3421 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) (-4455 (*1 *2 *1) (|partial| -12 (-5 *2 (-520)) (-5 *1 (-291)))) (-3914 (*1 *2 *1) (|partial| -12 (-5 *2 (-663 (-291))) (-5 *1 (-291)))))
-(-13 (-632 (-887)) (-10 -8 (-15 -3899 ((-1212) $)) (-15 -4305 ((-114) $)) (-15 -3984 ((-3 (-1134) "failed") $)) (-15 -1487 ((-114) $)) (-15 -4232 ((-3 (-520) "failed") $)) (-15 -3421 ((-114) $)) (-15 -4455 ((-3 (-520) "failed") $)) (-15 -3914 ((-3 (-663 $) "failed") $))))
-((-2204 (((-611) $) 10 T ELT)) (-3552 (((-600) $) 8 T ELT)) (-2584 (((-303) $) 12 T ELT)) (-2996 (($ (-600) (-611) (-303)) NIL T ELT)) (-1578 (((-887) $) 19 T ELT)))
-(((-292) (-13 (-632 (-887)) (-10 -8 (-15 -2996 ($ (-600) (-611) (-303))) (-15 -3552 ((-600) $)) (-15 -2204 ((-611) $)) (-15 -2584 ((-303) $))))) (T -292))
-((-2996 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-600)) (-5 *3 (-611)) (-5 *4 (-303)) (-5 *1 (-292)))) (-3552 (*1 *2 *1) (-12 (-5 *2 (-600)) (-5 *1 (-292)))) (-2204 (*1 *2 *1) (-12 (-5 *2 (-611)) (-5 *1 (-292)))) (-2584 (*1 *2 *1) (-12 (-5 *2 (-303)) (-5 *1 (-292)))))
-(-13 (-632 (-887)) (-10 -8 (-15 -2996 ($ (-600) (-611) (-303))) (-15 -3552 ((-600) $)) (-15 -2204 ((-611) $)) (-15 -2584 ((-303) $))))
-((-1982 (($ (-1 (-114) |#2|) $) 24 T ELT)) (-3606 (($ $) 38 T ELT)) (-3390 (($ (-1 (-114) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-2375 (($ |#2| $) 34 T ELT) (($ (-1 (-114) |#2|) $) 18 T ELT)) (-1708 (($ (-1 (-114) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-3996 (($ |#2| $ (-560)) 20 T ELT) (($ $ $ (-560)) 22 T ELT)) (-4413 (($ $ (-560)) 11 T ELT) (($ $ (-1264 (-560))) 14 T ELT)) (-4354 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-3415 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-663 $)) NIL T ELT)))
-(((-293 |#1| |#2|) (-10 -8 (-15 -1708 (|#1| |#1| |#1|)) (-15 -3390 (|#1| |#2| |#1|)) (-15 -1708 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -3390 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4354 (|#1| |#1| |#1|)) (-15 -4354 (|#1| |#1| |#2|)) (-15 -3996 (|#1| |#1| |#1| (-560))) (-15 -3996 (|#1| |#2| |#1| (-560))) (-15 -4413 (|#1| |#1| (-1264 (-560)))) (-15 -4413 (|#1| |#1| (-560))) (-15 -3415 (|#1| (-663 |#1|))) (-15 -3415 (|#1| |#1| |#1|)) (-15 -3415 (|#1| |#2| |#1|)) (-15 -3415 (|#1| |#1| |#2|)) (-15 -2375 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -1982 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -2375 (|#1| |#2| |#1|)) (-15 -3606 (|#1| |#1|))) (-294 |#2|) (-1247)) (T -293))
-NIL
-(-10 -8 (-15 -1708 (|#1| |#1| |#1|)) (-15 -3390 (|#1| |#2| |#1|)) (-15 -1708 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -3390 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4354 (|#1| |#1| |#1|)) (-15 -4354 (|#1| |#1| |#2|)) (-15 -3996 (|#1| |#1| |#1| (-560))) (-15 -3996 (|#1| |#2| |#1| (-560))) (-15 -4413 (|#1| |#1| (-1264 (-560)))) (-15 -4413 (|#1| |#1| (-560))) (-15 -3415 (|#1| (-663 |#1|))) (-15 -3415 (|#1| |#1| |#1|)) (-15 -3415 (|#1| |#2| |#1|)) (-15 -3415 (|#1| |#1| |#2|)) (-15 -2375 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -1982 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -2375 (|#1| |#2| |#1|)) (-15 -3606 (|#1| |#1|)))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3839 (((-1303) $ (-560) (-560)) 41 (|has| $ (-6 -4509)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-1773 ((|#1| $ (-560) |#1|) 53 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) 60 (|has| $ (-6 -4509)) ELT)) (-3500 (($ (-1 (-114) |#1|) $) 88 T ELT)) (-1982 (($ (-1 (-114) |#1|) $) 77 (|has| $ (-6 -4508)) ELT)) (-2238 (($) 7 T CONST)) (-2944 (($ $) 86 (|has| |#1| (-1132)) ELT)) (-3606 (($ $) 80 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3390 (($ (-1 (-114) |#1|) $) 92 T ELT) (($ |#1| $) 87 (|has| |#1| (-1132)) ELT)) (-2375 (($ |#1| $) 79 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 76 (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4508)) ELT)) (-3779 ((|#1| $ (-560) |#1|) 54 (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-560)) 52 T ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-4095 (($ (-793) |#1|) 70 T ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-1762 (((-560) $) 44 (|has| (-560) (-871)) ELT)) (-1708 (($ (-1 (-114) |#1| |#1|) $ $) 89 T ELT) (($ $ $) 85 (|has| |#1| (-871)) ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2937 (((-560) $) 45 (|has| (-560) (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3629 (($ |#1| $ (-560)) 91 T ELT) (($ $ $ (-560)) 90 T ELT)) (-3996 (($ |#1| $ (-560)) 62 T ELT) (($ $ $ (-560)) 61 T ELT)) (-3270 (((-663 (-560)) $) 47 T ELT)) (-3586 (((-114) (-560) $) 48 T ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-3637 ((|#1| $) 43 (|has| (-560) (-871)) ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 73 T ELT)) (-3037 (($ $ |#1|) 42 (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-2914 (((-114) |#1| $) 46 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) 49 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3924 ((|#1| $ (-560) |#1|) 51 T ELT) ((|#1| $ (-560)) 50 T ELT) (($ $ (-1264 (-560))) 71 T ELT)) (-2249 (($ $ (-560)) 94 T ELT) (($ $ (-1264 (-560))) 93 T ELT)) (-4413 (($ $ (-560)) 64 T ELT) (($ $ (-1264 (-560))) 63 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) 81 (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 72 T ELT)) (-4354 (($ $ |#1|) 96 T ELT) (($ $ $) 95 T ELT)) (-3415 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-663 $)) 66 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4430 (((-663 (-560)) $) 29 T ELT)) (-3900 (((-793) $) 27 T ELT)) (-3913 (((-887) $) 33 T ELT) (($ (-663 (-560))) 23 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2673 (($ (-793)) 30 T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 9 T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 17 T ELT)))
+(((-286) (-13 (-871) (-10 -8 (-15 -3913 ($ (-663 (-560)))) (-15 -3900 ((-793) $)) (-15 -4430 ((-663 (-560)) $)) (-15 -2673 ($ (-793)))))) (T -286))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-286)))) (-3900 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-286)))) (-4430 (*1 *2 *1) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-286)))) (-2673 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-286)))))
+(-13 (-871) (-10 -8 (-15 -3913 ($ (-663 (-560)))) (-15 -3900 ((-793) $)) (-15 -4430 ((-663 (-560)) $)) (-15 -2673 ($ (-793)))))
+((-1982 ((|#2| |#2|) 77 T ELT)) (-1832 ((|#2| |#2|) 65 T ELT)) (-3916 (((-3 |#2| "failed") |#2| (-663 (-2 (|:| |func| |#2|) (|:| |pole| (-114))))) 125 T ELT)) (-1958 ((|#2| |#2|) 75 T ELT)) (-1806 ((|#2| |#2|) 63 T ELT)) (-2003 ((|#2| |#2|) 79 T ELT)) (-1856 ((|#2| |#2|) 67 T ELT)) (-2503 ((|#2|) 46 T ELT)) (-3963 (((-115) (-115)) 100 T ELT)) (-2831 ((|#2| |#2|) 61 T ELT)) (-2637 (((-114) |#2|) 147 T ELT)) (-3580 ((|#2| |#2|) 195 T ELT)) (-3205 ((|#2| |#2|) 171 T ELT)) (-4084 ((|#2|) 59 T ELT)) (-4370 ((|#2|) 58 T ELT)) (-3287 ((|#2| |#2|) 191 T ELT)) (-2680 ((|#2| |#2|) 167 T ELT)) (-1531 ((|#2| |#2|) 199 T ELT)) (-2365 ((|#2| |#2|) 175 T ELT)) (-3673 ((|#2| |#2|) 163 T ELT)) (-2317 ((|#2| |#2|) 165 T ELT)) (-2969 ((|#2| |#2|) 201 T ELT)) (-3979 ((|#2| |#2|) 177 T ELT)) (-1999 ((|#2| |#2|) 197 T ELT)) (-1406 ((|#2| |#2|) 173 T ELT)) (-3684 ((|#2| |#2|) 193 T ELT)) (-3870 ((|#2| |#2|) 169 T ELT)) (-4109 ((|#2| |#2|) 207 T ELT)) (-4249 ((|#2| |#2|) 183 T ELT)) (-2191 ((|#2| |#2|) 203 T ELT)) (-3920 ((|#2| |#2|) 179 T ELT)) (-2344 ((|#2| |#2|) 211 T ELT)) (-1738 ((|#2| |#2|) 187 T ELT)) (-4298 ((|#2| |#2|) 213 T ELT)) (-2382 ((|#2| |#2|) 189 T ELT)) (-2440 ((|#2| |#2|) 209 T ELT)) (-2630 ((|#2| |#2|) 185 T ELT)) (-4428 ((|#2| |#2|) 205 T ELT)) (-2399 ((|#2| |#2|) 181 T ELT)) (-2515 ((|#2| |#2|) 62 T ELT)) (-2013 ((|#2| |#2|) 80 T ELT)) (-1870 ((|#2| |#2|) 68 T ELT)) (-1992 ((|#2| |#2|) 78 T ELT)) (-1844 ((|#2| |#2|) 66 T ELT)) (-1972 ((|#2| |#2|) 76 T ELT)) (-1820 ((|#2| |#2|) 64 T ELT)) (-3962 (((-114) (-115)) 98 T ELT)) (-2042 ((|#2| |#2|) 83 T ELT)) (-1907 ((|#2| |#2|) 71 T ELT)) (-2022 ((|#2| |#2|) 81 T ELT)) (-1882 ((|#2| |#2|) 69 T ELT)) (-2059 ((|#2| |#2|) 85 T ELT)) (-1932 ((|#2| |#2|) 73 T ELT)) (-3392 ((|#2| |#2|) 86 T ELT)) (-1945 ((|#2| |#2|) 74 T ELT)) (-2050 ((|#2| |#2|) 84 T ELT)) (-1920 ((|#2| |#2|) 72 T ELT)) (-2032 ((|#2| |#2|) 82 T ELT)) (-1895 ((|#2| |#2|) 70 T ELT)))
+(((-287 |#1| |#2|) (-10 -7 (-15 -2515 (|#2| |#2|)) (-15 -2831 (|#2| |#2|)) (-15 -1806 (|#2| |#2|)) (-15 -1820 (|#2| |#2|)) (-15 -1832 (|#2| |#2|)) (-15 -1844 (|#2| |#2|)) (-15 -1856 (|#2| |#2|)) (-15 -1870 (|#2| |#2|)) (-15 -1882 (|#2| |#2|)) (-15 -1895 (|#2| |#2|)) (-15 -1907 (|#2| |#2|)) (-15 -1920 (|#2| |#2|)) (-15 -1932 (|#2| |#2|)) (-15 -1945 (|#2| |#2|)) (-15 -1958 (|#2| |#2|)) (-15 -1972 (|#2| |#2|)) (-15 -1982 (|#2| |#2|)) (-15 -1992 (|#2| |#2|)) (-15 -2003 (|#2| |#2|)) (-15 -2013 (|#2| |#2|)) (-15 -2022 (|#2| |#2|)) (-15 -2032 (|#2| |#2|)) (-15 -2042 (|#2| |#2|)) (-15 -2050 (|#2| |#2|)) (-15 -2059 (|#2| |#2|)) (-15 -3392 (|#2| |#2|)) (-15 -2503 (|#2|)) (-15 -3962 ((-114) (-115))) (-15 -3963 ((-115) (-115))) (-15 -4370 (|#2|)) (-15 -4084 (|#2|)) (-15 -2317 (|#2| |#2|)) (-15 -3673 (|#2| |#2|)) (-15 -2680 (|#2| |#2|)) (-15 -3870 (|#2| |#2|)) (-15 -3205 (|#2| |#2|)) (-15 -1406 (|#2| |#2|)) (-15 -2365 (|#2| |#2|)) (-15 -3979 (|#2| |#2|)) (-15 -3920 (|#2| |#2|)) (-15 -2399 (|#2| |#2|)) (-15 -4249 (|#2| |#2|)) (-15 -2630 (|#2| |#2|)) (-15 -1738 (|#2| |#2|)) (-15 -2382 (|#2| |#2|)) (-15 -3287 (|#2| |#2|)) (-15 -3684 (|#2| |#2|)) (-15 -3580 (|#2| |#2|)) (-15 -1999 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -2969 (|#2| |#2|)) (-15 -2191 (|#2| |#2|)) (-15 -4428 (|#2| |#2|)) (-15 -4109 (|#2| |#2|)) (-15 -2440 (|#2| |#2|)) (-15 -2344 (|#2| |#2|)) (-15 -4298 (|#2| |#2|)) (-15 -3916 ((-3 |#2| "failed") |#2| (-663 (-2 (|:| |func| |#2|) (|:| |pole| (-114)))))) (-15 -2637 ((-114) |#2|))) (-571) (-13 (-435 |#1|) (-1033))) (T -287))
+((-2637 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-287 *4 *3)) (-4 *3 (-13 (-435 *4) (-1033))))) (-3916 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-663 (-2 (|:| |func| *2) (|:| |pole| (-114))))) (-4 *2 (-13 (-435 *4) (-1033))) (-4 *4 (-571)) (-5 *1 (-287 *4 *2)))) (-4298 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2344 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2440 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4109 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4428 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2191 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2969 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1531 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1999 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3580 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3684 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3287 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2382 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1738 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2630 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4249 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2399 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3979 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2365 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1406 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3205 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3870 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2680 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-3673 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2317 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-4084 (*1 *2) (-12 (-4 *2 (-13 (-435 *3) (-1033))) (-5 *1 (-287 *3 *2)) (-4 *3 (-571)))) (-4370 (*1 *2) (-12 (-4 *2 (-13 (-435 *3) (-1033))) (-5 *1 (-287 *3 *2)) (-4 *3 (-571)))) (-3963 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-287 *3 *4)) (-4 *4 (-13 (-435 *3) (-1033))))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-287 *4 *5)) (-4 *5 (-13 (-435 *4) (-1033))))) (-2503 (*1 *2) (-12 (-4 *2 (-13 (-435 *3) (-1033))) (-5 *1 (-287 *3 *2)) (-4 *3 (-571)))) (-3392 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2059 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2050 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2042 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2032 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2022 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2013 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2003 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1992 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1982 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1972 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1958 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1945 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1932 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1920 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1907 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1895 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1882 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1870 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1856 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1844 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1832 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1820 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-1806 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2831 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))) (-2515 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033))))))
+(-10 -7 (-15 -2515 (|#2| |#2|)) (-15 -2831 (|#2| |#2|)) (-15 -1806 (|#2| |#2|)) (-15 -1820 (|#2| |#2|)) (-15 -1832 (|#2| |#2|)) (-15 -1844 (|#2| |#2|)) (-15 -1856 (|#2| |#2|)) (-15 -1870 (|#2| |#2|)) (-15 -1882 (|#2| |#2|)) (-15 -1895 (|#2| |#2|)) (-15 -1907 (|#2| |#2|)) (-15 -1920 (|#2| |#2|)) (-15 -1932 (|#2| |#2|)) (-15 -1945 (|#2| |#2|)) (-15 -1958 (|#2| |#2|)) (-15 -1972 (|#2| |#2|)) (-15 -1982 (|#2| |#2|)) (-15 -1992 (|#2| |#2|)) (-15 -2003 (|#2| |#2|)) (-15 -2013 (|#2| |#2|)) (-15 -2022 (|#2| |#2|)) (-15 -2032 (|#2| |#2|)) (-15 -2042 (|#2| |#2|)) (-15 -2050 (|#2| |#2|)) (-15 -2059 (|#2| |#2|)) (-15 -3392 (|#2| |#2|)) (-15 -2503 (|#2|)) (-15 -3962 ((-114) (-115))) (-15 -3963 ((-115) (-115))) (-15 -4370 (|#2|)) (-15 -4084 (|#2|)) (-15 -2317 (|#2| |#2|)) (-15 -3673 (|#2| |#2|)) (-15 -2680 (|#2| |#2|)) (-15 -3870 (|#2| |#2|)) (-15 -3205 (|#2| |#2|)) (-15 -1406 (|#2| |#2|)) (-15 -2365 (|#2| |#2|)) (-15 -3979 (|#2| |#2|)) (-15 -3920 (|#2| |#2|)) (-15 -2399 (|#2| |#2|)) (-15 -4249 (|#2| |#2|)) (-15 -2630 (|#2| |#2|)) (-15 -1738 (|#2| |#2|)) (-15 -2382 (|#2| |#2|)) (-15 -3287 (|#2| |#2|)) (-15 -3684 (|#2| |#2|)) (-15 -3580 (|#2| |#2|)) (-15 -1999 (|#2| |#2|)) (-15 -1531 (|#2| |#2|)) (-15 -2969 (|#2| |#2|)) (-15 -2191 (|#2| |#2|)) (-15 -4428 (|#2| |#2|)) (-15 -4109 (|#2| |#2|)) (-15 -2440 (|#2| |#2|)) (-15 -2344 (|#2| |#2|)) (-15 -4298 (|#2| |#2|)) (-15 -3916 ((-3 |#2| "failed") |#2| (-663 (-2 (|:| |func| |#2|) (|:| |pole| (-114)))))) (-15 -2637 ((-114) |#2|)))
+((-2974 (((-3 |#2| "failed") (-663 (-630 |#2|)) |#2| (-1207)) 151 T ELT)) (-4286 ((|#2| (-421 (-560)) |#2|) 49 T ELT)) (-4111 ((|#2| |#2| (-630 |#2|)) 144 T ELT)) (-1769 (((-2 (|:| |func| |#2|) (|:| |kers| (-663 (-630 |#2|))) (|:| |vals| (-663 |#2|))) |#2| (-1207)) 143 T ELT)) (-3937 ((|#2| |#2| (-1207)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-3983 ((|#2| |#2| (-1207)) 157 T ELT) ((|#2| |#2|) 155 T ELT)))
+(((-288 |#1| |#2|) (-10 -7 (-15 -3983 (|#2| |#2|)) (-15 -3983 (|#2| |#2| (-1207))) (-15 -1769 ((-2 (|:| |func| |#2|) (|:| |kers| (-663 (-630 |#2|))) (|:| |vals| (-663 |#2|))) |#2| (-1207))) (-15 -3937 (|#2| |#2|)) (-15 -3937 (|#2| |#2| (-1207))) (-15 -2974 ((-3 |#2| "failed") (-663 (-630 |#2|)) |#2| (-1207))) (-15 -4111 (|#2| |#2| (-630 |#2|))) (-15 -4286 (|#2| (-421 (-560)) |#2|))) (-13 (-571) (-1069 (-560)) (-660 (-560))) (-13 (-27) (-1233) (-435 |#1|))) (T -288))
+((-4286 (*1 *2 *3 *2) (-12 (-5 *3 (-421 (-560))) (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))))) (-4111 (*1 *2 *2 *3) (-12 (-5 *3 (-630 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))) (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-288 *4 *2)))) (-2974 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-663 (-630 *2))) (-5 *4 (-1207)) (-4 *2 (-13 (-27) (-1233) (-435 *5))) (-4 *5 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-288 *5 *2)))) (-3937 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))))) (-3937 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-288 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3))))) (-1769 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-663 (-630 *3))) (|:| |vals| (-663 *3)))) (-5 *1 (-288 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))) (-3983 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))))) (-3983 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-288 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3))))))
+(-10 -7 (-15 -3983 (|#2| |#2|)) (-15 -3983 (|#2| |#2| (-1207))) (-15 -1769 ((-2 (|:| |func| |#2|) (|:| |kers| (-663 (-630 |#2|))) (|:| |vals| (-663 |#2|))) |#2| (-1207))) (-15 -3937 (|#2| |#2|)) (-15 -3937 (|#2| |#2| (-1207))) (-15 -2974 ((-3 |#2| "failed") (-663 (-630 |#2|)) |#2| (-1207))) (-15 -4111 (|#2| |#2| (-630 |#2|))) (-15 -4286 (|#2| (-421 (-560)) |#2|)))
+((-3590 (((-3 |#3| "failed") |#3|) 120 T ELT)) (-1982 ((|#3| |#3|) 142 T ELT)) (-2522 (((-3 |#3| "failed") |#3|) 89 T ELT)) (-1832 ((|#3| |#3|) 132 T ELT)) (-3447 (((-3 |#3| "failed") |#3|) 65 T ELT)) (-1958 ((|#3| |#3|) 140 T ELT)) (-1681 (((-3 |#3| "failed") |#3|) 53 T ELT)) (-1806 ((|#3| |#3|) 130 T ELT)) (-2177 (((-3 |#3| "failed") |#3|) 122 T ELT)) (-2003 ((|#3| |#3|) 144 T ELT)) (-3406 (((-3 |#3| "failed") |#3|) 91 T ELT)) (-1856 ((|#3| |#3|) 134 T ELT)) (-3144 (((-3 |#3| "failed") |#3| (-793)) 41 T ELT)) (-3251 (((-3 |#3| "failed") |#3|) 81 T ELT)) (-2831 ((|#3| |#3|) 129 T ELT)) (-2308 (((-3 |#3| "failed") |#3|) 51 T ELT)) (-2515 ((|#3| |#3|) 128 T ELT)) (-2580 (((-3 |#3| "failed") |#3|) 123 T ELT)) (-2013 ((|#3| |#3|) 145 T ELT)) (-4281 (((-3 |#3| "failed") |#3|) 92 T ELT)) (-1870 ((|#3| |#3|) 135 T ELT)) (-1639 (((-3 |#3| "failed") |#3|) 121 T ELT)) (-1992 ((|#3| |#3|) 143 T ELT)) (-1427 (((-3 |#3| "failed") |#3|) 90 T ELT)) (-1844 ((|#3| |#3|) 133 T ELT)) (-3207 (((-3 |#3| "failed") |#3|) 67 T ELT)) (-1972 ((|#3| |#3|) 141 T ELT)) (-2785 (((-3 |#3| "failed") |#3|) 55 T ELT)) (-1820 ((|#3| |#3|) 131 T ELT)) (-2329 (((-3 |#3| "failed") |#3|) 73 T ELT)) (-2042 ((|#3| |#3|) 148 T ELT)) (-4152 (((-3 |#3| "failed") |#3|) 114 T ELT)) (-1907 ((|#3| |#3|) 152 T ELT)) (-3711 (((-3 |#3| "failed") |#3|) 69 T ELT)) (-2022 ((|#3| |#3|) 146 T ELT)) (-2251 (((-3 |#3| "failed") |#3|) 57 T ELT)) (-1882 ((|#3| |#3|) 136 T ELT)) (-3897 (((-3 |#3| "failed") |#3|) 77 T ELT)) (-2059 ((|#3| |#3|) 150 T ELT)) (-2527 (((-3 |#3| "failed") |#3|) 61 T ELT)) (-1932 ((|#3| |#3|) 138 T ELT)) (-4407 (((-3 |#3| "failed") |#3|) 79 T ELT)) (-3392 ((|#3| |#3|) 151 T ELT)) (-2101 (((-3 |#3| "failed") |#3|) 63 T ELT)) (-1945 ((|#3| |#3|) 139 T ELT)) (-2922 (((-3 |#3| "failed") |#3|) 75 T ELT)) (-2050 ((|#3| |#3|) 149 T ELT)) (-3787 (((-3 |#3| "failed") |#3|) 117 T ELT)) (-1920 ((|#3| |#3|) 153 T ELT)) (-3437 (((-3 |#3| "failed") |#3|) 71 T ELT)) (-2032 ((|#3| |#3|) 147 T ELT)) (-2761 (((-3 |#3| "failed") |#3|) 59 T ELT)) (-1895 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-421 (-560))) 47 (|has| |#1| (-376)) ELT)))
+(((-289 |#1| |#2| |#3|) (-13 (-1014 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-421 (-560)))) |%noBranch|) (-15 -2515 (|#3| |#3|)) (-15 -2831 (|#3| |#3|)) (-15 -1806 (|#3| |#3|)) (-15 -1820 (|#3| |#3|)) (-15 -1832 (|#3| |#3|)) (-15 -1844 (|#3| |#3|)) (-15 -1856 (|#3| |#3|)) (-15 -1870 (|#3| |#3|)) (-15 -1882 (|#3| |#3|)) (-15 -1895 (|#3| |#3|)) (-15 -1907 (|#3| |#3|)) (-15 -1920 (|#3| |#3|)) (-15 -1932 (|#3| |#3|)) (-15 -1945 (|#3| |#3|)) (-15 -1958 (|#3| |#3|)) (-15 -1972 (|#3| |#3|)) (-15 -1982 (|#3| |#3|)) (-15 -1992 (|#3| |#3|)) (-15 -2003 (|#3| |#3|)) (-15 -2013 (|#3| |#3|)) (-15 -2022 (|#3| |#3|)) (-15 -2032 (|#3| |#3|)) (-15 -2042 (|#3| |#3|)) (-15 -2050 (|#3| |#3|)) (-15 -2059 (|#3| |#3|)) (-15 -3392 (|#3| |#3|)))) (-38 (-421 (-560))) (-1290 |#1|) (-1261 |#1| |#2|)) (T -289))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-421 (-560))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1290 *4)) (-5 *1 (-289 *4 *5 *2)) (-4 *2 (-1261 *4 *5)))) (-2515 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-2831 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-1806 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-1820 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-1832 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-1844 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-1856 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-1870 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-1882 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-1895 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-1907 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-1920 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-1932 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-1945 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-1958 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-1972 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-1982 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-1992 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-2003 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-2013 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-2022 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-2032 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-2042 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-2050 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-2059 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))) (-3392 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4)))))
+(-13 (-1014 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-421 (-560)))) |%noBranch|) (-15 -2515 (|#3| |#3|)) (-15 -2831 (|#3| |#3|)) (-15 -1806 (|#3| |#3|)) (-15 -1820 (|#3| |#3|)) (-15 -1832 (|#3| |#3|)) (-15 -1844 (|#3| |#3|)) (-15 -1856 (|#3| |#3|)) (-15 -1870 (|#3| |#3|)) (-15 -1882 (|#3| |#3|)) (-15 -1895 (|#3| |#3|)) (-15 -1907 (|#3| |#3|)) (-15 -1920 (|#3| |#3|)) (-15 -1932 (|#3| |#3|)) (-15 -1945 (|#3| |#3|)) (-15 -1958 (|#3| |#3|)) (-15 -1972 (|#3| |#3|)) (-15 -1982 (|#3| |#3|)) (-15 -1992 (|#3| |#3|)) (-15 -2003 (|#3| |#3|)) (-15 -2013 (|#3| |#3|)) (-15 -2022 (|#3| |#3|)) (-15 -2032 (|#3| |#3|)) (-15 -2042 (|#3| |#3|)) (-15 -2050 (|#3| |#3|)) (-15 -2059 (|#3| |#3|)) (-15 -3392 (|#3| |#3|))))
+((-3590 (((-3 |#3| "failed") |#3|) 70 T ELT)) (-1982 ((|#3| |#3|) 137 T ELT)) (-2522 (((-3 |#3| "failed") |#3|) 54 T ELT)) (-1832 ((|#3| |#3|) 125 T ELT)) (-3447 (((-3 |#3| "failed") |#3|) 66 T ELT)) (-1958 ((|#3| |#3|) 135 T ELT)) (-1681 (((-3 |#3| "failed") |#3|) 50 T ELT)) (-1806 ((|#3| |#3|) 123 T ELT)) (-2177 (((-3 |#3| "failed") |#3|) 74 T ELT)) (-2003 ((|#3| |#3|) 139 T ELT)) (-3406 (((-3 |#3| "failed") |#3|) 58 T ELT)) (-1856 ((|#3| |#3|) 127 T ELT)) (-3144 (((-3 |#3| "failed") |#3| (-793)) 38 T ELT)) (-3251 (((-3 |#3| "failed") |#3|) 48 T ELT)) (-2831 ((|#3| |#3|) 111 T ELT)) (-2308 (((-3 |#3| "failed") |#3|) 46 T ELT)) (-2515 ((|#3| |#3|) 122 T ELT)) (-2580 (((-3 |#3| "failed") |#3|) 76 T ELT)) (-2013 ((|#3| |#3|) 140 T ELT)) (-4281 (((-3 |#3| "failed") |#3|) 60 T ELT)) (-1870 ((|#3| |#3|) 128 T ELT)) (-1639 (((-3 |#3| "failed") |#3|) 72 T ELT)) (-1992 ((|#3| |#3|) 138 T ELT)) (-1427 (((-3 |#3| "failed") |#3|) 56 T ELT)) (-1844 ((|#3| |#3|) 126 T ELT)) (-3207 (((-3 |#3| "failed") |#3|) 68 T ELT)) (-1972 ((|#3| |#3|) 136 T ELT)) (-2785 (((-3 |#3| "failed") |#3|) 52 T ELT)) (-1820 ((|#3| |#3|) 124 T ELT)) (-2329 (((-3 |#3| "failed") |#3|) 78 T ELT)) (-2042 ((|#3| |#3|) 143 T ELT)) (-4152 (((-3 |#3| "failed") |#3|) 62 T ELT)) (-1907 ((|#3| |#3|) 131 T ELT)) (-3711 (((-3 |#3| "failed") |#3|) 112 T ELT)) (-2022 ((|#3| |#3|) 141 T ELT)) (-2251 (((-3 |#3| "failed") |#3|) 100 T ELT)) (-1882 ((|#3| |#3|) 129 T ELT)) (-3897 (((-3 |#3| "failed") |#3|) 116 T ELT)) (-2059 ((|#3| |#3|) 145 T ELT)) (-2527 (((-3 |#3| "failed") |#3|) 107 T ELT)) (-1932 ((|#3| |#3|) 133 T ELT)) (-4407 (((-3 |#3| "failed") |#3|) 117 T ELT)) (-3392 ((|#3| |#3|) 146 T ELT)) (-2101 (((-3 |#3| "failed") |#3|) 109 T ELT)) (-1945 ((|#3| |#3|) 134 T ELT)) (-2922 (((-3 |#3| "failed") |#3|) 80 T ELT)) (-2050 ((|#3| |#3|) 144 T ELT)) (-3787 (((-3 |#3| "failed") |#3|) 64 T ELT)) (-1920 ((|#3| |#3|) 132 T ELT)) (-3437 (((-3 |#3| "failed") |#3|) 113 T ELT)) (-2032 ((|#3| |#3|) 142 T ELT)) (-2761 (((-3 |#3| "failed") |#3|) 103 T ELT)) (-1895 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-421 (-560))) 44 (|has| |#1| (-376)) ELT)))
+(((-290 |#1| |#2| |#3| |#4|) (-13 (-1014 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-421 (-560)))) |%noBranch|) (-15 -2515 (|#3| |#3|)) (-15 -2831 (|#3| |#3|)) (-15 -1806 (|#3| |#3|)) (-15 -1820 (|#3| |#3|)) (-15 -1832 (|#3| |#3|)) (-15 -1844 (|#3| |#3|)) (-15 -1856 (|#3| |#3|)) (-15 -1870 (|#3| |#3|)) (-15 -1882 (|#3| |#3|)) (-15 -1895 (|#3| |#3|)) (-15 -1907 (|#3| |#3|)) (-15 -1920 (|#3| |#3|)) (-15 -1932 (|#3| |#3|)) (-15 -1945 (|#3| |#3|)) (-15 -1958 (|#3| |#3|)) (-15 -1972 (|#3| |#3|)) (-15 -1982 (|#3| |#3|)) (-15 -1992 (|#3| |#3|)) (-15 -2003 (|#3| |#3|)) (-15 -2013 (|#3| |#3|)) (-15 -2022 (|#3| |#3|)) (-15 -2032 (|#3| |#3|)) (-15 -2042 (|#3| |#3|)) (-15 -2050 (|#3| |#3|)) (-15 -2059 (|#3| |#3|)) (-15 -3392 (|#3| |#3|)))) (-38 (-421 (-560))) (-1259 |#1|) (-1282 |#1| |#2|) (-1014 |#2|)) (T -290))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-421 (-560))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1259 *4)) (-5 *1 (-290 *4 *5 *2 *6)) (-4 *2 (-1282 *4 *5)) (-4 *6 (-1014 *5)))) (-2515 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-2831 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-1806 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-1820 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-1832 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-1844 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-1856 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-1870 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-1882 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-1895 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-1907 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-1920 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-1932 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-1945 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-1958 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-1972 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-1982 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-1992 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-2003 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-2013 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-2022 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-2032 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-2042 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-2050 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-2059 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))) (-3392 (*1 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4)))))
+(-13 (-1014 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-421 (-560)))) |%noBranch|) (-15 -2515 (|#3| |#3|)) (-15 -2831 (|#3| |#3|)) (-15 -1806 (|#3| |#3|)) (-15 -1820 (|#3| |#3|)) (-15 -1832 (|#3| |#3|)) (-15 -1844 (|#3| |#3|)) (-15 -1856 (|#3| |#3|)) (-15 -1870 (|#3| |#3|)) (-15 -1882 (|#3| |#3|)) (-15 -1895 (|#3| |#3|)) (-15 -1907 (|#3| |#3|)) (-15 -1920 (|#3| |#3|)) (-15 -1932 (|#3| |#3|)) (-15 -1945 (|#3| |#3|)) (-15 -1958 (|#3| |#3|)) (-15 -1972 (|#3| |#3|)) (-15 -1982 (|#3| |#3|)) (-15 -1992 (|#3| |#3|)) (-15 -2003 (|#3| |#3|)) (-15 -2013 (|#3| |#3|)) (-15 -2022 (|#3| |#3|)) (-15 -2032 (|#3| |#3|)) (-15 -2042 (|#3| |#3|)) (-15 -2050 (|#3| |#3|)) (-15 -2059 (|#3| |#3|)) (-15 -3392 (|#3| |#3|))))
+((-2226 (((-114) $) 20 T ELT)) (-2131 (((-1212) $) 7 T ELT)) (-1699 (((-3 (-520) "failed") $) 14 T ELT)) (-1470 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3499 (((-3 (-520) "failed") $) 21 T ELT)) (-2821 (((-3 (-1134) "failed") $) 18 T ELT)) (-2889 (((-114) $) 16 T ELT)) (-3913 (((-887) $) NIL T ELT)) (-2351 (((-114) $) 9 T ELT)))
+(((-291) (-13 (-632 (-887)) (-10 -8 (-15 -2131 ((-1212) $)) (-15 -2889 ((-114) $)) (-15 -2821 ((-3 (-1134) "failed") $)) (-15 -2226 ((-114) $)) (-15 -3499 ((-3 (-520) "failed") $)) (-15 -2351 ((-114) $)) (-15 -1699 ((-3 (-520) "failed") $)) (-15 -1470 ((-3 (-663 $) "failed") $))))) (T -291))
+((-2131 (*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-291)))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) (-2821 (*1 *2 *1) (|partial| -12 (-5 *2 (-1134)) (-5 *1 (-291)))) (-2226 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) (-3499 (*1 *2 *1) (|partial| -12 (-5 *2 (-520)) (-5 *1 (-291)))) (-2351 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) (-1699 (*1 *2 *1) (|partial| -12 (-5 *2 (-520)) (-5 *1 (-291)))) (-1470 (*1 *2 *1) (|partial| -12 (-5 *2 (-663 (-291))) (-5 *1 (-291)))))
+(-13 (-632 (-887)) (-10 -8 (-15 -2131 ((-1212) $)) (-15 -2889 ((-114) $)) (-15 -2821 ((-3 (-1134) "failed") $)) (-15 -2226 ((-114) $)) (-15 -3499 ((-3 (-520) "failed") $)) (-15 -2351 ((-114) $)) (-15 -1699 ((-3 (-520) "failed") $)) (-15 -1470 ((-3 (-663 $) "failed") $))))
+((-2773 (((-611) $) 10 T ELT)) (-4342 (((-600) $) 8 T ELT)) (-3802 (((-303) $) 12 T ELT)) (-3592 (($ (-600) (-611) (-303)) NIL T ELT)) (-3913 (((-887) $) 19 T ELT)))
+(((-292) (-13 (-632 (-887)) (-10 -8 (-15 -3592 ($ (-600) (-611) (-303))) (-15 -4342 ((-600) $)) (-15 -2773 ((-611) $)) (-15 -3802 ((-303) $))))) (T -292))
+((-3592 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-600)) (-5 *3 (-611)) (-5 *4 (-303)) (-5 *1 (-292)))) (-4342 (*1 *2 *1) (-12 (-5 *2 (-600)) (-5 *1 (-292)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-611)) (-5 *1 (-292)))) (-3802 (*1 *2 *1) (-12 (-5 *2 (-303)) (-5 *1 (-292)))))
+(-13 (-632 (-887)) (-10 -8 (-15 -3592 ($ (-600) (-611) (-303))) (-15 -4342 ((-600) $)) (-15 -2773 ((-611) $)) (-15 -3802 ((-303) $))))
+((-3923 (($ (-1 (-114) |#2|) $) 24 T ELT)) (-3658 (($ $) 38 T ELT)) (-2091 (($ (-1 (-114) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3033 (($ |#2| $) 34 T ELT) (($ (-1 (-114) |#2|) $) 18 T ELT)) (-3204 (($ (-1 (-114) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2507 (($ |#2| $ (-560)) 20 T ELT) (($ $ $ (-560)) 22 T ELT)) (-2579 (($ $ (-560)) 11 T ELT) (($ $ (-1264 (-560))) 14 T ELT)) (-3305 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-1955 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-663 $)) NIL T ELT)))
+(((-293 |#1| |#2|) (-10 -8 (-15 -3204 (|#1| |#1| |#1|)) (-15 -2091 (|#1| |#2| |#1|)) (-15 -3204 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -2091 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3305 (|#1| |#1| |#1|)) (-15 -3305 (|#1| |#1| |#2|)) (-15 -2507 (|#1| |#1| |#1| (-560))) (-15 -2507 (|#1| |#2| |#1| (-560))) (-15 -2579 (|#1| |#1| (-1264 (-560)))) (-15 -2579 (|#1| |#1| (-560))) (-15 -1955 (|#1| (-663 |#1|))) (-15 -1955 (|#1| |#1| |#1|)) (-15 -1955 (|#1| |#2| |#1|)) (-15 -1955 (|#1| |#1| |#2|)) (-15 -3033 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3923 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3033 (|#1| |#2| |#1|)) (-15 -3658 (|#1| |#1|))) (-294 |#2|) (-1247)) (T -293))
+NIL
+(-10 -8 (-15 -3204 (|#1| |#1| |#1|)) (-15 -2091 (|#1| |#2| |#1|)) (-15 -3204 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -2091 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3305 (|#1| |#1| |#1|)) (-15 -3305 (|#1| |#1| |#2|)) (-15 -2507 (|#1| |#1| |#1| (-560))) (-15 -2507 (|#1| |#2| |#1| (-560))) (-15 -2579 (|#1| |#1| (-1264 (-560)))) (-15 -2579 (|#1| |#1| (-560))) (-15 -1955 (|#1| (-663 |#1|))) (-15 -1955 (|#1| |#1| |#1|)) (-15 -1955 (|#1| |#2| |#1|)) (-15 -1955 (|#1| |#1| |#2|)) (-15 -3033 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3923 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3033 (|#1| |#2| |#1|)) (-15 -3658 (|#1| |#1|)))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2033 (((-1303) $ (-560) (-560)) 41 (|has| $ (-6 -4509)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-4083 ((|#1| $ (-560) |#1|) 53 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) 60 (|has| $ (-6 -4509)) ELT)) (-1864 (($ (-1 (-114) |#1|) $) 88 T ELT)) (-3923 (($ (-1 (-114) |#1|) $) 77 (|has| $ (-6 -4508)) ELT)) (-3525 (($) 7 T CONST)) (-4329 (($ $) 86 (|has| |#1| (-1132)) ELT)) (-3658 (($ $) 80 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2091 (($ (-1 (-114) |#1|) $) 92 T ELT) (($ |#1| $) 87 (|has| |#1| (-1132)) ELT)) (-3033 (($ |#1| $) 79 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 76 (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4508)) ELT)) (-3338 ((|#1| $ (-560) |#1|) 54 (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-560)) 52 T ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-4246 (($ (-793) |#1|) 70 T ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-2483 (((-560) $) 44 (|has| (-560) (-871)) ELT)) (-3204 (($ (-1 (-114) |#1| |#1|) $ $) 89 T ELT) (($ $ $) 85 (|has| |#1| (-871)) ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4263 (((-560) $) 45 (|has| (-560) (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3888 (($ |#1| $ (-560)) 91 T ELT) (($ $ $ (-560)) 90 T ELT)) (-2507 (($ |#1| $ (-560)) 62 T ELT) (($ $ $ (-560)) 61 T ELT)) (-3372 (((-663 (-560)) $) 47 T ELT)) (-3439 (((-114) (-560) $) 48 T ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-4334 ((|#1| $) 43 (|has| (-560) (-871)) ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 73 T ELT)) (-2740 (($ $ |#1|) 42 (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-4019 (((-114) |#1| $) 46 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) 49 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1507 ((|#1| $ (-560) |#1|) 51 T ELT) ((|#1| $ (-560)) 50 T ELT) (($ $ (-1264 (-560))) 71 T ELT)) (-3639 (($ $ (-560)) 94 T ELT) (($ $ (-1264 (-560))) 93 T ELT)) (-2579 (($ $ (-560)) 64 T ELT) (($ $ (-1264 (-560))) 63 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) 81 (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 72 T ELT)) (-3305 (($ $ |#1|) 96 T ELT) (($ $ $) 95 T ELT)) (-1955 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-663 $)) 66 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-294 |#1|) (-142) (-1247)) (T -294))
-((-4354 (*1 *1 *1 *2) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)))) (-4354 (*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)))) (-2249 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-294 *3)) (-4 *3 (-1247)))) (-2249 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 (-560))) (-4 *1 (-294 *3)) (-4 *3 (-1247)))) (-3390 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1247)))) (-3629 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-294 *2)) (-4 *2 (-1247)))) (-3629 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-294 *3)) (-4 *3 (-1247)))) (-1708 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-294 *3)) (-4 *3 (-1247)))) (-3500 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1247)))) (-3390 (*1 *1 *2 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)) (-4 *2 (-1132)))) (-2944 (*1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)) (-4 *2 (-1132)))) (-1708 (*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)) (-4 *2 (-871)))))
-(-13 (-673 |t#1|) (-10 -8 (-6 -4509) (-15 -4354 ($ $ |t#1|)) (-15 -4354 ($ $ $)) (-15 -2249 ($ $ (-560))) (-15 -2249 ($ $ (-1264 (-560)))) (-15 -3390 ($ (-1 (-114) |t#1|) $)) (-15 -3629 ($ |t#1| $ (-560))) (-15 -3629 ($ $ $ (-560))) (-15 -1708 ($ (-1 (-114) |t#1| |t#1|) $ $)) (-15 -3500 ($ (-1 (-114) |t#1|) $)) (IF (|has| |t#1| (-1132)) (PROGN (-15 -3390 ($ |t#1| $)) (-15 -2944 ($ $))) |%noBranch|) (IF (|has| |t#1| (-871)) (-15 -1708 ($ $ $)) |%noBranch|)))
-(((-34) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #0=(-560) |#1|) . T) ((-298 (-1264 (-560)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-673 |#1|) . T) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
+((-3305 (*1 *1 *1 *2) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)))) (-3305 (*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)))) (-3639 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-294 *3)) (-4 *3 (-1247)))) (-3639 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 (-560))) (-4 *1 (-294 *3)) (-4 *3 (-1247)))) (-2091 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1247)))) (-3888 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-294 *2)) (-4 *2 (-1247)))) (-3888 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-294 *3)) (-4 *3 (-1247)))) (-3204 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-294 *3)) (-4 *3 (-1247)))) (-1864 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1247)))) (-2091 (*1 *1 *2 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)) (-4 *2 (-1132)))) (-4329 (*1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)) (-4 *2 (-1132)))) (-3204 (*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)) (-4 *2 (-871)))))
+(-13 (-673 |t#1|) (-10 -8 (-6 -4509) (-15 -3305 ($ $ |t#1|)) (-15 -3305 ($ $ $)) (-15 -3639 ($ $ (-560))) (-15 -3639 ($ $ (-1264 (-560)))) (-15 -2091 ($ (-1 (-114) |t#1|) $)) (-15 -3888 ($ |t#1| $ (-560))) (-15 -3888 ($ $ $ (-560))) (-15 -3204 ($ (-1 (-114) |t#1| |t#1|) $ $)) (-15 -1864 ($ (-1 (-114) |t#1|) $)) (IF (|has| |t#1| (-1132)) (PROGN (-15 -2091 ($ |t#1| $)) (-15 -4329 ($ $))) |%noBranch|) (IF (|has| |t#1| (-871)) (-15 -3204 ($ $ $)) |%noBranch|)))
+(((-34) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #0=(-560) |#1|) . T) ((-298 (-1264 (-560)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-673 |#1|) . T) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
((** (($ $ $) 10 T ELT)))
(((-295 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-296)) (T -295))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-2192 (($ $) 6 T ELT)) (-3251 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT)))
+((-2831 (($ $) 6 T ELT)) (-2515 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT)))
(((-296) (-142)) (T -296))
-((** (*1 *1 *1 *1) (-4 *1 (-296))) (-3251 (*1 *1 *1) (-4 *1 (-296))) (-2192 (*1 *1 *1) (-4 *1 (-296))))
-(-13 (-10 -8 (-15 -2192 ($ $)) (-15 -3251 ($ $)) (-15 ** ($ $ $))))
-((-2389 (((-663 (-1185 |#1|)) (-1185 |#1|) |#1|) 35 T ELT)) (-4476 ((|#2| |#2| |#1|) 39 T ELT)) (-1621 ((|#2| |#2| |#1|) 41 T ELT)) (-4290 ((|#2| |#2| |#1|) 40 T ELT)))
-(((-297 |#1| |#2|) (-10 -7 (-15 -4476 (|#2| |#2| |#1|)) (-15 -4290 (|#2| |#2| |#1|)) (-15 -1621 (|#2| |#2| |#1|)) (-15 -2389 ((-663 (-1185 |#1|)) (-1185 |#1|) |#1|))) (-376) (-1290 |#1|)) (T -297))
-((-2389 (*1 *2 *3 *4) (-12 (-4 *4 (-376)) (-5 *2 (-663 (-1185 *4))) (-5 *1 (-297 *4 *5)) (-5 *3 (-1185 *4)) (-4 *5 (-1290 *4)))) (-1621 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1290 *3)))) (-4290 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1290 *3)))) (-4476 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1290 *3)))))
-(-10 -7 (-15 -4476 (|#2| |#2| |#1|)) (-15 -4290 (|#2| |#2| |#1|)) (-15 -1621 (|#2| |#2| |#1|)) (-15 -2389 ((-663 (-1185 |#1|)) (-1185 |#1|) |#1|)))
-((-3924 ((|#2| $ |#1|) 6 T ELT)))
+((** (*1 *1 *1 *1) (-4 *1 (-296))) (-2515 (*1 *1 *1) (-4 *1 (-296))) (-2831 (*1 *1 *1) (-4 *1 (-296))))
+(-13 (-10 -8 (-15 -2831 ($ $)) (-15 -2515 ($ $)) (-15 ** ($ $ $))))
+((-2518 (((-663 (-1185 |#1|)) (-1185 |#1|) |#1|) 35 T ELT)) (-1538 ((|#2| |#2| |#1|) 39 T ELT)) (-3522 ((|#2| |#2| |#1|) 41 T ELT)) (-2822 ((|#2| |#2| |#1|) 40 T ELT)))
+(((-297 |#1| |#2|) (-10 -7 (-15 -1538 (|#2| |#2| |#1|)) (-15 -2822 (|#2| |#2| |#1|)) (-15 -3522 (|#2| |#2| |#1|)) (-15 -2518 ((-663 (-1185 |#1|)) (-1185 |#1|) |#1|))) (-376) (-1290 |#1|)) (T -297))
+((-2518 (*1 *2 *3 *4) (-12 (-4 *4 (-376)) (-5 *2 (-663 (-1185 *4))) (-5 *1 (-297 *4 *5)) (-5 *3 (-1185 *4)) (-4 *5 (-1290 *4)))) (-3522 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1290 *3)))) (-2822 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1290 *3)))) (-1538 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1290 *3)))))
+(-10 -7 (-15 -1538 (|#2| |#2| |#1|)) (-15 -2822 (|#2| |#2| |#1|)) (-15 -3522 (|#2| |#2| |#1|)) (-15 -2518 ((-663 (-1185 |#1|)) (-1185 |#1|) |#1|)))
+((-1507 ((|#2| $ |#1|) 6 T ELT)))
(((-298 |#1| |#2|) (-142) (-1247) (-1247)) (T -298))
-((-3924 (*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1247)) (-4 *2 (-1247)))))
-(-13 (-1247) (-10 -8 (-15 -3924 (|t#2| $ |t#1|))))
+((-1507 (*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1247)) (-4 *2 (-1247)))))
+(-13 (-1247) (-10 -8 (-15 -1507 (|t#2| $ |t#1|))))
(((-1247) . T))
-((-3779 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3709 ((|#3| $ |#2|) 10 T ELT)))
-(((-299 |#1| |#2| |#3|) (-10 -8 (-15 -3779 (|#3| |#1| |#2| |#3|)) (-15 -3709 (|#3| |#1| |#2|))) (-300 |#2| |#3|) (-1132) (-1247)) (T -299))
+((-3338 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3274 ((|#3| $ |#2|) 10 T ELT)))
+(((-299 |#1| |#2| |#3|) (-10 -8 (-15 -3338 (|#3| |#1| |#2| |#3|)) (-15 -3274 (|#3| |#1| |#2|))) (-300 |#2| |#3|) (-1132) (-1247)) (T -299))
NIL
-(-10 -8 (-15 -3779 (|#3| |#1| |#2| |#3|)) (-15 -3709 (|#3| |#1| |#2|)))
-((-1773 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4509)) ELT)) (-3779 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4509)) ELT)) (-3709 ((|#2| $ |#1|) 11 T ELT)) (-3924 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT)))
+(-10 -8 (-15 -3338 (|#3| |#1| |#2| |#3|)) (-15 -3274 (|#3| |#1| |#2|)))
+((-4083 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4509)) ELT)) (-3338 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4509)) ELT)) (-3274 ((|#2| $ |#1|) 11 T ELT)) (-1507 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT)))
(((-300 |#1| |#2|) (-142) (-1132) (-1247)) (T -300))
-((-3924 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1247)))) (-3709 (*1 *2 *1 *3) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1247)))) (-1773 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1247)))) (-3779 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1247)))))
-(-13 (-298 |t#1| |t#2|) (-10 -8 (-15 -3924 (|t#2| $ |t#1| |t#2|)) (-15 -3709 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4509)) (PROGN (-15 -1773 (|t#2| $ |t#1| |t#2|)) (-15 -3779 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+((-1507 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1247)))) (-3274 (*1 *2 *1 *3) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1247)))) (-4083 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1247)))) (-3338 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1247)))))
+(-13 (-298 |t#1| |t#2|) (-10 -8 (-15 -1507 (|t#2| $ |t#1| |t#2|)) (-15 -3274 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4509)) (PROGN (-15 -4083 (|t#2| $ |t#1| |t#2|)) (-15 -3338 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
(((-298 |#1| |#2|) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 37 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 44 T ELT)) (-3244 (($ $) 41 T ELT)) (-4093 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-1478 (($ $ $) 35 T ELT)) (-4129 (($ |#2| |#3|) 18 T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2865 ((|#3| $) NIL T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) 19 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2469 (((-3 $ "failed") $ $) NIL T ELT)) (-2901 (((-793) $) 36 T ELT)) (-3924 ((|#2| $ |#2|) 46 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 23 T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2001 (($) 31 T CONST)) (-2011 (($) 39 T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 40 T ELT)))
-(((-301 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-319) (-298 |#2| |#2|) (-10 -8 (-15 -2865 (|#3| $)) (-15 -1578 (|#2| $)) (-15 -4129 ($ |#2| |#3|)) (-15 -2469 ((-3 $ "failed") $ $)) (-15 -1990 ((-3 $ "failed") $)) (-15 -1544 ($ $)))) (-175) (-1273 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -301))
-((-1990 (*1 *1 *1) (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2865 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-23)) (-5 *1 (-301 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1273 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-1578 (*1 *2 *1) (-12 (-4 *2 (-1273 *3)) (-5 *1 (-301 *3 *2 *4 *5 *6 *7)) (-4 *3 (-175)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-4129 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-301 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1273 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2469 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1544 (*1 *1 *1) (-12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))))
-(-13 (-319) (-298 |#2| |#2|) (-10 -8 (-15 -2865 (|#3| $)) (-15 -1578 (|#2| $)) (-15 -4129 ($ |#2| |#3|)) (-15 -2469 ((-3 $ "failed") $ $)) (-15 -1990 ((-3 $ "failed") $)) (-15 -1544 ($ $))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 37 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 44 T ELT)) (-4366 (($ $) 41 T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2186 (($ $ $) 35 T ELT)) (-1778 (($ |#2| |#3|) 18 T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3601 ((|#3| $) NIL T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) 19 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2064 (((-3 $ "failed") $ $) NIL T ELT)) (-3989 (((-793) $) 36 T ELT)) (-1507 ((|#2| $ |#2|) 46 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 23 T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-1446 (($) 31 T CONST)) (-1456 (($) 39 T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 40 T ELT)))
+(((-301 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-319) (-298 |#2| |#2|) (-10 -8 (-15 -3601 (|#3| $)) (-15 -3913 (|#2| $)) (-15 -1778 ($ |#2| |#3|)) (-15 -2064 ((-3 $ "failed") $ $)) (-15 -2873 ((-3 $ "failed") $)) (-15 -2986 ($ $)))) (-175) (-1273 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -301))
+((-2873 (*1 *1 *1) (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-3601 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-23)) (-5 *1 (-301 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1273 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-3913 (*1 *2 *1) (-12 (-4 *2 (-1273 *3)) (-5 *1 (-301 *3 *2 *4 *5 *6 *7)) (-4 *3 (-175)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-1778 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-301 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1273 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2064 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2986 (*1 *1 *1) (-12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))))
+(-13 (-319) (-298 |#2| |#2|) (-10 -8 (-15 -3601 (|#3| $)) (-15 -3913 (|#2| $)) (-15 -1778 ($ |#2| |#3|)) (-15 -2064 ((-3 $ "failed") $ $)) (-15 -2873 ((-3 $ "failed") $)) (-15 -2986 ($ $))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
(((-302) (-142)) (T -302))
NIL
(-13 (-1080) (-111 $ $) (-10 -7 (-6 -4501)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-560)) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-1585 (((-663 (-1116)) $) 10 T ELT)) (-2242 (($ (-520) (-520) (-1134) $) 19 T ELT)) (-2296 (($ (-520) (-663 (-994)) $) 23 T ELT)) (-3738 (($) 25 T ELT)) (-3311 (((-713 (-1134)) (-520) (-520) $) 18 T ELT)) (-2698 (((-663 (-994)) (-520) $) 22 T ELT)) (-3986 (($) 7 T ELT)) (-2687 (($) 24 T ELT)) (-1578 (((-887) $) 29 T ELT)) (-3737 (($) 26 T ELT)))
-(((-303) (-13 (-632 (-887)) (-10 -8 (-15 -3986 ($)) (-15 -1585 ((-663 (-1116)) $)) (-15 -3311 ((-713 (-1134)) (-520) (-520) $)) (-15 -2242 ($ (-520) (-520) (-1134) $)) (-15 -2698 ((-663 (-994)) (-520) $)) (-15 -2296 ($ (-520) (-663 (-994)) $)) (-15 -2687 ($)) (-15 -3738 ($)) (-15 -3737 ($))))) (T -303))
-((-3986 (*1 *1) (-5 *1 (-303))) (-1585 (*1 *2 *1) (-12 (-5 *2 (-663 (-1116))) (-5 *1 (-303)))) (-3311 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-1134))) (-5 *1 (-303)))) (-2242 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-520)) (-5 *3 (-1134)) (-5 *1 (-303)))) (-2698 (*1 *2 *3 *1) (-12 (-5 *3 (-520)) (-5 *2 (-663 (-994))) (-5 *1 (-303)))) (-2296 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-520)) (-5 *3 (-663 (-994))) (-5 *1 (-303)))) (-2687 (*1 *1) (-5 *1 (-303))) (-3738 (*1 *1) (-5 *1 (-303))) (-3737 (*1 *1) (-5 *1 (-303))))
-(-13 (-632 (-887)) (-10 -8 (-15 -3986 ($)) (-15 -1585 ((-663 (-1116)) $)) (-15 -3311 ((-713 (-1134)) (-520) (-520) $)) (-15 -2242 ($ (-520) (-520) (-1134) $)) (-15 -2698 ((-663 (-994)) (-520) $)) (-15 -2296 ($ (-520) (-663 (-994)) $)) (-15 -2687 ($)) (-15 -3738 ($)) (-15 -3737 ($))))
-((-2376 (((-663 (-2 (|:| |eigval| (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (|:| |geneigvec| (-663 (-711 (-421 (-975 |#1|))))))) (-711 (-421 (-975 |#1|)))) 102 T ELT)) (-3075 (((-663 (-711 (-421 (-975 |#1|)))) (-2 (|:| |eigval| (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 (-711 (-421 (-975 |#1|)))))) (-711 (-421 (-975 |#1|)))) 97 T ELT) (((-663 (-711 (-421 (-975 |#1|)))) (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|))) (-711 (-421 (-975 |#1|))) (-793) (-793)) 41 T ELT)) (-2363 (((-663 (-2 (|:| |eigval| (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 (-711 (-421 (-975 |#1|))))))) (-711 (-421 (-975 |#1|)))) 99 T ELT)) (-2384 (((-663 (-711 (-421 (-975 |#1|)))) (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|))) (-711 (-421 (-975 |#1|)))) 75 T ELT)) (-3020 (((-663 (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (-711 (-421 (-975 |#1|)))) 74 T ELT)) (-2630 (((-975 |#1|) (-711 (-421 (-975 |#1|)))) 55 T ELT) (((-975 |#1|) (-711 (-421 (-975 |#1|))) (-1207)) 56 T ELT)))
-(((-304 |#1|) (-10 -7 (-15 -2630 ((-975 |#1|) (-711 (-421 (-975 |#1|))) (-1207))) (-15 -2630 ((-975 |#1|) (-711 (-421 (-975 |#1|))))) (-15 -3020 ((-663 (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (-711 (-421 (-975 |#1|))))) (-15 -2384 ((-663 (-711 (-421 (-975 |#1|)))) (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|))) (-711 (-421 (-975 |#1|))))) (-15 -3075 ((-663 (-711 (-421 (-975 |#1|)))) (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|))) (-711 (-421 (-975 |#1|))) (-793) (-793))) (-15 -3075 ((-663 (-711 (-421 (-975 |#1|)))) (-2 (|:| |eigval| (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 (-711 (-421 (-975 |#1|)))))) (-711 (-421 (-975 |#1|))))) (-15 -2376 ((-663 (-2 (|:| |eigval| (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (|:| |geneigvec| (-663 (-711 (-421 (-975 |#1|))))))) (-711 (-421 (-975 |#1|))))) (-15 -2363 ((-663 (-2 (|:| |eigval| (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 (-711 (-421 (-975 |#1|))))))) (-711 (-421 (-975 |#1|)))))) (-466)) (T -304))
-((-2363 (*1 *2 *3) (-12 (-4 *4 (-466)) (-5 *2 (-663 (-2 (|:| |eigval| (-3 (-421 (-975 *4)) (-1196 (-1207) (-975 *4)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 (-711 (-421 (-975 *4)))))))) (-5 *1 (-304 *4)) (-5 *3 (-711 (-421 (-975 *4)))))) (-2376 (*1 *2 *3) (-12 (-4 *4 (-466)) (-5 *2 (-663 (-2 (|:| |eigval| (-3 (-421 (-975 *4)) (-1196 (-1207) (-975 *4)))) (|:| |geneigvec| (-663 (-711 (-421 (-975 *4)))))))) (-5 *1 (-304 *4)) (-5 *3 (-711 (-421 (-975 *4)))))) (-3075 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-421 (-975 *5)) (-1196 (-1207) (-975 *5)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 *4)))) (-4 *5 (-466)) (-5 *2 (-663 (-711 (-421 (-975 *5))))) (-5 *1 (-304 *5)) (-5 *4 (-711 (-421 (-975 *5)))))) (-3075 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-421 (-975 *6)) (-1196 (-1207) (-975 *6)))) (-5 *5 (-793)) (-4 *6 (-466)) (-5 *2 (-663 (-711 (-421 (-975 *6))))) (-5 *1 (-304 *6)) (-5 *4 (-711 (-421 (-975 *6)))))) (-2384 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-421 (-975 *5)) (-1196 (-1207) (-975 *5)))) (-4 *5 (-466)) (-5 *2 (-663 (-711 (-421 (-975 *5))))) (-5 *1 (-304 *5)) (-5 *4 (-711 (-421 (-975 *5)))))) (-3020 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-975 *4)))) (-4 *4 (-466)) (-5 *2 (-663 (-3 (-421 (-975 *4)) (-1196 (-1207) (-975 *4))))) (-5 *1 (-304 *4)))) (-2630 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-975 *4)))) (-5 *2 (-975 *4)) (-5 *1 (-304 *4)) (-4 *4 (-466)))) (-2630 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-421 (-975 *5)))) (-5 *4 (-1207)) (-5 *2 (-975 *5)) (-5 *1 (-304 *5)) (-4 *5 (-466)))))
-(-10 -7 (-15 -2630 ((-975 |#1|) (-711 (-421 (-975 |#1|))) (-1207))) (-15 -2630 ((-975 |#1|) (-711 (-421 (-975 |#1|))))) (-15 -3020 ((-663 (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (-711 (-421 (-975 |#1|))))) (-15 -2384 ((-663 (-711 (-421 (-975 |#1|)))) (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|))) (-711 (-421 (-975 |#1|))))) (-15 -3075 ((-663 (-711 (-421 (-975 |#1|)))) (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|))) (-711 (-421 (-975 |#1|))) (-793) (-793))) (-15 -3075 ((-663 (-711 (-421 (-975 |#1|)))) (-2 (|:| |eigval| (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 (-711 (-421 (-975 |#1|)))))) (-711 (-421 (-975 |#1|))))) (-15 -2376 ((-663 (-2 (|:| |eigval| (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (|:| |geneigvec| (-663 (-711 (-421 (-975 |#1|))))))) (-711 (-421 (-975 |#1|))))) (-15 -2363 ((-663 (-2 (|:| |eigval| (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 (-711 (-421 (-975 |#1|))))))) (-711 (-421 (-975 |#1|))))))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2388 (((-114) $) NIL (|has| |#1| (-21)) ELT)) (-1770 (($ $) 12 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1724 (($ $ $) 95 (|has| |#1| (-310)) ELT)) (-2238 (($) NIL (-2304 (|has| |#1| (-21)) (|has| |#1| (-748))) CONST)) (-4183 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1927 (((-3 $ "failed") $) 62 (|has| |#1| (-748)) ELT)) (-3401 ((|#1| $) 11 T ELT)) (-1990 (((-3 $ "failed") $) 60 (|has| |#1| (-748)) ELT)) (-1581 (((-114) $) NIL (|has| |#1| (-748)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3391 ((|#1| $) 10 T ELT)) (-3296 (($ $) 50 (|has| |#1| (-21)) ELT)) (-3619 (((-3 $ "failed") $) 61 (|has| |#1| (-748)) ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-1544 (($ $) 64 (-2304 (|has| |#1| (-376)) (|has| |#1| (-487))) ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-1759 (((-663 $) $) 85 (|has| |#1| (-571)) ELT)) (-4187 (($ $ $) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 $)) 28 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-1207) |#1|) 17 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) 21 (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-3439 (($ |#1| |#1|) 9 T ELT)) (-3669 (((-136)) 90 (|has| |#1| (-376)) ELT)) (-2894 (($ $ (-1207)) 87 (|has| |#1| (-927 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-927 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-927 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-927 (-1207))) ELT)) (-4122 (($ $ $) NIL (|has| |#1| (-487)) ELT)) (-2013 (($ $ $) NIL (|has| |#1| (-487)) ELT)) (-1578 (($ (-560)) NIL (|has| |#1| (-1080)) ELT) (((-114) $) 37 (|has| |#1| (-1132)) ELT) (((-887) $) 36 (|has| |#1| (-1132)) ELT)) (-2930 (((-793)) 67 (|has| |#1| (-1080)) CONST)) (-2275 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2001 (($) 47 (|has| |#1| (-21)) CONST)) (-2011 (($) 57 (|has| |#1| (-748)) CONST)) (-3305 (($ $ (-1207)) NIL (|has| |#1| (-927 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-927 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-927 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-927 (-1207))) ELT)) (-2473 (($ |#1| |#1|) 8 T ELT) (((-114) $ $) 32 (|has| |#1| (-1132)) ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 92 (-2304 (|has| |#1| (-376)) (|has| |#1| (-487))) ELT)) (-2580 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-2567 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-560)) NIL (|has| |#1| (-487)) ELT) (($ $ (-793)) NIL (|has| |#1| (-748)) ELT) (($ $ (-948)) NIL (|has| |#1| (-1143)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1143)) ELT) (($ |#1| $) 54 (|has| |#1| (-1143)) ELT) (($ $ $) 53 (|has| |#1| (-1143)) ELT) (($ (-560) $) 70 (|has| |#1| (-21)) ELT) (($ (-793) $) NIL (|has| |#1| (-21)) ELT) (($ (-948) $) NIL (|has| |#1| (-25)) ELT)))
-(((-305 |#1|) (-13 (-1247) (-10 -8 (-15 -2473 ($ |#1| |#1|)) (-15 -3439 ($ |#1| |#1|)) (-15 -1770 ($ $)) (-15 -3391 (|#1| $)) (-15 -3401 (|#1| $)) (-15 -3957 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-528 (-1207) |#1|)) (-6 (-528 (-1207) |#1|)) |%noBranch|) (IF (|has| |#1| (-1132)) (PROGN (-6 (-1132)) (-6 (-632 (-114))) (IF (|has| |#1| (-321 |#1|)) (PROGN (-15 -4187 ($ $ $)) (-15 -4187 ($ $ (-663 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2567 ($ |#1| $)) (-15 -2567 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3296 ($ $)) (-15 -4183 ($ $)) (-15 -2580 ($ |#1| $)) (-15 -2580 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1143)) (PROGN (-6 (-1143)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-748)) (PROGN (-6 (-748)) (-15 -3619 ((-3 $ "failed") $)) (-15 -1927 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-487)) (PROGN (-6 (-487)) (-15 -3619 ((-3 $ "failed") $)) (-15 -1927 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1080)) (PROGN (-6 (-1080)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-739 |#1|)) |%noBranch|) (IF (|has| |#1| (-571)) (-15 -1759 ((-663 $) $)) |%noBranch|) (IF (|has| |#1| (-927 (-1207))) (-6 (-927 (-1207))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-1305 |#1|)) (-15 -2594 ($ $ $)) (-15 -1544 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -1724 ($ $ $)) |%noBranch|))) (-1247)) (T -305))
-((-2473 (*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-3439 (*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-1770 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-3391 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-3401 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-305 *3)))) (-4187 (*1 *1 *1 *1) (-12 (-4 *2 (-321 *2)) (-4 *2 (-1132)) (-4 *2 (-1247)) (-5 *1 (-305 *2)))) (-4187 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-305 *3))) (-4 *3 (-321 *3)) (-4 *3 (-1132)) (-4 *3 (-1247)) (-5 *1 (-305 *3)))) (-2567 (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1247)))) (-2567 (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1247)))) (-3296 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) (-4183 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) (-2580 (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) (-2580 (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) (-3619 (*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-748)) (-4 *2 (-1247)))) (-1927 (*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-748)) (-4 *2 (-1247)))) (-1759 (*1 *2 *1) (-12 (-5 *2 (-663 (-305 *3))) (-5 *1 (-305 *3)) (-4 *3 (-571)) (-4 *3 (-1247)))) (-1724 (*1 *1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-310)) (-4 *2 (-1247)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1143)) (-4 *2 (-1247)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1143)) (-4 *2 (-1247)))) (-2594 (*1 *1 *1 *1) (-2304 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1247))) (-12 (-5 *1 (-305 *2)) (-4 *2 (-487)) (-4 *2 (-1247))))) (-1544 (*1 *1 *1) (-2304 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1247))) (-12 (-5 *1 (-305 *2)) (-4 *2 (-487)) (-4 *2 (-1247))))))
-(-13 (-1247) (-10 -8 (-15 -2473 ($ |#1| |#1|)) (-15 -3439 ($ |#1| |#1|)) (-15 -1770 ($ $)) (-15 -3391 (|#1| $)) (-15 -3401 (|#1| $)) (-15 -3957 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-528 (-1207) |#1|)) (-6 (-528 (-1207) |#1|)) |%noBranch|) (IF (|has| |#1| (-1132)) (PROGN (-6 (-1132)) (-6 (-632 (-114))) (IF (|has| |#1| (-321 |#1|)) (PROGN (-15 -4187 ($ $ $)) (-15 -4187 ($ $ (-663 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2567 ($ |#1| $)) (-15 -2567 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3296 ($ $)) (-15 -4183 ($ $)) (-15 -2580 ($ |#1| $)) (-15 -2580 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1143)) (PROGN (-6 (-1143)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-748)) (PROGN (-6 (-748)) (-15 -3619 ((-3 $ "failed") $)) (-15 -1927 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-487)) (PROGN (-6 (-487)) (-15 -3619 ((-3 $ "failed") $)) (-15 -1927 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1080)) (PROGN (-6 (-1080)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-739 |#1|)) |%noBranch|) (IF (|has| |#1| (-571)) (-15 -1759 ((-663 $) $)) |%noBranch|) (IF (|has| |#1| (-927 (-1207))) (-6 (-927 (-1207))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-1305 |#1|)) (-15 -2594 ($ $ $)) (-15 -1544 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -1724 ($ $ $)) |%noBranch|)))
-((-3957 (((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)) 14 T ELT)))
-(((-306 |#1| |#2|) (-10 -7 (-15 -3957 ((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)))) (-1247) (-1247)) (T -306))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-305 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-305 *6)) (-5 *1 (-306 *5 *6)))))
-(-10 -7 (-15 -3957 ((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|))))
-((-1538 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4083 (($) NIL T ELT) (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-3839 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 ((|#2| $ |#1| |#2|) NIL T ELT)) (-3500 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4255 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT)) (-3390 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2375 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3779 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#2| $ |#1|) NIL T ELT)) (-2181 (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-2656 (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-2937 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-2236 (((-663 |#1|) $) NIL T ELT)) (-1445 (((-114) |#1| $) NIL T ELT)) (-1576 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-3629 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-3270 (((-663 |#1|) $) NIL T ELT)) (-3586 (((-114) |#1| $) NIL T ELT)) (-3855 (((-1151) $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-3637 ((|#2| $) NIL (|has| |#1| (-871)) ELT)) (-3329 (((-3 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) "failed") (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL T ELT)) (-3037 (($ $ |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-2615 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-2787 (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-3571 (((-663 |#2|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-3897 (($) NIL T ELT) (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-3865 (((-793) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT) (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-633 (-549))) ELT)) (-1592 (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-1578 (((-887) $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-632 (-887))) (|has| |#2| (-632 (-887)))) ELT)) (-2275 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3376 (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-1728 (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+((-1954 (((-663 (-1116)) $) 10 T ELT)) (-3559 (($ (-520) (-520) (-1134) $) 19 T ELT)) (-2828 (($ (-520) (-663 (-994)) $) 23 T ELT)) (-2392 (($) 25 T ELT)) (-3808 (((-713 (-1134)) (-520) (-520) $) 18 T ELT)) (-2425 (((-663 (-994)) (-520) $) 22 T ELT)) (-2832 (($) 7 T ELT)) (-2577 (($) 24 T ELT)) (-3913 (((-887) $) 29 T ELT)) (-2383 (($) 26 T ELT)))
+(((-303) (-13 (-632 (-887)) (-10 -8 (-15 -2832 ($)) (-15 -1954 ((-663 (-1116)) $)) (-15 -3808 ((-713 (-1134)) (-520) (-520) $)) (-15 -3559 ($ (-520) (-520) (-1134) $)) (-15 -2425 ((-663 (-994)) (-520) $)) (-15 -2828 ($ (-520) (-663 (-994)) $)) (-15 -2577 ($)) (-15 -2392 ($)) (-15 -2383 ($))))) (T -303))
+((-2832 (*1 *1) (-5 *1 (-303))) (-1954 (*1 *2 *1) (-12 (-5 *2 (-663 (-1116))) (-5 *1 (-303)))) (-3808 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-1134))) (-5 *1 (-303)))) (-3559 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-520)) (-5 *3 (-1134)) (-5 *1 (-303)))) (-2425 (*1 *2 *3 *1) (-12 (-5 *3 (-520)) (-5 *2 (-663 (-994))) (-5 *1 (-303)))) (-2828 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-520)) (-5 *3 (-663 (-994))) (-5 *1 (-303)))) (-2577 (*1 *1) (-5 *1 (-303))) (-2392 (*1 *1) (-5 *1 (-303))) (-2383 (*1 *1) (-5 *1 (-303))))
+(-13 (-632 (-887)) (-10 -8 (-15 -2832 ($)) (-15 -1954 ((-663 (-1116)) $)) (-15 -3808 ((-713 (-1134)) (-520) (-520) $)) (-15 -3559 ($ (-520) (-520) (-1134) $)) (-15 -2425 ((-663 (-994)) (-520) $)) (-15 -2828 ($ (-520) (-663 (-994)) $)) (-15 -2577 ($)) (-15 -2392 ($)) (-15 -2383 ($))))
+((-2375 (((-663 (-2 (|:| |eigval| (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (|:| |geneigvec| (-663 (-711 (-421 (-975 |#1|))))))) (-711 (-421 (-975 |#1|)))) 102 T ELT)) (-3167 (((-663 (-711 (-421 (-975 |#1|)))) (-2 (|:| |eigval| (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 (-711 (-421 (-975 |#1|)))))) (-711 (-421 (-975 |#1|)))) 97 T ELT) (((-663 (-711 (-421 (-975 |#1|)))) (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|))) (-711 (-421 (-975 |#1|))) (-793) (-793)) 41 T ELT)) (-2246 (((-663 (-2 (|:| |eigval| (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 (-711 (-421 (-975 |#1|))))))) (-711 (-421 (-975 |#1|)))) 99 T ELT)) (-2465 (((-663 (-711 (-421 (-975 |#1|)))) (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|))) (-711 (-421 (-975 |#1|)))) 75 T ELT)) (-3860 (((-663 (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (-711 (-421 (-975 |#1|)))) 74 T ELT)) (-2978 (((-975 |#1|) (-711 (-421 (-975 |#1|)))) 55 T ELT) (((-975 |#1|) (-711 (-421 (-975 |#1|))) (-1207)) 56 T ELT)))
+(((-304 |#1|) (-10 -7 (-15 -2978 ((-975 |#1|) (-711 (-421 (-975 |#1|))) (-1207))) (-15 -2978 ((-975 |#1|) (-711 (-421 (-975 |#1|))))) (-15 -3860 ((-663 (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (-711 (-421 (-975 |#1|))))) (-15 -2465 ((-663 (-711 (-421 (-975 |#1|)))) (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|))) (-711 (-421 (-975 |#1|))))) (-15 -3167 ((-663 (-711 (-421 (-975 |#1|)))) (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|))) (-711 (-421 (-975 |#1|))) (-793) (-793))) (-15 -3167 ((-663 (-711 (-421 (-975 |#1|)))) (-2 (|:| |eigval| (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 (-711 (-421 (-975 |#1|)))))) (-711 (-421 (-975 |#1|))))) (-15 -2375 ((-663 (-2 (|:| |eigval| (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (|:| |geneigvec| (-663 (-711 (-421 (-975 |#1|))))))) (-711 (-421 (-975 |#1|))))) (-15 -2246 ((-663 (-2 (|:| |eigval| (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 (-711 (-421 (-975 |#1|))))))) (-711 (-421 (-975 |#1|)))))) (-466)) (T -304))
+((-2246 (*1 *2 *3) (-12 (-4 *4 (-466)) (-5 *2 (-663 (-2 (|:| |eigval| (-3 (-421 (-975 *4)) (-1196 (-1207) (-975 *4)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 (-711 (-421 (-975 *4)))))))) (-5 *1 (-304 *4)) (-5 *3 (-711 (-421 (-975 *4)))))) (-2375 (*1 *2 *3) (-12 (-4 *4 (-466)) (-5 *2 (-663 (-2 (|:| |eigval| (-3 (-421 (-975 *4)) (-1196 (-1207) (-975 *4)))) (|:| |geneigvec| (-663 (-711 (-421 (-975 *4)))))))) (-5 *1 (-304 *4)) (-5 *3 (-711 (-421 (-975 *4)))))) (-3167 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-421 (-975 *5)) (-1196 (-1207) (-975 *5)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 *4)))) (-4 *5 (-466)) (-5 *2 (-663 (-711 (-421 (-975 *5))))) (-5 *1 (-304 *5)) (-5 *4 (-711 (-421 (-975 *5)))))) (-3167 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-421 (-975 *6)) (-1196 (-1207) (-975 *6)))) (-5 *5 (-793)) (-4 *6 (-466)) (-5 *2 (-663 (-711 (-421 (-975 *6))))) (-5 *1 (-304 *6)) (-5 *4 (-711 (-421 (-975 *6)))))) (-2465 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-421 (-975 *5)) (-1196 (-1207) (-975 *5)))) (-4 *5 (-466)) (-5 *2 (-663 (-711 (-421 (-975 *5))))) (-5 *1 (-304 *5)) (-5 *4 (-711 (-421 (-975 *5)))))) (-3860 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-975 *4)))) (-4 *4 (-466)) (-5 *2 (-663 (-3 (-421 (-975 *4)) (-1196 (-1207) (-975 *4))))) (-5 *1 (-304 *4)))) (-2978 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-975 *4)))) (-5 *2 (-975 *4)) (-5 *1 (-304 *4)) (-4 *4 (-466)))) (-2978 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-421 (-975 *5)))) (-5 *4 (-1207)) (-5 *2 (-975 *5)) (-5 *1 (-304 *5)) (-4 *5 (-466)))))
+(-10 -7 (-15 -2978 ((-975 |#1|) (-711 (-421 (-975 |#1|))) (-1207))) (-15 -2978 ((-975 |#1|) (-711 (-421 (-975 |#1|))))) (-15 -3860 ((-663 (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (-711 (-421 (-975 |#1|))))) (-15 -2465 ((-663 (-711 (-421 (-975 |#1|)))) (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|))) (-711 (-421 (-975 |#1|))))) (-15 -3167 ((-663 (-711 (-421 (-975 |#1|)))) (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|))) (-711 (-421 (-975 |#1|))) (-793) (-793))) (-15 -3167 ((-663 (-711 (-421 (-975 |#1|)))) (-2 (|:| |eigval| (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 (-711 (-421 (-975 |#1|)))))) (-711 (-421 (-975 |#1|))))) (-15 -2375 ((-663 (-2 (|:| |eigval| (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (|:| |geneigvec| (-663 (-711 (-421 (-975 |#1|))))))) (-711 (-421 (-975 |#1|))))) (-15 -2246 ((-663 (-2 (|:| |eigval| (-3 (-421 (-975 |#1|)) (-1196 (-1207) (-975 |#1|)))) (|:| |eigmult| (-793)) (|:| |eigvec| (-663 (-711 (-421 (-975 |#1|))))))) (-711 (-421 (-975 |#1|))))))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2505 (((-114) $) NIL (|has| |#1| (-21)) ELT)) (-2546 (($ $) 12 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-2607 (($ $ $) 95 (|has| |#1| (-310)) ELT)) (-3525 (($) NIL (-2196 (|has| |#1| (-21)) (|has| |#1| (-748))) CONST)) (-4302 (($ $) 51 (|has| |#1| (-21)) ELT)) (-3565 (((-3 $ "failed") $) 62 (|has| |#1| (-748)) ELT)) (-4133 ((|#1| $) 11 T ELT)) (-2873 (((-3 $ "failed") $) 60 (|has| |#1| (-748)) ELT)) (-1918 (((-114) $) NIL (|has| |#1| (-748)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-4121 ((|#1| $) 10 T ELT)) (-3652 (($ $) 50 (|has| |#1| (-21)) ELT)) (-3803 (((-3 $ "failed") $) 61 (|has| |#1| (-748)) ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-2986 (($ $) 64 (-2196 (|has| |#1| (-376)) (|has| |#1| (-487))) ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2464 (((-663 $) $) 85 (|has| |#1| (-571)) ELT)) (-2371 (($ $ $) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 $)) 28 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-1207) |#1|) 17 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) 21 (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-2793 (($ |#1| |#1|) 9 T ELT)) (-3015 (((-136)) 90 (|has| |#1| (-376)) ELT)) (-3161 (($ $ (-1207)) 87 (|has| |#1| (-927 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-927 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-927 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-927 (-1207))) ELT)) (-1714 (($ $ $) NIL (|has| |#1| (-487)) ELT)) (-3117 (($ $ $) NIL (|has| |#1| (-487)) ELT)) (-3913 (($ (-560)) NIL (|has| |#1| (-1080)) ELT) (((-114) $) 37 (|has| |#1| (-1132)) ELT) (((-887) $) 36 (|has| |#1| (-1132)) ELT)) (-4191 (((-793)) 67 (|has| |#1| (-1080)) CONST)) (-3925 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-1446 (($) 47 (|has| |#1| (-21)) CONST)) (-1456 (($) 57 (|has| |#1| (-748)) CONST)) (-2111 (($ $ (-1207)) NIL (|has| |#1| (-927 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-927 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-927 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-927 (-1207))) ELT)) (-2340 (($ |#1| |#1|) 8 T ELT) (((-114) $ $) 32 (|has| |#1| (-1132)) ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 92 (-2196 (|has| |#1| (-376)) (|has| |#1| (-487))) ELT)) (-2441 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-2429 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-560)) NIL (|has| |#1| (-487)) ELT) (($ $ (-793)) NIL (|has| |#1| (-748)) ELT) (($ $ (-948)) NIL (|has| |#1| (-1143)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1143)) ELT) (($ |#1| $) 54 (|has| |#1| (-1143)) ELT) (($ $ $) 53 (|has| |#1| (-1143)) ELT) (($ (-560) $) 70 (|has| |#1| (-21)) ELT) (($ (-793) $) NIL (|has| |#1| (-21)) ELT) (($ (-948) $) NIL (|has| |#1| (-25)) ELT)))
+(((-305 |#1|) (-13 (-1247) (-10 -8 (-15 -2340 ($ |#1| |#1|)) (-15 -2793 ($ |#1| |#1|)) (-15 -2546 ($ $)) (-15 -4121 (|#1| $)) (-15 -4133 (|#1| $)) (-15 -2260 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-528 (-1207) |#1|)) (-6 (-528 (-1207) |#1|)) |%noBranch|) (IF (|has| |#1| (-1132)) (PROGN (-6 (-1132)) (-6 (-632 (-114))) (IF (|has| |#1| (-321 |#1|)) (PROGN (-15 -2371 ($ $ $)) (-15 -2371 ($ $ (-663 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2429 ($ |#1| $)) (-15 -2429 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3652 ($ $)) (-15 -4302 ($ $)) (-15 -2441 ($ |#1| $)) (-15 -2441 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1143)) (PROGN (-6 (-1143)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-748)) (PROGN (-6 (-748)) (-15 -3803 ((-3 $ "failed") $)) (-15 -3565 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-487)) (PROGN (-6 (-487)) (-15 -3803 ((-3 $ "failed") $)) (-15 -3565 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1080)) (PROGN (-6 (-1080)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-739 |#1|)) |%noBranch|) (IF (|has| |#1| (-571)) (-15 -2464 ((-663 $) $)) |%noBranch|) (IF (|has| |#1| (-927 (-1207))) (-6 (-927 (-1207))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-1305 |#1|)) (-15 -2453 ($ $ $)) (-15 -2986 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -2607 ($ $ $)) |%noBranch|))) (-1247)) (T -305))
+((-2340 (*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-2793 (*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-2546 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-4121 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-4133 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))) (-2260 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-305 *3)))) (-2371 (*1 *1 *1 *1) (-12 (-4 *2 (-321 *2)) (-4 *2 (-1132)) (-4 *2 (-1247)) (-5 *1 (-305 *2)))) (-2371 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-305 *3))) (-4 *3 (-321 *3)) (-4 *3 (-1132)) (-4 *3 (-1247)) (-5 *1 (-305 *3)))) (-2429 (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1247)))) (-2429 (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1247)))) (-3652 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) (-4302 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) (-2441 (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) (-2441 (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))) (-3803 (*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-748)) (-4 *2 (-1247)))) (-3565 (*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-748)) (-4 *2 (-1247)))) (-2464 (*1 *2 *1) (-12 (-5 *2 (-663 (-305 *3))) (-5 *1 (-305 *3)) (-4 *3 (-571)) (-4 *3 (-1247)))) (-2607 (*1 *1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-310)) (-4 *2 (-1247)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1143)) (-4 *2 (-1247)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1143)) (-4 *2 (-1247)))) (-2453 (*1 *1 *1 *1) (-2196 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1247))) (-12 (-5 *1 (-305 *2)) (-4 *2 (-487)) (-4 *2 (-1247))))) (-2986 (*1 *1 *1) (-2196 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1247))) (-12 (-5 *1 (-305 *2)) (-4 *2 (-487)) (-4 *2 (-1247))))))
+(-13 (-1247) (-10 -8 (-15 -2340 ($ |#1| |#1|)) (-15 -2793 ($ |#1| |#1|)) (-15 -2546 ($ $)) (-15 -4121 (|#1| $)) (-15 -4133 (|#1| $)) (-15 -2260 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-528 (-1207) |#1|)) (-6 (-528 (-1207) |#1|)) |%noBranch|) (IF (|has| |#1| (-1132)) (PROGN (-6 (-1132)) (-6 (-632 (-114))) (IF (|has| |#1| (-321 |#1|)) (PROGN (-15 -2371 ($ $ $)) (-15 -2371 ($ $ (-663 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2429 ($ |#1| $)) (-15 -2429 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -3652 ($ $)) (-15 -4302 ($ $)) (-15 -2441 ($ |#1| $)) (-15 -2441 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1143)) (PROGN (-6 (-1143)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-748)) (PROGN (-6 (-748)) (-15 -3803 ((-3 $ "failed") $)) (-15 -3565 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-487)) (PROGN (-6 (-487)) (-15 -3803 ((-3 $ "failed") $)) (-15 -3565 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-1080)) (PROGN (-6 (-1080)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-739 |#1|)) |%noBranch|) (IF (|has| |#1| (-571)) (-15 -2464 ((-663 $) $)) |%noBranch|) (IF (|has| |#1| (-927 (-1207))) (-6 (-927 (-1207))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-1305 |#1|)) (-15 -2453 ($ $ $)) (-15 -2986 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -2607 ($ $ $)) |%noBranch|)))
+((-2260 (((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)) 14 T ELT)))
+(((-306 |#1| |#2|) (-10 -7 (-15 -2260 ((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)))) (-1247) (-1247)) (T -306))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-305 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-305 *6)) (-5 *1 (-306 *5 *6)))))
+(-10 -7 (-15 -2260 ((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|))))
+((-2243 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4236 (($) NIL T ELT) (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-2033 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1864 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3799 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT)) (-2091 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-3033 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3338 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#2| $ |#1|) NIL T ELT)) (-3737 (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3243 (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-4263 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-4325 (((-663 |#1|) $) NIL T ELT)) (-4124 (((-114) |#1| $) NIL T ELT)) (-1878 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-3888 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-3372 (((-663 |#1|) $) NIL T ELT)) (-3439 (((-114) |#1| $) NIL T ELT)) (-3376 (((-1151) $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-4334 ((|#2| $) NIL (|has| |#1| (-871)) ELT)) (-2708 (((-3 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) "failed") (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL T ELT)) (-2740 (($ $ |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-2796 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-2086 (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-1383 (((-663 |#2|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-4468 (($) NIL T ELT) (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-3384 (((-793) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT) (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-633 (-549))) ELT)) (-3924 (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-3913 (((-887) $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-632 (-887))) (|has| |#2| (-632 (-887)))) ELT)) (-3925 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3184 (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-2149 (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
(((-307 |#1| |#2|) (-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4508))) (-1132) (-1132)) (T -307))
NIL
(-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4508)))
-((-4223 (((-323) (-1189) (-663 (-1189))) 17 T ELT) (((-323) (-1189) (-1189)) 16 T ELT) (((-323) (-663 (-1189))) 15 T ELT) (((-323) (-1189)) 14 T ELT)))
-(((-308) (-10 -7 (-15 -4223 ((-323) (-1189))) (-15 -4223 ((-323) (-663 (-1189)))) (-15 -4223 ((-323) (-1189) (-1189))) (-15 -4223 ((-323) (-1189) (-663 (-1189)))))) (T -308))
-((-4223 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-1189))) (-5 *3 (-1189)) (-5 *2 (-323)) (-5 *1 (-308)))) (-4223 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323)) (-5 *1 (-308)))) (-4223 (*1 *2 *3) (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-323)) (-5 *1 (-308)))) (-4223 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323)) (-5 *1 (-308)))))
-(-10 -7 (-15 -4223 ((-323) (-1189))) (-15 -4223 ((-323) (-663 (-1189)))) (-15 -4223 ((-323) (-1189) (-1189))) (-15 -4223 ((-323) (-1189) (-663 (-1189)))))
-((-4297 (((-663 (-630 $)) $) 27 T ELT)) (-1724 (($ $ (-305 $)) 78 T ELT) (($ $ (-663 (-305 $))) 139 T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT)) (-2539 (((-3 (-630 $) "failed") $) 127 T ELT)) (-3330 (((-630 $) $) 126 T ELT)) (-2753 (($ $) 17 T ELT) (($ (-663 $)) 54 T ELT)) (-2943 (((-663 (-115)) $) 35 T ELT)) (-4399 (((-115) (-115)) 88 T ELT)) (-3612 (((-114) $) 150 T ELT)) (-3957 (($ (-1 $ $) (-630 $)) 86 T ELT)) (-3005 (((-3 (-630 $) "failed") $) 94 T ELT)) (-2036 (($ (-115) $) 59 T ELT) (($ (-115) (-663 $)) 110 T ELT)) (-2784 (((-114) $ (-115)) 132 T ELT) (((-114) $ (-1207)) 131 T ELT)) (-2107 (((-793) $) 44 T ELT)) (-3883 (((-114) $ $) 57 T ELT) (((-114) $ (-1207)) 49 T ELT)) (-1737 (((-114) $) 148 T ELT)) (-4187 (($ $ (-630 $) $) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT) (($ $ (-663 (-305 $))) 137 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ $))) 81 T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-1207) (-1 $ (-663 $))) 67 T ELT) (($ $ (-1207) (-1 $ $)) 72 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) 80 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) 82 T ELT) (($ $ (-115) (-1 $ (-663 $))) 68 T ELT) (($ $ (-115) (-1 $ $)) 74 T ELT)) (-3924 (($ (-115) $) 60 T ELT) (($ (-115) $ $) 61 T ELT) (($ (-115) $ $ $) 62 T ELT) (($ (-115) $ $ $ $) 63 T ELT) (($ (-115) (-663 $)) 123 T ELT)) (-3690 (($ $) 51 T ELT) (($ $ $) 135 T ELT)) (-3579 (($ $) 15 T ELT) (($ (-663 $)) 53 T ELT)) (-1840 (((-114) (-115)) 21 T ELT)))
-(((-309 |#1|) (-10 -8 (-15 -3612 ((-114) |#1|)) (-15 -1737 ((-114) |#1|)) (-15 -4187 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -4187 (|#1| |#1| (-115) (-1 |#1| (-663 |#1|)))) (-15 -4187 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -4187 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| |#1|)))) (-15 -4187 (|#1| |#1| (-1207) (-1 |#1| |#1|))) (-15 -4187 (|#1| |#1| (-1207) (-1 |#1| (-663 |#1|)))) (-15 -4187 (|#1| |#1| (-663 (-1207)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -4187 (|#1| |#1| (-663 (-1207)) (-663 (-1 |#1| |#1|)))) (-15 -3883 ((-114) |#1| (-1207))) (-15 -3883 ((-114) |#1| |#1|)) (-15 -3957 (|#1| (-1 |#1| |#1|) (-630 |#1|))) (-15 -2036 (|#1| (-115) (-663 |#1|))) (-15 -2036 (|#1| (-115) |#1|)) (-15 -2784 ((-114) |#1| (-1207))) (-15 -2784 ((-114) |#1| (-115))) (-15 -1840 ((-114) (-115))) (-15 -4399 ((-115) (-115))) (-15 -2943 ((-663 (-115)) |#1|)) (-15 -4297 ((-663 (-630 |#1|)) |#1|)) (-15 -3005 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -2107 ((-793) |#1|)) (-15 -3690 (|#1| |#1| |#1|)) (-15 -3690 (|#1| |#1|)) (-15 -2753 (|#1| (-663 |#1|))) (-15 -2753 (|#1| |#1|)) (-15 -3579 (|#1| (-663 |#1|))) (-15 -3579 (|#1| |#1|)) (-15 -1724 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -1724 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -1724 (|#1| |#1| (-305 |#1|))) (-15 -3924 (|#1| (-115) (-663 |#1|))) (-15 -3924 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -3924 (|#1| (-115) |#1| |#1| |#1|)) (-15 -3924 (|#1| (-115) |#1| |#1|)) (-15 -3924 (|#1| (-115) |#1|)) (-15 -4187 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -4187 (|#1| |#1| |#1| |#1|)) (-15 -4187 (|#1| |#1| (-305 |#1|))) (-15 -4187 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -4187 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -4187 (|#1| |#1| (-630 |#1|) |#1|)) (-15 -2539 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3330 ((-630 |#1|) |#1|))) (-310)) (T -309))
-((-4399 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310)))) (-1840 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-309 *4)) (-4 *4 (-310)))))
-(-10 -8 (-15 -3612 ((-114) |#1|)) (-15 -1737 ((-114) |#1|)) (-15 -4187 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -4187 (|#1| |#1| (-115) (-1 |#1| (-663 |#1|)))) (-15 -4187 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -4187 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| |#1|)))) (-15 -4187 (|#1| |#1| (-1207) (-1 |#1| |#1|))) (-15 -4187 (|#1| |#1| (-1207) (-1 |#1| (-663 |#1|)))) (-15 -4187 (|#1| |#1| (-663 (-1207)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -4187 (|#1| |#1| (-663 (-1207)) (-663 (-1 |#1| |#1|)))) (-15 -3883 ((-114) |#1| (-1207))) (-15 -3883 ((-114) |#1| |#1|)) (-15 -3957 (|#1| (-1 |#1| |#1|) (-630 |#1|))) (-15 -2036 (|#1| (-115) (-663 |#1|))) (-15 -2036 (|#1| (-115) |#1|)) (-15 -2784 ((-114) |#1| (-1207))) (-15 -2784 ((-114) |#1| (-115))) (-15 -1840 ((-114) (-115))) (-15 -4399 ((-115) (-115))) (-15 -2943 ((-663 (-115)) |#1|)) (-15 -4297 ((-663 (-630 |#1|)) |#1|)) (-15 -3005 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -2107 ((-793) |#1|)) (-15 -3690 (|#1| |#1| |#1|)) (-15 -3690 (|#1| |#1|)) (-15 -2753 (|#1| (-663 |#1|))) (-15 -2753 (|#1| |#1|)) (-15 -3579 (|#1| (-663 |#1|))) (-15 -3579 (|#1| |#1|)) (-15 -1724 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -1724 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -1724 (|#1| |#1| (-305 |#1|))) (-15 -3924 (|#1| (-115) (-663 |#1|))) (-15 -3924 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -3924 (|#1| (-115) |#1| |#1| |#1|)) (-15 -3924 (|#1| (-115) |#1| |#1|)) (-15 -3924 (|#1| (-115) |#1|)) (-15 -4187 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -4187 (|#1| |#1| |#1| |#1|)) (-15 -4187 (|#1| |#1| (-305 |#1|))) (-15 -4187 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -4187 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -4187 (|#1| |#1| (-630 |#1|) |#1|)) (-15 -2539 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3330 ((-630 |#1|) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-4297 (((-663 (-630 $)) $) 39 T ELT)) (-1724 (($ $ (-305 $)) 51 T ELT) (($ $ (-663 (-305 $))) 50 T ELT) (($ $ (-663 (-630 $)) (-663 $)) 49 T ELT)) (-2539 (((-3 (-630 $) "failed") $) 64 T ELT)) (-3330 (((-630 $) $) 65 T ELT)) (-2753 (($ $) 46 T ELT) (($ (-663 $)) 45 T ELT)) (-2943 (((-663 (-115)) $) 38 T ELT)) (-4399 (((-115) (-115)) 37 T ELT)) (-3612 (((-114) $) 17 (|has| $ (-1069 (-560))) ELT)) (-3872 (((-1201 $) (-630 $)) 20 (|has| $ (-1080)) ELT)) (-3957 (($ (-1 $ $) (-630 $)) 31 T ELT)) (-3005 (((-3 (-630 $) "failed") $) 41 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-4385 (((-663 (-630 $)) $) 40 T ELT)) (-2036 (($ (-115) $) 33 T ELT) (($ (-115) (-663 $)) 32 T ELT)) (-2784 (((-114) $ (-115)) 35 T ELT) (((-114) $ (-1207)) 34 T ELT)) (-2107 (((-793) $) 42 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-3883 (((-114) $ $) 30 T ELT) (((-114) $ (-1207)) 29 T ELT)) (-1737 (((-114) $) 18 (|has| $ (-1069 (-560))) ELT)) (-4187 (($ $ (-630 $) $) 62 T ELT) (($ $ (-663 (-630 $)) (-663 $)) 61 T ELT) (($ $ (-663 (-305 $))) 60 T ELT) (($ $ (-305 $)) 59 T ELT) (($ $ $ $) 58 T ELT) (($ $ (-663 $) (-663 $)) 57 T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ $))) 28 T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ (-663 $)))) 27 T ELT) (($ $ (-1207) (-1 $ (-663 $))) 26 T ELT) (($ $ (-1207) (-1 $ $)) 25 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) 24 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) 23 T ELT) (($ $ (-115) (-1 $ (-663 $))) 22 T ELT) (($ $ (-115) (-1 $ $)) 21 T ELT)) (-3924 (($ (-115) $) 56 T ELT) (($ (-115) $ $) 55 T ELT) (($ (-115) $ $ $) 54 T ELT) (($ (-115) $ $ $ $) 53 T ELT) (($ (-115) (-663 $)) 52 T ELT)) (-3690 (($ $) 44 T ELT) (($ $ $) 43 T ELT)) (-4394 (($ $) 19 (|has| $ (-1080)) ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-630 $)) 63 T ELT)) (-3579 (($ $) 48 T ELT) (($ (-663 $)) 47 T ELT)) (-1840 (((-114) (-115)) 36 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2473 (((-114) $ $) 8 T ELT)))
+((-2403 (((-323) (-1189) (-663 (-1189))) 17 T ELT) (((-323) (-1189) (-1189)) 16 T ELT) (((-323) (-663 (-1189))) 15 T ELT) (((-323) (-1189)) 14 T ELT)))
+(((-308) (-10 -7 (-15 -2403 ((-323) (-1189))) (-15 -2403 ((-323) (-663 (-1189)))) (-15 -2403 ((-323) (-1189) (-1189))) (-15 -2403 ((-323) (-1189) (-663 (-1189)))))) (T -308))
+((-2403 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-1189))) (-5 *3 (-1189)) (-5 *2 (-323)) (-5 *1 (-308)))) (-2403 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323)) (-5 *1 (-308)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-323)) (-5 *1 (-308)))) (-2403 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323)) (-5 *1 (-308)))))
+(-10 -7 (-15 -2403 ((-323) (-1189))) (-15 -2403 ((-323) (-663 (-1189)))) (-15 -2403 ((-323) (-1189) (-1189))) (-15 -2403 ((-323) (-1189) (-663 (-1189)))))
+((-3859 (((-663 (-630 $)) $) 27 T ELT)) (-2607 (($ $ (-305 $)) 78 T ELT) (($ $ (-663 (-305 $))) 139 T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT)) (-3929 (((-3 (-630 $) "failed") $) 127 T ELT)) (-3649 (((-630 $) $) 126 T ELT)) (-1740 (($ $) 17 T ELT) (($ (-663 $)) 54 T ELT)) (-4318 (((-663 (-115)) $) 35 T ELT)) (-3963 (((-115) (-115)) 88 T ELT)) (-3729 (((-114) $) 150 T ELT)) (-2260 (($ (-1 $ $) (-630 $)) 86 T ELT)) (-3702 (((-3 (-630 $) "failed") $) 94 T ELT)) (-2547 (($ (-115) $) 59 T ELT) (($ (-115) (-663 $)) 110 T ELT)) (-2060 (((-114) $ (-115)) 132 T ELT) (((-114) $ (-1207)) 131 T ELT)) (-3827 (((-793) $) 44 T ELT)) (-4338 (((-114) $ $) 57 T ELT) (((-114) $ (-1207)) 49 T ELT)) (-2244 (((-114) $) 148 T ELT)) (-2371 (($ $ (-630 $) $) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT) (($ $ (-663 (-305 $))) 137 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ $))) 81 T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-1207) (-1 $ (-663 $))) 67 T ELT) (($ $ (-1207) (-1 $ $)) 72 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) 80 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) 82 T ELT) (($ $ (-115) (-1 $ (-663 $))) 68 T ELT) (($ $ (-115) (-1 $ $)) 74 T ELT)) (-1507 (($ (-115) $) 60 T ELT) (($ (-115) $ $) 61 T ELT) (($ (-115) $ $ $) 62 T ELT) (($ (-115) $ $ $ $) 63 T ELT) (($ (-115) (-663 $)) 123 T ELT)) (-3222 (($ $) 51 T ELT) (($ $ $) 135 T ELT)) (-3061 (($ $) 15 T ELT) (($ (-663 $)) 53 T ELT)) (-3962 (((-114) (-115)) 21 T ELT)))
+(((-309 |#1|) (-10 -8 (-15 -3729 ((-114) |#1|)) (-15 -2244 ((-114) |#1|)) (-15 -2371 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2371 (|#1| |#1| (-115) (-1 |#1| (-663 |#1|)))) (-15 -2371 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -2371 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| |#1|)))) (-15 -2371 (|#1| |#1| (-1207) (-1 |#1| |#1|))) (-15 -2371 (|#1| |#1| (-1207) (-1 |#1| (-663 |#1|)))) (-15 -2371 (|#1| |#1| (-663 (-1207)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -2371 (|#1| |#1| (-663 (-1207)) (-663 (-1 |#1| |#1|)))) (-15 -4338 ((-114) |#1| (-1207))) (-15 -4338 ((-114) |#1| |#1|)) (-15 -2260 (|#1| (-1 |#1| |#1|) (-630 |#1|))) (-15 -2547 (|#1| (-115) (-663 |#1|))) (-15 -2547 (|#1| (-115) |#1|)) (-15 -2060 ((-114) |#1| (-1207))) (-15 -2060 ((-114) |#1| (-115))) (-15 -3962 ((-114) (-115))) (-15 -3963 ((-115) (-115))) (-15 -4318 ((-663 (-115)) |#1|)) (-15 -3859 ((-663 (-630 |#1|)) |#1|)) (-15 -3702 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3827 ((-793) |#1|)) (-15 -3222 (|#1| |#1| |#1|)) (-15 -3222 (|#1| |#1|)) (-15 -1740 (|#1| (-663 |#1|))) (-15 -1740 (|#1| |#1|)) (-15 -3061 (|#1| (-663 |#1|))) (-15 -3061 (|#1| |#1|)) (-15 -2607 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -2607 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -2607 (|#1| |#1| (-305 |#1|))) (-15 -1507 (|#1| (-115) (-663 |#1|))) (-15 -1507 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -1507 (|#1| (-115) |#1| |#1| |#1|)) (-15 -1507 (|#1| (-115) |#1| |#1|)) (-15 -1507 (|#1| (-115) |#1|)) (-15 -2371 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -2371 (|#1| |#1| |#1| |#1|)) (-15 -2371 (|#1| |#1| (-305 |#1|))) (-15 -2371 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -2371 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -2371 (|#1| |#1| (-630 |#1|) |#1|)) (-15 -3929 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3649 ((-630 |#1|) |#1|))) (-310)) (T -309))
+((-3963 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-309 *4)) (-4 *4 (-310)))))
+(-10 -8 (-15 -3729 ((-114) |#1|)) (-15 -2244 ((-114) |#1|)) (-15 -2371 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2371 (|#1| |#1| (-115) (-1 |#1| (-663 |#1|)))) (-15 -2371 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -2371 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| |#1|)))) (-15 -2371 (|#1| |#1| (-1207) (-1 |#1| |#1|))) (-15 -2371 (|#1| |#1| (-1207) (-1 |#1| (-663 |#1|)))) (-15 -2371 (|#1| |#1| (-663 (-1207)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -2371 (|#1| |#1| (-663 (-1207)) (-663 (-1 |#1| |#1|)))) (-15 -4338 ((-114) |#1| (-1207))) (-15 -4338 ((-114) |#1| |#1|)) (-15 -2260 (|#1| (-1 |#1| |#1|) (-630 |#1|))) (-15 -2547 (|#1| (-115) (-663 |#1|))) (-15 -2547 (|#1| (-115) |#1|)) (-15 -2060 ((-114) |#1| (-1207))) (-15 -2060 ((-114) |#1| (-115))) (-15 -3962 ((-114) (-115))) (-15 -3963 ((-115) (-115))) (-15 -4318 ((-663 (-115)) |#1|)) (-15 -3859 ((-663 (-630 |#1|)) |#1|)) (-15 -3702 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3827 ((-793) |#1|)) (-15 -3222 (|#1| |#1| |#1|)) (-15 -3222 (|#1| |#1|)) (-15 -1740 (|#1| (-663 |#1|))) (-15 -1740 (|#1| |#1|)) (-15 -3061 (|#1| (-663 |#1|))) (-15 -3061 (|#1| |#1|)) (-15 -2607 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -2607 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -2607 (|#1| |#1| (-305 |#1|))) (-15 -1507 (|#1| (-115) (-663 |#1|))) (-15 -1507 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -1507 (|#1| (-115) |#1| |#1| |#1|)) (-15 -1507 (|#1| (-115) |#1| |#1|)) (-15 -1507 (|#1| (-115) |#1|)) (-15 -2371 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -2371 (|#1| |#1| |#1| |#1|)) (-15 -2371 (|#1| |#1| (-305 |#1|))) (-15 -2371 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -2371 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -2371 (|#1| |#1| (-630 |#1|) |#1|)) (-15 -3929 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3649 ((-630 |#1|) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-3859 (((-663 (-630 $)) $) 39 T ELT)) (-2607 (($ $ (-305 $)) 51 T ELT) (($ $ (-663 (-305 $))) 50 T ELT) (($ $ (-663 (-630 $)) (-663 $)) 49 T ELT)) (-3929 (((-3 (-630 $) "failed") $) 64 T ELT)) (-3649 (((-630 $) $) 65 T ELT)) (-1740 (($ $) 46 T ELT) (($ (-663 $)) 45 T ELT)) (-4318 (((-663 (-115)) $) 38 T ELT)) (-3963 (((-115) (-115)) 37 T ELT)) (-3729 (((-114) $) 17 (|has| $ (-1069 (-560))) ELT)) (-4250 (((-1201 $) (-630 $)) 20 (|has| $ (-1080)) ELT)) (-2260 (($ (-1 $ $) (-630 $)) 31 T ELT)) (-3702 (((-3 (-630 $) "failed") $) 41 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3949 (((-663 (-630 $)) $) 40 T ELT)) (-2547 (($ (-115) $) 33 T ELT) (($ (-115) (-663 $)) 32 T ELT)) (-2060 (((-114) $ (-115)) 35 T ELT) (((-114) $ (-1207)) 34 T ELT)) (-3827 (((-793) $) 42 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4338 (((-114) $ $) 30 T ELT) (((-114) $ (-1207)) 29 T ELT)) (-2244 (((-114) $) 18 (|has| $ (-1069 (-560))) ELT)) (-2371 (($ $ (-630 $) $) 62 T ELT) (($ $ (-663 (-630 $)) (-663 $)) 61 T ELT) (($ $ (-663 (-305 $))) 60 T ELT) (($ $ (-305 $)) 59 T ELT) (($ $ $ $) 58 T ELT) (($ $ (-663 $) (-663 $)) 57 T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ $))) 28 T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ (-663 $)))) 27 T ELT) (($ $ (-1207) (-1 $ (-663 $))) 26 T ELT) (($ $ (-1207) (-1 $ $)) 25 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) 24 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) 23 T ELT) (($ $ (-115) (-1 $ (-663 $))) 22 T ELT) (($ $ (-115) (-1 $ $)) 21 T ELT)) (-1507 (($ (-115) $) 56 T ELT) (($ (-115) $ $) 55 T ELT) (($ (-115) $ $ $) 54 T ELT) (($ (-115) $ $ $ $) 53 T ELT) (($ (-115) (-663 $)) 52 T ELT)) (-3222 (($ $) 44 T ELT) (($ $ $) 43 T ELT)) (-2407 (($ $) 19 (|has| $ (-1080)) ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-630 $)) 63 T ELT)) (-3061 (($ $) 48 T ELT) (($ (-663 $)) 47 T ELT)) (-3962 (((-114) (-115)) 36 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2340 (((-114) $ $) 8 T ELT)))
(((-310) (-142)) (T -310))
-((-3924 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-3924 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-3924 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-3924 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-3924 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-663 *1)) (-4 *1 (-310)))) (-1724 (*1 *1 *1 *2) (-12 (-5 *2 (-305 *1)) (-4 *1 (-310)))) (-1724 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-305 *1))) (-4 *1 (-310)))) (-1724 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-630 *1))) (-5 *3 (-663 *1)) (-4 *1 (-310)))) (-3579 (*1 *1 *1) (-4 *1 (-310))) (-3579 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-310)))) (-2753 (*1 *1 *1) (-4 *1 (-310))) (-2753 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-310)))) (-3690 (*1 *1 *1) (-4 *1 (-310))) (-3690 (*1 *1 *1 *1) (-4 *1 (-310))) (-2107 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-793)))) (-3005 (*1 *2 *1) (|partial| -12 (-5 *2 (-630 *1)) (-4 *1 (-310)))) (-4385 (*1 *2 *1) (-12 (-5 *2 (-663 (-630 *1))) (-4 *1 (-310)))) (-4297 (*1 *2 *1) (-12 (-5 *2 (-663 (-630 *1))) (-4 *1 (-310)))) (-2943 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-663 (-115))))) (-4399 (*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-1840 (*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114)))) (-2784 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114)))) (-2784 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1207)) (-5 *2 (-114)))) (-2036 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2036 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-663 *1)) (-4 *1 (-310)))) (-3957 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-630 *1)) (-4 *1 (-310)))) (-3883 (*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-114)))) (-3883 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1207)) (-5 *2 (-114)))) (-4187 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-663 (-1 *1 *1))) (-4 *1 (-310)))) (-4187 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-663 (-1 *1 (-663 *1)))) (-4 *1 (-310)))) (-4187 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1 *1 (-663 *1))) (-4 *1 (-310)))) (-4187 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-4187 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-115))) (-5 *3 (-663 (-1 *1 *1))) (-4 *1 (-310)))) (-4187 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-115))) (-5 *3 (-663 (-1 *1 (-663 *1)))) (-4 *1 (-310)))) (-4187 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-663 *1))) (-4 *1 (-310)))) (-4187 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-630 *1)) (-4 *1 (-1080)) (-4 *1 (-310)) (-5 *2 (-1201 *1)))) (-4394 (*1 *1 *1) (-12 (-4 *1 (-1080)) (-4 *1 (-310)))) (-1737 (*1 *2 *1) (-12 (-4 *1 (-1069 (-560))) (-4 *1 (-310)) (-5 *2 (-114)))) (-3612 (*1 *2 *1) (-12 (-4 *1 (-1069 (-560))) (-4 *1 (-310)) (-5 *2 (-114)))))
-(-13 (-1132) (-1069 (-630 $)) (-528 (-630 $) $) (-321 $) (-10 -8 (-15 -3924 ($ (-115) $)) (-15 -3924 ($ (-115) $ $)) (-15 -3924 ($ (-115) $ $ $)) (-15 -3924 ($ (-115) $ $ $ $)) (-15 -3924 ($ (-115) (-663 $))) (-15 -1724 ($ $ (-305 $))) (-15 -1724 ($ $ (-663 (-305 $)))) (-15 -1724 ($ $ (-663 (-630 $)) (-663 $))) (-15 -3579 ($ $)) (-15 -3579 ($ (-663 $))) (-15 -2753 ($ $)) (-15 -2753 ($ (-663 $))) (-15 -3690 ($ $)) (-15 -3690 ($ $ $)) (-15 -2107 ((-793) $)) (-15 -3005 ((-3 (-630 $) "failed") $)) (-15 -4385 ((-663 (-630 $)) $)) (-15 -4297 ((-663 (-630 $)) $)) (-15 -2943 ((-663 (-115)) $)) (-15 -4399 ((-115) (-115))) (-15 -1840 ((-114) (-115))) (-15 -2784 ((-114) $ (-115))) (-15 -2784 ((-114) $ (-1207))) (-15 -2036 ($ (-115) $)) (-15 -2036 ($ (-115) (-663 $))) (-15 -3957 ($ (-1 $ $) (-630 $))) (-15 -3883 ((-114) $ $)) (-15 -3883 ((-114) $ (-1207))) (-15 -4187 ($ $ (-663 (-1207)) (-663 (-1 $ $)))) (-15 -4187 ($ $ (-663 (-1207)) (-663 (-1 $ (-663 $))))) (-15 -4187 ($ $ (-1207) (-1 $ (-663 $)))) (-15 -4187 ($ $ (-1207) (-1 $ $))) (-15 -4187 ($ $ (-663 (-115)) (-663 (-1 $ $)))) (-15 -4187 ($ $ (-663 (-115)) (-663 (-1 $ (-663 $))))) (-15 -4187 ($ $ (-115) (-1 $ (-663 $)))) (-15 -4187 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1080)) (PROGN (-15 -3872 ((-1201 $) (-630 $))) (-15 -4394 ($ $))) |%noBranch|) (IF (|has| $ (-1069 (-560))) (PROGN (-15 -1737 ((-114) $)) (-15 -3612 ((-114) $))) |%noBranch|)))
+((-1507 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-1507 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-1507 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-1507 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-1507 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-663 *1)) (-4 *1 (-310)))) (-2607 (*1 *1 *1 *2) (-12 (-5 *2 (-305 *1)) (-4 *1 (-310)))) (-2607 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-305 *1))) (-4 *1 (-310)))) (-2607 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-630 *1))) (-5 *3 (-663 *1)) (-4 *1 (-310)))) (-3061 (*1 *1 *1) (-4 *1 (-310))) (-3061 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-310)))) (-1740 (*1 *1 *1) (-4 *1 (-310))) (-1740 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-310)))) (-3222 (*1 *1 *1) (-4 *1 (-310))) (-3222 (*1 *1 *1 *1) (-4 *1 (-310))) (-3827 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-793)))) (-3702 (*1 *2 *1) (|partial| -12 (-5 *2 (-630 *1)) (-4 *1 (-310)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-663 (-630 *1))) (-4 *1 (-310)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-663 (-630 *1))) (-4 *1 (-310)))) (-4318 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-663 (-115))))) (-3963 (*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-3962 (*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114)))) (-2060 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114)))) (-2060 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1207)) (-5 *2 (-114)))) (-2547 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2547 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-663 *1)) (-4 *1 (-310)))) (-2260 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-630 *1)) (-4 *1 (-310)))) (-4338 (*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-114)))) (-4338 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1207)) (-5 *2 (-114)))) (-2371 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-663 (-1 *1 *1))) (-4 *1 (-310)))) (-2371 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-663 (-1 *1 (-663 *1)))) (-4 *1 (-310)))) (-2371 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1 *1 (-663 *1))) (-4 *1 (-310)))) (-2371 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-2371 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-115))) (-5 *3 (-663 (-1 *1 *1))) (-4 *1 (-310)))) (-2371 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-115))) (-5 *3 (-663 (-1 *1 (-663 *1)))) (-4 *1 (-310)))) (-2371 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-663 *1))) (-4 *1 (-310)))) (-2371 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-4250 (*1 *2 *3) (-12 (-5 *3 (-630 *1)) (-4 *1 (-1080)) (-4 *1 (-310)) (-5 *2 (-1201 *1)))) (-2407 (*1 *1 *1) (-12 (-4 *1 (-1080)) (-4 *1 (-310)))) (-2244 (*1 *2 *1) (-12 (-4 *1 (-1069 (-560))) (-4 *1 (-310)) (-5 *2 (-114)))) (-3729 (*1 *2 *1) (-12 (-4 *1 (-1069 (-560))) (-4 *1 (-310)) (-5 *2 (-114)))))
+(-13 (-1132) (-1069 (-630 $)) (-528 (-630 $) $) (-321 $) (-10 -8 (-15 -1507 ($ (-115) $)) (-15 -1507 ($ (-115) $ $)) (-15 -1507 ($ (-115) $ $ $)) (-15 -1507 ($ (-115) $ $ $ $)) (-15 -1507 ($ (-115) (-663 $))) (-15 -2607 ($ $ (-305 $))) (-15 -2607 ($ $ (-663 (-305 $)))) (-15 -2607 ($ $ (-663 (-630 $)) (-663 $))) (-15 -3061 ($ $)) (-15 -3061 ($ (-663 $))) (-15 -1740 ($ $)) (-15 -1740 ($ (-663 $))) (-15 -3222 ($ $)) (-15 -3222 ($ $ $)) (-15 -3827 ((-793) $)) (-15 -3702 ((-3 (-630 $) "failed") $)) (-15 -3949 ((-663 (-630 $)) $)) (-15 -3859 ((-663 (-630 $)) $)) (-15 -4318 ((-663 (-115)) $)) (-15 -3963 ((-115) (-115))) (-15 -3962 ((-114) (-115))) (-15 -2060 ((-114) $ (-115))) (-15 -2060 ((-114) $ (-1207))) (-15 -2547 ($ (-115) $)) (-15 -2547 ($ (-115) (-663 $))) (-15 -2260 ($ (-1 $ $) (-630 $))) (-15 -4338 ((-114) $ $)) (-15 -4338 ((-114) $ (-1207))) (-15 -2371 ($ $ (-663 (-1207)) (-663 (-1 $ $)))) (-15 -2371 ($ $ (-663 (-1207)) (-663 (-1 $ (-663 $))))) (-15 -2371 ($ $ (-1207) (-1 $ (-663 $)))) (-15 -2371 ($ $ (-1207) (-1 $ $))) (-15 -2371 ($ $ (-663 (-115)) (-663 (-1 $ $)))) (-15 -2371 ($ $ (-663 (-115)) (-663 (-1 $ (-663 $))))) (-15 -2371 ($ $ (-115) (-1 $ (-663 $)))) (-15 -2371 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1080)) (PROGN (-15 -4250 ((-1201 $) (-630 $))) (-15 -2407 ($ $))) |%noBranch|) (IF (|has| $ (-1069 (-560))) (PROGN (-15 -2244 ((-114) $)) (-15 -3729 ((-114) $))) |%noBranch|)))
(((-102) . T) ((-635 #0=(-630 $)) . T) ((-632 (-887)) . T) ((-321 $) . T) ((-528 (-630 $) $) . T) ((-528 $ $) . T) ((-1069 #0#) . T) ((-1132) . T) ((-1247) . T))
-((-3957 ((|#2| (-1 |#2| |#1|) (-1189) (-630 |#1|)) 18 T ELT)))
-(((-311 |#1| |#2|) (-10 -7 (-15 -3957 (|#2| (-1 |#2| |#1|) (-1189) (-630 |#1|)))) (-310) (-1247)) (T -311))
-((-3957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1189)) (-5 *5 (-630 *6)) (-4 *6 (-310)) (-4 *2 (-1247)) (-5 *1 (-311 *6 *2)))))
-(-10 -7 (-15 -3957 (|#2| (-1 |#2| |#1|) (-1189) (-630 |#1|))))
-((-3957 ((|#2| (-1 |#2| |#1|) (-630 |#1|)) 17 T ELT)))
-(((-312 |#1| |#2|) (-10 -7 (-15 -3957 (|#2| (-1 |#2| |#1|) (-630 |#1|)))) (-310) (-310)) (T -312))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-630 *5)) (-4 *5 (-310)) (-4 *2 (-310)) (-5 *1 (-312 *5 *2)))))
-(-10 -7 (-15 -3957 (|#2| (-1 |#2| |#1|) (-630 |#1|))))
-((-2603 (((-1185 (-229)) (-326 (-229)) (-663 (-1207)) (-1120 (-864 (-229)))) 118 T ELT)) (-1980 (((-1185 (-229)) (-1297 (-326 (-229))) (-663 (-1207)) (-1120 (-864 (-229)))) 135 T ELT) (((-1185 (-229)) (-326 (-229)) (-663 (-1207)) (-1120 (-864 (-229)))) 72 T ELT)) (-4137 (((-663 (-1189)) (-1185 (-229))) NIL T ELT)) (-3120 (((-663 (-229)) (-326 (-229)) (-1207) (-1120 (-864 (-229)))) 69 T ELT)) (-1651 (((-663 (-229)) (-975 (-421 (-560))) (-1207) (-1120 (-864 (-229)))) 59 T ELT)) (-4328 (((-663 (-1189)) (-663 (-229))) NIL T ELT)) (-1629 (((-229) (-1120 (-864 (-229)))) 29 T ELT)) (-1701 (((-229) (-1120 (-864 (-229)))) 30 T ELT)) (-4450 (((-114) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 64 T ELT)) (-2560 (((-1189) (-229)) NIL T ELT)))
-(((-313) (-10 -7 (-15 -1629 ((-229) (-1120 (-864 (-229))))) (-15 -1701 ((-229) (-1120 (-864 (-229))))) (-15 -4450 ((-114) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3120 ((-663 (-229)) (-326 (-229)) (-1207) (-1120 (-864 (-229))))) (-15 -2603 ((-1185 (-229)) (-326 (-229)) (-663 (-1207)) (-1120 (-864 (-229))))) (-15 -1980 ((-1185 (-229)) (-326 (-229)) (-663 (-1207)) (-1120 (-864 (-229))))) (-15 -1980 ((-1185 (-229)) (-1297 (-326 (-229))) (-663 (-1207)) (-1120 (-864 (-229))))) (-15 -1651 ((-663 (-229)) (-975 (-421 (-560))) (-1207) (-1120 (-864 (-229))))) (-15 -2560 ((-1189) (-229))) (-15 -4328 ((-663 (-1189)) (-663 (-229)))) (-15 -4137 ((-663 (-1189)) (-1185 (-229)))))) (T -313))
-((-4137 (*1 *2 *3) (-12 (-5 *3 (-1185 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-313)))) (-4328 (*1 *2 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-313)))) (-2560 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-313)))) (-1651 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-975 (-421 (-560)))) (-5 *4 (-1207)) (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-663 (-229))) (-5 *1 (-313)))) (-1980 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *4 (-663 (-1207))) (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-1185 (-229))) (-5 *1 (-313)))) (-1980 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-663 (-1207))) (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-1185 (-229))) (-5 *1 (-313)))) (-2603 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-663 (-1207))) (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-1185 (-229))) (-5 *1 (-313)))) (-3120 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1207)) (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-663 (-229))) (-5 *1 (-313)))) (-4450 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-114)) (-5 *1 (-313)))) (-1701 (*1 *2 *3) (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-313)))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-313)))))
-(-10 -7 (-15 -1629 ((-229) (-1120 (-864 (-229))))) (-15 -1701 ((-229) (-1120 (-864 (-229))))) (-15 -4450 ((-114) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3120 ((-663 (-229)) (-326 (-229)) (-1207) (-1120 (-864 (-229))))) (-15 -2603 ((-1185 (-229)) (-326 (-229)) (-663 (-1207)) (-1120 (-864 (-229))))) (-15 -1980 ((-1185 (-229)) (-326 (-229)) (-663 (-1207)) (-1120 (-864 (-229))))) (-15 -1980 ((-1185 (-229)) (-1297 (-326 (-229))) (-663 (-1207)) (-1120 (-864 (-229))))) (-15 -1651 ((-663 (-229)) (-975 (-421 (-560))) (-1207) (-1120 (-864 (-229))))) (-15 -2560 ((-1189) (-229))) (-15 -4328 ((-663 (-1189)) (-663 (-229)))) (-15 -4137 ((-663 (-1189)) (-1185 (-229)))))
-((-1549 (((-114) (-229)) 12 T ELT)))
-(((-314 |#1| |#2|) (-10 -7 (-15 -1549 ((-114) (-229)))) (-229) (-229)) (T -314))
-((-1549 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-314 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -1549 ((-114) (-229))))
-((-2414 (((-1297 (-326 (-391))) (-1297 (-326 (-229)))) 110 T ELT)) (-3314 (((-1120 (-864 (-229))) (-1120 (-864 (-391)))) 43 T ELT)) (-4137 (((-663 (-1189)) (-1185 (-229))) 92 T ELT)) (-3942 (((-326 (-391)) (-975 (-229))) 53 T ELT)) (-2458 (((-229) (-975 (-229))) 49 T ELT)) (-2717 (((-1189) (-391)) 195 T ELT)) (-1495 (((-864 (-229)) (-864 (-391))) 37 T ELT)) (-3474 (((-2 (|:| |additions| (-560)) (|:| |multiplications| (-560)) (|:| |exponentiations| (-560)) (|:| |functionCalls| (-560))) (-1297 (-326 (-229)))) 165 T ELT)) (-3494 (((-1066) (-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066)))) 207 T ELT) (((-1066) (-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189))))) 205 T ELT)) (-3822 (((-711 (-229)) (-663 (-229)) (-793)) 19 T ELT)) (-4101 (((-1297 (-721)) (-663 (-229))) 99 T ELT)) (-4328 (((-663 (-1189)) (-663 (-229))) 79 T ELT)) (-2051 (((-3 (-326 (-229)) "failed") (-326 (-229))) 128 T ELT)) (-1549 (((-114) (-229) (-1120 (-864 (-229)))) 117 T ELT)) (-1800 (((-1066) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) 224 T ELT)) (-1629 (((-229) (-1120 (-864 (-229)))) 112 T ELT)) (-1701 (((-229) (-1120 (-864 (-229)))) 113 T ELT)) (-4414 (((-229) (-421 (-560))) 31 T ELT)) (-3035 (((-1189) (-391)) 77 T ELT)) (-2682 (((-229) (-391)) 22 T ELT)) (-1956 (((-391) (-1297 (-326 (-229)))) 177 T ELT)) (-2175 (((-326 (-229)) (-326 (-391))) 28 T ELT)) (-3700 (((-421 (-560)) (-326 (-229))) 56 T ELT)) (-3420 (((-326 (-421 (-560))) (-326 (-229))) 73 T ELT)) (-4296 (((-326 (-391)) (-326 (-229))) 103 T ELT)) (-1771 (((-229) (-326 (-229))) 57 T ELT)) (-1666 (((-663 (-229)) (-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))) 68 T ELT)) (-4144 (((-1120 (-864 (-229))) (-1120 (-864 (-229)))) 65 T ELT)) (-2560 (((-1189) (-229)) 76 T ELT)) (-2465 (((-721) (-229)) 95 T ELT)) (-4105 (((-421 (-560)) (-229)) 58 T ELT)) (-1580 (((-326 (-391)) (-229)) 52 T ELT)) (-1407 (((-663 (-1120 (-864 (-229)))) (-663 (-1120 (-864 (-391))))) 46 T ELT)) (-3415 (((-1066) (-663 (-1066))) 191 T ELT) (((-1066) (-1066) (-1066)) 185 T ELT)) (-3194 (((-1066) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221 T ELT)))
-(((-315) (-10 -7 (-15 -2682 ((-229) (-391))) (-15 -2175 ((-326 (-229)) (-326 (-391)))) (-15 -1495 ((-864 (-229)) (-864 (-391)))) (-15 -3314 ((-1120 (-864 (-229))) (-1120 (-864 (-391))))) (-15 -1407 ((-663 (-1120 (-864 (-229)))) (-663 (-1120 (-864 (-391)))))) (-15 -4105 ((-421 (-560)) (-229))) (-15 -3700 ((-421 (-560)) (-326 (-229)))) (-15 -1771 ((-229) (-326 (-229)))) (-15 -2051 ((-3 (-326 (-229)) "failed") (-326 (-229)))) (-15 -1956 ((-391) (-1297 (-326 (-229))))) (-15 -3474 ((-2 (|:| |additions| (-560)) (|:| |multiplications| (-560)) (|:| |exponentiations| (-560)) (|:| |functionCalls| (-560))) (-1297 (-326 (-229))))) (-15 -3420 ((-326 (-421 (-560))) (-326 (-229)))) (-15 -4144 ((-1120 (-864 (-229))) (-1120 (-864 (-229))))) (-15 -1666 ((-663 (-229)) (-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))))) (-15 -2465 ((-721) (-229))) (-15 -4101 ((-1297 (-721)) (-663 (-229)))) (-15 -4296 ((-326 (-391)) (-326 (-229)))) (-15 -2414 ((-1297 (-326 (-391))) (-1297 (-326 (-229))))) (-15 -1549 ((-114) (-229) (-1120 (-864 (-229))))) (-15 -2560 ((-1189) (-229))) (-15 -3035 ((-1189) (-391))) (-15 -4328 ((-663 (-1189)) (-663 (-229)))) (-15 -4137 ((-663 (-1189)) (-1185 (-229)))) (-15 -1629 ((-229) (-1120 (-864 (-229))))) (-15 -1701 ((-229) (-1120 (-864 (-229))))) (-15 -3415 ((-1066) (-1066) (-1066))) (-15 -3415 ((-1066) (-663 (-1066)))) (-15 -2717 ((-1189) (-391))) (-15 -3494 ((-1066) (-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189)))))) (-15 -3494 ((-1066) (-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066))))) (-15 -3194 ((-1066) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1800 ((-1066) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))) (-15 -3942 ((-326 (-391)) (-975 (-229)))) (-15 -2458 ((-229) (-975 (-229)))) (-15 -1580 ((-326 (-391)) (-229))) (-15 -4414 ((-229) (-421 (-560)))) (-15 -3822 ((-711 (-229)) (-663 (-229)) (-793))))) (T -315))
-((-3822 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-229))) (-5 *4 (-793)) (-5 *2 (-711 (-229))) (-5 *1 (-315)))) (-4414 (*1 *2 *3) (-12 (-5 *3 (-421 (-560))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1580 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-326 (-391))) (-5 *1 (-315)))) (-2458 (*1 *2 *3) (-12 (-5 *3 (-975 (-229))) (-5 *2 (-229)) (-5 *1 (-315)))) (-3942 (*1 *2 *3) (-12 (-5 *3 (-975 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315)))) (-1800 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) (-5 *2 (-1066)) (-5 *1 (-315)))) (-3194 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1066)) (-5 *1 (-315)))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066)))) (-5 *2 (-1066)) (-5 *1 (-315)))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189))))) (-5 *2 (-1066)) (-5 *1 (-315)))) (-2717 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1189)) (-5 *1 (-315)))) (-3415 (*1 *2 *3) (-12 (-5 *3 (-663 (-1066))) (-5 *2 (-1066)) (-5 *1 (-315)))) (-3415 (*1 *2 *2 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-315)))) (-1701 (*1 *2 *3) (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1629 (*1 *2 *3) (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-315)))) (-4137 (*1 *2 *3) (-12 (-5 *3 (-1185 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-315)))) (-4328 (*1 *2 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-315)))) (-3035 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1189)) (-5 *1 (-315)))) (-2560 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-315)))) (-1549 (*1 *2 *3 *4) (-12 (-5 *4 (-1120 (-864 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-315)))) (-2414 (*1 *2 *3) (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *2 (-1297 (-326 (-391)))) (-5 *1 (-315)))) (-4296 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315)))) (-4101 (*1 *2 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-1297 (-721))) (-5 *1 (-315)))) (-2465 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-721)) (-5 *1 (-315)))) (-1666 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))) (-5 *2 (-663 (-229))) (-5 *1 (-315)))) (-4144 (*1 *2 *2) (-12 (-5 *2 (-1120 (-864 (-229)))) (-5 *1 (-315)))) (-3420 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-421 (-560)))) (-5 *1 (-315)))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *2 (-2 (|:| |additions| (-560)) (|:| |multiplications| (-560)) (|:| |exponentiations| (-560)) (|:| |functionCalls| (-560)))) (-5 *1 (-315)))) (-1956 (*1 *2 *3) (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-315)))) (-2051 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-315)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-229)) (-5 *1 (-315)))) (-3700 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-421 (-560))) (-5 *1 (-315)))) (-4105 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-421 (-560))) (-5 *1 (-315)))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-663 (-1120 (-864 (-391))))) (-5 *2 (-663 (-1120 (-864 (-229))))) (-5 *1 (-315)))) (-3314 (*1 *2 *3) (-12 (-5 *3 (-1120 (-864 (-391)))) (-5 *2 (-1120 (-864 (-229)))) (-5 *1 (-315)))) (-1495 (*1 *2 *3) (-12 (-5 *3 (-864 (-391))) (-5 *2 (-864 (-229))) (-5 *1 (-315)))) (-2175 (*1 *2 *3) (-12 (-5 *3 (-326 (-391))) (-5 *2 (-326 (-229))) (-5 *1 (-315)))) (-2682 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-315)))))
-(-10 -7 (-15 -2682 ((-229) (-391))) (-15 -2175 ((-326 (-229)) (-326 (-391)))) (-15 -1495 ((-864 (-229)) (-864 (-391)))) (-15 -3314 ((-1120 (-864 (-229))) (-1120 (-864 (-391))))) (-15 -1407 ((-663 (-1120 (-864 (-229)))) (-663 (-1120 (-864 (-391)))))) (-15 -4105 ((-421 (-560)) (-229))) (-15 -3700 ((-421 (-560)) (-326 (-229)))) (-15 -1771 ((-229) (-326 (-229)))) (-15 -2051 ((-3 (-326 (-229)) "failed") (-326 (-229)))) (-15 -1956 ((-391) (-1297 (-326 (-229))))) (-15 -3474 ((-2 (|:| |additions| (-560)) (|:| |multiplications| (-560)) (|:| |exponentiations| (-560)) (|:| |functionCalls| (-560))) (-1297 (-326 (-229))))) (-15 -3420 ((-326 (-421 (-560))) (-326 (-229)))) (-15 -4144 ((-1120 (-864 (-229))) (-1120 (-864 (-229))))) (-15 -1666 ((-663 (-229)) (-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))))) (-15 -2465 ((-721) (-229))) (-15 -4101 ((-1297 (-721)) (-663 (-229)))) (-15 -4296 ((-326 (-391)) (-326 (-229)))) (-15 -2414 ((-1297 (-326 (-391))) (-1297 (-326 (-229))))) (-15 -1549 ((-114) (-229) (-1120 (-864 (-229))))) (-15 -2560 ((-1189) (-229))) (-15 -3035 ((-1189) (-391))) (-15 -4328 ((-663 (-1189)) (-663 (-229)))) (-15 -4137 ((-663 (-1189)) (-1185 (-229)))) (-15 -1629 ((-229) (-1120 (-864 (-229))))) (-15 -1701 ((-229) (-1120 (-864 (-229))))) (-15 -3415 ((-1066) (-1066) (-1066))) (-15 -3415 ((-1066) (-663 (-1066)))) (-15 -2717 ((-1189) (-391))) (-15 -3494 ((-1066) (-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189)))))) (-15 -3494 ((-1066) (-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066))))) (-15 -3194 ((-1066) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1800 ((-1066) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))) (-15 -3942 ((-326 (-391)) (-975 (-229)))) (-15 -2458 ((-229) (-975 (-229)))) (-15 -1580 ((-326 (-391)) (-229))) (-15 -4414 ((-229) (-421 (-560)))) (-15 -3822 ((-711 (-229)) (-663 (-229)) (-793))))
-((-2468 (((-663 |#1|) (-663 |#1|)) 10 T ELT)))
-(((-316 |#1|) (-10 -7 (-15 -2468 ((-663 |#1|) (-663 |#1|)))) (-870)) (T -316))
-((-2468 (*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-870)) (-5 *1 (-316 *3)))))
-(-10 -7 (-15 -2468 ((-663 |#1|) (-663 |#1|))))
-((-3957 (((-711 |#2|) (-1 |#2| |#1|) (-711 |#1|)) 17 T ELT)))
-(((-317 |#1| |#2|) (-10 -7 (-15 -3957 ((-711 |#2|) (-1 |#2| |#1|) (-711 |#1|)))) (-1080) (-1080)) (T -317))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-711 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-5 *2 (-711 *6)) (-5 *1 (-317 *5 *6)))))
-(-10 -7 (-15 -3957 ((-711 |#2|) (-1 |#2| |#1|) (-711 |#1|))))
-((-1615 (((-114) $ $) 14 T ELT)) (-1478 (($ $ $) 18 T ELT)) (-1490 (($ $ $) 17 T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 50 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 65 T ELT)) (-2132 (($ $ $) 25 T ELT) (($ (-663 $)) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40 T ELT)) (-1528 (((-3 $ "failed") $ $) 21 T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 53 T ELT)))
-(((-318 |#1|) (-10 -8 (-15 -4361 ((-3 (-663 |#1|) "failed") (-663 |#1|) |#1|)) (-15 -3812 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3812 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2748 |#1|)) |#1| |#1|)) (-15 -1478 (|#1| |#1| |#1|)) (-15 -1490 (|#1| |#1| |#1|)) (-15 -1615 ((-114) |#1| |#1|)) (-15 -2661 ((-3 (-663 |#1|) "failed") (-663 |#1|) |#1|)) (-15 -2950 ((-2 (|:| -2115 (-663 |#1|)) (|:| -2748 |#1|)) (-663 |#1|))) (-15 -2132 (|#1| (-663 |#1|))) (-15 -2132 (|#1| |#1| |#1|)) (-15 -1528 ((-3 |#1| "failed") |#1| |#1|))) (-319)) (T -318))
-NIL
-(-10 -8 (-15 -4361 ((-3 (-663 |#1|) "failed") (-663 |#1|) |#1|)) (-15 -3812 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -3812 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2748 |#1|)) |#1| |#1|)) (-15 -1478 (|#1| |#1| |#1|)) (-15 -1490 (|#1| |#1| |#1|)) (-15 -1615 ((-114) |#1| |#1|)) (-15 -2661 ((-3 (-663 |#1|) "failed") (-663 |#1|) |#1|)) (-15 -2950 ((-2 (|:| -2115 (-663 |#1|)) (|:| -2748 |#1|)) (-663 |#1|))) (-15 -2132 (|#1| (-663 |#1|))) (-15 -2132 (|#1| |#1| |#1|)) (-15 -1528 ((-3 |#1| "failed") |#1| |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-3244 (($ $) 46 T ELT)) (-4093 (((-114) $) 44 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-1615 (((-114) $ $) 65 T ELT)) (-2238 (($) 18 T CONST)) (-1478 (($ $ $) 61 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1490 (($ $ $) 62 T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 57 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-2093 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-2132 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-1528 (((-3 $ "failed") $ $) 48 T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-2901 (((-793) $) 64 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 63 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 45 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
+((-2260 ((|#2| (-1 |#2| |#1|) (-1189) (-630 |#1|)) 18 T ELT)))
+(((-311 |#1| |#2|) (-10 -7 (-15 -2260 (|#2| (-1 |#2| |#1|) (-1189) (-630 |#1|)))) (-310) (-1247)) (T -311))
+((-2260 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1189)) (-5 *5 (-630 *6)) (-4 *6 (-310)) (-4 *2 (-1247)) (-5 *1 (-311 *6 *2)))))
+(-10 -7 (-15 -2260 (|#2| (-1 |#2| |#1|) (-1189) (-630 |#1|))))
+((-2260 ((|#2| (-1 |#2| |#1|) (-630 |#1|)) 17 T ELT)))
+(((-312 |#1| |#2|) (-10 -7 (-15 -2260 (|#2| (-1 |#2| |#1|) (-630 |#1|)))) (-310) (-310)) (T -312))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-630 *5)) (-4 *5 (-310)) (-4 *2 (-310)) (-5 *1 (-312 *5 *2)))))
+(-10 -7 (-15 -2260 (|#2| (-1 |#2| |#1|) (-630 |#1|))))
+((-3964 (((-1185 (-229)) (-326 (-229)) (-663 (-1207)) (-1120 (-864 (-229)))) 118 T ELT)) (-2771 (((-1185 (-229)) (-1297 (-326 (-229))) (-663 (-1207)) (-1120 (-864 (-229)))) 135 T ELT) (((-1185 (-229)) (-326 (-229)) (-663 (-1207)) (-1120 (-864 (-229)))) 72 T ELT)) (-1877 (((-663 (-1189)) (-1185 (-229))) NIL T ELT)) (-2390 (((-663 (-229)) (-326 (-229)) (-1207) (-1120 (-864 (-229)))) 69 T ELT)) (-3866 (((-663 (-229)) (-975 (-421 (-560))) (-1207) (-1120 (-864 (-229)))) 59 T ELT)) (-3121 (((-663 (-1189)) (-663 (-229))) NIL T ELT)) (-3610 (((-229) (-1120 (-864 (-229)))) 29 T ELT)) (-3133 (((-229) (-1120 (-864 (-229)))) 30 T ELT)) (-1656 (((-114) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 64 T ELT)) (-3567 (((-1189) (-229)) NIL T ELT)))
+(((-313) (-10 -7 (-15 -3610 ((-229) (-1120 (-864 (-229))))) (-15 -3133 ((-229) (-1120 (-864 (-229))))) (-15 -1656 ((-114) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2390 ((-663 (-229)) (-326 (-229)) (-1207) (-1120 (-864 (-229))))) (-15 -3964 ((-1185 (-229)) (-326 (-229)) (-663 (-1207)) (-1120 (-864 (-229))))) (-15 -2771 ((-1185 (-229)) (-326 (-229)) (-663 (-1207)) (-1120 (-864 (-229))))) (-15 -2771 ((-1185 (-229)) (-1297 (-326 (-229))) (-663 (-1207)) (-1120 (-864 (-229))))) (-15 -3866 ((-663 (-229)) (-975 (-421 (-560))) (-1207) (-1120 (-864 (-229))))) (-15 -3567 ((-1189) (-229))) (-15 -3121 ((-663 (-1189)) (-663 (-229)))) (-15 -1877 ((-663 (-1189)) (-1185 (-229)))))) (T -313))
+((-1877 (*1 *2 *3) (-12 (-5 *3 (-1185 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-313)))) (-3121 (*1 *2 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-313)))) (-3567 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-313)))) (-3866 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-975 (-421 (-560)))) (-5 *4 (-1207)) (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-663 (-229))) (-5 *1 (-313)))) (-2771 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *4 (-663 (-1207))) (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-1185 (-229))) (-5 *1 (-313)))) (-2771 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-663 (-1207))) (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-1185 (-229))) (-5 *1 (-313)))) (-3964 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-663 (-1207))) (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-1185 (-229))) (-5 *1 (-313)))) (-2390 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1207)) (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-663 (-229))) (-5 *1 (-313)))) (-1656 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-114)) (-5 *1 (-313)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-313)))) (-3610 (*1 *2 *3) (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-313)))))
+(-10 -7 (-15 -3610 ((-229) (-1120 (-864 (-229))))) (-15 -3133 ((-229) (-1120 (-864 (-229))))) (-15 -1656 ((-114) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2390 ((-663 (-229)) (-326 (-229)) (-1207) (-1120 (-864 (-229))))) (-15 -3964 ((-1185 (-229)) (-326 (-229)) (-663 (-1207)) (-1120 (-864 (-229))))) (-15 -2771 ((-1185 (-229)) (-326 (-229)) (-663 (-1207)) (-1120 (-864 (-229))))) (-15 -2771 ((-1185 (-229)) (-1297 (-326 (-229))) (-663 (-1207)) (-1120 (-864 (-229))))) (-15 -3866 ((-663 (-229)) (-975 (-421 (-560))) (-1207) (-1120 (-864 (-229))))) (-15 -3567 ((-1189) (-229))) (-15 -3121 ((-663 (-1189)) (-663 (-229)))) (-15 -1877 ((-663 (-1189)) (-1185 (-229)))))
+((-1614 (((-114) (-229)) 12 T ELT)))
+(((-314 |#1| |#2|) (-10 -7 (-15 -1614 ((-114) (-229)))) (-229) (-229)) (T -314))
+((-1614 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-314 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -1614 ((-114) (-229))))
+((-1513 (((-1297 (-326 (-391))) (-1297 (-326 (-229)))) 110 T ELT)) (-3842 (((-1120 (-864 (-229))) (-1120 (-864 (-391)))) 43 T ELT)) (-1877 (((-663 (-1189)) (-1185 (-229))) 92 T ELT)) (-3666 (((-326 (-391)) (-975 (-229))) 53 T ELT)) (-1977 (((-229) (-975 (-229))) 49 T ELT)) (-2633 (((-1189) (-391)) 195 T ELT)) (-2651 (((-864 (-229)) (-864 (-391))) 37 T ELT)) (-1620 (((-2 (|:| |additions| (-560)) (|:| |multiplications| (-560)) (|:| |exponentiations| (-560)) (|:| |functionCalls| (-560))) (-1297 (-326 (-229)))) 165 T ELT)) (-1815 (((-1066) (-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066)))) 207 T ELT) (((-1066) (-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189))))) 205 T ELT)) (-1871 (((-711 (-229)) (-663 (-229)) (-793)) 19 T ELT)) (-2728 (((-1297 (-721)) (-663 (-229))) 99 T ELT)) (-3121 (((-663 (-1189)) (-663 (-229))) 79 T ELT)) (-3768 (((-3 (-326 (-229)) "failed") (-326 (-229))) 128 T ELT)) (-1614 (((-114) (-229) (-1120 (-864 (-229)))) 117 T ELT)) (-1573 (((-1066) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) 224 T ELT)) (-3610 (((-229) (-1120 (-864 (-229)))) 112 T ELT)) (-3133 (((-229) (-1120 (-864 (-229)))) 113 T ELT)) (-2583 (((-229) (-421 (-560))) 31 T ELT)) (-2722 (((-1189) (-391)) 77 T ELT)) (-2262 (((-229) (-391)) 22 T ELT)) (-3846 (((-391) (-1297 (-326 (-229)))) 177 T ELT)) (-4195 (((-326 (-229)) (-326 (-391))) 28 T ELT)) (-3314 (((-421 (-560)) (-326 (-229))) 56 T ELT)) (-2341 (((-326 (-421 (-560))) (-326 (-229))) 73 T ELT)) (-2817 (((-326 (-391)) (-326 (-229))) 103 T ELT)) (-2559 (((-229) (-326 (-229))) 57 T ELT)) (-2734 (((-663 (-229)) (-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))) 68 T ELT)) (-1968 (((-1120 (-864 (-229))) (-1120 (-864 (-229)))) 65 T ELT)) (-3567 (((-1189) (-229)) 76 T ELT)) (-2027 (((-721) (-229)) 95 T ELT)) (-1545 (((-421 (-560)) (-229)) 58 T ELT)) (-1904 (((-326 (-391)) (-229)) 52 T ELT)) (-2400 (((-663 (-1120 (-864 (-229)))) (-663 (-1120 (-864 (-391))))) 46 T ELT)) (-1955 (((-1066) (-663 (-1066))) 191 T ELT) (((-1066) (-1066) (-1066)) 185 T ELT)) (-1916 (((-1066) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 221 T ELT)))
+(((-315) (-10 -7 (-15 -2262 ((-229) (-391))) (-15 -4195 ((-326 (-229)) (-326 (-391)))) (-15 -2651 ((-864 (-229)) (-864 (-391)))) (-15 -3842 ((-1120 (-864 (-229))) (-1120 (-864 (-391))))) (-15 -2400 ((-663 (-1120 (-864 (-229)))) (-663 (-1120 (-864 (-391)))))) (-15 -1545 ((-421 (-560)) (-229))) (-15 -3314 ((-421 (-560)) (-326 (-229)))) (-15 -2559 ((-229) (-326 (-229)))) (-15 -3768 ((-3 (-326 (-229)) "failed") (-326 (-229)))) (-15 -3846 ((-391) (-1297 (-326 (-229))))) (-15 -1620 ((-2 (|:| |additions| (-560)) (|:| |multiplications| (-560)) (|:| |exponentiations| (-560)) (|:| |functionCalls| (-560))) (-1297 (-326 (-229))))) (-15 -2341 ((-326 (-421 (-560))) (-326 (-229)))) (-15 -1968 ((-1120 (-864 (-229))) (-1120 (-864 (-229))))) (-15 -2734 ((-663 (-229)) (-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))))) (-15 -2027 ((-721) (-229))) (-15 -2728 ((-1297 (-721)) (-663 (-229)))) (-15 -2817 ((-326 (-391)) (-326 (-229)))) (-15 -1513 ((-1297 (-326 (-391))) (-1297 (-326 (-229))))) (-15 -1614 ((-114) (-229) (-1120 (-864 (-229))))) (-15 -3567 ((-1189) (-229))) (-15 -2722 ((-1189) (-391))) (-15 -3121 ((-663 (-1189)) (-663 (-229)))) (-15 -1877 ((-663 (-1189)) (-1185 (-229)))) (-15 -3610 ((-229) (-1120 (-864 (-229))))) (-15 -3133 ((-229) (-1120 (-864 (-229))))) (-15 -1955 ((-1066) (-1066) (-1066))) (-15 -1955 ((-1066) (-663 (-1066)))) (-15 -2633 ((-1189) (-391))) (-15 -1815 ((-1066) (-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189)))))) (-15 -1815 ((-1066) (-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066))))) (-15 -1916 ((-1066) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1573 ((-1066) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))) (-15 -3666 ((-326 (-391)) (-975 (-229)))) (-15 -1977 ((-229) (-975 (-229)))) (-15 -1904 ((-326 (-391)) (-229))) (-15 -2583 ((-229) (-421 (-560)))) (-15 -1871 ((-711 (-229)) (-663 (-229)) (-793))))) (T -315))
+((-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-229))) (-5 *4 (-793)) (-5 *2 (-711 (-229))) (-5 *1 (-315)))) (-2583 (*1 *2 *3) (-12 (-5 *3 (-421 (-560))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1904 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-326 (-391))) (-5 *1 (-315)))) (-1977 (*1 *2 *3) (-12 (-5 *3 (-975 (-229))) (-5 *2 (-229)) (-5 *1 (-315)))) (-3666 (*1 *2 *3) (-12 (-5 *3 (-975 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315)))) (-1573 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) (-5 *2 (-1066)) (-5 *1 (-315)))) (-1916 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1066)) (-5 *1 (-315)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066)))) (-5 *2 (-1066)) (-5 *1 (-315)))) (-1815 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189))))) (-5 *2 (-1066)) (-5 *1 (-315)))) (-2633 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1189)) (-5 *1 (-315)))) (-1955 (*1 *2 *3) (-12 (-5 *3 (-663 (-1066))) (-5 *2 (-1066)) (-5 *1 (-315)))) (-1955 (*1 *2 *2 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-315)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-315)))) (-3610 (*1 *2 *3) (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-1185 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-315)))) (-3121 (*1 *2 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-315)))) (-2722 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1189)) (-5 *1 (-315)))) (-3567 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-315)))) (-1614 (*1 *2 *3 *4) (-12 (-5 *4 (-1120 (-864 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-315)))) (-1513 (*1 *2 *3) (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *2 (-1297 (-326 (-391)))) (-5 *1 (-315)))) (-2817 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315)))) (-2728 (*1 *2 *3) (-12 (-5 *3 (-663 (-229))) (-5 *2 (-1297 (-721))) (-5 *1 (-315)))) (-2027 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-721)) (-5 *1 (-315)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))) (-5 *2 (-663 (-229))) (-5 *1 (-315)))) (-1968 (*1 *2 *2) (-12 (-5 *2 (-1120 (-864 (-229)))) (-5 *1 (-315)))) (-2341 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-421 (-560)))) (-5 *1 (-315)))) (-1620 (*1 *2 *3) (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *2 (-2 (|:| |additions| (-560)) (|:| |multiplications| (-560)) (|:| |exponentiations| (-560)) (|:| |functionCalls| (-560)))) (-5 *1 (-315)))) (-3846 (*1 *2 *3) (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-315)))) (-3768 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-315)))) (-2559 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-229)) (-5 *1 (-315)))) (-3314 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-421 (-560))) (-5 *1 (-315)))) (-1545 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-421 (-560))) (-5 *1 (-315)))) (-2400 (*1 *2 *3) (-12 (-5 *3 (-663 (-1120 (-864 (-391))))) (-5 *2 (-663 (-1120 (-864 (-229))))) (-5 *1 (-315)))) (-3842 (*1 *2 *3) (-12 (-5 *3 (-1120 (-864 (-391)))) (-5 *2 (-1120 (-864 (-229)))) (-5 *1 (-315)))) (-2651 (*1 *2 *3) (-12 (-5 *3 (-864 (-391))) (-5 *2 (-864 (-229))) (-5 *1 (-315)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-326 (-391))) (-5 *2 (-326 (-229))) (-5 *1 (-315)))) (-2262 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-315)))))
+(-10 -7 (-15 -2262 ((-229) (-391))) (-15 -4195 ((-326 (-229)) (-326 (-391)))) (-15 -2651 ((-864 (-229)) (-864 (-391)))) (-15 -3842 ((-1120 (-864 (-229))) (-1120 (-864 (-391))))) (-15 -2400 ((-663 (-1120 (-864 (-229)))) (-663 (-1120 (-864 (-391)))))) (-15 -1545 ((-421 (-560)) (-229))) (-15 -3314 ((-421 (-560)) (-326 (-229)))) (-15 -2559 ((-229) (-326 (-229)))) (-15 -3768 ((-3 (-326 (-229)) "failed") (-326 (-229)))) (-15 -3846 ((-391) (-1297 (-326 (-229))))) (-15 -1620 ((-2 (|:| |additions| (-560)) (|:| |multiplications| (-560)) (|:| |exponentiations| (-560)) (|:| |functionCalls| (-560))) (-1297 (-326 (-229))))) (-15 -2341 ((-326 (-421 (-560))) (-326 (-229)))) (-15 -1968 ((-1120 (-864 (-229))) (-1120 (-864 (-229))))) (-15 -2734 ((-663 (-229)) (-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))))) (-15 -2027 ((-721) (-229))) (-15 -2728 ((-1297 (-721)) (-663 (-229)))) (-15 -2817 ((-326 (-391)) (-326 (-229)))) (-15 -1513 ((-1297 (-326 (-391))) (-1297 (-326 (-229))))) (-15 -1614 ((-114) (-229) (-1120 (-864 (-229))))) (-15 -3567 ((-1189) (-229))) (-15 -2722 ((-1189) (-391))) (-15 -3121 ((-663 (-1189)) (-663 (-229)))) (-15 -1877 ((-663 (-1189)) (-1185 (-229)))) (-15 -3610 ((-229) (-1120 (-864 (-229))))) (-15 -3133 ((-229) (-1120 (-864 (-229))))) (-15 -1955 ((-1066) (-1066) (-1066))) (-15 -1955 ((-1066) (-663 (-1066)))) (-15 -2633 ((-1189) (-391))) (-15 -1815 ((-1066) (-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189)))))) (-15 -1815 ((-1066) (-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066))))) (-15 -1916 ((-1066) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1573 ((-1066) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))) (-15 -3666 ((-326 (-391)) (-975 (-229)))) (-15 -1977 ((-229) (-975 (-229)))) (-15 -1904 ((-326 (-391)) (-229))) (-15 -2583 ((-229) (-421 (-560)))) (-15 -1871 ((-711 (-229)) (-663 (-229)) (-793))))
+((-2055 (((-663 |#1|) (-663 |#1|)) 10 T ELT)))
+(((-316 |#1|) (-10 -7 (-15 -2055 ((-663 |#1|) (-663 |#1|)))) (-870)) (T -316))
+((-2055 (*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-870)) (-5 *1 (-316 *3)))))
+(-10 -7 (-15 -2055 ((-663 |#1|) (-663 |#1|))))
+((-2260 (((-711 |#2|) (-1 |#2| |#1|) (-711 |#1|)) 17 T ELT)))
+(((-317 |#1| |#2|) (-10 -7 (-15 -2260 ((-711 |#2|) (-1 |#2| |#1|) (-711 |#1|)))) (-1080) (-1080)) (T -317))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-711 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-5 *2 (-711 *6)) (-5 *1 (-317 *5 *6)))))
+(-10 -7 (-15 -2260 ((-711 |#2|) (-1 |#2| |#1|) (-711 |#1|))))
+((-3476 (((-114) $ $) 14 T ELT)) (-2186 (($ $ $) 18 T ELT)) (-2197 (($ $ $) 17 T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 50 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 65 T ELT)) (-1938 (($ $ $) 25 T ELT) (($ (-663 $)) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 40 T ELT)) (-2233 (((-3 $ "failed") $ $) 21 T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 53 T ELT)))
+(((-318 |#1|) (-10 -8 (-15 -3369 ((-3 (-663 |#1|) "failed") (-663 |#1|) |#1|)) (-15 -1760 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1760 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3583 |#1|)) |#1| |#1|)) (-15 -2186 (|#1| |#1| |#1|)) (-15 -2197 (|#1| |#1| |#1|)) (-15 -3476 ((-114) |#1| |#1|)) (-15 -3291 ((-3 (-663 |#1|) "failed") (-663 |#1|) |#1|)) (-15 -4382 ((-2 (|:| -2625 (-663 |#1|)) (|:| -3583 |#1|)) (-663 |#1|))) (-15 -1938 (|#1| (-663 |#1|))) (-15 -1938 (|#1| |#1| |#1|)) (-15 -2233 ((-3 |#1| "failed") |#1| |#1|))) (-319)) (T -318))
+NIL
+(-10 -8 (-15 -3369 ((-3 (-663 |#1|) "failed") (-663 |#1|) |#1|)) (-15 -1760 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -1760 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3583 |#1|)) |#1| |#1|)) (-15 -2186 (|#1| |#1| |#1|)) (-15 -2197 (|#1| |#1| |#1|)) (-15 -3476 ((-114) |#1| |#1|)) (-15 -3291 ((-3 (-663 |#1|) "failed") (-663 |#1|) |#1|)) (-15 -4382 ((-2 (|:| -2625 (-663 |#1|)) (|:| -3583 |#1|)) (-663 |#1|))) (-15 -1938 (|#1| (-663 |#1|))) (-15 -1938 (|#1| |#1| |#1|)) (-15 -2233 ((-3 |#1| "failed") |#1| |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-4366 (($ $) 46 T ELT)) (-2667 (((-114) $) 44 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3476 (((-114) $ $) 65 T ELT)) (-3525 (($) 18 T CONST)) (-2186 (($ $ $) 61 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-2197 (($ $ $) 62 T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 57 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-1861 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-1938 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-2233 (((-3 $ "failed") $ $) 48 T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-3989 (((-793) $) 64 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 63 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 45 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
(((-319) (-142)) (T -319))
-((-1615 (*1 *2 *1 *1) (-12 (-4 *1 (-319)) (-5 *2 (-114)))) (-2901 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-793)))) (-2205 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1774 *1) (|:| -2341 *1))) (-4 *1 (-319)))) (-1490 (*1 *1 *1 *1) (-4 *1 (-319))) (-1478 (*1 *1 *1 *1) (-4 *1 (-319))) (-3812 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2748 *1))) (-4 *1 (-319)))) (-3812 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-319)))) (-4361 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-663 *1)) (-4 *1 (-319)))))
-(-13 (-950) (-10 -8 (-15 -1615 ((-114) $ $)) (-15 -2901 ((-793) $)) (-15 -2205 ((-2 (|:| -1774 $) (|:| -2341 $)) $ $)) (-15 -1490 ($ $ $)) (-15 -1478 ($ $ $)) (-15 -3812 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $)) (-15 -3812 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -4361 ((-3 (-663 $) "failed") (-663 $) $))))
+((-3476 (*1 *2 *1 *1) (-12 (-4 *1 (-319)) (-5 *2 (-114)))) (-3989 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-793)))) (-4455 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2584 *1) (|:| -3276 *1))) (-4 *1 (-319)))) (-2197 (*1 *1 *1 *1) (-4 *1 (-319))) (-2186 (*1 *1 *1 *1) (-4 *1 (-319))) (-1760 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3583 *1))) (-4 *1 (-319)))) (-1760 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-319)))) (-3369 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-663 *1)) (-4 *1 (-319)))))
+(-13 (-950) (-10 -8 (-15 -3476 ((-114) $ $)) (-15 -3989 ((-793) $)) (-15 -4455 ((-2 (|:| -2584 $) (|:| -3276 $)) $ $)) (-15 -2197 ($ $ $)) (-15 -2186 ($ $ $)) (-15 -1760 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $)) (-15 -1760 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3369 ((-3 (-663 $) "failed") (-663 $) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-302) . T) ((-466) . T) ((-571) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-950) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-4187 (($ $ (-663 |#2|) (-663 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-305 |#2|)) 11 T ELT) (($ $ (-663 (-305 |#2|))) NIL T ELT)))
-(((-320 |#1| |#2|) (-10 -8 (-15 -4187 (|#1| |#1| (-663 (-305 |#2|)))) (-15 -4187 (|#1| |#1| (-305 |#2|))) (-15 -4187 (|#1| |#1| |#2| |#2|)) (-15 -4187 (|#1| |#1| (-663 |#2|) (-663 |#2|)))) (-321 |#2|) (-1132)) (T -320))
+((-2371 (($ $ (-663 |#2|) (-663 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-305 |#2|)) 11 T ELT) (($ $ (-663 (-305 |#2|))) NIL T ELT)))
+(((-320 |#1| |#2|) (-10 -8 (-15 -2371 (|#1| |#1| (-663 (-305 |#2|)))) (-15 -2371 (|#1| |#1| (-305 |#2|))) (-15 -2371 (|#1| |#1| |#2| |#2|)) (-15 -2371 (|#1| |#1| (-663 |#2|) (-663 |#2|)))) (-321 |#2|) (-1132)) (T -320))
NIL
-(-10 -8 (-15 -4187 (|#1| |#1| (-663 (-305 |#2|)))) (-15 -4187 (|#1| |#1| (-305 |#2|))) (-15 -4187 (|#1| |#1| |#2| |#2|)) (-15 -4187 (|#1| |#1| (-663 |#2|) (-663 |#2|))))
-((-4187 (($ $ (-663 |#1|) (-663 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-305 |#1|)) 11 T ELT) (($ $ (-663 (-305 |#1|))) 10 T ELT)))
+(-10 -8 (-15 -2371 (|#1| |#1| (-663 (-305 |#2|)))) (-15 -2371 (|#1| |#1| (-305 |#2|))) (-15 -2371 (|#1| |#1| |#2| |#2|)) (-15 -2371 (|#1| |#1| (-663 |#2|) (-663 |#2|))))
+((-2371 (($ $ (-663 |#1|) (-663 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-305 |#1|)) 11 T ELT) (($ $ (-663 (-305 |#1|))) 10 T ELT)))
(((-321 |#1|) (-142) (-1132)) (T -321))
-((-4187 (*1 *1 *1 *2) (-12 (-5 *2 (-305 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1132)))) (-4187 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-305 *3))) (-4 *1 (-321 *3)) (-4 *3 (-1132)))))
-(-13 (-528 |t#1| |t#1|) (-10 -8 (-15 -4187 ($ $ (-305 |t#1|))) (-15 -4187 ($ $ (-663 (-305 |t#1|))))))
+((-2371 (*1 *1 *1 *2) (-12 (-5 *2 (-305 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1132)))) (-2371 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-305 *3))) (-4 *1 (-321 *3)) (-4 *3 (-1132)))))
+(-13 (-528 |t#1| |t#1|) (-10 -8 (-15 -2371 ($ $ (-305 |t#1|))) (-15 -2371 ($ $ (-663 (-305 |t#1|))))))
(((-528 |#1| |#1|) . T))
-((-4187 ((|#1| (-1 |#1| (-560)) (-1209 (-421 (-560)))) 26 T ELT)))
-(((-322 |#1|) (-10 -7 (-15 -4187 (|#1| (-1 |#1| (-560)) (-1209 (-421 (-560)))))) (-38 (-421 (-560)))) (T -322))
-((-4187 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-560))) (-5 *4 (-1209 (-421 (-560)))) (-5 *1 (-322 *2)) (-4 *2 (-38 (-421 (-560)))))))
-(-10 -7 (-15 -4187 (|#1| (-1 |#1| (-560)) (-1209 (-421 (-560))))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 7 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 9 T ELT)))
+((-2371 ((|#1| (-1 |#1| (-560)) (-1209 (-421 (-560)))) 26 T ELT)))
+(((-322 |#1|) (-10 -7 (-15 -2371 (|#1| (-1 |#1| (-560)) (-1209 (-421 (-560)))))) (-38 (-421 (-560)))) (T -322))
+((-2371 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-560))) (-5 *4 (-1209 (-421 (-560)))) (-5 *1 (-322 *2)) (-4 *2 (-38 (-421 (-560)))))))
+(-10 -7 (-15 -2371 (|#1| (-1 |#1| (-560)) (-1209 (-421 (-560))))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 7 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 9 T ELT)))
(((-323) (-1132)) (T -323))
NIL
(-1132)
-((-1538 (((-114) $ $) NIL T ELT)) (-3501 (((-560) $) 12 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4341 (((-1166) $) 9 T ELT)) (-1578 (((-887) $) 19 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-324) (-13 (-1114) (-10 -8 (-15 -4341 ((-1166) $)) (-15 -3501 ((-560) $))))) (T -324))
-((-4341 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-324)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-324)))))
-(-13 (-1114) (-10 -8 (-15 -4341 ((-1166) $)) (-15 -3501 ((-560) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 60 T ELT)) (-3941 (((-1284 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-319)) ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-939)) ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-939)) ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2138 (((-560) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-842)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-1284 |#1| |#2| |#3| |#4|) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1069 (-1207))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1069 (-560))) ELT) (((-3 (-560) "failed") $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1069 (-560))) ELT) (((-3 (-1278 |#2| |#3| |#4|) "failed") $) 26 T ELT)) (-3330 (((-1284 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1207) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1069 (-1207))) ELT) (((-421 (-560)) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1069 (-560))) ELT) (((-560) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1069 (-560))) ELT) (((-1278 |#2| |#3| |#4|) $) NIL T ELT)) (-1478 (($ $ $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-1284 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1297 (-1284 |#1| |#2| |#3| |#4|)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-1284 |#1| |#2| |#3| |#4|)) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2310 (($) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-559)) ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-2928 (((-114) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-842)) ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-911 (-391))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-1617 (($ $) NIL T ELT)) (-3757 (((-1284 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1182)) ELT)) (-2960 (((-114) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-842)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3825 (($ $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-871)) ELT)) (-3957 (($ (-1 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-2097 (((-3 (-864 |#2|) "failed") $) 80 T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-1284 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1297 (-1284 |#1| |#2| |#3| |#4|)))) (-1297 $) $) NIL T ELT) (((-711 (-1284 |#1| |#2| |#3| |#4|)) (-1297 $)) NIL T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-3161 (($) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1182)) CONST)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2652 (($ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-319)) ELT)) (-2016 (((-1284 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-559)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-939)) ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-4187 (($ $ (-663 (-1284 |#1| |#2| |#3| |#4|)) (-663 (-1284 |#1| |#2| |#3| |#4|))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-321 (-1284 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-321 (-1284 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-305 (-1284 |#1| |#2| |#3| |#4|))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-321 (-1284 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-663 (-305 (-1284 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-321 (-1284 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-663 (-1207)) (-663 (-1284 |#1| |#2| |#3| |#4|))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-528 (-1207) (-1284 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1207) (-1284 |#1| |#2| |#3| |#4|)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-528 (-1207) (-1284 |#1| |#2| |#3| |#4|))) ELT)) (-2901 (((-793) $) NIL T ELT)) (-3924 (($ $ (-1284 |#1| |#2| |#3| |#4|)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-298 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|))) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2894 (($ $ (-1 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-239)) ELT)) (-3056 (($ $) NIL T ELT)) (-3771 (((-1284 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-1407 (((-915 (-560)) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-633 (-915 (-391)))) ELT) (((-549) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-633 (-549))) ELT) (((-391) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1051)) ELT) (((-229) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1051)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-1284 |#1| |#2| |#3| |#4|) (-939))) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-1284 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1207)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1069 (-1207))) ELT) (($ (-1278 |#2| |#3| |#4|)) 37 T ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| (-1284 |#1| |#2| |#3| |#4|) (-939))) (|has| (-1284 |#1| |#2| |#3| |#4|) (-147))) ELT)) (-2930 (((-793)) NIL T CONST)) (-1494 (((-1284 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-559)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2282 (($ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-842)) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $ (-1 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-239)) ELT)) (-2536 (((-114) $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-871)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-871)) ELT)) (-2594 (($ $ $) 35 T ELT) (($ (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ (-1284 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1284 |#1| |#2| |#3| |#4|)) NIL T ELT)))
-(((-325 |#1| |#2| |#3| |#4|) (-13 (-1022 (-1284 |#1| |#2| |#3| |#4|)) (-1069 (-1278 |#2| |#3| |#4|)) (-10 -8 (-15 -2097 ((-3 (-864 |#2|) "failed") $)) (-15 -1578 ($ (-1278 |#2| |#3| |#4|))))) (-13 (-1069 (-560)) (-660 (-560)) (-466)) (-13 (-27) (-1233) (-435 |#1|)) (-1207) |#2|) (T -325))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1278 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-435 *3))) (-14 *5 (-1207)) (-14 *6 *4) (-4 *3 (-13 (-1069 (-560)) (-660 (-560)) (-466))) (-5 *1 (-325 *3 *4 *5 *6)))) (-2097 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1069 (-560)) (-660 (-560)) (-466))) (-5 *2 (-864 *4)) (-5 *1 (-325 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-435 *3))) (-14 *5 (-1207)) (-14 *6 *4))))
-(-13 (-1022 (-1284 |#1| |#2| |#3| |#4|)) (-1069 (-1278 |#2| |#3| |#4|)) (-10 -8 (-15 -2097 ((-3 (-864 |#2|) "failed") $)) (-15 -1578 ($ (-1278 |#2| |#3| |#4|)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2603 (((-663 $) $ (-1207)) NIL (|has| |#1| (-571)) ELT) (((-663 $) $) NIL (|has| |#1| (-571)) ELT) (((-663 $) (-1201 $) (-1207)) NIL (|has| |#1| (-571)) ELT) (((-663 $) (-1201 $)) NIL (|has| |#1| (-571)) ELT) (((-663 $) (-975 $)) NIL (|has| |#1| (-571)) ELT)) (-3684 (($ $ (-1207)) NIL (|has| |#1| (-571)) ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ (-1201 $) (-1207)) NIL (|has| |#1| (-571)) ELT) (($ (-1201 $)) NIL (|has| |#1| (-571)) ELT) (($ (-975 $)) NIL (|has| |#1| (-571)) ELT)) (-2388 (((-114) $) 27 (-2304 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT)) (-1443 (((-663 (-1207)) $) 368 T ELT)) (-4422 (((-421 (-1201 $)) $ (-630 $)) NIL (|has| |#1| (-571)) ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4297 (((-663 (-630 $)) $) NIL T ELT)) (-4337 (($ $) 171 (|has| |#1| (-571)) ELT)) (-3455 (($ $) 147 (|has| |#1| (-571)) ELT)) (-4045 (($ $ (-1123 $)) 232 (|has| |#1| (-571)) ELT) (($ $ (-1207)) 228 (|has| |#1| (-571)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL (-2304 (|has| |#1| (-21)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT)) (-1724 (($ $ (-305 $)) NIL T ELT) (($ $ (-663 (-305 $))) 386 T ELT) (($ $ (-663 (-630 $)) (-663 $)) 430 T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) 308 (-12 (|has| |#1| (-466)) (|has| |#1| (-571))) ELT)) (-1804 (($ $) NIL (|has| |#1| (-571)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#1| (-571)) ELT)) (-4471 (($ $) NIL (|has| |#1| (-571)) ELT)) (-1615 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4313 (($ $) 167 (|has| |#1| (-571)) ELT)) (-3430 (($ $) 143 (|has| |#1| (-571)) ELT)) (-1542 (($ $ (-560)) 73 (|has| |#1| (-571)) ELT)) (-4363 (($ $) 175 (|has| |#1| (-571)) ELT)) (-3477 (($ $) 151 (|has| |#1| (-571)) ELT)) (-2238 (($) NIL (-2304 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) (|has| |#1| (-1143))) CONST)) (-3276 (((-663 $) $ (-1207)) NIL (|has| |#1| (-571)) ELT) (((-663 $) $) NIL (|has| |#1| (-571)) ELT) (((-663 $) (-1201 $) (-1207)) NIL (|has| |#1| (-571)) ELT) (((-663 $) (-1201 $)) NIL (|has| |#1| (-571)) ELT) (((-663 $) (-975 $)) NIL (|has| |#1| (-571)) ELT)) (-3325 (($ $ (-1207)) NIL (|has| |#1| (-571)) ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ (-1201 $) (-1207)) 134 (|has| |#1| (-571)) ELT) (($ (-1201 $)) NIL (|has| |#1| (-571)) ELT) (($ (-975 $)) NIL (|has| |#1| (-571)) ELT)) (-2539 (((-3 (-630 $) "failed") $) 18 T ELT) (((-3 (-1207) "failed") $) NIL T ELT) (((-3 |#1| "failed") $) 441 T ELT) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-571)) (|has| |#1| (-1069 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-975 |#1|)) "failed") $) NIL (|has| |#1| (-571)) ELT) (((-3 (-975 |#1|) "failed") $) NIL (|has| |#1| (-1080)) ELT) (((-3 (-421 (-560)) "failed") $) 46 (-2304 (-12 (|has| |#1| (-571)) (|has| |#1| (-1069 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-3330 (((-630 $) $) 12 T ELT) (((-1207) $) NIL T ELT) ((|#1| $) 421 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-571)) (|has| |#1| (-1069 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-975 |#1|)) $) NIL (|has| |#1| (-571)) ELT) (((-975 |#1|) $) NIL (|has| |#1| (-1080)) ELT) (((-421 (-560)) $) 319 (-2304 (-12 (|has| |#1| (-571)) (|has| |#1| (-1069 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-1478 (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-3142 (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 125 (|has| |#1| (-1080)) ELT) (((-711 |#1|) (-711 $)) 115 (|has| |#1| (-1080)) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ELT) (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ELT)) (-4129 (($ $) 96 (|has| |#1| (-571)) ELT)) (-1990 (((-3 $ "failed") $) NIL (|has| |#1| (-1143)) ELT)) (-1490 (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-1480 (($ $ (-1123 $)) 236 (|has| |#1| (-571)) ELT) (($ $ (-1207)) 234 (|has| |#1| (-571)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL (|has| |#1| (-571)) ELT)) (-4330 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-1995 (($ $ $) 202 (|has| |#1| (-571)) ELT)) (-3796 (($) 137 (|has| |#1| (-571)) ELT)) (-2708 (($ $ $) 222 (|has| |#1| (-571)) ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 392 (|has| |#1| (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 399 (|has| |#1| (-911 (-391))) ELT)) (-2753 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2943 (((-663 (-115)) $) NIL T ELT)) (-4399 (((-115) (-115)) 276 T ELT)) (-1581 (((-114) $) 25 (|has| |#1| (-1143)) ELT)) (-3612 (((-114) $) NIL (|has| $ (-1069 (-560))) ELT)) (-1617 (($ $) 72 (|has| |#1| (-1080)) ELT)) (-3757 (((-1156 |#1| (-630 $)) $) 91 (|has| |#1| (-1080)) ELT)) (-3800 (((-114) $) 62 (|has| |#1| (-571)) ELT)) (-2146 (($ $ (-560)) NIL (|has| |#1| (-571)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-571)) ELT)) (-3872 (((-1201 $) (-630 $)) 277 (|has| $ (-1080)) ELT)) (-3957 (($ (-1 $ $) (-630 $)) 426 T ELT)) (-3005 (((-3 (-630 $) "failed") $) NIL T ELT)) (-2192 (($ $) 141 (|has| |#1| (-571)) ELT)) (-2344 (($ $) 247 (|has| |#1| (-571)) ELT)) (-2484 (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL (|has| |#1| (-1080)) ELT) (((-711 |#1|) (-1297 $)) NIL (|has| |#1| (-1080)) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ELT) (((-711 (-560)) (-1297 $)) NIL (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ELT)) (-2093 (($ (-663 $)) NIL (|has| |#1| (-571)) ELT) (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-4385 (((-663 (-630 $)) $) 49 T ELT)) (-2036 (($ (-115) $) NIL T ELT) (($ (-115) (-663 $)) 431 T ELT)) (-3479 (((-3 (-663 $) "failed") $) NIL (|has| |#1| (-1143)) ELT)) (-3436 (((-3 (-2 (|:| |val| $) (|:| -3205 (-560))) "failed") $) NIL (|has| |#1| (-1080)) ELT)) (-2590 (((-3 (-663 $) "failed") $) 436 (|has| |#1| (-25)) ELT)) (-3495 (((-3 (-2 (|:| -2115 (-560)) (|:| |var| (-630 $))) "failed") $) 440 (|has| |#1| (-25)) ELT)) (-3683 (((-3 (-2 (|:| |var| (-630 $)) (|:| -3205 (-560))) "failed") $) NIL (|has| |#1| (-1143)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -3205 (-560))) "failed") $ (-115)) NIL (|has| |#1| (-1080)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -3205 (-560))) "failed") $ (-1207)) NIL (|has| |#1| (-1080)) ELT)) (-2784 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1207)) 51 T ELT)) (-1544 (($ $) NIL (-2304 (|has| |#1| (-487)) (|has| |#1| (-571))) ELT)) (-2811 (($ $ (-1207)) 251 (|has| |#1| (-571)) ELT) (($ $ (-1123 $)) 253 (|has| |#1| (-571)) ELT)) (-2107 (((-793) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1554 (((-114) $) 43 T ELT)) (-1566 ((|#1| $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 301 (|has| |#1| (-571)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#1| (-571)) ELT) (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-3883 (((-114) $ $) NIL T ELT) (((-114) $ (-1207)) NIL T ELT)) (-2947 (($ $ (-1207)) 226 (|has| |#1| (-571)) ELT) (($ $) 224 (|has| |#1| (-571)) ELT)) (-1559 (($ $) 218 (|has| |#1| (-571)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) 306 (-12 (|has| |#1| (-466)) (|has| |#1| (-571))) ELT)) (-4457 (((-419 $) $) NIL (|has| |#1| (-571)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-571)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-1528 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-571)) ELT)) (-3251 (($ $) 139 (|has| |#1| (-571)) ELT)) (-1737 (((-114) $) NIL (|has| $ (-1069 (-560))) ELT)) (-4187 (($ $ (-630 $) $) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) 425 T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-1207) (-1 $ (-663 $))) NIL T ELT) (($ $ (-1207) (-1 $ $)) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) 379 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-663 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-633 (-549))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-633 (-549))) ELT) (($ $) NIL (|has| |#1| (-633 (-549))) ELT) (($ $ (-115) $ (-1207)) 366 (|has| |#1| (-633 (-549))) ELT) (($ $ (-663 (-115)) (-663 $) (-1207)) 365 (|has| |#1| (-633 (-549))) ELT) (($ $ (-663 (-1207)) (-663 (-793)) (-663 (-1 $ $))) NIL (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793)) (-663 (-1 $ (-663 $)))) NIL (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793) (-1 $ (-663 $))) NIL (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793) (-1 $ $)) NIL (|has| |#1| (-1080)) ELT)) (-2901 (((-793) $) NIL (|has| |#1| (-571)) ELT)) (-3387 (($ $) 239 (|has| |#1| (-571)) ELT)) (-3924 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-663 $)) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-3690 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3419 (($ $) 249 (|has| |#1| (-571)) ELT)) (-3397 (($ $) 200 (|has| |#1| (-571)) ELT)) (-2894 (($ $ (-1207)) NIL (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-1080)) ELT)) (-3056 (($ $) 74 (|has| |#1| (-571)) ELT)) (-3771 (((-1156 |#1| (-630 $)) $) 93 (|has| |#1| (-571)) ELT)) (-4394 (($ $) 317 (|has| $ (-1080)) ELT)) (-4373 (($ $) 177 (|has| |#1| (-571)) ELT)) (-3488 (($ $) 153 (|has| |#1| (-571)) ELT)) (-4352 (($ $) 173 (|has| |#1| (-571)) ELT)) (-3466 (($ $) 149 (|has| |#1| (-571)) ELT)) (-4325 (($ $) 169 (|has| |#1| (-571)) ELT)) (-3443 (($ $) 145 (|has| |#1| (-571)) ELT)) (-1407 (((-915 (-560)) $) NIL (|has| |#1| (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) NIL (|has| |#1| (-633 (-915 (-391)))) ELT) (($ (-419 $)) NIL (|has| |#1| (-571)) ELT) (((-549) $) 363 (|has| |#1| (-633 (-549))) ELT)) (-4122 (($ $ $) NIL (|has| |#1| (-487)) ELT)) (-2013 (($ $ $) NIL (|has| |#1| (-487)) ELT)) (-1578 (((-887) $) 424 T ELT) (($ (-630 $)) 415 T ELT) (($ (-1207)) 381 T ELT) (($ |#1|) 337 T ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ (-48)) 312 (-12 (|has| |#1| (-571)) (|has| |#1| (-1069 (-560)))) ELT) (($ (-1156 |#1| (-630 $))) 95 (|has| |#1| (-1080)) ELT) (($ (-421 |#1|)) NIL (|has| |#1| (-571)) ELT) (($ (-975 (-421 |#1|))) NIL (|has| |#1| (-571)) ELT) (($ (-421 (-975 (-421 |#1|)))) NIL (|has| |#1| (-571)) ELT) (($ (-421 (-975 |#1|))) NIL (|has| |#1| (-571)) ELT) (($ (-975 |#1|)) NIL (|has| |#1| (-1080)) ELT) (($ (-560)) 34 (-2304 (|has| |#1| (-1069 (-560))) (|has| |#1| (-1080))) ELT) (($ (-421 (-560))) NIL (-2304 (|has| |#1| (-571)) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-1964 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-2930 (((-793)) NIL (|has| |#1| (-1080)) CONST)) (-3579 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3271 (($ $ $) 220 (|has| |#1| (-571)) ELT)) (-3366 (($ $ $) 206 (|has| |#1| (-571)) ELT)) (-3067 (($ $ $) 210 (|has| |#1| (-571)) ELT)) (-2483 (($ $ $) 204 (|has| |#1| (-571)) ELT)) (-4308 (($ $ $) 208 (|has| |#1| (-571)) ELT)) (-1840 (((-114) (-115)) 10 T ELT)) (-2275 (((-114) $ $) 86 T ELT)) (-4411 (($ $) 183 (|has| |#1| (-571)) ELT)) (-4263 (($ $) 159 (|has| |#1| (-571)) ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4387 (($ $) 179 (|has| |#1| (-571)) ELT)) (-3499 (($ $) 155 (|has| |#1| (-571)) ELT)) (-4438 (($ $) 187 (|has| |#1| (-571)) ELT)) (-4287 (($ $) 163 (|has| |#1| (-571)) ELT)) (-4472 (($ (-1207) $) NIL T ELT) (($ (-1207) $ $) NIL T ELT) (($ (-1207) $ $ $) NIL T ELT) (($ (-1207) $ $ $ $) NIL T ELT) (($ (-1207) (-663 $)) NIL T ELT)) (-2018 (($ $) 214 (|has| |#1| (-571)) ELT)) (-3621 (($ $) 212 (|has| |#1| (-571)) ELT)) (-3837 (($ $) 189 (|has| |#1| (-571)) ELT)) (-4302 (($ $) 165 (|has| |#1| (-571)) ELT)) (-4423 (($ $) 185 (|has| |#1| (-571)) ELT)) (-4275 (($ $) 161 (|has| |#1| (-571)) ELT)) (-4398 (($ $) 181 (|has| |#1| (-571)) ELT)) (-4252 (($ $) 157 (|has| |#1| (-571)) ELT)) (-2282 (($ $) 192 (|has| |#1| (-571)) ELT)) (-2001 (($) 21 (-2304 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) CONST)) (-1408 (($ $) 243 (|has| |#1| (-571)) ELT)) (-2011 (($) 23 (|has| |#1| (-1143)) CONST)) (-1491 (($ $) 194 (|has| |#1| (-571)) ELT) (($ $ $) 196 (|has| |#1| (-571)) ELT)) (-2234 (($ $) 241 (|has| |#1| (-571)) ELT)) (-3305 (($ $ (-1207)) NIL (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-1080)) ELT)) (-2627 (($ $) 245 (|has| |#1| (-571)) ELT)) (-4374 (($ $ $) 198 (|has| |#1| (-571)) ELT)) (-2473 (((-114) $ $) 88 T ELT)) (-2594 (($ (-1156 |#1| (-630 $)) (-1156 |#1| (-630 $))) 106 (|has| |#1| (-571)) ELT) (($ $ $) 42 (-2304 (|has| |#1| (-487)) (|has| |#1| (-571))) ELT)) (-2580 (($ $ $) 40 (-2304 (|has| |#1| (-21)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT) (($ $) 29 (-2304 (|has| |#1| (-21)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT)) (-2567 (($ $ $) 38 (-2304 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT)) (** (($ $ $) 64 (|has| |#1| (-571)) ELT) (($ $ (-421 (-560))) 314 (|has| |#1| (-571)) ELT) (($ $ (-560)) 80 (-2304 (|has| |#1| (-487)) (|has| |#1| (-571))) ELT) (($ $ (-793)) 75 (|has| |#1| (-1143)) ELT) (($ $ (-948)) 84 (|has| |#1| (-1143)) ELT)) (* (($ (-421 (-560)) $) NIL (|has| |#1| (-571)) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-571)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT) (($ |#1| $) NIL (|has| |#1| (-1080)) ELT) (($ $ $) 36 (|has| |#1| (-1143)) ELT) (($ (-560) $) 32 (-2304 (|has| |#1| (-21)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT) (($ (-793) $) NIL (-2304 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT) (($ (-948) $) NIL (-2304 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT)))
-(((-326 |#1|) (-13 (-435 |#1|) (-10 -8 (IF (|has| |#1| (-571)) (PROGN (-6 (-29 |#1|)) (-6 (-1233)) (-6 (-162)) (-6 (-649)) (-6 (-1170)) (-15 -4129 ($ $)) (-15 -3800 ((-114) $)) (-15 -1542 ($ $ (-560))) (IF (|has| |#1| (-466)) (PROGN (-15 -1960 ((-419 (-1201 $)) (-1201 $))) (-15 -2704 ((-419 (-1201 $)) (-1201 $)))) |%noBranch|) (IF (|has| |#1| (-1069 (-560))) (-6 (-1069 (-48))) |%noBranch|)) |%noBranch|))) (-1132)) (T -326))
-((-4129 (*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-571)) (-4 *2 (-1132)))) (-3800 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-326 *3)) (-4 *3 (-571)) (-4 *3 (-1132)))) (-1542 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-326 *3)) (-4 *3 (-571)) (-4 *3 (-1132)))) (-1960 (*1 *2 *3) (-12 (-5 *2 (-419 (-1201 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1201 *1)) (-4 *4 (-466)) (-4 *4 (-571)) (-4 *4 (-1132)))) (-2704 (*1 *2 *3) (-12 (-5 *2 (-419 (-1201 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1201 *1)) (-4 *4 (-466)) (-4 *4 (-571)) (-4 *4 (-1132)))))
-(-13 (-435 |#1|) (-10 -8 (IF (|has| |#1| (-571)) (PROGN (-6 (-29 |#1|)) (-6 (-1233)) (-6 (-162)) (-6 (-649)) (-6 (-1170)) (-15 -4129 ($ $)) (-15 -3800 ((-114) $)) (-15 -1542 ($ $ (-560))) (IF (|has| |#1| (-466)) (PROGN (-15 -1960 ((-419 (-1201 $)) (-1201 $))) (-15 -2704 ((-419 (-1201 $)) (-1201 $)))) |%noBranch|) (IF (|has| |#1| (-1069 (-560))) (-6 (-1069 (-48))) |%noBranch|)) |%noBranch|)))
-((-3957 (((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)) 13 T ELT)))
-(((-327 |#1| |#2|) (-10 -7 (-15 -3957 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) (-1132) (-1132)) (T -327))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *2 (-326 *6)) (-5 *1 (-327 *5 *6)))))
-(-10 -7 (-15 -3957 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|))))
-((-1496 (((-51) |#2| (-305 |#2|) (-793)) 40 T ELT) (((-51) |#2| (-305 |#2|)) 32 T ELT) (((-51) |#2| (-793)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1207)) 26 T ELT)) (-3781 (((-51) |#2| (-305 |#2|) (-421 (-560))) 59 T ELT) (((-51) |#2| (-305 |#2|)) 56 T ELT) (((-51) |#2| (-421 (-560))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1207)) 55 T ELT)) (-1519 (((-51) |#2| (-305 |#2|) (-421 (-560))) 54 T ELT) (((-51) |#2| (-305 |#2|)) 51 T ELT) (((-51) |#2| (-421 (-560))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1207)) 50 T ELT)) (-1507 (((-51) |#2| (-305 |#2|) (-560)) 47 T ELT) (((-51) |#2| (-305 |#2|)) 44 T ELT) (((-51) |#2| (-560)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1207)) 43 T ELT)))
-(((-328 |#1| |#2|) (-10 -7 (-15 -1496 ((-51) (-1207))) (-15 -1496 ((-51) |#2|)) (-15 -1496 ((-51) |#2| (-793))) (-15 -1496 ((-51) |#2| (-305 |#2|))) (-15 -1496 ((-51) |#2| (-305 |#2|) (-793))) (-15 -1507 ((-51) (-1207))) (-15 -1507 ((-51) |#2|)) (-15 -1507 ((-51) |#2| (-560))) (-15 -1507 ((-51) |#2| (-305 |#2|))) (-15 -1507 ((-51) |#2| (-305 |#2|) (-560))) (-15 -1519 ((-51) (-1207))) (-15 -1519 ((-51) |#2|)) (-15 -1519 ((-51) |#2| (-421 (-560)))) (-15 -1519 ((-51) |#2| (-305 |#2|))) (-15 -1519 ((-51) |#2| (-305 |#2|) (-421 (-560)))) (-15 -3781 ((-51) (-1207))) (-15 -3781 ((-51) |#2|)) (-15 -3781 ((-51) |#2| (-421 (-560)))) (-15 -3781 ((-51) |#2| (-305 |#2|))) (-15 -3781 ((-51) |#2| (-305 |#2|) (-421 (-560))))) (-13 (-466) (-1069 (-560)) (-660 (-560))) (-13 (-27) (-1233) (-435 |#1|))) (T -328))
-((-3781 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-421 (-560))) (-4 *3 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-3781 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-3781 (*1 *2 *3 *4) (-12 (-5 *4 (-421 (-560))) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))) (-3781 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4))))) (-3781 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-435 *4))))) (-1519 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-421 (-560))) (-4 *3 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-1519 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-1519 (*1 *2 *3 *4) (-12 (-5 *4 (-421 (-560))) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))) (-1519 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4))))) (-1519 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-435 *4))))) (-1507 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-466) (-1069 *5) (-660 *5))) (-5 *5 (-560)) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-1507 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-1507 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *5 (-13 (-466) (-1069 *4) (-660 *4))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))) (-1507 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4))))) (-1507 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-435 *4))))) (-1496 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-793)) (-4 *3 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-1496 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-1496 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))) (-1496 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4))))) (-1496 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-435 *4))))))
-(-10 -7 (-15 -1496 ((-51) (-1207))) (-15 -1496 ((-51) |#2|)) (-15 -1496 ((-51) |#2| (-793))) (-15 -1496 ((-51) |#2| (-305 |#2|))) (-15 -1496 ((-51) |#2| (-305 |#2|) (-793))) (-15 -1507 ((-51) (-1207))) (-15 -1507 ((-51) |#2|)) (-15 -1507 ((-51) |#2| (-560))) (-15 -1507 ((-51) |#2| (-305 |#2|))) (-15 -1507 ((-51) |#2| (-305 |#2|) (-560))) (-15 -1519 ((-51) (-1207))) (-15 -1519 ((-51) |#2|)) (-15 -1519 ((-51) |#2| (-421 (-560)))) (-15 -1519 ((-51) |#2| (-305 |#2|))) (-15 -1519 ((-51) |#2| (-305 |#2|) (-421 (-560)))) (-15 -3781 ((-51) (-1207))) (-15 -3781 ((-51) |#2|)) (-15 -3781 ((-51) |#2| (-421 (-560)))) (-15 -3781 ((-51) |#2| (-305 |#2|))) (-15 -3781 ((-51) |#2| (-305 |#2|) (-421 (-560)))))
-((-3410 (((-51) |#2| (-115) (-305 |#2|) (-663 |#2|)) 89 T ELT) (((-51) |#2| (-115) (-305 |#2|) (-305 |#2|)) 85 T ELT) (((-51) |#2| (-115) (-305 |#2|) |#2|) 87 T ELT) (((-51) (-305 |#2|) (-115) (-305 |#2|) |#2|) 88 T ELT) (((-51) (-663 |#2|) (-663 (-115)) (-305 |#2|) (-663 (-305 |#2|))) 81 T ELT) (((-51) (-663 |#2|) (-663 (-115)) (-305 |#2|) (-663 |#2|)) 83 T ELT) (((-51) (-663 (-305 |#2|)) (-663 (-115)) (-305 |#2|) (-663 |#2|)) 84 T ELT) (((-51) (-663 (-305 |#2|)) (-663 (-115)) (-305 |#2|) (-663 (-305 |#2|))) 82 T ELT) (((-51) (-305 |#2|) (-115) (-305 |#2|) (-663 |#2|)) 90 T ELT) (((-51) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|)) 86 T ELT)))
-(((-329 |#1| |#2|) (-10 -7 (-15 -3410 ((-51) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|))) (-15 -3410 ((-51) (-305 |#2|) (-115) (-305 |#2|) (-663 |#2|))) (-15 -3410 ((-51) (-663 (-305 |#2|)) (-663 (-115)) (-305 |#2|) (-663 (-305 |#2|)))) (-15 -3410 ((-51) (-663 (-305 |#2|)) (-663 (-115)) (-305 |#2|) (-663 |#2|))) (-15 -3410 ((-51) (-663 |#2|) (-663 (-115)) (-305 |#2|) (-663 |#2|))) (-15 -3410 ((-51) (-663 |#2|) (-663 (-115)) (-305 |#2|) (-663 (-305 |#2|)))) (-15 -3410 ((-51) (-305 |#2|) (-115) (-305 |#2|) |#2|)) (-15 -3410 ((-51) |#2| (-115) (-305 |#2|) |#2|)) (-15 -3410 ((-51) |#2| (-115) (-305 |#2|) (-305 |#2|))) (-15 -3410 ((-51) |#2| (-115) (-305 |#2|) (-663 |#2|)))) (-13 (-571) (-633 (-549))) (-435 |#1|)) (T -329))
-((-3410 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-5 *6 (-663 *3)) (-4 *3 (-435 *7)) (-4 *7 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *3)))) (-3410 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) (-3410 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) (-3410 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *5)) (-5 *4 (-115)) (-4 *5 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *5)))) (-3410 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 (-115))) (-5 *6 (-663 (-305 *8))) (-4 *8 (-435 *7)) (-5 *5 (-305 *8)) (-4 *7 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *8)))) (-3410 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-663 *7)) (-5 *4 (-663 (-115))) (-5 *5 (-305 *7)) (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) (-3410 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-663 (-305 *8))) (-5 *4 (-663 (-115))) (-5 *5 (-305 *8)) (-5 *6 (-663 *8)) (-4 *8 (-435 *7)) (-4 *7 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *8)))) (-3410 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-663 (-305 *7))) (-5 *4 (-663 (-115))) (-5 *5 (-305 *7)) (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) (-3410 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-663 *7)) (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) (-3410 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-305 *6)) (-5 *4 (-115)) (-4 *6 (-435 *5)) (-4 *5 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *5 *6)))))
-(-10 -7 (-15 -3410 ((-51) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|))) (-15 -3410 ((-51) (-305 |#2|) (-115) (-305 |#2|) (-663 |#2|))) (-15 -3410 ((-51) (-663 (-305 |#2|)) (-663 (-115)) (-305 |#2|) (-663 (-305 |#2|)))) (-15 -3410 ((-51) (-663 (-305 |#2|)) (-663 (-115)) (-305 |#2|) (-663 |#2|))) (-15 -3410 ((-51) (-663 |#2|) (-663 (-115)) (-305 |#2|) (-663 |#2|))) (-15 -3410 ((-51) (-663 |#2|) (-663 (-115)) (-305 |#2|) (-663 (-305 |#2|)))) (-15 -3410 ((-51) (-305 |#2|) (-115) (-305 |#2|) |#2|)) (-15 -3410 ((-51) |#2| (-115) (-305 |#2|) |#2|)) (-15 -3410 ((-51) |#2| (-115) (-305 |#2|) (-305 |#2|))) (-15 -3410 ((-51) |#2| (-115) (-305 |#2|) (-663 |#2|))))
-((-4123 (((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-229) (-560) (-1189)) 67 T ELT) (((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-229) (-560)) 68 T ELT) (((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-1 (-229) (-229)) (-560) (-1189)) 64 T ELT) (((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-1 (-229) (-229)) (-560)) 65 T ELT)) (-1818 (((-1 (-229) (-229)) (-229)) 66 T ELT)))
-(((-330) (-10 -7 (-15 -1818 ((-1 (-229) (-229)) (-229))) (-15 -4123 ((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-1 (-229) (-229)) (-560))) (-15 -4123 ((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-1 (-229) (-229)) (-560) (-1189))) (-15 -4123 ((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-229) (-560))) (-15 -4123 ((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-229) (-560) (-1189))))) (T -330))
-((-4123 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1120 (-229))) (-5 *6 (-229)) (-5 *7 (-560)) (-5 *8 (-1189)) (-5 *2 (-1243 (-956))) (-5 *1 (-330)))) (-4123 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1120 (-229))) (-5 *6 (-229)) (-5 *7 (-560)) (-5 *2 (-1243 (-956))) (-5 *1 (-330)))) (-4123 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1120 (-229))) (-5 *6 (-560)) (-5 *7 (-1189)) (-5 *2 (-1243 (-956))) (-5 *1 (-330)))) (-4123 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1120 (-229))) (-5 *6 (-560)) (-5 *2 (-1243 (-956))) (-5 *1 (-330)))) (-1818 (*1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-330)) (-5 *3 (-229)))))
-(-10 -7 (-15 -1818 ((-1 (-229) (-229)) (-229))) (-15 -4123 ((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-1 (-229) (-229)) (-560))) (-15 -4123 ((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-1 (-229) (-229)) (-560) (-1189))) (-15 -4123 ((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-229) (-560))) (-15 -4123 ((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-229) (-560) (-1189))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 26 T ELT)) (-1443 (((-663 (-1113)) $) NIL T ELT)) (-2462 (((-1207) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4267 (($ $ (-421 (-560))) NIL T ELT) (($ $ (-421 (-560)) (-421 (-560))) NIL T ELT)) (-1425 (((-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|))) $) 20 T ELT)) (-4337 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3455 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-4471 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1615 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4313 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3430 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3781 (($ (-793) (-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|)))) NIL T ELT)) (-4363 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2238 (($) NIL T CONST)) (-1478 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1624 (($ $) 36 T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1490 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4330 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-4386 (((-114) $) NIL T ELT)) (-3796 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3913 (((-421 (-560)) $) NIL T ELT) (((-421 (-560)) $ (-421 (-560))) 16 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-2146 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3022 (($ $ (-948)) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-421 (-560))) NIL T ELT) (($ $ (-1113) (-421 (-560))) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-421 (-560)))) NIL T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2192 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2518 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| |#1| (-15 -2518 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -1443 ((-663 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-989)) (|has| |#1| (-1233)))) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4457 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4372 (($ $ (-421 (-560))) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1455 (((-421 (-560)) $) 17 T ELT)) (-3442 (($ (-1278 |#1| |#2| |#3|)) 11 T ELT)) (-3205 (((-1278 |#1| |#2| |#3|) $) 12 T ELT)) (-3251 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4187 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) ELT)) (-2901 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-3924 ((|#1| $ (-421 (-560))) NIL T ELT) (($ $ $) NIL (|has| (-421 (-560)) (-1143)) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2894 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-3630 (((-421 (-560)) $) NIL T ELT)) (-4373 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4352 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3466 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4325 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3443 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3266 (($ $) 10 T ELT)) (-1578 (((-887) $) 42 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-2305 ((|#1| $ (-421 (-560))) 34 T ELT)) (-1964 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-2930 (((-793)) NIL T CONST)) (-3355 ((|#1| $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-4411 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4263 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4387 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4438 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4287 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2239 ((|#1| $ (-421 (-560))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) (|has| |#1| (-15 -1578 (|#1| (-1207))))) ELT)) (-3837 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4302 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4423 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4275 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4398 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4252 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 28 T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 37 T ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
-(((-331 |#1| |#2| |#3|) (-13 (-1280 |#1|) (-814) (-10 -8 (-15 -3442 ($ (-1278 |#1| |#2| |#3|))) (-15 -3205 ((-1278 |#1| |#2| |#3|) $)) (-15 -1455 ((-421 (-560)) $)))) (-376) (-1207) |#1|) (T -331))
-((-3442 (*1 *1 *2) (-12 (-5 *2 (-1278 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1207)) (-14 *5 *3) (-5 *1 (-331 *3 *4 *5)))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-1278 *3 *4 *5)) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1207)) (-14 *5 *3))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1207)) (-14 *5 *3))))
-(-13 (-1280 |#1|) (-814) (-10 -8 (-15 -3442 ($ (-1278 |#1| |#2| |#3|))) (-15 -3205 ((-1278 |#1| |#2| |#3|) $)) (-15 -1455 ((-421 (-560)) $))))
-((-2146 (((-2 (|:| -3205 (-793)) (|:| -2115 |#1|) (|:| |radicand| (-663 |#1|))) (-419 |#1|) (-793)) 35 T ELT)) (-2192 (((-663 (-2 (|:| -2115 (-793)) (|:| |logand| |#1|))) (-419 |#1|)) 40 T ELT)))
-(((-332 |#1|) (-10 -7 (-15 -2146 ((-2 (|:| -3205 (-793)) (|:| -2115 |#1|) (|:| |radicand| (-663 |#1|))) (-419 |#1|) (-793))) (-15 -2192 ((-663 (-2 (|:| -2115 (-793)) (|:| |logand| |#1|))) (-419 |#1|)))) (-571)) (T -332))
-((-2192 (*1 *2 *3) (-12 (-5 *3 (-419 *4)) (-4 *4 (-571)) (-5 *2 (-663 (-2 (|:| -2115 (-793)) (|:| |logand| *4)))) (-5 *1 (-332 *4)))) (-2146 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *5)) (-4 *5 (-571)) (-5 *2 (-2 (|:| -3205 (-793)) (|:| -2115 *5) (|:| |radicand| (-663 *5)))) (-5 *1 (-332 *5)) (-5 *4 (-793)))))
-(-10 -7 (-15 -2146 ((-2 (|:| -3205 (-793)) (|:| -2115 |#1|) (|:| |radicand| (-663 |#1|))) (-419 |#1|) (-793))) (-15 -2192 ((-663 (-2 (|:| -2115 (-793)) (|:| |logand| |#1|))) (-419 |#1|))))
-((-1443 (((-663 |#2|) (-1201 |#4|)) 44 T ELT)) (-1923 ((|#3| (-560)) 47 T ELT)) (-1764 (((-1201 |#4|) (-1201 |#3|)) 30 T ELT)) (-2019 (((-1201 |#4|) (-1201 |#4|) (-560)) 66 T ELT)) (-1886 (((-1201 |#3|) (-1201 |#4|)) 21 T ELT)) (-3630 (((-663 (-793)) (-1201 |#4|) (-663 |#2|)) 41 T ELT)) (-3318 (((-1201 |#3|) (-1201 |#4|) (-663 |#2|) (-663 |#3|)) 35 T ELT)))
-(((-333 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3318 ((-1201 |#3|) (-1201 |#4|) (-663 |#2|) (-663 |#3|))) (-15 -3630 ((-663 (-793)) (-1201 |#4|) (-663 |#2|))) (-15 -1443 ((-663 |#2|) (-1201 |#4|))) (-15 -1886 ((-1201 |#3|) (-1201 |#4|))) (-15 -1764 ((-1201 |#4|) (-1201 |#3|))) (-15 -2019 ((-1201 |#4|) (-1201 |#4|) (-560))) (-15 -1923 (|#3| (-560)))) (-815) (-871) (-1080) (-979 |#3| |#1| |#2|)) (T -333))
-((-1923 (*1 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1080)) (-5 *1 (-333 *4 *5 *2 *6)) (-4 *6 (-979 *2 *4 *5)))) (-2019 (*1 *2 *2 *3) (-12 (-5 *2 (-1201 *7)) (-5 *3 (-560)) (-4 *7 (-979 *6 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-5 *1 (-333 *4 *5 *6 *7)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-1201 *6)) (-4 *6 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-1201 *7)) (-5 *1 (-333 *4 *5 *6 *7)) (-4 *7 (-979 *6 *4 *5)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-1201 *7)) (-4 *7 (-979 *6 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-5 *2 (-1201 *6)) (-5 *1 (-333 *4 *5 *6 *7)))) (-1443 (*1 *2 *3) (-12 (-5 *3 (-1201 *7)) (-4 *7 (-979 *6 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-5 *2 (-663 *5)) (-5 *1 (-333 *4 *5 *6 *7)))) (-3630 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 *8)) (-5 *4 (-663 *6)) (-4 *6 (-871)) (-4 *8 (-979 *7 *5 *6)) (-4 *5 (-815)) (-4 *7 (-1080)) (-5 *2 (-663 (-793))) (-5 *1 (-333 *5 *6 *7 *8)))) (-3318 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1201 *9)) (-5 *4 (-663 *7)) (-5 *5 (-663 *8)) (-4 *7 (-871)) (-4 *8 (-1080)) (-4 *9 (-979 *8 *6 *7)) (-4 *6 (-815)) (-5 *2 (-1201 *8)) (-5 *1 (-333 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3318 ((-1201 |#3|) (-1201 |#4|) (-663 |#2|) (-663 |#3|))) (-15 -3630 ((-663 (-793)) (-1201 |#4|) (-663 |#2|))) (-15 -1443 ((-663 |#2|) (-1201 |#4|))) (-15 -1886 ((-1201 |#3|) (-1201 |#4|))) (-15 -1764 ((-1201 |#4|) (-1201 |#3|))) (-15 -2019 ((-1201 |#4|) (-1201 |#4|) (-560))) (-15 -1923 (|#3| (-560))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 19 T ELT)) (-1425 (((-663 (-2 (|:| |gen| |#1|) (|:| -3251 (-560)))) $) 21 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-3241 (((-793) $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT)) (-2461 ((|#1| $ (-560)) NIL T ELT)) (-3122 (((-560) $ (-560)) NIL T ELT)) (-3825 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-1942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4180 (($ (-1 (-560) (-560)) $) 11 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2386 (($ $ $) NIL (|has| (-560) (-814)) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-2305 (((-560) |#1| $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2536 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) 29 (|has| |#1| (-871)) ELT)) (-2580 (($ $) 12 T ELT) (($ $ $) 28 T ELT)) (-2567 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ (-560)) NIL T ELT) (($ (-560) |#1|) 27 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-1921 (((-560) $) 12 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4465 (((-1166) $) 9 T ELT)) (-3913 (((-887) $) 19 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-324) (-13 (-1114) (-10 -8 (-15 -4465 ((-1166) $)) (-15 -1921 ((-560) $))))) (T -324))
+((-4465 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-324)))) (-1921 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-324)))))
+(-13 (-1114) (-10 -8 (-15 -4465 ((-1166) $)) (-15 -1921 ((-560) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 60 T ELT)) (-3655 (((-1284 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-319)) ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-939)) ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-939)) ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-1869 (((-560) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-842)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-1284 |#1| |#2| |#3| |#4|) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1069 (-1207))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1069 (-560))) ELT) (((-3 (-560) "failed") $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1069 (-560))) ELT) (((-3 (-1278 |#2| |#3| |#4|) "failed") $) 26 T ELT)) (-3649 (((-1284 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1207) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1069 (-1207))) ELT) (((-421 (-560)) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1069 (-560))) ELT) (((-560) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1069 (-560))) ELT) (((-1278 |#2| |#3| |#4|) $) NIL T ELT)) (-2186 (($ $ $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-1284 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1297 (-1284 |#1| |#2| |#3| |#4|)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-1284 |#1| |#2| |#3| |#4|)) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1812 (($) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-559)) ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-4172 (((-114) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-842)) ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-911 (-391))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-3490 (($ $) NIL T ELT)) (-2473 (((-1284 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1182)) ELT)) (-4470 (((-114) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-842)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2932 (($ $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-871)) ELT)) (-2260 (($ (-1 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-1478 (((-3 (-864 |#2|) "failed") $) 80 T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-1284 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1297 (-1284 |#1| |#2| |#3| |#4|)))) (-1297 $) $) NIL T ELT) (((-711 (-1284 |#1| |#2| |#3| |#4|)) (-1297 $)) NIL T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3239 (($) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1182)) CONST)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3211 (($ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-319)) ELT)) (-3147 (((-1284 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-559)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-939)) ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2371 (($ $ (-663 (-1284 |#1| |#2| |#3| |#4|)) (-663 (-1284 |#1| |#2| |#3| |#4|))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-321 (-1284 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-321 (-1284 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-305 (-1284 |#1| |#2| |#3| |#4|))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-321 (-1284 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-663 (-305 (-1284 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-321 (-1284 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-663 (-1207)) (-663 (-1284 |#1| |#2| |#3| |#4|))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-528 (-1207) (-1284 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1207) (-1284 |#1| |#2| |#3| |#4|)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-528 (-1207) (-1284 |#1| |#2| |#3| |#4|))) ELT)) (-3989 (((-793) $) NIL T ELT)) (-1507 (($ $ (-1284 |#1| |#2| |#3| |#4|)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-298 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|))) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3161 (($ $ (-1 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-239)) ELT)) (-2951 (($ $) NIL T ELT)) (-2484 (((-1284 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-2400 (((-915 (-560)) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-633 (-915 (-391)))) ELT) (((-549) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-633 (-549))) ELT) (((-391) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1051)) ELT) (((-229) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1051)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-1284 |#1| |#2| |#3| |#4|) (-939))) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-1284 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1207)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-1069 (-1207))) ELT) (($ (-1278 |#2| |#3| |#4|)) 37 T ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| (-1284 |#1| |#2| |#3| |#4|) (-939))) (|has| (-1284 |#1| |#2| |#3| |#4|) (-147))) ELT)) (-4191 (((-793)) NIL T CONST)) (-3622 (((-1284 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-559)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-2719 (($ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-842)) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $ (-1 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-929 (-1207))) ELT) (($ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-239)) ELT)) (-2396 (((-114) $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-871)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| (-1284 |#1| |#2| |#3| |#4|) (-871)) ELT)) (-2453 (($ $ $) 35 T ELT) (($ (-1284 |#1| |#2| |#3| |#4|) (-1284 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ (-1284 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1284 |#1| |#2| |#3| |#4|)) NIL T ELT)))
+(((-325 |#1| |#2| |#3| |#4|) (-13 (-1022 (-1284 |#1| |#2| |#3| |#4|)) (-1069 (-1278 |#2| |#3| |#4|)) (-10 -8 (-15 -1478 ((-3 (-864 |#2|) "failed") $)) (-15 -3913 ($ (-1278 |#2| |#3| |#4|))))) (-13 (-1069 (-560)) (-660 (-560)) (-466)) (-13 (-27) (-1233) (-435 |#1|)) (-1207) |#2|) (T -325))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1278 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-435 *3))) (-14 *5 (-1207)) (-14 *6 *4) (-4 *3 (-13 (-1069 (-560)) (-660 (-560)) (-466))) (-5 *1 (-325 *3 *4 *5 *6)))) (-1478 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1069 (-560)) (-660 (-560)) (-466))) (-5 *2 (-864 *4)) (-5 *1 (-325 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-435 *3))) (-14 *5 (-1207)) (-14 *6 *4))))
+(-13 (-1022 (-1284 |#1| |#2| |#3| |#4|)) (-1069 (-1278 |#2| |#3| |#4|)) (-10 -8 (-15 -1478 ((-3 (-864 |#2|) "failed") $)) (-15 -3913 ($ (-1278 |#2| |#3| |#4|)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3964 (((-663 $) $ (-1207)) NIL (|has| |#1| (-571)) ELT) (((-663 $) $) NIL (|has| |#1| (-571)) ELT) (((-663 $) (-1201 $) (-1207)) NIL (|has| |#1| (-571)) ELT) (((-663 $) (-1201 $)) NIL (|has| |#1| (-571)) ELT) (((-663 $) (-975 $)) NIL (|has| |#1| (-571)) ELT)) (-3158 (($ $ (-1207)) NIL (|has| |#1| (-571)) ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ (-1201 $) (-1207)) NIL (|has| |#1| (-571)) ELT) (($ (-1201 $)) NIL (|has| |#1| (-571)) ELT) (($ (-975 $)) NIL (|has| |#1| (-571)) ELT)) (-2505 (((-114) $) 27 (-2196 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT)) (-4162 (((-663 (-1207)) $) 368 T ELT)) (-3981 (((-421 (-1201 $)) $ (-630 $)) NIL (|has| |#1| (-571)) ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3859 (((-663 (-630 $)) $) NIL T ELT)) (-1982 (($ $) 171 (|has| |#1| (-571)) ELT)) (-1832 (($ $) 147 (|has| |#1| (-571)) ELT)) (-2201 (($ $ (-1123 $)) 232 (|has| |#1| (-571)) ELT) (($ $ (-1207)) 228 (|has| |#1| (-571)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL (-2196 (|has| |#1| (-21)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT)) (-2607 (($ $ (-305 $)) NIL T ELT) (($ $ (-663 (-305 $))) 386 T ELT) (($ $ (-663 (-630 $)) (-663 $)) 430 T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) 308 (-12 (|has| |#1| (-466)) (|has| |#1| (-571))) ELT)) (-1621 (($ $) NIL (|has| |#1| (-571)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#1| (-571)) ELT)) (-4021 (($ $) NIL (|has| |#1| (-571)) ELT)) (-3476 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-1958 (($ $) 167 (|has| |#1| (-571)) ELT)) (-1806 (($ $) 143 (|has| |#1| (-571)) ELT)) (-1557 (($ $ (-560)) 73 (|has| |#1| (-571)) ELT)) (-2003 (($ $) 175 (|has| |#1| (-571)) ELT)) (-1856 (($ $) 151 (|has| |#1| (-571)) ELT)) (-3525 (($) NIL (-2196 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) (|has| |#1| (-1143))) CONST)) (-3423 (((-663 $) $ (-1207)) NIL (|has| |#1| (-571)) ELT) (((-663 $) $) NIL (|has| |#1| (-571)) ELT) (((-663 $) (-1201 $) (-1207)) NIL (|has| |#1| (-571)) ELT) (((-663 $) (-1201 $)) NIL (|has| |#1| (-571)) ELT) (((-663 $) (-975 $)) NIL (|has| |#1| (-571)) ELT)) (-3946 (($ $ (-1207)) NIL (|has| |#1| (-571)) ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ (-1201 $) (-1207)) 134 (|has| |#1| (-571)) ELT) (($ (-1201 $)) NIL (|has| |#1| (-571)) ELT) (($ (-975 $)) NIL (|has| |#1| (-571)) ELT)) (-3929 (((-3 (-630 $) "failed") $) 18 T ELT) (((-3 (-1207) "failed") $) NIL T ELT) (((-3 |#1| "failed") $) 441 T ELT) (((-3 (-48) "failed") $) 336 (-12 (|has| |#1| (-571)) (|has| |#1| (-1069 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-975 |#1|)) "failed") $) NIL (|has| |#1| (-571)) ELT) (((-3 (-975 |#1|) "failed") $) NIL (|has| |#1| (-1080)) ELT) (((-3 (-421 (-560)) "failed") $) 46 (-2196 (-12 (|has| |#1| (-571)) (|has| |#1| (-1069 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-3649 (((-630 $) $) 12 T ELT) (((-1207) $) NIL T ELT) ((|#1| $) 421 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-571)) (|has| |#1| (-1069 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-975 |#1|)) $) NIL (|has| |#1| (-571)) ELT) (((-975 |#1|) $) NIL (|has| |#1| (-1080)) ELT) (((-421 (-560)) $) 319 (-2196 (-12 (|has| |#1| (-571)) (|has| |#1| (-1069 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-2186 (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-2619 (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 125 (|has| |#1| (-1080)) ELT) (((-711 |#1|) (-711 $)) 115 (|has| |#1| (-1080)) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ELT) (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ELT)) (-1778 (($ $) 96 (|has| |#1| (-571)) ELT)) (-2873 (((-3 $ "failed") $) NIL (|has| |#1| (-1143)) ELT)) (-2197 (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-1866 (($ $ (-1123 $)) 236 (|has| |#1| (-571)) ELT) (($ $ (-1207)) 234 (|has| |#1| (-571)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL (|has| |#1| (-571)) ELT)) (-3141 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-2924 (($ $ $) 202 (|has| |#1| (-571)) ELT)) (-2503 (($) 137 (|has| |#1| (-571)) ELT)) (-2534 (($ $ $) 222 (|has| |#1| (-571)) ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 392 (|has| |#1| (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 399 (|has| |#1| (-911 (-391))) ELT)) (-1740 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-4318 (((-663 (-115)) $) NIL T ELT)) (-3963 (((-115) (-115)) 276 T ELT)) (-1918 (((-114) $) 25 (|has| |#1| (-1143)) ELT)) (-3729 (((-114) $) NIL (|has| $ (-1069 (-560))) ELT)) (-3490 (($ $) 72 (|has| |#1| (-1080)) ELT)) (-2473 (((-1156 |#1| (-630 $)) $) 91 (|has| |#1| (-1080)) ELT)) (-1654 (((-114) $) 62 (|has| |#1| (-571)) ELT)) (-1956 (($ $ (-560)) NIL (|has| |#1| (-571)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-571)) ELT)) (-4250 (((-1201 $) (-630 $)) 277 (|has| $ (-1080)) ELT)) (-2260 (($ (-1 $ $) (-630 $)) 426 T ELT)) (-3702 (((-3 (-630 $) "failed") $) NIL T ELT)) (-2831 (($ $) 141 (|has| |#1| (-571)) ELT)) (-3472 (($ $) 247 (|has| |#1| (-571)) ELT)) (-4140 (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL (|has| |#1| (-1080)) ELT) (((-711 |#1|) (-1297 $)) NIL (|has| |#1| (-1080)) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ELT) (((-711 (-560)) (-1297 $)) NIL (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ELT)) (-1861 (($ (-663 $)) NIL (|has| |#1| (-571)) ELT) (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3949 (((-663 (-630 $)) $) 49 T ELT)) (-2547 (($ (-115) $) NIL T ELT) (($ (-115) (-663 $)) 431 T ELT)) (-1669 (((-3 (-663 $) "failed") $) NIL (|has| |#1| (-1143)) ELT)) (-2486 (((-3 (-2 (|:| |val| $) (|:| -2030 (-560))) "failed") $) NIL (|has| |#1| (-1080)) ELT)) (-3849 (((-3 (-663 $) "failed") $) 436 (|has| |#1| (-25)) ELT)) (-1827 (((-3 (-2 (|:| -2625 (-560)) (|:| |var| (-630 $))) "failed") $) 440 (|has| |#1| (-25)) ELT)) (-3149 (((-3 (-2 (|:| |var| (-630 $)) (|:| -2030 (-560))) "failed") $) NIL (|has| |#1| (-1143)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2030 (-560))) "failed") $ (-115)) NIL (|has| |#1| (-1080)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2030 (-560))) "failed") $ (-1207)) NIL (|has| |#1| (-1080)) ELT)) (-2060 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1207)) 51 T ELT)) (-2986 (($ $) NIL (-2196 (|has| |#1| (-487)) (|has| |#1| (-571))) ELT)) (-4288 (($ $ (-1207)) 251 (|has| |#1| (-571)) ELT) (($ $ (-1123 $)) 253 (|has| |#1| (-571)) ELT)) (-3827 (((-793) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3000 (((-114) $) 43 T ELT)) (-3011 ((|#1| $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 301 (|has| |#1| (-571)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#1| (-571)) ELT) (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-4338 (((-114) $ $) NIL T ELT) (((-114) $ (-1207)) NIL T ELT)) (-4351 (($ $ (-1207)) 226 (|has| |#1| (-571)) ELT) (($ $) 224 (|has| |#1| (-571)) ELT)) (-1704 (($ $) 218 (|has| |#1| (-571)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) 306 (-12 (|has| |#1| (-466)) (|has| |#1| (-571))) ELT)) (-4012 (((-419 $) $) NIL (|has| |#1| (-571)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-571)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-2233 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-571)) ELT)) (-2515 (($ $) 139 (|has| |#1| (-571)) ELT)) (-2244 (((-114) $) NIL (|has| $ (-1069 (-560))) ELT)) (-2371 (($ $ (-630 $) $) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) 425 T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-1207) (-1 $ (-663 $))) NIL T ELT) (($ $ (-1207) (-1 $ $)) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) 379 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-663 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-633 (-549))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-633 (-549))) ELT) (($ $) NIL (|has| |#1| (-633 (-549))) ELT) (($ $ (-115) $ (-1207)) 366 (|has| |#1| (-633 (-549))) ELT) (($ $ (-663 (-115)) (-663 $) (-1207)) 365 (|has| |#1| (-633 (-549))) ELT) (($ $ (-663 (-1207)) (-663 (-793)) (-663 (-1 $ $))) NIL (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793)) (-663 (-1 $ (-663 $)))) NIL (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793) (-1 $ (-663 $))) NIL (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793) (-1 $ $)) NIL (|has| |#1| (-1080)) ELT)) (-3989 (((-793) $) NIL (|has| |#1| (-571)) ELT)) (-3541 (($ $) 239 (|has| |#1| (-571)) ELT)) (-1507 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-663 $)) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-3222 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-1791 (($ $) 249 (|has| |#1| (-571)) ELT)) (-2144 (($ $) 200 (|has| |#1| (-571)) ELT)) (-3161 (($ $ (-1207)) NIL (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-1080)) ELT)) (-2951 (($ $) 74 (|has| |#1| (-571)) ELT)) (-2484 (((-1156 |#1| (-630 $)) $) 93 (|has| |#1| (-571)) ELT)) (-2407 (($ $) 317 (|has| $ (-1080)) ELT)) (-2013 (($ $) 177 (|has| |#1| (-571)) ELT)) (-1870 (($ $) 153 (|has| |#1| (-571)) ELT)) (-1992 (($ $) 173 (|has| |#1| (-571)) ELT)) (-1844 (($ $) 149 (|has| |#1| (-571)) ELT)) (-1972 (($ $) 169 (|has| |#1| (-571)) ELT)) (-1820 (($ $) 145 (|has| |#1| (-571)) ELT)) (-2400 (((-915 (-560)) $) NIL (|has| |#1| (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) NIL (|has| |#1| (-633 (-915 (-391)))) ELT) (($ (-419 $)) NIL (|has| |#1| (-571)) ELT) (((-549) $) 363 (|has| |#1| (-633 (-549))) ELT)) (-1714 (($ $ $) NIL (|has| |#1| (-487)) ELT)) (-3117 (($ $ $) NIL (|has| |#1| (-487)) ELT)) (-3913 (((-887) $) 424 T ELT) (($ (-630 $)) 415 T ELT) (($ (-1207)) 381 T ELT) (($ |#1|) 337 T ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ (-48)) 312 (-12 (|has| |#1| (-571)) (|has| |#1| (-1069 (-560)))) ELT) (($ (-1156 |#1| (-630 $))) 95 (|has| |#1| (-1080)) ELT) (($ (-421 |#1|)) NIL (|has| |#1| (-571)) ELT) (($ (-975 (-421 |#1|))) NIL (|has| |#1| (-571)) ELT) (($ (-421 (-975 (-421 |#1|)))) NIL (|has| |#1| (-571)) ELT) (($ (-421 (-975 |#1|))) NIL (|has| |#1| (-571)) ELT) (($ (-975 |#1|)) NIL (|has| |#1| (-1080)) ELT) (($ (-560)) 34 (-2196 (|has| |#1| (-1069 (-560))) (|has| |#1| (-1080))) ELT) (($ (-421 (-560))) NIL (-2196 (|has| |#1| (-571)) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-3919 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-4191 (((-793)) NIL (|has| |#1| (-1080)) CONST)) (-3061 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3381 (($ $ $) 220 (|has| |#1| (-571)) ELT)) (-3081 (($ $ $) 206 (|has| |#1| (-571)) ELT)) (-3083 (($ $ $) 210 (|has| |#1| (-571)) ELT)) (-4128 (($ $ $) 204 (|has| |#1| (-571)) ELT)) (-2929 (($ $ $) 208 (|has| |#1| (-571)) ELT)) (-3962 (((-114) (-115)) 10 T ELT)) (-3925 (((-114) $ $) 86 T ELT)) (-2042 (($ $) 183 (|has| |#1| (-571)) ELT)) (-1907 (($ $) 159 (|has| |#1| (-571)) ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2022 (($ $) 179 (|has| |#1| (-571)) ELT)) (-1882 (($ $) 155 (|has| |#1| (-571)) ELT)) (-2059 (($ $) 187 (|has| |#1| (-571)) ELT)) (-1932 (($ $) 163 (|has| |#1| (-571)) ELT)) (-2085 (($ (-1207) $) NIL T ELT) (($ (-1207) $ $) NIL T ELT) (($ (-1207) $ $ $) NIL T ELT) (($ (-1207) $ $ $ $) NIL T ELT) (($ (-1207) (-663 $)) NIL T ELT)) (-3168 (($ $) 214 (|has| |#1| (-571)) ELT)) (-3813 (($ $) 212 (|has| |#1| (-571)) ELT)) (-3392 (($ $) 189 (|has| |#1| (-571)) ELT)) (-1945 (($ $) 165 (|has| |#1| (-571)) ELT)) (-2050 (($ $) 185 (|has| |#1| (-571)) ELT)) (-1920 (($ $) 161 (|has| |#1| (-571)) ELT)) (-2032 (($ $) 181 (|has| |#1| (-571)) ELT)) (-1895 (($ $) 157 (|has| |#1| (-571)) ELT)) (-2719 (($ $) 192 (|has| |#1| (-571)) ELT)) (-1446 (($) 21 (-2196 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) CONST)) (-3308 (($ $) 243 (|has| |#1| (-571)) ELT)) (-1456 (($) 23 (|has| |#1| (-1143)) CONST)) (-2658 (($ $) 194 (|has| |#1| (-571)) ELT) (($ $ $) 196 (|has| |#1| (-571)) ELT)) (-3491 (($ $) 241 (|has| |#1| (-571)) ELT)) (-2111 (($ $ (-1207)) NIL (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-1080)) ELT)) (-2940 (($ $) 245 (|has| |#1| (-571)) ELT)) (-2231 (($ $ $) 198 (|has| |#1| (-571)) ELT)) (-2340 (((-114) $ $) 88 T ELT)) (-2453 (($ (-1156 |#1| (-630 $)) (-1156 |#1| (-630 $))) 106 (|has| |#1| (-571)) ELT) (($ $ $) 42 (-2196 (|has| |#1| (-487)) (|has| |#1| (-571))) ELT)) (-2441 (($ $ $) 40 (-2196 (|has| |#1| (-21)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT) (($ $) 29 (-2196 (|has| |#1| (-21)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT)) (-2429 (($ $ $) 38 (-2196 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT)) (** (($ $ $) 64 (|has| |#1| (-571)) ELT) (($ $ (-421 (-560))) 314 (|has| |#1| (-571)) ELT) (($ $ (-560)) 80 (-2196 (|has| |#1| (-487)) (|has| |#1| (-571))) ELT) (($ $ (-793)) 75 (|has| |#1| (-1143)) ELT) (($ $ (-948)) 84 (|has| |#1| (-1143)) ELT)) (* (($ (-421 (-560)) $) NIL (|has| |#1| (-571)) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-571)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT) (($ |#1| $) NIL (|has| |#1| (-1080)) ELT) (($ $ $) 36 (|has| |#1| (-1143)) ELT) (($ (-560) $) 32 (-2196 (|has| |#1| (-21)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT) (($ (-793) $) NIL (-2196 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT) (($ (-948) $) NIL (-2196 (|has| |#1| (-25)) (-12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080)))) ELT)))
+(((-326 |#1|) (-13 (-435 |#1|) (-10 -8 (IF (|has| |#1| (-571)) (PROGN (-6 (-29 |#1|)) (-6 (-1233)) (-6 (-162)) (-6 (-649)) (-6 (-1170)) (-15 -1778 ($ $)) (-15 -1654 ((-114) $)) (-15 -1557 ($ $ (-560))) (IF (|has| |#1| (-466)) (PROGN (-15 -3885 ((-419 (-1201 $)) (-1201 $))) (-15 -2491 ((-419 (-1201 $)) (-1201 $)))) |%noBranch|) (IF (|has| |#1| (-1069 (-560))) (-6 (-1069 (-48))) |%noBranch|)) |%noBranch|))) (-1132)) (T -326))
+((-1778 (*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-571)) (-4 *2 (-1132)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-326 *3)) (-4 *3 (-571)) (-4 *3 (-1132)))) (-1557 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-326 *3)) (-4 *3 (-571)) (-4 *3 (-1132)))) (-3885 (*1 *2 *3) (-12 (-5 *2 (-419 (-1201 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1201 *1)) (-4 *4 (-466)) (-4 *4 (-571)) (-4 *4 (-1132)))) (-2491 (*1 *2 *3) (-12 (-5 *2 (-419 (-1201 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1201 *1)) (-4 *4 (-466)) (-4 *4 (-571)) (-4 *4 (-1132)))))
+(-13 (-435 |#1|) (-10 -8 (IF (|has| |#1| (-571)) (PROGN (-6 (-29 |#1|)) (-6 (-1233)) (-6 (-162)) (-6 (-649)) (-6 (-1170)) (-15 -1778 ($ $)) (-15 -1654 ((-114) $)) (-15 -1557 ($ $ (-560))) (IF (|has| |#1| (-466)) (PROGN (-15 -3885 ((-419 (-1201 $)) (-1201 $))) (-15 -2491 ((-419 (-1201 $)) (-1201 $)))) |%noBranch|) (IF (|has| |#1| (-1069 (-560))) (-6 (-1069 (-48))) |%noBranch|)) |%noBranch|)))
+((-2260 (((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)) 13 T ELT)))
+(((-327 |#1| |#2|) (-10 -7 (-15 -2260 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) (-1132) (-1132)) (T -327))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *2 (-326 *6)) (-5 *1 (-327 *5 *6)))))
+(-10 -7 (-15 -2260 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|))))
+((-2936 (((-51) |#2| (-305 |#2|) (-793)) 40 T ELT) (((-51) |#2| (-305 |#2|)) 32 T ELT) (((-51) |#2| (-793)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1207)) 26 T ELT)) (-2882 (((-51) |#2| (-305 |#2|) (-421 (-560))) 59 T ELT) (((-51) |#2| (-305 |#2|)) 56 T ELT) (((-51) |#2| (-421 (-560))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1207)) 55 T ELT)) (-2962 (((-51) |#2| (-305 |#2|) (-421 (-560))) 54 T ELT) (((-51) |#2| (-305 |#2|)) 51 T ELT) (((-51) |#2| (-421 (-560))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1207)) 50 T ELT)) (-2949 (((-51) |#2| (-305 |#2|) (-560)) 47 T ELT) (((-51) |#2| (-305 |#2|)) 44 T ELT) (((-51) |#2| (-560)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1207)) 43 T ELT)))
+(((-328 |#1| |#2|) (-10 -7 (-15 -2936 ((-51) (-1207))) (-15 -2936 ((-51) |#2|)) (-15 -2936 ((-51) |#2| (-793))) (-15 -2936 ((-51) |#2| (-305 |#2|))) (-15 -2936 ((-51) |#2| (-305 |#2|) (-793))) (-15 -2949 ((-51) (-1207))) (-15 -2949 ((-51) |#2|)) (-15 -2949 ((-51) |#2| (-560))) (-15 -2949 ((-51) |#2| (-305 |#2|))) (-15 -2949 ((-51) |#2| (-305 |#2|) (-560))) (-15 -2962 ((-51) (-1207))) (-15 -2962 ((-51) |#2|)) (-15 -2962 ((-51) |#2| (-421 (-560)))) (-15 -2962 ((-51) |#2| (-305 |#2|))) (-15 -2962 ((-51) |#2| (-305 |#2|) (-421 (-560)))) (-15 -2882 ((-51) (-1207))) (-15 -2882 ((-51) |#2|)) (-15 -2882 ((-51) |#2| (-421 (-560)))) (-15 -2882 ((-51) |#2| (-305 |#2|))) (-15 -2882 ((-51) |#2| (-305 |#2|) (-421 (-560))))) (-13 (-466) (-1069 (-560)) (-660 (-560))) (-13 (-27) (-1233) (-435 |#1|))) (T -328))
+((-2882 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-421 (-560))) (-4 *3 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-2882 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-2882 (*1 *2 *3 *4) (-12 (-5 *4 (-421 (-560))) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))) (-2882 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4))))) (-2882 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-435 *4))))) (-2962 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-421 (-560))) (-4 *3 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-2962 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-2962 (*1 *2 *3 *4) (-12 (-5 *4 (-421 (-560))) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))) (-2962 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4))))) (-2962 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-435 *4))))) (-2949 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-466) (-1069 *5) (-660 *5))) (-5 *5 (-560)) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-2949 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-2949 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *5 (-13 (-466) (-1069 *4) (-660 *4))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))) (-2949 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4))))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-435 *4))))) (-2936 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-793)) (-4 *3 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-2936 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-2936 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))) (-2936 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4))))) (-2936 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-435 *4))))))
+(-10 -7 (-15 -2936 ((-51) (-1207))) (-15 -2936 ((-51) |#2|)) (-15 -2936 ((-51) |#2| (-793))) (-15 -2936 ((-51) |#2| (-305 |#2|))) (-15 -2936 ((-51) |#2| (-305 |#2|) (-793))) (-15 -2949 ((-51) (-1207))) (-15 -2949 ((-51) |#2|)) (-15 -2949 ((-51) |#2| (-560))) (-15 -2949 ((-51) |#2| (-305 |#2|))) (-15 -2949 ((-51) |#2| (-305 |#2|) (-560))) (-15 -2962 ((-51) (-1207))) (-15 -2962 ((-51) |#2|)) (-15 -2962 ((-51) |#2| (-421 (-560)))) (-15 -2962 ((-51) |#2| (-305 |#2|))) (-15 -2962 ((-51) |#2| (-305 |#2|) (-421 (-560)))) (-15 -2882 ((-51) (-1207))) (-15 -2882 ((-51) |#2|)) (-15 -2882 ((-51) |#2| (-421 (-560)))) (-15 -2882 ((-51) |#2| (-305 |#2|))) (-15 -2882 ((-51) |#2| (-305 |#2|) (-421 (-560)))))
+((-2257 (((-51) |#2| (-115) (-305 |#2|) (-663 |#2|)) 89 T ELT) (((-51) |#2| (-115) (-305 |#2|) (-305 |#2|)) 85 T ELT) (((-51) |#2| (-115) (-305 |#2|) |#2|) 87 T ELT) (((-51) (-305 |#2|) (-115) (-305 |#2|) |#2|) 88 T ELT) (((-51) (-663 |#2|) (-663 (-115)) (-305 |#2|) (-663 (-305 |#2|))) 81 T ELT) (((-51) (-663 |#2|) (-663 (-115)) (-305 |#2|) (-663 |#2|)) 83 T ELT) (((-51) (-663 (-305 |#2|)) (-663 (-115)) (-305 |#2|) (-663 |#2|)) 84 T ELT) (((-51) (-663 (-305 |#2|)) (-663 (-115)) (-305 |#2|) (-663 (-305 |#2|))) 82 T ELT) (((-51) (-305 |#2|) (-115) (-305 |#2|) (-663 |#2|)) 90 T ELT) (((-51) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|)) 86 T ELT)))
+(((-329 |#1| |#2|) (-10 -7 (-15 -2257 ((-51) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|))) (-15 -2257 ((-51) (-305 |#2|) (-115) (-305 |#2|) (-663 |#2|))) (-15 -2257 ((-51) (-663 (-305 |#2|)) (-663 (-115)) (-305 |#2|) (-663 (-305 |#2|)))) (-15 -2257 ((-51) (-663 (-305 |#2|)) (-663 (-115)) (-305 |#2|) (-663 |#2|))) (-15 -2257 ((-51) (-663 |#2|) (-663 (-115)) (-305 |#2|) (-663 |#2|))) (-15 -2257 ((-51) (-663 |#2|) (-663 (-115)) (-305 |#2|) (-663 (-305 |#2|)))) (-15 -2257 ((-51) (-305 |#2|) (-115) (-305 |#2|) |#2|)) (-15 -2257 ((-51) |#2| (-115) (-305 |#2|) |#2|)) (-15 -2257 ((-51) |#2| (-115) (-305 |#2|) (-305 |#2|))) (-15 -2257 ((-51) |#2| (-115) (-305 |#2|) (-663 |#2|)))) (-13 (-571) (-633 (-549))) (-435 |#1|)) (T -329))
+((-2257 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-5 *6 (-663 *3)) (-4 *3 (-435 *7)) (-4 *7 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *3)))) (-2257 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) (-2257 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) (-2257 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *5)) (-5 *4 (-115)) (-4 *5 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *5)))) (-2257 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 (-115))) (-5 *6 (-663 (-305 *8))) (-4 *8 (-435 *7)) (-5 *5 (-305 *8)) (-4 *7 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *8)))) (-2257 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-663 *7)) (-5 *4 (-663 (-115))) (-5 *5 (-305 *7)) (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) (-2257 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-663 (-305 *8))) (-5 *4 (-663 (-115))) (-5 *5 (-305 *8)) (-5 *6 (-663 *8)) (-4 *8 (-435 *7)) (-4 *7 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *8)))) (-2257 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-663 (-305 *7))) (-5 *4 (-663 (-115))) (-5 *5 (-305 *7)) (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) (-2257 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-663 *7)) (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) (-2257 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-305 *6)) (-5 *4 (-115)) (-4 *6 (-435 *5)) (-4 *5 (-13 (-571) (-633 (-549)))) (-5 *2 (-51)) (-5 *1 (-329 *5 *6)))))
+(-10 -7 (-15 -2257 ((-51) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|))) (-15 -2257 ((-51) (-305 |#2|) (-115) (-305 |#2|) (-663 |#2|))) (-15 -2257 ((-51) (-663 (-305 |#2|)) (-663 (-115)) (-305 |#2|) (-663 (-305 |#2|)))) (-15 -2257 ((-51) (-663 (-305 |#2|)) (-663 (-115)) (-305 |#2|) (-663 |#2|))) (-15 -2257 ((-51) (-663 |#2|) (-663 (-115)) (-305 |#2|) (-663 |#2|))) (-15 -2257 ((-51) (-663 |#2|) (-663 (-115)) (-305 |#2|) (-663 (-305 |#2|)))) (-15 -2257 ((-51) (-305 |#2|) (-115) (-305 |#2|) |#2|)) (-15 -2257 ((-51) |#2| (-115) (-305 |#2|) |#2|)) (-15 -2257 ((-51) |#2| (-115) (-305 |#2|) (-305 |#2|))) (-15 -2257 ((-51) |#2| (-115) (-305 |#2|) (-663 |#2|))))
+((-1725 (((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-229) (-560) (-1189)) 67 T ELT) (((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-229) (-560)) 68 T ELT) (((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-1 (-229) (-229)) (-560) (-1189)) 64 T ELT) (((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-1 (-229) (-229)) (-560)) 65 T ELT)) (-1774 (((-1 (-229) (-229)) (-229)) 66 T ELT)))
+(((-330) (-10 -7 (-15 -1774 ((-1 (-229) (-229)) (-229))) (-15 -1725 ((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-1 (-229) (-229)) (-560))) (-15 -1725 ((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-1 (-229) (-229)) (-560) (-1189))) (-15 -1725 ((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-229) (-560))) (-15 -1725 ((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-229) (-560) (-1189))))) (T -330))
+((-1725 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1120 (-229))) (-5 *6 (-229)) (-5 *7 (-560)) (-5 *8 (-1189)) (-5 *2 (-1243 (-956))) (-5 *1 (-330)))) (-1725 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1120 (-229))) (-5 *6 (-229)) (-5 *7 (-560)) (-5 *2 (-1243 (-956))) (-5 *1 (-330)))) (-1725 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1120 (-229))) (-5 *6 (-560)) (-5 *7 (-1189)) (-5 *2 (-1243 (-956))) (-5 *1 (-330)))) (-1725 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1120 (-229))) (-5 *6 (-560)) (-5 *2 (-1243 (-956))) (-5 *1 (-330)))) (-1774 (*1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-330)) (-5 *3 (-229)))))
+(-10 -7 (-15 -1774 ((-1 (-229) (-229)) (-229))) (-15 -1725 ((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-1 (-229) (-229)) (-560))) (-15 -1725 ((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-1 (-229) (-229)) (-560) (-1189))) (-15 -1725 ((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-229) (-560))) (-15 -1725 ((-1243 (-956)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-229) (-560) (-1189))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 26 T ELT)) (-4162 (((-663 (-1113)) $) NIL T ELT)) (-2558 (((-1207) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3864 (($ $ (-421 (-560))) NIL T ELT) (($ $ (-421 (-560)) (-421 (-560))) NIL T ELT)) (-1465 (((-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|))) $) 20 T ELT)) (-1982 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1832 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-4021 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3476 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-1958 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1806 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2882 (($ (-793) (-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|)))) NIL T ELT)) (-2003 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1856 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3525 (($) NIL T CONST)) (-2186 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3062 (($ $) 36 T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-2197 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-3141 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-2328 (((-114) $) NIL T ELT)) (-2503 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1460 (((-421 (-560)) $) NIL T ELT) (((-421 (-560)) $ (-421 (-560))) 16 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-1956 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3886 (($ $ (-948)) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-421 (-560))) NIL T ELT) (($ $ (-1113) (-421 (-560))) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-421 (-560)))) NIL T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2831 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4424 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| |#1| (-15 -4424 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -4162 ((-663 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-989)) (|has| |#1| (-1233)))) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4012 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2219 (($ $ (-421 (-560))) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-2739 (((-421 (-560)) $) 17 T ELT)) (-2539 (($ (-1278 |#1| |#2| |#3|)) 11 T ELT)) (-2030 (((-1278 |#1| |#2| |#3|) $) 12 T ELT)) (-2515 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2371 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) ELT)) (-3989 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-1507 ((|#1| $ (-421 (-560))) NIL T ELT) (($ $ $) NIL (|has| (-421 (-560)) (-1143)) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3161 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-3900 (((-421 (-560)) $) NIL T ELT)) (-2013 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1870 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1992 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1844 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1972 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1820 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3329 (($ $) 10 T ELT)) (-3913 (((-887) $) 42 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-2920 ((|#1| $ (-421 (-560))) 34 T ELT)) (-3919 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-4191 (((-793)) NIL T CONST)) (-1351 ((|#1| $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2042 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1907 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2022 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1882 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2059 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1932 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2905 ((|#1| $ (-421 (-560))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) (|has| |#1| (-15 -3913 (|#1| (-1207))))) ELT)) (-3392 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1945 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2050 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1920 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2032 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1895 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 28 T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 37 T ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
+(((-331 |#1| |#2| |#3|) (-13 (-1280 |#1|) (-814) (-10 -8 (-15 -2539 ($ (-1278 |#1| |#2| |#3|))) (-15 -2030 ((-1278 |#1| |#2| |#3|) $)) (-15 -2739 ((-421 (-560)) $)))) (-376) (-1207) |#1|) (T -331))
+((-2539 (*1 *1 *2) (-12 (-5 *2 (-1278 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1207)) (-14 *5 *3) (-5 *1 (-331 *3 *4 *5)))) (-2030 (*1 *2 *1) (-12 (-5 *2 (-1278 *3 *4 *5)) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1207)) (-14 *5 *3))) (-2739 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1207)) (-14 *5 *3))))
+(-13 (-1280 |#1|) (-814) (-10 -8 (-15 -2539 ($ (-1278 |#1| |#2| |#3|))) (-15 -2030 ((-1278 |#1| |#2| |#3|) $)) (-15 -2739 ((-421 (-560)) $))))
+((-1956 (((-2 (|:| -2030 (-793)) (|:| -2625 |#1|) (|:| |radicand| (-663 |#1|))) (-419 |#1|) (-793)) 35 T ELT)) (-2831 (((-663 (-2 (|:| -2625 (-793)) (|:| |logand| |#1|))) (-419 |#1|)) 40 T ELT)))
+(((-332 |#1|) (-10 -7 (-15 -1956 ((-2 (|:| -2030 (-793)) (|:| -2625 |#1|) (|:| |radicand| (-663 |#1|))) (-419 |#1|) (-793))) (-15 -2831 ((-663 (-2 (|:| -2625 (-793)) (|:| |logand| |#1|))) (-419 |#1|)))) (-571)) (T -332))
+((-2831 (*1 *2 *3) (-12 (-5 *3 (-419 *4)) (-4 *4 (-571)) (-5 *2 (-663 (-2 (|:| -2625 (-793)) (|:| |logand| *4)))) (-5 *1 (-332 *4)))) (-1956 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *5)) (-4 *5 (-571)) (-5 *2 (-2 (|:| -2030 (-793)) (|:| -2625 *5) (|:| |radicand| (-663 *5)))) (-5 *1 (-332 *5)) (-5 *4 (-793)))))
+(-10 -7 (-15 -1956 ((-2 (|:| -2030 (-793)) (|:| -2625 |#1|) (|:| |radicand| (-663 |#1|))) (-419 |#1|) (-793))) (-15 -2831 ((-663 (-2 (|:| -2625 (-793)) (|:| |logand| |#1|))) (-419 |#1|))))
+((-4162 (((-663 |#2|) (-1201 |#4|)) 44 T ELT)) (-3528 ((|#3| (-560)) 47 T ELT)) (-2502 (((-1201 |#4|) (-1201 |#3|)) 30 T ELT)) (-3177 (((-1201 |#4|) (-1201 |#4|) (-560)) 66 T ELT)) (-4402 (((-1201 |#3|) (-1201 |#4|)) 21 T ELT)) (-3900 (((-663 (-793)) (-1201 |#4|) (-663 |#2|)) 41 T ELT)) (-3880 (((-1201 |#3|) (-1201 |#4|) (-663 |#2|) (-663 |#3|)) 35 T ELT)))
+(((-333 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3880 ((-1201 |#3|) (-1201 |#4|) (-663 |#2|) (-663 |#3|))) (-15 -3900 ((-663 (-793)) (-1201 |#4|) (-663 |#2|))) (-15 -4162 ((-663 |#2|) (-1201 |#4|))) (-15 -4402 ((-1201 |#3|) (-1201 |#4|))) (-15 -2502 ((-1201 |#4|) (-1201 |#3|))) (-15 -3177 ((-1201 |#4|) (-1201 |#4|) (-560))) (-15 -3528 (|#3| (-560)))) (-815) (-871) (-1080) (-979 |#3| |#1| |#2|)) (T -333))
+((-3528 (*1 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1080)) (-5 *1 (-333 *4 *5 *2 *6)) (-4 *6 (-979 *2 *4 *5)))) (-3177 (*1 *2 *2 *3) (-12 (-5 *2 (-1201 *7)) (-5 *3 (-560)) (-4 *7 (-979 *6 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-5 *1 (-333 *4 *5 *6 *7)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-1201 *6)) (-4 *6 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-1201 *7)) (-5 *1 (-333 *4 *5 *6 *7)) (-4 *7 (-979 *6 *4 *5)))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-1201 *7)) (-4 *7 (-979 *6 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-5 *2 (-1201 *6)) (-5 *1 (-333 *4 *5 *6 *7)))) (-4162 (*1 *2 *3) (-12 (-5 *3 (-1201 *7)) (-4 *7 (-979 *6 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-5 *2 (-663 *5)) (-5 *1 (-333 *4 *5 *6 *7)))) (-3900 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 *8)) (-5 *4 (-663 *6)) (-4 *6 (-871)) (-4 *8 (-979 *7 *5 *6)) (-4 *5 (-815)) (-4 *7 (-1080)) (-5 *2 (-663 (-793))) (-5 *1 (-333 *5 *6 *7 *8)))) (-3880 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1201 *9)) (-5 *4 (-663 *7)) (-5 *5 (-663 *8)) (-4 *7 (-871)) (-4 *8 (-1080)) (-4 *9 (-979 *8 *6 *7)) (-4 *6 (-815)) (-5 *2 (-1201 *8)) (-5 *1 (-333 *6 *7 *8 *9)))))
+(-10 -7 (-15 -3880 ((-1201 |#3|) (-1201 |#4|) (-663 |#2|) (-663 |#3|))) (-15 -3900 ((-663 (-793)) (-1201 |#4|) (-663 |#2|))) (-15 -4162 ((-663 |#2|) (-1201 |#4|))) (-15 -4402 ((-1201 |#3|) (-1201 |#4|))) (-15 -2502 ((-1201 |#4|) (-1201 |#3|))) (-15 -3177 ((-1201 |#4|) (-1201 |#4|) (-560))) (-15 -3528 (|#3| (-560))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 19 T ELT)) (-1465 (((-663 (-2 (|:| |gen| |#1|) (|:| -2515 (-560)))) $) 21 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2552 (((-793) $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) NIL T ELT)) (-3649 ((|#1| $) NIL T ELT)) (-1997 ((|#1| $ (-560)) NIL T ELT)) (-2413 (((-560) $ (-560)) NIL T ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3703 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4275 (($ (-1 (-560) (-560)) $) 11 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2485 (($ $ $) NIL (|has| (-560) (-814)) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-2920 (((-560) |#1| $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-2396 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) 29 (|has| |#1| (-871)) ELT)) (-2441 (($ $) 12 T ELT) (($ $ $) 28 T ELT)) (-2429 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ (-560)) NIL T ELT) (($ (-560) |#1|) 27 T ELT)))
(((-334 |#1|) (-13 (-21) (-739 (-560)) (-335 |#1| (-560)) (-10 -7 (IF (|has| |#1| (-871)) (-6 (-871)) |%noBranch|))) (-1132)) (T -334))
NIL
(-13 (-21) (-739 (-560)) (-335 |#1| (-560)) (-10 -7 (IF (|has| |#1| (-871)) (-6 (-871)) |%noBranch|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-1425 (((-663 (-2 (|:| |gen| |#1|) (|:| -3251 |#2|))) $) 28 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-3241 (((-793) $) 29 T ELT)) (-2238 (($) 18 T CONST)) (-2539 (((-3 |#1| "failed") $) 33 T ELT)) (-3330 ((|#1| $) 34 T ELT)) (-2461 ((|#1| $ (-560)) 26 T ELT)) (-3122 ((|#2| $ (-560)) 27 T ELT)) (-1942 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-4180 (($ (-1 |#2| |#2|) $) 24 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-2386 (($ $ $) 22 (|has| |#2| (-814)) ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ |#1|) 32 T ELT)) (-2305 ((|#2| |#1| $) 25 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2567 (($ $ $) 15 T ELT) (($ |#1| $) 31 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ |#2| |#1|) 30 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-1465 (((-663 (-2 (|:| |gen| |#1|) (|:| -2515 |#2|))) $) 28 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-2552 (((-793) $) 29 T ELT)) (-3525 (($) 18 T CONST)) (-3929 (((-3 |#1| "failed") $) 33 T ELT)) (-3649 ((|#1| $) 34 T ELT)) (-1997 ((|#1| $ (-560)) 26 T ELT)) (-2413 ((|#2| $ (-560)) 27 T ELT)) (-3703 (($ (-1 |#1| |#1|) $) 23 T ELT)) (-4275 (($ (-1 |#2| |#2|) $) 24 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2485 (($ $ $) 22 (|has| |#2| (-814)) ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ |#1|) 32 T ELT)) (-2920 ((|#2| |#1| $) 25 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2429 (($ $ $) 15 T ELT) (($ |#1| $) 31 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ |#2| |#1|) 30 T ELT)))
(((-335 |#1| |#2|) (-142) (-1132) (-133)) (T -335))
-((-2567 (*1 *1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-133)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-133)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-133)) (-5 *2 (-793)))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-133)) (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -3251 *4)))))) (-3122 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-335 *4 *2)) (-4 *4 (-1132)) (-4 *2 (-133)))) (-2461 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-335 *2 *4)) (-4 *4 (-133)) (-4 *2 (-1132)))) (-2305 (*1 *2 *3 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-133)))) (-4180 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-133)))) (-1942 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-133)))) (-2386 (*1 *1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-133)) (-4 *3 (-814)))))
-(-13 (-133) (-1069 |t#1|) (-10 -8 (-15 -2567 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3241 ((-793) $)) (-15 -1425 ((-663 (-2 (|:| |gen| |t#1|) (|:| -3251 |t#2|))) $)) (-15 -3122 (|t#2| $ (-560))) (-15 -2461 (|t#1| $ (-560))) (-15 -2305 (|t#2| |t#1| $)) (-15 -4180 ($ (-1 |t#2| |t#2|) $)) (-15 -1942 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-814)) (-15 -2386 ($ $ $)) |%noBranch|)))
+((-2429 (*1 *1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-133)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-133)))) (-2552 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-133)) (-5 *2 (-793)))) (-1465 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-133)) (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -2515 *4)))))) (-2413 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-335 *4 *2)) (-4 *4 (-1132)) (-4 *2 (-133)))) (-1997 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-335 *2 *4)) (-4 *4 (-133)) (-4 *2 (-1132)))) (-2920 (*1 *2 *3 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-133)))) (-4275 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-133)))) (-3703 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-133)))) (-2485 (*1 *1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-133)) (-4 *3 (-814)))))
+(-13 (-133) (-1069 |t#1|) (-10 -8 (-15 -2429 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -2552 ((-793) $)) (-15 -1465 ((-663 (-2 (|:| |gen| |t#1|) (|:| -2515 |t#2|))) $)) (-15 -2413 (|t#2| $ (-560))) (-15 -1997 (|t#1| $ (-560))) (-15 -2920 (|t#2| |t#1| $)) (-15 -4275 ($ (-1 |t#2| |t#2|) $)) (-15 -3703 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-814)) (-15 -2485 ($ $ $)) |%noBranch|)))
(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 |#1|) . T) ((-632 (-887)) . T) ((-1069 |#1|) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1425 (((-663 (-2 (|:| |gen| |#1|) (|:| -3251 (-793)))) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-3241 (((-793) $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT)) (-2461 ((|#1| $ (-560)) NIL T ELT)) (-3122 (((-793) $ (-560)) NIL T ELT)) (-1942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4180 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2386 (($ $ $) NIL (|has| (-793) (-814)) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-2305 (((-793) |#1| $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-793) |#1|) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-1465 (((-663 (-2 (|:| |gen| |#1|) (|:| -2515 (-793)))) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2552 (((-793) $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) NIL T ELT)) (-3649 ((|#1| $) NIL T ELT)) (-1997 ((|#1| $ (-560)) NIL T ELT)) (-2413 (((-793) $ (-560)) NIL T ELT)) (-3703 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4275 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2485 (($ $ $) NIL (|has| (-793) (-814)) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-2920 (((-793) |#1| $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-793) |#1|) NIL T ELT)))
(((-336 |#1|) (-335 |#1| (-793)) (-1132)) (T -336))
NIL
(-335 |#1| (-793))
-((-2806 (($ $) 72 T ELT)) (-4342 (($ $ |#2| |#3| $) 14 T ELT)) (-4321 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-1554 (((-114) $) 42 T ELT)) (-1566 ((|#2| $) 44 T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ |#2|) 64 T ELT)) (-2053 ((|#2| $) 68 T ELT)) (-3409 (((-663 |#2|) $) 56 T ELT)) (-2392 (($ $ $ (-793)) 37 T ELT)) (-2594 (($ $ |#2|) 60 T ELT)))
-(((-337 |#1| |#2| |#3|) (-10 -8 (-15 -2806 (|#1| |#1|)) (-15 -2053 (|#2| |#1|)) (-15 -1528 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2392 (|#1| |#1| |#1| (-793))) (-15 -4342 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4321 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3409 ((-663 |#2|) |#1|)) (-15 -1566 (|#2| |#1|)) (-15 -1554 ((-114) |#1|)) (-15 -1528 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2594 (|#1| |#1| |#2|))) (-338 |#2| |#3|) (-1080) (-814)) (T -337))
+((-4239 (($ $) 72 T ELT)) (-3224 (($ $ |#2| |#3| $) 14 T ELT)) (-3060 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-3000 (((-114) $) 42 T ELT)) (-3011 ((|#2| $) 44 T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ |#2|) 64 T ELT)) (-2264 ((|#2| $) 68 T ELT)) (-2247 (((-663 |#2|) $) 56 T ELT)) (-2548 (($ $ $ (-793)) 37 T ELT)) (-2453 (($ $ |#2|) 60 T ELT)))
+(((-337 |#1| |#2| |#3|) (-10 -8 (-15 -4239 (|#1| |#1|)) (-15 -2264 (|#2| |#1|)) (-15 -2233 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2548 (|#1| |#1| |#1| (-793))) (-15 -3224 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3060 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2247 ((-663 |#2|) |#1|)) (-15 -3011 (|#2| |#1|)) (-15 -3000 ((-114) |#1|)) (-15 -2233 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2453 (|#1| |#1| |#2|))) (-338 |#2| |#3|) (-1080) (-814)) (T -337))
NIL
-(-10 -8 (-15 -2806 (|#1| |#1|)) (-15 -2053 (|#2| |#1|)) (-15 -1528 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2392 (|#1| |#1| |#1| (-793))) (-15 -4342 (|#1| |#1| |#2| |#3| |#1|)) (-15 -4321 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3409 ((-663 |#2|) |#1|)) (-15 -1566 (|#2| |#1|)) (-15 -1554 ((-114) |#1|)) (-15 -1528 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2594 (|#1| |#1| |#2|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 63 (|has| |#1| (-571)) ELT)) (-3244 (($ $) 64 (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) 66 (|has| |#1| (-571)) ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-2539 (((-3 (-560) "failed") $) 100 (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) 98 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 95 T ELT)) (-3330 (((-560) $) 99 (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) 97 (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) 96 T ELT)) (-1624 (($ $) 72 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-2806 (($ $) 84 (|has| |#1| (-466)) ELT)) (-4342 (($ $ |#1| |#2| $) 88 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-3531 (((-793) $) 91 T ELT)) (-1556 (((-114) $) 74 T ELT)) (-1417 (($ |#1| |#2|) 73 T ELT)) (-3011 ((|#2| $) 90 T ELT)) (-4321 (($ (-1 |#2| |#2|) $) 89 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-1583 (($ $) 77 T ELT)) (-1597 ((|#1| $) 78 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1554 (((-114) $) 94 T ELT)) (-1566 ((|#1| $) 93 T ELT)) (-1528 (((-3 $ "failed") $ $) 62 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-571)) ELT)) (-3630 ((|#2| $) 76 T ELT)) (-2053 ((|#1| $) 85 (|has| |#1| (-466)) ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 61 (|has| |#1| (-571)) ELT) (($ |#1|) 59 T ELT) (($ (-421 (-560))) 69 (-2304 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ELT)) (-3409 (((-663 |#1|) $) 92 T ELT)) (-2305 ((|#1| $ |#2|) 71 T ELT)) (-1964 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-2930 (((-793)) 32 T CONST)) (-2392 (($ $ $ (-793)) 87 (|has| |#1| (-175)) ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 65 (|has| |#1| (-571)) ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-560)) $) 68 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 67 (|has| |#1| (-38 (-421 (-560)))) ELT)))
+(-10 -8 (-15 -4239 (|#1| |#1|)) (-15 -2264 (|#2| |#1|)) (-15 -2233 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2548 (|#1| |#1| |#1| (-793))) (-15 -3224 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3060 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2247 ((-663 |#2|) |#1|)) (-15 -3011 (|#2| |#1|)) (-15 -3000 ((-114) |#1|)) (-15 -2233 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2453 (|#1| |#1| |#2|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 63 (|has| |#1| (-571)) ELT)) (-4366 (($ $) 64 (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) 66 (|has| |#1| (-571)) ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-3929 (((-3 (-560) "failed") $) 100 (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) 98 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 95 T ELT)) (-3649 (((-560) $) 99 (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) 97 (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) 96 T ELT)) (-3062 (($ $) 72 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-4239 (($ $) 84 (|has| |#1| (-466)) ELT)) (-3224 (($ $ |#1| |#2| $) 88 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-4127 (((-793) $) 91 T ELT)) (-1673 (((-114) $) 74 T ELT)) (-4139 (($ |#1| |#2|) 73 T ELT)) (-3765 ((|#2| $) 90 T ELT)) (-3060 (($ (-1 |#2| |#2|) $) 89 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3024 (($ $) 77 T ELT)) (-3037 ((|#1| $) 78 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3000 (((-114) $) 94 T ELT)) (-3011 ((|#1| $) 93 T ELT)) (-2233 (((-3 $ "failed") $ $) 62 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ |#1|) 86 (|has| |#1| (-571)) ELT)) (-3900 ((|#2| $) 76 T ELT)) (-2264 ((|#1| $) 85 (|has| |#1| (-466)) ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 61 (|has| |#1| (-571)) ELT) (($ |#1|) 59 T ELT) (($ (-421 (-560))) 69 (-2196 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ELT)) (-2247 (((-663 |#1|) $) 92 T ELT)) (-2920 ((|#1| $ |#2|) 71 T ELT)) (-3919 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-4191 (((-793)) 32 T CONST)) (-2548 (($ $ $ (-793)) 87 (|has| |#1| (-175)) ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 65 (|has| |#1| (-571)) ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-560)) $) 68 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 67 (|has| |#1| (-38 (-421 (-560)))) ELT)))
(((-338 |#1| |#2|) (-142) (-1080) (-814)) (T -338))
-((-1554 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (-5 *2 (-114)))) (-1566 (*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080)))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (-5 *2 (-663 *3)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (-5 *2 (-793)))) (-3011 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) (-4321 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)))) (-4342 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)))) (-2392 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (-4 *3 (-175)))) (-1528 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)) (-4 *2 (-571)))) (-2053 (*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080)) (-4 *2 (-466)))) (-2806 (*1 *1 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)) (-4 *2 (-466)))))
-(-13 (-47 |t#1| |t#2|) (-426 |t#1|) (-10 -8 (-15 -1554 ((-114) $)) (-15 -1566 (|t#1| $)) (-15 -3409 ((-663 |t#1|) $)) (-15 -3531 ((-793) $)) (-15 -3011 (|t#2| $)) (-15 -4321 ($ (-1 |t#2| |t#2|) $)) (-15 -4342 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-175)) (-15 -2392 ($ $ $ (-793))) |%noBranch|) (IF (|has| |t#1| (-571)) (-15 -1528 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-466)) (PROGN (-15 -2053 (|t#1| $)) (-15 -2806 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-571)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) -2304 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 $) |has| |#1| (-571)) ((-632 (-887)) . T) ((-175) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-302) |has| |#1| (-571)) ((-426 |#1|) . T) ((-571) |has| |#1| (-571)) ((-668 #0#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-38 (-421 (-560)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-571)) ((-739 #0#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-571)) ((-748) . T) ((-1069 (-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 |#1|) . T) ((-1082 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1082 |#1|) . T) ((-1082 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1087 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1087 |#1|) . T) ((-1087 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3839 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4040 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-1703 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| |#1| (-871))) ELT)) (-2286 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-4063 (((-114) (-114)) NIL T ELT)) (-1773 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3500 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-1982 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2238 (($) NIL T CONST)) (-4391 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) NIL T ELT)) (-2944 (($ $) NIL (|has| |#1| (-1132)) ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3390 (($ |#1| $) NIL (|has| |#1| (-1132)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-2375 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3779 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-560)) NIL T ELT)) (-1722 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1132)) ELT)) (-2583 (($ $ (-560)) NIL T ELT)) (-3286 (((-793) $) NIL T ELT)) (-2181 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4095 (($ (-793) |#1|) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-1708 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3223 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2937 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3629 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-3996 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) NIL T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2619 (($ (-663 |#1|)) NIL T ELT)) (-3637 ((|#1| $) NIL (|has| (-560) (-871)) ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-3037 (($ $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-2249 (($ $ (-1264 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-4413 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3640 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) NIL T ELT)) (-4354 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3415 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1578 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2536 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2521 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-339 |#1|) (-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -2619 ($ (-663 |#1|))) (-15 -3286 ((-793) $)) (-15 -2583 ($ $ (-560))) (-15 -4063 ((-114) (-114))))) (-1247)) (T -339))
-((-2619 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-339 *3)))) (-3286 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-339 *3)) (-4 *3 (-1247)))) (-2583 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-339 *3)) (-4 *3 (-1247)))) (-4063 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-339 *3)) (-4 *3 (-1247)))))
-(-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -2619 ($ (-663 |#1|))) (-15 -3286 ((-793) $)) (-15 -2583 ($ $ (-560))) (-15 -4063 ((-114) (-114)))))
-((-1947 (((-114) $) 47 T ELT)) (-1796 (((-793)) 23 T ELT)) (-3349 ((|#2| $) 51 T ELT) (($ $ (-948)) 121 T ELT)) (-3241 (((-793)) 122 T ELT)) (-4143 (($ (-1297 |#2|)) 20 T ELT)) (-2863 (((-114) $) 134 T ELT)) (-2032 ((|#2| $) 53 T ELT) (($ $ (-948)) 118 T ELT)) (-1787 (((-1201 |#2|) $) NIL T ELT) (((-1201 $) $ (-948)) 109 T ELT)) (-1543 (((-1201 |#2|) $) 95 T ELT)) (-4449 (((-1201 |#2|) $) 91 T ELT) (((-3 (-1201 |#2|) "failed") $ $) 88 T ELT)) (-3384 (($ $ (-1201 |#2|)) 58 T ELT)) (-2969 (((-854 (-948))) 30 T ELT) (((-948)) 48 T ELT)) (-3669 (((-136)) 27 T ELT)) (-3630 (((-854 (-948)) $) 32 T ELT) (((-948) $) 137 T ELT)) (-3988 (($) 128 T ELT)) (-2178 (((-1297 |#2|) $) NIL T ELT) (((-711 |#2|) (-1297 $)) 42 T ELT)) (-1964 (($ $) NIL T ELT) (((-3 $ "failed") $) 98 T ELT)) (-3602 (((-114) $) 45 T ELT)))
-(((-340 |#1| |#2|) (-10 -8 (-15 -1964 ((-3 |#1| "failed") |#1|)) (-15 -3241 ((-793))) (-15 -1964 (|#1| |#1|)) (-15 -4449 ((-3 (-1201 |#2|) "failed") |#1| |#1|)) (-15 -4449 ((-1201 |#2|) |#1|)) (-15 -1543 ((-1201 |#2|) |#1|)) (-15 -3384 (|#1| |#1| (-1201 |#2|))) (-15 -2863 ((-114) |#1|)) (-15 -3988 (|#1|)) (-15 -3349 (|#1| |#1| (-948))) (-15 -2032 (|#1| |#1| (-948))) (-15 -1787 ((-1201 |#1|) |#1| (-948))) (-15 -3349 (|#2| |#1|)) (-15 -2032 (|#2| |#1|)) (-15 -3630 ((-948) |#1|)) (-15 -2969 ((-948))) (-15 -1787 ((-1201 |#2|) |#1|)) (-15 -4143 (|#1| (-1297 |#2|))) (-15 -2178 ((-711 |#2|) (-1297 |#1|))) (-15 -2178 ((-1297 |#2|) |#1|)) (-15 -1796 ((-793))) (-15 -2969 ((-854 (-948)))) (-15 -3630 ((-854 (-948)) |#1|)) (-15 -1947 ((-114) |#1|)) (-15 -3602 ((-114) |#1|)) (-15 -3669 ((-136)))) (-341 |#2|) (-376)) (T -340))
-((-3669 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-136)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-2969 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-854 (-948))) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-1796 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-793)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-2969 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-948)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-3241 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-793)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))))
-(-10 -8 (-15 -1964 ((-3 |#1| "failed") |#1|)) (-15 -3241 ((-793))) (-15 -1964 (|#1| |#1|)) (-15 -4449 ((-3 (-1201 |#2|) "failed") |#1| |#1|)) (-15 -4449 ((-1201 |#2|) |#1|)) (-15 -1543 ((-1201 |#2|) |#1|)) (-15 -3384 (|#1| |#1| (-1201 |#2|))) (-15 -2863 ((-114) |#1|)) (-15 -3988 (|#1|)) (-15 -3349 (|#1| |#1| (-948))) (-15 -2032 (|#1| |#1| (-948))) (-15 -1787 ((-1201 |#1|) |#1| (-948))) (-15 -3349 (|#2| |#1|)) (-15 -2032 (|#2| |#1|)) (-15 -3630 ((-948) |#1|)) (-15 -2969 ((-948))) (-15 -1787 ((-1201 |#2|) |#1|)) (-15 -4143 (|#1| (-1297 |#2|))) (-15 -2178 ((-711 |#2|) (-1297 |#1|))) (-15 -2178 ((-1297 |#2|) |#1|)) (-15 -1796 ((-793))) (-15 -2969 ((-854 (-948)))) (-15 -3630 ((-854 (-948)) |#1|)) (-15 -1947 ((-114) |#1|)) (-15 -3602 ((-114) |#1|)) (-15 -3669 ((-136))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-3244 (($ $) 46 T ELT)) (-4093 (((-114) $) 44 T ELT)) (-1947 (((-114) $) 104 T ELT)) (-1796 (((-793)) 100 T ELT)) (-3349 ((|#1| $) 151 T ELT) (($ $ (-948)) 148 (|has| |#1| (-381)) ELT)) (-2105 (((-1219 (-948) (-793)) (-560)) 133 (|has| |#1| (-381)) ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-1804 (($ $) 81 T ELT)) (-3023 (((-419 $) $) 80 T ELT)) (-1615 (((-114) $ $) 65 T ELT)) (-3241 (((-793)) 123 (|has| |#1| (-381)) ELT)) (-2238 (($) 18 T CONST)) (-2539 (((-3 |#1| "failed") $) 111 T ELT)) (-3330 ((|#1| $) 112 T ELT)) (-4143 (($ (-1297 |#1|)) 157 T ELT)) (-4217 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-381)) ELT)) (-1478 (($ $ $) 61 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-2310 (($) 120 (|has| |#1| (-381)) ELT)) (-1490 (($ $ $) 62 T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 57 T ELT)) (-4336 (($) 135 (|has| |#1| (-381)) ELT)) (-3976 (((-114) $) 136 (|has| |#1| (-381)) ELT)) (-1696 (($ $ (-793)) 97 (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) 96 (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4330 (((-114) $) 79 T ELT)) (-3913 (((-948) $) 138 (|has| |#1| (-381)) ELT) (((-854 (-948)) $) 94 (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-1581 (((-114) $) 35 T ELT)) (-4417 (($) 146 (|has| |#1| (-381)) ELT)) (-2863 (((-114) $) 145 (|has| |#1| (-381)) ELT)) (-2032 ((|#1| $) 152 T ELT) (($ $ (-948)) 149 (|has| |#1| (-381)) ELT)) (-3009 (((-3 $ "failed") $) 124 (|has| |#1| (-381)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-1787 (((-1201 |#1|) $) 156 T ELT) (((-1201 $) $ (-948)) 150 (|has| |#1| (-381)) ELT)) (-4419 (((-948) $) 121 (|has| |#1| (-381)) ELT)) (-1543 (((-1201 |#1|) $) 142 (|has| |#1| (-381)) ELT)) (-4449 (((-1201 |#1|) $) 141 (|has| |#1| (-381)) ELT) (((-3 (-1201 |#1|) "failed") $ $) 140 (|has| |#1| (-381)) ELT)) (-3384 (($ $ (-1201 |#1|)) 143 (|has| |#1| (-381)) ELT)) (-2093 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-1544 (($ $) 78 T ELT)) (-3161 (($) 125 (|has| |#1| (-381)) CONST)) (-3128 (($ (-948)) 122 (|has| |#1| (-381)) ELT)) (-3583 (((-114) $) 103 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-2748 (($) 144 (|has| |#1| (-381)) ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-2132 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-3666 (((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))) 132 (|has| |#1| (-381)) ELT)) (-4457 (((-419 $) $) 82 T ELT)) (-2969 (((-854 (-948))) 101 T ELT) (((-948)) 154 T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-1528 (((-3 $ "failed") $ $) 48 T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-2901 (((-793) $) 64 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 63 T ELT)) (-2364 (((-793) $) 137 (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) 95 (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3669 (((-136)) 109 T ELT)) (-2894 (($ $ (-793)) 128 (|has| |#1| (-381)) ELT) (($ $) 126 (|has| |#1| (-381)) ELT)) (-3630 (((-854 (-948)) $) 102 T ELT) (((-948) $) 153 T ELT)) (-4394 (((-1201 |#1|)) 155 T ELT)) (-2243 (($) 134 (|has| |#1| (-381)) ELT)) (-3988 (($) 147 (|has| |#1| (-381)) ELT)) (-2178 (((-1297 |#1|) $) 159 T ELT) (((-711 |#1|) (-1297 $)) 158 T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) 131 (|has| |#1| (-381)) ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-560))) 74 T ELT) (($ |#1|) 110 T ELT)) (-1964 (($ $) 130 (|has| |#1| (-381)) ELT) (((-3 $ "failed") $) 93 (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-1954 (((-1297 $)) 161 T ELT) (((-1297 $) (-948)) 160 T ELT)) (-2948 (((-114) $ $) 45 T ELT)) (-3602 (((-114) $) 105 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3054 (($ $) 99 (|has| |#1| (-381)) ELT) (($ $ (-793)) 98 (|has| |#1| (-381)) ELT)) (-3305 (($ $ (-793)) 129 (|has| |#1| (-381)) ELT) (($ $) 127 (|has| |#1| (-381)) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ $) 73 T ELT) (($ $ |#1|) 108 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 77 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 76 T ELT) (($ (-421 (-560)) $) 75 T ELT) (($ $ |#1|) 107 T ELT) (($ |#1| $) 106 T ELT)))
+((-3000 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (-5 *2 (-114)))) (-3011 (*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080)))) (-2247 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (-5 *2 (-663 *3)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (-5 *2 (-793)))) (-3765 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) (-3060 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)))) (-3224 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)))) (-2548 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (-4 *3 (-175)))) (-2233 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)) (-4 *2 (-571)))) (-2264 (*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080)) (-4 *2 (-466)))) (-4239 (*1 *1 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)) (-4 *2 (-466)))))
+(-13 (-47 |t#1| |t#2|) (-426 |t#1|) (-10 -8 (-15 -3000 ((-114) $)) (-15 -3011 (|t#1| $)) (-15 -2247 ((-663 |t#1|) $)) (-15 -4127 ((-793) $)) (-15 -3765 (|t#2| $)) (-15 -3060 ($ (-1 |t#2| |t#2|) $)) (-15 -3224 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-175)) (-15 -2548 ($ $ $ (-793))) |%noBranch|) (IF (|has| |t#1| (-571)) (-15 -2233 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-466)) (PROGN (-15 -2264 (|t#1| $)) (-15 -4239 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-571)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) -2196 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 $) |has| |#1| (-571)) ((-632 (-887)) . T) ((-175) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-302) |has| |#1| (-571)) ((-426 |#1|) . T) ((-571) |has| |#1| (-571)) ((-668 #0#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-38 (-421 (-560)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-571)) ((-739 #0#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-571)) ((-748) . T) ((-1069 (-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 |#1|) . T) ((-1082 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1082 |#1|) . T) ((-1082 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1087 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1087 |#1|) . T) ((-1087 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2033 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-2152 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-3152 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| |#1| (-871))) ELT)) (-1787 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-2389 (((-114) (-114)) NIL T ELT)) (-4083 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-1864 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3923 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3525 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) NIL T ELT)) (-4329 (($ $) NIL (|has| |#1| (-1132)) ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2091 (($ |#1| $) NIL (|has| |#1| (-1132)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3033 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3338 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-560)) NIL T ELT)) (-2359 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1132)) ELT)) (-3791 (($ $ (-560)) NIL T ELT)) (-3524 (((-793) $) NIL T ELT)) (-3737 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4246 (($ (-793) |#1|) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3204 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-4167 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4263 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3888 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-2507 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) NIL T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2836 (($ (-663 |#1|)) NIL T ELT)) (-4334 ((|#1| $) NIL (|has| (-560) (-871)) ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2740 (($ $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-3639 (($ $ (-1264 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-2579 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3993 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) NIL T ELT)) (-3305 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-1955 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3913 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2396 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2386 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-339 |#1|) (-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -2836 ($ (-663 |#1|))) (-15 -3524 ((-793) $)) (-15 -3791 ($ $ (-560))) (-15 -2389 ((-114) (-114))))) (-1247)) (T -339))
+((-2836 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-339 *3)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-339 *3)) (-4 *3 (-1247)))) (-3791 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-339 *3)) (-4 *3 (-1247)))) (-2389 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-339 *3)) (-4 *3 (-1247)))))
+(-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -2836 ($ (-663 |#1|))) (-15 -3524 ((-793) $)) (-15 -3791 ($ $ (-560))) (-15 -2389 ((-114) (-114)))))
+((-3752 (((-114) $) 47 T ELT)) (-1542 (((-793)) 23 T ELT)) (-4113 ((|#2| $) 51 T ELT) (($ $ (-948)) 121 T ELT)) (-2552 (((-793)) 122 T ELT)) (-1953 (($ (-1297 |#2|)) 20 T ELT)) (-3572 (((-114) $) 134 T ELT)) (-2084 ((|#2| $) 53 T ELT) (($ $ (-948)) 118 T ELT)) (-1471 (((-1201 |#2|) $) NIL T ELT) (((-1201 $) $ (-948)) 109 T ELT)) (-1567 (((-1201 |#2|) $) 95 T ELT)) (-1644 (((-1201 |#2|) $) 91 T ELT) (((-3 (-1201 |#2|) "failed") $ $) 88 T ELT)) (-3264 (($ $ (-1201 |#2|)) 58 T ELT)) (-3313 (((-854 (-948))) 30 T ELT) (((-948)) 48 T ELT)) (-3015 (((-136)) 27 T ELT)) (-3900 (((-854 (-948)) $) 32 T ELT) (((-948) $) 137 T ELT)) (-2855 (($) 128 T ELT)) (-4226 (((-1297 |#2|) $) NIL T ELT) (((-711 |#2|) (-1297 $)) 42 T ELT)) (-3919 (($ $) NIL T ELT) (((-3 $ "failed") $) 98 T ELT)) (-3621 (((-114) $) 45 T ELT)))
+(((-340 |#1| |#2|) (-10 -8 (-15 -3919 ((-3 |#1| "failed") |#1|)) (-15 -2552 ((-793))) (-15 -3919 (|#1| |#1|)) (-15 -1644 ((-3 (-1201 |#2|) "failed") |#1| |#1|)) (-15 -1644 ((-1201 |#2|) |#1|)) (-15 -1567 ((-1201 |#2|) |#1|)) (-15 -3264 (|#1| |#1| (-1201 |#2|))) (-15 -3572 ((-114) |#1|)) (-15 -2855 (|#1|)) (-15 -4113 (|#1| |#1| (-948))) (-15 -2084 (|#1| |#1| (-948))) (-15 -1471 ((-1201 |#1|) |#1| (-948))) (-15 -4113 (|#2| |#1|)) (-15 -2084 (|#2| |#1|)) (-15 -3900 ((-948) |#1|)) (-15 -3313 ((-948))) (-15 -1471 ((-1201 |#2|) |#1|)) (-15 -1953 (|#1| (-1297 |#2|))) (-15 -4226 ((-711 |#2|) (-1297 |#1|))) (-15 -4226 ((-1297 |#2|) |#1|)) (-15 -1542 ((-793))) (-15 -3313 ((-854 (-948)))) (-15 -3900 ((-854 (-948)) |#1|)) (-15 -3752 ((-114) |#1|)) (-15 -3621 ((-114) |#1|)) (-15 -3015 ((-136)))) (-341 |#2|) (-376)) (T -340))
+((-3015 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-136)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-3313 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-854 (-948))) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-1542 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-793)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-3313 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-948)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-2552 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-793)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))))
+(-10 -8 (-15 -3919 ((-3 |#1| "failed") |#1|)) (-15 -2552 ((-793))) (-15 -3919 (|#1| |#1|)) (-15 -1644 ((-3 (-1201 |#2|) "failed") |#1| |#1|)) (-15 -1644 ((-1201 |#2|) |#1|)) (-15 -1567 ((-1201 |#2|) |#1|)) (-15 -3264 (|#1| |#1| (-1201 |#2|))) (-15 -3572 ((-114) |#1|)) (-15 -2855 (|#1|)) (-15 -4113 (|#1| |#1| (-948))) (-15 -2084 (|#1| |#1| (-948))) (-15 -1471 ((-1201 |#1|) |#1| (-948))) (-15 -4113 (|#2| |#1|)) (-15 -2084 (|#2| |#1|)) (-15 -3900 ((-948) |#1|)) (-15 -3313 ((-948))) (-15 -1471 ((-1201 |#2|) |#1|)) (-15 -1953 (|#1| (-1297 |#2|))) (-15 -4226 ((-711 |#2|) (-1297 |#1|))) (-15 -4226 ((-1297 |#2|) |#1|)) (-15 -1542 ((-793))) (-15 -3313 ((-854 (-948)))) (-15 -3900 ((-854 (-948)) |#1|)) (-15 -3752 ((-114) |#1|)) (-15 -3621 ((-114) |#1|)) (-15 -3015 ((-136))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-4366 (($ $) 46 T ELT)) (-2667 (((-114) $) 44 T ELT)) (-3752 (((-114) $) 104 T ELT)) (-1542 (((-793)) 100 T ELT)) (-4113 ((|#1| $) 151 T ELT) (($ $ (-948)) 148 (|has| |#1| (-381)) ELT)) (-1548 (((-1219 (-948) (-793)) (-560)) 133 (|has| |#1| (-381)) ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-1621 (($ $) 81 T ELT)) (-3898 (((-419 $) $) 80 T ELT)) (-3476 (((-114) $ $) 65 T ELT)) (-2552 (((-793)) 123 (|has| |#1| (-381)) ELT)) (-3525 (($) 18 T CONST)) (-3929 (((-3 |#1| "failed") $) 111 T ELT)) (-3649 ((|#1| $) 112 T ELT)) (-1953 (($ (-1297 |#1|)) 157 T ELT)) (-1433 (((-3 "prime" "polynomial" "normal" "cyclic")) 139 (|has| |#1| (-381)) ELT)) (-2186 (($ $ $) 61 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1812 (($) 120 (|has| |#1| (-381)) ELT)) (-2197 (($ $ $) 62 T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 57 T ELT)) (-3191 (($) 135 (|has| |#1| (-381)) ELT)) (-4017 (((-114) $) 136 (|has| |#1| (-381)) ELT)) (-3079 (($ $ (-793)) 97 (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) 96 (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3141 (((-114) $) 79 T ELT)) (-1460 (((-948) $) 138 (|has| |#1| (-381)) ELT) (((-854 (-948)) $) 94 (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-1918 (((-114) $) 35 T ELT)) (-2601 (($) 146 (|has| |#1| (-381)) ELT)) (-3572 (((-114) $) 145 (|has| |#1| (-381)) ELT)) (-2084 ((|#1| $) 152 T ELT) (($ $ (-948)) 149 (|has| |#1| (-381)) ELT)) (-3738 (((-3 $ "failed") $) 124 (|has| |#1| (-381)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-1471 (((-1201 |#1|) $) 156 T ELT) (((-1201 $) $ (-948)) 150 (|has| |#1| (-381)) ELT)) (-2622 (((-948) $) 121 (|has| |#1| (-381)) ELT)) (-1567 (((-1201 |#1|) $) 142 (|has| |#1| (-381)) ELT)) (-1644 (((-1201 |#1|) $) 141 (|has| |#1| (-381)) ELT) (((-3 (-1201 |#1|) "failed") $ $) 140 (|has| |#1| (-381)) ELT)) (-3264 (($ $ (-1201 |#1|)) 143 (|has| |#1| (-381)) ELT)) (-1861 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2986 (($ $) 78 T ELT)) (-3239 (($) 125 (|has| |#1| (-381)) CONST)) (-1591 (($ (-948)) 122 (|has| |#1| (-381)) ELT)) (-3410 (((-114) $) 103 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3583 (($) 144 (|has| |#1| (-381)) ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-1938 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-2976 (((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))) 132 (|has| |#1| (-381)) ELT)) (-4012 (((-419 $) $) 82 T ELT)) (-3313 (((-854 (-948))) 101 T ELT) (((-948)) 154 T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-2233 (((-3 $ "failed") $ $) 48 T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-3989 (((-793) $) 64 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 63 T ELT)) (-2258 (((-793) $) 137 (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) 95 (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3015 (((-136)) 109 T ELT)) (-3161 (($ $ (-793)) 128 (|has| |#1| (-381)) ELT) (($ $) 126 (|has| |#1| (-381)) ELT)) (-3900 (((-854 (-948)) $) 102 T ELT) (((-948) $) 153 T ELT)) (-2407 (((-1201 |#1|)) 155 T ELT)) (-3569 (($) 134 (|has| |#1| (-381)) ELT)) (-2855 (($) 147 (|has| |#1| (-381)) ELT)) (-4226 (((-1297 |#1|) $) 159 T ELT) (((-711 |#1|) (-1297 $)) 158 T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) 131 (|has| |#1| (-381)) ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-560))) 74 T ELT) (($ |#1|) 110 T ELT)) (-3919 (($ $) 130 (|has| |#1| (-381)) ELT) (((-3 $ "failed") $) 93 (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-3822 (((-1297 $)) 161 T ELT) (((-1297 $) (-948)) 160 T ELT)) (-4361 (((-114) $ $) 45 T ELT)) (-3621 (((-114) $) 105 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2925 (($ $) 99 (|has| |#1| (-381)) ELT) (($ $ (-793)) 98 (|has| |#1| (-381)) ELT)) (-2111 (($ $ (-793)) 129 (|has| |#1| (-381)) ELT) (($ $) 127 (|has| |#1| (-381)) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ $) 73 T ELT) (($ $ |#1|) 108 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 77 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 76 T ELT) (($ (-421 (-560)) $) 75 T ELT) (($ $ |#1|) 107 T ELT) (($ |#1| $) 106 T ELT)))
(((-341 |#1|) (-142) (-376)) (T -341))
-((-1954 (*1 *2) (-12 (-4 *3 (-376)) (-5 *2 (-1297 *1)) (-4 *1 (-341 *3)))) (-1954 (*1 *2 *3) (-12 (-5 *3 (-948)) (-4 *4 (-376)) (-5 *2 (-1297 *1)) (-4 *1 (-341 *4)))) (-2178 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1297 *3)))) (-2178 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-341 *4)) (-4 *4 (-376)) (-5 *2 (-711 *4)))) (-4143 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-376)) (-4 *1 (-341 *3)))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1201 *3)))) (-4394 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1201 *3)))) (-2969 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-948)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-948)))) (-2032 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) (-3349 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) (-1787 (*1 *2 *1 *3) (-12 (-5 *3 (-948)) (-4 *4 (-381)) (-4 *4 (-376)) (-5 *2 (-1201 *1)) (-4 *1 (-341 *4)))) (-2032 (*1 *1 *1 *2) (-12 (-5 *2 (-948)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) (-3349 (*1 *1 *1 *2) (-12 (-5 *2 (-948)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) (-3988 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-4417 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-2863 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-114)))) (-2748 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-3384 (*1 *1 *1 *2) (-12 (-5 *2 (-1201 *3)) (-4 *3 (-381)) (-4 *1 (-341 *3)) (-4 *3 (-376)))) (-1543 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1201 *3)))) (-4449 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1201 *3)))) (-4449 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1201 *3)))))
-(-13 (-1316 |t#1|) (-1069 |t#1|) (-10 -8 (-15 -1954 ((-1297 $))) (-15 -1954 ((-1297 $) (-948))) (-15 -2178 ((-1297 |t#1|) $)) (-15 -2178 ((-711 |t#1|) (-1297 $))) (-15 -4143 ($ (-1297 |t#1|))) (-15 -1787 ((-1201 |t#1|) $)) (-15 -4394 ((-1201 |t#1|))) (-15 -2969 ((-948))) (-15 -3630 ((-948) $)) (-15 -2032 (|t#1| $)) (-15 -3349 (|t#1| $)) (IF (|has| |t#1| (-381)) (PROGN (-6 (-363)) (-15 -1787 ((-1201 $) $ (-948))) (-15 -2032 ($ $ (-948))) (-15 -3349 ($ $ (-948))) (-15 -3988 ($)) (-15 -4417 ($)) (-15 -2863 ((-114) $)) (-15 -2748 ($)) (-15 -3384 ($ $ (-1201 |t#1|))) (-15 -1543 ((-1201 |t#1|) $)) (-15 -4449 ((-1201 |t#1|) $)) (-15 -4449 ((-3 (-1201 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -2304 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-635 #0#) . T) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-236 $) |has| |#1| (-381)) ((-240) |has| |#1| (-381)) ((-239) |has| |#1| (-381)) ((-250) . T) ((-302) . T) ((-319) . T) ((-1316 |#1|) . T) ((-376) . T) ((-416) -2304 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-381) |has| |#1| (-381)) ((-363) |has| |#1| (-381)) ((-466) . T) ((-571) . T) ((-668 #0#) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-739 #0#) . T) ((-739 |#1|) . T) ((-739 $) . T) ((-748) . T) ((-950) . T) ((-1069 |#1|) . T) ((-1082 #0#) . T) ((-1082 |#1|) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 |#1|) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1182) |has| |#1| (-381)) ((-1247) . T) ((-1252) . T) ((-1305 |#1|) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-4261 (($ (-1206) $) 100 T ELT)) (-3315 (($) 89 T ELT)) (-1683 (((-1151) (-1151)) 9 T ELT)) (-3041 (($) 90 T ELT)) (-2984 (($) 104 T ELT) (($ (-326 (-721))) 112 T ELT) (($ (-326 (-723))) 108 T ELT) (($ (-326 (-716))) 116 T ELT) (($ (-326 (-391))) 123 T ELT) (($ (-326 (-560))) 119 T ELT) (($ (-326 (-171 (-391)))) 127 T ELT)) (-3233 (($ (-1206) $) 101 T ELT)) (-2085 (($ (-663 (-887))) 91 T ELT)) (-2091 (((-1303) $) 87 T ELT)) (-1934 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1874 (($ (-1151)) 58 T ELT)) (-2084 (((-1134) $) 30 T ELT)) (-3374 (($ (-1123 (-975 (-560))) $) 97 T ELT) (($ (-1123 (-975 (-560))) (-975 (-560)) $) 98 T ELT)) (-2582 (($ (-1151)) 99 T ELT)) (-3873 (($ (-1206) $) 129 T ELT) (($ (-1206) $ $) 130 T ELT)) (-1503 (($ (-1207) (-663 (-1207))) 88 T ELT)) (-3985 (($ (-1189)) 94 T ELT) (($ (-663 (-1189))) 92 T ELT)) (-1578 (((-887) $) 132 T ELT)) (-2491 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1207)) (|:| |arrayIndex| (-663 (-975 (-560)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -2413 (-887)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1207)) (|:| |rand| (-887)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1206)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1663 (-114)) (|:| -3853 (-2 (|:| |ints2Floats?| (-114)) (|:| -2413 (-887)))))) (|:| |blockBranch| (-663 $)) (|:| |commentBranch| (-663 (-1189))) (|:| |callBranch| (-1189)) (|:| |forBranch| (-2 (|:| -3471 (-1123 (-975 (-560)))) (|:| |span| (-975 (-560))) (|:| -3625 $))) (|:| |labelBranch| (-1151)) (|:| |loopBranch| (-2 (|:| |switch| (-1206)) (|:| -3625 $))) (|:| |commonBranch| (-2 (|:| -3614 (-1207)) (|:| |contents| (-663 (-1207))))) (|:| |printBranch| (-663 (-887)))) $) 50 T ELT)) (-1642 (($ (-1189)) 202 T ELT)) (-3780 (($ (-663 $)) 128 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2149 (($ (-1207) (-1189)) 135 T ELT) (($ (-1207) (-326 (-723))) 175 T ELT) (($ (-1207) (-326 (-721))) 176 T ELT) (($ (-1207) (-326 (-716))) 177 T ELT) (($ (-1207) (-711 (-723))) 138 T ELT) (($ (-1207) (-711 (-721))) 141 T ELT) (($ (-1207) (-711 (-716))) 144 T ELT) (($ (-1207) (-1297 (-723))) 147 T ELT) (($ (-1207) (-1297 (-721))) 150 T ELT) (($ (-1207) (-1297 (-716))) 153 T ELT) (($ (-1207) (-711 (-326 (-723)))) 156 T ELT) (($ (-1207) (-711 (-326 (-721)))) 159 T ELT) (($ (-1207) (-711 (-326 (-716)))) 162 T ELT) (($ (-1207) (-1297 (-326 (-723)))) 165 T ELT) (($ (-1207) (-1297 (-326 (-721)))) 168 T ELT) (($ (-1207) (-1297 (-326 (-716)))) 171 T ELT) (($ (-1207) (-663 (-975 (-560))) (-326 (-723))) 172 T ELT) (($ (-1207) (-663 (-975 (-560))) (-326 (-721))) 173 T ELT) (($ (-1207) (-663 (-975 (-560))) (-326 (-716))) 174 T ELT) (($ (-1207) (-326 (-560))) 199 T ELT) (($ (-1207) (-326 (-391))) 200 T ELT) (($ (-1207) (-326 (-171 (-391)))) 201 T ELT) (($ (-1207) (-711 (-326 (-560)))) 180 T ELT) (($ (-1207) (-711 (-326 (-391)))) 183 T ELT) (($ (-1207) (-711 (-326 (-171 (-391))))) 186 T ELT) (($ (-1207) (-1297 (-326 (-560)))) 189 T ELT) (($ (-1207) (-1297 (-326 (-391)))) 192 T ELT) (($ (-1207) (-1297 (-326 (-171 (-391))))) 195 T ELT) (($ (-1207) (-663 (-975 (-560))) (-326 (-560))) 196 T ELT) (($ (-1207) (-663 (-975 (-560))) (-326 (-391))) 197 T ELT) (($ (-1207) (-663 (-975 (-560))) (-326 (-171 (-391)))) 198 T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-342) (-13 (-1132) (-10 -8 (-15 -3374 ($ (-1123 (-975 (-560))) $)) (-15 -3374 ($ (-1123 (-975 (-560))) (-975 (-560)) $)) (-15 -4261 ($ (-1206) $)) (-15 -3233 ($ (-1206) $)) (-15 -1874 ($ (-1151))) (-15 -2582 ($ (-1151))) (-15 -3985 ($ (-1189))) (-15 -3985 ($ (-663 (-1189)))) (-15 -1642 ($ (-1189))) (-15 -2984 ($)) (-15 -2984 ($ (-326 (-721)))) (-15 -2984 ($ (-326 (-723)))) (-15 -2984 ($ (-326 (-716)))) (-15 -2984 ($ (-326 (-391)))) (-15 -2984 ($ (-326 (-560)))) (-15 -2984 ($ (-326 (-171 (-391))))) (-15 -3873 ($ (-1206) $)) (-15 -3873 ($ (-1206) $ $)) (-15 -2149 ($ (-1207) (-1189))) (-15 -2149 ($ (-1207) (-326 (-723)))) (-15 -2149 ($ (-1207) (-326 (-721)))) (-15 -2149 ($ (-1207) (-326 (-716)))) (-15 -2149 ($ (-1207) (-711 (-723)))) (-15 -2149 ($ (-1207) (-711 (-721)))) (-15 -2149 ($ (-1207) (-711 (-716)))) (-15 -2149 ($ (-1207) (-1297 (-723)))) (-15 -2149 ($ (-1207) (-1297 (-721)))) (-15 -2149 ($ (-1207) (-1297 (-716)))) (-15 -2149 ($ (-1207) (-711 (-326 (-723))))) (-15 -2149 ($ (-1207) (-711 (-326 (-721))))) (-15 -2149 ($ (-1207) (-711 (-326 (-716))))) (-15 -2149 ($ (-1207) (-1297 (-326 (-723))))) (-15 -2149 ($ (-1207) (-1297 (-326 (-721))))) (-15 -2149 ($ (-1207) (-1297 (-326 (-716))))) (-15 -2149 ($ (-1207) (-663 (-975 (-560))) (-326 (-723)))) (-15 -2149 ($ (-1207) (-663 (-975 (-560))) (-326 (-721)))) (-15 -2149 ($ (-1207) (-663 (-975 (-560))) (-326 (-716)))) (-15 -2149 ($ (-1207) (-326 (-560)))) (-15 -2149 ($ (-1207) (-326 (-391)))) (-15 -2149 ($ (-1207) (-326 (-171 (-391))))) (-15 -2149 ($ (-1207) (-711 (-326 (-560))))) (-15 -2149 ($ (-1207) (-711 (-326 (-391))))) (-15 -2149 ($ (-1207) (-711 (-326 (-171 (-391)))))) (-15 -2149 ($ (-1207) (-1297 (-326 (-560))))) (-15 -2149 ($ (-1207) (-1297 (-326 (-391))))) (-15 -2149 ($ (-1207) (-1297 (-326 (-171 (-391)))))) (-15 -2149 ($ (-1207) (-663 (-975 (-560))) (-326 (-560)))) (-15 -2149 ($ (-1207) (-663 (-975 (-560))) (-326 (-391)))) (-15 -2149 ($ (-1207) (-663 (-975 (-560))) (-326 (-171 (-391))))) (-15 -3780 ($ (-663 $))) (-15 -3315 ($)) (-15 -3041 ($)) (-15 -2085 ($ (-663 (-887)))) (-15 -1503 ($ (-1207) (-663 (-1207)))) (-15 -1934 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2491 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1207)) (|:| |arrayIndex| (-663 (-975 (-560)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -2413 (-887)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1207)) (|:| |rand| (-887)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1206)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1663 (-114)) (|:| -3853 (-2 (|:| |ints2Floats?| (-114)) (|:| -2413 (-887)))))) (|:| |blockBranch| (-663 $)) (|:| |commentBranch| (-663 (-1189))) (|:| |callBranch| (-1189)) (|:| |forBranch| (-2 (|:| -3471 (-1123 (-975 (-560)))) (|:| |span| (-975 (-560))) (|:| -3625 $))) (|:| |labelBranch| (-1151)) (|:| |loopBranch| (-2 (|:| |switch| (-1206)) (|:| -3625 $))) (|:| |commonBranch| (-2 (|:| -3614 (-1207)) (|:| |contents| (-663 (-1207))))) (|:| |printBranch| (-663 (-887)))) $)) (-15 -2091 ((-1303) $)) (-15 -2084 ((-1134) $)) (-15 -1683 ((-1151) (-1151)))))) (T -342))
-((-3374 (*1 *1 *2 *1) (-12 (-5 *2 (-1123 (-975 (-560)))) (-5 *1 (-342)))) (-3374 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1123 (-975 (-560)))) (-5 *3 (-975 (-560))) (-5 *1 (-342)))) (-4261 (*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))) (-3233 (*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))) (-1874 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-342)))) (-2582 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-342)))) (-3985 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-342)))) (-3985 (*1 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-342)))) (-1642 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-342)))) (-2984 (*1 *1) (-5 *1 (-342))) (-2984 (*1 *1 *2) (-12 (-5 *2 (-326 (-721))) (-5 *1 (-342)))) (-2984 (*1 *1 *2) (-12 (-5 *2 (-326 (-723))) (-5 *1 (-342)))) (-2984 (*1 *1 *2) (-12 (-5 *2 (-326 (-716))) (-5 *1 (-342)))) (-2984 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-342)))) (-2984 (*1 *1 *2) (-12 (-5 *2 (-326 (-560))) (-5 *1 (-342)))) (-2984 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-342)))) (-3873 (*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))) (-3873 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1189)) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-723))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-721))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-716))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-723))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-721))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-716))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-723))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-721))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-716))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-326 (-723)))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-326 (-721)))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-326 (-716)))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-723)))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-721)))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-716)))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-663 (-975 (-560)))) (-5 *4 (-326 (-723))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-663 (-975 (-560)))) (-5 *4 (-326 (-721))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-663 (-975 (-560)))) (-5 *4 (-326 (-716))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-560))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-391))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-171 (-391)))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-326 (-560)))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-326 (-391)))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-326 (-171 (-391))))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-560)))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-391)))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-171 (-391))))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-663 (-975 (-560)))) (-5 *4 (-326 (-560))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-663 (-975 (-560)))) (-5 *4 (-326 (-391))) (-5 *1 (-342)))) (-2149 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-663 (-975 (-560)))) (-5 *4 (-326 (-171 (-391)))) (-5 *1 (-342)))) (-3780 (*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-5 *1 (-342)))) (-3315 (*1 *1) (-5 *1 (-342))) (-3041 (*1 *1) (-5 *1 (-342))) (-2085 (*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-342)))) (-1503 (*1 *1 *2 *3) (-12 (-5 *3 (-663 (-1207))) (-5 *2 (-1207)) (-5 *1 (-342)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-342)))) (-2491 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1207)) (|:| |arrayIndex| (-663 (-975 (-560)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -2413 (-887)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1207)) (|:| |rand| (-887)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1206)) (|:| |thenClause| (-342)) (|:| |elseClause| (-342)))) (|:| |returnBranch| (-2 (|:| -1663 (-114)) (|:| -3853 (-2 (|:| |ints2Floats?| (-114)) (|:| -2413 (-887)))))) (|:| |blockBranch| (-663 (-342))) (|:| |commentBranch| (-663 (-1189))) (|:| |callBranch| (-1189)) (|:| |forBranch| (-2 (|:| -3471 (-1123 (-975 (-560)))) (|:| |span| (-975 (-560))) (|:| -3625 (-342)))) (|:| |labelBranch| (-1151)) (|:| |loopBranch| (-2 (|:| |switch| (-1206)) (|:| -3625 (-342)))) (|:| |commonBranch| (-2 (|:| -3614 (-1207)) (|:| |contents| (-663 (-1207))))) (|:| |printBranch| (-663 (-887))))) (-5 *1 (-342)))) (-2091 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-342)))) (-2084 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-342)))) (-1683 (*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-342)))))
-(-13 (-1132) (-10 -8 (-15 -3374 ($ (-1123 (-975 (-560))) $)) (-15 -3374 ($ (-1123 (-975 (-560))) (-975 (-560)) $)) (-15 -4261 ($ (-1206) $)) (-15 -3233 ($ (-1206) $)) (-15 -1874 ($ (-1151))) (-15 -2582 ($ (-1151))) (-15 -3985 ($ (-1189))) (-15 -3985 ($ (-663 (-1189)))) (-15 -1642 ($ (-1189))) (-15 -2984 ($)) (-15 -2984 ($ (-326 (-721)))) (-15 -2984 ($ (-326 (-723)))) (-15 -2984 ($ (-326 (-716)))) (-15 -2984 ($ (-326 (-391)))) (-15 -2984 ($ (-326 (-560)))) (-15 -2984 ($ (-326 (-171 (-391))))) (-15 -3873 ($ (-1206) $)) (-15 -3873 ($ (-1206) $ $)) (-15 -2149 ($ (-1207) (-1189))) (-15 -2149 ($ (-1207) (-326 (-723)))) (-15 -2149 ($ (-1207) (-326 (-721)))) (-15 -2149 ($ (-1207) (-326 (-716)))) (-15 -2149 ($ (-1207) (-711 (-723)))) (-15 -2149 ($ (-1207) (-711 (-721)))) (-15 -2149 ($ (-1207) (-711 (-716)))) (-15 -2149 ($ (-1207) (-1297 (-723)))) (-15 -2149 ($ (-1207) (-1297 (-721)))) (-15 -2149 ($ (-1207) (-1297 (-716)))) (-15 -2149 ($ (-1207) (-711 (-326 (-723))))) (-15 -2149 ($ (-1207) (-711 (-326 (-721))))) (-15 -2149 ($ (-1207) (-711 (-326 (-716))))) (-15 -2149 ($ (-1207) (-1297 (-326 (-723))))) (-15 -2149 ($ (-1207) (-1297 (-326 (-721))))) (-15 -2149 ($ (-1207) (-1297 (-326 (-716))))) (-15 -2149 ($ (-1207) (-663 (-975 (-560))) (-326 (-723)))) (-15 -2149 ($ (-1207) (-663 (-975 (-560))) (-326 (-721)))) (-15 -2149 ($ (-1207) (-663 (-975 (-560))) (-326 (-716)))) (-15 -2149 ($ (-1207) (-326 (-560)))) (-15 -2149 ($ (-1207) (-326 (-391)))) (-15 -2149 ($ (-1207) (-326 (-171 (-391))))) (-15 -2149 ($ (-1207) (-711 (-326 (-560))))) (-15 -2149 ($ (-1207) (-711 (-326 (-391))))) (-15 -2149 ($ (-1207) (-711 (-326 (-171 (-391)))))) (-15 -2149 ($ (-1207) (-1297 (-326 (-560))))) (-15 -2149 ($ (-1207) (-1297 (-326 (-391))))) (-15 -2149 ($ (-1207) (-1297 (-326 (-171 (-391)))))) (-15 -2149 ($ (-1207) (-663 (-975 (-560))) (-326 (-560)))) (-15 -2149 ($ (-1207) (-663 (-975 (-560))) (-326 (-391)))) (-15 -2149 ($ (-1207) (-663 (-975 (-560))) (-326 (-171 (-391))))) (-15 -3780 ($ (-663 $))) (-15 -3315 ($)) (-15 -3041 ($)) (-15 -2085 ($ (-663 (-887)))) (-15 -1503 ($ (-1207) (-663 (-1207)))) (-15 -1934 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2491 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1207)) (|:| |arrayIndex| (-663 (-975 (-560)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -2413 (-887)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1207)) (|:| |rand| (-887)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1206)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1663 (-114)) (|:| -3853 (-2 (|:| |ints2Floats?| (-114)) (|:| -2413 (-887)))))) (|:| |blockBranch| (-663 $)) (|:| |commentBranch| (-663 (-1189))) (|:| |callBranch| (-1189)) (|:| |forBranch| (-2 (|:| -3471 (-1123 (-975 (-560)))) (|:| |span| (-975 (-560))) (|:| -3625 $))) (|:| |labelBranch| (-1151)) (|:| |loopBranch| (-2 (|:| |switch| (-1206)) (|:| -3625 $))) (|:| |commonBranch| (-2 (|:| -3614 (-1207)) (|:| |contents| (-663 (-1207))))) (|:| |printBranch| (-663 (-887)))) $)) (-15 -2091 ((-1303) $)) (-15 -2084 ((-1134) $)) (-15 -1683 ((-1151) (-1151)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3949 (((-114) $) 13 T ELT)) (-3430 (($ |#1|) 10 T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3443 (($ |#1|) 12 T ELT)) (-1578 (((-887) $) 19 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-3844 ((|#1| $) 14 T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 21 T ELT)))
-(((-343 |#1|) (-13 (-871) (-10 -8 (-15 -3430 ($ |#1|)) (-15 -3443 ($ |#1|)) (-15 -3949 ((-114) $)) (-15 -3844 (|#1| $)))) (-871)) (T -343))
-((-3430 (*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-871)))) (-3443 (*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-871)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-343 *3)) (-4 *3 (-871)))) (-3844 (*1 *2 *1) (-12 (-5 *1 (-343 *2)) (-4 *2 (-871)))))
-(-13 (-871) (-10 -8 (-15 -3430 ($ |#1|)) (-15 -3443 ($ |#1|)) (-15 -3949 ((-114) $)) (-15 -3844 (|#1| $))))
-((-1459 (((-342) (-1207) (-975 (-560))) 23 T ELT)) (-1414 (((-342) (-1207) (-975 (-560))) 27 T ELT)) (-2033 (((-342) (-1207) (-1123 (-975 (-560))) (-1123 (-975 (-560)))) 26 T ELT) (((-342) (-1207) (-975 (-560)) (-975 (-560))) 24 T ELT)) (-2644 (((-342) (-1207) (-975 (-560))) 31 T ELT)))
-(((-344) (-10 -7 (-15 -1459 ((-342) (-1207) (-975 (-560)))) (-15 -2033 ((-342) (-1207) (-975 (-560)) (-975 (-560)))) (-15 -2033 ((-342) (-1207) (-1123 (-975 (-560))) (-1123 (-975 (-560))))) (-15 -1414 ((-342) (-1207) (-975 (-560)))) (-15 -2644 ((-342) (-1207) (-975 (-560)))))) (T -344))
-((-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-975 (-560))) (-5 *2 (-342)) (-5 *1 (-344)))) (-1414 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-975 (-560))) (-5 *2 (-342)) (-5 *1 (-344)))) (-2033 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-1123 (-975 (-560)))) (-5 *2 (-342)) (-5 *1 (-344)))) (-2033 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-975 (-560))) (-5 *2 (-342)) (-5 *1 (-344)))) (-1459 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-975 (-560))) (-5 *2 (-342)) (-5 *1 (-344)))))
-(-10 -7 (-15 -1459 ((-342) (-1207) (-975 (-560)))) (-15 -2033 ((-342) (-1207) (-975 (-560)) (-975 (-560)))) (-15 -2033 ((-342) (-1207) (-1123 (-975 (-560))) (-1123 (-975 (-560))))) (-15 -1414 ((-342) (-1207) (-975 (-560)))) (-15 -2644 ((-342) (-1207) (-975 (-560)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2070 (((-520) $) 20 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1966 (((-987 (-793)) $) 18 T ELT)) (-4428 (((-258) $) 7 T ELT)) (-1578 (((-887) $) 26 T ELT)) (-4432 (((-987 (-187 (-141))) $) 16 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-4067 (((-663 (-897 (-1212) (-793))) $) 12 T ELT)) (-2473 (((-114) $ $) 22 T ELT)))
-(((-345) (-13 (-1132) (-10 -8 (-15 -4428 ((-258) $)) (-15 -4067 ((-663 (-897 (-1212) (-793))) $)) (-15 -1966 ((-987 (-793)) $)) (-15 -4432 ((-987 (-187 (-141))) $)) (-15 -2070 ((-520) $))))) (T -345))
-((-4428 (*1 *2 *1) (-12 (-5 *2 (-258)) (-5 *1 (-345)))) (-4067 (*1 *2 *1) (-12 (-5 *2 (-663 (-897 (-1212) (-793)))) (-5 *1 (-345)))) (-1966 (*1 *2 *1) (-12 (-5 *2 (-987 (-793))) (-5 *1 (-345)))) (-4432 (*1 *2 *1) (-12 (-5 *2 (-987 (-187 (-141)))) (-5 *1 (-345)))) (-2070 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-345)))))
-(-13 (-1132) (-10 -8 (-15 -4428 ((-258) $)) (-15 -4067 ((-663 (-897 (-1212) (-793))) $)) (-15 -1966 ((-987 (-793)) $)) (-15 -4432 ((-987 (-187 (-141))) $)) (-15 -2070 ((-520) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-4129 (($ $) 33 T ELT)) (-2080 (((-114) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3561 (((-1297 |#4|) $) 134 T ELT)) (-2207 (((-427 |#2| (-421 |#2|) |#3| |#4|) $) 31 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2748 (((-3 |#4| "failed") $) 36 T ELT)) (-1726 (((-1297 |#4|) $) 126 T ELT)) (-3106 (($ (-427 |#2| (-421 |#2|) |#3| |#4|)) 41 T ELT) (($ |#4|) 43 T ELT) (($ |#1| |#1|) 45 T ELT) (($ |#1| |#1| (-560)) 47 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 49 T ELT)) (-3448 (((-2 (|:| -4300 (-427 |#2| (-421 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39 T ELT)) (-1578 (((-887) $) 17 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 14 T CONST)) (-2473 (((-114) $ $) 20 T ELT)) (-2580 (($ $) 27 T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 25 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 23 T ELT)))
-(((-346 |#1| |#2| |#3| |#4|) (-13 (-349 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1726 ((-1297 |#4|) $)) (-15 -3561 ((-1297 |#4|) $)))) (-376) (-1273 |#1|) (-1273 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -346))
-((-1726 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-1297 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5)))) (-3561 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-1297 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5)))))
-(-13 (-349 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1726 ((-1297 |#4|) $)) (-15 -3561 ((-1297 |#4|) $))))
-((-3957 (((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|)) 33 T ELT)))
-(((-347 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3957 ((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|)))) (-376) (-1273 |#1|) (-1273 (-421 |#2|)) (-355 |#1| |#2| |#3|) (-376) (-1273 |#5|) (-1273 (-421 |#6|)) (-355 |#5| |#6| |#7|)) (T -347))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-346 *5 *6 *7 *8)) (-4 *5 (-376)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *9 (-376)) (-4 *10 (-1273 *9)) (-4 *11 (-1273 (-421 *10))) (-5 *2 (-346 *9 *10 *11 *12)) (-5 *1 (-347 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-355 *9 *10 *11)))))
-(-10 -7 (-15 -3957 ((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|))))
-((-2080 (((-114) $) 14 T ELT)))
-(((-348 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2080 ((-114) |#1|))) (-349 |#2| |#3| |#4| |#5|) (-376) (-1273 |#2|) (-1273 (-421 |#3|)) (-355 |#2| |#3| |#4|)) (T -348))
-NIL
-(-10 -8 (-15 -2080 ((-114) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-4129 (($ $) 29 T ELT)) (-2080 (((-114) $) 28 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-2207 (((-427 |#2| (-421 |#2|) |#3| |#4|) $) 35 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-2748 (((-3 |#4| "failed") $) 27 T ELT)) (-3106 (($ (-427 |#2| (-421 |#2|) |#3| |#4|)) 34 T ELT) (($ |#4|) 33 T ELT) (($ |#1| |#1|) 32 T ELT) (($ |#1| |#1| (-560)) 31 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 26 T ELT)) (-3448 (((-2 (|:| -4300 (-427 |#2| (-421 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT)))
+((-3822 (*1 *2) (-12 (-4 *3 (-376)) (-5 *2 (-1297 *1)) (-4 *1 (-341 *3)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-948)) (-4 *4 (-376)) (-5 *2 (-1297 *1)) (-4 *1 (-341 *4)))) (-4226 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1297 *3)))) (-4226 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-341 *4)) (-4 *4 (-376)) (-5 *2 (-711 *4)))) (-1953 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-376)) (-4 *1 (-341 *3)))) (-1471 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1201 *3)))) (-2407 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1201 *3)))) (-3313 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-948)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-948)))) (-2084 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) (-1471 (*1 *2 *1 *3) (-12 (-5 *3 (-948)) (-4 *4 (-381)) (-4 *4 (-376)) (-5 *2 (-1201 *1)) (-4 *1 (-341 *4)))) (-2084 (*1 *1 *1 *2) (-12 (-5 *2 (-948)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) (-4113 (*1 *1 *1 *2) (-12 (-5 *2 (-948)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) (-2855 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-2601 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-3572 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-114)))) (-3583 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-3264 (*1 *1 *1 *2) (-12 (-5 *2 (-1201 *3)) (-4 *3 (-381)) (-4 *1 (-341 *3)) (-4 *3 (-376)))) (-1567 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1201 *3)))) (-1644 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1201 *3)))) (-1644 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1201 *3)))))
+(-13 (-1316 |t#1|) (-1069 |t#1|) (-10 -8 (-15 -3822 ((-1297 $))) (-15 -3822 ((-1297 $) (-948))) (-15 -4226 ((-1297 |t#1|) $)) (-15 -4226 ((-711 |t#1|) (-1297 $))) (-15 -1953 ($ (-1297 |t#1|))) (-15 -1471 ((-1201 |t#1|) $)) (-15 -2407 ((-1201 |t#1|))) (-15 -3313 ((-948))) (-15 -3900 ((-948) $)) (-15 -2084 (|t#1| $)) (-15 -4113 (|t#1| $)) (IF (|has| |t#1| (-381)) (PROGN (-6 (-363)) (-15 -1471 ((-1201 $) $ (-948))) (-15 -2084 ($ $ (-948))) (-15 -4113 ($ $ (-948))) (-15 -2855 ($)) (-15 -2601 ($)) (-15 -3572 ((-114) $)) (-15 -3583 ($)) (-15 -3264 ($ $ (-1201 |t#1|))) (-15 -1567 ((-1201 |t#1|) $)) (-15 -1644 ((-1201 |t#1|) $)) (-15 -1644 ((-3 (-1201 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -2196 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-635 #0#) . T) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-236 $) |has| |#1| (-381)) ((-240) |has| |#1| (-381)) ((-239) |has| |#1| (-381)) ((-250) . T) ((-302) . T) ((-319) . T) ((-1316 |#1|) . T) ((-376) . T) ((-416) -2196 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-381) |has| |#1| (-381)) ((-363) |has| |#1| (-381)) ((-466) . T) ((-571) . T) ((-668 #0#) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-739 #0#) . T) ((-739 |#1|) . T) ((-739 $) . T) ((-748) . T) ((-950) . T) ((-1069 |#1|) . T) ((-1082 #0#) . T) ((-1082 |#1|) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 |#1|) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1182) |has| |#1| (-381)) ((-1247) . T) ((-1252) . T) ((-1305 |#1|) . T))
+((-2243 (((-114) $ $) NIL T ELT)) (-3804 (($ (-1206) $) 100 T ELT)) (-3035 (($) 89 T ELT)) (-2918 (((-1151) (-1151)) 9 T ELT)) (-2909 (($) 90 T ELT)) (-3470 (($) 104 T ELT) (($ (-326 (-721))) 112 T ELT) (($ (-326 (-723))) 108 T ELT) (($ (-326 (-716))) 116 T ELT) (($ (-326 (-391))) 123 T ELT) (($ (-326 (-560))) 119 T ELT) (($ (-326 (-171 (-391)))) 127 T ELT)) (-4267 (($ (-1206) $) 101 T ELT)) (-2588 (($ (-663 (-887))) 91 T ELT)) (-1424 (((-1303) $) 87 T ELT)) (-2563 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 33 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4280 (($ (-1151)) 58 T ELT)) (-2578 (((-1134) $) 30 T ELT)) (-3162 (($ (-1123 (-975 (-560))) $) 97 T ELT) (($ (-1123 (-975 (-560))) (-975 (-560)) $) 98 T ELT)) (-3181 (($ (-1151)) 99 T ELT)) (-2975 (($ (-1206) $) 129 T ELT) (($ (-1206) $ $) 130 T ELT)) (-1429 (($ (-1207) (-663 (-1207))) 88 T ELT)) (-4196 (($ (-1189)) 94 T ELT) (($ (-663 (-1189))) 92 T ELT)) (-3913 (((-887) $) 132 T ELT)) (-2458 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1207)) (|:| |arrayIndex| (-663 (-975 (-560)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -2514 (-887)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1207)) (|:| |rand| (-887)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1206)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2706 (-114)) (|:| -1430 (-2 (|:| |ints2Floats?| (-114)) (|:| -2514 (-887)))))) (|:| |blockBranch| (-663 $)) (|:| |commentBranch| (-663 (-1189))) (|:| |callBranch| (-1189)) (|:| |forBranch| (-2 (|:| -1585 (-1123 (-975 (-560)))) (|:| |span| (-975 (-560))) (|:| -4400 $))) (|:| |labelBranch| (-1151)) (|:| |loopBranch| (-2 (|:| |switch| (-1206)) (|:| -4400 $))) (|:| |commonBranch| (-2 (|:| -4389 (-1207)) (|:| |contents| (-663 (-1207))))) (|:| |printBranch| (-663 (-887)))) $) 50 T ELT)) (-3772 (($ (-1189)) 202 T ELT)) (-1499 (($ (-663 $)) 128 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1991 (($ (-1207) (-1189)) 135 T ELT) (($ (-1207) (-326 (-723))) 175 T ELT) (($ (-1207) (-326 (-721))) 176 T ELT) (($ (-1207) (-326 (-716))) 177 T ELT) (($ (-1207) (-711 (-723))) 138 T ELT) (($ (-1207) (-711 (-721))) 141 T ELT) (($ (-1207) (-711 (-716))) 144 T ELT) (($ (-1207) (-1297 (-723))) 147 T ELT) (($ (-1207) (-1297 (-721))) 150 T ELT) (($ (-1207) (-1297 (-716))) 153 T ELT) (($ (-1207) (-711 (-326 (-723)))) 156 T ELT) (($ (-1207) (-711 (-326 (-721)))) 159 T ELT) (($ (-1207) (-711 (-326 (-716)))) 162 T ELT) (($ (-1207) (-1297 (-326 (-723)))) 165 T ELT) (($ (-1207) (-1297 (-326 (-721)))) 168 T ELT) (($ (-1207) (-1297 (-326 (-716)))) 171 T ELT) (($ (-1207) (-663 (-975 (-560))) (-326 (-723))) 172 T ELT) (($ (-1207) (-663 (-975 (-560))) (-326 (-721))) 173 T ELT) (($ (-1207) (-663 (-975 (-560))) (-326 (-716))) 174 T ELT) (($ (-1207) (-326 (-560))) 199 T ELT) (($ (-1207) (-326 (-391))) 200 T ELT) (($ (-1207) (-326 (-171 (-391)))) 201 T ELT) (($ (-1207) (-711 (-326 (-560)))) 180 T ELT) (($ (-1207) (-711 (-326 (-391)))) 183 T ELT) (($ (-1207) (-711 (-326 (-171 (-391))))) 186 T ELT) (($ (-1207) (-1297 (-326 (-560)))) 189 T ELT) (($ (-1207) (-1297 (-326 (-391)))) 192 T ELT) (($ (-1207) (-1297 (-326 (-171 (-391))))) 195 T ELT) (($ (-1207) (-663 (-975 (-560))) (-326 (-560))) 196 T ELT) (($ (-1207) (-663 (-975 (-560))) (-326 (-391))) 197 T ELT) (($ (-1207) (-663 (-975 (-560))) (-326 (-171 (-391)))) 198 T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-342) (-13 (-1132) (-10 -8 (-15 -3162 ($ (-1123 (-975 (-560))) $)) (-15 -3162 ($ (-1123 (-975 (-560))) (-975 (-560)) $)) (-15 -3804 ($ (-1206) $)) (-15 -4267 ($ (-1206) $)) (-15 -4280 ($ (-1151))) (-15 -3181 ($ (-1151))) (-15 -4196 ($ (-1189))) (-15 -4196 ($ (-663 (-1189)))) (-15 -3772 ($ (-1189))) (-15 -3470 ($)) (-15 -3470 ($ (-326 (-721)))) (-15 -3470 ($ (-326 (-723)))) (-15 -3470 ($ (-326 (-716)))) (-15 -3470 ($ (-326 (-391)))) (-15 -3470 ($ (-326 (-560)))) (-15 -3470 ($ (-326 (-171 (-391))))) (-15 -2975 ($ (-1206) $)) (-15 -2975 ($ (-1206) $ $)) (-15 -1991 ($ (-1207) (-1189))) (-15 -1991 ($ (-1207) (-326 (-723)))) (-15 -1991 ($ (-1207) (-326 (-721)))) (-15 -1991 ($ (-1207) (-326 (-716)))) (-15 -1991 ($ (-1207) (-711 (-723)))) (-15 -1991 ($ (-1207) (-711 (-721)))) (-15 -1991 ($ (-1207) (-711 (-716)))) (-15 -1991 ($ (-1207) (-1297 (-723)))) (-15 -1991 ($ (-1207) (-1297 (-721)))) (-15 -1991 ($ (-1207) (-1297 (-716)))) (-15 -1991 ($ (-1207) (-711 (-326 (-723))))) (-15 -1991 ($ (-1207) (-711 (-326 (-721))))) (-15 -1991 ($ (-1207) (-711 (-326 (-716))))) (-15 -1991 ($ (-1207) (-1297 (-326 (-723))))) (-15 -1991 ($ (-1207) (-1297 (-326 (-721))))) (-15 -1991 ($ (-1207) (-1297 (-326 (-716))))) (-15 -1991 ($ (-1207) (-663 (-975 (-560))) (-326 (-723)))) (-15 -1991 ($ (-1207) (-663 (-975 (-560))) (-326 (-721)))) (-15 -1991 ($ (-1207) (-663 (-975 (-560))) (-326 (-716)))) (-15 -1991 ($ (-1207) (-326 (-560)))) (-15 -1991 ($ (-1207) (-326 (-391)))) (-15 -1991 ($ (-1207) (-326 (-171 (-391))))) (-15 -1991 ($ (-1207) (-711 (-326 (-560))))) (-15 -1991 ($ (-1207) (-711 (-326 (-391))))) (-15 -1991 ($ (-1207) (-711 (-326 (-171 (-391)))))) (-15 -1991 ($ (-1207) (-1297 (-326 (-560))))) (-15 -1991 ($ (-1207) (-1297 (-326 (-391))))) (-15 -1991 ($ (-1207) (-1297 (-326 (-171 (-391)))))) (-15 -1991 ($ (-1207) (-663 (-975 (-560))) (-326 (-560)))) (-15 -1991 ($ (-1207) (-663 (-975 (-560))) (-326 (-391)))) (-15 -1991 ($ (-1207) (-663 (-975 (-560))) (-326 (-171 (-391))))) (-15 -1499 ($ (-663 $))) (-15 -3035 ($)) (-15 -2909 ($)) (-15 -2588 ($ (-663 (-887)))) (-15 -1429 ($ (-1207) (-663 (-1207)))) (-15 -2563 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2458 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1207)) (|:| |arrayIndex| (-663 (-975 (-560)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -2514 (-887)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1207)) (|:| |rand| (-887)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1206)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2706 (-114)) (|:| -1430 (-2 (|:| |ints2Floats?| (-114)) (|:| -2514 (-887)))))) (|:| |blockBranch| (-663 $)) (|:| |commentBranch| (-663 (-1189))) (|:| |callBranch| (-1189)) (|:| |forBranch| (-2 (|:| -1585 (-1123 (-975 (-560)))) (|:| |span| (-975 (-560))) (|:| -4400 $))) (|:| |labelBranch| (-1151)) (|:| |loopBranch| (-2 (|:| |switch| (-1206)) (|:| -4400 $))) (|:| |commonBranch| (-2 (|:| -4389 (-1207)) (|:| |contents| (-663 (-1207))))) (|:| |printBranch| (-663 (-887)))) $)) (-15 -1424 ((-1303) $)) (-15 -2578 ((-1134) $)) (-15 -2918 ((-1151) (-1151)))))) (T -342))
+((-3162 (*1 *1 *2 *1) (-12 (-5 *2 (-1123 (-975 (-560)))) (-5 *1 (-342)))) (-3162 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1123 (-975 (-560)))) (-5 *3 (-975 (-560))) (-5 *1 (-342)))) (-3804 (*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))) (-4267 (*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))) (-4280 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-342)))) (-3181 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-342)))) (-4196 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-342)))) (-4196 (*1 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-342)))) (-3772 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-342)))) (-3470 (*1 *1) (-5 *1 (-342))) (-3470 (*1 *1 *2) (-12 (-5 *2 (-326 (-721))) (-5 *1 (-342)))) (-3470 (*1 *1 *2) (-12 (-5 *2 (-326 (-723))) (-5 *1 (-342)))) (-3470 (*1 *1 *2) (-12 (-5 *2 (-326 (-716))) (-5 *1 (-342)))) (-3470 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-342)))) (-3470 (*1 *1 *2) (-12 (-5 *2 (-326 (-560))) (-5 *1 (-342)))) (-3470 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-342)))) (-2975 (*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))) (-2975 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1189)) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-723))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-721))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-716))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-723))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-721))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-716))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-723))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-721))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-716))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-326 (-723)))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-326 (-721)))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-326 (-716)))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-723)))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-721)))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-716)))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-663 (-975 (-560)))) (-5 *4 (-326 (-723))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-663 (-975 (-560)))) (-5 *4 (-326 (-721))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-663 (-975 (-560)))) (-5 *4 (-326 (-716))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-560))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-391))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-326 (-171 (-391)))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-326 (-560)))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-326 (-391)))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-711 (-326 (-171 (-391))))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-560)))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-391)))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-326 (-171 (-391))))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-663 (-975 (-560)))) (-5 *4 (-326 (-560))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-663 (-975 (-560)))) (-5 *4 (-326 (-391))) (-5 *1 (-342)))) (-1991 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-663 (-975 (-560)))) (-5 *4 (-326 (-171 (-391)))) (-5 *1 (-342)))) (-1499 (*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-5 *1 (-342)))) (-3035 (*1 *1) (-5 *1 (-342))) (-2909 (*1 *1) (-5 *1 (-342))) (-2588 (*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-342)))) (-1429 (*1 *1 *2 *3) (-12 (-5 *3 (-663 (-1207))) (-5 *2 (-1207)) (-5 *1 (-342)))) (-2563 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-342)))) (-2458 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1207)) (|:| |arrayIndex| (-663 (-975 (-560)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -2514 (-887)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1207)) (|:| |rand| (-887)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1206)) (|:| |thenClause| (-342)) (|:| |elseClause| (-342)))) (|:| |returnBranch| (-2 (|:| -2706 (-114)) (|:| -1430 (-2 (|:| |ints2Floats?| (-114)) (|:| -2514 (-887)))))) (|:| |blockBranch| (-663 (-342))) (|:| |commentBranch| (-663 (-1189))) (|:| |callBranch| (-1189)) (|:| |forBranch| (-2 (|:| -1585 (-1123 (-975 (-560)))) (|:| |span| (-975 (-560))) (|:| -4400 (-342)))) (|:| |labelBranch| (-1151)) (|:| |loopBranch| (-2 (|:| |switch| (-1206)) (|:| -4400 (-342)))) (|:| |commonBranch| (-2 (|:| -4389 (-1207)) (|:| |contents| (-663 (-1207))))) (|:| |printBranch| (-663 (-887))))) (-5 *1 (-342)))) (-1424 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-342)))) (-2578 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-342)))) (-2918 (*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-342)))))
+(-13 (-1132) (-10 -8 (-15 -3162 ($ (-1123 (-975 (-560))) $)) (-15 -3162 ($ (-1123 (-975 (-560))) (-975 (-560)) $)) (-15 -3804 ($ (-1206) $)) (-15 -4267 ($ (-1206) $)) (-15 -4280 ($ (-1151))) (-15 -3181 ($ (-1151))) (-15 -4196 ($ (-1189))) (-15 -4196 ($ (-663 (-1189)))) (-15 -3772 ($ (-1189))) (-15 -3470 ($)) (-15 -3470 ($ (-326 (-721)))) (-15 -3470 ($ (-326 (-723)))) (-15 -3470 ($ (-326 (-716)))) (-15 -3470 ($ (-326 (-391)))) (-15 -3470 ($ (-326 (-560)))) (-15 -3470 ($ (-326 (-171 (-391))))) (-15 -2975 ($ (-1206) $)) (-15 -2975 ($ (-1206) $ $)) (-15 -1991 ($ (-1207) (-1189))) (-15 -1991 ($ (-1207) (-326 (-723)))) (-15 -1991 ($ (-1207) (-326 (-721)))) (-15 -1991 ($ (-1207) (-326 (-716)))) (-15 -1991 ($ (-1207) (-711 (-723)))) (-15 -1991 ($ (-1207) (-711 (-721)))) (-15 -1991 ($ (-1207) (-711 (-716)))) (-15 -1991 ($ (-1207) (-1297 (-723)))) (-15 -1991 ($ (-1207) (-1297 (-721)))) (-15 -1991 ($ (-1207) (-1297 (-716)))) (-15 -1991 ($ (-1207) (-711 (-326 (-723))))) (-15 -1991 ($ (-1207) (-711 (-326 (-721))))) (-15 -1991 ($ (-1207) (-711 (-326 (-716))))) (-15 -1991 ($ (-1207) (-1297 (-326 (-723))))) (-15 -1991 ($ (-1207) (-1297 (-326 (-721))))) (-15 -1991 ($ (-1207) (-1297 (-326 (-716))))) (-15 -1991 ($ (-1207) (-663 (-975 (-560))) (-326 (-723)))) (-15 -1991 ($ (-1207) (-663 (-975 (-560))) (-326 (-721)))) (-15 -1991 ($ (-1207) (-663 (-975 (-560))) (-326 (-716)))) (-15 -1991 ($ (-1207) (-326 (-560)))) (-15 -1991 ($ (-1207) (-326 (-391)))) (-15 -1991 ($ (-1207) (-326 (-171 (-391))))) (-15 -1991 ($ (-1207) (-711 (-326 (-560))))) (-15 -1991 ($ (-1207) (-711 (-326 (-391))))) (-15 -1991 ($ (-1207) (-711 (-326 (-171 (-391)))))) (-15 -1991 ($ (-1207) (-1297 (-326 (-560))))) (-15 -1991 ($ (-1207) (-1297 (-326 (-391))))) (-15 -1991 ($ (-1207) (-1297 (-326 (-171 (-391)))))) (-15 -1991 ($ (-1207) (-663 (-975 (-560))) (-326 (-560)))) (-15 -1991 ($ (-1207) (-663 (-975 (-560))) (-326 (-391)))) (-15 -1991 ($ (-1207) (-663 (-975 (-560))) (-326 (-171 (-391))))) (-15 -1499 ($ (-663 $))) (-15 -3035 ($)) (-15 -2909 ($)) (-15 -2588 ($ (-663 (-887)))) (-15 -1429 ($ (-1207) (-663 (-1207)))) (-15 -2563 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -2458 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1207)) (|:| |arrayIndex| (-663 (-975 (-560)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -2514 (-887)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1207)) (|:| |rand| (-887)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1206)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -2706 (-114)) (|:| -1430 (-2 (|:| |ints2Floats?| (-114)) (|:| -2514 (-887)))))) (|:| |blockBranch| (-663 $)) (|:| |commentBranch| (-663 (-1189))) (|:| |callBranch| (-1189)) (|:| |forBranch| (-2 (|:| -1585 (-1123 (-975 (-560)))) (|:| |span| (-975 (-560))) (|:| -4400 $))) (|:| |labelBranch| (-1151)) (|:| |loopBranch| (-2 (|:| |switch| (-1206)) (|:| -4400 $))) (|:| |commonBranch| (-2 (|:| -4389 (-1207)) (|:| |contents| (-663 (-1207))))) (|:| |printBranch| (-663 (-887)))) $)) (-15 -1424 ((-1303) $)) (-15 -2578 ((-1134) $)) (-15 -2918 ((-1151) (-1151)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3749 (((-114) $) 13 T ELT)) (-1806 (($ |#1|) 10 T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1820 (($ |#1|) 12 T ELT)) (-3913 (((-887) $) 19 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2069 ((|#1| $) 14 T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 21 T ELT)))
+(((-343 |#1|) (-13 (-871) (-10 -8 (-15 -1806 ($ |#1|)) (-15 -1820 ($ |#1|)) (-15 -3749 ((-114) $)) (-15 -2069 (|#1| $)))) (-871)) (T -343))
+((-1806 (*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-871)))) (-1820 (*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-871)))) (-3749 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-343 *3)) (-4 *3 (-871)))) (-2069 (*1 *2 *1) (-12 (-5 *1 (-343 *2)) (-4 *2 (-871)))))
+(-13 (-871) (-10 -8 (-15 -1806 ($ |#1|)) (-15 -1820 ($ |#1|)) (-15 -3749 ((-114) $)) (-15 -2069 (|#1| $))))
+((-4475 (((-342) (-1207) (-975 (-560))) 23 T ELT)) (-2878 (((-342) (-1207) (-975 (-560))) 27 T ELT)) (-2093 (((-342) (-1207) (-1123 (-975 (-560))) (-1123 (-975 (-560)))) 26 T ELT) (((-342) (-1207) (-975 (-560)) (-975 (-560))) 24 T ELT)) (-3130 (((-342) (-1207) (-975 (-560))) 31 T ELT)))
+(((-344) (-10 -7 (-15 -4475 ((-342) (-1207) (-975 (-560)))) (-15 -2093 ((-342) (-1207) (-975 (-560)) (-975 (-560)))) (-15 -2093 ((-342) (-1207) (-1123 (-975 (-560))) (-1123 (-975 (-560))))) (-15 -2878 ((-342) (-1207) (-975 (-560)))) (-15 -3130 ((-342) (-1207) (-975 (-560)))))) (T -344))
+((-3130 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-975 (-560))) (-5 *2 (-342)) (-5 *1 (-344)))) (-2878 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-975 (-560))) (-5 *2 (-342)) (-5 *1 (-344)))) (-2093 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-1123 (-975 (-560)))) (-5 *2 (-342)) (-5 *1 (-344)))) (-2093 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-975 (-560))) (-5 *2 (-342)) (-5 *1 (-344)))) (-4475 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-975 (-560))) (-5 *2 (-342)) (-5 *1 (-344)))))
+(-10 -7 (-15 -4475 ((-342) (-1207) (-975 (-560)))) (-15 -2093 ((-342) (-1207) (-975 (-560)) (-975 (-560)))) (-15 -2093 ((-342) (-1207) (-1123 (-975 (-560))) (-1123 (-975 (-560))))) (-15 -2878 ((-342) (-1207) (-975 (-560)))) (-15 -3130 ((-342) (-1207) (-975 (-560)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2422 (((-520) $) 20 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2653 (((-987 (-793)) $) 18 T ELT)) (-2684 (((-258) $) 7 T ELT)) (-3913 (((-887) $) 26 T ELT)) (-2631 (((-987 (-187 (-141))) $) 16 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2420 (((-663 (-897 (-1212) (-793))) $) 12 T ELT)) (-2340 (((-114) $ $) 22 T ELT)))
+(((-345) (-13 (-1132) (-10 -8 (-15 -2684 ((-258) $)) (-15 -2420 ((-663 (-897 (-1212) (-793))) $)) (-15 -2653 ((-987 (-793)) $)) (-15 -2631 ((-987 (-187 (-141))) $)) (-15 -2422 ((-520) $))))) (T -345))
+((-2684 (*1 *2 *1) (-12 (-5 *2 (-258)) (-5 *1 (-345)))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-663 (-897 (-1212) (-793)))) (-5 *1 (-345)))) (-2653 (*1 *2 *1) (-12 (-5 *2 (-987 (-793))) (-5 *1 (-345)))) (-2631 (*1 *2 *1) (-12 (-5 *2 (-987 (-187 (-141)))) (-5 *1 (-345)))) (-2422 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-345)))))
+(-13 (-1132) (-10 -8 (-15 -2684 ((-258) $)) (-15 -2420 ((-663 (-897 (-1212) (-793))) $)) (-15 -2653 ((-987 (-793)) $)) (-15 -2631 ((-987 (-187 (-141))) $)) (-15 -2422 ((-520) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-1778 (($ $) 33 T ELT)) (-2532 (((-114) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-4432 (((-1297 |#4|) $) 134 T ELT)) (-4476 (((-427 |#2| (-421 |#2|) |#3| |#4|) $) 31 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3583 (((-3 |#4| "failed") $) 36 T ELT)) (-2133 (((-1297 |#4|) $) 126 T ELT)) (-2239 (($ (-427 |#2| (-421 |#2|) |#3| |#4|)) 41 T ELT) (($ |#4|) 43 T ELT) (($ |#1| |#1|) 45 T ELT) (($ |#1| |#1| (-560)) 47 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 49 T ELT)) (-2595 (((-2 (|:| -3745 (-427 |#2| (-421 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39 T ELT)) (-3913 (((-887) $) 17 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 14 T CONST)) (-2340 (((-114) $ $) 20 T ELT)) (-2441 (($ $) 27 T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 25 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 23 T ELT)))
+(((-346 |#1| |#2| |#3| |#4|) (-13 (-349 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2133 ((-1297 |#4|) $)) (-15 -4432 ((-1297 |#4|) $)))) (-376) (-1273 |#1|) (-1273 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -346))
+((-2133 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-1297 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5)))) (-4432 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-1297 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5)))))
+(-13 (-349 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2133 ((-1297 |#4|) $)) (-15 -4432 ((-1297 |#4|) $))))
+((-2260 (((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|)) 33 T ELT)))
+(((-347 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2260 ((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|)))) (-376) (-1273 |#1|) (-1273 (-421 |#2|)) (-355 |#1| |#2| |#3|) (-376) (-1273 |#5|) (-1273 (-421 |#6|)) (-355 |#5| |#6| |#7|)) (T -347))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-346 *5 *6 *7 *8)) (-4 *5 (-376)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *9 (-376)) (-4 *10 (-1273 *9)) (-4 *11 (-1273 (-421 *10))) (-5 *2 (-346 *9 *10 *11 *12)) (-5 *1 (-347 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-355 *9 *10 *11)))))
+(-10 -7 (-15 -2260 ((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|))))
+((-2532 (((-114) $) 14 T ELT)))
+(((-348 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2532 ((-114) |#1|))) (-349 |#2| |#3| |#4| |#5|) (-376) (-1273 |#2|) (-1273 (-421 |#3|)) (-355 |#2| |#3| |#4|)) (T -348))
+NIL
+(-10 -8 (-15 -2532 ((-114) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-1778 (($ $) 29 T ELT)) (-2532 (((-114) $) 28 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-4476 (((-427 |#2| (-421 |#2|) |#3| |#4|) $) 35 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3583 (((-3 |#4| "failed") $) 27 T ELT)) (-2239 (($ (-427 |#2| (-421 |#2|) |#3| |#4|)) 34 T ELT) (($ |#4|) 33 T ELT) (($ |#1| |#1|) 32 T ELT) (($ |#1| |#1| (-560)) 31 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 26 T ELT)) (-2595 (((-2 (|:| -3745 (-427 |#2| (-421 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 30 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT)))
(((-349 |#1| |#2| |#3| |#4|) (-142) (-376) (-1273 |t#1|) (-1273 (-421 |t#2|)) (-355 |t#1| |t#2| |t#3|)) (T -349))
-((-2207 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-427 *4 (-421 *4) *5 *6)))) (-3106 (*1 *1 *2) (-12 (-5 *2 (-427 *4 (-421 *4) *5 *6)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-4 *3 (-376)) (-4 *1 (-349 *3 *4 *5 *6)))) (-3106 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-4 *1 (-349 *3 *4 *5 *2)) (-4 *2 (-355 *3 *4 *5)))) (-3106 (*1 *1 *2 *2) (-12 (-4 *2 (-376)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-421 *3))) (-4 *1 (-349 *2 *3 *4 *5)) (-4 *5 (-355 *2 *3 *4)))) (-3106 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-560)) (-4 *2 (-376)) (-4 *4 (-1273 *2)) (-4 *5 (-1273 (-421 *4))) (-4 *1 (-349 *2 *4 *5 *6)) (-4 *6 (-355 *2 *4 *5)))) (-3448 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-2 (|:| -4300 (-427 *4 (-421 *4) *5 *6)) (|:| |principalPart| *6))))) (-4129 (*1 *1 *1) (-12 (-4 *1 (-349 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-421 *3))) (-4 *5 (-355 *2 *3 *4)))) (-2080 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-114)))) (-2748 (*1 *2 *1) (|partial| -12 (-4 *1 (-349 *3 *4 *5 *2)) (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-4 *2 (-355 *3 *4 *5)))) (-3106 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-376)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-421 *3))) (-4 *1 (-349 *4 *3 *5 *2)) (-4 *2 (-355 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -2207 ((-427 |t#2| (-421 |t#2|) |t#3| |t#4|) $)) (-15 -3106 ($ (-427 |t#2| (-421 |t#2|) |t#3| |t#4|))) (-15 -3106 ($ |t#4|)) (-15 -3106 ($ |t#1| |t#1|)) (-15 -3106 ($ |t#1| |t#1| (-560))) (-15 -3448 ((-2 (|:| -4300 (-427 |t#2| (-421 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4129 ($ $)) (-15 -2080 ((-114) $)) (-15 -2748 ((-3 |t#4| "failed") $)) (-15 -3106 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+((-4476 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-427 *4 (-421 *4) *5 *6)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-427 *4 (-421 *4) *5 *6)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-4 *3 (-376)) (-4 *1 (-349 *3 *4 *5 *6)))) (-2239 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-4 *1 (-349 *3 *4 *5 *2)) (-4 *2 (-355 *3 *4 *5)))) (-2239 (*1 *1 *2 *2) (-12 (-4 *2 (-376)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-421 *3))) (-4 *1 (-349 *2 *3 *4 *5)) (-4 *5 (-355 *2 *3 *4)))) (-2239 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-560)) (-4 *2 (-376)) (-4 *4 (-1273 *2)) (-4 *5 (-1273 (-421 *4))) (-4 *1 (-349 *2 *4 *5 *6)) (-4 *6 (-355 *2 *4 *5)))) (-2595 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-2 (|:| -3745 (-427 *4 (-421 *4) *5 *6)) (|:| |principalPart| *6))))) (-1778 (*1 *1 *1) (-12 (-4 *1 (-349 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-421 *3))) (-4 *5 (-355 *2 *3 *4)))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-114)))) (-3583 (*1 *2 *1) (|partial| -12 (-4 *1 (-349 *3 *4 *5 *2)) (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-4 *2 (-355 *3 *4 *5)))) (-2239 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-376)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-421 *3))) (-4 *1 (-349 *4 *3 *5 *2)) (-4 *2 (-355 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -4476 ((-427 |t#2| (-421 |t#2|) |t#3| |t#4|) $)) (-15 -2239 ($ (-427 |t#2| (-421 |t#2|) |t#3| |t#4|))) (-15 -2239 ($ |t#4|)) (-15 -2239 ($ |t#1| |t#1|)) (-15 -2239 ($ |t#1| |t#1| (-560))) (-15 -2595 ((-2 (|:| -3745 (-427 |t#2| (-421 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -1778 ($ $)) (-15 -2532 ((-114) $)) (-15 -3583 ((-3 |t#4| "failed") $)) (-15 -2239 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-1132) . T) ((-1247) . T))
-((-4187 (($ $ (-1207) |#2|) NIL T ELT) (($ $ (-663 (-1207)) (-663 |#2|)) 20 T ELT) (($ $ (-663 (-305 |#2|))) 15 T ELT) (($ $ (-305 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL T ELT)) (-3924 (($ $ |#2|) 11 T ELT)))
-(((-350 |#1| |#2|) (-10 -8 (-15 -3924 (|#1| |#1| |#2|)) (-15 -4187 (|#1| |#1| (-663 |#2|) (-663 |#2|))) (-15 -4187 (|#1| |#1| |#2| |#2|)) (-15 -4187 (|#1| |#1| (-305 |#2|))) (-15 -4187 (|#1| |#1| (-663 (-305 |#2|)))) (-15 -4187 (|#1| |#1| (-663 (-1207)) (-663 |#2|))) (-15 -4187 (|#1| |#1| (-1207) |#2|))) (-351 |#2|) (-1132)) (T -350))
+((-2371 (($ $ (-1207) |#2|) NIL T ELT) (($ $ (-663 (-1207)) (-663 |#2|)) 20 T ELT) (($ $ (-663 (-305 |#2|))) 15 T ELT) (($ $ (-305 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL T ELT)) (-1507 (($ $ |#2|) 11 T ELT)))
+(((-350 |#1| |#2|) (-10 -8 (-15 -1507 (|#1| |#1| |#2|)) (-15 -2371 (|#1| |#1| (-663 |#2|) (-663 |#2|))) (-15 -2371 (|#1| |#1| |#2| |#2|)) (-15 -2371 (|#1| |#1| (-305 |#2|))) (-15 -2371 (|#1| |#1| (-663 (-305 |#2|)))) (-15 -2371 (|#1| |#1| (-663 (-1207)) (-663 |#2|))) (-15 -2371 (|#1| |#1| (-1207) |#2|))) (-351 |#2|) (-1132)) (T -350))
NIL
-(-10 -8 (-15 -3924 (|#1| |#1| |#2|)) (-15 -4187 (|#1| |#1| (-663 |#2|) (-663 |#2|))) (-15 -4187 (|#1| |#1| |#2| |#2|)) (-15 -4187 (|#1| |#1| (-305 |#2|))) (-15 -4187 (|#1| |#1| (-663 (-305 |#2|)))) (-15 -4187 (|#1| |#1| (-663 (-1207)) (-663 |#2|))) (-15 -4187 (|#1| |#1| (-1207) |#2|)))
-((-3957 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-4187 (($ $ (-1207) |#1|) 17 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) 16 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-663 (-305 |#1|))) 15 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 14 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 12 (|has| |#1| (-321 |#1|)) ELT)) (-3924 (($ $ |#1|) 11 (|has| |#1| (-298 |#1| |#1|)) ELT)))
+(-10 -8 (-15 -1507 (|#1| |#1| |#2|)) (-15 -2371 (|#1| |#1| (-663 |#2|) (-663 |#2|))) (-15 -2371 (|#1| |#1| |#2| |#2|)) (-15 -2371 (|#1| |#1| (-305 |#2|))) (-15 -2371 (|#1| |#1| (-663 (-305 |#2|)))) (-15 -2371 (|#1| |#1| (-663 (-1207)) (-663 |#2|))) (-15 -2371 (|#1| |#1| (-1207) |#2|)))
+((-2260 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-2371 (($ $ (-1207) |#1|) 17 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) 16 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-663 (-305 |#1|))) 15 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 14 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 12 (|has| |#1| (-321 |#1|)) ELT)) (-1507 (($ $ |#1|) 11 (|has| |#1| (-298 |#1| |#1|)) ELT)))
(((-351 |#1|) (-142) (-1132)) (T -351))
-((-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1132)))))
-(-13 (-10 -8 (-15 -3957 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-298 |t#1| |t#1|)) (-6 (-298 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-321 |t#1|)) (-6 (-321 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-528 (-1207) |t#1|)) (-6 (-528 (-1207) |t#1|)) |%noBranch|)))
+((-2260 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1132)))))
+(-13 (-10 -8 (-15 -2260 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-298 |t#1| |t#1|)) (-6 (-298 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-321 |t#1|)) (-6 (-321 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-528 (-1207) |t#1|)) (-6 (-528 (-1207) |t#1|)) |%noBranch|)))
(((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-528 (-1207) |#1|) |has| |#1| (-528 (-1207) |#1|)) ((-528 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-1247) |has| |#1| (-298 |#1| |#1|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1443 (((-663 (-1207)) $) NIL T ELT)) (-3098 (((-114)) 96 T ELT) (((-114) (-114)) 97 T ELT)) (-4297 (((-663 (-630 $)) $) NIL T ELT)) (-4337 (($ $) NIL T ELT)) (-3455 (($ $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1724 (($ $ (-305 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT)) (-4471 (($ $) NIL T ELT)) (-4313 (($ $) NIL T ELT)) (-3430 (($ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-630 $) "failed") $) NIL T ELT) (((-3 |#3| "failed") $) NIL T ELT) (((-3 $ "failed") (-326 |#3|)) 76 T ELT) (((-3 $ "failed") (-1207)) 103 T ELT) (((-3 $ "failed") (-326 (-560))) 64 (|has| |#3| (-1069 (-560))) ELT) (((-3 $ "failed") (-421 (-975 (-560)))) 70 (|has| |#3| (-1069 (-560))) ELT) (((-3 $ "failed") (-975 (-560))) 65 (|has| |#3| (-1069 (-560))) ELT) (((-3 $ "failed") (-326 (-391))) 94 (|has| |#3| (-1069 (-391))) ELT) (((-3 $ "failed") (-421 (-975 (-391)))) 88 (|has| |#3| (-1069 (-391))) ELT) (((-3 $ "failed") (-975 (-391))) 83 (|has| |#3| (-1069 (-391))) ELT)) (-3330 (((-630 $) $) NIL T ELT) ((|#3| $) NIL T ELT) (($ (-326 |#3|)) 77 T ELT) (($ (-1207)) 104 T ELT) (($ (-326 (-560))) 66 (|has| |#3| (-1069 (-560))) ELT) (($ (-421 (-975 (-560)))) 71 (|has| |#3| (-1069 (-560))) ELT) (($ (-975 (-560))) 67 (|has| |#3| (-1069 (-560))) ELT) (($ (-326 (-391))) 95 (|has| |#3| (-1069 (-391))) ELT) (($ (-421 (-975 (-391)))) 89 (|has| |#3| (-1069 (-391))) ELT) (($ (-975 (-391))) 85 (|has| |#3| (-1069 (-391))) ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-3796 (($) 101 T ELT)) (-2753 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2943 (((-663 (-115)) $) NIL T ELT)) (-4399 (((-115) (-115)) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-3612 (((-114) $) NIL (|has| $ (-1069 (-560))) ELT)) (-3872 (((-1201 $) (-630 $)) NIL (|has| $ (-1080)) ELT)) (-3957 (($ (-1 $ $) (-630 $)) NIL T ELT)) (-3005 (((-3 (-630 $) "failed") $) NIL T ELT)) (-1396 (($ $) 99 T ELT)) (-2192 (($ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-4385 (((-663 (-630 $)) $) NIL T ELT)) (-2036 (($ (-115) $) 98 T ELT) (($ (-115) (-663 $)) NIL T ELT)) (-2784 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1207)) NIL T ELT)) (-2107 (((-793) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3883 (((-114) $ $) NIL T ELT) (((-114) $ (-1207)) NIL T ELT)) (-3251 (($ $) NIL T ELT)) (-1737 (((-114) $) NIL (|has| $ (-1069 (-560))) ELT)) (-4187 (($ $ (-630 $) $) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-1207) (-1 $ (-663 $))) NIL T ELT) (($ $ (-1207) (-1 $ $)) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-663 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-3924 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-663 $)) NIL T ELT)) (-3690 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2894 (($ $ (-1207)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT)) (-4394 (($ $) NIL (|has| $ (-1080)) ELT)) (-4325 (($ $) NIL T ELT)) (-3443 (($ $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-630 $)) NIL T ELT) (($ |#3|) NIL T ELT) (($ (-560)) NIL T ELT) (((-326 |#3|) $) 102 T ELT)) (-2930 (((-793)) NIL T CONST)) (-3579 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1840 (((-114) (-115)) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-4263 (($ $) NIL T ELT)) (-3499 (($ $) NIL T ELT)) (-4252 (($ $) NIL T ELT)) (-2282 (($ $) NIL T ELT)) (-2001 (($) 100 T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $ (-1207)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-948)) NIL T ELT)) (* (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-948) $) NIL T ELT)))
-(((-352 |#1| |#2| |#3|) (-13 (-310) (-38 |#3|) (-1069 |#3|) (-927 (-1207)) (-10 -8 (-15 -3330 ($ (-326 |#3|))) (-15 -2539 ((-3 $ "failed") (-326 |#3|))) (-15 -3330 ($ (-1207))) (-15 -2539 ((-3 $ "failed") (-1207))) (-15 -1578 ((-326 |#3|) $)) (IF (|has| |#3| (-1069 (-560))) (PROGN (-15 -3330 ($ (-326 (-560)))) (-15 -2539 ((-3 $ "failed") (-326 (-560)))) (-15 -3330 ($ (-421 (-975 (-560))))) (-15 -2539 ((-3 $ "failed") (-421 (-975 (-560))))) (-15 -3330 ($ (-975 (-560)))) (-15 -2539 ((-3 $ "failed") (-975 (-560))))) |%noBranch|) (IF (|has| |#3| (-1069 (-391))) (PROGN (-15 -3330 ($ (-326 (-391)))) (-15 -2539 ((-3 $ "failed") (-326 (-391)))) (-15 -3330 ($ (-421 (-975 (-391))))) (-15 -2539 ((-3 $ "failed") (-421 (-975 (-391))))) (-15 -3330 ($ (-975 (-391)))) (-15 -2539 ((-3 $ "failed") (-975 (-391))))) |%noBranch|) (-15 -2282 ($ $)) (-15 -4471 ($ $)) (-15 -3251 ($ $)) (-15 -2192 ($ $)) (-15 -1396 ($ $)) (-15 -3430 ($ $)) (-15 -3443 ($ $)) (-15 -3455 ($ $)) (-15 -3499 ($ $)) (-15 -4252 ($ $)) (-15 -4263 ($ $)) (-15 -4313 ($ $)) (-15 -4325 ($ $)) (-15 -4337 ($ $)) (-15 -3796 ($)) (-15 -1443 ((-663 (-1207)) $)) (-15 -3098 ((-114))) (-15 -3098 ((-114) (-114))))) (-663 (-1207)) (-663 (-1207)) (-401)) (T -352))
-((-3330 (*1 *1 *2) (-12 (-5 *2 (-326 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 *2)) (-14 *4 (-663 *2)) (-4 *5 (-401)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 *2)) (-14 *4 (-663 *2)) (-4 *5 (-401)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-326 *5)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-326 (-560))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-560))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-421 (-975 (-560)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-421 (-975 (-560)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-975 (-560))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-560))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-421 (-975 (-391)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-421 (-975 (-391)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-975 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-2282 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-4471 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-3251 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-2192 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-1396 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-3430 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-3443 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-3455 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-3499 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-4252 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-4263 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-4313 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-4325 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-4337 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-3796 (*1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-1443 (*1 *2 *1) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-352 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-401)))) (-3098 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-3098 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))))
-(-13 (-310) (-38 |#3|) (-1069 |#3|) (-927 (-1207)) (-10 -8 (-15 -3330 ($ (-326 |#3|))) (-15 -2539 ((-3 $ "failed") (-326 |#3|))) (-15 -3330 ($ (-1207))) (-15 -2539 ((-3 $ "failed") (-1207))) (-15 -1578 ((-326 |#3|) $)) (IF (|has| |#3| (-1069 (-560))) (PROGN (-15 -3330 ($ (-326 (-560)))) (-15 -2539 ((-3 $ "failed") (-326 (-560)))) (-15 -3330 ($ (-421 (-975 (-560))))) (-15 -2539 ((-3 $ "failed") (-421 (-975 (-560))))) (-15 -3330 ($ (-975 (-560)))) (-15 -2539 ((-3 $ "failed") (-975 (-560))))) |%noBranch|) (IF (|has| |#3| (-1069 (-391))) (PROGN (-15 -3330 ($ (-326 (-391)))) (-15 -2539 ((-3 $ "failed") (-326 (-391)))) (-15 -3330 ($ (-421 (-975 (-391))))) (-15 -2539 ((-3 $ "failed") (-421 (-975 (-391))))) (-15 -3330 ($ (-975 (-391)))) (-15 -2539 ((-3 $ "failed") (-975 (-391))))) |%noBranch|) (-15 -2282 ($ $)) (-15 -4471 ($ $)) (-15 -3251 ($ $)) (-15 -2192 ($ $)) (-15 -1396 ($ $)) (-15 -3430 ($ $)) (-15 -3443 ($ $)) (-15 -3455 ($ $)) (-15 -3499 ($ $)) (-15 -4252 ($ $)) (-15 -4263 ($ $)) (-15 -4313 ($ $)) (-15 -4325 ($ $)) (-15 -4337 ($ $)) (-15 -3796 ($)) (-15 -1443 ((-663 (-1207)) $)) (-15 -3098 ((-114))) (-15 -3098 ((-114) (-114)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-1947 (((-114) $) NIL T ELT)) (-1796 (((-793)) NIL T ELT)) (-3349 (((-935 |#1|) $) NIL T ELT) (($ $ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2105 (((-1219 (-948) (-793)) (-560)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-3241 (((-793)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-935 |#1|) "failed") $) NIL T ELT)) (-3330 (((-935 |#1|) $) NIL T ELT)) (-4143 (($ (-1297 (-935 |#1|))) NIL T ELT)) (-4217 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1478 (($ $ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2310 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4336 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3976 (((-114) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1696 (($ $ (-793)) NIL (-2304 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT) (($ $) NIL (-2304 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-4330 (((-114) $) NIL T ELT)) (-3913 (((-948) $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-854 (-948)) $) NIL (-2304 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-4417 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2863 (((-114) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2032 (((-935 |#1|) $) NIL T ELT) (($ $ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1787 (((-1201 (-935 |#1|)) $) NIL T ELT) (((-1201 $) $ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4419 (((-948) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1543 (((-1201 (-935 |#1|)) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4449 (((-1201 (-935 |#1|)) $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-3 (-1201 (-935 |#1|)) "failed") $ $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3384 (($ $ (-1201 (-935 |#1|))) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-3161 (($) NIL (|has| (-935 |#1|) (-381)) CONST)) (-3128 (($ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3583 (((-114) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2748 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3666 (((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-2969 (((-854 (-948))) NIL T ELT) (((-948)) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2364 (((-793) $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2304 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-3669 (((-136)) NIL T ELT)) (-2894 (($ $ (-793)) NIL (|has| (-935 |#1|) (-381)) ELT) (($ $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3630 (((-854 (-948)) $) NIL T ELT) (((-948) $) NIL T ELT)) (-4394 (((-1201 (-935 |#1|))) NIL T ELT)) (-2243 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3988 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2178 (((-1297 (-935 |#1|)) $) NIL T ELT) (((-711 (-935 |#1|)) (-1297 $)) NIL T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-935 |#1|)) NIL T ELT)) (-1964 (($ $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-3 $ "failed") $) NIL (-2304 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-1954 (((-1297 $)) NIL T ELT) (((-1297 $) (-948)) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-3602 (((-114) $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3054 (($ $) NIL (|has| (-935 |#1|) (-381)) ELT) (($ $ (-793)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3305 (($ $ (-793)) NIL (|has| (-935 |#1|) (-381)) ELT) (($ $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ $) NIL T ELT) (($ $ (-935 |#1|)) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-935 |#1|)) NIL T ELT) (($ (-935 |#1|) $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-4162 (((-663 (-1207)) $) NIL T ELT)) (-2153 (((-114)) 96 T ELT) (((-114) (-114)) 97 T ELT)) (-3859 (((-663 (-630 $)) $) NIL T ELT)) (-1982 (($ $) NIL T ELT)) (-1832 (($ $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2607 (($ $ (-305 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT)) (-4021 (($ $) NIL T ELT)) (-1958 (($ $) NIL T ELT)) (-1806 (($ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-630 $) "failed") $) NIL T ELT) (((-3 |#3| "failed") $) NIL T ELT) (((-3 $ "failed") (-326 |#3|)) 76 T ELT) (((-3 $ "failed") (-1207)) 103 T ELT) (((-3 $ "failed") (-326 (-560))) 64 (|has| |#3| (-1069 (-560))) ELT) (((-3 $ "failed") (-421 (-975 (-560)))) 70 (|has| |#3| (-1069 (-560))) ELT) (((-3 $ "failed") (-975 (-560))) 65 (|has| |#3| (-1069 (-560))) ELT) (((-3 $ "failed") (-326 (-391))) 94 (|has| |#3| (-1069 (-391))) ELT) (((-3 $ "failed") (-421 (-975 (-391)))) 88 (|has| |#3| (-1069 (-391))) ELT) (((-3 $ "failed") (-975 (-391))) 83 (|has| |#3| (-1069 (-391))) ELT)) (-3649 (((-630 $) $) NIL T ELT) ((|#3| $) NIL T ELT) (($ (-326 |#3|)) 77 T ELT) (($ (-1207)) 104 T ELT) (($ (-326 (-560))) 66 (|has| |#3| (-1069 (-560))) ELT) (($ (-421 (-975 (-560)))) 71 (|has| |#3| (-1069 (-560))) ELT) (($ (-975 (-560))) 67 (|has| |#3| (-1069 (-560))) ELT) (($ (-326 (-391))) 95 (|has| |#3| (-1069 (-391))) ELT) (($ (-421 (-975 (-391)))) 89 (|has| |#3| (-1069 (-391))) ELT) (($ (-975 (-391))) 85 (|has| |#3| (-1069 (-391))) ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-2503 (($) 101 T ELT)) (-1740 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-4318 (((-663 (-115)) $) NIL T ELT)) (-3963 (((-115) (-115)) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-3729 (((-114) $) NIL (|has| $ (-1069 (-560))) ELT)) (-4250 (((-1201 $) (-630 $)) NIL (|has| $ (-1080)) ELT)) (-2260 (($ (-1 $ $) (-630 $)) NIL T ELT)) (-3702 (((-3 (-630 $) "failed") $) NIL T ELT)) (-4070 (($ $) 99 T ELT)) (-2831 (($ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3949 (((-663 (-630 $)) $) NIL T ELT)) (-2547 (($ (-115) $) 98 T ELT) (($ (-115) (-663 $)) NIL T ELT)) (-2060 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1207)) NIL T ELT)) (-3827 (((-793) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4338 (((-114) $ $) NIL T ELT) (((-114) $ (-1207)) NIL T ELT)) (-2515 (($ $) NIL T ELT)) (-2244 (((-114) $) NIL (|has| $ (-1069 (-560))) ELT)) (-2371 (($ $ (-630 $) $) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-1207) (-1 $ (-663 $))) NIL T ELT) (($ $ (-1207) (-1 $ $)) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-663 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-1507 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-663 $)) NIL T ELT)) (-3222 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3161 (($ $ (-1207)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT)) (-2407 (($ $) NIL (|has| $ (-1080)) ELT)) (-1972 (($ $) NIL T ELT)) (-1820 (($ $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-630 $)) NIL T ELT) (($ |#3|) NIL T ELT) (($ (-560)) NIL T ELT) (((-326 |#3|) $) 102 T ELT)) (-4191 (((-793)) NIL T CONST)) (-3061 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3962 (((-114) (-115)) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1907 (($ $) NIL T ELT)) (-1882 (($ $) NIL T ELT)) (-1895 (($ $) NIL T ELT)) (-2719 (($ $) NIL T ELT)) (-1446 (($) 100 T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $ (-1207)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-948)) NIL T ELT)) (* (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-948) $) NIL T ELT)))
+(((-352 |#1| |#2| |#3|) (-13 (-310) (-38 |#3|) (-1069 |#3|) (-927 (-1207)) (-10 -8 (-15 -3649 ($ (-326 |#3|))) (-15 -3929 ((-3 $ "failed") (-326 |#3|))) (-15 -3649 ($ (-1207))) (-15 -3929 ((-3 $ "failed") (-1207))) (-15 -3913 ((-326 |#3|) $)) (IF (|has| |#3| (-1069 (-560))) (PROGN (-15 -3649 ($ (-326 (-560)))) (-15 -3929 ((-3 $ "failed") (-326 (-560)))) (-15 -3649 ($ (-421 (-975 (-560))))) (-15 -3929 ((-3 $ "failed") (-421 (-975 (-560))))) (-15 -3649 ($ (-975 (-560)))) (-15 -3929 ((-3 $ "failed") (-975 (-560))))) |%noBranch|) (IF (|has| |#3| (-1069 (-391))) (PROGN (-15 -3649 ($ (-326 (-391)))) (-15 -3929 ((-3 $ "failed") (-326 (-391)))) (-15 -3649 ($ (-421 (-975 (-391))))) (-15 -3929 ((-3 $ "failed") (-421 (-975 (-391))))) (-15 -3649 ($ (-975 (-391)))) (-15 -3929 ((-3 $ "failed") (-975 (-391))))) |%noBranch|) (-15 -2719 ($ $)) (-15 -4021 ($ $)) (-15 -2515 ($ $)) (-15 -2831 ($ $)) (-15 -4070 ($ $)) (-15 -1806 ($ $)) (-15 -1820 ($ $)) (-15 -1832 ($ $)) (-15 -1882 ($ $)) (-15 -1895 ($ $)) (-15 -1907 ($ $)) (-15 -1958 ($ $)) (-15 -1972 ($ $)) (-15 -1982 ($ $)) (-15 -2503 ($)) (-15 -4162 ((-663 (-1207)) $)) (-15 -2153 ((-114))) (-15 -2153 ((-114) (-114))))) (-663 (-1207)) (-663 (-1207)) (-401)) (T -352))
+((-3649 (*1 *1 *2) (-12 (-5 *2 (-326 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 *2)) (-14 *4 (-663 *2)) (-4 *5 (-401)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 *2)) (-14 *4 (-663 *2)) (-4 *5 (-401)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-326 *5)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-326 (-560))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-560))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-421 (-975 (-560)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-421 (-975 (-560)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-975 (-560))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-560))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-421 (-975 (-391)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-421 (-975 (-391)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-975 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-2719 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-4021 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-2515 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-2831 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-4070 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-1806 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-1820 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-1832 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-1882 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-1895 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-1907 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-1958 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-1972 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-1982 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-2503 (*1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207))) (-14 *3 (-663 (-1207))) (-4 *4 (-401)))) (-4162 (*1 *2 *1) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-352 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-401)))) (-2153 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))) (-2153 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401)))))
+(-13 (-310) (-38 |#3|) (-1069 |#3|) (-927 (-1207)) (-10 -8 (-15 -3649 ($ (-326 |#3|))) (-15 -3929 ((-3 $ "failed") (-326 |#3|))) (-15 -3649 ($ (-1207))) (-15 -3929 ((-3 $ "failed") (-1207))) (-15 -3913 ((-326 |#3|) $)) (IF (|has| |#3| (-1069 (-560))) (PROGN (-15 -3649 ($ (-326 (-560)))) (-15 -3929 ((-3 $ "failed") (-326 (-560)))) (-15 -3649 ($ (-421 (-975 (-560))))) (-15 -3929 ((-3 $ "failed") (-421 (-975 (-560))))) (-15 -3649 ($ (-975 (-560)))) (-15 -3929 ((-3 $ "failed") (-975 (-560))))) |%noBranch|) (IF (|has| |#3| (-1069 (-391))) (PROGN (-15 -3649 ($ (-326 (-391)))) (-15 -3929 ((-3 $ "failed") (-326 (-391)))) (-15 -3649 ($ (-421 (-975 (-391))))) (-15 -3929 ((-3 $ "failed") (-421 (-975 (-391))))) (-15 -3649 ($ (-975 (-391)))) (-15 -3929 ((-3 $ "failed") (-975 (-391))))) |%noBranch|) (-15 -2719 ($ $)) (-15 -4021 ($ $)) (-15 -2515 ($ $)) (-15 -2831 ($ $)) (-15 -4070 ($ $)) (-15 -1806 ($ $)) (-15 -1820 ($ $)) (-15 -1832 ($ $)) (-15 -1882 ($ $)) (-15 -1895 ($ $)) (-15 -1907 ($ $)) (-15 -1958 ($ $)) (-15 -1972 ($ $)) (-15 -1982 ($ $)) (-15 -2503 ($)) (-15 -4162 ((-663 (-1207)) $)) (-15 -2153 ((-114))) (-15 -2153 ((-114) (-114)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3752 (((-114) $) NIL T ELT)) (-1542 (((-793)) NIL T ELT)) (-4113 (((-935 |#1|) $) NIL T ELT) (($ $ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1548 (((-1219 (-948) (-793)) (-560)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-2552 (((-793)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-935 |#1|) "failed") $) NIL T ELT)) (-3649 (((-935 |#1|) $) NIL T ELT)) (-1953 (($ (-1297 (-935 |#1|))) NIL T ELT)) (-1433 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2186 (($ $ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1812 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3191 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4017 (((-114) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3079 (($ $ (-793)) NIL (-2196 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT) (($ $) NIL (-2196 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-3141 (((-114) $) NIL T ELT)) (-1460 (((-948) $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-854 (-948)) $) NIL (-2196 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-2601 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3572 (((-114) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2084 (((-935 |#1|) $) NIL T ELT) (($ $ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1471 (((-1201 (-935 |#1|)) $) NIL T ELT) (((-1201 $) $ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2622 (((-948) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1567 (((-1201 (-935 |#1|)) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1644 (((-1201 (-935 |#1|)) $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-3 (-1201 (-935 |#1|)) "failed") $ $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3264 (($ $ (-1201 (-935 |#1|))) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3239 (($) NIL (|has| (-935 |#1|) (-381)) CONST)) (-1591 (($ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3410 (((-114) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3583 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2976 (((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-3313 (((-854 (-948))) NIL T ELT) (((-948)) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-2258 (((-793) $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2196 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-3015 (((-136)) NIL T ELT)) (-3161 (($ $ (-793)) NIL (|has| (-935 |#1|) (-381)) ELT) (($ $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3900 (((-854 (-948)) $) NIL T ELT) (((-948) $) NIL T ELT)) (-2407 (((-1201 (-935 |#1|))) NIL T ELT)) (-3569 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2855 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4226 (((-1297 (-935 |#1|)) $) NIL T ELT) (((-711 (-935 |#1|)) (-1297 $)) NIL T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-935 |#1|)) NIL T ELT)) (-3919 (($ $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-3 $ "failed") $) NIL (-2196 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-3822 (((-1297 $)) NIL T ELT) (((-1297 $) (-948)) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-3621 (((-114) $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2925 (($ $) NIL (|has| (-935 |#1|) (-381)) ELT) (($ $ (-793)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2111 (($ $ (-793)) NIL (|has| (-935 |#1|) (-381)) ELT) (($ $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ $) NIL T ELT) (($ $ (-935 |#1|)) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-935 |#1|)) NIL T ELT) (($ (-935 |#1|) $) NIL T ELT)))
(((-353 |#1| |#2|) (-341 (-935 |#1|)) (-948) (-948)) (T -353))
NIL
(-341 (-935 |#1|))
-((-2856 (((-2 (|:| |num| (-1297 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-4143 (($ (-1297 (-421 |#3|)) (-1297 $)) NIL T ELT) (($ (-1297 (-421 |#3|))) NIL T ELT) (($ (-1297 |#3|) |#3|) 173 T ELT)) (-3722 (((-1297 $) (-1297 $)) 156 T ELT)) (-1887 (((-663 (-663 |#2|))) 126 T ELT)) (-2659 (((-114) |#2| |#2|) 76 T ELT)) (-2806 (($ $) 148 T ELT)) (-2325 (((-793)) 172 T ELT)) (-1772 (((-1297 $) (-1297 $)) 218 T ELT)) (-1493 (((-663 (-975 |#2|)) (-1207)) 115 T ELT)) (-1499 (((-114) $) 169 T ELT)) (-2905 (((-114) $) 27 T ELT) (((-114) $ |#2|) 31 T ELT) (((-114) $ |#3|) 222 T ELT)) (-2793 (((-3 |#3| "failed")) 52 T ELT)) (-1685 (((-793)) 184 T ELT)) (-3924 ((|#2| $ |#2| |#2|) 140 T ELT)) (-2870 (((-3 |#3| "failed")) 71 T ELT)) (-2894 (($ $ (-1 (-421 |#3|) (-421 |#3|))) NIL T ELT) (($ $ (-1 (-421 |#3|) (-421 |#3|)) (-793)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 226 T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-4335 (((-1297 $) (-1297 $)) 162 T ELT)) (-3059 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-3861 (((-114)) 34 T ELT)))
-(((-354 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2894 (|#1| |#1|)) (-15 -2894 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1| (-1207))) (-15 -2894 (|#1| |#1| (-663 (-1207)))) (-15 -2894 (|#1| |#1| (-1207) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -1887 ((-663 (-663 |#2|)))) (-15 -1493 ((-663 (-975 |#2|)) (-1207))) (-15 -3059 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2793 ((-3 |#3| "failed"))) (-15 -2870 ((-3 |#3| "failed"))) (-15 -3924 (|#2| |#1| |#2| |#2|)) (-15 -2806 (|#1| |#1|)) (-15 -2894 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2905 ((-114) |#1| |#3|)) (-15 -2905 ((-114) |#1| |#2|)) (-15 -4143 (|#1| (-1297 |#3|) |#3|)) (-15 -2856 ((-2 (|:| |num| (-1297 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3722 ((-1297 |#1|) (-1297 |#1|))) (-15 -1772 ((-1297 |#1|) (-1297 |#1|))) (-15 -4335 ((-1297 |#1|) (-1297 |#1|))) (-15 -2905 ((-114) |#1|)) (-15 -1499 ((-114) |#1|)) (-15 -2659 ((-114) |#2| |#2|)) (-15 -3861 ((-114))) (-15 -1685 ((-793))) (-15 -2325 ((-793))) (-15 -2894 (|#1| |#1| (-1 (-421 |#3|) (-421 |#3|)) (-793))) (-15 -2894 (|#1| |#1| (-1 (-421 |#3|) (-421 |#3|)))) (-15 -4143 (|#1| (-1297 (-421 |#3|)))) (-15 -4143 (|#1| (-1297 (-421 |#3|)) (-1297 |#1|)))) (-355 |#2| |#3| |#4|) (-1252) (-1273 |#2|) (-1273 (-421 |#3|))) (T -354))
-((-2325 (*1 *2) (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5))) (-5 *2 (-793)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-1685 (*1 *2) (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5))) (-5 *2 (-793)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-3861 (*1 *2) (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5))) (-5 *2 (-114)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-2659 (*1 *2 *3 *3) (-12 (-4 *3 (-1252)) (-4 *5 (-1273 *3)) (-4 *6 (-1273 (-421 *5))) (-5 *2 (-114)) (-5 *1 (-354 *4 *3 *5 *6)) (-4 *4 (-355 *3 *5 *6)))) (-2870 (*1 *2) (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1273 (-421 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-354 *3 *4 *2 *5)) (-4 *3 (-355 *4 *2 *5)))) (-2793 (*1 *2) (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1273 (-421 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-354 *3 *4 *2 *5)) (-4 *3 (-355 *4 *2 *5)))) (-1493 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *5 (-1252)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6))) (-5 *2 (-663 (-975 *5))) (-5 *1 (-354 *4 *5 *6 *7)) (-4 *4 (-355 *5 *6 *7)))) (-1887 (*1 *2) (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5))) (-5 *2 (-663 (-663 *4))) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))))
-(-10 -8 (-15 -2894 (|#1| |#1|)) (-15 -2894 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1| (-1207))) (-15 -2894 (|#1| |#1| (-663 (-1207)))) (-15 -2894 (|#1| |#1| (-1207) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -1887 ((-663 (-663 |#2|)))) (-15 -1493 ((-663 (-975 |#2|)) (-1207))) (-15 -3059 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -2793 ((-3 |#3| "failed"))) (-15 -2870 ((-3 |#3| "failed"))) (-15 -3924 (|#2| |#1| |#2| |#2|)) (-15 -2806 (|#1| |#1|)) (-15 -2894 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2905 ((-114) |#1| |#3|)) (-15 -2905 ((-114) |#1| |#2|)) (-15 -4143 (|#1| (-1297 |#3|) |#3|)) (-15 -2856 ((-2 (|:| |num| (-1297 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -3722 ((-1297 |#1|) (-1297 |#1|))) (-15 -1772 ((-1297 |#1|) (-1297 |#1|))) (-15 -4335 ((-1297 |#1|) (-1297 |#1|))) (-15 -2905 ((-114) |#1|)) (-15 -1499 ((-114) |#1|)) (-15 -2659 ((-114) |#2| |#2|)) (-15 -3861 ((-114))) (-15 -1685 ((-793))) (-15 -2325 ((-793))) (-15 -2894 (|#1| |#1| (-1 (-421 |#3|) (-421 |#3|)) (-793))) (-15 -2894 (|#1| |#1| (-1 (-421 |#3|) (-421 |#3|)))) (-15 -4143 (|#1| (-1297 (-421 |#3|)))) (-15 -4143 (|#1| (-1297 (-421 |#3|)) (-1297 |#1|))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-2856 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) 211 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 105 (|has| (-421 |#2|) (-376)) ELT)) (-3244 (($ $) 106 (|has| (-421 |#2|) (-376)) ELT)) (-4093 (((-114) $) 108 (|has| (-421 |#2|) (-376)) ELT)) (-1698 (((-711 (-421 |#2|)) (-1297 $)) 53 T ELT) (((-711 (-421 |#2|))) 68 T ELT)) (-3349 (((-421 |#2|) $) 59 T ELT)) (-2105 (((-1219 (-948) (-793)) (-560)) 158 (|has| (-421 |#2|) (-363)) ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-1804 (($ $) 125 (|has| (-421 |#2|) (-376)) ELT)) (-3023 (((-419 $) $) 126 (|has| (-421 |#2|) (-376)) ELT)) (-1615 (((-114) $ $) 116 (|has| (-421 |#2|) (-376)) ELT)) (-3241 (((-793)) 99 (|has| (-421 |#2|) (-381)) ELT)) (-4309 (((-114)) 228 T ELT)) (-2819 (((-114) |#1|) 227 T ELT) (((-114) |#2|) 226 T ELT)) (-2238 (($) 18 T CONST)) (-2539 (((-3 (-560) "failed") $) 185 (|has| (-421 |#2|) (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) 183 (|has| (-421 |#2|) (-1069 (-421 (-560)))) ELT) (((-3 (-421 |#2|) "failed") $) 180 T ELT)) (-3330 (((-560) $) 184 (|has| (-421 |#2|) (-1069 (-560))) ELT) (((-421 (-560)) $) 182 (|has| (-421 |#2|) (-1069 (-421 (-560)))) ELT) (((-421 |#2|) $) 181 T ELT)) (-4143 (($ (-1297 (-421 |#2|)) (-1297 $)) 55 T ELT) (($ (-1297 (-421 |#2|))) 71 T ELT) (($ (-1297 |#2|) |#2|) 210 T ELT)) (-4217 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| (-421 |#2|) (-363)) ELT)) (-1478 (($ $ $) 120 (|has| (-421 |#2|) (-376)) ELT)) (-4333 (((-711 (-421 |#2|)) $ (-1297 $)) 60 T ELT) (((-711 (-421 |#2|)) $) 66 T ELT)) (-3142 (((-711 (-560)) (-711 $)) 177 (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 176 (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-421 |#2|))) (|:| |vec| (-1297 (-421 |#2|)))) (-711 $) (-1297 $)) 175 T ELT) (((-711 (-421 |#2|)) (-711 $)) 174 T ELT)) (-3722 (((-1297 $) (-1297 $)) 216 T ELT)) (-4129 (($ |#3|) 169 T ELT) (((-3 $ "failed") (-421 |#3|)) 166 (|has| (-421 |#2|) (-376)) ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1887 (((-663 (-663 |#1|))) 197 (|has| |#1| (-381)) ELT)) (-2659 (((-114) |#1| |#1|) 232 T ELT)) (-2326 (((-948)) 61 T ELT)) (-2310 (($) 102 (|has| (-421 |#2|) (-381)) ELT)) (-4120 (((-114)) 225 T ELT)) (-2952 (((-114) |#1|) 224 T ELT) (((-114) |#2|) 223 T ELT)) (-1490 (($ $ $) 119 (|has| (-421 |#2|) (-376)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 114 (|has| (-421 |#2|) (-376)) ELT)) (-2806 (($ $) 203 T ELT)) (-4336 (($) 160 (|has| (-421 |#2|) (-363)) ELT)) (-3976 (((-114) $) 161 (|has| (-421 |#2|) (-363)) ELT)) (-1696 (($ $ (-793)) 152 (|has| (-421 |#2|) (-363)) ELT) (($ $) 151 (|has| (-421 |#2|) (-363)) ELT)) (-4330 (((-114) $) 127 (|has| (-421 |#2|) (-376)) ELT)) (-3913 (((-948) $) 163 (|has| (-421 |#2|) (-363)) ELT) (((-854 (-948)) $) 149 (|has| (-421 |#2|) (-363)) ELT)) (-1581 (((-114) $) 35 T ELT)) (-2325 (((-793)) 235 T ELT)) (-1772 (((-1297 $) (-1297 $)) 217 T ELT)) (-2032 (((-421 |#2|) $) 58 T ELT)) (-1493 (((-663 (-975 |#1|)) (-1207)) 198 (|has| |#1| (-376)) ELT)) (-3009 (((-3 $ "failed") $) 153 (|has| (-421 |#2|) (-363)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 123 (|has| (-421 |#2|) (-376)) ELT)) (-1787 ((|#3| $) 51 (|has| (-421 |#2|) (-376)) ELT)) (-4419 (((-948) $) 101 (|has| (-421 |#2|) (-381)) ELT)) (-4116 ((|#3| $) 167 T ELT)) (-2484 (((-711 (-560)) (-1297 $)) 179 (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 178 (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-421 |#2|))) (|:| |vec| (-1297 (-421 |#2|)))) (-1297 $) $) 173 T ELT) (((-711 (-421 |#2|)) (-1297 $)) 172 T ELT)) (-2093 (($ (-663 $)) 112 (|has| (-421 |#2|) (-376)) ELT) (($ $ $) 111 (|has| (-421 |#2|) (-376)) ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3912 (((-711 (-421 |#2|))) 212 T ELT)) (-4470 (((-711 (-421 |#2|))) 214 T ELT)) (-1544 (($ $) 128 (|has| (-421 |#2|) (-376)) ELT)) (-2921 (($ (-1297 |#2|) |#2|) 208 T ELT)) (-1589 (((-711 (-421 |#2|))) 213 T ELT)) (-2991 (((-711 (-421 |#2|))) 215 T ELT)) (-3701 (((-2 (|:| |num| (-711 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 207 T ELT)) (-2578 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) 209 T ELT)) (-3090 (((-1297 $)) 221 T ELT)) (-3932 (((-1297 $)) 222 T ELT)) (-1499 (((-114) $) 220 T ELT)) (-2905 (((-114) $) 219 T ELT) (((-114) $ |#1|) 206 T ELT) (((-114) $ |#2|) 205 T ELT)) (-3161 (($) 154 (|has| (-421 |#2|) (-363)) CONST)) (-3128 (($ (-948)) 100 (|has| (-421 |#2|) (-381)) ELT)) (-2793 (((-3 |#2| "failed")) 200 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1685 (((-793)) 234 T ELT)) (-2748 (($) 171 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 113 (|has| (-421 |#2|) (-376)) ELT)) (-2132 (($ (-663 $)) 110 (|has| (-421 |#2|) (-376)) ELT) (($ $ $) 109 (|has| (-421 |#2|) (-376)) ELT)) (-3666 (((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))) 157 (|has| (-421 |#2|) (-363)) ELT)) (-4457 (((-419 $) $) 124 (|has| (-421 |#2|) (-376)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| (-421 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 121 (|has| (-421 |#2|) (-376)) ELT)) (-1528 (((-3 $ "failed") $ $) 104 (|has| (-421 |#2|) (-376)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 115 (|has| (-421 |#2|) (-376)) ELT)) (-2901 (((-793) $) 117 (|has| (-421 |#2|) (-376)) ELT)) (-3924 ((|#1| $ |#1| |#1|) 202 T ELT)) (-2870 (((-3 |#2| "failed")) 201 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 118 (|has| (-421 |#2|) (-376)) ELT)) (-2690 (((-421 |#2|) (-1297 $)) 54 T ELT) (((-421 |#2|)) 67 T ELT)) (-2364 (((-793) $) 162 (|has| (-421 |#2|) (-363)) ELT) (((-3 (-793) "failed") $ $) 150 (|has| (-421 |#2|) (-363)) ELT)) (-2894 (($ $ (-1 (-421 |#2|) (-421 |#2|))) 136 (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) 135 (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) 204 T ELT) (($ $ (-663 (-1207)) (-663 (-793))) 141 (-2304 (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-1953 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-1207) (-793)) 140 (-2304 (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-1953 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-663 (-1207))) 139 (-2304 (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-1953 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-1207)) 137 (-2304 (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-1953 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-793)) 147 (-2304 (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-239))) (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-240))) (-1953 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT) (($ $) 145 (-2304 (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-239))) (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-240))) (-1953 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT)) (-3604 (((-711 (-421 |#2|)) (-1297 $) (-1 (-421 |#2|) (-421 |#2|))) 165 (|has| (-421 |#2|) (-376)) ELT)) (-4394 ((|#3|) 170 T ELT)) (-2243 (($) 159 (|has| (-421 |#2|) (-363)) ELT)) (-2178 (((-1297 (-421 |#2|)) $ (-1297 $)) 57 T ELT) (((-711 (-421 |#2|)) (-1297 $) (-1297 $)) 56 T ELT) (((-1297 (-421 |#2|)) $) 73 T ELT) (((-711 (-421 |#2|)) (-1297 $)) 72 T ELT)) (-1407 (((-1297 (-421 |#2|)) $) 70 T ELT) (($ (-1297 (-421 |#2|))) 69 T ELT) ((|#3| $) 186 T ELT) (($ |#3|) 168 T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) 156 (|has| (-421 |#2|) (-363)) ELT)) (-4335 (((-1297 $) (-1297 $)) 218 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ (-421 |#2|)) 44 T ELT) (($ (-421 (-560))) 98 (-2304 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-1069 (-421 (-560))))) ELT) (($ $) 103 (|has| (-421 |#2|) (-376)) ELT)) (-1964 (($ $) 155 (|has| (-421 |#2|) (-363)) ELT) (((-3 $ "failed") $) 50 (|has| (-421 |#2|) (-147)) ELT)) (-2630 ((|#3| $) 52 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2297 (((-114)) 231 T ELT)) (-3882 (((-114) |#1|) 230 T ELT) (((-114) |#2|) 229 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-1954 (((-1297 $)) 74 T ELT)) (-2948 (((-114) $ $) 107 (|has| (-421 |#2|) (-376)) ELT)) (-3059 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 199 T ELT)) (-3861 (((-114)) 233 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($ $ (-1 (-421 |#2|) (-421 |#2|))) 134 (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) 133 (|has| (-421 |#2|) (-376)) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 144 (-2304 (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-1953 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-1207) (-793)) 143 (-2304 (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-1953 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-663 (-1207))) 142 (-2304 (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-1953 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-1207)) 138 (-2304 (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-1953 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-793)) 148 (-2304 (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-239))) (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-240))) (-1953 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT) (($ $) 146 (-2304 (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-239))) (-1953 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-240))) (-1953 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ $) 132 (|has| (-421 |#2|) (-376)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 129 (|has| (-421 |#2|) (-376)) ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 |#2|)) 46 T ELT) (($ (-421 |#2|) $) 45 T ELT) (($ (-421 (-560)) $) 131 (|has| (-421 |#2|) (-376)) ELT) (($ $ (-421 (-560))) 130 (|has| (-421 |#2|) (-376)) ELT)))
+((-3488 (((-2 (|:| |num| (-1297 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1953 (($ (-1297 (-421 |#3|)) (-1297 $)) NIL T ELT) (($ (-1297 (-421 |#3|))) NIL T ELT) (($ (-1297 |#3|) |#3|) 173 T ELT)) (-2265 (((-1297 $) (-1297 $)) 156 T ELT)) (-4412 (((-663 (-663 |#2|))) 126 T ELT)) (-3269 (((-114) |#2| |#2|) 76 T ELT)) (-4239 (($ $) 148 T ELT)) (-3135 (((-793)) 172 T ELT)) (-2572 (((-1297 $) (-1297 $)) 218 T ELT)) (-3608 (((-663 (-975 |#2|)) (-1207)) 115 T ELT)) (-2870 (((-114) $) 169 T ELT)) (-4030 (((-114) $) 27 T ELT) (((-114) $ |#2|) 31 T ELT) (((-114) $ |#3|) 222 T ELT)) (-4094 (((-3 |#3| "failed")) 52 T ELT)) (-2943 (((-793)) 184 T ELT)) (-1507 ((|#2| $ |#2| |#2|) 140 T ELT)) (-3667 (((-3 |#3| "failed")) 71 T ELT)) (-3161 (($ $ (-1 (-421 |#3|) (-421 |#3|))) NIL T ELT) (($ $ (-1 (-421 |#3|) (-421 |#3|)) (-793)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 226 T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-3182 (((-1297 $) (-1297 $)) 162 T ELT)) (-2987 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-4154 (((-114)) 34 T ELT)))
+(((-354 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3161 (|#1| |#1|)) (-15 -3161 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1| (-1207))) (-15 -3161 (|#1| |#1| (-663 (-1207)))) (-15 -3161 (|#1| |#1| (-1207) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -4412 ((-663 (-663 |#2|)))) (-15 -3608 ((-663 (-975 |#2|)) (-1207))) (-15 -2987 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4094 ((-3 |#3| "failed"))) (-15 -3667 ((-3 |#3| "failed"))) (-15 -1507 (|#2| |#1| |#2| |#2|)) (-15 -4239 (|#1| |#1|)) (-15 -3161 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4030 ((-114) |#1| |#3|)) (-15 -4030 ((-114) |#1| |#2|)) (-15 -1953 (|#1| (-1297 |#3|) |#3|)) (-15 -3488 ((-2 (|:| |num| (-1297 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2265 ((-1297 |#1|) (-1297 |#1|))) (-15 -2572 ((-1297 |#1|) (-1297 |#1|))) (-15 -3182 ((-1297 |#1|) (-1297 |#1|))) (-15 -4030 ((-114) |#1|)) (-15 -2870 ((-114) |#1|)) (-15 -3269 ((-114) |#2| |#2|)) (-15 -4154 ((-114))) (-15 -2943 ((-793))) (-15 -3135 ((-793))) (-15 -3161 (|#1| |#1| (-1 (-421 |#3|) (-421 |#3|)) (-793))) (-15 -3161 (|#1| |#1| (-1 (-421 |#3|) (-421 |#3|)))) (-15 -1953 (|#1| (-1297 (-421 |#3|)))) (-15 -1953 (|#1| (-1297 (-421 |#3|)) (-1297 |#1|)))) (-355 |#2| |#3| |#4|) (-1252) (-1273 |#2|) (-1273 (-421 |#3|))) (T -354))
+((-3135 (*1 *2) (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5))) (-5 *2 (-793)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-2943 (*1 *2) (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5))) (-5 *2 (-793)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-4154 (*1 *2) (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5))) (-5 *2 (-114)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-3269 (*1 *2 *3 *3) (-12 (-4 *3 (-1252)) (-4 *5 (-1273 *3)) (-4 *6 (-1273 (-421 *5))) (-5 *2 (-114)) (-5 *1 (-354 *4 *3 *5 *6)) (-4 *4 (-355 *3 *5 *6)))) (-3667 (*1 *2) (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1273 (-421 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-354 *3 *4 *2 *5)) (-4 *3 (-355 *4 *2 *5)))) (-4094 (*1 *2) (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1273 (-421 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-354 *3 *4 *2 *5)) (-4 *3 (-355 *4 *2 *5)))) (-3608 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *5 (-1252)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6))) (-5 *2 (-663 (-975 *5))) (-5 *1 (-354 *4 *5 *6 *7)) (-4 *4 (-355 *5 *6 *7)))) (-4412 (*1 *2) (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5))) (-5 *2 (-663 (-663 *4))) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))))
+(-10 -8 (-15 -3161 (|#1| |#1|)) (-15 -3161 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1| (-1207))) (-15 -3161 (|#1| |#1| (-663 (-1207)))) (-15 -3161 (|#1| |#1| (-1207) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -4412 ((-663 (-663 |#2|)))) (-15 -3608 ((-663 (-975 |#2|)) (-1207))) (-15 -2987 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -4094 ((-3 |#3| "failed"))) (-15 -3667 ((-3 |#3| "failed"))) (-15 -1507 (|#2| |#1| |#2| |#2|)) (-15 -4239 (|#1| |#1|)) (-15 -3161 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4030 ((-114) |#1| |#3|)) (-15 -4030 ((-114) |#1| |#2|)) (-15 -1953 (|#1| (-1297 |#3|) |#3|)) (-15 -3488 ((-2 (|:| |num| (-1297 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2265 ((-1297 |#1|) (-1297 |#1|))) (-15 -2572 ((-1297 |#1|) (-1297 |#1|))) (-15 -3182 ((-1297 |#1|) (-1297 |#1|))) (-15 -4030 ((-114) |#1|)) (-15 -2870 ((-114) |#1|)) (-15 -3269 ((-114) |#2| |#2|)) (-15 -4154 ((-114))) (-15 -2943 ((-793))) (-15 -3135 ((-793))) (-15 -3161 (|#1| |#1| (-1 (-421 |#3|) (-421 |#3|)) (-793))) (-15 -3161 (|#1| |#1| (-1 (-421 |#3|) (-421 |#3|)))) (-15 -1953 (|#1| (-1297 (-421 |#3|)))) (-15 -1953 (|#1| (-1297 (-421 |#3|)) (-1297 |#1|))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3488 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) 211 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 105 (|has| (-421 |#2|) (-376)) ELT)) (-4366 (($ $) 106 (|has| (-421 |#2|) (-376)) ELT)) (-2667 (((-114) $) 108 (|has| (-421 |#2|) (-376)) ELT)) (-3100 (((-711 (-421 |#2|)) (-1297 $)) 53 T ELT) (((-711 (-421 |#2|))) 68 T ELT)) (-4113 (((-421 |#2|) $) 59 T ELT)) (-1548 (((-1219 (-948) (-793)) (-560)) 158 (|has| (-421 |#2|) (-363)) ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-1621 (($ $) 125 (|has| (-421 |#2|) (-376)) ELT)) (-3898 (((-419 $) $) 126 (|has| (-421 |#2|) (-376)) ELT)) (-3476 (((-114) $ $) 116 (|has| (-421 |#2|) (-376)) ELT)) (-2552 (((-793)) 99 (|has| (-421 |#2|) (-381)) ELT)) (-2942 (((-114)) 228 T ELT)) (-4368 (((-114) |#1|) 227 T ELT) (((-114) |#2|) 226 T ELT)) (-3525 (($) 18 T CONST)) (-3929 (((-3 (-560) "failed") $) 185 (|has| (-421 |#2|) (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) 183 (|has| (-421 |#2|) (-1069 (-421 (-560)))) ELT) (((-3 (-421 |#2|) "failed") $) 180 T ELT)) (-3649 (((-560) $) 184 (|has| (-421 |#2|) (-1069 (-560))) ELT) (((-421 (-560)) $) 182 (|has| (-421 |#2|) (-1069 (-421 (-560)))) ELT) (((-421 |#2|) $) 181 T ELT)) (-1953 (($ (-1297 (-421 |#2|)) (-1297 $)) 55 T ELT) (($ (-1297 (-421 |#2|))) 71 T ELT) (($ (-1297 |#2|) |#2|) 210 T ELT)) (-1433 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| (-421 |#2|) (-363)) ELT)) (-2186 (($ $ $) 120 (|has| (-421 |#2|) (-376)) ELT)) (-3160 (((-711 (-421 |#2|)) $ (-1297 $)) 60 T ELT) (((-711 (-421 |#2|)) $) 66 T ELT)) (-2619 (((-711 (-560)) (-711 $)) 177 (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 176 (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-421 |#2|))) (|:| |vec| (-1297 (-421 |#2|)))) (-711 $) (-1297 $)) 175 T ELT) (((-711 (-421 |#2|)) (-711 $)) 174 T ELT)) (-2265 (((-1297 $) (-1297 $)) 216 T ELT)) (-1778 (($ |#3|) 169 T ELT) (((-3 $ "failed") (-421 |#3|)) 166 (|has| (-421 |#2|) (-376)) ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-4412 (((-663 (-663 |#1|))) 197 (|has| |#1| (-381)) ELT)) (-3269 (((-114) |#1| |#1|) 232 T ELT)) (-1604 (((-948)) 61 T ELT)) (-1812 (($) 102 (|has| (-421 |#2|) (-381)) ELT)) (-1693 (((-114)) 225 T ELT)) (-4391 (((-114) |#1|) 224 T ELT) (((-114) |#2|) 223 T ELT)) (-2197 (($ $ $) 119 (|has| (-421 |#2|) (-376)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 114 (|has| (-421 |#2|) (-376)) ELT)) (-4239 (($ $) 203 T ELT)) (-3191 (($) 160 (|has| (-421 |#2|) (-363)) ELT)) (-4017 (((-114) $) 161 (|has| (-421 |#2|) (-363)) ELT)) (-3079 (($ $ (-793)) 152 (|has| (-421 |#2|) (-363)) ELT) (($ $) 151 (|has| (-421 |#2|) (-363)) ELT)) (-3141 (((-114) $) 127 (|has| (-421 |#2|) (-376)) ELT)) (-1460 (((-948) $) 163 (|has| (-421 |#2|) (-363)) ELT) (((-854 (-948)) $) 149 (|has| (-421 |#2|) (-363)) ELT)) (-1918 (((-114) $) 35 T ELT)) (-3135 (((-793)) 235 T ELT)) (-2572 (((-1297 $) (-1297 $)) 217 T ELT)) (-2084 (((-421 |#2|) $) 58 T ELT)) (-3608 (((-663 (-975 |#1|)) (-1207)) 198 (|has| |#1| (-376)) ELT)) (-3738 (((-3 $ "failed") $) 153 (|has| (-421 |#2|) (-363)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 123 (|has| (-421 |#2|) (-376)) ELT)) (-1471 ((|#3| $) 51 (|has| (-421 |#2|) (-376)) ELT)) (-2622 (((-948) $) 101 (|has| (-421 |#2|) (-381)) ELT)) (-1767 ((|#3| $) 167 T ELT)) (-4140 (((-711 (-560)) (-1297 $)) 179 (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 178 (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-421 |#2|))) (|:| |vec| (-1297 (-421 |#2|)))) (-1297 $) $) 173 T ELT) (((-711 (-421 |#2|)) (-1297 $)) 172 T ELT)) (-1861 (($ (-663 $)) 112 (|has| (-421 |#2|) (-376)) ELT) (($ $ $) 111 (|has| (-421 |#2|) (-376)) ELT)) (-3358 (((-1189) $) 10 T ELT)) (-1449 (((-711 (-421 |#2|))) 212 T ELT)) (-1823 (((-711 (-421 |#2|))) 214 T ELT)) (-2986 (($ $) 128 (|has| (-421 |#2|) (-376)) ELT)) (-4086 (($ (-1297 |#2|) |#2|) 208 T ELT)) (-3273 (((-711 (-421 |#2|))) 213 T ELT)) (-3539 (((-711 (-421 |#2|))) 215 T ELT)) (-3322 (((-2 (|:| |num| (-711 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 207 T ELT)) (-3753 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) 209 T ELT)) (-2083 (((-1297 $)) 221 T ELT)) (-3538 (((-1297 $)) 222 T ELT)) (-2870 (((-114) $) 220 T ELT)) (-4030 (((-114) $) 219 T ELT) (((-114) $ |#1|) 206 T ELT) (((-114) $ |#2|) 205 T ELT)) (-3239 (($) 154 (|has| (-421 |#2|) (-363)) CONST)) (-1591 (($ (-948)) 100 (|has| (-421 |#2|) (-381)) ELT)) (-4094 (((-3 |#2| "failed")) 200 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2943 (((-793)) 234 T ELT)) (-3583 (($) 171 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 113 (|has| (-421 |#2|) (-376)) ELT)) (-1938 (($ (-663 $)) 110 (|has| (-421 |#2|) (-376)) ELT) (($ $ $) 109 (|has| (-421 |#2|) (-376)) ELT)) (-2976 (((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))) 157 (|has| (-421 |#2|) (-363)) ELT)) (-4012 (((-419 $) $) 124 (|has| (-421 |#2|) (-376)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| (-421 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 121 (|has| (-421 |#2|) (-376)) ELT)) (-2233 (((-3 $ "failed") $ $) 104 (|has| (-421 |#2|) (-376)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 115 (|has| (-421 |#2|) (-376)) ELT)) (-3989 (((-793) $) 117 (|has| (-421 |#2|) (-376)) ELT)) (-1507 ((|#1| $ |#1| |#1|) 202 T ELT)) (-3667 (((-3 |#2| "failed")) 201 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 118 (|has| (-421 |#2|) (-376)) ELT)) (-2336 (((-421 |#2|) (-1297 $)) 54 T ELT) (((-421 |#2|)) 67 T ELT)) (-2258 (((-793) $) 162 (|has| (-421 |#2|) (-363)) ELT) (((-3 (-793) "failed") $ $) 150 (|has| (-421 |#2|) (-363)) ELT)) (-3161 (($ $ (-1 (-421 |#2|) (-421 |#2|))) 136 (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) 135 (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) 204 T ELT) (($ $ (-663 (-1207)) (-663 (-793))) 141 (-2196 (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-1404 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-1207) (-793)) 140 (-2196 (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-1404 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-663 (-1207))) 139 (-2196 (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-1404 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-1207)) 137 (-2196 (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-1404 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-793)) 147 (-2196 (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-239))) (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-240))) (-1404 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT) (($ $) 145 (-2196 (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-239))) (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-240))) (-1404 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT)) (-3634 (((-711 (-421 |#2|)) (-1297 $) (-1 (-421 |#2|) (-421 |#2|))) 165 (|has| (-421 |#2|) (-376)) ELT)) (-2407 ((|#3|) 170 T ELT)) (-3569 (($) 159 (|has| (-421 |#2|) (-363)) ELT)) (-4226 (((-1297 (-421 |#2|)) $ (-1297 $)) 57 T ELT) (((-711 (-421 |#2|)) (-1297 $) (-1297 $)) 56 T ELT) (((-1297 (-421 |#2|)) $) 73 T ELT) (((-711 (-421 |#2|)) (-1297 $)) 72 T ELT)) (-2400 (((-1297 (-421 |#2|)) $) 70 T ELT) (($ (-1297 (-421 |#2|))) 69 T ELT) ((|#3| $) 186 T ELT) (($ |#3|) 168 T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) 156 (|has| (-421 |#2|) (-363)) ELT)) (-3182 (((-1297 $) (-1297 $)) 218 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ (-421 |#2|)) 44 T ELT) (($ (-421 (-560))) 98 (-2196 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-1069 (-421 (-560))))) ELT) (($ $) 103 (|has| (-421 |#2|) (-376)) ELT)) (-3919 (($ $) 155 (|has| (-421 |#2|) (-363)) ELT) (((-3 $ "failed") $) 50 (|has| (-421 |#2|) (-147)) ELT)) (-2978 ((|#3| $) 52 T ELT)) (-4191 (((-793)) 32 T CONST)) (-2842 (((-114)) 231 T ELT)) (-4327 (((-114) |#1|) 230 T ELT) (((-114) |#2|) 229 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-3822 (((-1297 $)) 74 T ELT)) (-4361 (((-114) $ $) 107 (|has| (-421 |#2|) (-376)) ELT)) (-2987 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 199 T ELT)) (-4154 (((-114)) 233 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($ $ (-1 (-421 |#2|) (-421 |#2|))) 134 (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) 133 (|has| (-421 |#2|) (-376)) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 144 (-2196 (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-1404 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-1207) (-793)) 143 (-2196 (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-1404 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-663 (-1207))) 142 (-2196 (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-1404 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-1207)) 138 (-2196 (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-1404 (|has| (-421 |#2|) (-929 (-1207))) (|has| (-421 |#2|) (-376)))) ELT) (($ $ (-793)) 148 (-2196 (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-239))) (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-240))) (-1404 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT) (($ $) 146 (-2196 (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-239))) (-1404 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-240))) (-1404 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ $) 132 (|has| (-421 |#2|) (-376)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 129 (|has| (-421 |#2|) (-376)) ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 |#2|)) 46 T ELT) (($ (-421 |#2|) $) 45 T ELT) (($ (-421 (-560)) $) 131 (|has| (-421 |#2|) (-376)) ELT) (($ $ (-421 (-560))) 130 (|has| (-421 |#2|) (-376)) ELT)))
(((-355 |#1| |#2| |#3|) (-142) (-1252) (-1273 |t#1|) (-1273 (-421 |t#2|))) (T -355))
-((-2325 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-793)))) (-1685 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-793)))) (-3861 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))) (-2659 (*1 *2 *3 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))) (-2297 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))) (-3882 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))) (-3882 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-421 *3))) (-5 *2 (-114)))) (-4309 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))) (-2819 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))) (-2819 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-421 *3))) (-5 *2 (-114)))) (-4120 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))) (-2952 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))) (-2952 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-421 *3))) (-5 *2 (-114)))) (-3932 (*1 *2) (-12 (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)))) (-3090 (*1 *2) (-12 (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)))) (-1499 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))) (-2905 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))) (-4335 (*1 *2 *2) (-12 (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))))) (-1772 (*1 *2 *2) (-12 (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))))) (-3722 (*1 *2 *2) (-12 (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))))) (-2991 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-711 (-421 *4))))) (-4470 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-711 (-421 *4))))) (-1589 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-711 (-421 *4))))) (-3912 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-711 (-421 *4))))) (-2856 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-2 (|:| |num| (-1297 *4)) (|:| |den| *4))))) (-4143 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1273 *4)) (-4 *4 (-1252)) (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1273 (-421 *3))))) (-2578 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-2 (|:| |num| (-1297 *4)) (|:| |den| *4))))) (-2921 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1273 *4)) (-4 *4 (-1252)) (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1273 (-421 *3))))) (-3701 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5))) (-5 *2 (-2 (|:| |num| (-711 *5)) (|:| |den| *5))))) (-2905 (*1 *2 *1 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))) (-2905 (*1 *2 *1 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-421 *3))) (-5 *2 (-114)))) (-2894 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))))) (-2806 (*1 *1 *1) (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1252)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-421 *3))))) (-3924 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1252)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-421 *3))))) (-2870 (*1 *2) (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1252)) (-4 *4 (-1273 (-421 *2))) (-4 *2 (-1273 *3)))) (-2793 (*1 *2) (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1252)) (-4 *4 (-1273 (-421 *2))) (-4 *2 (-1273 *3)))) (-3059 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-1252)) (-4 *6 (-1273 (-421 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-355 *4 *5 *6)))) (-1493 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5))) (-4 *4 (-376)) (-5 *2 (-663 (-975 *4))))) (-1887 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-4 *3 (-381)) (-5 *2 (-663 (-663 *3))))))
-(-13 (-746 (-421 |t#2|) |t#3|) (-10 -8 (-15 -2325 ((-793))) (-15 -1685 ((-793))) (-15 -3861 ((-114))) (-15 -2659 ((-114) |t#1| |t#1|)) (-15 -2297 ((-114))) (-15 -3882 ((-114) |t#1|)) (-15 -3882 ((-114) |t#2|)) (-15 -4309 ((-114))) (-15 -2819 ((-114) |t#1|)) (-15 -2819 ((-114) |t#2|)) (-15 -4120 ((-114))) (-15 -2952 ((-114) |t#1|)) (-15 -2952 ((-114) |t#2|)) (-15 -3932 ((-1297 $))) (-15 -3090 ((-1297 $))) (-15 -1499 ((-114) $)) (-15 -2905 ((-114) $)) (-15 -4335 ((-1297 $) (-1297 $))) (-15 -1772 ((-1297 $) (-1297 $))) (-15 -3722 ((-1297 $) (-1297 $))) (-15 -2991 ((-711 (-421 |t#2|)))) (-15 -4470 ((-711 (-421 |t#2|)))) (-15 -1589 ((-711 (-421 |t#2|)))) (-15 -3912 ((-711 (-421 |t#2|)))) (-15 -2856 ((-2 (|:| |num| (-1297 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4143 ($ (-1297 |t#2|) |t#2|)) (-15 -2578 ((-2 (|:| |num| (-1297 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2921 ($ (-1297 |t#2|) |t#2|)) (-15 -3701 ((-2 (|:| |num| (-711 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -2905 ((-114) $ |t#1|)) (-15 -2905 ((-114) $ |t#2|)) (-15 -2894 ($ $ (-1 |t#2| |t#2|))) (-15 -2806 ($ $)) (-15 -3924 (|t#1| $ |t#1| |t#1|)) (-15 -2870 ((-3 |t#2| "failed"))) (-15 -2793 ((-3 |t#2| "failed"))) (-15 -3059 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-376)) (-15 -1493 ((-663 (-975 |t#1|)) (-1207))) |%noBranch|) (IF (|has| |t#1| (-381)) (-15 -1887 ((-663 (-663 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) -2304 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-38 #1=(-421 |#2|)) . T) ((-38 $) -2304 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-102) . T) ((-111 #0# #0#) -2304 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -2304 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-147))) ((-149) |has| (-421 |#2|) (-149)) ((-635 #0#) -2304 (|has| (-421 |#2|) (-1069 (-421 (-560)))) (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-635 #1#) . T) ((-635 (-560)) . T) ((-635 $) -2304 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-632 (-887)) . T) ((-175) . T) ((-633 |#3|) . T) ((-236 $) -2304 (|has| (-421 |#2|) (-363)) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376)))) ((-234 #1#) |has| (-421 |#2|) (-376)) ((-240) -2304 (|has| (-421 |#2|) (-363)) (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376)))) ((-239) -2304 (|has| (-421 |#2|) (-363)) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376)))) ((-274 #1#) |has| (-421 |#2|) (-376)) ((-250) -2304 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-302) -2304 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-319) -2304 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-376) -2304 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-416) |has| (-421 |#2|) (-363)) ((-381) -2304 (|has| (-421 |#2|) (-381)) (|has| (-421 |#2|) (-363))) ((-363) |has| (-421 |#2|) (-363)) ((-383 #1# |#3|) . T) ((-424 #1# |#3|) . T) ((-390 #1#) . T) ((-426 #1#) . T) ((-466) -2304 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-571) -2304 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-668 #0#) -2304 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-668 #1#) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 #0#) -2304 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-670 #1#) . T) ((-670 #2=(-560)) |has| (-421 |#2|) (-660 (-560))) ((-670 $) . T) ((-662 #0#) -2304 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-662 #1#) . T) ((-662 $) -2304 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-660 #1#) . T) ((-660 #2#) |has| (-421 |#2|) (-660 (-560))) ((-739 #0#) -2304 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-739 #1#) . T) ((-739 $) -2304 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-746 #1# |#3|) . T) ((-748) . T) ((-921 $ #3=(-1207)) -2304 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207))))) ((-927 (-1207)) -12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) ((-929 #3#) -2304 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207))))) ((-950) -2304 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-1069 (-421 (-560))) |has| (-421 |#2|) (-1069 (-421 (-560)))) ((-1069 #1#) . T) ((-1069 (-560)) |has| (-421 |#2|) (-1069 (-560))) ((-1082 #0#) -2304 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-1082 #1#) . T) ((-1082 $) . T) ((-1087 #0#) -2304 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-1087 #1#) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1182) |has| (-421 |#2|) (-363)) ((-1247) . T) ((-1252) -2304 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))))
-((-3957 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT)))
-(((-356 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3957 (|#8| (-1 |#5| |#1|) |#4|))) (-1252) (-1273 |#1|) (-1273 (-421 |#2|)) (-355 |#1| |#2| |#3|) (-1252) (-1273 |#5|) (-1273 (-421 |#6|)) (-355 |#5| |#6| |#7|)) (T -356))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1252)) (-4 *8 (-1252)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6))) (-4 *9 (-1273 *8)) (-4 *2 (-355 *8 *9 *10)) (-5 *1 (-356 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-355 *5 *6 *7)) (-4 *10 (-1273 (-421 *9))))))
-(-10 -7 (-15 -3957 (|#8| (-1 |#5| |#1|) |#4|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-1947 (((-114) $) NIL T ELT)) (-1796 (((-793)) NIL T ELT)) (-3349 (((-935 |#1|) $) NIL T ELT) (($ $ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2105 (((-1219 (-948) (-793)) (-560)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-3241 (((-793)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-935 |#1|) "failed") $) NIL T ELT)) (-3330 (((-935 |#1|) $) NIL T ELT)) (-4143 (($ (-1297 (-935 |#1|))) NIL T ELT)) (-4217 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1478 (($ $ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2310 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4336 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3976 (((-114) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1696 (($ $ (-793)) NIL (-2304 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT) (($ $) NIL (-2304 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-4330 (((-114) $) NIL T ELT)) (-3913 (((-948) $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-854 (-948)) $) NIL (-2304 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-4417 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2863 (((-114) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2032 (((-935 |#1|) $) NIL T ELT) (($ $ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1787 (((-1201 (-935 |#1|)) $) NIL T ELT) (((-1201 $) $ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4419 (((-948) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1543 (((-1201 (-935 |#1|)) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4449 (((-1201 (-935 |#1|)) $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-3 (-1201 (-935 |#1|)) "failed") $ $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3384 (($ $ (-1201 (-935 |#1|))) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-3161 (($) NIL (|has| (-935 |#1|) (-381)) CONST)) (-3128 (($ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3583 (((-114) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2725 (((-987 (-1151))) NIL T ELT)) (-2748 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3666 (((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-2969 (((-854 (-948))) NIL T ELT) (((-948)) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2364 (((-793) $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2304 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-3669 (((-136)) NIL T ELT)) (-2894 (($ $ (-793)) NIL (|has| (-935 |#1|) (-381)) ELT) (($ $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3630 (((-854 (-948)) $) NIL T ELT) (((-948) $) NIL T ELT)) (-4394 (((-1201 (-935 |#1|))) NIL T ELT)) (-2243 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3988 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2178 (((-1297 (-935 |#1|)) $) NIL T ELT) (((-711 (-935 |#1|)) (-1297 $)) NIL T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-935 |#1|)) NIL T ELT)) (-1964 (($ $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-3 $ "failed") $) NIL (-2304 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-1954 (((-1297 $)) NIL T ELT) (((-1297 $) (-948)) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-3602 (((-114) $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3054 (($ $) NIL (|has| (-935 |#1|) (-381)) ELT) (($ $ (-793)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3305 (($ $ (-793)) NIL (|has| (-935 |#1|) (-381)) ELT) (($ $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ $) NIL T ELT) (($ $ (-935 |#1|)) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-935 |#1|)) NIL T ELT) (($ (-935 |#1|) $) NIL T ELT)))
-(((-357 |#1| |#2|) (-13 (-341 (-935 |#1|)) (-10 -7 (-15 -2725 ((-987 (-1151)))))) (-948) (-948)) (T -357))
-((-2725 (*1 *2) (-12 (-5 *2 (-987 (-1151))) (-5 *1 (-357 *3 *4)) (-14 *3 (-948)) (-14 *4 (-948)))))
-(-13 (-341 (-935 |#1|)) (-10 -7 (-15 -2725 ((-987 (-1151))))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 58 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-1947 (((-114) $) NIL T ELT)) (-1796 (((-793)) NIL T ELT)) (-3349 ((|#1| $) NIL T ELT) (($ $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-2105 (((-1219 (-948) (-793)) (-560)) 56 (|has| |#1| (-381)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-3241 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) 142 T ELT)) (-3330 ((|#1| $) 113 T ELT)) (-4143 (($ (-1297 |#1|)) 130 T ELT)) (-4217 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-381)) ELT)) (-1478 (($ $ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2310 (($) 124 (|has| |#1| (-381)) ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4336 (($) 160 (|has| |#1| (-381)) ELT)) (-3976 (((-114) $) 66 (|has| |#1| (-381)) ELT)) (-1696 (($ $ (-793)) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4330 (((-114) $) NIL T ELT)) (-3913 (((-948) $) 60 (|has| |#1| (-381)) ELT) (((-854 (-948)) $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-1581 (((-114) $) 62 T ELT)) (-4417 (($) 162 (|has| |#1| (-381)) ELT)) (-2863 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-2032 ((|#1| $) NIL T ELT) (($ $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| |#1| (-381)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1787 (((-1201 |#1|) $) 117 T ELT) (((-1201 $) $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-4419 (((-948) $) 171 (|has| |#1| (-381)) ELT)) (-1543 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-4449 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1201 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-3384 (($ $ (-1201 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) 178 T ELT)) (-3161 (($) NIL (|has| |#1| (-381)) CONST)) (-3128 (($ (-948)) 96 (|has| |#1| (-381)) ELT)) (-3583 (((-114) $) 147 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2725 (((-987 (-1151))) 57 T ELT)) (-2748 (($) 158 (|has| |#1| (-381)) ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3666 (((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))) 119 (|has| |#1| (-381)) ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-2969 (((-854 (-948))) 90 T ELT) (((-948)) 91 T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2364 (((-793) $) 161 (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) 154 (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3669 (((-136)) NIL T ELT)) (-2894 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3630 (((-854 (-948)) $) NIL T ELT) (((-948) $) NIL T ELT)) (-4394 (((-1201 |#1|)) 122 T ELT)) (-2243 (($) 159 (|has| |#1| (-381)) ELT)) (-3988 (($) 167 (|has| |#1| (-381)) ELT)) (-2178 (((-1297 |#1|) $) 77 T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-1578 (((-887) $) 174 T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) 100 T ELT)) (-1964 (($ $) NIL (|has| |#1| (-381)) ELT) (((-3 $ "failed") $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2930 (((-793)) 155 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-1954 (((-1297 $)) 144 T ELT) (((-1297 $) (-948)) 98 T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-3602 (((-114) $) NIL T ELT)) (-2001 (($) 67 T CONST)) (-2011 (($) 103 T CONST)) (-3054 (($ $) 107 (|has| |#1| (-381)) ELT) (($ $ (-793)) NIL (|has| |#1| (-381)) ELT)) (-3305 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-2473 (((-114) $ $) 65 T ELT)) (-2594 (($ $ $) 176 T ELT) (($ $ |#1|) 177 T ELT)) (-2580 (($ $) 157 T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 86 T ELT)) (** (($ $ (-948)) 180 T ELT) (($ $ (-793)) 181 T ELT) (($ $ (-560)) 179 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 102 T ELT) (($ $ $) 101 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 175 T ELT)))
-(((-358 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -2725 ((-987 (-1151)))))) (-363) (-1201 |#1|)) (T -358))
-((-2725 (*1 *2) (-12 (-5 *2 (-987 (-1151))) (-5 *1 (-358 *3 *4)) (-4 *3 (-363)) (-14 *4 (-1201 *3)))))
-(-13 (-341 |#1|) (-10 -7 (-15 -2725 ((-987 (-1151))))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-1947 (((-114) $) NIL T ELT)) (-1796 (((-793)) NIL T ELT)) (-3349 ((|#1| $) NIL T ELT) (($ $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-2105 (((-1219 (-948) (-793)) (-560)) NIL (|has| |#1| (-381)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-3241 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT)) (-4143 (($ (-1297 |#1|)) NIL T ELT)) (-4217 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-1478 (($ $ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2310 (($) NIL (|has| |#1| (-381)) ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4336 (($) NIL (|has| |#1| (-381)) ELT)) (-3976 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1696 (($ $ (-793)) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4330 (((-114) $) NIL T ELT)) (-3913 (((-948) $) NIL (|has| |#1| (-381)) ELT) (((-854 (-948)) $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-4417 (($) NIL (|has| |#1| (-381)) ELT)) (-2863 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-2032 ((|#1| $) NIL T ELT) (($ $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| |#1| (-381)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1787 (((-1201 |#1|) $) NIL T ELT) (((-1201 $) $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-4419 (((-948) $) NIL (|has| |#1| (-381)) ELT)) (-1543 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-4449 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1201 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-3384 (($ $ (-1201 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-3161 (($) NIL (|has| |#1| (-381)) CONST)) (-3128 (($ (-948)) NIL (|has| |#1| (-381)) ELT)) (-3583 (((-114) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2725 (((-987 (-1151))) NIL T ELT)) (-2748 (($) NIL (|has| |#1| (-381)) ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3666 (((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))) NIL (|has| |#1| (-381)) ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-2969 (((-854 (-948))) NIL T ELT) (((-948)) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2364 (((-793) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3669 (((-136)) NIL T ELT)) (-2894 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3630 (((-854 (-948)) $) NIL T ELT) (((-948) $) NIL T ELT)) (-4394 (((-1201 |#1|)) NIL T ELT)) (-2243 (($) NIL (|has| |#1| (-381)) ELT)) (-3988 (($) NIL (|has| |#1| (-381)) ELT)) (-2178 (((-1297 |#1|) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) NIL T ELT)) (-1964 (($ $) NIL (|has| |#1| (-381)) ELT) (((-3 $ "failed") $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-1954 (((-1297 $)) NIL T ELT) (((-1297 $) (-948)) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-3602 (((-114) $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3054 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-793)) NIL (|has| |#1| (-381)) ELT)) (-3305 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-359 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -2725 ((-987 (-1151)))))) (-363) (-948)) (T -359))
-((-2725 (*1 *2) (-12 (-5 *2 (-987 (-1151))) (-5 *1 (-359 *3 *4)) (-4 *3 (-363)) (-14 *4 (-948)))))
-(-13 (-341 |#1|) (-10 -7 (-15 -2725 ((-987 (-1151))))))
-((-4366 (((-793) (-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151)))))) 61 T ELT)) (-2452 (((-987 (-1151)) (-1201 |#1|)) 112 T ELT)) (-1588 (((-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151))))) (-1201 |#1|)) 103 T ELT)) (-3147 (((-711 |#1|) (-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151)))))) 113 T ELT)) (-2726 (((-3 (-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151))))) "failed") (-948)) 13 T ELT)) (-4189 (((-3 (-1201 |#1|) (-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151)))))) (-948)) 18 T ELT)))
-(((-360 |#1|) (-10 -7 (-15 -2452 ((-987 (-1151)) (-1201 |#1|))) (-15 -1588 ((-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151))))) (-1201 |#1|))) (-15 -3147 ((-711 |#1|) (-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151))))))) (-15 -4366 ((-793) (-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151))))))) (-15 -2726 ((-3 (-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151))))) "failed") (-948))) (-15 -4189 ((-3 (-1201 |#1|) (-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151)))))) (-948)))) (-363)) (T -360))
-((-4189 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-3 (-1201 *4) (-1297 (-663 (-2 (|:| -3853 *4) (|:| -3128 (-1151))))))) (-5 *1 (-360 *4)) (-4 *4 (-363)))) (-2726 (*1 *2 *3) (|partial| -12 (-5 *3 (-948)) (-5 *2 (-1297 (-663 (-2 (|:| -3853 *4) (|:| -3128 (-1151)))))) (-5 *1 (-360 *4)) (-4 *4 (-363)))) (-4366 (*1 *2 *3) (-12 (-5 *3 (-1297 (-663 (-2 (|:| -3853 *4) (|:| -3128 (-1151)))))) (-4 *4 (-363)) (-5 *2 (-793)) (-5 *1 (-360 *4)))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-1297 (-663 (-2 (|:| -3853 *4) (|:| -3128 (-1151)))))) (-4 *4 (-363)) (-5 *2 (-711 *4)) (-5 *1 (-360 *4)))) (-1588 (*1 *2 *3) (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-5 *2 (-1297 (-663 (-2 (|:| -3853 *4) (|:| -3128 (-1151)))))) (-5 *1 (-360 *4)))) (-2452 (*1 *2 *3) (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-5 *2 (-987 (-1151))) (-5 *1 (-360 *4)))))
-(-10 -7 (-15 -2452 ((-987 (-1151)) (-1201 |#1|))) (-15 -1588 ((-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151))))) (-1201 |#1|))) (-15 -3147 ((-711 |#1|) (-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151))))))) (-15 -4366 ((-793) (-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151))))))) (-15 -2726 ((-3 (-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151))))) "failed") (-948))) (-15 -4189 ((-3 (-1201 |#1|) (-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151)))))) (-948))))
-((-1578 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT)))
-(((-361 |#1| |#2| |#3|) (-10 -7 (-15 -1578 (|#3| |#1|)) (-15 -1578 (|#1| |#3|))) (-341 |#2|) (-363) (-341 |#2|)) (T -361))
-((-1578 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *2 *4 *3)) (-4 *3 (-341 *4)))) (-1578 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *3 *4 *2)) (-4 *3 (-341 *4)))))
-(-10 -7 (-15 -1578 (|#3| |#1|)) (-15 -1578 (|#1| |#3|)))
-((-3976 (((-114) $) 60 T ELT)) (-3913 (((-854 (-948)) $) 23 T ELT) (((-948) $) 64 T ELT)) (-3009 (((-3 $ "failed") $) 18 T ELT)) (-3161 (($) 9 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 114 T ELT)) (-2364 (((-3 (-793) "failed") $ $) 92 T ELT) (((-793) $) 79 T ELT)) (-2894 (($ $) 8 T ELT) (($ $ (-793)) NIL T ELT)) (-2243 (($) 53 T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) 38 T ELT)) (-1964 (((-3 $ "failed") $) 45 T ELT) (($ $) 44 T ELT)))
-(((-362 |#1|) (-10 -8 (-15 -3913 ((-948) |#1|)) (-15 -2364 ((-793) |#1|)) (-15 -3976 ((-114) |#1|)) (-15 -2243 (|#1|)) (-15 -2048 ((-3 (-1297 |#1|) "failed") (-711 |#1|))) (-15 -1964 (|#1| |#1|)) (-15 -2894 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1|)) (-15 -3161 (|#1|)) (-15 -3009 ((-3 |#1| "failed") |#1|)) (-15 -2364 ((-3 (-793) "failed") |#1| |#1|)) (-15 -3913 ((-854 (-948)) |#1|)) (-15 -1964 ((-3 |#1| "failed") |#1|)) (-15 -1882 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|)))) (-363)) (T -362))
-NIL
-(-10 -8 (-15 -3913 ((-948) |#1|)) (-15 -2364 ((-793) |#1|)) (-15 -3976 ((-114) |#1|)) (-15 -2243 (|#1|)) (-15 -2048 ((-3 (-1297 |#1|) "failed") (-711 |#1|))) (-15 -1964 (|#1| |#1|)) (-15 -2894 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1|)) (-15 -3161 (|#1|)) (-15 -3009 ((-3 |#1| "failed") |#1|)) (-15 -2364 ((-3 (-793) "failed") |#1| |#1|)) (-15 -3913 ((-854 (-948)) |#1|)) (-15 -1964 ((-3 |#1| "failed") |#1|)) (-15 -1882 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-3244 (($ $) 46 T ELT)) (-4093 (((-114) $) 44 T ELT)) (-2105 (((-1219 (-948) (-793)) (-560)) 102 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-1804 (($ $) 81 T ELT)) (-3023 (((-419 $) $) 80 T ELT)) (-1615 (((-114) $ $) 65 T ELT)) (-3241 (((-793)) 112 T ELT)) (-2238 (($) 18 T CONST)) (-4217 (((-3 "prime" "polynomial" "normal" "cyclic")) 96 T ELT)) (-1478 (($ $ $) 61 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-2310 (($) 115 T ELT)) (-1490 (($ $ $) 62 T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 57 T ELT)) (-4336 (($) 100 T ELT)) (-3976 (((-114) $) 99 T ELT)) (-1696 (($ $) 87 T ELT) (($ $ (-793)) 86 T ELT)) (-4330 (((-114) $) 79 T ELT)) (-3913 (((-854 (-948)) $) 89 T ELT) (((-948) $) 97 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-3009 (((-3 $ "failed") $) 111 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-4419 (((-948) $) 114 T ELT)) (-2093 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-1544 (($ $) 78 T ELT)) (-3161 (($) 110 T CONST)) (-3128 (($ (-948)) 113 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-2132 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-3666 (((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))) 103 T ELT)) (-4457 (((-419 $) $) 82 T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-1528 (((-3 $ "failed") $ $) 48 T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-2901 (((-793) $) 64 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 63 T ELT)) (-2364 (((-3 (-793) "failed") $ $) 88 T ELT) (((-793) $) 98 T ELT)) (-2894 (($ $) 109 T ELT) (($ $ (-793)) 107 T ELT)) (-2243 (($) 101 T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) 104 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-560))) 74 T ELT)) (-1964 (((-3 $ "failed") $) 90 T ELT) (($ $) 105 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 45 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($ $) 108 T ELT) (($ $ (-793)) 106 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ $) 73 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 77 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 76 T ELT) (($ (-421 (-560)) $) 75 T ELT)))
+((-3135 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-793)))) (-2943 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-793)))) (-4154 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))) (-3269 (*1 *2 *3 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))) (-2842 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))) (-4327 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))) (-4327 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-421 *3))) (-5 *2 (-114)))) (-2942 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))) (-4368 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))) (-4368 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-421 *3))) (-5 *2 (-114)))) (-1693 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))) (-4391 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))) (-4391 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-421 *3))) (-5 *2 (-114)))) (-3538 (*1 *2) (-12 (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)))) (-2083 (*1 *2) (-12 (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)))) (-2870 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))) (-4030 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))) (-3182 (*1 *2 *2) (-12 (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))))) (-2572 (*1 *2 *2) (-12 (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))))) (-2265 (*1 *2 *2) (-12 (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))))) (-3539 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-711 (-421 *4))))) (-1823 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-711 (-421 *4))))) (-3273 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-711 (-421 *4))))) (-1449 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-711 (-421 *4))))) (-3488 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-2 (|:| |num| (-1297 *4)) (|:| |den| *4))))) (-1953 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1273 *4)) (-4 *4 (-1252)) (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1273 (-421 *3))))) (-3753 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-2 (|:| |num| (-1297 *4)) (|:| |den| *4))))) (-4086 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1273 *4)) (-4 *4 (-1252)) (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1273 (-421 *3))))) (-3322 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5))) (-5 *2 (-2 (|:| |num| (-711 *5)) (|:| |den| *5))))) (-4030 (*1 *2 *1 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))) (-4030 (*1 *2 *1 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-421 *3))) (-5 *2 (-114)))) (-3161 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))))) (-4239 (*1 *1 *1) (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1252)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-421 *3))))) (-1507 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1252)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-421 *3))))) (-3667 (*1 *2) (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1252)) (-4 *4 (-1273 (-421 *2))) (-4 *2 (-1273 *3)))) (-4094 (*1 *2) (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1252)) (-4 *4 (-1273 (-421 *2))) (-4 *2 (-1273 *3)))) (-2987 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-1252)) (-4 *6 (-1273 (-421 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-355 *4 *5 *6)))) (-3608 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5))) (-4 *4 (-376)) (-5 *2 (-663 (-975 *4))))) (-4412 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))) (-4 *3 (-381)) (-5 *2 (-663 (-663 *3))))))
+(-13 (-746 (-421 |t#2|) |t#3|) (-10 -8 (-15 -3135 ((-793))) (-15 -2943 ((-793))) (-15 -4154 ((-114))) (-15 -3269 ((-114) |t#1| |t#1|)) (-15 -2842 ((-114))) (-15 -4327 ((-114) |t#1|)) (-15 -4327 ((-114) |t#2|)) (-15 -2942 ((-114))) (-15 -4368 ((-114) |t#1|)) (-15 -4368 ((-114) |t#2|)) (-15 -1693 ((-114))) (-15 -4391 ((-114) |t#1|)) (-15 -4391 ((-114) |t#2|)) (-15 -3538 ((-1297 $))) (-15 -2083 ((-1297 $))) (-15 -2870 ((-114) $)) (-15 -4030 ((-114) $)) (-15 -3182 ((-1297 $) (-1297 $))) (-15 -2572 ((-1297 $) (-1297 $))) (-15 -2265 ((-1297 $) (-1297 $))) (-15 -3539 ((-711 (-421 |t#2|)))) (-15 -1823 ((-711 (-421 |t#2|)))) (-15 -3273 ((-711 (-421 |t#2|)))) (-15 -1449 ((-711 (-421 |t#2|)))) (-15 -3488 ((-2 (|:| |num| (-1297 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1953 ($ (-1297 |t#2|) |t#2|)) (-15 -3753 ((-2 (|:| |num| (-1297 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -4086 ($ (-1297 |t#2|) |t#2|)) (-15 -3322 ((-2 (|:| |num| (-711 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -4030 ((-114) $ |t#1|)) (-15 -4030 ((-114) $ |t#2|)) (-15 -3161 ($ $ (-1 |t#2| |t#2|))) (-15 -4239 ($ $)) (-15 -1507 (|t#1| $ |t#1| |t#1|)) (-15 -3667 ((-3 |t#2| "failed"))) (-15 -4094 ((-3 |t#2| "failed"))) (-15 -2987 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-376)) (-15 -3608 ((-663 (-975 |t#1|)) (-1207))) |%noBranch|) (IF (|has| |t#1| (-381)) (-15 -4412 ((-663 (-663 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) -2196 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-38 #1=(-421 |#2|)) . T) ((-38 $) -2196 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-102) . T) ((-111 #0# #0#) -2196 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -2196 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-147))) ((-149) |has| (-421 |#2|) (-149)) ((-635 #0#) -2196 (|has| (-421 |#2|) (-1069 (-421 (-560)))) (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-635 #1#) . T) ((-635 (-560)) . T) ((-635 $) -2196 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-632 (-887)) . T) ((-175) . T) ((-633 |#3|) . T) ((-236 $) -2196 (|has| (-421 |#2|) (-363)) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376)))) ((-234 #1#) |has| (-421 |#2|) (-376)) ((-240) -2196 (|has| (-421 |#2|) (-363)) (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376)))) ((-239) -2196 (|has| (-421 |#2|) (-363)) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376)))) ((-274 #1#) |has| (-421 |#2|) (-376)) ((-250) -2196 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-302) -2196 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-319) -2196 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-376) -2196 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-416) |has| (-421 |#2|) (-363)) ((-381) -2196 (|has| (-421 |#2|) (-381)) (|has| (-421 |#2|) (-363))) ((-363) |has| (-421 |#2|) (-363)) ((-383 #1# |#3|) . T) ((-424 #1# |#3|) . T) ((-390 #1#) . T) ((-426 #1#) . T) ((-466) -2196 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-571) -2196 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-668 #0#) -2196 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-668 #1#) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 #0#) -2196 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-670 #1#) . T) ((-670 #2=(-560)) |has| (-421 |#2|) (-660 (-560))) ((-670 $) . T) ((-662 #0#) -2196 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-662 #1#) . T) ((-662 $) -2196 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-660 #1#) . T) ((-660 #2#) |has| (-421 |#2|) (-660 (-560))) ((-739 #0#) -2196 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-739 #1#) . T) ((-739 $) -2196 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-746 #1# |#3|) . T) ((-748) . T) ((-921 $ #3=(-1207)) -2196 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207))))) ((-927 (-1207)) -12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) ((-929 #3#) -2196 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207))))) ((-950) -2196 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-1069 (-421 (-560))) |has| (-421 |#2|) (-1069 (-421 (-560)))) ((-1069 #1#) . T) ((-1069 (-560)) |has| (-421 |#2|) (-1069 (-560))) ((-1082 #0#) -2196 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-1082 #1#) . T) ((-1082 $) . T) ((-1087 #0#) -2196 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))) ((-1087 #1#) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1182) |has| (-421 |#2|) (-363)) ((-1247) . T) ((-1252) -2196 (|has| (-421 |#2|) (-363)) (|has| (-421 |#2|) (-376))))
+((-2260 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT)))
+(((-356 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2260 (|#8| (-1 |#5| |#1|) |#4|))) (-1252) (-1273 |#1|) (-1273 (-421 |#2|)) (-355 |#1| |#2| |#3|) (-1252) (-1273 |#5|) (-1273 (-421 |#6|)) (-355 |#5| |#6| |#7|)) (T -356))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1252)) (-4 *8 (-1252)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6))) (-4 *9 (-1273 *8)) (-4 *2 (-355 *8 *9 *10)) (-5 *1 (-356 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-355 *5 *6 *7)) (-4 *10 (-1273 (-421 *9))))))
+(-10 -7 (-15 -2260 (|#8| (-1 |#5| |#1|) |#4|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3752 (((-114) $) NIL T ELT)) (-1542 (((-793)) NIL T ELT)) (-4113 (((-935 |#1|) $) NIL T ELT) (($ $ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1548 (((-1219 (-948) (-793)) (-560)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-2552 (((-793)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-935 |#1|) "failed") $) NIL T ELT)) (-3649 (((-935 |#1|) $) NIL T ELT)) (-1953 (($ (-1297 (-935 |#1|))) NIL T ELT)) (-1433 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2186 (($ $ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1812 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3191 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4017 (((-114) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3079 (($ $ (-793)) NIL (-2196 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT) (($ $) NIL (-2196 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-3141 (((-114) $) NIL T ELT)) (-1460 (((-948) $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-854 (-948)) $) NIL (-2196 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-2601 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3572 (((-114) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2084 (((-935 |#1|) $) NIL T ELT) (($ $ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1471 (((-1201 (-935 |#1|)) $) NIL T ELT) (((-1201 $) $ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2622 (((-948) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1567 (((-1201 (-935 |#1|)) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1644 (((-1201 (-935 |#1|)) $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-3 (-1201 (-935 |#1|)) "failed") $ $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3264 (($ $ (-1201 (-935 |#1|))) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3239 (($) NIL (|has| (-935 |#1|) (-381)) CONST)) (-1591 (($ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3410 (((-114) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2714 (((-987 (-1151))) NIL T ELT)) (-3583 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2976 (((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-3313 (((-854 (-948))) NIL T ELT) (((-948)) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-2258 (((-793) $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2196 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-3015 (((-136)) NIL T ELT)) (-3161 (($ $ (-793)) NIL (|has| (-935 |#1|) (-381)) ELT) (($ $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3900 (((-854 (-948)) $) NIL T ELT) (((-948) $) NIL T ELT)) (-2407 (((-1201 (-935 |#1|))) NIL T ELT)) (-3569 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2855 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4226 (((-1297 (-935 |#1|)) $) NIL T ELT) (((-711 (-935 |#1|)) (-1297 $)) NIL T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-935 |#1|)) NIL T ELT)) (-3919 (($ $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-3 $ "failed") $) NIL (-2196 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-3822 (((-1297 $)) NIL T ELT) (((-1297 $) (-948)) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-3621 (((-114) $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2925 (($ $) NIL (|has| (-935 |#1|) (-381)) ELT) (($ $ (-793)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2111 (($ $ (-793)) NIL (|has| (-935 |#1|) (-381)) ELT) (($ $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ $) NIL T ELT) (($ $ (-935 |#1|)) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-935 |#1|)) NIL T ELT) (($ (-935 |#1|) $) NIL T ELT)))
+(((-357 |#1| |#2|) (-13 (-341 (-935 |#1|)) (-10 -7 (-15 -2714 ((-987 (-1151)))))) (-948) (-948)) (T -357))
+((-2714 (*1 *2) (-12 (-5 *2 (-987 (-1151))) (-5 *1 (-357 *3 *4)) (-14 *3 (-948)) (-14 *4 (-948)))))
+(-13 (-341 (-935 |#1|)) (-10 -7 (-15 -2714 ((-987 (-1151))))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 58 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3752 (((-114) $) NIL T ELT)) (-1542 (((-793)) NIL T ELT)) (-4113 ((|#1| $) NIL T ELT) (($ $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-1548 (((-1219 (-948) (-793)) (-560)) 56 (|has| |#1| (-381)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-2552 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) 142 T ELT)) (-3649 ((|#1| $) 113 T ELT)) (-1953 (($ (-1297 |#1|)) 130 T ELT)) (-1433 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-381)) ELT)) (-2186 (($ $ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1812 (($) 124 (|has| |#1| (-381)) ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3191 (($) 160 (|has| |#1| (-381)) ELT)) (-4017 (((-114) $) 66 (|has| |#1| (-381)) ELT)) (-3079 (($ $ (-793)) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3141 (((-114) $) NIL T ELT)) (-1460 (((-948) $) 60 (|has| |#1| (-381)) ELT) (((-854 (-948)) $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-1918 (((-114) $) 62 T ELT)) (-2601 (($) 162 (|has| |#1| (-381)) ELT)) (-3572 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-2084 ((|#1| $) NIL T ELT) (($ $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| |#1| (-381)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1471 (((-1201 |#1|) $) 117 T ELT) (((-1201 $) $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-2622 (((-948) $) 171 (|has| |#1| (-381)) ELT)) (-1567 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1644 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1201 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-3264 (($ $ (-1201 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) 178 T ELT)) (-3239 (($) NIL (|has| |#1| (-381)) CONST)) (-1591 (($ (-948)) 96 (|has| |#1| (-381)) ELT)) (-3410 (((-114) $) 147 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2714 (((-987 (-1151))) 57 T ELT)) (-3583 (($) 158 (|has| |#1| (-381)) ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2976 (((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))) 119 (|has| |#1| (-381)) ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-3313 (((-854 (-948))) 90 T ELT) (((-948)) 91 T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-2258 (((-793) $) 161 (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) 154 (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3015 (((-136)) NIL T ELT)) (-3161 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3900 (((-854 (-948)) $) NIL T ELT) (((-948) $) NIL T ELT)) (-2407 (((-1201 |#1|)) 122 T ELT)) (-3569 (($) 159 (|has| |#1| (-381)) ELT)) (-2855 (($) 167 (|has| |#1| (-381)) ELT)) (-4226 (((-1297 |#1|) $) 77 T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-3913 (((-887) $) 174 T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) 100 T ELT)) (-3919 (($ $) NIL (|has| |#1| (-381)) ELT) (((-3 $ "failed") $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4191 (((-793)) 155 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-3822 (((-1297 $)) 144 T ELT) (((-1297 $) (-948)) 98 T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-3621 (((-114) $) NIL T ELT)) (-1446 (($) 67 T CONST)) (-1456 (($) 103 T CONST)) (-2925 (($ $) 107 (|has| |#1| (-381)) ELT) (($ $ (-793)) NIL (|has| |#1| (-381)) ELT)) (-2111 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-2340 (((-114) $ $) 65 T ELT)) (-2453 (($ $ $) 176 T ELT) (($ $ |#1|) 177 T ELT)) (-2441 (($ $) 157 T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 86 T ELT)) (** (($ $ (-948)) 180 T ELT) (($ $ (-793)) 181 T ELT) (($ $ (-560)) 179 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 102 T ELT) (($ $ $) 101 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 175 T ELT)))
+(((-358 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -2714 ((-987 (-1151)))))) (-363) (-1201 |#1|)) (T -358))
+((-2714 (*1 *2) (-12 (-5 *2 (-987 (-1151))) (-5 *1 (-358 *3 *4)) (-4 *3 (-363)) (-14 *4 (-1201 *3)))))
+(-13 (-341 |#1|) (-10 -7 (-15 -2714 ((-987 (-1151))))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3752 (((-114) $) NIL T ELT)) (-1542 (((-793)) NIL T ELT)) (-4113 ((|#1| $) NIL T ELT) (($ $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-1548 (((-1219 (-948) (-793)) (-560)) NIL (|has| |#1| (-381)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-2552 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) NIL T ELT)) (-3649 ((|#1| $) NIL T ELT)) (-1953 (($ (-1297 |#1|)) NIL T ELT)) (-1433 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-2186 (($ $ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1812 (($) NIL (|has| |#1| (-381)) ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3191 (($) NIL (|has| |#1| (-381)) ELT)) (-4017 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3079 (($ $ (-793)) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3141 (((-114) $) NIL T ELT)) (-1460 (((-948) $) NIL (|has| |#1| (-381)) ELT) (((-854 (-948)) $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-2601 (($) NIL (|has| |#1| (-381)) ELT)) (-3572 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-2084 ((|#1| $) NIL T ELT) (($ $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| |#1| (-381)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1471 (((-1201 |#1|) $) NIL T ELT) (((-1201 $) $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-2622 (((-948) $) NIL (|has| |#1| (-381)) ELT)) (-1567 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1644 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1201 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-3264 (($ $ (-1201 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3239 (($) NIL (|has| |#1| (-381)) CONST)) (-1591 (($ (-948)) NIL (|has| |#1| (-381)) ELT)) (-3410 (((-114) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2714 (((-987 (-1151))) NIL T ELT)) (-3583 (($) NIL (|has| |#1| (-381)) ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2976 (((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))) NIL (|has| |#1| (-381)) ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-3313 (((-854 (-948))) NIL T ELT) (((-948)) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-2258 (((-793) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3015 (((-136)) NIL T ELT)) (-3161 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3900 (((-854 (-948)) $) NIL T ELT) (((-948) $) NIL T ELT)) (-2407 (((-1201 |#1|)) NIL T ELT)) (-3569 (($) NIL (|has| |#1| (-381)) ELT)) (-2855 (($) NIL (|has| |#1| (-381)) ELT)) (-4226 (((-1297 |#1|) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) NIL T ELT)) (-3919 (($ $) NIL (|has| |#1| (-381)) ELT) (((-3 $ "failed") $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-3822 (((-1297 $)) NIL T ELT) (((-1297 $) (-948)) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-3621 (((-114) $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2925 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-793)) NIL (|has| |#1| (-381)) ELT)) (-2111 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-359 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -2714 ((-987 (-1151)))))) (-363) (-948)) (T -359))
+((-2714 (*1 *2) (-12 (-5 *2 (-987 (-1151))) (-5 *1 (-359 *3 *4)) (-4 *3 (-363)) (-14 *4 (-948)))))
+(-13 (-341 |#1|) (-10 -7 (-15 -2714 ((-987 (-1151))))))
+((-3399 (((-793) (-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151)))))) 61 T ELT)) (-1913 (((-987 (-1151)) (-1201 |#1|)) 112 T ELT)) (-3262 (((-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151))))) (-1201 |#1|)) 103 T ELT)) (-1455 (((-711 |#1|) (-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151)))))) 113 T ELT)) (-1500 (((-3 (-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151))))) "failed") (-948)) 13 T ELT)) (-4355 (((-3 (-1201 |#1|) (-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151)))))) (-948)) 18 T ELT)))
+(((-360 |#1|) (-10 -7 (-15 -1913 ((-987 (-1151)) (-1201 |#1|))) (-15 -3262 ((-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151))))) (-1201 |#1|))) (-15 -1455 ((-711 |#1|) (-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151))))))) (-15 -3399 ((-793) (-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151))))))) (-15 -1500 ((-3 (-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151))))) "failed") (-948))) (-15 -4355 ((-3 (-1201 |#1|) (-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151)))))) (-948)))) (-363)) (T -360))
+((-4355 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-3 (-1201 *4) (-1297 (-663 (-2 (|:| -1430 *4) (|:| -1591 (-1151))))))) (-5 *1 (-360 *4)) (-4 *4 (-363)))) (-1500 (*1 *2 *3) (|partial| -12 (-5 *3 (-948)) (-5 *2 (-1297 (-663 (-2 (|:| -1430 *4) (|:| -1591 (-1151)))))) (-5 *1 (-360 *4)) (-4 *4 (-363)))) (-3399 (*1 *2 *3) (-12 (-5 *3 (-1297 (-663 (-2 (|:| -1430 *4) (|:| -1591 (-1151)))))) (-4 *4 (-363)) (-5 *2 (-793)) (-5 *1 (-360 *4)))) (-1455 (*1 *2 *3) (-12 (-5 *3 (-1297 (-663 (-2 (|:| -1430 *4) (|:| -1591 (-1151)))))) (-4 *4 (-363)) (-5 *2 (-711 *4)) (-5 *1 (-360 *4)))) (-3262 (*1 *2 *3) (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-5 *2 (-1297 (-663 (-2 (|:| -1430 *4) (|:| -1591 (-1151)))))) (-5 *1 (-360 *4)))) (-1913 (*1 *2 *3) (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-5 *2 (-987 (-1151))) (-5 *1 (-360 *4)))))
+(-10 -7 (-15 -1913 ((-987 (-1151)) (-1201 |#1|))) (-15 -3262 ((-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151))))) (-1201 |#1|))) (-15 -1455 ((-711 |#1|) (-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151))))))) (-15 -3399 ((-793) (-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151))))))) (-15 -1500 ((-3 (-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151))))) "failed") (-948))) (-15 -4355 ((-3 (-1201 |#1|) (-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151)))))) (-948))))
+((-3913 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT)))
+(((-361 |#1| |#2| |#3|) (-10 -7 (-15 -3913 (|#3| |#1|)) (-15 -3913 (|#1| |#3|))) (-341 |#2|) (-363) (-341 |#2|)) (T -361))
+((-3913 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *2 *4 *3)) (-4 *3 (-341 *4)))) (-3913 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *3 *4 *2)) (-4 *3 (-341 *4)))))
+(-10 -7 (-15 -3913 (|#3| |#1|)) (-15 -3913 (|#1| |#3|)))
+((-4017 (((-114) $) 60 T ELT)) (-1460 (((-854 (-948)) $) 23 T ELT) (((-948) $) 64 T ELT)) (-3738 (((-3 $ "failed") $) 18 T ELT)) (-3239 (($) 9 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 114 T ELT)) (-2258 (((-3 (-793) "failed") $ $) 92 T ELT) (((-793) $) 79 T ELT)) (-3161 (($ $) 8 T ELT) (($ $ (-793)) NIL T ELT)) (-3569 (($) 53 T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) 38 T ELT)) (-3919 (((-3 $ "failed") $) 45 T ELT) (($ $) 44 T ELT)))
+(((-362 |#1|) (-10 -8 (-15 -1460 ((-948) |#1|)) (-15 -2258 ((-793) |#1|)) (-15 -4017 ((-114) |#1|)) (-15 -3569 (|#1|)) (-15 -2215 ((-3 (-1297 |#1|) "failed") (-711 |#1|))) (-15 -3919 (|#1| |#1|)) (-15 -3161 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1|)) (-15 -3239 (|#1|)) (-15 -3738 ((-3 |#1| "failed") |#1|)) (-15 -2258 ((-3 (-793) "failed") |#1| |#1|)) (-15 -1460 ((-854 (-948)) |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1|)) (-15 -4362 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|)))) (-363)) (T -362))
+NIL
+(-10 -8 (-15 -1460 ((-948) |#1|)) (-15 -2258 ((-793) |#1|)) (-15 -4017 ((-114) |#1|)) (-15 -3569 (|#1|)) (-15 -2215 ((-3 (-1297 |#1|) "failed") (-711 |#1|))) (-15 -3919 (|#1| |#1|)) (-15 -3161 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1|)) (-15 -3239 (|#1|)) (-15 -3738 ((-3 |#1| "failed") |#1|)) (-15 -2258 ((-3 (-793) "failed") |#1| |#1|)) (-15 -1460 ((-854 (-948)) |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1|)) (-15 -4362 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-4366 (($ $) 46 T ELT)) (-2667 (((-114) $) 44 T ELT)) (-1548 (((-1219 (-948) (-793)) (-560)) 102 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-1621 (($ $) 81 T ELT)) (-3898 (((-419 $) $) 80 T ELT)) (-3476 (((-114) $ $) 65 T ELT)) (-2552 (((-793)) 112 T ELT)) (-3525 (($) 18 T CONST)) (-1433 (((-3 "prime" "polynomial" "normal" "cyclic")) 96 T ELT)) (-2186 (($ $ $) 61 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1812 (($) 115 T ELT)) (-2197 (($ $ $) 62 T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 57 T ELT)) (-3191 (($) 100 T ELT)) (-4017 (((-114) $) 99 T ELT)) (-3079 (($ $) 87 T ELT) (($ $ (-793)) 86 T ELT)) (-3141 (((-114) $) 79 T ELT)) (-1460 (((-854 (-948)) $) 89 T ELT) (((-948) $) 97 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3738 (((-3 $ "failed") $) 111 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-2622 (((-948) $) 114 T ELT)) (-1861 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2986 (($ $) 78 T ELT)) (-3239 (($) 110 T CONST)) (-1591 (($ (-948)) 113 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-1938 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-2976 (((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))) 103 T ELT)) (-4012 (((-419 $) $) 82 T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-2233 (((-3 $ "failed") $ $) 48 T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-3989 (((-793) $) 64 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 63 T ELT)) (-2258 (((-3 (-793) "failed") $ $) 88 T ELT) (((-793) $) 98 T ELT)) (-3161 (($ $) 109 T ELT) (($ $ (-793)) 107 T ELT)) (-3569 (($) 101 T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) 104 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-560))) 74 T ELT)) (-3919 (((-3 $ "failed") $) 90 T ELT) (($ $) 105 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 45 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($ $) 108 T ELT) (($ $ (-793)) 106 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ $) 73 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 77 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 76 T ELT) (($ (-421 (-560)) $) 75 T ELT)))
(((-363) (-142)) (T -363))
-((-1964 (*1 *1 *1) (-4 *1 (-363))) (-2048 (*1 *2 *3) (|partial| -12 (-5 *3 (-711 *1)) (-4 *1 (-363)) (-5 *2 (-1297 *1)))) (-3666 (*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))))) (-2105 (*1 *2 *3) (-12 (-4 *1 (-363)) (-5 *3 (-560)) (-5 *2 (-1219 (-948) (-793))))) (-2243 (*1 *1) (-4 *1 (-363))) (-4336 (*1 *1) (-4 *1 (-363))) (-3976 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-114)))) (-2364 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-793)))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-948)))) (-4217 (*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-416) (-381) (-1182) (-240) (-10 -8 (-15 -1964 ($ $)) (-15 -2048 ((-3 (-1297 $) "failed") (-711 $))) (-15 -3666 ((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560)))))) (-15 -2105 ((-1219 (-948) (-793)) (-560))) (-15 -2243 ($)) (-15 -4336 ($)) (-15 -3976 ((-114) $)) (-15 -2364 ((-793) $)) (-15 -3913 ((-948) $)) (-15 -4217 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+((-3919 (*1 *1 *1) (-4 *1 (-363))) (-2215 (*1 *2 *3) (|partial| -12 (-5 *3 (-711 *1)) (-4 *1 (-363)) (-5 *2 (-1297 *1)))) (-2976 (*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))))) (-1548 (*1 *2 *3) (-12 (-4 *1 (-363)) (-5 *3 (-560)) (-5 *2 (-1219 (-948) (-793))))) (-3569 (*1 *1) (-4 *1 (-363))) (-3191 (*1 *1) (-4 *1 (-363))) (-4017 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-114)))) (-2258 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-793)))) (-1460 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-948)))) (-1433 (*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-416) (-381) (-1182) (-240) (-10 -8 (-15 -3919 ($ $)) (-15 -2215 ((-3 (-1297 $) "failed") (-711 $))) (-15 -2976 ((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560)))))) (-15 -1548 ((-1219 (-948) (-793)) (-560))) (-15 -3569 ($)) (-15 -3191 ($)) (-15 -4017 ((-114) $)) (-15 -2258 ((-793) $)) (-15 -1460 ((-948) $)) (-15 -1433 ((-3 "prime" "polynomial" "normal" "cyclic")))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-133) . T) ((-147) . T) ((-635 #0#) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-236 $) . T) ((-240) . T) ((-239) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-416) . T) ((-381) . T) ((-466) . T) ((-571) . T) ((-668 #0#) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 $) . T) ((-739 #0#) . T) ((-739 $) . T) ((-748) . T) ((-950) . T) ((-1082 #0#) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1182) . T) ((-1247) . T) ((-1252) . T))
-((-2215 (((-2 (|:| -1954 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) |#1|) 55 T ELT)) (-3932 (((-2 (|:| -1954 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|)))) 53 T ELT)))
-(((-364 |#1| |#2| |#3|) (-10 -7 (-15 -3932 ((-2 (|:| -1954 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))))) (-15 -2215 ((-2 (|:| -1954 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) |#1|))) (-13 (-319) (-10 -8 (-15 -3023 ((-419 $) $)))) (-1273 |#1|) (-424 |#1| |#2|)) (T -364))
-((-2215 (*1 *2 *3) (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -3023 ((-419 $) $))))) (-4 *4 (-1273 *3)) (-5 *2 (-2 (|:| -1954 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-424 *3 *4)))) (-3932 (*1 *2) (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -3023 ((-419 $) $))))) (-4 *4 (-1273 *3)) (-5 *2 (-2 (|:| -1954 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-424 *3 *4)))))
-(-10 -7 (-15 -3932 ((-2 (|:| -1954 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))))) (-15 -2215 ((-2 (|:| -1954 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) |#1|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-1947 (((-114) $) NIL T ELT)) (-1796 (((-793)) NIL T ELT)) (-3349 (((-935 |#1|) $) NIL T ELT) (($ $ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2105 (((-1219 (-948) (-793)) (-560)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-4366 (((-793)) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-3241 (((-793)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-935 |#1|) "failed") $) NIL T ELT)) (-3330 (((-935 |#1|) $) NIL T ELT)) (-4143 (($ (-1297 (-935 |#1|))) NIL T ELT)) (-4217 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1478 (($ $ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2310 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4336 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3976 (((-114) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1696 (($ $ (-793)) NIL (-2304 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT) (($ $) NIL (-2304 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-4330 (((-114) $) NIL T ELT)) (-3913 (((-948) $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-854 (-948)) $) NIL (-2304 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-4417 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2863 (((-114) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2032 (((-935 |#1|) $) NIL T ELT) (($ $ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1787 (((-1201 (-935 |#1|)) $) NIL T ELT) (((-1201 $) $ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4419 (((-948) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1543 (((-1201 (-935 |#1|)) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4449 (((-1201 (-935 |#1|)) $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-3 (-1201 (-935 |#1|)) "failed") $ $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3384 (($ $ (-1201 (-935 |#1|))) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-3161 (($) NIL (|has| (-935 |#1|) (-381)) CONST)) (-3128 (($ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3583 (((-114) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3432 (((-1297 (-663 (-2 (|:| -3853 (-935 |#1|)) (|:| -3128 (-1151)))))) NIL T ELT)) (-2706 (((-711 (-935 |#1|))) NIL T ELT)) (-2748 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3666 (((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-2969 (((-854 (-948))) NIL T ELT) (((-948)) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2364 (((-793) $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2304 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-3669 (((-136)) NIL T ELT)) (-2894 (($ $ (-793)) NIL (|has| (-935 |#1|) (-381)) ELT) (($ $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3630 (((-854 (-948)) $) NIL T ELT) (((-948) $) NIL T ELT)) (-4394 (((-1201 (-935 |#1|))) NIL T ELT)) (-2243 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3988 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2178 (((-1297 (-935 |#1|)) $) NIL T ELT) (((-711 (-935 |#1|)) (-1297 $)) NIL T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-935 |#1|)) NIL T ELT)) (-1964 (($ $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-3 $ "failed") $) NIL (-2304 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-1954 (((-1297 $)) NIL T ELT) (((-1297 $) (-948)) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-3602 (((-114) $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3054 (($ $) NIL (|has| (-935 |#1|) (-381)) ELT) (($ $ (-793)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3305 (($ $ (-793)) NIL (|has| (-935 |#1|) (-381)) ELT) (($ $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ $) NIL T ELT) (($ $ (-935 |#1|)) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-935 |#1|)) NIL T ELT) (($ (-935 |#1|) $) NIL T ELT)))
-(((-365 |#1| |#2|) (-13 (-341 (-935 |#1|)) (-10 -7 (-15 -3432 ((-1297 (-663 (-2 (|:| -3853 (-935 |#1|)) (|:| -3128 (-1151))))))) (-15 -2706 ((-711 (-935 |#1|)))) (-15 -4366 ((-793))))) (-948) (-948)) (T -365))
-((-3432 (*1 *2) (-12 (-5 *2 (-1297 (-663 (-2 (|:| -3853 (-935 *3)) (|:| -3128 (-1151)))))) (-5 *1 (-365 *3 *4)) (-14 *3 (-948)) (-14 *4 (-948)))) (-2706 (*1 *2) (-12 (-5 *2 (-711 (-935 *3))) (-5 *1 (-365 *3 *4)) (-14 *3 (-948)) (-14 *4 (-948)))) (-4366 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-365 *3 *4)) (-14 *3 (-948)) (-14 *4 (-948)))))
-(-13 (-341 (-935 |#1|)) (-10 -7 (-15 -3432 ((-1297 (-663 (-2 (|:| -3853 (-935 |#1|)) (|:| -3128 (-1151))))))) (-15 -2706 ((-711 (-935 |#1|)))) (-15 -4366 ((-793)))))
-((-1538 (((-114) $ $) 73 T ELT)) (-2388 (((-114) $) 88 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-1947 (((-114) $) NIL T ELT)) (-1796 (((-793)) NIL T ELT)) (-3349 ((|#1| $) 106 T ELT) (($ $ (-948)) 104 (|has| |#1| (-381)) ELT)) (-2105 (((-1219 (-948) (-793)) (-560)) 170 (|has| |#1| (-381)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-4366 (((-793)) 103 T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-3241 (((-793)) 187 (|has| |#1| (-381)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) 127 T ELT)) (-3330 ((|#1| $) 105 T ELT)) (-4143 (($ (-1297 |#1|)) 71 T ELT)) (-4217 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-381)) ELT)) (-1478 (($ $ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2310 (($) 182 (|has| |#1| (-381)) ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4336 (($) 171 (|has| |#1| (-381)) ELT)) (-3976 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1696 (($ $ (-793)) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4330 (((-114) $) NIL T ELT)) (-3913 (((-948) $) NIL (|has| |#1| (-381)) ELT) (((-854 (-948)) $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-4417 (($) 113 (|has| |#1| (-381)) ELT)) (-2863 (((-114) $) 200 (|has| |#1| (-381)) ELT)) (-2032 ((|#1| $) 108 T ELT) (($ $ (-948)) 107 (|has| |#1| (-381)) ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| |#1| (-381)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1787 (((-1201 |#1|) $) 214 T ELT) (((-1201 $) $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-4419 (((-948) $) 148 (|has| |#1| (-381)) ELT)) (-1543 (((-1201 |#1|) $) 87 (|has| |#1| (-381)) ELT)) (-4449 (((-1201 |#1|) $) 84 (|has| |#1| (-381)) ELT) (((-3 (-1201 |#1|) "failed") $ $) 96 (|has| |#1| (-381)) ELT)) (-3384 (($ $ (-1201 |#1|)) 83 (|has| |#1| (-381)) ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) 218 T ELT)) (-3161 (($) NIL (|has| |#1| (-381)) CONST)) (-3128 (($ (-948)) 150 (|has| |#1| (-381)) ELT)) (-3583 (((-114) $) 123 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3432 (((-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151)))))) 97 T ELT)) (-2706 (((-711 |#1|)) 101 T ELT)) (-2748 (($) 110 (|has| |#1| (-381)) ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3666 (((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))) 173 (|has| |#1| (-381)) ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-2969 (((-854 (-948))) NIL T ELT) (((-948)) 174 T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2364 (((-793) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3669 (((-136)) NIL T ELT)) (-2894 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3630 (((-854 (-948)) $) NIL T ELT) (((-948) $) 75 T ELT)) (-4394 (((-1201 |#1|)) 175 T ELT)) (-2243 (($) 147 (|has| |#1| (-381)) ELT)) (-3988 (($) NIL (|has| |#1| (-381)) ELT)) (-2178 (((-1297 |#1|) $) 121 T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-1578 (((-887) $) 140 T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) 70 T ELT)) (-1964 (($ $) NIL (|has| |#1| (-381)) ELT) (((-3 $ "failed") $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2930 (((-793)) 180 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-1954 (((-1297 $)) 197 T ELT) (((-1297 $) (-948)) 116 T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-3602 (((-114) $) NIL T ELT)) (-2001 (($) 186 T CONST)) (-2011 (($) 161 T CONST)) (-3054 (($ $) 122 (|has| |#1| (-381)) ELT) (($ $ (-793)) 114 (|has| |#1| (-381)) ELT)) (-3305 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-2473 (((-114) $ $) 208 T ELT)) (-2594 (($ $ $) 119 T ELT) (($ $ |#1|) 120 T ELT)) (-2580 (($ $) 202 T ELT) (($ $ $) 206 T ELT)) (-2567 (($ $ $) 204 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 153 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 211 T ELT) (($ $ $) 164 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 118 T ELT)))
-(((-366 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -3432 ((-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151))))))) (-15 -2706 ((-711 |#1|))) (-15 -4366 ((-793))))) (-363) (-3 (-1201 |#1|) (-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151))))))) (T -366))
-((-3432 (*1 *2) (-12 (-5 *2 (-1297 (-663 (-2 (|:| -3853 *3) (|:| -3128 (-1151)))))) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1201 *3) *2)))) (-2706 (*1 *2) (-12 (-5 *2 (-711 *3)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1201 *3) (-1297 (-663 (-2 (|:| -3853 *3) (|:| -3128 (-1151))))))))) (-4366 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1201 *3) (-1297 (-663 (-2 (|:| -3853 *3) (|:| -3128 (-1151))))))))))
-(-13 (-341 |#1|) (-10 -7 (-15 -3432 ((-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151))))))) (-15 -2706 ((-711 |#1|))) (-15 -4366 ((-793)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-1947 (((-114) $) NIL T ELT)) (-1796 (((-793)) NIL T ELT)) (-3349 ((|#1| $) NIL T ELT) (($ $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-2105 (((-1219 (-948) (-793)) (-560)) NIL (|has| |#1| (-381)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-4366 (((-793)) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-3241 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT)) (-4143 (($ (-1297 |#1|)) NIL T ELT)) (-4217 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-1478 (($ $ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2310 (($) NIL (|has| |#1| (-381)) ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4336 (($) NIL (|has| |#1| (-381)) ELT)) (-3976 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1696 (($ $ (-793)) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4330 (((-114) $) NIL T ELT)) (-3913 (((-948) $) NIL (|has| |#1| (-381)) ELT) (((-854 (-948)) $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-4417 (($) NIL (|has| |#1| (-381)) ELT)) (-2863 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-2032 ((|#1| $) NIL T ELT) (($ $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| |#1| (-381)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1787 (((-1201 |#1|) $) NIL T ELT) (((-1201 $) $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-4419 (((-948) $) NIL (|has| |#1| (-381)) ELT)) (-1543 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-4449 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1201 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-3384 (($ $ (-1201 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-3161 (($) NIL (|has| |#1| (-381)) CONST)) (-3128 (($ (-948)) NIL (|has| |#1| (-381)) ELT)) (-3583 (((-114) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3432 (((-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151)))))) NIL T ELT)) (-2706 (((-711 |#1|)) NIL T ELT)) (-2748 (($) NIL (|has| |#1| (-381)) ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3666 (((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))) NIL (|has| |#1| (-381)) ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-2969 (((-854 (-948))) NIL T ELT) (((-948)) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2364 (((-793) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3669 (((-136)) NIL T ELT)) (-2894 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3630 (((-854 (-948)) $) NIL T ELT) (((-948) $) NIL T ELT)) (-4394 (((-1201 |#1|)) NIL T ELT)) (-2243 (($) NIL (|has| |#1| (-381)) ELT)) (-3988 (($) NIL (|has| |#1| (-381)) ELT)) (-2178 (((-1297 |#1|) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) NIL T ELT)) (-1964 (($ $) NIL (|has| |#1| (-381)) ELT) (((-3 $ "failed") $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-1954 (((-1297 $)) NIL T ELT) (((-1297 $) (-948)) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-3602 (((-114) $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3054 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-793)) NIL (|has| |#1| (-381)) ELT)) (-3305 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-367 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -3432 ((-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151))))))) (-15 -2706 ((-711 |#1|))) (-15 -4366 ((-793))))) (-363) (-948)) (T -367))
-((-3432 (*1 *2) (-12 (-5 *2 (-1297 (-663 (-2 (|:| -3853 *3) (|:| -3128 (-1151)))))) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-948)))) (-2706 (*1 *2) (-12 (-5 *2 (-711 *3)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-948)))) (-4366 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-948)))))
-(-13 (-341 |#1|) (-10 -7 (-15 -3432 ((-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151))))))) (-15 -2706 ((-711 |#1|))) (-15 -4366 ((-793)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-1947 (((-114) $) NIL T ELT)) (-1796 (((-793)) NIL T ELT)) (-3349 ((|#1| $) NIL T ELT) (($ $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-2105 (((-1219 (-948) (-793)) (-560)) 129 (|has| |#1| (-381)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-3241 (((-793)) 155 (|has| |#1| (-381)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) 103 T ELT)) (-3330 ((|#1| $) 100 T ELT)) (-4143 (($ (-1297 |#1|)) 95 T ELT)) (-4217 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-381)) ELT)) (-1478 (($ $ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2310 (($) 92 (|has| |#1| (-381)) ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4336 (($) 51 (|has| |#1| (-381)) ELT)) (-3976 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1696 (($ $ (-793)) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4330 (((-114) $) NIL T ELT)) (-3913 (((-948) $) NIL (|has| |#1| (-381)) ELT) (((-854 (-948)) $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-4417 (($) 130 (|has| |#1| (-381)) ELT)) (-2863 (((-114) $) 84 (|has| |#1| (-381)) ELT)) (-2032 ((|#1| $) 47 T ELT) (($ $ (-948)) 52 (|has| |#1| (-381)) ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| |#1| (-381)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1787 (((-1201 |#1|) $) 75 T ELT) (((-1201 $) $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-4419 (((-948) $) 107 (|has| |#1| (-381)) ELT)) (-1543 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-4449 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1201 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-3384 (($ $ (-1201 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-3161 (($) NIL (|has| |#1| (-381)) CONST)) (-3128 (($ (-948)) 105 (|has| |#1| (-381)) ELT)) (-3583 (((-114) $) 157 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2748 (($) 44 (|has| |#1| (-381)) ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3666 (((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))) 124 (|has| |#1| (-381)) ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-2969 (((-854 (-948))) NIL T ELT) (((-948)) 154 T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2364 (((-793) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3669 (((-136)) NIL T ELT)) (-2894 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3630 (((-854 (-948)) $) NIL T ELT) (((-948) $) 67 T ELT)) (-4394 (((-1201 |#1|)) 98 T ELT)) (-2243 (($) 135 (|has| |#1| (-381)) ELT)) (-3988 (($) NIL (|has| |#1| (-381)) ELT)) (-2178 (((-1297 |#1|) $) 63 T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-1578 (((-887) $) 153 T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) 97 T ELT)) (-1964 (($ $) NIL (|has| |#1| (-381)) ELT) (((-3 $ "failed") $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2930 (((-793)) 159 T CONST)) (-2275 (((-114) $ $) 161 T ELT)) (-1954 (((-1297 $)) 119 T ELT) (((-1297 $) (-948)) 58 T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-3602 (((-114) $) NIL T ELT)) (-2001 (($) 121 T CONST)) (-2011 (($) 40 T CONST)) (-3054 (($ $) 78 (|has| |#1| (-381)) ELT) (($ $ (-793)) NIL (|has| |#1| (-381)) ELT)) (-3305 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-2473 (((-114) $ $) 117 T ELT)) (-2594 (($ $ $) 109 T ELT) (($ $ |#1|) 110 T ELT)) (-2580 (($ $) 90 T ELT) (($ $ $) 115 T ELT)) (-2567 (($ $ $) 113 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 53 T ELT) (($ $ (-560)) 138 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 88 T ELT) (($ $ $) 65 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 86 T ELT)))
+((-1396 (((-2 (|:| -3822 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) |#1|) 55 T ELT)) (-3538 (((-2 (|:| -3822 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|)))) 53 T ELT)))
+(((-364 |#1| |#2| |#3|) (-10 -7 (-15 -3538 ((-2 (|:| -3822 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))))) (-15 -1396 ((-2 (|:| -3822 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) |#1|))) (-13 (-319) (-10 -8 (-15 -3898 ((-419 $) $)))) (-1273 |#1|) (-424 |#1| |#2|)) (T -364))
+((-1396 (*1 *2 *3) (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -3898 ((-419 $) $))))) (-4 *4 (-1273 *3)) (-5 *2 (-2 (|:| -3822 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-424 *3 *4)))) (-3538 (*1 *2) (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -3898 ((-419 $) $))))) (-4 *4 (-1273 *3)) (-5 *2 (-2 (|:| -3822 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-424 *3 *4)))))
+(-10 -7 (-15 -3538 ((-2 (|:| -3822 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))))) (-15 -1396 ((-2 (|:| -3822 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) |#1|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3752 (((-114) $) NIL T ELT)) (-1542 (((-793)) NIL T ELT)) (-4113 (((-935 |#1|) $) NIL T ELT) (($ $ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1548 (((-1219 (-948) (-793)) (-560)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-3399 (((-793)) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-2552 (((-793)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-935 |#1|) "failed") $) NIL T ELT)) (-3649 (((-935 |#1|) $) NIL T ELT)) (-1953 (($ (-1297 (-935 |#1|))) NIL T ELT)) (-1433 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2186 (($ $ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1812 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3191 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4017 (((-114) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3079 (($ $ (-793)) NIL (-2196 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT) (($ $) NIL (-2196 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-3141 (((-114) $) NIL T ELT)) (-1460 (((-948) $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-854 (-948)) $) NIL (-2196 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-2601 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3572 (((-114) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2084 (((-935 |#1|) $) NIL T ELT) (($ $ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1471 (((-1201 (-935 |#1|)) $) NIL T ELT) (((-1201 $) $ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2622 (((-948) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1567 (((-1201 (-935 |#1|)) $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1644 (((-1201 (-935 |#1|)) $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-3 (-1201 (-935 |#1|)) "failed") $ $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3264 (($ $ (-1201 (-935 |#1|))) NIL (|has| (-935 |#1|) (-381)) ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3239 (($) NIL (|has| (-935 |#1|) (-381)) CONST)) (-1591 (($ (-948)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3410 (((-114) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2454 (((-1297 (-663 (-2 (|:| -1430 (-935 |#1|)) (|:| -1591 (-1151)))))) NIL T ELT)) (-2510 (((-711 (-935 |#1|))) NIL T ELT)) (-3583 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2976 (((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-3313 (((-854 (-948))) NIL T ELT) (((-948)) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-2258 (((-793) $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2196 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-3015 (((-136)) NIL T ELT)) (-3161 (($ $ (-793)) NIL (|has| (-935 |#1|) (-381)) ELT) (($ $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3900 (((-854 (-948)) $) NIL T ELT) (((-948) $) NIL T ELT)) (-2407 (((-1201 (-935 |#1|))) NIL T ELT)) (-3569 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2855 (($) NIL (|has| (-935 |#1|) (-381)) ELT)) (-4226 (((-1297 (-935 |#1|)) $) NIL T ELT) (((-711 (-935 |#1|)) (-1297 $)) NIL T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-935 |#1|)) NIL T ELT)) (-3919 (($ $) NIL (|has| (-935 |#1|) (-381)) ELT) (((-3 $ "failed") $) NIL (-2196 (|has| (-935 |#1|) (-147)) (|has| (-935 |#1|) (-381))) ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-3822 (((-1297 $)) NIL T ELT) (((-1297 $) (-948)) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-3621 (((-114) $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2925 (($ $) NIL (|has| (-935 |#1|) (-381)) ELT) (($ $ (-793)) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2111 (($ $ (-793)) NIL (|has| (-935 |#1|) (-381)) ELT) (($ $) NIL (|has| (-935 |#1|) (-381)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ $) NIL T ELT) (($ $ (-935 |#1|)) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-935 |#1|)) NIL T ELT) (($ (-935 |#1|) $) NIL T ELT)))
+(((-365 |#1| |#2|) (-13 (-341 (-935 |#1|)) (-10 -7 (-15 -2454 ((-1297 (-663 (-2 (|:| -1430 (-935 |#1|)) (|:| -1591 (-1151))))))) (-15 -2510 ((-711 (-935 |#1|)))) (-15 -3399 ((-793))))) (-948) (-948)) (T -365))
+((-2454 (*1 *2) (-12 (-5 *2 (-1297 (-663 (-2 (|:| -1430 (-935 *3)) (|:| -1591 (-1151)))))) (-5 *1 (-365 *3 *4)) (-14 *3 (-948)) (-14 *4 (-948)))) (-2510 (*1 *2) (-12 (-5 *2 (-711 (-935 *3))) (-5 *1 (-365 *3 *4)) (-14 *3 (-948)) (-14 *4 (-948)))) (-3399 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-365 *3 *4)) (-14 *3 (-948)) (-14 *4 (-948)))))
+(-13 (-341 (-935 |#1|)) (-10 -7 (-15 -2454 ((-1297 (-663 (-2 (|:| -1430 (-935 |#1|)) (|:| -1591 (-1151))))))) (-15 -2510 ((-711 (-935 |#1|)))) (-15 -3399 ((-793)))))
+((-2243 (((-114) $ $) 73 T ELT)) (-2505 (((-114) $) 88 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3752 (((-114) $) NIL T ELT)) (-1542 (((-793)) NIL T ELT)) (-4113 ((|#1| $) 106 T ELT) (($ $ (-948)) 104 (|has| |#1| (-381)) ELT)) (-1548 (((-1219 (-948) (-793)) (-560)) 170 (|has| |#1| (-381)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-3399 (((-793)) 103 T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-2552 (((-793)) 187 (|has| |#1| (-381)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) 127 T ELT)) (-3649 ((|#1| $) 105 T ELT)) (-1953 (($ (-1297 |#1|)) 71 T ELT)) (-1433 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-381)) ELT)) (-2186 (($ $ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1812 (($) 182 (|has| |#1| (-381)) ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3191 (($) 171 (|has| |#1| (-381)) ELT)) (-4017 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3079 (($ $ (-793)) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3141 (((-114) $) NIL T ELT)) (-1460 (((-948) $) NIL (|has| |#1| (-381)) ELT) (((-854 (-948)) $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-2601 (($) 113 (|has| |#1| (-381)) ELT)) (-3572 (((-114) $) 200 (|has| |#1| (-381)) ELT)) (-2084 ((|#1| $) 108 T ELT) (($ $ (-948)) 107 (|has| |#1| (-381)) ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| |#1| (-381)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1471 (((-1201 |#1|) $) 214 T ELT) (((-1201 $) $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-2622 (((-948) $) 148 (|has| |#1| (-381)) ELT)) (-1567 (((-1201 |#1|) $) 87 (|has| |#1| (-381)) ELT)) (-1644 (((-1201 |#1|) $) 84 (|has| |#1| (-381)) ELT) (((-3 (-1201 |#1|) "failed") $ $) 96 (|has| |#1| (-381)) ELT)) (-3264 (($ $ (-1201 |#1|)) 83 (|has| |#1| (-381)) ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) 218 T ELT)) (-3239 (($) NIL (|has| |#1| (-381)) CONST)) (-1591 (($ (-948)) 150 (|has| |#1| (-381)) ELT)) (-3410 (((-114) $) 123 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2454 (((-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151)))))) 97 T ELT)) (-2510 (((-711 |#1|)) 101 T ELT)) (-3583 (($) 110 (|has| |#1| (-381)) ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2976 (((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))) 173 (|has| |#1| (-381)) ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-3313 (((-854 (-948))) NIL T ELT) (((-948)) 174 T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-2258 (((-793) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3015 (((-136)) NIL T ELT)) (-3161 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3900 (((-854 (-948)) $) NIL T ELT) (((-948) $) 75 T ELT)) (-2407 (((-1201 |#1|)) 175 T ELT)) (-3569 (($) 147 (|has| |#1| (-381)) ELT)) (-2855 (($) NIL (|has| |#1| (-381)) ELT)) (-4226 (((-1297 |#1|) $) 121 T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-3913 (((-887) $) 140 T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) 70 T ELT)) (-3919 (($ $) NIL (|has| |#1| (-381)) ELT) (((-3 $ "failed") $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4191 (((-793)) 180 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-3822 (((-1297 $)) 197 T ELT) (((-1297 $) (-948)) 116 T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-3621 (((-114) $) NIL T ELT)) (-1446 (($) 186 T CONST)) (-1456 (($) 161 T CONST)) (-2925 (($ $) 122 (|has| |#1| (-381)) ELT) (($ $ (-793)) 114 (|has| |#1| (-381)) ELT)) (-2111 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-2340 (((-114) $ $) 208 T ELT)) (-2453 (($ $ $) 119 T ELT) (($ $ |#1|) 120 T ELT)) (-2441 (($ $) 202 T ELT) (($ $ $) 206 T ELT)) (-2429 (($ $ $) 204 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 153 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 211 T ELT) (($ $ $) 164 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 118 T ELT)))
+(((-366 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -2454 ((-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151))))))) (-15 -2510 ((-711 |#1|))) (-15 -3399 ((-793))))) (-363) (-3 (-1201 |#1|) (-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151))))))) (T -366))
+((-2454 (*1 *2) (-12 (-5 *2 (-1297 (-663 (-2 (|:| -1430 *3) (|:| -1591 (-1151)))))) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1201 *3) *2)))) (-2510 (*1 *2) (-12 (-5 *2 (-711 *3)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1201 *3) (-1297 (-663 (-2 (|:| -1430 *3) (|:| -1591 (-1151))))))))) (-3399 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1201 *3) (-1297 (-663 (-2 (|:| -1430 *3) (|:| -1591 (-1151))))))))))
+(-13 (-341 |#1|) (-10 -7 (-15 -2454 ((-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151))))))) (-15 -2510 ((-711 |#1|))) (-15 -3399 ((-793)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3752 (((-114) $) NIL T ELT)) (-1542 (((-793)) NIL T ELT)) (-4113 ((|#1| $) NIL T ELT) (($ $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-1548 (((-1219 (-948) (-793)) (-560)) NIL (|has| |#1| (-381)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-3399 (((-793)) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-2552 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) NIL T ELT)) (-3649 ((|#1| $) NIL T ELT)) (-1953 (($ (-1297 |#1|)) NIL T ELT)) (-1433 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-2186 (($ $ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1812 (($) NIL (|has| |#1| (-381)) ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3191 (($) NIL (|has| |#1| (-381)) ELT)) (-4017 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3079 (($ $ (-793)) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3141 (((-114) $) NIL T ELT)) (-1460 (((-948) $) NIL (|has| |#1| (-381)) ELT) (((-854 (-948)) $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-2601 (($) NIL (|has| |#1| (-381)) ELT)) (-3572 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-2084 ((|#1| $) NIL T ELT) (($ $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| |#1| (-381)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1471 (((-1201 |#1|) $) NIL T ELT) (((-1201 $) $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-2622 (((-948) $) NIL (|has| |#1| (-381)) ELT)) (-1567 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1644 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1201 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-3264 (($ $ (-1201 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3239 (($) NIL (|has| |#1| (-381)) CONST)) (-1591 (($ (-948)) NIL (|has| |#1| (-381)) ELT)) (-3410 (((-114) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2454 (((-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151)))))) NIL T ELT)) (-2510 (((-711 |#1|)) NIL T ELT)) (-3583 (($) NIL (|has| |#1| (-381)) ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2976 (((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))) NIL (|has| |#1| (-381)) ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-3313 (((-854 (-948))) NIL T ELT) (((-948)) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-2258 (((-793) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3015 (((-136)) NIL T ELT)) (-3161 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3900 (((-854 (-948)) $) NIL T ELT) (((-948) $) NIL T ELT)) (-2407 (((-1201 |#1|)) NIL T ELT)) (-3569 (($) NIL (|has| |#1| (-381)) ELT)) (-2855 (($) NIL (|has| |#1| (-381)) ELT)) (-4226 (((-1297 |#1|) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) NIL T ELT)) (-3919 (($ $) NIL (|has| |#1| (-381)) ELT) (((-3 $ "failed") $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-3822 (((-1297 $)) NIL T ELT) (((-1297 $) (-948)) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-3621 (((-114) $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2925 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-793)) NIL (|has| |#1| (-381)) ELT)) (-2111 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-367 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -2454 ((-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151))))))) (-15 -2510 ((-711 |#1|))) (-15 -3399 ((-793))))) (-363) (-948)) (T -367))
+((-2454 (*1 *2) (-12 (-5 *2 (-1297 (-663 (-2 (|:| -1430 *3) (|:| -1591 (-1151)))))) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-948)))) (-2510 (*1 *2) (-12 (-5 *2 (-711 *3)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-948)))) (-3399 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-948)))))
+(-13 (-341 |#1|) (-10 -7 (-15 -2454 ((-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151))))))) (-15 -2510 ((-711 |#1|))) (-15 -3399 ((-793)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3752 (((-114) $) NIL T ELT)) (-1542 (((-793)) NIL T ELT)) (-4113 ((|#1| $) NIL T ELT) (($ $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-1548 (((-1219 (-948) (-793)) (-560)) 129 (|has| |#1| (-381)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-2552 (((-793)) 155 (|has| |#1| (-381)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) 103 T ELT)) (-3649 ((|#1| $) 100 T ELT)) (-1953 (($ (-1297 |#1|)) 95 T ELT)) (-1433 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-381)) ELT)) (-2186 (($ $ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1812 (($) 92 (|has| |#1| (-381)) ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3191 (($) 51 (|has| |#1| (-381)) ELT)) (-4017 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3079 (($ $ (-793)) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3141 (((-114) $) NIL T ELT)) (-1460 (((-948) $) NIL (|has| |#1| (-381)) ELT) (((-854 (-948)) $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-2601 (($) 130 (|has| |#1| (-381)) ELT)) (-3572 (((-114) $) 84 (|has| |#1| (-381)) ELT)) (-2084 ((|#1| $) 47 T ELT) (($ $ (-948)) 52 (|has| |#1| (-381)) ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| |#1| (-381)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1471 (((-1201 |#1|) $) 75 T ELT) (((-1201 $) $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-2622 (((-948) $) 107 (|has| |#1| (-381)) ELT)) (-1567 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1644 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1201 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-3264 (($ $ (-1201 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3239 (($) NIL (|has| |#1| (-381)) CONST)) (-1591 (($ (-948)) 105 (|has| |#1| (-381)) ELT)) (-3410 (((-114) $) 157 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3583 (($) 44 (|has| |#1| (-381)) ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2976 (((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))) 124 (|has| |#1| (-381)) ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-3313 (((-854 (-948))) NIL T ELT) (((-948)) 154 T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-2258 (((-793) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3015 (((-136)) NIL T ELT)) (-3161 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3900 (((-854 (-948)) $) NIL T ELT) (((-948) $) 67 T ELT)) (-2407 (((-1201 |#1|)) 98 T ELT)) (-3569 (($) 135 (|has| |#1| (-381)) ELT)) (-2855 (($) NIL (|has| |#1| (-381)) ELT)) (-4226 (((-1297 |#1|) $) 63 T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-3913 (((-887) $) 153 T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) 97 T ELT)) (-3919 (($ $) NIL (|has| |#1| (-381)) ELT) (((-3 $ "failed") $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4191 (((-793)) 159 T CONST)) (-3925 (((-114) $ $) 161 T ELT)) (-3822 (((-1297 $)) 119 T ELT) (((-1297 $) (-948)) 58 T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-3621 (((-114) $) NIL T ELT)) (-1446 (($) 121 T CONST)) (-1456 (($) 40 T CONST)) (-2925 (($ $) 78 (|has| |#1| (-381)) ELT) (($ $ (-793)) NIL (|has| |#1| (-381)) ELT)) (-2111 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-2340 (((-114) $ $) 117 T ELT)) (-2453 (($ $ $) 109 T ELT) (($ $ |#1|) 110 T ELT)) (-2441 (($ $) 90 T ELT) (($ $ $) 115 T ELT)) (-2429 (($ $ $) 113 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 53 T ELT) (($ $ (-560)) 138 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 88 T ELT) (($ $ $) 65 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 86 T ELT)))
(((-368 |#1| |#2|) (-341 |#1|) (-363) (-1201 |#1|)) (T -368))
NIL
(-341 |#1|)
-((-2159 (((-987 (-1201 |#1|)) (-1201 |#1|)) 49 T ELT)) (-2310 (((-1201 |#1|) (-948) (-948)) 154 T ELT) (((-1201 |#1|) (-948)) 150 T ELT)) (-3976 (((-114) (-1201 |#1|)) 107 T ELT)) (-3038 (((-948) (-948)) 85 T ELT)) (-3178 (((-948) (-948)) 92 T ELT)) (-4170 (((-948) (-948)) 83 T ELT)) (-2863 (((-114) (-1201 |#1|)) 111 T ELT)) (-1709 (((-3 (-1201 |#1|) "failed") (-1201 |#1|)) 135 T ELT)) (-2855 (((-3 (-1201 |#1|) "failed") (-1201 |#1|)) 140 T ELT)) (-1754 (((-3 (-1201 |#1|) "failed") (-1201 |#1|)) 139 T ELT)) (-2222 (((-3 (-1201 |#1|) "failed") (-1201 |#1|)) 138 T ELT)) (-4407 (((-3 (-1201 |#1|) "failed") (-1201 |#1|)) 131 T ELT)) (-3490 (((-1201 |#1|) (-1201 |#1|)) 71 T ELT)) (-3539 (((-1201 |#1|) (-948)) 145 T ELT)) (-2118 (((-1201 |#1|) (-948)) 148 T ELT)) (-2169 (((-1201 |#1|) (-948)) 147 T ELT)) (-1600 (((-1201 |#1|) (-948)) 146 T ELT)) (-1447 (((-1201 |#1|) (-948)) 143 T ELT)))
-(((-369 |#1|) (-10 -7 (-15 -3976 ((-114) (-1201 |#1|))) (-15 -2863 ((-114) (-1201 |#1|))) (-15 -4170 ((-948) (-948))) (-15 -3038 ((-948) (-948))) (-15 -3178 ((-948) (-948))) (-15 -1447 ((-1201 |#1|) (-948))) (-15 -3539 ((-1201 |#1|) (-948))) (-15 -1600 ((-1201 |#1|) (-948))) (-15 -2169 ((-1201 |#1|) (-948))) (-15 -2118 ((-1201 |#1|) (-948))) (-15 -4407 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -1709 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -2222 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -1754 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -2855 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -2310 ((-1201 |#1|) (-948))) (-15 -2310 ((-1201 |#1|) (-948) (-948))) (-15 -3490 ((-1201 |#1|) (-1201 |#1|))) (-15 -2159 ((-987 (-1201 |#1|)) (-1201 |#1|)))) (-363)) (T -369))
-((-2159 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-987 (-1201 *4))) (-5 *1 (-369 *4)) (-5 *3 (-1201 *4)))) (-3490 (*1 *2 *2) (-12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-2310 (*1 *2 *3 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-2310 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-2855 (*1 *2 *2) (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1754 (*1 *2 *2) (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-2222 (*1 *2 *2) (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1709 (*1 *2 *2) (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-4407 (*1 *2 *2) (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-2118 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-2169 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1600 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-3539 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1447 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-3178 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-369 *3)) (-4 *3 (-363)))) (-3038 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-369 *3)) (-4 *3 (-363)))) (-4170 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-369 *3)) (-4 *3 (-363)))) (-2863 (*1 *2 *3) (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4)))) (-3976 (*1 *2 *3) (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4)))))
-(-10 -7 (-15 -3976 ((-114) (-1201 |#1|))) (-15 -2863 ((-114) (-1201 |#1|))) (-15 -4170 ((-948) (-948))) (-15 -3038 ((-948) (-948))) (-15 -3178 ((-948) (-948))) (-15 -1447 ((-1201 |#1|) (-948))) (-15 -3539 ((-1201 |#1|) (-948))) (-15 -1600 ((-1201 |#1|) (-948))) (-15 -2169 ((-1201 |#1|) (-948))) (-15 -2118 ((-1201 |#1|) (-948))) (-15 -4407 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -1709 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -2222 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -1754 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -2855 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -2310 ((-1201 |#1|) (-948))) (-15 -2310 ((-1201 |#1|) (-948) (-948))) (-15 -3490 ((-1201 |#1|) (-1201 |#1|))) (-15 -2159 ((-987 (-1201 |#1|)) (-1201 |#1|))))
-((-1339 ((|#1| (-1201 |#2|)) 59 T ELT)))
-(((-370 |#1| |#2|) (-10 -7 (-15 -1339 (|#1| (-1201 |#2|)))) (-13 (-416) (-10 -7 (-15 -1578 (|#1| |#2|)) (-15 -4419 ((-948) |#1|)) (-15 -1954 ((-1297 |#1|) (-948))) (-15 -3054 (|#1| |#1|)))) (-363)) (T -370))
-((-1339 (*1 *2 *3) (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-4 *2 (-13 (-416) (-10 -7 (-15 -1578 (*2 *4)) (-15 -4419 ((-948) *2)) (-15 -1954 ((-1297 *2) (-948))) (-15 -3054 (*2 *2))))) (-5 *1 (-370 *2 *4)))))
-(-10 -7 (-15 -1339 (|#1| (-1201 |#2|))))
-((-3713 (((-3 (-663 |#3|) "failed") (-663 |#3|) |#3|) 38 T ELT)))
-(((-371 |#1| |#2| |#3|) (-10 -7 (-15 -3713 ((-3 (-663 |#3|) "failed") (-663 |#3|) |#3|))) (-363) (-1273 |#1|) (-1273 |#2|)) (T -371))
-((-3713 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-363)) (-5 *1 (-371 *4 *5 *3)))))
-(-10 -7 (-15 -3713 ((-3 (-663 |#3|) "failed") (-663 |#3|) |#3|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-1947 (((-114) $) NIL T ELT)) (-1796 (((-793)) NIL T ELT)) (-3349 ((|#1| $) NIL T ELT) (($ $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-2105 (((-1219 (-948) (-793)) (-560)) NIL (|has| |#1| (-381)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-3241 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT)) (-4143 (($ (-1297 |#1|)) NIL T ELT)) (-4217 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-1478 (($ $ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2310 (($) NIL (|has| |#1| (-381)) ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4336 (($) NIL (|has| |#1| (-381)) ELT)) (-3976 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1696 (($ $ (-793)) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4330 (((-114) $) NIL T ELT)) (-3913 (((-948) $) NIL (|has| |#1| (-381)) ELT) (((-854 (-948)) $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-4417 (($) NIL (|has| |#1| (-381)) ELT)) (-2863 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-2032 ((|#1| $) NIL T ELT) (($ $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| |#1| (-381)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1787 (((-1201 |#1|) $) NIL T ELT) (((-1201 $) $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-4419 (((-948) $) NIL (|has| |#1| (-381)) ELT)) (-1543 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-4449 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1201 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-3384 (($ $ (-1201 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-3161 (($) NIL (|has| |#1| (-381)) CONST)) (-3128 (($ (-948)) NIL (|has| |#1| (-381)) ELT)) (-3583 (((-114) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2748 (($) NIL (|has| |#1| (-381)) ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3666 (((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))) NIL (|has| |#1| (-381)) ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-2969 (((-854 (-948))) NIL T ELT) (((-948)) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2364 (((-793) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3669 (((-136)) NIL T ELT)) (-2894 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3630 (((-854 (-948)) $) NIL T ELT) (((-948) $) NIL T ELT)) (-4394 (((-1201 |#1|)) NIL T ELT)) (-2243 (($) NIL (|has| |#1| (-381)) ELT)) (-3988 (($) NIL (|has| |#1| (-381)) ELT)) (-2178 (((-1297 |#1|) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) NIL T ELT)) (-1964 (($ $) NIL (|has| |#1| (-381)) ELT) (((-3 $ "failed") $) NIL (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-1954 (((-1297 $)) NIL T ELT) (((-1297 $) (-948)) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-3602 (((-114) $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3054 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-793)) NIL (|has| |#1| (-381)) ELT)) (-3305 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+((-4015 (((-987 (-1201 |#1|)) (-1201 |#1|)) 49 T ELT)) (-1812 (((-1201 |#1|) (-948) (-948)) 154 T ELT) (((-1201 |#1|) (-948)) 150 T ELT)) (-4017 (((-114) (-1201 |#1|)) 107 T ELT)) (-2751 (((-948) (-948)) 85 T ELT)) (-1759 (((-948) (-948)) 92 T ELT)) (-4175 (((-948) (-948)) 83 T ELT)) (-3572 (((-114) (-1201 |#1|)) 111 T ELT)) (-3214 (((-3 (-1201 |#1|) "failed") (-1201 |#1|)) 135 T ELT)) (-3481 (((-3 (-1201 |#1|) "failed") (-1201 |#1|)) 140 T ELT)) (-2417 (((-3 (-1201 |#1|) "failed") (-1201 |#1|)) 139 T ELT)) (-3371 (((-3 (-1201 |#1|) "failed") (-1201 |#1|)) 138 T ELT)) (-2526 (((-3 (-1201 |#1|) "failed") (-1201 |#1|)) 131 T ELT)) (-1764 (((-1201 |#1|) (-1201 |#1|)) 71 T ELT)) (-4210 (((-1201 |#1|) (-948)) 145 T ELT)) (-1661 (((-1201 |#1|) (-948)) 148 T ELT)) (-4131 (((-1201 |#1|) (-948)) 147 T ELT)) (-3360 (((-1201 |#1|) (-948)) 146 T ELT)) (-1810 (((-1201 |#1|) (-948)) 143 T ELT)))
+(((-369 |#1|) (-10 -7 (-15 -4017 ((-114) (-1201 |#1|))) (-15 -3572 ((-114) (-1201 |#1|))) (-15 -4175 ((-948) (-948))) (-15 -2751 ((-948) (-948))) (-15 -1759 ((-948) (-948))) (-15 -1810 ((-1201 |#1|) (-948))) (-15 -4210 ((-1201 |#1|) (-948))) (-15 -3360 ((-1201 |#1|) (-948))) (-15 -4131 ((-1201 |#1|) (-948))) (-15 -1661 ((-1201 |#1|) (-948))) (-15 -2526 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -3214 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -3371 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -2417 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -3481 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -1812 ((-1201 |#1|) (-948))) (-15 -1812 ((-1201 |#1|) (-948) (-948))) (-15 -1764 ((-1201 |#1|) (-1201 |#1|))) (-15 -4015 ((-987 (-1201 |#1|)) (-1201 |#1|)))) (-363)) (T -369))
+((-4015 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-987 (-1201 *4))) (-5 *1 (-369 *4)) (-5 *3 (-1201 *4)))) (-1764 (*1 *2 *2) (-12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1812 (*1 *2 *3 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1812 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-3481 (*1 *2 *2) (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-2417 (*1 *2 *2) (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-3371 (*1 *2 *2) (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-3214 (*1 *2 *2) (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-2526 (*1 *2 *2) (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1661 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-4131 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-3360 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-4210 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1810 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1759 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-369 *3)) (-4 *3 (-363)))) (-2751 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-369 *3)) (-4 *3 (-363)))) (-4175 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-369 *3)) (-4 *3 (-363)))) (-3572 (*1 *2 *3) (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4)))) (-4017 (*1 *2 *3) (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4)))))
+(-10 -7 (-15 -4017 ((-114) (-1201 |#1|))) (-15 -3572 ((-114) (-1201 |#1|))) (-15 -4175 ((-948) (-948))) (-15 -2751 ((-948) (-948))) (-15 -1759 ((-948) (-948))) (-15 -1810 ((-1201 |#1|) (-948))) (-15 -4210 ((-1201 |#1|) (-948))) (-15 -3360 ((-1201 |#1|) (-948))) (-15 -4131 ((-1201 |#1|) (-948))) (-15 -1661 ((-1201 |#1|) (-948))) (-15 -2526 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -3214 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -3371 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -2417 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -3481 ((-3 (-1201 |#1|) "failed") (-1201 |#1|))) (-15 -1812 ((-1201 |#1|) (-948))) (-15 -1812 ((-1201 |#1|) (-948) (-948))) (-15 -1764 ((-1201 |#1|) (-1201 |#1|))) (-15 -4015 ((-987 (-1201 |#1|)) (-1201 |#1|))))
+((-3533 ((|#1| (-1201 |#2|)) 59 T ELT)))
+(((-370 |#1| |#2|) (-10 -7 (-15 -3533 (|#1| (-1201 |#2|)))) (-13 (-416) (-10 -7 (-15 -3913 (|#1| |#2|)) (-15 -2622 ((-948) |#1|)) (-15 -3822 ((-1297 |#1|) (-948))) (-15 -2925 (|#1| |#1|)))) (-363)) (T -370))
+((-3533 (*1 *2 *3) (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-4 *2 (-13 (-416) (-10 -7 (-15 -3913 (*2 *4)) (-15 -2622 ((-948) *2)) (-15 -3822 ((-1297 *2) (-948))) (-15 -2925 (*2 *2))))) (-5 *1 (-370 *2 *4)))))
+(-10 -7 (-15 -3533 (|#1| (-1201 |#2|))))
+((-2182 (((-3 (-663 |#3|) "failed") (-663 |#3|) |#3|) 38 T ELT)))
+(((-371 |#1| |#2| |#3|) (-10 -7 (-15 -2182 ((-3 (-663 |#3|) "failed") (-663 |#3|) |#3|))) (-363) (-1273 |#1|) (-1273 |#2|)) (T -371))
+((-2182 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-363)) (-5 *1 (-371 *4 *5 *3)))))
+(-10 -7 (-15 -2182 ((-3 (-663 |#3|) "failed") (-663 |#3|) |#3|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3752 (((-114) $) NIL T ELT)) (-1542 (((-793)) NIL T ELT)) (-4113 ((|#1| $) NIL T ELT) (($ $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-1548 (((-1219 (-948) (-793)) (-560)) NIL (|has| |#1| (-381)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-2552 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) NIL T ELT)) (-3649 ((|#1| $) NIL T ELT)) (-1953 (($ (-1297 |#1|)) NIL T ELT)) (-1433 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-2186 (($ $ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1812 (($) NIL (|has| |#1| (-381)) ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3191 (($) NIL (|has| |#1| (-381)) ELT)) (-4017 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3079 (($ $ (-793)) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3141 (((-114) $) NIL T ELT)) (-1460 (((-948) $) NIL (|has| |#1| (-381)) ELT) (((-854 (-948)) $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-2601 (($) NIL (|has| |#1| (-381)) ELT)) (-3572 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-2084 ((|#1| $) NIL T ELT) (($ $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| |#1| (-381)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1471 (((-1201 |#1|) $) NIL T ELT) (((-1201 $) $ (-948)) NIL (|has| |#1| (-381)) ELT)) (-2622 (((-948) $) NIL (|has| |#1| (-381)) ELT)) (-1567 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1644 (((-1201 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1201 |#1|) "failed") $ $) NIL (|has| |#1| (-381)) ELT)) (-3264 (($ $ (-1201 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3239 (($) NIL (|has| |#1| (-381)) CONST)) (-1591 (($ (-948)) NIL (|has| |#1| (-381)) ELT)) (-3410 (((-114) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3583 (($) NIL (|has| |#1| (-381)) ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2976 (((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))) NIL (|has| |#1| (-381)) ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-3313 (((-854 (-948))) NIL T ELT) (((-948)) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-2258 (((-793) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3015 (((-136)) NIL T ELT)) (-3161 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3900 (((-854 (-948)) $) NIL T ELT) (((-948) $) NIL T ELT)) (-2407 (((-1201 |#1|)) NIL T ELT)) (-3569 (($) NIL (|has| |#1| (-381)) ELT)) (-2855 (($) NIL (|has| |#1| (-381)) ELT)) (-4226 (((-1297 |#1|) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| |#1| (-381)) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) NIL T ELT)) (-3919 (($ $) NIL (|has| |#1| (-381)) ELT) (((-3 $ "failed") $) NIL (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-3822 (((-1297 $)) NIL T ELT) (((-1297 $) (-948)) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-3621 (((-114) $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2925 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-793)) NIL (|has| |#1| (-381)) ELT)) (-2111 (($ $ (-793)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
(((-372 |#1| |#2|) (-341 |#1|) (-363) (-948)) (T -372))
NIL
(-341 |#1|)
-((-3492 (((-114) (-663 (-975 |#1|))) 41 T ELT)) (-2546 (((-663 (-975 |#1|)) (-663 (-975 |#1|))) 53 T ELT)) (-1971 (((-3 (-663 (-975 |#1|)) "failed") (-663 (-975 |#1|))) 48 T ELT)))
-(((-373 |#1| |#2|) (-10 -7 (-15 -3492 ((-114) (-663 (-975 |#1|)))) (-15 -1971 ((-3 (-663 (-975 |#1|)) "failed") (-663 (-975 |#1|)))) (-15 -2546 ((-663 (-975 |#1|)) (-663 (-975 |#1|))))) (-466) (-663 (-1207))) (T -373))
-((-2546 (*1 *2 *2) (-12 (-5 *2 (-663 (-975 *3))) (-4 *3 (-466)) (-5 *1 (-373 *3 *4)) (-14 *4 (-663 (-1207))))) (-1971 (*1 *2 *2) (|partial| -12 (-5 *2 (-663 (-975 *3))) (-4 *3 (-466)) (-5 *1 (-373 *3 *4)) (-14 *4 (-663 (-1207))))) (-3492 (*1 *2 *3) (-12 (-5 *3 (-663 (-975 *4))) (-4 *4 (-466)) (-5 *2 (-114)) (-5 *1 (-373 *4 *5)) (-14 *5 (-663 (-1207))))))
-(-10 -7 (-15 -3492 ((-114) (-663 (-975 |#1|)))) (-15 -1971 ((-3 (-663 (-975 |#1|)) "failed") (-663 (-975 |#1|)))) (-15 -2546 ((-663 (-975 |#1|)) (-663 (-975 |#1|)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3241 (((-793) $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1581 (((-114) $) 17 T ELT)) (-2461 ((|#1| $ (-560)) NIL T ELT)) (-2005 (((-560) $ (-560)) NIL T ELT)) (-1942 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3372 (($ (-1 (-560) (-560)) $) 26 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) 28 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3764 (((-663 (-2 (|:| |gen| |#1|) (|:| -3251 (-560)))) $) 30 T ELT)) (-4122 (($ $ $) NIL T ELT)) (-2013 (($ $ $) NIL T ELT)) (-1578 (((-887) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2011 (($) 11 T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT) (($ |#1| (-560)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT)))
-(((-374 |#1|) (-13 (-487) (-1069 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-560))) (-15 -3241 ((-793) $)) (-15 -2005 ((-560) $ (-560))) (-15 -2461 (|#1| $ (-560))) (-15 -3372 ($ (-1 (-560) (-560)) $)) (-15 -1942 ($ (-1 |#1| |#1|) $)) (-15 -3764 ((-663 (-2 (|:| |gen| |#1|) (|:| -3251 (-560)))) $)))) (-1132)) (T -374))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1132)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1132)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-374 *2)) (-4 *2 (-1132)))) (-3241 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-374 *3)) (-4 *3 (-1132)))) (-2005 (*1 *2 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-374 *3)) (-4 *3 (-1132)))) (-2461 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-374 *2)) (-4 *2 (-1132)))) (-3372 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-560) (-560))) (-5 *1 (-374 *3)) (-4 *3 (-1132)))) (-1942 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1132)) (-5 *1 (-374 *3)))) (-3764 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -3251 (-560))))) (-5 *1 (-374 *3)) (-4 *3 (-1132)))))
-(-13 (-487) (-1069 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-560))) (-15 -3241 ((-793) $)) (-15 -2005 ((-560) $ (-560))) (-15 -2461 (|#1| $ (-560))) (-15 -3372 ($ (-1 (-560) (-560)) $)) (-15 -1942 ($ (-1 |#1| |#1|) $)) (-15 -3764 ((-663 (-2 (|:| |gen| |#1|) (|:| -3251 (-560)))) $))))
-((-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 13 T ELT)) (-3244 (($ $) 14 T ELT)) (-3023 (((-419 $) $) 34 T ELT)) (-4330 (((-114) $) 30 T ELT)) (-1544 (($ $) 19 T ELT)) (-2132 (($ $ $) 25 T ELT) (($ (-663 $)) NIL T ELT)) (-4457 (((-419 $) $) 35 T ELT)) (-1528 (((-3 $ "failed") $ $) 24 T ELT)) (-2901 (((-793) $) 28 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 39 T ELT)) (-2948 (((-114) $ $) 16 T ELT)) (-2594 (($ $ $) 37 T ELT)))
-(((-375 |#1|) (-10 -8 (-15 -2594 (|#1| |#1| |#1|)) (-15 -1544 (|#1| |#1|)) (-15 -4330 ((-114) |#1|)) (-15 -3023 ((-419 |#1|) |#1|)) (-15 -4457 ((-419 |#1|) |#1|)) (-15 -2205 ((-2 (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1|)) (-15 -2901 ((-793) |#1|)) (-15 -2132 (|#1| (-663 |#1|))) (-15 -2132 (|#1| |#1| |#1|)) (-15 -2948 ((-114) |#1| |#1|)) (-15 -3244 (|#1| |#1|)) (-15 -4091 ((-2 (|:| -2489 |#1|) (|:| -4495 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1528 ((-3 |#1| "failed") |#1| |#1|))) (-376)) (T -375))
-NIL
-(-10 -8 (-15 -2594 (|#1| |#1| |#1|)) (-15 -1544 (|#1| |#1|)) (-15 -4330 ((-114) |#1|)) (-15 -3023 ((-419 |#1|) |#1|)) (-15 -4457 ((-419 |#1|) |#1|)) (-15 -2205 ((-2 (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1|)) (-15 -2901 ((-793) |#1|)) (-15 -2132 (|#1| (-663 |#1|))) (-15 -2132 (|#1| |#1| |#1|)) (-15 -2948 ((-114) |#1| |#1|)) (-15 -3244 (|#1| |#1|)) (-15 -4091 ((-2 (|:| -2489 |#1|) (|:| -4495 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1528 ((-3 |#1| "failed") |#1| |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-3244 (($ $) 46 T ELT)) (-4093 (((-114) $) 44 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-1804 (($ $) 81 T ELT)) (-3023 (((-419 $) $) 80 T ELT)) (-1615 (((-114) $ $) 65 T ELT)) (-2238 (($) 18 T CONST)) (-1478 (($ $ $) 61 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1490 (($ $ $) 62 T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 57 T ELT)) (-4330 (((-114) $) 79 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-2093 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-1544 (($ $) 78 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-2132 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-4457 (((-419 $) $) 82 T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-1528 (((-3 $ "failed") $ $) 48 T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-2901 (((-793) $) 64 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 63 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-560))) 74 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 45 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ $) 73 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 77 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 76 T ELT) (($ (-421 (-560)) $) 75 T ELT)))
+((-1789 (((-114) (-663 (-975 |#1|))) 41 T ELT)) (-3409 (((-663 (-975 |#1|)) (-663 (-975 |#1|))) 53 T ELT)) (-2701 (((-3 (-663 (-975 |#1|)) "failed") (-663 (-975 |#1|))) 48 T ELT)))
+(((-373 |#1| |#2|) (-10 -7 (-15 -1789 ((-114) (-663 (-975 |#1|)))) (-15 -2701 ((-3 (-663 (-975 |#1|)) "failed") (-663 (-975 |#1|)))) (-15 -3409 ((-663 (-975 |#1|)) (-663 (-975 |#1|))))) (-466) (-663 (-1207))) (T -373))
+((-3409 (*1 *2 *2) (-12 (-5 *2 (-663 (-975 *3))) (-4 *3 (-466)) (-5 *1 (-373 *3 *4)) (-14 *4 (-663 (-1207))))) (-2701 (*1 *2 *2) (|partial| -12 (-5 *2 (-663 (-975 *3))) (-4 *3 (-466)) (-5 *1 (-373 *3 *4)) (-14 *4 (-663 (-1207))))) (-1789 (*1 *2 *3) (-12 (-5 *3 (-663 (-975 *4))) (-4 *4 (-466)) (-5 *2 (-114)) (-5 *1 (-373 *4 *5)) (-14 *5 (-663 (-1207))))))
+(-10 -7 (-15 -1789 ((-114) (-663 (-975 |#1|)))) (-15 -2701 ((-3 (-663 (-975 |#1|)) "failed") (-663 (-975 |#1|)))) (-15 -3409 ((-663 (-975 |#1|)) (-663 (-975 |#1|)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2552 (((-793) $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) NIL T ELT)) (-3649 ((|#1| $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1918 (((-114) $) 17 T ELT)) (-1997 ((|#1| $ (-560)) NIL T ELT)) (-3038 (((-560) $ (-560)) NIL T ELT)) (-3703 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3143 (($ (-1 (-560) (-560)) $) 26 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) 28 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2609 (((-663 (-2 (|:| |gen| |#1|) (|:| -2515 (-560)))) $) 30 T ELT)) (-1714 (($ $ $) NIL T ELT)) (-3117 (($ $ $) NIL T ELT)) (-3913 (((-887) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1456 (($) 11 T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT) (($ |#1| (-560)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT)))
+(((-374 |#1|) (-13 (-487) (-1069 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-560))) (-15 -2552 ((-793) $)) (-15 -3038 ((-560) $ (-560))) (-15 -1997 (|#1| $ (-560))) (-15 -3143 ($ (-1 (-560) (-560)) $)) (-15 -3703 ($ (-1 |#1| |#1|) $)) (-15 -2609 ((-663 (-2 (|:| |gen| |#1|) (|:| -2515 (-560)))) $)))) (-1132)) (T -374))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1132)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1132)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-374 *2)) (-4 *2 (-1132)))) (-2552 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-374 *3)) (-4 *3 (-1132)))) (-3038 (*1 *2 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-374 *3)) (-4 *3 (-1132)))) (-1997 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-374 *2)) (-4 *2 (-1132)))) (-3143 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-560) (-560))) (-5 *1 (-374 *3)) (-4 *3 (-1132)))) (-3703 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1132)) (-5 *1 (-374 *3)))) (-2609 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -2515 (-560))))) (-5 *1 (-374 *3)) (-4 *3 (-1132)))))
+(-13 (-487) (-1069 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-560))) (-15 -2552 ((-793) $)) (-15 -3038 ((-560) $ (-560))) (-15 -1997 (|#1| $ (-560))) (-15 -3143 ($ (-1 (-560) (-560)) $)) (-15 -3703 ($ (-1 |#1| |#1|) $)) (-15 -2609 ((-663 (-2 (|:| |gen| |#1|) (|:| -2515 (-560)))) $))))
+((-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 13 T ELT)) (-4366 (($ $) 14 T ELT)) (-3898 (((-419 $) $) 34 T ELT)) (-3141 (((-114) $) 30 T ELT)) (-2986 (($ $) 19 T ELT)) (-1938 (($ $ $) 25 T ELT) (($ (-663 $)) NIL T ELT)) (-4012 (((-419 $) $) 35 T ELT)) (-2233 (((-3 $ "failed") $ $) 24 T ELT)) (-3989 (((-793) $) 28 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 39 T ELT)) (-4361 (((-114) $ $) 16 T ELT)) (-2453 (($ $ $) 37 T ELT)))
+(((-375 |#1|) (-10 -8 (-15 -2453 (|#1| |#1| |#1|)) (-15 -2986 (|#1| |#1|)) (-15 -3141 ((-114) |#1|)) (-15 -3898 ((-419 |#1|) |#1|)) (-15 -4012 ((-419 |#1|) |#1|)) (-15 -4455 ((-2 (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1|)) (-15 -3989 ((-793) |#1|)) (-15 -1938 (|#1| (-663 |#1|))) (-15 -1938 (|#1| |#1| |#1|)) (-15 -4361 ((-114) |#1| |#1|)) (-15 -4366 (|#1| |#1|)) (-15 -2640 ((-2 (|:| -4184 |#1|) (|:| -4495 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2233 ((-3 |#1| "failed") |#1| |#1|))) (-376)) (T -375))
+NIL
+(-10 -8 (-15 -2453 (|#1| |#1| |#1|)) (-15 -2986 (|#1| |#1|)) (-15 -3141 ((-114) |#1|)) (-15 -3898 ((-419 |#1|) |#1|)) (-15 -4012 ((-419 |#1|) |#1|)) (-15 -4455 ((-2 (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1|)) (-15 -3989 ((-793) |#1|)) (-15 -1938 (|#1| (-663 |#1|))) (-15 -1938 (|#1| |#1| |#1|)) (-15 -4361 ((-114) |#1| |#1|)) (-15 -4366 (|#1| |#1|)) (-15 -2640 ((-2 (|:| -4184 |#1|) (|:| -4495 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2233 ((-3 |#1| "failed") |#1| |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-4366 (($ $) 46 T ELT)) (-2667 (((-114) $) 44 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-1621 (($ $) 81 T ELT)) (-3898 (((-419 $) $) 80 T ELT)) (-3476 (((-114) $ $) 65 T ELT)) (-3525 (($) 18 T CONST)) (-2186 (($ $ $) 61 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-2197 (($ $ $) 62 T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 57 T ELT)) (-3141 (((-114) $) 79 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-1861 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2986 (($ $) 78 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-1938 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-4012 (((-419 $) $) 82 T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-2233 (((-3 $ "failed") $ $) 48 T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-3989 (((-793) $) 64 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 63 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-560))) 74 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 45 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ $) 73 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 77 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 76 T ELT) (($ (-421 (-560)) $) 75 T ELT)))
(((-376) (-142)) (T -376))
-((-2594 (*1 *1 *1 *1) (-4 *1 (-376))))
-(-13 (-319) (-1252) (-250) (-10 -8 (-15 -2594 ($ $ $)) (-6 -4506) (-6 -4500)))
+((-2453 (*1 *1 *1 *1) (-4 *1 (-376))))
+(-13 (-319) (-1252) (-250) (-10 -8 (-15 -2453 ($ $ $)) (-6 -4506) (-6 -4500)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-133) . T) ((-635 #0#) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-466) . T) ((-571) . T) ((-668 #0#) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 $) . T) ((-739 #0#) . T) ((-739 $) . T) ((-748) . T) ((-950) . T) ((-1082 #0#) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T) ((-1252) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2746 ((|#1| $ |#1|) 31 T ELT)) (-2177 (($ $ (-1189)) 23 T ELT)) (-2226 (((-3 |#1| "failed") $) 30 T ELT)) (-3944 ((|#1| $) 28 T ELT)) (-2109 (($ (-402)) 22 T ELT) (($ (-402) (-1189)) 21 T ELT)) (-3614 (((-402) $) 25 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2348 (((-1189) $) 26 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 20 T ELT)) (-4474 (($ $) 24 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 19 T ELT)))
-(((-377 |#1|) (-13 (-378 (-402) |#1|) (-10 -8 (-15 -2226 ((-3 |#1| "failed") $)))) (-1132)) (T -377))
-((-2226 (*1 *2 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1132)))))
-(-13 (-378 (-402) |#1|) (-10 -8 (-15 -2226 ((-3 |#1| "failed") $))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2746 ((|#2| $ |#2|) 14 T ELT)) (-2177 (($ $ (-1189)) 19 T ELT)) (-3944 ((|#2| $) 15 T ELT)) (-2109 (($ |#1|) 21 T ELT) (($ |#1| (-1189)) 20 T ELT)) (-3614 ((|#1| $) 17 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-2348 (((-1189) $) 16 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-4474 (($ $) 18 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2473 (((-114) $ $) 8 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-1687 ((|#1| $ |#1|) 31 T ELT)) (-4216 (($ $ (-1189)) 23 T ELT)) (-3414 (((-3 |#1| "failed") $) 30 T ELT)) (-3688 ((|#1| $) 28 T ELT)) (-2888 (($ (-402)) 22 T ELT) (($ (-402) (-1189)) 21 T ELT)) (-4389 (((-402) $) 25 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2108 (((-1189) $) 26 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 20 T ELT)) (-1835 (($ $) 24 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 19 T ELT)))
+(((-377 |#1|) (-13 (-378 (-402) |#1|) (-10 -8 (-15 -3414 ((-3 |#1| "failed") $)))) (-1132)) (T -377))
+((-3414 (*1 *2 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1132)))))
+(-13 (-378 (-402) |#1|) (-10 -8 (-15 -3414 ((-3 |#1| "failed") $))))
+((-2243 (((-114) $ $) 7 T ELT)) (-1687 ((|#2| $ |#2|) 14 T ELT)) (-4216 (($ $ (-1189)) 19 T ELT)) (-3688 ((|#2| $) 15 T ELT)) (-2888 (($ |#1|) 21 T ELT) (($ |#1| (-1189)) 20 T ELT)) (-4389 ((|#1| $) 17 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2108 (((-1189) $) 16 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-1835 (($ $) 18 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2340 (((-114) $ $) 8 T ELT)))
(((-378 |#1| |#2|) (-142) (-1132) (-1132)) (T -378))
-((-2109 (*1 *1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))) (-2109 (*1 *1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *1 (-378 *2 *4)) (-4 *2 (-1132)) (-4 *4 (-1132)))) (-2177 (*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-378 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))) (-4474 (*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))) (-3614 (*1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1132)) (-4 *2 (-1132)))) (-2348 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-5 *2 (-1189)))) (-3944 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132)))) (-2746 (*1 *2 *1 *2) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132)))))
-(-13 (-1132) (-10 -8 (-15 -2109 ($ |t#1|)) (-15 -2109 ($ |t#1| (-1189))) (-15 -2177 ($ $ (-1189))) (-15 -4474 ($ $)) (-15 -3614 (|t#1| $)) (-15 -2348 ((-1189) $)) (-15 -3944 (|t#2| $)) (-15 -2746 (|t#2| $ |t#2|))))
+((-2888 (*1 *1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))) (-2888 (*1 *1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *1 (-378 *2 *4)) (-4 *2 (-1132)) (-4 *4 (-1132)))) (-4216 (*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-378 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))) (-1835 (*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))) (-4389 (*1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1132)) (-4 *2 (-1132)))) (-2108 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-5 *2 (-1189)))) (-3688 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132)))) (-1687 (*1 *2 *1 *2) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132)))))
+(-13 (-1132) (-10 -8 (-15 -2888 ($ |t#1|)) (-15 -2888 ($ |t#1| (-1189))) (-15 -4216 ($ $ (-1189))) (-15 -1835 ($ $)) (-15 -4389 (|t#1| $)) (-15 -2108 ((-1189) $)) (-15 -3688 (|t#2| $)) (-15 -1687 (|t#2| $ |t#2|))))
(((-102) . T) ((-632 (-887)) . T) ((-1132) . T) ((-1247) . T))
-((-2545 (((-1297 (-711 |#2|)) (-1297 $)) 67 T ELT)) (-2432 (((-711 |#2|) (-1297 $)) 139 T ELT)) (-3346 ((|#2| $) 36 T ELT)) (-3135 (((-711 |#2|) $ (-1297 $)) 142 T ELT)) (-1713 (((-3 $ "failed") $) 89 T ELT)) (-4092 ((|#2| $) 39 T ELT)) (-1822 (((-1201 |#2|) $) 98 T ELT)) (-3392 ((|#2| (-1297 $)) 122 T ELT)) (-3412 (((-1201 |#2|) $) 32 T ELT)) (-3706 (((-114)) 116 T ELT)) (-4143 (($ (-1297 |#2|) (-1297 $)) 132 T ELT)) (-1990 (((-3 $ "failed") $) 93 T ELT)) (-1794 (((-114)) 111 T ELT)) (-4320 (((-114)) 106 T ELT)) (-2959 (((-114)) 58 T ELT)) (-1501 (((-711 |#2|) (-1297 $)) 137 T ELT)) (-3876 ((|#2| $) 35 T ELT)) (-2517 (((-711 |#2|) $ (-1297 $)) 141 T ELT)) (-3236 (((-3 $ "failed") $) 87 T ELT)) (-2442 ((|#2| $) 38 T ELT)) (-4161 (((-1201 |#2|) $) 97 T ELT)) (-2456 ((|#2| (-1297 $)) 120 T ELT)) (-3569 (((-1201 |#2|) $) 30 T ELT)) (-2220 (((-114)) 115 T ELT)) (-2995 (((-114)) 108 T ELT)) (-1721 (((-114)) 56 T ELT)) (-2940 (((-114)) 103 T ELT)) (-2892 (((-114)) 117 T ELT)) (-2178 (((-1297 |#2|) $ (-1297 $)) NIL T ELT) (((-711 |#2|) (-1297 $) (-1297 $)) 128 T ELT)) (-2620 (((-114)) 113 T ELT)) (-1548 (((-663 (-1297 |#2|))) 102 T ELT)) (-1418 (((-114)) 114 T ELT)) (-1405 (((-114)) 112 T ELT)) (-2493 (((-114)) 51 T ELT)) (-2423 (((-114)) 118 T ELT)))
-(((-379 |#1| |#2|) (-10 -8 (-15 -1822 ((-1201 |#2|) |#1|)) (-15 -4161 ((-1201 |#2|) |#1|)) (-15 -1548 ((-663 (-1297 |#2|)))) (-15 -1713 ((-3 |#1| "failed") |#1|)) (-15 -3236 ((-3 |#1| "failed") |#1|)) (-15 -1990 ((-3 |#1| "failed") |#1|)) (-15 -4320 ((-114))) (-15 -2995 ((-114))) (-15 -1794 ((-114))) (-15 -1721 ((-114))) (-15 -2959 ((-114))) (-15 -2940 ((-114))) (-15 -2423 ((-114))) (-15 -2892 ((-114))) (-15 -3706 ((-114))) (-15 -2220 ((-114))) (-15 -2493 ((-114))) (-15 -1418 ((-114))) (-15 -1405 ((-114))) (-15 -2620 ((-114))) (-15 -3412 ((-1201 |#2|) |#1|)) (-15 -3569 ((-1201 |#2|) |#1|)) (-15 -2432 ((-711 |#2|) (-1297 |#1|))) (-15 -1501 ((-711 |#2|) (-1297 |#1|))) (-15 -3392 (|#2| (-1297 |#1|))) (-15 -2456 (|#2| (-1297 |#1|))) (-15 -4143 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -2178 ((-711 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -2178 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -4092 (|#2| |#1|)) (-15 -2442 (|#2| |#1|)) (-15 -3346 (|#2| |#1|)) (-15 -3876 (|#2| |#1|)) (-15 -3135 ((-711 |#2|) |#1| (-1297 |#1|))) (-15 -2517 ((-711 |#2|) |#1| (-1297 |#1|))) (-15 -2545 ((-1297 (-711 |#2|)) (-1297 |#1|)))) (-380 |#2|) (-175)) (T -379))
-((-2620 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1405 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1418 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-2493 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-2220 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-3706 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-2892 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-2423 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-2940 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-2959 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1721 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1794 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-2995 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-4320 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1548 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-663 (-1297 *4))) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))))
-(-10 -8 (-15 -1822 ((-1201 |#2|) |#1|)) (-15 -4161 ((-1201 |#2|) |#1|)) (-15 -1548 ((-663 (-1297 |#2|)))) (-15 -1713 ((-3 |#1| "failed") |#1|)) (-15 -3236 ((-3 |#1| "failed") |#1|)) (-15 -1990 ((-3 |#1| "failed") |#1|)) (-15 -4320 ((-114))) (-15 -2995 ((-114))) (-15 -1794 ((-114))) (-15 -1721 ((-114))) (-15 -2959 ((-114))) (-15 -2940 ((-114))) (-15 -2423 ((-114))) (-15 -2892 ((-114))) (-15 -3706 ((-114))) (-15 -2220 ((-114))) (-15 -2493 ((-114))) (-15 -1418 ((-114))) (-15 -1405 ((-114))) (-15 -2620 ((-114))) (-15 -3412 ((-1201 |#2|) |#1|)) (-15 -3569 ((-1201 |#2|) |#1|)) (-15 -2432 ((-711 |#2|) (-1297 |#1|))) (-15 -1501 ((-711 |#2|) (-1297 |#1|))) (-15 -3392 (|#2| (-1297 |#1|))) (-15 -2456 (|#2| (-1297 |#1|))) (-15 -4143 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -2178 ((-711 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -2178 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -4092 (|#2| |#1|)) (-15 -2442 (|#2| |#1|)) (-15 -3346 (|#2| |#1|)) (-15 -3876 (|#2| |#1|)) (-15 -3135 ((-711 |#2|) |#1| (-1297 |#1|))) (-15 -2517 ((-711 |#2|) |#1| (-1297 |#1|))) (-15 -2545 ((-1297 (-711 |#2|)) (-1297 |#1|))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-2489 (((-3 $ "failed")) 42 (|has| |#1| (-571)) ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2545 (((-1297 (-711 |#1|)) (-1297 $)) 83 T ELT)) (-1854 (((-1297 $)) 86 T ELT)) (-2238 (($) 18 T CONST)) (-4126 (((-3 (-2 (|:| |particular| $) (|:| -1954 (-663 $))) "failed")) 45 (|has| |#1| (-571)) ELT)) (-3608 (((-3 $ "failed")) 43 (|has| |#1| (-571)) ELT)) (-2432 (((-711 |#1|) (-1297 $)) 70 T ELT)) (-3346 ((|#1| $) 79 T ELT)) (-3135 (((-711 |#1|) $ (-1297 $)) 81 T ELT)) (-1713 (((-3 $ "failed") $) 50 (|has| |#1| (-571)) ELT)) (-1866 (($ $ (-948)) 31 T ELT)) (-4092 ((|#1| $) 77 T ELT)) (-1822 (((-1201 |#1|) $) 47 (|has| |#1| (-571)) ELT)) (-3392 ((|#1| (-1297 $)) 72 T ELT)) (-3412 (((-1201 |#1|) $) 68 T ELT)) (-3706 (((-114)) 62 T ELT)) (-4143 (($ (-1297 |#1|) (-1297 $)) 74 T ELT)) (-1990 (((-3 $ "failed") $) 52 (|has| |#1| (-571)) ELT)) (-2326 (((-948)) 85 T ELT)) (-3157 (((-114)) 59 T ELT)) (-1784 (($ $ (-948)) 38 T ELT)) (-1794 (((-114)) 55 T ELT)) (-4320 (((-114)) 53 T ELT)) (-2959 (((-114)) 57 T ELT)) (-1398 (((-3 (-2 (|:| |particular| $) (|:| -1954 (-663 $))) "failed")) 46 (|has| |#1| (-571)) ELT)) (-2171 (((-3 $ "failed")) 44 (|has| |#1| (-571)) ELT)) (-1501 (((-711 |#1|) (-1297 $)) 71 T ELT)) (-3876 ((|#1| $) 80 T ELT)) (-2517 (((-711 |#1|) $ (-1297 $)) 82 T ELT)) (-3236 (((-3 $ "failed") $) 51 (|has| |#1| (-571)) ELT)) (-3520 (($ $ (-948)) 32 T ELT)) (-2442 ((|#1| $) 78 T ELT)) (-4161 (((-1201 |#1|) $) 48 (|has| |#1| (-571)) ELT)) (-2456 ((|#1| (-1297 $)) 73 T ELT)) (-3569 (((-1201 |#1|) $) 69 T ELT)) (-2220 (((-114)) 63 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-2995 (((-114)) 54 T ELT)) (-1721 (((-114)) 56 T ELT)) (-2940 (((-114)) 58 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-2892 (((-114)) 61 T ELT)) (-2178 (((-1297 |#1|) $ (-1297 $)) 76 T ELT) (((-711 |#1|) (-1297 $) (-1297 $)) 75 T ELT)) (-4106 (((-663 (-975 |#1|)) (-1297 $)) 84 T ELT)) (-2013 (($ $ $) 28 T ELT)) (-2620 (((-114)) 67 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-1548 (((-663 (-1297 |#1|))) 49 (|has| |#1| (-571)) ELT)) (-4128 (($ $ $ $) 29 T ELT)) (-1418 (((-114)) 65 T ELT)) (-3868 (($ $ $) 27 T ELT)) (-1405 (((-114)) 66 T ELT)) (-2493 (((-114)) 64 T ELT)) (-2423 (((-114)) 60 T ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 33 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT)))
+((-3398 (((-1297 (-711 |#2|)) (-1297 $)) 67 T ELT)) (-1691 (((-711 |#2|) (-1297 $)) 139 T ELT)) (-2865 ((|#2| $) 36 T ELT)) (-2541 (((-711 |#2|) $ (-1297 $)) 142 T ELT)) (-2035 (((-3 $ "failed") $) 89 T ELT)) (-2652 ((|#2| $) 39 T ELT)) (-1825 (((-1201 |#2|) $) 98 T ELT)) (-2098 ((|#2| (-1297 $)) 122 T ELT)) (-2280 (((-1201 |#2|) $) 32 T ELT)) (-2137 (((-114)) 116 T ELT)) (-1953 (($ (-1297 |#2|) (-1297 $)) 132 T ELT)) (-2873 (((-3 $ "failed") $) 93 T ELT)) (-1521 (((-114)) 111 T ELT)) (-3053 (((-114)) 106 T ELT)) (-4460 (((-114)) 58 T ELT)) (-2999 (((-711 |#2|) (-1297 $)) 137 T ELT)) (-4278 ((|#2| $) 35 T ELT)) (-4414 (((-711 |#2|) $ (-1297 $)) 141 T ELT)) (-4294 (((-3 $ "failed") $) 87 T ELT)) (-1788 ((|#2| $) 38 T ELT)) (-2126 (((-1201 |#2|) $) 97 T ELT)) (-1951 ((|#2| (-1297 $)) 120 T ELT)) (-1364 (((-1201 |#2|) $) 30 T ELT)) (-3361 (((-114)) 115 T ELT)) (-3577 (((-114)) 108 T ELT)) (-2107 (((-114)) 56 T ELT)) (-4289 (((-114)) 103 T ELT)) (-3905 (((-114)) 117 T ELT)) (-4226 (((-1297 |#2|) $ (-1297 $)) NIL T ELT) (((-711 |#2|) (-1297 $) (-1297 $)) 128 T ELT)) (-2848 (((-114)) 113 T ELT)) (-1601 (((-663 (-1297 |#2|))) 102 T ELT)) (-3757 (((-114)) 114 T ELT)) (-4103 (((-114)) 112 T ELT)) (-4213 (((-114)) 51 T ELT)) (-1597 (((-114)) 118 T ELT)))
+(((-379 |#1| |#2|) (-10 -8 (-15 -1825 ((-1201 |#2|) |#1|)) (-15 -2126 ((-1201 |#2|) |#1|)) (-15 -1601 ((-663 (-1297 |#2|)))) (-15 -2035 ((-3 |#1| "failed") |#1|)) (-15 -4294 ((-3 |#1| "failed") |#1|)) (-15 -2873 ((-3 |#1| "failed") |#1|)) (-15 -3053 ((-114))) (-15 -3577 ((-114))) (-15 -1521 ((-114))) (-15 -2107 ((-114))) (-15 -4460 ((-114))) (-15 -4289 ((-114))) (-15 -1597 ((-114))) (-15 -3905 ((-114))) (-15 -2137 ((-114))) (-15 -3361 ((-114))) (-15 -4213 ((-114))) (-15 -3757 ((-114))) (-15 -4103 ((-114))) (-15 -2848 ((-114))) (-15 -2280 ((-1201 |#2|) |#1|)) (-15 -1364 ((-1201 |#2|) |#1|)) (-15 -1691 ((-711 |#2|) (-1297 |#1|))) (-15 -2999 ((-711 |#2|) (-1297 |#1|))) (-15 -2098 (|#2| (-1297 |#1|))) (-15 -1951 (|#2| (-1297 |#1|))) (-15 -1953 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -4226 ((-711 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -4226 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -2652 (|#2| |#1|)) (-15 -1788 (|#2| |#1|)) (-15 -2865 (|#2| |#1|)) (-15 -4278 (|#2| |#1|)) (-15 -2541 ((-711 |#2|) |#1| (-1297 |#1|))) (-15 -4414 ((-711 |#2|) |#1| (-1297 |#1|))) (-15 -3398 ((-1297 (-711 |#2|)) (-1297 |#1|)))) (-380 |#2|) (-175)) (T -379))
+((-2848 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-4103 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-3757 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-4213 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-3361 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-2137 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-3905 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1597 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-4289 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-4460 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-2107 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1521 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-3577 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-3053 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1601 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-663 (-1297 *4))) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))))
+(-10 -8 (-15 -1825 ((-1201 |#2|) |#1|)) (-15 -2126 ((-1201 |#2|) |#1|)) (-15 -1601 ((-663 (-1297 |#2|)))) (-15 -2035 ((-3 |#1| "failed") |#1|)) (-15 -4294 ((-3 |#1| "failed") |#1|)) (-15 -2873 ((-3 |#1| "failed") |#1|)) (-15 -3053 ((-114))) (-15 -3577 ((-114))) (-15 -1521 ((-114))) (-15 -2107 ((-114))) (-15 -4460 ((-114))) (-15 -4289 ((-114))) (-15 -1597 ((-114))) (-15 -3905 ((-114))) (-15 -2137 ((-114))) (-15 -3361 ((-114))) (-15 -4213 ((-114))) (-15 -3757 ((-114))) (-15 -4103 ((-114))) (-15 -2848 ((-114))) (-15 -2280 ((-1201 |#2|) |#1|)) (-15 -1364 ((-1201 |#2|) |#1|)) (-15 -1691 ((-711 |#2|) (-1297 |#1|))) (-15 -2999 ((-711 |#2|) (-1297 |#1|))) (-15 -2098 (|#2| (-1297 |#1|))) (-15 -1951 (|#2| (-1297 |#1|))) (-15 -1953 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -4226 ((-711 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -4226 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -2652 (|#2| |#1|)) (-15 -1788 (|#2| |#1|)) (-15 -2865 (|#2| |#1|)) (-15 -4278 (|#2| |#1|)) (-15 -2541 ((-711 |#2|) |#1| (-1297 |#1|))) (-15 -4414 ((-711 |#2|) |#1| (-1297 |#1|))) (-15 -3398 ((-1297 (-711 |#2|)) (-1297 |#1|))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-4184 (((-3 $ "failed")) 42 (|has| |#1| (-571)) ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3398 (((-1297 (-711 |#1|)) (-1297 $)) 83 T ELT)) (-4087 (((-1297 $)) 86 T ELT)) (-3525 (($) 18 T CONST)) (-1756 (((-3 (-2 (|:| |particular| $) (|:| -3822 (-663 $))) "failed")) 45 (|has| |#1| (-571)) ELT)) (-3681 (((-3 $ "failed")) 43 (|has| |#1| (-571)) ELT)) (-1691 (((-711 |#1|) (-1297 $)) 70 T ELT)) (-2865 ((|#1| $) 79 T ELT)) (-2541 (((-711 |#1|) $ (-1297 $)) 81 T ELT)) (-2035 (((-3 $ "failed") $) 50 (|has| |#1| (-571)) ELT)) (-4201 (($ $ (-948)) 31 T ELT)) (-2652 ((|#1| $) 77 T ELT)) (-1825 (((-1201 |#1|) $) 47 (|has| |#1| (-571)) ELT)) (-2098 ((|#1| (-1297 $)) 72 T ELT)) (-2280 (((-1201 |#1|) $) 68 T ELT)) (-2137 (((-114)) 62 T ELT)) (-1953 (($ (-1297 |#1|) (-1297 $)) 74 T ELT)) (-2873 (((-3 $ "failed") $) 52 (|has| |#1| (-571)) ELT)) (-1604 (((-948)) 85 T ELT)) (-1558 (((-114)) 59 T ELT)) (-1441 (($ $ (-948)) 38 T ELT)) (-1521 (((-114)) 55 T ELT)) (-3053 (((-114)) 53 T ELT)) (-4460 (((-114)) 57 T ELT)) (-1367 (((-3 (-2 (|:| |particular| $) (|:| -3822 (-663 $))) "failed")) 46 (|has| |#1| (-571)) ELT)) (-4156 (((-3 $ "failed")) 44 (|has| |#1| (-571)) ELT)) (-2999 (((-711 |#1|) (-1297 $)) 71 T ELT)) (-4278 ((|#1| $) 80 T ELT)) (-4414 (((-711 |#1|) $ (-1297 $)) 82 T ELT)) (-4294 (((-3 $ "failed") $) 51 (|has| |#1| (-571)) ELT)) (-2065 (($ $ (-948)) 32 T ELT)) (-1788 ((|#1| $) 78 T ELT)) (-2126 (((-1201 |#1|) $) 48 (|has| |#1| (-571)) ELT)) (-1951 ((|#1| (-1297 $)) 73 T ELT)) (-1364 (((-1201 |#1|) $) 69 T ELT)) (-3361 (((-114)) 63 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3577 (((-114)) 54 T ELT)) (-2107 (((-114)) 56 T ELT)) (-4289 (((-114)) 58 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3905 (((-114)) 61 T ELT)) (-4226 (((-1297 |#1|) $ (-1297 $)) 76 T ELT) (((-711 |#1|) (-1297 $) (-1297 $)) 75 T ELT)) (-1556 (((-663 (-975 |#1|)) (-1297 $)) 84 T ELT)) (-3117 (($ $ $) 28 T ELT)) (-2848 (((-114)) 67 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1601 (((-663 (-1297 |#1|))) 49 (|has| |#1| (-571)) ELT)) (-1777 (($ $ $ $) 29 T ELT)) (-3757 (((-114)) 65 T ELT)) (-4209 (($ $ $) 27 T ELT)) (-4103 (((-114)) 66 T ELT)) (-4213 (((-114)) 64 T ELT)) (-1597 (((-114)) 60 T ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 33 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT)))
(((-380 |#1|) (-142) (-175)) (T -380))
-((-1854 (*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1297 *1)) (-4 *1 (-380 *3)))) (-2326 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-948)))) (-4106 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-663 (-975 *4))))) (-2545 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-1297 (-711 *4))))) (-2517 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-3135 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-3876 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-3346 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-2442 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-4092 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-2178 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-1297 *4)))) (-2178 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-4143 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1297 *1)) (-4 *4 (-175)) (-4 *1 (-380 *4)))) (-2456 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-3392 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1501 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-2432 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-3569 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1201 *3)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1201 *3)))) (-2620 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1405 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1418 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-2493 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-2220 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-3706 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-2892 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-2423 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-3157 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-2940 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-2959 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1721 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1794 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-2995 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-4320 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1990 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-571)))) (-3236 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-571)))) (-1713 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-571)))) (-1548 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-571)) (-5 *2 (-663 (-1297 *3))))) (-4161 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-571)) (-5 *2 (-1201 *3)))) (-1822 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-571)) (-5 *2 (-1201 *3)))) (-1398 (*1 *2) (|partial| -12 (-4 *3 (-571)) (-4 *3 (-175)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1954 (-663 *1)))) (-4 *1 (-380 *3)))) (-4126 (*1 *2) (|partial| -12 (-4 *3 (-571)) (-4 *3 (-175)) (-5 *2 (-2 (|:| |particular| *1) (|:| -1954 (-663 *1)))) (-4 *1 (-380 *3)))) (-2171 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-571)) (-4 *2 (-175)))) (-3608 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-571)) (-4 *2 (-175)))) (-2489 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-571)) (-4 *2 (-175)))))
-(-13 (-766 |t#1|) (-10 -8 (-15 -1854 ((-1297 $))) (-15 -2326 ((-948))) (-15 -4106 ((-663 (-975 |t#1|)) (-1297 $))) (-15 -2545 ((-1297 (-711 |t#1|)) (-1297 $))) (-15 -2517 ((-711 |t#1|) $ (-1297 $))) (-15 -3135 ((-711 |t#1|) $ (-1297 $))) (-15 -3876 (|t#1| $)) (-15 -3346 (|t#1| $)) (-15 -2442 (|t#1| $)) (-15 -4092 (|t#1| $)) (-15 -2178 ((-1297 |t#1|) $ (-1297 $))) (-15 -2178 ((-711 |t#1|) (-1297 $) (-1297 $))) (-15 -4143 ($ (-1297 |t#1|) (-1297 $))) (-15 -2456 (|t#1| (-1297 $))) (-15 -3392 (|t#1| (-1297 $))) (-15 -1501 ((-711 |t#1|) (-1297 $))) (-15 -2432 ((-711 |t#1|) (-1297 $))) (-15 -3569 ((-1201 |t#1|) $)) (-15 -3412 ((-1201 |t#1|) $)) (-15 -2620 ((-114))) (-15 -1405 ((-114))) (-15 -1418 ((-114))) (-15 -2493 ((-114))) (-15 -2220 ((-114))) (-15 -3706 ((-114))) (-15 -2892 ((-114))) (-15 -2423 ((-114))) (-15 -3157 ((-114))) (-15 -2940 ((-114))) (-15 -2959 ((-114))) (-15 -1721 ((-114))) (-15 -1794 ((-114))) (-15 -2995 ((-114))) (-15 -4320 ((-114))) (IF (|has| |t#1| (-571)) (PROGN (-15 -1990 ((-3 $ "failed") $)) (-15 -3236 ((-3 $ "failed") $)) (-15 -1713 ((-3 $ "failed") $)) (-15 -1548 ((-663 (-1297 |t#1|)))) (-15 -4161 ((-1201 |t#1|) $)) (-15 -1822 ((-1201 |t#1|) $)) (-15 -1398 ((-3 (-2 (|:| |particular| $) (|:| -1954 (-663 $))) "failed"))) (-15 -4126 ((-3 (-2 (|:| |particular| $) (|:| -1954 (-663 $))) "failed"))) (-15 -2171 ((-3 $ "failed"))) (-15 -3608 ((-3 $ "failed"))) (-15 -2489 ((-3 $ "failed"))) (-6 -4505)) |%noBranch|)))
+((-4087 (*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1297 *1)) (-4 *1 (-380 *3)))) (-1604 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-948)))) (-1556 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-663 (-975 *4))))) (-3398 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-1297 (-711 *4))))) (-4414 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-2541 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-4278 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-2865 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1788 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-2652 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-4226 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-1297 *4)))) (-4226 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-1953 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1297 *1)) (-4 *4 (-175)) (-4 *1 (-380 *4)))) (-1951 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-2098 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-2999 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-1691 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-1364 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1201 *3)))) (-2280 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1201 *3)))) (-2848 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-4103 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-3757 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-4213 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-3361 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-2137 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-3905 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1597 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1558 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-4289 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-4460 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-2107 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1521 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-3577 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-3053 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-2873 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-571)))) (-4294 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-571)))) (-2035 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-571)))) (-1601 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-571)) (-5 *2 (-663 (-1297 *3))))) (-2126 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-571)) (-5 *2 (-1201 *3)))) (-1825 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-571)) (-5 *2 (-1201 *3)))) (-1367 (*1 *2) (|partial| -12 (-4 *3 (-571)) (-4 *3 (-175)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3822 (-663 *1)))) (-4 *1 (-380 *3)))) (-1756 (*1 *2) (|partial| -12 (-4 *3 (-571)) (-4 *3 (-175)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3822 (-663 *1)))) (-4 *1 (-380 *3)))) (-4156 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-571)) (-4 *2 (-175)))) (-3681 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-571)) (-4 *2 (-175)))) (-4184 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-571)) (-4 *2 (-175)))))
+(-13 (-766 |t#1|) (-10 -8 (-15 -4087 ((-1297 $))) (-15 -1604 ((-948))) (-15 -1556 ((-663 (-975 |t#1|)) (-1297 $))) (-15 -3398 ((-1297 (-711 |t#1|)) (-1297 $))) (-15 -4414 ((-711 |t#1|) $ (-1297 $))) (-15 -2541 ((-711 |t#1|) $ (-1297 $))) (-15 -4278 (|t#1| $)) (-15 -2865 (|t#1| $)) (-15 -1788 (|t#1| $)) (-15 -2652 (|t#1| $)) (-15 -4226 ((-1297 |t#1|) $ (-1297 $))) (-15 -4226 ((-711 |t#1|) (-1297 $) (-1297 $))) (-15 -1953 ($ (-1297 |t#1|) (-1297 $))) (-15 -1951 (|t#1| (-1297 $))) (-15 -2098 (|t#1| (-1297 $))) (-15 -2999 ((-711 |t#1|) (-1297 $))) (-15 -1691 ((-711 |t#1|) (-1297 $))) (-15 -1364 ((-1201 |t#1|) $)) (-15 -2280 ((-1201 |t#1|) $)) (-15 -2848 ((-114))) (-15 -4103 ((-114))) (-15 -3757 ((-114))) (-15 -4213 ((-114))) (-15 -3361 ((-114))) (-15 -2137 ((-114))) (-15 -3905 ((-114))) (-15 -1597 ((-114))) (-15 -1558 ((-114))) (-15 -4289 ((-114))) (-15 -4460 ((-114))) (-15 -2107 ((-114))) (-15 -1521 ((-114))) (-15 -3577 ((-114))) (-15 -3053 ((-114))) (IF (|has| |t#1| (-571)) (PROGN (-15 -2873 ((-3 $ "failed") $)) (-15 -4294 ((-3 $ "failed") $)) (-15 -2035 ((-3 $ "failed") $)) (-15 -1601 ((-663 (-1297 |t#1|)))) (-15 -2126 ((-1201 |t#1|) $)) (-15 -1825 ((-1201 |t#1|) $)) (-15 -1367 ((-3 (-2 (|:| |particular| $) (|:| -3822 (-663 $))) "failed"))) (-15 -1756 ((-3 (-2 (|:| |particular| $) (|:| -3822 (-663 $))) "failed"))) (-15 -4156 ((-3 $ "failed"))) (-15 -3681 ((-3 $ "failed"))) (-15 -4184 ((-3 $ "failed"))) (-6 -4505)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-742) . T) ((-766 |#1|) . T) ((-783) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) 7 T ELT)) (-3241 (((-793)) 17 T ELT)) (-2310 (($) 14 T ELT)) (-4419 (((-948) $) 15 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3128 (($ (-948)) 16 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2473 (((-114) $ $) 8 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2552 (((-793)) 17 T ELT)) (-1812 (($) 14 T ELT)) (-2622 (((-948) $) 15 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-1591 (($ (-948)) 16 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2340 (((-114) $ $) 8 T ELT)))
(((-381) (-142)) (T -381))
-((-3241 (*1 *2) (-12 (-4 *1 (-381)) (-5 *2 (-793)))) (-3128 (*1 *1 *2) (-12 (-5 *2 (-948)) (-4 *1 (-381)))) (-4419 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-948)))) (-2310 (*1 *1) (-4 *1 (-381))))
-(-13 (-1132) (-10 -8 (-15 -3241 ((-793))) (-15 -3128 ($ (-948))) (-15 -4419 ((-948) $)) (-15 -2310 ($))))
+((-2552 (*1 *2) (-12 (-4 *1 (-381)) (-5 *2 (-793)))) (-1591 (*1 *1 *2) (-12 (-5 *2 (-948)) (-4 *1 (-381)))) (-2622 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-948)))) (-1812 (*1 *1) (-4 *1 (-381))))
+(-13 (-1132) (-10 -8 (-15 -2552 ((-793))) (-15 -1591 ($ (-948))) (-15 -2622 ((-948) $)) (-15 -1812 ($))))
(((-102) . T) ((-632 (-887)) . T) ((-1132) . T) ((-1247) . T))
-((-1698 (((-711 |#2|) (-1297 $)) 45 T ELT)) (-4143 (($ (-1297 |#2|) (-1297 $)) 39 T ELT)) (-4333 (((-711 |#2|) $ (-1297 $)) 47 T ELT)) (-2690 ((|#2| (-1297 $)) 13 T ELT)) (-2178 (((-1297 |#2|) $ (-1297 $)) NIL T ELT) (((-711 |#2|) (-1297 $) (-1297 $)) 27 T ELT)))
-(((-382 |#1| |#2| |#3|) (-10 -8 (-15 -1698 ((-711 |#2|) (-1297 |#1|))) (-15 -2690 (|#2| (-1297 |#1|))) (-15 -4143 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -2178 ((-711 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -2178 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -4333 ((-711 |#2|) |#1| (-1297 |#1|)))) (-383 |#2| |#3|) (-175) (-1273 |#2|)) (T -382))
+((-3100 (((-711 |#2|) (-1297 $)) 45 T ELT)) (-1953 (($ (-1297 |#2|) (-1297 $)) 39 T ELT)) (-3160 (((-711 |#2|) $ (-1297 $)) 47 T ELT)) (-2336 ((|#2| (-1297 $)) 13 T ELT)) (-4226 (((-1297 |#2|) $ (-1297 $)) NIL T ELT) (((-711 |#2|) (-1297 $) (-1297 $)) 27 T ELT)))
+(((-382 |#1| |#2| |#3|) (-10 -8 (-15 -3100 ((-711 |#2|) (-1297 |#1|))) (-15 -2336 (|#2| (-1297 |#1|))) (-15 -1953 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -4226 ((-711 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -4226 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -3160 ((-711 |#2|) |#1| (-1297 |#1|)))) (-383 |#2| |#3|) (-175) (-1273 |#2|)) (T -382))
NIL
-(-10 -8 (-15 -1698 ((-711 |#2|) (-1297 |#1|))) (-15 -2690 (|#2| (-1297 |#1|))) (-15 -4143 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -2178 ((-711 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -2178 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -4333 ((-711 |#2|) |#1| (-1297 |#1|))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-1698 (((-711 |#1|) (-1297 $)) 53 T ELT)) (-3349 ((|#1| $) 59 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-4143 (($ (-1297 |#1|) (-1297 $)) 55 T ELT)) (-4333 (((-711 |#1|) $ (-1297 $)) 60 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-2326 (((-948)) 61 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-2032 ((|#1| $) 58 T ELT)) (-1787 ((|#2| $) 51 (|has| |#1| (-376)) ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-2690 ((|#1| (-1297 $)) 54 T ELT)) (-2178 (((-1297 |#1|) $ (-1297 $)) 57 T ELT) (((-711 |#1|) (-1297 $) (-1297 $)) 56 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 44 T ELT)) (-1964 (((-3 $ "failed") $) 50 (|has| |#1| (-147)) ELT)) (-2630 ((|#2| $) 52 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
+(-10 -8 (-15 -3100 ((-711 |#2|) (-1297 |#1|))) (-15 -2336 (|#2| (-1297 |#1|))) (-15 -1953 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -4226 ((-711 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -4226 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -3160 ((-711 |#2|) |#1| (-1297 |#1|))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3100 (((-711 |#1|) (-1297 $)) 53 T ELT)) (-4113 ((|#1| $) 59 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-1953 (($ (-1297 |#1|) (-1297 $)) 55 T ELT)) (-3160 (((-711 |#1|) $ (-1297 $)) 60 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1604 (((-948)) 61 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-2084 ((|#1| $) 58 T ELT)) (-1471 ((|#2| $) 51 (|has| |#1| (-376)) ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2336 ((|#1| (-1297 $)) 54 T ELT)) (-4226 (((-1297 |#1|) $ (-1297 $)) 57 T ELT) (((-711 |#1|) (-1297 $) (-1297 $)) 56 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 44 T ELT)) (-3919 (((-3 $ "failed") $) 50 (|has| |#1| (-147)) ELT)) (-2978 ((|#2| $) 52 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
(((-383 |#1| |#2|) (-142) (-175) (-1273 |t#1|)) (T -383))
-((-2326 (*1 *2) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3)) (-5 *2 (-948)))) (-4333 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-711 *4)))) (-3349 (*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-175)))) (-2032 (*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-175)))) (-2178 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *4)))) (-2178 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-711 *4)))) (-4143 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1297 *1)) (-4 *4 (-175)) (-4 *1 (-383 *4 *5)) (-4 *5 (-1273 *4)))) (-2690 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *2 *4)) (-4 *4 (-1273 *2)) (-4 *2 (-175)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-711 *4)))) (-2630 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1273 *3)))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *3 (-376)) (-4 *2 (-1273 *3)))))
-(-13 (-38 |t#1|) (-10 -8 (-15 -2326 ((-948))) (-15 -4333 ((-711 |t#1|) $ (-1297 $))) (-15 -3349 (|t#1| $)) (-15 -2032 (|t#1| $)) (-15 -2178 ((-1297 |t#1|) $ (-1297 $))) (-15 -2178 ((-711 |t#1|) (-1297 $) (-1297 $))) (-15 -4143 ($ (-1297 |t#1|) (-1297 $))) (-15 -2690 (|t#1| (-1297 $))) (-15 -1698 ((-711 |t#1|) (-1297 $))) (-15 -2630 (|t#2| $)) (IF (|has| |t#1| (-376)) (-15 -1787 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|)))
+((-1604 (*1 *2) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3)) (-5 *2 (-948)))) (-3160 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-711 *4)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-175)))) (-2084 (*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-175)))) (-4226 (*1 *2 *1 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *4)))) (-4226 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-711 *4)))) (-1953 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1297 *1)) (-4 *4 (-175)) (-4 *1 (-383 *4 *5)) (-4 *5 (-1273 *4)))) (-2336 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *2 *4)) (-4 *4 (-1273 *2)) (-4 *2 (-175)))) (-3100 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-711 *4)))) (-2978 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1273 *3)))) (-1471 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *3 (-376)) (-4 *2 (-1273 *3)))))
+(-13 (-38 |t#1|) (-10 -8 (-15 -1604 ((-948))) (-15 -3160 ((-711 |t#1|) $ (-1297 $))) (-15 -4113 (|t#1| $)) (-15 -2084 (|t#1| $)) (-15 -4226 ((-1297 |t#1|) $ (-1297 $))) (-15 -4226 ((-711 |t#1|) (-1297 $) (-1297 $))) (-15 -1953 ($ (-1297 |t#1|) (-1297 $))) (-15 -2336 (|t#1| (-1297 $))) (-15 -3100 ((-711 |t#1|) (-1297 $))) (-15 -2978 (|t#2| $)) (IF (|has| |t#1| (-376)) (-15 -1471 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-748) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-4040 (((-114) (-1 (-114) |#2| |#2|) $) NIL T ELT) (((-114) $) 18 T ELT)) (-1703 (($ (-1 (-114) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-2286 (($ (-1 (-114) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-4292 (($ $) 25 T ELT)) (-1722 (((-560) (-1 (-114) |#2|) $) NIL T ELT) (((-560) |#2| $) 11 T ELT) (((-560) |#2| $ (-560)) NIL T ELT)) (-3223 (($ (-1 (-114) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT)))
-(((-384 |#1| |#2|) (-10 -8 (-15 -1703 (|#1| |#1|)) (-15 -1703 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -4040 ((-114) |#1|)) (-15 -2286 (|#1| |#1|)) (-15 -3223 (|#1| |#1| |#1|)) (-15 -1722 ((-560) |#2| |#1| (-560))) (-15 -1722 ((-560) |#2| |#1|)) (-15 -1722 ((-560) (-1 (-114) |#2|) |#1|)) (-15 -4040 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -2286 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -4292 (|#1| |#1|)) (-15 -3223 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|))) (-385 |#2|) (-1247)) (T -384))
+((-2152 (((-114) (-1 (-114) |#2| |#2|) $) NIL T ELT) (((-114) $) 18 T ELT)) (-3152 (($ (-1 (-114) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-1787 (($ (-1 (-114) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-4374 (($ $) 25 T ELT)) (-2359 (((-560) (-1 (-114) |#2|) $) NIL T ELT) (((-560) |#2| $) 11 T ELT) (((-560) |#2| $ (-560)) NIL T ELT)) (-4167 (($ (-1 (-114) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT)))
+(((-384 |#1| |#2|) (-10 -8 (-15 -3152 (|#1| |#1|)) (-15 -3152 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -2152 ((-114) |#1|)) (-15 -1787 (|#1| |#1|)) (-15 -4167 (|#1| |#1| |#1|)) (-15 -2359 ((-560) |#2| |#1| (-560))) (-15 -2359 ((-560) |#2| |#1|)) (-15 -2359 ((-560) (-1 (-114) |#2|) |#1|)) (-15 -2152 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -1787 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -4374 (|#1| |#1|)) (-15 -4167 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|))) (-385 |#2|) (-1247)) (T -384))
NIL
-(-10 -8 (-15 -1703 (|#1| |#1|)) (-15 -1703 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -4040 ((-114) |#1|)) (-15 -2286 (|#1| |#1|)) (-15 -3223 (|#1| |#1| |#1|)) (-15 -1722 ((-560) |#2| |#1| (-560))) (-15 -1722 ((-560) |#2| |#1|)) (-15 -1722 ((-560) (-1 (-114) |#2|) |#1|)) (-15 -4040 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -2286 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -4292 (|#1| |#1|)) (-15 -3223 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3839 (((-1303) $ (-560) (-560)) 41 (|has| $ (-6 -4509)) ELT)) (-4040 (((-114) (-1 (-114) |#1| |#1|) $) 101 T ELT) (((-114) $) 95 (|has| |#1| (-871)) ELT)) (-1703 (($ (-1 (-114) |#1| |#1|) $) 92 (|has| $ (-6 -4509)) ELT) (($ $) 91 (-12 (|has| |#1| (-871)) (|has| $ (-6 -4509))) ELT)) (-2286 (($ (-1 (-114) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-871)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-1773 ((|#1| $ (-560) |#1|) 53 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) 60 (|has| $ (-6 -4509)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) 77 (|has| $ (-6 -4508)) ELT)) (-2238 (($) 7 T CONST)) (-4391 (($ $) 93 (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) 103 T ELT)) (-3606 (($ $) 80 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2375 (($ |#1| $) 79 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 76 (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4508)) ELT)) (-3779 ((|#1| $ (-560) |#1|) 54 (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-560)) 52 T ELT)) (-1722 (((-560) (-1 (-114) |#1|) $) 100 T ELT) (((-560) |#1| $) 99 (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) 98 (|has| |#1| (-1132)) ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-4095 (($ (-793) |#1|) 70 T ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-1762 (((-560) $) 44 (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) 85 (|has| |#1| (-871)) ELT)) (-3223 (($ (-1 (-114) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-871)) ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2937 (((-560) $) 45 (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) 86 (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3996 (($ |#1| $ (-560)) 62 T ELT) (($ $ $ (-560)) 61 T ELT)) (-3270 (((-663 (-560)) $) 47 T ELT)) (-3586 (((-114) (-560) $) 48 T ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-3637 ((|#1| $) 43 (|has| (-560) (-871)) ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 73 T ELT)) (-3037 (($ $ |#1|) 42 (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-2914 (((-114) |#1| $) 46 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) 49 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3924 ((|#1| $ (-560) |#1|) 51 T ELT) ((|#1| $ (-560)) 50 T ELT) (($ $ (-1264 (-560))) 71 T ELT)) (-4413 (($ $ (-560)) 64 T ELT) (($ $ (-1264 (-560))) 63 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3640 (($ $ $ (-560)) 94 (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) 81 (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 72 T ELT)) (-3415 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-663 $)) 66 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2536 (((-114) $ $) 87 (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) 89 (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2521 (((-114) $ $) 88 (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) 90 (|has| |#1| (-871)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+(-10 -8 (-15 -3152 (|#1| |#1|)) (-15 -3152 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -2152 ((-114) |#1|)) (-15 -1787 (|#1| |#1|)) (-15 -4167 (|#1| |#1| |#1|)) (-15 -2359 ((-560) |#2| |#1| (-560))) (-15 -2359 ((-560) |#2| |#1|)) (-15 -2359 ((-560) (-1 (-114) |#2|) |#1|)) (-15 -2152 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -1787 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -4374 (|#1| |#1|)) (-15 -4167 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2033 (((-1303) $ (-560) (-560)) 41 (|has| $ (-6 -4509)) ELT)) (-2152 (((-114) (-1 (-114) |#1| |#1|) $) 101 T ELT) (((-114) $) 95 (|has| |#1| (-871)) ELT)) (-3152 (($ (-1 (-114) |#1| |#1|) $) 92 (|has| $ (-6 -4509)) ELT) (($ $) 91 (-12 (|has| |#1| (-871)) (|has| $ (-6 -4509))) ELT)) (-1787 (($ (-1 (-114) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-871)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-4083 ((|#1| $ (-560) |#1|) 53 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) 60 (|has| $ (-6 -4509)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) 77 (|has| $ (-6 -4508)) ELT)) (-3525 (($) 7 T CONST)) (-2372 (($ $) 93 (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) 103 T ELT)) (-3658 (($ $) 80 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3033 (($ |#1| $) 79 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 76 (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4508)) ELT)) (-3338 ((|#1| $ (-560) |#1|) 54 (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-560)) 52 T ELT)) (-2359 (((-560) (-1 (-114) |#1|) $) 100 T ELT) (((-560) |#1| $) 99 (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) 98 (|has| |#1| (-1132)) ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-4246 (($ (-793) |#1|) 70 T ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-2483 (((-560) $) 44 (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) 85 (|has| |#1| (-871)) ELT)) (-4167 (($ (-1 (-114) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-871)) ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4263 (((-560) $) 45 (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) 86 (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-2507 (($ |#1| $ (-560)) 62 T ELT) (($ $ $ (-560)) 61 T ELT)) (-3372 (((-663 (-560)) $) 47 T ELT)) (-3439 (((-114) (-560) $) 48 T ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-4334 ((|#1| $) 43 (|has| (-560) (-871)) ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 73 T ELT)) (-2740 (($ $ |#1|) 42 (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-4019 (((-114) |#1| $) 46 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) 49 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1507 ((|#1| $ (-560) |#1|) 51 T ELT) ((|#1| $ (-560)) 50 T ELT) (($ $ (-1264 (-560))) 71 T ELT)) (-2579 (($ $ (-560)) 64 T ELT) (($ $ (-1264 (-560))) 63 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3993 (($ $ $ (-560)) 94 (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) 81 (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 72 T ELT)) (-1955 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-663 $)) 66 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2396 (((-114) $ $) 87 (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) 89 (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2386 (((-114) $ $) 88 (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) 90 (|has| |#1| (-871)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-385 |#1|) (-142) (-1247)) (T -385))
-((-3223 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) (-4292 (*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)))) (-2286 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) (-4040 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *1 (-385 *4)) (-4 *4 (-1247)) (-5 *2 (-114)))) (-1722 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (-4 *1 (-385 *4)) (-4 *4 (-1247)) (-5 *2 (-560)))) (-1722 (*1 *2 *3 *1) (-12 (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-1132)) (-5 *2 (-560)))) (-1722 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-1132)))) (-3223 (*1 *1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-871)))) (-2286 (*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-871)))) (-4040 (*1 *2 *1) (-12 (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-871)) (-5 *2 (-114)))) (-3640 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-560)) (|has| *1 (-6 -4509)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) (-4391 (*1 *1 *1) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-385 *2)) (-4 *2 (-1247)))) (-1703 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (|has| *1 (-6 -4509)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) (-1703 (*1 *1 *1) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-871)))))
-(-13 (-673 |t#1|) (-10 -8 (-6 -4508) (-15 -3223 ($ (-1 (-114) |t#1| |t#1|) $ $)) (-15 -4292 ($ $)) (-15 -2286 ($ (-1 (-114) |t#1| |t#1|) $)) (-15 -4040 ((-114) (-1 (-114) |t#1| |t#1|) $)) (-15 -1722 ((-560) (-1 (-114) |t#1|) $)) (IF (|has| |t#1| (-1132)) (PROGN (-15 -1722 ((-560) |t#1| $)) (-15 -1722 ((-560) |t#1| $ (-560)))) |%noBranch|) (IF (|has| |t#1| (-871)) (PROGN (-6 (-871)) (-15 -3223 ($ $ $)) (-15 -2286 ($ $)) (-15 -4040 ((-114) $))) |%noBranch|) (IF (|has| $ (-6 -4509)) (PROGN (-15 -3640 ($ $ $ (-560))) (-15 -4391 ($ $)) (-15 -1703 ($ (-1 (-114) |t#1| |t#1|) $)) (IF (|has| |t#1| (-871)) (-15 -1703 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-871)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-871)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #0=(-560) |#1|) . T) ((-298 (-1264 (-560)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-673 |#1|) . T) ((-871) |has| |#1| (-871)) ((-874) |has| |#1| (-871)) ((-1132) -2304 (|has| |#1| (-1132)) (|has| |#1| (-871))) ((-1247) . T))
-((-1520 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-4129 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-3957 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT)))
-(((-386 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4129 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1520 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1247) (-385 |#1|) (-1247) (-385 |#3|)) (T -386))
-((-1520 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-4 *2 (-385 *5)) (-5 *1 (-386 *6 *4 *5 *2)) (-4 *4 (-385 *6)))) (-4129 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-386 *5 *4 *2 *6)) (-4 *4 (-385 *5)) (-4 *6 (-385 *2)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-4 *2 (-385 *6)) (-5 *1 (-386 *5 *4 *6 *2)) (-4 *4 (-385 *5)))))
-(-10 -7 (-15 -3957 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4129 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1520 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-2571 (((-663 |#1|) $) 37 T ELT)) (-2672 (($ $ (-793)) 38 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-2942 (((-1322 |#1| |#2|) (-1322 |#1| |#2|) $) 41 T ELT)) (-2256 (($ $) 39 T ELT)) (-4058 (((-1322 |#1| |#2|) (-1322 |#1| |#2|) $) 42 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-4187 (($ $ |#1| $) 36 T ELT) (($ $ (-663 |#1|) (-663 $)) 35 T ELT)) (-3630 (((-793) $) 43 T ELT)) (-1592 (($ $ $) 34 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ |#1|) 46 T ELT) (((-1313 |#1| |#2|) $) 45 T ELT) (((-1322 |#1| |#2|) $) 44 T ELT)) (-2115 ((|#2| (-1322 |#1| |#2|) $) 47 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-1440 (($ (-694 |#1|)) 40 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ |#2|) 33 (|has| |#2| (-376)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#2| $) 27 T ELT) (($ $ |#2|) 31 T ELT)))
+((-4167 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) (-4374 (*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)))) (-1787 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) (-2152 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *1 (-385 *4)) (-4 *4 (-1247)) (-5 *2 (-114)))) (-2359 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (-4 *1 (-385 *4)) (-4 *4 (-1247)) (-5 *2 (-560)))) (-2359 (*1 *2 *3 *1) (-12 (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-1132)) (-5 *2 (-560)))) (-2359 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-1132)))) (-4167 (*1 *1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-871)))) (-1787 (*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-871)))) (-2152 (*1 *2 *1) (-12 (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-871)) (-5 *2 (-114)))) (-3993 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-560)) (|has| *1 (-6 -4509)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) (-2372 (*1 *1 *1) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-385 *2)) (-4 *2 (-1247)))) (-3152 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (|has| *1 (-6 -4509)) (-4 *1 (-385 *3)) (-4 *3 (-1247)))) (-3152 (*1 *1 *1) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-871)))))
+(-13 (-673 |t#1|) (-10 -8 (-6 -4508) (-15 -4167 ($ (-1 (-114) |t#1| |t#1|) $ $)) (-15 -4374 ($ $)) (-15 -1787 ($ (-1 (-114) |t#1| |t#1|) $)) (-15 -2152 ((-114) (-1 (-114) |t#1| |t#1|) $)) (-15 -2359 ((-560) (-1 (-114) |t#1|) $)) (IF (|has| |t#1| (-1132)) (PROGN (-15 -2359 ((-560) |t#1| $)) (-15 -2359 ((-560) |t#1| $ (-560)))) |%noBranch|) (IF (|has| |t#1| (-871)) (PROGN (-6 (-871)) (-15 -4167 ($ $ $)) (-15 -1787 ($ $)) (-15 -2152 ((-114) $))) |%noBranch|) (IF (|has| $ (-6 -4509)) (PROGN (-15 -3993 ($ $ $ (-560))) (-15 -2372 ($ $)) (-15 -3152 ($ (-1 (-114) |t#1| |t#1|) $)) (IF (|has| |t#1| (-871)) (-15 -3152 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-871)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-871)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #0=(-560) |#1|) . T) ((-298 (-1264 (-560)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-673 |#1|) . T) ((-871) |has| |#1| (-871)) ((-874) |has| |#1| (-871)) ((-1132) -2196 (|has| |#1| (-1132)) (|has| |#1| (-871))) ((-1247) . T))
+((-2928 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-1778 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-2260 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT)))
+(((-386 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2260 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1778 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2928 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1247) (-385 |#1|) (-1247) (-385 |#3|)) (T -386))
+((-2928 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-4 *2 (-385 *5)) (-5 *1 (-386 *6 *4 *5 *2)) (-4 *4 (-385 *6)))) (-1778 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-386 *5 *4 *2 *6)) (-4 *4 (-385 *5)) (-4 *6 (-385 *2)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-4 *2 (-385 *6)) (-5 *1 (-386 *5 *4 *6 *2)) (-4 *4 (-385 *5)))))
+(-10 -7 (-15 -2260 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1778 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2928 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-4356 (((-663 |#1|) $) 37 T ELT)) (-2165 (($ $ (-793)) 38 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-4308 (((-1322 |#1| |#2|) (-1322 |#1| |#2|) $) 41 T ELT)) (-3723 (($ $) 39 T ELT)) (-2343 (((-1322 |#1| |#2|) (-1322 |#1| |#2|) $) 42 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2371 (($ $ |#1| $) 36 T ELT) (($ $ (-663 |#1|) (-663 $)) 35 T ELT)) (-3900 (((-793) $) 43 T ELT)) (-3924 (($ $ $) 34 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ |#1|) 46 T ELT) (((-1313 |#1| |#2|) $) 45 T ELT) (((-1322 |#1| |#2|) $) 44 T ELT)) (-2625 ((|#2| (-1322 |#1| |#2|) $) 47 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-2700 (($ (-694 |#1|)) 40 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ |#2|) 33 (|has| |#2| (-376)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#2| $) 27 T ELT) (($ $ |#2|) 31 T ELT)))
(((-387 |#1| |#2|) (-142) (-871) (-175)) (T -387))
-((-2115 (*1 *2 *3 *1) (-12 (-5 *3 (-1322 *4 *2)) (-4 *1 (-387 *4 *2)) (-4 *4 (-871)) (-4 *2 (-175)))) (-1578 (*1 *1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-871)) (-4 *3 (-175)))) (-1578 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) (-5 *2 (-1313 *3 *4)))) (-1578 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) (-5 *2 (-1322 *3 *4)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) (-5 *2 (-793)))) (-4058 (*1 *2 *2 *1) (-12 (-5 *2 (-1322 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)))) (-2942 (*1 *2 *2 *1) (-12 (-5 *2 (-1322 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)))) (-1440 (*1 *1 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-4 *1 (-387 *3 *4)) (-4 *4 (-175)))) (-2256 (*1 *1 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-871)) (-4 *3 (-175)))) (-2672 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)))) (-2571 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) (-5 *2 (-663 *3)))) (-4187 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-871)) (-4 *3 (-175)))) (-4187 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-871)) (-4 *5 (-175)))))
-(-13 (-654 |t#2|) (-10 -8 (-15 -2115 (|t#2| (-1322 |t#1| |t#2|) $)) (-15 -1578 ($ |t#1|)) (-15 -1578 ((-1313 |t#1| |t#2|) $)) (-15 -1578 ((-1322 |t#1| |t#2|) $)) (-15 -3630 ((-793) $)) (-15 -4058 ((-1322 |t#1| |t#2|) (-1322 |t#1| |t#2|) $)) (-15 -2942 ((-1322 |t#1| |t#2|) (-1322 |t#1| |t#2|) $)) (-15 -1440 ($ (-694 |t#1|))) (-15 -2256 ($ $)) (-15 -2672 ($ $ (-793))) (-15 -2571 ((-663 |t#1|) $)) (-15 -4187 ($ $ |t#1| $)) (-15 -4187 ($ $ (-663 |t#1|) (-663 $)))))
+((-2625 (*1 *2 *3 *1) (-12 (-5 *3 (-1322 *4 *2)) (-4 *1 (-387 *4 *2)) (-4 *4 (-871)) (-4 *2 (-175)))) (-3913 (*1 *1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-871)) (-4 *3 (-175)))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) (-5 *2 (-1313 *3 *4)))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) (-5 *2 (-1322 *3 *4)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) (-5 *2 (-793)))) (-2343 (*1 *2 *2 *1) (-12 (-5 *2 (-1322 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)))) (-4308 (*1 *2 *2 *1) (-12 (-5 *2 (-1322 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)))) (-2700 (*1 *1 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-4 *1 (-387 *3 *4)) (-4 *4 (-175)))) (-3723 (*1 *1 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-871)) (-4 *3 (-175)))) (-2165 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)))) (-4356 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) (-5 *2 (-663 *3)))) (-2371 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-871)) (-4 *3 (-175)))) (-2371 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-871)) (-4 *5 (-175)))))
+(-13 (-654 |t#2|) (-10 -8 (-15 -2625 (|t#2| (-1322 |t#1| |t#2|) $)) (-15 -3913 ($ |t#1|)) (-15 -3913 ((-1313 |t#1| |t#2|) $)) (-15 -3913 ((-1322 |t#1| |t#2|) $)) (-15 -3900 ((-793) $)) (-15 -2343 ((-1322 |t#1| |t#2|) (-1322 |t#1| |t#2|) $)) (-15 -4308 ((-1322 |t#1| |t#2|) (-1322 |t#1| |t#2|) $)) (-15 -2700 ($ (-694 |t#1|))) (-15 -3723 ($ $)) (-15 -2165 ($ $ (-793))) (-15 -4356 ((-663 |t#1|) $)) (-15 -2371 ($ $ |t#1| $)) (-15 -2371 ($ $ (-663 |t#1|) (-663 $)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 |#2|) . T) ((-670 |#2|) . T) ((-654 |#2|) . T) ((-662 |#2|) . T) ((-739 |#2|) . T) ((-1082 |#2|) . T) ((-1087 |#2|) . T) ((-1132) . T) ((-1247) . T))
-((-3044 ((|#2| (-1 (-114) |#1| |#1|) |#2|) 40 T ELT)) (-3019 ((|#2| (-1 (-114) |#1| |#1|) |#2|) 13 T ELT)) (-3742 ((|#2| (-1 (-114) |#1| |#1|) |#2|) 33 T ELT)))
-(((-388 |#1| |#2|) (-10 -7 (-15 -3019 (|#2| (-1 (-114) |#1| |#1|) |#2|)) (-15 -3742 (|#2| (-1 (-114) |#1| |#1|) |#2|)) (-15 -3044 (|#2| (-1 (-114) |#1| |#1|) |#2|))) (-1247) (-13 (-385 |#1|) (-10 -7 (-6 -4509)))) (T -388))
-((-3044 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4509)))))) (-3742 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4509)))))) (-3019 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4509)))))))
-(-10 -7 (-15 -3019 (|#2| (-1 (-114) |#1| |#1|) |#2|)) (-15 -3742 (|#2| (-1 (-114) |#1| |#1|) |#2|)) (-15 -3044 (|#2| (-1 (-114) |#1| |#1|) |#2|)))
-((-3142 (((-711 |#2|) (-711 $)) NIL T ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL T ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 22 T ELT) (((-711 (-560)) (-711 $)) 14 T ELT)))
-(((-389 |#1| |#2|) (-10 -8 (-15 -3142 ((-711 (-560)) (-711 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 |#1|) (-1297 |#1|))) (-15 -3142 ((-711 |#2|) (-711 |#1|)))) (-390 |#2|) (-1080)) (T -389))
-NIL
-(-10 -8 (-15 -3142 ((-711 (-560)) (-711 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 |#1|) (-1297 |#1|))) (-15 -3142 ((-711 |#2|) (-711 |#1|))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-3142 (((-711 |#1|) (-711 $)) 30 T ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 29 T ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 41 (|has| |#1| (-660 (-560))) ELT) (((-711 (-560)) (-711 $)) 40 (|has| |#1| (-660 (-560))) ELT)) (-2484 (((-711 |#1|) (-1297 $)) 32 T ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 31 T ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 39 (|has| |#1| (-660 (-560))) ELT) (((-711 (-560)) (-1297 $)) 38 (|has| |#1| (-660 (-560))) ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#1| $) 27 T ELT)))
+((-2802 ((|#2| (-1 (-114) |#1| |#1|) |#2|) 40 T ELT)) (-3847 ((|#2| (-1 (-114) |#1| |#1|) |#2|) 13 T ELT)) (-2426 ((|#2| (-1 (-114) |#1| |#1|) |#2|) 33 T ELT)))
+(((-388 |#1| |#2|) (-10 -7 (-15 -3847 (|#2| (-1 (-114) |#1| |#1|) |#2|)) (-15 -2426 (|#2| (-1 (-114) |#1| |#1|) |#2|)) (-15 -2802 (|#2| (-1 (-114) |#1| |#1|) |#2|))) (-1247) (-13 (-385 |#1|) (-10 -7 (-6 -4509)))) (T -388))
+((-2802 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4509)))))) (-2426 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4509)))))) (-3847 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4509)))))))
+(-10 -7 (-15 -3847 (|#2| (-1 (-114) |#1| |#1|) |#2|)) (-15 -2426 (|#2| (-1 (-114) |#1| |#1|) |#2|)) (-15 -2802 (|#2| (-1 (-114) |#1| |#1|) |#2|)))
+((-2619 (((-711 |#2|) (-711 $)) NIL T ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL T ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 22 T ELT) (((-711 (-560)) (-711 $)) 14 T ELT)))
+(((-389 |#1| |#2|) (-10 -8 (-15 -2619 ((-711 (-560)) (-711 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 |#1|) (-1297 |#1|))) (-15 -2619 ((-711 |#2|) (-711 |#1|)))) (-390 |#2|) (-1080)) (T -389))
+NIL
+(-10 -8 (-15 -2619 ((-711 (-560)) (-711 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 |#1|) (-1297 |#1|))) (-15 -2619 ((-711 |#2|) (-711 |#1|))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-2619 (((-711 |#1|) (-711 $)) 30 T ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 29 T ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 41 (|has| |#1| (-660 (-560))) ELT) (((-711 (-560)) (-711 $)) 40 (|has| |#1| (-660 (-560))) ELT)) (-4140 (((-711 |#1|) (-1297 $)) 32 T ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 31 T ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 39 (|has| |#1| (-660 (-560))) ELT) (((-711 (-560)) (-1297 $)) 38 (|has| |#1| (-660 (-560))) ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#1| $) 27 T ELT)))
(((-390 |#1|) (-142) (-1080)) (T -390))
NIL
(-13 (-660 |t#1|) (-10 -7 (IF (|has| |t#1| (-660 (-560))) (-6 (-660 (-560))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 #0=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-660 #0#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 35 T ELT)) (-3941 (((-560) $) 62 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-4267 (($ $) 136 T ELT)) (-4337 (($ $) 98 T ELT)) (-3455 (($ $) 90 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-4471 (($ $) 47 T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-4313 (($ $) 96 T ELT)) (-3430 (($ $) 85 T ELT)) (-2138 (((-560) $) 78 T ELT)) (-2331 (($ $ (-560)) 73 T ELT)) (-4363 (($ $) NIL T ELT)) (-3477 (($ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-1733 (($ $) 138 T ELT)) (-2539 (((-3 (-560) "failed") $) 230 T ELT) (((-3 (-421 (-560)) "failed") $) 226 T ELT)) (-3330 (((-560) $) 228 T ELT) (((-421 (-560)) $) 224 T ELT)) (-1478 (($ $ $) NIL T ELT)) (-2478 (((-560) $ $) 125 T ELT)) (-1990 (((-3 $ "failed") $) 141 T ELT)) (-3175 (((-421 (-560)) $ (-793)) 231 T ELT) (((-421 (-560)) $ (-793) (-793)) 223 T ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-3788 (((-948)) 121 T ELT) (((-948) (-948)) 122 (|has| $ (-6 -4499)) ELT)) (-2928 (((-114) $) 130 T ELT)) (-3796 (($) 41 T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL T ELT)) (-2400 (((-1303) (-793)) 190 T ELT)) (-3763 (((-1303)) 195 T ELT) (((-1303) (-793)) 196 T ELT)) (-3475 (((-1303)) 197 T ELT) (((-1303) (-793)) 198 T ELT)) (-3045 (((-1303)) 193 T ELT) (((-1303) (-793)) 194 T ELT)) (-3913 (((-560) $) 68 T ELT)) (-1581 (((-114) $) 40 T ELT)) (-2146 (($ $ (-560)) NIL T ELT)) (-3639 (($ $) 51 T ELT)) (-2032 (($ $) NIL T ELT)) (-2960 (((-114) $) 37 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3825 (($ $ $) NIL T ELT) (($) NIL (-12 (-1937 (|has| $ (-6 -4491))) (-1937 (|has| $ (-6 -4499)))) ELT)) (-2820 (($ $ $) NIL T ELT) (($) NIL (-12 (-1937 (|has| $ (-6 -4491))) (-1937 (|has| $ (-6 -4499)))) ELT)) (-3435 (((-560) $) 17 T ELT)) (-2104 (($) 106 T ELT) (($ $) 113 T ELT)) (-1396 (($) 112 T ELT) (($ $) 114 T ELT)) (-2192 (($ $) 101 T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) 143 T ELT)) (-1347 (((-948) (-560)) 46 (|has| $ (-6 -4499)) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2652 (($ $) 60 T ELT)) (-2016 (($ $) 135 T ELT)) (-2917 (($ (-560) (-560)) 131 T ELT) (($ (-560) (-560) (-948)) 132 T ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3205 (((-560) $) 19 T ELT)) (-4254 (($) 115 T ELT)) (-3251 (($ $) 95 T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-1601 (((-948)) 123 T ELT) (((-948) (-948)) 124 (|has| $ (-6 -4499)) ELT)) (-2894 (($ $) 142 T ELT) (($ $ (-793)) NIL T ELT)) (-4004 (((-948) (-560)) 50 (|has| $ (-6 -4499)) ELT)) (-4373 (($ $) NIL T ELT)) (-3488 (($ $) NIL T ELT)) (-4352 (($ $) NIL T ELT)) (-3466 (($ $) NIL T ELT)) (-4325 (($ $) 97 T ELT)) (-3443 (($ $) 89 T ELT)) (-1407 (((-391) $) 215 T ELT) (((-229) $) 217 T ELT) (((-915 (-391)) $) NIL T ELT) (((-1189) $) 201 T ELT) (((-549) $) 213 T ELT) (($ (-229)) 222 T ELT)) (-1578 (((-887) $) 205 T ELT) (($ (-560)) 227 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-560)) 227 T ELT) (($ (-421 (-560))) NIL T ELT) (((-229) $) 218 T ELT)) (-2930 (((-793)) NIL T CONST)) (-1494 (($ $) 137 T ELT)) (-4139 (((-948)) 61 T ELT) (((-948) (-948)) 80 (|has| $ (-6 -4499)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1792 (((-948)) 126 T ELT)) (-4411 (($ $) 104 T ELT)) (-4263 (($ $) 49 T ELT) (($ $ $) 59 T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-4387 (($ $) 102 T ELT)) (-3499 (($ $) 39 T ELT)) (-4438 (($ $) NIL T ELT)) (-4287 (($ $) NIL T ELT)) (-3837 (($ $) NIL T ELT)) (-4302 (($ $) NIL T ELT)) (-4423 (($ $) NIL T ELT)) (-4275 (($ $) NIL T ELT)) (-4398 (($ $) 103 T ELT)) (-4252 (($ $) 52 T ELT)) (-2282 (($ $) 58 T ELT)) (-2001 (($) 36 T CONST)) (-2011 (($) 43 T CONST)) (-2735 (((-1189) $) 27 T ELT) (((-1189) $ (-114)) 29 T ELT) (((-1303) (-845) $) 30 T ELT) (((-1303) (-845) $ (-114)) 31 T ELT)) (-3305 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2536 (((-114) $ $) 202 T ELT)) (-2508 (((-114) $ $) 45 T ELT)) (-2473 (((-114) $ $) 56 T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 57 T ELT)) (-2594 (($ $ $) 48 T ELT) (($ $ (-560)) 42 T ELT)) (-2580 (($ $) 38 T ELT) (($ $ $) 53 T ELT)) (-2567 (($ $ $) 72 T ELT)) (** (($ $ (-948)) 83 T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 107 T ELT) (($ $ (-421 (-560))) 153 T ELT) (($ $ $) 145 T ELT)) (* (($ (-948) $) 79 T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 84 T ELT) (($ $ $) 71 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT)))
-(((-391) (-13 (-418) (-240) (-633 (-1189)) (-843) (-632 (-229)) (-1233) (-633 (-549)) (-637 (-229)) (-10 -8 (-15 -2594 ($ $ (-560))) (-15 ** ($ $ $)) (-15 -3639 ($ $)) (-15 -2478 ((-560) $ $)) (-15 -2331 ($ $ (-560))) (-15 -3175 ((-421 (-560)) $ (-793))) (-15 -3175 ((-421 (-560)) $ (-793) (-793))) (-15 -2104 ($)) (-15 -1396 ($)) (-15 -4254 ($)) (-15 -4263 ($ $ $)) (-15 -2104 ($ $)) (-15 -1396 ($ $)) (-15 -3475 ((-1303))) (-15 -3475 ((-1303) (-793))) (-15 -3045 ((-1303))) (-15 -3045 ((-1303) (-793))) (-15 -3763 ((-1303))) (-15 -3763 ((-1303) (-793))) (-15 -2400 ((-1303) (-793))) (-6 -4499) (-6 -4491)))) (T -391))
-((** (*1 *1 *1 *1) (-5 *1 (-391))) (-2594 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-391)))) (-3639 (*1 *1 *1) (-5 *1 (-391))) (-2478 (*1 *2 *1 *1) (-12 (-5 *2 (-560)) (-5 *1 (-391)))) (-2331 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-391)))) (-3175 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-391)))) (-3175 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-391)))) (-2104 (*1 *1) (-5 *1 (-391))) (-1396 (*1 *1) (-5 *1 (-391))) (-4254 (*1 *1) (-5 *1 (-391))) (-4263 (*1 *1 *1 *1) (-5 *1 (-391))) (-2104 (*1 *1 *1) (-5 *1 (-391))) (-1396 (*1 *1 *1) (-5 *1 (-391))) (-3475 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-391)))) (-3475 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-391)))) (-3045 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-391)))) (-3045 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-391)))) (-3763 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-391)))) (-3763 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-391)))) (-2400 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-391)))))
-(-13 (-418) (-240) (-633 (-1189)) (-843) (-632 (-229)) (-1233) (-633 (-549)) (-637 (-229)) (-10 -8 (-15 -2594 ($ $ (-560))) (-15 ** ($ $ $)) (-15 -3639 ($ $)) (-15 -2478 ((-560) $ $)) (-15 -2331 ($ $ (-560))) (-15 -3175 ((-421 (-560)) $ (-793))) (-15 -3175 ((-421 (-560)) $ (-793) (-793))) (-15 -2104 ($)) (-15 -1396 ($)) (-15 -4254 ($)) (-15 -4263 ($ $ $)) (-15 -2104 ($ $)) (-15 -1396 ($ $)) (-15 -3475 ((-1303))) (-15 -3475 ((-1303) (-793))) (-15 -3045 ((-1303))) (-15 -3045 ((-1303) (-793))) (-15 -3763 ((-1303))) (-15 -3763 ((-1303) (-793))) (-15 -2400 ((-1303) (-793))) (-6 -4499) (-6 -4491)))
-((-3414 (((-663 (-305 (-975 (-171 |#1|)))) (-305 (-421 (-975 (-171 (-560))))) |#1|) 51 T ELT) (((-663 (-305 (-975 (-171 |#1|)))) (-421 (-975 (-171 (-560)))) |#1|) 50 T ELT) (((-663 (-663 (-305 (-975 (-171 |#1|))))) (-663 (-305 (-421 (-975 (-171 (-560)))))) |#1|) 47 T ELT) (((-663 (-663 (-305 (-975 (-171 |#1|))))) (-663 (-421 (-975 (-171 (-560))))) |#1|) 41 T ELT)) (-4410 (((-663 (-663 (-171 |#1|))) (-663 (-421 (-975 (-171 (-560))))) (-663 (-1207)) |#1|) 30 T ELT) (((-663 (-171 |#1|)) (-421 (-975 (-171 (-560)))) |#1|) 18 T ELT)))
-(((-392 |#1|) (-10 -7 (-15 -3414 ((-663 (-663 (-305 (-975 (-171 |#1|))))) (-663 (-421 (-975 (-171 (-560))))) |#1|)) (-15 -3414 ((-663 (-663 (-305 (-975 (-171 |#1|))))) (-663 (-305 (-421 (-975 (-171 (-560)))))) |#1|)) (-15 -3414 ((-663 (-305 (-975 (-171 |#1|)))) (-421 (-975 (-171 (-560)))) |#1|)) (-15 -3414 ((-663 (-305 (-975 (-171 |#1|)))) (-305 (-421 (-975 (-171 (-560))))) |#1|)) (-15 -4410 ((-663 (-171 |#1|)) (-421 (-975 (-171 (-560)))) |#1|)) (-15 -4410 ((-663 (-663 (-171 |#1|))) (-663 (-421 (-975 (-171 (-560))))) (-663 (-1207)) |#1|))) (-13 (-376) (-870))) (T -392))
-((-4410 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-421 (-975 (-171 (-560)))))) (-5 *4 (-663 (-1207))) (-5 *2 (-663 (-663 (-171 *5)))) (-5 *1 (-392 *5)) (-4 *5 (-13 (-376) (-870))))) (-4410 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 (-171 (-560))))) (-5 *2 (-663 (-171 *4))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-870))))) (-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-421 (-975 (-171 (-560)))))) (-5 *2 (-663 (-305 (-975 (-171 *4))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-870))))) (-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 (-171 (-560))))) (-5 *2 (-663 (-305 (-975 (-171 *4))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-870))))) (-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-305 (-421 (-975 (-171 (-560))))))) (-5 *2 (-663 (-663 (-305 (-975 (-171 *4)))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-870))))) (-3414 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-421 (-975 (-171 (-560)))))) (-5 *2 (-663 (-663 (-305 (-975 (-171 *4)))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-870))))))
-(-10 -7 (-15 -3414 ((-663 (-663 (-305 (-975 (-171 |#1|))))) (-663 (-421 (-975 (-171 (-560))))) |#1|)) (-15 -3414 ((-663 (-663 (-305 (-975 (-171 |#1|))))) (-663 (-305 (-421 (-975 (-171 (-560)))))) |#1|)) (-15 -3414 ((-663 (-305 (-975 (-171 |#1|)))) (-421 (-975 (-171 (-560)))) |#1|)) (-15 -3414 ((-663 (-305 (-975 (-171 |#1|)))) (-305 (-421 (-975 (-171 (-560))))) |#1|)) (-15 -4410 ((-663 (-171 |#1|)) (-421 (-975 (-171 (-560)))) |#1|)) (-15 -4410 ((-663 (-663 (-171 |#1|))) (-663 (-421 (-975 (-171 (-560))))) (-663 (-1207)) |#1|)))
-((-1433 (((-663 (-305 (-975 |#1|))) (-305 (-421 (-975 (-560)))) |#1|) 46 T ELT) (((-663 (-305 (-975 |#1|))) (-421 (-975 (-560))) |#1|) 45 T ELT) (((-663 (-663 (-305 (-975 |#1|)))) (-663 (-305 (-421 (-975 (-560))))) |#1|) 42 T ELT) (((-663 (-663 (-305 (-975 |#1|)))) (-663 (-421 (-975 (-560)))) |#1|) 36 T ELT)) (-2803 (((-663 |#1|) (-421 (-975 (-560))) |#1|) 20 T ELT) (((-663 (-663 |#1|)) (-663 (-421 (-975 (-560)))) (-663 (-1207)) |#1|) 30 T ELT)))
-(((-393 |#1|) (-10 -7 (-15 -1433 ((-663 (-663 (-305 (-975 |#1|)))) (-663 (-421 (-975 (-560)))) |#1|)) (-15 -1433 ((-663 (-663 (-305 (-975 |#1|)))) (-663 (-305 (-421 (-975 (-560))))) |#1|)) (-15 -1433 ((-663 (-305 (-975 |#1|))) (-421 (-975 (-560))) |#1|)) (-15 -1433 ((-663 (-305 (-975 |#1|))) (-305 (-421 (-975 (-560)))) |#1|)) (-15 -2803 ((-663 (-663 |#1|)) (-663 (-421 (-975 (-560)))) (-663 (-1207)) |#1|)) (-15 -2803 ((-663 |#1|) (-421 (-975 (-560))) |#1|))) (-13 (-870) (-376))) (T -393))
-((-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 (-560)))) (-5 *2 (-663 *4)) (-5 *1 (-393 *4)) (-4 *4 (-13 (-870) (-376))))) (-2803 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-421 (-975 (-560))))) (-5 *4 (-663 (-1207))) (-5 *2 (-663 (-663 *5))) (-5 *1 (-393 *5)) (-4 *5 (-13 (-870) (-376))))) (-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-421 (-975 (-560))))) (-5 *2 (-663 (-305 (-975 *4)))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-870) (-376))))) (-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 (-560)))) (-5 *2 (-663 (-305 (-975 *4)))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-870) (-376))))) (-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-305 (-421 (-975 (-560)))))) (-5 *2 (-663 (-663 (-305 (-975 *4))))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-870) (-376))))) (-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-421 (-975 (-560))))) (-5 *2 (-663 (-663 (-305 (-975 *4))))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-870) (-376))))))
-(-10 -7 (-15 -1433 ((-663 (-663 (-305 (-975 |#1|)))) (-663 (-421 (-975 (-560)))) |#1|)) (-15 -1433 ((-663 (-663 (-305 (-975 |#1|)))) (-663 (-305 (-421 (-975 (-560))))) |#1|)) (-15 -1433 ((-663 (-305 (-975 |#1|))) (-421 (-975 (-560))) |#1|)) (-15 -1433 ((-663 (-305 (-975 |#1|))) (-305 (-421 (-975 (-560)))) |#1|)) (-15 -2803 ((-663 (-663 |#1|)) (-663 (-421 (-975 (-560)))) (-663 (-1207)) |#1|)) (-15 -2803 ((-663 |#1|) (-421 (-975 (-560))) |#1|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1425 (((-663 (-897 |#2| |#1|)) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-1624 (($ $) NIL T ELT)) (-1417 (($ |#1| |#2|) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2094 ((|#2| $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 33 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 12 T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 35 T ELT)) (-3655 (((-560) $) 62 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3864 (($ $) 136 T ELT)) (-1982 (($ $) 98 T ELT)) (-1832 (($ $) 90 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-4021 (($ $) 47 T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-1958 (($ $) 96 T ELT)) (-1806 (($ $) 85 T ELT)) (-1869 (((-560) $) 78 T ELT)) (-1786 (($ $ (-560)) 73 T ELT)) (-2003 (($ $) NIL T ELT)) (-1856 (($ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2198 (($ $) 138 T ELT)) (-3929 (((-3 (-560) "failed") $) 230 T ELT) (((-3 (-421 (-560)) "failed") $) 226 T ELT)) (-3649 (((-560) $) 228 T ELT) (((-421 (-560)) $) 224 T ELT)) (-2186 (($ $ $) NIL T ELT)) (-4064 (((-560) $ $) 125 T ELT)) (-2873 (((-3 $ "failed") $) 141 T ELT)) (-1728 (((-421 (-560)) $ (-793)) 231 T ELT) (((-421 (-560)) $ (-793) (-793)) 223 T ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-2602 (((-948)) 121 T ELT) (((-948) (-948)) 122 (|has| $ (-6 -4499)) ELT)) (-4172 (((-114) $) 130 T ELT)) (-2503 (($) 41 T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL T ELT)) (-2615 (((-1303) (-793)) 190 T ELT)) (-2600 (((-1303)) 195 T ELT) (((-1303) (-793)) 196 T ELT)) (-1635 (((-1303)) 197 T ELT) (((-1303) (-793)) 198 T ELT)) (-2813 (((-1303)) 193 T ELT) (((-1303) (-793)) 194 T ELT)) (-1460 (((-560) $) 68 T ELT)) (-1918 (((-114) $) 40 T ELT)) (-1956 (($ $ (-560)) NIL T ELT)) (-3983 (($ $) 51 T ELT)) (-2084 (($ $) NIL T ELT)) (-4470 (((-114) $) 37 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2932 (($ $ $) NIL T ELT) (($) NIL (-12 (-1394 (|has| $ (-6 -4491))) (-1394 (|has| $ (-6 -4499)))) ELT)) (-4379 (($ $ $) NIL T ELT) (($) NIL (-12 (-1394 (|has| $ (-6 -4491))) (-1394 (|has| $ (-6 -4499)))) ELT)) (-2048 (((-560) $) 17 T ELT)) (-1539 (($) 106 T ELT) (($ $) 113 T ELT)) (-4070 (($) 112 T ELT) (($ $) 114 T ELT)) (-2831 (($ $) 101 T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) 143 T ELT)) (-3611 (((-948) (-560)) 46 (|has| $ (-6 -4499)) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3211 (($ $) 60 T ELT)) (-3147 (($ $) 135 T ELT)) (-2523 (($ (-560) (-560)) 131 T ELT) (($ (-560) (-560) (-948)) 132 T ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2030 (((-560) $) 19 T ELT)) (-3730 (($) 115 T ELT)) (-2515 (($ $) 95 T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3370 (((-948)) 123 T ELT) (((-948) (-948)) 124 (|has| $ (-6 -4499)) ELT)) (-3161 (($ $) 142 T ELT) (($ $ (-793)) NIL T ELT)) (-3036 (((-948) (-560)) 50 (|has| $ (-6 -4499)) ELT)) (-2013 (($ $) NIL T ELT)) (-1870 (($ $) NIL T ELT)) (-1992 (($ $) NIL T ELT)) (-1844 (($ $) NIL T ELT)) (-1972 (($ $) 97 T ELT)) (-1820 (($ $) 89 T ELT)) (-2400 (((-391) $) 215 T ELT) (((-229) $) 217 T ELT) (((-915 (-391)) $) NIL T ELT) (((-1189) $) 201 T ELT) (((-549) $) 213 T ELT) (($ (-229)) 222 T ELT)) (-3913 (((-887) $) 205 T ELT) (($ (-560)) 227 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-560)) 227 T ELT) (($ (-421 (-560))) NIL T ELT) (((-229) $) 218 T ELT)) (-4191 (((-793)) NIL T CONST)) (-3622 (($ $) 137 T ELT)) (-1902 (((-948)) 61 T ELT) (((-948) (-948)) 80 (|has| $ (-6 -4499)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2671 (((-948)) 126 T ELT)) (-2042 (($ $) 104 T ELT)) (-1907 (($ $) 49 T ELT) (($ $ $) 59 T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-2022 (($ $) 102 T ELT)) (-1882 (($ $) 39 T ELT)) (-2059 (($ $) NIL T ELT)) (-1932 (($ $) NIL T ELT)) (-3392 (($ $) NIL T ELT)) (-1945 (($ $) NIL T ELT)) (-2050 (($ $) NIL T ELT)) (-1920 (($ $) NIL T ELT)) (-2032 (($ $) 103 T ELT)) (-1895 (($ $) 52 T ELT)) (-2719 (($ $) 58 T ELT)) (-1446 (($) 36 T CONST)) (-1456 (($) 43 T CONST)) (-1581 (((-1189) $) 27 T ELT) (((-1189) $ (-114)) 29 T ELT) (((-1303) (-845) $) 30 T ELT) (((-1303) (-845) $ (-114)) 31 T ELT)) (-2111 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2396 (((-114) $ $) 202 T ELT)) (-2373 (((-114) $ $) 45 T ELT)) (-2340 (((-114) $ $) 56 T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 57 T ELT)) (-2453 (($ $ $) 48 T ELT) (($ $ (-560)) 42 T ELT)) (-2441 (($ $) 38 T ELT) (($ $ $) 53 T ELT)) (-2429 (($ $ $) 72 T ELT)) (** (($ $ (-948)) 83 T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 107 T ELT) (($ $ (-421 (-560))) 153 T ELT) (($ $ $) 145 T ELT)) (* (($ (-948) $) 79 T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 84 T ELT) (($ $ $) 71 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT)))
+(((-391) (-13 (-418) (-240) (-633 (-1189)) (-843) (-632 (-229)) (-1233) (-633 (-549)) (-637 (-229)) (-10 -8 (-15 -2453 ($ $ (-560))) (-15 ** ($ $ $)) (-15 -3983 ($ $)) (-15 -4064 ((-560) $ $)) (-15 -1786 ($ $ (-560))) (-15 -1728 ((-421 (-560)) $ (-793))) (-15 -1728 ((-421 (-560)) $ (-793) (-793))) (-15 -1539 ($)) (-15 -4070 ($)) (-15 -3730 ($)) (-15 -1907 ($ $ $)) (-15 -1539 ($ $)) (-15 -4070 ($ $)) (-15 -1635 ((-1303))) (-15 -1635 ((-1303) (-793))) (-15 -2813 ((-1303))) (-15 -2813 ((-1303) (-793))) (-15 -2600 ((-1303))) (-15 -2600 ((-1303) (-793))) (-15 -2615 ((-1303) (-793))) (-6 -4499) (-6 -4491)))) (T -391))
+((** (*1 *1 *1 *1) (-5 *1 (-391))) (-2453 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-391)))) (-3983 (*1 *1 *1) (-5 *1 (-391))) (-4064 (*1 *2 *1 *1) (-12 (-5 *2 (-560)) (-5 *1 (-391)))) (-1786 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-391)))) (-1728 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-391)))) (-1728 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-391)))) (-1539 (*1 *1) (-5 *1 (-391))) (-4070 (*1 *1) (-5 *1 (-391))) (-3730 (*1 *1) (-5 *1 (-391))) (-1907 (*1 *1 *1 *1) (-5 *1 (-391))) (-1539 (*1 *1 *1) (-5 *1 (-391))) (-4070 (*1 *1 *1) (-5 *1 (-391))) (-1635 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-391)))) (-1635 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-391)))) (-2813 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-391)))) (-2813 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-391)))) (-2600 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-391)))) (-2600 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-391)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-391)))))
+(-13 (-418) (-240) (-633 (-1189)) (-843) (-632 (-229)) (-1233) (-633 (-549)) (-637 (-229)) (-10 -8 (-15 -2453 ($ $ (-560))) (-15 ** ($ $ $)) (-15 -3983 ($ $)) (-15 -4064 ((-560) $ $)) (-15 -1786 ($ $ (-560))) (-15 -1728 ((-421 (-560)) $ (-793))) (-15 -1728 ((-421 (-560)) $ (-793) (-793))) (-15 -1539 ($)) (-15 -4070 ($)) (-15 -3730 ($)) (-15 -1907 ($ $ $)) (-15 -1539 ($ $)) (-15 -4070 ($ $)) (-15 -1635 ((-1303))) (-15 -1635 ((-1303) (-793))) (-15 -2813 ((-1303))) (-15 -2813 ((-1303) (-793))) (-15 -2600 ((-1303))) (-15 -2600 ((-1303) (-793))) (-15 -2615 ((-1303) (-793))) (-6 -4499) (-6 -4491)))
+((-2301 (((-663 (-305 (-975 (-171 |#1|)))) (-305 (-421 (-975 (-171 (-560))))) |#1|) 51 T ELT) (((-663 (-305 (-975 (-171 |#1|)))) (-421 (-975 (-171 (-560)))) |#1|) 50 T ELT) (((-663 (-663 (-305 (-975 (-171 |#1|))))) (-663 (-305 (-421 (-975 (-171 (-560)))))) |#1|) 47 T ELT) (((-663 (-663 (-305 (-975 (-171 |#1|))))) (-663 (-421 (-975 (-171 (-560))))) |#1|) 41 T ELT)) (-2557 (((-663 (-663 (-171 |#1|))) (-663 (-421 (-975 (-171 (-560))))) (-663 (-1207)) |#1|) 30 T ELT) (((-663 (-171 |#1|)) (-421 (-975 (-171 (-560)))) |#1|) 18 T ELT)))
+(((-392 |#1|) (-10 -7 (-15 -2301 ((-663 (-663 (-305 (-975 (-171 |#1|))))) (-663 (-421 (-975 (-171 (-560))))) |#1|)) (-15 -2301 ((-663 (-663 (-305 (-975 (-171 |#1|))))) (-663 (-305 (-421 (-975 (-171 (-560)))))) |#1|)) (-15 -2301 ((-663 (-305 (-975 (-171 |#1|)))) (-421 (-975 (-171 (-560)))) |#1|)) (-15 -2301 ((-663 (-305 (-975 (-171 |#1|)))) (-305 (-421 (-975 (-171 (-560))))) |#1|)) (-15 -2557 ((-663 (-171 |#1|)) (-421 (-975 (-171 (-560)))) |#1|)) (-15 -2557 ((-663 (-663 (-171 |#1|))) (-663 (-421 (-975 (-171 (-560))))) (-663 (-1207)) |#1|))) (-13 (-376) (-870))) (T -392))
+((-2557 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-421 (-975 (-171 (-560)))))) (-5 *4 (-663 (-1207))) (-5 *2 (-663 (-663 (-171 *5)))) (-5 *1 (-392 *5)) (-4 *5 (-13 (-376) (-870))))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 (-171 (-560))))) (-5 *2 (-663 (-171 *4))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-870))))) (-2301 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-421 (-975 (-171 (-560)))))) (-5 *2 (-663 (-305 (-975 (-171 *4))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-870))))) (-2301 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 (-171 (-560))))) (-5 *2 (-663 (-305 (-975 (-171 *4))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-870))))) (-2301 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-305 (-421 (-975 (-171 (-560))))))) (-5 *2 (-663 (-663 (-305 (-975 (-171 *4)))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-870))))) (-2301 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-421 (-975 (-171 (-560)))))) (-5 *2 (-663 (-663 (-305 (-975 (-171 *4)))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-870))))))
+(-10 -7 (-15 -2301 ((-663 (-663 (-305 (-975 (-171 |#1|))))) (-663 (-421 (-975 (-171 (-560))))) |#1|)) (-15 -2301 ((-663 (-663 (-305 (-975 (-171 |#1|))))) (-663 (-305 (-421 (-975 (-171 (-560)))))) |#1|)) (-15 -2301 ((-663 (-305 (-975 (-171 |#1|)))) (-421 (-975 (-171 (-560)))) |#1|)) (-15 -2301 ((-663 (-305 (-975 (-171 |#1|)))) (-305 (-421 (-975 (-171 (-560))))) |#1|)) (-15 -2557 ((-663 (-171 |#1|)) (-421 (-975 (-171 (-560)))) |#1|)) (-15 -2557 ((-663 (-663 (-171 |#1|))) (-663 (-421 (-975 (-171 (-560))))) (-663 (-1207)) |#1|)))
+((-1652 (((-663 (-305 (-975 |#1|))) (-305 (-421 (-975 (-560)))) |#1|) 46 T ELT) (((-663 (-305 (-975 |#1|))) (-421 (-975 (-560))) |#1|) 45 T ELT) (((-663 (-663 (-305 (-975 |#1|)))) (-663 (-305 (-421 (-975 (-560))))) |#1|) 42 T ELT) (((-663 (-663 (-305 (-975 |#1|)))) (-663 (-421 (-975 (-560)))) |#1|) 36 T ELT)) (-4208 (((-663 |#1|) (-421 (-975 (-560))) |#1|) 20 T ELT) (((-663 (-663 |#1|)) (-663 (-421 (-975 (-560)))) (-663 (-1207)) |#1|) 30 T ELT)))
+(((-393 |#1|) (-10 -7 (-15 -1652 ((-663 (-663 (-305 (-975 |#1|)))) (-663 (-421 (-975 (-560)))) |#1|)) (-15 -1652 ((-663 (-663 (-305 (-975 |#1|)))) (-663 (-305 (-421 (-975 (-560))))) |#1|)) (-15 -1652 ((-663 (-305 (-975 |#1|))) (-421 (-975 (-560))) |#1|)) (-15 -1652 ((-663 (-305 (-975 |#1|))) (-305 (-421 (-975 (-560)))) |#1|)) (-15 -4208 ((-663 (-663 |#1|)) (-663 (-421 (-975 (-560)))) (-663 (-1207)) |#1|)) (-15 -4208 ((-663 |#1|) (-421 (-975 (-560))) |#1|))) (-13 (-870) (-376))) (T -393))
+((-4208 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 (-560)))) (-5 *2 (-663 *4)) (-5 *1 (-393 *4)) (-4 *4 (-13 (-870) (-376))))) (-4208 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-421 (-975 (-560))))) (-5 *4 (-663 (-1207))) (-5 *2 (-663 (-663 *5))) (-5 *1 (-393 *5)) (-4 *5 (-13 (-870) (-376))))) (-1652 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-421 (-975 (-560))))) (-5 *2 (-663 (-305 (-975 *4)))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-870) (-376))))) (-1652 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 (-560)))) (-5 *2 (-663 (-305 (-975 *4)))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-870) (-376))))) (-1652 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-305 (-421 (-975 (-560)))))) (-5 *2 (-663 (-663 (-305 (-975 *4))))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-870) (-376))))) (-1652 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-421 (-975 (-560))))) (-5 *2 (-663 (-663 (-305 (-975 *4))))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-870) (-376))))))
+(-10 -7 (-15 -1652 ((-663 (-663 (-305 (-975 |#1|)))) (-663 (-421 (-975 (-560)))) |#1|)) (-15 -1652 ((-663 (-663 (-305 (-975 |#1|)))) (-663 (-305 (-421 (-975 (-560))))) |#1|)) (-15 -1652 ((-663 (-305 (-975 |#1|))) (-421 (-975 (-560))) |#1|)) (-15 -1652 ((-663 (-305 (-975 |#1|))) (-305 (-421 (-975 (-560)))) |#1|)) (-15 -4208 ((-663 (-663 |#1|)) (-663 (-421 (-975 (-560)))) (-663 (-1207)) |#1|)) (-15 -4208 ((-663 |#1|) (-421 (-975 (-560))) |#1|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-1465 (((-663 (-897 |#2| |#1|)) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3062 (($ $) NIL T ELT)) (-4139 (($ |#1| |#2|) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1447 ((|#2| $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 33 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 12 T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT)))
(((-394 |#1| |#2|) (-13 (-111 |#1| |#1|) (-523 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-175)) (-6 (-739 |#1|)) |%noBranch|))) (-1080) (-874)) (T -394))
NIL
(-13 (-111 |#1| |#1|) (-523 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-175)) (-6 (-739 |#1|)) |%noBranch|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#2| "failed") $) 30 T ELT)) (-3330 ((|#2| $) 32 T ELT)) (-1624 (($ $) NIL T ELT)) (-3531 (((-793) $) 11 T ELT)) (-3997 (((-663 $) $) 23 T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1471 (($ |#2| |#1|) 21 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-1583 ((|#2| $) 18 T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 51 T ELT) (($ |#2|) 31 T ELT)) (-3409 (((-663 |#1|) $) 20 T ELT)) (-2305 ((|#1| $ |#2|) 55 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 33 T CONST)) (-4165 (((-663 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#1| $) 36 T ELT) (($ $ |#1|) 37 T ELT) (($ |#1| |#2|) 39 T ELT) (($ |#2| |#1|) 40 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#2| "failed") $) 30 T ELT)) (-3649 ((|#2| $) 32 T ELT)) (-3062 (($ $) NIL T ELT)) (-4127 (((-793) $) 11 T ELT)) (-2947 (((-663 $) $) 23 T ELT)) (-1673 (((-114) $) NIL T ELT)) (-1405 (($ |#2| |#1|) 21 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2354 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-3024 ((|#2| $) 18 T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 51 T ELT) (($ |#2|) 31 T ELT)) (-2247 (((-663 |#1|) $) 20 T ELT)) (-2920 ((|#1| $ |#2|) 55 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 33 T CONST)) (-4118 (((-663 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#1| $) 36 T ELT) (($ $ |#1|) 37 T ELT) (($ |#1| |#2|) 39 T ELT) (($ |#2| |#1|) 40 T ELT)))
(((-395 |#1| |#2|) (-13 (-397 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1080) (-871)) (T -395))
((* (*1 *1 *2 *3) (-12 (-5 *1 (-395 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-871)))))
(-13 (-397 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-2759 (((-1303) $) 7 T ELT)) (-1578 (((-887) $) 8 T ELT) (($ (-711 (-721))) 14 T ELT) (($ (-663 (-342))) 13 T ELT) (($ (-342)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 11 T ELT)))
+((-3043 (((-1303) $) 7 T ELT)) (-3913 (((-887) $) 8 T ELT) (($ (-711 (-721))) 14 T ELT) (($ (-663 (-342))) 13 T ELT) (($ (-342)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 11 T ELT)))
(((-396) (-142)) (T -396))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-711 (-721))) (-4 *1 (-396)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-396)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-396)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) (-4 *1 (-396)))))
-(-13 (-410) (-10 -8 (-15 -1578 ($ (-711 (-721)))) (-15 -1578 ($ (-663 (-342)))) (-15 -1578 ($ (-342))) (-15 -1578 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))))))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-711 (-721))) (-4 *1 (-396)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-396)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-396)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) (-4 *1 (-396)))))
+(-13 (-410) (-10 -8 (-15 -3913 ($ (-711 (-721)))) (-15 -3913 ($ (-663 (-342)))) (-15 -3913 ($ (-342))) (-15 -3913 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))))))
(((-632 (-887)) . T) ((-410) . T) ((-1247) . T))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-2539 (((-3 |#2| "failed") $) 49 T ELT)) (-3330 ((|#2| $) 50 T ELT)) (-1624 (($ $) 35 T ELT)) (-3531 (((-793) $) 39 T ELT)) (-3997 (((-663 $) $) 40 T ELT)) (-1556 (((-114) $) 43 T ELT)) (-1471 (($ |#2| |#1|) 44 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 45 T ELT)) (-2064 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36 T ELT)) (-1583 ((|#2| $) 38 T ELT)) (-1597 ((|#1| $) 37 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ |#2|) 48 T ELT)) (-3409 (((-663 |#1|) $) 41 T ELT)) (-2305 ((|#1| $ |#2|) 46 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-4165 (((-663 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT) (($ |#1| |#2|) 47 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-3929 (((-3 |#2| "failed") $) 49 T ELT)) (-3649 ((|#2| $) 50 T ELT)) (-3062 (($ $) 35 T ELT)) (-4127 (((-793) $) 39 T ELT)) (-2947 (((-663 $) $) 40 T ELT)) (-1673 (((-114) $) 43 T ELT)) (-1405 (($ |#2| |#1|) 44 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 45 T ELT)) (-2354 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 36 T ELT)) (-3024 ((|#2| $) 38 T ELT)) (-3037 ((|#1| $) 37 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ |#2|) 48 T ELT)) (-2247 (((-663 |#1|) $) 41 T ELT)) (-2920 ((|#1| $ |#2|) 46 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-4118 (((-663 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 42 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT) (($ |#1| |#2|) 47 T ELT)))
(((-397 |#1| |#2|) (-142) (-1080) (-1132)) (T -397))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-1132)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1132)) (-4 *2 (-1080)))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1132)))) (-1471 (*1 *1 *2 *3) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1132)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1132)) (-5 *2 (-114)))) (-4165 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1132)) (-5 *2 (-663 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1132)) (-5 *2 (-663 *3)))) (-3997 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-1132)) (-5 *2 (-663 *1)) (-4 *1 (-397 *3 *4)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1132)) (-5 *2 (-793)))) (-1583 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1132)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1132)) (-4 *2 (-1080)))) (-2064 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1132)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-1624 (*1 *1 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-1132)))))
-(-13 (-111 |t#1| |t#1|) (-1069 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2305 (|t#1| $ |t#2|)) (-15 -3957 ($ (-1 |t#1| |t#1|) $)) (-15 -1471 ($ |t#2| |t#1|)) (-15 -1556 ((-114) $)) (-15 -4165 ((-663 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3409 ((-663 |t#1|) $)) (-15 -3997 ((-663 $) $)) (-15 -3531 ((-793) $)) (-15 -1583 (|t#2| $)) (-15 -1597 (|t#1| $)) (-15 -2064 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -1624 ($ $)) (IF (|has| |t#1| (-175)) (-6 (-739 |t#1|)) |%noBranch|)))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-1132)))) (-2920 (*1 *2 *1 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1132)) (-4 *2 (-1080)))) (-2260 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1132)))) (-1405 (*1 *1 *2 *3) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1132)))) (-1673 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1132)) (-5 *2 (-114)))) (-4118 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1132)) (-5 *2 (-663 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2247 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1132)) (-5 *2 (-663 *3)))) (-2947 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-1132)) (-5 *2 (-663 *1)) (-4 *1 (-397 *3 *4)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1132)) (-5 *2 (-793)))) (-3024 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1132)))) (-3037 (*1 *2 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1132)) (-4 *2 (-1080)))) (-2354 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1132)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-3062 (*1 *1 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-1132)))))
+(-13 (-111 |t#1| |t#1|) (-1069 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -2920 (|t#1| $ |t#2|)) (-15 -2260 ($ (-1 |t#1| |t#1|) $)) (-15 -1405 ($ |t#2| |t#1|)) (-15 -1673 ((-114) $)) (-15 -4118 ((-663 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2247 ((-663 |t#1|) $)) (-15 -2947 ((-663 $) $)) (-15 -4127 ((-793) $)) (-15 -3024 (|t#2| $)) (-15 -3037 (|t#1| $)) (-15 -2354 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -3062 ($ $)) (IF (|has| |t#1| (-175)) (-6 (-739 |t#1|)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-635 |#2|) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) |has| |#1| (-175)) ((-739 |#1|) |has| |#1| (-175)) ((-1069 |#2|) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1132) . T) ((-1247) . T))
-((-2539 (((-3 $ "failed") (-711 (-326 (-391)))) 21 T ELT) (((-3 $ "failed") (-711 (-326 (-560)))) 19 T ELT) (((-3 $ "failed") (-711 (-975 (-391)))) 17 T ELT) (((-3 $ "failed") (-711 (-975 (-560)))) 15 T ELT) (((-3 $ "failed") (-711 (-421 (-975 (-391))))) 13 T ELT) (((-3 $ "failed") (-711 (-421 (-975 (-560))))) 11 T ELT)) (-3330 (($ (-711 (-326 (-391)))) 22 T ELT) (($ (-711 (-326 (-560)))) 20 T ELT) (($ (-711 (-975 (-391)))) 18 T ELT) (($ (-711 (-975 (-560)))) 16 T ELT) (($ (-711 (-421 (-975 (-391))))) 14 T ELT) (($ (-711 (-421 (-975 (-560))))) 12 T ELT)) (-2759 (((-1303) $) 7 T ELT)) (-1578 (((-887) $) 8 T ELT) (($ (-663 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 23 T ELT)))
+((-3929 (((-3 $ "failed") (-711 (-326 (-391)))) 21 T ELT) (((-3 $ "failed") (-711 (-326 (-560)))) 19 T ELT) (((-3 $ "failed") (-711 (-975 (-391)))) 17 T ELT) (((-3 $ "failed") (-711 (-975 (-560)))) 15 T ELT) (((-3 $ "failed") (-711 (-421 (-975 (-391))))) 13 T ELT) (((-3 $ "failed") (-711 (-421 (-975 (-560))))) 11 T ELT)) (-3649 (($ (-711 (-326 (-391)))) 22 T ELT) (($ (-711 (-326 (-560)))) 20 T ELT) (($ (-711 (-975 (-391)))) 18 T ELT) (($ (-711 (-975 (-560)))) 16 T ELT) (($ (-711 (-421 (-975 (-391))))) 14 T ELT) (($ (-711 (-421 (-975 (-560))))) 12 T ELT)) (-3043 (((-1303) $) 7 T ELT)) (-3913 (((-887) $) 8 T ELT) (($ (-663 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 23 T ELT)))
(((-398) (-142)) (T -398))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-398)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-398)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) (-4 *1 (-398)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-711 (-326 (-391)))) (-4 *1 (-398)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-326 (-391)))) (-4 *1 (-398)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-711 (-326 (-560)))) (-4 *1 (-398)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-326 (-560)))) (-4 *1 (-398)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-711 (-975 (-391)))) (-4 *1 (-398)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-975 (-391)))) (-4 *1 (-398)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-711 (-975 (-560)))) (-4 *1 (-398)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-975 (-560)))) (-4 *1 (-398)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-711 (-421 (-975 (-391))))) (-4 *1 (-398)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-421 (-975 (-391))))) (-4 *1 (-398)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-711 (-421 (-975 (-560))))) (-4 *1 (-398)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-421 (-975 (-560))))) (-4 *1 (-398)))))
-(-13 (-410) (-10 -8 (-15 -1578 ($ (-663 (-342)))) (-15 -1578 ($ (-342))) (-15 -1578 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342)))))) (-15 -3330 ($ (-711 (-326 (-391))))) (-15 -2539 ((-3 $ "failed") (-711 (-326 (-391))))) (-15 -3330 ($ (-711 (-326 (-560))))) (-15 -2539 ((-3 $ "failed") (-711 (-326 (-560))))) (-15 -3330 ($ (-711 (-975 (-391))))) (-15 -2539 ((-3 $ "failed") (-711 (-975 (-391))))) (-15 -3330 ($ (-711 (-975 (-560))))) (-15 -2539 ((-3 $ "failed") (-711 (-975 (-560))))) (-15 -3330 ($ (-711 (-421 (-975 (-391)))))) (-15 -2539 ((-3 $ "failed") (-711 (-421 (-975 (-391)))))) (-15 -3330 ($ (-711 (-421 (-975 (-560)))))) (-15 -2539 ((-3 $ "failed") (-711 (-421 (-975 (-560))))))))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-398)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-398)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) (-4 *1 (-398)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-711 (-326 (-391)))) (-4 *1 (-398)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-326 (-391)))) (-4 *1 (-398)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-711 (-326 (-560)))) (-4 *1 (-398)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-326 (-560)))) (-4 *1 (-398)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-711 (-975 (-391)))) (-4 *1 (-398)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-975 (-391)))) (-4 *1 (-398)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-711 (-975 (-560)))) (-4 *1 (-398)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-975 (-560)))) (-4 *1 (-398)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-711 (-421 (-975 (-391))))) (-4 *1 (-398)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-421 (-975 (-391))))) (-4 *1 (-398)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-711 (-421 (-975 (-560))))) (-4 *1 (-398)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-711 (-421 (-975 (-560))))) (-4 *1 (-398)))))
+(-13 (-410) (-10 -8 (-15 -3913 ($ (-663 (-342)))) (-15 -3913 ($ (-342))) (-15 -3913 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342)))))) (-15 -3649 ($ (-711 (-326 (-391))))) (-15 -3929 ((-3 $ "failed") (-711 (-326 (-391))))) (-15 -3649 ($ (-711 (-326 (-560))))) (-15 -3929 ((-3 $ "failed") (-711 (-326 (-560))))) (-15 -3649 ($ (-711 (-975 (-391))))) (-15 -3929 ((-3 $ "failed") (-711 (-975 (-391))))) (-15 -3649 ($ (-711 (-975 (-560))))) (-15 -3929 ((-3 $ "failed") (-711 (-975 (-560))))) (-15 -3649 ($ (-711 (-421 (-975 (-391)))))) (-15 -3929 ((-3 $ "failed") (-711 (-421 (-975 (-391)))))) (-15 -3649 ($ (-711 (-421 (-975 (-560)))))) (-15 -3929 ((-3 $ "failed") (-711 (-421 (-975 (-560))))))))
(((-632 (-887)) . T) ((-410) . T) ((-1247) . T))
-((-1538 (((-114) $ $) 7 T ELT)) (-3241 (((-793) $) 35 T ELT)) (-2238 (($) 19 T CONST)) (-2942 (((-3 $ "failed") $ $) 38 T ELT)) (-2539 (((-3 |#1| "failed") $) 46 T ELT)) (-3330 ((|#1| $) 47 T ELT)) (-1990 (((-3 $ "failed") $) 16 T ELT)) (-1338 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 36 T ELT)) (-1581 (((-114) $) 18 T ELT)) (-2461 ((|#1| $ (-560)) 32 T ELT)) (-2005 (((-793) $ (-560)) 33 T ELT)) (-3825 (($ $ $) 24 (|has| |#1| (-871)) ELT)) (-2820 (($ $ $) 25 (|has| |#1| (-871)) ELT)) (-1942 (($ (-1 |#1| |#1|) $) 30 T ELT)) (-3372 (($ (-1 (-793) (-793)) $) 31 T ELT)) (-4058 (((-3 $ "failed") $ $) 39 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3889 (($ $ $) 40 T ELT)) (-1890 (($ $ $) 41 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-3764 (((-663 (-2 (|:| |gen| |#1|) (|:| -3251 (-793)))) $) 34 T ELT)) (-2205 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 37 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ |#1|) 45 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2011 (($) 20 T CONST)) (-2536 (((-114) $ $) 26 (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) 28 (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 27 (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) 29 (|has| |#1| (-871)) ELT)) (** (($ $ (-948)) 14 T ELT) (($ $ (-793)) 17 T ELT) (($ |#1| (-793)) 42 T ELT)) (* (($ $ $) 15 T ELT) (($ |#1| $) 44 T ELT) (($ $ |#1|) 43 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2552 (((-793) $) 35 T ELT)) (-3525 (($) 19 T CONST)) (-4308 (((-3 $ "failed") $ $) 38 T ELT)) (-3929 (((-3 |#1| "failed") $) 46 T ELT)) (-3649 ((|#1| $) 47 T ELT)) (-2873 (((-3 $ "failed") $) 16 T ELT)) (-3523 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 36 T ELT)) (-1918 (((-114) $) 18 T ELT)) (-1997 ((|#1| $ (-560)) 32 T ELT)) (-3038 (((-793) $ (-560)) 33 T ELT)) (-2932 (($ $ $) 24 (|has| |#1| (-871)) ELT)) (-4379 (($ $ $) 25 (|has| |#1| (-871)) ELT)) (-3703 (($ (-1 |#1| |#1|) $) 30 T ELT)) (-3143 (($ (-1 (-793) (-793)) $) 31 T ELT)) (-2343 (((-3 $ "failed") $ $) 39 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-4397 (($ $ $) 40 T ELT)) (-4439 (($ $ $) 41 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2609 (((-663 (-2 (|:| |gen| |#1|) (|:| -2515 (-793)))) $) 34 T ELT)) (-4455 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 37 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ |#1|) 45 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1456 (($) 20 T CONST)) (-2396 (((-114) $ $) 26 (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) 28 (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 27 (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) 29 (|has| |#1| (-871)) ELT)) (** (($ $ (-948)) 14 T ELT) (($ $ (-793)) 17 T ELT) (($ |#1| (-793)) 42 T ELT)) (* (($ $ $) 15 T ELT) (($ |#1| $) 44 T ELT) (($ $ |#1|) 43 T ELT)))
(((-399 |#1|) (-142) (-1132)) (T -399))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1132)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1132)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-399 *2)) (-4 *2 (-1132)))) (-1890 (*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1132)))) (-3889 (*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1132)))) (-4058 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1132)))) (-2942 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1132)))) (-2205 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1132)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3)))) (-1338 (*1 *2 *1 *1) (-12 (-4 *3 (-1132)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3)))) (-3241 (*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1132)) (-5 *2 (-793)))) (-3764 (*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1132)) (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -3251 (-793))))))) (-2005 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-399 *4)) (-4 *4 (-1132)) (-5 *2 (-793)))) (-2461 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-399 *2)) (-4 *2 (-1132)))) (-3372 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-793) (-793))) (-4 *1 (-399 *3)) (-4 *3 (-1132)))) (-1942 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-399 *3)) (-4 *3 (-1132)))))
-(-13 (-748) (-1069 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-793))) (-15 -1890 ($ $ $)) (-15 -3889 ($ $ $)) (-15 -4058 ((-3 $ "failed") $ $)) (-15 -2942 ((-3 $ "failed") $ $)) (-15 -2205 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1338 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3241 ((-793) $)) (-15 -3764 ((-663 (-2 (|:| |gen| |t#1|) (|:| -3251 (-793)))) $)) (-15 -2005 ((-793) $ (-560))) (-15 -2461 (|t#1| $ (-560))) (-15 -3372 ($ (-1 (-793) (-793)) $)) (-15 -1942 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-871)) (-6 (-871)) |%noBranch|)))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1132)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1132)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-399 *2)) (-4 *2 (-1132)))) (-4439 (*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1132)))) (-4397 (*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1132)))) (-2343 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1132)))) (-4308 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1132)))) (-4455 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1132)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3)))) (-3523 (*1 *2 *1 *1) (-12 (-4 *3 (-1132)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3)))) (-2552 (*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1132)) (-5 *2 (-793)))) (-2609 (*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1132)) (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -2515 (-793))))))) (-3038 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-399 *4)) (-4 *4 (-1132)) (-5 *2 (-793)))) (-1997 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-399 *2)) (-4 *2 (-1132)))) (-3143 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-793) (-793))) (-4 *1 (-399 *3)) (-4 *3 (-1132)))) (-3703 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-399 *3)) (-4 *3 (-1132)))))
+(-13 (-748) (-1069 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-793))) (-15 -4439 ($ $ $)) (-15 -4397 ($ $ $)) (-15 -2343 ((-3 $ "failed") $ $)) (-15 -4308 ((-3 $ "failed") $ $)) (-15 -4455 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3523 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -2552 ((-793) $)) (-15 -2609 ((-663 (-2 (|:| |gen| |t#1|) (|:| -2515 (-793)))) $)) (-15 -3038 ((-793) $ (-560))) (-15 -1997 (|t#1| $ (-560))) (-15 -3143 ($ (-1 (-793) (-793)) $)) (-15 -3703 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-871)) (-6 (-871)) |%noBranch|)))
(((-102) . T) ((-635 |#1|) . T) ((-632 (-887)) . T) ((-748) . T) ((-871) |has| |#1| (-871)) ((-874) |has| |#1| (-871)) ((-1069 |#1|) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-3241 (((-793) $) 74 T ELT)) (-2238 (($) NIL T CONST)) (-2942 (((-3 $ "failed") $ $) 77 T ELT)) (-2539 (((-3 |#1| "failed") $) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1338 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-1581 (((-114) $) 17 T ELT)) (-2461 ((|#1| $ (-560)) NIL T ELT)) (-2005 (((-793) $ (-560)) NIL T ELT)) (-3825 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-1942 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-3372 (($ (-1 (-793) (-793)) $) 37 T ELT)) (-4058 (((-3 $ "failed") $ $) 60 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3889 (($ $ $) 28 T ELT)) (-1890 (($ $ $) 26 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3764 (((-663 (-2 (|:| |gen| |#1|) (|:| -3251 (-793)))) $) 34 T ELT)) (-2205 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70 T ELT)) (-1578 (((-887) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2011 (($) 11 T CONST)) (-2536 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) 84 (|has| |#1| (-871)) ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ |#1| (-793)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2552 (((-793) $) 74 T ELT)) (-3525 (($) NIL T CONST)) (-4308 (((-3 $ "failed") $ $) 77 T ELT)) (-3929 (((-3 |#1| "failed") $) NIL T ELT)) (-3649 ((|#1| $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-3523 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-1918 (((-114) $) 17 T ELT)) (-1997 ((|#1| $ (-560)) NIL T ELT)) (-3038 (((-793) $ (-560)) NIL T ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3703 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-3143 (($ (-1 (-793) (-793)) $) 37 T ELT)) (-2343 (((-3 $ "failed") $ $) 60 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-4397 (($ $ $) 28 T ELT)) (-4439 (($ $ $) 26 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2609 (((-663 (-2 (|:| |gen| |#1|) (|:| -2515 (-793)))) $) 34 T ELT)) (-4455 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 70 T ELT)) (-3913 (((-887) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1456 (($) 11 T CONST)) (-2396 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) 84 (|has| |#1| (-871)) ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ |#1| (-793)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT)))
(((-400 |#1|) (-399 |#1|) (-1132)) (T -400))
NIL
(-399 |#1|)
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-3244 (($ $) 46 T ELT)) (-4093 (((-114) $) 44 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-2539 (((-3 (-560) "failed") $) 54 T ELT)) (-3330 (((-560) $) 55 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-3825 (($ $ $) 56 T ELT)) (-2820 (($ $ $) 57 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1528 (((-3 $ "failed") $ $) 48 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-560)) 53 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 45 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2536 (((-114) $ $) 58 T ELT)) (-2508 (((-114) $ $) 60 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 59 T ELT)) (-2495 (((-114) $ $) 61 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-4366 (($ $) 46 T ELT)) (-2667 (((-114) $) 44 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-3929 (((-3 (-560) "failed") $) 54 T ELT)) (-3649 (((-560) $) 55 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-2932 (($ $ $) 56 T ELT)) (-4379 (($ $ $) 57 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2233 (((-3 $ "failed") $ $) 48 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-560)) 53 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 45 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2396 (((-114) $ $) 58 T ELT)) (-2373 (((-114) $ $) 60 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 59 T ELT)) (-2362 (((-114) $ $) 61 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
(((-401) (-142)) (T -401))
NIL
(-13 (-571) (-871) (-1069 (-560)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-302) . T) ((-571) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-871) . T) ((-874) . T) ((-1069 (-560)) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-3281 (((-114) $) 25 T ELT)) (-2974 (((-114) $) 22 T ELT)) (-4095 (($ (-1189) (-1189) (-1189)) 26 T ELT)) (-3614 (((-1189) $) 16 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2988 (($ (-1189) (-1189) (-1189)) 14 T ELT)) (-4012 (((-1189) $) 17 T ELT)) (-2346 (((-114) $) 18 T ELT)) (-3862 (((-1189) $) 15 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-1189)) 13 T ELT) (((-1189) $) 9 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 7 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3466 (((-114) $) 25 T ELT)) (-3365 (((-114) $) 22 T ELT)) (-4246 (($ (-1189) (-1189) (-1189)) 26 T ELT)) (-4389 (((-1189) $) 16 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1457 (($ (-1189) (-1189) (-1189)) 14 T ELT)) (-3125 (((-1189) $) 17 T ELT)) (-2088 (((-114) $) 18 T ELT)) (-2876 (((-1189) $) 15 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-1189)) 13 T ELT) (((-1189) $) 9 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 7 T ELT)))
(((-402) (-403)) (T -402))
NIL
(-403)
-((-1538 (((-114) $ $) 7 T ELT)) (-3281 (((-114) $) 17 T ELT)) (-2974 (((-114) $) 18 T ELT)) (-4095 (($ (-1189) (-1189) (-1189)) 16 T ELT)) (-3614 (((-1189) $) 21 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-2988 (($ (-1189) (-1189) (-1189)) 23 T ELT)) (-4012 (((-1189) $) 20 T ELT)) (-2346 (((-114) $) 19 T ELT)) (-3862 (((-1189) $) 22 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-1189)) 25 T ELT) (((-1189) $) 24 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2473 (((-114) $ $) 8 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-3466 (((-114) $) 17 T ELT)) (-3365 (((-114) $) 18 T ELT)) (-4246 (($ (-1189) (-1189) (-1189)) 16 T ELT)) (-4389 (((-1189) $) 21 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-1457 (($ (-1189) (-1189) (-1189)) 23 T ELT)) (-3125 (((-1189) $) 20 T ELT)) (-2088 (((-114) $) 19 T ELT)) (-2876 (((-1189) $) 22 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-1189)) 25 T ELT) (((-1189) $) 24 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2340 (((-114) $ $) 8 T ELT)))
(((-403) (-142)) (T -403))
-((-2988 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-403)))) (-3862 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189)))) (-3614 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189)))) (-4012 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189)))) (-2346 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))) (-2974 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))) (-3281 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))) (-4095 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-403)))))
-(-13 (-1132) (-504 (-1189)) (-10 -8 (-15 -2988 ($ (-1189) (-1189) (-1189))) (-15 -3862 ((-1189) $)) (-15 -3614 ((-1189) $)) (-15 -4012 ((-1189) $)) (-15 -2346 ((-114) $)) (-15 -2974 ((-114) $)) (-15 -3281 ((-114) $)) (-15 -4095 ($ (-1189) (-1189) (-1189)))))
+((-1457 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-403)))) (-2876 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189)))) (-4389 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189)))) (-3125 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189)))) (-2088 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))) (-3365 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))) (-3466 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))) (-4246 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-403)))))
+(-13 (-1132) (-504 (-1189)) (-10 -8 (-15 -1457 ($ (-1189) (-1189) (-1189))) (-15 -2876 ((-1189) $)) (-15 -4389 ((-1189) $)) (-15 -3125 ((-1189) $)) (-15 -2088 ((-114) $)) (-15 -3365 ((-114) $)) (-15 -3466 ((-114) $)) (-15 -4246 ($ (-1189) (-1189) (-1189)))))
(((-102) . T) ((-635 #0=(-1189)) . T) ((-632 (-887)) . T) ((-632 #0#) . T) ((-504 #0#) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-4135 (((-887) $) 63 T ELT)) (-2238 (($) NIL T CONST)) (-1866 (($ $ (-948)) NIL T ELT)) (-1784 (($ $ (-948)) NIL T ELT)) (-3520 (($ $ (-948)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2748 (($ (-793)) 38 T ELT)) (-3669 (((-793)) 18 T ELT)) (-3982 (((-887) $) 65 T ELT)) (-2013 (($ $ $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-4128 (($ $ $ $) NIL T ELT)) (-3868 (($ $ $) NIL T ELT)) (-2001 (($) 24 T CONST)) (-2473 (((-114) $ $) 41 T ELT)) (-2580 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-2567 (($ $ $) 51 T ELT)) (** (($ $ (-948)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT)))
-(((-404 |#1| |#2| |#3|) (-13 (-766 |#3|) (-10 -8 (-15 -3669 ((-793))) (-15 -3982 ((-887) $)) (-15 -4135 ((-887) $)) (-15 -2748 ($ (-793))))) (-793) (-793) (-175)) (T -404))
-((-3669 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-175)))) (-3982 (*1 *2 *1) (-12 (-5 *2 (-887)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-793)) (-14 *4 (-793)) (-4 *5 (-175)))) (-4135 (*1 *2 *1) (-12 (-5 *2 (-887)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-793)) (-14 *4 (-793)) (-4 *5 (-175)))) (-2748 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-175)))))
-(-13 (-766 |#3|) (-10 -8 (-15 -3669 ((-793))) (-15 -3982 ((-887) $)) (-15 -4135 ((-887) $)) (-15 -2748 ($ (-793)))))
-((-1622 (((-1189)) 12 T ELT)) (-2350 (((-1178 (-1189))) 30 T ELT)) (-2734 (((-1303) (-1189)) 27 T ELT) (((-1303) (-402)) 26 T ELT)) (-2747 (((-1303)) 28 T ELT)) (-3943 (((-1178 (-1189))) 29 T ELT)))
-(((-405) (-10 -7 (-15 -3943 ((-1178 (-1189)))) (-15 -2350 ((-1178 (-1189)))) (-15 -2747 ((-1303))) (-15 -2734 ((-1303) (-402))) (-15 -2734 ((-1303) (-1189))) (-15 -1622 ((-1189))))) (T -405))
-((-1622 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-405)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-405)))) (-2734 (*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1303)) (-5 *1 (-405)))) (-2747 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-405)))) (-2350 (*1 *2) (-12 (-5 *2 (-1178 (-1189))) (-5 *1 (-405)))) (-3943 (*1 *2) (-12 (-5 *2 (-1178 (-1189))) (-5 *1 (-405)))))
-(-10 -7 (-15 -3943 ((-1178 (-1189)))) (-15 -2350 ((-1178 (-1189)))) (-15 -2747 ((-1303))) (-15 -2734 ((-1303) (-402))) (-15 -2734 ((-1303) (-1189))) (-15 -1622 ((-1189))))
-((-3913 (((-793) (-346 |#1| |#2| |#3| |#4|)) 16 T ELT)))
-(((-406 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3913 ((-793) (-346 |#1| |#2| |#3| |#4|)))) (-13 (-381) (-376)) (-1273 |#1|) (-1273 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -406))
-((-3913 (*1 *2 *3) (-12 (-5 *3 (-346 *4 *5 *6 *7)) (-4 *4 (-13 (-381) (-376))) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5))) (-4 *7 (-355 *4 *5 *6)) (-5 *2 (-793)) (-5 *1 (-406 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3913 ((-793) (-346 |#1| |#2| |#3| |#4|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3368 (((-663 (-1189)) $ (-663 (-1189))) 42 T ELT)) (-3245 (((-663 (-1189)) $ (-663 (-1189))) 43 T ELT)) (-3213 (((-663 (-1189)) $ (-663 (-1189))) 44 T ELT)) (-3215 (((-663 (-1189)) $) 39 T ELT)) (-4095 (($) 30 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3603 (((-663 (-1189)) $) 40 T ELT)) (-4030 (((-663 (-1189)) $) 41 T ELT)) (-4358 (((-1303) $ (-560)) 37 T ELT) (((-1303) $) 38 T ELT)) (-1407 (($ (-887) (-560)) 35 T ELT)) (-1578 (((-887) $) 49 T ELT) (($ (-887)) 32 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-407) (-13 (-1132) (-635 (-887)) (-10 -8 (-15 -1407 ($ (-887) (-560))) (-15 -4358 ((-1303) $ (-560))) (-15 -4358 ((-1303) $)) (-15 -4030 ((-663 (-1189)) $)) (-15 -3603 ((-663 (-1189)) $)) (-15 -4095 ($)) (-15 -3215 ((-663 (-1189)) $)) (-15 -3213 ((-663 (-1189)) $ (-663 (-1189)))) (-15 -3245 ((-663 (-1189)) $ (-663 (-1189)))) (-15 -3368 ((-663 (-1189)) $ (-663 (-1189))))))) (T -407))
-((-1407 (*1 *1 *2 *3) (-12 (-5 *2 (-887)) (-5 *3 (-560)) (-5 *1 (-407)))) (-4358 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-407)))) (-4358 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-407)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407)))) (-4095 (*1 *1) (-5 *1 (-407))) (-3215 (*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407)))) (-3213 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407)))) (-3245 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407)))) (-3368 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407)))))
-(-13 (-1132) (-635 (-887)) (-10 -8 (-15 -1407 ($ (-887) (-560))) (-15 -4358 ((-1303) $ (-560))) (-15 -4358 ((-1303) $)) (-15 -4030 ((-663 (-1189)) $)) (-15 -3603 ((-663 (-1189)) $)) (-15 -4095 ($)) (-15 -3215 ((-663 (-1189)) $)) (-15 -3213 ((-663 (-1189)) $ (-663 (-1189)))) (-15 -3245 ((-663 (-1189)) $ (-663 (-1189)))) (-15 -3368 ((-663 (-1189)) $ (-663 (-1189))))))
-((-1578 (((-407) |#1|) 11 T ELT)))
-(((-408 |#1|) (-10 -7 (-15 -1578 ((-407) |#1|))) (-1132)) (T -408))
-((-1578 (*1 *2 *3) (-12 (-5 *2 (-407)) (-5 *1 (-408 *3)) (-4 *3 (-1132)))))
-(-10 -7 (-15 -1578 ((-407) |#1|)))
-((-2492 (((-663 (-1189)) (-663 (-1189))) 9 T ELT)) (-2759 (((-1303) (-402)) 26 T ELT)) (-3894 (((-1134) (-1207) (-663 (-1207)) (-1210) (-663 (-1207))) 59 T ELT) (((-1134) (-1207) (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207)))) (-663 (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207))))) (-663 (-1207)) (-1207)) 34 T ELT) (((-1134) (-1207) (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207)))) (-663 (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207))))) (-663 (-1207))) 33 T ELT)))
-(((-409) (-10 -7 (-15 -3894 ((-1134) (-1207) (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207)))) (-663 (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207))))) (-663 (-1207)))) (-15 -3894 ((-1134) (-1207) (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207)))) (-663 (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207))))) (-663 (-1207)) (-1207))) (-15 -3894 ((-1134) (-1207) (-663 (-1207)) (-1210) (-663 (-1207)))) (-15 -2759 ((-1303) (-402))) (-15 -2492 ((-663 (-1189)) (-663 (-1189)))))) (T -409))
-((-2492 (*1 *2 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-409)))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1303)) (-5 *1 (-409)))) (-3894 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-663 (-1207))) (-5 *5 (-1210)) (-5 *3 (-1207)) (-5 *2 (-1134)) (-5 *1 (-409)))) (-3894 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-663 (-663 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-663 (-3 (|:| |array| (-663 *3)) (|:| |scalar| (-1207))))) (-5 *6 (-663 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1134)) (-5 *1 (-409)))) (-3894 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-663 (-663 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-663 (-3 (|:| |array| (-663 *3)) (|:| |scalar| (-1207))))) (-5 *6 (-663 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1134)) (-5 *1 (-409)))))
-(-10 -7 (-15 -3894 ((-1134) (-1207) (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207)))) (-663 (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207))))) (-663 (-1207)))) (-15 -3894 ((-1134) (-1207) (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207)))) (-663 (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207))))) (-663 (-1207)) (-1207))) (-15 -3894 ((-1134) (-1207) (-663 (-1207)) (-1210) (-663 (-1207)))) (-15 -2759 ((-1303) (-402))) (-15 -2492 ((-663 (-1189)) (-663 (-1189)))))
-((-2759 (((-1303) $) 7 T ELT)) (-1578 (((-887) $) 8 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1851 (((-887) $) 63 T ELT)) (-3525 (($) NIL T CONST)) (-4201 (($ $ (-948)) NIL T ELT)) (-1441 (($ $ (-948)) NIL T ELT)) (-2065 (($ $ (-948)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3583 (($ (-793)) 38 T ELT)) (-3015 (((-793)) 18 T ELT)) (-2801 (((-887) $) 65 T ELT)) (-3117 (($ $ $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1777 (($ $ $ $) NIL T ELT)) (-4209 (($ $ $) NIL T ELT)) (-1446 (($) 24 T CONST)) (-2340 (((-114) $ $) 41 T ELT)) (-2441 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-2429 (($ $ $) 51 T ELT)) (** (($ $ (-948)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT)))
+(((-404 |#1| |#2| |#3|) (-13 (-766 |#3|) (-10 -8 (-15 -3015 ((-793))) (-15 -2801 ((-887) $)) (-15 -1851 ((-887) $)) (-15 -3583 ($ (-793))))) (-793) (-793) (-175)) (T -404))
+((-3015 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-175)))) (-2801 (*1 *2 *1) (-12 (-5 *2 (-887)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-793)) (-14 *4 (-793)) (-4 *5 (-175)))) (-1851 (*1 *2 *1) (-12 (-5 *2 (-887)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-793)) (-14 *4 (-793)) (-4 *5 (-175)))) (-3583 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-175)))))
+(-13 (-766 |#3|) (-10 -8 (-15 -3015 ((-793))) (-15 -2801 ((-887) $)) (-15 -1851 ((-887) $)) (-15 -3583 ($ (-793)))))
+((-3534 (((-1189)) 12 T ELT)) (-2124 (((-1178 (-1189))) 30 T ELT)) (-3017 (((-1303) (-1189)) 27 T ELT) (((-1303) (-402)) 26 T ELT)) (-3030 (((-1303)) 28 T ELT)) (-3677 (((-1178 (-1189))) 29 T ELT)))
+(((-405) (-10 -7 (-15 -3677 ((-1178 (-1189)))) (-15 -2124 ((-1178 (-1189)))) (-15 -3030 ((-1303))) (-15 -3017 ((-1303) (-402))) (-15 -3017 ((-1303) (-1189))) (-15 -3534 ((-1189))))) (T -405))
+((-3534 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-405)))) (-3017 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-405)))) (-3017 (*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1303)) (-5 *1 (-405)))) (-3030 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-405)))) (-2124 (*1 *2) (-12 (-5 *2 (-1178 (-1189))) (-5 *1 (-405)))) (-3677 (*1 *2) (-12 (-5 *2 (-1178 (-1189))) (-5 *1 (-405)))))
+(-10 -7 (-15 -3677 ((-1178 (-1189)))) (-15 -2124 ((-1178 (-1189)))) (-15 -3030 ((-1303))) (-15 -3017 ((-1303) (-402))) (-15 -3017 ((-1303) (-1189))) (-15 -3534 ((-1189))))
+((-1460 (((-793) (-346 |#1| |#2| |#3| |#4|)) 16 T ELT)))
+(((-406 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1460 ((-793) (-346 |#1| |#2| |#3| |#4|)))) (-13 (-381) (-376)) (-1273 |#1|) (-1273 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -406))
+((-1460 (*1 *2 *3) (-12 (-5 *3 (-346 *4 *5 *6 *7)) (-4 *4 (-13 (-381) (-376))) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5))) (-4 *7 (-355 *4 *5 *6)) (-5 *2 (-793)) (-5 *1 (-406 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1460 ((-793) (-346 |#1| |#2| |#3| |#4|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3103 (((-663 (-1189)) $ (-663 (-1189))) 42 T ELT)) (-4377 (((-663 (-1189)) $ (-663 (-1189))) 43 T ELT)) (-4048 (((-663 (-1189)) $ (-663 (-1189))) 44 T ELT)) (-4069 (((-663 (-1189)) $) 39 T ELT)) (-4246 (($) 30 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2735 (((-663 (-1189)) $) 40 T ELT)) (-3299 (((-663 (-1189)) $) 41 T ELT)) (-3884 (((-1303) $ (-560)) 37 T ELT) (((-1303) $) 38 T ELT)) (-2400 (($ (-887) (-560)) 35 T ELT)) (-3913 (((-887) $) 49 T ELT) (($ (-887)) 32 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-407) (-13 (-1132) (-635 (-887)) (-10 -8 (-15 -2400 ($ (-887) (-560))) (-15 -3884 ((-1303) $ (-560))) (-15 -3884 ((-1303) $)) (-15 -3299 ((-663 (-1189)) $)) (-15 -2735 ((-663 (-1189)) $)) (-15 -4246 ($)) (-15 -4069 ((-663 (-1189)) $)) (-15 -4048 ((-663 (-1189)) $ (-663 (-1189)))) (-15 -4377 ((-663 (-1189)) $ (-663 (-1189)))) (-15 -3103 ((-663 (-1189)) $ (-663 (-1189))))))) (T -407))
+((-2400 (*1 *1 *2 *3) (-12 (-5 *2 (-887)) (-5 *3 (-560)) (-5 *1 (-407)))) (-3884 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-407)))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-407)))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407)))) (-2735 (*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407)))) (-4246 (*1 *1) (-5 *1 (-407))) (-4069 (*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407)))) (-4048 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407)))) (-4377 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407)))) (-3103 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407)))))
+(-13 (-1132) (-635 (-887)) (-10 -8 (-15 -2400 ($ (-887) (-560))) (-15 -3884 ((-1303) $ (-560))) (-15 -3884 ((-1303) $)) (-15 -3299 ((-663 (-1189)) $)) (-15 -2735 ((-663 (-1189)) $)) (-15 -4246 ($)) (-15 -4069 ((-663 (-1189)) $)) (-15 -4048 ((-663 (-1189)) $ (-663 (-1189)))) (-15 -4377 ((-663 (-1189)) $ (-663 (-1189)))) (-15 -3103 ((-663 (-1189)) $ (-663 (-1189))))))
+((-3913 (((-407) |#1|) 11 T ELT)))
+(((-408 |#1|) (-10 -7 (-15 -3913 ((-407) |#1|))) (-1132)) (T -408))
+((-3913 (*1 *2 *3) (-12 (-5 *2 (-407)) (-5 *1 (-408 *3)) (-4 *3 (-1132)))))
+(-10 -7 (-15 -3913 ((-407) |#1|)))
+((-4203 (((-663 (-1189)) (-663 (-1189))) 9 T ELT)) (-3043 (((-1303) (-402)) 26 T ELT)) (-4437 (((-1134) (-1207) (-663 (-1207)) (-1210) (-663 (-1207))) 59 T ELT) (((-1134) (-1207) (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207)))) (-663 (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207))))) (-663 (-1207)) (-1207)) 34 T ELT) (((-1134) (-1207) (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207)))) (-663 (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207))))) (-663 (-1207))) 33 T ELT)))
+(((-409) (-10 -7 (-15 -4437 ((-1134) (-1207) (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207)))) (-663 (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207))))) (-663 (-1207)))) (-15 -4437 ((-1134) (-1207) (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207)))) (-663 (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207))))) (-663 (-1207)) (-1207))) (-15 -4437 ((-1134) (-1207) (-663 (-1207)) (-1210) (-663 (-1207)))) (-15 -3043 ((-1303) (-402))) (-15 -4203 ((-663 (-1189)) (-663 (-1189)))))) (T -409))
+((-4203 (*1 *2 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-409)))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1303)) (-5 *1 (-409)))) (-4437 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-663 (-1207))) (-5 *5 (-1210)) (-5 *3 (-1207)) (-5 *2 (-1134)) (-5 *1 (-409)))) (-4437 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-663 (-663 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-663 (-3 (|:| |array| (-663 *3)) (|:| |scalar| (-1207))))) (-5 *6 (-663 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1134)) (-5 *1 (-409)))) (-4437 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-663 (-663 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-663 (-3 (|:| |array| (-663 *3)) (|:| |scalar| (-1207))))) (-5 *6 (-663 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1134)) (-5 *1 (-409)))))
+(-10 -7 (-15 -4437 ((-1134) (-1207) (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207)))) (-663 (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207))))) (-663 (-1207)))) (-15 -4437 ((-1134) (-1207) (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207)))) (-663 (-663 (-3 (|:| |array| (-663 (-1207))) (|:| |scalar| (-1207))))) (-663 (-1207)) (-1207))) (-15 -4437 ((-1134) (-1207) (-663 (-1207)) (-1210) (-663 (-1207)))) (-15 -3043 ((-1303) (-402))) (-15 -4203 ((-663 (-1189)) (-663 (-1189)))))
+((-3043 (((-1303) $) 7 T ELT)) (-3913 (((-887) $) 8 T ELT)))
(((-410) (-142)) (T -410))
-((-2759 (*1 *2 *1) (-12 (-4 *1 (-410)) (-5 *2 (-1303)))))
-(-13 (-1247) (-632 (-887)) (-10 -8 (-15 -2759 ((-1303) $))))
+((-3043 (*1 *2 *1) (-12 (-4 *1 (-410)) (-5 *2 (-1303)))))
+(-13 (-1247) (-632 (-887)) (-10 -8 (-15 -3043 ((-1303) $))))
(((-632 (-887)) . T) ((-1247) . T))
-((-2539 (((-3 $ "failed") (-326 (-391))) 21 T ELT) (((-3 $ "failed") (-326 (-560))) 19 T ELT) (((-3 $ "failed") (-975 (-391))) 17 T ELT) (((-3 $ "failed") (-975 (-560))) 15 T ELT) (((-3 $ "failed") (-421 (-975 (-391)))) 13 T ELT) (((-3 $ "failed") (-421 (-975 (-560)))) 11 T ELT)) (-3330 (($ (-326 (-391))) 22 T ELT) (($ (-326 (-560))) 20 T ELT) (($ (-975 (-391))) 18 T ELT) (($ (-975 (-560))) 16 T ELT) (($ (-421 (-975 (-391)))) 14 T ELT) (($ (-421 (-975 (-560)))) 12 T ELT)) (-2759 (((-1303) $) 7 T ELT)) (-1578 (((-887) $) 8 T ELT) (($ (-663 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 23 T ELT)))
+((-3929 (((-3 $ "failed") (-326 (-391))) 21 T ELT) (((-3 $ "failed") (-326 (-560))) 19 T ELT) (((-3 $ "failed") (-975 (-391))) 17 T ELT) (((-3 $ "failed") (-975 (-560))) 15 T ELT) (((-3 $ "failed") (-421 (-975 (-391)))) 13 T ELT) (((-3 $ "failed") (-421 (-975 (-560)))) 11 T ELT)) (-3649 (($ (-326 (-391))) 22 T ELT) (($ (-326 (-560))) 20 T ELT) (($ (-975 (-391))) 18 T ELT) (($ (-975 (-560))) 16 T ELT) (($ (-421 (-975 (-391)))) 14 T ELT) (($ (-421 (-975 (-560)))) 12 T ELT)) (-3043 (((-1303) $) 7 T ELT)) (-3913 (((-887) $) 8 T ELT) (($ (-663 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 23 T ELT)))
(((-411) (-142)) (T -411))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-411)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-411)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) (-4 *1 (-411)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-4 *1 (-411)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-391))) (-4 *1 (-411)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-326 (-560))) (-4 *1 (-411)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-560))) (-4 *1 (-411)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-975 (-391))) (-4 *1 (-411)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-391))) (-4 *1 (-411)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-975 (-560))) (-4 *1 (-411)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-560))) (-4 *1 (-411)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-421 (-975 (-391)))) (-4 *1 (-411)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-421 (-975 (-391)))) (-4 *1 (-411)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-421 (-975 (-560)))) (-4 *1 (-411)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-421 (-975 (-560)))) (-4 *1 (-411)))))
-(-13 (-410) (-10 -8 (-15 -1578 ($ (-663 (-342)))) (-15 -1578 ($ (-342))) (-15 -1578 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342)))))) (-15 -3330 ($ (-326 (-391)))) (-15 -2539 ((-3 $ "failed") (-326 (-391)))) (-15 -3330 ($ (-326 (-560)))) (-15 -2539 ((-3 $ "failed") (-326 (-560)))) (-15 -3330 ($ (-975 (-391)))) (-15 -2539 ((-3 $ "failed") (-975 (-391)))) (-15 -3330 ($ (-975 (-560)))) (-15 -2539 ((-3 $ "failed") (-975 (-560)))) (-15 -3330 ($ (-421 (-975 (-391))))) (-15 -2539 ((-3 $ "failed") (-421 (-975 (-391))))) (-15 -3330 ($ (-421 (-975 (-560))))) (-15 -2539 ((-3 $ "failed") (-421 (-975 (-560)))))))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-411)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-411)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) (-4 *1 (-411)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-4 *1 (-411)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-391))) (-4 *1 (-411)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-326 (-560))) (-4 *1 (-411)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-560))) (-4 *1 (-411)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-975 (-391))) (-4 *1 (-411)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-391))) (-4 *1 (-411)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-975 (-560))) (-4 *1 (-411)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-560))) (-4 *1 (-411)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-421 (-975 (-391)))) (-4 *1 (-411)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-421 (-975 (-391)))) (-4 *1 (-411)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-421 (-975 (-560)))) (-4 *1 (-411)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-421 (-975 (-560)))) (-4 *1 (-411)))))
+(-13 (-410) (-10 -8 (-15 -3913 ($ (-663 (-342)))) (-15 -3913 ($ (-342))) (-15 -3913 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342)))))) (-15 -3649 ($ (-326 (-391)))) (-15 -3929 ((-3 $ "failed") (-326 (-391)))) (-15 -3649 ($ (-326 (-560)))) (-15 -3929 ((-3 $ "failed") (-326 (-560)))) (-15 -3649 ($ (-975 (-391)))) (-15 -3929 ((-3 $ "failed") (-975 (-391)))) (-15 -3649 ($ (-975 (-560)))) (-15 -3929 ((-3 $ "failed") (-975 (-560)))) (-15 -3649 ($ (-421 (-975 (-391))))) (-15 -3929 ((-3 $ "failed") (-421 (-975 (-391))))) (-15 -3649 ($ (-421 (-975 (-560))))) (-15 -3929 ((-3 $ "failed") (-421 (-975 (-560)))))))
(((-632 (-887)) . T) ((-410) . T) ((-1247) . T))
-((-2759 (((-1303) $) 35 T ELT)) (-1578 (((-887) $) 97 T ELT) (($ (-342)) 99 T ELT) (($ (-663 (-342))) 98 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 96 T ELT) (($ (-326 (-723))) 52 T ELT) (($ (-326 (-721))) 72 T ELT) (($ (-326 (-716))) 85 T ELT) (($ (-305 (-326 (-723)))) 67 T ELT) (($ (-305 (-326 (-721)))) 80 T ELT) (($ (-305 (-326 (-716)))) 93 T ELT) (($ (-326 (-560))) 104 T ELT) (($ (-326 (-391))) 117 T ELT) (($ (-326 (-171 (-391)))) 130 T ELT) (($ (-305 (-326 (-560)))) 112 T ELT) (($ (-305 (-326 (-391)))) 125 T ELT) (($ (-305 (-326 (-171 (-391))))) 138 T ELT)))
-(((-412 |#1| |#2| |#3| |#4|) (-13 (-410) (-10 -8 (-15 -1578 ($ (-342))) (-15 -1578 ($ (-663 (-342)))) (-15 -1578 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342)))))) (-15 -1578 ($ (-326 (-723)))) (-15 -1578 ($ (-326 (-721)))) (-15 -1578 ($ (-326 (-716)))) (-15 -1578 ($ (-305 (-326 (-723))))) (-15 -1578 ($ (-305 (-326 (-721))))) (-15 -1578 ($ (-305 (-326 (-716))))) (-15 -1578 ($ (-326 (-560)))) (-15 -1578 ($ (-326 (-391)))) (-15 -1578 ($ (-326 (-171 (-391))))) (-15 -1578 ($ (-305 (-326 (-560))))) (-15 -1578 ($ (-305 (-326 (-391))))) (-15 -1578 ($ (-305 (-326 (-171 (-391)))))))) (-1207) (-3 (|:| |fst| (-448)) (|:| -3280 "void")) (-663 (-1207)) (-1211)) (T -412))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-342)) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-326 (-723))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-326 (-721))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-326 (-716))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-723)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-721)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-716)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-326 (-560))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-560)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-391)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-171 (-391))))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))))
-(-13 (-410) (-10 -8 (-15 -1578 ($ (-342))) (-15 -1578 ($ (-663 (-342)))) (-15 -1578 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342)))))) (-15 -1578 ($ (-326 (-723)))) (-15 -1578 ($ (-326 (-721)))) (-15 -1578 ($ (-326 (-716)))) (-15 -1578 ($ (-305 (-326 (-723))))) (-15 -1578 ($ (-305 (-326 (-721))))) (-15 -1578 ($ (-305 (-326 (-716))))) (-15 -1578 ($ (-326 (-560)))) (-15 -1578 ($ (-326 (-391)))) (-15 -1578 ($ (-326 (-171 (-391))))) (-15 -1578 ($ (-305 (-326 (-560))))) (-15 -1578 ($ (-305 (-326 (-391))))) (-15 -1578 ($ (-305 (-326 (-171 (-391))))))))
-((-1538 (((-114) $ $) NIL T ELT)) (-4024 ((|#2| $) 38 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1935 (($ (-421 |#2|)) 93 T ELT)) (-3201 (((-663 (-2 (|:| -3205 (-793)) (|:| -3355 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-2894 (($ $ (-793)) 36 T ELT) (($ $) 34 T ELT)) (-1407 (((-421 |#2|) $) 49 T ELT)) (-1592 (($ (-663 (-2 (|:| -3205 (-793)) (|:| -3355 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-1578 (((-887) $) 131 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-3305 (($ $ (-793)) 37 T ELT) (($ $) 35 T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2567 (($ |#2| $) 41 T ELT)))
-(((-413 |#1| |#2|) (-13 (-1132) (-239) (-633 (-421 |#2|)) (-10 -8 (-15 -2567 ($ |#2| $)) (-15 -1935 ($ (-421 |#2|))) (-15 -4024 (|#2| $)) (-15 -3201 ((-663 (-2 (|:| -3205 (-793)) (|:| -3355 |#2|) (|:| |num| |#2|))) $)) (-15 -1592 ($ (-663 (-2 (|:| -3205 (-793)) (|:| -3355 |#2|) (|:| |num| |#2|))))))) (-13 (-376) (-149)) (-1273 |#1|)) (T -413))
-((-2567 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-376) (-149))) (-5 *1 (-413 *3 *2)) (-4 *2 (-1273 *3)))) (-1935 (*1 *1 *2) (-12 (-5 *2 (-421 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-413 *3 *4)))) (-4024 (*1 *2 *1) (-12 (-4 *2 (-1273 *3)) (-5 *1 (-413 *3 *2)) (-4 *3 (-13 (-376) (-149))))) (-3201 (*1 *2 *1) (-12 (-4 *3 (-13 (-376) (-149))) (-5 *2 (-663 (-2 (|:| -3205 (-793)) (|:| -3355 *4) (|:| |num| *4)))) (-5 *1 (-413 *3 *4)) (-4 *4 (-1273 *3)))) (-1592 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| -3205 (-793)) (|:| -3355 *4) (|:| |num| *4)))) (-4 *4 (-1273 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-413 *3 *4)))))
-(-13 (-1132) (-239) (-633 (-421 |#2|)) (-10 -8 (-15 -2567 ($ |#2| $)) (-15 -1935 ($ (-421 |#2|))) (-15 -4024 (|#2| $)) (-15 -3201 ((-663 (-2 (|:| -3205 (-793)) (|:| -3355 |#2|) (|:| |num| |#2|))) $)) (-15 -1592 ($ (-663 (-2 (|:| -3205 (-793)) (|:| -3355 |#2|) (|:| |num| |#2|)))))))
-((-1538 (((-114) $ $) 10 (-2304 (|has| |#1| (-911 (-560))) (|has| |#1| (-911 (-391)))) ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 16 (|has| |#1| (-911 (-391))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 15 (|has| |#1| (-911 (-560))) ELT)) (-1905 (((-1189) $) 14 (-2304 (|has| |#1| (-911 (-560))) (|has| |#1| (-911 (-391)))) ELT)) (-3855 (((-1151) $) 13 (-2304 (|has| |#1| (-911 (-560))) (|has| |#1| (-911 (-391)))) ELT)) (-1578 (((-887) $) 12 (-2304 (|has| |#1| (-911 (-560))) (|has| |#1| (-911 (-391)))) ELT)) (-2275 (((-114) $ $) 11 (-2304 (|has| |#1| (-911 (-560))) (|has| |#1| (-911 (-391)))) ELT)) (-2473 (((-114) $ $) 9 (-2304 (|has| |#1| (-911 (-560))) (|has| |#1| (-911 (-391)))) ELT)))
+((-3043 (((-1303) $) 35 T ELT)) (-3913 (((-887) $) 97 T ELT) (($ (-342)) 99 T ELT) (($ (-663 (-342))) 98 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 96 T ELT) (($ (-326 (-723))) 52 T ELT) (($ (-326 (-721))) 72 T ELT) (($ (-326 (-716))) 85 T ELT) (($ (-305 (-326 (-723)))) 67 T ELT) (($ (-305 (-326 (-721)))) 80 T ELT) (($ (-305 (-326 (-716)))) 93 T ELT) (($ (-326 (-560))) 104 T ELT) (($ (-326 (-391))) 117 T ELT) (($ (-326 (-171 (-391)))) 130 T ELT) (($ (-305 (-326 (-560)))) 112 T ELT) (($ (-305 (-326 (-391)))) 125 T ELT) (($ (-305 (-326 (-171 (-391))))) 138 T ELT)))
+(((-412 |#1| |#2| |#3| |#4|) (-13 (-410) (-10 -8 (-15 -3913 ($ (-342))) (-15 -3913 ($ (-663 (-342)))) (-15 -3913 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342)))))) (-15 -3913 ($ (-326 (-723)))) (-15 -3913 ($ (-326 (-721)))) (-15 -3913 ($ (-326 (-716)))) (-15 -3913 ($ (-305 (-326 (-723))))) (-15 -3913 ($ (-305 (-326 (-721))))) (-15 -3913 ($ (-305 (-326 (-716))))) (-15 -3913 ($ (-326 (-560)))) (-15 -3913 ($ (-326 (-391)))) (-15 -3913 ($ (-326 (-171 (-391))))) (-15 -3913 ($ (-305 (-326 (-560))))) (-15 -3913 ($ (-305 (-326 (-391))))) (-15 -3913 ($ (-305 (-326 (-171 (-391)))))))) (-1207) (-3 (|:| |fst| (-448)) (|:| -3231 "void")) (-663 (-1207)) (-1211)) (T -412))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-342)) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-326 (-723))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-326 (-721))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-326 (-716))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-723)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-721)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-716)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-326 (-560))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-560)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-391)))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-171 (-391))))) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-14 *5 (-663 (-1207))) (-14 *6 (-1211)))))
+(-13 (-410) (-10 -8 (-15 -3913 ($ (-342))) (-15 -3913 ($ (-663 (-342)))) (-15 -3913 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342)))))) (-15 -3913 ($ (-326 (-723)))) (-15 -3913 ($ (-326 (-721)))) (-15 -3913 ($ (-326 (-716)))) (-15 -3913 ($ (-305 (-326 (-723))))) (-15 -3913 ($ (-305 (-326 (-721))))) (-15 -3913 ($ (-305 (-326 (-716))))) (-15 -3913 ($ (-326 (-560)))) (-15 -3913 ($ (-326 (-391)))) (-15 -3913 ($ (-326 (-171 (-391))))) (-15 -3913 ($ (-305 (-326 (-560))))) (-15 -3913 ($ (-305 (-326 (-391))))) (-15 -3913 ($ (-305 (-326 (-171 (-391))))))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3247 ((|#2| $) 38 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3644 (($ (-421 |#2|)) 93 T ELT)) (-2001 (((-663 (-2 (|:| -2030 (-793)) (|:| -1351 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-3161 (($ $ (-793)) 36 T ELT) (($ $) 34 T ELT)) (-2400 (((-421 |#2|) $) 49 T ELT)) (-3924 (($ (-663 (-2 (|:| -2030 (-793)) (|:| -1351 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-3913 (((-887) $) 131 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2111 (($ $ (-793)) 37 T ELT) (($ $) 35 T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2429 (($ |#2| $) 41 T ELT)))
+(((-413 |#1| |#2|) (-13 (-1132) (-239) (-633 (-421 |#2|)) (-10 -8 (-15 -2429 ($ |#2| $)) (-15 -3644 ($ (-421 |#2|))) (-15 -3247 (|#2| $)) (-15 -2001 ((-663 (-2 (|:| -2030 (-793)) (|:| -1351 |#2|) (|:| |num| |#2|))) $)) (-15 -3924 ($ (-663 (-2 (|:| -2030 (-793)) (|:| -1351 |#2|) (|:| |num| |#2|))))))) (-13 (-376) (-149)) (-1273 |#1|)) (T -413))
+((-2429 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-376) (-149))) (-5 *1 (-413 *3 *2)) (-4 *2 (-1273 *3)))) (-3644 (*1 *1 *2) (-12 (-5 *2 (-421 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-413 *3 *4)))) (-3247 (*1 *2 *1) (-12 (-4 *2 (-1273 *3)) (-5 *1 (-413 *3 *2)) (-4 *3 (-13 (-376) (-149))))) (-2001 (*1 *2 *1) (-12 (-4 *3 (-13 (-376) (-149))) (-5 *2 (-663 (-2 (|:| -2030 (-793)) (|:| -1351 *4) (|:| |num| *4)))) (-5 *1 (-413 *3 *4)) (-4 *4 (-1273 *3)))) (-3924 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| -2030 (-793)) (|:| -1351 *4) (|:| |num| *4)))) (-4 *4 (-1273 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-413 *3 *4)))))
+(-13 (-1132) (-239) (-633 (-421 |#2|)) (-10 -8 (-15 -2429 ($ |#2| $)) (-15 -3644 ($ (-421 |#2|))) (-15 -3247 (|#2| $)) (-15 -2001 ((-663 (-2 (|:| -2030 (-793)) (|:| -1351 |#2|) (|:| |num| |#2|))) $)) (-15 -3924 ($ (-663 (-2 (|:| -2030 (-793)) (|:| -1351 |#2|) (|:| |num| |#2|)))))))
+((-2243 (((-114) $ $) 10 (-2196 (|has| |#1| (-911 (-560))) (|has| |#1| (-911 (-391)))) ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 16 (|has| |#1| (-911 (-391))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 15 (|has| |#1| (-911 (-560))) ELT)) (-3358 (((-1189) $) 14 (-2196 (|has| |#1| (-911 (-560))) (|has| |#1| (-911 (-391)))) ELT)) (-3376 (((-1151) $) 13 (-2196 (|has| |#1| (-911 (-560))) (|has| |#1| (-911 (-391)))) ELT)) (-3913 (((-887) $) 12 (-2196 (|has| |#1| (-911 (-560))) (|has| |#1| (-911 (-391)))) ELT)) (-3925 (((-114) $ $) 11 (-2196 (|has| |#1| (-911 (-560))) (|has| |#1| (-911 (-391)))) ELT)) (-2340 (((-114) $ $) 9 (-2196 (|has| |#1| (-911 (-560))) (|has| |#1| (-911 (-391)))) ELT)))
(((-414 |#1|) (-142) (-1247)) (T -414))
NIL
(-13 (-1247) (-10 -7 (IF (|has| |t#1| (-911 (-560))) (-6 (-911 (-560))) |%noBranch|) (IF (|has| |t#1| (-911 (-391))) (-6 (-911 (-391))) |%noBranch|)))
-(((-102) -2304 (|has| |#1| (-911 (-560))) (|has| |#1| (-911 (-391)))) ((-632 (-887)) -2304 (|has| |#1| (-911 (-560))) (|has| |#1| (-911 (-391)))) ((-911 (-391)) |has| |#1| (-911 (-391))) ((-911 (-560)) |has| |#1| (-911 (-560))) ((-1132) -2304 (|has| |#1| (-911 (-560))) (|has| |#1| (-911 (-391)))) ((-1247) . T))
-((-1696 (($ $) 10 T ELT) (($ $ (-793)) 12 T ELT)))
-(((-415 |#1|) (-10 -8 (-15 -1696 (|#1| |#1| (-793))) (-15 -1696 (|#1| |#1|))) (-416)) (T -415))
+(((-102) -2196 (|has| |#1| (-911 (-560))) (|has| |#1| (-911 (-391)))) ((-632 (-887)) -2196 (|has| |#1| (-911 (-560))) (|has| |#1| (-911 (-391)))) ((-911 (-391)) |has| |#1| (-911 (-391))) ((-911 (-560)) |has| |#1| (-911 (-560))) ((-1132) -2196 (|has| |#1| (-911 (-560))) (|has| |#1| (-911 (-391)))) ((-1247) . T))
+((-3079 (($ $) 10 T ELT) (($ $ (-793)) 12 T ELT)))
+(((-415 |#1|) (-10 -8 (-15 -3079 (|#1| |#1| (-793))) (-15 -3079 (|#1| |#1|))) (-416)) (T -415))
NIL
-(-10 -8 (-15 -1696 (|#1| |#1| (-793))) (-15 -1696 (|#1| |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-3244 (($ $) 46 T ELT)) (-4093 (((-114) $) 44 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-1804 (($ $) 81 T ELT)) (-3023 (((-419 $) $) 80 T ELT)) (-1615 (((-114) $ $) 65 T ELT)) (-2238 (($) 18 T CONST)) (-1478 (($ $ $) 61 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1490 (($ $ $) 62 T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 57 T ELT)) (-1696 (($ $) 87 T ELT) (($ $ (-793)) 86 T ELT)) (-4330 (((-114) $) 79 T ELT)) (-3913 (((-854 (-948)) $) 89 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-2093 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-1544 (($ $) 78 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-2132 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-4457 (((-419 $) $) 82 T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-1528 (((-3 $ "failed") $ $) 48 T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-2901 (((-793) $) 64 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 63 T ELT)) (-2364 (((-3 (-793) "failed") $ $) 88 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-560))) 74 T ELT)) (-1964 (((-3 $ "failed") $) 90 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 45 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ $) 73 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 77 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 76 T ELT) (($ (-421 (-560)) $) 75 T ELT)))
+(-10 -8 (-15 -3079 (|#1| |#1| (-793))) (-15 -3079 (|#1| |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-4366 (($ $) 46 T ELT)) (-2667 (((-114) $) 44 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-1621 (($ $) 81 T ELT)) (-3898 (((-419 $) $) 80 T ELT)) (-3476 (((-114) $ $) 65 T ELT)) (-3525 (($) 18 T CONST)) (-2186 (($ $ $) 61 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-2197 (($ $ $) 62 T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 57 T ELT)) (-3079 (($ $) 87 T ELT) (($ $ (-793)) 86 T ELT)) (-3141 (((-114) $) 79 T ELT)) (-1460 (((-854 (-948)) $) 89 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-1861 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2986 (($ $) 78 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-1938 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-4012 (((-419 $) $) 82 T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-2233 (((-3 $ "failed") $ $) 48 T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-3989 (((-793) $) 64 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 63 T ELT)) (-2258 (((-3 (-793) "failed") $ $) 88 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-560))) 74 T ELT)) (-3919 (((-3 $ "failed") $) 90 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 45 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ $) 73 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 77 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 76 T ELT) (($ (-421 (-560)) $) 75 T ELT)))
(((-416) (-142)) (T -416))
-((-3913 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-854 (-948))))) (-2364 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-416)) (-5 *2 (-793)))) (-1696 (*1 *1 *1) (-4 *1 (-416))) (-1696 (*1 *1 *1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-793)))))
-(-13 (-376) (-147) (-10 -8 (-15 -3913 ((-854 (-948)) $)) (-15 -2364 ((-3 (-793) "failed") $ $)) (-15 -1696 ($ $)) (-15 -1696 ($ $ (-793)))))
+((-1460 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-854 (-948))))) (-2258 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-416)) (-5 *2 (-793)))) (-3079 (*1 *1 *1) (-4 *1 (-416))) (-3079 (*1 *1 *1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-793)))))
+(-13 (-376) (-147) (-10 -8 (-15 -1460 ((-854 (-948)) $)) (-15 -2258 ((-3 (-793) "failed") $ $)) (-15 -3079 ($ $)) (-15 -3079 ($ $ (-793)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-133) . T) ((-147) . T) ((-635 #0#) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-466) . T) ((-571) . T) ((-668 #0#) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 $) . T) ((-739 #0#) . T) ((-739 $) . T) ((-748) . T) ((-950) . T) ((-1082 #0#) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T) ((-1252) . T))
-((-2917 (($ (-560) (-560)) 11 T ELT) (($ (-560) (-560) (-948)) NIL T ELT)) (-1601 (((-948)) 19 T ELT) (((-948) (-948)) NIL T ELT)))
-(((-417 |#1|) (-10 -8 (-15 -1601 ((-948) (-948))) (-15 -1601 ((-948))) (-15 -2917 (|#1| (-560) (-560) (-948))) (-15 -2917 (|#1| (-560) (-560)))) (-418)) (T -417))
-((-1601 (*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-417 *3)) (-4 *3 (-418)))) (-1601 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-417 *3)) (-4 *3 (-418)))))
-(-10 -8 (-15 -1601 ((-948) (-948))) (-15 -1601 ((-948))) (-15 -2917 (|#1| (-560) (-560) (-948))) (-15 -2917 (|#1| (-560) (-560))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3941 (((-560) $) 98 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-3244 (($ $) 46 T ELT)) (-4093 (((-114) $) 44 T ELT)) (-4267 (($ $) 96 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-1804 (($ $) 81 T ELT)) (-3023 (((-419 $) $) 80 T ELT)) (-4471 (($ $) 106 T ELT)) (-1615 (((-114) $ $) 65 T ELT)) (-2138 (((-560) $) 123 T ELT)) (-2238 (($) 18 T CONST)) (-1733 (($ $) 95 T ELT)) (-2539 (((-3 (-560) "failed") $) 111 T ELT) (((-3 (-421 (-560)) "failed") $) 108 T ELT)) (-3330 (((-560) $) 112 T ELT) (((-421 (-560)) $) 109 T ELT)) (-1478 (($ $ $) 61 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1490 (($ $ $) 62 T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 57 T ELT)) (-4330 (((-114) $) 79 T ELT)) (-3788 (((-948)) 139 T ELT) (((-948) (-948)) 136 (|has| $ (-6 -4499)) ELT)) (-2928 (((-114) $) 121 T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 102 T ELT)) (-3913 (((-560) $) 145 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-2146 (($ $ (-560)) 105 T ELT)) (-2032 (($ $) 101 T ELT)) (-2960 (((-114) $) 122 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-3825 (($ $ $) 115 T ELT) (($) 133 (-12 (-1937 (|has| $ (-6 -4499))) (-1937 (|has| $ (-6 -4491)))) ELT)) (-2820 (($ $ $) 116 T ELT) (($) 132 (-12 (-1937 (|has| $ (-6 -4499))) (-1937 (|has| $ (-6 -4491)))) ELT)) (-3435 (((-560) $) 142 T ELT)) (-2093 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-1544 (($ $) 78 T ELT)) (-1347 (((-948) (-560)) 135 (|has| $ (-6 -4499)) ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-2132 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-2652 (($ $) 97 T ELT)) (-2016 (($ $) 99 T ELT)) (-2917 (($ (-560) (-560)) 147 T ELT) (($ (-560) (-560) (-948)) 146 T ELT)) (-4457 (((-419 $) $) 82 T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-1528 (((-3 $ "failed") $ $) 48 T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-3205 (((-560) $) 143 T ELT)) (-2901 (((-793) $) 64 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 63 T ELT)) (-1601 (((-948)) 140 T ELT) (((-948) (-948)) 137 (|has| $ (-6 -4499)) ELT)) (-4004 (((-948) (-560)) 134 (|has| $ (-6 -4499)) ELT)) (-1407 (((-391) $) 114 T ELT) (((-229) $) 113 T ELT) (((-915 (-391)) $) 103 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-560))) 74 T ELT) (($ (-560)) 110 T ELT) (($ (-421 (-560))) 107 T ELT)) (-2930 (((-793)) 32 T CONST)) (-1494 (($ $) 100 T ELT)) (-4139 (((-948)) 141 T ELT) (((-948) (-948)) 138 (|has| $ (-6 -4499)) ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-1792 (((-948)) 144 T ELT)) (-2948 (((-114) $ $) 45 T ELT)) (-2282 (($ $) 124 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2536 (((-114) $ $) 117 T ELT)) (-2508 (((-114) $ $) 119 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 118 T ELT)) (-2495 (((-114) $ $) 120 T ELT)) (-2594 (($ $ $) 73 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 77 T ELT) (($ $ (-421 (-560))) 104 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 76 T ELT) (($ (-421 (-560)) $) 75 T ELT)))
+((-2523 (($ (-560) (-560)) 11 T ELT) (($ (-560) (-560) (-948)) NIL T ELT)) (-3370 (((-948)) 19 T ELT) (((-948) (-948)) NIL T ELT)))
+(((-417 |#1|) (-10 -8 (-15 -3370 ((-948) (-948))) (-15 -3370 ((-948))) (-15 -2523 (|#1| (-560) (-560) (-948))) (-15 -2523 (|#1| (-560) (-560)))) (-418)) (T -417))
+((-3370 (*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-417 *3)) (-4 *3 (-418)))) (-3370 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-417 *3)) (-4 *3 (-418)))))
+(-10 -8 (-15 -3370 ((-948) (-948))) (-15 -3370 ((-948))) (-15 -2523 (|#1| (-560) (-560) (-948))) (-15 -2523 (|#1| (-560) (-560))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3655 (((-560) $) 98 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-4366 (($ $) 46 T ELT)) (-2667 (((-114) $) 44 T ELT)) (-3864 (($ $) 96 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-1621 (($ $) 81 T ELT)) (-3898 (((-419 $) $) 80 T ELT)) (-4021 (($ $) 106 T ELT)) (-3476 (((-114) $ $) 65 T ELT)) (-1869 (((-560) $) 123 T ELT)) (-3525 (($) 18 T CONST)) (-2198 (($ $) 95 T ELT)) (-3929 (((-3 (-560) "failed") $) 111 T ELT) (((-3 (-421 (-560)) "failed") $) 108 T ELT)) (-3649 (((-560) $) 112 T ELT) (((-421 (-560)) $) 109 T ELT)) (-2186 (($ $ $) 61 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-2197 (($ $ $) 62 T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 57 T ELT)) (-3141 (((-114) $) 79 T ELT)) (-2602 (((-948)) 139 T ELT) (((-948) (-948)) 136 (|has| $ (-6 -4499)) ELT)) (-4172 (((-114) $) 121 T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 102 T ELT)) (-1460 (((-560) $) 145 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-1956 (($ $ (-560)) 105 T ELT)) (-2084 (($ $) 101 T ELT)) (-4470 (((-114) $) 122 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-2932 (($ $ $) 115 T ELT) (($) 133 (-12 (-1394 (|has| $ (-6 -4499))) (-1394 (|has| $ (-6 -4491)))) ELT)) (-4379 (($ $ $) 116 T ELT) (($) 132 (-12 (-1394 (|has| $ (-6 -4499))) (-1394 (|has| $ (-6 -4491)))) ELT)) (-2048 (((-560) $) 142 T ELT)) (-1861 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2986 (($ $) 78 T ELT)) (-3611 (((-948) (-560)) 135 (|has| $ (-6 -4499)) ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-1938 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-3211 (($ $) 97 T ELT)) (-3147 (($ $) 99 T ELT)) (-2523 (($ (-560) (-560)) 147 T ELT) (($ (-560) (-560) (-948)) 146 T ELT)) (-4012 (((-419 $) $) 82 T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-2233 (((-3 $ "failed") $ $) 48 T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-2030 (((-560) $) 143 T ELT)) (-3989 (((-793) $) 64 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 63 T ELT)) (-3370 (((-948)) 140 T ELT) (((-948) (-948)) 137 (|has| $ (-6 -4499)) ELT)) (-3036 (((-948) (-560)) 134 (|has| $ (-6 -4499)) ELT)) (-2400 (((-391) $) 114 T ELT) (((-229) $) 113 T ELT) (((-915 (-391)) $) 103 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-560))) 74 T ELT) (($ (-560)) 110 T ELT) (($ (-421 (-560))) 107 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3622 (($ $) 100 T ELT)) (-1902 (((-948)) 141 T ELT) (((-948) (-948)) 138 (|has| $ (-6 -4499)) ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2671 (((-948)) 144 T ELT)) (-4361 (((-114) $ $) 45 T ELT)) (-2719 (($ $) 124 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2396 (((-114) $ $) 117 T ELT)) (-2373 (((-114) $ $) 119 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 118 T ELT)) (-2362 (((-114) $ $) 120 T ELT)) (-2453 (($ $ $) 73 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 77 T ELT) (($ $ (-421 (-560))) 104 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 76 T ELT) (($ (-421 (-560)) $) 75 T ELT)))
(((-418) (-142)) (T -418))
-((-2917 (*1 *1 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-418)))) (-2917 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-948)) (-4 *1 (-418)))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-560)))) (-1792 (*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-948)))) (-3205 (*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-560)))) (-3435 (*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-560)))) (-4139 (*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-948)))) (-1601 (*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-948)))) (-3788 (*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-948)))) (-4139 (*1 *2 *2) (-12 (-5 *2 (-948)) (|has| *1 (-6 -4499)) (-4 *1 (-418)))) (-1601 (*1 *2 *2) (-12 (-5 *2 (-948)) (|has| *1 (-6 -4499)) (-4 *1 (-418)))) (-3788 (*1 *2 *2) (-12 (-5 *2 (-948)) (|has| *1 (-6 -4499)) (-4 *1 (-418)))) (-1347 (*1 *2 *3) (-12 (-5 *3 (-560)) (|has| *1 (-6 -4499)) (-4 *1 (-418)) (-5 *2 (-948)))) (-4004 (*1 *2 *3) (-12 (-5 *3 (-560)) (|has| *1 (-6 -4499)) (-4 *1 (-418)) (-5 *2 (-948)))) (-3825 (*1 *1) (-12 (-4 *1 (-418)) (-1937 (|has| *1 (-6 -4499))) (-1937 (|has| *1 (-6 -4491))))) (-2820 (*1 *1) (-12 (-4 *1 (-418)) (-1937 (|has| *1 (-6 -4499))) (-1937 (|has| *1 (-6 -4491))))))
-(-13 (-1091) (-10 -8 (-6 -2239) (-15 -2917 ($ (-560) (-560))) (-15 -2917 ($ (-560) (-560) (-948))) (-15 -3913 ((-560) $)) (-15 -1792 ((-948))) (-15 -3205 ((-560) $)) (-15 -3435 ((-560) $)) (-15 -4139 ((-948))) (-15 -1601 ((-948))) (-15 -3788 ((-948))) (IF (|has| $ (-6 -4499)) (PROGN (-15 -4139 ((-948) (-948))) (-15 -1601 ((-948) (-948))) (-15 -3788 ((-948) (-948))) (-15 -1347 ((-948) (-560))) (-15 -4004 ((-948) (-560)))) |%noBranch|) (IF (|has| $ (-6 -4491)) |%noBranch| (IF (|has| $ (-6 -4499)) |%noBranch| (PROGN (-15 -3825 ($)) (-15 -2820 ($)))))))
+((-2523 (*1 *1 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-418)))) (-2523 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-948)) (-4 *1 (-418)))) (-1460 (*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-560)))) (-2671 (*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-948)))) (-2030 (*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-560)))) (-2048 (*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-560)))) (-1902 (*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-948)))) (-3370 (*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-948)))) (-2602 (*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-948)))) (-1902 (*1 *2 *2) (-12 (-5 *2 (-948)) (|has| *1 (-6 -4499)) (-4 *1 (-418)))) (-3370 (*1 *2 *2) (-12 (-5 *2 (-948)) (|has| *1 (-6 -4499)) (-4 *1 (-418)))) (-2602 (*1 *2 *2) (-12 (-5 *2 (-948)) (|has| *1 (-6 -4499)) (-4 *1 (-418)))) (-3611 (*1 *2 *3) (-12 (-5 *3 (-560)) (|has| *1 (-6 -4499)) (-4 *1 (-418)) (-5 *2 (-948)))) (-3036 (*1 *2 *3) (-12 (-5 *3 (-560)) (|has| *1 (-6 -4499)) (-4 *1 (-418)) (-5 *2 (-948)))) (-2932 (*1 *1) (-12 (-4 *1 (-418)) (-1394 (|has| *1 (-6 -4499))) (-1394 (|has| *1 (-6 -4491))))) (-4379 (*1 *1) (-12 (-4 *1 (-418)) (-1394 (|has| *1 (-6 -4499))) (-1394 (|has| *1 (-6 -4491))))))
+(-13 (-1091) (-10 -8 (-6 -2905) (-15 -2523 ($ (-560) (-560))) (-15 -2523 ($ (-560) (-560) (-948))) (-15 -1460 ((-560) $)) (-15 -2671 ((-948))) (-15 -2030 ((-560) $)) (-15 -2048 ((-560) $)) (-15 -1902 ((-948))) (-15 -3370 ((-948))) (-15 -2602 ((-948))) (IF (|has| $ (-6 -4499)) (PROGN (-15 -1902 ((-948) (-948))) (-15 -3370 ((-948) (-948))) (-15 -2602 ((-948) (-948))) (-15 -3611 ((-948) (-560))) (-15 -3036 ((-948) (-560)))) |%noBranch|) (IF (|has| $ (-6 -4491)) |%noBranch| (IF (|has| $ (-6 -4499)) |%noBranch| (PROGN (-15 -2932 ($)) (-15 -4379 ($)))))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-635 #0#) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-633 (-229)) . T) ((-633 (-391)) . T) ((-633 (-915 (-391))) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-466) . T) ((-571) . T) ((-668 #0#) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 $) . T) ((-739 #0#) . T) ((-739 $) . T) ((-748) . T) ((-813) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-870) . T) ((-871) . T) ((-874) . T) ((-911 (-391)) . T) ((-950) . T) ((-1033) . T) ((-1051) . T) ((-1091) . T) ((-1069 (-421 (-560))) . T) ((-1069 (-560)) . T) ((-1082 #0#) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T) ((-1252) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 60 T ELT)) (-1891 (($ $) 78 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 192 T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) 48 T ELT)) (-2489 ((|#1| $) 16 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL (|has| |#1| (-1252)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#1| (-1252)) ELT)) (-3127 (($ |#1| (-560)) 42 T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 149 T ELT)) (-3330 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) 74 T ELT)) (-1990 (((-3 $ "failed") $) 165 T ELT)) (-3643 (((-3 (-421 (-560)) "failed") $) 85 (|has| |#1| (-559)) ELT)) (-3469 (((-114) $) 81 (|has| |#1| (-559)) ELT)) (-3197 (((-421 (-560)) $) 92 (|has| |#1| (-559)) ELT)) (-1865 (($ |#1| (-560)) 44 T ELT)) (-4330 (((-114) $) 212 (|has| |#1| (-1252)) ELT)) (-1581 (((-114) $) 62 T ELT)) (-1921 (((-793) $) 51 T ELT)) (-1437 (((-3 "nil" "sqfr" "irred" "prime") $ (-560)) 176 T ELT)) (-2461 ((|#1| $ (-560)) 175 T ELT)) (-3444 (((-560) $ (-560)) 174 T ELT)) (-1718 (($ |#1| (-560)) 41 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 184 T ELT)) (-3823 (($ |#1| (-663 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-560))))) 79 T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-4228 (($ |#1| (-560)) 43 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-466)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) 193 (|has| |#1| (-466)) ELT)) (-3206 (($ |#1| (-560) (-3 "nil" "sqfr" "irred" "prime")) 40 T ELT)) (-3764 (((-663 (-2 (|:| -4457 |#1|) (|:| -3205 (-560)))) $) 73 T ELT)) (-3556 (((-663 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-560)))) $) 12 T ELT)) (-4457 (((-419 $) $) NIL (|has| |#1| (-1252)) ELT)) (-1528 (((-3 $ "failed") $ $) 177 T ELT)) (-3205 (((-560) $) 168 T ELT)) (-1945 ((|#1| $) 75 T ELT)) (-4187 (($ $ (-663 |#1|) (-663 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) 101 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) 107 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) $) NIL (|has| |#1| (-528 (-1207) $)) ELT) (($ $ (-663 (-1207)) (-663 $)) 108 (|has| |#1| (-528 (-1207) $)) ELT) (($ $ (-663 (-305 $))) 104 (|has| |#1| (-321 $)) ELT) (($ $ (-305 $)) NIL (|has| |#1| (-321 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-321 $)) ELT) (($ $ (-663 $) (-663 $)) NIL (|has| |#1| (-321 $)) ELT)) (-3924 (($ $ |#1|) 93 (|has| |#1| (-298 |#1| |#1|)) ELT) (($ $ $) 94 (|has| |#1| (-298 $ $)) ELT)) (-2894 (($ $ (-1 |#1| |#1|)) 183 T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-1407 (((-549) $) 39 (|has| |#1| (-633 (-549))) ELT) (((-391) $) 114 (|has| |#1| (-1051)) ELT) (((-229) $) 120 (|has| |#1| (-1051)) ELT)) (-1578 (((-887) $) 147 T ELT) (($ (-560)) 65 T ELT) (($ $) NIL T ELT) (($ |#1|) 64 T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT)) (-2930 (((-793)) 67 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2001 (($) 53 T CONST)) (-2011 (($) 52 T CONST)) (-3305 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-2473 (((-114) $ $) 160 T ELT)) (-2580 (($ $) 162 T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 181 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 126 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 69 T ELT) (($ $ $) 68 T ELT) (($ |#1| $) 70 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-419 |#1|) (-13 (-571) (-234 |#1|) (-38 |#1|) (-351 |#1|) (-426 |#1|) (-10 -8 (-15 -1945 (|#1| $)) (-15 -3205 ((-560) $)) (-15 -3823 ($ |#1| (-663 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-560)))))) (-15 -3556 ((-663 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-560)))) $)) (-15 -1718 ($ |#1| (-560))) (-15 -3764 ((-663 (-2 (|:| -4457 |#1|) (|:| -3205 (-560)))) $)) (-15 -4228 ($ |#1| (-560))) (-15 -3444 ((-560) $ (-560))) (-15 -2461 (|#1| $ (-560))) (-15 -1437 ((-3 "nil" "sqfr" "irred" "prime") $ (-560))) (-15 -1921 ((-793) $)) (-15 -1865 ($ |#1| (-560))) (-15 -3127 ($ |#1| (-560))) (-15 -3206 ($ |#1| (-560) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2489 (|#1| $)) (-15 -1891 ($ $)) (-15 -3957 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-466)) (-6 (-466)) |%noBranch|) (IF (|has| |#1| (-1051)) (-6 (-1051)) |%noBranch|) (IF (|has| |#1| (-1252)) (-6 (-1252)) |%noBranch|) (IF (|has| |#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3469 ((-114) $)) (-15 -3197 ((-421 (-560)) $)) (-15 -3643 ((-3 (-421 (-560)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-298 $ $)) (-6 (-298 $ $)) |%noBranch|) (IF (|has| |#1| (-321 $)) (-6 (-321 $)) |%noBranch|) (IF (|has| |#1| (-528 (-1207) $)) (-6 (-528 (-1207) $)) |%noBranch|))) (-571)) (T -419))
-((-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-571)) (-5 *1 (-419 *3)))) (-1945 (*1 *2 *1) (-12 (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-3205 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-419 *3)) (-4 *3 (-571)))) (-3823 (*1 *1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-560))))) (-4 *2 (-571)) (-5 *1 (-419 *2)))) (-3556 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-560))))) (-5 *1 (-419 *3)) (-4 *3 (-571)))) (-1718 (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-3764 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| -4457 *3) (|:| -3205 (-560))))) (-5 *1 (-419 *3)) (-4 *3 (-571)))) (-4228 (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-3444 (*1 *2 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-419 *3)) (-4 *3 (-571)))) (-2461 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-1437 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-419 *4)) (-4 *4 (-571)))) (-1921 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-419 *3)) (-4 *3 (-571)))) (-1865 (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-3127 (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-3206 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-560)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-2489 (*1 *2 *1) (-12 (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-1891 (*1 *1 *1) (-12 (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-419 *3)) (-4 *3 (-559)) (-4 *3 (-571)))) (-3197 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-419 *3)) (-4 *3 (-559)) (-4 *3 (-571)))) (-3643 (*1 *2 *1) (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-419 *3)) (-4 *3 (-559)) (-4 *3 (-571)))))
-(-13 (-571) (-234 |#1|) (-38 |#1|) (-351 |#1|) (-426 |#1|) (-10 -8 (-15 -1945 (|#1| $)) (-15 -3205 ((-560) $)) (-15 -3823 ($ |#1| (-663 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-560)))))) (-15 -3556 ((-663 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-560)))) $)) (-15 -1718 ($ |#1| (-560))) (-15 -3764 ((-663 (-2 (|:| -4457 |#1|) (|:| -3205 (-560)))) $)) (-15 -4228 ($ |#1| (-560))) (-15 -3444 ((-560) $ (-560))) (-15 -2461 (|#1| $ (-560))) (-15 -1437 ((-3 "nil" "sqfr" "irred" "prime") $ (-560))) (-15 -1921 ((-793) $)) (-15 -1865 ($ |#1| (-560))) (-15 -3127 ($ |#1| (-560))) (-15 -3206 ($ |#1| (-560) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2489 (|#1| $)) (-15 -1891 ($ $)) (-15 -3957 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-466)) (-6 (-466)) |%noBranch|) (IF (|has| |#1| (-1051)) (-6 (-1051)) |%noBranch|) (IF (|has| |#1| (-1252)) (-6 (-1252)) |%noBranch|) (IF (|has| |#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3469 ((-114) $)) (-15 -3197 ((-421 (-560)) $)) (-15 -3643 ((-3 (-421 (-560)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-298 $ $)) (-6 (-298 $ $)) |%noBranch|) (IF (|has| |#1| (-321 $)) (-6 (-321 $)) |%noBranch|) (IF (|has| |#1| (-528 (-1207) $)) (-6 (-528 (-1207) $)) |%noBranch|)))
-((-3957 (((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)) 20 T ELT)))
-(((-420 |#1| |#2|) (-10 -7 (-15 -3957 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) (-571) (-571)) (T -420))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-571)) (-4 *6 (-571)) (-5 *2 (-419 *6)) (-5 *1 (-420 *5 *6)))))
-(-10 -7 (-15 -3957 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 13 T ELT)) (-3941 ((|#1| $) 21 (|has| |#1| (-319)) ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2138 (((-560) $) NIL (|has| |#1| (-842)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) 17 T ELT) (((-3 (-1207) "failed") $) NIL (|has| |#1| (-1069 (-1207))) ELT) (((-3 (-421 (-560)) "failed") $) 72 (|has| |#1| (-1069 (-560))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT)) (-3330 ((|#1| $) 15 T ELT) (((-1207) $) NIL (|has| |#1| (-1069 (-1207))) ELT) (((-421 (-560)) $) 69 (|has| |#1| (-1069 (-560))) ELT) (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT)) (-1478 (($ $ $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) 51 T ELT)) (-2310 (($) NIL (|has| |#1| (-559)) ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-2928 (((-114) $) NIL (|has| |#1| (-842)) ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (|has| |#1| (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (|has| |#1| (-911 (-391))) ELT)) (-1581 (((-114) $) 57 T ELT)) (-1617 (($ $) NIL T ELT)) (-3757 ((|#1| $) 73 T ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| |#1| (-1182)) ELT)) (-2960 (((-114) $) NIL (|has| |#1| (-842)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3825 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-3161 (($) NIL (|has| |#1| (-1182)) CONST)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 100 T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2652 (($ $) NIL (|has| |#1| (-319)) ELT)) (-2016 ((|#1| $) 28 (|has| |#1| (-559)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) 145 (|has| |#1| (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) 138 (|has| |#1| (-939)) ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-4187 (($ $ (-663 |#1|) (-663 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-2901 (((-793) $) NIL T ELT)) (-3924 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2894 (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-3056 (($ $) NIL T ELT)) (-3771 ((|#1| $) 75 T ELT)) (-1407 (((-915 (-560)) $) NIL (|has| |#1| (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) NIL (|has| |#1| (-633 (-915 (-391)))) ELT) (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT) (((-391) $) NIL (|has| |#1| (-1051)) ELT) (((-229) $) NIL (|has| |#1| (-1051)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) 122 (-12 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1207)) NIL (|has| |#1| (-1069 (-1207))) ELT)) (-1964 (((-3 $ "failed") $) 102 (-2304 (-12 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-2930 (((-793)) 103 T CONST)) (-1494 ((|#1| $) 26 (|has| |#1| (-559)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2282 (($ $) NIL (|has| |#1| (-842)) ELT)) (-2001 (($) 22 T CONST)) (-2011 (($) 8 T CONST)) (-2735 (((-1189) $) 44 (-12 (|has| |#1| (-559)) (|has| |#1| (-843))) ELT) (((-1189) $ (-114)) 45 (-12 (|has| |#1| (-559)) (|has| |#1| (-843))) ELT) (((-1303) (-845) $) 46 (-12 (|has| |#1| (-559)) (|has| |#1| (-843))) ELT) (((-1303) (-845) $ (-114)) 47 (-12 (|has| |#1| (-559)) (|has| |#1| (-843))) ELT)) (-3305 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-2536 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) 66 T ELT)) (-2521 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) 24 (|has| |#1| (-871)) ELT)) (-2594 (($ $ $) 133 T ELT) (($ |#1| |#1|) 53 T ELT)) (-2580 (($ $) 25 T ELT) (($ $ $) 56 T ELT)) (-2567 (($ $ $) 54 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 132 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 61 T ELT) (($ $ $) 58 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ |#1| $) 62 T ELT) (($ $ |#1|) 88 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 60 T ELT)) (-4448 (($ $) 78 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 192 T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) 48 T ELT)) (-4184 ((|#1| $) 16 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL (|has| |#1| (-1252)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#1| (-1252)) ELT)) (-2468 (($ |#1| (-560)) 42 T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 149 T ELT)) (-3649 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) 74 T ELT)) (-2873 (((-3 $ "failed") $) 165 T ELT)) (-2743 (((-3 (-421 (-560)) "failed") $) 85 (|has| |#1| (-559)) ELT)) (-1574 (((-114) $) 81 (|has| |#1| (-559)) ELT)) (-1957 (((-421 (-560)) $) 92 (|has| |#1| (-559)) ELT)) (-4190 (($ |#1| (-560)) 44 T ELT)) (-3141 (((-114) $) 212 (|has| |#1| (-1252)) ELT)) (-1918 (((-114) $) 62 T ELT)) (-3506 (((-793) $) 51 T ELT)) (-1600 (((-3 "nil" "sqfr" "irred" "prime") $ (-560)) 176 T ELT)) (-1997 ((|#1| $ (-560)) 175 T ELT)) (-2549 (((-560) $ (-560)) 174 T ELT)) (-2080 (($ |#1| (-560)) 41 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 184 T ELT)) (-1884 (($ |#1| (-663 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-560))))) 79 T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3452 (($ |#1| (-560)) 43 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-466)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) 193 (|has| |#1| (-466)) ELT)) (-2040 (($ |#1| (-560) (-3 "nil" "sqfr" "irred" "prime")) 40 T ELT)) (-2609 (((-663 (-2 (|:| -4012 |#1|) (|:| -2030 (-560)))) $) 73 T ELT)) (-4384 (((-663 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-560)))) $) 12 T ELT)) (-4012 (((-419 $) $) NIL (|has| |#1| (-1252)) ELT)) (-2233 (((-3 $ "failed") $ $) 177 T ELT)) (-2030 (((-560) $) 168 T ELT)) (-3890 ((|#1| $) 75 T ELT)) (-2371 (($ $ (-663 |#1|) (-663 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) 101 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) 107 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) $) NIL (|has| |#1| (-528 (-1207) $)) ELT) (($ $ (-663 (-1207)) (-663 $)) 108 (|has| |#1| (-528 (-1207) $)) ELT) (($ $ (-663 (-305 $))) 104 (|has| |#1| (-321 $)) ELT) (($ $ (-305 $)) NIL (|has| |#1| (-321 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-321 $)) ELT) (($ $ (-663 $) (-663 $)) NIL (|has| |#1| (-321 $)) ELT)) (-1507 (($ $ |#1|) 93 (|has| |#1| (-298 |#1| |#1|)) ELT) (($ $ $) 94 (|has| |#1| (-298 $ $)) ELT)) (-3161 (($ $ (-1 |#1| |#1|)) 183 T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-2400 (((-549) $) 39 (|has| |#1| (-633 (-549))) ELT) (((-391) $) 114 (|has| |#1| (-1051)) ELT) (((-229) $) 120 (|has| |#1| (-1051)) ELT)) (-3913 (((-887) $) 147 T ELT) (($ (-560)) 65 T ELT) (($ $) NIL T ELT) (($ |#1|) 64 T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT)) (-4191 (((-793)) 67 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-1446 (($) 53 T CONST)) (-1456 (($) 52 T CONST)) (-2111 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-2340 (((-114) $ $) 160 T ELT)) (-2441 (($ $) 162 T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 181 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 126 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 69 T ELT) (($ $ $) 68 T ELT) (($ |#1| $) 70 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-419 |#1|) (-13 (-571) (-234 |#1|) (-38 |#1|) (-351 |#1|) (-426 |#1|) (-10 -8 (-15 -3890 (|#1| $)) (-15 -2030 ((-560) $)) (-15 -1884 ($ |#1| (-663 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-560)))))) (-15 -4384 ((-663 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-560)))) $)) (-15 -2080 ($ |#1| (-560))) (-15 -2609 ((-663 (-2 (|:| -4012 |#1|) (|:| -2030 (-560)))) $)) (-15 -3452 ($ |#1| (-560))) (-15 -2549 ((-560) $ (-560))) (-15 -1997 (|#1| $ (-560))) (-15 -1600 ((-3 "nil" "sqfr" "irred" "prime") $ (-560))) (-15 -3506 ((-793) $)) (-15 -4190 ($ |#1| (-560))) (-15 -2468 ($ |#1| (-560))) (-15 -2040 ($ |#1| (-560) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4184 (|#1| $)) (-15 -4448 ($ $)) (-15 -2260 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-466)) (-6 (-466)) |%noBranch|) (IF (|has| |#1| (-1051)) (-6 (-1051)) |%noBranch|) (IF (|has| |#1| (-1252)) (-6 (-1252)) |%noBranch|) (IF (|has| |#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -1574 ((-114) $)) (-15 -1957 ((-421 (-560)) $)) (-15 -2743 ((-3 (-421 (-560)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-298 $ $)) (-6 (-298 $ $)) |%noBranch|) (IF (|has| |#1| (-321 $)) (-6 (-321 $)) |%noBranch|) (IF (|has| |#1| (-528 (-1207) $)) (-6 (-528 (-1207) $)) |%noBranch|))) (-571)) (T -419))
+((-2260 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-571)) (-5 *1 (-419 *3)))) (-3890 (*1 *2 *1) (-12 (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-2030 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-419 *3)) (-4 *3 (-571)))) (-1884 (*1 *1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-560))))) (-4 *2 (-571)) (-5 *1 (-419 *2)))) (-4384 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-560))))) (-5 *1 (-419 *3)) (-4 *3 (-571)))) (-2080 (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-2609 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| -4012 *3) (|:| -2030 (-560))))) (-5 *1 (-419 *3)) (-4 *3 (-571)))) (-3452 (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-2549 (*1 *2 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-419 *3)) (-4 *3 (-571)))) (-1997 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-1600 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-419 *4)) (-4 *4 (-571)))) (-3506 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-419 *3)) (-4 *3 (-571)))) (-4190 (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-2468 (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-2040 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-560)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-4184 (*1 *2 *1) (-12 (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-4448 (*1 *1 *1) (-12 (-5 *1 (-419 *2)) (-4 *2 (-571)))) (-1574 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-419 *3)) (-4 *3 (-559)) (-4 *3 (-571)))) (-1957 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-419 *3)) (-4 *3 (-559)) (-4 *3 (-571)))) (-2743 (*1 *2 *1) (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-419 *3)) (-4 *3 (-559)) (-4 *3 (-571)))))
+(-13 (-571) (-234 |#1|) (-38 |#1|) (-351 |#1|) (-426 |#1|) (-10 -8 (-15 -3890 (|#1| $)) (-15 -2030 ((-560) $)) (-15 -1884 ($ |#1| (-663 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-560)))))) (-15 -4384 ((-663 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-560)))) $)) (-15 -2080 ($ |#1| (-560))) (-15 -2609 ((-663 (-2 (|:| -4012 |#1|) (|:| -2030 (-560)))) $)) (-15 -3452 ($ |#1| (-560))) (-15 -2549 ((-560) $ (-560))) (-15 -1997 (|#1| $ (-560))) (-15 -1600 ((-3 "nil" "sqfr" "irred" "prime") $ (-560))) (-15 -3506 ((-793) $)) (-15 -4190 ($ |#1| (-560))) (-15 -2468 ($ |#1| (-560))) (-15 -2040 ($ |#1| (-560) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -4184 (|#1| $)) (-15 -4448 ($ $)) (-15 -2260 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-466)) (-6 (-466)) |%noBranch|) (IF (|has| |#1| (-1051)) (-6 (-1051)) |%noBranch|) (IF (|has| |#1| (-1252)) (-6 (-1252)) |%noBranch|) (IF (|has| |#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -1574 ((-114) $)) (-15 -1957 ((-421 (-560)) $)) (-15 -2743 ((-3 (-421 (-560)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-298 $ $)) (-6 (-298 $ $)) |%noBranch|) (IF (|has| |#1| (-321 $)) (-6 (-321 $)) |%noBranch|) (IF (|has| |#1| (-528 (-1207) $)) (-6 (-528 (-1207) $)) |%noBranch|)))
+((-2260 (((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)) 20 T ELT)))
+(((-420 |#1| |#2|) (-10 -7 (-15 -2260 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) (-571) (-571)) (T -420))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-571)) (-4 *6 (-571)) (-5 *2 (-419 *6)) (-5 *1 (-420 *5 *6)))))
+(-10 -7 (-15 -2260 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 13 T ELT)) (-3655 ((|#1| $) 21 (|has| |#1| (-319)) ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-1869 (((-560) $) NIL (|has| |#1| (-842)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) 17 T ELT) (((-3 (-1207) "failed") $) NIL (|has| |#1| (-1069 (-1207))) ELT) (((-3 (-421 (-560)) "failed") $) 72 (|has| |#1| (-1069 (-560))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT)) (-3649 ((|#1| $) 15 T ELT) (((-1207) $) NIL (|has| |#1| (-1069 (-1207))) ELT) (((-421 (-560)) $) 69 (|has| |#1| (-1069 (-560))) ELT) (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT)) (-2186 (($ $ $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) 51 T ELT)) (-1812 (($) NIL (|has| |#1| (-559)) ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-4172 (((-114) $) NIL (|has| |#1| (-842)) ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (|has| |#1| (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (|has| |#1| (-911 (-391))) ELT)) (-1918 (((-114) $) 57 T ELT)) (-3490 (($ $) NIL T ELT)) (-2473 ((|#1| $) 73 T ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| |#1| (-1182)) ELT)) (-4470 (((-114) $) NIL (|has| |#1| (-842)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3239 (($) NIL (|has| |#1| (-1182)) CONST)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 100 T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3211 (($ $) NIL (|has| |#1| (-319)) ELT)) (-3147 ((|#1| $) 28 (|has| |#1| (-559)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) 145 (|has| |#1| (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) 138 (|has| |#1| (-939)) ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2371 (($ $ (-663 |#1|) (-663 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-3989 (((-793) $) NIL T ELT)) (-1507 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3161 (($ $ (-1 |#1| |#1|)) 64 T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-2951 (($ $) NIL T ELT)) (-2484 ((|#1| $) 75 T ELT)) (-2400 (((-915 (-560)) $) NIL (|has| |#1| (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) NIL (|has| |#1| (-633 (-915 (-391)))) ELT) (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT) (((-391) $) NIL (|has| |#1| (-1051)) ELT) (((-229) $) NIL (|has| |#1| (-1051)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) 122 (-12 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1207)) NIL (|has| |#1| (-1069 (-1207))) ELT)) (-3919 (((-3 $ "failed") $) 102 (-2196 (-12 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-4191 (((-793)) 103 T CONST)) (-3622 ((|#1| $) 26 (|has| |#1| (-559)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-2719 (($ $) NIL (|has| |#1| (-842)) ELT)) (-1446 (($) 22 T CONST)) (-1456 (($) 8 T CONST)) (-1581 (((-1189) $) 44 (-12 (|has| |#1| (-559)) (|has| |#1| (-843))) ELT) (((-1189) $ (-114)) 45 (-12 (|has| |#1| (-559)) (|has| |#1| (-843))) ELT) (((-1303) (-845) $) 46 (-12 (|has| |#1| (-559)) (|has| |#1| (-843))) ELT) (((-1303) (-845) $ (-114)) 47 (-12 (|has| |#1| (-559)) (|has| |#1| (-843))) ELT)) (-2111 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-2396 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) 66 T ELT)) (-2386 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) 24 (|has| |#1| (-871)) ELT)) (-2453 (($ $ $) 133 T ELT) (($ |#1| |#1|) 53 T ELT)) (-2441 (($ $) 25 T ELT) (($ $ $) 56 T ELT)) (-2429 (($ $ $) 54 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 132 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 61 T ELT) (($ $ $) 58 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ |#1| $) 62 T ELT) (($ $ |#1|) 88 T ELT)))
(((-421 |#1|) (-13 (-1022 |#1|) (-10 -7 (IF (|has| |#1| (-559)) (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4495)) (IF (|has| |#1| (-466)) (IF (|has| |#1| (-6 -4506)) (-6 -4495) |%noBranch|) |%noBranch|) |%noBranch|))) (-571)) (T -421))
NIL
(-13 (-1022 |#1|) (-10 -7 (IF (|has| |#1| (-559)) (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4495)) (IF (|has| |#1| (-466)) (IF (|has| |#1| (-6 -4506)) (-6 -4495) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-3957 (((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)) 13 T ELT)))
-(((-422 |#1| |#2|) (-10 -7 (-15 -3957 ((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)))) (-571) (-571)) (T -422))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-421 *5)) (-4 *5 (-571)) (-4 *6 (-571)) (-5 *2 (-421 *6)) (-5 *1 (-422 *5 *6)))))
-(-10 -7 (-15 -3957 ((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|))))
-((-1698 (((-711 |#2|) (-1297 $)) NIL T ELT) (((-711 |#2|)) 18 T ELT)) (-4143 (($ (-1297 |#2|) (-1297 $)) NIL T ELT) (($ (-1297 |#2|)) 24 T ELT)) (-4333 (((-711 |#2|) $ (-1297 $)) NIL T ELT) (((-711 |#2|) $) 40 T ELT)) (-1787 ((|#3| $) 69 T ELT)) (-2690 ((|#2| (-1297 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-2178 (((-1297 |#2|) $ (-1297 $)) NIL T ELT) (((-711 |#2|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#2|) $) 22 T ELT) (((-711 |#2|) (-1297 $)) 38 T ELT)) (-1407 (((-1297 |#2|) $) 11 T ELT) (($ (-1297 |#2|)) 13 T ELT)) (-2630 ((|#3| $) 55 T ELT)))
-(((-423 |#1| |#2| |#3|) (-10 -8 (-15 -4333 ((-711 |#2|) |#1|)) (-15 -2690 (|#2|)) (-15 -1698 ((-711 |#2|))) (-15 -1407 (|#1| (-1297 |#2|))) (-15 -1407 ((-1297 |#2|) |#1|)) (-15 -4143 (|#1| (-1297 |#2|))) (-15 -2178 ((-711 |#2|) (-1297 |#1|))) (-15 -2178 ((-1297 |#2|) |#1|)) (-15 -1787 (|#3| |#1|)) (-15 -2630 (|#3| |#1|)) (-15 -1698 ((-711 |#2|) (-1297 |#1|))) (-15 -2690 (|#2| (-1297 |#1|))) (-15 -4143 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -2178 ((-711 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -2178 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -4333 ((-711 |#2|) |#1| (-1297 |#1|)))) (-424 |#2| |#3|) (-175) (-1273 |#2|)) (T -423))
-((-1698 (*1 *2) (-12 (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-711 *4)) (-5 *1 (-423 *3 *4 *5)) (-4 *3 (-424 *4 *5)))) (-2690 (*1 *2) (-12 (-4 *4 (-1273 *2)) (-4 *2 (-175)) (-5 *1 (-423 *3 *2 *4)) (-4 *3 (-424 *2 *4)))))
-(-10 -8 (-15 -4333 ((-711 |#2|) |#1|)) (-15 -2690 (|#2|)) (-15 -1698 ((-711 |#2|))) (-15 -1407 (|#1| (-1297 |#2|))) (-15 -1407 ((-1297 |#2|) |#1|)) (-15 -4143 (|#1| (-1297 |#2|))) (-15 -2178 ((-711 |#2|) (-1297 |#1|))) (-15 -2178 ((-1297 |#2|) |#1|)) (-15 -1787 (|#3| |#1|)) (-15 -2630 (|#3| |#1|)) (-15 -1698 ((-711 |#2|) (-1297 |#1|))) (-15 -2690 (|#2| (-1297 |#1|))) (-15 -4143 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -2178 ((-711 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -2178 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -4333 ((-711 |#2|) |#1| (-1297 |#1|))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-1698 (((-711 |#1|) (-1297 $)) 53 T ELT) (((-711 |#1|)) 68 T ELT)) (-3349 ((|#1| $) 59 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-4143 (($ (-1297 |#1|) (-1297 $)) 55 T ELT) (($ (-1297 |#1|)) 71 T ELT)) (-4333 (((-711 |#1|) $ (-1297 $)) 60 T ELT) (((-711 |#1|) $) 66 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-2326 (((-948)) 61 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-2032 ((|#1| $) 58 T ELT)) (-1787 ((|#2| $) 51 (|has| |#1| (-376)) ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-2690 ((|#1| (-1297 $)) 54 T ELT) ((|#1|) 67 T ELT)) (-2178 (((-1297 |#1|) $ (-1297 $)) 57 T ELT) (((-711 |#1|) (-1297 $) (-1297 $)) 56 T ELT) (((-1297 |#1|) $) 73 T ELT) (((-711 |#1|) (-1297 $)) 72 T ELT)) (-1407 (((-1297 |#1|) $) 70 T ELT) (($ (-1297 |#1|)) 69 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 44 T ELT)) (-1964 (((-3 $ "failed") $) 50 (|has| |#1| (-147)) ELT)) (-2630 ((|#2| $) 52 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-1954 (((-1297 $)) 74 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
+((-2260 (((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)) 13 T ELT)))
+(((-422 |#1| |#2|) (-10 -7 (-15 -2260 ((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|)))) (-571) (-571)) (T -422))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-421 *5)) (-4 *5 (-571)) (-4 *6 (-571)) (-5 *2 (-421 *6)) (-5 *1 (-422 *5 *6)))))
+(-10 -7 (-15 -2260 ((-421 |#2|) (-1 |#2| |#1|) (-421 |#1|))))
+((-3100 (((-711 |#2|) (-1297 $)) NIL T ELT) (((-711 |#2|)) 18 T ELT)) (-1953 (($ (-1297 |#2|) (-1297 $)) NIL T ELT) (($ (-1297 |#2|)) 24 T ELT)) (-3160 (((-711 |#2|) $ (-1297 $)) NIL T ELT) (((-711 |#2|) $) 40 T ELT)) (-1471 ((|#3| $) 69 T ELT)) (-2336 ((|#2| (-1297 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-4226 (((-1297 |#2|) $ (-1297 $)) NIL T ELT) (((-711 |#2|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#2|) $) 22 T ELT) (((-711 |#2|) (-1297 $)) 38 T ELT)) (-2400 (((-1297 |#2|) $) 11 T ELT) (($ (-1297 |#2|)) 13 T ELT)) (-2978 ((|#3| $) 55 T ELT)))
+(((-423 |#1| |#2| |#3|) (-10 -8 (-15 -3160 ((-711 |#2|) |#1|)) (-15 -2336 (|#2|)) (-15 -3100 ((-711 |#2|))) (-15 -2400 (|#1| (-1297 |#2|))) (-15 -2400 ((-1297 |#2|) |#1|)) (-15 -1953 (|#1| (-1297 |#2|))) (-15 -4226 ((-711 |#2|) (-1297 |#1|))) (-15 -4226 ((-1297 |#2|) |#1|)) (-15 -1471 (|#3| |#1|)) (-15 -2978 (|#3| |#1|)) (-15 -3100 ((-711 |#2|) (-1297 |#1|))) (-15 -2336 (|#2| (-1297 |#1|))) (-15 -1953 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -4226 ((-711 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -4226 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -3160 ((-711 |#2|) |#1| (-1297 |#1|)))) (-424 |#2| |#3|) (-175) (-1273 |#2|)) (T -423))
+((-3100 (*1 *2) (-12 (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-711 *4)) (-5 *1 (-423 *3 *4 *5)) (-4 *3 (-424 *4 *5)))) (-2336 (*1 *2) (-12 (-4 *4 (-1273 *2)) (-4 *2 (-175)) (-5 *1 (-423 *3 *2 *4)) (-4 *3 (-424 *2 *4)))))
+(-10 -8 (-15 -3160 ((-711 |#2|) |#1|)) (-15 -2336 (|#2|)) (-15 -3100 ((-711 |#2|))) (-15 -2400 (|#1| (-1297 |#2|))) (-15 -2400 ((-1297 |#2|) |#1|)) (-15 -1953 (|#1| (-1297 |#2|))) (-15 -4226 ((-711 |#2|) (-1297 |#1|))) (-15 -4226 ((-1297 |#2|) |#1|)) (-15 -1471 (|#3| |#1|)) (-15 -2978 (|#3| |#1|)) (-15 -3100 ((-711 |#2|) (-1297 |#1|))) (-15 -2336 (|#2| (-1297 |#1|))) (-15 -1953 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -4226 ((-711 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -4226 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -3160 ((-711 |#2|) |#1| (-1297 |#1|))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3100 (((-711 |#1|) (-1297 $)) 53 T ELT) (((-711 |#1|)) 68 T ELT)) (-4113 ((|#1| $) 59 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-1953 (($ (-1297 |#1|) (-1297 $)) 55 T ELT) (($ (-1297 |#1|)) 71 T ELT)) (-3160 (((-711 |#1|) $ (-1297 $)) 60 T ELT) (((-711 |#1|) $) 66 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1604 (((-948)) 61 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-2084 ((|#1| $) 58 T ELT)) (-1471 ((|#2| $) 51 (|has| |#1| (-376)) ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2336 ((|#1| (-1297 $)) 54 T ELT) ((|#1|) 67 T ELT)) (-4226 (((-1297 |#1|) $ (-1297 $)) 57 T ELT) (((-711 |#1|) (-1297 $) (-1297 $)) 56 T ELT) (((-1297 |#1|) $) 73 T ELT) (((-711 |#1|) (-1297 $)) 72 T ELT)) (-2400 (((-1297 |#1|) $) 70 T ELT) (($ (-1297 |#1|)) 69 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 44 T ELT)) (-3919 (((-3 $ "failed") $) 50 (|has| |#1| (-147)) ELT)) (-2978 ((|#2| $) 52 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-3822 (((-1297 $)) 74 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
(((-424 |#1| |#2|) (-142) (-175) (-1273 |t#1|)) (T -424))
-((-1954 (*1 *2) (-12 (-4 *3 (-175)) (-4 *4 (-1273 *3)) (-5 *2 (-1297 *1)) (-4 *1 (-424 *3 *4)))) (-2178 (*1 *2 *1) (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3)) (-5 *2 (-1297 *3)))) (-2178 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-424 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-711 *4)))) (-4143 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-424 *3 *4)) (-4 *4 (-1273 *3)))) (-1407 (*1 *2 *1) (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3)) (-5 *2 (-1297 *3)))) (-1407 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-424 *3 *4)) (-4 *4 (-1273 *3)))) (-1698 (*1 *2) (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3)) (-5 *2 (-711 *3)))) (-2690 (*1 *2) (-12 (-4 *1 (-424 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-175)))) (-4333 (*1 *2 *1) (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3)) (-5 *2 (-711 *3)))))
-(-13 (-383 |t#1| |t#2|) (-10 -8 (-15 -1954 ((-1297 $))) (-15 -2178 ((-1297 |t#1|) $)) (-15 -2178 ((-711 |t#1|) (-1297 $))) (-15 -4143 ($ (-1297 |t#1|))) (-15 -1407 ((-1297 |t#1|) $)) (-15 -1407 ($ (-1297 |t#1|))) (-15 -1698 ((-711 |t#1|))) (-15 -2690 (|t#1|)) (-15 -4333 ((-711 |t#1|) $))))
+((-3822 (*1 *2) (-12 (-4 *3 (-175)) (-4 *4 (-1273 *3)) (-5 *2 (-1297 *1)) (-4 *1 (-424 *3 *4)))) (-4226 (*1 *2 *1) (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3)) (-5 *2 (-1297 *3)))) (-4226 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-424 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-711 *4)))) (-1953 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-424 *3 *4)) (-4 *4 (-1273 *3)))) (-2400 (*1 *2 *1) (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3)) (-5 *2 (-1297 *3)))) (-2400 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-424 *3 *4)) (-4 *4 (-1273 *3)))) (-3100 (*1 *2) (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3)) (-5 *2 (-711 *3)))) (-2336 (*1 *2) (-12 (-4 *1 (-424 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-175)))) (-3160 (*1 *2 *1) (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3)) (-5 *2 (-711 *3)))))
+(-13 (-383 |t#1| |t#2|) (-10 -8 (-15 -3822 ((-1297 $))) (-15 -4226 ((-1297 |t#1|) $)) (-15 -4226 ((-711 |t#1|) (-1297 $))) (-15 -1953 ($ (-1297 |t#1|))) (-15 -2400 ((-1297 |t#1|) $)) (-15 -2400 ($ (-1297 |t#1|))) (-15 -3100 ((-711 |t#1|))) (-15 -2336 (|t#1|)) (-15 -3160 ((-711 |t#1|) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-632 (-887)) . T) ((-383 |#1| |#2|) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-748) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-2539 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) 27 T ELT) (((-3 (-560) "failed") $) 19 T ELT)) (-3330 ((|#2| $) NIL T ELT) (((-421 (-560)) $) 24 T ELT) (((-560) $) 14 T ELT)) (-1578 (($ |#2|) NIL T ELT) (($ (-421 (-560))) 22 T ELT) (($ (-560)) 11 T ELT)))
-(((-425 |#1| |#2|) (-10 -8 (-15 -1578 (|#1| (-560))) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -3330 ((-560) |#1|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -1578 (|#1| |#2|))) (-426 |#2|) (-1247)) (T -425))
+((-3929 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) 27 T ELT) (((-3 (-560) "failed") $) 19 T ELT)) (-3649 ((|#2| $) NIL T ELT) (((-421 (-560)) $) 24 T ELT) (((-560) $) 14 T ELT)) (-3913 (($ |#2|) NIL T ELT) (($ (-421 (-560))) 22 T ELT) (($ (-560)) 11 T ELT)))
+(((-425 |#1| |#2|) (-10 -8 (-15 -3913 (|#1| (-560))) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -3649 ((-560) |#1|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3913 (|#1| |#2|))) (-426 |#2|) (-1247)) (T -425))
NIL
-(-10 -8 (-15 -1578 (|#1| (-560))) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -3330 ((-560) |#1|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -1578 (|#1| |#2|)))
-((-2539 (((-3 |#1| "failed") $) 9 T ELT) (((-3 (-421 (-560)) "failed") $) 16 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) 13 (|has| |#1| (-1069 (-560))) ELT)) (-3330 ((|#1| $) 8 T ELT) (((-421 (-560)) $) 17 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) 14 (|has| |#1| (-1069 (-560))) ELT)) (-1578 (($ |#1|) 6 T ELT) (($ (-421 (-560))) 15 (|has| |#1| (-1069 (-421 (-560)))) ELT) (($ (-560)) 12 (|has| |#1| (-1069 (-560))) ELT)))
+(-10 -8 (-15 -3913 (|#1| (-560))) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -3649 ((-560) |#1|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3913 (|#1| |#2|)))
+((-3929 (((-3 |#1| "failed") $) 9 T ELT) (((-3 (-421 (-560)) "failed") $) 16 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) 13 (|has| |#1| (-1069 (-560))) ELT)) (-3649 ((|#1| $) 8 T ELT) (((-421 (-560)) $) 17 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) 14 (|has| |#1| (-1069 (-560))) ELT)) (-3913 (($ |#1|) 6 T ELT) (($ (-421 (-560))) 15 (|has| |#1| (-1069 (-421 (-560)))) ELT) (($ (-560)) 12 (|has| |#1| (-1069 (-560))) ELT)))
(((-426 |#1|) (-142) (-1247)) (T -426))
NIL
(-13 (-1069 |t#1|) (-10 -7 (IF (|has| |t#1| (-1069 (-560))) (-6 (-1069 (-560))) |%noBranch|) (IF (|has| |t#1| (-1069 (-421 (-560)))) (-6 (-1069 (-421 (-560)))) |%noBranch|)))
(((-635 #0=(-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((-635 #1=(-560)) |has| |#1| (-1069 (-560))) ((-635 |#1|) . T) ((-1069 #0#) |has| |#1| (-1069 (-421 (-560)))) ((-1069 #1#) |has| |#1| (-1069 (-560))) ((-1069 |#1|) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2897 ((|#4| (-793) (-1297 |#4|)) 55 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-3757 (((-1297 |#4|) $) 15 T ELT)) (-2032 ((|#2| $) 53 T ELT)) (-2476 (($ $) 157 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) 103 T ELT)) (-2207 (($ (-1297 |#4|)) 102 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3771 ((|#1| $) 16 T ELT)) (-4122 (($ $ $) NIL T ELT)) (-2013 (($ $ $) NIL T ELT)) (-1578 (((-887) $) 148 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1954 (((-1297 |#4|) $) 141 T ELT)) (-2011 (($) 11 T CONST)) (-2473 (((-114) $ $) 39 T ELT)) (-2594 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 134 T ELT)) (* (($ $ $) 130 T ELT)))
-(((-427 |#1| |#2| |#3| |#4|) (-13 (-487) (-10 -8 (-15 -2207 ($ (-1297 |#4|))) (-15 -1954 ((-1297 |#4|) $)) (-15 -2032 (|#2| $)) (-15 -3757 ((-1297 |#4|) $)) (-15 -3771 (|#1| $)) (-15 -2476 ($ $)) (-15 -2897 (|#4| (-793) (-1297 |#4|))))) (-319) (-1022 |#1|) (-1273 |#2|) (-13 (-424 |#2| |#3|) (-1069 |#2|))) (T -427))
-((-2207 (*1 *1 *2) (-12 (-5 *2 (-1297 *6)) (-4 *6 (-13 (-424 *4 *5) (-1069 *4))) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-4 *3 (-319)) (-5 *1 (-427 *3 *4 *5 *6)))) (-1954 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *6)) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *6 (-13 (-424 *4 *5) (-1069 *4))))) (-2032 (*1 *2 *1) (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1022 *3)) (-5 *1 (-427 *3 *2 *4 *5)) (-4 *3 (-319)) (-4 *5 (-13 (-424 *2 *4) (-1069 *2))))) (-3757 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *6)) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *6 (-13 (-424 *4 *5) (-1069 *4))))) (-3771 (*1 *2 *1) (-12 (-4 *3 (-1022 *2)) (-4 *4 (-1273 *3)) (-4 *2 (-319)) (-5 *1 (-427 *2 *3 *4 *5)) (-4 *5 (-13 (-424 *3 *4) (-1069 *3))))) (-2476 (*1 *1 *1) (-12 (-4 *2 (-319)) (-4 *3 (-1022 *2)) (-4 *4 (-1273 *3)) (-5 *1 (-427 *2 *3 *4 *5)) (-4 *5 (-13 (-424 *3 *4) (-1069 *3))))) (-2897 (*1 *2 *3 *4) (-12 (-5 *3 (-793)) (-5 *4 (-1297 *2)) (-4 *5 (-319)) (-4 *6 (-1022 *5)) (-4 *2 (-13 (-424 *6 *7) (-1069 *6))) (-5 *1 (-427 *5 *6 *7 *2)) (-4 *7 (-1273 *6)))))
-(-13 (-487) (-10 -8 (-15 -2207 ($ (-1297 |#4|))) (-15 -1954 ((-1297 |#4|) $)) (-15 -2032 (|#2| $)) (-15 -3757 ((-1297 |#4|) $)) (-15 -3771 (|#1| $)) (-15 -2476 ($ $)) (-15 -2897 (|#4| (-793) (-1297 |#4|)))))
-((-3957 (((-427 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-427 |#1| |#2| |#3| |#4|)) 35 T ELT)))
-(((-428 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3957 ((-427 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-427 |#1| |#2| |#3| |#4|)))) (-319) (-1022 |#1|) (-1273 |#2|) (-13 (-424 |#2| |#3|) (-1069 |#2|)) (-319) (-1022 |#5|) (-1273 |#6|) (-13 (-424 |#6| |#7|) (-1069 |#6|))) (T -428))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-427 *5 *6 *7 *8)) (-4 *5 (-319)) (-4 *6 (-1022 *5)) (-4 *7 (-1273 *6)) (-4 *8 (-13 (-424 *6 *7) (-1069 *6))) (-4 *9 (-319)) (-4 *10 (-1022 *9)) (-4 *11 (-1273 *10)) (-5 *2 (-427 *9 *10 *11 *12)) (-5 *1 (-428 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-424 *10 *11) (-1069 *10))))))
-(-10 -7 (-15 -3957 ((-427 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-427 |#1| |#2| |#3| |#4|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-2032 ((|#2| $) 71 T ELT)) (-3341 (($ (-1297 |#4|)) 27 T ELT) (($ (-427 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1069 |#2|)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 37 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1954 (((-1297 |#4|) $) 28 T ELT)) (-2011 (($) 25 T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ $ $) 82 T ELT)))
-(((-429 |#1| |#2| |#3| |#4| |#5|) (-13 (-748) (-10 -8 (-15 -1954 ((-1297 |#4|) $)) (-15 -2032 (|#2| $)) (-15 -3341 ($ (-1297 |#4|))) (IF (|has| |#4| (-1069 |#2|)) (-15 -3341 ($ (-427 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-319) (-1022 |#1|) (-1273 |#2|) (-424 |#2| |#3|) (-1297 |#4|)) (T -429))
-((-1954 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *6)) (-5 *1 (-429 *3 *4 *5 *6 *7)) (-4 *6 (-424 *4 *5)) (-14 *7 *2))) (-2032 (*1 *2 *1) (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1022 *3)) (-5 *1 (-429 *3 *2 *4 *5 *6)) (-4 *3 (-319)) (-4 *5 (-424 *2 *4)) (-14 *6 (-1297 *5)))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-1297 *6)) (-4 *6 (-424 *4 *5)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-4 *3 (-319)) (-5 *1 (-429 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3341 (*1 *1 *2) (-12 (-5 *2 (-427 *3 *4 *5 *6)) (-4 *6 (-1069 *4)) (-4 *3 (-319)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-4 *6 (-424 *4 *5)) (-14 *7 (-1297 *6)) (-5 *1 (-429 *3 *4 *5 *6 *7)))))
-(-13 (-748) (-10 -8 (-15 -1954 ((-1297 |#4|) $)) (-15 -2032 (|#2| $)) (-15 -3341 ($ (-1297 |#4|))) (IF (|has| |#4| (-1069 |#2|)) (-15 -3341 ($ (-427 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-3957 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT)))
-(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#3| (-1 |#4| |#2|) |#1|))) (-432 |#2|) (-175) (-432 |#4|) (-175)) (T -430))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-432 *6)) (-5 *1 (-430 *4 *5 *2 *6)) (-4 *4 (-432 *5)))))
-(-10 -7 (-15 -3957 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2489 (((-3 $ "failed")) 98 T ELT)) (-2545 (((-1297 (-711 |#2|)) (-1297 $)) NIL T ELT) (((-1297 (-711 |#2|))) 103 T ELT)) (-4126 (((-3 (-2 (|:| |particular| $) (|:| -1954 (-663 $))) "failed")) 96 T ELT)) (-3608 (((-3 $ "failed")) 95 T ELT)) (-2432 (((-711 |#2|) (-1297 $)) NIL T ELT) (((-711 |#2|)) 114 T ELT)) (-3135 (((-711 |#2|) $ (-1297 $)) NIL T ELT) (((-711 |#2|) $) 122 T ELT)) (-4230 (((-1201 (-975 |#2|))) 63 T ELT)) (-3392 ((|#2| (-1297 $)) NIL T ELT) ((|#2|) 118 T ELT)) (-4143 (($ (-1297 |#2|) (-1297 $)) NIL T ELT) (($ (-1297 |#2|)) 124 T ELT)) (-1398 (((-3 (-2 (|:| |particular| $) (|:| -1954 (-663 $))) "failed")) 94 T ELT)) (-2171 (((-3 $ "failed")) 86 T ELT)) (-1501 (((-711 |#2|) (-1297 $)) NIL T ELT) (((-711 |#2|)) 112 T ELT)) (-2517 (((-711 |#2|) $ (-1297 $)) NIL T ELT) (((-711 |#2|) $) 120 T ELT)) (-4133 (((-1201 (-975 |#2|))) 62 T ELT)) (-2456 ((|#2| (-1297 $)) NIL T ELT) ((|#2|) 116 T ELT)) (-2178 (((-1297 |#2|) $ (-1297 $)) NIL T ELT) (((-711 |#2|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#2|) $) 123 T ELT) (((-711 |#2|) (-1297 $)) 132 T ELT)) (-1407 (((-1297 |#2|) $) 108 T ELT) (($ (-1297 |#2|)) 110 T ELT)) (-4106 (((-663 (-975 |#2|)) (-1297 $)) NIL T ELT) (((-663 (-975 |#2|))) 106 T ELT)) (-3626 (($ (-711 |#2|) $) 102 T ELT)))
-(((-431 |#1| |#2|) (-10 -8 (-15 -3626 (|#1| (-711 |#2|) |#1|)) (-15 -4230 ((-1201 (-975 |#2|)))) (-15 -4133 ((-1201 (-975 |#2|)))) (-15 -3135 ((-711 |#2|) |#1|)) (-15 -2517 ((-711 |#2|) |#1|)) (-15 -2432 ((-711 |#2|))) (-15 -1501 ((-711 |#2|))) (-15 -3392 (|#2|)) (-15 -2456 (|#2|)) (-15 -1407 (|#1| (-1297 |#2|))) (-15 -1407 ((-1297 |#2|) |#1|)) (-15 -4143 (|#1| (-1297 |#2|))) (-15 -4106 ((-663 (-975 |#2|)))) (-15 -2545 ((-1297 (-711 |#2|)))) (-15 -2178 ((-711 |#2|) (-1297 |#1|))) (-15 -2178 ((-1297 |#2|) |#1|)) (-15 -2489 ((-3 |#1| "failed"))) (-15 -3608 ((-3 |#1| "failed"))) (-15 -2171 ((-3 |#1| "failed"))) (-15 -4126 ((-3 (-2 (|:| |particular| |#1|) (|:| -1954 (-663 |#1|))) "failed"))) (-15 -1398 ((-3 (-2 (|:| |particular| |#1|) (|:| -1954 (-663 |#1|))) "failed"))) (-15 -2432 ((-711 |#2|) (-1297 |#1|))) (-15 -1501 ((-711 |#2|) (-1297 |#1|))) (-15 -3392 (|#2| (-1297 |#1|))) (-15 -2456 (|#2| (-1297 |#1|))) (-15 -4143 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -2178 ((-711 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -2178 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -3135 ((-711 |#2|) |#1| (-1297 |#1|))) (-15 -2517 ((-711 |#2|) |#1| (-1297 |#1|))) (-15 -2545 ((-1297 (-711 |#2|)) (-1297 |#1|))) (-15 -4106 ((-663 (-975 |#2|)) (-1297 |#1|)))) (-432 |#2|) (-175)) (T -431))
-((-2545 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1297 (-711 *4))) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))) (-4106 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-663 (-975 *4))) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))) (-2456 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-431 *3 *2)) (-4 *3 (-432 *2)))) (-3392 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-431 *3 *2)) (-4 *3 (-432 *2)))) (-1501 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-711 *4)) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))) (-2432 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-711 *4)) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))) (-4133 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1201 (-975 *4))) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))) (-4230 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1201 (-975 *4))) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))))
-(-10 -8 (-15 -3626 (|#1| (-711 |#2|) |#1|)) (-15 -4230 ((-1201 (-975 |#2|)))) (-15 -4133 ((-1201 (-975 |#2|)))) (-15 -3135 ((-711 |#2|) |#1|)) (-15 -2517 ((-711 |#2|) |#1|)) (-15 -2432 ((-711 |#2|))) (-15 -1501 ((-711 |#2|))) (-15 -3392 (|#2|)) (-15 -2456 (|#2|)) (-15 -1407 (|#1| (-1297 |#2|))) (-15 -1407 ((-1297 |#2|) |#1|)) (-15 -4143 (|#1| (-1297 |#2|))) (-15 -4106 ((-663 (-975 |#2|)))) (-15 -2545 ((-1297 (-711 |#2|)))) (-15 -2178 ((-711 |#2|) (-1297 |#1|))) (-15 -2178 ((-1297 |#2|) |#1|)) (-15 -2489 ((-3 |#1| "failed"))) (-15 -3608 ((-3 |#1| "failed"))) (-15 -2171 ((-3 |#1| "failed"))) (-15 -4126 ((-3 (-2 (|:| |particular| |#1|) (|:| -1954 (-663 |#1|))) "failed"))) (-15 -1398 ((-3 (-2 (|:| |particular| |#1|) (|:| -1954 (-663 |#1|))) "failed"))) (-15 -2432 ((-711 |#2|) (-1297 |#1|))) (-15 -1501 ((-711 |#2|) (-1297 |#1|))) (-15 -3392 (|#2| (-1297 |#1|))) (-15 -2456 (|#2| (-1297 |#1|))) (-15 -4143 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -2178 ((-711 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -2178 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -3135 ((-711 |#2|) |#1| (-1297 |#1|))) (-15 -2517 ((-711 |#2|) |#1| (-1297 |#1|))) (-15 -2545 ((-1297 (-711 |#2|)) (-1297 |#1|))) (-15 -4106 ((-663 (-975 |#2|)) (-1297 |#1|))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-2489 (((-3 $ "failed")) 42 (|has| |#1| (-571)) ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2545 (((-1297 (-711 |#1|)) (-1297 $)) 83 T ELT) (((-1297 (-711 |#1|))) 106 T ELT)) (-1854 (((-1297 $)) 86 T ELT)) (-2238 (($) 18 T CONST)) (-4126 (((-3 (-2 (|:| |particular| $) (|:| -1954 (-663 $))) "failed")) 45 (|has| |#1| (-571)) ELT)) (-3608 (((-3 $ "failed")) 43 (|has| |#1| (-571)) ELT)) (-2432 (((-711 |#1|) (-1297 $)) 70 T ELT) (((-711 |#1|)) 98 T ELT)) (-3346 ((|#1| $) 79 T ELT)) (-3135 (((-711 |#1|) $ (-1297 $)) 81 T ELT) (((-711 |#1|) $) 96 T ELT)) (-1713 (((-3 $ "failed") $) 50 (|has| |#1| (-571)) ELT)) (-4230 (((-1201 (-975 |#1|))) 94 (|has| |#1| (-376)) ELT)) (-1866 (($ $ (-948)) 31 T ELT)) (-4092 ((|#1| $) 77 T ELT)) (-1822 (((-1201 |#1|) $) 47 (|has| |#1| (-571)) ELT)) (-3392 ((|#1| (-1297 $)) 72 T ELT) ((|#1|) 100 T ELT)) (-3412 (((-1201 |#1|) $) 68 T ELT)) (-3706 (((-114)) 62 T ELT)) (-4143 (($ (-1297 |#1|) (-1297 $)) 74 T ELT) (($ (-1297 |#1|)) 104 T ELT)) (-1990 (((-3 $ "failed") $) 52 (|has| |#1| (-571)) ELT)) (-2326 (((-948)) 85 T ELT)) (-3157 (((-114)) 59 T ELT)) (-1784 (($ $ (-948)) 38 T ELT)) (-1794 (((-114)) 55 T ELT)) (-4320 (((-114)) 53 T ELT)) (-2959 (((-114)) 57 T ELT)) (-1398 (((-3 (-2 (|:| |particular| $) (|:| -1954 (-663 $))) "failed")) 46 (|has| |#1| (-571)) ELT)) (-2171 (((-3 $ "failed")) 44 (|has| |#1| (-571)) ELT)) (-1501 (((-711 |#1|) (-1297 $)) 71 T ELT) (((-711 |#1|)) 99 T ELT)) (-3876 ((|#1| $) 80 T ELT)) (-2517 (((-711 |#1|) $ (-1297 $)) 82 T ELT) (((-711 |#1|) $) 97 T ELT)) (-3236 (((-3 $ "failed") $) 51 (|has| |#1| (-571)) ELT)) (-4133 (((-1201 (-975 |#1|))) 95 (|has| |#1| (-376)) ELT)) (-3520 (($ $ (-948)) 32 T ELT)) (-2442 ((|#1| $) 78 T ELT)) (-4161 (((-1201 |#1|) $) 48 (|has| |#1| (-571)) ELT)) (-2456 ((|#1| (-1297 $)) 73 T ELT) ((|#1|) 101 T ELT)) (-3569 (((-1201 |#1|) $) 69 T ELT)) (-2220 (((-114)) 63 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-2995 (((-114)) 54 T ELT)) (-1721 (((-114)) 56 T ELT)) (-2940 (((-114)) 58 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-2892 (((-114)) 61 T ELT)) (-3924 ((|#1| $ (-560)) 110 T ELT)) (-2178 (((-1297 |#1|) $ (-1297 $)) 76 T ELT) (((-711 |#1|) (-1297 $) (-1297 $)) 75 T ELT) (((-1297 |#1|) $) 108 T ELT) (((-711 |#1|) (-1297 $)) 107 T ELT)) (-1407 (((-1297 |#1|) $) 103 T ELT) (($ (-1297 |#1|)) 102 T ELT)) (-4106 (((-663 (-975 |#1|)) (-1297 $)) 84 T ELT) (((-663 (-975 |#1|))) 105 T ELT)) (-2013 (($ $ $) 28 T ELT)) (-2620 (((-114)) 67 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-1954 (((-1297 $)) 109 T ELT)) (-1548 (((-663 (-1297 |#1|))) 49 (|has| |#1| (-571)) ELT)) (-4128 (($ $ $ $) 29 T ELT)) (-1418 (((-114)) 65 T ELT)) (-3626 (($ (-711 |#1|) $) 93 T ELT)) (-3868 (($ $ $) 27 T ELT)) (-1405 (((-114)) 66 T ELT)) (-2493 (((-114)) 64 T ELT)) (-2423 (((-114)) 60 T ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 33 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-3947 ((|#4| (-793) (-1297 |#4|)) 55 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-2473 (((-1297 |#4|) $) 15 T ELT)) (-2084 ((|#2| $) 53 T ELT)) (-4045 (($ $) 157 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) 103 T ELT)) (-4476 (($ (-1297 |#4|)) 102 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2484 ((|#1| $) 16 T ELT)) (-1714 (($ $ $) NIL T ELT)) (-3117 (($ $ $) NIL T ELT)) (-3913 (((-887) $) 148 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3822 (((-1297 |#4|) $) 141 T ELT)) (-1456 (($) 11 T CONST)) (-2340 (((-114) $ $) 39 T ELT)) (-2453 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 134 T ELT)) (* (($ $ $) 130 T ELT)))
+(((-427 |#1| |#2| |#3| |#4|) (-13 (-487) (-10 -8 (-15 -4476 ($ (-1297 |#4|))) (-15 -3822 ((-1297 |#4|) $)) (-15 -2084 (|#2| $)) (-15 -2473 ((-1297 |#4|) $)) (-15 -2484 (|#1| $)) (-15 -4045 ($ $)) (-15 -3947 (|#4| (-793) (-1297 |#4|))))) (-319) (-1022 |#1|) (-1273 |#2|) (-13 (-424 |#2| |#3|) (-1069 |#2|))) (T -427))
+((-4476 (*1 *1 *2) (-12 (-5 *2 (-1297 *6)) (-4 *6 (-13 (-424 *4 *5) (-1069 *4))) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-4 *3 (-319)) (-5 *1 (-427 *3 *4 *5 *6)))) (-3822 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *6)) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *6 (-13 (-424 *4 *5) (-1069 *4))))) (-2084 (*1 *2 *1) (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1022 *3)) (-5 *1 (-427 *3 *2 *4 *5)) (-4 *3 (-319)) (-4 *5 (-13 (-424 *2 *4) (-1069 *2))))) (-2473 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *6)) (-5 *1 (-427 *3 *4 *5 *6)) (-4 *6 (-13 (-424 *4 *5) (-1069 *4))))) (-2484 (*1 *2 *1) (-12 (-4 *3 (-1022 *2)) (-4 *4 (-1273 *3)) (-4 *2 (-319)) (-5 *1 (-427 *2 *3 *4 *5)) (-4 *5 (-13 (-424 *3 *4) (-1069 *3))))) (-4045 (*1 *1 *1) (-12 (-4 *2 (-319)) (-4 *3 (-1022 *2)) (-4 *4 (-1273 *3)) (-5 *1 (-427 *2 *3 *4 *5)) (-4 *5 (-13 (-424 *3 *4) (-1069 *3))))) (-3947 (*1 *2 *3 *4) (-12 (-5 *3 (-793)) (-5 *4 (-1297 *2)) (-4 *5 (-319)) (-4 *6 (-1022 *5)) (-4 *2 (-13 (-424 *6 *7) (-1069 *6))) (-5 *1 (-427 *5 *6 *7 *2)) (-4 *7 (-1273 *6)))))
+(-13 (-487) (-10 -8 (-15 -4476 ($ (-1297 |#4|))) (-15 -3822 ((-1297 |#4|) $)) (-15 -2084 (|#2| $)) (-15 -2473 ((-1297 |#4|) $)) (-15 -2484 (|#1| $)) (-15 -4045 ($ $)) (-15 -3947 (|#4| (-793) (-1297 |#4|)))))
+((-2260 (((-427 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-427 |#1| |#2| |#3| |#4|)) 35 T ELT)))
+(((-428 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2260 ((-427 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-427 |#1| |#2| |#3| |#4|)))) (-319) (-1022 |#1|) (-1273 |#2|) (-13 (-424 |#2| |#3|) (-1069 |#2|)) (-319) (-1022 |#5|) (-1273 |#6|) (-13 (-424 |#6| |#7|) (-1069 |#6|))) (T -428))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-427 *5 *6 *7 *8)) (-4 *5 (-319)) (-4 *6 (-1022 *5)) (-4 *7 (-1273 *6)) (-4 *8 (-13 (-424 *6 *7) (-1069 *6))) (-4 *9 (-319)) (-4 *10 (-1022 *9)) (-4 *11 (-1273 *10)) (-5 *2 (-427 *9 *10 *11 *12)) (-5 *1 (-428 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-424 *10 *11) (-1069 *10))))))
+(-10 -7 (-15 -2260 ((-427 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-427 |#1| |#2| |#3| |#4|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-2084 ((|#2| $) 71 T ELT)) (-2808 (($ (-1297 |#4|)) 27 T ELT) (($ (-427 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1069 |#2|)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 37 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3822 (((-1297 |#4|) $) 28 T ELT)) (-1456 (($) 25 T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ $ $) 82 T ELT)))
+(((-429 |#1| |#2| |#3| |#4| |#5|) (-13 (-748) (-10 -8 (-15 -3822 ((-1297 |#4|) $)) (-15 -2084 (|#2| $)) (-15 -2808 ($ (-1297 |#4|))) (IF (|has| |#4| (-1069 |#2|)) (-15 -2808 ($ (-427 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-319) (-1022 |#1|) (-1273 |#2|) (-424 |#2| |#3|) (-1297 |#4|)) (T -429))
+((-3822 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-1297 *6)) (-5 *1 (-429 *3 *4 *5 *6 *7)) (-4 *6 (-424 *4 *5)) (-14 *7 *2))) (-2084 (*1 *2 *1) (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1022 *3)) (-5 *1 (-429 *3 *2 *4 *5 *6)) (-4 *3 (-319)) (-4 *5 (-424 *2 *4)) (-14 *6 (-1297 *5)))) (-2808 (*1 *1 *2) (-12 (-5 *2 (-1297 *6)) (-4 *6 (-424 *4 *5)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-4 *3 (-319)) (-5 *1 (-429 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-2808 (*1 *1 *2) (-12 (-5 *2 (-427 *3 *4 *5 *6)) (-4 *6 (-1069 *4)) (-4 *3 (-319)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-4 *6 (-424 *4 *5)) (-14 *7 (-1297 *6)) (-5 *1 (-429 *3 *4 *5 *6 *7)))))
+(-13 (-748) (-10 -8 (-15 -3822 ((-1297 |#4|) $)) (-15 -2084 (|#2| $)) (-15 -2808 ($ (-1297 |#4|))) (IF (|has| |#4| (-1069 |#2|)) (-15 -2808 ($ (-427 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-2260 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT)))
+(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2260 (|#3| (-1 |#4| |#2|) |#1|))) (-432 |#2|) (-175) (-432 |#4|) (-175)) (T -430))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-432 *6)) (-5 *1 (-430 *4 *5 *2 *6)) (-4 *4 (-432 *5)))))
+(-10 -7 (-15 -2260 (|#3| (-1 |#4| |#2|) |#1|)))
+((-4184 (((-3 $ "failed")) 98 T ELT)) (-3398 (((-1297 (-711 |#2|)) (-1297 $)) NIL T ELT) (((-1297 (-711 |#2|))) 103 T ELT)) (-1756 (((-3 (-2 (|:| |particular| $) (|:| -3822 (-663 $))) "failed")) 96 T ELT)) (-3681 (((-3 $ "failed")) 95 T ELT)) (-1691 (((-711 |#2|) (-1297 $)) NIL T ELT) (((-711 |#2|)) 114 T ELT)) (-2541 (((-711 |#2|) $ (-1297 $)) NIL T ELT) (((-711 |#2|) $) 122 T ELT)) (-3474 (((-1201 (-975 |#2|))) 63 T ELT)) (-2098 ((|#2| (-1297 $)) NIL T ELT) ((|#2|) 118 T ELT)) (-1953 (($ (-1297 |#2|) (-1297 $)) NIL T ELT) (($ (-1297 |#2|)) 124 T ELT)) (-1367 (((-3 (-2 (|:| |particular| $) (|:| -3822 (-663 $))) "failed")) 94 T ELT)) (-4156 (((-3 $ "failed")) 86 T ELT)) (-2999 (((-711 |#2|) (-1297 $)) NIL T ELT) (((-711 |#2|)) 112 T ELT)) (-4414 (((-711 |#2|) $ (-1297 $)) NIL T ELT) (((-711 |#2|) $) 120 T ELT)) (-1828 (((-1201 (-975 |#2|))) 62 T ELT)) (-1951 ((|#2| (-1297 $)) NIL T ELT) ((|#2|) 116 T ELT)) (-4226 (((-1297 |#2|) $ (-1297 $)) NIL T ELT) (((-711 |#2|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#2|) $) 123 T ELT) (((-711 |#2|) (-1297 $)) 132 T ELT)) (-2400 (((-1297 |#2|) $) 108 T ELT) (($ (-1297 |#2|)) 110 T ELT)) (-1556 (((-663 (-975 |#2|)) (-1297 $)) NIL T ELT) (((-663 (-975 |#2|))) 106 T ELT)) (-4323 (($ (-711 |#2|) $) 102 T ELT)))
+(((-431 |#1| |#2|) (-10 -8 (-15 -4323 (|#1| (-711 |#2|) |#1|)) (-15 -3474 ((-1201 (-975 |#2|)))) (-15 -1828 ((-1201 (-975 |#2|)))) (-15 -2541 ((-711 |#2|) |#1|)) (-15 -4414 ((-711 |#2|) |#1|)) (-15 -1691 ((-711 |#2|))) (-15 -2999 ((-711 |#2|))) (-15 -2098 (|#2|)) (-15 -1951 (|#2|)) (-15 -2400 (|#1| (-1297 |#2|))) (-15 -2400 ((-1297 |#2|) |#1|)) (-15 -1953 (|#1| (-1297 |#2|))) (-15 -1556 ((-663 (-975 |#2|)))) (-15 -3398 ((-1297 (-711 |#2|)))) (-15 -4226 ((-711 |#2|) (-1297 |#1|))) (-15 -4226 ((-1297 |#2|) |#1|)) (-15 -4184 ((-3 |#1| "failed"))) (-15 -3681 ((-3 |#1| "failed"))) (-15 -4156 ((-3 |#1| "failed"))) (-15 -1756 ((-3 (-2 (|:| |particular| |#1|) (|:| -3822 (-663 |#1|))) "failed"))) (-15 -1367 ((-3 (-2 (|:| |particular| |#1|) (|:| -3822 (-663 |#1|))) "failed"))) (-15 -1691 ((-711 |#2|) (-1297 |#1|))) (-15 -2999 ((-711 |#2|) (-1297 |#1|))) (-15 -2098 (|#2| (-1297 |#1|))) (-15 -1951 (|#2| (-1297 |#1|))) (-15 -1953 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -4226 ((-711 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -4226 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -2541 ((-711 |#2|) |#1| (-1297 |#1|))) (-15 -4414 ((-711 |#2|) |#1| (-1297 |#1|))) (-15 -3398 ((-1297 (-711 |#2|)) (-1297 |#1|))) (-15 -1556 ((-663 (-975 |#2|)) (-1297 |#1|)))) (-432 |#2|) (-175)) (T -431))
+((-3398 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1297 (-711 *4))) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))) (-1556 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-663 (-975 *4))) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))) (-1951 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-431 *3 *2)) (-4 *3 (-432 *2)))) (-2098 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-431 *3 *2)) (-4 *3 (-432 *2)))) (-2999 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-711 *4)) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))) (-1691 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-711 *4)) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))) (-1828 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1201 (-975 *4))) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))) (-3474 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1201 (-975 *4))) (-5 *1 (-431 *3 *4)) (-4 *3 (-432 *4)))))
+(-10 -8 (-15 -4323 (|#1| (-711 |#2|) |#1|)) (-15 -3474 ((-1201 (-975 |#2|)))) (-15 -1828 ((-1201 (-975 |#2|)))) (-15 -2541 ((-711 |#2|) |#1|)) (-15 -4414 ((-711 |#2|) |#1|)) (-15 -1691 ((-711 |#2|))) (-15 -2999 ((-711 |#2|))) (-15 -2098 (|#2|)) (-15 -1951 (|#2|)) (-15 -2400 (|#1| (-1297 |#2|))) (-15 -2400 ((-1297 |#2|) |#1|)) (-15 -1953 (|#1| (-1297 |#2|))) (-15 -1556 ((-663 (-975 |#2|)))) (-15 -3398 ((-1297 (-711 |#2|)))) (-15 -4226 ((-711 |#2|) (-1297 |#1|))) (-15 -4226 ((-1297 |#2|) |#1|)) (-15 -4184 ((-3 |#1| "failed"))) (-15 -3681 ((-3 |#1| "failed"))) (-15 -4156 ((-3 |#1| "failed"))) (-15 -1756 ((-3 (-2 (|:| |particular| |#1|) (|:| -3822 (-663 |#1|))) "failed"))) (-15 -1367 ((-3 (-2 (|:| |particular| |#1|) (|:| -3822 (-663 |#1|))) "failed"))) (-15 -1691 ((-711 |#2|) (-1297 |#1|))) (-15 -2999 ((-711 |#2|) (-1297 |#1|))) (-15 -2098 (|#2| (-1297 |#1|))) (-15 -1951 (|#2| (-1297 |#1|))) (-15 -1953 (|#1| (-1297 |#2|) (-1297 |#1|))) (-15 -4226 ((-711 |#2|) (-1297 |#1|) (-1297 |#1|))) (-15 -4226 ((-1297 |#2|) |#1| (-1297 |#1|))) (-15 -2541 ((-711 |#2|) |#1| (-1297 |#1|))) (-15 -4414 ((-711 |#2|) |#1| (-1297 |#1|))) (-15 -3398 ((-1297 (-711 |#2|)) (-1297 |#1|))) (-15 -1556 ((-663 (-975 |#2|)) (-1297 |#1|))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-4184 (((-3 $ "failed")) 42 (|has| |#1| (-571)) ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3398 (((-1297 (-711 |#1|)) (-1297 $)) 83 T ELT) (((-1297 (-711 |#1|))) 106 T ELT)) (-4087 (((-1297 $)) 86 T ELT)) (-3525 (($) 18 T CONST)) (-1756 (((-3 (-2 (|:| |particular| $) (|:| -3822 (-663 $))) "failed")) 45 (|has| |#1| (-571)) ELT)) (-3681 (((-3 $ "failed")) 43 (|has| |#1| (-571)) ELT)) (-1691 (((-711 |#1|) (-1297 $)) 70 T ELT) (((-711 |#1|)) 98 T ELT)) (-2865 ((|#1| $) 79 T ELT)) (-2541 (((-711 |#1|) $ (-1297 $)) 81 T ELT) (((-711 |#1|) $) 96 T ELT)) (-2035 (((-3 $ "failed") $) 50 (|has| |#1| (-571)) ELT)) (-3474 (((-1201 (-975 |#1|))) 94 (|has| |#1| (-376)) ELT)) (-4201 (($ $ (-948)) 31 T ELT)) (-2652 ((|#1| $) 77 T ELT)) (-1825 (((-1201 |#1|) $) 47 (|has| |#1| (-571)) ELT)) (-2098 ((|#1| (-1297 $)) 72 T ELT) ((|#1|) 100 T ELT)) (-2280 (((-1201 |#1|) $) 68 T ELT)) (-2137 (((-114)) 62 T ELT)) (-1953 (($ (-1297 |#1|) (-1297 $)) 74 T ELT) (($ (-1297 |#1|)) 104 T ELT)) (-2873 (((-3 $ "failed") $) 52 (|has| |#1| (-571)) ELT)) (-1604 (((-948)) 85 T ELT)) (-1558 (((-114)) 59 T ELT)) (-1441 (($ $ (-948)) 38 T ELT)) (-1521 (((-114)) 55 T ELT)) (-3053 (((-114)) 53 T ELT)) (-4460 (((-114)) 57 T ELT)) (-1367 (((-3 (-2 (|:| |particular| $) (|:| -3822 (-663 $))) "failed")) 46 (|has| |#1| (-571)) ELT)) (-4156 (((-3 $ "failed")) 44 (|has| |#1| (-571)) ELT)) (-2999 (((-711 |#1|) (-1297 $)) 71 T ELT) (((-711 |#1|)) 99 T ELT)) (-4278 ((|#1| $) 80 T ELT)) (-4414 (((-711 |#1|) $ (-1297 $)) 82 T ELT) (((-711 |#1|) $) 97 T ELT)) (-4294 (((-3 $ "failed") $) 51 (|has| |#1| (-571)) ELT)) (-1828 (((-1201 (-975 |#1|))) 95 (|has| |#1| (-376)) ELT)) (-2065 (($ $ (-948)) 32 T ELT)) (-1788 ((|#1| $) 78 T ELT)) (-2126 (((-1201 |#1|) $) 48 (|has| |#1| (-571)) ELT)) (-1951 ((|#1| (-1297 $)) 73 T ELT) ((|#1|) 101 T ELT)) (-1364 (((-1201 |#1|) $) 69 T ELT)) (-3361 (((-114)) 63 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3577 (((-114)) 54 T ELT)) (-2107 (((-114)) 56 T ELT)) (-4289 (((-114)) 58 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3905 (((-114)) 61 T ELT)) (-1507 ((|#1| $ (-560)) 110 T ELT)) (-4226 (((-1297 |#1|) $ (-1297 $)) 76 T ELT) (((-711 |#1|) (-1297 $) (-1297 $)) 75 T ELT) (((-1297 |#1|) $) 108 T ELT) (((-711 |#1|) (-1297 $)) 107 T ELT)) (-2400 (((-1297 |#1|) $) 103 T ELT) (($ (-1297 |#1|)) 102 T ELT)) (-1556 (((-663 (-975 |#1|)) (-1297 $)) 84 T ELT) (((-663 (-975 |#1|))) 105 T ELT)) (-3117 (($ $ $) 28 T ELT)) (-2848 (((-114)) 67 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-3822 (((-1297 $)) 109 T ELT)) (-1601 (((-663 (-1297 |#1|))) 49 (|has| |#1| (-571)) ELT)) (-1777 (($ $ $ $) 29 T ELT)) (-3757 (((-114)) 65 T ELT)) (-4323 (($ (-711 |#1|) $) 93 T ELT)) (-4209 (($ $ $) 27 T ELT)) (-4103 (((-114)) 66 T ELT)) (-4213 (((-114)) 64 T ELT)) (-1597 (((-114)) 60 T ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 33 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT)))
(((-432 |#1|) (-142) (-175)) (T -432))
-((-1954 (*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1297 *1)) (-4 *1 (-432 *3)))) (-2178 (*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-1297 *3)))) (-2178 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-432 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-2545 (*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-1297 (-711 *3))))) (-4106 (*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-663 (-975 *3))))) (-4143 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-432 *3)))) (-1407 (*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-1297 *3)))) (-1407 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-432 *3)))) (-2456 (*1 *2) (-12 (-4 *1 (-432 *2)) (-4 *2 (-175)))) (-3392 (*1 *2) (-12 (-4 *1 (-432 *2)) (-4 *2 (-175)))) (-1501 (*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))) (-2432 (*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))) (-2517 (*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))) (-4133 (*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-4 *3 (-376)) (-5 *2 (-1201 (-975 *3))))) (-4230 (*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-4 *3 (-376)) (-5 *2 (-1201 (-975 *3))))) (-3626 (*1 *1 *2 *1) (-12 (-5 *2 (-711 *3)) (-4 *1 (-432 *3)) (-4 *3 (-175)))))
-(-13 (-380 |t#1|) (-298 (-560) |t#1|) (-10 -8 (-15 -1954 ((-1297 $))) (-15 -2178 ((-1297 |t#1|) $)) (-15 -2178 ((-711 |t#1|) (-1297 $))) (-15 -2545 ((-1297 (-711 |t#1|)))) (-15 -4106 ((-663 (-975 |t#1|)))) (-15 -4143 ($ (-1297 |t#1|))) (-15 -1407 ((-1297 |t#1|) $)) (-15 -1407 ($ (-1297 |t#1|))) (-15 -2456 (|t#1|)) (-15 -3392 (|t#1|)) (-15 -1501 ((-711 |t#1|))) (-15 -2432 ((-711 |t#1|))) (-15 -2517 ((-711 |t#1|) $)) (-15 -3135 ((-711 |t#1|) $)) (IF (|has| |t#1| (-376)) (PROGN (-15 -4133 ((-1201 (-975 |t#1|)))) (-15 -4230 ((-1201 (-975 |t#1|))))) |%noBranch|) (-15 -3626 ($ (-711 |t#1|) $))))
+((-3822 (*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1297 *1)) (-4 *1 (-432 *3)))) (-4226 (*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-1297 *3)))) (-4226 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-432 *4)) (-4 *4 (-175)) (-5 *2 (-711 *4)))) (-3398 (*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-1297 (-711 *3))))) (-1556 (*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-663 (-975 *3))))) (-1953 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-432 *3)))) (-2400 (*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-1297 *3)))) (-2400 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-432 *3)))) (-1951 (*1 *2) (-12 (-4 *1 (-432 *2)) (-4 *2 (-175)))) (-2098 (*1 *2) (-12 (-4 *1 (-432 *2)) (-4 *2 (-175)))) (-2999 (*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))) (-1691 (*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))) (-4414 (*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))) (-2541 (*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))) (-1828 (*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-4 *3 (-376)) (-5 *2 (-1201 (-975 *3))))) (-3474 (*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-4 *3 (-376)) (-5 *2 (-1201 (-975 *3))))) (-4323 (*1 *1 *2 *1) (-12 (-5 *2 (-711 *3)) (-4 *1 (-432 *3)) (-4 *3 (-175)))))
+(-13 (-380 |t#1|) (-298 (-560) |t#1|) (-10 -8 (-15 -3822 ((-1297 $))) (-15 -4226 ((-1297 |t#1|) $)) (-15 -4226 ((-711 |t#1|) (-1297 $))) (-15 -3398 ((-1297 (-711 |t#1|)))) (-15 -1556 ((-663 (-975 |t#1|)))) (-15 -1953 ($ (-1297 |t#1|))) (-15 -2400 ((-1297 |t#1|) $)) (-15 -2400 ($ (-1297 |t#1|))) (-15 -1951 (|t#1|)) (-15 -2098 (|t#1|)) (-15 -2999 ((-711 |t#1|))) (-15 -1691 ((-711 |t#1|))) (-15 -4414 ((-711 |t#1|) $)) (-15 -2541 ((-711 |t#1|) $)) (IF (|has| |t#1| (-376)) (PROGN (-15 -1828 ((-1201 (-975 |t#1|)))) (-15 -3474 ((-1201 (-975 |t#1|))))) |%noBranch|) (-15 -4323 ($ (-711 |t#1|) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-887)) . T) ((-298 (-560) |#1|) . T) ((-380 |#1|) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-742) . T) ((-766 |#1|) . T) ((-783) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1132) . T) ((-1247) . T))
-((-4075 (((-419 |#1|) (-419 |#1|) (-1 (-419 |#1|) |#1|)) 28 T ELT)) (-3654 (((-419 |#1|) (-419 |#1|) (-419 |#1|)) 17 T ELT)))
-(((-433 |#1|) (-10 -7 (-15 -4075 ((-419 |#1|) (-419 |#1|) (-1 (-419 |#1|) |#1|))) (-15 -3654 ((-419 |#1|) (-419 |#1|) (-419 |#1|)))) (-571)) (T -433))
-((-3654 (*1 *2 *2 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-571)) (-5 *1 (-433 *3)))) (-4075 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-419 *4) *4)) (-4 *4 (-571)) (-5 *2 (-419 *4)) (-5 *1 (-433 *4)))))
-(-10 -7 (-15 -4075 ((-419 |#1|) (-419 |#1|) (-1 (-419 |#1|) |#1|))) (-15 -3654 ((-419 |#1|) (-419 |#1|) (-419 |#1|))))
-((-1443 (((-663 (-1207)) $) 81 T ELT)) (-4422 (((-421 (-1201 $)) $ (-630 $)) 313 T ELT)) (-1724 (($ $ (-305 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) 277 T ELT)) (-2539 (((-3 (-630 $) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) 84 T ELT) (((-3 (-560) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 273 T ELT) (((-3 (-421 (-975 |#2|)) "failed") $) 363 T ELT) (((-3 (-975 |#2|) "failed") $) 275 T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT)) (-3330 (((-630 $) $) NIL T ELT) (((-1207) $) 28 T ELT) (((-560) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-421 (-975 |#2|)) $) 345 T ELT) (((-975 |#2|) $) 272 T ELT) (((-421 (-560)) $) NIL T ELT)) (-4399 (((-115) (-115)) 47 T ELT)) (-1617 (($ $) 99 T ELT)) (-3005 (((-3 (-630 $) "failed") $) 268 T ELT)) (-4385 (((-663 (-630 $)) $) 269 T ELT)) (-3479 (((-3 (-663 $) "failed") $) 287 T ELT)) (-3436 (((-3 (-2 (|:| |val| $) (|:| -3205 (-560))) "failed") $) 294 T ELT)) (-2590 (((-3 (-663 $) "failed") $) 285 T ELT)) (-3495 (((-3 (-2 (|:| -2115 (-560)) (|:| |var| (-630 $))) "failed") $) 304 T ELT)) (-3683 (((-3 (-2 (|:| |var| (-630 $)) (|:| -3205 (-560))) "failed") $) 291 T ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -3205 (-560))) "failed") $ (-115)) 255 T ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -3205 (-560))) "failed") $ (-1207)) 257 T ELT)) (-1554 (((-114) $) 17 T ELT)) (-1566 ((|#2| $) 19 T ELT)) (-4187 (($ $ (-630 $) $) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) 276 T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ (-663 $)))) 109 T ELT) (($ $ (-1207) (-1 $ (-663 $))) NIL T ELT) (($ $ (-1207) (-1 $ $)) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-663 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT) (($ $ (-1207)) 62 T ELT) (($ $ (-663 (-1207))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-115) $ (-1207)) 65 T ELT) (($ $ (-663 (-115)) (-663 $) (-1207)) 72 T ELT) (($ $ (-663 (-1207)) (-663 (-793)) (-663 (-1 $ $))) 120 T ELT) (($ $ (-663 (-1207)) (-663 (-793)) (-663 (-1 $ (-663 $)))) 282 T ELT) (($ $ (-1207) (-793) (-1 $ (-663 $))) 105 T ELT) (($ $ (-1207) (-793) (-1 $ $)) 104 T ELT)) (-3924 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-663 $)) 119 T ELT)) (-2894 (($ $ (-1207)) 278 T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT)) (-3056 (($ $) 324 T ELT)) (-1407 (((-915 (-560)) $) 297 T ELT) (((-915 (-391)) $) 301 T ELT) (($ (-419 $)) 359 T ELT) (((-549) $) NIL T ELT)) (-1578 (((-887) $) 279 T ELT) (($ (-630 $)) 93 T ELT) (($ (-1207)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1156 |#2| (-630 $))) NIL T ELT) (($ (-421 |#2|)) 329 T ELT) (($ (-975 (-421 |#2|))) 368 T ELT) (($ (-421 (-975 (-421 |#2|)))) 341 T ELT) (($ (-421 (-975 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-975 |#2|)) 216 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) 373 T ELT)) (-2930 (((-793)) 88 T ELT)) (-1840 (((-114) (-115)) 42 T ELT)) (-4472 (($ (-1207) $) 31 T ELT) (($ (-1207) $ $) 32 T ELT) (($ (-1207) $ $ $) 33 T ELT) (($ (-1207) $ $ $ $) 34 T ELT) (($ (-1207) (-663 $)) 39 T ELT)) (* (($ (-421 (-560)) $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-948) $) NIL T ELT)))
-(((-434 |#1| |#2|) (-10 -8 (-15 * (|#1| (-948) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1578 (|#1| (-560))) (-15 -2930 ((-793))) (-15 * (|#1| |#2| |#1|)) (-15 -1407 ((-549) |#1|)) (-15 -1578 (|#1| (-975 |#2|))) (-15 -2539 ((-3 (-975 |#2|) "failed") |#1|)) (-15 -3330 ((-975 |#2|) |#1|)) (-15 -2894 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -2894 (|#1| |#1| (-1207) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1207)))) (-15 -2894 (|#1| |#1| (-1207))) (-15 * (|#1| |#1| |#2|)) (-15 -1578 (|#1| |#1|)) (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -1578 (|#1| (-421 (-975 |#2|)))) (-15 -2539 ((-3 (-421 (-975 |#2|)) "failed") |#1|)) (-15 -3330 ((-421 (-975 |#2|)) |#1|)) (-15 -4422 ((-421 (-1201 |#1|)) |#1| (-630 |#1|))) (-15 -1578 (|#1| (-421 (-975 (-421 |#2|))))) (-15 -1578 (|#1| (-975 (-421 |#2|)))) (-15 -1578 (|#1| (-421 |#2|))) (-15 -3056 (|#1| |#1|)) (-15 -1407 (|#1| (-419 |#1|))) (-15 -4187 (|#1| |#1| (-1207) (-793) (-1 |#1| |#1|))) (-15 -4187 (|#1| |#1| (-1207) (-793) (-1 |#1| (-663 |#1|)))) (-15 -4187 (|#1| |#1| (-663 (-1207)) (-663 (-793)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -4187 (|#1| |#1| (-663 (-1207)) (-663 (-793)) (-663 (-1 |#1| |#1|)))) (-15 -3436 ((-3 (-2 (|:| |val| |#1|) (|:| -3205 (-560))) "failed") |#1|)) (-15 -3683 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -3205 (-560))) "failed") |#1| (-1207))) (-15 -3683 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -3205 (-560))) "failed") |#1| (-115))) (-15 -1617 (|#1| |#1|)) (-15 -1578 (|#1| (-1156 |#2| (-630 |#1|)))) (-15 -3495 ((-3 (-2 (|:| -2115 (-560)) (|:| |var| (-630 |#1|))) "failed") |#1|)) (-15 -2590 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -3683 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -3205 (-560))) "failed") |#1|)) (-15 -3479 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -4187 (|#1| |#1| (-663 (-115)) (-663 |#1|) (-1207))) (-15 -4187 (|#1| |#1| (-115) |#1| (-1207))) (-15 -4187 (|#1| |#1|)) (-15 -4187 (|#1| |#1| (-663 (-1207)))) (-15 -4187 (|#1| |#1| (-1207))) (-15 -4472 (|#1| (-1207) (-663 |#1|))) (-15 -4472 (|#1| (-1207) |#1| |#1| |#1| |#1|)) (-15 -4472 (|#1| (-1207) |#1| |#1| |#1|)) (-15 -4472 (|#1| (-1207) |#1| |#1|)) (-15 -4472 (|#1| (-1207) |#1|)) (-15 -1443 ((-663 (-1207)) |#1|)) (-15 -1566 (|#2| |#1|)) (-15 -1554 ((-114) |#1|)) (-15 -1578 (|#1| |#2|)) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -3330 ((-560) |#1|)) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -1407 ((-915 (-391)) |#1|)) (-15 -1407 ((-915 (-560)) |#1|)) (-15 -1578 (|#1| (-1207))) (-15 -2539 ((-3 (-1207) "failed") |#1|)) (-15 -3330 ((-1207) |#1|)) (-15 -4187 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -4187 (|#1| |#1| (-115) (-1 |#1| (-663 |#1|)))) (-15 -4187 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -4187 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| |#1|)))) (-15 -4187 (|#1| |#1| (-1207) (-1 |#1| |#1|))) (-15 -4187 (|#1| |#1| (-1207) (-1 |#1| (-663 |#1|)))) (-15 -4187 (|#1| |#1| (-663 (-1207)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -4187 (|#1| |#1| (-663 (-1207)) (-663 (-1 |#1| |#1|)))) (-15 -1840 ((-114) (-115))) (-15 -4399 ((-115) (-115))) (-15 -4385 ((-663 (-630 |#1|)) |#1|)) (-15 -3005 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -1724 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -1724 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -1724 (|#1| |#1| (-305 |#1|))) (-15 -3924 (|#1| (-115) (-663 |#1|))) (-15 -3924 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -3924 (|#1| (-115) |#1| |#1| |#1|)) (-15 -3924 (|#1| (-115) |#1| |#1|)) (-15 -3924 (|#1| (-115) |#1|)) (-15 -4187 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -4187 (|#1| |#1| |#1| |#1|)) (-15 -4187 (|#1| |#1| (-305 |#1|))) (-15 -4187 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -4187 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -4187 (|#1| |#1| (-630 |#1|) |#1|)) (-15 -1578 (|#1| (-630 |#1|))) (-15 -2539 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3330 ((-630 |#1|) |#1|)) (-15 -1578 ((-887) |#1|))) (-435 |#2|) (-1132)) (T -434))
-((-4399 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1132)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4)))) (-1840 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1132)) (-5 *2 (-114)) (-5 *1 (-434 *4 *5)) (-4 *4 (-435 *5)))) (-2930 (*1 *2) (-12 (-4 *4 (-1132)) (-5 *2 (-793)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4)))))
-(-10 -8 (-15 * (|#1| (-948) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -1578 (|#1| (-560))) (-15 -2930 ((-793))) (-15 * (|#1| |#2| |#1|)) (-15 -1407 ((-549) |#1|)) (-15 -1578 (|#1| (-975 |#2|))) (-15 -2539 ((-3 (-975 |#2|) "failed") |#1|)) (-15 -3330 ((-975 |#2|) |#1|)) (-15 -2894 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -2894 (|#1| |#1| (-1207) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1207)))) (-15 -2894 (|#1| |#1| (-1207))) (-15 * (|#1| |#1| |#2|)) (-15 -1578 (|#1| |#1|)) (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -1578 (|#1| (-421 (-975 |#2|)))) (-15 -2539 ((-3 (-421 (-975 |#2|)) "failed") |#1|)) (-15 -3330 ((-421 (-975 |#2|)) |#1|)) (-15 -4422 ((-421 (-1201 |#1|)) |#1| (-630 |#1|))) (-15 -1578 (|#1| (-421 (-975 (-421 |#2|))))) (-15 -1578 (|#1| (-975 (-421 |#2|)))) (-15 -1578 (|#1| (-421 |#2|))) (-15 -3056 (|#1| |#1|)) (-15 -1407 (|#1| (-419 |#1|))) (-15 -4187 (|#1| |#1| (-1207) (-793) (-1 |#1| |#1|))) (-15 -4187 (|#1| |#1| (-1207) (-793) (-1 |#1| (-663 |#1|)))) (-15 -4187 (|#1| |#1| (-663 (-1207)) (-663 (-793)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -4187 (|#1| |#1| (-663 (-1207)) (-663 (-793)) (-663 (-1 |#1| |#1|)))) (-15 -3436 ((-3 (-2 (|:| |val| |#1|) (|:| -3205 (-560))) "failed") |#1|)) (-15 -3683 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -3205 (-560))) "failed") |#1| (-1207))) (-15 -3683 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -3205 (-560))) "failed") |#1| (-115))) (-15 -1617 (|#1| |#1|)) (-15 -1578 (|#1| (-1156 |#2| (-630 |#1|)))) (-15 -3495 ((-3 (-2 (|:| -2115 (-560)) (|:| |var| (-630 |#1|))) "failed") |#1|)) (-15 -2590 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -3683 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -3205 (-560))) "failed") |#1|)) (-15 -3479 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -4187 (|#1| |#1| (-663 (-115)) (-663 |#1|) (-1207))) (-15 -4187 (|#1| |#1| (-115) |#1| (-1207))) (-15 -4187 (|#1| |#1|)) (-15 -4187 (|#1| |#1| (-663 (-1207)))) (-15 -4187 (|#1| |#1| (-1207))) (-15 -4472 (|#1| (-1207) (-663 |#1|))) (-15 -4472 (|#1| (-1207) |#1| |#1| |#1| |#1|)) (-15 -4472 (|#1| (-1207) |#1| |#1| |#1|)) (-15 -4472 (|#1| (-1207) |#1| |#1|)) (-15 -4472 (|#1| (-1207) |#1|)) (-15 -1443 ((-663 (-1207)) |#1|)) (-15 -1566 (|#2| |#1|)) (-15 -1554 ((-114) |#1|)) (-15 -1578 (|#1| |#2|)) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -3330 ((-560) |#1|)) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -1407 ((-915 (-391)) |#1|)) (-15 -1407 ((-915 (-560)) |#1|)) (-15 -1578 (|#1| (-1207))) (-15 -2539 ((-3 (-1207) "failed") |#1|)) (-15 -3330 ((-1207) |#1|)) (-15 -4187 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -4187 (|#1| |#1| (-115) (-1 |#1| (-663 |#1|)))) (-15 -4187 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -4187 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| |#1|)))) (-15 -4187 (|#1| |#1| (-1207) (-1 |#1| |#1|))) (-15 -4187 (|#1| |#1| (-1207) (-1 |#1| (-663 |#1|)))) (-15 -4187 (|#1| |#1| (-663 (-1207)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -4187 (|#1| |#1| (-663 (-1207)) (-663 (-1 |#1| |#1|)))) (-15 -1840 ((-114) (-115))) (-15 -4399 ((-115) (-115))) (-15 -4385 ((-663 (-630 |#1|)) |#1|)) (-15 -3005 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -1724 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -1724 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -1724 (|#1| |#1| (-305 |#1|))) (-15 -3924 (|#1| (-115) (-663 |#1|))) (-15 -3924 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -3924 (|#1| (-115) |#1| |#1| |#1|)) (-15 -3924 (|#1| (-115) |#1| |#1|)) (-15 -3924 (|#1| (-115) |#1|)) (-15 -4187 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -4187 (|#1| |#1| |#1| |#1|)) (-15 -4187 (|#1| |#1| (-305 |#1|))) (-15 -4187 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -4187 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -4187 (|#1| |#1| (-630 |#1|) |#1|)) (-15 -1578 (|#1| (-630 |#1|))) (-15 -2539 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3330 ((-630 |#1|) |#1|)) (-15 -1578 ((-887) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 117 (|has| |#1| (-25)) ELT)) (-1443 (((-663 (-1207)) $) 208 T ELT)) (-4422 (((-421 (-1201 $)) $ (-630 $)) 176 (|has| |#1| (-571)) ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 148 (|has| |#1| (-571)) ELT)) (-3244 (($ $) 149 (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) 151 (|has| |#1| (-571)) ELT)) (-4297 (((-663 (-630 $)) $) 39 T ELT)) (-3068 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)) ELT)) (-1724 (($ $ (-305 $)) 51 T ELT) (($ $ (-663 (-305 $))) 50 T ELT) (($ $ (-663 (-630 $)) (-663 $)) 49 T ELT)) (-1804 (($ $) 168 (|has| |#1| (-571)) ELT)) (-3023 (((-419 $) $) 169 (|has| |#1| (-571)) ELT)) (-1615 (((-114) $ $) 159 (|has| |#1| (-571)) ELT)) (-2238 (($) 105 (-2304 (|has| |#1| (-1143)) (|has| |#1| (-25))) CONST)) (-2539 (((-3 (-630 $) "failed") $) 64 T ELT) (((-3 (-1207) "failed") $) 221 T ELT) (((-3 (-560) "failed") $) 215 (|has| |#1| (-1069 (-560))) ELT) (((-3 |#1| "failed") $) 212 T ELT) (((-3 (-421 (-975 |#1|)) "failed") $) 174 (|has| |#1| (-571)) ELT) (((-3 (-975 |#1|) "failed") $) 124 (|has| |#1| (-1080)) ELT) (((-3 (-421 (-560)) "failed") $) 99 (-2304 (-12 (|has| |#1| (-1069 (-560))) (|has| |#1| (-571))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-3330 (((-630 $) $) 65 T ELT) (((-1207) $) 222 T ELT) (((-560) $) 214 (|has| |#1| (-1069 (-560))) ELT) ((|#1| $) 213 T ELT) (((-421 (-975 |#1|)) $) 175 (|has| |#1| (-571)) ELT) (((-975 |#1|) $) 125 (|has| |#1| (-1080)) ELT) (((-421 (-560)) $) 100 (-2304 (-12 (|has| |#1| (-1069 (-560))) (|has| |#1| (-571))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-1478 (($ $ $) 163 (|has| |#1| (-571)) ELT)) (-3142 (((-711 (-560)) (-711 $)) 141 (-1953 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 140 (-1953 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 139 (|has| |#1| (-1080)) ELT) (((-711 |#1|) (-711 $)) 138 (|has| |#1| (-1080)) ELT)) (-1990 (((-3 $ "failed") $) 107 (|has| |#1| (-1143)) ELT)) (-1490 (($ $ $) 162 (|has| |#1| (-571)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 157 (|has| |#1| (-571)) ELT)) (-4330 (((-114) $) 170 (|has| |#1| (-571)) ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 217 (|has| |#1| (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 216 (|has| |#1| (-911 (-391))) ELT)) (-2753 (($ $) 46 T ELT) (($ (-663 $)) 45 T ELT)) (-2943 (((-663 (-115)) $) 38 T ELT)) (-4399 (((-115) (-115)) 37 T ELT)) (-1581 (((-114) $) 106 (|has| |#1| (-1143)) ELT)) (-3612 (((-114) $) 17 (|has| $ (-1069 (-560))) ELT)) (-1617 (($ $) 191 (|has| |#1| (-1080)) ELT)) (-3757 (((-1156 |#1| (-630 $)) $) 192 (|has| |#1| (-1080)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 166 (|has| |#1| (-571)) ELT)) (-3872 (((-1201 $) (-630 $)) 20 (|has| $ (-1080)) ELT)) (-3957 (($ (-1 $ $) (-630 $)) 31 T ELT)) (-3005 (((-3 (-630 $) "failed") $) 41 T ELT)) (-2484 (((-711 (-560)) (-1297 $)) 143 (-1953 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 142 (-1953 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 137 (|has| |#1| (-1080)) ELT) (((-711 |#1|) (-1297 $)) 136 (|has| |#1| (-1080)) ELT)) (-2093 (($ (-663 $)) 155 (|has| |#1| (-571)) ELT) (($ $ $) 154 (|has| |#1| (-571)) ELT)) (-1905 (((-1189) $) 10 T ELT)) (-4385 (((-663 (-630 $)) $) 40 T ELT)) (-2036 (($ (-115) $) 33 T ELT) (($ (-115) (-663 $)) 32 T ELT)) (-3479 (((-3 (-663 $) "failed") $) 197 (|has| |#1| (-1143)) ELT)) (-3436 (((-3 (-2 (|:| |val| $) (|:| -3205 (-560))) "failed") $) 188 (|has| |#1| (-1080)) ELT)) (-2590 (((-3 (-663 $) "failed") $) 195 (|has| |#1| (-25)) ELT)) (-3495 (((-3 (-2 (|:| -2115 (-560)) (|:| |var| (-630 $))) "failed") $) 194 (|has| |#1| (-25)) ELT)) (-3683 (((-3 (-2 (|:| |var| (-630 $)) (|:| -3205 (-560))) "failed") $) 196 (|has| |#1| (-1143)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -3205 (-560))) "failed") $ (-115)) 190 (|has| |#1| (-1080)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -3205 (-560))) "failed") $ (-1207)) 189 (|has| |#1| (-1080)) ELT)) (-2784 (((-114) $ (-115)) 35 T ELT) (((-114) $ (-1207)) 34 T ELT)) (-1544 (($ $) 109 (-2304 (|has| |#1| (-487)) (|has| |#1| (-571))) ELT)) (-2107 (((-793) $) 42 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1554 (((-114) $) 210 T ELT)) (-1566 ((|#1| $) 209 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 156 (|has| |#1| (-571)) ELT)) (-2132 (($ (-663 $)) 153 (|has| |#1| (-571)) ELT) (($ $ $) 152 (|has| |#1| (-571)) ELT)) (-3883 (((-114) $ $) 30 T ELT) (((-114) $ (-1207)) 29 T ELT)) (-4457 (((-419 $) $) 167 (|has| |#1| (-571)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 165 (|has| |#1| (-571)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 164 (|has| |#1| (-571)) ELT)) (-1528 (((-3 $ "failed") $ $) 147 (|has| |#1| (-571)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 158 (|has| |#1| (-571)) ELT)) (-1737 (((-114) $) 18 (|has| $ (-1069 (-560))) ELT)) (-4187 (($ $ (-630 $) $) 62 T ELT) (($ $ (-663 (-630 $)) (-663 $)) 61 T ELT) (($ $ (-663 (-305 $))) 60 T ELT) (($ $ (-305 $)) 59 T ELT) (($ $ $ $) 58 T ELT) (($ $ (-663 $) (-663 $)) 57 T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ $))) 28 T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ (-663 $)))) 27 T ELT) (($ $ (-1207) (-1 $ (-663 $))) 26 T ELT) (($ $ (-1207) (-1 $ $)) 25 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) 24 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) 23 T ELT) (($ $ (-115) (-1 $ (-663 $))) 22 T ELT) (($ $ (-115) (-1 $ $)) 21 T ELT) (($ $ (-1207)) 202 (|has| |#1| (-633 (-549))) ELT) (($ $ (-663 (-1207))) 201 (|has| |#1| (-633 (-549))) ELT) (($ $) 200 (|has| |#1| (-633 (-549))) ELT) (($ $ (-115) $ (-1207)) 199 (|has| |#1| (-633 (-549))) ELT) (($ $ (-663 (-115)) (-663 $) (-1207)) 198 (|has| |#1| (-633 (-549))) ELT) (($ $ (-663 (-1207)) (-663 (-793)) (-663 (-1 $ $))) 187 (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793)) (-663 (-1 $ (-663 $)))) 186 (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793) (-1 $ (-663 $))) 185 (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793) (-1 $ $)) 184 (|has| |#1| (-1080)) ELT)) (-2901 (((-793) $) 160 (|has| |#1| (-571)) ELT)) (-3924 (($ (-115) $) 56 T ELT) (($ (-115) $ $) 55 T ELT) (($ (-115) $ $ $) 54 T ELT) (($ (-115) $ $ $ $) 53 T ELT) (($ (-115) (-663 $)) 52 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 161 (|has| |#1| (-571)) ELT)) (-3690 (($ $) 44 T ELT) (($ $ $) 43 T ELT)) (-2894 (($ $ (-1207)) 134 (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207))) 132 (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793)) 131 (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 130 (|has| |#1| (-1080)) ELT)) (-3056 (($ $) 181 (|has| |#1| (-571)) ELT)) (-3771 (((-1156 |#1| (-630 $)) $) 182 (|has| |#1| (-571)) ELT)) (-4394 (($ $) 19 (|has| $ (-1080)) ELT)) (-1407 (((-915 (-560)) $) 219 (|has| |#1| (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) 218 (|has| |#1| (-633 (-915 (-391)))) ELT) (($ (-419 $)) 183 (|has| |#1| (-571)) ELT) (((-549) $) 101 (|has| |#1| (-633 (-549))) ELT)) (-4122 (($ $ $) 112 (|has| |#1| (-487)) ELT)) (-2013 (($ $ $) 113 (|has| |#1| (-487)) ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-630 $)) 63 T ELT) (($ (-1207)) 220 T ELT) (($ |#1|) 211 T ELT) (($ (-1156 |#1| (-630 $))) 193 (|has| |#1| (-1080)) ELT) (($ (-421 |#1|)) 179 (|has| |#1| (-571)) ELT) (($ (-975 (-421 |#1|))) 178 (|has| |#1| (-571)) ELT) (($ (-421 (-975 (-421 |#1|)))) 177 (|has| |#1| (-571)) ELT) (($ (-421 (-975 |#1|))) 173 (|has| |#1| (-571)) ELT) (($ $) 146 (|has| |#1| (-571)) ELT) (($ (-975 |#1|)) 123 (|has| |#1| (-1080)) ELT) (($ (-421 (-560))) 98 (-2304 (|has| |#1| (-571)) (-12 (|has| |#1| (-1069 (-560))) (|has| |#1| (-571))) (|has| |#1| (-1069 (-421 (-560))))) ELT) (($ (-560)) 97 (-2304 (|has| |#1| (-1080)) (|has| |#1| (-1069 (-560)))) ELT)) (-1964 (((-3 $ "failed") $) 144 (|has| |#1| (-147)) ELT)) (-2930 (((-793)) 126 (|has| |#1| (-1080)) CONST)) (-3579 (($ $) 48 T ELT) (($ (-663 $)) 47 T ELT)) (-1840 (((-114) (-115)) 36 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 150 (|has| |#1| (-571)) ELT)) (-4472 (($ (-1207) $) 207 T ELT) (($ (-1207) $ $) 206 T ELT) (($ (-1207) $ $ $) 205 T ELT) (($ (-1207) $ $ $ $) 204 T ELT) (($ (-1207) (-663 $)) 203 T ELT)) (-2001 (($) 116 (|has| |#1| (-25)) CONST)) (-2011 (($) 104 (|has| |#1| (-1143)) CONST)) (-3305 (($ $ (-1207)) 133 (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207))) 129 (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793)) 128 (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 127 (|has| |#1| (-1080)) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ (-1156 |#1| (-630 $)) (-1156 |#1| (-630 $))) 180 (|has| |#1| (-571)) ELT) (($ $ $) 110 (-2304 (|has| |#1| (-487)) (|has| |#1| (-571))) ELT)) (-2580 (($ $ $) 122 (|has| |#1| (-21)) ELT) (($ $) 121 (|has| |#1| (-21)) ELT)) (-2567 (($ $ $) 114 (|has| |#1| (-25)) ELT)) (** (($ $ (-560)) 111 (-2304 (|has| |#1| (-487)) (|has| |#1| (-571))) ELT) (($ $ (-793)) 108 (|has| |#1| (-1143)) ELT) (($ $ (-948)) 103 (|has| |#1| (-1143)) ELT)) (* (($ (-421 (-560)) $) 172 (|has| |#1| (-571)) ELT) (($ $ (-421 (-560))) 171 (|has| |#1| (-571)) ELT) (($ $ |#1|) 145 (|has| |#1| (-175)) ELT) (($ |#1| $) 135 (|has| |#1| (-1080)) ELT) (($ (-560) $) 120 (|has| |#1| (-21)) ELT) (($ (-793) $) 118 (|has| |#1| (-25)) ELT) (($ (-948) $) 115 (|has| |#1| (-25)) ELT) (($ $ $) 102 (|has| |#1| (-1143)) ELT)))
+((-2496 (((-419 |#1|) (-419 |#1|) (-1 (-419 |#1|) |#1|)) 28 T ELT)) (-2835 (((-419 |#1|) (-419 |#1|) (-419 |#1|)) 17 T ELT)))
+(((-433 |#1|) (-10 -7 (-15 -2496 ((-419 |#1|) (-419 |#1|) (-1 (-419 |#1|) |#1|))) (-15 -2835 ((-419 |#1|) (-419 |#1|) (-419 |#1|)))) (-571)) (T -433))
+((-2835 (*1 *2 *2 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-571)) (-5 *1 (-433 *3)))) (-2496 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-419 *4) *4)) (-4 *4 (-571)) (-5 *2 (-419 *4)) (-5 *1 (-433 *4)))))
+(-10 -7 (-15 -2496 ((-419 |#1|) (-419 |#1|) (-1 (-419 |#1|) |#1|))) (-15 -2835 ((-419 |#1|) (-419 |#1|) (-419 |#1|))))
+((-4162 (((-663 (-1207)) $) 81 T ELT)) (-3981 (((-421 (-1201 $)) $ (-630 $)) 313 T ELT)) (-2607 (($ $ (-305 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) 277 T ELT)) (-3929 (((-3 (-630 $) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) 84 T ELT) (((-3 (-560) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 273 T ELT) (((-3 (-421 (-975 |#2|)) "failed") $) 363 T ELT) (((-3 (-975 |#2|) "failed") $) 275 T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT)) (-3649 (((-630 $) $) NIL T ELT) (((-1207) $) 28 T ELT) (((-560) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-421 (-975 |#2|)) $) 345 T ELT) (((-975 |#2|) $) 272 T ELT) (((-421 (-560)) $) NIL T ELT)) (-3963 (((-115) (-115)) 47 T ELT)) (-3490 (($ $) 99 T ELT)) (-3702 (((-3 (-630 $) "failed") $) 268 T ELT)) (-3949 (((-663 (-630 $)) $) 269 T ELT)) (-1669 (((-3 (-663 $) "failed") $) 287 T ELT)) (-2486 (((-3 (-2 (|:| |val| $) (|:| -2030 (-560))) "failed") $) 294 T ELT)) (-3849 (((-3 (-663 $) "failed") $) 285 T ELT)) (-1827 (((-3 (-2 (|:| -2625 (-560)) (|:| |var| (-630 $))) "failed") $) 304 T ELT)) (-3149 (((-3 (-2 (|:| |var| (-630 $)) (|:| -2030 (-560))) "failed") $) 291 T ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2030 (-560))) "failed") $ (-115)) 255 T ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2030 (-560))) "failed") $ (-1207)) 257 T ELT)) (-3000 (((-114) $) 17 T ELT)) (-3011 ((|#2| $) 19 T ELT)) (-2371 (($ $ (-630 $) $) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) 276 T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ (-663 $)))) 109 T ELT) (($ $ (-1207) (-1 $ (-663 $))) NIL T ELT) (($ $ (-1207) (-1 $ $)) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-663 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT) (($ $ (-1207)) 62 T ELT) (($ $ (-663 (-1207))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-115) $ (-1207)) 65 T ELT) (($ $ (-663 (-115)) (-663 $) (-1207)) 72 T ELT) (($ $ (-663 (-1207)) (-663 (-793)) (-663 (-1 $ $))) 120 T ELT) (($ $ (-663 (-1207)) (-663 (-793)) (-663 (-1 $ (-663 $)))) 282 T ELT) (($ $ (-1207) (-793) (-1 $ (-663 $))) 105 T ELT) (($ $ (-1207) (-793) (-1 $ $)) 104 T ELT)) (-1507 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-663 $)) 119 T ELT)) (-3161 (($ $ (-1207)) 278 T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT)) (-2951 (($ $) 324 T ELT)) (-2400 (((-915 (-560)) $) 297 T ELT) (((-915 (-391)) $) 301 T ELT) (($ (-419 $)) 359 T ELT) (((-549) $) NIL T ELT)) (-3913 (((-887) $) 279 T ELT) (($ (-630 $)) 93 T ELT) (($ (-1207)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1156 |#2| (-630 $))) NIL T ELT) (($ (-421 |#2|)) 329 T ELT) (($ (-975 (-421 |#2|))) 368 T ELT) (($ (-421 (-975 (-421 |#2|)))) 341 T ELT) (($ (-421 (-975 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-975 |#2|)) 216 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) 373 T ELT)) (-4191 (((-793)) 88 T ELT)) (-3962 (((-114) (-115)) 42 T ELT)) (-2085 (($ (-1207) $) 31 T ELT) (($ (-1207) $ $) 32 T ELT) (($ (-1207) $ $ $) 33 T ELT) (($ (-1207) $ $ $ $) 34 T ELT) (($ (-1207) (-663 $)) 39 T ELT)) (* (($ (-421 (-560)) $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-948) $) NIL T ELT)))
+(((-434 |#1| |#2|) (-10 -8 (-15 * (|#1| (-948) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3913 (|#1| (-560))) (-15 -4191 ((-793))) (-15 * (|#1| |#2| |#1|)) (-15 -2400 ((-549) |#1|)) (-15 -3913 (|#1| (-975 |#2|))) (-15 -3929 ((-3 (-975 |#2|) "failed") |#1|)) (-15 -3649 ((-975 |#2|) |#1|)) (-15 -3161 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -3161 (|#1| |#1| (-1207) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1207)))) (-15 -3161 (|#1| |#1| (-1207))) (-15 * (|#1| |#1| |#2|)) (-15 -3913 (|#1| |#1|)) (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -3913 (|#1| (-421 (-975 |#2|)))) (-15 -3929 ((-3 (-421 (-975 |#2|)) "failed") |#1|)) (-15 -3649 ((-421 (-975 |#2|)) |#1|)) (-15 -3981 ((-421 (-1201 |#1|)) |#1| (-630 |#1|))) (-15 -3913 (|#1| (-421 (-975 (-421 |#2|))))) (-15 -3913 (|#1| (-975 (-421 |#2|)))) (-15 -3913 (|#1| (-421 |#2|))) (-15 -2951 (|#1| |#1|)) (-15 -2400 (|#1| (-419 |#1|))) (-15 -2371 (|#1| |#1| (-1207) (-793) (-1 |#1| |#1|))) (-15 -2371 (|#1| |#1| (-1207) (-793) (-1 |#1| (-663 |#1|)))) (-15 -2371 (|#1| |#1| (-663 (-1207)) (-663 (-793)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -2371 (|#1| |#1| (-663 (-1207)) (-663 (-793)) (-663 (-1 |#1| |#1|)))) (-15 -2486 ((-3 (-2 (|:| |val| |#1|) (|:| -2030 (-560))) "failed") |#1|)) (-15 -3149 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2030 (-560))) "failed") |#1| (-1207))) (-15 -3149 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2030 (-560))) "failed") |#1| (-115))) (-15 -3490 (|#1| |#1|)) (-15 -3913 (|#1| (-1156 |#2| (-630 |#1|)))) (-15 -1827 ((-3 (-2 (|:| -2625 (-560)) (|:| |var| (-630 |#1|))) "failed") |#1|)) (-15 -3849 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -3149 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2030 (-560))) "failed") |#1|)) (-15 -1669 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -2371 (|#1| |#1| (-663 (-115)) (-663 |#1|) (-1207))) (-15 -2371 (|#1| |#1| (-115) |#1| (-1207))) (-15 -2371 (|#1| |#1|)) (-15 -2371 (|#1| |#1| (-663 (-1207)))) (-15 -2371 (|#1| |#1| (-1207))) (-15 -2085 (|#1| (-1207) (-663 |#1|))) (-15 -2085 (|#1| (-1207) |#1| |#1| |#1| |#1|)) (-15 -2085 (|#1| (-1207) |#1| |#1| |#1|)) (-15 -2085 (|#1| (-1207) |#1| |#1|)) (-15 -2085 (|#1| (-1207) |#1|)) (-15 -4162 ((-663 (-1207)) |#1|)) (-15 -3011 (|#2| |#1|)) (-15 -3000 ((-114) |#1|)) (-15 -3913 (|#1| |#2|)) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3649 ((-560) |#1|)) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -2400 ((-915 (-391)) |#1|)) (-15 -2400 ((-915 (-560)) |#1|)) (-15 -3913 (|#1| (-1207))) (-15 -3929 ((-3 (-1207) "failed") |#1|)) (-15 -3649 ((-1207) |#1|)) (-15 -2371 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2371 (|#1| |#1| (-115) (-1 |#1| (-663 |#1|)))) (-15 -2371 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -2371 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| |#1|)))) (-15 -2371 (|#1| |#1| (-1207) (-1 |#1| |#1|))) (-15 -2371 (|#1| |#1| (-1207) (-1 |#1| (-663 |#1|)))) (-15 -2371 (|#1| |#1| (-663 (-1207)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -2371 (|#1| |#1| (-663 (-1207)) (-663 (-1 |#1| |#1|)))) (-15 -3962 ((-114) (-115))) (-15 -3963 ((-115) (-115))) (-15 -3949 ((-663 (-630 |#1|)) |#1|)) (-15 -3702 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -2607 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -2607 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -2607 (|#1| |#1| (-305 |#1|))) (-15 -1507 (|#1| (-115) (-663 |#1|))) (-15 -1507 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -1507 (|#1| (-115) |#1| |#1| |#1|)) (-15 -1507 (|#1| (-115) |#1| |#1|)) (-15 -1507 (|#1| (-115) |#1|)) (-15 -2371 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -2371 (|#1| |#1| |#1| |#1|)) (-15 -2371 (|#1| |#1| (-305 |#1|))) (-15 -2371 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -2371 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -2371 (|#1| |#1| (-630 |#1|) |#1|)) (-15 -3913 (|#1| (-630 |#1|))) (-15 -3929 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3649 ((-630 |#1|) |#1|)) (-15 -3913 ((-887) |#1|))) (-435 |#2|) (-1132)) (T -434))
+((-3963 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1132)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1132)) (-5 *2 (-114)) (-5 *1 (-434 *4 *5)) (-4 *4 (-435 *5)))) (-4191 (*1 *2) (-12 (-4 *4 (-1132)) (-5 *2 (-793)) (-5 *1 (-434 *3 *4)) (-4 *3 (-435 *4)))))
+(-10 -8 (-15 * (|#1| (-948) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3913 (|#1| (-560))) (-15 -4191 ((-793))) (-15 * (|#1| |#2| |#1|)) (-15 -2400 ((-549) |#1|)) (-15 -3913 (|#1| (-975 |#2|))) (-15 -3929 ((-3 (-975 |#2|) "failed") |#1|)) (-15 -3649 ((-975 |#2|) |#1|)) (-15 -3161 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -3161 (|#1| |#1| (-1207) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1207)))) (-15 -3161 (|#1| |#1| (-1207))) (-15 * (|#1| |#1| |#2|)) (-15 -3913 (|#1| |#1|)) (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -3913 (|#1| (-421 (-975 |#2|)))) (-15 -3929 ((-3 (-421 (-975 |#2|)) "failed") |#1|)) (-15 -3649 ((-421 (-975 |#2|)) |#1|)) (-15 -3981 ((-421 (-1201 |#1|)) |#1| (-630 |#1|))) (-15 -3913 (|#1| (-421 (-975 (-421 |#2|))))) (-15 -3913 (|#1| (-975 (-421 |#2|)))) (-15 -3913 (|#1| (-421 |#2|))) (-15 -2951 (|#1| |#1|)) (-15 -2400 (|#1| (-419 |#1|))) (-15 -2371 (|#1| |#1| (-1207) (-793) (-1 |#1| |#1|))) (-15 -2371 (|#1| |#1| (-1207) (-793) (-1 |#1| (-663 |#1|)))) (-15 -2371 (|#1| |#1| (-663 (-1207)) (-663 (-793)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -2371 (|#1| |#1| (-663 (-1207)) (-663 (-793)) (-663 (-1 |#1| |#1|)))) (-15 -2486 ((-3 (-2 (|:| |val| |#1|) (|:| -2030 (-560))) "failed") |#1|)) (-15 -3149 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2030 (-560))) "failed") |#1| (-1207))) (-15 -3149 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2030 (-560))) "failed") |#1| (-115))) (-15 -3490 (|#1| |#1|)) (-15 -3913 (|#1| (-1156 |#2| (-630 |#1|)))) (-15 -1827 ((-3 (-2 (|:| -2625 (-560)) (|:| |var| (-630 |#1|))) "failed") |#1|)) (-15 -3849 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -3149 ((-3 (-2 (|:| |var| (-630 |#1|)) (|:| -2030 (-560))) "failed") |#1|)) (-15 -1669 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -2371 (|#1| |#1| (-663 (-115)) (-663 |#1|) (-1207))) (-15 -2371 (|#1| |#1| (-115) |#1| (-1207))) (-15 -2371 (|#1| |#1|)) (-15 -2371 (|#1| |#1| (-663 (-1207)))) (-15 -2371 (|#1| |#1| (-1207))) (-15 -2085 (|#1| (-1207) (-663 |#1|))) (-15 -2085 (|#1| (-1207) |#1| |#1| |#1| |#1|)) (-15 -2085 (|#1| (-1207) |#1| |#1| |#1|)) (-15 -2085 (|#1| (-1207) |#1| |#1|)) (-15 -2085 (|#1| (-1207) |#1|)) (-15 -4162 ((-663 (-1207)) |#1|)) (-15 -3011 (|#2| |#1|)) (-15 -3000 ((-114) |#1|)) (-15 -3913 (|#1| |#2|)) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3649 ((-560) |#1|)) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -2400 ((-915 (-391)) |#1|)) (-15 -2400 ((-915 (-560)) |#1|)) (-15 -3913 (|#1| (-1207))) (-15 -3929 ((-3 (-1207) "failed") |#1|)) (-15 -3649 ((-1207) |#1|)) (-15 -2371 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -2371 (|#1| |#1| (-115) (-1 |#1| (-663 |#1|)))) (-15 -2371 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -2371 (|#1| |#1| (-663 (-115)) (-663 (-1 |#1| |#1|)))) (-15 -2371 (|#1| |#1| (-1207) (-1 |#1| |#1|))) (-15 -2371 (|#1| |#1| (-1207) (-1 |#1| (-663 |#1|)))) (-15 -2371 (|#1| |#1| (-663 (-1207)) (-663 (-1 |#1| (-663 |#1|))))) (-15 -2371 (|#1| |#1| (-663 (-1207)) (-663 (-1 |#1| |#1|)))) (-15 -3962 ((-114) (-115))) (-15 -3963 ((-115) (-115))) (-15 -3949 ((-663 (-630 |#1|)) |#1|)) (-15 -3702 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -2607 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -2607 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -2607 (|#1| |#1| (-305 |#1|))) (-15 -1507 (|#1| (-115) (-663 |#1|))) (-15 -1507 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -1507 (|#1| (-115) |#1| |#1| |#1|)) (-15 -1507 (|#1| (-115) |#1| |#1|)) (-15 -1507 (|#1| (-115) |#1|)) (-15 -2371 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -2371 (|#1| |#1| |#1| |#1|)) (-15 -2371 (|#1| |#1| (-305 |#1|))) (-15 -2371 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -2371 (|#1| |#1| (-663 (-630 |#1|)) (-663 |#1|))) (-15 -2371 (|#1| |#1| (-630 |#1|) |#1|)) (-15 -3913 (|#1| (-630 |#1|))) (-15 -3929 ((-3 (-630 |#1|) "failed") |#1|)) (-15 -3649 ((-630 |#1|) |#1|)) (-15 -3913 ((-887) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 117 (|has| |#1| (-25)) ELT)) (-4162 (((-663 (-1207)) $) 208 T ELT)) (-3981 (((-421 (-1201 $)) $ (-630 $)) 176 (|has| |#1| (-571)) ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 148 (|has| |#1| (-571)) ELT)) (-4366 (($ $) 149 (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) 151 (|has| |#1| (-571)) ELT)) (-3859 (((-663 (-630 $)) $) 39 T ELT)) (-3094 (((-3 $ "failed") $ $) 119 (|has| |#1| (-21)) ELT)) (-2607 (($ $ (-305 $)) 51 T ELT) (($ $ (-663 (-305 $))) 50 T ELT) (($ $ (-663 (-630 $)) (-663 $)) 49 T ELT)) (-1621 (($ $) 168 (|has| |#1| (-571)) ELT)) (-3898 (((-419 $) $) 169 (|has| |#1| (-571)) ELT)) (-3476 (((-114) $ $) 159 (|has| |#1| (-571)) ELT)) (-3525 (($) 105 (-2196 (|has| |#1| (-1143)) (|has| |#1| (-25))) CONST)) (-3929 (((-3 (-630 $) "failed") $) 64 T ELT) (((-3 (-1207) "failed") $) 221 T ELT) (((-3 (-560) "failed") $) 215 (|has| |#1| (-1069 (-560))) ELT) (((-3 |#1| "failed") $) 212 T ELT) (((-3 (-421 (-975 |#1|)) "failed") $) 174 (|has| |#1| (-571)) ELT) (((-3 (-975 |#1|) "failed") $) 124 (|has| |#1| (-1080)) ELT) (((-3 (-421 (-560)) "failed") $) 99 (-2196 (-12 (|has| |#1| (-1069 (-560))) (|has| |#1| (-571))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-3649 (((-630 $) $) 65 T ELT) (((-1207) $) 222 T ELT) (((-560) $) 214 (|has| |#1| (-1069 (-560))) ELT) ((|#1| $) 213 T ELT) (((-421 (-975 |#1|)) $) 175 (|has| |#1| (-571)) ELT) (((-975 |#1|) $) 125 (|has| |#1| (-1080)) ELT) (((-421 (-560)) $) 100 (-2196 (-12 (|has| |#1| (-1069 (-560))) (|has| |#1| (-571))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-2186 (($ $ $) 163 (|has| |#1| (-571)) ELT)) (-2619 (((-711 (-560)) (-711 $)) 141 (-1404 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 140 (-1404 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 139 (|has| |#1| (-1080)) ELT) (((-711 |#1|) (-711 $)) 138 (|has| |#1| (-1080)) ELT)) (-2873 (((-3 $ "failed") $) 107 (|has| |#1| (-1143)) ELT)) (-2197 (($ $ $) 162 (|has| |#1| (-571)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 157 (|has| |#1| (-571)) ELT)) (-3141 (((-114) $) 170 (|has| |#1| (-571)) ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 217 (|has| |#1| (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 216 (|has| |#1| (-911 (-391))) ELT)) (-1740 (($ $) 46 T ELT) (($ (-663 $)) 45 T ELT)) (-4318 (((-663 (-115)) $) 38 T ELT)) (-3963 (((-115) (-115)) 37 T ELT)) (-1918 (((-114) $) 106 (|has| |#1| (-1143)) ELT)) (-3729 (((-114) $) 17 (|has| $ (-1069 (-560))) ELT)) (-3490 (($ $) 191 (|has| |#1| (-1080)) ELT)) (-2473 (((-1156 |#1| (-630 $)) $) 192 (|has| |#1| (-1080)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 166 (|has| |#1| (-571)) ELT)) (-4250 (((-1201 $) (-630 $)) 20 (|has| $ (-1080)) ELT)) (-2260 (($ (-1 $ $) (-630 $)) 31 T ELT)) (-3702 (((-3 (-630 $) "failed") $) 41 T ELT)) (-4140 (((-711 (-560)) (-1297 $)) 143 (-1404 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 142 (-1404 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 137 (|has| |#1| (-1080)) ELT) (((-711 |#1|) (-1297 $)) 136 (|has| |#1| (-1080)) ELT)) (-1861 (($ (-663 $)) 155 (|has| |#1| (-571)) ELT) (($ $ $) 154 (|has| |#1| (-571)) ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3949 (((-663 (-630 $)) $) 40 T ELT)) (-2547 (($ (-115) $) 33 T ELT) (($ (-115) (-663 $)) 32 T ELT)) (-1669 (((-3 (-663 $) "failed") $) 197 (|has| |#1| (-1143)) ELT)) (-2486 (((-3 (-2 (|:| |val| $) (|:| -2030 (-560))) "failed") $) 188 (|has| |#1| (-1080)) ELT)) (-3849 (((-3 (-663 $) "failed") $) 195 (|has| |#1| (-25)) ELT)) (-1827 (((-3 (-2 (|:| -2625 (-560)) (|:| |var| (-630 $))) "failed") $) 194 (|has| |#1| (-25)) ELT)) (-3149 (((-3 (-2 (|:| |var| (-630 $)) (|:| -2030 (-560))) "failed") $) 196 (|has| |#1| (-1143)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2030 (-560))) "failed") $ (-115)) 190 (|has| |#1| (-1080)) ELT) (((-3 (-2 (|:| |var| (-630 $)) (|:| -2030 (-560))) "failed") $ (-1207)) 189 (|has| |#1| (-1080)) ELT)) (-2060 (((-114) $ (-115)) 35 T ELT) (((-114) $ (-1207)) 34 T ELT)) (-2986 (($ $) 109 (-2196 (|has| |#1| (-487)) (|has| |#1| (-571))) ELT)) (-3827 (((-793) $) 42 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3000 (((-114) $) 210 T ELT)) (-3011 ((|#1| $) 209 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 156 (|has| |#1| (-571)) ELT)) (-1938 (($ (-663 $)) 153 (|has| |#1| (-571)) ELT) (($ $ $) 152 (|has| |#1| (-571)) ELT)) (-4338 (((-114) $ $) 30 T ELT) (((-114) $ (-1207)) 29 T ELT)) (-4012 (((-419 $) $) 167 (|has| |#1| (-571)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 165 (|has| |#1| (-571)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 164 (|has| |#1| (-571)) ELT)) (-2233 (((-3 $ "failed") $ $) 147 (|has| |#1| (-571)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 158 (|has| |#1| (-571)) ELT)) (-2244 (((-114) $) 18 (|has| $ (-1069 (-560))) ELT)) (-2371 (($ $ (-630 $) $) 62 T ELT) (($ $ (-663 (-630 $)) (-663 $)) 61 T ELT) (($ $ (-663 (-305 $))) 60 T ELT) (($ $ (-305 $)) 59 T ELT) (($ $ $ $) 58 T ELT) (($ $ (-663 $) (-663 $)) 57 T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ $))) 28 T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ (-663 $)))) 27 T ELT) (($ $ (-1207) (-1 $ (-663 $))) 26 T ELT) (($ $ (-1207) (-1 $ $)) 25 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) 24 T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) 23 T ELT) (($ $ (-115) (-1 $ (-663 $))) 22 T ELT) (($ $ (-115) (-1 $ $)) 21 T ELT) (($ $ (-1207)) 202 (|has| |#1| (-633 (-549))) ELT) (($ $ (-663 (-1207))) 201 (|has| |#1| (-633 (-549))) ELT) (($ $) 200 (|has| |#1| (-633 (-549))) ELT) (($ $ (-115) $ (-1207)) 199 (|has| |#1| (-633 (-549))) ELT) (($ $ (-663 (-115)) (-663 $) (-1207)) 198 (|has| |#1| (-633 (-549))) ELT) (($ $ (-663 (-1207)) (-663 (-793)) (-663 (-1 $ $))) 187 (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793)) (-663 (-1 $ (-663 $)))) 186 (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793) (-1 $ (-663 $))) 185 (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793) (-1 $ $)) 184 (|has| |#1| (-1080)) ELT)) (-3989 (((-793) $) 160 (|has| |#1| (-571)) ELT)) (-1507 (($ (-115) $) 56 T ELT) (($ (-115) $ $) 55 T ELT) (($ (-115) $ $ $) 54 T ELT) (($ (-115) $ $ $ $) 53 T ELT) (($ (-115) (-663 $)) 52 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 161 (|has| |#1| (-571)) ELT)) (-3222 (($ $) 44 T ELT) (($ $ $) 43 T ELT)) (-3161 (($ $ (-1207)) 134 (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207))) 132 (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793)) 131 (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 130 (|has| |#1| (-1080)) ELT)) (-2951 (($ $) 181 (|has| |#1| (-571)) ELT)) (-2484 (((-1156 |#1| (-630 $)) $) 182 (|has| |#1| (-571)) ELT)) (-2407 (($ $) 19 (|has| $ (-1080)) ELT)) (-2400 (((-915 (-560)) $) 219 (|has| |#1| (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) 218 (|has| |#1| (-633 (-915 (-391)))) ELT) (($ (-419 $)) 183 (|has| |#1| (-571)) ELT) (((-549) $) 101 (|has| |#1| (-633 (-549))) ELT)) (-1714 (($ $ $) 112 (|has| |#1| (-487)) ELT)) (-3117 (($ $ $) 113 (|has| |#1| (-487)) ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-630 $)) 63 T ELT) (($ (-1207)) 220 T ELT) (($ |#1|) 211 T ELT) (($ (-1156 |#1| (-630 $))) 193 (|has| |#1| (-1080)) ELT) (($ (-421 |#1|)) 179 (|has| |#1| (-571)) ELT) (($ (-975 (-421 |#1|))) 178 (|has| |#1| (-571)) ELT) (($ (-421 (-975 (-421 |#1|)))) 177 (|has| |#1| (-571)) ELT) (($ (-421 (-975 |#1|))) 173 (|has| |#1| (-571)) ELT) (($ $) 146 (|has| |#1| (-571)) ELT) (($ (-975 |#1|)) 123 (|has| |#1| (-1080)) ELT) (($ (-421 (-560))) 98 (-2196 (|has| |#1| (-571)) (-12 (|has| |#1| (-1069 (-560))) (|has| |#1| (-571))) (|has| |#1| (-1069 (-421 (-560))))) ELT) (($ (-560)) 97 (-2196 (|has| |#1| (-1080)) (|has| |#1| (-1069 (-560)))) ELT)) (-3919 (((-3 $ "failed") $) 144 (|has| |#1| (-147)) ELT)) (-4191 (((-793)) 126 (|has| |#1| (-1080)) CONST)) (-3061 (($ $) 48 T ELT) (($ (-663 $)) 47 T ELT)) (-3962 (((-114) (-115)) 36 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 150 (|has| |#1| (-571)) ELT)) (-2085 (($ (-1207) $) 207 T ELT) (($ (-1207) $ $) 206 T ELT) (($ (-1207) $ $ $) 205 T ELT) (($ (-1207) $ $ $ $) 204 T ELT) (($ (-1207) (-663 $)) 203 T ELT)) (-1446 (($) 116 (|has| |#1| (-25)) CONST)) (-1456 (($) 104 (|has| |#1| (-1143)) CONST)) (-2111 (($ $ (-1207)) 133 (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207))) 129 (|has| |#1| (-1080)) ELT) (($ $ (-1207) (-793)) 128 (|has| |#1| (-1080)) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 127 (|has| |#1| (-1080)) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ (-1156 |#1| (-630 $)) (-1156 |#1| (-630 $))) 180 (|has| |#1| (-571)) ELT) (($ $ $) 110 (-2196 (|has| |#1| (-487)) (|has| |#1| (-571))) ELT)) (-2441 (($ $ $) 122 (|has| |#1| (-21)) ELT) (($ $) 121 (|has| |#1| (-21)) ELT)) (-2429 (($ $ $) 114 (|has| |#1| (-25)) ELT)) (** (($ $ (-560)) 111 (-2196 (|has| |#1| (-487)) (|has| |#1| (-571))) ELT) (($ $ (-793)) 108 (|has| |#1| (-1143)) ELT) (($ $ (-948)) 103 (|has| |#1| (-1143)) ELT)) (* (($ (-421 (-560)) $) 172 (|has| |#1| (-571)) ELT) (($ $ (-421 (-560))) 171 (|has| |#1| (-571)) ELT) (($ $ |#1|) 145 (|has| |#1| (-175)) ELT) (($ |#1| $) 135 (|has| |#1| (-1080)) ELT) (($ (-560) $) 120 (|has| |#1| (-21)) ELT) (($ (-793) $) 118 (|has| |#1| (-25)) ELT) (($ (-948) $) 115 (|has| |#1| (-25)) ELT) (($ $ $) 102 (|has| |#1| (-1143)) ELT)))
(((-435 |#1|) (-142) (-1132)) (T -435))
-((-1554 (*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1132)) (-5 *2 (-114)))) (-1566 (*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1132)))) (-1443 (*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1132)) (-5 *2 (-663 (-1207))))) (-4472 (*1 *1 *2 *1) (-12 (-5 *2 (-1207)) (-4 *1 (-435 *3)) (-4 *3 (-1132)))) (-4472 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1207)) (-4 *1 (-435 *3)) (-4 *3 (-1132)))) (-4472 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1207)) (-4 *1 (-435 *3)) (-4 *3 (-1132)))) (-4472 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1207)) (-4 *1 (-435 *3)) (-4 *3 (-1132)))) (-4472 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-663 *1)) (-4 *1 (-435 *4)) (-4 *4 (-1132)))) (-4187 (*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-4 *1 (-435 *3)) (-4 *3 (-1132)) (-4 *3 (-633 (-549))))) (-4187 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-1207))) (-4 *1 (-435 *3)) (-4 *3 (-1132)) (-4 *3 (-633 (-549))))) (-4187 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1132)) (-4 *2 (-633 (-549))))) (-4187 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1207)) (-4 *1 (-435 *4)) (-4 *4 (-1132)) (-4 *4 (-633 (-549))))) (-4187 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-663 (-115))) (-5 *3 (-663 *1)) (-5 *4 (-1207)) (-4 *1 (-435 *5)) (-4 *5 (-1132)) (-4 *5 (-633 (-549))))) (-3479 (*1 *2 *1) (|partial| -12 (-4 *3 (-1143)) (-4 *3 (-1132)) (-5 *2 (-663 *1)) (-4 *1 (-435 *3)))) (-3683 (*1 *2 *1) (|partial| -12 (-4 *3 (-1143)) (-4 *3 (-1132)) (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -3205 (-560)))) (-4 *1 (-435 *3)))) (-2590 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1132)) (-5 *2 (-663 *1)) (-4 *1 (-435 *3)))) (-3495 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1132)) (-5 *2 (-2 (|:| -2115 (-560)) (|:| |var| (-630 *1)))) (-4 *1 (-435 *3)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-1156 *3 (-630 *1))) (-4 *3 (-1080)) (-4 *3 (-1132)) (-4 *1 (-435 *3)))) (-3757 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *3 (-1132)) (-5 *2 (-1156 *3 (-630 *1))) (-4 *1 (-435 *3)))) (-1617 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1132)) (-4 *2 (-1080)))) (-3683 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1080)) (-4 *4 (-1132)) (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -3205 (-560)))) (-4 *1 (-435 *4)))) (-3683 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1207)) (-4 *4 (-1080)) (-4 *4 (-1132)) (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -3205 (-560)))) (-4 *1 (-435 *4)))) (-3436 (*1 *2 *1) (|partial| -12 (-4 *3 (-1080)) (-4 *3 (-1132)) (-5 *2 (-2 (|:| |val| *1) (|:| -3205 (-560)))) (-4 *1 (-435 *3)))) (-4187 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-663 (-793))) (-5 *4 (-663 (-1 *1 *1))) (-4 *1 (-435 *5)) (-4 *5 (-1132)) (-4 *5 (-1080)))) (-4187 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-663 (-793))) (-5 *4 (-663 (-1 *1 (-663 *1)))) (-4 *1 (-435 *5)) (-4 *5 (-1132)) (-4 *5 (-1080)))) (-4187 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-793)) (-5 *4 (-1 *1 (-663 *1))) (-4 *1 (-435 *5)) (-4 *5 (-1132)) (-4 *5 (-1080)))) (-4187 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-793)) (-5 *4 (-1 *1 *1)) (-4 *1 (-435 *5)) (-4 *5 (-1132)) (-4 *5 (-1080)))) (-1407 (*1 *1 *2) (-12 (-5 *2 (-419 *1)) (-4 *1 (-435 *3)) (-4 *3 (-571)) (-4 *3 (-1132)))) (-3771 (*1 *2 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1132)) (-5 *2 (-1156 *3 (-630 *1))) (-4 *1 (-435 *3)))) (-3056 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1132)) (-4 *2 (-571)))) (-2594 (*1 *1 *2 *2) (-12 (-5 *2 (-1156 *3 (-630 *1))) (-4 *3 (-571)) (-4 *3 (-1132)) (-4 *1 (-435 *3)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-421 *3)) (-4 *3 (-571)) (-4 *3 (-1132)) (-4 *1 (-435 *3)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-975 (-421 *3))) (-4 *3 (-571)) (-4 *3 (-1132)) (-4 *1 (-435 *3)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-421 (-975 (-421 *3)))) (-4 *3 (-571)) (-4 *3 (-1132)) (-4 *1 (-435 *3)))) (-4422 (*1 *2 *1 *3) (-12 (-5 *3 (-630 *1)) (-4 *1 (-435 *4)) (-4 *4 (-1132)) (-4 *4 (-571)) (-5 *2 (-421 (-1201 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-435 *3)) (-4 *3 (-1132)) (-4 *3 (-1143)))))
-(-13 (-310) (-1069 (-1207)) (-909 |t#1|) (-414 |t#1|) (-426 |t#1|) (-10 -8 (-15 -1554 ((-114) $)) (-15 -1566 (|t#1| $)) (-15 -1443 ((-663 (-1207)) $)) (-15 -4472 ($ (-1207) $)) (-15 -4472 ($ (-1207) $ $)) (-15 -4472 ($ (-1207) $ $ $)) (-15 -4472 ($ (-1207) $ $ $ $)) (-15 -4472 ($ (-1207) (-663 $))) (IF (|has| |t#1| (-633 (-549))) (PROGN (-6 (-633 (-549))) (-15 -4187 ($ $ (-1207))) (-15 -4187 ($ $ (-663 (-1207)))) (-15 -4187 ($ $)) (-15 -4187 ($ $ (-115) $ (-1207))) (-15 -4187 ($ $ (-663 (-115)) (-663 $) (-1207)))) |%noBranch|) (IF (|has| |t#1| (-1143)) (PROGN (-6 (-748)) (-15 ** ($ $ (-793))) (-15 -3479 ((-3 (-663 $) "failed") $)) (-15 -3683 ((-3 (-2 (|:| |var| (-630 $)) (|:| -3205 (-560))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-487)) (-6 (-487)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2590 ((-3 (-663 $) "failed") $)) (-15 -3495 ((-3 (-2 (|:| -2115 (-560)) (|:| |var| (-630 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1080)) (PROGN (-6 (-1080)) (-6 (-1069 (-975 |t#1|))) (-6 (-927 (-1207))) (-6 (-390 |t#1|)) (-15 -1578 ($ (-1156 |t#1| (-630 $)))) (-15 -3757 ((-1156 |t#1| (-630 $)) $)) (-15 -1617 ($ $)) (-15 -3683 ((-3 (-2 (|:| |var| (-630 $)) (|:| -3205 (-560))) "failed") $ (-115))) (-15 -3683 ((-3 (-2 (|:| |var| (-630 $)) (|:| -3205 (-560))) "failed") $ (-1207))) (-15 -3436 ((-3 (-2 (|:| |val| $) (|:| -3205 (-560))) "failed") $)) (-15 -4187 ($ $ (-663 (-1207)) (-663 (-793)) (-663 (-1 $ $)))) (-15 -4187 ($ $ (-663 (-1207)) (-663 (-793)) (-663 (-1 $ (-663 $))))) (-15 -4187 ($ $ (-1207) (-793) (-1 $ (-663 $)))) (-15 -4187 ($ $ (-1207) (-793) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-571)) (PROGN (-6 (-376)) (-6 (-1069 (-421 (-975 |t#1|)))) (-15 -1407 ($ (-419 $))) (-15 -3771 ((-1156 |t#1| (-630 $)) $)) (-15 -3056 ($ $)) (-15 -2594 ($ (-1156 |t#1| (-630 $)) (-1156 |t#1| (-630 $)))) (-15 -1578 ($ (-421 |t#1|))) (-15 -1578 ($ (-975 (-421 |t#1|)))) (-15 -1578 ($ (-421 (-975 (-421 |t#1|))))) (-15 -4422 ((-421 (-1201 $)) $ (-630 $))) (IF (|has| |t#1| (-1069 (-560))) (-6 (-1069 (-421 (-560)))) |%noBranch|)) |%noBranch|)))
-(((-21) -2304 (|has| |#1| (-1080)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-23) -2304 (|has| |#1| (-1080)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2304 (|has| |#1| (-1080)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-421 (-560))) |has| |#1| (-571)) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-571)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-571)) ((-111 |#1| |#1|) |has| |#1| (-175)) ((-111 $ $) |has| |#1| (-571)) ((-133) -2304 (|has| |#1| (-1080)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) -2304 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-571))) ((-635 #1=(-421 (-975 |#1|))) |has| |#1| (-571)) ((-635 (-560)) -2304 (|has| |#1| (-1080)) (|has| |#1| (-1069 (-560))) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-635 #2=(-630 $)) . T) ((-635 #3=(-975 |#1|)) |has| |#1| (-1080)) ((-635 #4=(-1207)) . T) ((-635 |#1|) . T) ((-635 $) |has| |#1| (-571)) ((-632 (-887)) . T) ((-175) |has| |#1| (-571)) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-633 (-915 (-391))) |has| |#1| (-633 (-915 (-391)))) ((-633 (-915 (-560))) |has| |#1| (-633 (-915 (-560)))) ((-250) |has| |#1| (-571)) ((-302) |has| |#1| (-571)) ((-319) |has| |#1| (-571)) ((-321 $) . T) ((-310) . T) ((-376) |has| |#1| (-571)) ((-390 |#1|) |has| |#1| (-1080)) ((-414 |#1|) . T) ((-426 |#1|) . T) ((-466) |has| |#1| (-571)) ((-487) |has| |#1| (-487)) ((-528 (-630 $) $) . T) ((-528 $ $) . T) ((-571) |has| |#1| (-571)) ((-668 #0#) |has| |#1| (-571)) ((-668 (-560)) -2304 (|has| |#1| (-1080)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-668 |#1|) -2304 (|has| |#1| (-1080)) (|has| |#1| (-175))) ((-668 $) -2304 (|has| |#1| (-1080)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-670 #0#) |has| |#1| (-571)) ((-670 #5=(-560)) -12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ((-670 |#1|) -2304 (|has| |#1| (-1080)) (|has| |#1| (-175))) ((-670 $) -2304 (|has| |#1| (-1080)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-662 #0#) |has| |#1| (-571)) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-571)) ((-660 #5#) -12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ((-660 |#1|) |has| |#1| (-1080)) ((-739 #0#) |has| |#1| (-571)) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-571)) ((-748) -2304 (|has| |#1| (-1143)) (|has| |#1| (-1080)) (|has| |#1| (-571)) (|has| |#1| (-487)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-921 $ #6=(-1207)) |has| |#1| (-1080)) ((-927 #6#) |has| |#1| (-1080)) ((-929 #6#) |has| |#1| (-1080)) ((-911 (-391)) |has| |#1| (-911 (-391))) ((-911 (-560)) |has| |#1| (-911 (-560))) ((-909 |#1|) . T) ((-950) |has| |#1| (-571)) ((-1069 (-421 (-560))) -2304 (|has| |#1| (-1069 (-421 (-560)))) (-12 (|has| |#1| (-571)) (|has| |#1| (-1069 (-560))))) ((-1069 #1#) |has| |#1| (-571)) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 #2#) . T) ((-1069 #3#) |has| |#1| (-1080)) ((-1069 #4#) . T) ((-1069 |#1|) . T) ((-1082 #0#) |has| |#1| (-571)) ((-1082 |#1|) |has| |#1| (-175)) ((-1082 $) |has| |#1| (-571)) ((-1087 #0#) |has| |#1| (-571)) ((-1087 |#1|) |has| |#1| (-175)) ((-1087 $) |has| |#1| (-571)) ((-1080) -2304 (|has| |#1| (-1080)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1088) -2304 (|has| |#1| (-1080)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1143) -2304 (|has| |#1| (-1143)) (|has| |#1| (-1080)) (|has| |#1| (-571)) (|has| |#1| (-487)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1132) . T) ((-1247) . T) ((-1252) |has| |#1| (-571)))
-((-3957 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT)))
-(((-436 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#4| (-1 |#3| |#1|) |#2|))) (-1080) (-435 |#1|) (-1080) (-435 |#3|)) (T -436))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-4 *2 (-435 *6)) (-5 *1 (-436 *5 *4 *6 *2)) (-4 *4 (-435 *5)))))
-(-10 -7 (-15 -3957 (|#4| (-1 |#3| |#1|) |#2|)))
-((-4250 ((|#2| |#2|) 183 T ELT)) (-2425 (((-3 (|:| |%expansion| (-325 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114)) 60 T ELT)))
-(((-437 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2425 ((-3 (|:| |%expansion| (-325 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114))) (-15 -4250 (|#2| |#2|))) (-13 (-466) (-1069 (-560)) (-660 (-560))) (-13 (-27) (-1233) (-435 |#1|)) (-1207) |#2|) (T -437))
-((-4250 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-437 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1233) (-435 *3))) (-14 *4 (-1207)) (-14 *5 *2))) (-2425 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-3 (|:| |%expansion| (-325 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189)))))) (-5 *1 (-437 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1233) (-435 *5))) (-14 *6 (-1207)) (-14 *7 *3))))
-(-10 -7 (-15 -2425 ((-3 (|:| |%expansion| (-325 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114))) (-15 -4250 (|#2| |#2|)))
-((-4250 ((|#2| |#2|) 106 T ELT)) (-2196 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114) (-1189)) 52 T ELT)) (-3433 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114) (-1189)) 170 T ELT)))
-(((-438 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2196 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114) (-1189))) (-15 -3433 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114) (-1189))) (-15 -4250 (|#2| |#2|))) (-13 (-466) (-1069 (-560)) (-660 (-560))) (-13 (-27) (-1233) (-435 |#1|) (-10 -8 (-15 -1578 ($ |#3|)))) (-870) (-13 (-1276 |#2| |#3|) (-376) (-1233) (-10 -8 (-15 -2894 ($ $)) (-15 -2518 ($ $)))) (-1014 |#4|) (-1207)) (T -438))
-((-4250 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-4 *2 (-13 (-27) (-1233) (-435 *3) (-10 -8 (-15 -1578 ($ *4))))) (-4 *4 (-870)) (-4 *5 (-13 (-1276 *2 *4) (-376) (-1233) (-10 -8 (-15 -2894 ($ $)) (-15 -2518 ($ $))))) (-5 *1 (-438 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1014 *5)) (-14 *7 (-1207)))) (-3433 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-4 *3 (-13 (-27) (-1233) (-435 *6) (-10 -8 (-15 -1578 ($ *7))))) (-4 *7 (-870)) (-4 *8 (-13 (-1276 *3 *7) (-376) (-1233) (-10 -8 (-15 -2894 ($ $)) (-15 -2518 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189)))))) (-5 *1 (-438 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1189)) (-4 *9 (-1014 *8)) (-14 *10 (-1207)))) (-2196 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-4 *3 (-13 (-27) (-1233) (-435 *6) (-10 -8 (-15 -1578 ($ *7))))) (-4 *7 (-870)) (-4 *8 (-13 (-1276 *3 *7) (-376) (-1233) (-10 -8 (-15 -2894 ($ $)) (-15 -2518 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189)))))) (-5 *1 (-438 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1189)) (-4 *9 (-1014 *8)) (-14 *10 (-1207)))))
-(-10 -7 (-15 -2196 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114) (-1189))) (-15 -3433 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114) (-1189))) (-15 -4250 (|#2| |#2|)))
-((-4208 (($) 51 T ELT)) (-4028 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-1830 (($ $ $) 46 T ELT)) (-3963 (((-114) $ $) 35 T ELT)) (-3241 (((-793)) 55 T ELT)) (-1850 (($ (-663 |#2|)) 23 T ELT) (($) NIL T ELT)) (-2310 (($) 66 T ELT)) (-2250 (((-114) $ $) 15 T ELT)) (-3825 ((|#2| $) 77 T ELT)) (-2820 ((|#2| $) 75 T ELT)) (-4419 (((-948) $) 70 T ELT)) (-1903 (($ $ $) 42 T ELT)) (-3128 (($ (-948)) 60 T ELT)) (-3733 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-3865 (((-793) (-1 (-114) |#2|) $) NIL T ELT) (((-793) |#2| $) 31 T ELT)) (-1592 (($ (-663 |#2|)) 27 T ELT)) (-3139 (($ $) 53 T ELT)) (-1578 (((-887) $) 40 T ELT)) (-3078 (((-793) $) 24 T ELT)) (-1364 (($ (-663 |#2|)) 22 T ELT) (($) NIL T ELT)) (-2473 (((-114) $ $) 19 T ELT)))
-(((-439 |#1| |#2|) (-10 -8 (-15 -3241 ((-793))) (-15 -3128 (|#1| (-948))) (-15 -4419 ((-948) |#1|)) (-15 -2310 (|#1|)) (-15 -3825 (|#2| |#1|)) (-15 -2820 (|#2| |#1|)) (-15 -4208 (|#1|)) (-15 -3139 (|#1| |#1|)) (-15 -3078 ((-793) |#1|)) (-15 -2473 ((-114) |#1| |#1|)) (-15 -1578 ((-887) |#1|)) (-15 -2250 ((-114) |#1| |#1|)) (-15 -1364 (|#1|)) (-15 -1364 (|#1| (-663 |#2|))) (-15 -1850 (|#1|)) (-15 -1850 (|#1| (-663 |#2|))) (-15 -1903 (|#1| |#1| |#1|)) (-15 -3733 (|#1| |#1| |#1|)) (-15 -3733 (|#1| |#1| |#2|)) (-15 -1830 (|#1| |#1| |#1|)) (-15 -3963 ((-114) |#1| |#1|)) (-15 -4028 (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1| |#2|)) (-15 -4028 (|#1| |#2| |#1|)) (-15 -1592 (|#1| (-663 |#2|))) (-15 -3865 ((-793) |#2| |#1|)) (-15 -3865 ((-793) (-1 (-114) |#2|) |#1|))) (-440 |#2|) (-1132)) (T -439))
-((-3241 (*1 *2) (-12 (-4 *4 (-1132)) (-5 *2 (-793)) (-5 *1 (-439 *3 *4)) (-4 *3 (-440 *4)))))
-(-10 -8 (-15 -3241 ((-793))) (-15 -3128 (|#1| (-948))) (-15 -4419 ((-948) |#1|)) (-15 -2310 (|#1|)) (-15 -3825 (|#2| |#1|)) (-15 -2820 (|#2| |#1|)) (-15 -4208 (|#1|)) (-15 -3139 (|#1| |#1|)) (-15 -3078 ((-793) |#1|)) (-15 -2473 ((-114) |#1| |#1|)) (-15 -1578 ((-887) |#1|)) (-15 -2250 ((-114) |#1| |#1|)) (-15 -1364 (|#1|)) (-15 -1364 (|#1| (-663 |#2|))) (-15 -1850 (|#1|)) (-15 -1850 (|#1| (-663 |#2|))) (-15 -1903 (|#1| |#1| |#1|)) (-15 -3733 (|#1| |#1| |#1|)) (-15 -3733 (|#1| |#1| |#2|)) (-15 -1830 (|#1| |#1| |#1|)) (-15 -3963 ((-114) |#1| |#1|)) (-15 -4028 (|#1| |#1| |#1|)) (-15 -4028 (|#1| |#1| |#2|)) (-15 -4028 (|#1| |#2| |#1|)) (-15 -1592 (|#1| (-663 |#2|))) (-15 -3865 ((-793) |#2| |#1|)) (-15 -3865 ((-793) (-1 (-114) |#2|) |#1|)))
-((-1538 (((-114) $ $) 20 T ELT)) (-4208 (($) 68 (|has| |#1| (-381)) ELT)) (-4028 (($ |#1| $) 83 T ELT) (($ $ |#1|) 82 T ELT) (($ $ $) 81 T ELT)) (-1830 (($ $ $) 79 T ELT)) (-3963 (((-114) $ $) 80 T ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-3241 (((-793)) 62 (|has| |#1| (-381)) ELT)) (-1850 (($ (-663 |#1|)) 75 T ELT) (($) 74 T ELT)) (-3500 (($ (-1 (-114) |#1|) $) 46 (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) 56 (|has| $ (-6 -4508)) ELT)) (-2238 (($) 7 T CONST)) (-3606 (($ $) 59 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3390 (($ |#1| $) 48 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) |#1|) $) 47 (|has| $ (-6 -4508)) ELT)) (-2375 (($ |#1| $) 58 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 55 (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4508)) ELT)) (-2310 (($) 65 (|has| |#1| (-381)) ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-2250 (((-114) $ $) 71 T ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-3825 ((|#1| $) 66 (|has| |#1| (-871)) ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2820 ((|#1| $) 67 (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-4419 (((-948) $) 64 (|has| |#1| (-381)) ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-1905 (((-1189) $) 23 T ELT)) (-1903 (($ $ $) 76 T ELT)) (-1576 ((|#1| $) 40 T ELT)) (-3629 (($ |#1| $) 41 T ELT)) (-3128 (($ (-948)) 63 (|has| |#1| (-381)) ELT)) (-3855 (((-1151) $) 22 T ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 52 T ELT)) (-2615 ((|#1| $) 42 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3733 (($ $ |#1|) 78 T ELT) (($ $ $) 77 T ELT)) (-3897 (($) 50 T ELT) (($ (-663 |#1|)) 49 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) 60 (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 51 T ELT)) (-3139 (($ $) 69 (|has| |#1| (-381)) ELT)) (-1578 (((-887) $) 18 T ELT)) (-3078 (((-793) $) 70 T ELT)) (-1364 (($ (-663 |#1|)) 73 T ELT) (($) 72 T ELT)) (-2275 (((-114) $ $) 21 T ELT)) (-3376 (($ (-663 |#1|)) 43 T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 T ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-3000 (*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1132)) (-5 *2 (-114)))) (-3011 (*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1132)))) (-4162 (*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1132)) (-5 *2 (-663 (-1207))))) (-2085 (*1 *1 *2 *1) (-12 (-5 *2 (-1207)) (-4 *1 (-435 *3)) (-4 *3 (-1132)))) (-2085 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1207)) (-4 *1 (-435 *3)) (-4 *3 (-1132)))) (-2085 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1207)) (-4 *1 (-435 *3)) (-4 *3 (-1132)))) (-2085 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1207)) (-4 *1 (-435 *3)) (-4 *3 (-1132)))) (-2085 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-663 *1)) (-4 *1 (-435 *4)) (-4 *4 (-1132)))) (-2371 (*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-4 *1 (-435 *3)) (-4 *3 (-1132)) (-4 *3 (-633 (-549))))) (-2371 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-1207))) (-4 *1 (-435 *3)) (-4 *3 (-1132)) (-4 *3 (-633 (-549))))) (-2371 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1132)) (-4 *2 (-633 (-549))))) (-2371 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1207)) (-4 *1 (-435 *4)) (-4 *4 (-1132)) (-4 *4 (-633 (-549))))) (-2371 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-663 (-115))) (-5 *3 (-663 *1)) (-5 *4 (-1207)) (-4 *1 (-435 *5)) (-4 *5 (-1132)) (-4 *5 (-633 (-549))))) (-1669 (*1 *2 *1) (|partial| -12 (-4 *3 (-1143)) (-4 *3 (-1132)) (-5 *2 (-663 *1)) (-4 *1 (-435 *3)))) (-3149 (*1 *2 *1) (|partial| -12 (-4 *3 (-1143)) (-4 *3 (-1132)) (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2030 (-560)))) (-4 *1 (-435 *3)))) (-3849 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1132)) (-5 *2 (-663 *1)) (-4 *1 (-435 *3)))) (-1827 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1132)) (-5 *2 (-2 (|:| -2625 (-560)) (|:| |var| (-630 *1)))) (-4 *1 (-435 *3)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-1156 *3 (-630 *1))) (-4 *3 (-1080)) (-4 *3 (-1132)) (-4 *1 (-435 *3)))) (-2473 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *3 (-1132)) (-5 *2 (-1156 *3 (-630 *1))) (-4 *1 (-435 *3)))) (-3490 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1132)) (-4 *2 (-1080)))) (-3149 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1080)) (-4 *4 (-1132)) (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2030 (-560)))) (-4 *1 (-435 *4)))) (-3149 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1207)) (-4 *4 (-1080)) (-4 *4 (-1132)) (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2030 (-560)))) (-4 *1 (-435 *4)))) (-2486 (*1 *2 *1) (|partial| -12 (-4 *3 (-1080)) (-4 *3 (-1132)) (-5 *2 (-2 (|:| |val| *1) (|:| -2030 (-560)))) (-4 *1 (-435 *3)))) (-2371 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-663 (-793))) (-5 *4 (-663 (-1 *1 *1))) (-4 *1 (-435 *5)) (-4 *5 (-1132)) (-4 *5 (-1080)))) (-2371 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-663 (-793))) (-5 *4 (-663 (-1 *1 (-663 *1)))) (-4 *1 (-435 *5)) (-4 *5 (-1132)) (-4 *5 (-1080)))) (-2371 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-793)) (-5 *4 (-1 *1 (-663 *1))) (-4 *1 (-435 *5)) (-4 *5 (-1132)) (-4 *5 (-1080)))) (-2371 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-793)) (-5 *4 (-1 *1 *1)) (-4 *1 (-435 *5)) (-4 *5 (-1132)) (-4 *5 (-1080)))) (-2400 (*1 *1 *2) (-12 (-5 *2 (-419 *1)) (-4 *1 (-435 *3)) (-4 *3 (-571)) (-4 *3 (-1132)))) (-2484 (*1 *2 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1132)) (-5 *2 (-1156 *3 (-630 *1))) (-4 *1 (-435 *3)))) (-2951 (*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1132)) (-4 *2 (-571)))) (-2453 (*1 *1 *2 *2) (-12 (-5 *2 (-1156 *3 (-630 *1))) (-4 *3 (-571)) (-4 *3 (-1132)) (-4 *1 (-435 *3)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-421 *3)) (-4 *3 (-571)) (-4 *3 (-1132)) (-4 *1 (-435 *3)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-975 (-421 *3))) (-4 *3 (-571)) (-4 *3 (-1132)) (-4 *1 (-435 *3)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-421 (-975 (-421 *3)))) (-4 *3 (-571)) (-4 *3 (-1132)) (-4 *1 (-435 *3)))) (-3981 (*1 *2 *1 *3) (-12 (-5 *3 (-630 *1)) (-4 *1 (-435 *4)) (-4 *4 (-1132)) (-4 *4 (-571)) (-5 *2 (-421 (-1201 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-435 *3)) (-4 *3 (-1132)) (-4 *3 (-1143)))))
+(-13 (-310) (-1069 (-1207)) (-909 |t#1|) (-414 |t#1|) (-426 |t#1|) (-10 -8 (-15 -3000 ((-114) $)) (-15 -3011 (|t#1| $)) (-15 -4162 ((-663 (-1207)) $)) (-15 -2085 ($ (-1207) $)) (-15 -2085 ($ (-1207) $ $)) (-15 -2085 ($ (-1207) $ $ $)) (-15 -2085 ($ (-1207) $ $ $ $)) (-15 -2085 ($ (-1207) (-663 $))) (IF (|has| |t#1| (-633 (-549))) (PROGN (-6 (-633 (-549))) (-15 -2371 ($ $ (-1207))) (-15 -2371 ($ $ (-663 (-1207)))) (-15 -2371 ($ $)) (-15 -2371 ($ $ (-115) $ (-1207))) (-15 -2371 ($ $ (-663 (-115)) (-663 $) (-1207)))) |%noBranch|) (IF (|has| |t#1| (-1143)) (PROGN (-6 (-748)) (-15 ** ($ $ (-793))) (-15 -1669 ((-3 (-663 $) "failed") $)) (-15 -3149 ((-3 (-2 (|:| |var| (-630 $)) (|:| -2030 (-560))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-487)) (-6 (-487)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3849 ((-3 (-663 $) "failed") $)) (-15 -1827 ((-3 (-2 (|:| -2625 (-560)) (|:| |var| (-630 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1080)) (PROGN (-6 (-1080)) (-6 (-1069 (-975 |t#1|))) (-6 (-927 (-1207))) (-6 (-390 |t#1|)) (-15 -3913 ($ (-1156 |t#1| (-630 $)))) (-15 -2473 ((-1156 |t#1| (-630 $)) $)) (-15 -3490 ($ $)) (-15 -3149 ((-3 (-2 (|:| |var| (-630 $)) (|:| -2030 (-560))) "failed") $ (-115))) (-15 -3149 ((-3 (-2 (|:| |var| (-630 $)) (|:| -2030 (-560))) "failed") $ (-1207))) (-15 -2486 ((-3 (-2 (|:| |val| $) (|:| -2030 (-560))) "failed") $)) (-15 -2371 ($ $ (-663 (-1207)) (-663 (-793)) (-663 (-1 $ $)))) (-15 -2371 ($ $ (-663 (-1207)) (-663 (-793)) (-663 (-1 $ (-663 $))))) (-15 -2371 ($ $ (-1207) (-793) (-1 $ (-663 $)))) (-15 -2371 ($ $ (-1207) (-793) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-571)) (PROGN (-6 (-376)) (-6 (-1069 (-421 (-975 |t#1|)))) (-15 -2400 ($ (-419 $))) (-15 -2484 ((-1156 |t#1| (-630 $)) $)) (-15 -2951 ($ $)) (-15 -2453 ($ (-1156 |t#1| (-630 $)) (-1156 |t#1| (-630 $)))) (-15 -3913 ($ (-421 |t#1|))) (-15 -3913 ($ (-975 (-421 |t#1|)))) (-15 -3913 ($ (-421 (-975 (-421 |t#1|))))) (-15 -3981 ((-421 (-1201 $)) $ (-630 $))) (IF (|has| |t#1| (-1069 (-560))) (-6 (-1069 (-421 (-560)))) |%noBranch|)) |%noBranch|)))
+(((-21) -2196 (|has| |#1| (-1080)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-23) -2196 (|has| |#1| (-1080)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -2196 (|has| |#1| (-1080)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 #0=(-421 (-560))) |has| |#1| (-571)) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-571)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-571)) ((-111 |#1| |#1|) |has| |#1| (-175)) ((-111 $ $) |has| |#1| (-571)) ((-133) -2196 (|has| |#1| (-1080)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) -2196 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-571))) ((-635 #1=(-421 (-975 |#1|))) |has| |#1| (-571)) ((-635 (-560)) -2196 (|has| |#1| (-1080)) (|has| |#1| (-1069 (-560))) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-635 #2=(-630 $)) . T) ((-635 #3=(-975 |#1|)) |has| |#1| (-1080)) ((-635 #4=(-1207)) . T) ((-635 |#1|) . T) ((-635 $) |has| |#1| (-571)) ((-632 (-887)) . T) ((-175) |has| |#1| (-571)) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-633 (-915 (-391))) |has| |#1| (-633 (-915 (-391)))) ((-633 (-915 (-560))) |has| |#1| (-633 (-915 (-560)))) ((-250) |has| |#1| (-571)) ((-302) |has| |#1| (-571)) ((-319) |has| |#1| (-571)) ((-321 $) . T) ((-310) . T) ((-376) |has| |#1| (-571)) ((-390 |#1|) |has| |#1| (-1080)) ((-414 |#1|) . T) ((-426 |#1|) . T) ((-466) |has| |#1| (-571)) ((-487) |has| |#1| (-487)) ((-528 (-630 $) $) . T) ((-528 $ $) . T) ((-571) |has| |#1| (-571)) ((-668 #0#) |has| |#1| (-571)) ((-668 (-560)) -2196 (|has| |#1| (-1080)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-668 |#1|) -2196 (|has| |#1| (-1080)) (|has| |#1| (-175))) ((-668 $) -2196 (|has| |#1| (-1080)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-670 #0#) |has| |#1| (-571)) ((-670 #5=(-560)) -12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ((-670 |#1|) -2196 (|has| |#1| (-1080)) (|has| |#1| (-175))) ((-670 $) -2196 (|has| |#1| (-1080)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-662 #0#) |has| |#1| (-571)) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-571)) ((-660 #5#) -12 (|has| |#1| (-660 (-560))) (|has| |#1| (-1080))) ((-660 |#1|) |has| |#1| (-1080)) ((-739 #0#) |has| |#1| (-571)) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-571)) ((-748) -2196 (|has| |#1| (-1143)) (|has| |#1| (-1080)) (|has| |#1| (-571)) (|has| |#1| (-487)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-921 $ #6=(-1207)) |has| |#1| (-1080)) ((-927 #6#) |has| |#1| (-1080)) ((-929 #6#) |has| |#1| (-1080)) ((-911 (-391)) |has| |#1| (-911 (-391))) ((-911 (-560)) |has| |#1| (-911 (-560))) ((-909 |#1|) . T) ((-950) |has| |#1| (-571)) ((-1069 (-421 (-560))) -2196 (|has| |#1| (-1069 (-421 (-560)))) (-12 (|has| |#1| (-571)) (|has| |#1| (-1069 (-560))))) ((-1069 #1#) |has| |#1| (-571)) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 #2#) . T) ((-1069 #3#) |has| |#1| (-1080)) ((-1069 #4#) . T) ((-1069 |#1|) . T) ((-1082 #0#) |has| |#1| (-571)) ((-1082 |#1|) |has| |#1| (-175)) ((-1082 $) |has| |#1| (-571)) ((-1087 #0#) |has| |#1| (-571)) ((-1087 |#1|) |has| |#1| (-175)) ((-1087 $) |has| |#1| (-571)) ((-1080) -2196 (|has| |#1| (-1080)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1088) -2196 (|has| |#1| (-1080)) (|has| |#1| (-571)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1143) -2196 (|has| |#1| (-1143)) (|has| |#1| (-1080)) (|has| |#1| (-571)) (|has| |#1| (-487)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1132) . T) ((-1247) . T) ((-1252) |has| |#1| (-571)))
+((-2260 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT)))
+(((-436 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2260 (|#4| (-1 |#3| |#1|) |#2|))) (-1080) (-435 |#1|) (-1080) (-435 |#3|)) (T -436))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-4 *2 (-435 *6)) (-5 *1 (-436 *5 *4 *6 *2)) (-4 *4 (-435 *5)))))
+(-10 -7 (-15 -2260 (|#4| (-1 |#3| |#1|) |#2|)))
+((-3694 ((|#2| |#2|) 183 T ELT)) (-1622 (((-3 (|:| |%expansion| (-325 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114)) 60 T ELT)))
+(((-437 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1622 ((-3 (|:| |%expansion| (-325 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114))) (-15 -3694 (|#2| |#2|))) (-13 (-466) (-1069 (-560)) (-660 (-560))) (-13 (-27) (-1233) (-435 |#1|)) (-1207) |#2|) (T -437))
+((-3694 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-437 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1233) (-435 *3))) (-14 *4 (-1207)) (-14 *5 *2))) (-1622 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-3 (|:| |%expansion| (-325 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189)))))) (-5 *1 (-437 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1233) (-435 *5))) (-14 *6 (-1207)) (-14 *7 *3))))
+(-10 -7 (-15 -1622 ((-3 (|:| |%expansion| (-325 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114))) (-15 -3694 (|#2| |#2|)))
+((-3694 ((|#2| |#2|) 106 T ELT)) (-4387 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114) (-1189)) 52 T ELT)) (-2466 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114) (-1189)) 170 T ELT)))
+(((-438 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4387 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114) (-1189))) (-15 -2466 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114) (-1189))) (-15 -3694 (|#2| |#2|))) (-13 (-466) (-1069 (-560)) (-660 (-560))) (-13 (-27) (-1233) (-435 |#1|) (-10 -8 (-15 -3913 ($ |#3|)))) (-870) (-13 (-1276 |#2| |#3|) (-376) (-1233) (-10 -8 (-15 -3161 ($ $)) (-15 -4424 ($ $)))) (-1014 |#4|) (-1207)) (T -438))
+((-3694 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-4 *2 (-13 (-27) (-1233) (-435 *3) (-10 -8 (-15 -3913 ($ *4))))) (-4 *4 (-870)) (-4 *5 (-13 (-1276 *2 *4) (-376) (-1233) (-10 -8 (-15 -3161 ($ $)) (-15 -4424 ($ $))))) (-5 *1 (-438 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1014 *5)) (-14 *7 (-1207)))) (-2466 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-4 *3 (-13 (-27) (-1233) (-435 *6) (-10 -8 (-15 -3913 ($ *7))))) (-4 *7 (-870)) (-4 *8 (-13 (-1276 *3 *7) (-376) (-1233) (-10 -8 (-15 -3161 ($ $)) (-15 -4424 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189)))))) (-5 *1 (-438 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1189)) (-4 *9 (-1014 *8)) (-14 *10 (-1207)))) (-4387 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-4 *3 (-13 (-27) (-1233) (-435 *6) (-10 -8 (-15 -3913 ($ *7))))) (-4 *7 (-870)) (-4 *8 (-13 (-1276 *3 *7) (-376) (-1233) (-10 -8 (-15 -3161 ($ $)) (-15 -4424 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189)))))) (-5 *1 (-438 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1189)) (-4 *9 (-1014 *8)) (-14 *10 (-1207)))))
+(-10 -7 (-15 -4387 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114) (-1189))) (-15 -2466 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))) |#2| (-114) (-1189))) (-15 -3694 (|#2| |#2|)))
+((-1366 (($) 51 T ELT)) (-3574 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-1925 (($ $ $) 46 T ELT)) (-3895 (((-114) $ $) 35 T ELT)) (-2552 (((-793)) 55 T ELT)) (-2512 (($ (-663 |#2|)) 23 T ELT) (($) NIL T ELT)) (-1812 (($) 66 T ELT)) (-3653 (((-114) $ $) 15 T ELT)) (-2932 ((|#2| $) 77 T ELT)) (-4379 ((|#2| $) 75 T ELT)) (-2622 (((-948) $) 70 T ELT)) (-3334 (($ $ $) 42 T ELT)) (-1591 (($ (-948)) 60 T ELT)) (-2358 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-3384 (((-793) (-1 (-114) |#2|) $) NIL T ELT) (((-793) |#2| $) 31 T ELT)) (-3924 (($ (-663 |#2|)) 27 T ELT)) (-2589 (($ $) 53 T ELT)) (-3913 (((-887) $) 40 T ELT)) (-3199 (((-793) $) 24 T ELT)) (-4074 (($ (-663 |#2|)) 22 T ELT) (($) NIL T ELT)) (-2340 (((-114) $ $) 19 T ELT)))
+(((-439 |#1| |#2|) (-10 -8 (-15 -2552 ((-793))) (-15 -1591 (|#1| (-948))) (-15 -2622 ((-948) |#1|)) (-15 -1812 (|#1|)) (-15 -2932 (|#2| |#1|)) (-15 -4379 (|#2| |#1|)) (-15 -1366 (|#1|)) (-15 -2589 (|#1| |#1|)) (-15 -3199 ((-793) |#1|)) (-15 -2340 ((-114) |#1| |#1|)) (-15 -3913 ((-887) |#1|)) (-15 -3653 ((-114) |#1| |#1|)) (-15 -4074 (|#1|)) (-15 -4074 (|#1| (-663 |#2|))) (-15 -2512 (|#1|)) (-15 -2512 (|#1| (-663 |#2|))) (-15 -3334 (|#1| |#1| |#1|)) (-15 -2358 (|#1| |#1| |#1|)) (-15 -2358 (|#1| |#1| |#2|)) (-15 -1925 (|#1| |#1| |#1|)) (-15 -3895 ((-114) |#1| |#1|)) (-15 -3574 (|#1| |#1| |#1|)) (-15 -3574 (|#1| |#1| |#2|)) (-15 -3574 (|#1| |#2| |#1|)) (-15 -3924 (|#1| (-663 |#2|))) (-15 -3384 ((-793) |#2| |#1|)) (-15 -3384 ((-793) (-1 (-114) |#2|) |#1|))) (-440 |#2|) (-1132)) (T -439))
+((-2552 (*1 *2) (-12 (-4 *4 (-1132)) (-5 *2 (-793)) (-5 *1 (-439 *3 *4)) (-4 *3 (-440 *4)))))
+(-10 -8 (-15 -2552 ((-793))) (-15 -1591 (|#1| (-948))) (-15 -2622 ((-948) |#1|)) (-15 -1812 (|#1|)) (-15 -2932 (|#2| |#1|)) (-15 -4379 (|#2| |#1|)) (-15 -1366 (|#1|)) (-15 -2589 (|#1| |#1|)) (-15 -3199 ((-793) |#1|)) (-15 -2340 ((-114) |#1| |#1|)) (-15 -3913 ((-887) |#1|)) (-15 -3653 ((-114) |#1| |#1|)) (-15 -4074 (|#1|)) (-15 -4074 (|#1| (-663 |#2|))) (-15 -2512 (|#1|)) (-15 -2512 (|#1| (-663 |#2|))) (-15 -3334 (|#1| |#1| |#1|)) (-15 -2358 (|#1| |#1| |#1|)) (-15 -2358 (|#1| |#1| |#2|)) (-15 -1925 (|#1| |#1| |#1|)) (-15 -3895 ((-114) |#1| |#1|)) (-15 -3574 (|#1| |#1| |#1|)) (-15 -3574 (|#1| |#1| |#2|)) (-15 -3574 (|#1| |#2| |#1|)) (-15 -3924 (|#1| (-663 |#2|))) (-15 -3384 ((-793) |#2| |#1|)) (-15 -3384 ((-793) (-1 (-114) |#2|) |#1|)))
+((-2243 (((-114) $ $) 20 T ELT)) (-1366 (($) 68 (|has| |#1| (-381)) ELT)) (-3574 (($ |#1| $) 83 T ELT) (($ $ |#1|) 82 T ELT) (($ $ $) 81 T ELT)) (-1925 (($ $ $) 79 T ELT)) (-3895 (((-114) $ $) 80 T ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-2552 (((-793)) 62 (|has| |#1| (-381)) ELT)) (-2512 (($ (-663 |#1|)) 75 T ELT) (($) 74 T ELT)) (-1864 (($ (-1 (-114) |#1|) $) 46 (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) 56 (|has| $ (-6 -4508)) ELT)) (-3525 (($) 7 T CONST)) (-3658 (($ $) 59 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2091 (($ |#1| $) 48 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) |#1|) $) 47 (|has| $ (-6 -4508)) ELT)) (-3033 (($ |#1| $) 58 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 55 (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4508)) ELT)) (-1812 (($) 65 (|has| |#1| (-381)) ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-3653 (((-114) $ $) 71 T ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-2932 ((|#1| $) 66 (|has| |#1| (-871)) ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4379 ((|#1| $) 67 (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-2622 (((-948) $) 64 (|has| |#1| (-381)) ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-3358 (((-1189) $) 23 T ELT)) (-3334 (($ $ $) 76 T ELT)) (-1878 ((|#1| $) 40 T ELT)) (-3888 (($ |#1| $) 41 T ELT)) (-1591 (($ (-948)) 63 (|has| |#1| (-381)) ELT)) (-3376 (((-1151) $) 22 T ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 52 T ELT)) (-2796 ((|#1| $) 42 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-2358 (($ $ |#1|) 78 T ELT) (($ $ $) 77 T ELT)) (-4468 (($) 50 T ELT) (($ (-663 |#1|)) 49 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) 60 (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 51 T ELT)) (-2589 (($ $) 69 (|has| |#1| (-381)) ELT)) (-3913 (((-887) $) 18 T ELT)) (-3199 (((-793) $) 70 T ELT)) (-4074 (($ (-663 |#1|)) 73 T ELT) (($) 72 T ELT)) (-3925 (((-114) $ $) 21 T ELT)) (-3184 (($ (-663 |#1|)) 43 T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 T ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-440 |#1|) (-142) (-1132)) (T -440))
-((-3078 (*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1132)) (-5 *2 (-793)))) (-3139 (*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1132)) (-4 *2 (-381)))) (-4208 (*1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-381)) (-4 *2 (-1132)))) (-2820 (*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1132)) (-4 *2 (-871)))) (-3825 (*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1132)) (-4 *2 (-871)))))
-(-13 (-233 |t#1|) (-1130 |t#1|) (-10 -8 (-6 -4508) (-15 -3078 ((-793) $)) (IF (|has| |t#1| (-381)) (PROGN (-6 (-381)) (-15 -3139 ($ $)) (-15 -4208 ($))) |%noBranch|) (IF (|has| |t#1| (-871)) (PROGN (-15 -2820 (|t#1| $)) (-15 -3825 (|t#1| $))) |%noBranch|)))
+((-3199 (*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1132)) (-5 *2 (-793)))) (-2589 (*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1132)) (-4 *2 (-381)))) (-1366 (*1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-381)) (-4 *2 (-1132)))) (-4379 (*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1132)) (-4 *2 (-871)))) (-2932 (*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1132)) (-4 *2 (-871)))))
+(-13 (-233 |t#1|) (-1130 |t#1|) (-10 -8 (-6 -4508) (-15 -3199 ((-793) $)) (IF (|has| |t#1| (-381)) (PROGN (-6 (-381)) (-15 -2589 ($ $)) (-15 -1366 ($))) |%noBranch|) (IF (|has| |t#1| (-871)) (PROGN (-15 -4379 (|t#1| $)) (-15 -2932 (|t#1| $))) |%noBranch|)))
(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-632 (-887)) . T) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-233 |#1|) . T) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-381) |has| |#1| (-381)) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1130 |#1|) . T) ((-1132) . T) ((-1247) . T))
-((-1520 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-4129 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-3957 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT)))
-(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4129 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1520 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1132) (-440 |#1|) (-1132) (-440 |#3|)) (T -441))
-((-1520 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1132)) (-4 *5 (-1132)) (-4 *2 (-440 *5)) (-5 *1 (-441 *6 *4 *5 *2)) (-4 *4 (-440 *6)))) (-4129 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1132)) (-4 *2 (-1132)) (-5 *1 (-441 *5 *4 *2 *6)) (-4 *4 (-440 *5)) (-4 *6 (-440 *2)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-440 *6)) (-5 *1 (-441 *5 *4 *6 *2)) (-4 *4 (-440 *5)))))
-(-10 -7 (-15 -3957 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4129 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -1520 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-3386 (((-597 |#2|) |#2| (-1207)) 36 T ELT)) (-2882 (((-597 |#2|) |#2| (-1207)) 21 T ELT)) (-4221 ((|#2| |#2| (-1207)) 26 T ELT)))
-(((-442 |#1| |#2|) (-10 -7 (-15 -2882 ((-597 |#2|) |#2| (-1207))) (-15 -3386 ((-597 |#2|) |#2| (-1207))) (-15 -4221 (|#2| |#2| (-1207)))) (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))) (-13 (-1233) (-29 |#1|))) (T -442))
-((-4221 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-442 *4 *2)) (-4 *2 (-13 (-1233) (-29 *4))))) (-3386 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-597 *3)) (-5 *1 (-442 *5 *3)) (-4 *3 (-13 (-1233) (-29 *5))))) (-2882 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-597 *3)) (-5 *1 (-442 *5 *3)) (-4 *3 (-13 (-1233) (-29 *5))))))
-(-10 -7 (-15 -2882 ((-597 |#2|) |#2| (-1207))) (-15 -3386 ((-597 |#2|) |#2| (-1207))) (-15 -4221 (|#2| |#2| (-1207))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-2767 (($ |#2| |#1|) 37 T ELT)) (-3086 (($ |#2| |#1|) 35 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-343 |#2|)) 25 T ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 10 T CONST)) (-2011 (($) 16 T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 36 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-443 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4495)) (IF (|has| |#1| (-6 -4495)) (-6 -4495) |%noBranch|) |%noBranch|) (-15 -1578 ($ |#1|)) (-15 -1578 ($ (-343 |#2|))) (-15 -2767 ($ |#2| |#1|)) (-15 -3086 ($ |#2| |#1|)))) (-13 (-175) (-38 (-421 (-560)))) (-13 (-871) (-21))) (T -443))
-((-1578 (*1 *1 *2) (-12 (-5 *1 (-443 *2 *3)) (-4 *2 (-13 (-175) (-38 (-421 (-560))))) (-4 *3 (-13 (-871) (-21))))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-343 *4)) (-4 *4 (-13 (-871) (-21))) (-5 *1 (-443 *3 *4)) (-4 *3 (-13 (-175) (-38 (-421 (-560))))))) (-2767 (*1 *1 *2 *3) (-12 (-5 *1 (-443 *3 *2)) (-4 *3 (-13 (-175) (-38 (-421 (-560))))) (-4 *2 (-13 (-871) (-21))))) (-3086 (*1 *1 *2 *3) (-12 (-5 *1 (-443 *3 *2)) (-4 *3 (-13 (-175) (-38 (-421 (-560))))) (-4 *2 (-13 (-871) (-21))))))
-(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4495)) (IF (|has| |#1| (-6 -4495)) (-6 -4495) |%noBranch|) |%noBranch|) (-15 -1578 ($ |#1|)) (-15 -1578 ($ (-343 |#2|))) (-15 -2767 ($ |#2| |#1|)) (-15 -3086 ($ |#2| |#1|))))
-((-2518 (((-3 |#2| (-663 |#2|)) |#2| (-1207)) 115 T ELT)))
-(((-444 |#1| |#2|) (-10 -7 (-15 -2518 ((-3 |#2| (-663 |#2|)) |#2| (-1207)))) (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))) (-13 (-1233) (-989) (-29 |#1|))) (T -444))
-((-2518 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-3 *3 (-663 *3))) (-5 *1 (-444 *5 *3)) (-4 *3 (-13 (-1233) (-989) (-29 *5))))))
-(-10 -7 (-15 -2518 ((-3 |#2| (-663 |#2|)) |#2| (-1207))))
-((-1995 ((|#2| |#2| |#2|) 31 T ELT)) (-4399 (((-115) (-115)) 43 T ELT)) (-3874 ((|#2| |#2|) 63 T ELT)) (-4164 ((|#2| |#2|) 66 T ELT)) (-3397 ((|#2| |#2|) 30 T ELT)) (-3366 ((|#2| |#2| |#2|) 33 T ELT)) (-3067 ((|#2| |#2| |#2|) 35 T ELT)) (-2483 ((|#2| |#2| |#2|) 32 T ELT)) (-4308 ((|#2| |#2| |#2|) 34 T ELT)) (-1840 (((-114) (-115)) 41 T ELT)) (-2018 ((|#2| |#2|) 37 T ELT)) (-3621 ((|#2| |#2|) 36 T ELT)) (-2282 ((|#2| |#2|) 25 T ELT)) (-1491 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-4374 ((|#2| |#2| |#2|) 29 T ELT)))
-(((-445 |#1| |#2|) (-10 -7 (-15 -1840 ((-114) (-115))) (-15 -4399 ((-115) (-115))) (-15 -2282 (|#2| |#2|)) (-15 -1491 (|#2| |#2|)) (-15 -1491 (|#2| |#2| |#2|)) (-15 -4374 (|#2| |#2| |#2|)) (-15 -3397 (|#2| |#2|)) (-15 -1995 (|#2| |#2| |#2|)) (-15 -2483 (|#2| |#2| |#2|)) (-15 -3366 (|#2| |#2| |#2|)) (-15 -4308 (|#2| |#2| |#2|)) (-15 -3067 (|#2| |#2| |#2|)) (-15 -3621 (|#2| |#2|)) (-15 -2018 (|#2| |#2|)) (-15 -4164 (|#2| |#2|)) (-15 -3874 (|#2| |#2|))) (-571) (-435 |#1|)) (T -445))
-((-3874 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-4164 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-2018 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-3621 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-3067 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-4308 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-3366 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-2483 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-1995 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-3397 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-4374 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-1491 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-1491 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-2282 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-4399 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-445 *3 *4)) (-4 *4 (-435 *3)))) (-1840 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-445 *4 *5)) (-4 *5 (-435 *4)))))
-(-10 -7 (-15 -1840 ((-114) (-115))) (-15 -4399 ((-115) (-115))) (-15 -2282 (|#2| |#2|)) (-15 -1491 (|#2| |#2|)) (-15 -1491 (|#2| |#2| |#2|)) (-15 -4374 (|#2| |#2| |#2|)) (-15 -3397 (|#2| |#2|)) (-15 -1995 (|#2| |#2| |#2|)) (-15 -2483 (|#2| |#2| |#2|)) (-15 -3366 (|#2| |#2| |#2|)) (-15 -4308 (|#2| |#2| |#2|)) (-15 -3067 (|#2| |#2| |#2|)) (-15 -3621 (|#2| |#2|)) (-15 -2018 (|#2| |#2|)) (-15 -4164 (|#2| |#2|)) (-15 -3874 (|#2| |#2|)))
-((-4336 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1201 |#2|)) (|:| |pol2| (-1201 |#2|)) (|:| |prim| (-1201 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-663 (-1201 |#2|))) (|:| |prim| (-1201 |#2|))) (-663 |#2|)) 65 T ELT)))
-(((-446 |#1| |#2|) (-10 -7 (-15 -4336 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-663 (-1201 |#2|))) (|:| |prim| (-1201 |#2|))) (-663 |#2|))) (IF (|has| |#2| (-27)) (-15 -4336 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1201 |#2|)) (|:| |pol2| (-1201 |#2|)) (|:| |prim| (-1201 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-571) (-149)) (-435 |#1|)) (T -446))
-((-4336 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-571) (-149))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1201 *3)) (|:| |pol2| (-1201 *3)) (|:| |prim| (-1201 *3)))) (-5 *1 (-446 *4 *3)) (-4 *3 (-27)) (-4 *3 (-435 *4)))) (-4336 (*1 *2 *3) (-12 (-5 *3 (-663 *5)) (-4 *5 (-435 *4)) (-4 *4 (-13 (-571) (-149))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-663 (-1201 *5))) (|:| |prim| (-1201 *5)))) (-5 *1 (-446 *4 *5)))))
-(-10 -7 (-15 -4336 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-663 (-1201 |#2|))) (|:| |prim| (-1201 |#2|))) (-663 |#2|))) (IF (|has| |#2| (-27)) (-15 -4336 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1201 |#2|)) (|:| |pol2| (-1201 |#2|)) (|:| |prim| (-1201 |#2|))) |#2| |#2|)) |%noBranch|))
-((-1341 (((-1303)) 18 T ELT)) (-1570 (((-1201 (-421 (-560))) |#2| (-630 |#2|)) 40 T ELT) (((-421 (-560)) |#2|) 24 T ELT)))
-(((-447 |#1| |#2|) (-10 -7 (-15 -1570 ((-421 (-560)) |#2|)) (-15 -1570 ((-1201 (-421 (-560))) |#2| (-630 |#2|))) (-15 -1341 ((-1303)))) (-13 (-571) (-1069 (-560))) (-435 |#1|)) (T -447))
-((-1341 (*1 *2) (-12 (-4 *3 (-13 (-571) (-1069 (-560)))) (-5 *2 (-1303)) (-5 *1 (-447 *3 *4)) (-4 *4 (-435 *3)))) (-1570 (*1 *2 *3 *4) (-12 (-5 *4 (-630 *3)) (-4 *3 (-435 *5)) (-4 *5 (-13 (-571) (-1069 (-560)))) (-5 *2 (-1201 (-421 (-560)))) (-5 *1 (-447 *5 *3)))) (-1570 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-421 (-560))) (-5 *1 (-447 *4 *3)) (-4 *3 (-435 *4)))))
-(-10 -7 (-15 -1570 ((-421 (-560)) |#2|)) (-15 -1570 ((-1201 (-421 (-560))) |#2| (-630 |#2|))) (-15 -1341 ((-1303))))
-((-2873 (((-114) $) 33 T ELT)) (-4345 (((-114) $) 35 T ELT)) (-2729 (((-114) $) 36 T ELT)) (-3547 (((-114) $) 39 T ELT)) (-2349 (((-114) $) 34 T ELT)) (-1872 (((-114) $) 38 T ELT)) (-1578 (((-887) $) 20 T ELT) (($ (-1189)) 32 T ELT) (($ (-1207)) 30 T ELT) (((-1207) $) 24 T ELT) (((-1134) $) 23 T ELT)) (-2390 (((-114) $) 37 T ELT)) (-2473 (((-114) $ $) 17 T ELT)))
-(((-448) (-13 (-632 (-887)) (-10 -8 (-15 -1578 ($ (-1189))) (-15 -1578 ($ (-1207))) (-15 -1578 ((-1207) $)) (-15 -1578 ((-1134) $)) (-15 -2873 ((-114) $)) (-15 -2349 ((-114) $)) (-15 -2729 ((-114) $)) (-15 -1872 ((-114) $)) (-15 -3547 ((-114) $)) (-15 -2390 ((-114) $)) (-15 -4345 ((-114) $)) (-15 -2473 ((-114) $ $))))) (T -448))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-448)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-448)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-448)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-448)))) (-2873 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-2729 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-1872 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-3547 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-4345 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-2473 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))))
-(-13 (-632 (-887)) (-10 -8 (-15 -1578 ($ (-1189))) (-15 -1578 ($ (-1207))) (-15 -1578 ((-1207) $)) (-15 -1578 ((-1134) $)) (-15 -2873 ((-114) $)) (-15 -2349 ((-114) $)) (-15 -2729 ((-114) $)) (-15 -1872 ((-114) $)) (-15 -3547 ((-114) $)) (-15 -2390 ((-114) $)) (-15 -4345 ((-114) $)) (-15 -2473 ((-114) $ $))))
-((-3084 (((-3 (-419 (-1201 (-421 (-560)))) "failed") |#3|) 72 T ELT)) (-4224 (((-419 |#3|) |#3|) 34 T ELT)) (-2922 (((-3 (-419 (-1201 (-48))) "failed") |#3|) 46 (|has| |#2| (-1069 (-48))) ELT)) (-3140 (((-3 (|:| |overq| (-1201 (-421 (-560)))) (|:| |overan| (-1201 (-48))) (|:| -2060 (-114))) |#3|) 37 T ELT)))
-(((-449 |#1| |#2| |#3|) (-10 -7 (-15 -4224 ((-419 |#3|) |#3|)) (-15 -3084 ((-3 (-419 (-1201 (-421 (-560)))) "failed") |#3|)) (-15 -3140 ((-3 (|:| |overq| (-1201 (-421 (-560)))) (|:| |overan| (-1201 (-48))) (|:| -2060 (-114))) |#3|)) (IF (|has| |#2| (-1069 (-48))) (-15 -2922 ((-3 (-419 (-1201 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-571) (-1069 (-560))) (-435 |#1|) (-1273 |#2|)) (T -449))
-((-2922 (*1 *2 *3) (|partial| -12 (-4 *5 (-1069 (-48))) (-4 *4 (-13 (-571) (-1069 (-560)))) (-4 *5 (-435 *4)) (-5 *2 (-419 (-1201 (-48)))) (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1273 *5)))) (-3140 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-4 *5 (-435 *4)) (-5 *2 (-3 (|:| |overq| (-1201 (-421 (-560)))) (|:| |overan| (-1201 (-48))) (|:| -2060 (-114)))) (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1273 *5)))) (-3084 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-4 *5 (-435 *4)) (-5 *2 (-419 (-1201 (-421 (-560))))) (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1273 *5)))) (-4224 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-4 *5 (-435 *4)) (-5 *2 (-419 *3)) (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1273 *5)))))
-(-10 -7 (-15 -4224 ((-419 |#3|) |#3|)) (-15 -3084 ((-3 (-419 (-1201 (-421 (-560)))) "failed") |#3|)) (-15 -3140 ((-3 (|:| |overq| (-1201 (-421 (-560)))) (|:| |overan| (-1201 (-48))) (|:| -2060 (-114))) |#3|)) (IF (|has| |#2| (-1069 (-48))) (-15 -2922 ((-3 (-419 (-1201 (-48))) "failed") |#3|)) |%noBranch|))
-((-1538 (((-114) $ $) NIL T ELT)) (-3618 (((-3 (|:| |fst| (-448)) (|:| -3280 "void")) $) 11 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3258 (($) 35 T ELT)) (-3691 (($) 41 T ELT)) (-2255 (($) 37 T ELT)) (-1928 (($) 39 T ELT)) (-3293 (($) 36 T ELT)) (-4159 (($) 38 T ELT)) (-3647 (($) 40 T ELT)) (-1612 (((-114) $) 8 T ELT)) (-2558 (((-663 (-975 (-560))) $) 19 T ELT)) (-1592 (($ (-3 (|:| |fst| (-448)) (|:| -3280 "void")) (-663 (-1207)) (-114)) 29 T ELT) (($ (-3 (|:| |fst| (-448)) (|:| -3280 "void")) (-663 (-975 (-560))) (-114)) 30 T ELT)) (-1578 (((-887) $) 24 T ELT) (($ (-448)) 32 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-450) (-13 (-1132) (-10 -8 (-15 -1578 ($ (-448))) (-15 -3618 ((-3 (|:| |fst| (-448)) (|:| -3280 "void")) $)) (-15 -2558 ((-663 (-975 (-560))) $)) (-15 -1612 ((-114) $)) (-15 -1592 ($ (-3 (|:| |fst| (-448)) (|:| -3280 "void")) (-663 (-1207)) (-114))) (-15 -1592 ($ (-3 (|:| |fst| (-448)) (|:| -3280 "void")) (-663 (-975 (-560))) (-114))) (-15 -3258 ($)) (-15 -3293 ($)) (-15 -2255 ($)) (-15 -3691 ($)) (-15 -4159 ($)) (-15 -1928 ($)) (-15 -3647 ($))))) (T -450))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-448)) (-5 *1 (-450)))) (-3618 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-5 *1 (-450)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-663 (-975 (-560)))) (-5 *1 (-450)))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-450)))) (-1592 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-5 *3 (-663 (-1207))) (-5 *4 (-114)) (-5 *1 (-450)))) (-1592 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-5 *3 (-663 (-975 (-560)))) (-5 *4 (-114)) (-5 *1 (-450)))) (-3258 (*1 *1) (-5 *1 (-450))) (-3293 (*1 *1) (-5 *1 (-450))) (-2255 (*1 *1) (-5 *1 (-450))) (-3691 (*1 *1) (-5 *1 (-450))) (-4159 (*1 *1) (-5 *1 (-450))) (-1928 (*1 *1) (-5 *1 (-450))) (-3647 (*1 *1) (-5 *1 (-450))))
-(-13 (-1132) (-10 -8 (-15 -1578 ($ (-448))) (-15 -3618 ((-3 (|:| |fst| (-448)) (|:| -3280 "void")) $)) (-15 -2558 ((-663 (-975 (-560))) $)) (-15 -1612 ((-114) $)) (-15 -1592 ($ (-3 (|:| |fst| (-448)) (|:| -3280 "void")) (-663 (-1207)) (-114))) (-15 -1592 ($ (-3 (|:| |fst| (-448)) (|:| -3280 "void")) (-663 (-975 (-560))) (-114))) (-15 -3258 ($)) (-15 -3293 ($)) (-15 -2255 ($)) (-15 -3691 ($)) (-15 -4159 ($)) (-15 -1928 ($)) (-15 -3647 ($))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2746 (((-1189) $ (-1189)) NIL T ELT)) (-2177 (($ $ (-1189)) NIL T ELT)) (-3944 (((-1189) $) NIL T ELT)) (-3123 (((-402) (-402) (-402)) 17 T ELT) (((-402) (-402)) 15 T ELT)) (-2109 (($ (-402)) NIL T ELT) (($ (-402) (-1189)) NIL T ELT)) (-3614 (((-402) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2348 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2352 (((-1303) (-1189)) 9 T ELT)) (-3509 (((-1303) (-1189)) 10 T ELT)) (-3003 (((-1303)) 11 T ELT)) (-1578 (((-887) $) NIL T ELT)) (-4474 (($ $) 39 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-451) (-13 (-378 (-402) (-1189)) (-10 -7 (-15 -3123 ((-402) (-402) (-402))) (-15 -3123 ((-402) (-402))) (-15 -2352 ((-1303) (-1189))) (-15 -3509 ((-1303) (-1189))) (-15 -3003 ((-1303)))))) (T -451))
-((-3123 (*1 *2 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-451)))) (-3123 (*1 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-451)))) (-2352 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-451)))) (-3509 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-451)))) (-3003 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-451)))))
-(-13 (-378 (-402) (-1189)) (-10 -7 (-15 -3123 ((-402) (-402) (-402))) (-15 -3123 ((-402) (-402))) (-15 -2352 ((-1303) (-1189))) (-15 -3509 ((-1303) (-1189))) (-15 -3003 ((-1303)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3614 (((-1207) $) 8 T ELT)) (-1905 (((-1189) $) 17 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 11 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 14 T ELT)))
-(((-452 |#1|) (-13 (-1132) (-10 -8 (-15 -3614 ((-1207) $)))) (-1207)) (T -452))
-((-3614 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-452 *3)) (-14 *3 *2))))
-(-13 (-1132) (-10 -8 (-15 -3614 ((-1207) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3736 (((-1146) $) 7 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 13 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 9 T ELT)))
-(((-453) (-13 (-1132) (-10 -8 (-15 -3736 ((-1146) $))))) (T -453))
-((-3736 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-453)))))
-(-13 (-1132) (-10 -8 (-15 -3736 ((-1146) $))))
-((-2759 (((-1303) $) 7 T ELT)) (-1578 (((-887) $) 8 T ELT) (($ (-1297 (-721))) 14 T ELT) (($ (-663 (-342))) 13 T ELT) (($ (-342)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 11 T ELT)))
+((-2928 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-1778 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-2260 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT)))
+(((-441 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2260 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1778 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2928 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1132) (-440 |#1|) (-1132) (-440 |#3|)) (T -441))
+((-2928 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1132)) (-4 *5 (-1132)) (-4 *2 (-440 *5)) (-5 *1 (-441 *6 *4 *5 *2)) (-4 *4 (-440 *6)))) (-1778 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1132)) (-4 *2 (-1132)) (-5 *1 (-441 *5 *4 *2 *6)) (-4 *4 (-440 *5)) (-4 *6 (-440 *2)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-440 *6)) (-5 *1 (-441 *5 *4 *6 *2)) (-4 *4 (-440 *5)))))
+(-10 -7 (-15 -2260 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1778 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2928 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-3286 (((-597 |#2|) |#2| (-1207)) 36 T ELT)) (-3797 (((-597 |#2|) |#2| (-1207)) 21 T ELT)) (-1476 ((|#2| |#2| (-1207)) 26 T ELT)))
+(((-442 |#1| |#2|) (-10 -7 (-15 -3797 ((-597 |#2|) |#2| (-1207))) (-15 -3286 ((-597 |#2|) |#2| (-1207))) (-15 -1476 (|#2| |#2| (-1207)))) (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))) (-13 (-1233) (-29 |#1|))) (T -442))
+((-1476 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-442 *4 *2)) (-4 *2 (-13 (-1233) (-29 *4))))) (-3286 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-597 *3)) (-5 *1 (-442 *5 *3)) (-4 *3 (-13 (-1233) (-29 *5))))) (-3797 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-597 *3)) (-5 *1 (-442 *5 *3)) (-4 *3 (-13 (-1233) (-29 *5))))))
+(-10 -7 (-15 -3797 ((-597 |#2|) |#2| (-1207))) (-15 -3286 ((-597 |#2|) |#2| (-1207))) (-15 -1476 (|#2| |#2| (-1207))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-1896 (($ |#2| |#1|) 37 T ELT)) (-3267 (($ |#2| |#1|) 35 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-343 |#2|)) 25 T ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 10 T CONST)) (-1456 (($) 16 T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 36 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-443 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4495)) (IF (|has| |#1| (-6 -4495)) (-6 -4495) |%noBranch|) |%noBranch|) (-15 -3913 ($ |#1|)) (-15 -3913 ($ (-343 |#2|))) (-15 -1896 ($ |#2| |#1|)) (-15 -3267 ($ |#2| |#1|)))) (-13 (-175) (-38 (-421 (-560)))) (-13 (-871) (-21))) (T -443))
+((-3913 (*1 *1 *2) (-12 (-5 *1 (-443 *2 *3)) (-4 *2 (-13 (-175) (-38 (-421 (-560))))) (-4 *3 (-13 (-871) (-21))))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-343 *4)) (-4 *4 (-13 (-871) (-21))) (-5 *1 (-443 *3 *4)) (-4 *3 (-13 (-175) (-38 (-421 (-560))))))) (-1896 (*1 *1 *2 *3) (-12 (-5 *1 (-443 *3 *2)) (-4 *3 (-13 (-175) (-38 (-421 (-560))))) (-4 *2 (-13 (-871) (-21))))) (-3267 (*1 *1 *2 *3) (-12 (-5 *1 (-443 *3 *2)) (-4 *3 (-13 (-175) (-38 (-421 (-560))))) (-4 *2 (-13 (-871) (-21))))))
+(-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4495)) (IF (|has| |#1| (-6 -4495)) (-6 -4495) |%noBranch|) |%noBranch|) (-15 -3913 ($ |#1|)) (-15 -3913 ($ (-343 |#2|))) (-15 -1896 ($ |#2| |#1|)) (-15 -3267 ($ |#2| |#1|))))
+((-4424 (((-3 |#2| (-663 |#2|)) |#2| (-1207)) 115 T ELT)))
+(((-444 |#1| |#2|) (-10 -7 (-15 -4424 ((-3 |#2| (-663 |#2|)) |#2| (-1207)))) (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))) (-13 (-1233) (-989) (-29 |#1|))) (T -444))
+((-4424 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-3 *3 (-663 *3))) (-5 *1 (-444 *5 *3)) (-4 *3 (-13 (-1233) (-989) (-29 *5))))))
+(-10 -7 (-15 -4424 ((-3 |#2| (-663 |#2|)) |#2| (-1207))))
+((-2924 ((|#2| |#2| |#2|) 31 T ELT)) (-3963 (((-115) (-115)) 43 T ELT)) (-4259 ((|#2| |#2|) 63 T ELT)) (-4104 ((|#2| |#2|) 66 T ELT)) (-2144 ((|#2| |#2|) 30 T ELT)) (-3081 ((|#2| |#2| |#2|) 33 T ELT)) (-3083 ((|#2| |#2| |#2|) 35 T ELT)) (-4128 ((|#2| |#2| |#2|) 32 T ELT)) (-2929 ((|#2| |#2| |#2|) 34 T ELT)) (-3962 (((-114) (-115)) 41 T ELT)) (-3168 ((|#2| |#2|) 37 T ELT)) (-3813 ((|#2| |#2|) 36 T ELT)) (-2719 ((|#2| |#2|) 25 T ELT)) (-2658 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-2231 ((|#2| |#2| |#2|) 29 T ELT)))
+(((-445 |#1| |#2|) (-10 -7 (-15 -3962 ((-114) (-115))) (-15 -3963 ((-115) (-115))) (-15 -2719 (|#2| |#2|)) (-15 -2658 (|#2| |#2|)) (-15 -2658 (|#2| |#2| |#2|)) (-15 -2231 (|#2| |#2| |#2|)) (-15 -2144 (|#2| |#2|)) (-15 -2924 (|#2| |#2| |#2|)) (-15 -4128 (|#2| |#2| |#2|)) (-15 -3081 (|#2| |#2| |#2|)) (-15 -2929 (|#2| |#2| |#2|)) (-15 -3083 (|#2| |#2| |#2|)) (-15 -3813 (|#2| |#2|)) (-15 -3168 (|#2| |#2|)) (-15 -4104 (|#2| |#2|)) (-15 -4259 (|#2| |#2|))) (-571) (-435 |#1|)) (T -445))
+((-4259 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-4104 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-3168 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-3813 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-3083 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-2929 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-3081 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-4128 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-2924 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-2144 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-2231 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-2658 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-2658 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-2719 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))) (-3963 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-445 *3 *4)) (-4 *4 (-435 *3)))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-445 *4 *5)) (-4 *5 (-435 *4)))))
+(-10 -7 (-15 -3962 ((-114) (-115))) (-15 -3963 ((-115) (-115))) (-15 -2719 (|#2| |#2|)) (-15 -2658 (|#2| |#2|)) (-15 -2658 (|#2| |#2| |#2|)) (-15 -2231 (|#2| |#2| |#2|)) (-15 -2144 (|#2| |#2|)) (-15 -2924 (|#2| |#2| |#2|)) (-15 -4128 (|#2| |#2| |#2|)) (-15 -3081 (|#2| |#2| |#2|)) (-15 -2929 (|#2| |#2| |#2|)) (-15 -3083 (|#2| |#2| |#2|)) (-15 -3813 (|#2| |#2|)) (-15 -3168 (|#2| |#2|)) (-15 -4104 (|#2| |#2|)) (-15 -4259 (|#2| |#2|)))
+((-3191 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1201 |#2|)) (|:| |pol2| (-1201 |#2|)) (|:| |prim| (-1201 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-663 (-1201 |#2|))) (|:| |prim| (-1201 |#2|))) (-663 |#2|)) 65 T ELT)))
+(((-446 |#1| |#2|) (-10 -7 (-15 -3191 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-663 (-1201 |#2|))) (|:| |prim| (-1201 |#2|))) (-663 |#2|))) (IF (|has| |#2| (-27)) (-15 -3191 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1201 |#2|)) (|:| |pol2| (-1201 |#2|)) (|:| |prim| (-1201 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-571) (-149)) (-435 |#1|)) (T -446))
+((-3191 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-571) (-149))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1201 *3)) (|:| |pol2| (-1201 *3)) (|:| |prim| (-1201 *3)))) (-5 *1 (-446 *4 *3)) (-4 *3 (-27)) (-4 *3 (-435 *4)))) (-3191 (*1 *2 *3) (-12 (-5 *3 (-663 *5)) (-4 *5 (-435 *4)) (-4 *4 (-13 (-571) (-149))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-663 (-1201 *5))) (|:| |prim| (-1201 *5)))) (-5 *1 (-446 *4 *5)))))
+(-10 -7 (-15 -3191 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-663 (-1201 |#2|))) (|:| |prim| (-1201 |#2|))) (-663 |#2|))) (IF (|has| |#2| (-27)) (-15 -3191 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1201 |#2|)) (|:| |pol2| (-1201 |#2|)) (|:| |prim| (-1201 |#2|))) |#2| |#2|)) |%noBranch|))
+((-3557 (((-1303)) 18 T ELT)) (-1803 (((-1201 (-421 (-560))) |#2| (-630 |#2|)) 40 T ELT) (((-421 (-560)) |#2|) 24 T ELT)))
+(((-447 |#1| |#2|) (-10 -7 (-15 -1803 ((-421 (-560)) |#2|)) (-15 -1803 ((-1201 (-421 (-560))) |#2| (-630 |#2|))) (-15 -3557 ((-1303)))) (-13 (-571) (-1069 (-560))) (-435 |#1|)) (T -447))
+((-3557 (*1 *2) (-12 (-4 *3 (-13 (-571) (-1069 (-560)))) (-5 *2 (-1303)) (-5 *1 (-447 *3 *4)) (-4 *4 (-435 *3)))) (-1803 (*1 *2 *3 *4) (-12 (-5 *4 (-630 *3)) (-4 *3 (-435 *5)) (-4 *5 (-13 (-571) (-1069 (-560)))) (-5 *2 (-1201 (-421 (-560)))) (-5 *1 (-447 *5 *3)))) (-1803 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-421 (-560))) (-5 *1 (-447 *4 *3)) (-4 *3 (-435 *4)))))
+(-10 -7 (-15 -1803 ((-421 (-560)) |#2|)) (-15 -1803 ((-1201 (-421 (-560))) |#2| (-630 |#2|))) (-15 -3557 ((-1303))))
+((-3701 (((-114) $) 33 T ELT)) (-3252 (((-114) $) 35 T ELT)) (-1528 (((-114) $) 36 T ELT)) (-4291 (((-114) $) 39 T ELT)) (-2116 (((-114) $) 34 T ELT)) (-4261 (((-114) $) 38 T ELT)) (-3913 (((-887) $) 20 T ELT) (($ (-1189)) 32 T ELT) (($ (-1207)) 30 T ELT) (((-1207) $) 24 T ELT) (((-1134) $) 23 T ELT)) (-2528 (((-114) $) 37 T ELT)) (-2340 (((-114) $ $) 17 T ELT)))
+(((-448) (-13 (-632 (-887)) (-10 -8 (-15 -3913 ($ (-1189))) (-15 -3913 ($ (-1207))) (-15 -3913 ((-1207) $)) (-15 -3913 ((-1134) $)) (-15 -3701 ((-114) $)) (-15 -2116 ((-114) $)) (-15 -1528 ((-114) $)) (-15 -4261 ((-114) $)) (-15 -4291 ((-114) $)) (-15 -2528 ((-114) $)) (-15 -3252 ((-114) $)) (-15 -2340 ((-114) $ $))))) (T -448))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-448)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-448)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-448)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-448)))) (-3701 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-2116 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-1528 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-2528 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-3252 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-2340 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))))
+(-13 (-632 (-887)) (-10 -8 (-15 -3913 ($ (-1189))) (-15 -3913 ($ (-1207))) (-15 -3913 ((-1207) $)) (-15 -3913 ((-1134) $)) (-15 -3701 ((-114) $)) (-15 -2116 ((-114) $)) (-15 -1528 ((-114) $)) (-15 -4261 ((-114) $)) (-15 -4291 ((-114) $)) (-15 -2528 ((-114) $)) (-15 -3252 ((-114) $)) (-15 -2340 ((-114) $ $))))
+((-3248 (((-3 (-419 (-1201 (-421 (-560)))) "failed") |#3|) 72 T ELT)) (-1495 (((-419 |#3|) |#3|) 34 T ELT)) (-4099 (((-3 (-419 (-1201 (-48))) "failed") |#3|) 46 (|has| |#2| (-1069 (-48))) ELT)) (-2597 (((-3 (|:| |overq| (-1201 (-421 (-560)))) (|:| |overan| (-1201 (-48))) (|:| -2717 (-114))) |#3|) 37 T ELT)))
+(((-449 |#1| |#2| |#3|) (-10 -7 (-15 -1495 ((-419 |#3|) |#3|)) (-15 -3248 ((-3 (-419 (-1201 (-421 (-560)))) "failed") |#3|)) (-15 -2597 ((-3 (|:| |overq| (-1201 (-421 (-560)))) (|:| |overan| (-1201 (-48))) (|:| -2717 (-114))) |#3|)) (IF (|has| |#2| (-1069 (-48))) (-15 -4099 ((-3 (-419 (-1201 (-48))) "failed") |#3|)) |%noBranch|)) (-13 (-571) (-1069 (-560))) (-435 |#1|) (-1273 |#2|)) (T -449))
+((-4099 (*1 *2 *3) (|partial| -12 (-4 *5 (-1069 (-48))) (-4 *4 (-13 (-571) (-1069 (-560)))) (-4 *5 (-435 *4)) (-5 *2 (-419 (-1201 (-48)))) (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1273 *5)))) (-2597 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-4 *5 (-435 *4)) (-5 *2 (-3 (|:| |overq| (-1201 (-421 (-560)))) (|:| |overan| (-1201 (-48))) (|:| -2717 (-114)))) (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1273 *5)))) (-3248 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-4 *5 (-435 *4)) (-5 *2 (-419 (-1201 (-421 (-560))))) (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1273 *5)))) (-1495 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-4 *5 (-435 *4)) (-5 *2 (-419 *3)) (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1273 *5)))))
+(-10 -7 (-15 -1495 ((-419 |#3|) |#3|)) (-15 -3248 ((-3 (-419 (-1201 (-421 (-560)))) "failed") |#3|)) (-15 -2597 ((-3 (|:| |overq| (-1201 (-421 (-560)))) (|:| |overan| (-1201 (-48))) (|:| -2717 (-114))) |#3|)) (IF (|has| |#2| (-1069 (-48))) (-15 -4099 ((-3 (-419 (-1201 (-48))) "failed") |#3|)) |%noBranch|))
+((-2243 (((-114) $ $) NIL T ELT)) (-3790 (((-3 (|:| |fst| (-448)) (|:| -3231 "void")) $) 11 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1342 (($) 35 T ELT)) (-3232 (($) 41 T ELT)) (-3710 (($) 37 T ELT)) (-3578 (($) 39 T ELT)) (-3613 (($) 36 T ELT)) (-2110 (($) 38 T ELT)) (-2784 (($) 40 T ELT)) (-3453 (((-114) $) 8 T ELT)) (-3543 (((-663 (-975 (-560))) $) 19 T ELT)) (-3924 (($ (-3 (|:| |fst| (-448)) (|:| -3231 "void")) (-663 (-1207)) (-114)) 29 T ELT) (($ (-3 (|:| |fst| (-448)) (|:| -3231 "void")) (-663 (-975 (-560))) (-114)) 30 T ELT)) (-3913 (((-887) $) 24 T ELT) (($ (-448)) 32 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-450) (-13 (-1132) (-10 -8 (-15 -3913 ($ (-448))) (-15 -3790 ((-3 (|:| |fst| (-448)) (|:| -3231 "void")) $)) (-15 -3543 ((-663 (-975 (-560))) $)) (-15 -3453 ((-114) $)) (-15 -3924 ($ (-3 (|:| |fst| (-448)) (|:| -3231 "void")) (-663 (-1207)) (-114))) (-15 -3924 ($ (-3 (|:| |fst| (-448)) (|:| -3231 "void")) (-663 (-975 (-560))) (-114))) (-15 -1342 ($)) (-15 -3613 ($)) (-15 -3710 ($)) (-15 -3232 ($)) (-15 -2110 ($)) (-15 -3578 ($)) (-15 -2784 ($))))) (T -450))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-448)) (-5 *1 (-450)))) (-3790 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-5 *1 (-450)))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-663 (-975 (-560)))) (-5 *1 (-450)))) (-3453 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-450)))) (-3924 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-5 *3 (-663 (-1207))) (-5 *4 (-114)) (-5 *1 (-450)))) (-3924 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-5 *3 (-663 (-975 (-560)))) (-5 *4 (-114)) (-5 *1 (-450)))) (-1342 (*1 *1) (-5 *1 (-450))) (-3613 (*1 *1) (-5 *1 (-450))) (-3710 (*1 *1) (-5 *1 (-450))) (-3232 (*1 *1) (-5 *1 (-450))) (-2110 (*1 *1) (-5 *1 (-450))) (-3578 (*1 *1) (-5 *1 (-450))) (-2784 (*1 *1) (-5 *1 (-450))))
+(-13 (-1132) (-10 -8 (-15 -3913 ($ (-448))) (-15 -3790 ((-3 (|:| |fst| (-448)) (|:| -3231 "void")) $)) (-15 -3543 ((-663 (-975 (-560))) $)) (-15 -3453 ((-114) $)) (-15 -3924 ($ (-3 (|:| |fst| (-448)) (|:| -3231 "void")) (-663 (-1207)) (-114))) (-15 -3924 ($ (-3 (|:| |fst| (-448)) (|:| -3231 "void")) (-663 (-975 (-560))) (-114))) (-15 -1342 ($)) (-15 -3613 ($)) (-15 -3710 ($)) (-15 -3232 ($)) (-15 -2110 ($)) (-15 -3578 ($)) (-15 -2784 ($))))
+((-2243 (((-114) $ $) NIL T ELT)) (-1687 (((-1189) $ (-1189)) NIL T ELT)) (-4216 (($ $ (-1189)) NIL T ELT)) (-3688 (((-1189) $) NIL T ELT)) (-2423 (((-402) (-402) (-402)) 17 T ELT) (((-402) (-402)) 15 T ELT)) (-2888 (($ (-402)) NIL T ELT) (($ (-402) (-1189)) NIL T ELT)) (-4389 (((-402) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2108 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2143 (((-1303) (-1189)) 9 T ELT)) (-1952 (((-1303) (-1189)) 10 T ELT)) (-3679 (((-1303)) 11 T ELT)) (-3913 (((-887) $) NIL T ELT)) (-1835 (($ $) 39 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-451) (-13 (-378 (-402) (-1189)) (-10 -7 (-15 -2423 ((-402) (-402) (-402))) (-15 -2423 ((-402) (-402))) (-15 -2143 ((-1303) (-1189))) (-15 -1952 ((-1303) (-1189))) (-15 -3679 ((-1303)))))) (T -451))
+((-2423 (*1 *2 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-451)))) (-2423 (*1 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-451)))) (-2143 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-451)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-451)))) (-3679 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-451)))))
+(-13 (-378 (-402) (-1189)) (-10 -7 (-15 -2423 ((-402) (-402) (-402))) (-15 -2423 ((-402) (-402))) (-15 -2143 ((-1303) (-1189))) (-15 -1952 ((-1303) (-1189))) (-15 -3679 ((-1303)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-4389 (((-1207) $) 8 T ELT)) (-3358 (((-1189) $) 17 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 11 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 14 T ELT)))
+(((-452 |#1|) (-13 (-1132) (-10 -8 (-15 -4389 ((-1207) $)))) (-1207)) (T -452))
+((-4389 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-452 *3)) (-14 *3 *2))))
+(-13 (-1132) (-10 -8 (-15 -4389 ((-1207) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3216 (((-1146) $) 7 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 13 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 9 T ELT)))
+(((-453) (-13 (-1132) (-10 -8 (-15 -3216 ((-1146) $))))) (T -453))
+((-3216 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-453)))))
+(-13 (-1132) (-10 -8 (-15 -3216 ((-1146) $))))
+((-3043 (((-1303) $) 7 T ELT)) (-3913 (((-887) $) 8 T ELT) (($ (-1297 (-721))) 14 T ELT) (($ (-663 (-342))) 13 T ELT) (($ (-342)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 11 T ELT)))
(((-454) (-142)) (T -454))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1297 (-721))) (-4 *1 (-454)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-454)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-454)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) (-4 *1 (-454)))))
-(-13 (-410) (-10 -8 (-15 -1578 ($ (-1297 (-721)))) (-15 -1578 ($ (-663 (-342)))) (-15 -1578 ($ (-342))) (-15 -1578 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))))))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1297 (-721))) (-4 *1 (-454)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-454)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-454)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) (-4 *1 (-454)))))
+(-13 (-410) (-10 -8 (-15 -3913 ($ (-1297 (-721)))) (-15 -3913 ($ (-663 (-342)))) (-15 -3913 ($ (-342))) (-15 -3913 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))))))
(((-632 (-887)) . T) ((-410) . T) ((-1247) . T))
-((-2539 (((-3 $ "failed") (-1297 (-326 (-391)))) 21 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 19 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 17 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 15 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 13 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 11 T ELT)) (-3330 (($ (-1297 (-326 (-391)))) 22 T ELT) (($ (-1297 (-326 (-560)))) 20 T ELT) (($ (-1297 (-975 (-391)))) 18 T ELT) (($ (-1297 (-975 (-560)))) 16 T ELT) (($ (-1297 (-421 (-975 (-391))))) 14 T ELT) (($ (-1297 (-421 (-975 (-560))))) 12 T ELT)) (-2759 (((-1303) $) 7 T ELT)) (-1578 (((-887) $) 8 T ELT) (($ (-663 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) 23 T ELT)))
+((-3929 (((-3 $ "failed") (-1297 (-326 (-391)))) 21 T ELT) (((-3 $ "failed") (-1297 (-326 (-560)))) 19 T ELT) (((-3 $ "failed") (-1297 (-975 (-391)))) 17 T ELT) (((-3 $ "failed") (-1297 (-975 (-560)))) 15 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-391))))) 13 T ELT) (((-3 $ "failed") (-1297 (-421 (-975 (-560))))) 11 T ELT)) (-3649 (($ (-1297 (-326 (-391)))) 22 T ELT) (($ (-1297 (-326 (-560)))) 20 T ELT) (($ (-1297 (-975 (-391)))) 18 T ELT) (($ (-1297 (-975 (-560)))) 16 T ELT) (($ (-1297 (-421 (-975 (-391))))) 14 T ELT) (($ (-1297 (-421 (-975 (-560))))) 12 T ELT)) (-3043 (((-1303) $) 7 T ELT)) (-3913 (((-887) $) 8 T ELT) (($ (-663 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) 23 T ELT)))
(((-455) (-142)) (T -455))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-455)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-455)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342))))) (-4 *1 (-455)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-1297 (-326 (-391)))) (-4 *1 (-455)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-326 (-391)))) (-4 *1 (-455)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-1297 (-326 (-560)))) (-4 *1 (-455)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-326 (-560)))) (-4 *1 (-455)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-1297 (-975 (-391)))) (-4 *1 (-455)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-975 (-391)))) (-4 *1 (-455)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-1297 (-975 (-560)))) (-4 *1 (-455)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-975 (-560)))) (-4 *1 (-455)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-1297 (-421 (-975 (-391))))) (-4 *1 (-455)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-421 (-975 (-391))))) (-4 *1 (-455)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-1297 (-421 (-975 (-560))))) (-4 *1 (-455)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-421 (-975 (-560))))) (-4 *1 (-455)))))
-(-13 (-410) (-10 -8 (-15 -1578 ($ (-663 (-342)))) (-15 -1578 ($ (-342))) (-15 -1578 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342)))))) (-15 -3330 ($ (-1297 (-326 (-391))))) (-15 -2539 ((-3 $ "failed") (-1297 (-326 (-391))))) (-15 -3330 ($ (-1297 (-326 (-560))))) (-15 -2539 ((-3 $ "failed") (-1297 (-326 (-560))))) (-15 -3330 ($ (-1297 (-975 (-391))))) (-15 -2539 ((-3 $ "failed") (-1297 (-975 (-391))))) (-15 -3330 ($ (-1297 (-975 (-560))))) (-15 -2539 ((-3 $ "failed") (-1297 (-975 (-560))))) (-15 -3330 ($ (-1297 (-421 (-975 (-391)))))) (-15 -2539 ((-3 $ "failed") (-1297 (-421 (-975 (-391)))))) (-15 -3330 ($ (-1297 (-421 (-975 (-560)))))) (-15 -2539 ((-3 $ "failed") (-1297 (-421 (-975 (-560))))))))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-455)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-455)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342))))) (-4 *1 (-455)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-1297 (-326 (-391)))) (-4 *1 (-455)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-326 (-391)))) (-4 *1 (-455)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-1297 (-326 (-560)))) (-4 *1 (-455)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-326 (-560)))) (-4 *1 (-455)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-1297 (-975 (-391)))) (-4 *1 (-455)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-975 (-391)))) (-4 *1 (-455)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-1297 (-975 (-560)))) (-4 *1 (-455)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-975 (-560)))) (-4 *1 (-455)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-1297 (-421 (-975 (-391))))) (-4 *1 (-455)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-421 (-975 (-391))))) (-4 *1 (-455)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-1297 (-421 (-975 (-560))))) (-4 *1 (-455)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-1297 (-421 (-975 (-560))))) (-4 *1 (-455)))))
+(-13 (-410) (-10 -8 (-15 -3913 ($ (-663 (-342)))) (-15 -3913 ($ (-342))) (-15 -3913 ($ (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342)))))) (-15 -3649 ($ (-1297 (-326 (-391))))) (-15 -3929 ((-3 $ "failed") (-1297 (-326 (-391))))) (-15 -3649 ($ (-1297 (-326 (-560))))) (-15 -3929 ((-3 $ "failed") (-1297 (-326 (-560))))) (-15 -3649 ($ (-1297 (-975 (-391))))) (-15 -3929 ((-3 $ "failed") (-1297 (-975 (-391))))) (-15 -3649 ($ (-1297 (-975 (-560))))) (-15 -3929 ((-3 $ "failed") (-1297 (-975 (-560))))) (-15 -3649 ($ (-1297 (-421 (-975 (-391)))))) (-15 -3929 ((-3 $ "failed") (-1297 (-421 (-975 (-391)))))) (-15 -3649 ($ (-1297 (-421 (-975 (-560)))))) (-15 -3929 ((-3 $ "failed") (-1297 (-421 (-975 (-560))))))))
(((-632 (-887)) . T) ((-410) . T) ((-1247) . T))
-((-4266 (((-114)) 18 T ELT)) (-4461 (((-114) (-114)) 19 T ELT)) (-4017 (((-114)) 14 T ELT)) (-3322 (((-114) (-114)) 15 T ELT)) (-1504 (((-114)) 16 T ELT)) (-4035 (((-114) (-114)) 17 T ELT)) (-3775 (((-948) (-948)) 22 T ELT) (((-948)) 21 T ELT)) (-1921 (((-793) (-663 (-2 (|:| -4457 |#1|) (|:| -3630 (-560))))) 52 T ELT)) (-3447 (((-948) (-948)) 24 T ELT) (((-948)) 23 T ELT)) (-1534 (((-2 (|:| -4119 (-560)) (|:| -3764 (-663 |#1|))) |#1|) 94 T ELT)) (-3823 (((-419 |#1|) (-2 (|:| |contp| (-560)) (|:| -3764 (-663 (-2 (|:| |irr| |#1|) (|:| -2929 (-560))))))) 174 T ELT)) (-3226 (((-2 (|:| |contp| (-560)) (|:| -3764 (-663 (-2 (|:| |irr| |#1|) (|:| -2929 (-560)))))) |#1| (-114)) 207 T ELT)) (-1968 (((-419 |#1|) |#1| (-793) (-793)) 222 T ELT) (((-419 |#1|) |#1| (-663 (-793)) (-793)) 219 T ELT) (((-419 |#1|) |#1| (-663 (-793))) 221 T ELT) (((-419 |#1|) |#1| (-793)) 220 T ELT) (((-419 |#1|) |#1|) 218 T ELT)) (-4418 (((-3 |#1| "failed") (-948) |#1| (-663 (-793)) (-793) (-114)) 224 T ELT) (((-3 |#1| "failed") (-948) |#1| (-663 (-793)) (-793)) 225 T ELT) (((-3 |#1| "failed") (-948) |#1| (-663 (-793))) 227 T ELT) (((-3 |#1| "failed") (-948) |#1| (-793)) 226 T ELT) (((-3 |#1| "failed") (-948) |#1|) 228 T ELT)) (-4457 (((-419 |#1|) |#1| (-793) (-793)) 217 T ELT) (((-419 |#1|) |#1| (-663 (-793)) (-793)) 213 T ELT) (((-419 |#1|) |#1| (-663 (-793))) 215 T ELT) (((-419 |#1|) |#1| (-793)) 214 T ELT) (((-419 |#1|) |#1|) 212 T ELT)) (-3278 (((-114) |#1|) 44 T ELT)) (-2634 (((-758 (-793)) (-663 (-2 (|:| -4457 |#1|) (|:| -3630 (-560))))) 99 T ELT)) (-2198 (((-2 (|:| |contp| (-560)) (|:| -3764 (-663 (-2 (|:| |irr| |#1|) (|:| -2929 (-560)))))) |#1| (-114) (-1128 (-793)) (-793)) 211 T ELT)))
-(((-456 |#1|) (-10 -7 (-15 -3823 ((-419 |#1|) (-2 (|:| |contp| (-560)) (|:| -3764 (-663 (-2 (|:| |irr| |#1|) (|:| -2929 (-560)))))))) (-15 -2634 ((-758 (-793)) (-663 (-2 (|:| -4457 |#1|) (|:| -3630 (-560)))))) (-15 -3447 ((-948))) (-15 -3447 ((-948) (-948))) (-15 -3775 ((-948))) (-15 -3775 ((-948) (-948))) (-15 -1921 ((-793) (-663 (-2 (|:| -4457 |#1|) (|:| -3630 (-560)))))) (-15 -1534 ((-2 (|:| -4119 (-560)) (|:| -3764 (-663 |#1|))) |#1|)) (-15 -4266 ((-114))) (-15 -4461 ((-114) (-114))) (-15 -4017 ((-114))) (-15 -3322 ((-114) (-114))) (-15 -3278 ((-114) |#1|)) (-15 -1504 ((-114))) (-15 -4035 ((-114) (-114))) (-15 -4457 ((-419 |#1|) |#1|)) (-15 -4457 ((-419 |#1|) |#1| (-793))) (-15 -4457 ((-419 |#1|) |#1| (-663 (-793)))) (-15 -4457 ((-419 |#1|) |#1| (-663 (-793)) (-793))) (-15 -4457 ((-419 |#1|) |#1| (-793) (-793))) (-15 -1968 ((-419 |#1|) |#1|)) (-15 -1968 ((-419 |#1|) |#1| (-793))) (-15 -1968 ((-419 |#1|) |#1| (-663 (-793)))) (-15 -1968 ((-419 |#1|) |#1| (-663 (-793)) (-793))) (-15 -1968 ((-419 |#1|) |#1| (-793) (-793))) (-15 -4418 ((-3 |#1| "failed") (-948) |#1|)) (-15 -4418 ((-3 |#1| "failed") (-948) |#1| (-793))) (-15 -4418 ((-3 |#1| "failed") (-948) |#1| (-663 (-793)))) (-15 -4418 ((-3 |#1| "failed") (-948) |#1| (-663 (-793)) (-793))) (-15 -4418 ((-3 |#1| "failed") (-948) |#1| (-663 (-793)) (-793) (-114))) (-15 -3226 ((-2 (|:| |contp| (-560)) (|:| -3764 (-663 (-2 (|:| |irr| |#1|) (|:| -2929 (-560)))))) |#1| (-114))) (-15 -2198 ((-2 (|:| |contp| (-560)) (|:| -3764 (-663 (-2 (|:| |irr| |#1|) (|:| -2929 (-560)))))) |#1| (-114) (-1128 (-793)) (-793)))) (-1273 (-560))) (T -456))
-((-2198 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-1128 (-793))) (-5 *6 (-793)) (-5 *2 (-2 (|:| |contp| (-560)) (|:| -3764 (-663 (-2 (|:| |irr| *3) (|:| -2929 (-560))))))) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-3226 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *2 (-2 (|:| |contp| (-560)) (|:| -3764 (-663 (-2 (|:| |irr| *3) (|:| -2929 (-560))))))) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-4418 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-948)) (-5 *4 (-663 (-793))) (-5 *5 (-793)) (-5 *6 (-114)) (-5 *1 (-456 *2)) (-4 *2 (-1273 (-560))))) (-4418 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-948)) (-5 *4 (-663 (-793))) (-5 *5 (-793)) (-5 *1 (-456 *2)) (-4 *2 (-1273 (-560))))) (-4418 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-948)) (-5 *4 (-663 (-793))) (-5 *1 (-456 *2)) (-4 *2 (-1273 (-560))))) (-4418 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-948)) (-5 *4 (-793)) (-5 *1 (-456 *2)) (-4 *2 (-1273 (-560))))) (-4418 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-948)) (-5 *1 (-456 *2)) (-4 *2 (-1273 (-560))))) (-1968 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-1968 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-663 (-793))) (-5 *5 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-1968 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-793))) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-1968 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-1968 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-4457 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-4457 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-663 (-793))) (-5 *5 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-4457 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-793))) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-4457 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-4457 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-4035 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-1504 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-3278 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-3322 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-4017 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-4461 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-4266 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-1534 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4119 (-560)) (|:| -3764 (-663 *3)))) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-1921 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -4457 *4) (|:| -3630 (-560))))) (-4 *4 (-1273 (-560))) (-5 *2 (-793)) (-5 *1 (-456 *4)))) (-3775 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-3775 (*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-3447 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-3447 (*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-2634 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -4457 *4) (|:| -3630 (-560))))) (-4 *4 (-1273 (-560))) (-5 *2 (-758 (-793))) (-5 *1 (-456 *4)))) (-3823 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-560)) (|:| -3764 (-663 (-2 (|:| |irr| *4) (|:| -2929 (-560))))))) (-4 *4 (-1273 (-560))) (-5 *2 (-419 *4)) (-5 *1 (-456 *4)))))
-(-10 -7 (-15 -3823 ((-419 |#1|) (-2 (|:| |contp| (-560)) (|:| -3764 (-663 (-2 (|:| |irr| |#1|) (|:| -2929 (-560)))))))) (-15 -2634 ((-758 (-793)) (-663 (-2 (|:| -4457 |#1|) (|:| -3630 (-560)))))) (-15 -3447 ((-948))) (-15 -3447 ((-948) (-948))) (-15 -3775 ((-948))) (-15 -3775 ((-948) (-948))) (-15 -1921 ((-793) (-663 (-2 (|:| -4457 |#1|) (|:| -3630 (-560)))))) (-15 -1534 ((-2 (|:| -4119 (-560)) (|:| -3764 (-663 |#1|))) |#1|)) (-15 -4266 ((-114))) (-15 -4461 ((-114) (-114))) (-15 -4017 ((-114))) (-15 -3322 ((-114) (-114))) (-15 -3278 ((-114) |#1|)) (-15 -1504 ((-114))) (-15 -4035 ((-114) (-114))) (-15 -4457 ((-419 |#1|) |#1|)) (-15 -4457 ((-419 |#1|) |#1| (-793))) (-15 -4457 ((-419 |#1|) |#1| (-663 (-793)))) (-15 -4457 ((-419 |#1|) |#1| (-663 (-793)) (-793))) (-15 -4457 ((-419 |#1|) |#1| (-793) (-793))) (-15 -1968 ((-419 |#1|) |#1|)) (-15 -1968 ((-419 |#1|) |#1| (-793))) (-15 -1968 ((-419 |#1|) |#1| (-663 (-793)))) (-15 -1968 ((-419 |#1|) |#1| (-663 (-793)) (-793))) (-15 -1968 ((-419 |#1|) |#1| (-793) (-793))) (-15 -4418 ((-3 |#1| "failed") (-948) |#1|)) (-15 -4418 ((-3 |#1| "failed") (-948) |#1| (-793))) (-15 -4418 ((-3 |#1| "failed") (-948) |#1| (-663 (-793)))) (-15 -4418 ((-3 |#1| "failed") (-948) |#1| (-663 (-793)) (-793))) (-15 -4418 ((-3 |#1| "failed") (-948) |#1| (-663 (-793)) (-793) (-114))) (-15 -3226 ((-2 (|:| |contp| (-560)) (|:| -3764 (-663 (-2 (|:| |irr| |#1|) (|:| -2929 (-560)))))) |#1| (-114))) (-15 -2198 ((-2 (|:| |contp| (-560)) (|:| -3764 (-663 (-2 (|:| |irr| |#1|) (|:| -2929 (-560)))))) |#1| (-114) (-1128 (-793)) (-793))))
-((-4298 (((-560) |#2|) 52 T ELT) (((-560) |#2| (-793)) 51 T ELT)) (-3484 (((-560) |#2|) 64 T ELT)) (-2666 ((|#3| |#2|) 26 T ELT)) (-2032 ((|#3| |#2| (-948)) 15 T ELT)) (-4108 ((|#3| |#2|) 16 T ELT)) (-3526 ((|#3| |#2|) 9 T ELT)) (-2107 ((|#3| |#2|) 10 T ELT)) (-4041 ((|#3| |#2| (-948)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-2098 (((-560) |#2|) 66 T ELT)))
-(((-457 |#1| |#2| |#3|) (-10 -7 (-15 -2098 ((-560) |#2|)) (-15 -4041 (|#3| |#2|)) (-15 -4041 (|#3| |#2| (-948))) (-15 -3484 ((-560) |#2|)) (-15 -4298 ((-560) |#2| (-793))) (-15 -4298 ((-560) |#2|)) (-15 -2032 (|#3| |#2| (-948))) (-15 -2666 (|#3| |#2|)) (-15 -3526 (|#3| |#2|)) (-15 -2107 (|#3| |#2|)) (-15 -4108 (|#3| |#2|))) (-1080) (-1273 |#1|) (-13 (-418) (-1069 |#1|) (-376) (-1233) (-296))) (T -457))
-((-4108 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))) (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-2107 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))) (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-3526 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))) (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-2666 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))) (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-2032 (*1 *2 *3 *4) (-12 (-5 *4 (-948)) (-4 *5 (-1080)) (-4 *2 (-13 (-418) (-1069 *5) (-376) (-1233) (-296))) (-5 *1 (-457 *5 *3 *2)) (-4 *3 (-1273 *5)))) (-4298 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-5 *2 (-560)) (-5 *1 (-457 *4 *3 *5)) (-4 *3 (-1273 *4)) (-4 *5 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))))) (-4298 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-1080)) (-5 *2 (-560)) (-5 *1 (-457 *5 *3 *6)) (-4 *3 (-1273 *5)) (-4 *6 (-13 (-418) (-1069 *5) (-376) (-1233) (-296))))) (-3484 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-5 *2 (-560)) (-5 *1 (-457 *4 *3 *5)) (-4 *3 (-1273 *4)) (-4 *5 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))))) (-4041 (*1 *2 *3 *4) (-12 (-5 *4 (-948)) (-4 *5 (-1080)) (-4 *2 (-13 (-418) (-1069 *5) (-376) (-1233) (-296))) (-5 *1 (-457 *5 *3 *2)) (-4 *3 (-1273 *5)))) (-4041 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))) (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-2098 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-5 *2 (-560)) (-5 *1 (-457 *4 *3 *5)) (-4 *3 (-1273 *4)) (-4 *5 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))))))
-(-10 -7 (-15 -2098 ((-560) |#2|)) (-15 -4041 (|#3| |#2|)) (-15 -4041 (|#3| |#2| (-948))) (-15 -3484 ((-560) |#2|)) (-15 -4298 ((-560) |#2| (-793))) (-15 -4298 ((-560) |#2|)) (-15 -2032 (|#3| |#2| (-948))) (-15 -2666 (|#3| |#2|)) (-15 -3526 (|#3| |#2|)) (-15 -2107 (|#3| |#2|)) (-15 -4108 (|#3| |#2|)))
-((-4487 ((|#2| (-1297 |#1|)) 42 T ELT)) (-1948 ((|#2| |#2| |#1|) 58 T ELT)) (-3487 ((|#2| |#2| |#1|) 49 T ELT)) (-4292 ((|#2| |#2|) 44 T ELT)) (-4265 (((-114) |#2|) 32 T ELT)) (-4283 (((-663 |#2|) (-948) (-419 |#2|)) 21 T ELT)) (-4418 ((|#2| (-948) (-419 |#2|)) 25 T ELT)) (-2634 (((-758 (-793)) (-419 |#2|)) 29 T ELT)))
-(((-458 |#1| |#2|) (-10 -7 (-15 -4265 ((-114) |#2|)) (-15 -4487 (|#2| (-1297 |#1|))) (-15 -4292 (|#2| |#2|)) (-15 -3487 (|#2| |#2| |#1|)) (-15 -1948 (|#2| |#2| |#1|)) (-15 -2634 ((-758 (-793)) (-419 |#2|))) (-15 -4418 (|#2| (-948) (-419 |#2|))) (-15 -4283 ((-663 |#2|) (-948) (-419 |#2|)))) (-1080) (-1273 |#1|)) (T -458))
-((-4283 (*1 *2 *3 *4) (-12 (-5 *3 (-948)) (-5 *4 (-419 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-1080)) (-5 *2 (-663 *6)) (-5 *1 (-458 *5 *6)))) (-4418 (*1 *2 *3 *4) (-12 (-5 *3 (-948)) (-5 *4 (-419 *2)) (-4 *2 (-1273 *5)) (-5 *1 (-458 *5 *2)) (-4 *5 (-1080)))) (-2634 (*1 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-1080)) (-5 *2 (-758 (-793))) (-5 *1 (-458 *4 *5)))) (-1948 (*1 *2 *2 *3) (-12 (-4 *3 (-1080)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1273 *3)))) (-3487 (*1 *2 *2 *3) (-12 (-4 *3 (-1080)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1273 *3)))) (-4292 (*1 *2 *2) (-12 (-4 *3 (-1080)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1273 *3)))) (-4487 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-1080)) (-4 *2 (-1273 *4)) (-5 *1 (-458 *4 *2)))) (-4265 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-5 *2 (-114)) (-5 *1 (-458 *4 *3)) (-4 *3 (-1273 *4)))))
-(-10 -7 (-15 -4265 ((-114) |#2|)) (-15 -4487 (|#2| (-1297 |#1|))) (-15 -4292 (|#2| |#2|)) (-15 -3487 (|#2| |#2| |#1|)) (-15 -1948 (|#2| |#2| |#1|)) (-15 -2634 ((-758 (-793)) (-419 |#2|))) (-15 -4418 (|#2| (-948) (-419 |#2|))) (-15 -4283 ((-663 |#2|) (-948) (-419 |#2|))))
-((-3255 (((-793)) 59 T ELT)) (-4284 (((-793)) 29 (|has| |#1| (-418)) ELT) (((-793) (-793)) 28 (|has| |#1| (-418)) ELT)) (-2700 (((-560) |#1|) 25 (|has| |#1| (-418)) ELT)) (-4433 (((-560) |#1|) 27 (|has| |#1| (-418)) ELT)) (-2719 (((-793)) 58 T ELT) (((-793) (-793)) 57 T ELT)) (-2868 ((|#1| (-793) (-560)) 37 T ELT)) (-1505 (((-1303)) 61 T ELT)))
-(((-459 |#1|) (-10 -7 (-15 -2868 (|#1| (-793) (-560))) (-15 -2719 ((-793) (-793))) (-15 -2719 ((-793))) (-15 -3255 ((-793))) (-15 -1505 ((-1303))) (IF (|has| |#1| (-418)) (PROGN (-15 -4433 ((-560) |#1|)) (-15 -2700 ((-560) |#1|)) (-15 -4284 ((-793) (-793))) (-15 -4284 ((-793)))) |%noBranch|)) (-1080)) (T -459))
-((-4284 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080)))) (-4284 (*1 *2 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080)))) (-2700 (*1 *2 *3) (-12 (-5 *2 (-560)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080)))) (-4433 (*1 *2 *3) (-12 (-5 *2 (-560)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080)))) (-1505 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-459 *3)) (-4 *3 (-1080)))) (-3255 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1080)))) (-2719 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1080)))) (-2719 (*1 *2 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1080)))) (-2868 (*1 *2 *3 *4) (-12 (-5 *3 (-793)) (-5 *4 (-560)) (-5 *1 (-459 *2)) (-4 *2 (-1080)))))
-(-10 -7 (-15 -2868 (|#1| (-793) (-560))) (-15 -2719 ((-793) (-793))) (-15 -2719 ((-793))) (-15 -3255 ((-793))) (-15 -1505 ((-1303))) (IF (|has| |#1| (-418)) (PROGN (-15 -4433 ((-560) |#1|)) (-15 -2700 ((-560) |#1|)) (-15 -4284 ((-793) (-793))) (-15 -4284 ((-793)))) |%noBranch|))
-((-3792 (((-663 (-560)) (-560)) 76 T ELT)) (-4330 (((-114) (-171 (-560))) 82 T ELT)) (-4457 (((-419 (-171 (-560))) (-171 (-560))) 75 T ELT)))
-(((-460) (-10 -7 (-15 -4457 ((-419 (-171 (-560))) (-171 (-560)))) (-15 -3792 ((-663 (-560)) (-560))) (-15 -4330 ((-114) (-171 (-560)))))) (T -460))
-((-4330 (*1 *2 *3) (-12 (-5 *3 (-171 (-560))) (-5 *2 (-114)) (-5 *1 (-460)))) (-3792 (*1 *2 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-460)) (-5 *3 (-560)))) (-4457 (*1 *2 *3) (-12 (-5 *2 (-419 (-171 (-560)))) (-5 *1 (-460)) (-5 *3 (-171 (-560))))))
-(-10 -7 (-15 -4457 ((-419 (-171 (-560))) (-171 (-560)))) (-15 -3792 ((-663 (-560)) (-560))) (-15 -4330 ((-114) (-171 (-560)))))
-((-2309 ((|#4| |#4| (-663 |#4|)) 20 (|has| |#1| (-376)) ELT)) (-2546 (((-663 |#4|) (-663 |#4|) (-1189) (-1189)) 46 T ELT) (((-663 |#4|) (-663 |#4|) (-1189)) 45 T ELT) (((-663 |#4|) (-663 |#4|)) 34 T ELT)))
-(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2546 ((-663 |#4|) (-663 |#4|))) (-15 -2546 ((-663 |#4|) (-663 |#4|) (-1189))) (-15 -2546 ((-663 |#4|) (-663 |#4|) (-1189) (-1189))) (IF (|has| |#1| (-376)) (-15 -2309 (|#4| |#4| (-663 |#4|))) |%noBranch|)) (-466) (-815) (-871) (-979 |#1| |#2| |#3|)) (T -461))
-((-2309 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-979 *4 *5 *6)) (-4 *4 (-376)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-461 *4 *5 *6 *2)))) (-2546 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-1189)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-461 *4 *5 *6 *7)))) (-2546 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-1189)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-461 *4 *5 *6 *7)))) (-2546 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-461 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2546 ((-663 |#4|) (-663 |#4|))) (-15 -2546 ((-663 |#4|) (-663 |#4|) (-1189))) (-15 -2546 ((-663 |#4|) (-663 |#4|) (-1189) (-1189))) (IF (|has| |#1| (-376)) (-15 -2309 (|#4| |#4| (-663 |#4|))) |%noBranch|))
-((-1590 ((|#4| |#4| (-663 |#4|)) 82 T ELT)) (-2360 (((-663 |#4|) (-663 |#4|) (-1189) (-1189)) 22 T ELT) (((-663 |#4|) (-663 |#4|) (-1189)) 21 T ELT) (((-663 |#4|) (-663 |#4|)) 13 T ELT)))
-(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1590 (|#4| |#4| (-663 |#4|))) (-15 -2360 ((-663 |#4|) (-663 |#4|))) (-15 -2360 ((-663 |#4|) (-663 |#4|) (-1189))) (-15 -2360 ((-663 |#4|) (-663 |#4|) (-1189) (-1189)))) (-319) (-815) (-871) (-979 |#1| |#2| |#3|)) (T -462))
-((-2360 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-1189)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2360 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-1189)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2360 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-319)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-462 *3 *4 *5 *6)))) (-1590 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-979 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-462 *4 *5 *6 *2)))))
-(-10 -7 (-15 -1590 (|#4| |#4| (-663 |#4|))) (-15 -2360 ((-663 |#4|) (-663 |#4|))) (-15 -2360 ((-663 |#4|) (-663 |#4|) (-1189))) (-15 -2360 ((-663 |#4|) (-663 |#4|) (-1189) (-1189))))
-((-1898 (((-663 (-663 |#4|)) (-663 |#4|) (-114)) 89 T ELT) (((-663 (-663 |#4|)) (-663 |#4|)) 88 T ELT) (((-663 (-663 |#4|)) (-663 |#4|) (-663 |#4|) (-114)) 82 T ELT) (((-663 (-663 |#4|)) (-663 |#4|) (-663 |#4|)) 83 T ELT)) (-2290 (((-663 (-663 |#4|)) (-663 |#4|) (-114)) 55 T ELT) (((-663 (-663 |#4|)) (-663 |#4|)) 77 T ELT)))
-(((-463 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2290 ((-663 (-663 |#4|)) (-663 |#4|))) (-15 -2290 ((-663 (-663 |#4|)) (-663 |#4|) (-114))) (-15 -1898 ((-663 (-663 |#4|)) (-663 |#4|) (-663 |#4|))) (-15 -1898 ((-663 (-663 |#4|)) (-663 |#4|) (-663 |#4|) (-114))) (-15 -1898 ((-663 (-663 |#4|)) (-663 |#4|))) (-15 -1898 ((-663 (-663 |#4|)) (-663 |#4|) (-114)))) (-13 (-319) (-149)) (-815) (-871) (-979 |#1| |#2| |#3|)) (T -463))
-((-1898 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-663 (-663 *8))) (-5 *1 (-463 *5 *6 *7 *8)) (-5 *3 (-663 *8)))) (-1898 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-663 (-663 *7))) (-5 *1 (-463 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-1898 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-663 (-663 *8))) (-5 *1 (-463 *5 *6 *7 *8)) (-5 *3 (-663 *8)))) (-1898 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-663 (-663 *7))) (-5 *1 (-463 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-2290 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-663 (-663 *8))) (-5 *1 (-463 *5 *6 *7 *8)) (-5 *3 (-663 *8)))) (-2290 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-663 (-663 *7))) (-5 *1 (-463 *4 *5 *6 *7)) (-5 *3 (-663 *7)))))
-(-10 -7 (-15 -2290 ((-663 (-663 |#4|)) (-663 |#4|))) (-15 -2290 ((-663 (-663 |#4|)) (-663 |#4|) (-114))) (-15 -1898 ((-663 (-663 |#4|)) (-663 |#4|) (-663 |#4|))) (-15 -1898 ((-663 (-663 |#4|)) (-663 |#4|) (-663 |#4|) (-114))) (-15 -1898 ((-663 (-663 |#4|)) (-663 |#4|))) (-15 -1898 ((-663 (-663 |#4|)) (-663 |#4|) (-114))))
-((-1699 (((-793) |#4|) 12 T ELT)) (-1838 (((-663 (-2 (|:| |totdeg| (-793)) (|:| -2738 |#4|))) |#4| (-793) (-663 (-2 (|:| |totdeg| (-793)) (|:| -2738 |#4|)))) 39 T ELT)) (-2697 (((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-4193 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-1419 ((|#4| |#4| (-663 |#4|)) 54 T ELT)) (-2906 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-663 |#4|)) 96 T ELT)) (-3605 (((-1303) |#4|) 59 T ELT)) (-3998 (((-1303) (-663 |#4|)) 69 T ELT)) (-3687 (((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560)) 66 T ELT)) (-4196 (((-1303) (-560)) 110 T ELT)) (-3782 (((-663 |#4|) (-663 |#4|)) 104 T ELT)) (-1464 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-793)) (|:| -2738 |#4|)) |#4| (-793)) 31 T ELT)) (-2216 (((-560) |#4|) 109 T ELT)) (-2179 ((|#4| |#4|) 37 T ELT)) (-2027 (((-663 |#4|) (-663 |#4|) (-560) (-560)) 74 T ELT)) (-2749 (((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560) (-560)) 123 T ELT)) (-4138 (((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-2354 (((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-2072 (((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-2642 (((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-3540 (((-114) |#2| |#2|) 75 T ELT)) (-1936 (((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-3682 (((-114) |#2| |#2| |#2| |#2|) 80 T ELT)) (-3427 ((|#4| |#4| (-663 |#4|)) 97 T ELT)))
-(((-464 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3427 (|#4| |#4| (-663 |#4|))) (-15 -1419 (|#4| |#4| (-663 |#4|))) (-15 -2027 ((-663 |#4|) (-663 |#4|) (-560) (-560))) (-15 -2354 ((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3540 ((-114) |#2| |#2|)) (-15 -3682 ((-114) |#2| |#2| |#2| |#2|)) (-15 -1936 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2642 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2072 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2906 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-663 |#4|))) (-15 -2179 (|#4| |#4|)) (-15 -1838 ((-663 (-2 (|:| |totdeg| (-793)) (|:| -2738 |#4|))) |#4| (-793) (-663 (-2 (|:| |totdeg| (-793)) (|:| -2738 |#4|))))) (-15 -4193 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2697 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3782 ((-663 |#4|) (-663 |#4|))) (-15 -2216 ((-560) |#4|)) (-15 -3605 ((-1303) |#4|)) (-15 -3687 ((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560))) (-15 -2749 ((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560) (-560))) (-15 -3998 ((-1303) (-663 |#4|))) (-15 -4196 ((-1303) (-560))) (-15 -4138 ((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1464 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-793)) (|:| -2738 |#4|)) |#4| (-793))) (-15 -1699 ((-793) |#4|))) (-466) (-815) (-871) (-979 |#1| |#2| |#3|)) (T -464))
-((-1699 (*1 *2 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-793)) (-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-1464 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-793)) (|:| -2738 *4))) (-5 *5 (-793)) (-4 *4 (-979 *6 *7 *8)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-464 *6 *7 *8 *4)))) (-4138 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-815)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-464 *4 *5 *6 *7)))) (-4196 (*1 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1303)) (-5 *1 (-464 *4 *5 *6 *7)) (-4 *7 (-979 *4 *5 *6)))) (-3998 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1303)) (-5 *1 (-464 *4 *5 *6 *7)))) (-2749 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-793)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-815)) (-4 *4 (-979 *5 *6 *7)) (-4 *5 (-466)) (-4 *7 (-871)) (-5 *1 (-464 *5 *6 *7 *4)))) (-3687 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-793)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-815)) (-4 *4 (-979 *5 *6 *7)) (-4 *5 (-466)) (-4 *7 (-871)) (-5 *1 (-464 *5 *6 *7 *4)))) (-3605 (*1 *2 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1303)) (-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-2216 (*1 *2 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-560)) (-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-3782 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-464 *3 *4 *5 *6)))) (-2697 (*1 *2 *2 *2) (-12 (-5 *2 (-663 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-793)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-815)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-466)) (-4 *5 (-871)) (-5 *1 (-464 *3 *4 *5 *6)))) (-4193 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-815)) (-4 *2 (-979 *4 *5 *6)) (-5 *1 (-464 *4 *5 *6 *2)) (-4 *4 (-466)) (-4 *6 (-871)))) (-1838 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-663 (-2 (|:| |totdeg| (-793)) (|:| -2738 *3)))) (-5 *4 (-793)) (-4 *3 (-979 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-464 *5 *6 *7 *3)))) (-2179 (*1 *2 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-464 *3 *4 *5 *2)) (-4 *2 (-979 *3 *4 *5)))) (-2906 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *3)) (-4 *3 (-979 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-464 *5 *6 *7 *3)))) (-2072 (*1 *2 *3 *2) (-12 (-5 *2 (-663 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-793)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-815)) (-4 *6 (-979 *4 *3 *5)) (-4 *4 (-466)) (-4 *5 (-871)) (-5 *1 (-464 *4 *3 *5 *6)))) (-2642 (*1 *2 *2) (-12 (-5 *2 (-663 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-793)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-815)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-466)) (-4 *5 (-871)) (-5 *1 (-464 *3 *4 *5 *6)))) (-1936 (*1 *2 *3 *2) (-12 (-5 *2 (-663 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-815)) (-4 *3 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-871)) (-5 *1 (-464 *4 *5 *6 *3)))) (-3682 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-466)) (-4 *3 (-815)) (-4 *5 (-871)) (-5 *2 (-114)) (-5 *1 (-464 *4 *3 *5 *6)) (-4 *6 (-979 *4 *3 *5)))) (-3540 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *3 (-815)) (-4 *5 (-871)) (-5 *2 (-114)) (-5 *1 (-464 *4 *3 *5 *6)) (-4 *6 (-979 *4 *3 *5)))) (-2354 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-815)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-464 *4 *5 *6 *7)))) (-2027 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-560)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-464 *4 *5 *6 *7)))) (-1419 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-464 *4 *5 *6 *2)))) (-3427 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-464 *4 *5 *6 *2)))))
-(-10 -7 (-15 -3427 (|#4| |#4| (-663 |#4|))) (-15 -1419 (|#4| |#4| (-663 |#4|))) (-15 -2027 ((-663 |#4|) (-663 |#4|) (-560) (-560))) (-15 -2354 ((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3540 ((-114) |#2| |#2|)) (-15 -3682 ((-114) |#2| |#2| |#2| |#2|)) (-15 -1936 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2642 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2072 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2906 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-663 |#4|))) (-15 -2179 (|#4| |#4|)) (-15 -1838 ((-663 (-2 (|:| |totdeg| (-793)) (|:| -2738 |#4|))) |#4| (-793) (-663 (-2 (|:| |totdeg| (-793)) (|:| -2738 |#4|))))) (-15 -4193 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2697 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3782 ((-663 |#4|) (-663 |#4|))) (-15 -2216 ((-560) |#4|)) (-15 -3605 ((-1303) |#4|)) (-15 -3687 ((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560))) (-15 -2749 ((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560) (-560))) (-15 -3998 ((-1303) (-663 |#4|))) (-15 -4196 ((-1303) (-560))) (-15 -4138 ((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1464 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-793)) (|:| -2738 |#4|)) |#4| (-793))) (-15 -1699 ((-793) |#4|)))
-((-2093 (($ $ $) 14 T ELT) (($ (-663 $)) 21 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 46 T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) 22 T ELT)))
-(((-465 |#1|) (-10 -8 (-15 -1882 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|))) (-15 -2093 (|#1| (-663 |#1|))) (-15 -2093 (|#1| |#1| |#1|)) (-15 -2132 (|#1| (-663 |#1|))) (-15 -2132 (|#1| |#1| |#1|))) (-466)) (T -465))
-NIL
-(-10 -8 (-15 -1882 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|))) (-15 -2093 (|#1| (-663 |#1|))) (-15 -2093 (|#1| |#1| |#1|)) (-15 -2132 (|#1| (-663 |#1|))) (-15 -2132 (|#1| |#1| |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-3244 (($ $) 46 T ELT)) (-4093 (((-114) $) 44 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-2093 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-2132 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-1528 (((-3 $ "failed") $ $) 48 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 45 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
+((-3850 (((-114)) 18 T ELT)) (-1732 (((-114) (-114)) 19 T ELT)) (-3176 (((-114)) 14 T ELT)) (-3915 (((-114) (-114)) 15 T ELT)) (-3023 (((-114)) 16 T ELT)) (-3343 (((-114) (-114)) 17 T ELT)) (-2682 (((-948) (-948)) 22 T ELT) (((-948)) 21 T ELT)) (-3506 (((-793) (-663 (-2 (|:| -4012 |#1|) (|:| -3900 (-560))))) 52 T ELT)) (-2585 (((-948) (-948)) 24 T ELT) (((-948)) 23 T ELT)) (-1496 (((-2 (|:| -1682 (-560)) (|:| -2609 (-663 |#1|))) |#1|) 94 T ELT)) (-1884 (((-419 |#1|) (-2 (|:| |contp| (-560)) (|:| -2609 (-663 (-2 (|:| |irr| |#1|) (|:| -4181 (-560))))))) 174 T ELT)) (-4197 (((-2 (|:| |contp| (-560)) (|:| -2609 (-663 (-2 (|:| |irr| |#1|) (|:| -4181 (-560)))))) |#1| (-114)) 207 T ELT)) (-2669 (((-419 |#1|) |#1| (-793) (-793)) 222 T ELT) (((-419 |#1|) |#1| (-663 (-793)) (-793)) 219 T ELT) (((-419 |#1|) |#1| (-663 (-793))) 221 T ELT) (((-419 |#1|) |#1| (-793)) 220 T ELT) (((-419 |#1|) |#1|) 218 T ELT)) (-2611 (((-3 |#1| "failed") (-948) |#1| (-663 (-793)) (-793) (-114)) 224 T ELT) (((-3 |#1| "failed") (-948) |#1| (-663 (-793)) (-793)) 225 T ELT) (((-3 |#1| "failed") (-948) |#1| (-663 (-793))) 227 T ELT) (((-3 |#1| "failed") (-948) |#1| (-793)) 226 T ELT) (((-3 |#1| "failed") (-948) |#1|) 228 T ELT)) (-4012 (((-419 |#1|) |#1| (-793) (-793)) 217 T ELT) (((-419 |#1|) |#1| (-663 (-793)) (-793)) 213 T ELT) (((-419 |#1|) |#1| (-663 (-793))) 215 T ELT) (((-419 |#1|) |#1| (-793)) 214 T ELT) (((-419 |#1|) |#1|) 212 T ELT)) (-3442 (((-114) |#1|) 44 T ELT)) (-3027 (((-758 (-793)) (-663 (-2 (|:| -4012 |#1|) (|:| -3900 (-560))))) 99 T ELT)) (-4409 (((-2 (|:| |contp| (-560)) (|:| -2609 (-663 (-2 (|:| |irr| |#1|) (|:| -4181 (-560)))))) |#1| (-114) (-1128 (-793)) (-793)) 211 T ELT)))
+(((-456 |#1|) (-10 -7 (-15 -1884 ((-419 |#1|) (-2 (|:| |contp| (-560)) (|:| -2609 (-663 (-2 (|:| |irr| |#1|) (|:| -4181 (-560)))))))) (-15 -3027 ((-758 (-793)) (-663 (-2 (|:| -4012 |#1|) (|:| -3900 (-560)))))) (-15 -2585 ((-948))) (-15 -2585 ((-948) (-948))) (-15 -2682 ((-948))) (-15 -2682 ((-948) (-948))) (-15 -3506 ((-793) (-663 (-2 (|:| -4012 |#1|) (|:| -3900 (-560)))))) (-15 -1496 ((-2 (|:| -1682 (-560)) (|:| -2609 (-663 |#1|))) |#1|)) (-15 -3850 ((-114))) (-15 -1732 ((-114) (-114))) (-15 -3176 ((-114))) (-15 -3915 ((-114) (-114))) (-15 -3442 ((-114) |#1|)) (-15 -3023 ((-114))) (-15 -3343 ((-114) (-114))) (-15 -4012 ((-419 |#1|) |#1|)) (-15 -4012 ((-419 |#1|) |#1| (-793))) (-15 -4012 ((-419 |#1|) |#1| (-663 (-793)))) (-15 -4012 ((-419 |#1|) |#1| (-663 (-793)) (-793))) (-15 -4012 ((-419 |#1|) |#1| (-793) (-793))) (-15 -2669 ((-419 |#1|) |#1|)) (-15 -2669 ((-419 |#1|) |#1| (-793))) (-15 -2669 ((-419 |#1|) |#1| (-663 (-793)))) (-15 -2669 ((-419 |#1|) |#1| (-663 (-793)) (-793))) (-15 -2669 ((-419 |#1|) |#1| (-793) (-793))) (-15 -2611 ((-3 |#1| "failed") (-948) |#1|)) (-15 -2611 ((-3 |#1| "failed") (-948) |#1| (-793))) (-15 -2611 ((-3 |#1| "failed") (-948) |#1| (-663 (-793)))) (-15 -2611 ((-3 |#1| "failed") (-948) |#1| (-663 (-793)) (-793))) (-15 -2611 ((-3 |#1| "failed") (-948) |#1| (-663 (-793)) (-793) (-114))) (-15 -4197 ((-2 (|:| |contp| (-560)) (|:| -2609 (-663 (-2 (|:| |irr| |#1|) (|:| -4181 (-560)))))) |#1| (-114))) (-15 -4409 ((-2 (|:| |contp| (-560)) (|:| -2609 (-663 (-2 (|:| |irr| |#1|) (|:| -4181 (-560)))))) |#1| (-114) (-1128 (-793)) (-793)))) (-1273 (-560))) (T -456))
+((-4409 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-1128 (-793))) (-5 *6 (-793)) (-5 *2 (-2 (|:| |contp| (-560)) (|:| -2609 (-663 (-2 (|:| |irr| *3) (|:| -4181 (-560))))))) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-4197 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *2 (-2 (|:| |contp| (-560)) (|:| -2609 (-663 (-2 (|:| |irr| *3) (|:| -4181 (-560))))))) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-2611 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-948)) (-5 *4 (-663 (-793))) (-5 *5 (-793)) (-5 *6 (-114)) (-5 *1 (-456 *2)) (-4 *2 (-1273 (-560))))) (-2611 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-948)) (-5 *4 (-663 (-793))) (-5 *5 (-793)) (-5 *1 (-456 *2)) (-4 *2 (-1273 (-560))))) (-2611 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-948)) (-5 *4 (-663 (-793))) (-5 *1 (-456 *2)) (-4 *2 (-1273 (-560))))) (-2611 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-948)) (-5 *4 (-793)) (-5 *1 (-456 *2)) (-4 *2 (-1273 (-560))))) (-2611 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-948)) (-5 *1 (-456 *2)) (-4 *2 (-1273 (-560))))) (-2669 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-2669 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-663 (-793))) (-5 *5 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-2669 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-793))) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-2669 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-2669 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-4012 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-4012 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-663 (-793))) (-5 *5 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-4012 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-793))) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-4012 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-4012 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-3343 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-3023 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-3442 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-3176 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-1732 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-3850 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-1496 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1682 (-560)) (|:| -2609 (-663 *3)))) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-3506 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -4012 *4) (|:| -3900 (-560))))) (-4 *4 (-1273 (-560))) (-5 *2 (-793)) (-5 *1 (-456 *4)))) (-2682 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-2682 (*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-2585 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-2585 (*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))) (-3027 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -4012 *4) (|:| -3900 (-560))))) (-4 *4 (-1273 (-560))) (-5 *2 (-758 (-793))) (-5 *1 (-456 *4)))) (-1884 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-560)) (|:| -2609 (-663 (-2 (|:| |irr| *4) (|:| -4181 (-560))))))) (-4 *4 (-1273 (-560))) (-5 *2 (-419 *4)) (-5 *1 (-456 *4)))))
+(-10 -7 (-15 -1884 ((-419 |#1|) (-2 (|:| |contp| (-560)) (|:| -2609 (-663 (-2 (|:| |irr| |#1|) (|:| -4181 (-560)))))))) (-15 -3027 ((-758 (-793)) (-663 (-2 (|:| -4012 |#1|) (|:| -3900 (-560)))))) (-15 -2585 ((-948))) (-15 -2585 ((-948) (-948))) (-15 -2682 ((-948))) (-15 -2682 ((-948) (-948))) (-15 -3506 ((-793) (-663 (-2 (|:| -4012 |#1|) (|:| -3900 (-560)))))) (-15 -1496 ((-2 (|:| -1682 (-560)) (|:| -2609 (-663 |#1|))) |#1|)) (-15 -3850 ((-114))) (-15 -1732 ((-114) (-114))) (-15 -3176 ((-114))) (-15 -3915 ((-114) (-114))) (-15 -3442 ((-114) |#1|)) (-15 -3023 ((-114))) (-15 -3343 ((-114) (-114))) (-15 -4012 ((-419 |#1|) |#1|)) (-15 -4012 ((-419 |#1|) |#1| (-793))) (-15 -4012 ((-419 |#1|) |#1| (-663 (-793)))) (-15 -4012 ((-419 |#1|) |#1| (-663 (-793)) (-793))) (-15 -4012 ((-419 |#1|) |#1| (-793) (-793))) (-15 -2669 ((-419 |#1|) |#1|)) (-15 -2669 ((-419 |#1|) |#1| (-793))) (-15 -2669 ((-419 |#1|) |#1| (-663 (-793)))) (-15 -2669 ((-419 |#1|) |#1| (-663 (-793)) (-793))) (-15 -2669 ((-419 |#1|) |#1| (-793) (-793))) (-15 -2611 ((-3 |#1| "failed") (-948) |#1|)) (-15 -2611 ((-3 |#1| "failed") (-948) |#1| (-793))) (-15 -2611 ((-3 |#1| "failed") (-948) |#1| (-663 (-793)))) (-15 -2611 ((-3 |#1| "failed") (-948) |#1| (-663 (-793)) (-793))) (-15 -2611 ((-3 |#1| "failed") (-948) |#1| (-663 (-793)) (-793) (-114))) (-15 -4197 ((-2 (|:| |contp| (-560)) (|:| -2609 (-663 (-2 (|:| |irr| |#1|) (|:| -4181 (-560)))))) |#1| (-114))) (-15 -4409 ((-2 (|:| |contp| (-560)) (|:| -2609 (-663 (-2 (|:| |irr| |#1|) (|:| -4181 (-560)))))) |#1| (-114) (-1128 (-793)) (-793))))
+((-2827 (((-560) |#2|) 52 T ELT) (((-560) |#2| (-793)) 51 T ELT)) (-1723 (((-560) |#2|) 64 T ELT)) (-3347 ((|#3| |#2|) 26 T ELT)) (-2084 ((|#3| |#2| (-948)) 15 T ELT)) (-2946 ((|#3| |#2|) 16 T ELT)) (-4065 ((|#3| |#2|) 9 T ELT)) (-3827 ((|#3| |#2|) 10 T ELT)) (-2160 ((|#3| |#2| (-948)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-1488 (((-560) |#2|) 66 T ELT)))
+(((-457 |#1| |#2| |#3|) (-10 -7 (-15 -1488 ((-560) |#2|)) (-15 -2160 (|#3| |#2|)) (-15 -2160 (|#3| |#2| (-948))) (-15 -1723 ((-560) |#2|)) (-15 -2827 ((-560) |#2| (-793))) (-15 -2827 ((-560) |#2|)) (-15 -2084 (|#3| |#2| (-948))) (-15 -3347 (|#3| |#2|)) (-15 -4065 (|#3| |#2|)) (-15 -3827 (|#3| |#2|)) (-15 -2946 (|#3| |#2|))) (-1080) (-1273 |#1|) (-13 (-418) (-1069 |#1|) (-376) (-1233) (-296))) (T -457))
+((-2946 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))) (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-3827 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))) (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-4065 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))) (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-3347 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))) (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-2084 (*1 *2 *3 *4) (-12 (-5 *4 (-948)) (-4 *5 (-1080)) (-4 *2 (-13 (-418) (-1069 *5) (-376) (-1233) (-296))) (-5 *1 (-457 *5 *3 *2)) (-4 *3 (-1273 *5)))) (-2827 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-5 *2 (-560)) (-5 *1 (-457 *4 *3 *5)) (-4 *3 (-1273 *4)) (-4 *5 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))))) (-2827 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-1080)) (-5 *2 (-560)) (-5 *1 (-457 *5 *3 *6)) (-4 *3 (-1273 *5)) (-4 *6 (-13 (-418) (-1069 *5) (-376) (-1233) (-296))))) (-1723 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-5 *2 (-560)) (-5 *1 (-457 *4 *3 *5)) (-4 *3 (-1273 *4)) (-4 *5 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))))) (-2160 (*1 *2 *3 *4) (-12 (-5 *4 (-948)) (-4 *5 (-1080)) (-4 *2 (-13 (-418) (-1069 *5) (-376) (-1233) (-296))) (-5 *1 (-457 *5 *3 *2)) (-4 *3 (-1273 *5)))) (-2160 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))) (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1273 *4)))) (-1488 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-5 *2 (-560)) (-5 *1 (-457 *4 *3 *5)) (-4 *3 (-1273 *4)) (-4 *5 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))))))
+(-10 -7 (-15 -1488 ((-560) |#2|)) (-15 -2160 (|#3| |#2|)) (-15 -2160 (|#3| |#2| (-948))) (-15 -1723 ((-560) |#2|)) (-15 -2827 ((-560) |#2| (-793))) (-15 -2827 ((-560) |#2|)) (-15 -2084 (|#3| |#2| (-948))) (-15 -3347 (|#3| |#2|)) (-15 -4065 (|#3| |#2|)) (-15 -3827 (|#3| |#2|)) (-15 -2946 (|#3| |#2|)))
+((-1975 ((|#2| (-1297 |#1|)) 42 T ELT)) (-3764 ((|#2| |#2| |#1|) 58 T ELT)) (-1744 ((|#2| |#2| |#1|) 49 T ELT)) (-4374 ((|#2| |#2|) 44 T ELT)) (-3838 (((-114) |#2|) 32 T ELT)) (-4005 (((-663 |#2|) (-948) (-419 |#2|)) 21 T ELT)) (-2611 ((|#2| (-948) (-419 |#2|)) 25 T ELT)) (-3027 (((-758 (-793)) (-419 |#2|)) 29 T ELT)))
+(((-458 |#1| |#2|) (-10 -7 (-15 -3838 ((-114) |#2|)) (-15 -1975 (|#2| (-1297 |#1|))) (-15 -4374 (|#2| |#2|)) (-15 -1744 (|#2| |#2| |#1|)) (-15 -3764 (|#2| |#2| |#1|)) (-15 -3027 ((-758 (-793)) (-419 |#2|))) (-15 -2611 (|#2| (-948) (-419 |#2|))) (-15 -4005 ((-663 |#2|) (-948) (-419 |#2|)))) (-1080) (-1273 |#1|)) (T -458))
+((-4005 (*1 *2 *3 *4) (-12 (-5 *3 (-948)) (-5 *4 (-419 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-1080)) (-5 *2 (-663 *6)) (-5 *1 (-458 *5 *6)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *3 (-948)) (-5 *4 (-419 *2)) (-4 *2 (-1273 *5)) (-5 *1 (-458 *5 *2)) (-4 *5 (-1080)))) (-3027 (*1 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-1080)) (-5 *2 (-758 (-793))) (-5 *1 (-458 *4 *5)))) (-3764 (*1 *2 *2 *3) (-12 (-4 *3 (-1080)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1273 *3)))) (-1744 (*1 *2 *2 *3) (-12 (-4 *3 (-1080)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1273 *3)))) (-4374 (*1 *2 *2) (-12 (-4 *3 (-1080)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1273 *3)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-1080)) (-4 *2 (-1273 *4)) (-5 *1 (-458 *4 *2)))) (-3838 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-5 *2 (-114)) (-5 *1 (-458 *4 *3)) (-4 *3 (-1273 *4)))))
+(-10 -7 (-15 -3838 ((-114) |#2|)) (-15 -1975 (|#2| (-1297 |#1|))) (-15 -4374 (|#2| |#2|)) (-15 -1744 (|#2| |#2| |#1|)) (-15 -3764 (|#2| |#2| |#1|)) (-15 -3027 ((-758 (-793)) (-419 |#2|))) (-15 -2611 (|#2| (-948) (-419 |#2|))) (-15 -4005 ((-663 |#2|) (-948) (-419 |#2|))))
+((-4464 (((-793)) 59 T ELT)) (-4014 (((-793)) 29 (|has| |#1| (-418)) ELT) (((-793) (-793)) 28 (|has| |#1| (-418)) ELT)) (-2448 (((-560) |#1|) 25 (|has| |#1| (-418)) ELT)) (-2716 (((-560) |#1|) 27 (|has| |#1| (-418)) ELT)) (-2642 (((-793)) 58 T ELT) (((-793) (-793)) 57 T ELT)) (-3641 ((|#1| (-793) (-560)) 37 T ELT)) (-3116 (((-1303)) 61 T ELT)))
+(((-459 |#1|) (-10 -7 (-15 -3641 (|#1| (-793) (-560))) (-15 -2642 ((-793) (-793))) (-15 -2642 ((-793))) (-15 -4464 ((-793))) (-15 -3116 ((-1303))) (IF (|has| |#1| (-418)) (PROGN (-15 -2716 ((-560) |#1|)) (-15 -2448 ((-560) |#1|)) (-15 -4014 ((-793) (-793))) (-15 -4014 ((-793)))) |%noBranch|)) (-1080)) (T -459))
+((-4014 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080)))) (-4014 (*1 *2 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080)))) (-2448 (*1 *2 *3) (-12 (-5 *2 (-560)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080)))) (-2716 (*1 *2 *3) (-12 (-5 *2 (-560)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080)))) (-3116 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-459 *3)) (-4 *3 (-1080)))) (-4464 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1080)))) (-2642 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1080)))) (-2642 (*1 *2 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1080)))) (-3641 (*1 *2 *3 *4) (-12 (-5 *3 (-793)) (-5 *4 (-560)) (-5 *1 (-459 *2)) (-4 *2 (-1080)))))
+(-10 -7 (-15 -3641 (|#1| (-793) (-560))) (-15 -2642 ((-793) (-793))) (-15 -2642 ((-793))) (-15 -4464 ((-793))) (-15 -3116 ((-1303))) (IF (|has| |#1| (-418)) (PROGN (-15 -2716 ((-560) |#1|)) (-15 -2448 ((-560) |#1|)) (-15 -4014 ((-793) (-793))) (-15 -4014 ((-793)))) |%noBranch|))
+((-1593 (((-663 (-560)) (-560)) 76 T ELT)) (-3141 (((-114) (-171 (-560))) 82 T ELT)) (-4012 (((-419 (-171 (-560))) (-171 (-560))) 75 T ELT)))
+(((-460) (-10 -7 (-15 -4012 ((-419 (-171 (-560))) (-171 (-560)))) (-15 -1593 ((-663 (-560)) (-560))) (-15 -3141 ((-114) (-171 (-560)))))) (T -460))
+((-3141 (*1 *2 *3) (-12 (-5 *3 (-171 (-560))) (-5 *2 (-114)) (-5 *1 (-460)))) (-1593 (*1 *2 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-460)) (-5 *3 (-560)))) (-4012 (*1 *2 *3) (-12 (-5 *2 (-419 (-171 (-560)))) (-5 *1 (-460)) (-5 *3 (-171 (-560))))))
+(-10 -7 (-15 -4012 ((-419 (-171 (-560))) (-171 (-560)))) (-15 -1593 ((-663 (-560)) (-560))) (-15 -3141 ((-114) (-171 (-560)))))
+((-2970 ((|#4| |#4| (-663 |#4|)) 20 (|has| |#1| (-376)) ELT)) (-3409 (((-663 |#4|) (-663 |#4|) (-1189) (-1189)) 46 T ELT) (((-663 |#4|) (-663 |#4|) (-1189)) 45 T ELT) (((-663 |#4|) (-663 |#4|)) 34 T ELT)))
+(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3409 ((-663 |#4|) (-663 |#4|))) (-15 -3409 ((-663 |#4|) (-663 |#4|) (-1189))) (-15 -3409 ((-663 |#4|) (-663 |#4|) (-1189) (-1189))) (IF (|has| |#1| (-376)) (-15 -2970 (|#4| |#4| (-663 |#4|))) |%noBranch|)) (-466) (-815) (-871) (-979 |#1| |#2| |#3|)) (T -461))
+((-2970 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-979 *4 *5 *6)) (-4 *4 (-376)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-461 *4 *5 *6 *2)))) (-3409 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-1189)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-461 *4 *5 *6 *7)))) (-3409 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-1189)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-461 *4 *5 *6 *7)))) (-3409 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-461 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3409 ((-663 |#4|) (-663 |#4|))) (-15 -3409 ((-663 |#4|) (-663 |#4|) (-1189))) (-15 -3409 ((-663 |#4|) (-663 |#4|) (-1189) (-1189))) (IF (|has| |#1| (-376)) (-15 -2970 (|#4| |#4| (-663 |#4|))) |%noBranch|))
+((-3283 ((|#4| |#4| (-663 |#4|)) 82 T ELT)) (-2211 (((-663 |#4|) (-663 |#4|) (-1189) (-1189)) 22 T ELT) (((-663 |#4|) (-663 |#4|) (-1189)) 21 T ELT) (((-663 |#4|) (-663 |#4|)) 13 T ELT)))
+(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3283 (|#4| |#4| (-663 |#4|))) (-15 -2211 ((-663 |#4|) (-663 |#4|))) (-15 -2211 ((-663 |#4|) (-663 |#4|) (-1189))) (-15 -2211 ((-663 |#4|) (-663 |#4|) (-1189) (-1189)))) (-319) (-815) (-871) (-979 |#1| |#2| |#3|)) (T -462))
+((-2211 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-1189)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2211 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-1189)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2211 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-319)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-462 *3 *4 *5 *6)))) (-3283 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-979 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-462 *4 *5 *6 *2)))))
+(-10 -7 (-15 -3283 (|#4| |#4| (-663 |#4|))) (-15 -2211 ((-663 |#4|) (-663 |#4|))) (-15 -2211 ((-663 |#4|) (-663 |#4|) (-1189))) (-15 -2211 ((-663 |#4|) (-663 |#4|) (-1189) (-1189))))
+((-1374 (((-663 (-663 |#4|)) (-663 |#4|) (-114)) 89 T ELT) (((-663 (-663 |#4|)) (-663 |#4|)) 88 T ELT) (((-663 (-663 |#4|)) (-663 |#4|) (-663 |#4|) (-114)) 82 T ELT) (((-663 (-663 |#4|)) (-663 |#4|) (-663 |#4|)) 83 T ELT)) (-2779 (((-663 (-663 |#4|)) (-663 |#4|) (-114)) 55 T ELT) (((-663 (-663 |#4|)) (-663 |#4|)) 77 T ELT)))
+(((-463 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2779 ((-663 (-663 |#4|)) (-663 |#4|))) (-15 -2779 ((-663 (-663 |#4|)) (-663 |#4|) (-114))) (-15 -1374 ((-663 (-663 |#4|)) (-663 |#4|) (-663 |#4|))) (-15 -1374 ((-663 (-663 |#4|)) (-663 |#4|) (-663 |#4|) (-114))) (-15 -1374 ((-663 (-663 |#4|)) (-663 |#4|))) (-15 -1374 ((-663 (-663 |#4|)) (-663 |#4|) (-114)))) (-13 (-319) (-149)) (-815) (-871) (-979 |#1| |#2| |#3|)) (T -463))
+((-1374 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-663 (-663 *8))) (-5 *1 (-463 *5 *6 *7 *8)) (-5 *3 (-663 *8)))) (-1374 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-663 (-663 *7))) (-5 *1 (-463 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-1374 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-663 (-663 *8))) (-5 *1 (-463 *5 *6 *7 *8)) (-5 *3 (-663 *8)))) (-1374 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-663 (-663 *7))) (-5 *1 (-463 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-2779 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-663 (-663 *8))) (-5 *1 (-463 *5 *6 *7 *8)) (-5 *3 (-663 *8)))) (-2779 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-663 (-663 *7))) (-5 *1 (-463 *4 *5 *6 *7)) (-5 *3 (-663 *7)))))
+(-10 -7 (-15 -2779 ((-663 (-663 |#4|)) (-663 |#4|))) (-15 -2779 ((-663 (-663 |#4|)) (-663 |#4|) (-114))) (-15 -1374 ((-663 (-663 |#4|)) (-663 |#4|) (-663 |#4|))) (-15 -1374 ((-663 (-663 |#4|)) (-663 |#4|) (-663 |#4|) (-114))) (-15 -1374 ((-663 (-663 |#4|)) (-663 |#4|))) (-15 -1374 ((-663 (-663 |#4|)) (-663 |#4|) (-114))))
+((-3112 (((-793) |#4|) 12 T ELT)) (-2007 (((-663 (-2 (|:| |totdeg| (-793)) (|:| -1617 |#4|))) |#4| (-793) (-663 (-2 (|:| |totdeg| (-793)) (|:| -1617 |#4|)))) 39 T ELT)) (-2414 (((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-4385 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-3770 ((|#4| |#4| (-663 |#4|)) 54 T ELT)) (-4040 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-663 |#4|)) 96 T ELT)) (-3646 (((-1303) |#4|) 59 T ELT)) (-2959 (((-1303) (-663 |#4|)) 69 T ELT)) (-3189 (((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560)) 66 T ELT)) (-4416 (((-1303) (-560)) 110 T ELT)) (-1510 (((-663 |#4|) (-663 |#4|)) 104 T ELT)) (-1336 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-793)) (|:| -1617 |#4|)) |#4| (-793)) 31 T ELT)) (-1407 (((-560) |#4|) 109 T ELT)) (-4237 ((|#4| |#4|) 37 T ELT)) (-3257 (((-663 |#4|) (-663 |#4|) (-560) (-560)) 74 T ELT)) (-1697 (((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560) (-560)) 123 T ELT)) (-1891 (((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-2159 (((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-2445 (((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-3108 (((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-4222 (((-114) |#2| |#2|) 75 T ELT)) (-3656 (((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-3139 (((-114) |#2| |#2| |#2| |#2|) 80 T ELT)) (-2409 ((|#4| |#4| (-663 |#4|)) 97 T ELT)))
+(((-464 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2409 (|#4| |#4| (-663 |#4|))) (-15 -3770 (|#4| |#4| (-663 |#4|))) (-15 -3257 ((-663 |#4|) (-663 |#4|) (-560) (-560))) (-15 -2159 ((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4222 ((-114) |#2| |#2|)) (-15 -3139 ((-114) |#2| |#2| |#2| |#2|)) (-15 -3656 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3108 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2445 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4040 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-663 |#4|))) (-15 -4237 (|#4| |#4|)) (-15 -2007 ((-663 (-2 (|:| |totdeg| (-793)) (|:| -1617 |#4|))) |#4| (-793) (-663 (-2 (|:| |totdeg| (-793)) (|:| -1617 |#4|))))) (-15 -4385 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2414 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1510 ((-663 |#4|) (-663 |#4|))) (-15 -1407 ((-560) |#4|)) (-15 -3646 ((-1303) |#4|)) (-15 -3189 ((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560))) (-15 -1697 ((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560) (-560))) (-15 -2959 ((-1303) (-663 |#4|))) (-15 -4416 ((-1303) (-560))) (-15 -1891 ((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1336 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-793)) (|:| -1617 |#4|)) |#4| (-793))) (-15 -3112 ((-793) |#4|))) (-466) (-815) (-871) (-979 |#1| |#2| |#3|)) (T -464))
+((-3112 (*1 *2 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-793)) (-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-1336 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-793)) (|:| -1617 *4))) (-5 *5 (-793)) (-4 *4 (-979 *6 *7 *8)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-464 *6 *7 *8 *4)))) (-1891 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-815)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-464 *4 *5 *6 *7)))) (-4416 (*1 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1303)) (-5 *1 (-464 *4 *5 *6 *7)) (-4 *7 (-979 *4 *5 *6)))) (-2959 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1303)) (-5 *1 (-464 *4 *5 *6 *7)))) (-1697 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-793)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-815)) (-4 *4 (-979 *5 *6 *7)) (-4 *5 (-466)) (-4 *7 (-871)) (-5 *1 (-464 *5 *6 *7 *4)))) (-3189 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-793)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-815)) (-4 *4 (-979 *5 *6 *7)) (-4 *5 (-466)) (-4 *7 (-871)) (-5 *1 (-464 *5 *6 *7 *4)))) (-3646 (*1 *2 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1303)) (-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-1407 (*1 *2 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-560)) (-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-1510 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-464 *3 *4 *5 *6)))) (-2414 (*1 *2 *2 *2) (-12 (-5 *2 (-663 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-793)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-815)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-466)) (-4 *5 (-871)) (-5 *1 (-464 *3 *4 *5 *6)))) (-4385 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-815)) (-4 *2 (-979 *4 *5 *6)) (-5 *1 (-464 *4 *5 *6 *2)) (-4 *4 (-466)) (-4 *6 (-871)))) (-2007 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-663 (-2 (|:| |totdeg| (-793)) (|:| -1617 *3)))) (-5 *4 (-793)) (-4 *3 (-979 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-464 *5 *6 *7 *3)))) (-4237 (*1 *2 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-464 *3 *4 *5 *2)) (-4 *2 (-979 *3 *4 *5)))) (-4040 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *3)) (-4 *3 (-979 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-464 *5 *6 *7 *3)))) (-2445 (*1 *2 *3 *2) (-12 (-5 *2 (-663 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-793)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-815)) (-4 *6 (-979 *4 *3 *5)) (-4 *4 (-466)) (-4 *5 (-871)) (-5 *1 (-464 *4 *3 *5 *6)))) (-3108 (*1 *2 *2) (-12 (-5 *2 (-663 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-793)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-815)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-466)) (-4 *5 (-871)) (-5 *1 (-464 *3 *4 *5 *6)))) (-3656 (*1 *2 *3 *2) (-12 (-5 *2 (-663 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-815)) (-4 *3 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-871)) (-5 *1 (-464 *4 *5 *6 *3)))) (-3139 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-466)) (-4 *3 (-815)) (-4 *5 (-871)) (-5 *2 (-114)) (-5 *1 (-464 *4 *3 *5 *6)) (-4 *6 (-979 *4 *3 *5)))) (-4222 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *3 (-815)) (-4 *5 (-871)) (-5 *2 (-114)) (-5 *1 (-464 *4 *3 *5 *6)) (-4 *6 (-979 *4 *3 *5)))) (-2159 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-815)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-464 *4 *5 *6 *7)))) (-3257 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-560)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-464 *4 *5 *6 *7)))) (-3770 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-464 *4 *5 *6 *2)))) (-2409 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-464 *4 *5 *6 *2)))))
+(-10 -7 (-15 -2409 (|#4| |#4| (-663 |#4|))) (-15 -3770 (|#4| |#4| (-663 |#4|))) (-15 -3257 ((-663 |#4|) (-663 |#4|) (-560) (-560))) (-15 -2159 ((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4222 ((-114) |#2| |#2|)) (-15 -3139 ((-114) |#2| |#2| |#2| |#2|)) (-15 -3656 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3108 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2445 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4040 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-663 |#4|))) (-15 -4237 (|#4| |#4|)) (-15 -2007 ((-663 (-2 (|:| |totdeg| (-793)) (|:| -1617 |#4|))) |#4| (-793) (-663 (-2 (|:| |totdeg| (-793)) (|:| -1617 |#4|))))) (-15 -4385 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2414 ((-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-663 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1510 ((-663 |#4|) (-663 |#4|))) (-15 -1407 ((-560) |#4|)) (-15 -3646 ((-1303) |#4|)) (-15 -3189 ((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560))) (-15 -1697 ((-560) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-560) (-560) (-560) (-560))) (-15 -2959 ((-1303) (-663 |#4|))) (-15 -4416 ((-1303) (-560))) (-15 -1891 ((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1336 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-793)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-793)) (|:| -1617 |#4|)) |#4| (-793))) (-15 -3112 ((-793) |#4|)))
+((-1861 (($ $ $) 14 T ELT) (($ (-663 $)) 21 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 46 T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) 22 T ELT)))
+(((-465 |#1|) (-10 -8 (-15 -4362 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|))) (-15 -1861 (|#1| (-663 |#1|))) (-15 -1861 (|#1| |#1| |#1|)) (-15 -1938 (|#1| (-663 |#1|))) (-15 -1938 (|#1| |#1| |#1|))) (-466)) (T -465))
+NIL
+(-10 -8 (-15 -4362 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|))) (-15 -1861 (|#1| (-663 |#1|))) (-15 -1861 (|#1| |#1| |#1|)) (-15 -1938 (|#1| (-663 |#1|))) (-15 -1938 (|#1| |#1| |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-4366 (($ $) 46 T ELT)) (-2667 (((-114) $) 44 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-1861 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-1938 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-2233 (((-3 $ "failed") $ $) 48 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 45 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
(((-466) (-142)) (T -466))
-((-2132 (*1 *1 *1 *1) (-4 *1 (-466))) (-2132 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-466)))) (-2093 (*1 *1 *1 *1) (-4 *1 (-466))) (-2093 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-466)))) (-1882 (*1 *2 *2 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-466)))))
-(-13 (-571) (-10 -8 (-15 -2132 ($ $ $)) (-15 -2132 ($ (-663 $))) (-15 -2093 ($ $ $)) (-15 -2093 ($ (-663 $))) (-15 -1882 ((-1201 $) (-1201 $) (-1201 $)))))
+((-1938 (*1 *1 *1 *1) (-4 *1 (-466))) (-1938 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-466)))) (-1861 (*1 *1 *1 *1) (-4 *1 (-466))) (-1861 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-466)))) (-4362 (*1 *2 *2 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-466)))))
+(-13 (-571) (-10 -8 (-15 -1938 ($ $ $)) (-15 -1938 ($ (-663 $))) (-15 -1861 ($ $ $)) (-15 -1861 ($ (-663 $))) (-15 -4362 ((-1201 $) (-1201 $) (-1201 $)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-302) . T) ((-571) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-2489 (((-3 $ "failed")) NIL (|has| (-421 (-975 |#1|)) (-571)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2545 (((-1297 (-711 (-421 (-975 |#1|)))) (-1297 $)) NIL T ELT) (((-1297 (-711 (-421 (-975 |#1|))))) NIL T ELT)) (-1854 (((-1297 $)) NIL T ELT)) (-2238 (($) NIL T CONST)) (-4126 (((-3 (-2 (|:| |particular| $) (|:| -1954 (-663 $))) "failed")) NIL T ELT)) (-3608 (((-3 $ "failed")) NIL (|has| (-421 (-975 |#1|)) (-571)) ELT)) (-2432 (((-711 (-421 (-975 |#1|))) (-1297 $)) NIL T ELT) (((-711 (-421 (-975 |#1|)))) NIL T ELT)) (-3346 (((-421 (-975 |#1|)) $) NIL T ELT)) (-3135 (((-711 (-421 (-975 |#1|))) $ (-1297 $)) NIL T ELT) (((-711 (-421 (-975 |#1|))) $) NIL T ELT)) (-1713 (((-3 $ "failed") $) NIL (|has| (-421 (-975 |#1|)) (-571)) ELT)) (-4230 (((-1201 (-975 (-421 (-975 |#1|))))) NIL (|has| (-421 (-975 |#1|)) (-376)) ELT) (((-1201 (-421 (-975 |#1|)))) 90 (|has| |#1| (-571)) ELT)) (-1866 (($ $ (-948)) NIL T ELT)) (-4092 (((-421 (-975 |#1|)) $) NIL T ELT)) (-1822 (((-1201 (-421 (-975 |#1|))) $) 88 (|has| (-421 (-975 |#1|)) (-571)) ELT)) (-3392 (((-421 (-975 |#1|)) (-1297 $)) NIL T ELT) (((-421 (-975 |#1|))) NIL T ELT)) (-3412 (((-1201 (-421 (-975 |#1|))) $) NIL T ELT)) (-3706 (((-114)) NIL T ELT)) (-4143 (($ (-1297 (-421 (-975 |#1|))) (-1297 $)) 114 T ELT) (($ (-1297 (-421 (-975 |#1|)))) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL (|has| (-421 (-975 |#1|)) (-571)) ELT)) (-2326 (((-948)) NIL T ELT)) (-3157 (((-114)) NIL T ELT)) (-1784 (($ $ (-948)) NIL T ELT)) (-1794 (((-114)) NIL T ELT)) (-4320 (((-114)) NIL T ELT)) (-2959 (((-114)) NIL T ELT)) (-1398 (((-3 (-2 (|:| |particular| $) (|:| -1954 (-663 $))) "failed")) NIL T ELT)) (-2171 (((-3 $ "failed")) NIL (|has| (-421 (-975 |#1|)) (-571)) ELT)) (-1501 (((-711 (-421 (-975 |#1|))) (-1297 $)) NIL T ELT) (((-711 (-421 (-975 |#1|)))) NIL T ELT)) (-3876 (((-421 (-975 |#1|)) $) NIL T ELT)) (-2517 (((-711 (-421 (-975 |#1|))) $ (-1297 $)) NIL T ELT) (((-711 (-421 (-975 |#1|))) $) NIL T ELT)) (-3236 (((-3 $ "failed") $) NIL (|has| (-421 (-975 |#1|)) (-571)) ELT)) (-4133 (((-1201 (-975 (-421 (-975 |#1|))))) NIL (|has| (-421 (-975 |#1|)) (-376)) ELT) (((-1201 (-421 (-975 |#1|)))) 89 (|has| |#1| (-571)) ELT)) (-3520 (($ $ (-948)) NIL T ELT)) (-2442 (((-421 (-975 |#1|)) $) NIL T ELT)) (-4161 (((-1201 (-421 (-975 |#1|))) $) 85 (|has| (-421 (-975 |#1|)) (-571)) ELT)) (-2456 (((-421 (-975 |#1|)) (-1297 $)) NIL T ELT) (((-421 (-975 |#1|))) NIL T ELT)) (-3569 (((-1201 (-421 (-975 |#1|))) $) NIL T ELT)) (-2220 (((-114)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2995 (((-114)) NIL T ELT)) (-1721 (((-114)) NIL T ELT)) (-2940 (((-114)) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4408 (((-421 (-975 |#1|)) $ $) 76 (|has| |#1| (-571)) ELT)) (-2119 (((-421 (-975 |#1|)) $) 100 (|has| |#1| (-571)) ELT)) (-4014 (((-421 (-975 |#1|)) $) 104 (|has| |#1| (-571)) ELT)) (-3869 (((-1201 (-421 (-975 |#1|))) $) 94 (|has| |#1| (-571)) ELT)) (-4480 (((-421 (-975 |#1|))) 77 (|has| |#1| (-571)) ELT)) (-3437 (((-421 (-975 |#1|)) $ $) 69 (|has| |#1| (-571)) ELT)) (-1731 (((-421 (-975 |#1|)) $) 99 (|has| |#1| (-571)) ELT)) (-2645 (((-421 (-975 |#1|)) $) 103 (|has| |#1| (-571)) ELT)) (-2676 (((-1201 (-421 (-975 |#1|))) $) 93 (|has| |#1| (-571)) ELT)) (-2723 (((-421 (-975 |#1|))) 73 (|has| |#1| (-571)) ELT)) (-4010 (($) 110 T ELT) (($ (-1207)) 118 T ELT) (($ (-1297 (-1207))) 117 T ELT) (($ (-1297 $)) 105 T ELT) (($ (-1207) (-1297 $)) 116 T ELT) (($ (-1297 (-1207)) (-1297 $)) 115 T ELT)) (-2892 (((-114)) NIL T ELT)) (-3924 (((-421 (-975 |#1|)) $ (-560)) NIL T ELT)) (-2178 (((-1297 (-421 (-975 |#1|))) $ (-1297 $)) 107 T ELT) (((-711 (-421 (-975 |#1|))) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 (-421 (-975 |#1|))) $) 43 T ELT) (((-711 (-421 (-975 |#1|))) (-1297 $)) NIL T ELT)) (-1407 (((-1297 (-421 (-975 |#1|))) $) NIL T ELT) (($ (-1297 (-421 (-975 |#1|)))) 40 T ELT)) (-4106 (((-663 (-975 (-421 (-975 |#1|)))) (-1297 $)) NIL T ELT) (((-663 (-975 (-421 (-975 |#1|))))) NIL T ELT) (((-663 (-975 |#1|)) (-1297 $)) 108 (|has| |#1| (-571)) ELT) (((-663 (-975 |#1|))) 109 (|has| |#1| (-571)) ELT)) (-2013 (($ $ $) NIL T ELT)) (-2620 (((-114)) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-1297 (-421 (-975 |#1|)))) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1954 (((-1297 $)) 65 T ELT)) (-1548 (((-663 (-1297 (-421 (-975 |#1|))))) NIL (|has| (-421 (-975 |#1|)) (-571)) ELT)) (-4128 (($ $ $ $) NIL T ELT)) (-1418 (((-114)) NIL T ELT)) (-3626 (($ (-711 (-421 (-975 |#1|))) $) NIL T ELT)) (-3868 (($ $ $) NIL T ELT)) (-1405 (((-114)) NIL T ELT)) (-2493 (((-114)) NIL T ELT)) (-2423 (((-114)) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) 106 T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 61 T ELT) (($ $ (-421 (-975 |#1|))) NIL T ELT) (($ (-421 (-975 |#1|)) $) NIL T ELT) (($ (-1173 |#2| (-421 (-975 |#1|))) $) NIL T ELT)))
-(((-467 |#1| |#2| |#3| |#4|) (-13 (-432 (-421 (-975 |#1|))) (-670 (-1173 |#2| (-421 (-975 |#1|)))) (-10 -8 (-15 -1578 ($ (-1297 (-421 (-975 |#1|))))) (-15 -1398 ((-3 (-2 (|:| |particular| $) (|:| -1954 (-663 $))) "failed"))) (-15 -4126 ((-3 (-2 (|:| |particular| $) (|:| -1954 (-663 $))) "failed"))) (-15 -4010 ($)) (-15 -4010 ($ (-1207))) (-15 -4010 ($ (-1297 (-1207)))) (-15 -4010 ($ (-1297 $))) (-15 -4010 ($ (-1207) (-1297 $))) (-15 -4010 ($ (-1297 (-1207)) (-1297 $))) (IF (|has| |#1| (-571)) (PROGN (-15 -4133 ((-1201 (-421 (-975 |#1|))))) (-15 -2676 ((-1201 (-421 (-975 |#1|))) $)) (-15 -1731 ((-421 (-975 |#1|)) $)) (-15 -2645 ((-421 (-975 |#1|)) $)) (-15 -4230 ((-1201 (-421 (-975 |#1|))))) (-15 -3869 ((-1201 (-421 (-975 |#1|))) $)) (-15 -2119 ((-421 (-975 |#1|)) $)) (-15 -4014 ((-421 (-975 |#1|)) $)) (-15 -3437 ((-421 (-975 |#1|)) $ $)) (-15 -2723 ((-421 (-975 |#1|)))) (-15 -4408 ((-421 (-975 |#1|)) $ $)) (-15 -4480 ((-421 (-975 |#1|)))) (-15 -4106 ((-663 (-975 |#1|)) (-1297 $))) (-15 -4106 ((-663 (-975 |#1|))))) |%noBranch|))) (-175) (-948) (-663 (-1207)) (-1297 (-711 |#1|))) (T -467))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1297 (-421 (-975 *3)))) (-4 *3 (-175)) (-14 *6 (-1297 (-711 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))))) (-1398 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-467 *3 *4 *5 *6)) (|:| -1954 (-663 (-467 *3 *4 *5 *6))))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-4126 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-467 *3 *4 *5 *6)) (|:| -1954 (-663 (-467 *3 *4 *5 *6))))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-4010 (*1 *1) (-12 (-5 *1 (-467 *2 *3 *4 *5)) (-4 *2 (-175)) (-14 *3 (-948)) (-14 *4 (-663 (-1207))) (-14 *5 (-1297 (-711 *2))))) (-4010 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 *2)) (-14 *6 (-1297 (-711 *3))))) (-4010 (*1 *1 *2) (-12 (-5 *2 (-1297 (-1207))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-4010 (*1 *1 *2) (-12 (-5 *2 (-1297 (-467 *3 *4 *5 *6))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-4010 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-467 *4 *5 *6 *7))) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-948)) (-14 *6 (-663 *2)) (-14 *7 (-1297 (-711 *4))))) (-4010 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 (-1207))) (-5 *3 (-1297 (-467 *4 *5 *6 *7))) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-948)) (-14 *6 (-663 (-1207))) (-14 *7 (-1297 (-711 *4))))) (-4133 (*1 *2) (-12 (-5 *2 (-1201 (-421 (-975 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-1201 (-421 (-975 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-1731 (*1 *2 *1) (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-2645 (*1 *2 *1) (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-4230 (*1 *2) (-12 (-5 *2 (-1201 (-421 (-975 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-3869 (*1 *2 *1) (-12 (-5 *2 (-1201 (-421 (-975 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-2119 (*1 *2 *1) (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-4014 (*1 *2 *1) (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-3437 (*1 *2 *1 *1) (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-2723 (*1 *2) (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-4408 (*1 *2 *1 *1) (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-4480 (*1 *2) (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-4106 (*1 *2 *3) (-12 (-5 *3 (-1297 (-467 *4 *5 *6 *7))) (-5 *2 (-663 (-975 *4))) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-571)) (-4 *4 (-175)) (-14 *5 (-948)) (-14 *6 (-663 (-1207))) (-14 *7 (-1297 (-711 *4))))) (-4106 (*1 *2) (-12 (-5 *2 (-663 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
-(-13 (-432 (-421 (-975 |#1|))) (-670 (-1173 |#2| (-421 (-975 |#1|)))) (-10 -8 (-15 -1578 ($ (-1297 (-421 (-975 |#1|))))) (-15 -1398 ((-3 (-2 (|:| |particular| $) (|:| -1954 (-663 $))) "failed"))) (-15 -4126 ((-3 (-2 (|:| |particular| $) (|:| -1954 (-663 $))) "failed"))) (-15 -4010 ($)) (-15 -4010 ($ (-1207))) (-15 -4010 ($ (-1297 (-1207)))) (-15 -4010 ($ (-1297 $))) (-15 -4010 ($ (-1207) (-1297 $))) (-15 -4010 ($ (-1297 (-1207)) (-1297 $))) (IF (|has| |#1| (-571)) (PROGN (-15 -4133 ((-1201 (-421 (-975 |#1|))))) (-15 -2676 ((-1201 (-421 (-975 |#1|))) $)) (-15 -1731 ((-421 (-975 |#1|)) $)) (-15 -2645 ((-421 (-975 |#1|)) $)) (-15 -4230 ((-1201 (-421 (-975 |#1|))))) (-15 -3869 ((-1201 (-421 (-975 |#1|))) $)) (-15 -2119 ((-421 (-975 |#1|)) $)) (-15 -4014 ((-421 (-975 |#1|)) $)) (-15 -3437 ((-421 (-975 |#1|)) $ $)) (-15 -2723 ((-421 (-975 |#1|)))) (-15 -4408 ((-421 (-975 |#1|)) $ $)) (-15 -4480 ((-421 (-975 |#1|)))) (-15 -4106 ((-663 (-975 |#1|)) (-1297 $))) (-15 -4106 ((-663 (-975 |#1|))))) |%noBranch|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 18 T ELT)) (-1443 (((-663 (-888 |#1|)) $) 87 T ELT)) (-4422 (((-1201 $) $ (-888 |#1|)) 52 T ELT) (((-1201 |#2|) $) 138 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#2| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#2| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#2| (-571)) ELT)) (-3107 (((-793) $) 27 T ELT) (((-793) $ (-663 (-888 |#1|))) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-1804 (($ $) NIL (|has| |#2| (-466)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#2| (-466)) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#2| "failed") $) 50 T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-3 (-888 |#1|) "failed") $) NIL T ELT)) (-3330 ((|#2| $) 48 T ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-888 |#1|) $) NIL T ELT)) (-2788 (($ $ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-1922 (($ $ (-663 (-560))) 93 T ELT)) (-1624 (($ $) 80 T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2806 (($ $) NIL (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-1608 (((-663 $) $) NIL T ELT)) (-4330 (((-114) $) NIL (|has| |#2| (-939)) ELT)) (-4342 (($ $ |#2| |#3| $) NIL T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-391))) (|has| |#2| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-560))) (|has| |#2| (-911 (-560)))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-3531 (((-793) $) 65 T ELT)) (-1427 (($ (-1201 |#2|) (-888 |#1|)) 143 T ELT) (($ (-1201 $) (-888 |#1|)) 58 T ELT)) (-3997 (((-663 $) $) NIL T ELT)) (-1556 (((-114) $) 68 T ELT)) (-1417 (($ |#2| |#3|) 35 T ELT) (($ $ (-888 |#1|) (-793)) 37 T ELT) (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT)) (-3559 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $ (-888 |#1|)) NIL T ELT)) (-3011 ((|#3| $) NIL T ELT) (((-793) $ (-888 |#1|)) 56 T ELT) (((-663 (-793)) $ (-663 (-888 |#1|))) 63 T ELT)) (-4321 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-1955 (((-3 (-888 |#1|) "failed") $) 45 T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-711 |#2|) (-1297 $)) NIL T ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#2| $) 47 T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3479 (((-3 (-663 $) "failed") $) NIL T ELT)) (-2590 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3683 (((-3 (-2 (|:| |var| (-888 |#1|)) (|:| -3205 (-793))) "failed") $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1554 (((-114) $) 46 T ELT)) (-1566 ((|#2| $) 136 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#2| (-466)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) 149 (|has| |#2| (-466)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-4457 (((-419 $) $) NIL (|has| |#2| (-939)) ELT)) (-1528 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-571)) ELT)) (-4187 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-888 |#1|) |#2|) 100 T ELT) (($ $ (-663 (-888 |#1|)) (-663 |#2|)) 106 T ELT) (($ $ (-888 |#1|) $) 98 T ELT) (($ $ (-663 (-888 |#1|)) (-663 $)) 124 T ELT)) (-2690 (($ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2894 (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) 59 T ELT)) (-3630 ((|#3| $) 79 T ELT) (((-793) $ (-888 |#1|)) 42 T ELT) (((-663 (-793)) $ (-663 (-888 |#1|))) 62 T ELT)) (-1407 (((-915 (-391)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-915 (-391)))) (|has| |#2| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-915 (-560)))) (|has| |#2| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-888 |#1|) (-633 (-549))) (|has| |#2| (-633 (-549)))) ELT)) (-2053 ((|#2| $) 145 (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-939))) ELT)) (-1578 (((-887) $) 173 T ELT) (($ (-560)) NIL T ELT) (($ |#2|) 99 T ELT) (($ (-888 |#1|)) 39 T ELT) (($ (-421 (-560))) NIL (-2304 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#2| (-571)) ELT)) (-3409 (((-663 |#2|) $) NIL T ELT)) (-2305 ((|#2| $ |#3|) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| |#2| (-939))) (|has| |#2| (-147))) ELT)) (-2930 (((-793)) NIL T CONST)) (-2392 (($ $ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL (|has| |#2| (-571)) ELT)) (-2001 (($) 22 T CONST)) (-2011 (($) 31 T CONST)) (-3305 (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#2|) 76 (|has| |#2| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 131 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 129 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 36 T ELT) (($ $ (-421 (-560))) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ |#2| $) 75 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-468 |#1| |#2| |#3|) (-13 (-979 |#2| |#3| (-888 |#1|)) (-10 -8 (-15 -1922 ($ $ (-663 (-560)))))) (-663 (-1207)) (-1080) (-245 (-1553 |#1|) (-793))) (T -468))
-((-1922 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-14 *3 (-663 (-1207))) (-5 *1 (-468 *3 *4 *5)) (-4 *4 (-1080)) (-4 *5 (-245 (-1553 *3) (-793))))))
-(-13 (-979 |#2| |#3| (-888 |#1|)) (-10 -8 (-15 -1922 ($ $ (-663 (-560))))))
-((-1782 (((-114) |#1| (-663 |#2|)) 91 T ELT)) (-2957 (((-3 (-1297 (-663 |#2|)) "failed") (-793) |#1| (-663 |#2|)) 100 T ELT)) (-2683 (((-3 (-663 |#2|) "failed") |#2| |#1| (-1297 (-663 |#2|))) 102 T ELT)) (-2588 ((|#2| |#2| |#1|) 35 T ELT)) (-4066 (((-793) |#2| (-663 |#2|)) 26 T ELT)))
-(((-469 |#1| |#2|) (-10 -7 (-15 -2588 (|#2| |#2| |#1|)) (-15 -4066 ((-793) |#2| (-663 |#2|))) (-15 -2957 ((-3 (-1297 (-663 |#2|)) "failed") (-793) |#1| (-663 |#2|))) (-15 -2683 ((-3 (-663 |#2|) "failed") |#2| |#1| (-1297 (-663 |#2|)))) (-15 -1782 ((-114) |#1| (-663 |#2|)))) (-319) (-1273 |#1|)) (T -469))
-((-1782 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *5)) (-4 *5 (-1273 *3)) (-4 *3 (-319)) (-5 *2 (-114)) (-5 *1 (-469 *3 *5)))) (-2683 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1297 (-663 *3))) (-4 *4 (-319)) (-5 *2 (-663 *3)) (-5 *1 (-469 *4 *3)) (-4 *3 (-1273 *4)))) (-2957 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-793)) (-4 *4 (-319)) (-4 *6 (-1273 *4)) (-5 *2 (-1297 (-663 *6))) (-5 *1 (-469 *4 *6)) (-5 *5 (-663 *6)))) (-4066 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-319)) (-5 *2 (-793)) (-5 *1 (-469 *5 *3)))) (-2588 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-469 *3 *2)) (-4 *2 (-1273 *3)))))
-(-10 -7 (-15 -2588 (|#2| |#2| |#1|)) (-15 -4066 ((-793) |#2| (-663 |#2|))) (-15 -2957 ((-3 (-1297 (-663 |#2|)) "failed") (-793) |#1| (-663 |#2|))) (-15 -2683 ((-3 (-663 |#2|) "failed") |#2| |#1| (-1297 (-663 |#2|)))) (-15 -1782 ((-114) |#1| (-663 |#2|))))
-((-4457 (((-419 |#5|) |#5|) 24 T ELT)))
-(((-470 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4457 ((-419 |#5|) |#5|))) (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $)) (-15 -2462 ((-3 $ "failed") (-1207))))) (-815) (-571) (-571) (-979 |#4| |#2| |#1|)) (T -470))
-((-4457 (*1 *2 *3) (-12 (-4 *4 (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $)) (-15 -2462 ((-3 $ "failed") (-1207)))))) (-4 *5 (-815)) (-4 *7 (-571)) (-5 *2 (-419 *3)) (-5 *1 (-470 *4 *5 *6 *7 *3)) (-4 *6 (-571)) (-4 *3 (-979 *7 *5 *4)))))
-(-10 -7 (-15 -4457 ((-419 |#5|) |#5|)))
-((-3001 ((|#3|) 38 T ELT)) (-1882 (((-1201 |#4|) (-1201 |#4|) (-1201 |#4|)) 34 T ELT)))
-(((-471 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1882 ((-1201 |#4|) (-1201 |#4|) (-1201 |#4|))) (-15 -3001 (|#3|))) (-815) (-871) (-939) (-979 |#3| |#1| |#2|)) (T -471))
-((-3001 (*1 *2) (-12 (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-939)) (-5 *1 (-471 *3 *4 *2 *5)) (-4 *5 (-979 *2 *3 *4)))) (-1882 (*1 *2 *2 *2) (-12 (-5 *2 (-1201 *6)) (-4 *6 (-979 *5 *3 *4)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-939)) (-5 *1 (-471 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1882 ((-1201 |#4|) (-1201 |#4|) (-1201 |#4|))) (-15 -3001 (|#3|)))
-((-4457 (((-419 (-1201 |#1|)) (-1201 |#1|)) 43 T ELT)))
-(((-472 |#1|) (-10 -7 (-15 -4457 ((-419 (-1201 |#1|)) (-1201 |#1|)))) (-319)) (T -472))
-((-4457 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-419 (-1201 *4))) (-5 *1 (-472 *4)) (-5 *3 (-1201 *4)))))
-(-10 -7 (-15 -4457 ((-419 (-1201 |#1|)) (-1201 |#1|))))
-((-1496 (((-51) |#2| (-1207) (-305 |#2|) (-1264 (-793))) 44 T ELT) (((-51) (-1 |#2| (-560)) (-305 |#2|) (-1264 (-793))) 43 T ELT) (((-51) |#2| (-1207) (-305 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-560)) (-305 |#2|)) 29 T ELT)) (-3781 (((-51) |#2| (-1207) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560))) 88 T ELT) (((-51) (-1 |#2| (-421 (-560))) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560))) 87 T ELT) (((-51) |#2| (-1207) (-305 |#2|) (-1264 (-560))) 86 T ELT) (((-51) (-1 |#2| (-560)) (-305 |#2|) (-1264 (-560))) 85 T ELT) (((-51) |#2| (-1207) (-305 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-560)) (-305 |#2|)) 79 T ELT)) (-1519 (((-51) |#2| (-1207) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560))) 74 T ELT) (((-51) (-1 |#2| (-421 (-560))) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560))) 72 T ELT)) (-1507 (((-51) |#2| (-1207) (-305 |#2|) (-1264 (-560))) 51 T ELT) (((-51) (-1 |#2| (-560)) (-305 |#2|) (-1264 (-560))) 50 T ELT)))
-(((-473 |#1| |#2|) (-10 -7 (-15 -1496 ((-51) (-1 |#2| (-560)) (-305 |#2|))) (-15 -1496 ((-51) |#2| (-1207) (-305 |#2|))) (-15 -1496 ((-51) (-1 |#2| (-560)) (-305 |#2|) (-1264 (-793)))) (-15 -1496 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-793)))) (-15 -1507 ((-51) (-1 |#2| (-560)) (-305 |#2|) (-1264 (-560)))) (-15 -1507 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-560)))) (-15 -1519 ((-51) (-1 |#2| (-421 (-560))) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560)))) (-15 -1519 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560)))) (-15 -3781 ((-51) (-1 |#2| (-560)) (-305 |#2|))) (-15 -3781 ((-51) |#2| (-1207) (-305 |#2|))) (-15 -3781 ((-51) (-1 |#2| (-560)) (-305 |#2|) (-1264 (-560)))) (-15 -3781 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-560)))) (-15 -3781 ((-51) (-1 |#2| (-421 (-560))) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560)))) (-15 -3781 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560))))) (-13 (-571) (-1069 (-560)) (-660 (-560))) (-13 (-27) (-1233) (-435 |#1|))) (T -473))
-((-3781 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-421 (-560)))) (-5 *7 (-421 (-560))) (-4 *3 (-13 (-27) (-1233) (-435 *8))) (-4 *8 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *8 *3)))) (-3781 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-421 (-560)))) (-5 *4 (-305 *8)) (-5 *5 (-1264 (-421 (-560)))) (-5 *6 (-421 (-560))) (-4 *8 (-13 (-27) (-1233) (-435 *7))) (-4 *7 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *7 *8)))) (-3781 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-560))) (-4 *3 (-13 (-27) (-1233) (-435 *7))) (-4 *7 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *7 *3)))) (-3781 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-560))) (-4 *7 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *6 *7)))) (-3781 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *6 *3)))) (-3781 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-560))) (-5 *4 (-305 *6)) (-4 *6 (-13 (-27) (-1233) (-435 *5))) (-4 *5 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *5 *6)))) (-1519 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-421 (-560)))) (-5 *7 (-421 (-560))) (-4 *3 (-13 (-27) (-1233) (-435 *8))) (-4 *8 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *8 *3)))) (-1519 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-421 (-560)))) (-5 *4 (-305 *8)) (-5 *5 (-1264 (-421 (-560)))) (-5 *6 (-421 (-560))) (-4 *8 (-13 (-27) (-1233) (-435 *7))) (-4 *7 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *7 *8)))) (-1507 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-560))) (-4 *3 (-13 (-27) (-1233) (-435 *7))) (-4 *7 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *7 *3)))) (-1507 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-560))) (-4 *7 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *6 *7)))) (-1496 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-793))) (-4 *3 (-13 (-27) (-1233) (-435 *7))) (-4 *7 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *7 *3)))) (-1496 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-793))) (-4 *7 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *6 *7)))) (-1496 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *6 *3)))) (-1496 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-560))) (-5 *4 (-305 *6)) (-4 *6 (-13 (-27) (-1233) (-435 *5))) (-4 *5 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *5 *6)))))
-(-10 -7 (-15 -1496 ((-51) (-1 |#2| (-560)) (-305 |#2|))) (-15 -1496 ((-51) |#2| (-1207) (-305 |#2|))) (-15 -1496 ((-51) (-1 |#2| (-560)) (-305 |#2|) (-1264 (-793)))) (-15 -1496 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-793)))) (-15 -1507 ((-51) (-1 |#2| (-560)) (-305 |#2|) (-1264 (-560)))) (-15 -1507 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-560)))) (-15 -1519 ((-51) (-1 |#2| (-421 (-560))) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560)))) (-15 -1519 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560)))) (-15 -3781 ((-51) (-1 |#2| (-560)) (-305 |#2|))) (-15 -3781 ((-51) |#2| (-1207) (-305 |#2|))) (-15 -3781 ((-51) (-1 |#2| (-560)) (-305 |#2|) (-1264 (-560)))) (-15 -3781 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-560)))) (-15 -3781 ((-51) (-1 |#2| (-421 (-560))) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560)))) (-15 -3781 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560)))))
-((-2588 ((|#2| |#2| |#1|) 15 T ELT)) (-3960 (((-663 |#2|) |#2| (-663 |#2|) |#1| (-948)) 82 T ELT)) (-2953 (((-2 (|:| |plist| (-663 |#2|)) (|:| |modulo| |#1|)) |#2| (-663 |#2|) |#1| (-948)) 72 T ELT)))
-(((-474 |#1| |#2|) (-10 -7 (-15 -2953 ((-2 (|:| |plist| (-663 |#2|)) (|:| |modulo| |#1|)) |#2| (-663 |#2|) |#1| (-948))) (-15 -3960 ((-663 |#2|) |#2| (-663 |#2|) |#1| (-948))) (-15 -2588 (|#2| |#2| |#1|))) (-319) (-1273 |#1|)) (T -474))
-((-2588 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-474 *3 *2)) (-4 *2 (-1273 *3)))) (-3960 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-663 *3)) (-5 *5 (-948)) (-4 *3 (-1273 *4)) (-4 *4 (-319)) (-5 *1 (-474 *4 *3)))) (-2953 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-948)) (-4 *5 (-319)) (-4 *3 (-1273 *5)) (-5 *2 (-2 (|:| |plist| (-663 *3)) (|:| |modulo| *5))) (-5 *1 (-474 *5 *3)) (-5 *4 (-663 *3)))))
-(-10 -7 (-15 -2953 ((-2 (|:| |plist| (-663 |#2|)) (|:| |modulo| |#1|)) |#2| (-663 |#2|) |#1| (-948))) (-15 -3960 ((-663 |#2|) |#2| (-663 |#2|) |#1| (-948))) (-15 -2588 (|#2| |#2| |#1|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 28 T ELT)) (-1521 (($ |#3|) 25 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-1624 (($ $) 32 T ELT)) (-3615 (($ |#2| |#4| $) 33 T ELT)) (-1417 (($ |#2| (-735 |#3| |#4| |#5|)) 24 T ELT)) (-1583 (((-735 |#3| |#4| |#5|) $) 15 T ELT)) (-2377 ((|#3| $) 19 T ELT)) (-2618 ((|#4| $) 17 T ELT)) (-1597 ((|#2| $) 29 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-1896 (($ |#2| |#3| |#4|) 26 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 36 T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 34 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
-(((-475 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-739 |#6|) (-739 |#2|) (-10 -8 (-15 -1597 (|#2| $)) (-15 -1583 ((-735 |#3| |#4| |#5|) $)) (-15 -2618 (|#4| $)) (-15 -2377 (|#3| $)) (-15 -1624 ($ $)) (-15 -1417 ($ |#2| (-735 |#3| |#4| |#5|))) (-15 -1521 ($ |#3|)) (-15 -1896 ($ |#2| |#3| |#4|)) (-15 -3615 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-663 (-1207)) (-175) (-871) (-245 (-1553 |#1|) (-793)) (-1 (-114) (-2 (|:| -3128 |#3|) (|:| -3205 |#4|)) (-2 (|:| -3128 |#3|) (|:| -3205 |#4|))) (-979 |#2| |#4| (-888 |#1|))) (T -475))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-663 (-1207))) (-4 *4 (-175)) (-4 *6 (-245 (-1553 *3) (-793))) (-14 *7 (-1 (-114) (-2 (|:| -3128 *5) (|:| -3205 *6)) (-2 (|:| -3128 *5) (|:| -3205 *6)))) (-5 *1 (-475 *3 *4 *5 *6 *7 *2)) (-4 *5 (-871)) (-4 *2 (-979 *4 *6 (-888 *3))))) (-1597 (*1 *2 *1) (-12 (-14 *3 (-663 (-1207))) (-4 *5 (-245 (-1553 *3) (-793))) (-14 *6 (-1 (-114) (-2 (|:| -3128 *4) (|:| -3205 *5)) (-2 (|:| -3128 *4) (|:| -3205 *5)))) (-4 *2 (-175)) (-5 *1 (-475 *3 *2 *4 *5 *6 *7)) (-4 *4 (-871)) (-4 *7 (-979 *2 *5 (-888 *3))))) (-1583 (*1 *2 *1) (-12 (-14 *3 (-663 (-1207))) (-4 *4 (-175)) (-4 *6 (-245 (-1553 *3) (-793))) (-14 *7 (-1 (-114) (-2 (|:| -3128 *5) (|:| -3205 *6)) (-2 (|:| -3128 *5) (|:| -3205 *6)))) (-5 *2 (-735 *5 *6 *7)) (-5 *1 (-475 *3 *4 *5 *6 *7 *8)) (-4 *5 (-871)) (-4 *8 (-979 *4 *6 (-888 *3))))) (-2618 (*1 *2 *1) (-12 (-14 *3 (-663 (-1207))) (-4 *4 (-175)) (-14 *6 (-1 (-114) (-2 (|:| -3128 *5) (|:| -3205 *2)) (-2 (|:| -3128 *5) (|:| -3205 *2)))) (-4 *2 (-245 (-1553 *3) (-793))) (-5 *1 (-475 *3 *4 *5 *2 *6 *7)) (-4 *5 (-871)) (-4 *7 (-979 *4 *2 (-888 *3))))) (-2377 (*1 *2 *1) (-12 (-14 *3 (-663 (-1207))) (-4 *4 (-175)) (-4 *5 (-245 (-1553 *3) (-793))) (-14 *6 (-1 (-114) (-2 (|:| -3128 *2) (|:| -3205 *5)) (-2 (|:| -3128 *2) (|:| -3205 *5)))) (-4 *2 (-871)) (-5 *1 (-475 *3 *4 *2 *5 *6 *7)) (-4 *7 (-979 *4 *5 (-888 *3))))) (-1624 (*1 *1 *1) (-12 (-14 *2 (-663 (-1207))) (-4 *3 (-175)) (-4 *5 (-245 (-1553 *2) (-793))) (-14 *6 (-1 (-114) (-2 (|:| -3128 *4) (|:| -3205 *5)) (-2 (|:| -3128 *4) (|:| -3205 *5)))) (-5 *1 (-475 *2 *3 *4 *5 *6 *7)) (-4 *4 (-871)) (-4 *7 (-979 *3 *5 (-888 *2))))) (-1417 (*1 *1 *2 *3) (-12 (-5 *3 (-735 *5 *6 *7)) (-4 *5 (-871)) (-4 *6 (-245 (-1553 *4) (-793))) (-14 *7 (-1 (-114) (-2 (|:| -3128 *5) (|:| -3205 *6)) (-2 (|:| -3128 *5) (|:| -3205 *6)))) (-14 *4 (-663 (-1207))) (-4 *2 (-175)) (-5 *1 (-475 *4 *2 *5 *6 *7 *8)) (-4 *8 (-979 *2 *6 (-888 *4))))) (-1521 (*1 *1 *2) (-12 (-14 *3 (-663 (-1207))) (-4 *4 (-175)) (-4 *5 (-245 (-1553 *3) (-793))) (-14 *6 (-1 (-114) (-2 (|:| -3128 *2) (|:| -3205 *5)) (-2 (|:| -3128 *2) (|:| -3205 *5)))) (-5 *1 (-475 *3 *4 *2 *5 *6 *7)) (-4 *2 (-871)) (-4 *7 (-979 *4 *5 (-888 *3))))) (-1896 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-663 (-1207))) (-4 *2 (-175)) (-4 *4 (-245 (-1553 *5) (-793))) (-14 *6 (-1 (-114) (-2 (|:| -3128 *3) (|:| -3205 *4)) (-2 (|:| -3128 *3) (|:| -3205 *4)))) (-5 *1 (-475 *5 *2 *3 *4 *6 *7)) (-4 *3 (-871)) (-4 *7 (-979 *2 *4 (-888 *5))))) (-3615 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-663 (-1207))) (-4 *2 (-175)) (-4 *3 (-245 (-1553 *4) (-793))) (-14 *6 (-1 (-114) (-2 (|:| -3128 *5) (|:| -3205 *3)) (-2 (|:| -3128 *5) (|:| -3205 *3)))) (-5 *1 (-475 *4 *2 *5 *3 *6 *7)) (-4 *5 (-871)) (-4 *7 (-979 *2 *3 (-888 *4))))))
-(-13 (-739 |#6|) (-739 |#2|) (-10 -8 (-15 -1597 (|#2| $)) (-15 -1583 ((-735 |#3| |#4| |#5|) $)) (-15 -2618 (|#4| $)) (-15 -2377 (|#3| $)) (-15 -1624 ($ $)) (-15 -1417 ($ |#2| (-735 |#3| |#4| |#5|))) (-15 -1521 ($ |#3|)) (-15 -1896 ($ |#2| |#3| |#4|)) (-15 -3615 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-2605 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT)))
-(((-476 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2605 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-815) (-871) (-571) (-979 |#3| |#1| |#2|) (-13 (-1069 (-421 (-560))) (-376) (-10 -8 (-15 -1578 ($ |#4|)) (-15 -3757 (|#4| $)) (-15 -3771 (|#4| $))))) (T -476))
-((-2605 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-871)) (-4 *5 (-815)) (-4 *6 (-571)) (-4 *7 (-979 *6 *5 *3)) (-5 *1 (-476 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1069 (-421 (-560))) (-376) (-10 -8 (-15 -1578 ($ *7)) (-15 -3757 (*7 $)) (-15 -3771 (*7 $))))))))
-(-10 -7 (-15 -2605 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1443 (((-663 |#3|) $) 41 T ELT)) (-1466 (((-114) $) NIL T ELT)) (-3101 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-2286 (((-2 (|:| |under| $) (|:| -2016 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1982 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2238 (($) NIL T CONST)) (-4436 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4246 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-1860 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3745 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4027 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-2528 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-2539 (((-3 $ "failed") (-663 |#4|)) 49 T ELT)) (-3330 (($ (-663 |#4|)) NIL T ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-2375 (($ |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2341 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-4129 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4508)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2181 (((-663 |#4|) $) 18 (|has| $ (-6 -4508)) ELT)) (-4132 ((|#3| $) 47 T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 |#4|) $) 14 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#4| $) 26 (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-3768 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-1918 (((-663 |#3|) $) NIL T ELT)) (-2724 (((-114) |#3| $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2557 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3329 (((-3 |#4| "failed") (-1 (-114) |#4|) $) NIL T ELT)) (-2787 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 |#4|) (-663 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) 39 T ELT)) (-3986 (($) 17 T ELT)) (-3865 (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) (((-793) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) 16 T ELT)) (-1407 (((-549) $) NIL (|has| |#4| (-633 (-549))) ELT) (($ (-663 |#4|)) 51 T ELT)) (-1592 (($ (-663 |#4|)) 13 T ELT)) (-3752 (($ $ |#3|) NIL T ELT)) (-4288 (($ $ |#3|) NIL T ELT)) (-4397 (($ $ |#3|) NIL T ELT)) (-1578 (((-887) $) 38 T ELT) (((-663 |#4|) $) 50 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1728 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 30 T ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-477 |#1| |#2| |#3| |#4|) (-13 (-1007 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1407 ($ (-663 |#4|))) (-6 -4508) (-6 -4509))) (-1080) (-815) (-871) (-1096 |#1| |#2| |#3|)) (T -477))
-((-1407 (*1 *1 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-477 *3 *4 *5 *6)))))
-(-13 (-1007 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1407 ($ (-663 |#4|))) (-6 -4508) (-6 -4509)))
-((-2001 (($) 11 T ELT)) (-2011 (($) 13 T ELT)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT)))
-(((-478 |#1| |#2| |#3|) (-10 -8 (-15 -2011 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2001 (|#1|))) (-479 |#2| |#3|) (-175) (-23)) (T -478))
-NIL
-(-10 -8 (-15 -2011 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2001 (|#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2539 (((-3 |#1| "failed") $) 27 T ELT)) (-3330 ((|#1| $) 28 T ELT)) (-1480 (($ $ $) 24 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-3630 ((|#2| $) 20 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ |#1|) 26 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 25 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 16 T ELT) (($ $ $) 14 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ |#1| $) 18 T ELT) (($ $ |#1|) 17 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-4184 (((-3 $ "failed")) NIL (|has| (-421 (-975 |#1|)) (-571)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3398 (((-1297 (-711 (-421 (-975 |#1|)))) (-1297 $)) NIL T ELT) (((-1297 (-711 (-421 (-975 |#1|))))) NIL T ELT)) (-4087 (((-1297 $)) NIL T ELT)) (-3525 (($) NIL T CONST)) (-1756 (((-3 (-2 (|:| |particular| $) (|:| -3822 (-663 $))) "failed")) NIL T ELT)) (-3681 (((-3 $ "failed")) NIL (|has| (-421 (-975 |#1|)) (-571)) ELT)) (-1691 (((-711 (-421 (-975 |#1|))) (-1297 $)) NIL T ELT) (((-711 (-421 (-975 |#1|)))) NIL T ELT)) (-2865 (((-421 (-975 |#1|)) $) NIL T ELT)) (-2541 (((-711 (-421 (-975 |#1|))) $ (-1297 $)) NIL T ELT) (((-711 (-421 (-975 |#1|))) $) NIL T ELT)) (-2035 (((-3 $ "failed") $) NIL (|has| (-421 (-975 |#1|)) (-571)) ELT)) (-3474 (((-1201 (-975 (-421 (-975 |#1|))))) NIL (|has| (-421 (-975 |#1|)) (-376)) ELT) (((-1201 (-421 (-975 |#1|)))) 90 (|has| |#1| (-571)) ELT)) (-4201 (($ $ (-948)) NIL T ELT)) (-2652 (((-421 (-975 |#1|)) $) NIL T ELT)) (-1825 (((-1201 (-421 (-975 |#1|))) $) 88 (|has| (-421 (-975 |#1|)) (-571)) ELT)) (-2098 (((-421 (-975 |#1|)) (-1297 $)) NIL T ELT) (((-421 (-975 |#1|))) NIL T ELT)) (-2280 (((-1201 (-421 (-975 |#1|))) $) NIL T ELT)) (-2137 (((-114)) NIL T ELT)) (-1953 (($ (-1297 (-421 (-975 |#1|))) (-1297 $)) 114 T ELT) (($ (-1297 (-421 (-975 |#1|)))) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL (|has| (-421 (-975 |#1|)) (-571)) ELT)) (-1604 (((-948)) NIL T ELT)) (-1558 (((-114)) NIL T ELT)) (-1441 (($ $ (-948)) NIL T ELT)) (-1521 (((-114)) NIL T ELT)) (-3053 (((-114)) NIL T ELT)) (-4460 (((-114)) NIL T ELT)) (-1367 (((-3 (-2 (|:| |particular| $) (|:| -3822 (-663 $))) "failed")) NIL T ELT)) (-4156 (((-3 $ "failed")) NIL (|has| (-421 (-975 |#1|)) (-571)) ELT)) (-2999 (((-711 (-421 (-975 |#1|))) (-1297 $)) NIL T ELT) (((-711 (-421 (-975 |#1|)))) NIL T ELT)) (-4278 (((-421 (-975 |#1|)) $) NIL T ELT)) (-4414 (((-711 (-421 (-975 |#1|))) $ (-1297 $)) NIL T ELT) (((-711 (-421 (-975 |#1|))) $) NIL T ELT)) (-4294 (((-3 $ "failed") $) NIL (|has| (-421 (-975 |#1|)) (-571)) ELT)) (-1828 (((-1201 (-975 (-421 (-975 |#1|))))) NIL (|has| (-421 (-975 |#1|)) (-376)) ELT) (((-1201 (-421 (-975 |#1|)))) 89 (|has| |#1| (-571)) ELT)) (-2065 (($ $ (-948)) NIL T ELT)) (-1788 (((-421 (-975 |#1|)) $) NIL T ELT)) (-2126 (((-1201 (-421 (-975 |#1|))) $) 85 (|has| (-421 (-975 |#1|)) (-571)) ELT)) (-1951 (((-421 (-975 |#1|)) (-1297 $)) NIL T ELT) (((-421 (-975 |#1|))) NIL T ELT)) (-1364 (((-1201 (-421 (-975 |#1|))) $) NIL T ELT)) (-3361 (((-114)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3577 (((-114)) NIL T ELT)) (-2107 (((-114)) NIL T ELT)) (-4289 (((-114)) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2536 (((-421 (-975 |#1|)) $ $) 76 (|has| |#1| (-571)) ELT)) (-1672 (((-421 (-975 |#1|)) $) 100 (|has| |#1| (-571)) ELT)) (-3145 (((-421 (-975 |#1|)) $) 104 (|has| |#1| (-571)) ELT)) (-4218 (((-1201 (-421 (-975 |#1|))) $) 94 (|has| |#1| (-571)) ELT)) (-1898 (((-421 (-975 |#1|))) 77 (|has| |#1| (-571)) ELT)) (-2494 (((-421 (-975 |#1|)) $ $) 69 (|has| |#1| (-571)) ELT)) (-2175 (((-421 (-975 |#1|)) $) 99 (|has| |#1| (-571)) ELT)) (-3140 (((-421 (-975 |#1|)) $) 103 (|has| |#1| (-571)) ELT)) (-2193 (((-1201 (-421 (-975 |#1|))) $) 93 (|has| |#1| (-571)) ELT)) (-2692 (((-421 (-975 |#1|))) 73 (|has| |#1| (-571)) ELT)) (-3104 (($) 110 T ELT) (($ (-1207)) 118 T ELT) (($ (-1297 (-1207))) 117 T ELT) (($ (-1297 $)) 105 T ELT) (($ (-1207) (-1297 $)) 116 T ELT) (($ (-1297 (-1207)) (-1297 $)) 115 T ELT)) (-3905 (((-114)) NIL T ELT)) (-1507 (((-421 (-975 |#1|)) $ (-560)) NIL T ELT)) (-4226 (((-1297 (-421 (-975 |#1|))) $ (-1297 $)) 107 T ELT) (((-711 (-421 (-975 |#1|))) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 (-421 (-975 |#1|))) $) 43 T ELT) (((-711 (-421 (-975 |#1|))) (-1297 $)) NIL T ELT)) (-2400 (((-1297 (-421 (-975 |#1|))) $) NIL T ELT) (($ (-1297 (-421 (-975 |#1|)))) 40 T ELT)) (-1556 (((-663 (-975 (-421 (-975 |#1|)))) (-1297 $)) NIL T ELT) (((-663 (-975 (-421 (-975 |#1|))))) NIL T ELT) (((-663 (-975 |#1|)) (-1297 $)) 108 (|has| |#1| (-571)) ELT) (((-663 (-975 |#1|))) 109 (|has| |#1| (-571)) ELT)) (-3117 (($ $ $) NIL T ELT)) (-2848 (((-114)) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-1297 (-421 (-975 |#1|)))) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3822 (((-1297 $)) 65 T ELT)) (-1601 (((-663 (-1297 (-421 (-975 |#1|))))) NIL (|has| (-421 (-975 |#1|)) (-571)) ELT)) (-1777 (($ $ $ $) NIL T ELT)) (-3757 (((-114)) NIL T ELT)) (-4323 (($ (-711 (-421 (-975 |#1|))) $) NIL T ELT)) (-4209 (($ $ $) NIL T ELT)) (-4103 (((-114)) NIL T ELT)) (-4213 (((-114)) NIL T ELT)) (-1597 (((-114)) NIL T ELT)) (-1446 (($) NIL T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) 106 T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 61 T ELT) (($ $ (-421 (-975 |#1|))) NIL T ELT) (($ (-421 (-975 |#1|)) $) NIL T ELT) (($ (-1173 |#2| (-421 (-975 |#1|))) $) NIL T ELT)))
+(((-467 |#1| |#2| |#3| |#4|) (-13 (-432 (-421 (-975 |#1|))) (-670 (-1173 |#2| (-421 (-975 |#1|)))) (-10 -8 (-15 -3913 ($ (-1297 (-421 (-975 |#1|))))) (-15 -1367 ((-3 (-2 (|:| |particular| $) (|:| -3822 (-663 $))) "failed"))) (-15 -1756 ((-3 (-2 (|:| |particular| $) (|:| -3822 (-663 $))) "failed"))) (-15 -3104 ($)) (-15 -3104 ($ (-1207))) (-15 -3104 ($ (-1297 (-1207)))) (-15 -3104 ($ (-1297 $))) (-15 -3104 ($ (-1207) (-1297 $))) (-15 -3104 ($ (-1297 (-1207)) (-1297 $))) (IF (|has| |#1| (-571)) (PROGN (-15 -1828 ((-1201 (-421 (-975 |#1|))))) (-15 -2193 ((-1201 (-421 (-975 |#1|))) $)) (-15 -2175 ((-421 (-975 |#1|)) $)) (-15 -3140 ((-421 (-975 |#1|)) $)) (-15 -3474 ((-1201 (-421 (-975 |#1|))))) (-15 -4218 ((-1201 (-421 (-975 |#1|))) $)) (-15 -1672 ((-421 (-975 |#1|)) $)) (-15 -3145 ((-421 (-975 |#1|)) $)) (-15 -2494 ((-421 (-975 |#1|)) $ $)) (-15 -2692 ((-421 (-975 |#1|)))) (-15 -2536 ((-421 (-975 |#1|)) $ $)) (-15 -1898 ((-421 (-975 |#1|)))) (-15 -1556 ((-663 (-975 |#1|)) (-1297 $))) (-15 -1556 ((-663 (-975 |#1|))))) |%noBranch|))) (-175) (-948) (-663 (-1207)) (-1297 (-711 |#1|))) (T -467))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1297 (-421 (-975 *3)))) (-4 *3 (-175)) (-14 *6 (-1297 (-711 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))))) (-1367 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-467 *3 *4 *5 *6)) (|:| -3822 (-663 (-467 *3 *4 *5 *6))))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-1756 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-467 *3 *4 *5 *6)) (|:| -3822 (-663 (-467 *3 *4 *5 *6))))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-3104 (*1 *1) (-12 (-5 *1 (-467 *2 *3 *4 *5)) (-4 *2 (-175)) (-14 *3 (-948)) (-14 *4 (-663 (-1207))) (-14 *5 (-1297 (-711 *2))))) (-3104 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 *2)) (-14 *6 (-1297 (-711 *3))))) (-3104 (*1 *1 *2) (-12 (-5 *2 (-1297 (-1207))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-3104 (*1 *1 *2) (-12 (-5 *2 (-1297 (-467 *3 *4 *5 *6))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-3104 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-467 *4 *5 *6 *7))) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-948)) (-14 *6 (-663 *2)) (-14 *7 (-1297 (-711 *4))))) (-3104 (*1 *1 *2 *3) (-12 (-5 *2 (-1297 (-1207))) (-5 *3 (-1297 (-467 *4 *5 *6 *7))) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-948)) (-14 *6 (-663 (-1207))) (-14 *7 (-1297 (-711 *4))))) (-1828 (*1 *2) (-12 (-5 *2 (-1201 (-421 (-975 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-2193 (*1 *2 *1) (-12 (-5 *2 (-1201 (-421 (-975 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-2175 (*1 *2 *1) (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-3140 (*1 *2 *1) (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-3474 (*1 *2) (-12 (-5 *2 (-1201 (-421 (-975 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-4218 (*1 *2 *1) (-12 (-5 *2 (-1201 (-421 (-975 *3)))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-1672 (*1 *2 *1) (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-2494 (*1 *2 *1 *1) (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-2692 (*1 *2) (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-2536 (*1 *2 *1 *1) (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-1898 (*1 *2) (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))) (-1556 (*1 *2 *3) (-12 (-5 *3 (-1297 (-467 *4 *5 *6 *7))) (-5 *2 (-663 (-975 *4))) (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-571)) (-4 *4 (-175)) (-14 *5 (-948)) (-14 *6 (-663 (-1207))) (-14 *7 (-1297 (-711 *4))))) (-1556 (*1 *2) (-12 (-5 *2 (-663 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
+(-13 (-432 (-421 (-975 |#1|))) (-670 (-1173 |#2| (-421 (-975 |#1|)))) (-10 -8 (-15 -3913 ($ (-1297 (-421 (-975 |#1|))))) (-15 -1367 ((-3 (-2 (|:| |particular| $) (|:| -3822 (-663 $))) "failed"))) (-15 -1756 ((-3 (-2 (|:| |particular| $) (|:| -3822 (-663 $))) "failed"))) (-15 -3104 ($)) (-15 -3104 ($ (-1207))) (-15 -3104 ($ (-1297 (-1207)))) (-15 -3104 ($ (-1297 $))) (-15 -3104 ($ (-1207) (-1297 $))) (-15 -3104 ($ (-1297 (-1207)) (-1297 $))) (IF (|has| |#1| (-571)) (PROGN (-15 -1828 ((-1201 (-421 (-975 |#1|))))) (-15 -2193 ((-1201 (-421 (-975 |#1|))) $)) (-15 -2175 ((-421 (-975 |#1|)) $)) (-15 -3140 ((-421 (-975 |#1|)) $)) (-15 -3474 ((-1201 (-421 (-975 |#1|))))) (-15 -4218 ((-1201 (-421 (-975 |#1|))) $)) (-15 -1672 ((-421 (-975 |#1|)) $)) (-15 -3145 ((-421 (-975 |#1|)) $)) (-15 -2494 ((-421 (-975 |#1|)) $ $)) (-15 -2692 ((-421 (-975 |#1|)))) (-15 -2536 ((-421 (-975 |#1|)) $ $)) (-15 -1898 ((-421 (-975 |#1|)))) (-15 -1556 ((-663 (-975 |#1|)) (-1297 $))) (-15 -1556 ((-663 (-975 |#1|))))) |%noBranch|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 18 T ELT)) (-4162 (((-663 (-888 |#1|)) $) 87 T ELT)) (-3981 (((-1201 $) $ (-888 |#1|)) 52 T ELT) (((-1201 |#2|) $) 138 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#2| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#2| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#2| (-571)) ELT)) (-2250 (((-793) $) 27 T ELT) (((-793) $ (-663 (-888 |#1|))) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-1621 (($ $) NIL (|has| |#2| (-466)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#2| (-466)) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#2| "failed") $) 50 T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-3 (-888 |#1|) "failed") $) NIL T ELT)) (-3649 ((|#2| $) 48 T ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-888 |#1|) $) NIL T ELT)) (-2096 (($ $ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-3517 (($ $ (-663 (-560))) 93 T ELT)) (-3062 (($ $) 80 T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4239 (($ $) NIL (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-3048 (((-663 $) $) NIL T ELT)) (-3141 (((-114) $) NIL (|has| |#2| (-939)) ELT)) (-3224 (($ $ |#2| |#3| $) NIL T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-391))) (|has| |#2| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-560))) (|has| |#2| (-911 (-560)))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-4127 (((-793) $) 65 T ELT)) (-4149 (($ (-1201 |#2|) (-888 |#1|)) 143 T ELT) (($ (-1201 $) (-888 |#1|)) 58 T ELT)) (-2947 (((-663 $) $) NIL T ELT)) (-1673 (((-114) $) 68 T ELT)) (-4139 (($ |#2| |#3|) 35 T ELT) (($ $ (-888 |#1|) (-793)) 37 T ELT) (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT)) (-4415 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $ (-888 |#1|)) NIL T ELT)) (-3765 ((|#3| $) NIL T ELT) (((-793) $ (-888 |#1|)) 56 T ELT) (((-663 (-793)) $ (-663 (-888 |#1|))) 63 T ELT)) (-3060 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2260 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3835 (((-3 (-888 |#1|) "failed") $) 45 T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-711 |#2|) (-1297 $)) NIL T ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#2| $) 47 T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1669 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3849 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3149 (((-3 (-2 (|:| |var| (-888 |#1|)) (|:| -2030 (-793))) "failed") $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3000 (((-114) $) 46 T ELT)) (-3011 ((|#2| $) 136 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#2| (-466)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) 149 (|has| |#2| (-466)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-4012 (((-419 $) $) NIL (|has| |#2| (-939)) ELT)) (-2233 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-571)) ELT)) (-2371 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-888 |#1|) |#2|) 100 T ELT) (($ $ (-663 (-888 |#1|)) (-663 |#2|)) 106 T ELT) (($ $ (-888 |#1|) $) 98 T ELT) (($ $ (-663 (-888 |#1|)) (-663 $)) 124 T ELT)) (-2336 (($ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-3161 (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) 59 T ELT)) (-3900 ((|#3| $) 79 T ELT) (((-793) $ (-888 |#1|)) 42 T ELT) (((-663 (-793)) $ (-663 (-888 |#1|))) 62 T ELT)) (-2400 (((-915 (-391)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-915 (-391)))) (|has| |#2| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-915 (-560)))) (|has| |#2| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-888 |#1|) (-633 (-549))) (|has| |#2| (-633 (-549)))) ELT)) (-2264 ((|#2| $) 145 (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-939))) ELT)) (-3913 (((-887) $) 173 T ELT) (($ (-560)) NIL T ELT) (($ |#2|) 99 T ELT) (($ (-888 |#1|)) 39 T ELT) (($ (-421 (-560))) NIL (-2196 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#2| (-571)) ELT)) (-2247 (((-663 |#2|) $) NIL T ELT)) (-2920 ((|#2| $ |#3|) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| |#2| (-939))) (|has| |#2| (-147))) ELT)) (-4191 (((-793)) NIL T CONST)) (-2548 (($ $ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL (|has| |#2| (-571)) ELT)) (-1446 (($) 22 T CONST)) (-1456 (($) 31 T CONST)) (-2111 (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#2|) 76 (|has| |#2| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 131 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 129 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 36 T ELT) (($ $ (-421 (-560))) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ |#2| $) 75 T ELT) (($ $ |#2|) NIL T ELT)))
+(((-468 |#1| |#2| |#3|) (-13 (-979 |#2| |#3| (-888 |#1|)) (-10 -8 (-15 -3517 ($ $ (-663 (-560)))))) (-663 (-1207)) (-1080) (-245 (-2256 |#1|) (-793))) (T -468))
+((-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-14 *3 (-663 (-1207))) (-5 *1 (-468 *3 *4 *5)) (-4 *4 (-1080)) (-4 *5 (-245 (-2256 *3) (-793))))))
+(-13 (-979 |#2| |#3| (-888 |#1|)) (-10 -8 (-15 -3517 ($ $ (-663 (-560))))))
+((-1419 (((-114) |#1| (-663 |#2|)) 91 T ELT)) (-4440 (((-3 (-1297 (-663 |#2|)) "failed") (-793) |#1| (-663 |#2|)) 100 T ELT)) (-2276 (((-3 (-663 |#2|) "failed") |#2| |#1| (-1297 (-663 |#2|))) 102 T ELT)) (-3836 ((|#2| |#2| |#1|) 35 T ELT)) (-2411 (((-793) |#2| (-663 |#2|)) 26 T ELT)))
+(((-469 |#1| |#2|) (-10 -7 (-15 -3836 (|#2| |#2| |#1|)) (-15 -2411 ((-793) |#2| (-663 |#2|))) (-15 -4440 ((-3 (-1297 (-663 |#2|)) "failed") (-793) |#1| (-663 |#2|))) (-15 -2276 ((-3 (-663 |#2|) "failed") |#2| |#1| (-1297 (-663 |#2|)))) (-15 -1419 ((-114) |#1| (-663 |#2|)))) (-319) (-1273 |#1|)) (T -469))
+((-1419 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *5)) (-4 *5 (-1273 *3)) (-4 *3 (-319)) (-5 *2 (-114)) (-5 *1 (-469 *3 *5)))) (-2276 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1297 (-663 *3))) (-4 *4 (-319)) (-5 *2 (-663 *3)) (-5 *1 (-469 *4 *3)) (-4 *3 (-1273 *4)))) (-4440 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-793)) (-4 *4 (-319)) (-4 *6 (-1273 *4)) (-5 *2 (-1297 (-663 *6))) (-5 *1 (-469 *4 *6)) (-5 *5 (-663 *6)))) (-2411 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-319)) (-5 *2 (-793)) (-5 *1 (-469 *5 *3)))) (-3836 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-469 *3 *2)) (-4 *2 (-1273 *3)))))
+(-10 -7 (-15 -3836 (|#2| |#2| |#1|)) (-15 -2411 ((-793) |#2| (-663 |#2|))) (-15 -4440 ((-3 (-1297 (-663 |#2|)) "failed") (-793) |#1| (-663 |#2|))) (-15 -2276 ((-3 (-663 |#2|) "failed") |#2| |#1| (-1297 (-663 |#2|)))) (-15 -1419 ((-114) |#1| (-663 |#2|))))
+((-4012 (((-419 |#5|) |#5|) 24 T ELT)))
+(((-470 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4012 ((-419 |#5|) |#5|))) (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $)) (-15 -2558 ((-3 $ "failed") (-1207))))) (-815) (-571) (-571) (-979 |#4| |#2| |#1|)) (T -470))
+((-4012 (*1 *2 *3) (-12 (-4 *4 (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $)) (-15 -2558 ((-3 $ "failed") (-1207)))))) (-4 *5 (-815)) (-4 *7 (-571)) (-5 *2 (-419 *3)) (-5 *1 (-470 *4 *5 *6 *7 *3)) (-4 *6 (-571)) (-4 *3 (-979 *7 *5 *4)))))
+(-10 -7 (-15 -4012 ((-419 |#5|) |#5|)))
+((-3657 ((|#3|) 38 T ELT)) (-4362 (((-1201 |#4|) (-1201 |#4|) (-1201 |#4|)) 34 T ELT)))
+(((-471 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4362 ((-1201 |#4|) (-1201 |#4|) (-1201 |#4|))) (-15 -3657 (|#3|))) (-815) (-871) (-939) (-979 |#3| |#1| |#2|)) (T -471))
+((-3657 (*1 *2) (-12 (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-939)) (-5 *1 (-471 *3 *4 *2 *5)) (-4 *5 (-979 *2 *3 *4)))) (-4362 (*1 *2 *2 *2) (-12 (-5 *2 (-1201 *6)) (-4 *6 (-979 *5 *3 *4)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-939)) (-5 *1 (-471 *3 *4 *5 *6)))))
+(-10 -7 (-15 -4362 ((-1201 |#4|) (-1201 |#4|) (-1201 |#4|))) (-15 -3657 (|#3|)))
+((-4012 (((-419 (-1201 |#1|)) (-1201 |#1|)) 43 T ELT)))
+(((-472 |#1|) (-10 -7 (-15 -4012 ((-419 (-1201 |#1|)) (-1201 |#1|)))) (-319)) (T -472))
+((-4012 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-419 (-1201 *4))) (-5 *1 (-472 *4)) (-5 *3 (-1201 *4)))))
+(-10 -7 (-15 -4012 ((-419 (-1201 |#1|)) (-1201 |#1|))))
+((-2936 (((-51) |#2| (-1207) (-305 |#2|) (-1264 (-793))) 44 T ELT) (((-51) (-1 |#2| (-560)) (-305 |#2|) (-1264 (-793))) 43 T ELT) (((-51) |#2| (-1207) (-305 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-560)) (-305 |#2|)) 29 T ELT)) (-2882 (((-51) |#2| (-1207) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560))) 88 T ELT) (((-51) (-1 |#2| (-421 (-560))) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560))) 87 T ELT) (((-51) |#2| (-1207) (-305 |#2|) (-1264 (-560))) 86 T ELT) (((-51) (-1 |#2| (-560)) (-305 |#2|) (-1264 (-560))) 85 T ELT) (((-51) |#2| (-1207) (-305 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-560)) (-305 |#2|)) 79 T ELT)) (-2962 (((-51) |#2| (-1207) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560))) 74 T ELT) (((-51) (-1 |#2| (-421 (-560))) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560))) 72 T ELT)) (-2949 (((-51) |#2| (-1207) (-305 |#2|) (-1264 (-560))) 51 T ELT) (((-51) (-1 |#2| (-560)) (-305 |#2|) (-1264 (-560))) 50 T ELT)))
+(((-473 |#1| |#2|) (-10 -7 (-15 -2936 ((-51) (-1 |#2| (-560)) (-305 |#2|))) (-15 -2936 ((-51) |#2| (-1207) (-305 |#2|))) (-15 -2936 ((-51) (-1 |#2| (-560)) (-305 |#2|) (-1264 (-793)))) (-15 -2936 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-793)))) (-15 -2949 ((-51) (-1 |#2| (-560)) (-305 |#2|) (-1264 (-560)))) (-15 -2949 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-560)))) (-15 -2962 ((-51) (-1 |#2| (-421 (-560))) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560)))) (-15 -2962 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560)))) (-15 -2882 ((-51) (-1 |#2| (-560)) (-305 |#2|))) (-15 -2882 ((-51) |#2| (-1207) (-305 |#2|))) (-15 -2882 ((-51) (-1 |#2| (-560)) (-305 |#2|) (-1264 (-560)))) (-15 -2882 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-560)))) (-15 -2882 ((-51) (-1 |#2| (-421 (-560))) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560)))) (-15 -2882 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560))))) (-13 (-571) (-1069 (-560)) (-660 (-560))) (-13 (-27) (-1233) (-435 |#1|))) (T -473))
+((-2882 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-421 (-560)))) (-5 *7 (-421 (-560))) (-4 *3 (-13 (-27) (-1233) (-435 *8))) (-4 *8 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *8 *3)))) (-2882 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-421 (-560)))) (-5 *4 (-305 *8)) (-5 *5 (-1264 (-421 (-560)))) (-5 *6 (-421 (-560))) (-4 *8 (-13 (-27) (-1233) (-435 *7))) (-4 *7 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *7 *8)))) (-2882 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-560))) (-4 *3 (-13 (-27) (-1233) (-435 *7))) (-4 *7 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *7 *3)))) (-2882 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-560))) (-4 *7 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *6 *7)))) (-2882 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *6 *3)))) (-2882 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-560))) (-5 *4 (-305 *6)) (-4 *6 (-13 (-27) (-1233) (-435 *5))) (-4 *5 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *5 *6)))) (-2962 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-421 (-560)))) (-5 *7 (-421 (-560))) (-4 *3 (-13 (-27) (-1233) (-435 *8))) (-4 *8 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *8 *3)))) (-2962 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-421 (-560)))) (-5 *4 (-305 *8)) (-5 *5 (-1264 (-421 (-560)))) (-5 *6 (-421 (-560))) (-4 *8 (-13 (-27) (-1233) (-435 *7))) (-4 *7 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *7 *8)))) (-2949 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-560))) (-4 *3 (-13 (-27) (-1233) (-435 *7))) (-4 *7 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *7 *3)))) (-2949 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-560))) (-4 *7 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *6 *7)))) (-2936 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-793))) (-4 *3 (-13 (-27) (-1233) (-435 *7))) (-4 *7 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *7 *3)))) (-2936 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-793))) (-4 *7 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *6 *7)))) (-2936 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *6 *3)))) (-2936 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-560))) (-5 *4 (-305 *6)) (-4 *6 (-13 (-27) (-1233) (-435 *5))) (-4 *5 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51)) (-5 *1 (-473 *5 *6)))))
+(-10 -7 (-15 -2936 ((-51) (-1 |#2| (-560)) (-305 |#2|))) (-15 -2936 ((-51) |#2| (-1207) (-305 |#2|))) (-15 -2936 ((-51) (-1 |#2| (-560)) (-305 |#2|) (-1264 (-793)))) (-15 -2936 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-793)))) (-15 -2949 ((-51) (-1 |#2| (-560)) (-305 |#2|) (-1264 (-560)))) (-15 -2949 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-560)))) (-15 -2962 ((-51) (-1 |#2| (-421 (-560))) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560)))) (-15 -2962 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560)))) (-15 -2882 ((-51) (-1 |#2| (-560)) (-305 |#2|))) (-15 -2882 ((-51) |#2| (-1207) (-305 |#2|))) (-15 -2882 ((-51) (-1 |#2| (-560)) (-305 |#2|) (-1264 (-560)))) (-15 -2882 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-560)))) (-15 -2882 ((-51) (-1 |#2| (-421 (-560))) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560)))) (-15 -2882 ((-51) |#2| (-1207) (-305 |#2|) (-1264 (-421 (-560))) (-421 (-560)))))
+((-3836 ((|#2| |#2| |#1|) 15 T ELT)) (-3857 (((-663 |#2|) |#2| (-663 |#2|) |#1| (-948)) 82 T ELT)) (-4403 (((-2 (|:| |plist| (-663 |#2|)) (|:| |modulo| |#1|)) |#2| (-663 |#2|) |#1| (-948)) 72 T ELT)))
+(((-474 |#1| |#2|) (-10 -7 (-15 -4403 ((-2 (|:| |plist| (-663 |#2|)) (|:| |modulo| |#1|)) |#2| (-663 |#2|) |#1| (-948))) (-15 -3857 ((-663 |#2|) |#2| (-663 |#2|) |#1| (-948))) (-15 -3836 (|#2| |#2| |#1|))) (-319) (-1273 |#1|)) (T -474))
+((-3836 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-474 *3 *2)) (-4 *2 (-1273 *3)))) (-3857 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-663 *3)) (-5 *5 (-948)) (-4 *3 (-1273 *4)) (-4 *4 (-319)) (-5 *1 (-474 *4 *3)))) (-4403 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-948)) (-4 *5 (-319)) (-4 *3 (-1273 *5)) (-5 *2 (-2 (|:| |plist| (-663 *3)) (|:| |modulo| *5))) (-5 *1 (-474 *5 *3)) (-5 *4 (-663 *3)))))
+(-10 -7 (-15 -4403 ((-2 (|:| |plist| (-663 |#2|)) (|:| |modulo| |#1|)) |#2| (-663 |#2|) |#1| (-948))) (-15 -3857 ((-663 |#2|) |#2| (-663 |#2|) |#1| (-948))) (-15 -3836 (|#2| |#2| |#1|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 28 T ELT)) (-3101 (($ |#3|) 25 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3062 (($ $) 32 T ELT)) (-3754 (($ |#2| |#4| $) 33 T ELT)) (-4139 (($ |#2| (-735 |#3| |#4| |#5|)) 24 T ELT)) (-3024 (((-735 |#3| |#4| |#5|) $) 15 T ELT)) (-2387 ((|#3| $) 19 T ELT)) (-2825 ((|#4| $) 17 T ELT)) (-3037 ((|#2| $) 29 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-1348 (($ |#2| |#3| |#4|) 26 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 36 T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 34 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
+(((-475 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-739 |#6|) (-739 |#2|) (-10 -8 (-15 -3037 (|#2| $)) (-15 -3024 ((-735 |#3| |#4| |#5|) $)) (-15 -2825 (|#4| $)) (-15 -2387 (|#3| $)) (-15 -3062 ($ $)) (-15 -4139 ($ |#2| (-735 |#3| |#4| |#5|))) (-15 -3101 ($ |#3|)) (-15 -1348 ($ |#2| |#3| |#4|)) (-15 -3754 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-663 (-1207)) (-175) (-871) (-245 (-2256 |#1|) (-793)) (-1 (-114) (-2 (|:| -1591 |#3|) (|:| -2030 |#4|)) (-2 (|:| -1591 |#3|) (|:| -2030 |#4|))) (-979 |#2| |#4| (-888 |#1|))) (T -475))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-663 (-1207))) (-4 *4 (-175)) (-4 *6 (-245 (-2256 *3) (-793))) (-14 *7 (-1 (-114) (-2 (|:| -1591 *5) (|:| -2030 *6)) (-2 (|:| -1591 *5) (|:| -2030 *6)))) (-5 *1 (-475 *3 *4 *5 *6 *7 *2)) (-4 *5 (-871)) (-4 *2 (-979 *4 *6 (-888 *3))))) (-3037 (*1 *2 *1) (-12 (-14 *3 (-663 (-1207))) (-4 *5 (-245 (-2256 *3) (-793))) (-14 *6 (-1 (-114) (-2 (|:| -1591 *4) (|:| -2030 *5)) (-2 (|:| -1591 *4) (|:| -2030 *5)))) (-4 *2 (-175)) (-5 *1 (-475 *3 *2 *4 *5 *6 *7)) (-4 *4 (-871)) (-4 *7 (-979 *2 *5 (-888 *3))))) (-3024 (*1 *2 *1) (-12 (-14 *3 (-663 (-1207))) (-4 *4 (-175)) (-4 *6 (-245 (-2256 *3) (-793))) (-14 *7 (-1 (-114) (-2 (|:| -1591 *5) (|:| -2030 *6)) (-2 (|:| -1591 *5) (|:| -2030 *6)))) (-5 *2 (-735 *5 *6 *7)) (-5 *1 (-475 *3 *4 *5 *6 *7 *8)) (-4 *5 (-871)) (-4 *8 (-979 *4 *6 (-888 *3))))) (-2825 (*1 *2 *1) (-12 (-14 *3 (-663 (-1207))) (-4 *4 (-175)) (-14 *6 (-1 (-114) (-2 (|:| -1591 *5) (|:| -2030 *2)) (-2 (|:| -1591 *5) (|:| -2030 *2)))) (-4 *2 (-245 (-2256 *3) (-793))) (-5 *1 (-475 *3 *4 *5 *2 *6 *7)) (-4 *5 (-871)) (-4 *7 (-979 *4 *2 (-888 *3))))) (-2387 (*1 *2 *1) (-12 (-14 *3 (-663 (-1207))) (-4 *4 (-175)) (-4 *5 (-245 (-2256 *3) (-793))) (-14 *6 (-1 (-114) (-2 (|:| -1591 *2) (|:| -2030 *5)) (-2 (|:| -1591 *2) (|:| -2030 *5)))) (-4 *2 (-871)) (-5 *1 (-475 *3 *4 *2 *5 *6 *7)) (-4 *7 (-979 *4 *5 (-888 *3))))) (-3062 (*1 *1 *1) (-12 (-14 *2 (-663 (-1207))) (-4 *3 (-175)) (-4 *5 (-245 (-2256 *2) (-793))) (-14 *6 (-1 (-114) (-2 (|:| -1591 *4) (|:| -2030 *5)) (-2 (|:| -1591 *4) (|:| -2030 *5)))) (-5 *1 (-475 *2 *3 *4 *5 *6 *7)) (-4 *4 (-871)) (-4 *7 (-979 *3 *5 (-888 *2))))) (-4139 (*1 *1 *2 *3) (-12 (-5 *3 (-735 *5 *6 *7)) (-4 *5 (-871)) (-4 *6 (-245 (-2256 *4) (-793))) (-14 *7 (-1 (-114) (-2 (|:| -1591 *5) (|:| -2030 *6)) (-2 (|:| -1591 *5) (|:| -2030 *6)))) (-14 *4 (-663 (-1207))) (-4 *2 (-175)) (-5 *1 (-475 *4 *2 *5 *6 *7 *8)) (-4 *8 (-979 *2 *6 (-888 *4))))) (-3101 (*1 *1 *2) (-12 (-14 *3 (-663 (-1207))) (-4 *4 (-175)) (-4 *5 (-245 (-2256 *3) (-793))) (-14 *6 (-1 (-114) (-2 (|:| -1591 *2) (|:| -2030 *5)) (-2 (|:| -1591 *2) (|:| -2030 *5)))) (-5 *1 (-475 *3 *4 *2 *5 *6 *7)) (-4 *2 (-871)) (-4 *7 (-979 *4 *5 (-888 *3))))) (-1348 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-663 (-1207))) (-4 *2 (-175)) (-4 *4 (-245 (-2256 *5) (-793))) (-14 *6 (-1 (-114) (-2 (|:| -1591 *3) (|:| -2030 *4)) (-2 (|:| -1591 *3) (|:| -2030 *4)))) (-5 *1 (-475 *5 *2 *3 *4 *6 *7)) (-4 *3 (-871)) (-4 *7 (-979 *2 *4 (-888 *5))))) (-3754 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-663 (-1207))) (-4 *2 (-175)) (-4 *3 (-245 (-2256 *4) (-793))) (-14 *6 (-1 (-114) (-2 (|:| -1591 *5) (|:| -2030 *3)) (-2 (|:| -1591 *5) (|:| -2030 *3)))) (-5 *1 (-475 *4 *2 *5 *3 *6 *7)) (-4 *5 (-871)) (-4 *7 (-979 *2 *3 (-888 *4))))))
+(-13 (-739 |#6|) (-739 |#2|) (-10 -8 (-15 -3037 (|#2| $)) (-15 -3024 ((-735 |#3| |#4| |#5|) $)) (-15 -2825 (|#4| $)) (-15 -2387 (|#3| $)) (-15 -3062 ($ $)) (-15 -4139 ($ |#2| (-735 |#3| |#4| |#5|))) (-15 -3101 ($ |#3|)) (-15 -1348 ($ |#2| |#3| |#4|)) (-15 -3754 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-3982 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT)))
+(((-476 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3982 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-815) (-871) (-571) (-979 |#3| |#1| |#2|) (-13 (-1069 (-421 (-560))) (-376) (-10 -8 (-15 -3913 ($ |#4|)) (-15 -2473 (|#4| $)) (-15 -2484 (|#4| $))))) (T -476))
+((-3982 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-871)) (-4 *5 (-815)) (-4 *6 (-571)) (-4 *7 (-979 *6 *5 *3)) (-5 *1 (-476 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1069 (-421 (-560))) (-376) (-10 -8 (-15 -3913 ($ *7)) (-15 -2473 (*7 $)) (-15 -2484 (*7 $))))))))
+(-10 -7 (-15 -3982 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-4162 (((-663 |#3|) $) 41 T ELT)) (-1362 (((-114) $) NIL T ELT)) (-2179 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-1787 (((-2 (|:| |under| $) (|:| -3147 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3923 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3525 (($) NIL T CONST)) (-2733 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3672 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4148 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2449 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3277 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-4485 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-3929 (((-3 $ "failed") (-663 |#4|)) 49 T ELT)) (-3649 (($ (-663 |#4|)) NIL T ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-3033 (($ |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3276 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-1778 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4508)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3737 (((-663 |#4|) $) 18 (|has| $ (-6 -4508)) ELT)) (-1816 ((|#3| $) 47 T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-3243 (((-663 |#4|) $) 14 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#4| $) 26 (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-3324 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-3471 (((-663 |#3|) $) NIL T ELT)) (-2703 (((-114) |#3| $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3531 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2708 (((-3 |#4| "failed") (-1 (-114) |#4|) $) NIL T ELT)) (-2086 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 |#4|) (-663 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) 39 T ELT)) (-2832 (($) 17 T ELT)) (-3384 (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) (((-793) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) 16 T ELT)) (-2400 (((-549) $) NIL (|has| |#4| (-633 (-549))) ELT) (($ (-663 |#4|)) 51 T ELT)) (-3924 (($ (-663 |#4|)) 13 T ELT)) (-2511 (($ $ |#3|) NIL T ELT)) (-4047 (($ $ |#3|) NIL T ELT)) (-2438 (($ $ |#3|) NIL T ELT)) (-3913 (((-887) $) 38 T ELT) (((-663 |#4|) $) 50 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2149 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 30 T ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-477 |#1| |#2| |#3| |#4|) (-13 (-1007 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2400 ($ (-663 |#4|))) (-6 -4508) (-6 -4509))) (-1080) (-815) (-871) (-1096 |#1| |#2| |#3|)) (T -477))
+((-2400 (*1 *1 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-477 *3 *4 *5 *6)))))
+(-13 (-1007 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2400 ($ (-663 |#4|))) (-6 -4508) (-6 -4509)))
+((-1446 (($) 11 T ELT)) (-1456 (($) 13 T ELT)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT)))
+(((-478 |#1| |#2| |#3|) (-10 -8 (-15 -1456 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1446 (|#1|))) (-479 |#2| |#3|) (-175) (-23)) (T -478))
+NIL
+(-10 -8 (-15 -1456 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -1446 (|#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-3929 (((-3 |#1| "failed") $) 27 T ELT)) (-3649 ((|#1| $) 28 T ELT)) (-1866 (($ $ $) 24 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3900 ((|#2| $) 20 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ |#1|) 26 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 25 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 16 T ELT) (($ $ $) 14 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ |#1| $) 18 T ELT) (($ $ |#1|) 17 T ELT)))
(((-479 |#1| |#2|) (-142) (-175) (-23)) (T -479))
-((-2011 (*1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-1480 (*1 *1 *1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))))
-(-13 (-484 |t#1| |t#2|) (-1069 |t#1|) (-10 -8 (-15 (-2011) ($) -3081) (-15 -1480 ($ $ $))))
+((-1456 (*1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-1866 (*1 *1 *1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))))
+(-13 (-484 |t#1| |t#2|) (-1069 |t#1|) (-10 -8 (-15 (-1456) ($) -2650) (-15 -1866 ($ $ $))))
(((-102) . T) ((-635 |#1|) . T) ((-632 (-887)) . T) ((-484 |#1| |#2|) . T) ((-1069 |#1|) . T) ((-1132) . T) ((-1247) . T))
-((-4278 (((-1297 (-1297 (-560))) (-1297 (-1297 (-560))) (-948)) 26 T ELT)) (-2531 (((-1297 (-1297 (-560))) (-948)) 21 T ELT)))
-(((-480) (-10 -7 (-15 -4278 ((-1297 (-1297 (-560))) (-1297 (-1297 (-560))) (-948))) (-15 -2531 ((-1297 (-1297 (-560))) (-948))))) (T -480))
-((-2531 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1297 (-1297 (-560)))) (-5 *1 (-480)))) (-4278 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 (-1297 (-560)))) (-5 *3 (-948)) (-5 *1 (-480)))))
-(-10 -7 (-15 -4278 ((-1297 (-1297 (-560))) (-1297 (-1297 (-560))) (-948))) (-15 -2531 ((-1297 (-1297 (-560))) (-948))))
-((-3048 (((-560) (-560)) 32 T ELT) (((-560)) 24 T ELT)) (-2002 (((-560) (-560)) 28 T ELT) (((-560)) 20 T ELT)) (-3537 (((-560) (-560)) 30 T ELT) (((-560)) 22 T ELT)) (-1707 (((-114) (-114)) 14 T ELT) (((-114)) 12 T ELT)) (-2998 (((-114) (-114)) 13 T ELT) (((-114)) 11 T ELT)) (-4072 (((-114) (-114)) 26 T ELT) (((-114)) 17 T ELT)))
-(((-481) (-10 -7 (-15 -2998 ((-114))) (-15 -1707 ((-114))) (-15 -2998 ((-114) (-114))) (-15 -1707 ((-114) (-114))) (-15 -4072 ((-114))) (-15 -3537 ((-560))) (-15 -2002 ((-560))) (-15 -3048 ((-560))) (-15 -4072 ((-114) (-114))) (-15 -3537 ((-560) (-560))) (-15 -2002 ((-560) (-560))) (-15 -3048 ((-560) (-560))))) (T -481))
-((-3048 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) (-2002 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) (-3537 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) (-4072 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))) (-3048 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) (-2002 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) (-3537 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) (-4072 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))) (-1707 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))) (-2998 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))) (-1707 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))) (-2998 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))))
-(-10 -7 (-15 -2998 ((-114))) (-15 -1707 ((-114))) (-15 -2998 ((-114) (-114))) (-15 -1707 ((-114) (-114))) (-15 -4072 ((-114))) (-15 -3537 ((-560))) (-15 -2002 ((-560))) (-15 -3048 ((-560))) (-15 -4072 ((-114) (-114))) (-15 -3537 ((-560) (-560))) (-15 -2002 ((-560) (-560))) (-15 -3048 ((-560) (-560))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2431 (((-663 (-391)) $) 34 T ELT) (((-663 (-391)) $ (-663 (-391))) 146 T ELT)) (-1807 (((-663 (-1120 (-391))) $) 16 T ELT) (((-663 (-1120 (-391))) $ (-663 (-1120 (-391)))) 142 T ELT)) (-3664 (((-663 (-663 (-972 (-229)))) (-663 (-663 (-972 (-229)))) (-663 (-898))) 58 T ELT)) (-1711 (((-663 (-663 (-972 (-229)))) $) 137 T ELT)) (-3743 (((-1303) $ (-972 (-229)) (-898)) 163 T ELT)) (-2535 (($ $) 136 T ELT) (($ (-663 (-663 (-972 (-229))))) 149 T ELT) (($ (-663 (-663 (-972 (-229)))) (-663 (-898)) (-663 (-898)) (-663 (-948))) 148 T ELT) (($ (-663 (-663 (-972 (-229)))) (-663 (-898)) (-663 (-898)) (-663 (-948)) (-663 (-270))) 150 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2968 (((-560) $) 110 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3962 (($) 147 T ELT)) (-1844 (((-663 (-229)) (-663 (-663 (-972 (-229))))) 89 T ELT)) (-2780 (((-1303) $ (-663 (-972 (-229))) (-898) (-898) (-948)) 155 T ELT) (((-1303) $ (-972 (-229))) 157 T ELT) (((-1303) $ (-972 (-229)) (-898) (-898) (-948)) 156 T ELT)) (-1578 (((-887) $) 169 T ELT) (($ (-663 (-663 (-972 (-229))))) 164 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2888 (((-1303) $ (-972 (-229))) 162 T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-482) (-13 (-1132) (-10 -8 (-15 -3962 ($)) (-15 -2535 ($ $)) (-15 -2535 ($ (-663 (-663 (-972 (-229)))))) (-15 -2535 ($ (-663 (-663 (-972 (-229)))) (-663 (-898)) (-663 (-898)) (-663 (-948)))) (-15 -2535 ($ (-663 (-663 (-972 (-229)))) (-663 (-898)) (-663 (-898)) (-663 (-948)) (-663 (-270)))) (-15 -1711 ((-663 (-663 (-972 (-229)))) $)) (-15 -2968 ((-560) $)) (-15 -1807 ((-663 (-1120 (-391))) $)) (-15 -1807 ((-663 (-1120 (-391))) $ (-663 (-1120 (-391))))) (-15 -2431 ((-663 (-391)) $)) (-15 -2431 ((-663 (-391)) $ (-663 (-391)))) (-15 -2780 ((-1303) $ (-663 (-972 (-229))) (-898) (-898) (-948))) (-15 -2780 ((-1303) $ (-972 (-229)))) (-15 -2780 ((-1303) $ (-972 (-229)) (-898) (-898) (-948))) (-15 -2888 ((-1303) $ (-972 (-229)))) (-15 -3743 ((-1303) $ (-972 (-229)) (-898))) (-15 -1578 ($ (-663 (-663 (-972 (-229)))))) (-15 -1578 ((-887) $)) (-15 -3664 ((-663 (-663 (-972 (-229)))) (-663 (-663 (-972 (-229)))) (-663 (-898)))) (-15 -1844 ((-663 (-229)) (-663 (-663 (-972 (-229))))))))) (T -482))
-((-1578 (*1 *2 *1) (-12 (-5 *2 (-887)) (-5 *1 (-482)))) (-3962 (*1 *1) (-5 *1 (-482))) (-2535 (*1 *1 *1) (-5 *1 (-482))) (-2535 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *1 (-482)))) (-2535 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *3 (-663 (-898))) (-5 *4 (-663 (-948))) (-5 *1 (-482)))) (-2535 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *3 (-663 (-898))) (-5 *4 (-663 (-948))) (-5 *5 (-663 (-270))) (-5 *1 (-482)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *1 (-482)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-482)))) (-1807 (*1 *2 *1) (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *1 (-482)))) (-1807 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *1 (-482)))) (-2431 (*1 *2 *1) (-12 (-5 *2 (-663 (-391))) (-5 *1 (-482)))) (-2431 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-391))) (-5 *1 (-482)))) (-2780 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-663 (-972 (-229)))) (-5 *4 (-898)) (-5 *5 (-948)) (-5 *2 (-1303)) (-5 *1 (-482)))) (-2780 (*1 *2 *1 *3) (-12 (-5 *3 (-972 (-229))) (-5 *2 (-1303)) (-5 *1 (-482)))) (-2780 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-972 (-229))) (-5 *4 (-898)) (-5 *5 (-948)) (-5 *2 (-1303)) (-5 *1 (-482)))) (-2888 (*1 *2 *1 *3) (-12 (-5 *3 (-972 (-229))) (-5 *2 (-1303)) (-5 *1 (-482)))) (-3743 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-972 (-229))) (-5 *4 (-898)) (-5 *2 (-1303)) (-5 *1 (-482)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *1 (-482)))) (-3664 (*1 *2 *2 *3) (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *3 (-663 (-898))) (-5 *1 (-482)))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *2 (-663 (-229))) (-5 *1 (-482)))))
-(-13 (-1132) (-10 -8 (-15 -3962 ($)) (-15 -2535 ($ $)) (-15 -2535 ($ (-663 (-663 (-972 (-229)))))) (-15 -2535 ($ (-663 (-663 (-972 (-229)))) (-663 (-898)) (-663 (-898)) (-663 (-948)))) (-15 -2535 ($ (-663 (-663 (-972 (-229)))) (-663 (-898)) (-663 (-898)) (-663 (-948)) (-663 (-270)))) (-15 -1711 ((-663 (-663 (-972 (-229)))) $)) (-15 -2968 ((-560) $)) (-15 -1807 ((-663 (-1120 (-391))) $)) (-15 -1807 ((-663 (-1120 (-391))) $ (-663 (-1120 (-391))))) (-15 -2431 ((-663 (-391)) $)) (-15 -2431 ((-663 (-391)) $ (-663 (-391)))) (-15 -2780 ((-1303) $ (-663 (-972 (-229))) (-898) (-898) (-948))) (-15 -2780 ((-1303) $ (-972 (-229)))) (-15 -2780 ((-1303) $ (-972 (-229)) (-898) (-898) (-948))) (-15 -2888 ((-1303) $ (-972 (-229)))) (-15 -3743 ((-1303) $ (-972 (-229)) (-898))) (-15 -1578 ($ (-663 (-663 (-972 (-229)))))) (-15 -1578 ((-887) $)) (-15 -3664 ((-663 (-663 (-972 (-229)))) (-663 (-663 (-972 (-229)))) (-663 (-898)))) (-15 -1844 ((-663 (-229)) (-663 (-663 (-972 (-229))))))))
-((-2580 (($ $) NIL T ELT) (($ $ $) 11 T ELT)))
-(((-483 |#1| |#2| |#3|) (-10 -8 (-15 -2580 (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1|))) (-484 |#2| |#3|) (-175) (-23)) (T -483))
-NIL
-(-10 -8 (-15 -2580 (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-3630 ((|#2| $) 20 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 16 T ELT) (($ $ $) 14 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ |#1| $) 18 T ELT) (($ $ |#1|) 17 T ELT)))
+((-3966 (((-1297 (-1297 (-560))) (-1297 (-1297 (-560))) (-948)) 26 T ELT)) (-1365 (((-1297 (-1297 (-560))) (-948)) 21 T ELT)))
+(((-480) (-10 -7 (-15 -3966 ((-1297 (-1297 (-560))) (-1297 (-1297 (-560))) (-948))) (-15 -1365 ((-1297 (-1297 (-560))) (-948))))) (T -480))
+((-1365 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1297 (-1297 (-560)))) (-5 *1 (-480)))) (-3966 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 (-1297 (-560)))) (-5 *3 (-948)) (-5 *1 (-480)))))
+(-10 -7 (-15 -3966 ((-1297 (-1297 (-560))) (-1297 (-1297 (-560))) (-948))) (-15 -1365 ((-1297 (-1297 (-560))) (-948))))
+((-2847 (((-560) (-560)) 32 T ELT) (((-560)) 24 T ELT)) (-3002 (((-560) (-560)) 28 T ELT) (((-560)) 20 T ELT)) (-4192 (((-560) (-560)) 30 T ELT) (((-560)) 22 T ELT)) (-3193 (((-114) (-114)) 14 T ELT) (((-114)) 12 T ELT)) (-3617 (((-114) (-114)) 13 T ELT) (((-114)) 11 T ELT)) (-2477 (((-114) (-114)) 26 T ELT) (((-114)) 17 T ELT)))
+(((-481) (-10 -7 (-15 -3617 ((-114))) (-15 -3193 ((-114))) (-15 -3617 ((-114) (-114))) (-15 -3193 ((-114) (-114))) (-15 -2477 ((-114))) (-15 -4192 ((-560))) (-15 -3002 ((-560))) (-15 -2847 ((-560))) (-15 -2477 ((-114) (-114))) (-15 -4192 ((-560) (-560))) (-15 -3002 ((-560) (-560))) (-15 -2847 ((-560) (-560))))) (T -481))
+((-2847 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) (-3002 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) (-4192 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) (-2477 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))) (-2847 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) (-3002 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) (-4192 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481)))) (-2477 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))) (-3193 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))) (-3617 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))) (-3193 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))) (-3617 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))))
+(-10 -7 (-15 -3617 ((-114))) (-15 -3193 ((-114))) (-15 -3617 ((-114) (-114))) (-15 -3193 ((-114) (-114))) (-15 -2477 ((-114))) (-15 -4192 ((-560))) (-15 -3002 ((-560))) (-15 -2847 ((-560))) (-15 -2477 ((-114) (-114))) (-15 -4192 ((-560) (-560))) (-15 -3002 ((-560) (-560))) (-15 -2847 ((-560) (-560))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2402 (((-663 (-391)) $) 34 T ELT) (((-663 (-391)) $ (-663 (-391))) 146 T ELT)) (-1657 (((-663 (-1120 (-391))) $) 16 T ELT) (((-663 (-1120 (-391))) $ (-663 (-1120 (-391)))) 142 T ELT)) (-2952 (((-663 (-663 (-972 (-229)))) (-663 (-663 (-972 (-229)))) (-663 (-898))) 58 T ELT)) (-3235 (((-663 (-663 (-972 (-229)))) $) 137 T ELT)) (-2843 (((-1303) $ (-972 (-229)) (-898)) 163 T ELT)) (-1400 (($ $) 136 T ELT) (($ (-663 (-663 (-972 (-229))))) 149 T ELT) (($ (-663 (-663 (-972 (-229)))) (-663 (-898)) (-663 (-898)) (-663 (-948))) 148 T ELT) (($ (-663 (-663 (-972 (-229)))) (-663 (-898)) (-663 (-898)) (-663 (-948)) (-663 (-270))) 150 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1438 (((-560) $) 110 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3883 (($) 147 T ELT)) (-4000 (((-663 (-229)) (-663 (-663 (-972 (-229))))) 89 T ELT)) (-2023 (((-1303) $ (-663 (-972 (-229))) (-898) (-898) (-948)) 155 T ELT) (((-1303) $ (-972 (-229))) 157 T ELT) (((-1303) $ (-972 (-229)) (-898) (-898) (-948)) 156 T ELT)) (-3913 (((-887) $) 169 T ELT) (($ (-663 (-663 (-972 (-229))))) 164 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3858 (((-1303) $ (-972 (-229))) 162 T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-482) (-13 (-1132) (-10 -8 (-15 -3883 ($)) (-15 -1400 ($ $)) (-15 -1400 ($ (-663 (-663 (-972 (-229)))))) (-15 -1400 ($ (-663 (-663 (-972 (-229)))) (-663 (-898)) (-663 (-898)) (-663 (-948)))) (-15 -1400 ($ (-663 (-663 (-972 (-229)))) (-663 (-898)) (-663 (-898)) (-663 (-948)) (-663 (-270)))) (-15 -3235 ((-663 (-663 (-972 (-229)))) $)) (-15 -1438 ((-560) $)) (-15 -1657 ((-663 (-1120 (-391))) $)) (-15 -1657 ((-663 (-1120 (-391))) $ (-663 (-1120 (-391))))) (-15 -2402 ((-663 (-391)) $)) (-15 -2402 ((-663 (-391)) $ (-663 (-391)))) (-15 -2023 ((-1303) $ (-663 (-972 (-229))) (-898) (-898) (-948))) (-15 -2023 ((-1303) $ (-972 (-229)))) (-15 -2023 ((-1303) $ (-972 (-229)) (-898) (-898) (-948))) (-15 -3858 ((-1303) $ (-972 (-229)))) (-15 -2843 ((-1303) $ (-972 (-229)) (-898))) (-15 -3913 ($ (-663 (-663 (-972 (-229)))))) (-15 -3913 ((-887) $)) (-15 -2952 ((-663 (-663 (-972 (-229)))) (-663 (-663 (-972 (-229)))) (-663 (-898)))) (-15 -4000 ((-663 (-229)) (-663 (-663 (-972 (-229))))))))) (T -482))
+((-3913 (*1 *2 *1) (-12 (-5 *2 (-887)) (-5 *1 (-482)))) (-3883 (*1 *1) (-5 *1 (-482))) (-1400 (*1 *1 *1) (-5 *1 (-482))) (-1400 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *1 (-482)))) (-1400 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *3 (-663 (-898))) (-5 *4 (-663 (-948))) (-5 *1 (-482)))) (-1400 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *3 (-663 (-898))) (-5 *4 (-663 (-948))) (-5 *5 (-663 (-270))) (-5 *1 (-482)))) (-3235 (*1 *2 *1) (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *1 (-482)))) (-1438 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-482)))) (-1657 (*1 *2 *1) (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *1 (-482)))) (-1657 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *1 (-482)))) (-2402 (*1 *2 *1) (-12 (-5 *2 (-663 (-391))) (-5 *1 (-482)))) (-2402 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-391))) (-5 *1 (-482)))) (-2023 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-663 (-972 (-229)))) (-5 *4 (-898)) (-5 *5 (-948)) (-5 *2 (-1303)) (-5 *1 (-482)))) (-2023 (*1 *2 *1 *3) (-12 (-5 *3 (-972 (-229))) (-5 *2 (-1303)) (-5 *1 (-482)))) (-2023 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-972 (-229))) (-5 *4 (-898)) (-5 *5 (-948)) (-5 *2 (-1303)) (-5 *1 (-482)))) (-3858 (*1 *2 *1 *3) (-12 (-5 *3 (-972 (-229))) (-5 *2 (-1303)) (-5 *1 (-482)))) (-2843 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-972 (-229))) (-5 *4 (-898)) (-5 *2 (-1303)) (-5 *1 (-482)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *1 (-482)))) (-2952 (*1 *2 *2 *3) (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *3 (-663 (-898))) (-5 *1 (-482)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *2 (-663 (-229))) (-5 *1 (-482)))))
+(-13 (-1132) (-10 -8 (-15 -3883 ($)) (-15 -1400 ($ $)) (-15 -1400 ($ (-663 (-663 (-972 (-229)))))) (-15 -1400 ($ (-663 (-663 (-972 (-229)))) (-663 (-898)) (-663 (-898)) (-663 (-948)))) (-15 -1400 ($ (-663 (-663 (-972 (-229)))) (-663 (-898)) (-663 (-898)) (-663 (-948)) (-663 (-270)))) (-15 -3235 ((-663 (-663 (-972 (-229)))) $)) (-15 -1438 ((-560) $)) (-15 -1657 ((-663 (-1120 (-391))) $)) (-15 -1657 ((-663 (-1120 (-391))) $ (-663 (-1120 (-391))))) (-15 -2402 ((-663 (-391)) $)) (-15 -2402 ((-663 (-391)) $ (-663 (-391)))) (-15 -2023 ((-1303) $ (-663 (-972 (-229))) (-898) (-898) (-948))) (-15 -2023 ((-1303) $ (-972 (-229)))) (-15 -2023 ((-1303) $ (-972 (-229)) (-898) (-898) (-948))) (-15 -3858 ((-1303) $ (-972 (-229)))) (-15 -2843 ((-1303) $ (-972 (-229)) (-898))) (-15 -3913 ($ (-663 (-663 (-972 (-229)))))) (-15 -3913 ((-887) $)) (-15 -2952 ((-663 (-663 (-972 (-229)))) (-663 (-663 (-972 (-229)))) (-663 (-898)))) (-15 -4000 ((-663 (-229)) (-663 (-663 (-972 (-229))))))))
+((-2441 (($ $) NIL T ELT) (($ $ $) 11 T ELT)))
+(((-483 |#1| |#2| |#3|) (-10 -8 (-15 -2441 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1|))) (-484 |#2| |#3|) (-175) (-23)) (T -483))
+NIL
+(-10 -8 (-15 -2441 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3900 ((|#2| $) 20 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 16 T ELT) (($ $ $) 14 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ |#1| $) 18 T ELT) (($ $ |#1|) 17 T ELT)))
(((-484 |#1| |#2|) (-142) (-175) (-23)) (T -484))
-((-3630 (*1 *2 *1) (-12 (-4 *1 (-484 *3 *2)) (-4 *3 (-175)) (-4 *2 (-23)))) (-2001 (*1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-2580 (*1 *1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-2567 (*1 *1 *1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-2580 (*1 *1 *1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))))
-(-13 (-1132) (-10 -8 (-15 -3630 (|t#2| $)) (-15 (-2001) ($) -3081) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2580 ($ $)) (-15 -2567 ($ $ $)) (-15 -2580 ($ $ $))))
+((-3900 (*1 *2 *1) (-12 (-4 *1 (-484 *3 *2)) (-4 *3 (-175)) (-4 *2 (-23)))) (-1446 (*1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-2441 (*1 *1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-2429 (*1 *1 *1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-2441 (*1 *1 *1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))))
+(-13 (-1132) (-10 -8 (-15 -3900 (|t#2| $)) (-15 (-1446) ($) -2650) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2441 ($ $)) (-15 -2429 ($ $ $)) (-15 -2441 ($ $ $))))
(((-102) . T) ((-632 (-887)) . T) ((-1132) . T) ((-1247) . T))
-((-1786 (((-3 (-663 (-495 |#1| |#2|)) "failed") (-663 (-495 |#1| |#2|)) (-663 (-888 |#1|))) 134 T ELT)) (-2078 (((-663 (-663 (-255 |#1| |#2|))) (-663 (-255 |#1| |#2|)) (-663 (-888 |#1|))) 131 T ELT)) (-2877 (((-2 (|:| |dpolys| (-663 (-255 |#1| |#2|))) (|:| |coords| (-663 (-560)))) (-663 (-255 |#1| |#2|)) (-663 (-888 |#1|))) 86 T ELT)))
-(((-485 |#1| |#2| |#3|) (-10 -7 (-15 -2078 ((-663 (-663 (-255 |#1| |#2|))) (-663 (-255 |#1| |#2|)) (-663 (-888 |#1|)))) (-15 -1786 ((-3 (-663 (-495 |#1| |#2|)) "failed") (-663 (-495 |#1| |#2|)) (-663 (-888 |#1|)))) (-15 -2877 ((-2 (|:| |dpolys| (-663 (-255 |#1| |#2|))) (|:| |coords| (-663 (-560)))) (-663 (-255 |#1| |#2|)) (-663 (-888 |#1|))))) (-663 (-1207)) (-466) (-466)) (T -485))
-((-2877 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-888 *5))) (-14 *5 (-663 (-1207))) (-4 *6 (-466)) (-5 *2 (-2 (|:| |dpolys| (-663 (-255 *5 *6))) (|:| |coords| (-663 (-560))))) (-5 *1 (-485 *5 *6 *7)) (-5 *3 (-663 (-255 *5 *6))) (-4 *7 (-466)))) (-1786 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 (-495 *4 *5))) (-5 *3 (-663 (-888 *4))) (-14 *4 (-663 (-1207))) (-4 *5 (-466)) (-5 *1 (-485 *4 *5 *6)) (-4 *6 (-466)))) (-2078 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-888 *5))) (-14 *5 (-663 (-1207))) (-4 *6 (-466)) (-5 *2 (-663 (-663 (-255 *5 *6)))) (-5 *1 (-485 *5 *6 *7)) (-5 *3 (-663 (-255 *5 *6))) (-4 *7 (-466)))))
-(-10 -7 (-15 -2078 ((-663 (-663 (-255 |#1| |#2|))) (-663 (-255 |#1| |#2|)) (-663 (-888 |#1|)))) (-15 -1786 ((-3 (-663 (-495 |#1| |#2|)) "failed") (-663 (-495 |#1| |#2|)) (-663 (-888 |#1|)))) (-15 -2877 ((-2 (|:| |dpolys| (-663 (-255 |#1| |#2|))) (|:| |coords| (-663 (-560)))) (-663 (-255 |#1| |#2|)) (-663 (-888 |#1|)))))
-((-1990 (((-3 $ "failed") $) 11 T ELT)) (-4122 (($ $ $) 23 T ELT)) (-2013 (($ $ $) 24 T ELT)) (-2594 (($ $ $) 9 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 22 T ELT)))
-(((-486 |#1|) (-10 -8 (-15 -2013 (|#1| |#1| |#1|)) (-15 -4122 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -2594 (|#1| |#1| |#1|)) (-15 -1990 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-948)))) (-487)) (T -486))
-NIL
-(-10 -8 (-15 -2013 (|#1| |#1| |#1|)) (-15 -4122 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -2594 (|#1| |#1| |#1|)) (-15 -1990 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-948))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2238 (($) 19 T CONST)) (-1990 (((-3 $ "failed") $) 16 T ELT)) (-1581 (((-114) $) 18 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-1544 (($ $) 25 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-4122 (($ $ $) 22 T ELT)) (-2013 (($ $ $) 21 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2011 (($) 20 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ $) 24 T ELT)) (** (($ $ (-948)) 14 T ELT) (($ $ (-793)) 17 T ELT) (($ $ (-560)) 23 T ELT)) (* (($ $ $) 15 T ELT)))
+((-1462 (((-3 (-663 (-495 |#1| |#2|)) "failed") (-663 (-495 |#1| |#2|)) (-663 (-888 |#1|))) 134 T ELT)) (-2508 (((-663 (-663 (-255 |#1| |#2|))) (-663 (-255 |#1| |#2|)) (-663 (-888 |#1|))) 131 T ELT)) (-3735 (((-2 (|:| |dpolys| (-663 (-255 |#1| |#2|))) (|:| |coords| (-663 (-560)))) (-663 (-255 |#1| |#2|)) (-663 (-888 |#1|))) 86 T ELT)))
+(((-485 |#1| |#2| |#3|) (-10 -7 (-15 -2508 ((-663 (-663 (-255 |#1| |#2|))) (-663 (-255 |#1| |#2|)) (-663 (-888 |#1|)))) (-15 -1462 ((-3 (-663 (-495 |#1| |#2|)) "failed") (-663 (-495 |#1| |#2|)) (-663 (-888 |#1|)))) (-15 -3735 ((-2 (|:| |dpolys| (-663 (-255 |#1| |#2|))) (|:| |coords| (-663 (-560)))) (-663 (-255 |#1| |#2|)) (-663 (-888 |#1|))))) (-663 (-1207)) (-466) (-466)) (T -485))
+((-3735 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-888 *5))) (-14 *5 (-663 (-1207))) (-4 *6 (-466)) (-5 *2 (-2 (|:| |dpolys| (-663 (-255 *5 *6))) (|:| |coords| (-663 (-560))))) (-5 *1 (-485 *5 *6 *7)) (-5 *3 (-663 (-255 *5 *6))) (-4 *7 (-466)))) (-1462 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 (-495 *4 *5))) (-5 *3 (-663 (-888 *4))) (-14 *4 (-663 (-1207))) (-4 *5 (-466)) (-5 *1 (-485 *4 *5 *6)) (-4 *6 (-466)))) (-2508 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-888 *5))) (-14 *5 (-663 (-1207))) (-4 *6 (-466)) (-5 *2 (-663 (-663 (-255 *5 *6)))) (-5 *1 (-485 *5 *6 *7)) (-5 *3 (-663 (-255 *5 *6))) (-4 *7 (-466)))))
+(-10 -7 (-15 -2508 ((-663 (-663 (-255 |#1| |#2|))) (-663 (-255 |#1| |#2|)) (-663 (-888 |#1|)))) (-15 -1462 ((-3 (-663 (-495 |#1| |#2|)) "failed") (-663 (-495 |#1| |#2|)) (-663 (-888 |#1|)))) (-15 -3735 ((-2 (|:| |dpolys| (-663 (-255 |#1| |#2|))) (|:| |coords| (-663 (-560)))) (-663 (-255 |#1| |#2|)) (-663 (-888 |#1|)))))
+((-2873 (((-3 $ "failed") $) 11 T ELT)) (-1714 (($ $ $) 23 T ELT)) (-3117 (($ $ $) 24 T ELT)) (-2453 (($ $ $) 9 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 22 T ELT)))
+(((-486 |#1|) (-10 -8 (-15 -3117 (|#1| |#1| |#1|)) (-15 -1714 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -2453 (|#1| |#1| |#1|)) (-15 -2873 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-948)))) (-487)) (T -486))
+NIL
+(-10 -8 (-15 -3117 (|#1| |#1| |#1|)) (-15 -1714 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -2453 (|#1| |#1| |#1|)) (-15 -2873 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-948))))
+((-2243 (((-114) $ $) 7 T ELT)) (-3525 (($) 19 T CONST)) (-2873 (((-3 $ "failed") $) 16 T ELT)) (-1918 (((-114) $) 18 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2986 (($ $) 25 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-1714 (($ $ $) 22 T ELT)) (-3117 (($ $ $) 21 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1456 (($) 20 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ $) 24 T ELT)) (** (($ $ (-948)) 14 T ELT) (($ $ (-793)) 17 T ELT) (($ $ (-560)) 23 T ELT)) (* (($ $ $) 15 T ELT)))
(((-487) (-142)) (T -487))
-((-1544 (*1 *1 *1) (-4 *1 (-487))) (-2594 (*1 *1 *1 *1) (-4 *1 (-487))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-487)) (-5 *2 (-560)))) (-4122 (*1 *1 *1 *1) (-4 *1 (-487))) (-2013 (*1 *1 *1 *1) (-4 *1 (-487))))
-(-13 (-748) (-10 -8 (-15 -1544 ($ $)) (-15 -2594 ($ $ $)) (-15 ** ($ $ (-560))) (-6 -4505) (-15 -4122 ($ $ $)) (-15 -2013 ($ $ $))))
+((-2986 (*1 *1 *1) (-4 *1 (-487))) (-2453 (*1 *1 *1 *1) (-4 *1 (-487))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-487)) (-5 *2 (-560)))) (-1714 (*1 *1 *1 *1) (-4 *1 (-487))) (-3117 (*1 *1 *1 *1) (-4 *1 (-487))))
+(-13 (-748) (-10 -8 (-15 -2986 ($ $)) (-15 -2453 ($ $ $)) (-15 ** ($ $ (-560))) (-6 -4505) (-15 -1714 ($ $ $)) (-15 -3117 ($ $ $))))
(((-102) . T) ((-632 (-887)) . T) ((-748) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1443 (((-663 (-1113)) $) NIL T ELT)) (-2462 (((-1207) $) 18 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4267 (($ $ (-421 (-560))) NIL T ELT) (($ $ (-421 (-560)) (-421 (-560))) NIL T ELT)) (-1425 (((-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|))) $) NIL T ELT)) (-4337 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3455 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-4471 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1615 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4313 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3430 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3781 (($ (-793) (-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|)))) NIL T ELT)) (-4363 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2238 (($) NIL T CONST)) (-1478 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1624 (($ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1490 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4330 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-4386 (((-114) $) NIL T ELT)) (-3796 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3913 (((-421 (-560)) $) NIL T ELT) (((-421 (-560)) $ (-421 (-560))) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-2146 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3022 (($ $ (-948)) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-421 (-560))) NIL T ELT) (($ $ (-1113) (-421 (-560))) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-421 (-560)))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-2192 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2518 (($ $) 29 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) 35 (-2304 (-12 (|has| |#1| (-15 -2518 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -1443 ((-663 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-989)) (|has| |#1| (-1233)))) ELT) (($ $ (-1294 |#2|)) 30 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4457 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4372 (($ $ (-421 (-560))) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-3251 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4187 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) ELT)) (-2901 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-3924 ((|#1| $ (-421 (-560))) NIL T ELT) (($ $ $) NIL (|has| (-421 (-560)) (-1143)) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2894 (($ $ (-1207)) 28 (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-1294 |#2|)) 16 T ELT)) (-3630 (((-421 (-560)) $) NIL T ELT)) (-4373 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4352 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3466 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4325 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3443 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3266 (($ $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1294 |#2|)) NIL T ELT) (($ (-1278 |#1| |#2| |#3|)) 9 T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-2305 ((|#1| $ (-421 (-560))) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-2930 (((-793)) NIL T CONST)) (-3355 ((|#1| $) 21 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-4411 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4263 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4387 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4438 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4287 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2239 ((|#1| $ (-421 (-560))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) (|has| |#1| (-15 -1578 (|#1| (-1207))))) ELT)) (-3837 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4302 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4423 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4275 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4398 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4252 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-1294 |#2|)) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
-(((-488 |#1| |#2| |#3|) (-13 (-1280 |#1|) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -1578 ($ (-1294 |#2|))) (-15 -1578 ($ (-1278 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -2518 ($ $ (-1294 |#2|))) |%noBranch|))) (-1080) (-1207) |#1|) (T -488))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-488 *3 *4 *5)) (-4 *3 (-1080)) (-14 *5 *3))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-1278 *3 *4 *5)) (-4 *3 (-1080)) (-14 *4 (-1207)) (-14 *5 *3) (-5 *1 (-488 *3 *4 *5)))) (-2518 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-488 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3))))
-(-13 (-1280 |#1|) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -1578 ($ (-1294 |#2|))) (-15 -1578 ($ (-1278 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -2518 ($ $ (-1294 |#2|))) |%noBranch|)))
-((-1538 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4083 (($) NIL T ELT) (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-3839 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 ((|#2| $ |#1| |#2|) 18 T ELT)) (-3500 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4255 (((-3 |#2| "failed") |#1| $) 19 T ELT)) (-2238 (($) NIL T CONST)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT)) (-3390 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#2| "failed") |#1| $) 16 T ELT)) (-2375 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3779 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#2| $ |#1|) NIL T ELT)) (-2181 (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-2656 (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-2937 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-2236 (((-663 |#1|) $) NIL T ELT)) (-1445 (((-114) |#1| $) NIL T ELT)) (-1576 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-3629 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-3270 (((-663 |#1|) $) NIL T ELT)) (-3586 (((-114) |#1| $) NIL T ELT)) (-3855 (((-1151) $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-3637 ((|#2| $) NIL (|has| |#1| (-871)) ELT)) (-3329 (((-3 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) "failed") (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL T ELT)) (-3037 (($ $ |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-2615 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-2787 (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-3571 (((-663 |#2|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-3897 (($) NIL T ELT) (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-3865 (((-793) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT) (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-633 (-549))) ELT)) (-1592 (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-1578 (((-887) $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-632 (-887))) (|has| |#2| (-632 (-887)))) ELT)) (-2275 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3376 (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-1728 (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-4162 (((-663 (-1113)) $) NIL T ELT)) (-2558 (((-1207) $) 18 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3864 (($ $ (-421 (-560))) NIL T ELT) (($ $ (-421 (-560)) (-421 (-560))) NIL T ELT)) (-1465 (((-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|))) $) NIL T ELT)) (-1982 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1832 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-4021 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3476 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-1958 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1806 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2882 (($ (-793) (-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|)))) NIL T ELT)) (-2003 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1856 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3525 (($) NIL T CONST)) (-2186 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3062 (($ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-2197 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-3141 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-2328 (((-114) $) NIL T ELT)) (-2503 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1460 (((-421 (-560)) $) NIL T ELT) (((-421 (-560)) $ (-421 (-560))) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-1956 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3886 (($ $ (-948)) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-421 (-560))) NIL T ELT) (($ $ (-1113) (-421 (-560))) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-421 (-560)))) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-2831 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4424 (($ $) 29 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) 35 (-2196 (-12 (|has| |#1| (-15 -4424 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -4162 ((-663 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-989)) (|has| |#1| (-1233)))) ELT) (($ $ (-1294 |#2|)) 30 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4012 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2219 (($ $ (-421 (-560))) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-2515 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2371 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) ELT)) (-3989 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-1507 ((|#1| $ (-421 (-560))) NIL T ELT) (($ $ $) NIL (|has| (-421 (-560)) (-1143)) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3161 (($ $ (-1207)) 28 (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-1294 |#2|)) 16 T ELT)) (-3900 (((-421 (-560)) $) NIL T ELT)) (-2013 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1870 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1992 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1844 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1972 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1820 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3329 (($ $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1294 |#2|)) NIL T ELT) (($ (-1278 |#1| |#2| |#3|)) 9 T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-2920 ((|#1| $ (-421 (-560))) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-4191 (((-793)) NIL T CONST)) (-1351 ((|#1| $) 21 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2042 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1907 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2022 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1882 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2059 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1932 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2905 ((|#1| $ (-421 (-560))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) (|has| |#1| (-15 -3913 (|#1| (-1207))))) ELT)) (-3392 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1945 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2050 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1920 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2032 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1895 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-1294 |#2|)) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
+(((-488 |#1| |#2| |#3|) (-13 (-1280 |#1|) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -3913 ($ (-1294 |#2|))) (-15 -3913 ($ (-1278 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4424 ($ $ (-1294 |#2|))) |%noBranch|))) (-1080) (-1207) |#1|) (T -488))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-488 *3 *4 *5)) (-4 *3 (-1080)) (-14 *5 *3))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-1278 *3 *4 *5)) (-4 *3 (-1080)) (-14 *4 (-1207)) (-14 *5 *3) (-5 *1 (-488 *3 *4 *5)))) (-4424 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-488 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3))))
+(-13 (-1280 |#1|) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -3913 ($ (-1294 |#2|))) (-15 -3913 ($ (-1278 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4424 ($ $ (-1294 |#2|))) |%noBranch|)))
+((-2243 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4236 (($) NIL T ELT) (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-2033 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 ((|#2| $ |#1| |#2|) 18 T ELT)) (-1864 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3799 (((-3 |#2| "failed") |#1| $) 19 T ELT)) (-3525 (($) NIL T CONST)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT)) (-2091 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#2| "failed") |#1| $) 16 T ELT)) (-3033 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3338 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#2| $ |#1|) NIL T ELT)) (-3737 (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3243 (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-4263 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-4325 (((-663 |#1|) $) NIL T ELT)) (-4124 (((-114) |#1| $) NIL T ELT)) (-1878 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-3888 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-3372 (((-663 |#1|) $) NIL T ELT)) (-3439 (((-114) |#1| $) NIL T ELT)) (-3376 (((-1151) $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-4334 ((|#2| $) NIL (|has| |#1| (-871)) ELT)) (-2708 (((-3 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) "failed") (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL T ELT)) (-2740 (($ $ |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-2796 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-2086 (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-1383 (((-663 |#2|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-4468 (($) NIL T ELT) (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-3384 (((-793) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT) (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-633 (-549))) ELT)) (-3924 (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-3913 (((-887) $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-632 (-887))) (|has| |#2| (-632 (-887)))) ELT)) (-3925 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3184 (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-2149 (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
(((-489 |#1| |#2| |#3| |#4|) (-1224 |#1| |#2|) (-1132) (-1132) (-1224 |#1| |#2|) |#2|) (T -489))
NIL
(-1224 |#1| |#2|)
-((-1538 (((-114) $ $) NIL T ELT)) (-3721 (((-663 (-2 (|:| -4332 $) (|:| -2109 (-663 |#4|)))) (-663 |#4|)) NIL T ELT)) (-3904 (((-663 $) (-663 |#4|)) NIL T ELT)) (-1443 (((-663 |#3|) $) NIL T ELT)) (-1466 (((-114) $) NIL T ELT)) (-3101 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3036 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-1813 ((|#4| |#4| $) NIL T ELT)) (-2286 (((-2 (|:| |under| $) (|:| -2016 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1982 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#4| "failed") $ |#3|) NIL T ELT)) (-2238 (($) NIL T CONST)) (-4436 (((-114) $) 29 (|has| |#1| (-571)) ELT)) (-4246 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-1860 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3745 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-1477 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4027 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-2528 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-2539 (((-3 $ "failed") (-663 |#4|)) NIL T ELT)) (-3330 (($ (-663 |#4|)) NIL T ELT)) (-3649 (((-3 $ "failed") $) 45 T ELT)) (-2841 ((|#4| |#4| $) NIL T ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-2375 (($ |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2341 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-3989 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3093 ((|#4| |#4| $) NIL T ELT)) (-4129 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4508)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4508)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-1723 (((-2 (|:| -4332 (-663 |#4|)) (|:| -2109 (-663 |#4|))) $) NIL T ELT)) (-2181 (((-663 |#4|) $) 18 (|has| $ (-6 -4508)) ELT)) (-3544 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4132 ((|#3| $) 38 T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 |#4|) $) 19 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#4| $) 27 (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-3768 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-1918 (((-663 |#3|) $) NIL T ELT)) (-2724 (((-114) |#3| $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2398 (((-3 |#4| "failed") $) 42 T ELT)) (-1756 (((-663 |#4|) $) NIL T ELT)) (-3548 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3212 ((|#4| |#4| $) NIL T ELT)) (-2925 (((-114) $ $) NIL T ELT)) (-2557 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-1563 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3171 ((|#4| |#4| $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3637 (((-3 |#4| "failed") $) 40 T ELT)) (-3329 (((-3 |#4| "failed") (-1 (-114) |#4|) $) NIL T ELT)) (-1370 (((-3 $ "failed") $ |#4|) 58 T ELT)) (-4372 (($ $ |#4|) NIL T ELT)) (-2787 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 |#4|) (-663 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) 17 T ELT)) (-3986 (($) 14 T ELT)) (-3630 (((-793) $) NIL T ELT)) (-3865 (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) (((-793) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) NIL (|has| |#4| (-633 (-549))) ELT)) (-1592 (($ (-663 |#4|)) 22 T ELT)) (-3752 (($ $ |#3|) 52 T ELT)) (-4288 (($ $ |#3|) 54 T ELT)) (-2886 (($ $) NIL T ELT)) (-4397 (($ $ |#3|) NIL T ELT)) (-1578 (((-887) $) 35 T ELT) (((-663 |#4|) $) 46 T ELT)) (-1582 (((-793) $) NIL (|has| |#3| (-381)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1810 (((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4006 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) NIL T ELT)) (-1728 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3938 (((-663 |#3|) $) NIL T ELT)) (-3602 (((-114) |#3| $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2253 (((-663 (-2 (|:| -1924 $) (|:| -2888 (-663 |#4|)))) (-663 |#4|)) NIL T ELT)) (-1372 (((-663 $) (-663 |#4|)) NIL T ELT)) (-4162 (((-663 |#3|) $) NIL T ELT)) (-1362 (((-114) $) NIL T ELT)) (-2179 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-2729 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-1722 ((|#4| |#4| $) NIL T ELT)) (-1787 (((-2 (|:| |under| $) (|:| -3147 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3923 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#4| "failed") $ |#3|) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2733 (((-114) $) 29 (|has| |#1| (-571)) ELT)) (-3672 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4148 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2449 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4108 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3277 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-4485 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-3929 (((-3 $ "failed") (-663 |#4|)) NIL T ELT)) (-3649 (($ (-663 |#4|)) NIL T ELT)) (-4345 (((-3 $ "failed") $) 45 T ELT)) (-1440 ((|#4| |#4| $) NIL T ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-3033 (($ |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3276 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-2869 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-2113 ((|#4| |#4| $) NIL T ELT)) (-1778 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4508)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4508)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-2115 (((-2 (|:| -1924 (-663 |#4|)) (|:| -2888 (-663 |#4|))) $) NIL T ELT)) (-3737 (((-663 |#4|) $) 18 (|has| $ (-6 -4508)) ELT)) (-4264 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-1816 ((|#3| $) 38 T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-3243 (((-663 |#4|) $) 19 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#4| $) 27 (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-3324 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3471 (((-663 |#3|) $) NIL T ELT)) (-2703 (((-114) |#3| $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3057 (((-3 |#4| "failed") $) 42 T ELT)) (-2428 (((-663 |#4|) $) NIL T ELT)) (-4301 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4039 ((|#4| |#4| $) NIL T ELT)) (-4138 (((-114) $ $) NIL T ELT)) (-3531 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-1737 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-1686 ((|#4| |#4| $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4334 (((-3 |#4| "failed") $) 40 T ELT)) (-2708 (((-3 |#4| "failed") (-1 (-114) |#4|) $) NIL T ELT)) (-3867 (((-3 $ "failed") $ |#4|) 58 T ELT)) (-2219 (($ $ |#4|) NIL T ELT)) (-2086 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 |#4|) (-663 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) 17 T ELT)) (-2832 (($) 14 T ELT)) (-3900 (((-793) $) NIL T ELT)) (-3384 (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) (((-793) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) NIL (|has| |#4| (-633 (-549))) ELT)) (-3924 (($ (-663 |#4|)) 22 T ELT)) (-2511 (($ $ |#3|) 52 T ELT)) (-4047 (($ $ |#3|) 54 T ELT)) (-3833 (($ $) NIL T ELT)) (-2438 (($ $ |#3|) NIL T ELT)) (-3913 (((-887) $) 35 T ELT) (((-663 |#4|) $) 46 T ELT)) (-1930 (((-793) $) NIL (|has| |#3| (-381)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1690 (((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3058 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) NIL T ELT)) (-2149 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3616 (((-663 |#3|) $) NIL T ELT)) (-3621 (((-114) |#3| $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
(((-490 |#1| |#2| |#3| |#4|) (-1242 |#1| |#2| |#3| |#4|) (-571) (-815) (-871) (-1096 |#1| |#2| |#3|)) (T -490))
NIL
(-1242 |#1| |#2| |#3| |#4|)
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT)) (-3330 (((-560) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT)) (-1478 (($ $ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-3796 (($) 17 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-1407 (((-391) $) 21 T ELT) (((-229) $) 24 T ELT) (((-421 (-1201 (-560))) $) 18 T ELT) (((-549) $) 53 T ELT)) (-1578 (((-887) $) 51 T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (((-229) $) 23 T ELT) (((-391) $) 20 T ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2001 (($) 37 T CONST)) (-2011 (($) 8 T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT)))
-(((-491) (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))) (-1051) (-632 (-229)) (-632 (-391)) (-633 (-421 (-1201 (-560)))) (-633 (-549)) (-10 -8 (-15 -3796 ($))))) (T -491))
-((-3796 (*1 *1) (-5 *1 (-491))))
-(-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))) (-1051) (-632 (-229)) (-632 (-391)) (-633 (-421 (-1201 (-560)))) (-633 (-549)) (-10 -8 (-15 -3796 ($))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3401 (((-1166) $) 11 T ELT)) (-3391 (((-1166) $) 9 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-492) (-13 (-1114) (-10 -8 (-15 -3391 ((-1166) $)) (-15 -3401 ((-1166) $))))) (T -492))
-((-3391 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-492)))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-492)))))
-(-13 (-1114) (-10 -8 (-15 -3391 ((-1166) $)) (-15 -3401 ((-1166) $))))
-((-1538 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4083 (($) NIL T ELT) (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-3839 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 ((|#2| $ |#1| |#2|) 16 T ELT)) (-3500 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4255 (((-3 |#2| "failed") |#1| $) 20 T ELT)) (-2238 (($) NIL T CONST)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT)) (-3390 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#2| "failed") |#1| $) 18 T ELT)) (-2375 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3779 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#2| $ |#1|) NIL T ELT)) (-2181 (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-2656 (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-2937 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-2236 (((-663 |#1|) $) 13 T ELT)) (-1445 (((-114) |#1| $) NIL T ELT)) (-1576 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-3629 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-3270 (((-663 |#1|) $) NIL T ELT)) (-3586 (((-114) |#1| $) NIL T ELT)) (-3855 (((-1151) $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-3637 ((|#2| $) NIL (|has| |#1| (-871)) ELT)) (-3329 (((-3 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) "failed") (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL T ELT)) (-3037 (($ $ |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-2615 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-2787 (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-3571 (((-663 |#2|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) 19 T ELT)) (-3924 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-3897 (($) NIL T ELT) (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-3865 (((-793) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT) (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-633 (-549))) ELT)) (-1592 (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-1578 (((-887) $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-632 (-887))) (|has| |#2| (-632 (-887)))) ELT)) (-2275 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3376 (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-1728 (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 11 (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1553 (((-793) $) 15 (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT)) (-3649 (((-560) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT)) (-2186 (($ $ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-2503 (($) 17 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-2400 (((-391) $) 21 T ELT) (((-229) $) 24 T ELT) (((-421 (-1201 (-560))) $) 18 T ELT) (((-549) $) 53 T ELT)) (-3913 (((-887) $) 51 T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (((-229) $) 23 T ELT) (((-391) $) 20 T ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-1446 (($) 37 T CONST)) (-1456 (($) 8 T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT)))
+(((-491) (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))) (-1051) (-632 (-229)) (-632 (-391)) (-633 (-421 (-1201 (-560)))) (-633 (-549)) (-10 -8 (-15 -2503 ($))))) (T -491))
+((-2503 (*1 *1) (-5 *1 (-491))))
+(-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))) (-1051) (-632 (-229)) (-632 (-391)) (-633 (-421 (-1201 (-560)))) (-633 (-549)) (-10 -8 (-15 -2503 ($))))
+((-2243 (((-114) $ $) NIL T ELT)) (-4133 (((-1166) $) 11 T ELT)) (-4121 (((-1166) $) 9 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-492) (-13 (-1114) (-10 -8 (-15 -4121 ((-1166) $)) (-15 -4133 ((-1166) $))))) (T -492))
+((-4121 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-492)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-492)))))
+(-13 (-1114) (-10 -8 (-15 -4121 ((-1166) $)) (-15 -4133 ((-1166) $))))
+((-2243 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4236 (($) NIL T ELT) (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-2033 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 ((|#2| $ |#1| |#2|) 16 T ELT)) (-1864 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3799 (((-3 |#2| "failed") |#1| $) 20 T ELT)) (-3525 (($) NIL T CONST)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT)) (-2091 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#2| "failed") |#1| $) 18 T ELT)) (-3033 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3338 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#2| $ |#1|) NIL T ELT)) (-3737 (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3243 (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-4263 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-4325 (((-663 |#1|) $) 13 T ELT)) (-4124 (((-114) |#1| $) NIL T ELT)) (-1878 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-3888 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-3372 (((-663 |#1|) $) NIL T ELT)) (-3439 (((-114) |#1| $) NIL T ELT)) (-3376 (((-1151) $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-4334 ((|#2| $) NIL (|has| |#1| (-871)) ELT)) (-2708 (((-3 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) "failed") (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL T ELT)) (-2740 (($ $ |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-2796 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-2086 (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-1383 (((-663 |#2|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) 19 T ELT)) (-1507 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-4468 (($) NIL T ELT) (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-3384 (((-793) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT) (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-633 (-549))) ELT)) (-3924 (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-3913 (((-887) $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-632 (-887))) (|has| |#2| (-632 (-887)))) ELT)) (-3925 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3184 (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-2149 (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 11 (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-2256 (((-793) $) 15 (|has| $ (-6 -4508)) ELT)))
(((-493 |#1| |#2| |#3|) (-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4508))) (-1132) (-1132) (-1189)) (T -493))
NIL
(-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4508)))
-((-4443 (((-560) (-560) (-560)) 19 T ELT)) (-2199 (((-114) (-560) (-560) (-560) (-560)) 28 T ELT)) (-1906 (((-1297 (-663 (-560))) (-793) (-793)) 41 T ELT)))
-(((-494) (-10 -7 (-15 -4443 ((-560) (-560) (-560))) (-15 -2199 ((-114) (-560) (-560) (-560) (-560))) (-15 -1906 ((-1297 (-663 (-560))) (-793) (-793))))) (T -494))
-((-1906 (*1 *2 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1297 (-663 (-560)))) (-5 *1 (-494)))) (-2199 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-114)) (-5 *1 (-494)))) (-4443 (*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-494)))))
-(-10 -7 (-15 -4443 ((-560) (-560) (-560))) (-15 -2199 ((-114) (-560) (-560) (-560) (-560))) (-15 -1906 ((-1297 (-663 (-560))) (-793) (-793))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1443 (((-663 (-888 |#1|)) $) NIL T ELT)) (-4422 (((-1201 $) $ (-888 |#1|)) NIL T ELT) (((-1201 |#2|) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#2| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#2| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#2| (-571)) ELT)) (-3107 (((-793) $) NIL T ELT) (((-793) $ (-663 (-888 |#1|))) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-1804 (($ $) NIL (|has| |#2| (-466)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#2| (-466)) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-3 (-888 |#1|) "failed") $) NIL T ELT)) (-3330 ((|#2| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-888 |#1|) $) NIL T ELT)) (-2788 (($ $ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-1922 (($ $ (-663 (-560))) NIL T ELT)) (-1624 (($ $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2806 (($ $) NIL (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-1608 (((-663 $) $) NIL T ELT)) (-4330 (((-114) $) NIL (|has| |#2| (-939)) ELT)) (-4342 (($ $ |#2| (-496 (-1553 |#1|) (-793)) $) NIL T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-391))) (|has| |#2| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-560))) (|has| |#2| (-911 (-560)))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-3531 (((-793) $) NIL T ELT)) (-1427 (($ (-1201 |#2|) (-888 |#1|)) NIL T ELT) (($ (-1201 $) (-888 |#1|)) NIL T ELT)) (-3997 (((-663 $) $) NIL T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#2| (-496 (-1553 |#1|) (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT)) (-3559 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $ (-888 |#1|)) NIL T ELT)) (-3011 (((-496 (-1553 |#1|) (-793)) $) NIL T ELT) (((-793) $ (-888 |#1|)) NIL T ELT) (((-663 (-793)) $ (-663 (-888 |#1|))) NIL T ELT)) (-4321 (($ (-1 (-496 (-1553 |#1|) (-793)) (-496 (-1553 |#1|) (-793))) $) NIL T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-1955 (((-3 (-888 |#1|) "failed") $) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-711 |#2|) (-1297 $)) NIL T ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#2| $) NIL T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3479 (((-3 (-663 $) "failed") $) NIL T ELT)) (-2590 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3683 (((-3 (-2 (|:| |var| (-888 |#1|)) (|:| -3205 (-793))) "failed") $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1554 (((-114) $) NIL T ELT)) (-1566 ((|#2| $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#2| (-466)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-4457 (((-419 $) $) NIL (|has| |#2| (-939)) ELT)) (-1528 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-571)) ELT)) (-4187 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-888 |#1|) |#2|) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 |#2|)) NIL T ELT) (($ $ (-888 |#1|) $) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 $)) NIL T ELT)) (-2690 (($ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2894 (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) NIL T ELT)) (-3630 (((-496 (-1553 |#1|) (-793)) $) NIL T ELT) (((-793) $ (-888 |#1|)) NIL T ELT) (((-663 (-793)) $ (-663 (-888 |#1|))) NIL T ELT)) (-1407 (((-915 (-391)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-915 (-391)))) (|has| |#2| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-915 (-560)))) (|has| |#2| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-888 |#1|) (-633 (-549))) (|has| |#2| (-633 (-549)))) ELT)) (-2053 ((|#2| $) NIL (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-939))) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-888 |#1|)) NIL T ELT) (($ (-421 (-560))) NIL (-2304 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#2| (-571)) ELT)) (-3409 (((-663 |#2|) $) NIL T ELT)) (-2305 ((|#2| $ (-496 (-1553 |#1|) (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| |#2| (-939))) (|has| |#2| (-147))) ELT)) (-2930 (((-793)) NIL T CONST)) (-2392 (($ $ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL (|has| |#2| (-571)) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
-(((-495 |#1| |#2|) (-13 (-979 |#2| (-496 (-1553 |#1|) (-793)) (-888 |#1|)) (-10 -8 (-15 -1922 ($ $ (-663 (-560)))))) (-663 (-1207)) (-1080)) (T -495))
-((-1922 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-495 *3 *4)) (-14 *3 (-663 (-1207))) (-4 *4 (-1080)))))
-(-13 (-979 |#2| (-496 (-1553 |#1|) (-793)) (-888 |#1|)) (-10 -8 (-15 -1922 ($ $ (-663 (-560))))))
-((-1538 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2388 (((-114) $) NIL (|has| |#2| (-23)) ELT)) (-1521 (($ (-948)) NIL (|has| |#2| (-1080)) ELT)) (-3839 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-3168 (($ $ $) NIL (|has| |#2| (-815)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL (|has| |#2| (-133)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-3241 (((-793)) NIL (|has| |#2| (-381)) ELT)) (-1773 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) NIL (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (-12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1132)) ELT)) (-3330 (((-560) $) NIL (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) ELT) (((-421 (-560)) $) NIL (-12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) ((|#2| $) NIL (|has| |#2| (-1132)) ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-711 $)) NIL (|has| |#2| (-1080)) ELT)) (-1990 (((-3 $ "failed") $) NIL (|has| |#2| (-1080)) ELT)) (-2310 (($) NIL (|has| |#2| (-381)) ELT)) (-3779 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#2| $ (-560)) 11 T ELT)) (-2181 (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1581 (((-114) $) NIL (|has| |#2| (-1080)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-2656 (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-2937 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-3768 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4419 (((-948) $) NIL (|has| |#2| (-381)) ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-1297 $)) NIL (|has| |#2| (-1080)) ELT)) (-1905 (((-1189) $) NIL (|has| |#2| (-1132)) ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) NIL T ELT)) (-3128 (($ (-948)) NIL (|has| |#2| (-381)) ELT)) (-3855 (((-1151) $) NIL (|has| |#2| (-1132)) ELT)) (-3637 ((|#2| $) NIL (|has| (-560) (-871)) ELT)) (-3037 (($ $ |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-3571 (((-663 |#2|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#2| $ (-560) |#2|) NIL T ELT) ((|#2| $ (-560)) NIL T ELT)) (-3232 ((|#2| $ $) NIL (|has| |#2| (-1080)) ELT)) (-1343 (($ (-1297 |#2|)) NIL T ELT)) (-3669 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-2894 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1080)) ELT)) (-3865 (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-1799 (($ $) NIL T ELT)) (-1578 (((-1297 |#2|) $) NIL T ELT) (($ (-560)) NIL (-2304 (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) (|has| |#2| (-1080))) ELT) (($ (-421 (-560))) NIL (-12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) (($ |#2|) NIL (|has| |#2| (-1132)) ELT) (((-887) $) NIL (|has| |#2| (-632 (-887))) ELT)) (-2930 (((-793)) NIL (|has| |#2| (-1080)) CONST)) (-2275 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2001 (($) NIL (|has| |#2| (-23)) CONST)) (-2011 (($) NIL (|has| |#2| (-1080)) CONST)) (-3305 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1080)) ELT)) (-2536 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2521 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2495 (((-114) $ $) 17 (|has| |#2| (-871)) ELT)) (-2594 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2580 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-2567 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-793)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-948)) NIL (|has| |#2| (-1080)) ELT)) (* (($ $ $) NIL (|has| |#2| (-1080)) ELT) (($ $ |#2|) NIL (|has| |#2| (-748)) ELT) (($ |#2| $) NIL (|has| |#2| (-748)) ELT) (($ (-560) $) NIL (|has| |#2| (-21)) ELT) (($ (-793) $) NIL (|has| |#2| (-23)) ELT) (($ (-948) $) NIL (|has| |#2| (-25)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+((-1572 (((-560) (-560) (-560)) 19 T ELT)) (-4418 (((-114) (-560) (-560) (-560) (-560)) 28 T ELT)) (-3852 (((-1297 (-663 (-560))) (-793) (-793)) 41 T ELT)))
+(((-494) (-10 -7 (-15 -1572 ((-560) (-560) (-560))) (-15 -4418 ((-114) (-560) (-560) (-560) (-560))) (-15 -3852 ((-1297 (-663 (-560))) (-793) (-793))))) (T -494))
+((-3852 (*1 *2 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1297 (-663 (-560)))) (-5 *1 (-494)))) (-4418 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-114)) (-5 *1 (-494)))) (-1572 (*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-494)))))
+(-10 -7 (-15 -1572 ((-560) (-560) (-560))) (-15 -4418 ((-114) (-560) (-560) (-560) (-560))) (-15 -3852 ((-1297 (-663 (-560))) (-793) (-793))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-4162 (((-663 (-888 |#1|)) $) NIL T ELT)) (-3981 (((-1201 $) $ (-888 |#1|)) NIL T ELT) (((-1201 |#2|) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#2| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#2| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#2| (-571)) ELT)) (-2250 (((-793) $) NIL T ELT) (((-793) $ (-663 (-888 |#1|))) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-1621 (($ $) NIL (|has| |#2| (-466)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#2| (-466)) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-3 (-888 |#1|) "failed") $) NIL T ELT)) (-3649 ((|#2| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-888 |#1|) $) NIL T ELT)) (-2096 (($ $ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-3517 (($ $ (-663 (-560))) NIL T ELT)) (-3062 (($ $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4239 (($ $) NIL (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-3048 (((-663 $) $) NIL T ELT)) (-3141 (((-114) $) NIL (|has| |#2| (-939)) ELT)) (-3224 (($ $ |#2| (-496 (-2256 |#1|) (-793)) $) NIL T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-391))) (|has| |#2| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-560))) (|has| |#2| (-911 (-560)))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-4127 (((-793) $) NIL T ELT)) (-4149 (($ (-1201 |#2|) (-888 |#1|)) NIL T ELT) (($ (-1201 $) (-888 |#1|)) NIL T ELT)) (-2947 (((-663 $) $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#2| (-496 (-2256 |#1|) (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT)) (-4415 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $ (-888 |#1|)) NIL T ELT)) (-3765 (((-496 (-2256 |#1|) (-793)) $) NIL T ELT) (((-793) $ (-888 |#1|)) NIL T ELT) (((-663 (-793)) $ (-663 (-888 |#1|))) NIL T ELT)) (-3060 (($ (-1 (-496 (-2256 |#1|) (-793)) (-496 (-2256 |#1|) (-793))) $) NIL T ELT)) (-2260 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3835 (((-3 (-888 |#1|) "failed") $) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-711 |#2|) (-1297 $)) NIL T ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#2| $) NIL T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1669 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3849 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3149 (((-3 (-2 (|:| |var| (-888 |#1|)) (|:| -2030 (-793))) "failed") $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3000 (((-114) $) NIL T ELT)) (-3011 ((|#2| $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#2| (-466)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-4012 (((-419 $) $) NIL (|has| |#2| (-939)) ELT)) (-2233 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-571)) ELT)) (-2371 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-888 |#1|) |#2|) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 |#2|)) NIL T ELT) (($ $ (-888 |#1|) $) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 $)) NIL T ELT)) (-2336 (($ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-3161 (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) NIL T ELT)) (-3900 (((-496 (-2256 |#1|) (-793)) $) NIL T ELT) (((-793) $ (-888 |#1|)) NIL T ELT) (((-663 (-793)) $ (-663 (-888 |#1|))) NIL T ELT)) (-2400 (((-915 (-391)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-915 (-391)))) (|has| |#2| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-915 (-560)))) (|has| |#2| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-888 |#1|) (-633 (-549))) (|has| |#2| (-633 (-549)))) ELT)) (-2264 ((|#2| $) NIL (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-939))) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-888 |#1|)) NIL T ELT) (($ (-421 (-560))) NIL (-2196 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#2| (-571)) ELT)) (-2247 (((-663 |#2|) $) NIL T ELT)) (-2920 ((|#2| $ (-496 (-2256 |#1|) (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| |#2| (-939))) (|has| |#2| (-147))) ELT)) (-4191 (((-793)) NIL T CONST)) (-2548 (($ $ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL (|has| |#2| (-571)) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
+(((-495 |#1| |#2|) (-13 (-979 |#2| (-496 (-2256 |#1|) (-793)) (-888 |#1|)) (-10 -8 (-15 -3517 ($ $ (-663 (-560)))))) (-663 (-1207)) (-1080)) (T -495))
+((-3517 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-495 *3 *4)) (-14 *3 (-663 (-1207))) (-4 *4 (-1080)))))
+(-13 (-979 |#2| (-496 (-2256 |#1|) (-793)) (-888 |#1|)) (-10 -8 (-15 -3517 ($ $ (-663 (-560))))))
+((-2243 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2505 (((-114) $) NIL (|has| |#2| (-23)) ELT)) (-3101 (($ (-948)) NIL (|has| |#2| (-1080)) ELT)) (-2033 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-1651 (($ $ $) NIL (|has| |#2| (-815)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL (|has| |#2| (-133)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-2552 (((-793)) NIL (|has| |#2| (-381)) ELT)) (-4083 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) NIL (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (-12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1132)) ELT)) (-3649 (((-560) $) NIL (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) ELT) (((-421 (-560)) $) NIL (-12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) ((|#2| $) NIL (|has| |#2| (-1132)) ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-711 $)) NIL (|has| |#2| (-1080)) ELT)) (-2873 (((-3 $ "failed") $) NIL (|has| |#2| (-1080)) ELT)) (-1812 (($) NIL (|has| |#2| (-381)) ELT)) (-3338 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#2| $ (-560)) 11 T ELT)) (-3737 (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1918 (((-114) $) NIL (|has| |#2| (-1080)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-3243 (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-4263 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-3324 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2622 (((-948) $) NIL (|has| |#2| (-381)) ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-1297 $)) NIL (|has| |#2| (-1080)) ELT)) (-3358 (((-1189) $) NIL (|has| |#2| (-1132)) ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) NIL T ELT)) (-1591 (($ (-948)) NIL (|has| |#2| (-381)) ELT)) (-3376 (((-1151) $) NIL (|has| |#2| (-1132)) ELT)) (-4334 ((|#2| $) NIL (|has| (-560) (-871)) ELT)) (-2740 (($ $ |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-1383 (((-663 |#2|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#2| $ (-560) |#2|) NIL T ELT) ((|#2| $ (-560)) NIL T ELT)) (-4258 ((|#2| $ $) NIL (|has| |#2| (-1080)) ELT)) (-4050 (($ (-1297 |#2|)) NIL T ELT)) (-3015 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-3161 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1080)) ELT)) (-3384 (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-4107 (($ $) NIL T ELT)) (-3913 (((-1297 |#2|) $) NIL T ELT) (($ (-560)) NIL (-2196 (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) (|has| |#2| (-1080))) ELT) (($ (-421 (-560))) NIL (-12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) (($ |#2|) NIL (|has| |#2| (-1132)) ELT) (((-887) $) NIL (|has| |#2| (-632 (-887))) ELT)) (-4191 (((-793)) NIL (|has| |#2| (-1080)) CONST)) (-3925 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1446 (($) NIL (|has| |#2| (-23)) CONST)) (-1456 (($) NIL (|has| |#2| (-1080)) CONST)) (-2111 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1080)) ELT)) (-2396 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2386 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2362 (((-114) $ $) 17 (|has| |#2| (-871)) ELT)) (-2453 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2441 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-2429 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-793)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-948)) NIL (|has| |#2| (-1080)) ELT)) (* (($ $ $) NIL (|has| |#2| (-1080)) ELT) (($ $ |#2|) NIL (|has| |#2| (-748)) ELT) (($ |#2| $) NIL (|has| |#2| (-748)) ELT) (($ (-560) $) NIL (|has| |#2| (-21)) ELT) (($ (-793) $) NIL (|has| |#2| (-23)) ELT) (($ (-948) $) NIL (|has| |#2| (-25)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
(((-496 |#1| |#2|) (-245 |#1| |#2|) (-793) (-815)) (T -496))
NIL
(-245 |#1| |#2|)
-((-1538 (((-114) $ $) NIL T ELT)) (-3900 (((-663 (-900)) $) 15 T ELT)) (-3614 (((-520) $) 13 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2849 (($ (-520) (-663 (-900))) 11 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 22 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-497) (-13 (-1114) (-10 -8 (-15 -2849 ($ (-520) (-663 (-900)))) (-15 -3614 ((-520) $)) (-15 -3900 ((-663 (-900)) $))))) (T -497))
-((-2849 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-663 (-900))) (-5 *1 (-497)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-497)))) (-3900 (*1 *2 *1) (-12 (-5 *2 (-663 (-900))) (-5 *1 (-497)))))
-(-13 (-1114) (-10 -8 (-15 -2849 ($ (-520) (-663 (-900)))) (-15 -3614 ((-520) $)) (-15 -3900 ((-663 (-900)) $))))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2181 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1708 (($ $ $) 48 T ELT)) (-3223 (($ $ $) 47 T ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2820 ((|#1| $) 40 T ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-1576 ((|#1| $) 41 T ELT)) (-3629 (($ |#1| $) 18 T ELT)) (-3077 (($ (-663 |#1|)) 19 T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2615 ((|#1| $) 34 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) 11 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1799 (($ $) NIL T ELT)) (-1578 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3376 (($ (-663 |#1|)) 45 T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 29 (|has| $ (-6 -4508)) ELT)))
-(((-498 |#1|) (-13 (-999 |#1|) (-10 -8 (-15 -3077 ($ (-663 |#1|))))) (-871)) (T -498))
-((-3077 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-498 *3)))))
-(-13 (-999 |#1|) (-10 -8 (-15 -3077 ($ (-663 |#1|)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-4129 (($ $) 71 T ELT)) (-2080 (((-114) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2207 (((-427 |#2| (-421 |#2|) |#3| |#4|) $) 45 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2748 (((-3 |#4| "failed") $) 117 T ELT)) (-3106 (($ (-427 |#2| (-421 |#2|) |#3| |#4|)) 81 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-560)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3448 (((-2 (|:| -4300 (-427 |#2| (-421 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-1578 (((-887) $) 110 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 32 T CONST)) (-2473 (((-114) $ $) 121 T ELT)) (-2580 (($ $) 77 T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 72 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 78 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-1533 (((-663 (-900)) $) 15 T ELT)) (-4389 (((-520) $) 13 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3425 (($ (-520) (-663 (-900))) 11 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 22 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-497) (-13 (-1114) (-10 -8 (-15 -3425 ($ (-520) (-663 (-900)))) (-15 -4389 ((-520) $)) (-15 -1533 ((-663 (-900)) $))))) (T -497))
+((-3425 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-663 (-900))) (-5 *1 (-497)))) (-4389 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-497)))) (-1533 (*1 *2 *1) (-12 (-5 *2 (-663 (-900))) (-5 *1 (-497)))))
+(-13 (-1114) (-10 -8 (-15 -3425 ($ (-520) (-663 (-900)))) (-15 -4389 ((-520) $)) (-15 -1533 ((-663 (-900)) $))))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3737 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-3204 (($ $ $) 48 T ELT)) (-4167 (($ $ $) 47 T ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4379 ((|#1| $) 40 T ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-1878 ((|#1| $) 41 T ELT)) (-3888 (($ |#1| $) 18 T ELT)) (-3187 (($ (-663 |#1|)) 19 T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2796 ((|#1| $) 34 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) 11 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4107 (($ $) NIL T ELT)) (-3913 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3184 (($ (-663 |#1|)) 45 T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 29 (|has| $ (-6 -4508)) ELT)))
+(((-498 |#1|) (-13 (-999 |#1|) (-10 -8 (-15 -3187 ($ (-663 |#1|))))) (-871)) (T -498))
+((-3187 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-498 *3)))))
+(-13 (-999 |#1|) (-10 -8 (-15 -3187 ($ (-663 |#1|)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-1778 (($ $) 71 T ELT)) (-2532 (((-114) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-4476 (((-427 |#2| (-421 |#2|) |#3| |#4|) $) 45 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3583 (((-3 |#4| "failed") $) 117 T ELT)) (-2239 (($ (-427 |#2| (-421 |#2|) |#3| |#4|)) 81 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-560)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-2595 (((-2 (|:| -3745 (-427 |#2| (-421 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-3913 (((-887) $) 110 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 32 T CONST)) (-2340 (((-114) $ $) 121 T ELT)) (-2441 (($ $) 77 T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 72 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 78 T ELT)))
(((-499 |#1| |#2| |#3| |#4|) (-349 |#1| |#2| |#3| |#4|) (-376) (-1273 |#1|) (-1273 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -499))
NIL
(-349 |#1| |#2| |#3| |#4|)
-((-1506 (((-560) (-663 (-560))) 53 T ELT)) (-3528 ((|#1| (-663 |#1|)) 94 T ELT)) (-3616 (((-663 |#1|) (-663 |#1|)) 95 T ELT)) (-2915 (((-663 |#1|) (-663 |#1|)) 97 T ELT)) (-2132 ((|#1| (-663 |#1|)) 96 T ELT)) (-2053 (((-663 (-560)) (-663 |#1|)) 56 T ELT)))
-(((-500 |#1|) (-10 -7 (-15 -2132 (|#1| (-663 |#1|))) (-15 -3528 (|#1| (-663 |#1|))) (-15 -2915 ((-663 |#1|) (-663 |#1|))) (-15 -3616 ((-663 |#1|) (-663 |#1|))) (-15 -2053 ((-663 (-560)) (-663 |#1|))) (-15 -1506 ((-560) (-663 (-560))))) (-1273 (-560))) (T -500))
-((-1506 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-560)) (-5 *1 (-500 *4)) (-4 *4 (-1273 *2)))) (-2053 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-1273 (-560))) (-5 *2 (-663 (-560))) (-5 *1 (-500 *4)))) (-3616 (*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1273 (-560))) (-5 *1 (-500 *3)))) (-2915 (*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1273 (-560))) (-5 *1 (-500 *3)))) (-3528 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-5 *1 (-500 *2)) (-4 *2 (-1273 (-560))))) (-2132 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-5 *1 (-500 *2)) (-4 *2 (-1273 (-560))))))
-(-10 -7 (-15 -2132 (|#1| (-663 |#1|))) (-15 -3528 (|#1| (-663 |#1|))) (-15 -2915 ((-663 |#1|) (-663 |#1|))) (-15 -3616 ((-663 |#1|) (-663 |#1|))) (-15 -2053 ((-663 (-560)) (-663 |#1|))) (-15 -1506 ((-560) (-663 (-560)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3941 (((-560) $) NIL (|has| (-560) (-319)) ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2138 (((-560) $) NIL (|has| (-560) (-842)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| (-560) (-1069 (-560))) ELT) (((-3 (-560) "failed") $) NIL (|has| (-560) (-1069 (-560))) ELT)) (-3330 (((-560) $) NIL T ELT) (((-1207) $) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-421 (-560)) $) NIL (|has| (-560) (-1069 (-560))) ELT) (((-560) $) NIL (|has| (-560) (-1069 (-560))) ELT)) (-1478 (($ $ $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2310 (($) NIL (|has| (-560) (-559)) ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-2928 (((-114) $) NIL (|has| (-560) (-842)) ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (|has| (-560) (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (|has| (-560) (-911 (-391))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-1617 (($ $) NIL T ELT)) (-3757 (((-560) $) NIL T ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| (-560) (-1182)) ELT)) (-2960 (((-114) $) NIL (|has| (-560) (-842)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3825 (($ $ $) NIL (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| (-560) (-871)) ELT)) (-3957 (($ (-1 (-560) (-560)) $) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL T ELT) (((-711 (-560)) (-1297 $)) NIL T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-3161 (($) NIL (|has| (-560) (-1182)) CONST)) (-1372 (($ (-421 (-560))) 9 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2652 (($ $) NIL (|has| (-560) (-319)) ELT) (((-421 (-560)) $) NIL T ELT)) (-2016 (((-560) $) NIL (|has| (-560) (-559)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-4187 (($ $ (-663 (-560)) (-663 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-560) (-560)) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-305 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-305 (-560)))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-1207)) (-663 (-560))) NIL (|has| (-560) (-528 (-1207) (-560))) ELT) (($ $ (-1207) (-560)) NIL (|has| (-560) (-528 (-1207) (-560))) ELT)) (-2901 (((-793) $) NIL T ELT)) (-3924 (($ $ (-560)) NIL (|has| (-560) (-298 (-560) (-560))) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2894 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $) NIL (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-3056 (($ $) NIL T ELT)) (-3771 (((-560) $) NIL T ELT)) (-1407 (((-915 (-560)) $) NIL (|has| (-560) (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) NIL (|has| (-560) (-633 (-915 (-391)))) ELT) (((-549) $) NIL (|has| (-560) (-633 (-549))) ELT) (((-391) $) NIL (|has| (-560) (-1051)) ELT) (((-229) $) NIL (|has| (-560) (-1051)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-560) (-939))) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 8 T ELT) (($ (-560)) NIL T ELT) (($ (-1207)) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-421 (-560)) $) NIL T ELT) (((-1035 16) $) 10 T ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| (-560) (-939))) (|has| (-560) (-147))) ELT)) (-2930 (((-793)) NIL T CONST)) (-1494 (((-560) $) NIL (|has| (-560) (-559)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2282 (($ $) NIL (|has| (-560) (-842)) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $) NIL (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-2536 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2594 (($ $ $) NIL T ELT) (($ (-560) (-560)) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ (-560)) NIL T ELT)))
-(((-501) (-13 (-1022 (-560)) (-632 (-421 (-560))) (-632 (-1035 16)) (-10 -8 (-15 -2652 ((-421 (-560)) $)) (-15 -1372 ($ (-421 (-560))))))) (T -501))
-((-2652 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-501)))) (-1372 (*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-501)))))
-(-13 (-1022 (-560)) (-632 (-421 (-560))) (-632 (-1035 16)) (-10 -8 (-15 -2652 ((-421 (-560)) $)) (-15 -1372 ($ (-421 (-560))))))
-((-2656 (((-663 |#2|) $) 31 T ELT)) (-2321 (((-114) |#2| $) 39 T ELT)) (-2787 (((-114) (-1 (-114) |#2|) $) 26 T ELT)) (-4187 (($ $ (-663 (-305 |#2|))) 13 T ELT) (($ $ (-305 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL T ELT)) (-3865 (((-793) (-1 (-114) |#2|) $) 30 T ELT) (((-793) |#2| $) 37 T ELT)) (-1578 (((-887) $) 45 T ELT)) (-1728 (((-114) (-1 (-114) |#2|) $) 23 T ELT)) (-2473 (((-114) $ $) 35 T ELT)) (-1553 (((-793) $) 18 T ELT)))
-(((-502 |#1| |#2|) (-10 -8 (-15 -2473 ((-114) |#1| |#1|)) (-15 -1578 ((-887) |#1|)) (-15 -4187 (|#1| |#1| (-663 |#2|) (-663 |#2|))) (-15 -4187 (|#1| |#1| |#2| |#2|)) (-15 -4187 (|#1| |#1| (-305 |#2|))) (-15 -4187 (|#1| |#1| (-663 (-305 |#2|)))) (-15 -2321 ((-114) |#2| |#1|)) (-15 -3865 ((-793) |#2| |#1|)) (-15 -2656 ((-663 |#2|) |#1|)) (-15 -3865 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2787 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -1728 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -1553 ((-793) |#1|))) (-503 |#2|) (-1247)) (T -502))
-NIL
-(-10 -8 (-15 -2473 ((-114) |#1| |#1|)) (-15 -1578 ((-887) |#1|)) (-15 -4187 (|#1| |#1| (-663 |#2|) (-663 |#2|))) (-15 -4187 (|#1| |#1| |#2| |#2|)) (-15 -4187 (|#1| |#1| (-305 |#2|))) (-15 -4187 (|#1| |#1| (-663 (-305 |#2|)))) (-15 -2321 ((-114) |#2| |#1|)) (-15 -3865 ((-793) |#2| |#1|)) (-15 -2656 ((-663 |#2|) |#1|)) (-15 -3865 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2787 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -1728 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -1553 ((-793) |#1|)))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-2238 (($) 7 T CONST)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-3126 (((-560) (-663 (-560))) 53 T ELT)) (-4091 ((|#1| (-663 |#1|)) 94 T ELT)) (-3766 (((-663 |#1|) (-663 |#1|)) 95 T ELT)) (-4032 (((-663 |#1|) (-663 |#1|)) 97 T ELT)) (-1938 ((|#1| (-663 |#1|)) 96 T ELT)) (-2264 (((-663 (-560)) (-663 |#1|)) 56 T ELT)))
+(((-500 |#1|) (-10 -7 (-15 -1938 (|#1| (-663 |#1|))) (-15 -4091 (|#1| (-663 |#1|))) (-15 -4032 ((-663 |#1|) (-663 |#1|))) (-15 -3766 ((-663 |#1|) (-663 |#1|))) (-15 -2264 ((-663 (-560)) (-663 |#1|))) (-15 -3126 ((-560) (-663 (-560))))) (-1273 (-560))) (T -500))
+((-3126 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-560)) (-5 *1 (-500 *4)) (-4 *4 (-1273 *2)))) (-2264 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-1273 (-560))) (-5 *2 (-663 (-560))) (-5 *1 (-500 *4)))) (-3766 (*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1273 (-560))) (-5 *1 (-500 *3)))) (-4032 (*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1273 (-560))) (-5 *1 (-500 *3)))) (-4091 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-5 *1 (-500 *2)) (-4 *2 (-1273 (-560))))) (-1938 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-5 *1 (-500 *2)) (-4 *2 (-1273 (-560))))))
+(-10 -7 (-15 -1938 (|#1| (-663 |#1|))) (-15 -4091 (|#1| (-663 |#1|))) (-15 -4032 ((-663 |#1|) (-663 |#1|))) (-15 -3766 ((-663 |#1|) (-663 |#1|))) (-15 -2264 ((-663 (-560)) (-663 |#1|))) (-15 -3126 ((-560) (-663 (-560)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3655 (((-560) $) NIL (|has| (-560) (-319)) ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-1869 (((-560) $) NIL (|has| (-560) (-842)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| (-560) (-1069 (-560))) ELT) (((-3 (-560) "failed") $) NIL (|has| (-560) (-1069 (-560))) ELT)) (-3649 (((-560) $) NIL T ELT) (((-1207) $) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-421 (-560)) $) NIL (|has| (-560) (-1069 (-560))) ELT) (((-560) $) NIL (|has| (-560) (-1069 (-560))) ELT)) (-2186 (($ $ $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1812 (($) NIL (|has| (-560) (-559)) ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-4172 (((-114) $) NIL (|has| (-560) (-842)) ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (|has| (-560) (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (|has| (-560) (-911 (-391))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-3490 (($ $) NIL T ELT)) (-2473 (((-560) $) NIL T ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| (-560) (-1182)) ELT)) (-4470 (((-114) $) NIL (|has| (-560) (-842)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2932 (($ $ $) NIL (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| (-560) (-871)) ELT)) (-2260 (($ (-1 (-560) (-560)) $) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL T ELT) (((-711 (-560)) (-1297 $)) NIL T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3239 (($) NIL (|has| (-560) (-1182)) CONST)) (-3891 (($ (-421 (-560))) 9 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3211 (($ $) NIL (|has| (-560) (-319)) ELT) (((-421 (-560)) $) NIL T ELT)) (-3147 (((-560) $) NIL (|has| (-560) (-559)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2371 (($ $ (-663 (-560)) (-663 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-560) (-560)) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-305 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-305 (-560)))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-1207)) (-663 (-560))) NIL (|has| (-560) (-528 (-1207) (-560))) ELT) (($ $ (-1207) (-560)) NIL (|has| (-560) (-528 (-1207) (-560))) ELT)) (-3989 (((-793) $) NIL T ELT)) (-1507 (($ $ (-560)) NIL (|has| (-560) (-298 (-560) (-560))) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3161 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $) NIL (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-2951 (($ $) NIL T ELT)) (-2484 (((-560) $) NIL T ELT)) (-2400 (((-915 (-560)) $) NIL (|has| (-560) (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) NIL (|has| (-560) (-633 (-915 (-391)))) ELT) (((-549) $) NIL (|has| (-560) (-633 (-549))) ELT) (((-391) $) NIL (|has| (-560) (-1051)) ELT) (((-229) $) NIL (|has| (-560) (-1051)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-560) (-939))) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 8 T ELT) (($ (-560)) NIL T ELT) (($ (-1207)) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-421 (-560)) $) NIL T ELT) (((-1035 16) $) 10 T ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| (-560) (-939))) (|has| (-560) (-147))) ELT)) (-4191 (((-793)) NIL T CONST)) (-3622 (((-560) $) NIL (|has| (-560) (-559)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-2719 (($ $) NIL (|has| (-560) (-842)) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $) NIL (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-2396 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2453 (($ $ $) NIL T ELT) (($ (-560) (-560)) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ (-560)) NIL T ELT)))
+(((-501) (-13 (-1022 (-560)) (-632 (-421 (-560))) (-632 (-1035 16)) (-10 -8 (-15 -3211 ((-421 (-560)) $)) (-15 -3891 ($ (-421 (-560))))))) (T -501))
+((-3211 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-501)))) (-3891 (*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-501)))))
+(-13 (-1022 (-560)) (-632 (-421 (-560))) (-632 (-1035 16)) (-10 -8 (-15 -3211 ((-421 (-560)) $)) (-15 -3891 ($ (-421 (-560))))))
+((-3243 (((-663 |#2|) $) 31 T ELT)) (-3091 (((-114) |#2| $) 39 T ELT)) (-2086 (((-114) (-1 (-114) |#2|) $) 26 T ELT)) (-2371 (($ $ (-663 (-305 |#2|))) 13 T ELT) (($ $ (-305 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL T ELT)) (-3384 (((-793) (-1 (-114) |#2|) $) 30 T ELT) (((-793) |#2| $) 37 T ELT)) (-3913 (((-887) $) 45 T ELT)) (-2149 (((-114) (-1 (-114) |#2|) $) 23 T ELT)) (-2340 (((-114) $ $) 35 T ELT)) (-2256 (((-793) $) 18 T ELT)))
+(((-502 |#1| |#2|) (-10 -8 (-15 -2340 ((-114) |#1| |#1|)) (-15 -3913 ((-887) |#1|)) (-15 -2371 (|#1| |#1| (-663 |#2|) (-663 |#2|))) (-15 -2371 (|#1| |#1| |#2| |#2|)) (-15 -2371 (|#1| |#1| (-305 |#2|))) (-15 -2371 (|#1| |#1| (-663 (-305 |#2|)))) (-15 -3091 ((-114) |#2| |#1|)) (-15 -3384 ((-793) |#2| |#1|)) (-15 -3243 ((-663 |#2|) |#1|)) (-15 -3384 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2086 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2149 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2256 ((-793) |#1|))) (-503 |#2|) (-1247)) (T -502))
+NIL
+(-10 -8 (-15 -2340 ((-114) |#1| |#1|)) (-15 -3913 ((-887) |#1|)) (-15 -2371 (|#1| |#1| (-663 |#2|) (-663 |#2|))) (-15 -2371 (|#1| |#1| |#2| |#2|)) (-15 -2371 (|#1| |#1| (-305 |#2|))) (-15 -2371 (|#1| |#1| (-663 (-305 |#2|)))) (-15 -3091 ((-114) |#2| |#1|)) (-15 -3384 ((-793) |#2| |#1|)) (-15 -3243 ((-663 |#2|) |#1|)) (-15 -3384 ((-793) (-1 (-114) |#2|) |#1|)) (-15 -2086 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2149 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2256 ((-793) |#1|)))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-3525 (($) 7 T CONST)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-503 |#1|) (-142) (-1247)) (T -503))
-((-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-503 *3)) (-4 *3 (-1247)))) (-3768 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4509)) (-4 *1 (-503 *3)) (-4 *3 (-1247)))) (-1728 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4508)) (-4 *1 (-503 *4)) (-4 *4 (-1247)) (-5 *2 (-114)))) (-2787 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4508)) (-4 *1 (-503 *4)) (-4 *4 (-1247)) (-5 *2 (-114)))) (-3865 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4508)) (-4 *1 (-503 *4)) (-4 *4 (-1247)) (-5 *2 (-793)))) (-2181 (*1 *2 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-503 *3)) (-4 *3 (-1247)) (-5 *2 (-663 *3)))) (-2656 (*1 *2 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-503 *3)) (-4 *3 (-1247)) (-5 *2 (-663 *3)))) (-3865 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-503 *3)) (-4 *3 (-1247)) (-4 *3 (-1132)) (-5 *2 (-793)))) (-2321 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-503 *3)) (-4 *3 (-1247)) (-4 *3 (-1132)) (-5 *2 (-114)))))
-(-13 (-34) (-10 -8 (IF (|has| |t#1| (-632 (-887))) (-6 (-632 (-887))) |%noBranch|) (IF (|has| |t#1| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#1| (-1132)) (-6 (-1132)) |%noBranch|) (IF (|has| |t#1| (-1132)) (IF (|has| |t#1| (-321 |t#1|)) (-6 (-321 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3957 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4509)) (-15 -3768 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4508)) (PROGN (-15 -1728 ((-114) (-1 (-114) |t#1|) $)) (-15 -2787 ((-114) (-1 (-114) |t#1|) $)) (-15 -3865 ((-793) (-1 (-114) |t#1|) $)) (-15 -2181 ((-663 |t#1|) $)) (-15 -2656 ((-663 |t#1|) $)) (IF (|has| |t#1| (-1132)) (PROGN (-15 -3865 ((-793) |t#1| $)) (-15 -2321 ((-114) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-34) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
-((-1578 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT)))
+((-2260 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-503 *3)) (-4 *3 (-1247)))) (-3324 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4509)) (-4 *1 (-503 *3)) (-4 *3 (-1247)))) (-2149 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4508)) (-4 *1 (-503 *4)) (-4 *4 (-1247)) (-5 *2 (-114)))) (-2086 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4508)) (-4 *1 (-503 *4)) (-4 *4 (-1247)) (-5 *2 (-114)))) (-3384 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4508)) (-4 *1 (-503 *4)) (-4 *4 (-1247)) (-5 *2 (-793)))) (-3737 (*1 *2 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-503 *3)) (-4 *3 (-1247)) (-5 *2 (-663 *3)))) (-3243 (*1 *2 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-503 *3)) (-4 *3 (-1247)) (-5 *2 (-663 *3)))) (-3384 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-503 *3)) (-4 *3 (-1247)) (-4 *3 (-1132)) (-5 *2 (-793)))) (-3091 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-503 *3)) (-4 *3 (-1247)) (-4 *3 (-1132)) (-5 *2 (-114)))))
+(-13 (-34) (-10 -8 (IF (|has| |t#1| (-632 (-887))) (-6 (-632 (-887))) |%noBranch|) (IF (|has| |t#1| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#1| (-1132)) (-6 (-1132)) |%noBranch|) (IF (|has| |t#1| (-1132)) (IF (|has| |t#1| (-321 |t#1|)) (-6 (-321 |t#1|)) |%noBranch|) |%noBranch|) (-15 -2260 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4509)) (-15 -3324 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4508)) (PROGN (-15 -2149 ((-114) (-1 (-114) |t#1|) $)) (-15 -2086 ((-114) (-1 (-114) |t#1|) $)) (-15 -3384 ((-793) (-1 (-114) |t#1|) $)) (-15 -3737 ((-663 |t#1|) $)) (-15 -3243 ((-663 |t#1|) $)) (IF (|has| |t#1| (-1132)) (PROGN (-15 -3384 ((-793) |t#1| $)) (-15 -3091 ((-114) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-34) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
+((-3913 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT)))
(((-504 |#1|) (-142) (-1247)) (T -504))
NIL
(-13 (-632 |t#1|) (-635 |t#1|))
(((-635 |#1|) . T) ((-632 |#1|) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2657 (($ (-1189)) 8 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 15 T ELT) (((-1189) $) 12 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 11 T ELT)))
-(((-505) (-13 (-1132) (-632 (-1189)) (-10 -8 (-15 -2657 ($ (-1189)))))) (T -505))
-((-2657 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-505)))))
-(-13 (-1132) (-632 (-1189)) (-10 -8 (-15 -2657 ($ (-1189)))))
-((-4337 (($ $) 15 T ELT)) (-4313 (($ $) 24 T ELT)) (-4363 (($ $) 12 T ELT)) (-4373 (($ $) 10 T ELT)) (-4352 (($ $) 17 T ELT)) (-4325 (($ $) 22 T ELT)))
-(((-506 |#1|) (-10 -8 (-15 -4325 (|#1| |#1|)) (-15 -4352 (|#1| |#1|)) (-15 -4373 (|#1| |#1|)) (-15 -4363 (|#1| |#1|)) (-15 -4313 (|#1| |#1|)) (-15 -4337 (|#1| |#1|))) (-507)) (T -506))
-NIL
-(-10 -8 (-15 -4325 (|#1| |#1|)) (-15 -4352 (|#1| |#1|)) (-15 -4373 (|#1| |#1|)) (-15 -4363 (|#1| |#1|)) (-15 -4313 (|#1| |#1|)) (-15 -4337 (|#1| |#1|)))
-((-4337 (($ $) 11 T ELT)) (-4313 (($ $) 10 T ELT)) (-4363 (($ $) 9 T ELT)) (-4373 (($ $) 8 T ELT)) (-4352 (($ $) 7 T ELT)) (-4325 (($ $) 6 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3250 (($ (-1189)) 8 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 15 T ELT) (((-1189) $) 12 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 11 T ELT)))
+(((-505) (-13 (-1132) (-632 (-1189)) (-10 -8 (-15 -3250 ($ (-1189)))))) (T -505))
+((-3250 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-505)))))
+(-13 (-1132) (-632 (-1189)) (-10 -8 (-15 -3250 ($ (-1189)))))
+((-1982 (($ $) 15 T ELT)) (-1958 (($ $) 24 T ELT)) (-2003 (($ $) 12 T ELT)) (-2013 (($ $) 10 T ELT)) (-1992 (($ $) 17 T ELT)) (-1972 (($ $) 22 T ELT)))
+(((-506 |#1|) (-10 -8 (-15 -1972 (|#1| |#1|)) (-15 -1992 (|#1| |#1|)) (-15 -2013 (|#1| |#1|)) (-15 -2003 (|#1| |#1|)) (-15 -1958 (|#1| |#1|)) (-15 -1982 (|#1| |#1|))) (-507)) (T -506))
+NIL
+(-10 -8 (-15 -1972 (|#1| |#1|)) (-15 -1992 (|#1| |#1|)) (-15 -2013 (|#1| |#1|)) (-15 -2003 (|#1| |#1|)) (-15 -1958 (|#1| |#1|)) (-15 -1982 (|#1| |#1|)))
+((-1982 (($ $) 11 T ELT)) (-1958 (($ $) 10 T ELT)) (-2003 (($ $) 9 T ELT)) (-2013 (($ $) 8 T ELT)) (-1992 (($ $) 7 T ELT)) (-1972 (($ $) 6 T ELT)))
(((-507) (-142)) (T -507))
-((-4337 (*1 *1 *1) (-4 *1 (-507))) (-4313 (*1 *1 *1) (-4 *1 (-507))) (-4363 (*1 *1 *1) (-4 *1 (-507))) (-4373 (*1 *1 *1) (-4 *1 (-507))) (-4352 (*1 *1 *1) (-4 *1 (-507))) (-4325 (*1 *1 *1) (-4 *1 (-507))))
-(-13 (-10 -8 (-15 -4325 ($ $)) (-15 -4352 ($ $)) (-15 -4373 ($ $)) (-15 -4363 ($ $)) (-15 -4313 ($ $)) (-15 -4337 ($ $))))
-((-4457 (((-419 |#4|) |#4| (-1 (-419 |#2|) |#2|)) 54 T ELT)))
-(((-508 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4457 ((-419 |#4|) |#4| (-1 (-419 |#2|) |#2|)))) (-376) (-1273 |#1|) (-13 (-376) (-149) (-746 |#1| |#2|)) (-1273 |#3|)) (T -508))
-((-4457 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) (-4 *7 (-13 (-376) (-149) (-746 *5 *6))) (-5 *2 (-419 *3)) (-5 *1 (-508 *5 *6 *7 *3)) (-4 *3 (-1273 *7)))))
-(-10 -7 (-15 -4457 ((-419 |#4|) |#4| (-1 (-419 |#2|) |#2|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2603 (((-663 $) (-1201 $) (-1207)) NIL T ELT) (((-663 $) (-1201 $)) NIL T ELT) (((-663 $) (-975 $)) NIL T ELT)) (-3684 (($ (-1201 $) (-1207)) NIL T ELT) (($ (-1201 $)) NIL T ELT) (($ (-975 $)) NIL T ELT)) (-2388 (((-114) $) 39 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-3413 (((-114) $ $) 73 T ELT)) (-4297 (((-663 (-630 $)) $) 50 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1724 (($ $ (-305 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-4471 (($ $) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-3276 (((-663 $) (-1201 $) (-1207)) NIL T ELT) (((-663 $) (-1201 $)) NIL T ELT) (((-663 $) (-975 $)) NIL T ELT)) (-3325 (($ (-1201 $) (-1207)) NIL T ELT) (($ (-1201 $)) NIL T ELT) (($ (-975 $)) NIL T ELT)) (-2539 (((-3 (-630 $) "failed") $) NIL T ELT) (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT)) (-3330 (((-630 $) $) NIL T ELT) (((-560) $) NIL T ELT) (((-421 (-560)) $) 55 T ELT)) (-1478 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT) (((-2 (|:| -3822 (-711 (-421 (-560)))) (|:| |vec| (-1297 (-421 (-560))))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-421 (-560))) (-711 $)) NIL T ELT)) (-4129 (($ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-2753 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2943 (((-663 (-115)) $) NIL T ELT)) (-4399 (((-115) (-115)) NIL T ELT)) (-1581 (((-114) $) 42 T ELT)) (-3612 (((-114) $) NIL (|has| $ (-1069 (-560))) ELT)) (-3757 (((-1156 (-560) (-630 $)) $) 37 T ELT)) (-2146 (($ $ (-560)) NIL T ELT)) (-2032 (((-1201 $) (-1201 $) (-630 $)) 87 T ELT) (((-1201 $) (-1201 $) (-663 (-630 $))) 62 T ELT) (($ $ (-630 $)) 76 T ELT) (($ $ (-663 (-630 $))) 77 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3872 (((-1201 $) (-630 $)) 74 (|has| $ (-1080)) ELT)) (-3957 (($ (-1 $ $) (-630 $)) NIL T ELT)) (-3005 (((-3 (-630 $) "failed") $) NIL T ELT)) (-2484 (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL T ELT) (((-711 (-560)) (-1297 $)) NIL T ELT) (((-2 (|:| -3822 (-711 (-421 (-560)))) (|:| |vec| (-1297 (-421 (-560))))) (-1297 $) $) NIL T ELT) (((-711 (-421 (-560))) (-1297 $)) NIL T ELT)) (-2093 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-4385 (((-663 (-630 $)) $) NIL T ELT)) (-2036 (($ (-115) $) NIL T ELT) (($ (-115) (-663 $)) NIL T ELT)) (-2784 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1207)) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-2107 (((-793) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3883 (((-114) $ $) NIL T ELT) (((-114) $ (-1207)) NIL T ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1737 (((-114) $) NIL (|has| $ (-1069 (-560))) ELT)) (-4187 (($ $ (-630 $) $) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-1207) (-1 $ (-663 $))) NIL T ELT) (($ $ (-1207) (-1 $ $)) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-663 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-3924 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-663 $)) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-3690 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2894 (($ $) 36 T ELT) (($ $ (-793)) NIL T ELT)) (-3771 (((-1156 (-560) (-630 $)) $) 20 T ELT)) (-4394 (($ $) NIL (|has| $ (-1080)) ELT)) (-1407 (((-391) $) 101 T ELT) (((-229) $) 109 T ELT) (((-171 (-391)) $) 117 T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-630 $)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-1156 (-560) (-630 $))) 21 T ELT)) (-2930 (((-793)) NIL T CONST)) (-3579 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1840 (((-114) (-115)) 93 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2001 (($) 10 T CONST)) (-2011 (($) 22 T CONST)) (-3305 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2473 (((-114) $ $) 24 T ELT)) (-2594 (($ $ $) 44 T ELT)) (-2580 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-421 (-560))) NIL T ELT) (($ $ (-560)) 48 T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-948)) NIL T ELT)) (* (($ (-421 (-560)) $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-560) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-948) $) NIL T ELT)))
-(((-509) (-13 (-310) (-27) (-1069 (-560)) (-1069 (-421 (-560))) (-660 (-560)) (-1051) (-660 (-421 (-560))) (-149) (-633 (-171 (-391))) (-240) (-10 -8 (-15 -1578 ($ (-1156 (-560) (-630 $)))) (-15 -3757 ((-1156 (-560) (-630 $)) $)) (-15 -3771 ((-1156 (-560) (-630 $)) $)) (-15 -4129 ($ $)) (-15 -3413 ((-114) $ $)) (-15 -2032 ((-1201 $) (-1201 $) (-630 $))) (-15 -2032 ((-1201 $) (-1201 $) (-663 (-630 $)))) (-15 -2032 ($ $ (-630 $))) (-15 -2032 ($ $ (-663 (-630 $))))))) (T -509))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1156 (-560) (-630 (-509)))) (-5 *1 (-509)))) (-3757 (*1 *2 *1) (-12 (-5 *2 (-1156 (-560) (-630 (-509)))) (-5 *1 (-509)))) (-3771 (*1 *2 *1) (-12 (-5 *2 (-1156 (-560) (-630 (-509)))) (-5 *1 (-509)))) (-4129 (*1 *1 *1) (-5 *1 (-509))) (-3413 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-509)))) (-2032 (*1 *2 *2 *3) (-12 (-5 *2 (-1201 (-509))) (-5 *3 (-630 (-509))) (-5 *1 (-509)))) (-2032 (*1 *2 *2 *3) (-12 (-5 *2 (-1201 (-509))) (-5 *3 (-663 (-630 (-509)))) (-5 *1 (-509)))) (-2032 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-509))) (-5 *1 (-509)))) (-2032 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-630 (-509)))) (-5 *1 (-509)))))
-(-13 (-310) (-27) (-1069 (-560)) (-1069 (-421 (-560))) (-660 (-560)) (-1051) (-660 (-421 (-560))) (-149) (-633 (-171 (-391))) (-240) (-10 -8 (-15 -1578 ($ (-1156 (-560) (-630 $)))) (-15 -3757 ((-1156 (-560) (-630 $)) $)) (-15 -3771 ((-1156 (-560) (-630 $)) $)) (-15 -4129 ($ $)) (-15 -3413 ((-114) $ $)) (-15 -2032 ((-1201 $) (-1201 $) (-630 $))) (-15 -2032 ((-1201 $) (-1201 $) (-663 (-630 $)))) (-15 -2032 ($ $ (-630 $))) (-15 -2032 ($ $ (-663 (-630 $))))))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3839 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4040 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-1703 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| |#1| (-871))) ELT)) (-2286 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 ((|#1| $ (-560) |#1|) 44 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2238 (($) NIL T CONST)) (-4391 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) NIL T ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2375 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3779 ((|#1| $ (-560) |#1|) 39 (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-560)) 38 T ELT)) (-1722 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1132)) ELT)) (-2181 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4095 (($ (-793) |#1|) 21 T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) 17 (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3223 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2937 (((-560) $) 41 (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 32 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 35 T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3996 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) NIL T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3637 ((|#1| $) NIL (|has| (-560) (-871)) ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-3037 (($ $ |#1|) 15 (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) 19 T ELT)) (-3924 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) 43 T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-4413 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3640 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 24 T ELT)) (-3415 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1578 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2536 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2521 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-1553 (((-793) $) 11 (|has| $ (-6 -4508)) ELT)))
+((-1982 (*1 *1 *1) (-4 *1 (-507))) (-1958 (*1 *1 *1) (-4 *1 (-507))) (-2003 (*1 *1 *1) (-4 *1 (-507))) (-2013 (*1 *1 *1) (-4 *1 (-507))) (-1992 (*1 *1 *1) (-4 *1 (-507))) (-1972 (*1 *1 *1) (-4 *1 (-507))))
+(-13 (-10 -8 (-15 -1972 ($ $)) (-15 -1992 ($ $)) (-15 -2013 ($ $)) (-15 -2003 ($ $)) (-15 -1958 ($ $)) (-15 -1982 ($ $))))
+((-4012 (((-419 |#4|) |#4| (-1 (-419 |#2|) |#2|)) 54 T ELT)))
+(((-508 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4012 ((-419 |#4|) |#4| (-1 (-419 |#2|) |#2|)))) (-376) (-1273 |#1|) (-13 (-376) (-149) (-746 |#1| |#2|)) (-1273 |#3|)) (T -508))
+((-4012 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) (-4 *7 (-13 (-376) (-149) (-746 *5 *6))) (-5 *2 (-419 *3)) (-5 *1 (-508 *5 *6 *7 *3)) (-4 *3 (-1273 *7)))))
+(-10 -7 (-15 -4012 ((-419 |#4|) |#4| (-1 (-419 |#2|) |#2|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3964 (((-663 $) (-1201 $) (-1207)) NIL T ELT) (((-663 $) (-1201 $)) NIL T ELT) (((-663 $) (-975 $)) NIL T ELT)) (-3158 (($ (-1201 $) (-1207)) NIL T ELT) (($ (-1201 $)) NIL T ELT) (($ (-975 $)) NIL T ELT)) (-2505 (((-114) $) 39 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-2292 (((-114) $ $) 73 T ELT)) (-3859 (((-663 (-630 $)) $) 50 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2607 (($ $ (-305 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-4021 (($ $) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3423 (((-663 $) (-1201 $) (-1207)) NIL T ELT) (((-663 $) (-1201 $)) NIL T ELT) (((-663 $) (-975 $)) NIL T ELT)) (-3946 (($ (-1201 $) (-1207)) NIL T ELT) (($ (-1201 $)) NIL T ELT) (($ (-975 $)) NIL T ELT)) (-3929 (((-3 (-630 $) "failed") $) NIL T ELT) (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT)) (-3649 (((-630 $) $) NIL T ELT) (((-560) $) NIL T ELT) (((-421 (-560)) $) 55 T ELT)) (-2186 (($ $ $) NIL T ELT)) (-2619 (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT) (((-2 (|:| -1871 (-711 (-421 (-560)))) (|:| |vec| (-1297 (-421 (-560))))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-421 (-560))) (-711 $)) NIL T ELT)) (-1778 (($ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-1740 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-4318 (((-663 (-115)) $) NIL T ELT)) (-3963 (((-115) (-115)) NIL T ELT)) (-1918 (((-114) $) 42 T ELT)) (-3729 (((-114) $) NIL (|has| $ (-1069 (-560))) ELT)) (-2473 (((-1156 (-560) (-630 $)) $) 37 T ELT)) (-1956 (($ $ (-560)) NIL T ELT)) (-2084 (((-1201 $) (-1201 $) (-630 $)) 87 T ELT) (((-1201 $) (-1201 $) (-663 (-630 $))) 62 T ELT) (($ $ (-630 $)) 76 T ELT) (($ $ (-663 (-630 $))) 77 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-4250 (((-1201 $) (-630 $)) 74 (|has| $ (-1080)) ELT)) (-2260 (($ (-1 $ $) (-630 $)) NIL T ELT)) (-3702 (((-3 (-630 $) "failed") $) NIL T ELT)) (-4140 (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL T ELT) (((-711 (-560)) (-1297 $)) NIL T ELT) (((-2 (|:| -1871 (-711 (-421 (-560)))) (|:| |vec| (-1297 (-421 (-560))))) (-1297 $) $) NIL T ELT) (((-711 (-421 (-560))) (-1297 $)) NIL T ELT)) (-1861 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3949 (((-663 (-630 $)) $) NIL T ELT)) (-2547 (($ (-115) $) NIL T ELT) (($ (-115) (-663 $)) NIL T ELT)) (-2060 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1207)) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3827 (((-793) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-4338 (((-114) $ $) NIL T ELT) (((-114) $ (-1207)) NIL T ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2244 (((-114) $) NIL (|has| $ (-1069 (-560))) ELT)) (-2371 (($ $ (-630 $) $) NIL T ELT) (($ $ (-663 (-630 $)) (-663 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-1207) (-1 $ (-663 $))) NIL T ELT) (($ $ (-1207) (-1 $ $)) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ $))) NIL T ELT) (($ $ (-663 (-115)) (-663 (-1 $ (-663 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-663 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-1507 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-663 $)) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3222 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-3161 (($ $) 36 T ELT) (($ $ (-793)) NIL T ELT)) (-2484 (((-1156 (-560) (-630 $)) $) 20 T ELT)) (-2407 (($ $) NIL (|has| $ (-1080)) ELT)) (-2400 (((-391) $) 101 T ELT) (((-229) $) 109 T ELT) (((-171 (-391)) $) 117 T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-630 $)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-1156 (-560) (-630 $))) 21 T ELT)) (-4191 (((-793)) NIL T CONST)) (-3061 (($ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3962 (((-114) (-115)) 93 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-1446 (($) 10 T CONST)) (-1456 (($) 22 T CONST)) (-2111 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2340 (((-114) $ $) 24 T ELT)) (-2453 (($ $ $) 44 T ELT)) (-2441 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-421 (-560))) NIL T ELT) (($ $ (-560)) 48 T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-948)) NIL T ELT)) (* (($ (-421 (-560)) $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-560) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-948) $) NIL T ELT)))
+(((-509) (-13 (-310) (-27) (-1069 (-560)) (-1069 (-421 (-560))) (-660 (-560)) (-1051) (-660 (-421 (-560))) (-149) (-633 (-171 (-391))) (-240) (-10 -8 (-15 -3913 ($ (-1156 (-560) (-630 $)))) (-15 -2473 ((-1156 (-560) (-630 $)) $)) (-15 -2484 ((-1156 (-560) (-630 $)) $)) (-15 -1778 ($ $)) (-15 -2292 ((-114) $ $)) (-15 -2084 ((-1201 $) (-1201 $) (-630 $))) (-15 -2084 ((-1201 $) (-1201 $) (-663 (-630 $)))) (-15 -2084 ($ $ (-630 $))) (-15 -2084 ($ $ (-663 (-630 $))))))) (T -509))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1156 (-560) (-630 (-509)))) (-5 *1 (-509)))) (-2473 (*1 *2 *1) (-12 (-5 *2 (-1156 (-560) (-630 (-509)))) (-5 *1 (-509)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-1156 (-560) (-630 (-509)))) (-5 *1 (-509)))) (-1778 (*1 *1 *1) (-5 *1 (-509))) (-2292 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-509)))) (-2084 (*1 *2 *2 *3) (-12 (-5 *2 (-1201 (-509))) (-5 *3 (-630 (-509))) (-5 *1 (-509)))) (-2084 (*1 *2 *2 *3) (-12 (-5 *2 (-1201 (-509))) (-5 *3 (-663 (-630 (-509)))) (-5 *1 (-509)))) (-2084 (*1 *1 *1 *2) (-12 (-5 *2 (-630 (-509))) (-5 *1 (-509)))) (-2084 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-630 (-509)))) (-5 *1 (-509)))))
+(-13 (-310) (-27) (-1069 (-560)) (-1069 (-421 (-560))) (-660 (-560)) (-1051) (-660 (-421 (-560))) (-149) (-633 (-171 (-391))) (-240) (-10 -8 (-15 -3913 ($ (-1156 (-560) (-630 $)))) (-15 -2473 ((-1156 (-560) (-630 $)) $)) (-15 -2484 ((-1156 (-560) (-630 $)) $)) (-15 -1778 ($ $)) (-15 -2292 ((-114) $ $)) (-15 -2084 ((-1201 $) (-1201 $) (-630 $))) (-15 -2084 ((-1201 $) (-1201 $) (-663 (-630 $)))) (-15 -2084 ($ $ (-630 $))) (-15 -2084 ($ $ (-663 (-630 $))))))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2033 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-2152 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-3152 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| |#1| (-871))) ELT)) (-1787 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 ((|#1| $ (-560) |#1|) 44 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3525 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) NIL T ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3033 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3338 ((|#1| $ (-560) |#1|) 39 (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-560)) 38 T ELT)) (-2359 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1132)) ELT)) (-3737 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4246 (($ (-793) |#1|) 21 T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) 17 (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-4167 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4263 (((-560) $) 41 (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 32 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 35 T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-2507 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) NIL T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-4334 ((|#1| $) NIL (|has| (-560) (-871)) ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2740 (($ $ |#1|) 15 (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) 19 T ELT)) (-1507 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) 43 T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-2579 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3993 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 24 T ELT)) (-1955 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3913 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2396 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2386 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2256 (((-793) $) 11 (|has| $ (-6 -4508)) ELT)))
(((-510 |#1| |#2|) (-19 |#1|) (-1247) (-560)) (T -510))
NIL
(-19 |#1|)
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-3981 (($ $ (-560) (-510 |#1| |#3|)) NIL T ELT)) (-2613 (($ $ (-560) (-510 |#1| |#2|)) NIL T ELT)) (-2238 (($) NIL T CONST)) (-3634 (((-510 |#1| |#3|) $ (-560)) NIL T ELT)) (-3779 ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-3709 ((|#1| $ (-560) (-560)) NIL T ELT)) (-2181 (((-663 |#1|) $) NIL T ELT)) (-3648 (((-793) $) NIL T ELT)) (-4095 (($ (-793) (-793) |#1|) NIL T ELT)) (-3658 (((-793) $) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2711 (((-560) $) NIL T ELT)) (-2369 (((-560) $) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1468 (((-560) $) NIL T ELT)) (-2632 (((-560) $) NIL T ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3037 (($ $ |#1|) NIL T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#1| $ (-560) (-560)) NIL T ELT) ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1799 (($ $) NIL T ELT)) (-1644 (((-510 |#1| |#2|) $ (-560)) NIL T ELT)) (-1578 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-2792 (($ $ (-560) (-510 |#1| |#3|)) NIL T ELT)) (-2770 (($ $ (-560) (-510 |#1| |#2|)) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3942 (((-510 |#1| |#3|) $ (-560)) NIL T ELT)) (-3338 ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-3274 ((|#1| $ (-560) (-560)) NIL T ELT)) (-3737 (((-663 |#1|) $) NIL T ELT)) (-2777 (((-793) $) NIL T ELT)) (-4246 (($ (-793) (-793) |#1|) NIL T ELT)) (-2789 (((-793) $) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2567 (((-560) $) NIL T ELT)) (-2313 (((-560) $) NIL T ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1475 (((-560) $) NIL T ELT)) (-3004 (((-560) $) NIL T ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2740 (($ $ |#1|) NIL T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#1| $ (-560) (-560)) NIL T ELT) ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4107 (($ $) NIL T ELT)) (-3783 (((-510 |#1| |#2|) $ (-560)) NIL T ELT)) (-3913 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
(((-511 |#1| |#2| |#3|) (-57 |#1| (-510 |#1| |#3|) (-510 |#1| |#2|)) (-1247) (-560) (-560)) (T -511))
NIL
(-57 |#1| (-510 |#1| |#3|) (-510 |#1| |#2|))
-((-4402 (((-663 (-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-793) (-793)) 32 T ELT)) (-3556 (((-663 (-1201 |#1|)) |#1| (-793) (-793) (-793)) 43 T ELT)) (-3572 (((-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-663 |#3|) (-663 (-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-793)) 107 T ELT)))
-(((-512 |#1| |#2| |#3|) (-10 -7 (-15 -3556 ((-663 (-1201 |#1|)) |#1| (-793) (-793) (-793))) (-15 -4402 ((-663 (-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-793) (-793))) (-15 -3572 ((-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-663 |#3|) (-663 (-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-793)))) (-363) (-1273 |#1|) (-1273 |#2|)) (T -512))
-((-3572 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 (-2 (|:| -1954 (-711 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-711 *7))))) (-5 *5 (-793)) (-4 *8 (-1273 *7)) (-4 *7 (-1273 *6)) (-4 *6 (-363)) (-5 *2 (-2 (|:| -1954 (-711 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-711 *7)))) (-5 *1 (-512 *6 *7 *8)))) (-4402 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-793)) (-4 *5 (-363)) (-4 *6 (-1273 *5)) (-5 *2 (-663 (-2 (|:| -1954 (-711 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-711 *6))))) (-5 *1 (-512 *5 *6 *7)) (-5 *3 (-2 (|:| -1954 (-711 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-711 *6)))) (-4 *7 (-1273 *6)))) (-3556 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-793)) (-4 *3 (-363)) (-4 *5 (-1273 *3)) (-5 *2 (-663 (-1201 *3))) (-5 *1 (-512 *3 *5 *6)) (-4 *6 (-1273 *5)))))
-(-10 -7 (-15 -3556 ((-663 (-1201 |#1|)) |#1| (-793) (-793) (-793))) (-15 -4402 ((-663 (-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-793) (-793))) (-15 -3572 ((-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-663 |#3|) (-663 (-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-793))))
-((-3200 (((-2 (|:| -1954 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -1954 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -1954 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|)))) 70 T ELT)) (-3089 ((|#1| (-711 |#1|) |#1| (-793)) 24 T ELT)) (-3940 (((-793) (-793) (-793)) 34 T ELT)) (-1819 (((-711 |#1|) (-711 |#1|) (-711 |#1|)) 50 T ELT)) (-1522 (((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|) 58 T ELT) (((-711 |#1|) (-711 |#1|) (-711 |#1|)) 55 T ELT)) (-2565 ((|#1| (-711 |#1|) (-711 |#1|) |#1| (-560)) 28 T ELT)) (-3195 ((|#1| (-711 |#1|)) 18 T ELT)))
-(((-513 |#1| |#2| |#3|) (-10 -7 (-15 -3195 (|#1| (-711 |#1|))) (-15 -3089 (|#1| (-711 |#1|) |#1| (-793))) (-15 -2565 (|#1| (-711 |#1|) (-711 |#1|) |#1| (-560))) (-15 -3940 ((-793) (-793) (-793))) (-15 -1522 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -1522 ((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|)) (-15 -1819 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -3200 ((-2 (|:| -1954 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -1954 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -1954 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|)))))) (-13 (-319) (-10 -8 (-15 -3023 ((-419 $) $)))) (-1273 |#1|) (-424 |#1| |#2|)) (T -513))
-((-3200 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -1954 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-4 *3 (-13 (-319) (-10 -8 (-15 -3023 ((-419 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))) (-1819 (*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -3023 ((-419 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))) (-1522 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -3023 ((-419 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))) (-1522 (*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -3023 ((-419 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))) (-3940 (*1 *2 *2 *2) (-12 (-5 *2 (-793)) (-4 *3 (-13 (-319) (-10 -8 (-15 -3023 ((-419 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))) (-2565 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-711 *2)) (-5 *4 (-560)) (-4 *2 (-13 (-319) (-10 -8 (-15 -3023 ((-419 $) $))))) (-4 *5 (-1273 *2)) (-5 *1 (-513 *2 *5 *6)) (-4 *6 (-424 *2 *5)))) (-3089 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-711 *2)) (-5 *4 (-793)) (-4 *2 (-13 (-319) (-10 -8 (-15 -3023 ((-419 $) $))))) (-4 *5 (-1273 *2)) (-5 *1 (-513 *2 *5 *6)) (-4 *6 (-424 *2 *5)))) (-3195 (*1 *2 *3) (-12 (-5 *3 (-711 *2)) (-4 *4 (-1273 *2)) (-4 *2 (-13 (-319) (-10 -8 (-15 -3023 ((-419 $) $))))) (-5 *1 (-513 *2 *4 *5)) (-4 *5 (-424 *2 *4)))))
-(-10 -7 (-15 -3195 (|#1| (-711 |#1|))) (-15 -3089 (|#1| (-711 |#1|) |#1| (-793))) (-15 -2565 (|#1| (-711 |#1|) (-711 |#1|) |#1| (-560))) (-15 -3940 ((-793) (-793) (-793))) (-15 -1522 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -1522 ((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|)) (-15 -1819 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -3200 ((-2 (|:| -1954 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -1954 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -1954 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1562 (($ $) NIL T ELT)) (-1977 (($ $ $) 40 T ELT)) (-3839 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4040 (((-114) $) NIL (|has| (-114) (-871)) ELT) (((-114) (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-1703 (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| (-114) (-871))) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4509)) ELT)) (-2286 (($ $) NIL (|has| (-114) (-871)) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 (((-114) $ (-1264 (-560)) (-114)) NIL (|has| $ (-6 -4509)) ELT) (((-114) $ (-560) (-114)) 42 (|has| $ (-6 -4509)) ELT)) (-1982 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2238 (($) NIL T CONST)) (-4391 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) NIL T ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT)) (-2375 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-114) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT)) (-4129 (((-114) (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT)) (-3779 (((-114) $ (-560) (-114)) NIL (|has| $ (-6 -4509)) ELT)) (-3709 (((-114) $ (-560)) NIL T ELT)) (-1722 (((-560) (-114) $ (-560)) NIL (|has| (-114) (-1132)) ELT) (((-560) (-114) $) NIL (|has| (-114) (-1132)) ELT) (((-560) (-1 (-114) (-114)) $) NIL T ELT)) (-2181 (((-663 (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-1961 (($ $ $) 38 T ELT)) (-1937 (($ $) NIL T ELT)) (-1483 (($ $ $) NIL T ELT)) (-4095 (($ (-793) (-114)) 27 T ELT)) (-2148 (($ $ $) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) 8 (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL T ELT)) (-3223 (($ $ $) NIL (|has| (-114) (-871)) ELT) (($ (-1 (-114) (-114) (-114)) $ $) NIL T ELT)) (-2656 (((-663 (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT)) (-2937 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL T ELT)) (-3768 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-114) (-114) (-114)) $ $) 35 T ELT) (($ (-1 (-114) (-114)) $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3996 (($ $ $ (-560)) NIL T ELT) (($ (-114) $ (-560)) NIL T ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3637 (((-114) $) NIL (|has| (-560) (-871)) ELT)) (-3329 (((-3 (-114) "failed") (-1 (-114) (-114)) $) NIL T ELT)) (-3037 (($ $ (-114)) NIL (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-114)) (-663 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT) (($ $ (-114) (-114)) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT) (($ $ (-305 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT) (($ $ (-663 (-305 (-114)))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT)) (-3571 (((-663 (-114)) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) 28 T ELT)) (-3924 (($ $ (-1264 (-560))) NIL T ELT) (((-114) $ (-560)) 22 T ELT) (((-114) $ (-560) (-114)) NIL T ELT)) (-4413 (($ $ (-1264 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-3865 (((-793) (-114) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT) (((-793) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3640 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) 29 T ELT)) (-1407 (((-549) $) NIL (|has| (-114) (-633 (-549))) ELT)) (-1592 (($ (-663 (-114))) NIL T ELT)) (-3415 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-114) $) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-1578 (((-887) $) 26 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1728 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-1953 (($ $ $) 36 T ELT)) (-1616 (($ $ $) NIL T ELT)) (-3798 (($ $ $) 45 T ELT)) (-3808 (($ $) 43 T ELT)) (-3784 (($ $ $) 44 T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 30 T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 31 T ELT)) (-1602 (($ $ $) NIL T ELT)) (-1553 (((-793) $) 13 (|has| $ (-6 -4508)) ELT)))
-(((-514 |#1|) (-13 (-125) (-10 -8 (-15 -3808 ($ $)) (-15 -3798 ($ $ $)) (-15 -3784 ($ $ $)))) (-560)) (T -514))
-((-3808 (*1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-560)))) (-3798 (*1 *1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-560)))) (-3784 (*1 *1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-560)))))
-(-13 (-125) (-10 -8 (-15 -3808 ($ $)) (-15 -3798 ($ $ $)) (-15 -3784 ($ $ $))))
-((-3578 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1201 |#4|)) 35 T ELT)) (-3182 (((-1201 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1201 |#4|)) 22 T ELT)) (-1749 (((-3 (-711 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-711 (-1201 |#4|))) 46 T ELT)) (-1742 (((-1201 (-1201 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT)))
-(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3182 (|#2| (-1 |#1| |#4|) (-1201 |#4|))) (-15 -3182 ((-1201 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3578 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1201 |#4|))) (-15 -1749 ((-3 (-711 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-711 (-1201 |#4|)))) (-15 -1742 ((-1201 (-1201 |#4|)) (-1 |#4| |#1|) |#3|))) (-1080) (-1273 |#1|) (-1273 |#2|) (-1080)) (T -515))
-((-1742 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1080)) (-4 *7 (-1080)) (-4 *6 (-1273 *5)) (-5 *2 (-1201 (-1201 *7))) (-5 *1 (-515 *5 *6 *4 *7)) (-4 *4 (-1273 *6)))) (-1749 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-711 (-1201 *8))) (-4 *5 (-1080)) (-4 *8 (-1080)) (-4 *6 (-1273 *5)) (-5 *2 (-711 *6)) (-5 *1 (-515 *5 *6 *7 *8)) (-4 *7 (-1273 *6)))) (-3578 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1201 *7)) (-4 *5 (-1080)) (-4 *7 (-1080)) (-4 *2 (-1273 *5)) (-5 *1 (-515 *5 *2 *6 *7)) (-4 *6 (-1273 *2)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1080)) (-4 *7 (-1080)) (-4 *4 (-1273 *5)) (-5 *2 (-1201 *7)) (-5 *1 (-515 *5 *4 *6 *7)) (-4 *6 (-1273 *4)))) (-3182 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1201 *7)) (-4 *5 (-1080)) (-4 *7 (-1080)) (-4 *2 (-1273 *5)) (-5 *1 (-515 *5 *2 *6 *7)) (-4 *6 (-1273 *2)))))
-(-10 -7 (-15 -3182 (|#2| (-1 |#1| |#4|) (-1201 |#4|))) (-15 -3182 ((-1201 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3578 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1201 |#4|))) (-15 -1749 ((-3 (-711 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-711 (-1201 |#4|)))) (-15 -1742 ((-1201 (-1201 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4331 (((-1303) $) 25 T ELT)) (-3924 (((-1189) $ (-1207)) 30 T ELT)) (-4358 (((-1303) $) 19 T ELT)) (-1578 (((-887) $) 27 T ELT) (($ (-1189)) 26 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 11 T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 9 T ELT)))
-(((-516) (-13 (-871) (-10 -8 (-15 -3924 ((-1189) $ (-1207))) (-15 -4358 ((-1303) $)) (-15 -4331 ((-1303) $)) (-15 -1578 ($ (-1189)))))) (T -516))
-((-3924 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1189)) (-5 *1 (-516)))) (-4358 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-516)))) (-4331 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-516)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-516)))))
-(-13 (-871) (-10 -8 (-15 -3924 ((-1189) $ (-1207))) (-15 -4358 ((-1303) $)) (-15 -4331 ((-1303) $)) (-15 -1578 ($ (-1189)))))
-((-1386 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-2323 ((|#1| |#4|) 10 T ELT)) (-3590 ((|#3| |#4|) 17 T ELT)))
-(((-517 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2323 (|#1| |#4|)) (-15 -3590 (|#3| |#4|)) (-15 -1386 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-571) (-1022 |#1|) (-385 |#1|) (-385 |#2|)) (T -517))
-((-1386 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-1022 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-517 *4 *5 *6 *3)) (-4 *6 (-385 *4)) (-4 *3 (-385 *5)))) (-3590 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-1022 *4)) (-4 *2 (-385 *4)) (-5 *1 (-517 *4 *5 *2 *3)) (-4 *3 (-385 *5)))) (-2323 (*1 *2 *3) (-12 (-4 *4 (-1022 *2)) (-4 *2 (-571)) (-5 *1 (-517 *2 *4 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-385 *4)))))
-(-10 -7 (-15 -2323 (|#1| |#4|)) (-15 -3590 (|#3| |#4|)) (-15 -1386 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-1571 (((-114) $ (-663 |#3|)) 126 T ELT) (((-114) $) 127 T ELT)) (-2388 (((-114) $) 178 T ELT)) (-1432 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-663 |#3|)) 121 T ELT)) (-4244 (((-1196 (-663 (-975 |#1|)) (-663 (-305 (-975 |#1|)))) (-663 |#4|)) 171 (|has| |#3| (-633 (-1207))) ELT)) (-1774 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-1581 (((-114) $) 177 T ELT)) (-1481 (($ $) 131 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1903 (($ $ $) 99 T ELT) (($ (-663 $)) 101 T ELT)) (-1751 (((-114) |#4| $) 129 T ELT)) (-1549 (((-114) $ $) 82 T ELT)) (-2207 (($ (-663 |#4|)) 106 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3646 (($ (-663 |#4|)) 175 T ELT)) (-2371 (((-114) $) 176 T ELT)) (-2546 (($ $) 85 T ELT)) (-4424 (((-663 |#4|) $) 73 T ELT)) (-3686 (((-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $)) $ (-663 |#3|)) NIL T ELT)) (-1688 (((-114) |#4| $) 89 T ELT)) (-3669 (((-560) $ (-663 |#3|)) 133 T ELT) (((-560) $) 134 T ELT)) (-1578 (((-887) $) 174 T ELT) (($ (-663 |#4|)) 102 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-3438 (($ (-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-2473 (((-114) $ $) 84 T ELT)) (-2567 (($ $ $) 109 T ELT)) (** (($ $ (-793)) 115 T ELT)) (* (($ $ $) 113 T ELT)))
-(((-518 |#1| |#2| |#3| |#4|) (-13 (-1132) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-793))) (-15 -2567 ($ $ $)) (-15 -1581 ((-114) $)) (-15 -2388 ((-114) $)) (-15 -1688 ((-114) |#4| $)) (-15 -1549 ((-114) $ $)) (-15 -1751 ((-114) |#4| $)) (-15 -1571 ((-114) $ (-663 |#3|))) (-15 -1571 ((-114) $)) (-15 -1903 ($ $ $)) (-15 -1903 ($ (-663 $))) (-15 -1774 ($ $ $)) (-15 -1774 ($ $ |#4|)) (-15 -2546 ($ $)) (-15 -3686 ((-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $)) $ (-663 |#3|))) (-15 -3438 ($ (-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $)))) (-15 -3669 ((-560) $ (-663 |#3|))) (-15 -3669 ((-560) $)) (-15 -1481 ($ $)) (-15 -2207 ($ (-663 |#4|))) (-15 -3646 ($ (-663 |#4|))) (-15 -2371 ((-114) $)) (-15 -4424 ((-663 |#4|) $)) (-15 -1578 ($ (-663 |#4|))) (-15 -1432 ($ $ |#4|)) (-15 -1432 ($ $ |#4| (-663 |#3|))) (IF (|has| |#3| (-633 (-1207))) (-15 -4244 ((-1196 (-663 (-975 |#1|)) (-663 (-305 (-975 |#1|)))) (-663 |#4|))) |%noBranch|))) (-376) (-815) (-871) (-979 |#1| |#2| |#3|)) (T -518))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))) (-2567 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4)))) (-1581 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))) (-2388 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))) (-1688 (*1 *2 *3 *1) (-12 (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-518 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-1549 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))) (-1751 (*1 *2 *3 *1) (-12 (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-518 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-1571 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815)) (-5 *2 (-114)) (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-979 *4 *5 *6)))) (-1571 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))) (-1903 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4)))) (-1903 (*1 *1 *2) (-12 (-5 *2 (-663 (-518 *3 *4 *5 *6))) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))) (-1774 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4)))) (-1774 (*1 *1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-979 *3 *4 *5)))) (-2546 (*1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4)))) (-3686 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815)) (-5 *2 (-2 (|:| |mval| (-711 *4)) (|:| |invmval| (-711 *4)) (|:| |genIdeal| (-518 *4 *5 *6 *7)))) (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-979 *4 *5 *6)))) (-3438 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-711 *3)) (|:| |invmval| (-711 *3)) (|:| |genIdeal| (-518 *3 *4 *5 *6)))) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))) (-3669 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815)) (-5 *2 (-560)) (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-979 *4 *5 *6)))) (-3669 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-560)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))) (-1481 (*1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4)))) (-2207 (*1 *1 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)))) (-3646 (*1 *1 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)))) (-2371 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))) (-4424 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *6)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)))) (-1432 (*1 *1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-979 *3 *4 *5)))) (-1432 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-663 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815)) (-5 *1 (-518 *4 *5 *6 *2)) (-4 *2 (-979 *4 *5 *6)))) (-4244 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *6 (-633 (-1207))) (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1196 (-663 (-975 *4)) (-663 (-305 (-975 *4))))) (-5 *1 (-518 *4 *5 *6 *7)))))
-(-13 (-1132) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-793))) (-15 -2567 ($ $ $)) (-15 -1581 ((-114) $)) (-15 -2388 ((-114) $)) (-15 -1688 ((-114) |#4| $)) (-15 -1549 ((-114) $ $)) (-15 -1751 ((-114) |#4| $)) (-15 -1571 ((-114) $ (-663 |#3|))) (-15 -1571 ((-114) $)) (-15 -1903 ($ $ $)) (-15 -1903 ($ (-663 $))) (-15 -1774 ($ $ $)) (-15 -1774 ($ $ |#4|)) (-15 -2546 ($ $)) (-15 -3686 ((-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $)) $ (-663 |#3|))) (-15 -3438 ($ (-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $)))) (-15 -3669 ((-560) $ (-663 |#3|))) (-15 -3669 ((-560) $)) (-15 -1481 ($ $)) (-15 -2207 ($ (-663 |#4|))) (-15 -3646 ($ (-663 |#4|))) (-15 -2371 ((-114) $)) (-15 -4424 ((-663 |#4|) $)) (-15 -1578 ($ (-663 |#4|))) (-15 -1432 ($ $ |#4|)) (-15 -1432 ($ $ |#4| (-663 |#3|))) (IF (|has| |#3| (-633 (-1207))) (-15 -4244 ((-1196 (-663 (-975 |#1|)) (-663 (-305 (-975 |#1|)))) (-663 |#4|))) |%noBranch|)))
-((-2022 (((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560))))) 176 T ELT)) (-3076 (((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560))))) 177 T ELT)) (-3930 (((-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560))))) 129 T ELT)) (-4330 (((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560))))) NIL T ELT)) (-2815 (((-663 (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560))))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560))))) 179 T ELT)) (-1743 (((-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))) (-663 (-888 |#1|))) 195 T ELT)))
-(((-519 |#1| |#2|) (-10 -7 (-15 -2022 ((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -3076 ((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -4330 ((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -3930 ((-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -2815 ((-663 (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560))))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -1743 ((-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))) (-663 (-888 |#1|))))) (-663 (-1207)) (-793)) (T -519))
-((-1743 (*1 *2 *2 *3) (-12 (-5 *2 (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4) (-255 *4 (-421 (-560))))) (-5 *3 (-663 (-888 *4))) (-14 *4 (-663 (-1207))) (-14 *5 (-793)) (-5 *1 (-519 *4 *5)))) (-2815 (*1 *2 *3) (-12 (-14 *4 (-663 (-1207))) (-14 *5 (-793)) (-5 *2 (-663 (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4) (-255 *4 (-421 (-560)))))) (-5 *1 (-519 *4 *5)) (-5 *3 (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4) (-255 *4 (-421 (-560))))))) (-3930 (*1 *2 *2) (-12 (-5 *2 (-518 (-421 (-560)) (-246 *4 (-793)) (-888 *3) (-255 *3 (-421 (-560))))) (-14 *3 (-663 (-1207))) (-14 *4 (-793)) (-5 *1 (-519 *3 *4)))) (-4330 (*1 *2 *3) (-12 (-5 *3 (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4) (-255 *4 (-421 (-560))))) (-14 *4 (-663 (-1207))) (-14 *5 (-793)) (-5 *2 (-114)) (-5 *1 (-519 *4 *5)))) (-3076 (*1 *2 *3) (-12 (-5 *3 (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4) (-255 *4 (-421 (-560))))) (-14 *4 (-663 (-1207))) (-14 *5 (-793)) (-5 *2 (-114)) (-5 *1 (-519 *4 *5)))) (-2022 (*1 *2 *3) (-12 (-5 *3 (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4) (-255 *4 (-421 (-560))))) (-14 *4 (-663 (-1207))) (-14 *5 (-793)) (-5 *2 (-114)) (-5 *1 (-519 *4 *5)))))
-(-10 -7 (-15 -2022 ((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -3076 ((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -4330 ((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -3930 ((-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -2815 ((-663 (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560))))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -1743 ((-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))) (-663 (-888 |#1|)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4057 (($) 6 T ELT)) (-1578 (((-887) $) 14 T ELT) (((-1207) $) 10 T ELT) (((-1189) $) 12 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 8 T ELT)))
-(((-520) (-13 (-1132) (-632 (-1207)) (-632 (-1189)) (-10 -8 (-15 -4057 ($))))) (T -520))
-((-4057 (*1 *1) (-5 *1 (-520))))
-(-13 (-1132) (-632 (-1207)) (-632 (-1189)) (-10 -8 (-15 -4057 ($))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1425 (((-663 (-897 |#2| |#1|)) $) 12 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-1624 (($ $) NIL T ELT)) (-1417 (($ |#1| |#2|) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2094 ((|#2| $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 16 T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) 15 T ELT) (($ $ $) 39 T ELT)) (-2567 (($ $ $) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 26 T ELT)))
+((-2472 (((-663 (-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-793) (-793)) 32 T ELT)) (-4384 (((-663 (-1201 |#1|)) |#1| (-793) (-793) (-793)) 43 T ELT)) (-1391 (((-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-663 |#3|) (-663 (-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-793)) 107 T ELT)))
+(((-512 |#1| |#2| |#3|) (-10 -7 (-15 -4384 ((-663 (-1201 |#1|)) |#1| (-793) (-793) (-793))) (-15 -2472 ((-663 (-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-793) (-793))) (-15 -1391 ((-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-663 |#3|) (-663 (-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-793)))) (-363) (-1273 |#1|) (-1273 |#2|)) (T -512))
+((-1391 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 (-2 (|:| -3822 (-711 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-711 *7))))) (-5 *5 (-793)) (-4 *8 (-1273 *7)) (-4 *7 (-1273 *6)) (-4 *6 (-363)) (-5 *2 (-2 (|:| -3822 (-711 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-711 *7)))) (-5 *1 (-512 *6 *7 *8)))) (-2472 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-793)) (-4 *5 (-363)) (-4 *6 (-1273 *5)) (-5 *2 (-663 (-2 (|:| -3822 (-711 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-711 *6))))) (-5 *1 (-512 *5 *6 *7)) (-5 *3 (-2 (|:| -3822 (-711 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-711 *6)))) (-4 *7 (-1273 *6)))) (-4384 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-793)) (-4 *3 (-363)) (-4 *5 (-1273 *3)) (-5 *2 (-663 (-1201 *3))) (-5 *1 (-512 *3 *5 *6)) (-4 *6 (-1273 *5)))))
+(-10 -7 (-15 -4384 ((-663 (-1201 |#1|)) |#1| (-793) (-793) (-793))) (-15 -2472 ((-663 (-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-793) (-793))) (-15 -1391 ((-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) (-663 |#3|) (-663 (-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) (-793))))
+((-1990 (((-2 (|:| -3822 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -3822 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -3822 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|)))) 70 T ELT)) (-2075 ((|#1| (-711 |#1|) |#1| (-793)) 24 T ELT)) (-3642 (((-793) (-793) (-793)) 34 T ELT)) (-1785 (((-711 |#1|) (-711 |#1|) (-711 |#1|)) 50 T ELT)) (-3355 (((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|) 58 T ELT) (((-711 |#1|) (-711 |#1|) (-711 |#1|)) 55 T ELT)) (-3633 ((|#1| (-711 |#1|) (-711 |#1|) |#1| (-560)) 28 T ELT)) (-1931 ((|#1| (-711 |#1|)) 18 T ELT)))
+(((-513 |#1| |#2| |#3|) (-10 -7 (-15 -1931 (|#1| (-711 |#1|))) (-15 -2075 (|#1| (-711 |#1|) |#1| (-793))) (-15 -3633 (|#1| (-711 |#1|) (-711 |#1|) |#1| (-560))) (-15 -3642 ((-793) (-793) (-793))) (-15 -3355 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -3355 ((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|)) (-15 -1785 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -1990 ((-2 (|:| -3822 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -3822 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -3822 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|)))))) (-13 (-319) (-10 -8 (-15 -3898 ((-419 $) $)))) (-1273 |#1|) (-424 |#1| |#2|)) (T -513))
+((-1990 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3822 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-4 *3 (-13 (-319) (-10 -8 (-15 -3898 ((-419 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))) (-1785 (*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -3898 ((-419 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))) (-3355 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -3898 ((-419 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))) (-3355 (*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -3898 ((-419 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))) (-3642 (*1 *2 *2 *2) (-12 (-5 *2 (-793)) (-4 *3 (-13 (-319) (-10 -8 (-15 -3898 ((-419 $) $))))) (-4 *4 (-1273 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))) (-3633 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-711 *2)) (-5 *4 (-560)) (-4 *2 (-13 (-319) (-10 -8 (-15 -3898 ((-419 $) $))))) (-4 *5 (-1273 *2)) (-5 *1 (-513 *2 *5 *6)) (-4 *6 (-424 *2 *5)))) (-2075 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-711 *2)) (-5 *4 (-793)) (-4 *2 (-13 (-319) (-10 -8 (-15 -3898 ((-419 $) $))))) (-4 *5 (-1273 *2)) (-5 *1 (-513 *2 *5 *6)) (-4 *6 (-424 *2 *5)))) (-1931 (*1 *2 *3) (-12 (-5 *3 (-711 *2)) (-4 *4 (-1273 *2)) (-4 *2 (-13 (-319) (-10 -8 (-15 -3898 ((-419 $) $))))) (-5 *1 (-513 *2 *4 *5)) (-4 *5 (-424 *2 *4)))))
+(-10 -7 (-15 -1931 (|#1| (-711 |#1|))) (-15 -2075 (|#1| (-711 |#1|) |#1| (-793))) (-15 -3633 (|#1| (-711 |#1|) (-711 |#1|) |#1| (-560))) (-15 -3642 ((-793) (-793) (-793))) (-15 -3355 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -3355 ((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|)) (-15 -1785 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -1990 ((-2 (|:| -3822 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -3822 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))) (-2 (|:| -3822 (-711 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-711 |#1|))))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2269 (($ $) NIL T ELT)) (-1423 (($ $ $) 40 T ELT)) (-2033 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-2152 (((-114) $) NIL (|has| (-114) (-871)) ELT) (((-114) (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-3152 (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| (-114) (-871))) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4509)) ELT)) (-1787 (($ $) NIL (|has| (-114) (-871)) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 (((-114) $ (-1264 (-560)) (-114)) NIL (|has| $ (-6 -4509)) ELT) (((-114) $ (-560) (-114)) 42 (|has| $ (-6 -4509)) ELT)) (-3923 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3525 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) NIL T ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT)) (-3033 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-114) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT)) (-1778 (((-114) (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT)) (-3338 (((-114) $ (-560) (-114)) NIL (|has| $ (-6 -4509)) ELT)) (-3274 (((-114) $ (-560)) NIL T ELT)) (-2359 (((-560) (-114) $ (-560)) NIL (|has| (-114) (-1132)) ELT) (((-560) (-114) $) NIL (|has| (-114) (-1132)) ELT) (((-560) (-1 (-114) (-114)) $) NIL T ELT)) (-3737 (((-663 (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-1415 (($ $ $) 38 T ELT)) (-1394 (($ $) NIL T ELT)) (-3342 (($ $ $) NIL T ELT)) (-4246 (($ (-793) (-114)) 27 T ELT)) (-1980 (($ $ $) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) 8 (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL T ELT)) (-4167 (($ $ $) NIL (|has| (-114) (-871)) ELT) (($ (-1 (-114) (-114) (-114)) $ $) NIL T ELT)) (-3243 (((-663 (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT)) (-4263 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL T ELT)) (-3324 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-114) (-114) (-114)) $ $) 35 T ELT) (($ (-1 (-114) (-114)) $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2507 (($ $ $ (-560)) NIL T ELT) (($ (-114) $ (-560)) NIL T ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4334 (((-114) $) NIL (|has| (-560) (-871)) ELT)) (-2708 (((-3 (-114) "failed") (-1 (-114) (-114)) $) NIL T ELT)) (-2740 (($ $ (-114)) NIL (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-114)) (-663 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT) (($ $ (-114) (-114)) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT) (($ $ (-305 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT) (($ $ (-663 (-305 (-114)))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT)) (-1383 (((-663 (-114)) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) 28 T ELT)) (-1507 (($ $ (-1264 (-560))) NIL T ELT) (((-114) $ (-560)) 22 T ELT) (((-114) $ (-560) (-114)) NIL T ELT)) (-2579 (($ $ (-1264 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-3384 (((-793) (-114) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-114) (-1132))) ELT) (((-793) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3993 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) 29 T ELT)) (-2400 (((-549) $) NIL (|has| (-114) (-633 (-549))) ELT)) (-3924 (($ (-663 (-114))) NIL T ELT)) (-1955 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-114) $) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-3913 (((-887) $) 26 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2149 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4508)) ELT)) (-1404 (($ $ $) 36 T ELT)) (-2311 (($ $ $) NIL T ELT)) (-3099 (($ $ $) 45 T ELT)) (-3111 (($ $) 43 T ELT)) (-3088 (($ $ $) 44 T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 30 T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 31 T ELT)) (-2300 (($ $ $) NIL T ELT)) (-2256 (((-793) $) 13 (|has| $ (-6 -4508)) ELT)))
+(((-514 |#1|) (-13 (-125) (-10 -8 (-15 -3111 ($ $)) (-15 -3099 ($ $ $)) (-15 -3088 ($ $ $)))) (-560)) (T -514))
+((-3111 (*1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-560)))) (-3099 (*1 *1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-560)))) (-3088 (*1 *1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-560)))))
+(-13 (-125) (-10 -8 (-15 -3111 ($ $)) (-15 -3099 ($ $ $)) (-15 -3088 ($ $ $))))
+((-3367 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1201 |#4|)) 35 T ELT)) (-1804 (((-1201 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1201 |#4|)) 22 T ELT)) (-2361 (((-3 (-711 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-711 (-1201 |#4|))) 46 T ELT)) (-2299 (((-1201 (-1201 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT)))
+(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1804 (|#2| (-1 |#1| |#4|) (-1201 |#4|))) (-15 -1804 ((-1201 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3367 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1201 |#4|))) (-15 -2361 ((-3 (-711 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-711 (-1201 |#4|)))) (-15 -2299 ((-1201 (-1201 |#4|)) (-1 |#4| |#1|) |#3|))) (-1080) (-1273 |#1|) (-1273 |#2|) (-1080)) (T -515))
+((-2299 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1080)) (-4 *7 (-1080)) (-4 *6 (-1273 *5)) (-5 *2 (-1201 (-1201 *7))) (-5 *1 (-515 *5 *6 *4 *7)) (-4 *4 (-1273 *6)))) (-2361 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-711 (-1201 *8))) (-4 *5 (-1080)) (-4 *8 (-1080)) (-4 *6 (-1273 *5)) (-5 *2 (-711 *6)) (-5 *1 (-515 *5 *6 *7 *8)) (-4 *7 (-1273 *6)))) (-3367 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1201 *7)) (-4 *5 (-1080)) (-4 *7 (-1080)) (-4 *2 (-1273 *5)) (-5 *1 (-515 *5 *2 *6 *7)) (-4 *6 (-1273 *2)))) (-1804 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1080)) (-4 *7 (-1080)) (-4 *4 (-1273 *5)) (-5 *2 (-1201 *7)) (-5 *1 (-515 *5 *4 *6 *7)) (-4 *6 (-1273 *4)))) (-1804 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1201 *7)) (-4 *5 (-1080)) (-4 *7 (-1080)) (-4 *2 (-1273 *5)) (-5 *1 (-515 *5 *2 *6 *7)) (-4 *6 (-1273 *2)))))
+(-10 -7 (-15 -1804 (|#2| (-1 |#1| |#4|) (-1201 |#4|))) (-15 -1804 ((-1201 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -3367 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1201 |#4|))) (-15 -2361 ((-3 (-711 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-711 (-1201 |#4|)))) (-15 -2299 ((-1201 (-1201 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3150 (((-1303) $) 25 T ELT)) (-1507 (((-1189) $ (-1207)) 30 T ELT)) (-3884 (((-1303) $) 19 T ELT)) (-3913 (((-887) $) 27 T ELT) (($ (-1189)) 26 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 11 T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 9 T ELT)))
+(((-516) (-13 (-871) (-10 -8 (-15 -1507 ((-1189) $ (-1207))) (-15 -3884 ((-1303) $)) (-15 -3150 ((-1303) $)) (-15 -3913 ($ (-1189)))))) (T -516))
+((-1507 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1189)) (-5 *1 (-516)))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-516)))) (-3150 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-516)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-516)))))
+(-13 (-871) (-10 -8 (-15 -1507 ((-1189) $ (-1207))) (-15 -3884 ((-1303) $)) (-15 -3150 ((-1303) $)) (-15 -3913 ($ (-1189)))))
+((-2685 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-3114 ((|#1| |#4|) 10 T ELT)) (-3486 ((|#3| |#4|) 17 T ELT)))
+(((-517 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3114 (|#1| |#4|)) (-15 -3486 (|#3| |#4|)) (-15 -2685 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-571) (-1022 |#1|) (-385 |#1|) (-385 |#2|)) (T -517))
+((-2685 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-1022 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-517 *4 *5 *6 *3)) (-4 *6 (-385 *4)) (-4 *3 (-385 *5)))) (-3486 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-1022 *4)) (-4 *2 (-385 *4)) (-5 *1 (-517 *4 *5 *2 *3)) (-4 *3 (-385 *5)))) (-3114 (*1 *2 *3) (-12 (-4 *4 (-1022 *2)) (-4 *2 (-571)) (-5 *1 (-517 *2 *4 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-385 *4)))))
+(-10 -7 (-15 -3114 (|#1| |#4|)) (-15 -3486 (|#3| |#4|)) (-15 -2685 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-1817 (((-114) $ (-663 |#3|)) 126 T ELT) (((-114) $) 127 T ELT)) (-2505 (((-114) $) 178 T ELT)) (-1627 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-663 |#3|)) 121 T ELT)) (-3648 (((-1196 (-663 (-975 |#1|)) (-663 (-305 (-975 |#1|)))) (-663 |#4|)) 171 (|has| |#3| (-633 (-1207))) ELT)) (-2584 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-1918 (((-114) $) 177 T ELT)) (-1880 (($ $) 131 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3334 (($ $ $) 99 T ELT) (($ (-663 $)) 101 T ELT)) (-2385 (((-114) |#4| $) 129 T ELT)) (-1614 (((-114) $ $) 82 T ELT)) (-4476 (($ (-663 |#4|)) 106 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2774 (($ (-663 |#4|)) 175 T ELT)) (-2330 (((-114) $) 176 T ELT)) (-3409 (($ $) 85 T ELT)) (-2644 (((-663 |#4|) $) 73 T ELT)) (-3179 (((-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $)) $ (-663 |#3|)) NIL T ELT)) (-2982 (((-114) |#4| $) 89 T ELT)) (-3015 (((-560) $ (-663 |#3|)) 133 T ELT) (((-560) $) 134 T ELT)) (-3913 (((-887) $) 174 T ELT) (($ (-663 |#4|)) 102 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2504 (($ (-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-2340 (((-114) $ $) 84 T ELT)) (-2429 (($ $ $) 109 T ELT)) (** (($ $ (-793)) 115 T ELT)) (* (($ $ $) 113 T ELT)))
+(((-518 |#1| |#2| |#3| |#4|) (-13 (-1132) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-793))) (-15 -2429 ($ $ $)) (-15 -1918 ((-114) $)) (-15 -2505 ((-114) $)) (-15 -2982 ((-114) |#4| $)) (-15 -1614 ((-114) $ $)) (-15 -2385 ((-114) |#4| $)) (-15 -1817 ((-114) $ (-663 |#3|))) (-15 -1817 ((-114) $)) (-15 -3334 ($ $ $)) (-15 -3334 ($ (-663 $))) (-15 -2584 ($ $ $)) (-15 -2584 ($ $ |#4|)) (-15 -3409 ($ $)) (-15 -3179 ((-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $)) $ (-663 |#3|))) (-15 -2504 ($ (-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $)))) (-15 -3015 ((-560) $ (-663 |#3|))) (-15 -3015 ((-560) $)) (-15 -1880 ($ $)) (-15 -4476 ($ (-663 |#4|))) (-15 -2774 ($ (-663 |#4|))) (-15 -2330 ((-114) $)) (-15 -2644 ((-663 |#4|) $)) (-15 -3913 ($ (-663 |#4|))) (-15 -1627 ($ $ |#4|)) (-15 -1627 ($ $ |#4| (-663 |#3|))) (IF (|has| |#3| (-633 (-1207))) (-15 -3648 ((-1196 (-663 (-975 |#1|)) (-663 (-305 (-975 |#1|)))) (-663 |#4|))) |%noBranch|))) (-376) (-815) (-871) (-979 |#1| |#2| |#3|)) (T -518))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))) (-2429 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4)))) (-1918 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))) (-2505 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))) (-2982 (*1 *2 *3 *1) (-12 (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-518 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-1614 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))) (-2385 (*1 *2 *3 *1) (-12 (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-518 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))) (-1817 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815)) (-5 *2 (-114)) (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-979 *4 *5 *6)))) (-1817 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))) (-3334 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4)))) (-3334 (*1 *1 *2) (-12 (-5 *2 (-663 (-518 *3 *4 *5 *6))) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))) (-2584 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4)))) (-2584 (*1 *1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-979 *3 *4 *5)))) (-3409 (*1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4)))) (-3179 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815)) (-5 *2 (-2 (|:| |mval| (-711 *4)) (|:| |invmval| (-711 *4)) (|:| |genIdeal| (-518 *4 *5 *6 *7)))) (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-979 *4 *5 *6)))) (-2504 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-711 *3)) (|:| |invmval| (-711 *3)) (|:| |genIdeal| (-518 *3 *4 *5 *6)))) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))) (-3015 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815)) (-5 *2 (-560)) (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-979 *4 *5 *6)))) (-3015 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-560)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))) (-1880 (*1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871)) (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4)))) (-4476 (*1 *1 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)))) (-2774 (*1 *1 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)))) (-2330 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))) (-2644 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *6)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)))) (-1627 (*1 *1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-979 *3 *4 *5)))) (-1627 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-663 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815)) (-5 *1 (-518 *4 *5 *6 *2)) (-4 *2 (-979 *4 *5 *6)))) (-3648 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *6 (-633 (-1207))) (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1196 (-663 (-975 *4)) (-663 (-305 (-975 *4))))) (-5 *1 (-518 *4 *5 *6 *7)))))
+(-13 (-1132) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-793))) (-15 -2429 ($ $ $)) (-15 -1918 ((-114) $)) (-15 -2505 ((-114) $)) (-15 -2982 ((-114) |#4| $)) (-15 -1614 ((-114) $ $)) (-15 -2385 ((-114) |#4| $)) (-15 -1817 ((-114) $ (-663 |#3|))) (-15 -1817 ((-114) $)) (-15 -3334 ($ $ $)) (-15 -3334 ($ (-663 $))) (-15 -2584 ($ $ $)) (-15 -2584 ($ $ |#4|)) (-15 -3409 ($ $)) (-15 -3179 ((-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $)) $ (-663 |#3|))) (-15 -2504 ($ (-2 (|:| |mval| (-711 |#1|)) (|:| |invmval| (-711 |#1|)) (|:| |genIdeal| $)))) (-15 -3015 ((-560) $ (-663 |#3|))) (-15 -3015 ((-560) $)) (-15 -1880 ($ $)) (-15 -4476 ($ (-663 |#4|))) (-15 -2774 ($ (-663 |#4|))) (-15 -2330 ((-114) $)) (-15 -2644 ((-663 |#4|) $)) (-15 -3913 ($ (-663 |#4|))) (-15 -1627 ($ $ |#4|)) (-15 -1627 ($ $ |#4| (-663 |#3|))) (IF (|has| |#3| (-633 (-1207))) (-15 -3648 ((-1196 (-663 (-975 |#1|)) (-663 (-305 (-975 |#1|)))) (-663 |#4|))) |%noBranch|)))
+((-3208 (((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560))))) 176 T ELT)) (-3178 (((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560))))) 177 T ELT)) (-4321 (((-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560))))) 129 T ELT)) (-3141 (((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560))))) NIL T ELT)) (-4328 (((-663 (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560))))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560))))) 179 T ELT)) (-2310 (((-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))) (-663 (-888 |#1|))) 195 T ELT)))
+(((-519 |#1| |#2|) (-10 -7 (-15 -3208 ((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -3178 ((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -3141 ((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -4321 ((-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -4328 ((-663 (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560))))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -2310 ((-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))) (-663 (-888 |#1|))))) (-663 (-1207)) (-793)) (T -519))
+((-2310 (*1 *2 *2 *3) (-12 (-5 *2 (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4) (-255 *4 (-421 (-560))))) (-5 *3 (-663 (-888 *4))) (-14 *4 (-663 (-1207))) (-14 *5 (-793)) (-5 *1 (-519 *4 *5)))) (-4328 (*1 *2 *3) (-12 (-14 *4 (-663 (-1207))) (-14 *5 (-793)) (-5 *2 (-663 (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4) (-255 *4 (-421 (-560)))))) (-5 *1 (-519 *4 *5)) (-5 *3 (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4) (-255 *4 (-421 (-560))))))) (-4321 (*1 *2 *2) (-12 (-5 *2 (-518 (-421 (-560)) (-246 *4 (-793)) (-888 *3) (-255 *3 (-421 (-560))))) (-14 *3 (-663 (-1207))) (-14 *4 (-793)) (-5 *1 (-519 *3 *4)))) (-3141 (*1 *2 *3) (-12 (-5 *3 (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4) (-255 *4 (-421 (-560))))) (-14 *4 (-663 (-1207))) (-14 *5 (-793)) (-5 *2 (-114)) (-5 *1 (-519 *4 *5)))) (-3178 (*1 *2 *3) (-12 (-5 *3 (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4) (-255 *4 (-421 (-560))))) (-14 *4 (-663 (-1207))) (-14 *5 (-793)) (-5 *2 (-114)) (-5 *1 (-519 *4 *5)))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4) (-255 *4 (-421 (-560))))) (-14 *4 (-663 (-1207))) (-14 *5 (-793)) (-5 *2 (-114)) (-5 *1 (-519 *4 *5)))))
+(-10 -7 (-15 -3208 ((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -3178 ((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -3141 ((-114) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -4321 ((-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -4328 ((-663 (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560))))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))))) (-15 -2310 ((-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))) (-518 (-421 (-560)) (-246 |#2| (-793)) (-888 |#1|) (-255 |#1| (-421 (-560)))) (-663 (-888 |#1|)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2332 (($) 6 T ELT)) (-3913 (((-887) $) 14 T ELT) (((-1207) $) 10 T ELT) (((-1189) $) 12 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 8 T ELT)))
+(((-520) (-13 (-1132) (-632 (-1207)) (-632 (-1189)) (-10 -8 (-15 -2332 ($))))) (T -520))
+((-2332 (*1 *1) (-5 *1 (-520))))
+(-13 (-1132) (-632 (-1207)) (-632 (-1189)) (-10 -8 (-15 -2332 ($))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-1465 (((-663 (-897 |#2| |#1|)) $) 12 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3062 (($ $) NIL T ELT)) (-4139 (($ |#1| |#2|) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1447 ((|#2| $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 16 T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) 15 T ELT) (($ $ $) 39 T ELT)) (-2429 (($ $ $) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 26 T ELT)))
(((-521 |#1| |#2|) (-13 (-21) (-523 |#1| |#2|)) (-21) (-874)) (T -521))
NIL
(-13 (-21) (-523 |#1| |#2|))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 17 T ELT)) (-1425 (((-663 (-897 |#2| |#1|)) $) 14 T ELT)) (-2238 (($) NIL T CONST)) (-1624 (($ $) 44 T ELT)) (-1417 (($ |#1| |#2|) 41 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 43 T ELT)) (-2094 ((|#2| $) NIL T ELT)) (-1597 ((|#1| $) 45 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 13 T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2567 (($ $ $) 31 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) 40 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 17 T ELT)) (-1465 (((-663 (-897 |#2| |#1|)) $) 14 T ELT)) (-3525 (($) NIL T CONST)) (-3062 (($ $) 44 T ELT)) (-4139 (($ |#1| |#2|) 41 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 43 T ELT)) (-1447 ((|#2| $) NIL T ELT)) (-3037 ((|#1| $) 45 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 13 T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2429 (($ $ $) 31 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) 40 T ELT)))
(((-522 |#1| |#2|) (-13 (-23) (-523 |#1| |#2|)) (-23) (-874)) (T -522))
NIL
(-13 (-23) (-523 |#1| |#2|))
-((-1538 (((-114) $ $) 7 T ELT)) (-1425 (((-663 (-897 |#2| |#1|)) $) 14 T ELT)) (-1624 (($ $) 15 T ELT)) (-1417 (($ |#1| |#2|) 18 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 19 T ELT)) (-2094 ((|#2| $) 16 T ELT)) (-1597 ((|#1| $) 17 T ELT)) (-1905 (((-1189) $) 13 (-12 (|has| |#2| (-1132)) (|has| |#1| (-1132))) ELT)) (-3855 (((-1151) $) 12 (-12 (|has| |#2| (-1132)) (|has| |#1| (-1132))) ELT)) (-1578 (((-887) $) 11 (-12 (|has| |#2| (-1132)) (|has| |#1| (-1132))) ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2473 (((-114) $ $) 8 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-1465 (((-663 (-897 |#2| |#1|)) $) 14 T ELT)) (-3062 (($ $) 15 T ELT)) (-4139 (($ |#1| |#2|) 18 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 19 T ELT)) (-1447 ((|#2| $) 16 T ELT)) (-3037 ((|#1| $) 17 T ELT)) (-3358 (((-1189) $) 13 (-12 (|has| |#2| (-1132)) (|has| |#1| (-1132))) ELT)) (-3376 (((-1151) $) 12 (-12 (|has| |#2| (-1132)) (|has| |#1| (-1132))) ELT)) (-3913 (((-887) $) 11 (-12 (|has| |#2| (-1132)) (|has| |#1| (-1132))) ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2340 (((-114) $ $) 8 T ELT)))
(((-523 |#1| |#2|) (-142) (-102) (-874)) (T -523))
-((-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-523 *3 *4)) (-4 *3 (-102)) (-4 *4 (-874)))) (-1417 (*1 *1 *2 *3) (-12 (-4 *1 (-523 *2 *3)) (-4 *2 (-102)) (-4 *3 (-874)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-523 *2 *3)) (-4 *3 (-874)) (-4 *2 (-102)))) (-2094 (*1 *2 *1) (-12 (-4 *1 (-523 *3 *2)) (-4 *3 (-102)) (-4 *2 (-874)))) (-1624 (*1 *1 *1) (-12 (-4 *1 (-523 *2 *3)) (-4 *2 (-102)) (-4 *3 (-874)))) (-1425 (*1 *2 *1) (-12 (-4 *1 (-523 *3 *4)) (-4 *3 (-102)) (-4 *4 (-874)) (-5 *2 (-663 (-897 *4 *3))))))
-(-13 (-102) (-10 -8 (IF (|has| |t#1| (-1132)) (IF (|has| |t#2| (-1132)) (-6 (-1132)) |%noBranch|) |%noBranch|) (-15 -3957 ($ (-1 |t#1| |t#1|) $)) (-15 -1417 ($ |t#1| |t#2|)) (-15 -1597 (|t#1| $)) (-15 -2094 (|t#2| $)) (-15 -1624 ($ $)) (-15 -1425 ((-663 (-897 |t#2| |t#1|)) $))))
+((-2260 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-523 *3 *4)) (-4 *3 (-102)) (-4 *4 (-874)))) (-4139 (*1 *1 *2 *3) (-12 (-4 *1 (-523 *2 *3)) (-4 *2 (-102)) (-4 *3 (-874)))) (-3037 (*1 *2 *1) (-12 (-4 *1 (-523 *2 *3)) (-4 *3 (-874)) (-4 *2 (-102)))) (-1447 (*1 *2 *1) (-12 (-4 *1 (-523 *3 *2)) (-4 *3 (-102)) (-4 *2 (-874)))) (-3062 (*1 *1 *1) (-12 (-4 *1 (-523 *2 *3)) (-4 *2 (-102)) (-4 *3 (-874)))) (-1465 (*1 *2 *1) (-12 (-4 *1 (-523 *3 *4)) (-4 *3 (-102)) (-4 *4 (-874)) (-5 *2 (-663 (-897 *4 *3))))))
+(-13 (-102) (-10 -8 (IF (|has| |t#1| (-1132)) (IF (|has| |t#2| (-1132)) (-6 (-1132)) |%noBranch|) |%noBranch|) (-15 -2260 ($ (-1 |t#1| |t#1|) $)) (-15 -4139 ($ |t#1| |t#2|)) (-15 -3037 (|t#1| $)) (-15 -1447 (|t#2| $)) (-15 -3062 ($ $)) (-15 -1465 ((-663 (-897 |t#2| |t#1|)) $))))
(((-102) . T) ((-632 (-887)) -12 (|has| |#1| (-1132)) (|has| |#2| (-1132))) ((-1132) -12 (|has| |#1| (-1132)) (|has| |#2| (-1132))) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-1425 (((-663 (-897 |#2| |#1|)) $) 39 T ELT)) (-1624 (($ $) 34 T ELT)) (-1417 (($ |#1| |#2|) 30 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 32 T ELT)) (-2094 ((|#2| $) 38 T ELT)) (-1597 ((|#1| $) 37 T ELT)) (-1905 (((-1189) $) NIL (-12 (|has| |#1| (-1132)) (|has| |#2| (-1132))) ELT)) (-3855 (((-1151) $) NIL (-12 (|has| |#1| (-1132)) (|has| |#2| (-1132))) ELT)) (-1578 (((-887) $) 28 (-12 (|has| |#1| (-1132)) (|has| |#2| (-1132))) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 21 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-1465 (((-663 (-897 |#2| |#1|)) $) 39 T ELT)) (-3062 (($ $) 34 T ELT)) (-4139 (($ |#1| |#2|) 30 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 32 T ELT)) (-1447 ((|#2| $) 38 T ELT)) (-3037 ((|#1| $) 37 T ELT)) (-3358 (((-1189) $) NIL (-12 (|has| |#1| (-1132)) (|has| |#2| (-1132))) ELT)) (-3376 (((-1151) $) NIL (-12 (|has| |#1| (-1132)) (|has| |#2| (-1132))) ELT)) (-3913 (((-887) $) 28 (-12 (|has| |#1| (-1132)) (|has| |#2| (-1132))) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 21 T ELT)))
(((-524 |#1| |#2|) (-523 |#1| |#2|) (-102) (-874)) (T -524))
NIL
(-523 |#1| |#2|)
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1425 (((-663 (-897 |#2| |#1|)) $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-1624 (($ $) NIL T ELT)) (-1417 (($ |#1| |#2|) NIL T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2094 ((|#2| $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 22 T ELT)) (-2567 (($ $ $) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-1465 (((-663 (-897 |#2| |#1|)) $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3062 (($ $) NIL T ELT)) (-4139 (($ |#1| |#2|) NIL T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1447 ((|#2| $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 22 T ELT)) (-2429 (($ $ $) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT)))
(((-525 |#1| |#2|) (-13 (-814) (-523 |#1| |#2|)) (-814) (-874)) (T -525))
NIL
(-13 (-814) (-523 |#1| |#2|))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1425 (((-663 (-897 |#2| |#1|)) $) NIL T ELT)) (-3168 (($ $ $) 23 T ELT)) (-3068 (((-3 $ "failed") $ $) 19 T ELT)) (-2238 (($) NIL T CONST)) (-1624 (($ $) NIL T ELT)) (-1417 (($ |#1| |#2|) NIL T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2094 ((|#2| $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-1465 (((-663 (-897 |#2| |#1|)) $) NIL T ELT)) (-1651 (($ $ $) 23 T ELT)) (-3094 (((-3 $ "failed") $ $) 19 T ELT)) (-3525 (($) NIL T CONST)) (-3062 (($ $) NIL T ELT)) (-4139 (($ |#1| |#2|) NIL T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1447 ((|#2| $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT)))
(((-526 |#1| |#2|) (-13 (-815) (-523 |#1| |#2|)) (-815) (-871)) (T -526))
NIL
(-13 (-815) (-523 |#1| |#2|))
-((-4187 (($ $ (-663 |#2|) (-663 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT)))
-(((-527 |#1| |#2| |#3|) (-10 -8 (-15 -4187 (|#1| |#1| |#2| |#3|)) (-15 -4187 (|#1| |#1| (-663 |#2|) (-663 |#3|)))) (-528 |#2| |#3|) (-1132) (-1247)) (T -527))
+((-2371 (($ $ (-663 |#2|) (-663 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT)))
+(((-527 |#1| |#2| |#3|) (-10 -8 (-15 -2371 (|#1| |#1| |#2| |#3|)) (-15 -2371 (|#1| |#1| (-663 |#2|) (-663 |#3|)))) (-528 |#2| |#3|) (-1132) (-1247)) (T -527))
NIL
-(-10 -8 (-15 -4187 (|#1| |#1| |#2| |#3|)) (-15 -4187 (|#1| |#1| (-663 |#2|) (-663 |#3|))))
-((-4187 (($ $ (-663 |#1|) (-663 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT)))
+(-10 -8 (-15 -2371 (|#1| |#1| |#2| |#3|)) (-15 -2371 (|#1| |#1| (-663 |#2|) (-663 |#3|))))
+((-2371 (($ $ (-663 |#1|) (-663 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT)))
(((-528 |#1| |#2|) (-142) (-1132) (-1247)) (T -528))
-((-4187 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 *5)) (-4 *1 (-528 *4 *5)) (-4 *4 (-1132)) (-4 *5 (-1247)))) (-4187 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-528 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1247)))))
-(-13 (-10 -8 (-15 -4187 ($ $ |t#1| |t#2|)) (-15 -4187 ($ $ (-663 |t#1|) (-663 |t#2|)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 17 T ELT)) (-1425 (((-663 (-2 (|:| |gen| |#1|) (|:| -3251 |#2|))) $) 19 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-3241 (((-793) $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT)) (-2461 ((|#1| $ (-560)) 24 T ELT)) (-3122 ((|#2| $ (-560)) 22 T ELT)) (-1942 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-4180 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2386 (($ $ $) 55 (|has| |#2| (-814)) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-2305 ((|#2| |#1| $) 51 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 11 T CONST)) (-2473 (((-114) $ $) 30 T ELT)) (-2567 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT)))
+((-2371 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 *5)) (-4 *1 (-528 *4 *5)) (-4 *4 (-1132)) (-4 *5 (-1247)))) (-2371 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-528 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1247)))))
+(-13 (-10 -8 (-15 -2371 ($ $ |t#1| |t#2|)) (-15 -2371 ($ $ (-663 |t#1|) (-663 |t#2|)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 17 T ELT)) (-1465 (((-663 (-2 (|:| |gen| |#1|) (|:| -2515 |#2|))) $) 19 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2552 (((-793) $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) NIL T ELT)) (-3649 ((|#1| $) NIL T ELT)) (-1997 ((|#1| $ (-560)) 24 T ELT)) (-2413 ((|#2| $ (-560)) 22 T ELT)) (-3703 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-4275 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2485 (($ $ $) 55 (|has| |#2| (-814)) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-2920 ((|#2| |#1| $) 51 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 11 T CONST)) (-2340 (((-114) $ $) 30 T ELT)) (-2429 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT)))
(((-529 |#1| |#2| |#3|) (-335 |#1| |#2|) (-1132) (-133) |#2|) (T -529))
NIL
(-335 |#1| |#2|)
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3839 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4040 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-1703 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| |#1| (-871))) ELT)) (-2286 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-4063 (((-114) (-114)) 32 T ELT)) (-1773 ((|#1| $ (-560) |#1|) 42 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3500 (($ (-1 (-114) |#1|) $) 77 T ELT)) (-1982 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2238 (($) NIL T CONST)) (-4391 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) NIL T ELT)) (-2944 (($ $) 81 (|has| |#1| (-1132)) ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3390 (($ |#1| $) NIL (|has| |#1| (-1132)) ELT) (($ (-1 (-114) |#1|) $) 64 T ELT)) (-2375 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3779 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-560)) NIL T ELT)) (-1722 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1132)) ELT)) (-2583 (($ $ (-560)) 19 T ELT)) (-3286 (((-793) $) 13 T ELT)) (-2181 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4095 (($ (-793) |#1|) 31 T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) 29 (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-1708 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 55 T ELT)) (-3223 (($ (-1 (-114) |#1| |#1|) $ $) 56 T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2937 (((-560) $) 28 (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3629 (($ $ $ (-560)) 73 T ELT) (($ |#1| $ (-560)) 57 T ELT)) (-3996 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) NIL T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2619 (($ (-663 |#1|)) 43 T ELT)) (-3637 ((|#1| $) NIL (|has| (-560) (-871)) ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-3037 (($ $ |#1|) 24 (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 60 T ELT)) (-2914 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) 21 T ELT)) (-3924 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) 53 T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-2249 (($ $ (-1264 (-560))) 71 T ELT) (($ $ (-560)) 65 T ELT)) (-4413 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3640 (($ $ $ (-560)) 61 (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) 51 T ELT)) (-1407 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) NIL T ELT)) (-4354 (($ $ $) 62 T ELT) (($ $ |#1|) 59 T ELT)) (-3415 (($ $ |#1|) NIL T ELT) (($ |#1| $) 58 T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1578 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2536 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2521 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-1553 (((-793) $) 22 (|has| $ (-6 -4508)) ELT)))
-(((-530 |#1| |#2|) (-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -2619 ($ (-663 |#1|))) (-15 -3286 ((-793) $)) (-15 -2583 ($ $ (-560))) (-15 -4063 ((-114) (-114))))) (-1247) (-560)) (T -530))
-((-2619 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-530 *3 *4)) (-14 *4 (-560)))) (-3286 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1247)) (-14 *4 (-560)))) (-2583 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1247)) (-14 *4 *2))) (-4063 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1247)) (-14 *4 (-560)))))
-(-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -2619 ($ (-663 |#1|))) (-15 -3286 ((-793) $)) (-15 -2583 ($ $ (-560))) (-15 -4063 ((-114) (-114)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3927 (((-1166) $) 11 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4037 (((-1166) $) 13 T ELT)) (-3674 (((-1166) $) 9 T ELT)) (-1578 (((-887) $) 19 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-531) (-13 (-1114) (-10 -8 (-15 -3674 ((-1166) $)) (-15 -3927 ((-1166) $)) (-15 -4037 ((-1166) $))))) (T -531))
-((-3674 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-531)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-531)))) (-4037 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-531)))))
-(-13 (-1114) (-10 -8 (-15 -3674 ((-1166) $)) (-15 -3927 ((-1166) $)) (-15 -4037 ((-1166) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-1947 (((-114) $) NIL T ELT)) (-1796 (((-793)) NIL T ELT)) (-3349 (((-595 |#1|) $) NIL T ELT) (($ $ (-948)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2105 (((-1219 (-948) (-793)) (-560)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-3241 (((-793)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-595 |#1|) "failed") $) NIL T ELT)) (-3330 (((-595 |#1|) $) NIL T ELT)) (-4143 (($ (-1297 (-595 |#1|))) NIL T ELT)) (-4217 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1478 (($ $ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2310 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4336 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3976 (((-114) $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1696 (($ $ (-793)) NIL (-2304 (|has| (-595 |#1|) (-147)) (|has| (-595 |#1|) (-381))) ELT) (($ $) NIL (-2304 (|has| (-595 |#1|) (-147)) (|has| (-595 |#1|) (-381))) ELT)) (-4330 (((-114) $) NIL T ELT)) (-3913 (((-948) $) NIL (|has| (-595 |#1|) (-381)) ELT) (((-854 (-948)) $) NIL (-2304 (|has| (-595 |#1|) (-147)) (|has| (-595 |#1|) (-381))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-4417 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2863 (((-114) $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2032 (((-595 |#1|) $) NIL T ELT) (($ $ (-948)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1787 (((-1201 (-595 |#1|)) $) NIL T ELT) (((-1201 $) $ (-948)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-4419 (((-948) $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1543 (((-1201 (-595 |#1|)) $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-4449 (((-1201 (-595 |#1|)) $) NIL (|has| (-595 |#1|) (-381)) ELT) (((-3 (-1201 (-595 |#1|)) "failed") $ $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3384 (($ $ (-1201 (-595 |#1|))) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-3161 (($) NIL (|has| (-595 |#1|) (-381)) CONST)) (-3128 (($ (-948)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3583 (((-114) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2748 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3666 (((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))) NIL (|has| (-595 |#1|) (-381)) ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-2969 (((-854 (-948))) NIL T ELT) (((-948)) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2364 (((-793) $) NIL (|has| (-595 |#1|) (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2304 (|has| (-595 |#1|) (-147)) (|has| (-595 |#1|) (-381))) ELT)) (-3669 (((-136)) NIL T ELT)) (-2894 (($ $ (-793)) NIL (|has| (-595 |#1|) (-381)) ELT) (($ $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3630 (((-854 (-948)) $) NIL T ELT) (((-948) $) NIL T ELT)) (-4394 (((-1201 (-595 |#1|))) NIL T ELT)) (-2243 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3988 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2178 (((-1297 (-595 |#1|)) $) NIL T ELT) (((-711 (-595 |#1|)) (-1297 $)) NIL T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-595 |#1|)) NIL T ELT)) (-1964 (($ $) NIL (|has| (-595 |#1|) (-381)) ELT) (((-3 $ "failed") $) NIL (-2304 (|has| (-595 |#1|) (-147)) (|has| (-595 |#1|) (-381))) ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-1954 (((-1297 $)) NIL T ELT) (((-1297 $) (-948)) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-3602 (((-114) $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3054 (($ $) NIL (|has| (-595 |#1|) (-381)) ELT) (($ $ (-793)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3305 (($ $ (-793)) NIL (|has| (-595 |#1|) (-381)) ELT) (($ $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ $) NIL T ELT) (($ $ (-595 |#1|)) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-595 |#1|)) NIL T ELT) (($ (-595 |#1|) $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2033 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-2152 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-3152 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| |#1| (-871))) ELT)) (-1787 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-2389 (((-114) (-114)) 32 T ELT)) (-4083 ((|#1| $ (-560) |#1|) 42 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-1864 (($ (-1 (-114) |#1|) $) 77 T ELT)) (-3923 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3525 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) NIL T ELT)) (-4329 (($ $) 81 (|has| |#1| (-1132)) ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2091 (($ |#1| $) NIL (|has| |#1| (-1132)) ELT) (($ (-1 (-114) |#1|) $) 64 T ELT)) (-3033 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3338 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-560)) NIL T ELT)) (-2359 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1132)) ELT)) (-3791 (($ $ (-560)) 19 T ELT)) (-3524 (((-793) $) 13 T ELT)) (-3737 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4246 (($ (-793) |#1|) 31 T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) 29 (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3204 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 55 T ELT)) (-4167 (($ (-1 (-114) |#1| |#1|) $ $) 56 T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4263 (((-560) $) 28 (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3888 (($ $ $ (-560)) 73 T ELT) (($ |#1| $ (-560)) 57 T ELT)) (-2507 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) NIL T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2836 (($ (-663 |#1|)) 43 T ELT)) (-4334 ((|#1| $) NIL (|has| (-560) (-871)) ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2740 (($ $ |#1|) 24 (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 60 T ELT)) (-4019 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) 21 T ELT)) (-1507 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) 53 T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-3639 (($ $ (-1264 (-560))) 71 T ELT) (($ $ (-560)) 65 T ELT)) (-2579 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3993 (($ $ $ (-560)) 61 (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) 51 T ELT)) (-2400 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) NIL T ELT)) (-3305 (($ $ $) 62 T ELT) (($ $ |#1|) 59 T ELT)) (-1955 (($ $ |#1|) NIL T ELT) (($ |#1| $) 58 T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3913 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2396 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2386 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2256 (((-793) $) 22 (|has| $ (-6 -4508)) ELT)))
+(((-530 |#1| |#2|) (-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -2836 ($ (-663 |#1|))) (-15 -3524 ((-793) $)) (-15 -3791 ($ $ (-560))) (-15 -2389 ((-114) (-114))))) (-1247) (-560)) (T -530))
+((-2836 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-530 *3 *4)) (-14 *4 (-560)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1247)) (-14 *4 (-560)))) (-3791 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1247)) (-14 *4 *2))) (-2389 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1247)) (-14 *4 (-560)))))
+(-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -2836 ($ (-663 |#1|))) (-15 -3524 ((-793) $)) (-15 -3791 ($ $ (-560))) (-15 -2389 ((-114) (-114)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3493 (((-1166) $) 11 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3363 (((-1166) $) 13 T ELT)) (-2367 (((-1166) $) 9 T ELT)) (-3913 (((-887) $) 19 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-531) (-13 (-1114) (-10 -8 (-15 -2367 ((-1166) $)) (-15 -3493 ((-1166) $)) (-15 -3363 ((-1166) $))))) (T -531))
+((-2367 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-531)))) (-3493 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-531)))) (-3363 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-531)))))
+(-13 (-1114) (-10 -8 (-15 -2367 ((-1166) $)) (-15 -3493 ((-1166) $)) (-15 -3363 ((-1166) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3752 (((-114) $) NIL T ELT)) (-1542 (((-793)) NIL T ELT)) (-4113 (((-595 |#1|) $) NIL T ELT) (($ $ (-948)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1548 (((-1219 (-948) (-793)) (-560)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-2552 (((-793)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-595 |#1|) "failed") $) NIL T ELT)) (-3649 (((-595 |#1|) $) NIL T ELT)) (-1953 (($ (-1297 (-595 |#1|))) NIL T ELT)) (-1433 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2186 (($ $ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1812 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3191 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-4017 (((-114) $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3079 (($ $ (-793)) NIL (-2196 (|has| (-595 |#1|) (-147)) (|has| (-595 |#1|) (-381))) ELT) (($ $) NIL (-2196 (|has| (-595 |#1|) (-147)) (|has| (-595 |#1|) (-381))) ELT)) (-3141 (((-114) $) NIL T ELT)) (-1460 (((-948) $) NIL (|has| (-595 |#1|) (-381)) ELT) (((-854 (-948)) $) NIL (-2196 (|has| (-595 |#1|) (-147)) (|has| (-595 |#1|) (-381))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-2601 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3572 (((-114) $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2084 (((-595 |#1|) $) NIL T ELT) (($ $ (-948)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1471 (((-1201 (-595 |#1|)) $) NIL T ELT) (((-1201 $) $ (-948)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2622 (((-948) $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1567 (((-1201 (-595 |#1|)) $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1644 (((-1201 (-595 |#1|)) $) NIL (|has| (-595 |#1|) (-381)) ELT) (((-3 (-1201 (-595 |#1|)) "failed") $ $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3264 (($ $ (-1201 (-595 |#1|))) NIL (|has| (-595 |#1|) (-381)) ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3239 (($) NIL (|has| (-595 |#1|) (-381)) CONST)) (-1591 (($ (-948)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3410 (((-114) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3583 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2976 (((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))) NIL (|has| (-595 |#1|) (-381)) ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-3313 (((-854 (-948))) NIL T ELT) (((-948)) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-2258 (((-793) $) NIL (|has| (-595 |#1|) (-381)) ELT) (((-3 (-793) "failed") $ $) NIL (-2196 (|has| (-595 |#1|) (-147)) (|has| (-595 |#1|) (-381))) ELT)) (-3015 (((-136)) NIL T ELT)) (-3161 (($ $ (-793)) NIL (|has| (-595 |#1|) (-381)) ELT) (($ $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3900 (((-854 (-948)) $) NIL T ELT) (((-948) $) NIL T ELT)) (-2407 (((-1201 (-595 |#1|))) NIL T ELT)) (-3569 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2855 (($) NIL (|has| (-595 |#1|) (-381)) ELT)) (-4226 (((-1297 (-595 |#1|)) $) NIL T ELT) (((-711 (-595 |#1|)) (-1297 $)) NIL T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-595 |#1|)) NIL T ELT)) (-3919 (($ $) NIL (|has| (-595 |#1|) (-381)) ELT) (((-3 $ "failed") $) NIL (-2196 (|has| (-595 |#1|) (-147)) (|has| (-595 |#1|) (-381))) ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-3822 (((-1297 $)) NIL T ELT) (((-1297 $) (-948)) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-3621 (((-114) $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2925 (($ $) NIL (|has| (-595 |#1|) (-381)) ELT) (($ $ (-793)) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2111 (($ $ (-793)) NIL (|has| (-595 |#1|) (-381)) ELT) (($ $) NIL (|has| (-595 |#1|) (-381)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ $) NIL T ELT) (($ $ (-595 |#1|)) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-595 |#1|)) NIL T ELT) (($ (-595 |#1|) $) NIL T ELT)))
(((-532 |#1| |#2|) (-341 (-595 |#1|)) (-948) (-948)) (T -532))
NIL
(-341 (-595 |#1|))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 ((|#1| $ (-560) (-560) |#1|) 51 T ELT)) (-3981 (($ $ (-560) |#4|) NIL T ELT)) (-2613 (($ $ (-560) |#5|) NIL T ELT)) (-2238 (($) NIL T CONST)) (-3634 ((|#4| $ (-560)) NIL T ELT)) (-3779 ((|#1| $ (-560) (-560) |#1|) 50 T ELT)) (-3709 ((|#1| $ (-560) (-560)) 45 T ELT)) (-2181 (((-663 |#1|) $) NIL T ELT)) (-3648 (((-793) $) 33 T ELT)) (-4095 (($ (-793) (-793) |#1|) 30 T ELT)) (-3658 (((-793) $) 38 T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2711 (((-560) $) 31 T ELT)) (-2369 (((-560) $) 32 T ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1468 (((-560) $) 37 T ELT)) (-2632 (((-560) $) 39 T ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) 55 (|has| |#1| (-1132)) ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3037 (($ $ |#1|) NIL T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) 14 T ELT)) (-3986 (($) 16 T ELT)) (-3924 ((|#1| $ (-560) (-560)) 48 T ELT) ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1799 (($ $) NIL T ELT)) (-1644 ((|#5| $ (-560)) NIL T ELT)) (-1578 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 ((|#1| $ (-560) (-560) |#1|) 51 T ELT)) (-2792 (($ $ (-560) |#4|) NIL T ELT)) (-2770 (($ $ (-560) |#5|) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3942 ((|#4| $ (-560)) NIL T ELT)) (-3338 ((|#1| $ (-560) (-560) |#1|) 50 T ELT)) (-3274 ((|#1| $ (-560) (-560)) 45 T ELT)) (-3737 (((-663 |#1|) $) NIL T ELT)) (-2777 (((-793) $) 33 T ELT)) (-4246 (($ (-793) (-793) |#1|) 30 T ELT)) (-2789 (((-793) $) 38 T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2567 (((-560) $) 31 T ELT)) (-2313 (((-560) $) 32 T ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1475 (((-560) $) 37 T ELT)) (-3004 (((-560) $) 39 T ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) 55 (|has| |#1| (-1132)) ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2740 (($ $ |#1|) NIL T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) 14 T ELT)) (-2832 (($) 16 T ELT)) (-1507 ((|#1| $ (-560) (-560)) 48 T ELT) ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4107 (($ $) NIL T ELT)) (-3783 ((|#5| $ (-560)) NIL T ELT)) (-3913 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
(((-533 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1247) (-560) (-560) (-385 |#1|) (-385 |#1|)) (T -533))
NIL
(-57 |#1| |#4| |#5|)
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3853 ((|#1| $) NIL T ELT)) (-3273 ((|#1| $) NIL T ELT)) (-2270 (($ $) NIL T ELT)) (-3839 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-2194 (($ $ (-560)) 70 (|has| $ (-6 -4509)) ELT)) (-4040 (((-114) $) NIL (|has| |#1| (-871)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-1703 (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| |#1| (-871))) ELT) (($ (-1 (-114) |#1| |#1|) $) 64 (|has| $ (-6 -4509)) ELT)) (-2286 (($ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-2869 ((|#1| $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2102 (($ $ $) 23 (|has| $ (-6 -4509)) ELT)) (-4319 ((|#1| $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3132 ((|#1| $ |#1|) 21 (|has| $ (-6 -4509)) ELT)) (-1773 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4509)) ELT) (($ $ "rest" $) 24 (|has| $ (-6 -4509)) ELT) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2083 (($ $ (-663 $)) NIL (|has| $ (-6 -4509)) ELT)) (-3500 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-1982 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3264 ((|#1| $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-4391 (($ $) 28 (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) 29 T ELT)) (-3649 (($ $) 18 T ELT) (($ $ (-793)) 32 T ELT)) (-2944 (($ $) 62 (|has| |#1| (-1132)) ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3390 (($ |#1| $) NIL (|has| |#1| (-1132)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-2375 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3779 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-560)) NIL T ELT)) (-2267 (((-114) $) NIL T ELT)) (-1722 (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1132)) ELT) (((-560) |#1| $) NIL (|has| |#1| (-1132)) ELT) (((-560) (-1 (-114) |#1|) $) NIL T ELT)) (-2181 (((-663 |#1|) $) 27 (|has| $ (-6 -4508)) ELT)) (-3092 (((-663 $) $) NIL T ELT)) (-3398 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-4095 (($ (-793) |#1|) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) 31 (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-1708 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 65 T ELT)) (-3223 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 60 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2937 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-2045 (($ |#1|) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-3596 (((-663 |#1|) $) NIL T ELT)) (-2409 (((-114) $) NIL T ELT)) (-1905 (((-1189) $) 58 (|has| |#1| (-1132)) ELT)) (-2398 ((|#1| $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3629 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-3996 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) NIL T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3637 ((|#1| $) 13 T ELT) (($ $ (-793)) NIL T ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-3037 (($ $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3875 (((-114) $) NIL T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 12 T ELT)) (-2914 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) NIL T ELT)) (-1663 (((-114) $) 17 T ELT)) (-3986 (($) 16 T ELT)) (-3924 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") 15 T ELT) (($ $ "rest") 20 T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT) ((|#1| $ (-560)) NIL T ELT) ((|#1| $ (-560) |#1|) NIL T ELT)) (-1750 (((-560) $ $) NIL T ELT)) (-2249 (($ $ (-1264 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-4413 (($ $ (-1264 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-1978 (((-114) $) 35 T ELT)) (-1763 (($ $) NIL T ELT)) (-1915 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-1502 (((-793) $) NIL T ELT)) (-3458 (($ $) 40 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3640 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) 36 T ELT)) (-1407 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 26 T ELT)) (-4354 (($ $ $) 61 T ELT) (($ $ |#1|) NIL T ELT)) (-3415 (($ $ $) NIL T ELT) (($ |#1| $) 10 T ELT) (($ (-663 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-1578 (((-887) $) 50 (|has| |#1| (-632 (-887))) ELT)) (-3955 (((-663 $) $) NIL T ELT)) (-2997 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2536 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) 54 (|has| |#1| (-102)) ELT)) (-2521 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-1553 (((-793) $) 9 (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1430 ((|#1| $) NIL T ELT)) (-3853 ((|#1| $) NIL T ELT)) (-3990 (($ $) NIL T ELT)) (-2033 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4367 (($ $ (-560)) 70 (|has| $ (-6 -4509)) ELT)) (-2152 (((-114) $) NIL (|has| |#1| (-871)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3152 (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| |#1| (-871))) ELT) (($ (-1 (-114) |#1| |#1|) $) 64 (|has| $ (-6 -4509)) ELT)) (-1787 (($ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3654 ((|#1| $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-1518 (($ $ $) 23 (|has| $ (-6 -4509)) ELT)) (-3042 ((|#1| $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2509 ((|#1| $ |#1|) 21 (|has| $ (-6 -4509)) ELT)) (-4083 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4509)) ELT) (($ $ "rest" $) 24 (|has| $ (-6 -4509)) ELT) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2566 (($ $ (-663 $)) NIL (|has| $ (-6 -4509)) ELT)) (-1864 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3923 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3839 ((|#1| $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2372 (($ $) 28 (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) 29 T ELT)) (-4345 (($ $) 18 T ELT) (($ $ (-793)) 32 T ELT)) (-4329 (($ $) 62 (|has| |#1| (-1132)) ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2091 (($ |#1| $) NIL (|has| |#1| (-1132)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3033 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3338 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-560)) NIL T ELT)) (-3843 (((-114) $) NIL T ELT)) (-2359 (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1132)) ELT) (((-560) |#1| $) NIL (|has| |#1| (-1132)) ELT) (((-560) (-1 (-114) |#1|) $) NIL T ELT)) (-3737 (((-663 |#1|) $) 27 (|has| $ (-6 -4508)) ELT)) (-2104 (((-663 $) $) NIL T ELT)) (-2150 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-4246 (($ (-793) |#1|) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) 31 (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3204 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 65 T ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 60 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4263 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-2560 (($ |#1|) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL T ELT)) (-1485 (((-114) $) NIL T ELT)) (-3358 (((-1189) $) 58 (|has| |#1| (-1132)) ELT)) (-3057 ((|#1| $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3888 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-2507 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) NIL T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-4334 ((|#1| $) 13 T ELT) (($ $ (-793)) NIL T ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2740 (($ $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-4270 (((-114) $) NIL T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 12 T ELT)) (-4019 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) NIL T ELT)) (-2706 (((-114) $) 17 T ELT)) (-2832 (($) 16 T ELT)) (-1507 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") 15 T ELT) (($ $ "rest") 20 T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT) ((|#1| $ (-560)) NIL T ELT) ((|#1| $ (-560) |#1|) NIL T ELT)) (-2374 (((-560) $ $) NIL T ELT)) (-3639 (($ $ (-1264 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-2579 (($ $ (-1264 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-2752 (((-114) $) 35 T ELT)) (-2493 (($ $) NIL T ELT)) (-3438 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-3010 (((-793) $) NIL T ELT)) (-1474 (($ $) 40 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3993 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) 36 T ELT)) (-2400 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 26 T ELT)) (-3305 (($ $ $) 61 T ELT) (($ $ |#1|) NIL T ELT)) (-1955 (($ $ $) NIL T ELT) (($ |#1| $) 10 T ELT) (($ (-663 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3913 (((-887) $) 50 (|has| |#1| (-632 (-887))) ELT)) (-3809 (((-663 $) $) NIL T ELT)) (-3606 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2396 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) 54 (|has| |#1| (-102)) ELT)) (-2386 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2256 (((-793) $) 9 (|has| $ (-6 -4508)) ELT)))
(((-534 |#1| |#2|) (-688 |#1|) (-1247) (-560)) (T -534))
NIL
(-688 |#1|)
-((-2677 ((|#4| |#4|) 38 T ELT)) (-2326 (((-793) |#4|) 44 T ELT)) (-1401 (((-793) |#4|) 45 T ELT)) (-2454 (((-663 |#3|) |#4|) 55 (|has| |#3| (-6 -4509)) ELT)) (-2141 (((-3 |#4| "failed") |#4|) 67 T ELT)) (-3367 ((|#4| |#4|) 59 T ELT)) (-4227 ((|#1| |#4|) 58 T ELT)))
-(((-535 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2677 (|#4| |#4|)) (-15 -2326 ((-793) |#4|)) (-15 -1401 ((-793) |#4|)) (IF (|has| |#3| (-6 -4509)) (-15 -2454 ((-663 |#3|) |#4|)) |%noBranch|) (-15 -4227 (|#1| |#4|)) (-15 -3367 (|#4| |#4|)) (-15 -2141 ((-3 |#4| "failed") |#4|))) (-376) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|)) (T -535))
-((-2141 (*1 *2 *2) (|partial| -12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-3367 (*1 *2 *2) (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-4227 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-376)) (-5 *1 (-535 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5)))) (-2454 (*1 *2 *3) (-12 (|has| *6 (-6 -4509)) (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-663 *6)) (-5 *1 (-535 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-1401 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-793)) (-5 *1 (-535 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-2326 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-793)) (-5 *1 (-535 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-2677 (*1 *2 *2) (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))))
-(-10 -7 (-15 -2677 (|#4| |#4|)) (-15 -2326 ((-793) |#4|)) (-15 -1401 ((-793) |#4|)) (IF (|has| |#3| (-6 -4509)) (-15 -2454 ((-663 |#3|) |#4|)) |%noBranch|) (-15 -4227 (|#1| |#4|)) (-15 -3367 (|#4| |#4|)) (-15 -2141 ((-3 |#4| "failed") |#4|)))
-((-2677 ((|#8| |#4|) 20 T ELT)) (-2454 (((-663 |#3|) |#4|) 29 (|has| |#7| (-6 -4509)) ELT)) (-2141 (((-3 |#8| "failed") |#4|) 23 T ELT)))
-(((-536 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2677 (|#8| |#4|)) (-15 -2141 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4509)) (-15 -2454 ((-663 |#3|) |#4|)) |%noBranch|)) (-571) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|) (-1022 |#1|) (-385 |#5|) (-385 |#5|) (-708 |#5| |#6| |#7|)) (T -536))
-((-2454 (*1 *2 *3) (-12 (|has| *9 (-6 -4509)) (-4 *4 (-571)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1022 *4)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)) (-5 *2 (-663 *6)) (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-708 *4 *5 *6)) (-4 *10 (-708 *7 *8 *9)))) (-2141 (*1 *2 *3) (|partial| -12 (-4 *4 (-571)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1022 *4)) (-4 *2 (-708 *7 *8 *9)) (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-708 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) (-2677 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1022 *4)) (-4 *2 (-708 *7 *8 *9)) (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-708 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))))
-(-10 -7 (-15 -2677 (|#8| |#4|)) (-15 -2141 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4509)) (-15 -2454 ((-663 |#3|) |#4|)) |%noBranch|))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3759 (($ (-793) (-793)) NIL T ELT)) (-2370 (($ $ $) NIL T ELT)) (-2629 (($ (-616 |#1| |#3|)) NIL T ELT) (($ $) NIL T ELT)) (-4338 (((-114) $) NIL T ELT)) (-2112 (($ $ (-560) (-560)) 21 T ELT)) (-2599 (($ $ (-560) (-560)) NIL T ELT)) (-1653 (($ $ (-560) (-560) (-560) (-560)) NIL T ELT)) (-4304 (($ $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-2047 (($ $ (-560) (-560) $) NIL T ELT)) (-1773 ((|#1| $ (-560) (-560) |#1|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560)) $) NIL T ELT)) (-3981 (($ $ (-560) (-616 |#1| |#3|)) NIL T ELT)) (-2613 (($ $ (-560) (-616 |#1| |#2|)) NIL T ELT)) (-2733 (($ (-793) |#1|) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2677 (($ $) 30 (|has| |#1| (-319)) ELT)) (-3634 (((-616 |#1| |#3|) $ (-560)) NIL T ELT)) (-2326 (((-793) $) 33 (|has| |#1| (-571)) ELT)) (-3779 ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-3709 ((|#1| $ (-560) (-560)) NIL T ELT)) (-2181 (((-663 |#1|) $) NIL T ELT)) (-1401 (((-793) $) 35 (|has| |#1| (-571)) ELT)) (-2454 (((-663 (-616 |#1| |#2|)) $) 38 (|has| |#1| (-571)) ELT)) (-3648 (((-793) $) NIL T ELT)) (-4095 (($ (-793) (-793) |#1|) NIL T ELT)) (-3658 (((-793) $) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-3535 ((|#1| $) 28 (|has| |#1| (-6 (-4510 "*"))) ELT)) (-2711 (((-560) $) 10 T ELT)) (-2369 (((-560) $) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1468 (((-560) $) 13 T ELT)) (-2632 (((-560) $) NIL T ELT)) (-2589 (($ (-663 (-663 |#1|))) NIL T ELT) (($ (-793) (-793) (-1 |#1| (-560) (-560))) NIL T ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-2543 (((-663 (-663 |#1|)) $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-2141 (((-3 $ "failed") $) 42 (|has| |#1| (-376)) ELT)) (-3049 (($ $ $) NIL T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3037 (($ $ |#1|) NIL T ELT)) (-1528 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#1| $ (-560) (-560)) NIL T ELT) ((|#1| $ (-560) (-560) |#1|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560))) NIL T ELT)) (-3323 (($ (-663 |#1|)) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3032 (((-114) $) NIL T ELT)) (-4227 ((|#1| $) 26 (|has| |#1| (-6 (-4510 "*"))) ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1799 (($ $) NIL T ELT)) (-1644 (((-616 |#1| |#2|) $ (-560)) NIL T ELT)) (-1578 (($ (-616 |#1| |#2|)) NIL T ELT) (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2441 (((-114) $) NIL T ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-560) $) NIL T ELT) (((-616 |#1| |#2|) $ (-616 |#1| |#2|)) NIL T ELT) (((-616 |#1| |#3|) (-616 |#1| |#3|) $) NIL T ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+((-2207 ((|#4| |#4|) 38 T ELT)) (-1604 (((-793) |#4|) 44 T ELT)) (-3213 (((-793) |#4|) 45 T ELT)) (-1927 (((-663 |#3|) |#4|) 55 (|has| |#3| (-6 -4509)) ELT)) (-1906 (((-3 |#4| "failed") |#4|) 67 T ELT)) (-3090 ((|#4| |#4|) 59 T ELT)) (-3441 ((|#1| |#4|) 58 T ELT)))
+(((-535 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2207 (|#4| |#4|)) (-15 -1604 ((-793) |#4|)) (-15 -3213 ((-793) |#4|)) (IF (|has| |#3| (-6 -4509)) (-15 -1927 ((-663 |#3|) |#4|)) |%noBranch|) (-15 -3441 (|#1| |#4|)) (-15 -3090 (|#4| |#4|)) (-15 -1906 ((-3 |#4| "failed") |#4|))) (-376) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|)) (T -535))
+((-1906 (*1 *2 *2) (|partial| -12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-3090 (*1 *2 *2) (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-3441 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-376)) (-5 *1 (-535 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5)))) (-1927 (*1 *2 *3) (-12 (|has| *6 (-6 -4509)) (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-663 *6)) (-5 *1 (-535 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3213 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-793)) (-5 *1 (-535 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-1604 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-793)) (-5 *1 (-535 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-2207 (*1 *2 *2) (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))))
+(-10 -7 (-15 -2207 (|#4| |#4|)) (-15 -1604 ((-793) |#4|)) (-15 -3213 ((-793) |#4|)) (IF (|has| |#3| (-6 -4509)) (-15 -1927 ((-663 |#3|) |#4|)) |%noBranch|) (-15 -3441 (|#1| |#4|)) (-15 -3090 (|#4| |#4|)) (-15 -1906 ((-3 |#4| "failed") |#4|)))
+((-2207 ((|#8| |#4|) 20 T ELT)) (-1927 (((-663 |#3|) |#4|) 29 (|has| |#7| (-6 -4509)) ELT)) (-1906 (((-3 |#8| "failed") |#4|) 23 T ELT)))
+(((-536 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2207 (|#8| |#4|)) (-15 -1906 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4509)) (-15 -1927 ((-663 |#3|) |#4|)) |%noBranch|)) (-571) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|) (-1022 |#1|) (-385 |#5|) (-385 |#5|) (-708 |#5| |#6| |#7|)) (T -536))
+((-1927 (*1 *2 *3) (-12 (|has| *9 (-6 -4509)) (-4 *4 (-571)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1022 *4)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)) (-5 *2 (-663 *6)) (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-708 *4 *5 *6)) (-4 *10 (-708 *7 *8 *9)))) (-1906 (*1 *2 *3) (|partial| -12 (-4 *4 (-571)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1022 *4)) (-4 *2 (-708 *7 *8 *9)) (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-708 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) (-2207 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1022 *4)) (-4 *2 (-708 *7 *8 *9)) (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-708 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))))
+(-10 -7 (-15 -2207 (|#8| |#4|)) (-15 -1906 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4509)) (-15 -1927 ((-663 |#3|) |#4|)) |%noBranch|))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3068 (($ (-793) (-793)) NIL T ELT)) (-2321 (($ $ $) NIL T ELT)) (-2966 (($ (-616 |#1| |#3|)) NIL T ELT) (($ $) NIL T ELT)) (-3202 (((-114) $) NIL T ELT)) (-1602 (($ $ (-560) (-560)) 21 T ELT)) (-3933 (($ $ (-560) (-560)) NIL T ELT)) (-3892 (($ $ (-560) (-560) (-560) (-560)) NIL T ELT)) (-2877 (($ $) NIL T ELT)) (-2798 (((-114) $) NIL T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-2205 (($ $ (-560) (-560) $) NIL T ELT)) (-4083 ((|#1| $ (-560) (-560) |#1|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560)) $) NIL T ELT)) (-2792 (($ $ (-560) (-616 |#1| |#3|)) NIL T ELT)) (-2770 (($ $ (-560) (-616 |#1| |#2|)) NIL T ELT)) (-1571 (($ (-793) |#1|) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2207 (($ $) 30 (|has| |#1| (-319)) ELT)) (-3942 (((-616 |#1| |#3|) $ (-560)) NIL T ELT)) (-1604 (((-793) $) 33 (|has| |#1| (-571)) ELT)) (-3338 ((|#1| $ (-560) (-560) |#1|) NIL T ELT)) (-3274 ((|#1| $ (-560) (-560)) NIL T ELT)) (-3737 (((-663 |#1|) $) NIL T ELT)) (-3213 (((-793) $) 35 (|has| |#1| (-571)) ELT)) (-1927 (((-663 (-616 |#1| |#2|)) $) 38 (|has| |#1| (-571)) ELT)) (-2777 (((-793) $) NIL T ELT)) (-4246 (($ (-793) (-793) |#1|) NIL T ELT)) (-2789 (((-793) $) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-4174 ((|#1| $) 28 (|has| |#1| (-6 (-4510 "*"))) ELT)) (-2567 (((-560) $) 10 T ELT)) (-2313 (((-560) $) NIL T ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1475 (((-560) $) 13 T ELT)) (-3004 (((-560) $) NIL T ELT)) (-3551 (($ (-663 (-663 |#1|))) NIL T ELT) (($ (-793) (-793) (-1 |#1| (-560) (-560))) NIL T ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3378 (((-663 (-663 |#1|)) $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-1906 (((-3 $ "failed") $) 42 (|has| |#1| (-376)) ELT)) (-2857 (($ $ $) NIL T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2740 (($ $ |#1|) NIL T ELT)) (-2233 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#1| $ (-560) (-560)) NIL T ELT) ((|#1| $ (-560) (-560) |#1|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560))) NIL T ELT)) (-3926 (($ (-663 |#1|)) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2691 (((-114) $) NIL T ELT)) (-3441 ((|#1| $) 26 (|has| |#1| (-6 (-4510 "*"))) ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4107 (($ $) NIL T ELT)) (-3783 (((-616 |#1| |#2|) $ (-560)) NIL T ELT)) (-3913 (($ (-616 |#1| |#2|)) NIL T ELT) (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1775 (((-114) $) NIL T ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-560) $) NIL T ELT) (((-616 |#1| |#2|) $ (-616 |#1| |#2|)) NIL T ELT) (((-616 |#1| |#3|) (-616 |#1| |#3|) $) NIL T ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
(((-537 |#1| |#2| |#3|) (-708 |#1| (-616 |#1| |#3|) (-616 |#1| |#2|)) (-1080) (-560) (-560)) (T -537))
NIL
(-708 |#1| (-616 |#1| |#3|) (-616 |#1| |#2|))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2544 (((-663 (-1248)) $) 13 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 19 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT) (($ (-663 (-1248))) 11 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-538) (-13 (-1114) (-10 -8 (-15 -1578 ($ (-663 (-1248)))) (-15 -2544 ((-663 (-1248)) $))))) (T -538))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-663 (-1248))) (-5 *1 (-538)))) (-2544 (*1 *2 *1) (-12 (-5 *2 (-663 (-1248))) (-5 *1 (-538)))))
-(-13 (-1114) (-10 -8 (-15 -1578 ($ (-663 (-1248)))) (-15 -2544 ((-663 (-1248)) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2899 (((-1166) $) 14 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3190 (((-520) $) 11 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 21 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-539) (-13 (-1114) (-10 -8 (-15 -3190 ((-520) $)) (-15 -2899 ((-1166) $))))) (T -539))
-((-3190 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-539)))) (-2899 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-539)))))
-(-13 (-1114) (-10 -8 (-15 -3190 ((-520) $)) (-15 -2899 ((-1166) $))))
-((-1397 (((-713 (-1256)) $) 15 T ELT)) (-2487 (((-713 (-1254)) $) 38 T ELT)) (-2499 (((-713 (-1253)) $) 29 T ELT)) (-2066 (((-713 (-564)) $) 12 T ELT)) (-2034 (((-713 (-562)) $) 42 T ELT)) (-3006 (((-713 (-561)) $) 33 T ELT)) (-3256 (((-793) $ (-131)) 54 T ELT)))
-(((-540 |#1|) (-10 -8 (-15 -3256 ((-793) |#1| (-131))) (-15 -2487 ((-713 (-1254)) |#1|)) (-15 -2034 ((-713 (-562)) |#1|)) (-15 -2499 ((-713 (-1253)) |#1|)) (-15 -3006 ((-713 (-561)) |#1|)) (-15 -1397 ((-713 (-1256)) |#1|)) (-15 -2066 ((-713 (-564)) |#1|))) (-541)) (T -540))
-NIL
-(-10 -8 (-15 -3256 ((-793) |#1| (-131))) (-15 -2487 ((-713 (-1254)) |#1|)) (-15 -2034 ((-713 (-562)) |#1|)) (-15 -2499 ((-713 (-1253)) |#1|)) (-15 -3006 ((-713 (-561)) |#1|)) (-15 -1397 ((-713 (-1256)) |#1|)) (-15 -2066 ((-713 (-564)) |#1|)))
-((-1397 (((-713 (-1256)) $) 12 T ELT)) (-2487 (((-713 (-1254)) $) 8 T ELT)) (-2499 (((-713 (-1253)) $) 10 T ELT)) (-2066 (((-713 (-564)) $) 13 T ELT)) (-2034 (((-713 (-562)) $) 9 T ELT)) (-3006 (((-713 (-561)) $) 11 T ELT)) (-3256 (((-793) $ (-131)) 7 T ELT)) (-1907 (((-713 (-130)) $) 14 T ELT)) (-4474 (($ $) 6 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3387 (((-663 (-1248)) $) 13 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 19 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT) (($ (-663 (-1248))) 11 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-538) (-13 (-1114) (-10 -8 (-15 -3913 ($ (-663 (-1248)))) (-15 -3387 ((-663 (-1248)) $))))) (T -538))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-663 (-1248))) (-5 *1 (-538)))) (-3387 (*1 *2 *1) (-12 (-5 *2 (-663 (-1248))) (-5 *1 (-538)))))
+(-13 (-1114) (-10 -8 (-15 -3913 ($ (-663 (-1248)))) (-15 -3387 ((-663 (-1248)) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3971 (((-1166) $) 14 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1881 (((-520) $) 11 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 21 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-539) (-13 (-1114) (-10 -8 (-15 -1881 ((-520) $)) (-15 -3971 ((-1166) $))))) (T -539))
+((-1881 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-539)))) (-3971 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-539)))))
+(-13 (-1114) (-10 -8 (-15 -1881 ((-520) $)) (-15 -3971 ((-1166) $))))
+((-1355 (((-713 (-1256)) $) 15 T ELT)) (-4163 (((-713 (-1254)) $) 38 T ELT)) (-4262 (((-713 (-1253)) $) 29 T ELT)) (-2380 (((-713 (-564)) $) 12 T ELT)) (-2103 (((-713 (-562)) $) 42 T ELT)) (-3714 (((-713 (-561)) $) 33 T ELT)) (-4478 (((-793) $ (-131)) 54 T ELT)))
+(((-540 |#1|) (-10 -8 (-15 -4478 ((-793) |#1| (-131))) (-15 -4163 ((-713 (-1254)) |#1|)) (-15 -2103 ((-713 (-562)) |#1|)) (-15 -4262 ((-713 (-1253)) |#1|)) (-15 -3714 ((-713 (-561)) |#1|)) (-15 -1355 ((-713 (-1256)) |#1|)) (-15 -2380 ((-713 (-564)) |#1|))) (-541)) (T -540))
+NIL
+(-10 -8 (-15 -4478 ((-793) |#1| (-131))) (-15 -4163 ((-713 (-1254)) |#1|)) (-15 -2103 ((-713 (-562)) |#1|)) (-15 -4262 ((-713 (-1253)) |#1|)) (-15 -3714 ((-713 (-561)) |#1|)) (-15 -1355 ((-713 (-1256)) |#1|)) (-15 -2380 ((-713 (-564)) |#1|)))
+((-1355 (((-713 (-1256)) $) 12 T ELT)) (-4163 (((-713 (-1254)) $) 8 T ELT)) (-4262 (((-713 (-1253)) $) 10 T ELT)) (-2380 (((-713 (-564)) $) 13 T ELT)) (-2103 (((-713 (-562)) $) 9 T ELT)) (-3714 (((-713 (-561)) $) 11 T ELT)) (-4478 (((-793) $ (-131)) 7 T ELT)) (-3366 (((-713 (-130)) $) 14 T ELT)) (-1835 (($ $) 6 T ELT)))
(((-541) (-142)) (T -541))
-((-1907 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-130))))) (-2066 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-564))))) (-1397 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1256))))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-561))))) (-2499 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1253))))) (-2034 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-562))))) (-2487 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1254))))) (-3256 (*1 *2 *1 *3) (-12 (-4 *1 (-541)) (-5 *3 (-131)) (-5 *2 (-793)))))
-(-13 (-176) (-10 -8 (-15 -1907 ((-713 (-130)) $)) (-15 -2066 ((-713 (-564)) $)) (-15 -1397 ((-713 (-1256)) $)) (-15 -3006 ((-713 (-561)) $)) (-15 -2499 ((-713 (-1253)) $)) (-15 -2034 ((-713 (-562)) $)) (-15 -2487 ((-713 (-1254)) $)) (-15 -3256 ((-793) $ (-131)))))
+((-3366 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-130))))) (-2380 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-564))))) (-1355 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1256))))) (-3714 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-561))))) (-4262 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1253))))) (-2103 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-562))))) (-4163 (*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1254))))) (-4478 (*1 *2 *1 *3) (-12 (-4 *1 (-541)) (-5 *3 (-131)) (-5 *2 (-793)))))
+(-13 (-176) (-10 -8 (-15 -3366 ((-713 (-130)) $)) (-15 -2380 ((-713 (-564)) $)) (-15 -1355 ((-713 (-1256)) $)) (-15 -3714 ((-713 (-561)) $)) (-15 -4262 ((-713 (-1253)) $)) (-15 -2103 ((-713 (-562)) $)) (-15 -4163 ((-713 (-1254)) $)) (-15 -4478 ((-793) $ (-131)))))
(((-176) . T))
-((-3150 (((-1201 |#1|) (-793)) 115 T ELT)) (-3349 (((-1297 |#1|) (-1297 |#1|) (-948)) 108 T ELT)) (-4306 (((-1303) (-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151))))) |#1|) 123 T ELT)) (-2038 (((-1297 |#1|) (-1297 |#1|) (-793)) 53 T ELT)) (-2310 (((-1297 |#1|) (-948)) 110 T ELT)) (-1738 (((-1297 |#1|) (-1297 |#1|) (-560)) 30 T ELT)) (-2738 (((-1201 |#1|) (-1297 |#1|)) 116 T ELT)) (-4417 (((-1297 |#1|) (-948)) 137 T ELT)) (-2863 (((-114) (-1297 |#1|)) 120 T ELT)) (-2032 (((-1297 |#1|) (-1297 |#1|) (-948)) 100 T ELT)) (-1787 (((-1201 |#1|) (-1297 |#1|)) 131 T ELT)) (-4419 (((-948) (-1297 |#1|)) 96 T ELT)) (-1544 (((-1297 |#1|) (-1297 |#1|)) 38 T ELT)) (-3128 (((-1297 |#1|) (-948) (-948)) 140 T ELT)) (-2110 (((-1297 |#1|) (-1297 |#1|) (-1151) (-1151)) 29 T ELT)) (-1845 (((-1297 |#1|) (-1297 |#1|) (-793) (-1151)) 54 T ELT)) (-1954 (((-1297 (-1297 |#1|)) (-948)) 136 T ELT)) (-2594 (((-1297 |#1|) (-1297 |#1|) (-1297 |#1|)) 121 T ELT)) (** (((-1297 |#1|) (-1297 |#1|) (-560)) 67 T ELT)) (* (((-1297 |#1|) (-1297 |#1|) (-1297 |#1|)) 31 T ELT)))
-(((-542 |#1|) (-10 -7 (-15 -4306 ((-1303) (-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151))))) |#1|)) (-15 -2310 ((-1297 |#1|) (-948))) (-15 -3128 ((-1297 |#1|) (-948) (-948))) (-15 -2738 ((-1201 |#1|) (-1297 |#1|))) (-15 -3150 ((-1201 |#1|) (-793))) (-15 -1845 ((-1297 |#1|) (-1297 |#1|) (-793) (-1151))) (-15 -2038 ((-1297 |#1|) (-1297 |#1|) (-793))) (-15 -2110 ((-1297 |#1|) (-1297 |#1|) (-1151) (-1151))) (-15 -1738 ((-1297 |#1|) (-1297 |#1|) (-560))) (-15 ** ((-1297 |#1|) (-1297 |#1|) (-560))) (-15 * ((-1297 |#1|) (-1297 |#1|) (-1297 |#1|))) (-15 -2594 ((-1297 |#1|) (-1297 |#1|) (-1297 |#1|))) (-15 -2032 ((-1297 |#1|) (-1297 |#1|) (-948))) (-15 -3349 ((-1297 |#1|) (-1297 |#1|) (-948))) (-15 -1544 ((-1297 |#1|) (-1297 |#1|))) (-15 -4419 ((-948) (-1297 |#1|))) (-15 -2863 ((-114) (-1297 |#1|))) (-15 -1954 ((-1297 (-1297 |#1|)) (-948))) (-15 -4417 ((-1297 |#1|) (-948))) (-15 -1787 ((-1201 |#1|) (-1297 |#1|)))) (-363)) (T -542))
-((-1787 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-1201 *4)) (-5 *1 (-542 *4)))) (-4417 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1297 *4)) (-5 *1 (-542 *4)) (-4 *4 (-363)))) (-1954 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1297 (-1297 *4))) (-5 *1 (-542 *4)) (-4 *4 (-363)))) (-2863 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-542 *4)))) (-4419 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-948)) (-5 *1 (-542 *4)))) (-1544 (*1 *2 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-363)) (-5 *1 (-542 *3)))) (-3349 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-948)) (-4 *4 (-363)) (-5 *1 (-542 *4)))) (-2032 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-948)) (-4 *4 (-363)) (-5 *1 (-542 *4)))) (-2594 (*1 *2 *2 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-363)) (-5 *1 (-542 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-363)) (-5 *1 (-542 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-560)) (-4 *4 (-363)) (-5 *1 (-542 *4)))) (-1738 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-560)) (-4 *4 (-363)) (-5 *1 (-542 *4)))) (-2110 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1151)) (-4 *4 (-363)) (-5 *1 (-542 *4)))) (-2038 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-793)) (-4 *4 (-363)) (-5 *1 (-542 *4)))) (-1845 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1297 *5)) (-5 *3 (-793)) (-5 *4 (-1151)) (-4 *5 (-363)) (-5 *1 (-542 *5)))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1201 *4)) (-5 *1 (-542 *4)) (-4 *4 (-363)))) (-2738 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-1201 *4)) (-5 *1 (-542 *4)))) (-3128 (*1 *2 *3 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1297 *4)) (-5 *1 (-542 *4)) (-4 *4 (-363)))) (-2310 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1297 *4)) (-5 *1 (-542 *4)) (-4 *4 (-363)))) (-4306 (*1 *2 *3 *4) (-12 (-5 *3 (-1297 (-663 (-2 (|:| -3853 *4) (|:| -3128 (-1151)))))) (-4 *4 (-363)) (-5 *2 (-1303)) (-5 *1 (-542 *4)))))
-(-10 -7 (-15 -4306 ((-1303) (-1297 (-663 (-2 (|:| -3853 |#1|) (|:| -3128 (-1151))))) |#1|)) (-15 -2310 ((-1297 |#1|) (-948))) (-15 -3128 ((-1297 |#1|) (-948) (-948))) (-15 -2738 ((-1201 |#1|) (-1297 |#1|))) (-15 -3150 ((-1201 |#1|) (-793))) (-15 -1845 ((-1297 |#1|) (-1297 |#1|) (-793) (-1151))) (-15 -2038 ((-1297 |#1|) (-1297 |#1|) (-793))) (-15 -2110 ((-1297 |#1|) (-1297 |#1|) (-1151) (-1151))) (-15 -1738 ((-1297 |#1|) (-1297 |#1|) (-560))) (-15 ** ((-1297 |#1|) (-1297 |#1|) (-560))) (-15 * ((-1297 |#1|) (-1297 |#1|) (-1297 |#1|))) (-15 -2594 ((-1297 |#1|) (-1297 |#1|) (-1297 |#1|))) (-15 -2032 ((-1297 |#1|) (-1297 |#1|) (-948))) (-15 -3349 ((-1297 |#1|) (-1297 |#1|) (-948))) (-15 -1544 ((-1297 |#1|) (-1297 |#1|))) (-15 -4419 ((-948) (-1297 |#1|))) (-15 -2863 ((-114) (-1297 |#1|))) (-15 -1954 ((-1297 (-1297 |#1|)) (-948))) (-15 -4417 ((-1297 |#1|) (-948))) (-15 -1787 ((-1201 |#1|) (-1297 |#1|))))
-((-1397 (((-713 (-1256)) $) NIL T ELT)) (-2487 (((-713 (-1254)) $) NIL T ELT)) (-2499 (((-713 (-1253)) $) NIL T ELT)) (-2066 (((-713 (-564)) $) NIL T ELT)) (-2034 (((-713 (-562)) $) NIL T ELT)) (-3006 (((-713 (-561)) $) NIL T ELT)) (-3256 (((-793) $ (-131)) NIL T ELT)) (-1907 (((-713 (-130)) $) 26 T ELT)) (-4299 (((-1151) $ (-1151)) 31 T ELT)) (-1722 (((-1151) $) 30 T ELT)) (-3856 (((-114) $) 20 T ELT)) (-2790 (($ (-402)) 14 T ELT) (($ (-1189)) 16 T ELT)) (-1593 (((-114) $) 27 T ELT)) (-1578 (((-887) $) 34 T ELT)) (-4474 (($ $) 28 T ELT)))
-(((-543) (-13 (-541) (-632 (-887)) (-10 -8 (-15 -2790 ($ (-402))) (-15 -2790 ($ (-1189))) (-15 -1593 ((-114) $)) (-15 -3856 ((-114) $)) (-15 -1722 ((-1151) $)) (-15 -4299 ((-1151) $ (-1151)))))) (T -543))
-((-2790 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-543)))) (-2790 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-543)))) (-1593 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-543)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-543)))) (-1722 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-543)))) (-4299 (*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-543)))))
-(-13 (-541) (-632 (-887)) (-10 -8 (-15 -2790 ($ (-402))) (-15 -2790 ($ (-1189))) (-15 -1593 ((-114) $)) (-15 -3856 ((-114) $)) (-15 -1722 ((-1151) $)) (-15 -4299 ((-1151) $ (-1151)))))
-((-1929 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-4294 (((-1 |#1| |#1|)) 10 T ELT)))
-(((-544 |#1|) (-10 -7 (-15 -4294 ((-1 |#1| |#1|))) (-15 -1929 ((-1 |#1| |#1|) |#1|))) (-13 (-748) (-25))) (T -544))
-((-1929 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-544 *3)) (-4 *3 (-13 (-748) (-25))))) (-4294 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-544 *3)) (-4 *3 (-13 (-748) (-25))))))
-(-10 -7 (-15 -4294 ((-1 |#1| |#1|))) (-15 -1929 ((-1 |#1| |#1|) |#1|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1425 (((-663 (-897 |#1| (-793))) $) NIL T ELT)) (-3168 (($ $ $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-1624 (($ $) NIL T ELT)) (-1417 (($ (-793) |#1|) NIL T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-3957 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-2094 ((|#1| $) NIL T ELT)) (-1597 (((-793) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 27 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT)))
+((-1489 (((-1201 |#1|) (-793)) 115 T ELT)) (-4113 (((-1297 |#1|) (-1297 |#1|) (-948)) 108 T ELT)) (-2900 (((-1303) (-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151))))) |#1|) 123 T ELT)) (-2129 (((-1297 |#1|) (-1297 |#1|) (-793)) 53 T ELT)) (-1812 (((-1297 |#1|) (-948)) 110 T ELT)) (-2255 (((-1297 |#1|) (-1297 |#1|) (-560)) 30 T ELT)) (-1617 (((-1201 |#1|) (-1297 |#1|)) 116 T ELT)) (-2601 (((-1297 |#1|) (-948)) 137 T ELT)) (-3572 (((-114) (-1297 |#1|)) 120 T ELT)) (-2084 (((-1297 |#1|) (-1297 |#1|) (-948)) 100 T ELT)) (-1471 (((-1201 |#1|) (-1297 |#1|)) 131 T ELT)) (-2622 (((-948) (-1297 |#1|)) 96 T ELT)) (-2986 (((-1297 |#1|) (-1297 |#1|)) 38 T ELT)) (-1591 (((-1297 |#1|) (-948) (-948)) 140 T ELT)) (-1579 (((-1297 |#1|) (-1297 |#1|) (-1151) (-1151)) 29 T ELT)) (-4010 (((-1297 |#1|) (-1297 |#1|) (-793) (-1151)) 54 T ELT)) (-3822 (((-1297 (-1297 |#1|)) (-948)) 136 T ELT)) (-2453 (((-1297 |#1|) (-1297 |#1|) (-1297 |#1|)) 121 T ELT)) (** (((-1297 |#1|) (-1297 |#1|) (-560)) 67 T ELT)) (* (((-1297 |#1|) (-1297 |#1|) (-1297 |#1|)) 31 T ELT)))
+(((-542 |#1|) (-10 -7 (-15 -2900 ((-1303) (-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151))))) |#1|)) (-15 -1812 ((-1297 |#1|) (-948))) (-15 -1591 ((-1297 |#1|) (-948) (-948))) (-15 -1617 ((-1201 |#1|) (-1297 |#1|))) (-15 -1489 ((-1201 |#1|) (-793))) (-15 -4010 ((-1297 |#1|) (-1297 |#1|) (-793) (-1151))) (-15 -2129 ((-1297 |#1|) (-1297 |#1|) (-793))) (-15 -1579 ((-1297 |#1|) (-1297 |#1|) (-1151) (-1151))) (-15 -2255 ((-1297 |#1|) (-1297 |#1|) (-560))) (-15 ** ((-1297 |#1|) (-1297 |#1|) (-560))) (-15 * ((-1297 |#1|) (-1297 |#1|) (-1297 |#1|))) (-15 -2453 ((-1297 |#1|) (-1297 |#1|) (-1297 |#1|))) (-15 -2084 ((-1297 |#1|) (-1297 |#1|) (-948))) (-15 -4113 ((-1297 |#1|) (-1297 |#1|) (-948))) (-15 -2986 ((-1297 |#1|) (-1297 |#1|))) (-15 -2622 ((-948) (-1297 |#1|))) (-15 -3572 ((-114) (-1297 |#1|))) (-15 -3822 ((-1297 (-1297 |#1|)) (-948))) (-15 -2601 ((-1297 |#1|) (-948))) (-15 -1471 ((-1201 |#1|) (-1297 |#1|)))) (-363)) (T -542))
+((-1471 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-1201 *4)) (-5 *1 (-542 *4)))) (-2601 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1297 *4)) (-5 *1 (-542 *4)) (-4 *4 (-363)))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1297 (-1297 *4))) (-5 *1 (-542 *4)) (-4 *4 (-363)))) (-3572 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-542 *4)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-948)) (-5 *1 (-542 *4)))) (-2986 (*1 *2 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-363)) (-5 *1 (-542 *3)))) (-4113 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-948)) (-4 *4 (-363)) (-5 *1 (-542 *4)))) (-2084 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-948)) (-4 *4 (-363)) (-5 *1 (-542 *4)))) (-2453 (*1 *2 *2 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-363)) (-5 *1 (-542 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-363)) (-5 *1 (-542 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-560)) (-4 *4 (-363)) (-5 *1 (-542 *4)))) (-2255 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-560)) (-4 *4 (-363)) (-5 *1 (-542 *4)))) (-1579 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1151)) (-4 *4 (-363)) (-5 *1 (-542 *4)))) (-2129 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-5 *3 (-793)) (-4 *4 (-363)) (-5 *1 (-542 *4)))) (-4010 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1297 *5)) (-5 *3 (-793)) (-5 *4 (-1151)) (-4 *5 (-363)) (-5 *1 (-542 *5)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1201 *4)) (-5 *1 (-542 *4)) (-4 *4 (-363)))) (-1617 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-1201 *4)) (-5 *1 (-542 *4)))) (-1591 (*1 *2 *3 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1297 *4)) (-5 *1 (-542 *4)) (-4 *4 (-363)))) (-1812 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1297 *4)) (-5 *1 (-542 *4)) (-4 *4 (-363)))) (-2900 (*1 *2 *3 *4) (-12 (-5 *3 (-1297 (-663 (-2 (|:| -1430 *4) (|:| -1591 (-1151)))))) (-4 *4 (-363)) (-5 *2 (-1303)) (-5 *1 (-542 *4)))))
+(-10 -7 (-15 -2900 ((-1303) (-1297 (-663 (-2 (|:| -1430 |#1|) (|:| -1591 (-1151))))) |#1|)) (-15 -1812 ((-1297 |#1|) (-948))) (-15 -1591 ((-1297 |#1|) (-948) (-948))) (-15 -1617 ((-1201 |#1|) (-1297 |#1|))) (-15 -1489 ((-1201 |#1|) (-793))) (-15 -4010 ((-1297 |#1|) (-1297 |#1|) (-793) (-1151))) (-15 -2129 ((-1297 |#1|) (-1297 |#1|) (-793))) (-15 -1579 ((-1297 |#1|) (-1297 |#1|) (-1151) (-1151))) (-15 -2255 ((-1297 |#1|) (-1297 |#1|) (-560))) (-15 ** ((-1297 |#1|) (-1297 |#1|) (-560))) (-15 * ((-1297 |#1|) (-1297 |#1|) (-1297 |#1|))) (-15 -2453 ((-1297 |#1|) (-1297 |#1|) (-1297 |#1|))) (-15 -2084 ((-1297 |#1|) (-1297 |#1|) (-948))) (-15 -4113 ((-1297 |#1|) (-1297 |#1|) (-948))) (-15 -2986 ((-1297 |#1|) (-1297 |#1|))) (-15 -2622 ((-948) (-1297 |#1|))) (-15 -3572 ((-114) (-1297 |#1|))) (-15 -3822 ((-1297 (-1297 |#1|)) (-948))) (-15 -2601 ((-1297 |#1|) (-948))) (-15 -1471 ((-1201 |#1|) (-1297 |#1|))))
+((-1355 (((-713 (-1256)) $) NIL T ELT)) (-4163 (((-713 (-1254)) $) NIL T ELT)) (-4262 (((-713 (-1253)) $) NIL T ELT)) (-2380 (((-713 (-564)) $) NIL T ELT)) (-2103 (((-713 (-562)) $) NIL T ELT)) (-3714 (((-713 (-561)) $) NIL T ELT)) (-4478 (((-793) $ (-131)) NIL T ELT)) (-3366 (((-713 (-130)) $) 26 T ELT)) (-2837 (((-1151) $ (-1151)) 31 T ELT)) (-2359 (((-1151) $) 30 T ELT)) (-4097 (((-114) $) 20 T ELT)) (-4059 (($ (-402)) 14 T ELT) (($ (-1189)) 16 T ELT)) (-3294 (((-114) $) 27 T ELT)) (-3913 (((-887) $) 34 T ELT)) (-1835 (($ $) 28 T ELT)))
+(((-543) (-13 (-541) (-632 (-887)) (-10 -8 (-15 -4059 ($ (-402))) (-15 -4059 ($ (-1189))) (-15 -3294 ((-114) $)) (-15 -4097 ((-114) $)) (-15 -2359 ((-1151) $)) (-15 -2837 ((-1151) $ (-1151)))))) (T -543))
+((-4059 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-543)))) (-4059 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-543)))) (-3294 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-543)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-543)))) (-2359 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-543)))) (-2837 (*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-543)))))
+(-13 (-541) (-632 (-887)) (-10 -8 (-15 -4059 ($ (-402))) (-15 -4059 ($ (-1189))) (-15 -3294 ((-114) $)) (-15 -4097 ((-114) $)) (-15 -2359 ((-1151) $)) (-15 -2837 ((-1151) $ (-1151)))))
+((-3877 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-4078 (((-1 |#1| |#1|)) 10 T ELT)))
+(((-544 |#1|) (-10 -7 (-15 -4078 ((-1 |#1| |#1|))) (-15 -3877 ((-1 |#1| |#1|) |#1|))) (-13 (-748) (-25))) (T -544))
+((-3877 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-544 *3)) (-4 *3 (-13 (-748) (-25))))) (-4078 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-544 *3)) (-4 *3 (-13 (-748) (-25))))))
+(-10 -7 (-15 -4078 ((-1 |#1| |#1|))) (-15 -3877 ((-1 |#1| |#1|) |#1|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-1465 (((-663 (-897 |#1| (-793))) $) NIL T ELT)) (-1651 (($ $ $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3062 (($ $) NIL T ELT)) (-4139 (($ (-793) |#1|) NIL T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-2260 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-1447 ((|#1| $) NIL T ELT)) (-3037 (((-793) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 27 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT)))
(((-545 |#1|) (-13 (-815) (-523 (-793) |#1|)) (-871)) (T -545))
NIL
(-13 (-815) (-523 (-793) |#1|))
-((-1766 (((-663 |#2|) (-1201 |#1|) |#3|) 98 T ELT)) (-1391 (((-663 (-2 (|:| |outval| |#2|) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 |#2|))))) (-711 |#1|) |#3| (-1 (-419 (-1201 |#1|)) (-1201 |#1|))) 114 T ELT)) (-3303 (((-1201 |#1|) (-711 |#1|)) 110 T ELT)))
-(((-546 |#1| |#2| |#3|) (-10 -7 (-15 -3303 ((-1201 |#1|) (-711 |#1|))) (-15 -1766 ((-663 |#2|) (-1201 |#1|) |#3|)) (-15 -1391 ((-663 (-2 (|:| |outval| |#2|) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 |#2|))))) (-711 |#1|) |#3| (-1 (-419 (-1201 |#1|)) (-1201 |#1|))))) (-376) (-376) (-13 (-376) (-870))) (T -546))
-((-1391 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *6)) (-5 *5 (-1 (-419 (-1201 *6)) (-1201 *6))) (-4 *6 (-376)) (-5 *2 (-663 (-2 (|:| |outval| *7) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 *7)))))) (-5 *1 (-546 *6 *7 *4)) (-4 *7 (-376)) (-4 *4 (-13 (-376) (-870))))) (-1766 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 *5)) (-4 *5 (-376)) (-5 *2 (-663 *6)) (-5 *1 (-546 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-870))))) (-3303 (*1 *2 *3) (-12 (-5 *3 (-711 *4)) (-4 *4 (-376)) (-5 *2 (-1201 *4)) (-5 *1 (-546 *4 *5 *6)) (-4 *5 (-376)) (-4 *6 (-13 (-376) (-870))))))
-(-10 -7 (-15 -3303 ((-1201 |#1|) (-711 |#1|))) (-15 -1766 ((-663 |#2|) (-1201 |#1|) |#3|)) (-15 -1391 ((-663 (-2 (|:| |outval| |#2|) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 |#2|))))) (-711 |#1|) |#3| (-1 (-419 (-1201 |#1|)) (-1201 |#1|)))))
-((-3740 (((-713 (-1256)) $ (-1256)) NIL T ELT)) (-4475 (((-713 (-564)) $ (-564)) NIL T ELT)) (-3159 (((-793) $ (-131)) 39 T ELT)) (-3720 (((-713 (-130)) $ (-130)) 40 T ELT)) (-1397 (((-713 (-1256)) $) NIL T ELT)) (-2487 (((-713 (-1254)) $) NIL T ELT)) (-2499 (((-713 (-1253)) $) NIL T ELT)) (-2066 (((-713 (-564)) $) NIL T ELT)) (-2034 (((-713 (-562)) $) NIL T ELT)) (-3006 (((-713 (-561)) $) NIL T ELT)) (-3256 (((-793) $ (-131)) 35 T ELT)) (-1907 (((-713 (-130)) $) 37 T ELT)) (-3040 (((-114) $) 27 T ELT)) (-3884 (((-713 $) (-593) (-983)) 18 T ELT) (((-713 $) (-505) (-983)) 24 T ELT)) (-1578 (((-887) $) 48 T ELT)) (-4474 (($ $) 42 T ELT)))
-(((-547) (-13 (-789 (-593)) (-632 (-887)) (-10 -8 (-15 -3884 ((-713 $) (-505) (-983)))))) (T -547))
-((-3884 (*1 *2 *3 *4) (-12 (-5 *3 (-505)) (-5 *4 (-983)) (-5 *2 (-713 (-547))) (-5 *1 (-547)))))
-(-13 (-789 (-593)) (-632 (-887)) (-10 -8 (-15 -3884 ((-713 $) (-505) (-983)))))
-((-3833 (((-864 (-560))) 12 T ELT)) (-3846 (((-864 (-560))) 14 T ELT)) (-3806 (((-854 (-560))) 9 T ELT)))
-(((-548) (-10 -7 (-15 -3806 ((-854 (-560)))) (-15 -3833 ((-864 (-560)))) (-15 -3846 ((-864 (-560)))))) (T -548))
-((-3846 (*1 *2) (-12 (-5 *2 (-864 (-560))) (-5 *1 (-548)))) (-3833 (*1 *2) (-12 (-5 *2 (-864 (-560))) (-5 *1 (-548)))) (-3806 (*1 *2) (-12 (-5 *2 (-854 (-560))) (-5 *1 (-548)))))
-(-10 -7 (-15 -3806 ((-854 (-560)))) (-15 -3833 ((-864 (-560)))) (-15 -3846 ((-864 (-560)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3184 (((-1189) $) 55 T ELT)) (-2691 (((-114) $) 51 T ELT)) (-4327 (((-1207) $) 52 T ELT)) (-2037 (((-114) $) 49 T ELT)) (-1620 (((-1189) $) 50 T ELT)) (-2658 (($ (-1189)) 56 T ELT)) (-2637 (((-114) $) NIL T ELT)) (-3388 (((-114) $) NIL T ELT)) (-1992 (((-114) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3185 (($ $ (-663 (-1207))) 21 T ELT)) (-3620 (((-51) $) 23 T ELT)) (-2729 (((-114) $) NIL T ELT)) (-4353 (((-560) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1975 (($ $ (-663 (-1207)) (-1207)) 73 T ELT)) (-3301 (((-114) $) NIL T ELT)) (-2917 (((-229) $) NIL T ELT)) (-2994 (($ $) 44 T ELT)) (-2413 (((-887) $) NIL T ELT)) (-3192 (((-114) $ $) NIL T ELT)) (-3924 (($ $ (-560)) NIL T ELT) (($ $ (-663 (-560))) NIL T ELT)) (-1374 (((-663 $) $) 30 T ELT)) (-2945 (((-1207) (-663 $)) 57 T ELT)) (-1407 (($ (-1189)) NIL T ELT) (($ (-1207)) 19 T ELT) (($ (-560)) 8 T ELT) (($ (-229)) 28 T ELT) (($ (-887)) NIL T ELT) (($ (-663 $)) 65 T ELT) (((-1134) $) 12 T ELT) (($ (-1134)) 13 T ELT)) (-3847 (((-1207) (-1207) (-663 $)) 60 T ELT)) (-1578 (((-887) $) 54 T ELT)) (-4380 (($ $) 59 T ELT)) (-4356 (($ $) 58 T ELT)) (-3522 (($ $ (-663 $)) 66 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-4412 (((-114) $) 29 T ELT)) (-2001 (($) 9 T CONST)) (-2011 (($) 11 T CONST)) (-2473 (((-114) $ $) 74 T ELT)) (-2594 (($ $ $) 82 T ELT)) (-2567 (($ $ $) 75 T ELT)) (** (($ $ (-793)) 81 T ELT) (($ $ (-560)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-1553 (((-560) $) NIL T ELT)))
-(((-549) (-13 (-1135 (-1189) (-1207) (-560) (-229) (-887)) (-633 (-1134)) (-10 -8 (-15 -3620 ((-51) $)) (-15 -1407 ($ (-1134))) (-15 -3522 ($ $ (-663 $))) (-15 -1975 ($ $ (-663 (-1207)) (-1207))) (-15 -3185 ($ $ (-663 (-1207)))) (-15 -2567 ($ $ $)) (-15 * ($ $ $)) (-15 -2594 ($ $ $)) (-15 ** ($ $ (-793))) (-15 ** ($ $ (-560))) (-15 0 ($) -3081) (-15 1 ($) -3081) (-15 -2994 ($ $)) (-15 -3184 ((-1189) $)) (-15 -2658 ($ (-1189))) (-15 -2945 ((-1207) (-663 $))) (-15 -3847 ((-1207) (-1207) (-663 $)))))) (T -549))
-((-3620 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-549)))) (-1407 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-549)))) (-3522 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-549))) (-5 *1 (-549)))) (-1975 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-1207)) (-5 *1 (-549)))) (-3185 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-549)))) (-2567 (*1 *1 *1 *1) (-5 *1 (-549))) (* (*1 *1 *1 *1) (-5 *1 (-549))) (-2594 (*1 *1 *1 *1) (-5 *1 (-549))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-549)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-549)))) (-2001 (*1 *1) (-5 *1 (-549))) (-2011 (*1 *1) (-5 *1 (-549))) (-2994 (*1 *1 *1) (-5 *1 (-549))) (-3184 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-549)))) (-2658 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-549)))) (-2945 (*1 *2 *3) (-12 (-5 *3 (-663 (-549))) (-5 *2 (-1207)) (-5 *1 (-549)))) (-3847 (*1 *2 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-663 (-549))) (-5 *1 (-549)))))
-(-13 (-1135 (-1189) (-1207) (-560) (-229) (-887)) (-633 (-1134)) (-10 -8 (-15 -3620 ((-51) $)) (-15 -1407 ($ (-1134))) (-15 -3522 ($ $ (-663 $))) (-15 -1975 ($ $ (-663 (-1207)) (-1207))) (-15 -3185 ($ $ (-663 (-1207)))) (-15 -2567 ($ $ $)) (-15 * ($ $ $)) (-15 -2594 ($ $ $)) (-15 ** ($ $ (-793))) (-15 ** ($ $ (-560))) (-15 (-2001) ($) -3081) (-15 (-2011) ($) -3081) (-15 -2994 ($ $)) (-15 -3184 ((-1189) $)) (-15 -2658 ($ (-1189))) (-15 -2945 ((-1207) (-663 $))) (-15 -3847 ((-1207) (-1207) (-663 $)))))
-((-3416 (((-549) (-1207)) 15 T ELT)) (-3620 ((|#1| (-549)) 20 T ELT)))
-(((-550 |#1|) (-10 -7 (-15 -3416 ((-549) (-1207))) (-15 -3620 (|#1| (-549)))) (-1247)) (T -550))
-((-3620 (*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-550 *2)) (-4 *2 (-1247)))) (-3416 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-549)) (-5 *1 (-550 *4)) (-4 *4 (-1247)))))
-(-10 -7 (-15 -3416 ((-549) (-1207))) (-15 -3620 (|#1| (-549))))
-((-1795 ((|#2| |#2|) 17 T ELT)) (-1735 ((|#2| |#2|) 13 T ELT)) (-2434 ((|#2| |#2| (-560) (-560)) 20 T ELT)) (-4359 ((|#2| |#2|) 15 T ELT)))
-(((-551 |#1| |#2|) (-10 -7 (-15 -1735 (|#2| |#2|)) (-15 -4359 (|#2| |#2|)) (-15 -1795 (|#2| |#2|)) (-15 -2434 (|#2| |#2| (-560) (-560)))) (-13 (-571) (-149)) (-1290 |#1|)) (T -551))
-((-2434 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-560)) (-4 *4 (-13 (-571) (-149))) (-5 *1 (-551 *4 *2)) (-4 *2 (-1290 *4)))) (-1795 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-551 *3 *2)) (-4 *2 (-1290 *3)))) (-4359 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-551 *3 *2)) (-4 *2 (-1290 *3)))) (-1735 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-551 *3 *2)) (-4 *2 (-1290 *3)))))
-(-10 -7 (-15 -1735 (|#2| |#2|)) (-15 -4359 (|#2| |#2|)) (-15 -1795 (|#2| |#2|)) (-15 -2434 (|#2| |#2| (-560) (-560))))
-((-2332 (((-663 (-305 (-975 |#2|))) (-663 |#2|) (-663 (-1207))) 32 T ELT)) (-1516 (((-663 |#2|) (-975 |#1|) |#3|) 54 T ELT) (((-663 |#2|) (-1201 |#1|) |#3|) 53 T ELT)) (-3118 (((-663 (-663 |#2|)) (-663 (-975 |#1|)) (-663 (-975 |#1|)) (-663 (-1207)) |#3|) 106 T ELT)))
-(((-552 |#1| |#2| |#3|) (-10 -7 (-15 -1516 ((-663 |#2|) (-1201 |#1|) |#3|)) (-15 -1516 ((-663 |#2|) (-975 |#1|) |#3|)) (-15 -3118 ((-663 (-663 |#2|)) (-663 (-975 |#1|)) (-663 (-975 |#1|)) (-663 (-1207)) |#3|)) (-15 -2332 ((-663 (-305 (-975 |#2|))) (-663 |#2|) (-663 (-1207))))) (-466) (-376) (-13 (-376) (-870))) (T -552))
-((-2332 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 (-1207))) (-4 *6 (-376)) (-5 *2 (-663 (-305 (-975 *6)))) (-5 *1 (-552 *5 *6 *7)) (-4 *5 (-466)) (-4 *7 (-13 (-376) (-870))))) (-3118 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-663 (-975 *6))) (-5 *4 (-663 (-1207))) (-4 *6 (-466)) (-5 *2 (-663 (-663 *7))) (-5 *1 (-552 *6 *7 *5)) (-4 *7 (-376)) (-4 *5 (-13 (-376) (-870))))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-975 *5)) (-4 *5 (-466)) (-5 *2 (-663 *6)) (-5 *1 (-552 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-870))))) (-1516 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 *5)) (-4 *5 (-466)) (-5 *2 (-663 *6)) (-5 *1 (-552 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-870))))))
-(-10 -7 (-15 -1516 ((-663 |#2|) (-1201 |#1|) |#3|)) (-15 -1516 ((-663 |#2|) (-975 |#1|) |#3|)) (-15 -3118 ((-663 (-663 |#2|)) (-663 (-975 |#1|)) (-663 (-975 |#1|)) (-663 (-1207)) |#3|)) (-15 -2332 ((-663 (-305 (-975 |#2|))) (-663 |#2|) (-663 (-1207)))))
-((-2588 ((|#2| |#2| |#1|) 17 T ELT)) (-3632 ((|#2| (-663 |#2|)) 31 T ELT)) (-2079 ((|#2| (-663 |#2|)) 52 T ELT)))
-(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3632 (|#2| (-663 |#2|))) (-15 -2079 (|#2| (-663 |#2|))) (-15 -2588 (|#2| |#2| |#1|))) (-319) (-1273 |#1|) |#1| (-1 |#1| |#1| (-793))) (T -553))
-((-2588 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-793))) (-5 *1 (-553 *3 *2 *4 *5)) (-4 *2 (-1273 *3)))) (-2079 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-553 *4 *2 *5 *6)) (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-793))))) (-3632 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-553 *4 *2 *5 *6)) (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-793))))))
-(-10 -7 (-15 -3632 (|#2| (-663 |#2|))) (-15 -2079 (|#2| (-663 |#2|))) (-15 -2588 (|#2| |#2| |#1|)))
-((-4457 (((-419 (-1201 |#4|)) (-1201 |#4|) (-1 (-419 (-1201 |#3|)) (-1201 |#3|))) 89 T ELT) (((-419 |#4|) |#4| (-1 (-419 (-1201 |#3|)) (-1201 |#3|))) 210 T ELT)))
-(((-554 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4457 ((-419 |#4|) |#4| (-1 (-419 (-1201 |#3|)) (-1201 |#3|)))) (-15 -4457 ((-419 (-1201 |#4|)) (-1201 |#4|) (-1 (-419 (-1201 |#3|)) (-1201 |#3|))))) (-871) (-815) (-13 (-319) (-149)) (-979 |#3| |#2| |#1|)) (T -554))
-((-4457 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-419 (-1201 *7)) (-1201 *7))) (-4 *7 (-13 (-319) (-149))) (-4 *5 (-871)) (-4 *6 (-815)) (-4 *8 (-979 *7 *6 *5)) (-5 *2 (-419 (-1201 *8))) (-5 *1 (-554 *5 *6 *7 *8)) (-5 *3 (-1201 *8)))) (-4457 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-419 (-1201 *7)) (-1201 *7))) (-4 *7 (-13 (-319) (-149))) (-4 *5 (-871)) (-4 *6 (-815)) (-5 *2 (-419 *3)) (-5 *1 (-554 *5 *6 *7 *3)) (-4 *3 (-979 *7 *6 *5)))))
-(-10 -7 (-15 -4457 ((-419 |#4|) |#4| (-1 (-419 (-1201 |#3|)) (-1201 |#3|)))) (-15 -4457 ((-419 (-1201 |#4|)) (-1201 |#4|) (-1 (-419 (-1201 |#3|)) (-1201 |#3|)))))
-((-1795 ((|#4| |#4|) 74 T ELT)) (-1735 ((|#4| |#4|) 70 T ELT)) (-2434 ((|#4| |#4| (-560) (-560)) 76 T ELT)) (-4359 ((|#4| |#4|) 72 T ELT)))
-(((-555 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1735 (|#4| |#4|)) (-15 -4359 (|#4| |#4|)) (-15 -1795 (|#4| |#4|)) (-15 -2434 (|#4| |#4| (-560) (-560)))) (-13 (-376) (-381) (-633 (-560))) (-1273 |#1|) (-746 |#1| |#2|) (-1290 |#3|)) (T -555))
-((-2434 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-560)) (-4 *4 (-13 (-376) (-381) (-633 *3))) (-4 *5 (-1273 *4)) (-4 *6 (-746 *4 *5)) (-5 *1 (-555 *4 *5 *6 *2)) (-4 *2 (-1290 *6)))) (-1795 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-4 *4 (-1273 *3)) (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1290 *5)))) (-4359 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-4 *4 (-1273 *3)) (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1290 *5)))) (-1735 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-4 *4 (-1273 *3)) (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1290 *5)))))
-(-10 -7 (-15 -1735 (|#4| |#4|)) (-15 -4359 (|#4| |#4|)) (-15 -1795 (|#4| |#4|)) (-15 -2434 (|#4| |#4| (-560) (-560))))
-((-1795 ((|#2| |#2|) 27 T ELT)) (-1735 ((|#2| |#2|) 23 T ELT)) (-2434 ((|#2| |#2| (-560) (-560)) 29 T ELT)) (-4359 ((|#2| |#2|) 25 T ELT)))
-(((-556 |#1| |#2|) (-10 -7 (-15 -1735 (|#2| |#2|)) (-15 -4359 (|#2| |#2|)) (-15 -1795 (|#2| |#2|)) (-15 -2434 (|#2| |#2| (-560) (-560)))) (-13 (-376) (-381) (-633 (-560))) (-1290 |#1|)) (T -556))
-((-2434 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-560)) (-4 *4 (-13 (-376) (-381) (-633 *3))) (-5 *1 (-556 *4 *2)) (-4 *2 (-1290 *4)))) (-1795 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-5 *1 (-556 *3 *2)) (-4 *2 (-1290 *3)))) (-4359 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-5 *1 (-556 *3 *2)) (-4 *2 (-1290 *3)))) (-1735 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-5 *1 (-556 *3 *2)) (-4 *2 (-1290 *3)))))
-(-10 -7 (-15 -1735 (|#2| |#2|)) (-15 -4359 (|#2| |#2|)) (-15 -1795 (|#2| |#2|)) (-15 -2434 (|#2| |#2| (-560) (-560))))
-((-4225 (((-3 (-560) "failed") |#2| |#1| (-1 (-3 (-560) "failed") |#1|)) 18 T ELT) (((-3 (-560) "failed") |#2| |#1| (-560) (-1 (-3 (-560) "failed") |#1|)) 14 T ELT) (((-3 (-560) "failed") |#2| (-560) (-1 (-3 (-560) "failed") |#1|)) 32 T ELT)))
-(((-557 |#1| |#2|) (-10 -7 (-15 -4225 ((-3 (-560) "failed") |#2| (-560) (-1 (-3 (-560) "failed") |#1|))) (-15 -4225 ((-3 (-560) "failed") |#2| |#1| (-560) (-1 (-3 (-560) "failed") |#1|))) (-15 -4225 ((-3 (-560) "failed") |#2| |#1| (-1 (-3 (-560) "failed") |#1|)))) (-1080) (-1273 |#1|)) (T -557))
-((-4225 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-560) "failed") *4)) (-4 *4 (-1080)) (-5 *2 (-560)) (-5 *1 (-557 *4 *3)) (-4 *3 (-1273 *4)))) (-4225 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-560) "failed") *4)) (-4 *4 (-1080)) (-5 *2 (-560)) (-5 *1 (-557 *4 *3)) (-4 *3 (-1273 *4)))) (-4225 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-560) "failed") *5)) (-4 *5 (-1080)) (-5 *2 (-560)) (-5 *1 (-557 *5 *3)) (-4 *3 (-1273 *5)))))
-(-10 -7 (-15 -4225 ((-3 (-560) "failed") |#2| (-560) (-1 (-3 (-560) "failed") |#1|))) (-15 -4225 ((-3 (-560) "failed") |#2| |#1| (-560) (-1 (-3 (-560) "failed") |#1|))) (-15 -4225 ((-3 (-560) "failed") |#2| |#1| (-1 (-3 (-560) "failed") |#1|))))
-((-2791 (($ $ $) 84 T ELT)) (-3023 (((-419 $) $) 52 T ELT)) (-2539 (((-3 (-560) "failed") $) 64 T ELT)) (-3330 (((-560) $) 42 T ELT)) (-3643 (((-3 (-421 (-560)) "failed") $) 79 T ELT)) (-3469 (((-114) $) 26 T ELT)) (-3197 (((-421 (-560)) $) 77 T ELT)) (-4330 (((-114) $) 55 T ELT)) (-1949 (($ $ $ $) 92 T ELT)) (-2928 (((-114) $) 17 T ELT)) (-2708 (($ $ $) 62 T ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 74 T ELT)) (-3009 (((-3 $ "failed") $) 69 T ELT)) (-3890 (($ $) 24 T ELT)) (-2818 (($ $ $) 90 T ELT)) (-3161 (($) 65 T ELT)) (-1559 (($ $) 58 T ELT)) (-4457 (((-419 $) $) 50 T ELT)) (-1737 (((-114) $) 15 T ELT)) (-2901 (((-793) $) 32 T ELT)) (-2894 (($ $) 11 T ELT) (($ $ (-793)) NIL T ELT)) (-1799 (($ $) 18 T ELT)) (-1407 (((-560) $) NIL T ELT) (((-549) $) 41 T ELT) (((-915 (-560)) $) 45 T ELT) (((-391) $) 35 T ELT) (((-229) $) 38 T ELT)) (-2930 (((-793)) 9 T ELT)) (-3385 (((-114) $ $) 21 T ELT)) (-3271 (($ $ $) 60 T ELT)))
-(((-558 |#1|) (-10 -8 (-15 -2818 (|#1| |#1| |#1|)) (-15 -1949 (|#1| |#1| |#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -1799 (|#1| |#1|)) (-15 -3643 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3197 ((-421 (-560)) |#1|)) (-15 -3469 ((-114) |#1|)) (-15 -2791 (|#1| |#1| |#1|)) (-15 -3385 ((-114) |#1| |#1|)) (-15 -1737 ((-114) |#1|)) (-15 -3161 (|#1|)) (-15 -3009 ((-3 |#1| "failed") |#1|)) (-15 -1407 ((-229) |#1|)) (-15 -1407 ((-391) |#1|)) (-15 -2708 (|#1| |#1| |#1|)) (-15 -1559 (|#1| |#1|)) (-15 -3271 (|#1| |#1| |#1|)) (-15 -2427 ((-913 (-560) |#1|) |#1| (-915 (-560)) (-913 (-560) |#1|))) (-15 -1407 ((-915 (-560)) |#1|)) (-15 -1407 ((-549) |#1|)) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -3330 ((-560) |#1|)) (-15 -1407 ((-560) |#1|)) (-15 -2894 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1|)) (-15 -2928 ((-114) |#1|)) (-15 -2901 ((-793) |#1|)) (-15 -4457 ((-419 |#1|) |#1|)) (-15 -3023 ((-419 |#1|) |#1|)) (-15 -4330 ((-114) |#1|)) (-15 -2930 ((-793)))) (-559)) (T -558))
-((-2930 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-558 *3)) (-4 *3 (-559)))))
-(-10 -8 (-15 -2818 (|#1| |#1| |#1|)) (-15 -1949 (|#1| |#1| |#1| |#1|)) (-15 -3890 (|#1| |#1|)) (-15 -1799 (|#1| |#1|)) (-15 -3643 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3197 ((-421 (-560)) |#1|)) (-15 -3469 ((-114) |#1|)) (-15 -2791 (|#1| |#1| |#1|)) (-15 -3385 ((-114) |#1| |#1|)) (-15 -1737 ((-114) |#1|)) (-15 -3161 (|#1|)) (-15 -3009 ((-3 |#1| "failed") |#1|)) (-15 -1407 ((-229) |#1|)) (-15 -1407 ((-391) |#1|)) (-15 -2708 (|#1| |#1| |#1|)) (-15 -1559 (|#1| |#1|)) (-15 -3271 (|#1| |#1| |#1|)) (-15 -2427 ((-913 (-560) |#1|) |#1| (-915 (-560)) (-913 (-560) |#1|))) (-15 -1407 ((-915 (-560)) |#1|)) (-15 -1407 ((-549) |#1|)) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -3330 ((-560) |#1|)) (-15 -1407 ((-560) |#1|)) (-15 -2894 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1|)) (-15 -2928 ((-114) |#1|)) (-15 -2901 ((-793) |#1|)) (-15 -4457 ((-419 |#1|) |#1|)) (-15 -3023 ((-419 |#1|) |#1|)) (-15 -4330 ((-114) |#1|)) (-15 -2930 ((-793))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-3244 (($ $) 46 T ELT)) (-4093 (((-114) $) 44 T ELT)) (-2791 (($ $ $) 93 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2970 (($ $ $ $) 82 T ELT)) (-1804 (($ $) 57 T ELT)) (-3023 (((-419 $) $) 58 T ELT)) (-1615 (((-114) $ $) 136 T ELT)) (-2138 (((-560) $) 125 T ELT)) (-2331 (($ $ $) 96 T ELT)) (-2238 (($) 18 T CONST)) (-2539 (((-3 (-560) "failed") $) 117 T ELT)) (-3330 (((-560) $) 118 T ELT)) (-1478 (($ $ $) 140 T ELT)) (-3142 (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 115 T ELT) (((-711 (-560)) (-711 $)) 114 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-3643 (((-3 (-421 (-560)) "failed") $) 90 T ELT)) (-3469 (((-114) $) 92 T ELT)) (-3197 (((-421 (-560)) $) 91 T ELT)) (-2310 (($) 89 T ELT) (($ $) 88 T ELT)) (-1490 (($ $ $) 139 T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 134 T ELT)) (-4330 (((-114) $) 59 T ELT)) (-1949 (($ $ $ $) 80 T ELT)) (-4322 (($ $ $) 94 T ELT)) (-2928 (((-114) $) 127 T ELT)) (-2708 (($ $ $) 105 T ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 108 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-3612 (((-114) $) 100 T ELT)) (-3009 (((-3 $ "failed") $) 102 T ELT)) (-2960 (((-114) $) 126 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 143 T ELT)) (-3651 (($ $ $ $) 81 T ELT)) (-3825 (($ $ $) 133 T ELT)) (-2820 (($ $ $) 132 T ELT)) (-3890 (($ $) 84 T ELT)) (-4108 (($ $) 97 T ELT)) (-2484 (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 113 T ELT) (((-711 (-560)) (-1297 $)) 112 T ELT)) (-2093 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-2818 (($ $ $) 79 T ELT)) (-3161 (($) 101 T CONST)) (-3728 (($ $) 86 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-2132 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-1559 (($ $) 106 T ELT)) (-4457 (((-419 $) $) 56 T ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 142 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 141 T ELT)) (-1528 (((-3 $ "failed") $ $) 48 T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 135 T ELT)) (-1737 (((-114) $) 99 T ELT)) (-2901 (((-793) $) 137 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 138 T ELT)) (-2894 (($ $) 123 T ELT) (($ $ (-793)) 121 T ELT)) (-3769 (($ $) 85 T ELT)) (-1799 (($ $) 87 T ELT)) (-1407 (((-560) $) 119 T ELT) (((-549) $) 110 T ELT) (((-915 (-560)) $) 109 T ELT) (((-391) $) 104 T ELT) (((-229) $) 103 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-560)) 116 T ELT)) (-2930 (((-793)) 32 T CONST)) (-3385 (((-114) $ $) 95 T ELT)) (-3271 (($ $ $) 107 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-1792 (($) 98 T ELT)) (-2948 (((-114) $ $) 45 T ELT)) (-3260 (($ $ $ $) 83 T ELT)) (-2282 (($ $) 124 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($ $) 122 T ELT) (($ $ (-793)) 120 T ELT)) (-2536 (((-114) $ $) 131 T ELT)) (-2508 (((-114) $ $) 129 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 130 T ELT)) (-2495 (((-114) $ $) 128 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ (-560) $) 111 T ELT)))
+((-2516 (((-663 |#2|) (-1201 |#1|) |#3|) 98 T ELT)) (-2910 (((-663 (-2 (|:| |outval| |#2|) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 |#2|))))) (-711 |#1|) |#3| (-1 (-419 (-1201 |#1|)) (-1201 |#1|))) 114 T ELT)) (-3719 (((-1201 |#1|) (-711 |#1|)) 110 T ELT)))
+(((-546 |#1| |#2| |#3|) (-10 -7 (-15 -3719 ((-1201 |#1|) (-711 |#1|))) (-15 -2516 ((-663 |#2|) (-1201 |#1|) |#3|)) (-15 -2910 ((-663 (-2 (|:| |outval| |#2|) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 |#2|))))) (-711 |#1|) |#3| (-1 (-419 (-1201 |#1|)) (-1201 |#1|))))) (-376) (-376) (-13 (-376) (-870))) (T -546))
+((-2910 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *6)) (-5 *5 (-1 (-419 (-1201 *6)) (-1201 *6))) (-4 *6 (-376)) (-5 *2 (-663 (-2 (|:| |outval| *7) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 *7)))))) (-5 *1 (-546 *6 *7 *4)) (-4 *7 (-376)) (-4 *4 (-13 (-376) (-870))))) (-2516 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 *5)) (-4 *5 (-376)) (-5 *2 (-663 *6)) (-5 *1 (-546 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-870))))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-711 *4)) (-4 *4 (-376)) (-5 *2 (-1201 *4)) (-5 *1 (-546 *4 *5 *6)) (-4 *5 (-376)) (-4 *6 (-13 (-376) (-870))))))
+(-10 -7 (-15 -3719 ((-1201 |#1|) (-711 |#1|))) (-15 -2516 ((-663 |#2|) (-1201 |#1|) |#3|)) (-15 -2910 ((-663 (-2 (|:| |outval| |#2|) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 |#2|))))) (-711 |#1|) |#3| (-1 (-419 (-1201 |#1|)) (-1201 |#1|)))))
+((-2406 (((-713 (-1256)) $ (-1256)) NIL T ELT)) (-1847 (((-713 (-564)) $ (-564)) NIL T ELT)) (-1580 (((-793) $ (-131)) 39 T ELT)) (-2241 (((-713 (-130)) $ (-130)) 40 T ELT)) (-1355 (((-713 (-1256)) $) NIL T ELT)) (-4163 (((-713 (-1254)) $) NIL T ELT)) (-4262 (((-713 (-1253)) $) NIL T ELT)) (-2380 (((-713 (-564)) $) NIL T ELT)) (-2103 (((-713 (-562)) $) NIL T ELT)) (-3714 (((-713 (-561)) $) NIL T ELT)) (-4478 (((-793) $ (-131)) 35 T ELT)) (-3366 (((-713 (-130)) $) 37 T ELT)) (-2772 (((-114) $) 27 T ELT)) (-4350 (((-713 $) (-593) (-983)) 18 T ELT) (((-713 $) (-505) (-983)) 24 T ELT)) (-3913 (((-887) $) 48 T ELT)) (-1835 (($ $) 42 T ELT)))
+(((-547) (-13 (-789 (-593)) (-632 (-887)) (-10 -8 (-15 -4350 ((-713 $) (-505) (-983)))))) (T -547))
+((-4350 (*1 *2 *3 *4) (-12 (-5 *3 (-505)) (-5 *4 (-983)) (-5 *2 (-713 (-547))) (-5 *1 (-547)))))
+(-13 (-789 (-593)) (-632 (-887)) (-10 -8 (-15 -4350 ((-713 $) (-505) (-983)))))
+((-1401 (((-864 (-560))) 12 T ELT)) (-1412 (((-864 (-560))) 14 T ELT)) (-2517 (((-854 (-560))) 9 T ELT)))
+(((-548) (-10 -7 (-15 -2517 ((-854 (-560)))) (-15 -1401 ((-864 (-560)))) (-15 -1412 ((-864 (-560)))))) (T -548))
+((-1412 (*1 *2) (-12 (-5 *2 (-864 (-560))) (-5 *1 (-548)))) (-1401 (*1 *2) (-12 (-5 *2 (-864 (-560))) (-5 *1 (-548)))) (-2517 (*1 *2) (-12 (-5 *2 (-854 (-560))) (-5 *1 (-548)))))
+(-10 -7 (-15 -2517 ((-854 (-560)))) (-15 -1401 ((-864 (-560)))) (-15 -1412 ((-864 (-560)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-1830 (((-1189) $) 55 T ELT)) (-2347 (((-114) $) 51 T ELT)) (-4454 (((-1207) $) 52 T ELT)) (-2120 (((-114) $) 49 T ELT)) (-2903 (((-1189) $) 50 T ELT)) (-3259 (($ (-1189)) 56 T ELT)) (-3066 (((-114) $) NIL T ELT)) (-3298 (((-114) $) NIL T ELT)) (-2884 (((-114) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3401 (($ $ (-663 (-1207))) 21 T ELT)) (-2421 (((-51) $) 23 T ELT)) (-1528 (((-114) $) NIL T ELT)) (-4477 (((-560) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1608 (($ $ (-663 (-1207)) (-1207)) 73 T ELT)) (-3698 (((-114) $) NIL T ELT)) (-2523 (((-229) $) NIL T ELT)) (-1356 (($ $) 44 T ELT)) (-2514 (((-887) $) NIL T ELT)) (-2439 (((-114) $ $) NIL T ELT)) (-1507 (($ $ (-560)) NIL T ELT) (($ $ (-663 (-560))) NIL T ELT)) (-4090 (((-663 $) $) 30 T ELT)) (-3431 (((-1207) (-663 $)) 57 T ELT)) (-2400 (($ (-1189)) NIL T ELT) (($ (-1207)) 19 T ELT) (($ (-560)) 8 T ELT) (($ (-229)) 28 T ELT) (($ (-887)) NIL T ELT) (($ (-663 $)) 65 T ELT) (((-1134) $) 12 T ELT) (($ (-1134)) 13 T ELT)) (-2531 (((-1207) (-1207) (-663 $)) 60 T ELT)) (-3913 (((-887) $) 54 T ELT)) (-2289 (($ $) 59 T ELT)) (-3325 (($ $) 58 T ELT)) (-4022 (($ $ (-663 $)) 66 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2569 (((-114) $) 29 T ELT)) (-1446 (($) 9 T CONST)) (-1456 (($) 11 T CONST)) (-2340 (((-114) $ $) 74 T ELT)) (-2453 (($ $ $) 82 T ELT)) (-2429 (($ $ $) 75 T ELT)) (** (($ $ (-793)) 81 T ELT) (($ $ (-560)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-2256 (((-560) $) NIL T ELT)))
+(((-549) (-13 (-1135 (-1189) (-1207) (-560) (-229) (-887)) (-633 (-1134)) (-10 -8 (-15 -2421 ((-51) $)) (-15 -2400 ($ (-1134))) (-15 -4022 ($ $ (-663 $))) (-15 -1608 ($ $ (-663 (-1207)) (-1207))) (-15 -3401 ($ $ (-663 (-1207)))) (-15 -2429 ($ $ $)) (-15 * ($ $ $)) (-15 -2453 ($ $ $)) (-15 ** ($ $ (-793))) (-15 ** ($ $ (-560))) (-15 0 ($) -2650) (-15 1 ($) -2650) (-15 -1356 ($ $)) (-15 -1830 ((-1189) $)) (-15 -3259 ($ (-1189))) (-15 -3431 ((-1207) (-663 $))) (-15 -2531 ((-1207) (-1207) (-663 $)))))) (T -549))
+((-2421 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-549)))) (-2400 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-549)))) (-4022 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-549))) (-5 *1 (-549)))) (-1608 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-1207)) (-5 *1 (-549)))) (-3401 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-549)))) (-2429 (*1 *1 *1 *1) (-5 *1 (-549))) (* (*1 *1 *1 *1) (-5 *1 (-549))) (-2453 (*1 *1 *1 *1) (-5 *1 (-549))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-549)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-549)))) (-1446 (*1 *1) (-5 *1 (-549))) (-1456 (*1 *1) (-5 *1 (-549))) (-1356 (*1 *1 *1) (-5 *1 (-549))) (-1830 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-549)))) (-3259 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-549)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-663 (-549))) (-5 *2 (-1207)) (-5 *1 (-549)))) (-2531 (*1 *2 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-663 (-549))) (-5 *1 (-549)))))
+(-13 (-1135 (-1189) (-1207) (-560) (-229) (-887)) (-633 (-1134)) (-10 -8 (-15 -2421 ((-51) $)) (-15 -2400 ($ (-1134))) (-15 -4022 ($ $ (-663 $))) (-15 -1608 ($ $ (-663 (-1207)) (-1207))) (-15 -3401 ($ $ (-663 (-1207)))) (-15 -2429 ($ $ $)) (-15 * ($ $ $)) (-15 -2453 ($ $ $)) (-15 ** ($ $ (-793))) (-15 ** ($ $ (-560))) (-15 (-1446) ($) -2650) (-15 (-1456) ($) -2650) (-15 -1356 ($ $)) (-15 -1830 ((-1189) $)) (-15 -3259 ($ (-1189))) (-15 -3431 ((-1207) (-663 $))) (-15 -2531 ((-1207) (-1207) (-663 $)))))
+((-2312 (((-549) (-1207)) 15 T ELT)) (-2421 ((|#1| (-549)) 20 T ELT)))
+(((-550 |#1|) (-10 -7 (-15 -2312 ((-549) (-1207))) (-15 -2421 (|#1| (-549)))) (-1247)) (T -550))
+((-2421 (*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-550 *2)) (-4 *2 (-1247)))) (-2312 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-549)) (-5 *1 (-550 *4)) (-4 *4 (-1247)))))
+(-10 -7 (-15 -2312 ((-549) (-1207))) (-15 -2421 (|#1| (-549))))
+((-1530 ((|#2| |#2|) 17 T ELT)) (-2222 ((|#2| |#2|) 13 T ELT)) (-1713 ((|#2| |#2| (-560) (-560)) 20 T ELT)) (-3349 ((|#2| |#2|) 15 T ELT)))
+(((-551 |#1| |#2|) (-10 -7 (-15 -2222 (|#2| |#2|)) (-15 -3349 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1713 (|#2| |#2| (-560) (-560)))) (-13 (-571) (-149)) (-1290 |#1|)) (T -551))
+((-1713 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-560)) (-4 *4 (-13 (-571) (-149))) (-5 *1 (-551 *4 *2)) (-4 *2 (-1290 *4)))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-551 *3 *2)) (-4 *2 (-1290 *3)))) (-3349 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-551 *3 *2)) (-4 *2 (-1290 *3)))) (-2222 (*1 *2 *2) (-12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-551 *3 *2)) (-4 *2 (-1290 *3)))))
+(-10 -7 (-15 -2222 (|#2| |#2|)) (-15 -3349 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1713 (|#2| |#2| (-560) (-560))))
+((-3185 (((-663 (-305 (-975 |#2|))) (-663 |#2|) (-663 (-1207))) 32 T ELT)) (-1649 (((-663 |#2|) (-975 |#1|) |#3|) 54 T ELT) (((-663 |#2|) (-1201 |#1|) |#3|) 53 T ELT)) (-2368 (((-663 (-663 |#2|)) (-663 (-975 |#1|)) (-663 (-975 |#1|)) (-663 (-1207)) |#3|) 106 T ELT)))
+(((-552 |#1| |#2| |#3|) (-10 -7 (-15 -1649 ((-663 |#2|) (-1201 |#1|) |#3|)) (-15 -1649 ((-663 |#2|) (-975 |#1|) |#3|)) (-15 -2368 ((-663 (-663 |#2|)) (-663 (-975 |#1|)) (-663 (-975 |#1|)) (-663 (-1207)) |#3|)) (-15 -3185 ((-663 (-305 (-975 |#2|))) (-663 |#2|) (-663 (-1207))))) (-466) (-376) (-13 (-376) (-870))) (T -552))
+((-3185 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 (-1207))) (-4 *6 (-376)) (-5 *2 (-663 (-305 (-975 *6)))) (-5 *1 (-552 *5 *6 *7)) (-4 *5 (-466)) (-4 *7 (-13 (-376) (-870))))) (-2368 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-663 (-975 *6))) (-5 *4 (-663 (-1207))) (-4 *6 (-466)) (-5 *2 (-663 (-663 *7))) (-5 *1 (-552 *6 *7 *5)) (-4 *7 (-376)) (-4 *5 (-13 (-376) (-870))))) (-1649 (*1 *2 *3 *4) (-12 (-5 *3 (-975 *5)) (-4 *5 (-466)) (-5 *2 (-663 *6)) (-5 *1 (-552 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-870))))) (-1649 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 *5)) (-4 *5 (-466)) (-5 *2 (-663 *6)) (-5 *1 (-552 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-870))))))
+(-10 -7 (-15 -1649 ((-663 |#2|) (-1201 |#1|) |#3|)) (-15 -1649 ((-663 |#2|) (-975 |#1|) |#3|)) (-15 -2368 ((-663 (-663 |#2|)) (-663 (-975 |#1|)) (-663 (-975 |#1|)) (-663 (-1207)) |#3|)) (-15 -3185 ((-663 (-305 (-975 |#2|))) (-663 |#2|) (-663 (-1207)))))
+((-3836 ((|#2| |#2| |#1|) 17 T ELT)) (-3921 ((|#2| (-663 |#2|)) 31 T ELT)) (-2521 ((|#2| (-663 |#2|)) 52 T ELT)))
+(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3921 (|#2| (-663 |#2|))) (-15 -2521 (|#2| (-663 |#2|))) (-15 -3836 (|#2| |#2| |#1|))) (-319) (-1273 |#1|) |#1| (-1 |#1| |#1| (-793))) (T -553))
+((-3836 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-793))) (-5 *1 (-553 *3 *2 *4 *5)) (-4 *2 (-1273 *3)))) (-2521 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-553 *4 *2 *5 *6)) (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-793))))) (-3921 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-553 *4 *2 *5 *6)) (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-793))))))
+(-10 -7 (-15 -3921 (|#2| (-663 |#2|))) (-15 -2521 (|#2| (-663 |#2|))) (-15 -3836 (|#2| |#2| |#1|)))
+((-4012 (((-419 (-1201 |#4|)) (-1201 |#4|) (-1 (-419 (-1201 |#3|)) (-1201 |#3|))) 89 T ELT) (((-419 |#4|) |#4| (-1 (-419 (-1201 |#3|)) (-1201 |#3|))) 210 T ELT)))
+(((-554 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4012 ((-419 |#4|) |#4| (-1 (-419 (-1201 |#3|)) (-1201 |#3|)))) (-15 -4012 ((-419 (-1201 |#4|)) (-1201 |#4|) (-1 (-419 (-1201 |#3|)) (-1201 |#3|))))) (-871) (-815) (-13 (-319) (-149)) (-979 |#3| |#2| |#1|)) (T -554))
+((-4012 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-419 (-1201 *7)) (-1201 *7))) (-4 *7 (-13 (-319) (-149))) (-4 *5 (-871)) (-4 *6 (-815)) (-4 *8 (-979 *7 *6 *5)) (-5 *2 (-419 (-1201 *8))) (-5 *1 (-554 *5 *6 *7 *8)) (-5 *3 (-1201 *8)))) (-4012 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-419 (-1201 *7)) (-1201 *7))) (-4 *7 (-13 (-319) (-149))) (-4 *5 (-871)) (-4 *6 (-815)) (-5 *2 (-419 *3)) (-5 *1 (-554 *5 *6 *7 *3)) (-4 *3 (-979 *7 *6 *5)))))
+(-10 -7 (-15 -4012 ((-419 |#4|) |#4| (-1 (-419 (-1201 |#3|)) (-1201 |#3|)))) (-15 -4012 ((-419 (-1201 |#4|)) (-1201 |#4|) (-1 (-419 (-1201 |#3|)) (-1201 |#3|)))))
+((-1530 ((|#4| |#4|) 74 T ELT)) (-2222 ((|#4| |#4|) 70 T ELT)) (-1713 ((|#4| |#4| (-560) (-560)) 76 T ELT)) (-3349 ((|#4| |#4|) 72 T ELT)))
+(((-555 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2222 (|#4| |#4|)) (-15 -3349 (|#4| |#4|)) (-15 -1530 (|#4| |#4|)) (-15 -1713 (|#4| |#4| (-560) (-560)))) (-13 (-376) (-381) (-633 (-560))) (-1273 |#1|) (-746 |#1| |#2|) (-1290 |#3|)) (T -555))
+((-1713 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-560)) (-4 *4 (-13 (-376) (-381) (-633 *3))) (-4 *5 (-1273 *4)) (-4 *6 (-746 *4 *5)) (-5 *1 (-555 *4 *5 *6 *2)) (-4 *2 (-1290 *6)))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-4 *4 (-1273 *3)) (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1290 *5)))) (-3349 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-4 *4 (-1273 *3)) (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1290 *5)))) (-2222 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-4 *4 (-1273 *3)) (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1290 *5)))))
+(-10 -7 (-15 -2222 (|#4| |#4|)) (-15 -3349 (|#4| |#4|)) (-15 -1530 (|#4| |#4|)) (-15 -1713 (|#4| |#4| (-560) (-560))))
+((-1530 ((|#2| |#2|) 27 T ELT)) (-2222 ((|#2| |#2|) 23 T ELT)) (-1713 ((|#2| |#2| (-560) (-560)) 29 T ELT)) (-3349 ((|#2| |#2|) 25 T ELT)))
+(((-556 |#1| |#2|) (-10 -7 (-15 -2222 (|#2| |#2|)) (-15 -3349 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1713 (|#2| |#2| (-560) (-560)))) (-13 (-376) (-381) (-633 (-560))) (-1290 |#1|)) (T -556))
+((-1713 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-560)) (-4 *4 (-13 (-376) (-381) (-633 *3))) (-5 *1 (-556 *4 *2)) (-4 *2 (-1290 *4)))) (-1530 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-5 *1 (-556 *3 *2)) (-4 *2 (-1290 *3)))) (-3349 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-5 *1 (-556 *3 *2)) (-4 *2 (-1290 *3)))) (-2222 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-5 *1 (-556 *3 *2)) (-4 *2 (-1290 *3)))))
+(-10 -7 (-15 -2222 (|#2| |#2|)) (-15 -3349 (|#2| |#2|)) (-15 -1530 (|#2| |#2|)) (-15 -1713 (|#2| |#2| (-560) (-560))))
+((-1505 (((-3 (-560) "failed") |#2| |#1| (-1 (-3 (-560) "failed") |#1|)) 18 T ELT) (((-3 (-560) "failed") |#2| |#1| (-560) (-1 (-3 (-560) "failed") |#1|)) 14 T ELT) (((-3 (-560) "failed") |#2| (-560) (-1 (-3 (-560) "failed") |#1|)) 32 T ELT)))
+(((-557 |#1| |#2|) (-10 -7 (-15 -1505 ((-3 (-560) "failed") |#2| (-560) (-1 (-3 (-560) "failed") |#1|))) (-15 -1505 ((-3 (-560) "failed") |#2| |#1| (-560) (-1 (-3 (-560) "failed") |#1|))) (-15 -1505 ((-3 (-560) "failed") |#2| |#1| (-1 (-3 (-560) "failed") |#1|)))) (-1080) (-1273 |#1|)) (T -557))
+((-1505 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-560) "failed") *4)) (-4 *4 (-1080)) (-5 *2 (-560)) (-5 *1 (-557 *4 *3)) (-4 *3 (-1273 *4)))) (-1505 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-560) "failed") *4)) (-4 *4 (-1080)) (-5 *2 (-560)) (-5 *1 (-557 *4 *3)) (-4 *3 (-1273 *4)))) (-1505 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-560) "failed") *5)) (-4 *5 (-1080)) (-5 *2 (-560)) (-5 *1 (-557 *5 *3)) (-4 *3 (-1273 *5)))))
+(-10 -7 (-15 -1505 ((-3 (-560) "failed") |#2| (-560) (-1 (-3 (-560) "failed") |#1|))) (-15 -1505 ((-3 (-560) "failed") |#2| |#1| (-560) (-1 (-3 (-560) "failed") |#1|))) (-15 -1505 ((-3 (-560) "failed") |#2| |#1| (-1 (-3 (-560) "failed") |#1|))))
+((-4071 (($ $ $) 84 T ELT)) (-3898 (((-419 $) $) 52 T ELT)) (-3929 (((-3 (-560) "failed") $) 64 T ELT)) (-3649 (((-560) $) 42 T ELT)) (-2743 (((-3 (-421 (-560)) "failed") $) 79 T ELT)) (-1574 (((-114) $) 26 T ELT)) (-1957 (((-421 (-560)) $) 77 T ELT)) (-3141 (((-114) $) 55 T ELT)) (-3777 (($ $ $ $) 92 T ELT)) (-4172 (((-114) $) 17 T ELT)) (-2534 (($ $ $) 62 T ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 74 T ELT)) (-3738 (((-3 $ "failed") $) 69 T ELT)) (-3105 (($ $) 24 T ELT)) (-4359 (($ $ $) 90 T ELT)) (-3239 (($) 65 T ELT)) (-1704 (($ $) 58 T ELT)) (-4012 (((-419 $) $) 50 T ELT)) (-2244 (((-114) $) 15 T ELT)) (-3989 (((-793) $) 32 T ELT)) (-3161 (($ $) 11 T ELT) (($ $ (-793)) NIL T ELT)) (-4107 (($ $) 18 T ELT)) (-2400 (((-560) $) NIL T ELT) (((-549) $) 41 T ELT) (((-915 (-560)) $) 45 T ELT) (((-391) $) 35 T ELT) (((-229) $) 38 T ELT)) (-4191 (((-793)) 9 T ELT)) (-3275 (((-114) $ $) 21 T ELT)) (-3381 (($ $ $) 60 T ELT)))
+(((-558 |#1|) (-10 -8 (-15 -4359 (|#1| |#1| |#1|)) (-15 -3777 (|#1| |#1| |#1| |#1|)) (-15 -3105 (|#1| |#1|)) (-15 -4107 (|#1| |#1|)) (-15 -2743 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -1957 ((-421 (-560)) |#1|)) (-15 -1574 ((-114) |#1|)) (-15 -4071 (|#1| |#1| |#1|)) (-15 -3275 ((-114) |#1| |#1|)) (-15 -2244 ((-114) |#1|)) (-15 -3239 (|#1|)) (-15 -3738 ((-3 |#1| "failed") |#1|)) (-15 -2400 ((-229) |#1|)) (-15 -2400 ((-391) |#1|)) (-15 -2534 (|#1| |#1| |#1|)) (-15 -1704 (|#1| |#1|)) (-15 -3381 (|#1| |#1| |#1|)) (-15 -1646 ((-913 (-560) |#1|) |#1| (-915 (-560)) (-913 (-560) |#1|))) (-15 -2400 ((-915 (-560)) |#1|)) (-15 -2400 ((-549) |#1|)) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -3649 ((-560) |#1|)) (-15 -2400 ((-560) |#1|)) (-15 -3161 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1|)) (-15 -4172 ((-114) |#1|)) (-15 -3989 ((-793) |#1|)) (-15 -4012 ((-419 |#1|) |#1|)) (-15 -3898 ((-419 |#1|) |#1|)) (-15 -3141 ((-114) |#1|)) (-15 -4191 ((-793)))) (-559)) (T -558))
+((-4191 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-558 *3)) (-4 *3 (-559)))))
+(-10 -8 (-15 -4359 (|#1| |#1| |#1|)) (-15 -3777 (|#1| |#1| |#1| |#1|)) (-15 -3105 (|#1| |#1|)) (-15 -4107 (|#1| |#1|)) (-15 -2743 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -1957 ((-421 (-560)) |#1|)) (-15 -1574 ((-114) |#1|)) (-15 -4071 (|#1| |#1| |#1|)) (-15 -3275 ((-114) |#1| |#1|)) (-15 -2244 ((-114) |#1|)) (-15 -3239 (|#1|)) (-15 -3738 ((-3 |#1| "failed") |#1|)) (-15 -2400 ((-229) |#1|)) (-15 -2400 ((-391) |#1|)) (-15 -2534 (|#1| |#1| |#1|)) (-15 -1704 (|#1| |#1|)) (-15 -3381 (|#1| |#1| |#1|)) (-15 -1646 ((-913 (-560) |#1|) |#1| (-915 (-560)) (-913 (-560) |#1|))) (-15 -2400 ((-915 (-560)) |#1|)) (-15 -2400 ((-549) |#1|)) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -3649 ((-560) |#1|)) (-15 -2400 ((-560) |#1|)) (-15 -3161 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1|)) (-15 -4172 ((-114) |#1|)) (-15 -3989 ((-793) |#1|)) (-15 -4012 ((-419 |#1|) |#1|)) (-15 -3898 ((-419 |#1|) |#1|)) (-15 -3141 ((-114) |#1|)) (-15 -4191 ((-793))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-4366 (($ $) 46 T ELT)) (-2667 (((-114) $) 44 T ELT)) (-4071 (($ $ $) 93 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3321 (($ $ $ $) 82 T ELT)) (-1621 (($ $) 57 T ELT)) (-3898 (((-419 $) $) 58 T ELT)) (-3476 (((-114) $ $) 136 T ELT)) (-1869 (((-560) $) 125 T ELT)) (-1786 (($ $ $) 96 T ELT)) (-3525 (($) 18 T CONST)) (-3929 (((-3 (-560) "failed") $) 117 T ELT)) (-3649 (((-560) $) 118 T ELT)) (-2186 (($ $ $) 140 T ELT)) (-2619 (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 115 T ELT) (((-711 (-560)) (-711 $)) 114 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-2743 (((-3 (-421 (-560)) "failed") $) 90 T ELT)) (-1574 (((-114) $) 92 T ELT)) (-1957 (((-421 (-560)) $) 91 T ELT)) (-1812 (($) 89 T ELT) (($ $) 88 T ELT)) (-2197 (($ $ $) 139 T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 134 T ELT)) (-3141 (((-114) $) 59 T ELT)) (-3777 (($ $ $ $) 80 T ELT)) (-3078 (($ $ $) 94 T ELT)) (-4172 (((-114) $) 127 T ELT)) (-2534 (($ $ $) 105 T ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 108 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3729 (((-114) $) 100 T ELT)) (-3738 (((-3 $ "failed") $) 102 T ELT)) (-4470 (((-114) $) 126 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 143 T ELT)) (-2804 (($ $ $ $) 81 T ELT)) (-2932 (($ $ $) 133 T ELT)) (-4379 (($ $ $) 132 T ELT)) (-3105 (($ $) 84 T ELT)) (-2946 (($ $) 97 T ELT)) (-4140 (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 113 T ELT) (((-711 (-560)) (-1297 $)) 112 T ELT)) (-1861 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-4359 (($ $ $) 79 T ELT)) (-3239 (($) 101 T CONST)) (-4079 (($ $) 86 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-1938 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-1704 (($ $) 106 T ELT)) (-4012 (((-419 $) $) 56 T ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 142 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 141 T ELT)) (-2233 (((-3 $ "failed") $ $) 48 T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 135 T ELT)) (-2244 (((-114) $) 99 T ELT)) (-3989 (((-793) $) 137 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 138 T ELT)) (-3161 (($ $) 123 T ELT) (($ $ (-793)) 121 T ELT)) (-2776 (($ $) 85 T ELT)) (-4107 (($ $) 87 T ELT)) (-2400 (((-560) $) 119 T ELT) (((-549) $) 110 T ELT) (((-915 (-560)) $) 109 T ELT) (((-391) $) 104 T ELT) (((-229) $) 103 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-560)) 116 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3275 (((-114) $ $) 95 T ELT)) (-3381 (($ $ $) 107 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2671 (($) 98 T ELT)) (-4361 (((-114) $ $) 45 T ELT)) (-1369 (($ $ $ $) 83 T ELT)) (-2719 (($ $) 124 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($ $) 122 T ELT) (($ $ (-793)) 120 T ELT)) (-2396 (((-114) $ $) 131 T ELT)) (-2373 (((-114) $ $) 129 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 130 T ELT)) (-2362 (((-114) $ $) 128 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ (-560) $) 111 T ELT)))
(((-559) (-142)) (T -559))
-((-3612 (*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-114)))) (-1737 (*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-114)))) (-1792 (*1 *1) (-4 *1 (-559))) (-4108 (*1 *1 *1) (-4 *1 (-559))) (-2331 (*1 *1 *1 *1) (-4 *1 (-559))) (-3385 (*1 *2 *1 *1) (-12 (-4 *1 (-559)) (-5 *2 (-114)))) (-4322 (*1 *1 *1 *1) (-4 *1 (-559))) (-2791 (*1 *1 *1 *1) (-4 *1 (-559))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-114)))) (-3197 (*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-421 (-560))))) (-3643 (*1 *2 *1) (|partial| -12 (-4 *1 (-559)) (-5 *2 (-421 (-560))))) (-2310 (*1 *1) (-4 *1 (-559))) (-2310 (*1 *1 *1) (-4 *1 (-559))) (-1799 (*1 *1 *1) (-4 *1 (-559))) (-3728 (*1 *1 *1) (-4 *1 (-559))) (-3769 (*1 *1 *1) (-4 *1 (-559))) (-3890 (*1 *1 *1) (-4 *1 (-559))) (-3260 (*1 *1 *1 *1 *1) (-4 *1 (-559))) (-2970 (*1 *1 *1 *1 *1) (-4 *1 (-559))) (-3651 (*1 *1 *1 *1 *1) (-4 *1 (-559))) (-1949 (*1 *1 *1 *1 *1) (-4 *1 (-559))) (-2818 (*1 *1 *1 *1) (-4 *1 (-559))))
-(-13 (-1252) (-319) (-842) (-240) (-633 (-560)) (-1069 (-560)) (-660 (-560)) (-633 (-549)) (-633 (-915 (-560))) (-911 (-560)) (-145) (-1051) (-149) (-1182) (-10 -8 (-15 -3612 ((-114) $)) (-15 -1737 ((-114) $)) (-6 -4507) (-15 -1792 ($)) (-15 -4108 ($ $)) (-15 -2331 ($ $ $)) (-15 -3385 ((-114) $ $)) (-15 -4322 ($ $ $)) (-15 -2791 ($ $ $)) (-15 -3469 ((-114) $)) (-15 -3197 ((-421 (-560)) $)) (-15 -3643 ((-3 (-421 (-560)) "failed") $)) (-15 -2310 ($)) (-15 -2310 ($ $)) (-15 -1799 ($ $)) (-15 -3728 ($ $)) (-15 -3769 ($ $)) (-15 -3890 ($ $)) (-15 -3260 ($ $ $ $)) (-15 -2970 ($ $ $ $)) (-15 -3651 ($ $ $ $)) (-15 -1949 ($ $ $ $)) (-15 -2818 ($ $ $)) (-6 -4506)))
+((-3729 (*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-114)))) (-2244 (*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-114)))) (-2671 (*1 *1) (-4 *1 (-559))) (-2946 (*1 *1 *1) (-4 *1 (-559))) (-1786 (*1 *1 *1 *1) (-4 *1 (-559))) (-3275 (*1 *2 *1 *1) (-12 (-4 *1 (-559)) (-5 *2 (-114)))) (-3078 (*1 *1 *1 *1) (-4 *1 (-559))) (-4071 (*1 *1 *1 *1) (-4 *1 (-559))) (-1574 (*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-114)))) (-1957 (*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-421 (-560))))) (-2743 (*1 *2 *1) (|partial| -12 (-4 *1 (-559)) (-5 *2 (-421 (-560))))) (-1812 (*1 *1) (-4 *1 (-559))) (-1812 (*1 *1 *1) (-4 *1 (-559))) (-4107 (*1 *1 *1) (-4 *1 (-559))) (-4079 (*1 *1 *1) (-4 *1 (-559))) (-2776 (*1 *1 *1) (-4 *1 (-559))) (-3105 (*1 *1 *1) (-4 *1 (-559))) (-1369 (*1 *1 *1 *1 *1) (-4 *1 (-559))) (-3321 (*1 *1 *1 *1 *1) (-4 *1 (-559))) (-2804 (*1 *1 *1 *1 *1) (-4 *1 (-559))) (-3777 (*1 *1 *1 *1 *1) (-4 *1 (-559))) (-4359 (*1 *1 *1 *1) (-4 *1 (-559))))
+(-13 (-1252) (-319) (-842) (-240) (-633 (-560)) (-1069 (-560)) (-660 (-560)) (-633 (-549)) (-633 (-915 (-560))) (-911 (-560)) (-145) (-1051) (-149) (-1182) (-10 -8 (-15 -3729 ((-114) $)) (-15 -2244 ((-114) $)) (-6 -4507) (-15 -2671 ($)) (-15 -2946 ($ $)) (-15 -1786 ($ $ $)) (-15 -3275 ((-114) $ $)) (-15 -3078 ($ $ $)) (-15 -4071 ($ $ $)) (-15 -1574 ((-114) $)) (-15 -1957 ((-421 (-560)) $)) (-15 -2743 ((-3 (-421 (-560)) "failed") $)) (-15 -1812 ($)) (-15 -1812 ($ $)) (-15 -4107 ($ $)) (-15 -4079 ($ $)) (-15 -2776 ($ $)) (-15 -3105 ($ $)) (-15 -1369 ($ $ $ $)) (-15 -3321 ($ $ $ $)) (-15 -2804 ($ $ $ $)) (-15 -3777 ($ $ $ $)) (-15 -4359 ($ $ $)) (-6 -4506)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-145) . T) ((-175) . T) ((-633 (-229)) . T) ((-633 (-391)) . T) ((-633 (-549)) . T) ((-633 (-560)) . T) ((-633 (-915 (-560))) . T) ((-236 $) . T) ((-240) . T) ((-239) . T) ((-302) . T) ((-319) . T) ((-466) . T) ((-571) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 #0=(-560)) . T) ((-670 $) . T) ((-662 $) . T) ((-660 #0#) . T) ((-739 $) . T) ((-748) . T) ((-813) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-842) . T) ((-870) . T) ((-871) . T) ((-874) . T) ((-911 (-560)) . T) ((-950) . T) ((-1051) . T) ((-1069 (-560)) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1182) . T) ((-1247) . T) ((-1252) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 29 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 95 T ELT)) (-3244 (($ $) 96 T ELT)) (-4093 (((-114) $) NIL T ELT)) (-2791 (($ $ $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2970 (($ $ $ $) 49 T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2138 (((-560) $) NIL T ELT)) (-2331 (($ $ $) 90 T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) NIL T ELT)) (-3330 (((-560) $) NIL T ELT)) (-1478 (($ $ $) 50 T ELT)) (-3142 (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 75 T ELT) (((-711 (-560)) (-711 $)) 71 T ELT)) (-1990 (((-3 $ "failed") $) 92 T ELT)) (-3643 (((-3 (-421 (-560)) "failed") $) NIL T ELT)) (-3469 (((-114) $) NIL T ELT)) (-3197 (((-421 (-560)) $) NIL T ELT)) (-2310 (($) 77 T ELT) (($ $) 78 T ELT)) (-1490 (($ $ $) 89 T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-1949 (($ $ $ $) NIL T ELT)) (-4322 (($ $ $) 68 T ELT)) (-2928 (((-114) $) NIL T ELT)) (-2708 (($ $ $) NIL T ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL T ELT)) (-1581 (((-114) $) 31 T ELT)) (-3612 (((-114) $) 84 T ELT)) (-3009 (((-3 $ "failed") $) NIL T ELT)) (-2960 (((-114) $) 7 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3651 (($ $ $ $) 51 T ELT)) (-3825 (($ $ $) 86 T ELT)) (-2820 (($ $ $) 85 T ELT)) (-3890 (($ $) NIL T ELT)) (-4108 (($ $) 46 T ELT)) (-2484 (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL T ELT) (((-711 (-560)) (-1297 $)) NIL T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) 67 T ELT)) (-2818 (($ $ $) NIL T ELT)) (-3161 (($) NIL T CONST)) (-3728 (($ $) 35 T ELT)) (-3855 (((-1151) $) 39 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 127 T ELT)) (-2132 (($ $ $) 93 T ELT) (($ (-663 $)) NIL T ELT)) (-1559 (($ $) NIL T ELT)) (-4457 (((-419 $) $) 113 T ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) 111 T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1737 (((-114) $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 88 T ELT)) (-2894 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3769 (($ $) 37 T ELT)) (-1799 (($ $) 33 T ELT)) (-1407 (((-560) $) 45 T ELT) (((-549) $) 60 T ELT) (((-915 (-560)) $) NIL T ELT) (((-391) $) 54 T ELT) (((-229) $) 57 T ELT) (((-1189) $) 62 T ELT)) (-1578 (((-887) $) 43 T ELT) (($ (-560)) 44 T ELT) (($ $) NIL T ELT) (($ (-560)) 44 T ELT)) (-2930 (((-793)) NIL T CONST)) (-3385 (((-114) $ $) NIL T ELT)) (-3271 (($ $ $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1792 (($) 32 T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-3260 (($ $ $ $) 48 T ELT)) (-2282 (($ $) 76 T ELT)) (-2001 (($) 27 T CONST)) (-2011 (($) 30 T CONST)) (-2735 (((-1189) $) 23 T ELT) (((-1189) $ (-114)) 24 T ELT) (((-1303) (-845) $) 25 T ELT) (((-1303) (-845) $ (-114)) 26 T ELT)) (-3305 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2536 (((-114) $ $) 47 T ELT)) (-2508 (((-114) $ $) 79 T ELT)) (-2473 (((-114) $ $) 28 T ELT)) (-2521 (((-114) $ $) 80 T ELT)) (-2495 (((-114) $ $) 40 T ELT)) (-2580 (($ $) 13 T ELT) (($ $ $) 36 T ELT)) (-2567 (($ $ $) 34 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 83 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 82 T ELT) (($ $ $) 81 T ELT) (($ (-560) $) 82 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 29 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 95 T ELT)) (-4366 (($ $) 96 T ELT)) (-2667 (((-114) $) NIL T ELT)) (-4071 (($ $ $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3321 (($ $ $ $) 49 T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-1869 (((-560) $) NIL T ELT)) (-1786 (($ $ $) 90 T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) NIL T ELT)) (-3649 (((-560) $) NIL T ELT)) (-2186 (($ $ $) 50 T ELT)) (-2619 (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 75 T ELT) (((-711 (-560)) (-711 $)) 71 T ELT)) (-2873 (((-3 $ "failed") $) 92 T ELT)) (-2743 (((-3 (-421 (-560)) "failed") $) NIL T ELT)) (-1574 (((-114) $) NIL T ELT)) (-1957 (((-421 (-560)) $) NIL T ELT)) (-1812 (($) 77 T ELT) (($ $) 78 T ELT)) (-2197 (($ $ $) 89 T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-3777 (($ $ $ $) NIL T ELT)) (-3078 (($ $ $) 68 T ELT)) (-4172 (((-114) $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL T ELT)) (-1918 (((-114) $) 31 T ELT)) (-3729 (((-114) $) 84 T ELT)) (-3738 (((-3 $ "failed") $) NIL T ELT)) (-4470 (((-114) $) 7 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2804 (($ $ $ $) 51 T ELT)) (-2932 (($ $ $) 86 T ELT)) (-4379 (($ $ $) 85 T ELT)) (-3105 (($ $) NIL T ELT)) (-2946 (($ $) 46 T ELT)) (-4140 (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL T ELT) (((-711 (-560)) (-1297 $)) NIL T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) 67 T ELT)) (-4359 (($ $ $) NIL T ELT)) (-3239 (($) NIL T CONST)) (-4079 (($ $) 35 T ELT)) (-3376 (((-1151) $) 39 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 127 T ELT)) (-1938 (($ $ $) 93 T ELT) (($ (-663 $)) NIL T ELT)) (-1704 (($ $) NIL T ELT)) (-4012 (((-419 $) $) 113 T ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) 111 T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2244 (((-114) $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 88 T ELT)) (-3161 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2776 (($ $) 37 T ELT)) (-4107 (($ $) 33 T ELT)) (-2400 (((-560) $) 45 T ELT) (((-549) $) 60 T ELT) (((-915 (-560)) $) NIL T ELT) (((-391) $) 54 T ELT) (((-229) $) 57 T ELT) (((-1189) $) 62 T ELT)) (-3913 (((-887) $) 43 T ELT) (($ (-560)) 44 T ELT) (($ $) NIL T ELT) (($ (-560)) 44 T ELT)) (-4191 (((-793)) NIL T CONST)) (-3275 (((-114) $ $) NIL T ELT)) (-3381 (($ $ $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2671 (($) 32 T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-1369 (($ $ $ $) 48 T ELT)) (-2719 (($ $) 76 T ELT)) (-1446 (($) 27 T CONST)) (-1456 (($) 30 T CONST)) (-1581 (((-1189) $) 23 T ELT) (((-1189) $ (-114)) 24 T ELT) (((-1303) (-845) $) 25 T ELT) (((-1303) (-845) $ (-114)) 26 T ELT)) (-2111 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2396 (((-114) $ $) 47 T ELT)) (-2373 (((-114) $ $) 79 T ELT)) (-2340 (((-114) $ $) 28 T ELT)) (-2386 (((-114) $ $) 80 T ELT)) (-2362 (((-114) $ $) 40 T ELT)) (-2441 (($ $) 13 T ELT) (($ $ $) 36 T ELT)) (-2429 (($ $ $) 34 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 83 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 82 T ELT) (($ $ $) 81 T ELT) (($ (-560) $) 82 T ELT)))
(((-560) (-13 (-559) (-633 (-1189)) (-843) (-10 -7 (-6 -4495) (-6 -4500) (-6 -4496) (-6 -4490)))) (T -560))
NIL
(-13 (-559) (-633 (-1189)) (-843) (-10 -7 (-6 -4495) (-6 -4500) (-6 -4496) (-6 -4490)))
-((-1538 (((-114) $ $) NIL T ELT)) (-3241 (((-793)) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2310 (($) NIL T ELT)) (-3825 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2820 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4419 (((-948) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3128 (($ (-948)) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) NIL T ELT)))
-(((-561) (-13 (-866) (-10 -8 (-15 -2238 ($) -3081)))) (T -561))
-((-2238 (*1 *1) (-5 *1 (-561))))
-(-13 (-866) (-10 -8 (-15 -2238 ($) -3081)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2552 (((-793)) NIL T ELT)) (-3525 (($) NIL T CONST)) (-1812 (($) NIL T ELT)) (-2932 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4379 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2622 (((-948) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1591 (($ (-948)) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) NIL T ELT)))
+(((-561) (-13 (-866) (-10 -8 (-15 -3525 ($) -2650)))) (T -561))
+((-3525 (*1 *1) (-5 *1 (-561))))
+(-13 (-866) (-10 -8 (-15 -3525 ($) -2650)))
((|Integer|) (|%not| (|%ilt| 16 (INTEGER-LENGTH |#1|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3241 (((-793)) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2310 (($) NIL T ELT)) (-3825 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2820 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4419 (((-948) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3128 (($ (-948)) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) NIL T ELT)))
-(((-562) (-13 (-866) (-10 -8 (-15 -2238 ($) -3081)))) (T -562))
-((-2238 (*1 *1) (-5 *1 (-562))))
-(-13 (-866) (-10 -8 (-15 -2238 ($) -3081)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2552 (((-793)) NIL T ELT)) (-3525 (($) NIL T CONST)) (-1812 (($) NIL T ELT)) (-2932 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4379 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2622 (((-948) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1591 (($ (-948)) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) NIL T ELT)))
+(((-562) (-13 (-866) (-10 -8 (-15 -3525 ($) -2650)))) (T -562))
+((-3525 (*1 *1) (-5 *1 (-562))))
+(-13 (-866) (-10 -8 (-15 -3525 ($) -2650)))
((|Integer|) (|%not| (|%ilt| 32 (INTEGER-LENGTH |#1|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3241 (((-793)) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2310 (($) NIL T ELT)) (-3825 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2820 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4419 (((-948) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3128 (($ (-948)) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) NIL T ELT)))
-(((-563) (-13 (-866) (-10 -8 (-15 -2238 ($) -3081)))) (T -563))
-((-2238 (*1 *1) (-5 *1 (-563))))
-(-13 (-866) (-10 -8 (-15 -2238 ($) -3081)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2552 (((-793)) NIL T ELT)) (-3525 (($) NIL T CONST)) (-1812 (($) NIL T ELT)) (-2932 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4379 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2622 (((-948) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1591 (($ (-948)) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) NIL T ELT)))
+(((-563) (-13 (-866) (-10 -8 (-15 -3525 ($) -2650)))) (T -563))
+((-3525 (*1 *1) (-5 *1 (-563))))
+(-13 (-866) (-10 -8 (-15 -3525 ($) -2650)))
((|Integer|) (|%not| (|%ilt| 64 (INTEGER-LENGTH |#1|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3241 (((-793)) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2310 (($) NIL T ELT)) (-3825 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2820 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4419 (((-948) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3128 (($ (-948)) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) NIL T ELT)))
-(((-564) (-13 (-866) (-10 -8 (-15 -2238 ($) -3081)))) (T -564))
-((-2238 (*1 *1) (-5 *1 (-564))))
-(-13 (-866) (-10 -8 (-15 -2238 ($) -3081)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2552 (((-793)) NIL T ELT)) (-3525 (($) NIL T CONST)) (-1812 (($) NIL T ELT)) (-2932 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4379 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2622 (((-948) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1591 (($ (-948)) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) NIL T ELT)))
+(((-564) (-13 (-866) (-10 -8 (-15 -3525 ($) -2650)))) (T -564))
+((-3525 (*1 *1) (-5 *1 (-564))))
+(-13 (-866) (-10 -8 (-15 -3525 ($) -2650)))
((|Integer|) (|%not| (|%ilt| 8 (INTEGER-LENGTH |#1|))))
-((-1538 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4083 (($) NIL T ELT) (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-3839 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 ((|#2| $ |#1| |#2|) NIL T ELT)) (-3500 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4255 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT)) (-3390 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2375 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3779 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#2| $ |#1|) NIL T ELT)) (-2181 (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-2656 (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-2937 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-2236 (((-663 |#1|) $) NIL T ELT)) (-1445 (((-114) |#1| $) NIL T ELT)) (-1576 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-3629 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-3270 (((-663 |#1|) $) NIL T ELT)) (-3586 (((-114) |#1| $) NIL T ELT)) (-3855 (((-1151) $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-3637 ((|#2| $) NIL (|has| |#1| (-871)) ELT)) (-3329 (((-3 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) "failed") (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL T ELT)) (-3037 (($ $ |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-2615 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-2787 (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-3571 (((-663 |#2|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-3897 (($) NIL T ELT) (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-3865 (((-793) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT) (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-633 (-549))) ELT)) (-1592 (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-1578 (((-887) $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-632 (-887))) (|has| |#2| (-632 (-887)))) ELT)) (-2275 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3376 (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-1728 (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4236 (($) NIL T ELT) (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-2033 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1864 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3799 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT)) (-2091 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-3033 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3338 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#2| $ |#1|) NIL T ELT)) (-3737 (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3243 (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-4263 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-4325 (((-663 |#1|) $) NIL T ELT)) (-4124 (((-114) |#1| $) NIL T ELT)) (-1878 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-3888 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-3372 (((-663 |#1|) $) NIL T ELT)) (-3439 (((-114) |#1| $) NIL T ELT)) (-3376 (((-1151) $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-4334 ((|#2| $) NIL (|has| |#1| (-871)) ELT)) (-2708 (((-3 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) "failed") (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL T ELT)) (-2740 (($ $ |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-2796 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-2086 (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-1383 (((-663 |#2|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-4468 (($) NIL T ELT) (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-3384 (((-793) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT) (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-633 (-549))) ELT)) (-3924 (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-3913 (((-887) $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-632 (-887))) (|has| |#2| (-632 (-887)))) ELT)) (-3925 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3184 (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-2149 (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
(((-565 |#1| |#2| |#3|) (-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4508))) (-1132) (-1132) (-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4508)))) (T -565))
NIL
(-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4508)))
-((-4218 (((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-1 (-1201 |#2|) (-1201 |#2|))) 50 T ELT)))
-(((-566 |#1| |#2|) (-10 -7 (-15 -4218 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-1 (-1201 |#2|) (-1201 |#2|))))) (-571) (-13 (-27) (-435 |#1|))) (T -566))
-((-4218 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-630 *3)) (-5 *5 (-1 (-1201 *3) (-1201 *3))) (-4 *3 (-13 (-27) (-435 *6))) (-4 *6 (-571)) (-5 *2 (-597 *3)) (-5 *1 (-566 *6 *3)))))
-(-10 -7 (-15 -4218 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-1 (-1201 |#2|) (-1201 |#2|)))))
-((-3130 (((-597 |#5|) |#5| (-1 |#3| |#3|)) 216 T ELT)) (-3481 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212 T ELT)) (-1827 (((-597 |#5|) |#5| (-1 |#3| |#3|)) 220 T ELT)))
-(((-567 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1827 ((-597 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3130 ((-597 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3481 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-571) (-1069 (-560))) (-13 (-27) (-435 |#1|)) (-1273 |#2|) (-1273 (-421 |#3|)) (-355 |#2| |#3| |#4|)) (T -567))
-((-3481 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-27) (-435 *4))) (-4 *4 (-13 (-571) (-1069 (-560)))) (-4 *7 (-1273 (-421 *6))) (-5 *1 (-567 *4 *5 *6 *7 *2)) (-4 *2 (-355 *5 *6 *7)))) (-3130 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1273 *6)) (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-571) (-1069 (-560)))) (-4 *8 (-1273 (-421 *7))) (-5 *2 (-597 *3)) (-5 *1 (-567 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8)))) (-1827 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1273 *6)) (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-571) (-1069 (-560)))) (-4 *8 (-1273 (-421 *7))) (-5 *2 (-597 *3)) (-5 *1 (-567 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8)))))
-(-10 -7 (-15 -1827 ((-597 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3130 ((-597 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3481 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-3131 (((-114) (-560) (-560)) 12 T ELT)) (-3429 (((-560) (-560)) 7 T ELT)) (-3793 (((-560) (-560) (-560)) 10 T ELT)))
-(((-568) (-10 -7 (-15 -3429 ((-560) (-560))) (-15 -3793 ((-560) (-560) (-560))) (-15 -3131 ((-114) (-560) (-560))))) (T -568))
-((-3131 (*1 *2 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-114)) (-5 *1 (-568)))) (-3793 (*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-568)))) (-3429 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-568)))))
-(-10 -7 (-15 -3429 ((-560) (-560))) (-15 -3793 ((-560) (-560) (-560))) (-15 -3131 ((-114) (-560) (-560))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3423 ((|#1| $) 68 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-3244 (($ $) 46 T ELT)) (-4093 (((-114) $) 44 T ELT)) (-4337 (($ $) 98 T ELT)) (-3455 (($ $) 81 T ELT)) (-3168 ((|#1| $) 69 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-4471 (($ $) 80 T ELT)) (-4313 (($ $) 97 T ELT)) (-3430 (($ $) 82 T ELT)) (-4363 (($ $) 96 T ELT)) (-3477 (($ $) 83 T ELT)) (-2238 (($) 18 T CONST)) (-2539 (((-3 (-560) "failed") $) 76 T ELT)) (-3330 (((-560) $) 77 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-2126 (($ |#1| |#1|) 73 T ELT)) (-2928 (((-114) $) 67 T ELT)) (-3796 (($) 108 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-2146 (($ $ (-560)) 79 T ELT)) (-2960 (((-114) $) 66 T ELT)) (-3825 (($ $ $) 109 T ELT)) (-2820 (($ $ $) 110 T ELT)) (-2192 (($ $) 105 T ELT)) (-2093 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3750 (($ |#1| |#1|) 74 T ELT) (($ |#1|) 72 T ELT) (($ (-421 (-560))) 71 T ELT)) (-4238 ((|#1| $) 70 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-2132 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-1528 (((-3 $ "failed") $ $) 48 T ELT)) (-3251 (($ $) 106 T ELT)) (-4373 (($ $) 95 T ELT)) (-3488 (($ $) 84 T ELT)) (-4352 (($ $) 94 T ELT)) (-3466 (($ $) 85 T ELT)) (-4325 (($ $) 93 T ELT)) (-3443 (($ $) 86 T ELT)) (-2135 (((-114) $ |#1|) 65 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-560)) 75 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-4411 (($ $) 104 T ELT)) (-4263 (($ $) 92 T ELT)) (-2948 (((-114) $ $) 45 T ELT)) (-4387 (($ $) 103 T ELT)) (-3499 (($ $) 91 T ELT)) (-4438 (($ $) 102 T ELT)) (-4287 (($ $) 90 T ELT)) (-3837 (($ $) 101 T ELT)) (-4302 (($ $) 89 T ELT)) (-4423 (($ $) 100 T ELT)) (-4275 (($ $) 88 T ELT)) (-4398 (($ $) 99 T ELT)) (-4252 (($ $) 87 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2536 (((-114) $ $) 111 T ELT)) (-2508 (((-114) $ $) 113 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 112 T ELT)) (-2495 (((-114) $ $) 114 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ $) 107 T ELT) (($ $ (-421 (-560))) 78 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
+((-1445 (((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-1 (-1201 |#2|) (-1201 |#2|))) 50 T ELT)))
+(((-566 |#1| |#2|) (-10 -7 (-15 -1445 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-1 (-1201 |#2|) (-1201 |#2|))))) (-571) (-13 (-27) (-435 |#1|))) (T -566))
+((-1445 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-630 *3)) (-5 *5 (-1 (-1201 *3) (-1201 *3))) (-4 *3 (-13 (-27) (-435 *6))) (-4 *6 (-571)) (-5 *2 (-597 *3)) (-5 *1 (-566 *6 *3)))))
+(-10 -7 (-15 -1445 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-1 (-1201 |#2|) (-1201 |#2|)))))
+((-2488 (((-597 |#5|) |#5| (-1 |#3| |#3|)) 216 T ELT)) (-1692 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 212 T ELT)) (-1887 (((-597 |#5|) |#5| (-1 |#3| |#3|)) 220 T ELT)))
+(((-567 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1887 ((-597 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2488 ((-597 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1692 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-571) (-1069 (-560))) (-13 (-27) (-435 |#1|)) (-1273 |#2|) (-1273 (-421 |#3|)) (-355 |#2| |#3| |#4|)) (T -567))
+((-1692 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-27) (-435 *4))) (-4 *4 (-13 (-571) (-1069 (-560)))) (-4 *7 (-1273 (-421 *6))) (-5 *1 (-567 *4 *5 *6 *7 *2)) (-4 *2 (-355 *5 *6 *7)))) (-2488 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1273 *6)) (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-571) (-1069 (-560)))) (-4 *8 (-1273 (-421 *7))) (-5 *2 (-597 *3)) (-5 *1 (-567 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8)))) (-1887 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1273 *6)) (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-571) (-1069 (-560)))) (-4 *8 (-1273 (-421 *7))) (-5 *2 (-597 *3)) (-5 *1 (-567 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8)))))
+(-10 -7 (-15 -1887 ((-597 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2488 ((-597 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1692 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-2497 (((-114) (-560) (-560)) 12 T ELT)) (-2430 (((-560) (-560)) 7 T ELT)) (-1605 (((-560) (-560) (-560)) 10 T ELT)))
+(((-568) (-10 -7 (-15 -2430 ((-560) (-560))) (-15 -1605 ((-560) (-560) (-560))) (-15 -2497 ((-114) (-560) (-560))))) (T -568))
+((-2497 (*1 *2 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-114)) (-5 *1 (-568)))) (-1605 (*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-568)))) (-2430 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-568)))))
+(-10 -7 (-15 -2430 ((-560) (-560))) (-15 -1605 ((-560) (-560) (-560))) (-15 -2497 ((-114) (-560) (-560))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-4158 ((|#1| $) 68 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-4366 (($ $) 46 T ELT)) (-2667 (((-114) $) 44 T ELT)) (-1982 (($ $) 98 T ELT)) (-1832 (($ $) 81 T ELT)) (-1651 ((|#1| $) 69 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-4021 (($ $) 80 T ELT)) (-1958 (($ $) 97 T ELT)) (-1806 (($ $) 82 T ELT)) (-2003 (($ $) 96 T ELT)) (-1856 (($ $) 83 T ELT)) (-3525 (($) 18 T CONST)) (-3929 (((-3 (-560) "failed") $) 76 T ELT)) (-3649 (((-560) $) 77 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1739 (($ |#1| |#1|) 73 T ELT)) (-4172 (((-114) $) 67 T ELT)) (-2503 (($) 108 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-1956 (($ $ (-560)) 79 T ELT)) (-4470 (((-114) $) 66 T ELT)) (-2932 (($ $ $) 109 T ELT)) (-4379 (($ $ $) 110 T ELT)) (-2831 (($ $) 105 T ELT)) (-1861 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2490 (($ |#1| |#1|) 74 T ELT) (($ |#1|) 72 T ELT) (($ (-421 (-560))) 71 T ELT)) (-3568 ((|#1| $) 70 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-1938 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-2233 (((-3 $ "failed") $ $) 48 T ELT)) (-2515 (($ $) 106 T ELT)) (-2013 (($ $) 95 T ELT)) (-1870 (($ $) 84 T ELT)) (-1992 (($ $) 94 T ELT)) (-1844 (($ $) 85 T ELT)) (-1972 (($ $) 93 T ELT)) (-1820 (($ $) 86 T ELT)) (-1831 (((-114) $ |#1|) 65 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-560)) 75 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-2042 (($ $) 104 T ELT)) (-1907 (($ $) 92 T ELT)) (-4361 (((-114) $ $) 45 T ELT)) (-2022 (($ $) 103 T ELT)) (-1882 (($ $) 91 T ELT)) (-2059 (($ $) 102 T ELT)) (-1932 (($ $) 90 T ELT)) (-3392 (($ $) 101 T ELT)) (-1945 (($ $) 89 T ELT)) (-2050 (($ $) 100 T ELT)) (-1920 (($ $) 88 T ELT)) (-2032 (($ $) 99 T ELT)) (-1895 (($ $) 87 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2396 (((-114) $ $) 111 T ELT)) (-2373 (((-114) $ $) 113 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 112 T ELT)) (-2362 (((-114) $ $) 114 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ $) 107 T ELT) (($ $ (-421 (-560))) 78 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
(((-569 |#1|) (-142) (-13 (-418) (-1233))) (T -569))
-((-3750 (*1 *1 *2 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233))))) (-2126 (*1 *1 *2 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233))))) (-3750 (*1 *1 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233))))) (-3750 (*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-4 *1 (-569 *3)) (-4 *3 (-13 (-418) (-1233))))) (-4238 (*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233))))) (-3168 (*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233))))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233))))) (-2928 (*1 *2 *1) (-12 (-4 *1 (-569 *3)) (-4 *3 (-13 (-418) (-1233))) (-5 *2 (-114)))) (-2960 (*1 *2 *1) (-12 (-4 *1 (-569 *3)) (-4 *3 (-13 (-418) (-1233))) (-5 *2 (-114)))) (-2135 (*1 *2 *1 *3) (-12 (-4 *1 (-569 *3)) (-4 *3 (-13 (-418) (-1233))) (-5 *2 (-114)))))
-(-13 (-466) (-871) (-1233) (-1033) (-1069 (-560)) (-10 -8 (-6 -2239) (-15 -3750 ($ |t#1| |t#1|)) (-15 -2126 ($ |t#1| |t#1|)) (-15 -3750 ($ |t#1|)) (-15 -3750 ($ (-421 (-560)))) (-15 -4238 (|t#1| $)) (-15 -3168 (|t#1| $)) (-15 -3423 (|t#1| $)) (-15 -2928 ((-114) $)) (-15 -2960 ((-114) $)) (-15 -2135 ((-114) $ |t#1|))))
+((-2490 (*1 *1 *2 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233))))) (-1739 (*1 *1 *2 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233))))) (-2490 (*1 *1 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233))))) (-2490 (*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-4 *1 (-569 *3)) (-4 *3 (-13 (-418) (-1233))))) (-3568 (*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233))))) (-1651 (*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233))))) (-4158 (*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233))))) (-4172 (*1 *2 *1) (-12 (-4 *1 (-569 *3)) (-4 *3 (-13 (-418) (-1233))) (-5 *2 (-114)))) (-4470 (*1 *2 *1) (-12 (-4 *1 (-569 *3)) (-4 *3 (-13 (-418) (-1233))) (-5 *2 (-114)))) (-1831 (*1 *2 *1 *3) (-12 (-4 *1 (-569 *3)) (-4 *3 (-13 (-418) (-1233))) (-5 *2 (-114)))))
+(-13 (-466) (-871) (-1233) (-1033) (-1069 (-560)) (-10 -8 (-6 -2905) (-15 -2490 ($ |t#1| |t#1|)) (-15 -1739 ($ |t#1| |t#1|)) (-15 -2490 ($ |t#1|)) (-15 -2490 ($ (-421 (-560)))) (-15 -3568 (|t#1| $)) (-15 -1651 (|t#1| $)) (-15 -4158 (|t#1| $)) (-15 -4172 ((-114) $)) (-15 -4470 ((-114) $)) (-15 -1831 ((-114) $ |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-296) . T) ((-302) . T) ((-466) . T) ((-507) . T) ((-571) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-871) . T) ((-874) . T) ((-1033) . T) ((-1069 (-560)) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1233) . T) ((-1236) . T) ((-1247) . T))
-((-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 9 T ELT)) (-3244 (($ $) 11 T ELT)) (-4093 (((-114) $) 20 T ELT)) (-1990 (((-3 $ "failed") $) 16 T ELT)) (-2948 (((-114) $ $) 22 T ELT)))
-(((-570 |#1|) (-10 -8 (-15 -4093 ((-114) |#1|)) (-15 -2948 ((-114) |#1| |#1|)) (-15 -3244 (|#1| |#1|)) (-15 -4091 ((-2 (|:| -2489 |#1|) (|:| -4495 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1990 ((-3 |#1| "failed") |#1|))) (-571)) (T -570))
+((-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 9 T ELT)) (-4366 (($ $) 11 T ELT)) (-2667 (((-114) $) 20 T ELT)) (-2873 (((-3 $ "failed") $) 16 T ELT)) (-4361 (((-114) $ $) 22 T ELT)))
+(((-570 |#1|) (-10 -8 (-15 -2667 ((-114) |#1|)) (-15 -4361 ((-114) |#1| |#1|)) (-15 -4366 (|#1| |#1|)) (-15 -2640 ((-2 (|:| -4184 |#1|) (|:| -4495 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2873 ((-3 |#1| "failed") |#1|))) (-571)) (T -570))
NIL
-(-10 -8 (-15 -4093 ((-114) |#1|)) (-15 -2948 ((-114) |#1| |#1|)) (-15 -3244 (|#1| |#1|)) (-15 -4091 ((-2 (|:| -2489 |#1|) (|:| -4495 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1990 ((-3 |#1| "failed") |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-3244 (($ $) 46 T ELT)) (-4093 (((-114) $) 44 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1528 (((-3 $ "failed") $ $) 48 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 45 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
+(-10 -8 (-15 -2667 ((-114) |#1|)) (-15 -4361 ((-114) |#1| |#1|)) (-15 -4366 (|#1| |#1|)) (-15 -2640 ((-2 (|:| -4184 |#1|) (|:| -4495 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2873 ((-3 |#1| "failed") |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-4366 (($ $) 46 T ELT)) (-2667 (((-114) $) 44 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2233 (((-3 $ "failed") $ $) 48 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 45 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
(((-571) (-142)) (T -571))
-((-1528 (*1 *1 *1 *1) (|partial| -4 *1 (-571))) (-4091 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2489 *1) (|:| -4495 *1) (|:| |associate| *1))) (-4 *1 (-571)))) (-3244 (*1 *1 *1) (-4 *1 (-571))) (-2948 (*1 *2 *1 *1) (-12 (-4 *1 (-571)) (-5 *2 (-114)))) (-4093 (*1 *2 *1) (-12 (-4 *1 (-571)) (-5 *2 (-114)))))
-(-13 (-175) (-38 $) (-302) (-10 -8 (-15 -1528 ((-3 $ "failed") $ $)) (-15 -4091 ((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $)) (-15 -3244 ($ $)) (-15 -2948 ((-114) $ $)) (-15 -4093 ((-114) $))))
+((-2233 (*1 *1 *1 *1) (|partial| -4 *1 (-571))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -4184 *1) (|:| -4495 *1) (|:| |associate| *1))) (-4 *1 (-571)))) (-4366 (*1 *1 *1) (-4 *1 (-571))) (-4361 (*1 *2 *1 *1) (-12 (-4 *1 (-571)) (-5 *2 (-114)))) (-2667 (*1 *2 *1) (-12 (-4 *1 (-571)) (-5 *2 (-114)))))
+(-13 (-175) (-38 $) (-302) (-10 -8 (-15 -2233 ((-3 $ "failed") $ $)) (-15 -2640 ((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $)) (-15 -4366 ($ $)) (-15 -4361 ((-114) $ $)) (-15 -2667 ((-114) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-302) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-3688 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1207) (-663 |#2|)) 38 T ELT)) (-2355 (((-597 |#2|) |#2| (-1207)) 63 T ELT)) (-2004 (((-3 |#2| "failed") |#2| (-1207)) 156 T ELT)) (-3753 (((-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1207) (-630 |#2|) (-663 (-630 |#2|))) 159 T ELT)) (-3931 (((-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1207) |#2|) 41 T ELT)))
-(((-572 |#1| |#2|) (-10 -7 (-15 -3931 ((-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1207) |#2|)) (-15 -3688 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1207) (-663 |#2|))) (-15 -2004 ((-3 |#2| "failed") |#2| (-1207))) (-15 -2355 ((-597 |#2|) |#2| (-1207))) (-15 -3753 ((-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1207) (-630 |#2|) (-663 (-630 |#2|))))) (-13 (-466) (-149) (-1069 (-560)) (-660 (-560))) (-13 (-27) (-1233) (-435 |#1|))) (T -572))
-((-3753 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1207)) (-5 *6 (-663 (-630 *3))) (-5 *5 (-630 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *7))) (-4 *7 (-13 (-466) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-2 (|:| -3887 *3) (|:| |coeff| *3))) (-5 *1 (-572 *7 *3)))) (-2355 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-466) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-597 *3)) (-5 *1 (-572 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))) (-2004 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1207)) (-4 *4 (-13 (-466) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))))) (-3688 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-663 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-466) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *6 *3)))) (-3931 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-13 (-466) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-2 (|:| -3887 *3) (|:| |coeff| *3))) (-5 *1 (-572 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))))
-(-10 -7 (-15 -3931 ((-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1207) |#2|)) (-15 -3688 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1207) (-663 |#2|))) (-15 -2004 ((-3 |#2| "failed") |#2| (-1207))) (-15 -2355 ((-597 |#2|) |#2| (-1207))) (-15 -3753 ((-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1207) (-630 |#2|) (-663 (-630 |#2|)))))
-((-3023 (((-419 |#1|) |#1|) 19 T ELT)) (-4457 (((-419 |#1|) |#1|) 34 T ELT)) (-3804 (((-3 |#1| "failed") |#1|) 49 T ELT)) (-4112 (((-419 |#1|) |#1|) 60 T ELT)))
-(((-573 |#1|) (-10 -7 (-15 -4457 ((-419 |#1|) |#1|)) (-15 -3023 ((-419 |#1|) |#1|)) (-15 -4112 ((-419 |#1|) |#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|))) (-559)) (T -573))
-((-3804 (*1 *2 *2) (|partial| -12 (-5 *1 (-573 *2)) (-4 *2 (-559)))) (-4112 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-573 *3)) (-4 *3 (-559)))) (-3023 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-573 *3)) (-4 *3 (-559)))) (-4457 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-573 *3)) (-4 *3 (-559)))))
-(-10 -7 (-15 -4457 ((-419 |#1|) |#1|)) (-15 -3023 ((-419 |#1|) |#1|)) (-15 -4112 ((-419 |#1|) |#1|)) (-15 -3804 ((-3 |#1| "failed") |#1|)))
-((-4025 (($) 9 T ELT)) (-1643 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 34 T ELT)) (-2236 (((-663 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $) 31 T ELT)) (-3629 (($ (-2 (|:| -2968 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2460 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28 T ELT)) (-1336 (($ (-663 (-2 (|:| -2968 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2460 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26 T ELT)) (-2460 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 38 T ELT)) (-3571 (((-663 (-2 (|:| -2968 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2460 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36 T ELT)) (-3125 (((-1303)) 11 T ELT)))
-(((-574) (-10 -8 (-15 -4025 ($)) (-15 -3125 ((-1303))) (-15 -2236 ((-663 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -1336 ($ (-663 (-2 (|:| -2968 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2460 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3629 ($ (-2 (|:| -2968 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2460 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1643 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3571 ((-663 (-2 (|:| -2968 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2460 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2460 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -574))
-((-2460 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-574)))) (-3571 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| -2968 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2460 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-574)))) (-1643 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-574)))) (-3629 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2968 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2460 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-574)))) (-1336 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| -2968 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2460 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-574)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-5 *1 (-574)))) (-3125 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-574)))) (-4025 (*1 *1) (-5 *1 (-574))))
-(-10 -8 (-15 -4025 ($)) (-15 -3125 ((-1303))) (-15 -2236 ((-663 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -1336 ($ (-663 (-2 (|:| -2968 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2460 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3629 ($ (-2 (|:| -2968 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2460 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1643 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3571 ((-663 (-2 (|:| -2968 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2460 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -2460 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -3471 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))
-((-4422 (((-1201 (-421 (-1201 |#2|))) |#2| (-630 |#2|) (-630 |#2|) (-1201 |#2|)) 35 T ELT)) (-3375 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|) (-630 |#2|) |#2| (-421 (-1201 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|) |#2| (-1201 |#2|)) 115 T ELT)) (-3848 (((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-421 (-1201 |#2|))) 85 T ELT) (((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) |#2| (-1201 |#2|)) 55 T ELT)) (-2907 (((-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| (-630 |#2|) |#2| (-421 (-1201 |#2|))) 92 T ELT) (((-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| |#2| (-1201 |#2|)) 114 T ELT)) (-3972 (((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)) (-630 |#2|) |#2| (-421 (-1201 |#2|))) 110 T ELT) (((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)) |#2| (-1201 |#2|)) 116 T ELT)) (-1801 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1954 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-421 (-1201 |#2|))) 133 (|has| |#3| (-680 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1954 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) |#2| (-1201 |#2|)) 132 (|has| |#3| (-680 |#2|)) ELT)) (-1427 ((|#2| (-1201 (-421 (-1201 |#2|))) (-630 |#2|) |#2|) 53 T ELT)) (-4116 (((-1201 (-421 (-1201 |#2|))) (-1201 |#2|) (-630 |#2|)) 34 T ELT)))
-(((-575 |#1| |#2| |#3|) (-10 -7 (-15 -3848 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) |#2| (-1201 |#2|))) (-15 -3848 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-421 (-1201 |#2|)))) (-15 -2907 ((-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| |#2| (-1201 |#2|))) (-15 -2907 ((-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| (-630 |#2|) |#2| (-421 (-1201 |#2|)))) (-15 -3375 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|) |#2| (-1201 |#2|))) (-15 -3375 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|) (-630 |#2|) |#2| (-421 (-1201 |#2|)))) (-15 -3972 ((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)) |#2| (-1201 |#2|))) (-15 -3972 ((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)) (-630 |#2|) |#2| (-421 (-1201 |#2|)))) (-15 -4422 ((-1201 (-421 (-1201 |#2|))) |#2| (-630 |#2|) (-630 |#2|) (-1201 |#2|))) (-15 -1427 (|#2| (-1201 (-421 (-1201 |#2|))) (-630 |#2|) |#2|)) (-15 -4116 ((-1201 (-421 (-1201 |#2|))) (-1201 |#2|) (-630 |#2|))) (IF (|has| |#3| (-680 |#2|)) (PROGN (-15 -1801 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1954 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) |#2| (-1201 |#2|))) (-15 -1801 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1954 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-421 (-1201 |#2|))))) |%noBranch|)) (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))) (-13 (-435 |#1|) (-27) (-1233)) (-1132)) (T -575))
-((-1801 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-630 *4)) (-5 *6 (-421 (-1201 *4))) (-4 *4 (-13 (-435 *7) (-27) (-1233))) (-4 *7 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1954 (-663 *4)))) (-5 *1 (-575 *7 *4 *3)) (-4 *3 (-680 *4)) (-4 *3 (-1132)))) (-1801 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-630 *4)) (-5 *6 (-1201 *4)) (-4 *4 (-13 (-435 *7) (-27) (-1233))) (-4 *7 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1954 (-663 *4)))) (-5 *1 (-575 *7 *4 *3)) (-4 *3 (-680 *4)) (-4 *3 (-1132)))) (-4116 (*1 *2 *3 *4) (-12 (-5 *4 (-630 *6)) (-4 *6 (-13 (-435 *5) (-27) (-1233))) (-4 *5 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-1201 (-421 (-1201 *6)))) (-5 *1 (-575 *5 *6 *7)) (-5 *3 (-1201 *6)) (-4 *7 (-1132)))) (-1427 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1201 (-421 (-1201 *2)))) (-5 *4 (-630 *2)) (-4 *2 (-13 (-435 *5) (-27) (-1233))) (-4 *5 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *1 (-575 *5 *2 *6)) (-4 *6 (-1132)))) (-4422 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-1201 (-421 (-1201 *3)))) (-5 *1 (-575 *6 *3 *7)) (-5 *5 (-1201 *3)) (-4 *7 (-1132)))) (-3972 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-630 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1207))) (-5 *5 (-421 (-1201 *2))) (-4 *2 (-13 (-435 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *1 (-575 *6 *2 *7)) (-4 *7 (-1132)))) (-3972 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-630 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1207))) (-5 *5 (-1201 *2)) (-4 *2 (-13 (-435 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *1 (-575 *6 *2 *7)) (-4 *7 (-1132)))) (-3375 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-663 *3)) (-5 *6 (-421 (-1201 *3))) (-4 *3 (-13 (-435 *7) (-27) (-1233))) (-4 *7 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-575 *7 *3 *8)) (-4 *8 (-1132)))) (-3375 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-663 *3)) (-5 *6 (-1201 *3)) (-4 *3 (-13 (-435 *7) (-27) (-1233))) (-4 *7 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-575 *7 *3 *8)) (-4 *8 (-1132)))) (-2907 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-421 (-1201 *3))) (-4 *3 (-13 (-435 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| -3887 *3) (|:| |coeff| *3))) (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1132)))) (-2907 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-1201 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| -3887 *3) (|:| |coeff| *3))) (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1132)))) (-3848 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-630 *3)) (-5 *5 (-421 (-1201 *3))) (-4 *3 (-13 (-435 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-597 *3)) (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1132)))) (-3848 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-630 *3)) (-5 *5 (-1201 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-597 *3)) (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1132)))))
-(-10 -7 (-15 -3848 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) |#2| (-1201 |#2|))) (-15 -3848 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-421 (-1201 |#2|)))) (-15 -2907 ((-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| |#2| (-1201 |#2|))) (-15 -2907 ((-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| (-630 |#2|) |#2| (-421 (-1201 |#2|)))) (-15 -3375 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|) |#2| (-1201 |#2|))) (-15 -3375 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|) (-630 |#2|) |#2| (-421 (-1201 |#2|)))) (-15 -3972 ((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)) |#2| (-1201 |#2|))) (-15 -3972 ((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)) (-630 |#2|) |#2| (-421 (-1201 |#2|)))) (-15 -4422 ((-1201 (-421 (-1201 |#2|))) |#2| (-630 |#2|) (-630 |#2|) (-1201 |#2|))) (-15 -1427 (|#2| (-1201 (-421 (-1201 |#2|))) (-630 |#2|) |#2|)) (-15 -4116 ((-1201 (-421 (-1201 |#2|))) (-1201 |#2|) (-630 |#2|))) (IF (|has| |#3| (-680 |#2|)) (PROGN (-15 -1801 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1954 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) |#2| (-1201 |#2|))) (-15 -1801 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1954 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-421 (-1201 |#2|))))) |%noBranch|))
-((-4229 (((-560) (-560) (-793)) 85 T ELT)) (-3622 (((-560) (-560)) 83 T ELT)) (-1523 (((-560) (-560)) 81 T ELT)) (-3946 (((-560) (-560)) 87 T ELT)) (-3995 (((-560) (-560) (-560)) 65 T ELT)) (-2039 (((-560) (-560) (-560)) 62 T ELT)) (-2433 (((-421 (-560)) (-560)) 30 T ELT)) (-1925 (((-560) (-560)) 34 T ELT)) (-3754 (((-560) (-560)) 74 T ELT)) (-3121 (((-560) (-560)) 46 T ELT)) (-4094 (((-663 (-560)) (-560)) 80 T ELT)) (-3572 (((-560) (-560) (-560) (-560) (-560)) 58 T ELT)) (-3283 (((-421 (-560)) (-560)) 55 T ELT)))
-(((-576) (-10 -7 (-15 -3283 ((-421 (-560)) (-560))) (-15 -3572 ((-560) (-560) (-560) (-560) (-560))) (-15 -4094 ((-663 (-560)) (-560))) (-15 -3121 ((-560) (-560))) (-15 -3754 ((-560) (-560))) (-15 -1925 ((-560) (-560))) (-15 -2433 ((-421 (-560)) (-560))) (-15 -2039 ((-560) (-560) (-560))) (-15 -3995 ((-560) (-560) (-560))) (-15 -3946 ((-560) (-560))) (-15 -1523 ((-560) (-560))) (-15 -3622 ((-560) (-560))) (-15 -4229 ((-560) (-560) (-793))))) (T -576))
-((-4229 (*1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-793)) (-5 *1 (-576)))) (-3622 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-1523 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-3946 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-3995 (*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-2039 (*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-2433 (*1 *2 *3) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-576)) (-5 *3 (-560)))) (-1925 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-3754 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-3121 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-4094 (*1 *2 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-576)) (-5 *3 (-560)))) (-3572 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-3283 (*1 *2 *3) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-576)) (-5 *3 (-560)))))
-(-10 -7 (-15 -3283 ((-421 (-560)) (-560))) (-15 -3572 ((-560) (-560) (-560) (-560) (-560))) (-15 -4094 ((-663 (-560)) (-560))) (-15 -3121 ((-560) (-560))) (-15 -3754 ((-560) (-560))) (-15 -1925 ((-560) (-560))) (-15 -2433 ((-421 (-560)) (-560))) (-15 -2039 ((-560) (-560) (-560))) (-15 -3995 ((-560) (-560) (-560))) (-15 -3946 ((-560) (-560))) (-15 -1523 ((-560) (-560))) (-15 -3622 ((-560) (-560))) (-15 -4229 ((-560) (-560) (-793))))
-((-1926 (((-2 (|:| |answer| |#4|) (|:| -1739 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT)))
-(((-577 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1926 ((-2 (|:| |answer| |#4|) (|:| -1739 |#4|)) |#4| (-1 |#2| |#2|)))) (-376) (-1273 |#1|) (-1273 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -577))
-((-1926 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) (-4 *7 (-1273 (-421 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1739 *3))) (-5 *1 (-577 *5 *6 *7 *3)) (-4 *3 (-355 *5 *6 *7)))))
-(-10 -7 (-15 -1926 ((-2 (|:| |answer| |#4|) (|:| -1739 |#4|)) |#4| (-1 |#2| |#2|))))
-((-1926 (((-2 (|:| |answer| (-421 |#2|)) (|:| -1739 (-421 |#2|)) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|)) 18 T ELT)))
-(((-578 |#1| |#2|) (-10 -7 (-15 -1926 ((-2 (|:| |answer| (-421 |#2|)) (|:| -1739 (-421 |#2|)) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|)))) (-376) (-1273 |#1|)) (T -578))
-((-1926 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |answer| (-421 *6)) (|:| -1739 (-421 *6)) (|:| |specpart| (-421 *6)) (|:| |polypart| *6))) (-5 *1 (-578 *5 *6)) (-5 *3 (-421 *6)))))
-(-10 -7 (-15 -1926 ((-2 (|:| |answer| (-421 |#2|)) (|:| -1739 (-421 |#2|)) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|))))
-((-3613 (((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066))) (-791) (-1094)) 116 T ELT) (((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066))) (-791)) 118 T ELT)) (-2518 (((-3 (-1066) "failed") (-326 (-391)) (-1123 (-864 (-391))) (-1207)) 195 T ELT) (((-3 (-1066) "failed") (-326 (-391)) (-1123 (-864 (-391))) (-1189)) 194 T ELT) (((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391)))) (-391) (-391) (-1094)) 199 T ELT) (((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391)))) (-391) (-391)) 200 T ELT) (((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391)))) (-391)) 201 T ELT) (((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391))))) 202 T ELT) (((-1066) (-326 (-391)) (-1120 (-864 (-391)))) 190 T ELT) (((-1066) (-326 (-391)) (-1120 (-864 (-391))) (-391)) 189 T ELT) (((-1066) (-326 (-391)) (-1120 (-864 (-391))) (-391) (-391)) 185 T ELT) (((-1066) (-791)) 177 T ELT) (((-1066) (-326 (-391)) (-1120 (-864 (-391))) (-391) (-391) (-1094)) 184 T ELT)))
-(((-579) (-10 -7 (-15 -2518 ((-1066) (-326 (-391)) (-1120 (-864 (-391))) (-391) (-391) (-1094))) (-15 -2518 ((-1066) (-791))) (-15 -2518 ((-1066) (-326 (-391)) (-1120 (-864 (-391))) (-391) (-391))) (-15 -2518 ((-1066) (-326 (-391)) (-1120 (-864 (-391))) (-391))) (-15 -2518 ((-1066) (-326 (-391)) (-1120 (-864 (-391))))) (-15 -2518 ((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391)))))) (-15 -2518 ((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391)))) (-391))) (-15 -2518 ((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391)))) (-391) (-391))) (-15 -2518 ((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391)))) (-391) (-391) (-1094))) (-15 -3613 ((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066))) (-791))) (-15 -3613 ((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066))) (-791) (-1094))) (-15 -2518 ((-3 (-1066) "failed") (-326 (-391)) (-1123 (-864 (-391))) (-1189))) (-15 -2518 ((-3 (-1066) "failed") (-326 (-391)) (-1123 (-864 (-391))) (-1207))))) (T -579))
-((-2518 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1123 (-864 (-391)))) (-5 *5 (-1207)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-2518 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1123 (-864 (-391)))) (-5 *5 (-1189)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-3613 (*1 *2 *3 *4) (-12 (-5 *3 (-791)) (-5 *4 (-1094)) (-5 *2 (-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066)))) (-5 *1 (-579)))) (-3613 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066)))) (-5 *1 (-579)))) (-2518 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1120 (-864 (-391))))) (-5 *5 (-391)) (-5 *6 (-1094)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-2518 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1120 (-864 (-391))))) (-5 *5 (-391)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-2518 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1120 (-864 (-391))))) (-5 *5 (-391)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-2518 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1120 (-864 (-391))))) (-5 *2 (-1066)) (-5 *1 (-579)))) (-2518 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1120 (-864 (-391)))) (-5 *2 (-1066)) (-5 *1 (-579)))) (-2518 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1120 (-864 (-391)))) (-5 *5 (-391)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-2518 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1120 (-864 (-391)))) (-5 *5 (-391)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-2518 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-2518 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1120 (-864 (-391)))) (-5 *5 (-391)) (-5 *6 (-1094)) (-5 *2 (-1066)) (-5 *1 (-579)))))
-(-10 -7 (-15 -2518 ((-1066) (-326 (-391)) (-1120 (-864 (-391))) (-391) (-391) (-1094))) (-15 -2518 ((-1066) (-791))) (-15 -2518 ((-1066) (-326 (-391)) (-1120 (-864 (-391))) (-391) (-391))) (-15 -2518 ((-1066) (-326 (-391)) (-1120 (-864 (-391))) (-391))) (-15 -2518 ((-1066) (-326 (-391)) (-1120 (-864 (-391))))) (-15 -2518 ((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391)))))) (-15 -2518 ((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391)))) (-391))) (-15 -2518 ((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391)))) (-391) (-391))) (-15 -2518 ((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391)))) (-391) (-391) (-1094))) (-15 -3613 ((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066))) (-791))) (-15 -3613 ((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066))) (-791) (-1094))) (-15 -2518 ((-3 (-1066) "failed") (-326 (-391)) (-1123 (-864 (-391))) (-1189))) (-15 -2518 ((-3 (-1066) "failed") (-326 (-391)) (-1123 (-864 (-391))) (-1207))))
-((-4097 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|)) 195 T ELT)) (-3762 (((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|)) 97 T ELT)) (-3326 (((-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2|) 191 T ELT)) (-2778 (((-3 |#2| "failed") |#2| |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207))) 200 T ELT)) (-1387 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1954 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-1207)) 209 (|has| |#3| (-680 |#2|)) ELT)))
-(((-580 |#1| |#2| |#3|) (-10 -7 (-15 -3762 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|))) (-15 -3326 ((-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2|)) (-15 -4097 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|))) (-15 -2778 ((-3 |#2| "failed") |#2| |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)))) (IF (|has| |#3| (-680 |#2|)) (-15 -1387 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1954 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-1207))) |%noBranch|)) (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))) (-13 (-435 |#1|) (-27) (-1233)) (-1132)) (T -580))
-((-1387 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-630 *4)) (-5 *6 (-1207)) (-4 *4 (-13 (-435 *7) (-27) (-1233))) (-4 *7 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1954 (-663 *4)))) (-5 *1 (-580 *7 *4 *3)) (-4 *3 (-680 *4)) (-4 *3 (-1132)))) (-2778 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-630 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1207))) (-4 *2 (-13 (-435 *5) (-27) (-1233))) (-4 *5 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *1 (-580 *5 *2 *6)) (-4 *6 (-1132)))) (-4097 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-663 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *6 *3 *7)) (-4 *7 (-1132)))) (-3326 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-435 *5) (-27) (-1233))) (-4 *5 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| -3887 *3) (|:| |coeff| *3))) (-5 *1 (-580 *5 *3 *6)) (-4 *6 (-1132)))) (-3762 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-435 *5) (-27) (-1233))) (-4 *5 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-597 *3)) (-5 *1 (-580 *5 *3 *6)) (-4 *6 (-1132)))))
-(-10 -7 (-15 -3762 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|))) (-15 -3326 ((-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2|)) (-15 -4097 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|))) (-15 -2778 ((-3 |#2| "failed") |#2| |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)))) (IF (|has| |#3| (-680 |#2|)) (-15 -1387 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -1954 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-1207))) |%noBranch|))
-((-2158 (((-2 (|:| -4273 |#2|) (|:| |nconst| |#2|)) |#2| (-1207)) 64 T ELT)) (-2542 (((-3 |#2| "failed") |#2| (-1207) (-864 |#2|) (-864 |#2|)) 175 (-12 (|has| |#2| (-1170)) (|has| |#1| (-633 (-915 (-560)))) (|has| |#1| (-911 (-560)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)) 154 (-12 (|has| |#2| (-649)) (|has| |#1| (-633 (-915 (-560)))) (|has| |#1| (-911 (-560)))) ELT)) (-2919 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)) 156 (-12 (|has| |#2| (-649)) (|has| |#1| (-633 (-915 (-560)))) (|has| |#1| (-911 (-560)))) ELT)))
-(((-581 |#1| |#2|) (-10 -7 (-15 -2158 ((-2 (|:| -4273 |#2|) (|:| |nconst| |#2|)) |#2| (-1207))) (IF (|has| |#1| (-633 (-915 (-560)))) (IF (|has| |#1| (-911 (-560))) (PROGN (IF (|has| |#2| (-649)) (PROGN (-15 -2919 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207))) (-15 -2542 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)))) |%noBranch|) (IF (|has| |#2| (-1170)) (-15 -2542 ((-3 |#2| "failed") |#2| (-1207) (-864 |#2|) (-864 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1069 (-560)) (-466) (-660 (-560))) (-13 (-27) (-1233) (-435 |#1|))) (T -581))
-((-2542 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1207)) (-5 *4 (-864 *2)) (-4 *2 (-1170)) (-4 *2 (-13 (-27) (-1233) (-435 *5))) (-4 *5 (-633 (-915 (-560)))) (-4 *5 (-911 (-560))) (-4 *5 (-13 (-1069 (-560)) (-466) (-660 (-560)))) (-5 *1 (-581 *5 *2)))) (-2542 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-633 (-915 (-560)))) (-4 *5 (-911 (-560))) (-4 *5 (-13 (-1069 (-560)) (-466) (-660 (-560)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-581 *5 *3)) (-4 *3 (-649)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))) (-2919 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-633 (-915 (-560)))) (-4 *5 (-911 (-560))) (-4 *5 (-13 (-1069 (-560)) (-466) (-660 (-560)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-581 *5 *3)) (-4 *3 (-649)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))) (-2158 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-1069 (-560)) (-466) (-660 (-560)))) (-5 *2 (-2 (|:| -4273 *3) (|:| |nconst| *3))) (-5 *1 (-581 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))))
-(-10 -7 (-15 -2158 ((-2 (|:| -4273 |#2|) (|:| |nconst| |#2|)) |#2| (-1207))) (IF (|has| |#1| (-633 (-915 (-560)))) (IF (|has| |#1| (-911 (-560))) (PROGN (IF (|has| |#2| (-649)) (PROGN (-15 -2919 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207))) (-15 -2542 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)))) |%noBranch|) (IF (|has| |#2| (-1170)) (-15 -2542 ((-3 |#2| "failed") |#2| (-1207) (-864 |#2|) (-864 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-2740 (((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-663 (-421 |#2|))) 41 T ELT)) (-2518 (((-597 (-421 |#2|)) (-421 |#2|)) 28 T ELT)) (-4184 (((-3 (-421 |#2|) "failed") (-421 |#2|)) 17 T ELT)) (-1632 (((-3 (-2 (|:| -3887 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-421 |#2|)) 48 T ELT)))
-(((-582 |#1| |#2|) (-10 -7 (-15 -2518 ((-597 (-421 |#2|)) (-421 |#2|))) (-15 -4184 ((-3 (-421 |#2|) "failed") (-421 |#2|))) (-15 -1632 ((-3 (-2 (|:| -3887 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-421 |#2|))) (-15 -2740 ((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-663 (-421 |#2|))))) (-13 (-376) (-149) (-1069 (-560))) (-1273 |#1|)) (T -582))
-((-2740 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-663 (-421 *6))) (-5 *3 (-421 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *5 *6)))) (-1632 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1069 (-560)))) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -3887 (-421 *5)) (|:| |coeff| (-421 *5)))) (-5 *1 (-582 *4 *5)) (-5 *3 (-421 *5)))) (-4184 (*1 *2 *2) (|partial| -12 (-5 *2 (-421 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-13 (-376) (-149) (-1069 (-560)))) (-5 *1 (-582 *3 *4)))) (-2518 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-560)))) (-4 *5 (-1273 *4)) (-5 *2 (-597 (-421 *5))) (-5 *1 (-582 *4 *5)) (-5 *3 (-421 *5)))))
-(-10 -7 (-15 -2518 ((-597 (-421 |#2|)) (-421 |#2|))) (-15 -4184 ((-3 (-421 |#2|) "failed") (-421 |#2|))) (-15 -1632 ((-3 (-2 (|:| -3887 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-421 |#2|))) (-15 -2740 ((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-663 (-421 |#2|)))))
-((-2017 (((-3 (-560) "failed") |#1|) 14 T ELT)) (-2729 (((-114) |#1|) 13 T ELT)) (-4353 (((-560) |#1|) 9 T ELT)))
-(((-583 |#1|) (-10 -7 (-15 -4353 ((-560) |#1|)) (-15 -2729 ((-114) |#1|)) (-15 -2017 ((-3 (-560) "failed") |#1|))) (-1069 (-560))) (T -583))
-((-2017 (*1 *2 *3) (|partial| -12 (-5 *2 (-560)) (-5 *1 (-583 *3)) (-4 *3 (-1069 *2)))) (-2729 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-583 *3)) (-4 *3 (-1069 (-560))))) (-4353 (*1 *2 *3) (-12 (-5 *2 (-560)) (-5 *1 (-583 *3)) (-4 *3 (-1069 *2)))))
-(-10 -7 (-15 -4353 ((-560) |#1|)) (-15 -2729 ((-114) |#1|)) (-15 -2017 ((-3 (-560) "failed") |#1|)))
-((-1706 (((-3 (-2 (|:| |mainpart| (-421 (-975 |#1|))) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 (-975 |#1|))) (|:| |logand| (-421 (-975 |#1|))))))) "failed") (-421 (-975 |#1|)) (-1207) (-663 (-421 (-975 |#1|)))) 48 T ELT)) (-2882 (((-597 (-421 (-975 |#1|))) (-421 (-975 |#1|)) (-1207)) 28 T ELT)) (-2449 (((-3 (-421 (-975 |#1|)) "failed") (-421 (-975 |#1|)) (-1207)) 23 T ELT)) (-3418 (((-3 (-2 (|:| -3887 (-421 (-975 |#1|))) (|:| |coeff| (-421 (-975 |#1|)))) "failed") (-421 (-975 |#1|)) (-1207) (-421 (-975 |#1|))) 35 T ELT)))
-(((-584 |#1|) (-10 -7 (-15 -2882 ((-597 (-421 (-975 |#1|))) (-421 (-975 |#1|)) (-1207))) (-15 -2449 ((-3 (-421 (-975 |#1|)) "failed") (-421 (-975 |#1|)) (-1207))) (-15 -1706 ((-3 (-2 (|:| |mainpart| (-421 (-975 |#1|))) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 (-975 |#1|))) (|:| |logand| (-421 (-975 |#1|))))))) "failed") (-421 (-975 |#1|)) (-1207) (-663 (-421 (-975 |#1|))))) (-15 -3418 ((-3 (-2 (|:| -3887 (-421 (-975 |#1|))) (|:| |coeff| (-421 (-975 |#1|)))) "failed") (-421 (-975 |#1|)) (-1207) (-421 (-975 |#1|))))) (-13 (-571) (-1069 (-560)) (-149))) (T -584))
-((-3418 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-13 (-571) (-1069 (-560)) (-149))) (-5 *2 (-2 (|:| -3887 (-421 (-975 *5))) (|:| |coeff| (-421 (-975 *5))))) (-5 *1 (-584 *5)) (-5 *3 (-421 (-975 *5))))) (-1706 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-663 (-421 (-975 *6)))) (-5 *3 (-421 (-975 *6))) (-4 *6 (-13 (-571) (-1069 (-560)) (-149))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-584 *6)))) (-2449 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-421 (-975 *4))) (-5 *3 (-1207)) (-4 *4 (-13 (-571) (-1069 (-560)) (-149))) (-5 *1 (-584 *4)))) (-2882 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-571) (-1069 (-560)) (-149))) (-5 *2 (-597 (-421 (-975 *5)))) (-5 *1 (-584 *5)) (-5 *3 (-421 (-975 *5))))))
-(-10 -7 (-15 -2882 ((-597 (-421 (-975 |#1|))) (-421 (-975 |#1|)) (-1207))) (-15 -2449 ((-3 (-421 (-975 |#1|)) "failed") (-421 (-975 |#1|)) (-1207))) (-15 -1706 ((-3 (-2 (|:| |mainpart| (-421 (-975 |#1|))) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 (-975 |#1|))) (|:| |logand| (-421 (-975 |#1|))))))) "failed") (-421 (-975 |#1|)) (-1207) (-663 (-421 (-975 |#1|))))) (-15 -3418 ((-3 (-2 (|:| -3887 (-421 (-975 |#1|))) (|:| |coeff| (-421 (-975 |#1|)))) "failed") (-421 (-975 |#1|)) (-1207) (-421 (-975 |#1|)))))
-((-1538 (((-114) $ $) 75 T ELT)) (-2388 (((-114) $) 48 T ELT)) (-3423 ((|#1| $) 39 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) 79 T ELT)) (-4337 (($ $) 139 T ELT)) (-3455 (($ $) 118 T ELT)) (-3168 ((|#1| $) 37 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-4471 (($ $) NIL T ELT)) (-4313 (($ $) 141 T ELT)) (-3430 (($ $) 114 T ELT)) (-4363 (($ $) 143 T ELT)) (-3477 (($ $) 122 T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) 93 T ELT)) (-3330 (((-560) $) 95 T ELT)) (-1990 (((-3 $ "failed") $) 78 T ELT)) (-2126 (($ |#1| |#1|) 35 T ELT)) (-2928 (((-114) $) 44 T ELT)) (-3796 (($) 104 T ELT)) (-1581 (((-114) $) 55 T ELT)) (-2146 (($ $ (-560)) NIL T ELT)) (-2960 (((-114) $) 45 T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-2192 (($ $) 106 T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3750 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-421 (-560))) 92 T ELT)) (-4238 ((|#1| $) 36 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) 81 T ELT) (($ (-663 $)) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) 80 T ELT)) (-3251 (($ $) 108 T ELT)) (-4373 (($ $) 147 T ELT)) (-3488 (($ $) 120 T ELT)) (-4352 (($ $) 149 T ELT)) (-3466 (($ $) 124 T ELT)) (-4325 (($ $) 145 T ELT)) (-3443 (($ $) 116 T ELT)) (-2135 (((-114) $ |#1|) 42 T ELT)) (-1578 (((-887) $) 100 T ELT) (($ (-560)) 83 T ELT) (($ $) NIL T ELT) (($ (-560)) 83 T ELT)) (-2930 (((-793)) 102 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-4411 (($ $) 161 T ELT)) (-4263 (($ $) 130 T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-4387 (($ $) 159 T ELT)) (-3499 (($ $) 126 T ELT)) (-4438 (($ $) 157 T ELT)) (-4287 (($ $) 137 T ELT)) (-3837 (($ $) 155 T ELT)) (-4302 (($ $) 135 T ELT)) (-4423 (($ $) 153 T ELT)) (-4275 (($ $) 132 T ELT)) (-4398 (($ $) 151 T ELT)) (-4252 (($ $) 128 T ELT)) (-2001 (($) 30 T CONST)) (-2011 (($) 10 T CONST)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 49 T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 47 T ELT)) (-2580 (($ $) 53 T ELT) (($ $ $) 54 T ELT)) (-2567 (($ $ $) 52 T ELT)) (** (($ $ (-948)) 71 T ELT) (($ $ (-793)) NIL T ELT) (($ $ $) 110 T ELT) (($ $ (-421 (-560))) 163 T ELT)) (* (($ (-948) $) 66 T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 65 T ELT) (($ $ $) 61 T ELT)))
+((-3200 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1207) (-663 |#2|)) 38 T ELT)) (-2168 (((-597 |#2|) |#2| (-1207)) 63 T ELT)) (-3025 (((-3 |#2| "failed") |#2| (-1207)) 156 T ELT)) (-2524 (((-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1207) (-630 |#2|) (-663 (-630 |#2|))) 159 T ELT)) (-3526 (((-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1207) |#2|) 41 T ELT)))
+(((-572 |#1| |#2|) (-10 -7 (-15 -3526 ((-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1207) |#2|)) (-15 -3200 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1207) (-663 |#2|))) (-15 -3025 ((-3 |#2| "failed") |#2| (-1207))) (-15 -2168 ((-597 |#2|) |#2| (-1207))) (-15 -2524 ((-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1207) (-630 |#2|) (-663 (-630 |#2|))))) (-13 (-466) (-149) (-1069 (-560)) (-660 (-560))) (-13 (-27) (-1233) (-435 |#1|))) (T -572))
+((-2524 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1207)) (-5 *6 (-663 (-630 *3))) (-5 *5 (-630 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *7))) (-4 *7 (-13 (-466) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-2 (|:| -4378 *3) (|:| |coeff| *3))) (-5 *1 (-572 *7 *3)))) (-2168 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-466) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-597 *3)) (-5 *1 (-572 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))) (-3025 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1207)) (-4 *4 (-13 (-466) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))))) (-3200 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-663 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-466) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-572 *6 *3)))) (-3526 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-13 (-466) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-2 (|:| -4378 *3) (|:| |coeff| *3))) (-5 *1 (-572 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))))
+(-10 -7 (-15 -3526 ((-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1207) |#2|)) (-15 -3200 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1207) (-663 |#2|))) (-15 -3025 ((-3 |#2| "failed") |#2| (-1207))) (-15 -2168 ((-597 |#2|) |#2| (-1207))) (-15 -2524 ((-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1207) (-630 |#2|) (-663 (-630 |#2|)))))
+((-3898 (((-419 |#1|) |#1|) 19 T ELT)) (-4012 (((-419 |#1|) |#1|) 34 T ELT)) (-1698 (((-3 |#1| "failed") |#1|) 49 T ELT)) (-1612 (((-419 |#1|) |#1|) 60 T ELT)))
+(((-573 |#1|) (-10 -7 (-15 -4012 ((-419 |#1|) |#1|)) (-15 -3898 ((-419 |#1|) |#1|)) (-15 -1612 ((-419 |#1|) |#1|)) (-15 -1698 ((-3 |#1| "failed") |#1|))) (-559)) (T -573))
+((-1698 (*1 *2 *2) (|partial| -12 (-5 *1 (-573 *2)) (-4 *2 (-559)))) (-1612 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-573 *3)) (-4 *3 (-559)))) (-3898 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-573 *3)) (-4 *3 (-559)))) (-4012 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-573 *3)) (-4 *3 (-559)))))
+(-10 -7 (-15 -4012 ((-419 |#1|) |#1|)) (-15 -3898 ((-419 |#1|) |#1|)) (-15 -1612 ((-419 |#1|) |#1|)) (-15 -1698 ((-3 |#1| "failed") |#1|)))
+((-3256 (($) 9 T ELT)) (-4256 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 34 T ELT)) (-4325 (((-663 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $) 31 T ELT)) (-3888 (($ (-2 (|:| -1438 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -3067 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 28 T ELT)) (-3500 (($ (-663 (-2 (|:| -1438 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -3067 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 26 T ELT)) (-3067 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 38 T ELT)) (-1383 (((-663 (-2 (|:| -1438 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -3067 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 36 T ELT)) (-2446 (((-1303)) 11 T ELT)))
+(((-574) (-10 -8 (-15 -3256 ($)) (-15 -2446 ((-1303))) (-15 -4325 ((-663 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -3500 ($ (-663 (-2 (|:| -1438 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -3067 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3888 ($ (-2 (|:| -1438 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -3067 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -4256 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1383 ((-663 (-2 (|:| -1438 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -3067 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3067 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -574))
+((-3067 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-574)))) (-1383 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| -1438 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -3067 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-574)))) (-4256 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-574)))) (-3888 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1438 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -3067 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-574)))) (-3500 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| -1438 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -3067 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-574)))) (-4325 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-5 *1 (-574)))) (-2446 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-574)))) (-3256 (*1 *1) (-5 *1 (-574))))
+(-10 -8 (-15 -3256 ($)) (-15 -2446 ((-1303))) (-15 -4325 ((-663 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -3500 ($ (-663 (-2 (|:| -1438 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -3067 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3888 ($ (-2 (|:| -1438 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -3067 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -4256 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1383 ((-663 (-2 (|:| -1438 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -3067 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -3067 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1185 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1585 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))
+((-3981 (((-1201 (-421 (-1201 |#2|))) |#2| (-630 |#2|) (-630 |#2|) (-1201 |#2|)) 35 T ELT)) (-3174 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|) (-630 |#2|) |#2| (-421 (-1201 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|) |#2| (-1201 |#2|)) 115 T ELT)) (-2087 (((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-421 (-1201 |#2|))) 85 T ELT) (((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) |#2| (-1201 |#2|)) 55 T ELT)) (-3951 (((-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| (-630 |#2|) |#2| (-421 (-1201 |#2|))) 92 T ELT) (((-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| |#2| (-1201 |#2|)) 114 T ELT)) (-3977 (((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)) (-630 |#2|) |#2| (-421 (-1201 |#2|))) 110 T ELT) (((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)) |#2| (-1201 |#2|)) 116 T ELT)) (-1584 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3822 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-421 (-1201 |#2|))) 133 (|has| |#3| (-680 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3822 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) |#2| (-1201 |#2|)) 132 (|has| |#3| (-680 |#2|)) ELT)) (-4149 ((|#2| (-1201 (-421 (-1201 |#2|))) (-630 |#2|) |#2|) 53 T ELT)) (-1767 (((-1201 (-421 (-1201 |#2|))) (-1201 |#2|) (-630 |#2|)) 34 T ELT)))
+(((-575 |#1| |#2| |#3|) (-10 -7 (-15 -2087 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) |#2| (-1201 |#2|))) (-15 -2087 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-421 (-1201 |#2|)))) (-15 -3951 ((-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| |#2| (-1201 |#2|))) (-15 -3951 ((-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| (-630 |#2|) |#2| (-421 (-1201 |#2|)))) (-15 -3174 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|) |#2| (-1201 |#2|))) (-15 -3174 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|) (-630 |#2|) |#2| (-421 (-1201 |#2|)))) (-15 -3977 ((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)) |#2| (-1201 |#2|))) (-15 -3977 ((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)) (-630 |#2|) |#2| (-421 (-1201 |#2|)))) (-15 -3981 ((-1201 (-421 (-1201 |#2|))) |#2| (-630 |#2|) (-630 |#2|) (-1201 |#2|))) (-15 -4149 (|#2| (-1201 (-421 (-1201 |#2|))) (-630 |#2|) |#2|)) (-15 -1767 ((-1201 (-421 (-1201 |#2|))) (-1201 |#2|) (-630 |#2|))) (IF (|has| |#3| (-680 |#2|)) (PROGN (-15 -1584 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3822 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) |#2| (-1201 |#2|))) (-15 -1584 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3822 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-421 (-1201 |#2|))))) |%noBranch|)) (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))) (-13 (-435 |#1|) (-27) (-1233)) (-1132)) (T -575))
+((-1584 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-630 *4)) (-5 *6 (-421 (-1201 *4))) (-4 *4 (-13 (-435 *7) (-27) (-1233))) (-4 *7 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3822 (-663 *4)))) (-5 *1 (-575 *7 *4 *3)) (-4 *3 (-680 *4)) (-4 *3 (-1132)))) (-1584 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-630 *4)) (-5 *6 (-1201 *4)) (-4 *4 (-13 (-435 *7) (-27) (-1233))) (-4 *7 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3822 (-663 *4)))) (-5 *1 (-575 *7 *4 *3)) (-4 *3 (-680 *4)) (-4 *3 (-1132)))) (-1767 (*1 *2 *3 *4) (-12 (-5 *4 (-630 *6)) (-4 *6 (-13 (-435 *5) (-27) (-1233))) (-4 *5 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-1201 (-421 (-1201 *6)))) (-5 *1 (-575 *5 *6 *7)) (-5 *3 (-1201 *6)) (-4 *7 (-1132)))) (-4149 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1201 (-421 (-1201 *2)))) (-5 *4 (-630 *2)) (-4 *2 (-13 (-435 *5) (-27) (-1233))) (-4 *5 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *1 (-575 *5 *2 *6)) (-4 *6 (-1132)))) (-3981 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-1201 (-421 (-1201 *3)))) (-5 *1 (-575 *6 *3 *7)) (-5 *5 (-1201 *3)) (-4 *7 (-1132)))) (-3977 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-630 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1207))) (-5 *5 (-421 (-1201 *2))) (-4 *2 (-13 (-435 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *1 (-575 *6 *2 *7)) (-4 *7 (-1132)))) (-3977 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-630 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1207))) (-5 *5 (-1201 *2)) (-4 *2 (-13 (-435 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *1 (-575 *6 *2 *7)) (-4 *7 (-1132)))) (-3174 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-663 *3)) (-5 *6 (-421 (-1201 *3))) (-4 *3 (-13 (-435 *7) (-27) (-1233))) (-4 *7 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-575 *7 *3 *8)) (-4 *8 (-1132)))) (-3174 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-663 *3)) (-5 *6 (-1201 *3)) (-4 *3 (-13 (-435 *7) (-27) (-1233))) (-4 *7 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-575 *7 *3 *8)) (-4 *8 (-1132)))) (-3951 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-421 (-1201 *3))) (-4 *3 (-13 (-435 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| -4378 *3) (|:| |coeff| *3))) (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1132)))) (-3951 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-1201 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| -4378 *3) (|:| |coeff| *3))) (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1132)))) (-2087 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-630 *3)) (-5 *5 (-421 (-1201 *3))) (-4 *3 (-13 (-435 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-597 *3)) (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1132)))) (-2087 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-630 *3)) (-5 *5 (-1201 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-597 *3)) (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1132)))))
+(-10 -7 (-15 -2087 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) |#2| (-1201 |#2|))) (-15 -2087 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-421 (-1201 |#2|)))) (-15 -3951 ((-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| |#2| (-1201 |#2|))) (-15 -3951 ((-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2| (-630 |#2|) |#2| (-421 (-1201 |#2|)))) (-15 -3174 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|) |#2| (-1201 |#2|))) (-15 -3174 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|) (-630 |#2|) |#2| (-421 (-1201 |#2|)))) (-15 -3977 ((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)) |#2| (-1201 |#2|))) (-15 -3977 ((-3 |#2| "failed") |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)) (-630 |#2|) |#2| (-421 (-1201 |#2|)))) (-15 -3981 ((-1201 (-421 (-1201 |#2|))) |#2| (-630 |#2|) (-630 |#2|) (-1201 |#2|))) (-15 -4149 (|#2| (-1201 (-421 (-1201 |#2|))) (-630 |#2|) |#2|)) (-15 -1767 ((-1201 (-421 (-1201 |#2|))) (-1201 |#2|) (-630 |#2|))) (IF (|has| |#3| (-680 |#2|)) (PROGN (-15 -1584 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3822 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) |#2| (-1201 |#2|))) (-15 -1584 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3822 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-630 |#2|) |#2| (-421 (-1201 |#2|))))) |%noBranch|))
+((-3462 (((-560) (-560) (-793)) 85 T ELT)) (-3825 (((-560) (-560)) 83 T ELT)) (-3364 (((-560) (-560)) 81 T ELT)) (-3712 (((-560) (-560)) 87 T ELT)) (-2934 (((-560) (-560) (-560)) 65 T ELT)) (-2138 (((-560) (-560) (-560)) 62 T ELT)) (-1701 (((-421 (-560)) (-560)) 30 T ELT)) (-3540 (((-560) (-560)) 34 T ELT)) (-2535 (((-560) (-560)) 74 T ELT)) (-2404 (((-560) (-560)) 46 T ELT)) (-2679 (((-663 (-560)) (-560)) 80 T ELT)) (-1391 (((-560) (-560) (-560) (-560) (-560)) 58 T ELT)) (-3492 (((-421 (-560)) (-560)) 55 T ELT)))
+(((-576) (-10 -7 (-15 -3492 ((-421 (-560)) (-560))) (-15 -1391 ((-560) (-560) (-560) (-560) (-560))) (-15 -2679 ((-663 (-560)) (-560))) (-15 -2404 ((-560) (-560))) (-15 -2535 ((-560) (-560))) (-15 -3540 ((-560) (-560))) (-15 -1701 ((-421 (-560)) (-560))) (-15 -2138 ((-560) (-560) (-560))) (-15 -2934 ((-560) (-560) (-560))) (-15 -3712 ((-560) (-560))) (-15 -3364 ((-560) (-560))) (-15 -3825 ((-560) (-560))) (-15 -3462 ((-560) (-560) (-793))))) (T -576))
+((-3462 (*1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-793)) (-5 *1 (-576)))) (-3825 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-3364 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-3712 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-2934 (*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-2138 (*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-1701 (*1 *2 *3) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-576)) (-5 *3 (-560)))) (-3540 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-2535 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-2404 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-2679 (*1 *2 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-576)) (-5 *3 (-560)))) (-1391 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))) (-3492 (*1 *2 *3) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-576)) (-5 *3 (-560)))))
+(-10 -7 (-15 -3492 ((-421 (-560)) (-560))) (-15 -1391 ((-560) (-560) (-560) (-560) (-560))) (-15 -2679 ((-663 (-560)) (-560))) (-15 -2404 ((-560) (-560))) (-15 -2535 ((-560) (-560))) (-15 -3540 ((-560) (-560))) (-15 -1701 ((-421 (-560)) (-560))) (-15 -2138 ((-560) (-560) (-560))) (-15 -2934 ((-560) (-560) (-560))) (-15 -3712 ((-560) (-560))) (-15 -3364 ((-560) (-560))) (-15 -3825 ((-560) (-560))) (-15 -3462 ((-560) (-560) (-793))))
+((-3552 (((-2 (|:| |answer| |#4|) (|:| -2268 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT)))
+(((-577 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3552 ((-2 (|:| |answer| |#4|) (|:| -2268 |#4|)) |#4| (-1 |#2| |#2|)))) (-376) (-1273 |#1|) (-1273 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -577))
+((-3552 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) (-4 *7 (-1273 (-421 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2268 *3))) (-5 *1 (-577 *5 *6 *7 *3)) (-4 *3 (-355 *5 *6 *7)))))
+(-10 -7 (-15 -3552 ((-2 (|:| |answer| |#4|) (|:| -2268 |#4|)) |#4| (-1 |#2| |#2|))))
+((-3552 (((-2 (|:| |answer| (-421 |#2|)) (|:| -2268 (-421 |#2|)) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|)) 18 T ELT)))
+(((-578 |#1| |#2|) (-10 -7 (-15 -3552 ((-2 (|:| |answer| (-421 |#2|)) (|:| -2268 (-421 |#2|)) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|)))) (-376) (-1273 |#1|)) (T -578))
+((-3552 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |answer| (-421 *6)) (|:| -2268 (-421 *6)) (|:| |specpart| (-421 *6)) (|:| |polypart| *6))) (-5 *1 (-578 *5 *6)) (-5 *3 (-421 *6)))))
+(-10 -7 (-15 -3552 ((-2 (|:| |answer| (-421 |#2|)) (|:| -2268 (-421 |#2|)) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|))))
+((-3741 (((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066))) (-791) (-1094)) 116 T ELT) (((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066))) (-791)) 118 T ELT)) (-4424 (((-3 (-1066) "failed") (-326 (-391)) (-1123 (-864 (-391))) (-1207)) 195 T ELT) (((-3 (-1066) "failed") (-326 (-391)) (-1123 (-864 (-391))) (-1189)) 194 T ELT) (((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391)))) (-391) (-391) (-1094)) 199 T ELT) (((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391)))) (-391) (-391)) 200 T ELT) (((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391)))) (-391)) 201 T ELT) (((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391))))) 202 T ELT) (((-1066) (-326 (-391)) (-1120 (-864 (-391)))) 190 T ELT) (((-1066) (-326 (-391)) (-1120 (-864 (-391))) (-391)) 189 T ELT) (((-1066) (-326 (-391)) (-1120 (-864 (-391))) (-391) (-391)) 185 T ELT) (((-1066) (-791)) 177 T ELT) (((-1066) (-326 (-391)) (-1120 (-864 (-391))) (-391) (-391) (-1094)) 184 T ELT)))
+(((-579) (-10 -7 (-15 -4424 ((-1066) (-326 (-391)) (-1120 (-864 (-391))) (-391) (-391) (-1094))) (-15 -4424 ((-1066) (-791))) (-15 -4424 ((-1066) (-326 (-391)) (-1120 (-864 (-391))) (-391) (-391))) (-15 -4424 ((-1066) (-326 (-391)) (-1120 (-864 (-391))) (-391))) (-15 -4424 ((-1066) (-326 (-391)) (-1120 (-864 (-391))))) (-15 -4424 ((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391)))))) (-15 -4424 ((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391)))) (-391))) (-15 -4424 ((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391)))) (-391) (-391))) (-15 -4424 ((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391)))) (-391) (-391) (-1094))) (-15 -3741 ((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066))) (-791))) (-15 -3741 ((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066))) (-791) (-1094))) (-15 -4424 ((-3 (-1066) "failed") (-326 (-391)) (-1123 (-864 (-391))) (-1189))) (-15 -4424 ((-3 (-1066) "failed") (-326 (-391)) (-1123 (-864 (-391))) (-1207))))) (T -579))
+((-4424 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1123 (-864 (-391)))) (-5 *5 (-1207)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-4424 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1123 (-864 (-391)))) (-5 *5 (-1189)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-3741 (*1 *2 *3 *4) (-12 (-5 *3 (-791)) (-5 *4 (-1094)) (-5 *2 (-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066)))) (-5 *1 (-579)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066)))) (-5 *1 (-579)))) (-4424 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1120 (-864 (-391))))) (-5 *5 (-391)) (-5 *6 (-1094)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-4424 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1120 (-864 (-391))))) (-5 *5 (-391)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-4424 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1120 (-864 (-391))))) (-5 *5 (-391)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-4424 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1120 (-864 (-391))))) (-5 *2 (-1066)) (-5 *1 (-579)))) (-4424 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1120 (-864 (-391)))) (-5 *2 (-1066)) (-5 *1 (-579)))) (-4424 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1120 (-864 (-391)))) (-5 *5 (-391)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-4424 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1120 (-864 (-391)))) (-5 *5 (-391)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-4424 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1066)) (-5 *1 (-579)))) (-4424 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1120 (-864 (-391)))) (-5 *5 (-391)) (-5 *6 (-1094)) (-5 *2 (-1066)) (-5 *1 (-579)))))
+(-10 -7 (-15 -4424 ((-1066) (-326 (-391)) (-1120 (-864 (-391))) (-391) (-391) (-1094))) (-15 -4424 ((-1066) (-791))) (-15 -4424 ((-1066) (-326 (-391)) (-1120 (-864 (-391))) (-391) (-391))) (-15 -4424 ((-1066) (-326 (-391)) (-1120 (-864 (-391))) (-391))) (-15 -4424 ((-1066) (-326 (-391)) (-1120 (-864 (-391))))) (-15 -4424 ((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391)))))) (-15 -4424 ((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391)))) (-391))) (-15 -4424 ((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391)))) (-391) (-391))) (-15 -4424 ((-1066) (-326 (-391)) (-663 (-1120 (-864 (-391)))) (-391) (-391) (-1094))) (-15 -3741 ((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066))) (-791))) (-15 -3741 ((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066))) (-791) (-1094))) (-15 -4424 ((-3 (-1066) "failed") (-326 (-391)) (-1123 (-864 (-391))) (-1189))) (-15 -4424 ((-3 (-1066) "failed") (-326 (-391)) (-1123 (-864 (-391))) (-1207))))
+((-2699 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|)) 195 T ELT)) (-2590 (((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|)) 97 T ELT)) (-3958 (((-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2|) 191 T ELT)) (-2004 (((-3 |#2| "failed") |#2| |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207))) 200 T ELT)) (-2968 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3822 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-1207)) 209 (|has| |#3| (-680 |#2|)) ELT)))
+(((-580 |#1| |#2| |#3|) (-10 -7 (-15 -2590 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|))) (-15 -3958 ((-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2|)) (-15 -2699 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|))) (-15 -2004 ((-3 |#2| "failed") |#2| |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)))) (IF (|has| |#3| (-680 |#2|)) (-15 -2968 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3822 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-1207))) |%noBranch|)) (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))) (-13 (-435 |#1|) (-27) (-1233)) (-1132)) (T -580))
+((-2968 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-630 *4)) (-5 *6 (-1207)) (-4 *4 (-13 (-435 *7) (-27) (-1233))) (-4 *7 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3822 (-663 *4)))) (-5 *1 (-580 *7 *4 *3)) (-4 *3 (-680 *4)) (-4 *3 (-1132)))) (-2004 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-630 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1207))) (-4 *2 (-13 (-435 *5) (-27) (-1233))) (-4 *5 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *1 (-580 *5 *2 *6)) (-4 *6 (-1132)))) (-2699 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-663 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1233))) (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *6 *3 *7)) (-4 *7 (-1132)))) (-3958 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-435 *5) (-27) (-1233))) (-4 *5 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-2 (|:| -4378 *3) (|:| |coeff| *3))) (-5 *1 (-580 *5 *3 *6)) (-4 *6 (-1132)))) (-2590 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-435 *5) (-27) (-1233))) (-4 *5 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560)))) (-5 *2 (-597 *3)) (-5 *1 (-580 *5 *3 *6)) (-4 *6 (-1132)))))
+(-10 -7 (-15 -2590 ((-597 |#2|) |#2| (-630 |#2|) (-630 |#2|))) (-15 -3958 ((-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-630 |#2|) (-630 |#2|) |#2|)) (-15 -2699 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-630 |#2|) (-630 |#2|) (-663 |#2|))) (-15 -2004 ((-3 |#2| "failed") |#2| |#2| |#2| (-630 |#2|) (-630 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1207)))) (IF (|has| |#3| (-680 |#2|)) (-15 -2968 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3822 (-663 |#2|))) |#3| |#2| (-630 |#2|) (-630 |#2|) (-1207))) |%noBranch|))
+((-4006 (((-2 (|:| -3922 |#2|) (|:| |nconst| |#2|)) |#2| (-1207)) 64 T ELT)) (-3368 (((-3 |#2| "failed") |#2| (-1207) (-864 |#2|) (-864 |#2|)) 175 (-12 (|has| |#2| (-1170)) (|has| |#1| (-633 (-915 (-560)))) (|has| |#1| (-911 (-560)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)) 154 (-12 (|has| |#2| (-649)) (|has| |#1| (-633 (-915 (-560)))) (|has| |#1| (-911 (-560)))) ELT)) (-4061 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)) 156 (-12 (|has| |#2| (-649)) (|has| |#1| (-633 (-915 (-560)))) (|has| |#1| (-911 (-560)))) ELT)))
+(((-581 |#1| |#2|) (-10 -7 (-15 -4006 ((-2 (|:| -3922 |#2|) (|:| |nconst| |#2|)) |#2| (-1207))) (IF (|has| |#1| (-633 (-915 (-560)))) (IF (|has| |#1| (-911 (-560))) (PROGN (IF (|has| |#2| (-649)) (PROGN (-15 -4061 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207))) (-15 -3368 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)))) |%noBranch|) (IF (|has| |#2| (-1170)) (-15 -3368 ((-3 |#2| "failed") |#2| (-1207) (-864 |#2|) (-864 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1069 (-560)) (-466) (-660 (-560))) (-13 (-27) (-1233) (-435 |#1|))) (T -581))
+((-3368 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1207)) (-5 *4 (-864 *2)) (-4 *2 (-1170)) (-4 *2 (-13 (-27) (-1233) (-435 *5))) (-4 *5 (-633 (-915 (-560)))) (-4 *5 (-911 (-560))) (-4 *5 (-13 (-1069 (-560)) (-466) (-660 (-560)))) (-5 *1 (-581 *5 *2)))) (-3368 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-633 (-915 (-560)))) (-4 *5 (-911 (-560))) (-4 *5 (-13 (-1069 (-560)) (-466) (-660 (-560)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-581 *5 *3)) (-4 *3 (-649)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))) (-4061 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-633 (-915 (-560)))) (-4 *5 (-911 (-560))) (-4 *5 (-13 (-1069 (-560)) (-466) (-660 (-560)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-581 *5 *3)) (-4 *3 (-649)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))) (-4006 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-1069 (-560)) (-466) (-660 (-560)))) (-5 *2 (-2 (|:| -3922 *3) (|:| |nconst| *3))) (-5 *1 (-581 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))))
+(-10 -7 (-15 -4006 ((-2 (|:| -3922 |#2|) (|:| |nconst| |#2|)) |#2| (-1207))) (IF (|has| |#1| (-633 (-915 (-560)))) (IF (|has| |#1| (-911 (-560))) (PROGN (IF (|has| |#2| (-649)) (PROGN (-15 -4061 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207))) (-15 -3368 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)))) |%noBranch|) (IF (|has| |#2| (-1170)) (-15 -3368 ((-3 |#2| "failed") |#2| (-1207) (-864 |#2|) (-864 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-1643 (((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-663 (-421 |#2|))) 41 T ELT)) (-4424 (((-597 (-421 |#2|)) (-421 |#2|)) 28 T ELT)) (-4311 (((-3 (-421 |#2|) "failed") (-421 |#2|)) 17 T ELT)) (-3650 (((-3 (-2 (|:| -4378 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-421 |#2|)) 48 T ELT)))
+(((-582 |#1| |#2|) (-10 -7 (-15 -4424 ((-597 (-421 |#2|)) (-421 |#2|))) (-15 -4311 ((-3 (-421 |#2|) "failed") (-421 |#2|))) (-15 -3650 ((-3 (-2 (|:| -4378 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-421 |#2|))) (-15 -1643 ((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-663 (-421 |#2|))))) (-13 (-376) (-149) (-1069 (-560))) (-1273 |#1|)) (T -582))
+((-1643 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-663 (-421 *6))) (-5 *3 (-421 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *5 *6)))) (-3650 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1069 (-560)))) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -4378 (-421 *5)) (|:| |coeff| (-421 *5)))) (-5 *1 (-582 *4 *5)) (-5 *3 (-421 *5)))) (-4311 (*1 *2 *2) (|partial| -12 (-5 *2 (-421 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-13 (-376) (-149) (-1069 (-560)))) (-5 *1 (-582 *3 *4)))) (-4424 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-560)))) (-4 *5 (-1273 *4)) (-5 *2 (-597 (-421 *5))) (-5 *1 (-582 *4 *5)) (-5 *3 (-421 *5)))))
+(-10 -7 (-15 -4424 ((-597 (-421 |#2|)) (-421 |#2|))) (-15 -4311 ((-3 (-421 |#2|) "failed") (-421 |#2|))) (-15 -3650 ((-3 (-2 (|:| -4378 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-421 |#2|))) (-15 -1643 ((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-663 (-421 |#2|)))))
+((-3156 (((-3 (-560) "failed") |#1|) 14 T ELT)) (-1528 (((-114) |#1|) 13 T ELT)) (-4477 (((-560) |#1|) 9 T ELT)))
+(((-583 |#1|) (-10 -7 (-15 -4477 ((-560) |#1|)) (-15 -1528 ((-114) |#1|)) (-15 -3156 ((-3 (-560) "failed") |#1|))) (-1069 (-560))) (T -583))
+((-3156 (*1 *2 *3) (|partial| -12 (-5 *2 (-560)) (-5 *1 (-583 *3)) (-4 *3 (-1069 *2)))) (-1528 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-583 *3)) (-4 *3 (-1069 (-560))))) (-4477 (*1 *2 *3) (-12 (-5 *2 (-560)) (-5 *1 (-583 *3)) (-4 *3 (-1069 *2)))))
+(-10 -7 (-15 -4477 ((-560) |#1|)) (-15 -1528 ((-114) |#1|)) (-15 -3156 ((-3 (-560) "failed") |#1|)))
+((-3183 (((-3 (-2 (|:| |mainpart| (-421 (-975 |#1|))) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 (-975 |#1|))) (|:| |logand| (-421 (-975 |#1|))))))) "failed") (-421 (-975 |#1|)) (-1207) (-663 (-421 (-975 |#1|)))) 48 T ELT)) (-3797 (((-597 (-421 (-975 |#1|))) (-421 (-975 |#1|)) (-1207)) 28 T ELT)) (-1876 (((-3 (-421 (-975 |#1|)) "failed") (-421 (-975 |#1|)) (-1207)) 23 T ELT)) (-2331 (((-3 (-2 (|:| -4378 (-421 (-975 |#1|))) (|:| |coeff| (-421 (-975 |#1|)))) "failed") (-421 (-975 |#1|)) (-1207) (-421 (-975 |#1|))) 35 T ELT)))
+(((-584 |#1|) (-10 -7 (-15 -3797 ((-597 (-421 (-975 |#1|))) (-421 (-975 |#1|)) (-1207))) (-15 -1876 ((-3 (-421 (-975 |#1|)) "failed") (-421 (-975 |#1|)) (-1207))) (-15 -3183 ((-3 (-2 (|:| |mainpart| (-421 (-975 |#1|))) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 (-975 |#1|))) (|:| |logand| (-421 (-975 |#1|))))))) "failed") (-421 (-975 |#1|)) (-1207) (-663 (-421 (-975 |#1|))))) (-15 -2331 ((-3 (-2 (|:| -4378 (-421 (-975 |#1|))) (|:| |coeff| (-421 (-975 |#1|)))) "failed") (-421 (-975 |#1|)) (-1207) (-421 (-975 |#1|))))) (-13 (-571) (-1069 (-560)) (-149))) (T -584))
+((-2331 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-13 (-571) (-1069 (-560)) (-149))) (-5 *2 (-2 (|:| -4378 (-421 (-975 *5))) (|:| |coeff| (-421 (-975 *5))))) (-5 *1 (-584 *5)) (-5 *3 (-421 (-975 *5))))) (-3183 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-663 (-421 (-975 *6)))) (-5 *3 (-421 (-975 *6))) (-4 *6 (-13 (-571) (-1069 (-560)) (-149))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-584 *6)))) (-1876 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-421 (-975 *4))) (-5 *3 (-1207)) (-4 *4 (-13 (-571) (-1069 (-560)) (-149))) (-5 *1 (-584 *4)))) (-3797 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-571) (-1069 (-560)) (-149))) (-5 *2 (-597 (-421 (-975 *5)))) (-5 *1 (-584 *5)) (-5 *3 (-421 (-975 *5))))))
+(-10 -7 (-15 -3797 ((-597 (-421 (-975 |#1|))) (-421 (-975 |#1|)) (-1207))) (-15 -1876 ((-3 (-421 (-975 |#1|)) "failed") (-421 (-975 |#1|)) (-1207))) (-15 -3183 ((-3 (-2 (|:| |mainpart| (-421 (-975 |#1|))) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 (-975 |#1|))) (|:| |logand| (-421 (-975 |#1|))))))) "failed") (-421 (-975 |#1|)) (-1207) (-663 (-421 (-975 |#1|))))) (-15 -2331 ((-3 (-2 (|:| -4378 (-421 (-975 |#1|))) (|:| |coeff| (-421 (-975 |#1|)))) "failed") (-421 (-975 |#1|)) (-1207) (-421 (-975 |#1|)))))
+((-2243 (((-114) $ $) 75 T ELT)) (-2505 (((-114) $) 48 T ELT)) (-4158 ((|#1| $) 39 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) 79 T ELT)) (-1982 (($ $) 139 T ELT)) (-1832 (($ $) 118 T ELT)) (-1651 ((|#1| $) 37 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-4021 (($ $) NIL T ELT)) (-1958 (($ $) 141 T ELT)) (-1806 (($ $) 114 T ELT)) (-2003 (($ $) 143 T ELT)) (-1856 (($ $) 122 T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) 93 T ELT)) (-3649 (((-560) $) 95 T ELT)) (-2873 (((-3 $ "failed") $) 78 T ELT)) (-1739 (($ |#1| |#1|) 35 T ELT)) (-4172 (((-114) $) 44 T ELT)) (-2503 (($) 104 T ELT)) (-1918 (((-114) $) 55 T ELT)) (-1956 (($ $ (-560)) NIL T ELT)) (-4470 (((-114) $) 45 T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-2831 (($ $) 106 T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2490 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-421 (-560))) 92 T ELT)) (-3568 ((|#1| $) 36 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) 81 T ELT) (($ (-663 $)) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) 80 T ELT)) (-2515 (($ $) 108 T ELT)) (-2013 (($ $) 147 T ELT)) (-1870 (($ $) 120 T ELT)) (-1992 (($ $) 149 T ELT)) (-1844 (($ $) 124 T ELT)) (-1972 (($ $) 145 T ELT)) (-1820 (($ $) 116 T ELT)) (-1831 (((-114) $ |#1|) 42 T ELT)) (-3913 (((-887) $) 100 T ELT) (($ (-560)) 83 T ELT) (($ $) NIL T ELT) (($ (-560)) 83 T ELT)) (-4191 (((-793)) 102 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-2042 (($ $) 161 T ELT)) (-1907 (($ $) 130 T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-2022 (($ $) 159 T ELT)) (-1882 (($ $) 126 T ELT)) (-2059 (($ $) 157 T ELT)) (-1932 (($ $) 137 T ELT)) (-3392 (($ $) 155 T ELT)) (-1945 (($ $) 135 T ELT)) (-2050 (($ $) 153 T ELT)) (-1920 (($ $) 132 T ELT)) (-2032 (($ $) 151 T ELT)) (-1895 (($ $) 128 T ELT)) (-1446 (($) 30 T CONST)) (-1456 (($) 10 T CONST)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 49 T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 47 T ELT)) (-2441 (($ $) 53 T ELT) (($ $ $) 54 T ELT)) (-2429 (($ $ $) 52 T ELT)) (** (($ $ (-948)) 71 T ELT) (($ $ (-793)) NIL T ELT) (($ $ $) 110 T ELT) (($ $ (-421 (-560))) 163 T ELT)) (* (($ (-948) $) 66 T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 65 T ELT) (($ $ $) 61 T ELT)))
(((-585 |#1|) (-569 |#1|) (-13 (-418) (-1233))) (T -585))
NIL
(-569 |#1|)
-((-3713 (((-3 (-663 (-1201 (-560))) "failed") (-663 (-1201 (-560))) (-1201 (-560))) 27 T ELT)))
-(((-586) (-10 -7 (-15 -3713 ((-3 (-663 (-1201 (-560))) "failed") (-663 (-1201 (-560))) (-1201 (-560)))))) (T -586))
-((-3713 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 (-1201 (-560)))) (-5 *3 (-1201 (-560))) (-5 *1 (-586)))))
-(-10 -7 (-15 -3713 ((-3 (-663 (-1201 (-560))) "failed") (-663 (-1201 (-560))) (-1201 (-560)))))
-((-2626 (((-663 (-630 |#2|)) (-663 (-630 |#2|)) (-1207)) 19 T ELT)) (-2168 (((-663 (-630 |#2|)) (-663 |#2|) (-1207)) 23 T ELT)) (-4028 (((-663 (-630 |#2|)) (-663 (-630 |#2|)) (-663 (-630 |#2|))) 11 T ELT)) (-2835 ((|#2| |#2| (-1207)) 59 (|has| |#1| (-571)) ELT)) (-2533 ((|#2| |#2| (-1207)) 87 (-12 (|has| |#2| (-296)) (|has| |#1| (-466))) ELT)) (-3505 (((-630 |#2|) (-630 |#2|) (-663 (-630 |#2|)) (-1207)) 25 T ELT)) (-2311 (((-630 |#2|) (-663 (-630 |#2|))) 24 T ELT)) (-3300 (((-597 |#2|) |#2| (-1207) (-1 (-597 |#2|) |#2| (-1207)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207))) 115 (-12 (|has| |#2| (-296)) (|has| |#2| (-649)) (|has| |#2| (-1069 (-1207))) (|has| |#1| (-633 (-915 (-560)))) (|has| |#1| (-466)) (|has| |#1| (-911 (-560)))) ELT)))
-(((-587 |#1| |#2|) (-10 -7 (-15 -2626 ((-663 (-630 |#2|)) (-663 (-630 |#2|)) (-1207))) (-15 -2311 ((-630 |#2|) (-663 (-630 |#2|)))) (-15 -3505 ((-630 |#2|) (-630 |#2|) (-663 (-630 |#2|)) (-1207))) (-15 -4028 ((-663 (-630 |#2|)) (-663 (-630 |#2|)) (-663 (-630 |#2|)))) (-15 -2168 ((-663 (-630 |#2|)) (-663 |#2|) (-1207))) (IF (|has| |#1| (-571)) (-15 -2835 (|#2| |#2| (-1207))) |%noBranch|) (IF (|has| |#1| (-466)) (IF (|has| |#2| (-296)) (PROGN (-15 -2533 (|#2| |#2| (-1207))) (IF (|has| |#1| (-633 (-915 (-560)))) (IF (|has| |#1| (-911 (-560))) (IF (|has| |#2| (-649)) (IF (|has| |#2| (-1069 (-1207))) (-15 -3300 ((-597 |#2|) |#2| (-1207) (-1 (-597 |#2|) |#2| (-1207)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1132) (-435 |#1|)) (T -587))
-((-3300 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-597 *3) *3 (-1207))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1207))) (-4 *3 (-296)) (-4 *3 (-649)) (-4 *3 (-1069 *4)) (-4 *3 (-435 *7)) (-5 *4 (-1207)) (-4 *7 (-633 (-915 (-560)))) (-4 *7 (-466)) (-4 *7 (-911 (-560))) (-4 *7 (-1132)) (-5 *2 (-597 *3)) (-5 *1 (-587 *7 *3)))) (-2533 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-466)) (-4 *4 (-1132)) (-5 *1 (-587 *4 *2)) (-4 *2 (-296)) (-4 *2 (-435 *4)))) (-2835 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-4 *4 (-1132)) (-5 *1 (-587 *4 *2)) (-4 *2 (-435 *4)))) (-2168 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6)) (-5 *4 (-1207)) (-4 *6 (-435 *5)) (-4 *5 (-1132)) (-5 *2 (-663 (-630 *6))) (-5 *1 (-587 *5 *6)))) (-4028 (*1 *2 *2 *2) (-12 (-5 *2 (-663 (-630 *4))) (-4 *4 (-435 *3)) (-4 *3 (-1132)) (-5 *1 (-587 *3 *4)))) (-3505 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-663 (-630 *6))) (-5 *4 (-1207)) (-5 *2 (-630 *6)) (-4 *6 (-435 *5)) (-4 *5 (-1132)) (-5 *1 (-587 *5 *6)))) (-2311 (*1 *2 *3) (-12 (-5 *3 (-663 (-630 *5))) (-4 *4 (-1132)) (-5 *2 (-630 *5)) (-5 *1 (-587 *4 *5)) (-4 *5 (-435 *4)))) (-2626 (*1 *2 *2 *3) (-12 (-5 *2 (-663 (-630 *5))) (-5 *3 (-1207)) (-4 *5 (-435 *4)) (-4 *4 (-1132)) (-5 *1 (-587 *4 *5)))))
-(-10 -7 (-15 -2626 ((-663 (-630 |#2|)) (-663 (-630 |#2|)) (-1207))) (-15 -2311 ((-630 |#2|) (-663 (-630 |#2|)))) (-15 -3505 ((-630 |#2|) (-630 |#2|) (-663 (-630 |#2|)) (-1207))) (-15 -4028 ((-663 (-630 |#2|)) (-663 (-630 |#2|)) (-663 (-630 |#2|)))) (-15 -2168 ((-663 (-630 |#2|)) (-663 |#2|) (-1207))) (IF (|has| |#1| (-571)) (-15 -2835 (|#2| |#2| (-1207))) |%noBranch|) (IF (|has| |#1| (-466)) (IF (|has| |#2| (-296)) (PROGN (-15 -2533 (|#2| |#2| (-1207))) (IF (|has| |#1| (-633 (-915 (-560)))) (IF (|has| |#1| (-911 (-560))) (IF (|has| |#2| (-649)) (IF (|has| |#2| (-1069 (-1207))) (-15 -3300 ((-597 |#2|) |#2| (-1207) (-1 (-597 |#2|) |#2| (-1207)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-2116 (((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-663 |#1|) "failed") (-560) |#1| |#1|)) 199 T ELT)) (-1716 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3887 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-663 (-421 |#2|))) 174 T ELT)) (-1557 (((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-663 (-421 |#2|))) 171 T ELT)) (-3483 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3887 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162 T ELT)) (-3563 (((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3887 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185 T ELT)) (-3426 (((-3 (-2 (|:| -3887 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-421 |#2|)) 202 T ELT)) (-2008 (((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3887 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3887 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-421 |#2|)) 205 T ELT)) (-1831 (((-2 (|:| |ir| (-597 (-421 |#2|))) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-1677 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2294 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4210 |#1|) (|:| |sol?| (-114))) (-560) |#1|) (-663 (-421 |#2|))) 178 T ELT)) (-2180 (((-3 (-642 |#1| |#2|) "failed") (-642 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4210 |#1|) (|:| |sol?| (-114))) (-560) |#1|)) 166 T ELT)) (-3134 (((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4210 |#1|) (|:| |sol?| (-114))) (-560) |#1|)) 189 T ELT)) (-1970 (((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3887 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4210 |#1|) (|:| |sol?| (-114))) (-560) |#1|) (-421 |#2|)) 210 T ELT)))
-(((-588 |#1| |#2|) (-10 -7 (-15 -3563 ((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3887 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3134 ((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4210 |#1|) (|:| |sol?| (-114))) (-560) |#1|))) (-15 -2116 ((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-663 |#1|) "failed") (-560) |#1| |#1|))) (-15 -2008 ((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3887 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3887 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-421 |#2|))) (-15 -1970 ((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3887 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4210 |#1|) (|:| |sol?| (-114))) (-560) |#1|) (-421 |#2|))) (-15 -1716 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3887 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-663 (-421 |#2|)))) (-15 -2294 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4210 |#1|) (|:| |sol?| (-114))) (-560) |#1|) (-663 (-421 |#2|)))) (-15 -3426 ((-3 (-2 (|:| -3887 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-421 |#2|))) (-15 -1557 ((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-663 (-421 |#2|)))) (-15 -3483 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3887 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2180 ((-3 (-642 |#1| |#2|) "failed") (-642 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4210 |#1|) (|:| |sol?| (-114))) (-560) |#1|))) (-15 -1831 ((-2 (|:| |ir| (-597 (-421 |#2|))) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|))) (-15 -1677 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-376) (-1273 |#1|)) (T -588))
-((-1677 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-588 *5 *3)))) (-1831 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |ir| (-597 (-421 *6))) (|:| |specpart| (-421 *6)) (|:| |polypart| *6))) (-5 *1 (-588 *5 *6)) (-5 *3 (-421 *6)))) (-2180 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-642 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -4210 *4) (|:| |sol?| (-114))) (-560) *4)) (-4 *4 (-376)) (-4 *5 (-1273 *4)) (-5 *1 (-588 *4 *5)))) (-3483 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -3887 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-376)) (-5 *1 (-588 *4 *2)) (-4 *2 (-1273 *4)))) (-1557 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-663 (-421 *7))) (-4 *7 (-1273 *6)) (-5 *3 (-421 *7)) (-4 *6 (-376)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-588 *6 *7)))) (-3426 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -3887 (-421 *6)) (|:| |coeff| (-421 *6)))) (-5 *1 (-588 *5 *6)) (-5 *3 (-421 *6)))) (-2294 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -4210 *7) (|:| |sol?| (-114))) (-560) *7)) (-5 *6 (-663 (-421 *8))) (-4 *7 (-376)) (-4 *8 (-1273 *7)) (-5 *3 (-421 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-588 *7 *8)))) (-1716 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -3887 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-663 (-421 *8))) (-4 *7 (-376)) (-4 *8 (-1273 *7)) (-5 *3 (-421 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-588 *7 *8)))) (-1970 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4210 *6) (|:| |sol?| (-114))) (-560) *6)) (-4 *6 (-376)) (-4 *7 (-1273 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-421 *7)) (|:| |a0| *6)) (-2 (|:| -3887 (-421 *7)) (|:| |coeff| (-421 *7))) "failed")) (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))) (-2008 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3887 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-376)) (-4 *7 (-1273 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-421 *7)) (|:| |a0| *6)) (-2 (|:| -3887 (-421 *7)) (|:| |coeff| (-421 *7))) "failed")) (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))) (-2116 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-663 *6) "failed") (-560) *6 *6)) (-4 *6 (-376)) (-4 *7 (-1273 *6)) (-5 *2 (-2 (|:| |answer| (-597 (-421 *7))) (|:| |a0| *6))) (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))) (-3134 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4210 *6) (|:| |sol?| (-114))) (-560) *6)) (-4 *6 (-376)) (-4 *7 (-1273 *6)) (-5 *2 (-2 (|:| |answer| (-597 (-421 *7))) (|:| |a0| *6))) (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))) (-3563 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -3887 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-376)) (-4 *7 (-1273 *6)) (-5 *2 (-2 (|:| |answer| (-597 (-421 *7))) (|:| |a0| *6))) (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))))
-(-10 -7 (-15 -3563 ((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3887 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -3134 ((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4210 |#1|) (|:| |sol?| (-114))) (-560) |#1|))) (-15 -2116 ((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-663 |#1|) "failed") (-560) |#1| |#1|))) (-15 -2008 ((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3887 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3887 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-421 |#2|))) (-15 -1970 ((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -3887 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4210 |#1|) (|:| |sol?| (-114))) (-560) |#1|) (-421 |#2|))) (-15 -1716 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -3887 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-663 (-421 |#2|)))) (-15 -2294 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4210 |#1|) (|:| |sol?| (-114))) (-560) |#1|) (-663 (-421 |#2|)))) (-15 -3426 ((-3 (-2 (|:| -3887 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-421 |#2|))) (-15 -1557 ((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-663 (-421 |#2|)))) (-15 -3483 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -3887 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -2180 ((-3 (-642 |#1| |#2|) "failed") (-642 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4210 |#1|) (|:| |sol?| (-114))) (-560) |#1|))) (-15 -1831 ((-2 (|:| |ir| (-597 (-421 |#2|))) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|))) (-15 -1677 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-3611 (((-3 |#2| "failed") |#2| (-1207) (-1207)) 10 T ELT)))
-(((-589 |#1| |#2|) (-10 -7 (-15 -3611 ((-3 |#2| "failed") |#2| (-1207) (-1207)))) (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))) (-13 (-1233) (-989) (-1170) (-29 |#1|))) (T -589))
-((-3611 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-589 *4 *2)) (-4 *2 (-13 (-1233) (-989) (-1170) (-29 *4))))))
-(-10 -7 (-15 -3611 ((-3 |#2| "failed") |#2| (-1207) (-1207))))
-((-3740 (((-713 (-1256)) $ (-1256)) 26 T ELT)) (-4475 (((-713 (-564)) $ (-564)) 25 T ELT)) (-3159 (((-793) $ (-131)) 27 T ELT)) (-3720 (((-713 (-130)) $ (-130)) 24 T ELT)) (-1397 (((-713 (-1256)) $) 12 T ELT)) (-2487 (((-713 (-1254)) $) 8 T ELT)) (-2499 (((-713 (-1253)) $) 10 T ELT)) (-2066 (((-713 (-564)) $) 13 T ELT)) (-2034 (((-713 (-562)) $) 9 T ELT)) (-3006 (((-713 (-561)) $) 11 T ELT)) (-3256 (((-793) $ (-131)) 7 T ELT)) (-1907 (((-713 (-130)) $) 14 T ELT)) (-4474 (($ $) 6 T ELT)))
+((-2182 (((-3 (-663 (-1201 (-560))) "failed") (-663 (-1201 (-560))) (-1201 (-560))) 27 T ELT)))
+(((-586) (-10 -7 (-15 -2182 ((-3 (-663 (-1201 (-560))) "failed") (-663 (-1201 (-560))) (-1201 (-560)))))) (T -586))
+((-2182 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 (-1201 (-560)))) (-5 *3 (-1201 (-560))) (-5 *1 (-586)))))
+(-10 -7 (-15 -2182 ((-3 (-663 (-1201 (-560))) "failed") (-663 (-1201 (-560))) (-1201 (-560)))))
+((-2923 (((-663 (-630 |#2|)) (-663 (-630 |#2|)) (-1207)) 19 T ELT)) (-4119 (((-663 (-630 |#2|)) (-663 |#2|) (-1207)) 23 T ELT)) (-3574 (((-663 (-630 |#2|)) (-663 (-630 |#2|)) (-663 (-630 |#2|))) 11 T ELT)) (-1380 ((|#2| |#2| (-1207)) 59 (|has| |#1| (-571)) ELT)) (-1382 ((|#2| |#2| (-1207)) 87 (-12 (|has| |#2| (-296)) (|has| |#1| (-466))) ELT)) (-1900 (((-630 |#2|) (-630 |#2|) (-663 (-630 |#2|)) (-1207)) 25 T ELT)) (-2983 (((-630 |#2|) (-663 (-630 |#2|))) 24 T ELT)) (-3686 (((-597 |#2|) |#2| (-1207) (-1 (-597 |#2|) |#2| (-1207)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207))) 115 (-12 (|has| |#2| (-296)) (|has| |#2| (-649)) (|has| |#2| (-1069 (-1207))) (|has| |#1| (-633 (-915 (-560)))) (|has| |#1| (-466)) (|has| |#1| (-911 (-560)))) ELT)))
+(((-587 |#1| |#2|) (-10 -7 (-15 -2923 ((-663 (-630 |#2|)) (-663 (-630 |#2|)) (-1207))) (-15 -2983 ((-630 |#2|) (-663 (-630 |#2|)))) (-15 -1900 ((-630 |#2|) (-630 |#2|) (-663 (-630 |#2|)) (-1207))) (-15 -3574 ((-663 (-630 |#2|)) (-663 (-630 |#2|)) (-663 (-630 |#2|)))) (-15 -4119 ((-663 (-630 |#2|)) (-663 |#2|) (-1207))) (IF (|has| |#1| (-571)) (-15 -1380 (|#2| |#2| (-1207))) |%noBranch|) (IF (|has| |#1| (-466)) (IF (|has| |#2| (-296)) (PROGN (-15 -1382 (|#2| |#2| (-1207))) (IF (|has| |#1| (-633 (-915 (-560)))) (IF (|has| |#1| (-911 (-560))) (IF (|has| |#2| (-649)) (IF (|has| |#2| (-1069 (-1207))) (-15 -3686 ((-597 |#2|) |#2| (-1207) (-1 (-597 |#2|) |#2| (-1207)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1132) (-435 |#1|)) (T -587))
+((-3686 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-597 *3) *3 (-1207))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1207))) (-4 *3 (-296)) (-4 *3 (-649)) (-4 *3 (-1069 *4)) (-4 *3 (-435 *7)) (-5 *4 (-1207)) (-4 *7 (-633 (-915 (-560)))) (-4 *7 (-466)) (-4 *7 (-911 (-560))) (-4 *7 (-1132)) (-5 *2 (-597 *3)) (-5 *1 (-587 *7 *3)))) (-1382 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-466)) (-4 *4 (-1132)) (-5 *1 (-587 *4 *2)) (-4 *2 (-296)) (-4 *2 (-435 *4)))) (-1380 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-4 *4 (-1132)) (-5 *1 (-587 *4 *2)) (-4 *2 (-435 *4)))) (-4119 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6)) (-5 *4 (-1207)) (-4 *6 (-435 *5)) (-4 *5 (-1132)) (-5 *2 (-663 (-630 *6))) (-5 *1 (-587 *5 *6)))) (-3574 (*1 *2 *2 *2) (-12 (-5 *2 (-663 (-630 *4))) (-4 *4 (-435 *3)) (-4 *3 (-1132)) (-5 *1 (-587 *3 *4)))) (-1900 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-663 (-630 *6))) (-5 *4 (-1207)) (-5 *2 (-630 *6)) (-4 *6 (-435 *5)) (-4 *5 (-1132)) (-5 *1 (-587 *5 *6)))) (-2983 (*1 *2 *3) (-12 (-5 *3 (-663 (-630 *5))) (-4 *4 (-1132)) (-5 *2 (-630 *5)) (-5 *1 (-587 *4 *5)) (-4 *5 (-435 *4)))) (-2923 (*1 *2 *2 *3) (-12 (-5 *2 (-663 (-630 *5))) (-5 *3 (-1207)) (-4 *5 (-435 *4)) (-4 *4 (-1132)) (-5 *1 (-587 *4 *5)))))
+(-10 -7 (-15 -2923 ((-663 (-630 |#2|)) (-663 (-630 |#2|)) (-1207))) (-15 -2983 ((-630 |#2|) (-663 (-630 |#2|)))) (-15 -1900 ((-630 |#2|) (-630 |#2|) (-663 (-630 |#2|)) (-1207))) (-15 -3574 ((-663 (-630 |#2|)) (-663 (-630 |#2|)) (-663 (-630 |#2|)))) (-15 -4119 ((-663 (-630 |#2|)) (-663 |#2|) (-1207))) (IF (|has| |#1| (-571)) (-15 -1380 (|#2| |#2| (-1207))) |%noBranch|) (IF (|has| |#1| (-466)) (IF (|has| |#2| (-296)) (PROGN (-15 -1382 (|#2| |#2| (-1207))) (IF (|has| |#1| (-633 (-915 (-560)))) (IF (|has| |#1| (-911 (-560))) (IF (|has| |#2| (-649)) (IF (|has| |#2| (-1069 (-1207))) (-15 -3686 ((-597 |#2|) |#2| (-1207) (-1 (-597 |#2|) |#2| (-1207)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1207)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-1640 (((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-663 |#1|) "failed") (-560) |#1| |#1|)) 199 T ELT)) (-2063 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4378 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-663 (-421 |#2|))) 174 T ELT)) (-1684 (((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-663 (-421 |#2|))) 171 T ELT)) (-1712 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4378 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 162 T ELT)) (-4449 (((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4378 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 185 T ELT)) (-2397 (((-3 (-2 (|:| -4378 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-421 |#2|)) 202 T ELT)) (-3075 (((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4378 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4378 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-421 |#2|)) 205 T ELT)) (-1937 (((-2 (|:| |ir| (-597 (-421 |#2|))) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2840 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2810 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4346 |#1|) (|:| |sol?| (-114))) (-560) |#1|) (-663 (-421 |#2|))) 178 T ELT)) (-4247 (((-3 (-642 |#1| |#2|) "failed") (-642 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4346 |#1|) (|:| |sol?| (-114))) (-560) |#1|)) 166 T ELT)) (-2533 (((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4346 |#1|) (|:| |sol?| (-114))) (-560) |#1|)) 189 T ELT)) (-2690 (((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4378 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4346 |#1|) (|:| |sol?| (-114))) (-560) |#1|) (-421 |#2|)) 210 T ELT)))
+(((-588 |#1| |#2|) (-10 -7 (-15 -4449 ((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4378 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2533 ((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4346 |#1|) (|:| |sol?| (-114))) (-560) |#1|))) (-15 -1640 ((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-663 |#1|) "failed") (-560) |#1| |#1|))) (-15 -3075 ((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4378 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4378 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-421 |#2|))) (-15 -2690 ((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4378 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4346 |#1|) (|:| |sol?| (-114))) (-560) |#1|) (-421 |#2|))) (-15 -2063 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4378 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-663 (-421 |#2|)))) (-15 -2810 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4346 |#1|) (|:| |sol?| (-114))) (-560) |#1|) (-663 (-421 |#2|)))) (-15 -2397 ((-3 (-2 (|:| -4378 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-421 |#2|))) (-15 -1684 ((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-663 (-421 |#2|)))) (-15 -1712 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4378 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -4247 ((-3 (-642 |#1| |#2|) "failed") (-642 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4346 |#1|) (|:| |sol?| (-114))) (-560) |#1|))) (-15 -1937 ((-2 (|:| |ir| (-597 (-421 |#2|))) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|))) (-15 -2840 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-376) (-1273 |#1|)) (T -588))
+((-2840 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-588 *5 *3)))) (-1937 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |ir| (-597 (-421 *6))) (|:| |specpart| (-421 *6)) (|:| |polypart| *6))) (-5 *1 (-588 *5 *6)) (-5 *3 (-421 *6)))) (-4247 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-642 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -4346 *4) (|:| |sol?| (-114))) (-560) *4)) (-4 *4 (-376)) (-4 *5 (-1273 *4)) (-5 *1 (-588 *4 *5)))) (-1712 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -4378 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-376)) (-5 *1 (-588 *4 *2)) (-4 *2 (-1273 *4)))) (-1684 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-663 (-421 *7))) (-4 *7 (-1273 *6)) (-5 *3 (-421 *7)) (-4 *6 (-376)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-588 *6 *7)))) (-2397 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -4378 (-421 *6)) (|:| |coeff| (-421 *6)))) (-5 *1 (-588 *5 *6)) (-5 *3 (-421 *6)))) (-2810 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -4346 *7) (|:| |sol?| (-114))) (-560) *7)) (-5 *6 (-663 (-421 *8))) (-4 *7 (-376)) (-4 *8 (-1273 *7)) (-5 *3 (-421 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-588 *7 *8)))) (-2063 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -4378 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-663 (-421 *8))) (-4 *7 (-376)) (-4 *8 (-1273 *7)) (-5 *3 (-421 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-588 *7 *8)))) (-2690 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4346 *6) (|:| |sol?| (-114))) (-560) *6)) (-4 *6 (-376)) (-4 *7 (-1273 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-421 *7)) (|:| |a0| *6)) (-2 (|:| -4378 (-421 *7)) (|:| |coeff| (-421 *7))) "failed")) (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))) (-3075 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4378 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-376)) (-4 *7 (-1273 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-421 *7)) (|:| |a0| *6)) (-2 (|:| -4378 (-421 *7)) (|:| |coeff| (-421 *7))) "failed")) (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))) (-1640 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-663 *6) "failed") (-560) *6 *6)) (-4 *6 (-376)) (-4 *7 (-1273 *6)) (-5 *2 (-2 (|:| |answer| (-597 (-421 *7))) (|:| |a0| *6))) (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))) (-2533 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -4346 *6) (|:| |sol?| (-114))) (-560) *6)) (-4 *6 (-376)) (-4 *7 (-1273 *6)) (-5 *2 (-2 (|:| |answer| (-597 (-421 *7))) (|:| |a0| *6))) (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))) (-4449 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -4378 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-376)) (-4 *7 (-1273 *6)) (-5 *2 (-2 (|:| |answer| (-597 (-421 *7))) (|:| |a0| *6))) (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))))
+(-10 -7 (-15 -4449 ((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4378 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2533 ((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4346 |#1|) (|:| |sol?| (-114))) (-560) |#1|))) (-15 -1640 ((-2 (|:| |answer| (-597 (-421 |#2|))) (|:| |a0| |#1|)) (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-663 |#1|) "failed") (-560) |#1| |#1|))) (-15 -3075 ((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4378 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4378 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-421 |#2|))) (-15 -2690 ((-3 (-2 (|:| |answer| (-421 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -4378 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4346 |#1|) (|:| |sol?| (-114))) (-560) |#1|) (-421 |#2|))) (-15 -2063 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -4378 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-663 (-421 |#2|)))) (-15 -2810 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|))))))) (|:| |a0| |#1|)) "failed") (-421 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4346 |#1|) (|:| |sol?| (-114))) (-560) |#1|) (-663 (-421 |#2|)))) (-15 -2397 ((-3 (-2 (|:| -4378 (-421 |#2|)) (|:| |coeff| (-421 |#2|))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-421 |#2|))) (-15 -1684 ((-3 (-2 (|:| |mainpart| (-421 |#2|)) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| (-421 |#2|)) (|:| |logand| (-421 |#2|)))))) "failed") (-421 |#2|) (-1 |#2| |#2|) (-663 (-421 |#2|)))) (-15 -1712 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -4378 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -4247 ((-3 (-642 |#1| |#2|) "failed") (-642 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -4346 |#1|) (|:| |sol?| (-114))) (-560) |#1|))) (-15 -1937 ((-2 (|:| |ir| (-597 (-421 |#2|))) (|:| |specpart| (-421 |#2|)) (|:| |polypart| |#2|)) (-421 |#2|) (-1 |#2| |#2|))) (-15 -2840 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-3716 (((-3 |#2| "failed") |#2| (-1207) (-1207)) 10 T ELT)))
+(((-589 |#1| |#2|) (-10 -7 (-15 -3716 ((-3 |#2| "failed") |#2| (-1207) (-1207)))) (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))) (-13 (-1233) (-989) (-1170) (-29 |#1|))) (T -589))
+((-3716 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-589 *4 *2)) (-4 *2 (-13 (-1233) (-989) (-1170) (-29 *4))))))
+(-10 -7 (-15 -3716 ((-3 |#2| "failed") |#2| (-1207) (-1207))))
+((-2406 (((-713 (-1256)) $ (-1256)) 26 T ELT)) (-1847 (((-713 (-564)) $ (-564)) 25 T ELT)) (-1580 (((-793) $ (-131)) 27 T ELT)) (-2241 (((-713 (-130)) $ (-130)) 24 T ELT)) (-1355 (((-713 (-1256)) $) 12 T ELT)) (-4163 (((-713 (-1254)) $) 8 T ELT)) (-4262 (((-713 (-1253)) $) 10 T ELT)) (-2380 (((-713 (-564)) $) 13 T ELT)) (-2103 (((-713 (-562)) $) 9 T ELT)) (-3714 (((-713 (-561)) $) 11 T ELT)) (-4478 (((-793) $ (-131)) 7 T ELT)) (-3366 (((-713 (-130)) $) 14 T ELT)) (-1835 (($ $) 6 T ELT)))
(((-590) (-142)) (T -590))
NIL
(-13 (-541) (-885))
(((-176) . T) ((-541) . T) ((-885) . T))
-((-3740 (((-713 (-1256)) $ (-1256)) NIL T ELT)) (-4475 (((-713 (-564)) $ (-564)) NIL T ELT)) (-3159 (((-793) $ (-131)) NIL T ELT)) (-3720 (((-713 (-130)) $ (-130)) NIL T ELT)) (-1397 (((-713 (-1256)) $) NIL T ELT)) (-2487 (((-713 (-1254)) $) NIL T ELT)) (-2499 (((-713 (-1253)) $) NIL T ELT)) (-2066 (((-713 (-564)) $) NIL T ELT)) (-2034 (((-713 (-562)) $) NIL T ELT)) (-3006 (((-713 (-561)) $) NIL T ELT)) (-3256 (((-793) $ (-131)) NIL T ELT)) (-1907 (((-713 (-130)) $) NIL T ELT)) (-3856 (((-114) $) NIL T ELT)) (-2816 (($ (-402)) 14 T ELT) (($ (-1189)) 16 T ELT)) (-1578 (((-887) $) NIL T ELT)) (-4474 (($ $) NIL T ELT)))
-(((-591) (-13 (-590) (-632 (-887)) (-10 -8 (-15 -2816 ($ (-402))) (-15 -2816 ($ (-1189))) (-15 -3856 ((-114) $))))) (T -591))
-((-2816 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-591)))) (-2816 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-591)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-591)))))
-(-13 (-590) (-632 (-887)) (-10 -8 (-15 -2816 ($ (-402))) (-15 -2816 ($ (-1189))) (-15 -3856 ((-114) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2592 (($) 7 T CONST)) (-1905 (((-1189) $) NIL T ELT)) (-4415 (($) 6 T CONST)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 15 T ELT)) (-1823 (($) 9 T CONST)) (-4396 (($) 8 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 11 T ELT)))
-(((-592) (-13 (-1132) (-10 -8 (-15 -4415 ($) -3081) (-15 -2592 ($) -3081) (-15 -4396 ($) -3081) (-15 -1823 ($) -3081)))) (T -592))
-((-4415 (*1 *1) (-5 *1 (-592))) (-2592 (*1 *1) (-5 *1 (-592))) (-4396 (*1 *1) (-5 *1 (-592))) (-1823 (*1 *1) (-5 *1 (-592))))
-(-13 (-1132) (-10 -8 (-15 -4415 ($) -3081) (-15 -2592 ($) -3081) (-15 -4396 ($) -3081) (-15 -1823 ($) -3081)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2221 (((-713 $) (-505)) 21 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-4448 (($ (-1189)) 14 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 33 T ELT)) (-2979 (((-216 4 (-130)) $) 24 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 26 T ELT)))
-(((-593) (-13 (-1132) (-10 -8 (-15 -4448 ($ (-1189))) (-15 -2979 ((-216 4 (-130)) $)) (-15 -2221 ((-713 $) (-505)))))) (T -593))
-((-4448 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-593)))) (-2979 (*1 *2 *1) (-12 (-5 *2 (-216 4 (-130))) (-5 *1 (-593)))) (-2221 (*1 *2 *3) (-12 (-5 *3 (-505)) (-5 *2 (-713 (-593))) (-5 *1 (-593)))))
-(-13 (-1132) (-10 -8 (-15 -4448 ($ (-1189))) (-15 -2979 ((-216 4 (-130)) $)) (-15 -2221 ((-713 $) (-505)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-4471 (($ $ (-560)) 75 T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-4179 (($ (-1201 (-560)) (-560)) 81 T ELT)) (-1478 (($ $ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) 66 T ELT)) (-1736 (($ $) 43 T ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-3913 (((-793) $) 16 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2865 (((-560)) 37 T ELT)) (-1715 (((-560) $) 41 T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-4372 (($ $ (-560)) 24 T ELT)) (-1528 (((-3 $ "failed") $ $) 71 T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2901 (((-793) $) 17 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 72 T ELT)) (-1601 (((-1185 (-560)) $) 19 T ELT)) (-3266 (($ $) 26 T ELT)) (-1578 (((-887) $) 102 T ELT) (($ (-560)) 61 T ELT) (($ $) NIL T ELT)) (-2930 (((-793)) 15 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2239 (((-560) $ (-560)) 46 T ELT)) (-2001 (($) 44 T CONST)) (-2011 (($) 21 T CONST)) (-2473 (((-114) $ $) 52 T ELT)) (-2580 (($ $) 60 T ELT) (($ $ $) 48 T ELT)) (-2567 (($ $ $) 59 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 62 T ELT) (($ $ $) 63 T ELT)))
+((-2406 (((-713 (-1256)) $ (-1256)) NIL T ELT)) (-1847 (((-713 (-564)) $ (-564)) NIL T ELT)) (-1580 (((-793) $ (-131)) NIL T ELT)) (-2241 (((-713 (-130)) $ (-130)) NIL T ELT)) (-1355 (((-713 (-1256)) $) NIL T ELT)) (-4163 (((-713 (-1254)) $) NIL T ELT)) (-4262 (((-713 (-1253)) $) NIL T ELT)) (-2380 (((-713 (-564)) $) NIL T ELT)) (-2103 (((-713 (-562)) $) NIL T ELT)) (-3714 (((-713 (-561)) $) NIL T ELT)) (-4478 (((-793) $ (-131)) NIL T ELT)) (-3366 (((-713 (-130)) $) NIL T ELT)) (-4097 (((-114) $) NIL T ELT)) (-4339 (($ (-402)) 14 T ELT) (($ (-1189)) 16 T ELT)) (-3913 (((-887) $) NIL T ELT)) (-1835 (($ $) NIL T ELT)))
+(((-591) (-13 (-590) (-632 (-887)) (-10 -8 (-15 -4339 ($ (-402))) (-15 -4339 ($ (-1189))) (-15 -4097 ((-114) $))))) (T -591))
+((-4339 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-591)))) (-4339 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-591)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-591)))))
+(-13 (-590) (-632 (-887)) (-10 -8 (-15 -4339 ($ (-402))) (-15 -4339 ($ (-1189))) (-15 -4097 ((-114) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2016 (($) 7 T CONST)) (-3358 (((-1189) $) NIL T ELT)) (-3940 (($) 6 T CONST)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 15 T ELT)) (-1837 (($) 9 T CONST)) (-2427 (($) 8 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 11 T ELT)))
+(((-592) (-13 (-1132) (-10 -8 (-15 -3940 ($) -2650) (-15 -2016 ($) -2650) (-15 -2427 ($) -2650) (-15 -1837 ($) -2650)))) (T -592))
+((-3940 (*1 *1) (-5 *1 (-592))) (-2016 (*1 *1) (-5 *1 (-592))) (-2427 (*1 *1) (-5 *1 (-592))) (-1837 (*1 *1) (-5 *1 (-592))))
+(-13 (-1132) (-10 -8 (-15 -3940 ($) -2650) (-15 -2016 ($) -2650) (-15 -2427 ($) -2650) (-15 -1837 ($) -2650)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2203 (((-713 $) (-505)) 21 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1633 (($ (-1189)) 14 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 33 T ELT)) (-3417 (((-216 4 (-130)) $) 24 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 26 T ELT)))
+(((-593) (-13 (-1132) (-10 -8 (-15 -1633 ($ (-1189))) (-15 -3417 ((-216 4 (-130)) $)) (-15 -2203 ((-713 $) (-505)))))) (T -593))
+((-1633 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-593)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-216 4 (-130))) (-5 *1 (-593)))) (-2203 (*1 *2 *3) (-12 (-5 *3 (-505)) (-5 *2 (-713 (-593))) (-5 *1 (-593)))))
+(-13 (-1132) (-10 -8 (-15 -1633 ($ (-1189))) (-15 -3417 ((-216 4 (-130)) $)) (-15 -2203 ((-713 $) (-505)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-4021 (($ $ (-560)) 75 T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-4266 (($ (-1201 (-560)) (-560)) 81 T ELT)) (-2186 (($ $ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) 66 T ELT)) (-2232 (($ $) 43 T ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-1460 (((-793) $) 16 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3601 (((-560)) 37 T ELT)) (-2053 (((-560) $) 41 T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2219 (($ $ (-560)) 24 T ELT)) (-2233 (((-3 $ "failed") $ $) 71 T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3989 (((-793) $) 17 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 72 T ELT)) (-3370 (((-1185 (-560)) $) 19 T ELT)) (-3329 (($ $) 26 T ELT)) (-3913 (((-887) $) 102 T ELT) (($ (-560)) 61 T ELT) (($ $) NIL T ELT)) (-4191 (((-793)) 15 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-2905 (((-560) $ (-560)) 46 T ELT)) (-1446 (($) 44 T CONST)) (-1456 (($) 21 T CONST)) (-2340 (((-114) $ $) 52 T ELT)) (-2441 (($ $) 60 T ELT) (($ $ $) 48 T ELT)) (-2429 (($ $ $) 59 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 62 T ELT) (($ $ $) 63 T ELT)))
(((-594 |#1| |#2|) (-894 |#1|) (-560) (-114)) (T -594))
NIL
(-894 |#1|)
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 30 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-1947 (((-114) $) NIL T ELT)) (-1796 (((-793)) NIL T ELT)) (-3349 (($ $ (-948)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-2105 (((-1219 (-948) (-793)) (-560)) 59 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-3241 (((-793)) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 $ "failed") $) 95 T ELT)) (-3330 (($ $) 94 T ELT)) (-4143 (($ (-1297 $)) 93 T ELT)) (-4217 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-1478 (($ $ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) 44 T ELT)) (-2310 (($) NIL T ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4336 (($) 61 T ELT)) (-3976 (((-114) $) NIL T ELT)) (-1696 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-3913 (((-854 (-948)) $) NIL T ELT) (((-948) $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-4417 (($) 49 (|has| $ (-381)) ELT)) (-2863 (((-114) $) NIL (|has| $ (-381)) ELT)) (-2032 (($ $ (-948)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-3009 (((-3 $ "failed") $) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1787 (((-1201 $) $ (-948)) NIL (|has| $ (-381)) ELT) (((-1201 $) $) 104 T ELT)) (-4419 (((-948) $) 67 T ELT)) (-1543 (((-1201 $) $) NIL (|has| $ (-381)) ELT)) (-4449 (((-3 (-1201 $) "failed") $ $) NIL (|has| $ (-381)) ELT) (((-1201 $) $) NIL (|has| $ (-381)) ELT)) (-3384 (($ $ (-1201 $)) NIL (|has| $ (-381)) ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-3161 (($) NIL T CONST)) (-3128 (($ (-948)) 60 T ELT)) (-3583 (((-114) $) 87 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2748 (($) 28 (|has| $ (-381)) ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3666 (((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))) 54 T ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-2969 (((-948)) 86 T ELT) (((-854 (-948))) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2364 (((-3 (-793) "failed") $ $) NIL T ELT) (((-793) $) NIL T ELT)) (-3669 (((-136)) NIL T ELT)) (-2894 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3630 (((-948) $) 85 T ELT) (((-854 (-948)) $) NIL T ELT)) (-4394 (((-1201 $)) 102 T ELT)) (-2243 (($) 66 T ELT)) (-3988 (($) 50 (|has| $ (-381)) ELT)) (-2178 (((-711 $) (-1297 $)) NIL T ELT) (((-1297 $) $) 91 T ELT)) (-1407 (((-560) $) 40 T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) 42 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL T ELT) (($ $) 105 T ELT)) (-2930 (((-793)) 51 T CONST)) (-2275 (((-114) $ $) 107 T ELT)) (-1954 (((-1297 $) (-948)) 97 T ELT) (((-1297 $)) 96 T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-3602 (((-114) $) NIL T ELT)) (-2001 (($) 31 T CONST)) (-2011 (($) 27 T CONST)) (-3054 (($ $ (-793)) NIL (|has| $ (-381)) ELT) (($ $) NIL (|has| $ (-381)) ELT)) (-3305 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 34 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 30 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3752 (((-114) $) NIL T ELT)) (-1542 (((-793)) NIL T ELT)) (-4113 (($ $ (-948)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-1548 (((-1219 (-948) (-793)) (-560)) 59 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-2552 (((-793)) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 $ "failed") $) 95 T ELT)) (-3649 (($ $) 94 T ELT)) (-1953 (($ (-1297 $)) 93 T ELT)) (-1433 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2186 (($ $ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) 44 T ELT)) (-1812 (($) NIL T ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3191 (($) 61 T ELT)) (-4017 (((-114) $) NIL T ELT)) (-3079 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-1460 (((-854 (-948)) $) NIL T ELT) (((-948) $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-2601 (($) 49 (|has| $ (-381)) ELT)) (-3572 (((-114) $) NIL (|has| $ (-381)) ELT)) (-2084 (($ $ (-948)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-3738 (((-3 $ "failed") $) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1471 (((-1201 $) $ (-948)) NIL (|has| $ (-381)) ELT) (((-1201 $) $) 104 T ELT)) (-2622 (((-948) $) 67 T ELT)) (-1567 (((-1201 $) $) NIL (|has| $ (-381)) ELT)) (-1644 (((-3 (-1201 $) "failed") $ $) NIL (|has| $ (-381)) ELT) (((-1201 $) $) NIL (|has| $ (-381)) ELT)) (-3264 (($ $ (-1201 $)) NIL (|has| $ (-381)) ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3239 (($) NIL T CONST)) (-1591 (($ (-948)) 60 T ELT)) (-3410 (((-114) $) 87 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3583 (($) 28 (|has| $ (-381)) ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2976 (((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))) 54 T ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-3313 (((-948)) 86 T ELT) (((-854 (-948))) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-2258 (((-3 (-793) "failed") $ $) NIL T ELT) (((-793) $) NIL T ELT)) (-3015 (((-136)) NIL T ELT)) (-3161 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3900 (((-948) $) 85 T ELT) (((-854 (-948)) $) NIL T ELT)) (-2407 (((-1201 $)) 102 T ELT)) (-3569 (($) 66 T ELT)) (-2855 (($) 50 (|has| $ (-381)) ELT)) (-4226 (((-711 $) (-1297 $)) NIL T ELT) (((-1297 $) $) 91 T ELT)) (-2400 (((-560) $) 40 T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) 42 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL T ELT) (($ $) 105 T ELT)) (-4191 (((-793)) 51 T CONST)) (-3925 (((-114) $ $) 107 T ELT)) (-3822 (((-1297 $) (-948)) 97 T ELT) (((-1297 $)) 96 T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-3621 (((-114) $) NIL T ELT)) (-1446 (($) 31 T CONST)) (-1456 (($) 27 T CONST)) (-2925 (($ $ (-793)) NIL (|has| $ (-381)) ELT) (($ $) NIL (|has| $ (-381)) ELT)) (-2111 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 34 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT)))
(((-595 |#1|) (-13 (-363) (-341 $) (-633 (-560))) (-948)) (T -595))
NIL
(-13 (-363) (-341 $) (-633 (-560)))
-((-1897 (((-1303) (-1189)) 10 T ELT)))
-(((-596) (-10 -7 (-15 -1897 ((-1303) (-1189))))) (T -596))
-((-1897 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-596)))))
-(-10 -7 (-15 -1897 ((-1303) (-1189))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) 76 T ELT)) (-3330 ((|#1| $) NIL T ELT)) (-3887 ((|#1| $) 30 T ELT)) (-1560 (((-663 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-4151 (($ |#1| (-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1201 |#1|)) (|:| |logand| (-1201 |#1|)))) (-663 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-1739 (((-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1201 |#1|)) (|:| |logand| (-1201 |#1|)))) $) 31 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2811 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1207)) 49 (|has| |#1| (-1069 (-1207))) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3565 (((-114) $) 35 T ELT)) (-2894 ((|#1| $ (-1 |#1| |#1|)) 88 T ELT) ((|#1| $ (-1207)) 89 (|has| |#1| (-927 (-1207))) ELT)) (-1578 (((-887) $) 110 T ELT) (($ |#1|) 29 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 18 T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 85 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 16 T ELT) (($ (-421 (-560)) $) 41 T ELT) (($ $ (-421 (-560))) NIL T ELT)))
-(((-597 |#1|) (-13 (-739 (-421 (-560))) (-1069 |#1|) (-10 -8 (-15 -4151 ($ |#1| (-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1201 |#1|)) (|:| |logand| (-1201 |#1|)))) (-663 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3887 (|#1| $)) (-15 -1739 ((-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1201 |#1|)) (|:| |logand| (-1201 |#1|)))) $)) (-15 -1560 ((-663 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3565 ((-114) $)) (-15 -2811 ($ |#1| |#1|)) (-15 -2894 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-927 (-1207))) (-15 -2894 (|#1| $ (-1207))) |%noBranch|) (IF (|has| |#1| (-1069 (-1207))) (-15 -2811 ($ |#1| (-1207))) |%noBranch|))) (-376)) (T -597))
-((-4151 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1201 *2)) (|:| |logand| (-1201 *2))))) (-5 *4 (-663 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-376)) (-5 *1 (-597 *2)))) (-3887 (*1 *2 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-376)))) (-1739 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1201 *3)) (|:| |logand| (-1201 *3))))) (-5 *1 (-597 *3)) (-4 *3 (-376)))) (-1560 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-597 *3)) (-4 *3 (-376)))) (-3565 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-597 *3)) (-4 *3 (-376)))) (-2811 (*1 *1 *2 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-376)))) (-2894 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-597 *2)) (-4 *2 (-376)))) (-2894 (*1 *2 *1 *3) (-12 (-4 *2 (-376)) (-4 *2 (-927 *3)) (-5 *1 (-597 *2)) (-5 *3 (-1207)))) (-2811 (*1 *1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *1 (-597 *2)) (-4 *2 (-1069 *3)) (-4 *2 (-376)))))
-(-13 (-739 (-421 (-560))) (-1069 |#1|) (-10 -8 (-15 -4151 ($ |#1| (-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1201 |#1|)) (|:| |logand| (-1201 |#1|)))) (-663 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -3887 (|#1| $)) (-15 -1739 ((-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1201 |#1|)) (|:| |logand| (-1201 |#1|)))) $)) (-15 -1560 ((-663 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -3565 ((-114) $)) (-15 -2811 ($ |#1| |#1|)) (-15 -2894 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-927 (-1207))) (-15 -2894 (|#1| $ (-1207))) |%noBranch|) (IF (|has| |#1| (-1069 (-1207))) (-15 -2811 ($ |#1| (-1207))) |%noBranch|)))
-((-3957 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44 T ELT) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11 T ELT) (((-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3887 |#1|) (|:| |coeff| |#1|)) "failed")) 35 T ELT) (((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|)) 30 T ELT)))
-(((-598 |#1| |#2|) (-10 -7 (-15 -3957 ((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|))) (-15 -3957 ((-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3887 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3957 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3957 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-376) (-376)) (T -598))
-((-3957 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-598 *5 *6)))) (-3957 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-376)) (-4 *2 (-376)) (-5 *1 (-598 *5 *2)))) (-3957 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -3887 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-2 (|:| -3887 *6) (|:| |coeff| *6))) (-5 *1 (-598 *5 *6)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-597 *5)) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-597 *6)) (-5 *1 (-598 *5 *6)))))
-(-10 -7 (-15 -3957 ((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|))) (-15 -3957 ((-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -3887 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3957 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3957 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-1513 (((-597 |#2|) (-597 |#2|)) 42 T ELT)) (-1945 (((-663 |#2|) (-597 |#2|)) 44 T ELT)) (-3661 ((|#2| (-597 |#2|)) 50 T ELT)))
-(((-599 |#1| |#2|) (-10 -7 (-15 -1513 ((-597 |#2|) (-597 |#2|))) (-15 -1945 ((-663 |#2|) (-597 |#2|))) (-15 -3661 (|#2| (-597 |#2|)))) (-13 (-466) (-1069 (-560)) (-660 (-560))) (-13 (-29 |#1|) (-1233))) (T -599))
-((-3661 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-13 (-29 *4) (-1233))) (-5 *1 (-599 *4 *2)) (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-597 *5)) (-4 *5 (-13 (-29 *4) (-1233))) (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-663 *5)) (-5 *1 (-599 *4 *5)))) (-1513 (*1 *2 *2) (-12 (-5 *2 (-597 *4)) (-4 *4 (-13 (-29 *3) (-1233))) (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-599 *3 *4)))))
-(-10 -7 (-15 -1513 ((-597 |#2|) (-597 |#2|))) (-15 -1945 ((-663 |#2|) (-597 |#2|))) (-15 -3661 (|#2| (-597 |#2|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1645 (($ (-520) (-611)) 14 T ELT)) (-2028 (($ (-520) (-611) $) 16 T ELT)) (-1849 (($ (-520) (-611)) 15 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-1212)) 7 T ELT) (((-1212) $) 6 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-600) (-13 (-1132) (-504 (-1212)) (-10 -8 (-15 -1645 ($ (-520) (-611))) (-15 -1849 ($ (-520) (-611))) (-15 -2028 ($ (-520) (-611) $))))) (T -600))
-((-1645 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-600)))) (-1849 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-600)))) (-2028 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-600)))))
-(-13 (-1132) (-504 (-1212)) (-10 -8 (-15 -1645 ($ (-520) (-611))) (-15 -1849 ($ (-520) (-611))) (-15 -2028 ($ (-520) (-611) $))))
-((-2086 (((-114) |#1|) 16 T ELT)) (-4121 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-3551 (((-2 (|:| -1792 |#1|) (|:| -3205 (-793))) |#1|) 38 T ELT) (((-3 |#1| "failed") |#1| (-793)) 18 T ELT)) (-3287 (((-114) |#1| (-793)) 19 T ELT)) (-2065 ((|#1| |#1|) 42 T ELT)) (-3096 ((|#1| |#1| (-793)) 45 T ELT)))
-(((-601 |#1|) (-10 -7 (-15 -3287 ((-114) |#1| (-793))) (-15 -3551 ((-3 |#1| "failed") |#1| (-793))) (-15 -3551 ((-2 (|:| -1792 |#1|) (|:| -3205 (-793))) |#1|)) (-15 -3096 (|#1| |#1| (-793))) (-15 -2086 ((-114) |#1|)) (-15 -4121 ((-3 |#1| "failed") |#1|)) (-15 -2065 (|#1| |#1|))) (-559)) (T -601))
-((-2065 (*1 *2 *2) (-12 (-5 *1 (-601 *2)) (-4 *2 (-559)))) (-4121 (*1 *2 *2) (|partial| -12 (-5 *1 (-601 *2)) (-4 *2 (-559)))) (-2086 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-601 *3)) (-4 *3 (-559)))) (-3096 (*1 *2 *2 *3) (-12 (-5 *3 (-793)) (-5 *1 (-601 *2)) (-4 *2 (-559)))) (-3551 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1792 *3) (|:| -3205 (-793)))) (-5 *1 (-601 *3)) (-4 *3 (-559)))) (-3551 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-793)) (-5 *1 (-601 *2)) (-4 *2 (-559)))) (-3287 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-5 *2 (-114)) (-5 *1 (-601 *3)) (-4 *3 (-559)))))
-(-10 -7 (-15 -3287 ((-114) |#1| (-793))) (-15 -3551 ((-3 |#1| "failed") |#1| (-793))) (-15 -3551 ((-2 (|:| -1792 |#1|) (|:| -3205 (-793))) |#1|)) (-15 -3096 (|#1| |#1| (-793))) (-15 -2086 ((-114) |#1|)) (-15 -4121 ((-3 |#1| "failed") |#1|)) (-15 -2065 (|#1| |#1|)))
-((-4271 (((-1201 |#1|) (-948)) 44 T ELT)))
-(((-602 |#1|) (-10 -7 (-15 -4271 ((-1201 |#1|) (-948)))) (-363)) (T -602))
-((-4271 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-602 *4)) (-4 *4 (-363)))))
-(-10 -7 (-15 -4271 ((-1201 |#1|) (-948))))
-((-1513 (((-597 (-421 (-975 |#1|))) (-597 (-421 (-975 |#1|)))) 27 T ELT)) (-2518 (((-3 (-326 |#1|) (-663 (-326 |#1|))) (-421 (-975 |#1|)) (-1207)) 34 (|has| |#1| (-149)) ELT)) (-1945 (((-663 (-326 |#1|)) (-597 (-421 (-975 |#1|)))) 19 T ELT)) (-4221 (((-326 |#1|) (-421 (-975 |#1|)) (-1207)) 32 (|has| |#1| (-149)) ELT)) (-3661 (((-326 |#1|) (-597 (-421 (-975 |#1|)))) 21 T ELT)))
-(((-603 |#1|) (-10 -7 (-15 -1513 ((-597 (-421 (-975 |#1|))) (-597 (-421 (-975 |#1|))))) (-15 -1945 ((-663 (-326 |#1|)) (-597 (-421 (-975 |#1|))))) (-15 -3661 ((-326 |#1|) (-597 (-421 (-975 |#1|))))) (IF (|has| |#1| (-149)) (PROGN (-15 -2518 ((-3 (-326 |#1|) (-663 (-326 |#1|))) (-421 (-975 |#1|)) (-1207))) (-15 -4221 ((-326 |#1|) (-421 (-975 |#1|)) (-1207)))) |%noBranch|)) (-13 (-466) (-1069 (-560)) (-660 (-560)))) (T -603))
-((-4221 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207)) (-4 *5 (-149)) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-326 *5)) (-5 *1 (-603 *5)))) (-2518 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207)) (-4 *5 (-149)) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-3 (-326 *5) (-663 (-326 *5)))) (-5 *1 (-603 *5)))) (-3661 (*1 *2 *3) (-12 (-5 *3 (-597 (-421 (-975 *4)))) (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-326 *4)) (-5 *1 (-603 *4)))) (-1945 (*1 *2 *3) (-12 (-5 *3 (-597 (-421 (-975 *4)))) (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-663 (-326 *4))) (-5 *1 (-603 *4)))) (-1513 (*1 *2 *2) (-12 (-5 *2 (-597 (-421 (-975 *3)))) (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-603 *3)))))
-(-10 -7 (-15 -1513 ((-597 (-421 (-975 |#1|))) (-597 (-421 (-975 |#1|))))) (-15 -1945 ((-663 (-326 |#1|)) (-597 (-421 (-975 |#1|))))) (-15 -3661 ((-326 |#1|) (-597 (-421 (-975 |#1|))))) (IF (|has| |#1| (-149)) (PROGN (-15 -2518 ((-3 (-326 |#1|) (-663 (-326 |#1|))) (-421 (-975 |#1|)) (-1207))) (-15 -4221 ((-326 |#1|) (-421 (-975 |#1|)) (-1207)))) |%noBranch|))
-((-2916 (((-663 (-711 (-560))) (-663 (-948)) (-663 (-931 (-560)))) 78 T ELT) (((-663 (-711 (-560))) (-663 (-948))) 79 T ELT) (((-711 (-560)) (-663 (-948)) (-931 (-560))) 72 T ELT)) (-4078 (((-793) (-663 (-948))) 69 T ELT)))
-(((-604) (-10 -7 (-15 -4078 ((-793) (-663 (-948)))) (-15 -2916 ((-711 (-560)) (-663 (-948)) (-931 (-560)))) (-15 -2916 ((-663 (-711 (-560))) (-663 (-948)))) (-15 -2916 ((-663 (-711 (-560))) (-663 (-948)) (-663 (-931 (-560))))))) (T -604))
-((-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-948))) (-5 *4 (-663 (-931 (-560)))) (-5 *2 (-663 (-711 (-560)))) (-5 *1 (-604)))) (-2916 (*1 *2 *3) (-12 (-5 *3 (-663 (-948))) (-5 *2 (-663 (-711 (-560)))) (-5 *1 (-604)))) (-2916 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-948))) (-5 *4 (-931 (-560))) (-5 *2 (-711 (-560))) (-5 *1 (-604)))) (-4078 (*1 *2 *3) (-12 (-5 *3 (-663 (-948))) (-5 *2 (-793)) (-5 *1 (-604)))))
-(-10 -7 (-15 -4078 ((-793) (-663 (-948)))) (-15 -2916 ((-711 (-560)) (-663 (-948)) (-931 (-560)))) (-15 -2916 ((-663 (-711 (-560))) (-663 (-948)))) (-15 -2916 ((-663 (-711 (-560))) (-663 (-948)) (-663 (-931 (-560))))))
-((-4258 (((-663 |#5|) |#5| (-114)) 100 T ELT)) (-3849 (((-114) |#5| (-663 |#5|)) 34 T ELT)))
-(((-605 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4258 ((-663 |#5|) |#5| (-114))) (-15 -3849 ((-114) |#5| (-663 |#5|)))) (-13 (-319) (-149)) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3| |#4|)) (T -605))
-((-3849 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *3)) (-4 *3 (-1140 *5 *6 *7 *8)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-605 *5 *6 *7 *8 *3)))) (-4258 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-663 *3)) (-5 *1 (-605 *5 *6 *7 *8 *3)) (-4 *3 (-1140 *5 *6 *7 *8)))))
-(-10 -7 (-15 -4258 ((-663 |#5|) |#5| (-114))) (-15 -3849 ((-114) |#5| (-663 |#5|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3401 (((-1166) $) 11 T ELT)) (-3391 (((-1166) $) 9 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-606) (-13 (-1114) (-10 -8 (-15 -3391 ((-1166) $)) (-15 -3401 ((-1166) $))))) (T -606))
-((-3391 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-606)))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-606)))))
-(-13 (-1114) (-10 -8 (-15 -3391 ((-1166) $)) (-15 -3401 ((-1166) $))))
-((-1538 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-2987 (($ $) 38 T ELT)) (-2552 (($ $) NIL T ELT)) (-1532 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-3839 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-3794 (((-114) $ $) 67 T ELT)) (-3770 (((-114) $ $ (-560)) 62 T ELT)) (-1513 (((-663 $) $ (-146)) 75 T ELT) (((-663 $) $ (-143)) 76 T ELT)) (-4040 (((-114) (-1 (-114) (-146) (-146)) $) NIL T ELT) (((-114) $) NIL (|has| (-146) (-871)) ELT)) (-1703 (($ (-1 (-114) (-146) (-146)) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| (-146) (-871))) ELT)) (-2286 (($ (-1 (-114) (-146) (-146)) $) NIL T ELT) (($ $) NIL (|has| (-146) (-871)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 (((-146) $ (-560) (-146)) 59 (|has| $ (-6 -4509)) ELT) (((-146) $ (-1264 (-560)) (-146)) NIL (|has| $ (-6 -4509)) ELT)) (-1982 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2238 (($) NIL T CONST)) (-3486 (($ $ (-146)) 79 T ELT) (($ $ (-143)) 80 T ELT)) (-4391 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) NIL T ELT)) (-4200 (($ $ (-1264 (-560)) $) 57 T ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-2375 (($ (-146) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT) (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) NIL (|has| $ (-6 -4508)) ELT) (((-146) (-1 (-146) (-146) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3779 (((-146) $ (-560) (-146)) NIL (|has| $ (-6 -4509)) ELT)) (-3709 (((-146) $ (-560)) NIL T ELT)) (-3815 (((-114) $ $) 88 T ELT)) (-1722 (((-560) (-1 (-114) (-146)) $) NIL T ELT) (((-560) (-146) $) NIL (|has| (-146) (-1132)) ELT) (((-560) (-146) $ (-560)) 64 (|has| (-146) (-1132)) ELT) (((-560) $ $ (-560)) 63 T ELT) (((-560) (-143) $ (-560)) 66 T ELT)) (-2181 (((-663 (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4095 (($ (-793) (-146)) 9 T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) 32 (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL (|has| (-146) (-871)) ELT)) (-3223 (($ (-1 (-114) (-146) (-146)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-146) (-871)) ELT)) (-2656 (((-663 (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-2937 (((-560) $) 47 (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| (-146) (-871)) ELT)) (-1862 (((-114) $ $ (-146)) 89 T ELT)) (-4473 (((-793) $ $ (-146)) 86 T ELT)) (-3768 (($ (-1 (-146) (-146)) $) 37 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-146) (-146)) $) NIL T ELT) (($ (-1 (-146) (-146) (-146)) $ $) NIL T ELT)) (-1917 (($ $) 41 T ELT)) (-3247 (($ $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-3497 (($ $ (-146)) 77 T ELT) (($ $ (-143)) 78 T ELT)) (-1905 (((-1189) $) 43 (|has| (-146) (-1132)) ELT)) (-3996 (($ (-146) $ (-560)) NIL T ELT) (($ $ $ (-560)) 27 T ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) NIL T ELT)) (-3855 (((-1151) $) 85 (|has| (-146) (-1132)) ELT)) (-3637 (((-146) $) NIL (|has| (-560) (-871)) ELT)) (-3329 (((-3 (-146) "failed") (-1 (-114) (-146)) $) NIL T ELT)) (-3037 (($ $ (-146)) NIL (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 (-146)))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-305 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-146) (-146)) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-663 (-146)) (-663 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-3571 (((-663 (-146)) $) NIL T ELT)) (-1663 (((-114) $) 15 T ELT)) (-3986 (($) 12 T ELT)) (-3924 (((-146) $ (-560) (-146)) NIL T ELT) (((-146) $ (-560)) 68 T ELT) (($ $ (-1264 (-560))) 25 T ELT) (($ $ $) NIL T ELT)) (-4413 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-3865 (((-793) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-146) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-3640 (($ $ $ (-560)) 81 (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) 20 T ELT)) (-1407 (((-549) $) NIL (|has| (-146) (-633 (-549))) ELT)) (-1592 (($ (-663 (-146))) NIL T ELT)) (-3415 (($ $ (-146)) NIL T ELT) (($ (-146) $) NIL T ELT) (($ $ $) 19 T ELT) (($ (-663 $)) 82 T ELT)) (-1578 (($ (-146)) NIL T ELT) (((-887) $) 31 (|has| (-146) (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-1728 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2536 (((-114) $ $) NIL (|has| (-146) (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| (-146) (-871)) ELT)) (-2473 (((-114) $ $) 17 (|has| (-146) (-102)) ELT)) (-2521 (((-114) $ $) NIL (|has| (-146) (-871)) ELT)) (-2495 (((-114) $ $) 18 (|has| (-146) (-871)) ELT)) (-1553 (((-793) $) 16 (|has| $ (-6 -4508)) ELT)))
+((-1361 (((-1303) (-1189)) 10 T ELT)))
+(((-596) (-10 -7 (-15 -1361 ((-1303) (-1189))))) (T -596))
+((-1361 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-596)))))
+(-10 -7 (-15 -1361 ((-1303) (-1189))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) 76 T ELT)) (-3649 ((|#1| $) NIL T ELT)) (-4378 ((|#1| $) 30 T ELT)) (-1715 (((-663 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2038 (($ |#1| (-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1201 |#1|)) (|:| |logand| (-1201 |#1|)))) (-663 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2268 (((-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1201 |#1|)) (|:| |logand| (-1201 |#1|)))) $) 31 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-4288 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1207)) 49 (|has| |#1| (-1069 (-1207))) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4472 (((-114) $) 35 T ELT)) (-3161 ((|#1| $ (-1 |#1| |#1|)) 88 T ELT) ((|#1| $ (-1207)) 89 (|has| |#1| (-927 (-1207))) ELT)) (-3913 (((-887) $) 110 T ELT) (($ |#1|) 29 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 18 T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 85 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 16 T ELT) (($ (-421 (-560)) $) 41 T ELT) (($ $ (-421 (-560))) NIL T ELT)))
+(((-597 |#1|) (-13 (-739 (-421 (-560))) (-1069 |#1|) (-10 -8 (-15 -2038 ($ |#1| (-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1201 |#1|)) (|:| |logand| (-1201 |#1|)))) (-663 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -4378 (|#1| $)) (-15 -2268 ((-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1201 |#1|)) (|:| |logand| (-1201 |#1|)))) $)) (-15 -1715 ((-663 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4472 ((-114) $)) (-15 -4288 ($ |#1| |#1|)) (-15 -3161 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-927 (-1207))) (-15 -3161 (|#1| $ (-1207))) |%noBranch|) (IF (|has| |#1| (-1069 (-1207))) (-15 -4288 ($ |#1| (-1207))) |%noBranch|))) (-376)) (T -597))
+((-2038 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1201 *2)) (|:| |logand| (-1201 *2))))) (-5 *4 (-663 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-376)) (-5 *1 (-597 *2)))) (-4378 (*1 *2 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-376)))) (-2268 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1201 *3)) (|:| |logand| (-1201 *3))))) (-5 *1 (-597 *3)) (-4 *3 (-376)))) (-1715 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-597 *3)) (-4 *3 (-376)))) (-4472 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-597 *3)) (-4 *3 (-376)))) (-4288 (*1 *1 *2 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-376)))) (-3161 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-597 *2)) (-4 *2 (-376)))) (-3161 (*1 *2 *1 *3) (-12 (-4 *2 (-376)) (-4 *2 (-927 *3)) (-5 *1 (-597 *2)) (-5 *3 (-1207)))) (-4288 (*1 *1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *1 (-597 *2)) (-4 *2 (-1069 *3)) (-4 *2 (-376)))))
+(-13 (-739 (-421 (-560))) (-1069 |#1|) (-10 -8 (-15 -2038 ($ |#1| (-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1201 |#1|)) (|:| |logand| (-1201 |#1|)))) (-663 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -4378 (|#1| $)) (-15 -2268 ((-663 (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1201 |#1|)) (|:| |logand| (-1201 |#1|)))) $)) (-15 -1715 ((-663 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -4472 ((-114) $)) (-15 -4288 ($ |#1| |#1|)) (-15 -3161 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-927 (-1207))) (-15 -3161 (|#1| $ (-1207))) |%noBranch|) (IF (|has| |#1| (-1069 (-1207))) (-15 -4288 ($ |#1| (-1207))) |%noBranch|)))
+((-2260 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44 T ELT) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11 T ELT) (((-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4378 |#1|) (|:| |coeff| |#1|)) "failed")) 35 T ELT) (((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|)) 30 T ELT)))
+(((-598 |#1| |#2|) (-10 -7 (-15 -2260 ((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|))) (-15 -2260 ((-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4378 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2260 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2260 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-376) (-376)) (T -598))
+((-2260 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-598 *5 *6)))) (-2260 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-376)) (-4 *2 (-376)) (-5 *1 (-598 *5 *2)))) (-2260 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -4378 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-2 (|:| -4378 *6) (|:| |coeff| *6))) (-5 *1 (-598 *5 *6)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-597 *5)) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-597 *6)) (-5 *1 (-598 *5 *6)))))
+(-10 -7 (-15 -2260 ((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|))) (-15 -2260 ((-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -4378 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -2260 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -2260 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-1626 (((-597 |#2|) (-597 |#2|)) 42 T ELT)) (-3890 (((-663 |#2|) (-597 |#2|)) 44 T ELT)) (-2913 ((|#2| (-597 |#2|)) 50 T ELT)))
+(((-599 |#1| |#2|) (-10 -7 (-15 -1626 ((-597 |#2|) (-597 |#2|))) (-15 -3890 ((-663 |#2|) (-597 |#2|))) (-15 -2913 (|#2| (-597 |#2|)))) (-13 (-466) (-1069 (-560)) (-660 (-560))) (-13 (-29 |#1|) (-1233))) (T -599))
+((-2913 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-13 (-29 *4) (-1233))) (-5 *1 (-599 *4 *2)) (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-597 *5)) (-4 *5 (-13 (-29 *4) (-1233))) (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-663 *5)) (-5 *1 (-599 *4 *5)))) (-1626 (*1 *2 *2) (-12 (-5 *2 (-597 *4)) (-4 *4 (-13 (-29 *3) (-1233))) (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-599 *3 *4)))))
+(-10 -7 (-15 -1626 ((-597 |#2|) (-597 |#2|))) (-15 -3890 ((-663 |#2|) (-597 |#2|))) (-15 -2913 (|#2| (-597 |#2|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3793 (($ (-520) (-611)) 14 T ELT)) (-3268 (($ (-520) (-611) $) 16 T ELT)) (-4042 (($ (-520) (-611)) 15 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-1212)) 7 T ELT) (((-1212) $) 6 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-600) (-13 (-1132) (-504 (-1212)) (-10 -8 (-15 -3793 ($ (-520) (-611))) (-15 -4042 ($ (-520) (-611))) (-15 -3268 ($ (-520) (-611) $))))) (T -600))
+((-3793 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-600)))) (-4042 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-600)))) (-3268 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-600)))))
+(-13 (-1132) (-504 (-1212)) (-10 -8 (-15 -3793 ($ (-520) (-611))) (-15 -4042 ($ (-520) (-611))) (-15 -3268 ($ (-520) (-611) $))))
+((-2598 (((-114) |#1|) 16 T ELT)) (-1703 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-4331 (((-2 (|:| -2671 |#1|) (|:| -2030 (-793))) |#1|) 38 T ELT) (((-3 |#1| "failed") |#1| (-793)) 18 T ELT)) (-3536 (((-114) |#1| (-793)) 19 T ELT)) (-2369 ((|#1| |#1|) 42 T ELT)) (-2139 ((|#1| |#1| (-793)) 45 T ELT)))
+(((-601 |#1|) (-10 -7 (-15 -3536 ((-114) |#1| (-793))) (-15 -4331 ((-3 |#1| "failed") |#1| (-793))) (-15 -4331 ((-2 (|:| -2671 |#1|) (|:| -2030 (-793))) |#1|)) (-15 -2139 (|#1| |#1| (-793))) (-15 -2598 ((-114) |#1|)) (-15 -1703 ((-3 |#1| "failed") |#1|)) (-15 -2369 (|#1| |#1|))) (-559)) (T -601))
+((-2369 (*1 *2 *2) (-12 (-5 *1 (-601 *2)) (-4 *2 (-559)))) (-1703 (*1 *2 *2) (|partial| -12 (-5 *1 (-601 *2)) (-4 *2 (-559)))) (-2598 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-601 *3)) (-4 *3 (-559)))) (-2139 (*1 *2 *2 *3) (-12 (-5 *3 (-793)) (-5 *1 (-601 *2)) (-4 *2 (-559)))) (-4331 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2671 *3) (|:| -2030 (-793)))) (-5 *1 (-601 *3)) (-4 *3 (-559)))) (-4331 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-793)) (-5 *1 (-601 *2)) (-4 *2 (-559)))) (-3536 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-5 *2 (-114)) (-5 *1 (-601 *3)) (-4 *3 (-559)))))
+(-10 -7 (-15 -3536 ((-114) |#1| (-793))) (-15 -4331 ((-3 |#1| "failed") |#1| (-793))) (-15 -4331 ((-2 (|:| -2671 |#1|) (|:| -2030 (-793))) |#1|)) (-15 -2139 (|#1| |#1| (-793))) (-15 -2598 ((-114) |#1|)) (-15 -1703 ((-3 |#1| "failed") |#1|)) (-15 -2369 (|#1| |#1|)))
+((-3901 (((-1201 |#1|) (-948)) 44 T ELT)))
+(((-602 |#1|) (-10 -7 (-15 -3901 ((-1201 |#1|) (-948)))) (-363)) (T -602))
+((-3901 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-602 *4)) (-4 *4 (-363)))))
+(-10 -7 (-15 -3901 ((-1201 |#1|) (-948))))
+((-1626 (((-597 (-421 (-975 |#1|))) (-597 (-421 (-975 |#1|)))) 27 T ELT)) (-4424 (((-3 (-326 |#1|) (-663 (-326 |#1|))) (-421 (-975 |#1|)) (-1207)) 34 (|has| |#1| (-149)) ELT)) (-3890 (((-663 (-326 |#1|)) (-597 (-421 (-975 |#1|)))) 19 T ELT)) (-1476 (((-326 |#1|) (-421 (-975 |#1|)) (-1207)) 32 (|has| |#1| (-149)) ELT)) (-2913 (((-326 |#1|) (-597 (-421 (-975 |#1|)))) 21 T ELT)))
+(((-603 |#1|) (-10 -7 (-15 -1626 ((-597 (-421 (-975 |#1|))) (-597 (-421 (-975 |#1|))))) (-15 -3890 ((-663 (-326 |#1|)) (-597 (-421 (-975 |#1|))))) (-15 -2913 ((-326 |#1|) (-597 (-421 (-975 |#1|))))) (IF (|has| |#1| (-149)) (PROGN (-15 -4424 ((-3 (-326 |#1|) (-663 (-326 |#1|))) (-421 (-975 |#1|)) (-1207))) (-15 -1476 ((-326 |#1|) (-421 (-975 |#1|)) (-1207)))) |%noBranch|)) (-13 (-466) (-1069 (-560)) (-660 (-560)))) (T -603))
+((-1476 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207)) (-4 *5 (-149)) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-326 *5)) (-5 *1 (-603 *5)))) (-4424 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207)) (-4 *5 (-149)) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-3 (-326 *5) (-663 (-326 *5)))) (-5 *1 (-603 *5)))) (-2913 (*1 *2 *3) (-12 (-5 *3 (-597 (-421 (-975 *4)))) (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-326 *4)) (-5 *1 (-603 *4)))) (-3890 (*1 *2 *3) (-12 (-5 *3 (-597 (-421 (-975 *4)))) (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-663 (-326 *4))) (-5 *1 (-603 *4)))) (-1626 (*1 *2 *2) (-12 (-5 *2 (-597 (-421 (-975 *3)))) (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-603 *3)))))
+(-10 -7 (-15 -1626 ((-597 (-421 (-975 |#1|))) (-597 (-421 (-975 |#1|))))) (-15 -3890 ((-663 (-326 |#1|)) (-597 (-421 (-975 |#1|))))) (-15 -2913 ((-326 |#1|) (-597 (-421 (-975 |#1|))))) (IF (|has| |#1| (-149)) (PROGN (-15 -4424 ((-3 (-326 |#1|) (-663 (-326 |#1|))) (-421 (-975 |#1|)) (-1207))) (-15 -1476 ((-326 |#1|) (-421 (-975 |#1|)) (-1207)))) |%noBranch|))
+((-4043 (((-663 (-711 (-560))) (-663 (-948)) (-663 (-931 (-560)))) 78 T ELT) (((-663 (-711 (-560))) (-663 (-948))) 79 T ELT) (((-711 (-560)) (-663 (-948)) (-931 (-560))) 72 T ELT)) (-2520 (((-793) (-663 (-948))) 69 T ELT)))
+(((-604) (-10 -7 (-15 -2520 ((-793) (-663 (-948)))) (-15 -4043 ((-711 (-560)) (-663 (-948)) (-931 (-560)))) (-15 -4043 ((-663 (-711 (-560))) (-663 (-948)))) (-15 -4043 ((-663 (-711 (-560))) (-663 (-948)) (-663 (-931 (-560))))))) (T -604))
+((-4043 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-948))) (-5 *4 (-663 (-931 (-560)))) (-5 *2 (-663 (-711 (-560)))) (-5 *1 (-604)))) (-4043 (*1 *2 *3) (-12 (-5 *3 (-663 (-948))) (-5 *2 (-663 (-711 (-560)))) (-5 *1 (-604)))) (-4043 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-948))) (-5 *4 (-931 (-560))) (-5 *2 (-711 (-560))) (-5 *1 (-604)))) (-2520 (*1 *2 *3) (-12 (-5 *3 (-663 (-948))) (-5 *2 (-793)) (-5 *1 (-604)))))
+(-10 -7 (-15 -2520 ((-793) (-663 (-948)))) (-15 -4043 ((-711 (-560)) (-663 (-948)) (-931 (-560)))) (-15 -4043 ((-663 (-711 (-560))) (-663 (-948)))) (-15 -4043 ((-663 (-711 (-560))) (-663 (-948)) (-663 (-931 (-560))))))
+((-3769 (((-663 |#5|) |#5| (-114)) 100 T ELT)) (-2095 (((-114) |#5| (-663 |#5|)) 34 T ELT)))
+(((-605 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3769 ((-663 |#5|) |#5| (-114))) (-15 -2095 ((-114) |#5| (-663 |#5|)))) (-13 (-319) (-149)) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3| |#4|)) (T -605))
+((-2095 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *3)) (-4 *3 (-1140 *5 *6 *7 *8)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-605 *5 *6 *7 *8 *3)))) (-3769 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-663 *3)) (-5 *1 (-605 *5 *6 *7 *8 *3)) (-4 *3 (-1140 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3769 ((-663 |#5|) |#5| (-114))) (-15 -2095 ((-114) |#5| (-663 |#5|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-4133 (((-1166) $) 11 T ELT)) (-4121 (((-1166) $) 9 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-606) (-13 (-1114) (-10 -8 (-15 -4121 ((-1166) $)) (-15 -4133 ((-1166) $))))) (T -606))
+((-4121 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-606)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-606)))))
+(-13 (-1114) (-10 -8 (-15 -4121 ((-1166) $)) (-15 -4133 ((-1166) $))))
+((-2243 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-3507 (($ $) 38 T ELT)) (-3473 (($ $) NIL T ELT)) (-2460 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-2033 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-2998 (((-114) $ $) 67 T ELT)) (-2973 (((-114) $ $ (-560)) 62 T ELT)) (-1626 (((-663 $) $ (-146)) 75 T ELT) (((-663 $) $ (-143)) 76 T ELT)) (-2152 (((-114) (-1 (-114) (-146) (-146)) $) NIL T ELT) (((-114) $) NIL (|has| (-146) (-871)) ELT)) (-3152 (($ (-1 (-114) (-146) (-146)) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| (-146) (-871))) ELT)) (-1787 (($ (-1 (-114) (-146) (-146)) $) NIL T ELT) (($ $) NIL (|has| (-146) (-871)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 (((-146) $ (-560) (-146)) 59 (|has| $ (-6 -4509)) ELT) (((-146) $ (-1264 (-560)) (-146)) NIL (|has| $ (-6 -4509)) ELT)) (-3923 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3525 (($) NIL T CONST)) (-4204 (($ $ (-146)) 79 T ELT) (($ $ (-143)) 80 T ELT)) (-2372 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) NIL T ELT)) (-4443 (($ $ (-1264 (-560)) $) 57 T ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-3033 (($ (-146) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT) (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) NIL (|has| $ (-6 -4508)) ELT) (((-146) (-1 (-146) (-146) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3338 (((-146) $ (-560) (-146)) NIL (|has| $ (-6 -4509)) ELT)) (-3274 (((-146) $ (-560)) NIL T ELT)) (-3021 (((-114) $ $) 88 T ELT)) (-2359 (((-560) (-1 (-114) (-146)) $) NIL T ELT) (((-560) (-146) $) NIL (|has| (-146) (-1132)) ELT) (((-560) (-146) $ (-560)) 64 (|has| (-146) (-1132)) ELT) (((-560) $ $ (-560)) 63 T ELT) (((-560) (-143) $ (-560)) 66 T ELT)) (-3737 (((-663 (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4246 (($ (-793) (-146)) 9 T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) 32 (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL (|has| (-146) (-871)) ELT)) (-4167 (($ (-1 (-114) (-146) (-146)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-146) (-871)) ELT)) (-3243 (((-663 (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-4263 (((-560) $) 47 (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| (-146) (-871)) ELT)) (-3484 (((-114) $ $ (-146)) 89 T ELT)) (-2707 (((-793) $ $ (-146)) 86 T ELT)) (-3324 (($ (-1 (-146) (-146)) $) 37 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-146) (-146)) $) NIL T ELT) (($ (-1 (-146) (-146) (-146)) $ $) NIL T ELT)) (-3458 (($ $) 41 T ELT)) (-4399 (($ $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-4214 (($ $ (-146)) 77 T ELT) (($ $ (-143)) 78 T ELT)) (-3358 (((-1189) $) 43 (|has| (-146) (-1132)) ELT)) (-2507 (($ (-146) $ (-560)) NIL T ELT) (($ $ $ (-560)) 27 T ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) NIL T ELT)) (-3376 (((-1151) $) 85 (|has| (-146) (-1132)) ELT)) (-4334 (((-146) $) NIL (|has| (-560) (-871)) ELT)) (-2708 (((-3 (-146) "failed") (-1 (-114) (-146)) $) NIL T ELT)) (-2740 (($ $ (-146)) NIL (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 (-146)))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-305 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-146) (-146)) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-663 (-146)) (-663 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-1383 (((-663 (-146)) $) NIL T ELT)) (-2706 (((-114) $) 15 T ELT)) (-2832 (($) 12 T ELT)) (-1507 (((-146) $ (-560) (-146)) NIL T ELT) (((-146) $ (-560)) 68 T ELT) (($ $ (-1264 (-560))) 25 T ELT) (($ $ $) NIL T ELT)) (-2579 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-3384 (((-793) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-146) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-3993 (($ $ $ (-560)) 81 (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) 20 T ELT)) (-2400 (((-549) $) NIL (|has| (-146) (-633 (-549))) ELT)) (-3924 (($ (-663 (-146))) NIL T ELT)) (-1955 (($ $ (-146)) NIL T ELT) (($ (-146) $) NIL T ELT) (($ $ $) 19 T ELT) (($ (-663 $)) 82 T ELT)) (-3913 (($ (-146)) NIL T ELT) (((-887) $) 31 (|has| (-146) (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-2149 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2396 (((-114) $ $) NIL (|has| (-146) (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| (-146) (-871)) ELT)) (-2340 (((-114) $ $) 17 (|has| (-146) (-102)) ELT)) (-2386 (((-114) $ $) NIL (|has| (-146) (-871)) ELT)) (-2362 (((-114) $ $) 18 (|has| (-146) (-871)) ELT)) (-2256 (((-793) $) 16 (|has| $ (-6 -4508)) ELT)))
(((-607 |#1|) (-1175) (-560)) (T -607))
NIL
(-1175)
-((-4061 (((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2| (-1120 |#4|)) 32 T ELT)))
-(((-608 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4061 ((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2| (-1120 |#4|))) (-15 -4061 ((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2|))) (-815) (-871) (-571) (-979 |#3| |#1| |#2|)) (T -608))
-((-4061 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-571)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-560)))) (-5 *1 (-608 *5 *4 *6 *3)) (-4 *3 (-979 *6 *5 *4)))) (-4061 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1120 *3)) (-4 *3 (-979 *7 *6 *4)) (-4 *6 (-815)) (-4 *4 (-871)) (-4 *7 (-571)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-560)))) (-5 *1 (-608 *6 *4 *7 *3)))))
-(-10 -7 (-15 -4061 ((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2| (-1120 |#4|))) (-15 -4061 ((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 71 T ELT)) (-1443 (((-663 (-1113)) $) NIL T ELT)) (-2462 (((-1207) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4267 (($ $ (-560)) 58 T ELT) (($ $ (-560) (-560)) 59 T ELT)) (-1425 (((-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 65 T ELT)) (-2721 (($ $) 109 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-3136 (((-887) (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) (-1057 (-864 (-560))) (-1207) |#1| (-421 (-560))) 241 T ELT)) (-3781 (($ (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 36 T ELT)) (-2238 (($) NIL T CONST)) (-1624 (($ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-4386 (((-114) $) NIL T ELT)) (-3913 (((-560) $) 63 T ELT) (((-560) $ (-560)) 64 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-3022 (($ $ (-948)) 83 T ELT)) (-1540 (($ (-1 |#1| (-560)) $) 80 T ELT)) (-1556 (((-114) $) 26 T ELT)) (-1417 (($ |#1| (-560)) 22 T ELT) (($ $ (-1113) (-560)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-560))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3929 (($ (-1057 (-864 (-560))) (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 13 T ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2518 (($ $) 161 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1836 (((-3 $ "failed") $ $ (-114)) 108 T ELT)) (-1448 (($ $ $) 116 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1511 (((-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 15 T ELT)) (-4099 (((-1057 (-864 (-560))) $) 14 T ELT)) (-4372 (($ $ (-560)) 47 T ELT)) (-1528 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-4187 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-560)))) ELT)) (-3924 ((|#1| $ (-560)) 62 T ELT) (($ $ $) NIL (|has| (-560) (-1143)) ELT)) (-2894 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT)) (-3630 (((-560) $) NIL T ELT)) (-3266 (($ $) 48 T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) 29 T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ |#1|) 28 (|has| |#1| (-175)) ELT)) (-2305 ((|#1| $ (-560)) 61 T ELT)) (-1964 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-2930 (((-793)) 39 T CONST)) (-3355 ((|#1| $) NIL T ELT)) (-4285 (($ $) 198 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3992 (($ $) 169 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2378 (($ $) 202 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3307 (($ $) 174 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3824 (($ $) 201 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3836 (($ $) 173 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3776 (($ $ (-421 (-560))) 177 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2660 (($ $ |#1|) 157 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1704 (($ $) 204 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1744 (($ $) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3208 (($ $) 203 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2450 (($ $) 175 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3449 (($ $) 199 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3811 (($ $) 171 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2368 (($ $) 200 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2742 (($ $) 172 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2651 (($ $) 209 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3451 (($ $) 185 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3584 (($ $) 206 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4404 (($ $) 181 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3151 (($ $) 213 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3533 (($ $) 189 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2982 (($ $) 215 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3755 (($ $) 191 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3959 (($ $) 211 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2692 (($ $) 187 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1636 (($ $) 208 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1561 (($ $) 183 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2239 ((|#1| $ (-560)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -1578 (|#1| (-1207))))) ELT)) (-2001 (($) 30 T CONST)) (-2011 (($) 40 T CONST)) (-3305 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT)) (-2473 (((-114) $ $) 73 T ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-2567 (($ $ $) 88 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 111 T ELT)) (* (($ (-948) $) 98 T ELT) (($ (-793) $) 96 T ELT) (($ (-560) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
-(((-609 |#1|) (-13 (-1276 |#1| (-560)) (-10 -8 (-15 -3929 ($ (-1057 (-864 (-560))) (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))))) (-15 -4099 ((-1057 (-864 (-560))) $)) (-15 -1511 ((-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $)) (-15 -3781 ($ (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))))) (-15 -1556 ((-114) $)) (-15 -1540 ($ (-1 |#1| (-560)) $)) (-15 -1836 ((-3 $ "failed") $ $ (-114))) (-15 -2721 ($ $)) (-15 -1448 ($ $ $)) (-15 -3136 ((-887) (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) (-1057 (-864 (-560))) (-1207) |#1| (-421 (-560)))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -2518 ($ $)) (-15 -2660 ($ $ |#1|)) (-15 -3776 ($ $ (-421 (-560)))) (-15 -1744 ($ $)) (-15 -1704 ($ $)) (-15 -3307 ($ $)) (-15 -2742 ($ $)) (-15 -3992 ($ $)) (-15 -3811 ($ $)) (-15 -3836 ($ $)) (-15 -2450 ($ $)) (-15 -4404 ($ $)) (-15 -1561 ($ $)) (-15 -3451 ($ $)) (-15 -2692 ($ $)) (-15 -3533 ($ $)) (-15 -3755 ($ $)) (-15 -2378 ($ $)) (-15 -2368 ($ $)) (-15 -4285 ($ $)) (-15 -3449 ($ $)) (-15 -3824 ($ $)) (-15 -3208 ($ $)) (-15 -3584 ($ $)) (-15 -1636 ($ $)) (-15 -2651 ($ $)) (-15 -3959 ($ $)) (-15 -3151 ($ $)) (-15 -2982 ($ $))) |%noBranch|))) (-1080)) (T -609))
-((-1556 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-609 *3)) (-4 *3 (-1080)))) (-3929 (*1 *1 *2 *3) (-12 (-5 *2 (-1057 (-864 (-560)))) (-5 *3 (-1185 (-2 (|:| |k| (-560)) (|:| |c| *4)))) (-4 *4 (-1080)) (-5 *1 (-609 *4)))) (-4099 (*1 *2 *1) (-12 (-5 *2 (-1057 (-864 (-560)))) (-5 *1 (-609 *3)) (-4 *3 (-1080)))) (-1511 (*1 *2 *1) (-12 (-5 *2 (-1185 (-2 (|:| |k| (-560)) (|:| |c| *3)))) (-5 *1 (-609 *3)) (-4 *3 (-1080)))) (-3781 (*1 *1 *2) (-12 (-5 *2 (-1185 (-2 (|:| |k| (-560)) (|:| |c| *3)))) (-4 *3 (-1080)) (-5 *1 (-609 *3)))) (-1540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-560))) (-4 *3 (-1080)) (-5 *1 (-609 *3)))) (-1836 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-114)) (-5 *1 (-609 *3)) (-4 *3 (-1080)))) (-2721 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1080)))) (-1448 (*1 *1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1080)))) (-3136 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1185 (-2 (|:| |k| (-560)) (|:| |c| *6)))) (-5 *4 (-1057 (-864 (-560)))) (-5 *5 (-1207)) (-5 *7 (-421 (-560))) (-4 *6 (-1080)) (-5 *2 (-887)) (-5 *1 (-609 *6)))) (-2518 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-2660 (*1 *1 *1 *2) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3776 (*1 *1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-609 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1080)))) (-1744 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-1704 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3307 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-2742 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3992 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3811 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3836 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-2450 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-4404 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-1561 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3451 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-2692 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3533 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3755 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-2378 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-2368 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-4285 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3449 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3824 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3208 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3584 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-1636 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-2651 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3959 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3151 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-2982 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
-(-13 (-1276 |#1| (-560)) (-10 -8 (-15 -3929 ($ (-1057 (-864 (-560))) (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))))) (-15 -4099 ((-1057 (-864 (-560))) $)) (-15 -1511 ((-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $)) (-15 -3781 ($ (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))))) (-15 -1556 ((-114) $)) (-15 -1540 ($ (-1 |#1| (-560)) $)) (-15 -1836 ((-3 $ "failed") $ $ (-114))) (-15 -2721 ($ $)) (-15 -1448 ($ $ $)) (-15 -3136 ((-887) (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) (-1057 (-864 (-560))) (-1207) |#1| (-421 (-560)))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -2518 ($ $)) (-15 -2660 ($ $ |#1|)) (-15 -3776 ($ $ (-421 (-560)))) (-15 -1744 ($ $)) (-15 -1704 ($ $)) (-15 -3307 ($ $)) (-15 -2742 ($ $)) (-15 -3992 ($ $)) (-15 -3811 ($ $)) (-15 -3836 ($ $)) (-15 -2450 ($ $)) (-15 -4404 ($ $)) (-15 -1561 ($ $)) (-15 -3451 ($ $)) (-15 -2692 ($ $)) (-15 -3533 ($ $)) (-15 -3755 ($ $)) (-15 -2378 ($ $)) (-15 -2368 ($ $)) (-15 -4285 ($ $)) (-15 -3449 ($ $)) (-15 -3824 ($ $)) (-15 -3208 ($ $)) (-15 -3584 ($ $)) (-15 -1636 ($ $)) (-15 -2651 ($ $)) (-15 -3959 ($ $)) (-15 -3151 ($ $)) (-15 -2982 ($ $))) |%noBranch|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 63 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-3781 (($ (-1185 |#1|)) 9 T ELT)) (-2238 (($) NIL T CONST)) (-1990 (((-3 $ "failed") $) 44 T ELT)) (-4386 (((-114) $) 56 T ELT)) (-3913 (((-793) $) 61 T ELT) (((-793) $ (-793)) 60 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) 46 (|has| |#1| (-571)) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-3409 (((-1185 |#1|) $) 25 T ELT)) (-2930 (((-793)) 55 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2001 (($) 10 T CONST)) (-2011 (($) 14 T CONST)) (-2473 (((-114) $ $) 24 T ELT)) (-2580 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-2567 (($ $ $) 27 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 53 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-560)) 38 T ELT)))
-(((-610 |#1|) (-13 (-1080) (-111 |#1| |#1|) (-10 -8 (-15 -3409 ((-1185 |#1|) $)) (-15 -3781 ($ (-1185 |#1|))) (-15 -4386 ((-114) $)) (-15 -3913 ((-793) $)) (-15 -3913 ((-793) $ (-793))) (-15 * ($ $ (-560))) (IF (|has| |#1| (-571)) (-6 (-571)) |%noBranch|))) (-1080)) (T -610))
-((-3409 (*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-610 *3)) (-4 *3 (-1080)))) (-3781 (*1 *1 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-610 *3)))) (-4386 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-610 *3)) (-4 *3 (-1080)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-610 *3)) (-4 *3 (-1080)))) (-3913 (*1 *2 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-610 *3)) (-4 *3 (-1080)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-610 *3)) (-4 *3 (-1080)))))
-(-13 (-1080) (-111 |#1| |#1|) (-10 -8 (-15 -3409 ((-1185 |#1|) $)) (-15 -3781 ($ (-1185 |#1|))) (-15 -4386 ((-114) $)) (-15 -3913 ((-793) $)) (-15 -3913 ((-793) $ (-793))) (-15 * ($ $ (-560))) (IF (|has| |#1| (-571)) (-6 (-571)) |%noBranch|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2831 (($) 8 T CONST)) (-1652 (($) 7 T CONST)) (-3179 (($ $ (-663 $)) 16 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1815 (($) 6 T CONST)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-1212)) 15 T ELT) (((-1212) $) 10 T ELT)) (-3692 (($) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-611) (-13 (-1132) (-504 (-1212)) (-10 -8 (-15 -1815 ($) -3081) (-15 -1652 ($) -3081) (-15 -2831 ($) -3081) (-15 -3692 ($) -3081) (-15 -3179 ($ $ (-663 $)))))) (T -611))
-((-1815 (*1 *1) (-5 *1 (-611))) (-1652 (*1 *1) (-5 *1 (-611))) (-2831 (*1 *1) (-5 *1 (-611))) (-3692 (*1 *1) (-5 *1 (-611))) (-3179 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-611))) (-5 *1 (-611)))))
-(-13 (-1132) (-504 (-1212)) (-10 -8 (-15 -1815 ($) -3081) (-15 -1652 ($) -3081) (-15 -2831 ($) -3081) (-15 -3692 ($) -3081) (-15 -3179 ($ $ (-663 $)))))
-((-3957 (((-615 |#2|) (-1 |#2| |#1|) (-615 |#1|)) 15 T ELT)))
-(((-612 |#1| |#2|) (-10 -7 (-15 -3957 ((-615 |#2|) (-1 |#2| |#1|) (-615 |#1|)))) (-1247) (-1247)) (T -612))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-615 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-615 *6)) (-5 *1 (-612 *5 *6)))))
-(-10 -7 (-15 -3957 ((-615 |#2|) (-1 |#2| |#1|) (-615 |#1|))))
-((-3957 (((-1185 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-1185 |#2|)) 20 T ELT) (((-1185 |#3|) (-1 |#3| |#1| |#2|) (-1185 |#1|) (-615 |#2|)) 19 T ELT) (((-615 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-615 |#2|)) 18 T ELT)))
-(((-613 |#1| |#2| |#3|) (-10 -7 (-15 -3957 ((-615 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-615 |#2|))) (-15 -3957 ((-1185 |#3|) (-1 |#3| |#1| |#2|) (-1185 |#1|) (-615 |#2|))) (-15 -3957 ((-1185 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-1185 |#2|)))) (-1247) (-1247) (-1247)) (T -613))
-((-3957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-615 *6)) (-5 *5 (-1185 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1185 *8)) (-5 *1 (-613 *6 *7 *8)))) (-3957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1185 *6)) (-5 *5 (-615 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1185 *8)) (-5 *1 (-613 *6 *7 *8)))) (-3957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-615 *6)) (-5 *5 (-615 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-615 *8)) (-5 *1 (-613 *6 *7 *8)))))
-(-10 -7 (-15 -3957 ((-615 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-615 |#2|))) (-15 -3957 ((-1185 |#3|) (-1 |#3| |#1| |#2|) (-1185 |#1|) (-615 |#2|))) (-15 -3957 ((-1185 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-1185 |#2|))))
-((-1426 ((|#3| |#3| (-663 (-630 |#3|)) (-663 (-1207))) 57 T ELT)) (-2732 (((-171 |#2|) |#3|) 122 T ELT)) (-1358 ((|#3| (-171 |#2|)) 46 T ELT)) (-4349 ((|#2| |#3|) 21 T ELT)) (-1344 ((|#3| |#2|) 35 T ELT)))
-(((-614 |#1| |#2| |#3|) (-10 -7 (-15 -1358 (|#3| (-171 |#2|))) (-15 -4349 (|#2| |#3|)) (-15 -1344 (|#3| |#2|)) (-15 -2732 ((-171 |#2|) |#3|)) (-15 -1426 (|#3| |#3| (-663 (-630 |#3|)) (-663 (-1207))))) (-571) (-13 (-435 |#1|) (-1033) (-1233)) (-13 (-435 (-171 |#1|)) (-1033) (-1233))) (T -614))
-((-1426 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-663 (-630 *2))) (-5 *4 (-663 (-1207))) (-4 *2 (-13 (-435 (-171 *5)) (-1033) (-1233))) (-4 *5 (-571)) (-5 *1 (-614 *5 *6 *2)) (-4 *6 (-13 (-435 *5) (-1033) (-1233))))) (-2732 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-171 *5)) (-5 *1 (-614 *4 *5 *3)) (-4 *5 (-13 (-435 *4) (-1033) (-1233))) (-4 *3 (-13 (-435 (-171 *4)) (-1033) (-1233))))) (-1344 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *2 (-13 (-435 (-171 *4)) (-1033) (-1233))) (-5 *1 (-614 *4 *3 *2)) (-4 *3 (-13 (-435 *4) (-1033) (-1233))))) (-4349 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *2 (-13 (-435 *4) (-1033) (-1233))) (-5 *1 (-614 *4 *2 *3)) (-4 *3 (-13 (-435 (-171 *4)) (-1033) (-1233))))) (-1358 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-435 *4) (-1033) (-1233))) (-4 *4 (-571)) (-4 *2 (-13 (-435 (-171 *4)) (-1033) (-1233))) (-5 *1 (-614 *4 *5 *2)))))
-(-10 -7 (-15 -1358 (|#3| (-171 |#2|))) (-15 -4349 (|#2| |#3|)) (-15 -1344 (|#3| |#2|)) (-15 -2732 ((-171 |#2|) |#3|)) (-15 -1426 (|#3| |#3| (-663 (-630 |#3|)) (-663 (-1207)))))
-((-1982 (($ (-1 (-114) |#1|) $) 17 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1906 (($ (-1 |#1| |#1|) |#1|) 9 T ELT)) (-1957 (($ (-1 (-114) |#1|) $) 13 T ELT)) (-1967 (($ (-1 (-114) |#1|) $) 15 T ELT)) (-1592 (((-1185 |#1|) $) 18 T ELT)) (-1578 (((-887) $) NIL T ELT)))
-(((-615 |#1|) (-13 (-632 (-887)) (-10 -8 (-15 -3957 ($ (-1 |#1| |#1|) $)) (-15 -1957 ($ (-1 (-114) |#1|) $)) (-15 -1967 ($ (-1 (-114) |#1|) $)) (-15 -1982 ($ (-1 (-114) |#1|) $)) (-15 -1906 ($ (-1 |#1| |#1|) |#1|)) (-15 -1592 ((-1185 |#1|) $)))) (-1247)) (T -615))
-((-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-615 *3)))) (-1957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-615 *3)))) (-1967 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-615 *3)))) (-1982 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-615 *3)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-615 *3)))) (-1592 (*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-615 *3)) (-4 *3 (-1247)))))
-(-13 (-632 (-887)) (-10 -8 (-15 -3957 ($ (-1 |#1| |#1|) $)) (-15 -1957 ($ (-1 (-114) |#1|) $)) (-15 -1967 ($ (-1 (-114) |#1|) $)) (-15 -1982 ($ (-1 (-114) |#1|) $)) (-15 -1906 ($ (-1 |#1| |#1|) |#1|)) (-15 -1592 ((-1185 |#1|) $))))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3759 (($ (-793)) NIL (|has| |#1| (-23)) ELT)) (-3839 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4040 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-1703 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| |#1| (-871))) ELT)) (-2286 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2238 (($) NIL T CONST)) (-4391 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) NIL T ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2375 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3779 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-560)) NIL T ELT)) (-1722 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1132)) ELT)) (-2181 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1848 (((-711 |#1|) $ $) NIL (|has| |#1| (-1080)) ELT)) (-4095 (($ (-793) |#1|) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3223 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2937 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4216 ((|#1| $) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1080))) ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-4108 ((|#1| $) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1080))) ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3996 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) NIL T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3637 ((|#1| $) NIL (|has| (-560) (-871)) ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-3037 (($ $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-3232 ((|#1| $ $) NIL (|has| |#1| (-1080)) ELT)) (-4413 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-2046 (($ $ $) NIL (|has| |#1| (-1080)) ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3640 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) NIL T ELT)) (-3415 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1578 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2536 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2521 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2580 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-560) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-748)) ELT) (($ $ |#1|) NIL (|has| |#1| (-748)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+((-2961 (((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2| (-1120 |#4|)) 32 T ELT)))
+(((-608 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2961 ((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2| (-1120 |#4|))) (-15 -2961 ((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2|))) (-815) (-871) (-571) (-979 |#3| |#1| |#2|)) (T -608))
+((-2961 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-571)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-560)))) (-5 *1 (-608 *5 *4 *6 *3)) (-4 *3 (-979 *6 *5 *4)))) (-2961 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1120 *3)) (-4 *3 (-979 *7 *6 *4)) (-4 *6 (-815)) (-4 *4 (-871)) (-4 *7 (-571)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-560)))) (-5 *1 (-608 *6 *4 *7 *3)))))
+(-10 -7 (-15 -2961 ((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2| (-1120 |#4|))) (-15 -2961 ((-2 (|:| |num| |#4|) (|:| |den| (-560))) |#4| |#2|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 71 T ELT)) (-4162 (((-663 (-1113)) $) NIL T ELT)) (-2558 (((-1207) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3864 (($ $ (-560)) 58 T ELT) (($ $ (-560) (-560)) 59 T ELT)) (-1465 (((-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 65 T ELT)) (-2670 (($ $) 109 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2553 (((-887) (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) (-1057 (-864 (-560))) (-1207) |#1| (-421 (-560))) 241 T ELT)) (-2882 (($ (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 36 T ELT)) (-3525 (($) NIL T CONST)) (-3062 (($ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-2328 (((-114) $) NIL T ELT)) (-1460 (((-560) $) 63 T ELT) (((-560) $ (-560)) 64 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-3886 (($ $ (-948)) 83 T ELT)) (-1537 (($ (-1 |#1| (-560)) $) 80 T ELT)) (-1673 (((-114) $) 26 T ELT)) (-4139 (($ |#1| (-560)) 22 T ELT) (($ $ (-1113) (-560)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-560))) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3515 (($ (-1057 (-864 (-560))) (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 13 T ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-4424 (($ $) 161 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1986 (((-3 $ "failed") $ $ (-114)) 108 T ELT)) (-1824 (($ $ $) 116 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1535 (((-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 15 T ELT)) (-2721 (((-1057 (-864 (-560))) $) 14 T ELT)) (-2219 (($ $ (-560)) 47 T ELT)) (-2233 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-2371 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-560)))) ELT)) (-1507 ((|#1| $ (-560)) 62 T ELT) (($ $ $) NIL (|has| (-560) (-1143)) ELT)) (-3161 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT)) (-3900 (((-560) $) NIL T ELT)) (-3329 (($ $) 48 T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) 29 T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ |#1|) 28 (|has| |#1| (-175)) ELT)) (-2920 ((|#1| $ (-560)) 61 T ELT)) (-3919 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-4191 (((-793)) 39 T CONST)) (-1351 ((|#1| $) NIL T ELT)) (-4025 (($ $) 198 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2894 (($ $) 169 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2398 (($ $) 202 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3758 (($ $) 174 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1897 (($ $) 201 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2014 (($ $) 173 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2693 (($ $ (-421 (-560))) 177 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3278 (($ $ |#1|) 157 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3163 (($ $) 204 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2320 (($ $) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3997 (($ $) 203 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1889 (($ $) 175 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2603 (($ $) 199 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1750 (($ $) 171 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2302 (($ $) 200 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1666 (($ $) 172 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3201 (($ $) 209 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2626 (($ $) 185 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3419 (($ $) 206 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2492 (($ $) 181 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1497 (($ $) 213 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4150 (($ $) 189 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3448 (($ $) 215 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2543 (($ $) 191 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3845 (($ $) 211 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2355 (($ $) 187 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3697 (($ $) 208 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1727 (($ $) 183 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2905 ((|#1| $ (-560)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -3913 (|#1| (-1207))))) ELT)) (-1446 (($) 30 T CONST)) (-1456 (($) 40 T CONST)) (-2111 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT)) (-2340 (((-114) $ $) 73 T ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-2429 (($ $ $) 88 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 111 T ELT)) (* (($ (-948) $) 98 T ELT) (($ (-793) $) 96 T ELT) (($ (-560) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
+(((-609 |#1|) (-13 (-1276 |#1| (-560)) (-10 -8 (-15 -3515 ($ (-1057 (-864 (-560))) (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))))) (-15 -2721 ((-1057 (-864 (-560))) $)) (-15 -1535 ((-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $)) (-15 -2882 ($ (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))))) (-15 -1673 ((-114) $)) (-15 -1537 ($ (-1 |#1| (-560)) $)) (-15 -1986 ((-3 $ "failed") $ $ (-114))) (-15 -2670 ($ $)) (-15 -1824 ($ $ $)) (-15 -2553 ((-887) (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) (-1057 (-864 (-560))) (-1207) |#1| (-421 (-560)))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -4424 ($ $)) (-15 -3278 ($ $ |#1|)) (-15 -2693 ($ $ (-421 (-560)))) (-15 -2320 ($ $)) (-15 -3163 ($ $)) (-15 -3758 ($ $)) (-15 -1666 ($ $)) (-15 -2894 ($ $)) (-15 -1750 ($ $)) (-15 -2014 ($ $)) (-15 -1889 ($ $)) (-15 -2492 ($ $)) (-15 -1727 ($ $)) (-15 -2626 ($ $)) (-15 -2355 ($ $)) (-15 -4150 ($ $)) (-15 -2543 ($ $)) (-15 -2398 ($ $)) (-15 -2302 ($ $)) (-15 -4025 ($ $)) (-15 -2603 ($ $)) (-15 -1897 ($ $)) (-15 -3997 ($ $)) (-15 -3419 ($ $)) (-15 -3697 ($ $)) (-15 -3201 ($ $)) (-15 -3845 ($ $)) (-15 -1497 ($ $)) (-15 -3448 ($ $))) |%noBranch|))) (-1080)) (T -609))
+((-1673 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-609 *3)) (-4 *3 (-1080)))) (-3515 (*1 *1 *2 *3) (-12 (-5 *2 (-1057 (-864 (-560)))) (-5 *3 (-1185 (-2 (|:| |k| (-560)) (|:| |c| *4)))) (-4 *4 (-1080)) (-5 *1 (-609 *4)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-1057 (-864 (-560)))) (-5 *1 (-609 *3)) (-4 *3 (-1080)))) (-1535 (*1 *2 *1) (-12 (-5 *2 (-1185 (-2 (|:| |k| (-560)) (|:| |c| *3)))) (-5 *1 (-609 *3)) (-4 *3 (-1080)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-1185 (-2 (|:| |k| (-560)) (|:| |c| *3)))) (-4 *3 (-1080)) (-5 *1 (-609 *3)))) (-1537 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-560))) (-4 *3 (-1080)) (-5 *1 (-609 *3)))) (-1986 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-114)) (-5 *1 (-609 *3)) (-4 *3 (-1080)))) (-2670 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1080)))) (-1824 (*1 *1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1080)))) (-2553 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1185 (-2 (|:| |k| (-560)) (|:| |c| *6)))) (-5 *4 (-1057 (-864 (-560)))) (-5 *5 (-1207)) (-5 *7 (-421 (-560))) (-4 *6 (-1080)) (-5 *2 (-887)) (-5 *1 (-609 *6)))) (-4424 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3278 (*1 *1 *1 *2) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-2693 (*1 *1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-609 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1080)))) (-2320 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3163 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3758 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-1666 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-2894 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-1750 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-2014 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-1889 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-2492 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-1727 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-2626 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-2355 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-4150 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-2543 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-2398 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-2302 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-4025 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-2603 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-1897 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3997 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3419 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3697 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3201 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3845 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-1497 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))) (-3448 (*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+(-13 (-1276 |#1| (-560)) (-10 -8 (-15 -3515 ($ (-1057 (-864 (-560))) (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))))) (-15 -2721 ((-1057 (-864 (-560))) $)) (-15 -1535 ((-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $)) (-15 -2882 ($ (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))))) (-15 -1673 ((-114) $)) (-15 -1537 ($ (-1 |#1| (-560)) $)) (-15 -1986 ((-3 $ "failed") $ $ (-114))) (-15 -2670 ($ $)) (-15 -1824 ($ $ $)) (-15 -2553 ((-887) (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) (-1057 (-864 (-560))) (-1207) |#1| (-421 (-560)))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -4424 ($ $)) (-15 -3278 ($ $ |#1|)) (-15 -2693 ($ $ (-421 (-560)))) (-15 -2320 ($ $)) (-15 -3163 ($ $)) (-15 -3758 ($ $)) (-15 -1666 ($ $)) (-15 -2894 ($ $)) (-15 -1750 ($ $)) (-15 -2014 ($ $)) (-15 -1889 ($ $)) (-15 -2492 ($ $)) (-15 -1727 ($ $)) (-15 -2626 ($ $)) (-15 -2355 ($ $)) (-15 -4150 ($ $)) (-15 -2543 ($ $)) (-15 -2398 ($ $)) (-15 -2302 ($ $)) (-15 -4025 ($ $)) (-15 -2603 ($ $)) (-15 -1897 ($ $)) (-15 -3997 ($ $)) (-15 -3419 ($ $)) (-15 -3697 ($ $)) (-15 -3201 ($ $)) (-15 -3845 ($ $)) (-15 -1497 ($ $)) (-15 -3448 ($ $))) |%noBranch|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 63 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2882 (($ (-1185 |#1|)) 9 T ELT)) (-3525 (($) NIL T CONST)) (-2873 (((-3 $ "failed") $) 44 T ELT)) (-2328 (((-114) $) 56 T ELT)) (-1460 (((-793) $) 61 T ELT) (((-793) $ (-793)) 60 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) 46 (|has| |#1| (-571)) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-2247 (((-1185 |#1|) $) 25 T ELT)) (-4191 (((-793)) 55 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-1446 (($) 10 T CONST)) (-1456 (($) 14 T CONST)) (-2340 (((-114) $ $) 24 T ELT)) (-2441 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-2429 (($ $ $) 27 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 53 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-560)) 38 T ELT)))
+(((-610 |#1|) (-13 (-1080) (-111 |#1| |#1|) (-10 -8 (-15 -2247 ((-1185 |#1|) $)) (-15 -2882 ($ (-1185 |#1|))) (-15 -2328 ((-114) $)) (-15 -1460 ((-793) $)) (-15 -1460 ((-793) $ (-793))) (-15 * ($ $ (-560))) (IF (|has| |#1| (-571)) (-6 (-571)) |%noBranch|))) (-1080)) (T -610))
+((-2247 (*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-610 *3)) (-4 *3 (-1080)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-610 *3)))) (-2328 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-610 *3)) (-4 *3 (-1080)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-610 *3)) (-4 *3 (-1080)))) (-1460 (*1 *2 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-610 *3)) (-4 *3 (-1080)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-610 *3)) (-4 *3 (-1080)))))
+(-13 (-1080) (-111 |#1| |#1|) (-10 -8 (-15 -2247 ((-1185 |#1|) $)) (-15 -2882 ($ (-1185 |#1|))) (-15 -2328 ((-114) $)) (-15 -1460 ((-793) $)) (-15 -1460 ((-793) $ (-793))) (-15 * ($ $ (-560))) (IF (|has| |#1| (-571)) (-6 (-571)) |%noBranch|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-1334 (($) 8 T CONST)) (-3878 (($) 7 T CONST)) (-1770 (($ $ (-663 $)) 16 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1743 (($) 6 T CONST)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-1212)) 15 T ELT) (((-1212) $) 10 T ELT)) (-3242 (($) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-611) (-13 (-1132) (-504 (-1212)) (-10 -8 (-15 -1743 ($) -2650) (-15 -3878 ($) -2650) (-15 -1334 ($) -2650) (-15 -3242 ($) -2650) (-15 -1770 ($ $ (-663 $)))))) (T -611))
+((-1743 (*1 *1) (-5 *1 (-611))) (-3878 (*1 *1) (-5 *1 (-611))) (-1334 (*1 *1) (-5 *1 (-611))) (-3242 (*1 *1) (-5 *1 (-611))) (-1770 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-611))) (-5 *1 (-611)))))
+(-13 (-1132) (-504 (-1212)) (-10 -8 (-15 -1743 ($) -2650) (-15 -3878 ($) -2650) (-15 -1334 ($) -2650) (-15 -3242 ($) -2650) (-15 -1770 ($ $ (-663 $)))))
+((-2260 (((-615 |#2|) (-1 |#2| |#1|) (-615 |#1|)) 15 T ELT)))
+(((-612 |#1| |#2|) (-10 -7 (-15 -2260 ((-615 |#2|) (-1 |#2| |#1|) (-615 |#1|)))) (-1247) (-1247)) (T -612))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-615 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-615 *6)) (-5 *1 (-612 *5 *6)))))
+(-10 -7 (-15 -2260 ((-615 |#2|) (-1 |#2| |#1|) (-615 |#1|))))
+((-2260 (((-1185 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-1185 |#2|)) 20 T ELT) (((-1185 |#3|) (-1 |#3| |#1| |#2|) (-1185 |#1|) (-615 |#2|)) 19 T ELT) (((-615 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-615 |#2|)) 18 T ELT)))
+(((-613 |#1| |#2| |#3|) (-10 -7 (-15 -2260 ((-615 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-615 |#2|))) (-15 -2260 ((-1185 |#3|) (-1 |#3| |#1| |#2|) (-1185 |#1|) (-615 |#2|))) (-15 -2260 ((-1185 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-1185 |#2|)))) (-1247) (-1247) (-1247)) (T -613))
+((-2260 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-615 *6)) (-5 *5 (-1185 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1185 *8)) (-5 *1 (-613 *6 *7 *8)))) (-2260 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1185 *6)) (-5 *5 (-615 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1185 *8)) (-5 *1 (-613 *6 *7 *8)))) (-2260 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-615 *6)) (-5 *5 (-615 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-615 *8)) (-5 *1 (-613 *6 *7 *8)))))
+(-10 -7 (-15 -2260 ((-615 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-615 |#2|))) (-15 -2260 ((-1185 |#3|) (-1 |#3| |#1| |#2|) (-1185 |#1|) (-615 |#2|))) (-15 -2260 ((-1185 |#3|) (-1 |#3| |#1| |#2|) (-615 |#1|) (-1185 |#2|))))
+((-1472 ((|#3| |#3| (-663 (-630 |#3|)) (-663 (-1207))) 57 T ELT)) (-1561 (((-171 |#2|) |#3|) 122 T ELT)) (-3732 ((|#3| (-171 |#2|)) 46 T ELT)) (-3272 ((|#2| |#3|) 21 T ELT)) (-3584 ((|#3| |#2|) 35 T ELT)))
+(((-614 |#1| |#2| |#3|) (-10 -7 (-15 -3732 (|#3| (-171 |#2|))) (-15 -3272 (|#2| |#3|)) (-15 -3584 (|#3| |#2|)) (-15 -1561 ((-171 |#2|) |#3|)) (-15 -1472 (|#3| |#3| (-663 (-630 |#3|)) (-663 (-1207))))) (-571) (-13 (-435 |#1|) (-1033) (-1233)) (-13 (-435 (-171 |#1|)) (-1033) (-1233))) (T -614))
+((-1472 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-663 (-630 *2))) (-5 *4 (-663 (-1207))) (-4 *2 (-13 (-435 (-171 *5)) (-1033) (-1233))) (-4 *5 (-571)) (-5 *1 (-614 *5 *6 *2)) (-4 *6 (-13 (-435 *5) (-1033) (-1233))))) (-1561 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-171 *5)) (-5 *1 (-614 *4 *5 *3)) (-4 *5 (-13 (-435 *4) (-1033) (-1233))) (-4 *3 (-13 (-435 (-171 *4)) (-1033) (-1233))))) (-3584 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *2 (-13 (-435 (-171 *4)) (-1033) (-1233))) (-5 *1 (-614 *4 *3 *2)) (-4 *3 (-13 (-435 *4) (-1033) (-1233))))) (-3272 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *2 (-13 (-435 *4) (-1033) (-1233))) (-5 *1 (-614 *4 *2 *3)) (-4 *3 (-13 (-435 (-171 *4)) (-1033) (-1233))))) (-3732 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-435 *4) (-1033) (-1233))) (-4 *4 (-571)) (-4 *2 (-13 (-435 (-171 *4)) (-1033) (-1233))) (-5 *1 (-614 *4 *5 *2)))))
+(-10 -7 (-15 -3732 (|#3| (-171 |#2|))) (-15 -3272 (|#2| |#3|)) (-15 -3584 (|#3| |#2|)) (-15 -1561 ((-171 |#2|) |#3|)) (-15 -1472 (|#3| |#3| (-663 (-630 |#3|)) (-663 (-1207)))))
+((-3923 (($ (-1 (-114) |#1|) $) 17 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3852 (($ (-1 |#1| |#1|) |#1|) 9 T ELT)) (-3902 (($ (-1 (-114) |#1|) $) 13 T ELT)) (-3912 (($ (-1 (-114) |#1|) $) 15 T ELT)) (-3924 (((-1185 |#1|) $) 18 T ELT)) (-3913 (((-887) $) NIL T ELT)))
+(((-615 |#1|) (-13 (-632 (-887)) (-10 -8 (-15 -2260 ($ (-1 |#1| |#1|) $)) (-15 -3902 ($ (-1 (-114) |#1|) $)) (-15 -3912 ($ (-1 (-114) |#1|) $)) (-15 -3923 ($ (-1 (-114) |#1|) $)) (-15 -3852 ($ (-1 |#1| |#1|) |#1|)) (-15 -3924 ((-1185 |#1|) $)))) (-1247)) (T -615))
+((-2260 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-615 *3)))) (-3902 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-615 *3)))) (-3912 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-615 *3)))) (-3923 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-615 *3)))) (-3852 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-615 *3)))) (-3924 (*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-615 *3)) (-4 *3 (-1247)))))
+(-13 (-632 (-887)) (-10 -8 (-15 -2260 ($ (-1 |#1| |#1|) $)) (-15 -3902 ($ (-1 (-114) |#1|) $)) (-15 -3912 ($ (-1 (-114) |#1|) $)) (-15 -3923 ($ (-1 (-114) |#1|) $)) (-15 -3852 ($ (-1 |#1| |#1|) |#1|)) (-15 -3924 ((-1185 |#1|) $))))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3068 (($ (-793)) NIL (|has| |#1| (-23)) ELT)) (-2033 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-2152 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-3152 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| |#1| (-871))) ELT)) (-1787 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3525 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) NIL T ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3033 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3338 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-560)) NIL T ELT)) (-2359 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1132)) ELT)) (-3737 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1451 (((-711 |#1|) $ $) NIL (|has| |#1| (-1080)) ELT)) (-4246 (($ (-793) |#1|) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-4167 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4263 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-1422 ((|#1| $) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1080))) ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-2946 ((|#1| $) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1080))) ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-2507 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) NIL T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-4334 ((|#1| $) NIL (|has| (-560) (-871)) ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2740 (($ $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-4258 ((|#1| $ $) NIL (|has| |#1| (-1080)) ELT)) (-2579 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-2192 (($ $ $) NIL (|has| |#1| (-1080)) ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3993 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) NIL T ELT)) (-1955 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3913 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2396 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2386 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2441 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-2429 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-560) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-748)) ELT) (($ $ |#1|) NIL (|has| |#1| (-748)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
(((-616 |#1| |#2|) (-1296 |#1|) (-1247) (-560)) (T -616))
NIL
(-1296 |#1|)
-((-3839 (((-1303) $ |#2| |#2|) 35 T ELT)) (-1762 ((|#2| $) 23 T ELT)) (-2937 ((|#2| $) 21 T ELT)) (-3768 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-3957 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-3637 ((|#3| $) 26 T ELT)) (-3037 (($ $ |#3|) 33 T ELT)) (-2914 (((-114) |#3| $) 17 T ELT)) (-3571 (((-663 |#3|) $) 15 T ELT)) (-3924 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT)))
-(((-617 |#1| |#2| |#3|) (-10 -8 (-15 -3839 ((-1303) |#1| |#2| |#2|)) (-15 -3037 (|#1| |#1| |#3|)) (-15 -3637 (|#3| |#1|)) (-15 -1762 (|#2| |#1|)) (-15 -2937 (|#2| |#1|)) (-15 -2914 ((-114) |#3| |#1|)) (-15 -3571 ((-663 |#3|) |#1|)) (-15 -3924 (|#3| |#1| |#2|)) (-15 -3924 (|#3| |#1| |#2| |#3|)) (-15 -3768 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3957 (|#1| (-1 |#3| |#3|) |#1|))) (-618 |#2| |#3|) (-1132) (-1247)) (T -617))
+((-2033 (((-1303) $ |#2| |#2|) 35 T ELT)) (-2483 ((|#2| $) 23 T ELT)) (-4263 ((|#2| $) 21 T ELT)) (-3324 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-2260 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-4334 ((|#3| $) 26 T ELT)) (-2740 (($ $ |#3|) 33 T ELT)) (-4019 (((-114) |#3| $) 17 T ELT)) (-1383 (((-663 |#3|) $) 15 T ELT)) (-1507 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT)))
+(((-617 |#1| |#2| |#3|) (-10 -8 (-15 -2033 ((-1303) |#1| |#2| |#2|)) (-15 -2740 (|#1| |#1| |#3|)) (-15 -4334 (|#3| |#1|)) (-15 -2483 (|#2| |#1|)) (-15 -4263 (|#2| |#1|)) (-15 -4019 ((-114) |#3| |#1|)) (-15 -1383 ((-663 |#3|) |#1|)) (-15 -1507 (|#3| |#1| |#2|)) (-15 -1507 (|#3| |#1| |#2| |#3|)) (-15 -3324 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2260 (|#1| (-1 |#3| |#3|) |#1|))) (-618 |#2| |#3|) (-1132) (-1247)) (T -617))
NIL
-(-10 -8 (-15 -3839 ((-1303) |#1| |#2| |#2|)) (-15 -3037 (|#1| |#1| |#3|)) (-15 -3637 (|#3| |#1|)) (-15 -1762 (|#2| |#1|)) (-15 -2937 (|#2| |#1|)) (-15 -2914 ((-114) |#3| |#1|)) (-15 -3571 ((-663 |#3|) |#1|)) (-15 -3924 (|#3| |#1| |#2|)) (-15 -3924 (|#3| |#1| |#2| |#3|)) (-15 -3768 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3957 (|#1| (-1 |#3| |#3|) |#1|)))
-((-1538 (((-114) $ $) 20 (|has| |#2| (-102)) ELT)) (-3839 (((-1303) $ |#1| |#1|) 41 (|has| $ (-6 -4509)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-1773 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4509)) ELT)) (-2238 (($) 7 T CONST)) (-3779 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4509)) ELT)) (-3709 ((|#2| $ |#1|) 52 T ELT)) (-2181 (((-663 |#2|) $) 31 (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-1762 ((|#1| $) 44 (|has| |#1| (-871)) ELT)) (-2656 (((-663 |#2|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#2| $) 28 (-12 (|has| |#2| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2937 ((|#1| $) 45 (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#2| |#2|) $) 36 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-1905 (((-1189) $) 23 (|has| |#2| (-1132)) ELT)) (-3270 (((-663 |#1|) $) 47 T ELT)) (-3586 (((-114) |#1| $) 48 T ELT)) (-3855 (((-1151) $) 22 (|has| |#2| (-1132)) ELT)) (-3637 ((|#2| $) 43 (|has| |#1| (-871)) ELT)) (-3037 (($ $ |#2|) 42 (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) |#2|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#2|))) 27 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) 26 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) 24 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-2914 (((-114) |#2| $) 46 (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-3571 (((-663 |#2|) $) 49 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3924 ((|#2| $ |#1| |#2|) 51 T ELT) ((|#2| $ |#1|) 50 T ELT)) (-3865 (((-793) (-1 (-114) |#2|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#2| $) 29 (-12 (|has| |#2| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1578 (((-887) $) 18 (|has| |#2| (-632 (-887))) ELT)) (-2275 (((-114) $ $) 21 (|has| |#2| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#2|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#2| (-102)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+(-10 -8 (-15 -2033 ((-1303) |#1| |#2| |#2|)) (-15 -2740 (|#1| |#1| |#3|)) (-15 -4334 (|#3| |#1|)) (-15 -2483 (|#2| |#1|)) (-15 -4263 (|#2| |#1|)) (-15 -4019 ((-114) |#3| |#1|)) (-15 -1383 ((-663 |#3|) |#1|)) (-15 -1507 (|#3| |#1| |#2|)) (-15 -1507 (|#3| |#1| |#2| |#3|)) (-15 -3324 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2260 (|#1| (-1 |#3| |#3|) |#1|)))
+((-2243 (((-114) $ $) 20 (|has| |#2| (-102)) ELT)) (-2033 (((-1303) $ |#1| |#1|) 41 (|has| $ (-6 -4509)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-4083 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4509)) ELT)) (-3525 (($) 7 T CONST)) (-3338 ((|#2| $ |#1| |#2|) 54 (|has| $ (-6 -4509)) ELT)) (-3274 ((|#2| $ |#1|) 52 T ELT)) (-3737 (((-663 |#2|) $) 31 (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-2483 ((|#1| $) 44 (|has| |#1| (-871)) ELT)) (-3243 (((-663 |#2|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#2| $) 28 (-12 (|has| |#2| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4263 ((|#1| $) 45 (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 |#2| |#2|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#2| |#2|) $) 36 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-3358 (((-1189) $) 23 (|has| |#2| (-1132)) ELT)) (-3372 (((-663 |#1|) $) 47 T ELT)) (-3439 (((-114) |#1| $) 48 T ELT)) (-3376 (((-1151) $) 22 (|has| |#2| (-1132)) ELT)) (-4334 ((|#2| $) 43 (|has| |#1| (-871)) ELT)) (-2740 (($ $ |#2|) 42 (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) |#2|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#2|))) 27 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) 26 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) 25 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) 24 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-4019 (((-114) |#2| $) 46 (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-1383 (((-663 |#2|) $) 49 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1507 ((|#2| $ |#1| |#2|) 51 T ELT) ((|#2| $ |#1|) 50 T ELT)) (-3384 (((-793) (-1 (-114) |#2|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#2| $) 29 (-12 (|has| |#2| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-3913 (((-887) $) 18 (|has| |#2| (-632 (-887))) ELT)) (-3925 (((-114) $ $) 21 (|has| |#2| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#2|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#2| (-102)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-618 |#1| |#2|) (-142) (-1132) (-1247)) (T -618))
-((-3571 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1247)) (-5 *2 (-663 *4)))) (-3586 (*1 *2 *3 *1) (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1247)) (-5 *2 (-114)))) (-3270 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1247)) (-5 *2 (-663 *3)))) (-2914 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-618 *4 *3)) (-4 *4 (-1132)) (-4 *3 (-1247)) (-4 *3 (-1132)) (-5 *2 (-114)))) (-2937 (*1 *2 *1) (-12 (-4 *1 (-618 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1132)) (-4 *2 (-871)))) (-1762 (*1 *2 *1) (-12 (-4 *1 (-618 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1132)) (-4 *2 (-871)))) (-3637 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *2)) (-4 *3 (-1132)) (-4 *3 (-871)) (-4 *2 (-1247)))) (-3037 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-618 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1247)))) (-3839 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-618 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1247)) (-5 *2 (-1303)))))
-(-13 (-503 |t#2|) (-300 |t#1| |t#2|) (-10 -8 (-15 -3571 ((-663 |t#2|) $)) (-15 -3586 ((-114) |t#1| $)) (-15 -3270 ((-663 |t#1|) $)) (IF (|has| |t#2| (-1132)) (IF (|has| $ (-6 -4508)) (-15 -2914 ((-114) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-871)) (PROGN (-15 -2937 (|t#1| $)) (-15 -1762 (|t#1| $)) (-15 -3637 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4509)) (PROGN (-15 -3037 ($ $ |t#2|)) (-15 -3839 ((-1303) $ |t#1| |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) -2304 (|has| |#2| (-1132)) (|has| |#2| (-102))) ((-632 (-887)) -2304 (|has| |#2| (-1132)) (|has| |#2| (-632 (-887)))) ((-298 |#1| |#2|) . T) ((-300 |#1| |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((-503 |#2|) . T) ((-528 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((-1132) |has| |#2| (-1132)) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT) (((-1248) $) 14 T ELT) (($ (-663 (-1248))) 13 T ELT)) (-4432 (((-663 (-1248)) $) 10 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-619) (-13 (-1114) (-632 (-1248)) (-10 -8 (-15 -1578 ($ (-663 (-1248)))) (-15 -4432 ((-663 (-1248)) $))))) (T -619))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-663 (-1248))) (-5 *1 (-619)))) (-4432 (*1 *2 *1) (-12 (-5 *2 (-663 (-1248))) (-5 *1 (-619)))))
-(-13 (-1114) (-632 (-1248)) (-10 -8 (-15 -1578 ($ (-663 (-1248)))) (-15 -4432 ((-663 (-1248)) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-2489 (((-3 $ "failed")) NIL (-2304 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2545 (((-1297 (-711 |#1|))) NIL (|has| |#2| (-432 |#1|)) ELT) (((-1297 (-711 |#1|)) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1854 (((-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2238 (($) NIL T CONST)) (-4126 (((-3 (-2 (|:| |particular| $) (|:| -1954 (-663 $))) "failed")) NIL (-2304 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-3608 (((-3 $ "failed")) NIL (-2304 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2432 (((-711 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3346 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3135 (((-711 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) $ (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1713 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-4230 (((-1201 (-975 |#1|))) NIL (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-376))) ELT)) (-1866 (($ $ (-948)) NIL T ELT)) (-4092 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1822 (((-1201 |#1|) $) NIL (-2304 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-3392 ((|#1|) NIL (|has| |#2| (-432 |#1|)) ELT) ((|#1| (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3412 (((-1201 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3706 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4143 (($ (-1297 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (($ (-1297 |#1|) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1990 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2326 (((-948)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3157 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1784 (($ $ (-948)) NIL T ELT)) (-1794 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4320 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2959 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1398 (((-3 (-2 (|:| |particular| $) (|:| -1954 (-663 $))) "failed")) NIL (-2304 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2171 (((-3 $ "failed")) NIL (-2304 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-1501 (((-711 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3876 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2517 (((-711 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) $ (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3236 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-4133 (((-1201 (-975 |#1|))) NIL (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-376))) ELT)) (-3520 (($ $ (-948)) NIL T ELT)) (-2442 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4161 (((-1201 |#1|) $) NIL (-2304 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2456 ((|#1|) NIL (|has| |#2| (-432 |#1|)) ELT) ((|#1| (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3569 (((-1201 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2220 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2995 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1721 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2940 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2892 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3924 ((|#1| $ (-560)) NIL (|has| |#2| (-432 |#1|)) ELT)) (-2178 (((-711 |#1|) (-1297 $)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-1297 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) (-1297 $) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT) (((-1297 |#1|) $ (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1407 (($ (-1297 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-1297 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT)) (-4106 (((-663 (-975 |#1|))) NIL (|has| |#2| (-432 |#1|)) ELT) (((-663 (-975 |#1|)) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2013 (($ $ $) NIL T ELT)) (-2620 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1578 (((-887) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1954 (((-1297 $)) NIL (|has| |#2| (-432 |#1|)) ELT)) (-1548 (((-663 (-1297 |#1|))) NIL (-2304 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-4128 (($ $ $ $) NIL T ELT)) (-1418 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3626 (($ (-711 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT)) (-3868 (($ $ $) NIL T ELT)) (-1405 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2493 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2423 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2001 (($) NIL T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) 24 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) 19 T ELT) (($ |#1| $) NIL T ELT)))
-(((-620 |#1| |#2|) (-13 (-766 |#1|) (-632 |#2|) (-10 -8 (-15 -1578 ($ |#2|)) (IF (|has| |#2| (-432 |#1|)) (-6 (-432 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|))) (-175) (-766 |#1|)) (T -620))
-((-1578 (*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-620 *3 *2)) (-4 *2 (-766 *3)))))
-(-13 (-766 |#1|) (-632 |#2|) (-10 -8 (-15 -1578 ($ |#2|)) (IF (|has| |#2| (-432 |#1|)) (-6 (-432 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-130)) 6 T ELT) (((-130) $) 7 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-1383 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1247)) (-5 *2 (-663 *4)))) (-3439 (*1 *2 *3 *1) (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1247)) (-5 *2 (-114)))) (-3372 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1247)) (-5 *2 (-663 *3)))) (-4019 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-618 *4 *3)) (-4 *4 (-1132)) (-4 *3 (-1247)) (-4 *3 (-1132)) (-5 *2 (-114)))) (-4263 (*1 *2 *1) (-12 (-4 *1 (-618 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1132)) (-4 *2 (-871)))) (-2483 (*1 *2 *1) (-12 (-4 *1 (-618 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1132)) (-4 *2 (-871)))) (-4334 (*1 *2 *1) (-12 (-4 *1 (-618 *3 *2)) (-4 *3 (-1132)) (-4 *3 (-871)) (-4 *2 (-1247)))) (-2740 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-618 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1247)))) (-2033 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-618 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1247)) (-5 *2 (-1303)))))
+(-13 (-503 |t#2|) (-300 |t#1| |t#2|) (-10 -8 (-15 -1383 ((-663 |t#2|) $)) (-15 -3439 ((-114) |t#1| $)) (-15 -3372 ((-663 |t#1|) $)) (IF (|has| |t#2| (-1132)) (IF (|has| $ (-6 -4508)) (-15 -4019 ((-114) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-871)) (PROGN (-15 -4263 (|t#1| $)) (-15 -2483 (|t#1| $)) (-15 -4334 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4509)) (PROGN (-15 -2740 ($ $ |t#2|)) (-15 -2033 ((-1303) $ |t#1| |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) -2196 (|has| |#2| (-1132)) (|has| |#2| (-102))) ((-632 (-887)) -2196 (|has| |#2| (-1132)) (|has| |#2| (-632 (-887)))) ((-298 |#1| |#2|) . T) ((-300 |#1| |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((-503 |#2|) . T) ((-528 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((-1132) |has| |#2| (-1132)) ((-1247) . T))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT) (((-1248) $) 14 T ELT) (($ (-663 (-1248))) 13 T ELT)) (-2631 (((-663 (-1248)) $) 10 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-619) (-13 (-1114) (-632 (-1248)) (-10 -8 (-15 -3913 ($ (-663 (-1248)))) (-15 -2631 ((-663 (-1248)) $))))) (T -619))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-663 (-1248))) (-5 *1 (-619)))) (-2631 (*1 *2 *1) (-12 (-5 *2 (-663 (-1248))) (-5 *1 (-619)))))
+(-13 (-1114) (-632 (-1248)) (-10 -8 (-15 -3913 ($ (-663 (-1248)))) (-15 -2631 ((-663 (-1248)) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-4184 (((-3 $ "failed")) NIL (-2196 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3398 (((-1297 (-711 |#1|))) NIL (|has| |#2| (-432 |#1|)) ELT) (((-1297 (-711 |#1|)) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4087 (((-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3525 (($) NIL T CONST)) (-1756 (((-3 (-2 (|:| |particular| $) (|:| -3822 (-663 $))) "failed")) NIL (-2196 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-3681 (((-3 $ "failed")) NIL (-2196 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-1691 (((-711 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2865 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2541 (((-711 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) $ (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2035 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-3474 (((-1201 (-975 |#1|))) NIL (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-376))) ELT)) (-4201 (($ $ (-948)) NIL T ELT)) (-2652 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1825 (((-1201 |#1|) $) NIL (-2196 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2098 ((|#1|) NIL (|has| |#2| (-432 |#1|)) ELT) ((|#1| (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2280 (((-1201 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2137 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1953 (($ (-1297 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (($ (-1297 |#1|) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2873 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-1604 (((-948)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1558 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1441 (($ $ (-948)) NIL T ELT)) (-1521 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3053 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4460 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1367 (((-3 (-2 (|:| |particular| $) (|:| -3822 (-663 $))) "failed")) NIL (-2196 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-4156 (((-3 $ "failed")) NIL (-2196 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2999 (((-711 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4278 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4414 (((-711 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) $ (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4294 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-1828 (((-1201 (-975 |#1|))) NIL (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-376))) ELT)) (-2065 (($ $ (-948)) NIL T ELT)) (-1788 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2126 (((-1201 |#1|) $) NIL (-2196 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-1951 ((|#1|) NIL (|has| |#2| (-432 |#1|)) ELT) ((|#1| (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1364 (((-1201 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3361 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3577 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2107 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4289 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3905 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1507 ((|#1| $ (-560)) NIL (|has| |#2| (-432 |#1|)) ELT)) (-4226 (((-711 |#1|) (-1297 $)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-1297 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) (-1297 $) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT) (((-1297 |#1|) $ (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2400 (($ (-1297 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-1297 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT)) (-1556 (((-663 (-975 |#1|))) NIL (|has| |#2| (-432 |#1|)) ELT) (((-663 (-975 |#1|)) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3117 (($ $ $) NIL T ELT)) (-2848 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3913 (((-887) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3822 (((-1297 $)) NIL (|has| |#2| (-432 |#1|)) ELT)) (-1601 (((-663 (-1297 |#1|))) NIL (-2196 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-1777 (($ $ $ $) NIL T ELT)) (-3757 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4323 (($ (-711 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT)) (-4209 (($ $ $) NIL T ELT)) (-4103 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4213 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1597 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1446 (($) NIL T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) 24 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) 19 T ELT) (($ |#1| $) NIL T ELT)))
+(((-620 |#1| |#2|) (-13 (-766 |#1|) (-632 |#2|) (-10 -8 (-15 -3913 ($ |#2|)) (IF (|has| |#2| (-432 |#1|)) (-6 (-432 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|))) (-175) (-766 |#1|)) (T -620))
+((-3913 (*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-620 *3 *2)) (-4 *2 (-766 *3)))))
+(-13 (-766 |#1|) (-632 |#2|) (-10 -8 (-15 -3913 ($ |#2|)) (IF (|has| |#2| (-432 |#1|)) (-6 (-432 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-130)) 6 T ELT) (((-130) $) 7 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-621) (-13 (-1132) (-504 (-130)))) (T -621))
NIL
(-13 (-1132) (-504 (-130)))
-((-1538 (((-114) $ $) NIL T ELT)) (-1562 (($ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3746 (($) 12 T CONST)) (-2089 (($) 10 T CONST)) (-2188 (($) 13 T CONST)) (-3021 (($) 11 T CONST)) (-2813 (($) 14 T CONST)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1616 (($ $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-1602 (($ $ $) NIL T ELT)))
-(((-622) (-13 (-1132) (-684) (-10 -8 (-15 -2089 ($) -3081) (-15 -3021 ($) -3081) (-15 -3746 ($) -3081) (-15 -2188 ($) -3081) (-15 -2813 ($) -3081)))) (T -622))
-((-2089 (*1 *1) (-5 *1 (-622))) (-3021 (*1 *1) (-5 *1 (-622))) (-3746 (*1 *1) (-5 *1 (-622))) (-2188 (*1 *1) (-5 *1 (-622))) (-2813 (*1 *1) (-5 *1 (-622))))
-(-13 (-1132) (-684) (-10 -8 (-15 -2089 ($) -3081) (-15 -3021 ($) -3081) (-15 -3746 ($) -3081) (-15 -2188 ($) -3081) (-15 -2813 ($) -3081)))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2217 (($) 11 T CONST)) (-2200 (($) 17 T CONST)) (-4370 (($) 21 T CONST)) (-4324 (($) 19 T CONST)) (-3196 (($) 14 T CONST)) (-2562 (($) 20 T CONST)) (-3428 (($) 12 T CONST)) (-2247 (($) 13 T CONST)) (-4235 (($) 18 T CONST)) (-3225 (($) 15 T CONST)) (-2762 (($) 16 T CONST)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (((-130) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-623) (-13 (-1132) (-632 (-130)) (-10 -8 (-15 -2217 ($) -3081) (-15 -3428 ($) -3081) (-15 -2247 ($) -3081) (-15 -3196 ($) -3081) (-15 -3225 ($) -3081) (-15 -2762 ($) -3081) (-15 -2200 ($) -3081) (-15 -4235 ($) -3081) (-15 -4324 ($) -3081) (-15 -2562 ($) -3081) (-15 -4370 ($) -3081)))) (T -623))
-((-2217 (*1 *1) (-5 *1 (-623))) (-3428 (*1 *1) (-5 *1 (-623))) (-2247 (*1 *1) (-5 *1 (-623))) (-3196 (*1 *1) (-5 *1 (-623))) (-3225 (*1 *1) (-5 *1 (-623))) (-2762 (*1 *1) (-5 *1 (-623))) (-2200 (*1 *1) (-5 *1 (-623))) (-4235 (*1 *1) (-5 *1 (-623))) (-4324 (*1 *1) (-5 *1 (-623))) (-2562 (*1 *1) (-5 *1 (-623))) (-4370 (*1 *1) (-5 *1 (-623))))
-(-13 (-1132) (-632 (-130)) (-10 -8 (-15 -2217 ($) -3081) (-15 -3428 ($) -3081) (-15 -2247 ($) -3081) (-15 -3196 ($) -3081) (-15 -3225 ($) -3081) (-15 -2762 ($) -3081) (-15 -2200 ($) -3081) (-15 -4235 ($) -3081) (-15 -4324 ($) -3081) (-15 -2562 ($) -3081) (-15 -4370 ($) -3081)))
-((-1538 (((-114) $ $) NIL T ELT)) (-1562 (($ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3714 (($) 15 T CONST)) (-3463 (($) 16 T CONST)) (-3085 (($) 13 T CONST)) (-2089 (($) 10 T CONST)) (-3842 (($) 12 T CONST)) (-4351 (($) 11 T CONST)) (-3021 (($) 14 T CONST)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1616 (($ $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-1602 (($ $ $) NIL T ELT)))
-(((-624) (-13 (-1132) (-684) (-10 -8 (-15 -2089 ($) -3081) (-15 -4351 ($) -3081) (-15 -3842 ($) -3081) (-15 -3085 ($) -3081) (-15 -3021 ($) -3081) (-15 -3714 ($) -3081) (-15 -3463 ($) -3081)))) (T -624))
-((-2089 (*1 *1) (-5 *1 (-624))) (-4351 (*1 *1) (-5 *1 (-624))) (-3842 (*1 *1) (-5 *1 (-624))) (-3085 (*1 *1) (-5 *1 (-624))) (-3021 (*1 *1) (-5 *1 (-624))) (-3714 (*1 *1) (-5 *1 (-624))) (-3463 (*1 *1) (-5 *1 (-624))))
-(-13 (-1132) (-684) (-10 -8 (-15 -2089 ($) -3081) (-15 -4351 ($) -3081) (-15 -3842 ($) -3081) (-15 -3085 ($) -3081) (-15 -3021 ($) -3081) (-15 -3714 ($) -3081) (-15 -3463 ($) -3081)))
-((-1538 (((-114) $ $) NIL T ELT)) (-1562 (($ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2277 (($) 15 T CONST)) (-2225 (($) 18 T CONST)) (-3085 (($) 13 T CONST)) (-2089 (($) 10 T CONST)) (-3842 (($) 12 T CONST)) (-4351 (($) 11 T CONST)) (-2512 (($) 16 T CONST)) (-3021 (($) 14 T CONST)) (-2813 (($) 17 T CONST)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1616 (($ $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-1602 (($ $ $) NIL T ELT)))
-(((-625) (-13 (-1132) (-684) (-10 -8 (-15 -2089 ($) -3081) (-15 -4351 ($) -3081) (-15 -3842 ($) -3081) (-15 -3085 ($) -3081) (-15 -3021 ($) -3081) (-15 -2277 ($) -3081) (-15 -2512 ($) -3081) (-15 -2813 ($) -3081) (-15 -2225 ($) -3081)))) (T -625))
-((-2089 (*1 *1) (-5 *1 (-625))) (-4351 (*1 *1) (-5 *1 (-625))) (-3842 (*1 *1) (-5 *1 (-625))) (-3085 (*1 *1) (-5 *1 (-625))) (-3021 (*1 *1) (-5 *1 (-625))) (-2277 (*1 *1) (-5 *1 (-625))) (-2512 (*1 *1) (-5 *1 (-625))) (-2813 (*1 *1) (-5 *1 (-625))) (-2225 (*1 *1) (-5 *1 (-625))))
-(-13 (-1132) (-684) (-10 -8 (-15 -2089 ($) -3081) (-15 -4351 ($) -3081) (-15 -3842 ($) -3081) (-15 -3085 ($) -3081) (-15 -3021 ($) -3081) (-15 -2277 ($) -3081) (-15 -2512 ($) -3081) (-15 -2813 ($) -3081) (-15 -2225 ($) -3081)))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 19 T ELT) (($ (-621)) 12 T ELT) (((-621) $) 11 T ELT) (($ (-130)) NIL T ELT) (((-130) $) 14 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2269 (($ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2461 (($) 12 T CONST)) (-2618 (($) 10 T CONST)) (-4313 (($) 13 T CONST)) (-3872 (($) 11 T CONST)) (-4305 (($) 14 T CONST)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2300 (($ $ $) NIL T ELT)))
+(((-622) (-13 (-1132) (-684) (-10 -8 (-15 -2618 ($) -2650) (-15 -3872 ($) -2650) (-15 -2461 ($) -2650) (-15 -4313 ($) -2650) (-15 -4305 ($) -2650)))) (T -622))
+((-2618 (*1 *1) (-5 *1 (-622))) (-3872 (*1 *1) (-5 *1 (-622))) (-2461 (*1 *1) (-5 *1 (-622))) (-4313 (*1 *1) (-5 *1 (-622))) (-4305 (*1 *1) (-5 *1 (-622))))
+(-13 (-1132) (-684) (-10 -8 (-15 -2618 ($) -2650) (-15 -3872 ($) -2650) (-15 -2461 ($) -2650) (-15 -4313 ($) -2650) (-15 -4305 ($) -2650)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3328 (($) 11 T CONST)) (-4426 (($) 17 T CONST)) (-2195 (($) 21 T CONST)) (-3098 (($) 19 T CONST)) (-1942 (($) 14 T CONST)) (-3594 (($) 20 T CONST)) (-2418 (($) 12 T CONST)) (-3614 (($) 13 T CONST)) (-3532 (($) 18 T CONST)) (-4186 (($) 15 T CONST)) (-1833 (($) 16 T CONST)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (((-130) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-623) (-13 (-1132) (-632 (-130)) (-10 -8 (-15 -3328 ($) -2650) (-15 -2418 ($) -2650) (-15 -3614 ($) -2650) (-15 -1942 ($) -2650) (-15 -4186 ($) -2650) (-15 -1833 ($) -2650) (-15 -4426 ($) -2650) (-15 -3532 ($) -2650) (-15 -3098 ($) -2650) (-15 -3594 ($) -2650) (-15 -2195 ($) -2650)))) (T -623))
+((-3328 (*1 *1) (-5 *1 (-623))) (-2418 (*1 *1) (-5 *1 (-623))) (-3614 (*1 *1) (-5 *1 (-623))) (-1942 (*1 *1) (-5 *1 (-623))) (-4186 (*1 *1) (-5 *1 (-623))) (-1833 (*1 *1) (-5 *1 (-623))) (-4426 (*1 *1) (-5 *1 (-623))) (-3532 (*1 *1) (-5 *1 (-623))) (-3098 (*1 *1) (-5 *1 (-623))) (-3594 (*1 *1) (-5 *1 (-623))) (-2195 (*1 *1) (-5 *1 (-623))))
+(-13 (-1132) (-632 (-130)) (-10 -8 (-15 -3328 ($) -2650) (-15 -2418 ($) -2650) (-15 -3614 ($) -2650) (-15 -1942 ($) -2650) (-15 -4186 ($) -2650) (-15 -1833 ($) -2650) (-15 -4426 ($) -2650) (-15 -3532 ($) -2650) (-15 -3098 ($) -2650) (-15 -3594 ($) -2650) (-15 -2195 ($) -2650)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2269 (($ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2194 (($) 15 T CONST)) (-1522 (($) 16 T CONST)) (-3258 (($) 13 T CONST)) (-2618 (($) 10 T CONST)) (-2052 (($) 12 T CONST)) (-3293 (($) 11 T CONST)) (-3872 (($) 14 T CONST)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2300 (($ $ $) NIL T ELT)))
+(((-624) (-13 (-1132) (-684) (-10 -8 (-15 -2618 ($) -2650) (-15 -3293 ($) -2650) (-15 -2052 ($) -2650) (-15 -3258 ($) -2650) (-15 -3872 ($) -2650) (-15 -2194 ($) -2650) (-15 -1522 ($) -2650)))) (T -624))
+((-2618 (*1 *1) (-5 *1 (-624))) (-3293 (*1 *1) (-5 *1 (-624))) (-2052 (*1 *1) (-5 *1 (-624))) (-3258 (*1 *1) (-5 *1 (-624))) (-3872 (*1 *1) (-5 *1 (-624))) (-2194 (*1 *1) (-5 *1 (-624))) (-1522 (*1 *1) (-5 *1 (-624))))
+(-13 (-1132) (-684) (-10 -8 (-15 -2618 ($) -2650) (-15 -3293 ($) -2650) (-15 -2052 ($) -2650) (-15 -3258 ($) -2650) (-15 -3872 ($) -2650) (-15 -2194 ($) -2650) (-15 -1522 ($) -2650)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2269 (($ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3945 (($) 15 T CONST)) (-3403 (($) 18 T CONST)) (-3258 (($) 13 T CONST)) (-2618 (($) 10 T CONST)) (-2052 (($) 12 T CONST)) (-3293 (($) 11 T CONST)) (-4372 (($) 16 T CONST)) (-3872 (($) 14 T CONST)) (-4305 (($) 17 T CONST)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2300 (($ $ $) NIL T ELT)))
+(((-625) (-13 (-1132) (-684) (-10 -8 (-15 -2618 ($) -2650) (-15 -3293 ($) -2650) (-15 -2052 ($) -2650) (-15 -3258 ($) -2650) (-15 -3872 ($) -2650) (-15 -3945 ($) -2650) (-15 -4372 ($) -2650) (-15 -4305 ($) -2650) (-15 -3403 ($) -2650)))) (T -625))
+((-2618 (*1 *1) (-5 *1 (-625))) (-3293 (*1 *1) (-5 *1 (-625))) (-2052 (*1 *1) (-5 *1 (-625))) (-3258 (*1 *1) (-5 *1 (-625))) (-3872 (*1 *1) (-5 *1 (-625))) (-3945 (*1 *1) (-5 *1 (-625))) (-4372 (*1 *1) (-5 *1 (-625))) (-4305 (*1 *1) (-5 *1 (-625))) (-3403 (*1 *1) (-5 *1 (-625))))
+(-13 (-1132) (-684) (-10 -8 (-15 -2618 ($) -2650) (-15 -3293 ($) -2650) (-15 -2052 ($) -2650) (-15 -3258 ($) -2650) (-15 -3872 ($) -2650) (-15 -3945 ($) -2650) (-15 -4372 ($) -2650) (-15 -4305 ($) -2650) (-15 -3403 ($) -2650)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 19 T ELT) (($ (-621)) 12 T ELT) (((-621) $) 11 T ELT) (($ (-130)) NIL T ELT) (((-130) $) 14 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-626) (-13 (-1132) (-504 (-621)) (-504 (-130)))) (T -626))
NIL
(-13 (-1132) (-504 (-621)) (-504 (-130)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2746 (((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) $ (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) 39 T ELT)) (-4083 (($ (-663 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))) NIL T ELT) (($) NIL T ELT)) (-3839 (((-1303) $ (-1189) (-1189)) NIL (|has| $ (-6 -4509)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 ((|#1| $ (-1189) |#1|) 49 T ELT)) (-3500 (($ (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4255 (((-3 |#1| "failed") (-1189) $) 52 T ELT)) (-2238 (($) NIL T CONST)) (-2177 (($ $ (-1189)) 25 T ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1132))) ELT)) (-3390 (((-3 |#1| "failed") (-1189) $) 53 T ELT) (($ (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2375 (($ (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1132))) ELT)) (-4129 (((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $ (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $ (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1132))) ELT)) (-3944 (((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) $) 38 T ELT)) (-3779 ((|#1| $ (-1189) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-1189)) NIL T ELT)) (-2181 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-2671 (($ $) 54 T ELT)) (-2109 (($ (-402)) 23 T ELT) (($ (-402) (-1189)) 22 T ELT)) (-3614 (((-402) $) 40 T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-1189) $) NIL (|has| (-1189) (-871)) ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (((-114) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1132))) ELT)) (-2937 (((-1189) $) NIL (|has| (-1189) (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2236 (((-663 (-1189)) $) 45 T ELT)) (-1445 (((-114) (-1189) $) NIL T ELT)) (-2348 (((-1189) $) 41 T ELT)) (-1576 (((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) $) NIL T ELT)) (-3629 (($ (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) $) NIL T ELT)) (-3270 (((-663 (-1189)) $) NIL T ELT)) (-3586 (((-114) (-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3637 ((|#1| $) NIL (|has| (-1189) (-871)) ELT)) (-3329 (((-3 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) "failed") (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL T ELT)) (-3037 (($ $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2615 (((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) $) NIL T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) (-663 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))) NIL (-12 (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-321 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1132))) ELT) (($ $ (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) NIL (-12 (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-321 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))) NIL (-12 (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-321 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1132))) ELT) (($ $ (-663 (-305 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))))) NIL (-12 (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-321 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) 43 T ELT)) (-3924 ((|#1| $ (-1189) |#1|) NIL T ELT) ((|#1| $ (-1189)) 48 T ELT)) (-3897 (($ (-663 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))) NIL T ELT) (($) NIL T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (((-793) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1132))) ELT) (((-793) (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) NIL (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-633 (-549))) ELT)) (-1592 (($ (-663 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))) NIL T ELT)) (-1578 (((-887) $) 21 T ELT)) (-4474 (($ $) 26 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-3376 (($ (-663 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))) NIL T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 20 T ELT)) (-1553 (((-793) $) 47 (|has| $ (-6 -4508)) ELT)))
-(((-627 |#1|) (-13 (-378 (-402) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) (-1224 (-1189) |#1|) (-10 -8 (-6 -4508) (-15 -2671 ($ $)))) (-1132)) (T -627))
-((-2671 (*1 *1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1132)))))
-(-13 (-378 (-402) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) (-1224 (-1189) |#1|) (-10 -8 (-6 -4508) (-15 -2671 ($ $))))
-((-2321 (((-114) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) $) 16 T ELT)) (-2236 (((-663 |#2|) $) 20 T ELT)) (-1445 (((-114) |#2| $) 12 T ELT)))
-(((-628 |#1| |#2| |#3|) (-10 -8 (-15 -2236 ((-663 |#2|) |#1|)) (-15 -1445 ((-114) |#2| |#1|)) (-15 -2321 ((-114) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) |#1|))) (-629 |#2| |#3|) (-1132) (-1132)) (T -628))
-NIL
-(-10 -8 (-15 -2236 ((-663 |#2|) |#1|)) (-15 -1445 ((-114) |#2| |#1|)) (-15 -2321 ((-114) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) |#1|)))
-((-1538 (((-114) $ $) 20 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-3500 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 46 (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 56 (|has| $ (-6 -4508)) ELT)) (-4255 (((-3 |#2| "failed") |#1| $) 62 T ELT)) (-2238 (($) 7 T CONST)) (-3606 (($ $) 59 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT)) (-3390 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 48 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 47 (|has| $ (-6 -4508)) ELT) (((-3 |#2| "failed") |#1| $) 63 T ELT)) (-2375 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 55 (|has| $ (-6 -4508)) ELT)) (-4129 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 57 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 54 (|has| $ (-6 -4508)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 53 (|has| $ (-6 -4508)) ELT)) (-2181 (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 31 (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-2656 (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 36 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-1905 (((-1189) $) 23 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) ELT)) (-2236 (((-663 |#1|) $) 64 T ELT)) (-1445 (((-114) |#1| $) 65 T ELT)) (-1576 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 40 T ELT)) (-3629 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 41 T ELT)) (-3855 (((-1151) $) 22 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) ELT)) (-3329 (((-3 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) "failed") (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 52 T ELT)) (-2615 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 42 T ELT)) (-2787 (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))))) 27 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) 26 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 25 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) 24 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3897 (($) 50 T ELT) (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) 49 T ELT)) (-3865 (((-793) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) 60 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-633 (-549))) ELT)) (-1592 (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) 51 T ELT)) (-1578 (((-887) $) 18 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-632 (-887))) ELT)) (-2275 (((-114) $ $) 21 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) ELT)) (-3376 (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) 43 T ELT)) (-1728 (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-1687 (((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) $ (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) 39 T ELT)) (-4236 (($ (-663 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2033 (((-1303) $ (-1189) (-1189)) NIL (|has| $ (-6 -4509)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 ((|#1| $ (-1189) |#1|) 49 T ELT)) (-1864 (($ (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3799 (((-3 |#1| "failed") (-1189) $) 52 T ELT)) (-3525 (($) NIL T CONST)) (-4216 (($ $ (-1189)) 25 T ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1132))) ELT)) (-2091 (((-3 |#1| "failed") (-1189) $) 53 T ELT) (($ (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3033 (($ (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1132))) ELT)) (-1778 (((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $ (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $ (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1132))) ELT)) (-3688 (((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) $) 38 T ELT)) (-3338 ((|#1| $ (-1189) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-1189)) NIL T ELT)) (-3737 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-2155 (($ $) 54 T ELT)) (-2888 (($ (-402)) 23 T ELT) (($ (-402) (-1189)) 22 T ELT)) (-4389 (((-402) $) 40 T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-1189) $) NIL (|has| (-1189) (-871)) ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (((-114) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1132))) ELT)) (-4263 (((-1189) $) NIL (|has| (-1189) (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-4325 (((-663 (-1189)) $) 45 T ELT)) (-4124 (((-114) (-1189) $) NIL T ELT)) (-2108 (((-1189) $) 41 T ELT)) (-1878 (((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) $) NIL T ELT)) (-3888 (($ (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) $) NIL T ELT)) (-3372 (((-663 (-1189)) $) NIL T ELT)) (-3439 (((-114) (-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4334 ((|#1| $) NIL (|has| (-1189) (-871)) ELT)) (-2708 (((-3 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) "failed") (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL T ELT)) (-2740 (($ $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2796 (((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) $) NIL T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) (-663 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))) NIL (-12 (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-321 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1132))) ELT) (($ $ (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) NIL (-12 (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-321 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))) NIL (-12 (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-321 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1132))) ELT) (($ $ (-663 (-305 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))))) NIL (-12 (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-321 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) 43 T ELT)) (-1507 ((|#1| $ (-1189) |#1|) NIL T ELT) ((|#1| $ (-1189)) 48 T ELT)) (-4468 (($ (-663 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))) NIL T ELT) (($) NIL T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (((-793) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1132))) ELT) (((-793) (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) NIL (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-633 (-549))) ELT)) (-3924 (($ (-663 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))) NIL T ELT)) (-3913 (((-887) $) 21 T ELT)) (-1835 (($ $) 26 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3184 (($ (-663 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))) NIL T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 20 T ELT)) (-2256 (((-793) $) 47 (|has| $ (-6 -4508)) ELT)))
+(((-627 |#1|) (-13 (-378 (-402) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) (-1224 (-1189) |#1|) (-10 -8 (-6 -4508) (-15 -2155 ($ $)))) (-1132)) (T -627))
+((-2155 (*1 *1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1132)))))
+(-13 (-378 (-402) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) (-1224 (-1189) |#1|) (-10 -8 (-6 -4508) (-15 -2155 ($ $))))
+((-3091 (((-114) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) $) 16 T ELT)) (-4325 (((-663 |#2|) $) 20 T ELT)) (-4124 (((-114) |#2| $) 12 T ELT)))
+(((-628 |#1| |#2| |#3|) (-10 -8 (-15 -4325 ((-663 |#2|) |#1|)) (-15 -4124 ((-114) |#2| |#1|)) (-15 -3091 ((-114) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) |#1|))) (-629 |#2| |#3|) (-1132) (-1132)) (T -628))
+NIL
+(-10 -8 (-15 -4325 ((-663 |#2|) |#1|)) (-15 -4124 ((-114) |#2| |#1|)) (-15 -3091 ((-114) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) |#1|)))
+((-2243 (((-114) $ $) 20 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-1864 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 46 (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 56 (|has| $ (-6 -4508)) ELT)) (-3799 (((-3 |#2| "failed") |#1| $) 62 T ELT)) (-3525 (($) 7 T CONST)) (-3658 (($ $) 59 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT)) (-2091 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 48 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 47 (|has| $ (-6 -4508)) ELT) (((-3 |#2| "failed") |#1| $) 63 T ELT)) (-3033 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 55 (|has| $ (-6 -4508)) ELT)) (-1778 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 57 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 54 (|has| $ (-6 -4508)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 53 (|has| $ (-6 -4508)) ELT)) (-3737 (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 31 (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-3243 (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 36 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-3358 (((-1189) $) 23 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) ELT)) (-4325 (((-663 |#1|) $) 64 T ELT)) (-4124 (((-114) |#1| $) 65 T ELT)) (-1878 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 40 T ELT)) (-3888 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 41 T ELT)) (-3376 (((-1151) $) 22 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) ELT)) (-2708 (((-3 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) "failed") (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 52 T ELT)) (-2796 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 42 T ELT)) (-2086 (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))))) 27 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) 26 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 25 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) 24 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-4468 (($) 50 T ELT) (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) 49 T ELT)) (-3384 (((-793) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) 60 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-633 (-549))) ELT)) (-3924 (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) 51 T ELT)) (-3913 (((-887) $) 18 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-632 (-887))) ELT)) (-3925 (((-114) $ $) 21 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) ELT)) (-3184 (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) 43 T ELT)) (-2149 (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-629 |#1| |#2|) (-142) (-1132) (-1132)) (T -629))
-((-1445 (*1 *2 *3 *1) (-12 (-4 *1 (-629 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-5 *2 (-114)))) (-2236 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-5 *2 (-663 *3)))) (-3390 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-629 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132)))) (-4255 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-629 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132)))))
-(-13 (-233 (-2 (|:| -2968 |t#1|) (|:| -2460 |t#2|))) (-10 -8 (-15 -1445 ((-114) |t#1| $)) (-15 -2236 ((-663 |t#1|) $)) (-15 -3390 ((-3 |t#2| "failed") |t#1| $)) (-15 -4255 ((-3 |t#2| "failed") |t#1| $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T) ((-102) -2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102))) ((-632 (-887)) -2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-632 (-887)))) ((-153 #0#) . T) ((-633 (-549)) |has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-633 (-549))) ((-233 #0#) . T) ((-242 #0#) . T) ((-321 #0#) -12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ((-503 #0#) . T) ((-528 #0# #0#) -12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ((-1132) |has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2257 (((-3 (-1207) "failed") $) 46 T ELT)) (-3712 (((-1303) $ (-793)) 22 T ELT)) (-1722 (((-793) $) 20 T ELT)) (-4399 (((-115) $) 9 T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2036 (($ (-115) (-663 |#1|) (-793)) 32 T ELT) (($ (-1207)) 33 T ELT)) (-2784 (((-114) $ (-115)) 15 T ELT) (((-114) $ (-1207)) 13 T ELT)) (-2107 (((-793) $) 17 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1407 (((-915 (-560)) $) 95 (|has| |#1| (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) 102 (|has| |#1| (-633 (-915 (-391)))) ELT) (((-549) $) 88 (|has| |#1| (-633 (-549))) ELT)) (-1578 (((-887) $) 72 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-3844 (((-663 |#1|) $) 19 T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 51 T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 53 T ELT)))
-(((-630 |#1|) (-13 (-134) (-871) (-909 |#1|) (-10 -8 (-15 -4399 ((-115) $)) (-15 -3844 ((-663 |#1|) $)) (-15 -2107 ((-793) $)) (-15 -2036 ($ (-115) (-663 |#1|) (-793))) (-15 -2036 ($ (-1207))) (-15 -2257 ((-3 (-1207) "failed") $)) (-15 -2784 ((-114) $ (-115))) (-15 -2784 ((-114) $ (-1207))) (IF (|has| |#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|))) (-1132)) (T -630))
-((-4399 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-630 *3)) (-4 *3 (-1132)))) (-3844 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1132)))) (-2107 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-630 *3)) (-4 *3 (-1132)))) (-2036 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-663 *5)) (-5 *4 (-793)) (-4 *5 (-1132)) (-5 *1 (-630 *5)))) (-2036 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-630 *3)) (-4 *3 (-1132)))) (-2257 (*1 *2 *1) (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-630 *3)) (-4 *3 (-1132)))) (-2784 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-630 *4)) (-4 *4 (-1132)))) (-2784 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-114)) (-5 *1 (-630 *4)) (-4 *4 (-1132)))))
-(-13 (-134) (-871) (-909 |#1|) (-10 -8 (-15 -4399 ((-115) $)) (-15 -3844 ((-663 |#1|) $)) (-15 -2107 ((-793) $)) (-15 -2036 ($ (-115) (-663 |#1|) (-793))) (-15 -2036 ($ (-1207))) (-15 -2257 ((-3 (-1207) "failed") $)) (-15 -2784 ((-114) $ (-115))) (-15 -2784 ((-114) $ (-1207))) (IF (|has| |#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|)))
-((-2823 (((-630 |#2|) |#1|) 17 T ELT)) (-2251 (((-3 |#1| "failed") (-630 |#2|)) 21 T ELT)))
-(((-631 |#1| |#2|) (-10 -7 (-15 -2823 ((-630 |#2|) |#1|)) (-15 -2251 ((-3 |#1| "failed") (-630 |#2|)))) (-1132) (-1132)) (T -631))
-((-2251 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 *4)) (-4 *4 (-1132)) (-4 *2 (-1132)) (-5 *1 (-631 *2 *4)))) (-2823 (*1 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *1 (-631 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))))
-(-10 -7 (-15 -2823 ((-630 |#2|) |#1|)) (-15 -2251 ((-3 |#1| "failed") (-630 |#2|))))
-((-1578 ((|#1| $) 6 T ELT)))
+((-4124 (*1 *2 *3 *1) (-12 (-4 *1 (-629 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-5 *2 (-114)))) (-4325 (*1 *2 *1) (-12 (-4 *1 (-629 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-5 *2 (-663 *3)))) (-2091 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-629 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132)))) (-3799 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-629 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132)))))
+(-13 (-233 (-2 (|:| -1438 |t#1|) (|:| -3067 |t#2|))) (-10 -8 (-15 -4124 ((-114) |t#1| $)) (-15 -4325 ((-663 |t#1|) $)) (-15 -2091 ((-3 |t#2| "failed") |t#1| $)) (-15 -3799 ((-3 |t#2| "failed") |t#1| $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T) ((-102) -2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102))) ((-632 (-887)) -2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-632 (-887)))) ((-153 #0#) . T) ((-633 (-549)) |has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-633 (-549))) ((-233 #0#) . T) ((-242 #0#) . T) ((-321 #0#) -12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ((-503 #0#) . T) ((-528 #0# #0#) -12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ((-1132) |has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) ((-1247) . T))
+((-2243 (((-114) $ $) NIL T ELT)) (-3733 (((-3 (-1207) "failed") $) 46 T ELT)) (-2173 (((-1303) $ (-793)) 22 T ELT)) (-2359 (((-793) $) 20 T ELT)) (-3963 (((-115) $) 9 T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2547 (($ (-115) (-663 |#1|) (-793)) 32 T ELT) (($ (-1207)) 33 T ELT)) (-2060 (((-114) $ (-115)) 15 T ELT) (((-114) $ (-1207)) 13 T ELT)) (-3827 (((-793) $) 17 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2400 (((-915 (-560)) $) 95 (|has| |#1| (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) 102 (|has| |#1| (-633 (-915 (-391)))) ELT) (((-549) $) 88 (|has| |#1| (-633 (-549))) ELT)) (-3913 (((-887) $) 72 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2069 (((-663 |#1|) $) 19 T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 51 T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 53 T ELT)))
+(((-630 |#1|) (-13 (-134) (-871) (-909 |#1|) (-10 -8 (-15 -3963 ((-115) $)) (-15 -2069 ((-663 |#1|) $)) (-15 -3827 ((-793) $)) (-15 -2547 ($ (-115) (-663 |#1|) (-793))) (-15 -2547 ($ (-1207))) (-15 -3733 ((-3 (-1207) "failed") $)) (-15 -2060 ((-114) $ (-115))) (-15 -2060 ((-114) $ (-1207))) (IF (|has| |#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|))) (-1132)) (T -630))
+((-3963 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-630 *3)) (-4 *3 (-1132)))) (-2069 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1132)))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-630 *3)) (-4 *3 (-1132)))) (-2547 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-663 *5)) (-5 *4 (-793)) (-4 *5 (-1132)) (-5 *1 (-630 *5)))) (-2547 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-630 *3)) (-4 *3 (-1132)))) (-3733 (*1 *2 *1) (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-630 *3)) (-4 *3 (-1132)))) (-2060 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-630 *4)) (-4 *4 (-1132)))) (-2060 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-114)) (-5 *1 (-630 *4)) (-4 *4 (-1132)))))
+(-13 (-134) (-871) (-909 |#1|) (-10 -8 (-15 -3963 ((-115) $)) (-15 -2069 ((-663 |#1|) $)) (-15 -3827 ((-793) $)) (-15 -2547 ($ (-115) (-663 |#1|) (-793))) (-15 -2547 ($ (-1207))) (-15 -3733 ((-3 (-1207) "failed") $)) (-15 -2060 ((-114) $ (-115))) (-15 -2060 ((-114) $ (-1207))) (IF (|has| |#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|)))
+((-4410 (((-630 |#2|) |#1|) 17 T ELT)) (-3664 (((-3 |#1| "failed") (-630 |#2|)) 21 T ELT)))
+(((-631 |#1| |#2|) (-10 -7 (-15 -4410 ((-630 |#2|) |#1|)) (-15 -3664 ((-3 |#1| "failed") (-630 |#2|)))) (-1132) (-1132)) (T -631))
+((-3664 (*1 *2 *3) (|partial| -12 (-5 *3 (-630 *4)) (-4 *4 (-1132)) (-4 *2 (-1132)) (-5 *1 (-631 *2 *4)))) (-4410 (*1 *2 *3) (-12 (-5 *2 (-630 *4)) (-5 *1 (-631 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))))
+(-10 -7 (-15 -4410 ((-630 |#2|) |#1|)) (-15 -3664 ((-3 |#1| "failed") (-630 |#2|))))
+((-3913 ((|#1| $) 6 T ELT)))
(((-632 |#1|) (-142) (-1247)) (T -632))
-((-1578 (*1 *2 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1247)))))
-(-13 (-10 -8 (-15 -1578 (|t#1| $))))
-((-1407 ((|#1| $) 6 T ELT)))
+((-3913 (*1 *2 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1247)))))
+(-13 (-10 -8 (-15 -3913 (|t#1| $))))
+((-2400 ((|#1| $) 6 T ELT)))
(((-633 |#1|) (-142) (-1247)) (T -633))
-((-1407 (*1 *2 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1247)))))
-(-13 (-10 -8 (-15 -1407 (|t#1| $))))
-((-2844 (((-3 (-1201 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 (-419 |#2|) |#2|)) 15 T ELT) (((-3 (-1201 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|)) 16 T ELT)))
-(((-634 |#1| |#2|) (-10 -7 (-15 -2844 ((-3 (-1201 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|))) (-15 -2844 ((-3 (-1201 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 (-419 |#2|) |#2|)))) (-13 (-149) (-27) (-1069 (-560)) (-1069 (-421 (-560)))) (-1273 |#1|)) (T -634))
-((-2844 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-149) (-27) (-1069 (-560)) (-1069 (-421 (-560))))) (-5 *2 (-1201 (-421 *6))) (-5 *1 (-634 *5 *6)) (-5 *3 (-421 *6)))) (-2844 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-149) (-27) (-1069 (-560)) (-1069 (-421 (-560))))) (-4 *5 (-1273 *4)) (-5 *2 (-1201 (-421 *5))) (-5 *1 (-634 *4 *5)) (-5 *3 (-421 *5)))))
-(-10 -7 (-15 -2844 ((-3 (-1201 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|))) (-15 -2844 ((-3 (-1201 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 (-419 |#2|) |#2|))))
-((-1578 (($ |#1|) 6 T ELT)))
+((-2400 (*1 *2 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1247)))))
+(-13 (-10 -8 (-15 -2400 (|t#1| $))))
+((-1469 (((-3 (-1201 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 (-419 |#2|) |#2|)) 15 T ELT) (((-3 (-1201 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|)) 16 T ELT)))
+(((-634 |#1| |#2|) (-10 -7 (-15 -1469 ((-3 (-1201 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|))) (-15 -1469 ((-3 (-1201 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 (-419 |#2|) |#2|)))) (-13 (-149) (-27) (-1069 (-560)) (-1069 (-421 (-560)))) (-1273 |#1|)) (T -634))
+((-1469 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-149) (-27) (-1069 (-560)) (-1069 (-421 (-560))))) (-5 *2 (-1201 (-421 *6))) (-5 *1 (-634 *5 *6)) (-5 *3 (-421 *6)))) (-1469 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-149) (-27) (-1069 (-560)) (-1069 (-421 (-560))))) (-4 *5 (-1273 *4)) (-5 *2 (-1201 (-421 *5))) (-5 *1 (-634 *4 *5)) (-5 *3 (-421 *5)))))
+(-10 -7 (-15 -1469 ((-3 (-1201 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|))) (-15 -1469 ((-3 (-1201 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 (-419 |#2|) |#2|))))
+((-3913 (($ |#1|) 6 T ELT)))
(((-635 |#1|) (-142) (-1247)) (T -635))
-((-1578 (*1 *1 *2) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1247)))))
-(-13 (-10 -8 (-15 -1578 ($ |t#1|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1562 (($ $) NIL T ELT)) (-2301 (($) 14 T CONST)) (-3841 (($) 15 T CONST)) (-1961 (($ $ $) 29 T ELT)) (-1937 (($ $) 27 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3821 (($ $ $) 30 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2143 (($) 11 T CONST)) (-1662 (($ $ $) 31 T ELT)) (-1578 (((-887) $) 35 T ELT)) (-1991 (((-114) $ (|[\|\|]| -2143)) 24 T ELT) (((-114) $ (|[\|\|]| -2301)) 26 T ELT) (((-114) $ (|[\|\|]| -3841)) 21 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1953 (($ $ $) 28 T ELT)) (-1616 (($ $ $) NIL T ELT)) (-2473 (((-114) $ $) 18 T ELT)) (-1602 (($ $ $) NIL T ELT)))
-(((-636) (-13 (-998) (-10 -8 (-15 -2301 ($) -3081) (-15 -1991 ((-114) $ (|[\|\|]| -2143))) (-15 -1991 ((-114) $ (|[\|\|]| -2301))) (-15 -1991 ((-114) $ (|[\|\|]| -3841)))))) (T -636))
-((-2301 (*1 *1) (-5 *1 (-636))) (-1991 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2143)) (-5 *2 (-114)) (-5 *1 (-636)))) (-1991 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2301)) (-5 *2 (-114)) (-5 *1 (-636)))) (-1991 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3841)) (-5 *2 (-114)) (-5 *1 (-636)))))
-(-13 (-998) (-10 -8 (-15 -2301 ($) -3081) (-15 -1991 ((-114) $ (|[\|\|]| -2143))) (-15 -1991 ((-114) $ (|[\|\|]| -2301))) (-15 -1991 ((-114) $ (|[\|\|]| -3841)))))
-((-1407 (($ |#1|) 6 T ELT)))
+((-3913 (*1 *1 *2) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1247)))))
+(-13 (-10 -8 (-15 -3913 ($ |t#1|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2269 (($ $) NIL T ELT)) (-2811 (($) 14 T CONST)) (-3960 (($) 15 T CONST)) (-1415 (($ $ $) 29 T ELT)) (-1394 (($ $) 27 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1858 (($ $ $) 30 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1964 (($) 11 T CONST)) (-2695 (($ $ $) 31 T ELT)) (-3913 (((-887) $) 35 T ELT)) (-1436 (((-114) $ (|[\|\|]| -1964)) 24 T ELT) (((-114) $ (|[\|\|]| -2811)) 26 T ELT) (((-114) $ (|[\|\|]| -3960)) 21 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1404 (($ $ $) 28 T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2340 (((-114) $ $) 18 T ELT)) (-2300 (($ $ $) NIL T ELT)))
+(((-636) (-13 (-998) (-10 -8 (-15 -2811 ($) -2650) (-15 -1436 ((-114) $ (|[\|\|]| -1964))) (-15 -1436 ((-114) $ (|[\|\|]| -2811))) (-15 -1436 ((-114) $ (|[\|\|]| -3960)))))) (T -636))
+((-2811 (*1 *1) (-5 *1 (-636))) (-1436 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1964)) (-5 *2 (-114)) (-5 *1 (-636)))) (-1436 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2811)) (-5 *2 (-114)) (-5 *1 (-636)))) (-1436 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3960)) (-5 *2 (-114)) (-5 *1 (-636)))))
+(-13 (-998) (-10 -8 (-15 -2811 ($) -2650) (-15 -1436 ((-114) $ (|[\|\|]| -1964))) (-15 -1436 ((-114) $ (|[\|\|]| -2811))) (-15 -1436 ((-114) $ (|[\|\|]| -3960)))))
+((-2400 (($ |#1|) 6 T ELT)))
(((-637 |#1|) (-142) (-1247)) (T -637))
-((-1407 (*1 *1 *2) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1247)))))
-(-13 (-10 -8 (-15 -1407 ($ |t#1|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2138 (((-560) $) NIL (|has| |#1| (-870)) ELT)) (-2238 (($) NIL T CONST)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2928 (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-1581 (((-114) $) NIL T ELT)) (-3757 ((|#1| $) 13 T ELT)) (-2960 (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-3825 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2820 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3771 ((|#3| $) 15 T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT)) (-2930 (((-793)) 20 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2282 (($ $) NIL (|has| |#1| (-870)) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) 12 T CONST)) (-2536 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-2495 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-2594 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
-(((-638 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|) (-15 -2594 ($ $ |#3|)) (-15 -2594 ($ |#1| |#3|)) (-15 -3757 (|#1| $)) (-15 -3771 (|#3| $)))) (-38 |#2|) (-175) (|SubsetCategory| (-748) |#2|)) (T -638))
-((-2594 (*1 *1 *1 *2) (-12 (-4 *4 (-175)) (-5 *1 (-638 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-748) *4)))) (-2594 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-638 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-748) *4)))) (-3757 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-38 *3)) (-5 *1 (-638 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-748) *3)))) (-3771 (*1 *2 *1) (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-748) *4)) (-5 *1 (-638 *3 *4 *2)) (-4 *3 (-38 *4)))))
-(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|) (-15 -2594 ($ $ |#3|)) (-15 -2594 ($ |#1| |#3|)) (-15 -3757 (|#1| $)) (-15 -3771 (|#3| $))))
-((-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) 10 T ELT)))
-(((-639 |#1| |#2|) (-10 -8 (-15 -1578 (|#1| |#2|)) (-15 -1578 (|#1| (-560))) (-15 -1578 ((-887) |#1|))) (-640 |#2|) (-1080)) (T -639))
-NIL
-(-10 -8 (-15 -1578 (|#1| |#2|)) (-15 -1578 (|#1| (-560))) (-15 -1578 ((-887) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 41 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ |#1| $) 42 T ELT)))
+((-2400 (*1 *1 *2) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1247)))))
+(-13 (-10 -8 (-15 -2400 ($ |t#1|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1869 (((-560) $) NIL (|has| |#1| (-870)) ELT)) (-3525 (($) NIL T CONST)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4172 (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-1918 (((-114) $) NIL T ELT)) (-2473 ((|#1| $) 13 T ELT)) (-4470 (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4379 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2484 ((|#3| $) 15 T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT)) (-4191 (((-793)) 20 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-2719 (($ $) NIL (|has| |#1| (-870)) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) 12 T CONST)) (-2396 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-2362 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-2453 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
+(((-638 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|) (-15 -2453 ($ $ |#3|)) (-15 -2453 ($ |#1| |#3|)) (-15 -2473 (|#1| $)) (-15 -2484 (|#3| $)))) (-38 |#2|) (-175) (|SubsetCategory| (-748) |#2|)) (T -638))
+((-2453 (*1 *1 *1 *2) (-12 (-4 *4 (-175)) (-5 *1 (-638 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-748) *4)))) (-2453 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-638 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-748) *4)))) (-2473 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-38 *3)) (-5 *1 (-638 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-748) *3)))) (-2484 (*1 *2 *1) (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-748) *4)) (-5 *1 (-638 *3 *4 *2)) (-4 *3 (-38 *4)))))
+(-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|) (-15 -2453 ($ $ |#3|)) (-15 -2453 ($ |#1| |#3|)) (-15 -2473 (|#1| $)) (-15 -2484 (|#3| $))))
+((-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) 10 T ELT)))
+(((-639 |#1| |#2|) (-10 -8 (-15 -3913 (|#1| |#2|)) (-15 -3913 (|#1| (-560))) (-15 -3913 ((-887) |#1|))) (-640 |#2|) (-1080)) (T -639))
+NIL
+(-10 -8 (-15 -3913 (|#1| |#2|)) (-15 -3913 (|#1| (-560))) (-15 -3913 ((-887) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 41 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ |#1| $) 42 T ELT)))
(((-640 |#1|) (-142) (-1080)) (T -640))
-((-1578 (*1 *1 *2) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1080)))))
-(-13 (-1080) (-670 |t#1|) (-10 -8 (-15 -1578 ($ |t#1|))))
+((-3913 (*1 *1 *2) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1080)))))
+(-13 (-1080) (-670 |t#1|) (-10 -8 (-15 -3913 ($ |t#1|))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-560)) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-748) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-3818 ((|#2| |#2| (-1207) (-1207)) 16 T ELT)))
-(((-641 |#1| |#2|) (-10 -7 (-15 -3818 (|#2| |#2| (-1207) (-1207)))) (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))) (-13 (-1233) (-989) (-29 |#1|))) (T -641))
-((-3818 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-641 *4 *2)) (-4 *2 (-13 (-1233) (-989) (-29 *4))))))
-(-10 -7 (-15 -3818 (|#2| |#2| (-1207) (-1207))))
-((-1538 (((-114) $ $) 64 T ELT)) (-2388 (((-114) $) 58 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-4055 ((|#1| $) 55 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1615 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-2498 (((-2 (|:| -4024 $) (|:| -3201 (-421 |#2|))) (-421 |#2|)) 111 (|has| |#1| (-376)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 99 T ELT) (((-3 |#2| "failed") $) 95 T ELT)) (-3330 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-1478 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1624 (($ $) 27 T ELT)) (-1990 (((-3 $ "failed") $) 88 T ELT)) (-1490 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-3913 (((-560) $) 22 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1556 (((-114) $) 40 T ELT)) (-1417 (($ |#1| (-560)) 24 T ELT)) (-1597 ((|#1| $) 57 T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) 101 (|has| |#1| (-376)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-1528 (((-3 $ "failed") $ $) 93 T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-2901 (((-793) $) 115 (|has| |#1| (-376)) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 114 (|has| |#1| (-376)) ELT)) (-2894 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-3630 (((-560) $) 38 T ELT)) (-1407 (((-421 |#2|) $) 47 T ELT)) (-1578 (((-887) $) 69 T ELT) (($ (-560)) 35 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-2305 ((|#1| $ (-560)) 72 T ELT)) (-1964 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2001 (($) 9 T CONST)) (-2011 (($) 14 T CONST)) (-3305 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-2473 (((-114) $ $) 21 T ELT)) (-2580 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 90 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 49 T ELT)))
-(((-642 |#1| |#2|) (-13 (-234 |#2|) (-571) (-633 (-421 |#2|)) (-426 |#1|) (-1069 |#2|) (-10 -8 (-15 -1556 ((-114) $)) (-15 -3630 ((-560) $)) (-15 -3913 ((-560) $)) (-15 -1624 ($ $)) (-15 -1597 (|#1| $)) (-15 -4055 (|#1| $)) (-15 -2305 (|#1| $ (-560))) (-15 -1417 ($ |#1| (-560))) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-319)) (-15 -2498 ((-2 (|:| -4024 $) (|:| -3201 (-421 |#2|))) (-421 |#2|)))) |%noBranch|))) (-571) (-1273 |#1|)) (T -642))
-((-1556 (*1 *2 *1) (-12 (-4 *3 (-571)) (-5 *2 (-114)) (-5 *1 (-642 *3 *4)) (-4 *4 (-1273 *3)))) (-3630 (*1 *2 *1) (-12 (-4 *3 (-571)) (-5 *2 (-560)) (-5 *1 (-642 *3 *4)) (-4 *4 (-1273 *3)))) (-3913 (*1 *2 *1) (-12 (-4 *3 (-571)) (-5 *2 (-560)) (-5 *1 (-642 *3 *4)) (-4 *4 (-1273 *3)))) (-1624 (*1 *1 *1) (-12 (-4 *2 (-571)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1273 *2)))) (-1597 (*1 *2 *1) (-12 (-4 *2 (-571)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1273 *2)))) (-4055 (*1 *2 *1) (-12 (-4 *2 (-571)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1273 *2)))) (-2305 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *2 (-571)) (-5 *1 (-642 *2 *4)) (-4 *4 (-1273 *2)))) (-1417 (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-4 *2 (-571)) (-5 *1 (-642 *2 *4)) (-4 *4 (-1273 *2)))) (-2498 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *4 (-571)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -4024 (-642 *4 *5)) (|:| -3201 (-421 *5)))) (-5 *1 (-642 *4 *5)) (-5 *3 (-421 *5)))))
-(-13 (-234 |#2|) (-571) (-633 (-421 |#2|)) (-426 |#1|) (-1069 |#2|) (-10 -8 (-15 -1556 ((-114) $)) (-15 -3630 ((-560) $)) (-15 -3913 ((-560) $)) (-15 -1624 ($ $)) (-15 -1597 (|#1| $)) (-15 -4055 (|#1| $)) (-15 -2305 (|#1| $ (-560))) (-15 -1417 ($ |#1| (-560))) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-319)) (-15 -2498 ((-2 (|:| -4024 $) (|:| -3201 (-421 |#2|))) (-421 |#2|)))) |%noBranch|)))
-((-3904 (((-663 |#6|) (-663 |#4|) (-114)) 54 T ELT)) (-2111 ((|#6| |#6|) 48 T ELT)))
-(((-643 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2111 (|#6| |#6|)) (-15 -3904 ((-663 |#6|) (-663 |#4|) (-114)))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) (T -643))
-((-3904 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 *10)) (-5 *1 (-643 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *10 (-1140 *5 *6 *7 *8)))) (-2111 (*1 *2 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *1 (-643 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *2 (-1140 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2111 (|#6| |#6|)) (-15 -3904 ((-663 |#6|) (-663 |#4|) (-114))))
-((-2695 (((-114) |#3| (-793) (-663 |#3|)) 29 T ELT)) (-2322 (((-3 (-2 (|:| |polfac| (-663 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-663 (-1201 |#3|)))) "failed") |#3| (-663 (-1201 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3764 (-663 (-2 (|:| |irr| |#4|) (|:| -2929 (-560)))))) (-663 |#3|) (-663 |#1|) (-663 |#3|)) 69 T ELT)))
-(((-644 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2695 ((-114) |#3| (-793) (-663 |#3|))) (-15 -2322 ((-3 (-2 (|:| |polfac| (-663 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-663 (-1201 |#3|)))) "failed") |#3| (-663 (-1201 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3764 (-663 (-2 (|:| |irr| |#4|) (|:| -2929 (-560)))))) (-663 |#3|) (-663 |#1|) (-663 |#3|)))) (-871) (-815) (-319) (-979 |#3| |#2| |#1|)) (T -644))
-((-2322 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3764 (-663 (-2 (|:| |irr| *10) (|:| -2929 (-560))))))) (-5 *6 (-663 *3)) (-5 *7 (-663 *8)) (-4 *8 (-871)) (-4 *3 (-319)) (-4 *10 (-979 *3 *9 *8)) (-4 *9 (-815)) (-5 *2 (-2 (|:| |polfac| (-663 *10)) (|:| |correct| *3) (|:| |corrfact| (-663 (-1201 *3))))) (-5 *1 (-644 *8 *9 *3 *10)) (-5 *4 (-663 (-1201 *3))))) (-2695 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-793)) (-5 *5 (-663 *3)) (-4 *3 (-319)) (-4 *6 (-871)) (-4 *7 (-815)) (-5 *2 (-114)) (-5 *1 (-644 *6 *7 *3 *8)) (-4 *8 (-979 *3 *7 *6)))))
-(-10 -7 (-15 -2695 ((-114) |#3| (-793) (-663 |#3|))) (-15 -2322 ((-3 (-2 (|:| |polfac| (-663 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-663 (-1201 |#3|)))) "failed") |#3| (-663 (-1201 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3764 (-663 (-2 (|:| |irr| |#4|) (|:| -2929 (-560)))))) (-663 |#3|) (-663 |#1|) (-663 |#3|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3401 (((-1166) $) 11 T ELT)) (-3391 (((-1166) $) 9 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-645) (-13 (-1114) (-10 -8 (-15 -3391 ((-1166) $)) (-15 -3401 ((-1166) $))))) (T -645))
-((-3391 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-645)))) (-3401 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-645)))))
-(-13 (-1114) (-10 -8 (-15 -3391 ((-1166) $)) (-15 -3401 ((-1166) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2571 (((-663 |#1|) $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-2256 (($ $) 77 T ELT)) (-2192 (((-686 |#1| |#2|) $) 60 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) 81 T ELT)) (-3503 (((-663 (-305 |#2|)) $ $) 42 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3251 (($ (-686 |#1| |#2|)) 56 T ELT)) (-4122 (($ $ $) NIL T ELT)) (-2013 (($ $ $) NIL T ELT)) (-1578 (((-887) $) 66 T ELT) (((-1313 |#1| |#2|) $) NIL T ELT) (((-1318 |#1| |#2|) $) 74 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2011 (($) 61 T CONST)) (-2911 (((-663 (-2 (|:| |k| (-694 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2696 (((-663 (-686 |#1| |#2|)) (-663 |#1|)) 73 T ELT)) (-4165 (((-663 (-2 (|:| |k| (-918 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-2473 (((-114) $ $) 62 T ELT)) (-2594 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ $ $) 52 T ELT)))
-(((-646 |#1| |#2| |#3|) (-13 (-487) (-10 -8 (-15 -3251 ($ (-686 |#1| |#2|))) (-15 -2192 ((-686 |#1| |#2|) $)) (-15 -4165 ((-663 (-2 (|:| |k| (-918 |#1|)) (|:| |c| |#2|))) $)) (-15 -1578 ((-1313 |#1| |#2|) $)) (-15 -1578 ((-1318 |#1| |#2|) $)) (-15 -2256 ($ $)) (-15 -2571 ((-663 |#1|) $)) (-15 -2696 ((-663 (-686 |#1| |#2|)) (-663 |#1|))) (-15 -2911 ((-663 (-2 (|:| |k| (-694 |#1|)) (|:| |c| |#2|))) $)) (-15 -3503 ((-663 (-305 |#2|)) $ $)))) (-871) (-13 (-175) (-739 (-421 (-560)))) (-948)) (T -646))
-((-3251 (*1 *1 *2) (-12 (-5 *2 (-686 *3 *4)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-5 *1 (-646 *3 *4 *5)) (-14 *5 (-948)))) (-2192 (*1 *2 *1) (-12 (-5 *2 (-686 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948)))) (-4165 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |k| (-918 *3)) (|:| |c| *4)))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-1318 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948)))) (-2256 (*1 *1 *1) (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-871)) (-4 *3 (-13 (-175) (-739 (-421 (-560))))) (-14 *4 (-948)))) (-2571 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948)))) (-2696 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-871)) (-5 *2 (-663 (-686 *4 *5))) (-5 *1 (-646 *4 *5 *6)) (-4 *5 (-13 (-175) (-739 (-421 (-560))))) (-14 *6 (-948)))) (-2911 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |k| (-694 *3)) (|:| |c| *4)))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948)))) (-3503 (*1 *2 *1 *1) (-12 (-5 *2 (-663 (-305 *4))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948)))))
-(-13 (-487) (-10 -8 (-15 -3251 ($ (-686 |#1| |#2|))) (-15 -2192 ((-686 |#1| |#2|) $)) (-15 -4165 ((-663 (-2 (|:| |k| (-918 |#1|)) (|:| |c| |#2|))) $)) (-15 -1578 ((-1313 |#1| |#2|) $)) (-15 -1578 ((-1318 |#1| |#2|) $)) (-15 -2256 ($ $)) (-15 -2571 ((-663 |#1|) $)) (-15 -2696 ((-663 (-686 |#1| |#2|)) (-663 |#1|))) (-15 -2911 ((-663 (-2 (|:| |k| (-694 |#1|)) (|:| |c| |#2|))) $)) (-15 -3503 ((-663 (-305 |#2|)) $ $))))
-((-3904 (((-663 (-1177 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|)))) (-663 (-802 |#1| (-888 |#2|))) (-114)) 103 T ELT) (((-663 (-1077 |#1| |#2|)) (-663 (-802 |#1| (-888 |#2|))) (-114)) 77 T ELT)) (-3492 (((-114) (-663 (-802 |#1| (-888 |#2|)))) 26 T ELT)) (-1986 (((-663 (-1177 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|)))) (-663 (-802 |#1| (-888 |#2|))) (-114)) 102 T ELT)) (-3803 (((-663 (-1077 |#1| |#2|)) (-663 (-802 |#1| (-888 |#2|))) (-114)) 76 T ELT)) (-2546 (((-663 (-802 |#1| (-888 |#2|))) (-663 (-802 |#1| (-888 |#2|)))) 30 T ELT)) (-1971 (((-3 (-663 (-802 |#1| (-888 |#2|))) "failed") (-663 (-802 |#1| (-888 |#2|)))) 29 T ELT)))
-(((-647 |#1| |#2|) (-10 -7 (-15 -3492 ((-114) (-663 (-802 |#1| (-888 |#2|))))) (-15 -1971 ((-3 (-663 (-802 |#1| (-888 |#2|))) "failed") (-663 (-802 |#1| (-888 |#2|))))) (-15 -2546 ((-663 (-802 |#1| (-888 |#2|))) (-663 (-802 |#1| (-888 |#2|))))) (-15 -3803 ((-663 (-1077 |#1| |#2|)) (-663 (-802 |#1| (-888 |#2|))) (-114))) (-15 -1986 ((-663 (-1177 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|)))) (-663 (-802 |#1| (-888 |#2|))) (-114))) (-15 -3904 ((-663 (-1077 |#1| |#2|)) (-663 (-802 |#1| (-888 |#2|))) (-114))) (-15 -3904 ((-663 (-1177 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|)))) (-663 (-802 |#1| (-888 |#2|))) (-114)))) (-466) (-663 (-1207))) (T -647))
-((-3904 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-802 *5 (-888 *6)))) (-5 *4 (-114)) (-4 *5 (-466)) (-14 *6 (-663 (-1207))) (-5 *2 (-663 (-1177 *5 (-545 (-888 *6)) (-888 *6) (-802 *5 (-888 *6))))) (-5 *1 (-647 *5 *6)))) (-3904 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-802 *5 (-888 *6)))) (-5 *4 (-114)) (-4 *5 (-466)) (-14 *6 (-663 (-1207))) (-5 *2 (-663 (-1077 *5 *6))) (-5 *1 (-647 *5 *6)))) (-1986 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-802 *5 (-888 *6)))) (-5 *4 (-114)) (-4 *5 (-466)) (-14 *6 (-663 (-1207))) (-5 *2 (-663 (-1177 *5 (-545 (-888 *6)) (-888 *6) (-802 *5 (-888 *6))))) (-5 *1 (-647 *5 *6)))) (-3803 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-802 *5 (-888 *6)))) (-5 *4 (-114)) (-4 *5 (-466)) (-14 *6 (-663 (-1207))) (-5 *2 (-663 (-1077 *5 *6))) (-5 *1 (-647 *5 *6)))) (-2546 (*1 *2 *2) (-12 (-5 *2 (-663 (-802 *3 (-888 *4)))) (-4 *3 (-466)) (-14 *4 (-663 (-1207))) (-5 *1 (-647 *3 *4)))) (-1971 (*1 *2 *2) (|partial| -12 (-5 *2 (-663 (-802 *3 (-888 *4)))) (-4 *3 (-466)) (-14 *4 (-663 (-1207))) (-5 *1 (-647 *3 *4)))) (-3492 (*1 *2 *3) (-12 (-5 *3 (-663 (-802 *4 (-888 *5)))) (-4 *4 (-466)) (-14 *5 (-663 (-1207))) (-5 *2 (-114)) (-5 *1 (-647 *4 *5)))))
-(-10 -7 (-15 -3492 ((-114) (-663 (-802 |#1| (-888 |#2|))))) (-15 -1971 ((-3 (-663 (-802 |#1| (-888 |#2|))) "failed") (-663 (-802 |#1| (-888 |#2|))))) (-15 -2546 ((-663 (-802 |#1| (-888 |#2|))) (-663 (-802 |#1| (-888 |#2|))))) (-15 -3803 ((-663 (-1077 |#1| |#2|)) (-663 (-802 |#1| (-888 |#2|))) (-114))) (-15 -1986 ((-663 (-1177 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|)))) (-663 (-802 |#1| (-888 |#2|))) (-114))) (-15 -3904 ((-663 (-1077 |#1| |#2|)) (-663 (-802 |#1| (-888 |#2|))) (-114))) (-15 -3904 ((-663 (-1177 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|)))) (-663 (-802 |#1| (-888 |#2|))) (-114))))
-((-4399 (((-115) (-115)) 88 T ELT)) (-2344 ((|#2| |#2|) 28 T ELT)) (-2811 ((|#2| |#2| (-1123 |#2|)) 84 T ELT) ((|#2| |#2| (-1207)) 50 T ELT)) (-3387 ((|#2| |#2|) 27 T ELT)) (-3419 ((|#2| |#2|) 29 T ELT)) (-1840 (((-114) (-115)) 33 T ELT)) (-1408 ((|#2| |#2|) 24 T ELT)) (-2234 ((|#2| |#2|) 26 T ELT)) (-2627 ((|#2| |#2|) 25 T ELT)))
-(((-648 |#1| |#2|) (-10 -7 (-15 -1840 ((-114) (-115))) (-15 -4399 ((-115) (-115))) (-15 -2234 (|#2| |#2|)) (-15 -1408 (|#2| |#2|)) (-15 -2627 (|#2| |#2|)) (-15 -2344 (|#2| |#2|)) (-15 -3387 (|#2| |#2|)) (-15 -3419 (|#2| |#2|)) (-15 -2811 (|#2| |#2| (-1207))) (-15 -2811 (|#2| |#2| (-1123 |#2|)))) (-571) (-13 (-435 |#1|) (-1033) (-1233))) (T -648))
-((-2811 (*1 *2 *2 *3) (-12 (-5 *3 (-1123 *2)) (-4 *2 (-13 (-435 *4) (-1033) (-1233))) (-4 *4 (-571)) (-5 *1 (-648 *4 *2)))) (-2811 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *1 (-648 *4 *2)) (-4 *2 (-13 (-435 *4) (-1033) (-1233))))) (-3419 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033) (-1233))))) (-3387 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033) (-1233))))) (-2344 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033) (-1233))))) (-2627 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033) (-1233))))) (-1408 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033) (-1233))))) (-2234 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033) (-1233))))) (-4399 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-648 *3 *4)) (-4 *4 (-13 (-435 *3) (-1033) (-1233))))) (-1840 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-648 *4 *5)) (-4 *5 (-13 (-435 *4) (-1033) (-1233))))))
-(-10 -7 (-15 -1840 ((-114) (-115))) (-15 -4399 ((-115) (-115))) (-15 -2234 (|#2| |#2|)) (-15 -1408 (|#2| |#2|)) (-15 -2627 (|#2| |#2|)) (-15 -2344 (|#2| |#2|)) (-15 -3387 (|#2| |#2|)) (-15 -3419 (|#2| |#2|)) (-15 -2811 (|#2| |#2| (-1207))) (-15 -2811 (|#2| |#2| (-1123 |#2|))))
-((-4337 (($ $) 38 T ELT)) (-3455 (($ $) 21 T ELT)) (-4313 (($ $) 37 T ELT)) (-3430 (($ $) 22 T ELT)) (-4363 (($ $) 36 T ELT)) (-3477 (($ $) 23 T ELT)) (-3796 (($) 48 T ELT)) (-2192 (($ $) 45 T ELT)) (-2344 (($ $) 17 T ELT)) (-2811 (($ $ (-1123 $)) 7 T ELT) (($ $ (-1207)) 6 T ELT)) (-3251 (($ $) 46 T ELT)) (-3387 (($ $) 15 T ELT)) (-3419 (($ $) 16 T ELT)) (-4373 (($ $) 35 T ELT)) (-3488 (($ $) 24 T ELT)) (-4352 (($ $) 34 T ELT)) (-3466 (($ $) 25 T ELT)) (-4325 (($ $) 33 T ELT)) (-3443 (($ $) 26 T ELT)) (-4411 (($ $) 44 T ELT)) (-4263 (($ $) 32 T ELT)) (-4387 (($ $) 43 T ELT)) (-3499 (($ $) 31 T ELT)) (-4438 (($ $) 42 T ELT)) (-4287 (($ $) 30 T ELT)) (-3837 (($ $) 41 T ELT)) (-4302 (($ $) 29 T ELT)) (-4423 (($ $) 40 T ELT)) (-4275 (($ $) 28 T ELT)) (-4398 (($ $) 39 T ELT)) (-4252 (($ $) 27 T ELT)) (-1408 (($ $) 19 T ELT)) (-2234 (($ $) 20 T ELT)) (-2627 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT)))
+((-1821 ((|#2| |#2| (-1207) (-1207)) 16 T ELT)))
+(((-641 |#1| |#2|) (-10 -7 (-15 -1821 (|#2| |#2| (-1207) (-1207)))) (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))) (-13 (-1233) (-989) (-29 |#1|))) (T -641))
+((-1821 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-641 *4 *2)) (-4 *2 (-13 (-1233) (-989) (-29 *4))))))
+(-10 -7 (-15 -1821 (|#2| |#2| (-1207) (-1207))))
+((-2243 (((-114) $ $) 64 T ELT)) (-2505 (((-114) $) 58 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-2314 ((|#1| $) 55 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3476 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4254 (((-2 (|:| -3247 $) (|:| -2001 (-421 |#2|))) (-421 |#2|)) 111 (|has| |#1| (-376)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 99 T ELT) (((-3 |#2| "failed") $) 95 T ELT)) (-3649 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2186 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3062 (($ $) 27 T ELT)) (-2873 (((-3 $ "failed") $) 88 T ELT)) (-2197 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-1460 (((-560) $) 22 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1673 (((-114) $) 40 T ELT)) (-4139 (($ |#1| (-560)) 24 T ELT)) (-3037 ((|#1| $) 57 T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) 101 (|has| |#1| (-376)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 116 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2233 (((-3 $ "failed") $ $) 93 T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-3989 (((-793) $) 115 (|has| |#1| (-376)) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 114 (|has| |#1| (-376)) ELT)) (-3161 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-3900 (((-560) $) 38 T ELT)) (-2400 (((-421 |#2|) $) 47 T ELT)) (-3913 (((-887) $) 69 T ELT) (($ (-560)) 35 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-2920 ((|#1| $ (-560)) 72 T ELT)) (-3919 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-1446 (($) 9 T CONST)) (-1456 (($) 14 T CONST)) (-2111 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-2340 (((-114) $ $) 21 T ELT)) (-2441 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 90 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 29 T ELT) (($ $ $) 49 T ELT)))
+(((-642 |#1| |#2|) (-13 (-234 |#2|) (-571) (-633 (-421 |#2|)) (-426 |#1|) (-1069 |#2|) (-10 -8 (-15 -1673 ((-114) $)) (-15 -3900 ((-560) $)) (-15 -1460 ((-560) $)) (-15 -3062 ($ $)) (-15 -3037 (|#1| $)) (-15 -2314 (|#1| $)) (-15 -2920 (|#1| $ (-560))) (-15 -4139 ($ |#1| (-560))) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-319)) (-15 -4254 ((-2 (|:| -3247 $) (|:| -2001 (-421 |#2|))) (-421 |#2|)))) |%noBranch|))) (-571) (-1273 |#1|)) (T -642))
+((-1673 (*1 *2 *1) (-12 (-4 *3 (-571)) (-5 *2 (-114)) (-5 *1 (-642 *3 *4)) (-4 *4 (-1273 *3)))) (-3900 (*1 *2 *1) (-12 (-4 *3 (-571)) (-5 *2 (-560)) (-5 *1 (-642 *3 *4)) (-4 *4 (-1273 *3)))) (-1460 (*1 *2 *1) (-12 (-4 *3 (-571)) (-5 *2 (-560)) (-5 *1 (-642 *3 *4)) (-4 *4 (-1273 *3)))) (-3062 (*1 *1 *1) (-12 (-4 *2 (-571)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1273 *2)))) (-3037 (*1 *2 *1) (-12 (-4 *2 (-571)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1273 *2)))) (-2314 (*1 *2 *1) (-12 (-4 *2 (-571)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1273 *2)))) (-2920 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *2 (-571)) (-5 *1 (-642 *2 *4)) (-4 *4 (-1273 *2)))) (-4139 (*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-4 *2 (-571)) (-5 *1 (-642 *2 *4)) (-4 *4 (-1273 *2)))) (-4254 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *4 (-571)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -3247 (-642 *4 *5)) (|:| -2001 (-421 *5)))) (-5 *1 (-642 *4 *5)) (-5 *3 (-421 *5)))))
+(-13 (-234 |#2|) (-571) (-633 (-421 |#2|)) (-426 |#1|) (-1069 |#2|) (-10 -8 (-15 -1673 ((-114) $)) (-15 -3900 ((-560) $)) (-15 -1460 ((-560) $)) (-15 -3062 ($ $)) (-15 -3037 (|#1| $)) (-15 -2314 (|#1| $)) (-15 -2920 (|#1| $ (-560))) (-15 -4139 ($ |#1| (-560))) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-319)) (-15 -4254 ((-2 (|:| -3247 $) (|:| -2001 (-421 |#2|))) (-421 |#2|)))) |%noBranch|)))
+((-1372 (((-663 |#6|) (-663 |#4|) (-114)) 54 T ELT)) (-1589 ((|#6| |#6|) 48 T ELT)))
+(((-643 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -1589 (|#6| |#6|)) (-15 -1372 ((-663 |#6|) (-663 |#4|) (-114)))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|) (-1140 |#1| |#2| |#3| |#4|)) (T -643))
+((-1372 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 *10)) (-5 *1 (-643 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *10 (-1140 *5 *6 *7 *8)))) (-1589 (*1 *2 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *1 (-643 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *2 (-1140 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1589 (|#6| |#6|)) (-15 -1372 ((-663 |#6|) (-663 |#4|) (-114))))
+((-2393 (((-114) |#3| (-793) (-663 |#3|)) 29 T ELT)) (-3102 (((-3 (-2 (|:| |polfac| (-663 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-663 (-1201 |#3|)))) "failed") |#3| (-663 (-1201 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2609 (-663 (-2 (|:| |irr| |#4|) (|:| -4181 (-560)))))) (-663 |#3|) (-663 |#1|) (-663 |#3|)) 69 T ELT)))
+(((-644 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2393 ((-114) |#3| (-793) (-663 |#3|))) (-15 -3102 ((-3 (-2 (|:| |polfac| (-663 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-663 (-1201 |#3|)))) "failed") |#3| (-663 (-1201 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2609 (-663 (-2 (|:| |irr| |#4|) (|:| -4181 (-560)))))) (-663 |#3|) (-663 |#1|) (-663 |#3|)))) (-871) (-815) (-319) (-979 |#3| |#2| |#1|)) (T -644))
+((-3102 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2609 (-663 (-2 (|:| |irr| *10) (|:| -4181 (-560))))))) (-5 *6 (-663 *3)) (-5 *7 (-663 *8)) (-4 *8 (-871)) (-4 *3 (-319)) (-4 *10 (-979 *3 *9 *8)) (-4 *9 (-815)) (-5 *2 (-2 (|:| |polfac| (-663 *10)) (|:| |correct| *3) (|:| |corrfact| (-663 (-1201 *3))))) (-5 *1 (-644 *8 *9 *3 *10)) (-5 *4 (-663 (-1201 *3))))) (-2393 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-793)) (-5 *5 (-663 *3)) (-4 *3 (-319)) (-4 *6 (-871)) (-4 *7 (-815)) (-5 *2 (-114)) (-5 *1 (-644 *6 *7 *3 *8)) (-4 *8 (-979 *3 *7 *6)))))
+(-10 -7 (-15 -2393 ((-114) |#3| (-793) (-663 |#3|))) (-15 -3102 ((-3 (-2 (|:| |polfac| (-663 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-663 (-1201 |#3|)))) "failed") |#3| (-663 (-1201 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2609 (-663 (-2 (|:| |irr| |#4|) (|:| -4181 (-560)))))) (-663 |#3|) (-663 |#1|) (-663 |#3|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-4133 (((-1166) $) 11 T ELT)) (-4121 (((-1166) $) 9 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-645) (-13 (-1114) (-10 -8 (-15 -4121 ((-1166) $)) (-15 -4133 ((-1166) $))))) (T -645))
+((-4121 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-645)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-645)))))
+(-13 (-1114) (-10 -8 (-15 -4121 ((-1166) $)) (-15 -4133 ((-1166) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-4356 (((-663 |#1|) $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-3723 (($ $) 77 T ELT)) (-2831 (((-686 |#1| |#2|) $) 60 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) 81 T ELT)) (-1890 (((-663 (-305 |#2|)) $ $) 42 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2515 (($ (-686 |#1| |#2|)) 56 T ELT)) (-1714 (($ $ $) NIL T ELT)) (-3117 (($ $ $) NIL T ELT)) (-3913 (((-887) $) 66 T ELT) (((-1313 |#1| |#2|) $) NIL T ELT) (((-1318 |#1| |#2|) $) 74 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1456 (($) 61 T CONST)) (-3991 (((-663 (-2 (|:| |k| (-694 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2405 (((-663 (-686 |#1| |#2|)) (-663 |#1|)) 73 T ELT)) (-4118 (((-663 (-2 (|:| |k| (-918 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-2340 (((-114) $ $) 62 T ELT)) (-2453 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ $ $) 52 T ELT)))
+(((-646 |#1| |#2| |#3|) (-13 (-487) (-10 -8 (-15 -2515 ($ (-686 |#1| |#2|))) (-15 -2831 ((-686 |#1| |#2|) $)) (-15 -4118 ((-663 (-2 (|:| |k| (-918 |#1|)) (|:| |c| |#2|))) $)) (-15 -3913 ((-1313 |#1| |#2|) $)) (-15 -3913 ((-1318 |#1| |#2|) $)) (-15 -3723 ($ $)) (-15 -4356 ((-663 |#1|) $)) (-15 -2405 ((-663 (-686 |#1| |#2|)) (-663 |#1|))) (-15 -3991 ((-663 (-2 (|:| |k| (-694 |#1|)) (|:| |c| |#2|))) $)) (-15 -1890 ((-663 (-305 |#2|)) $ $)))) (-871) (-13 (-175) (-739 (-421 (-560)))) (-948)) (T -646))
+((-2515 (*1 *1 *2) (-12 (-5 *2 (-686 *3 *4)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-5 *1 (-646 *3 *4 *5)) (-14 *5 (-948)))) (-2831 (*1 *2 *1) (-12 (-5 *2 (-686 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948)))) (-4118 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |k| (-918 *3)) (|:| |c| *4)))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-1318 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948)))) (-3723 (*1 *1 *1) (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-871)) (-4 *3 (-13 (-175) (-739 (-421 (-560))))) (-14 *4 (-948)))) (-4356 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948)))) (-2405 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-871)) (-5 *2 (-663 (-686 *4 *5))) (-5 *1 (-646 *4 *5 *6)) (-4 *5 (-13 (-175) (-739 (-421 (-560))))) (-14 *6 (-948)))) (-3991 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |k| (-694 *3)) (|:| |c| *4)))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948)))) (-1890 (*1 *2 *1 *1) (-12 (-5 *2 (-663 (-305 *4))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871)) (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948)))))
+(-13 (-487) (-10 -8 (-15 -2515 ($ (-686 |#1| |#2|))) (-15 -2831 ((-686 |#1| |#2|) $)) (-15 -4118 ((-663 (-2 (|:| |k| (-918 |#1|)) (|:| |c| |#2|))) $)) (-15 -3913 ((-1313 |#1| |#2|) $)) (-15 -3913 ((-1318 |#1| |#2|) $)) (-15 -3723 ($ $)) (-15 -4356 ((-663 |#1|) $)) (-15 -2405 ((-663 (-686 |#1| |#2|)) (-663 |#1|))) (-15 -3991 ((-663 (-2 (|:| |k| (-694 |#1|)) (|:| |c| |#2|))) $)) (-15 -1890 ((-663 (-305 |#2|)) $ $))))
+((-1372 (((-663 (-1177 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|)))) (-663 (-802 |#1| (-888 |#2|))) (-114)) 103 T ELT) (((-663 (-1077 |#1| |#2|)) (-663 (-802 |#1| (-888 |#2|))) (-114)) 77 T ELT)) (-1789 (((-114) (-663 (-802 |#1| (-888 |#2|)))) 26 T ELT)) (-2823 (((-663 (-1177 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|)))) (-663 (-802 |#1| (-888 |#2|))) (-114)) 102 T ELT)) (-1688 (((-663 (-1077 |#1| |#2|)) (-663 (-802 |#1| (-888 |#2|))) (-114)) 76 T ELT)) (-3409 (((-663 (-802 |#1| (-888 |#2|))) (-663 (-802 |#1| (-888 |#2|)))) 30 T ELT)) (-2701 (((-3 (-663 (-802 |#1| (-888 |#2|))) "failed") (-663 (-802 |#1| (-888 |#2|)))) 29 T ELT)))
+(((-647 |#1| |#2|) (-10 -7 (-15 -1789 ((-114) (-663 (-802 |#1| (-888 |#2|))))) (-15 -2701 ((-3 (-663 (-802 |#1| (-888 |#2|))) "failed") (-663 (-802 |#1| (-888 |#2|))))) (-15 -3409 ((-663 (-802 |#1| (-888 |#2|))) (-663 (-802 |#1| (-888 |#2|))))) (-15 -1688 ((-663 (-1077 |#1| |#2|)) (-663 (-802 |#1| (-888 |#2|))) (-114))) (-15 -2823 ((-663 (-1177 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|)))) (-663 (-802 |#1| (-888 |#2|))) (-114))) (-15 -1372 ((-663 (-1077 |#1| |#2|)) (-663 (-802 |#1| (-888 |#2|))) (-114))) (-15 -1372 ((-663 (-1177 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|)))) (-663 (-802 |#1| (-888 |#2|))) (-114)))) (-466) (-663 (-1207))) (T -647))
+((-1372 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-802 *5 (-888 *6)))) (-5 *4 (-114)) (-4 *5 (-466)) (-14 *6 (-663 (-1207))) (-5 *2 (-663 (-1177 *5 (-545 (-888 *6)) (-888 *6) (-802 *5 (-888 *6))))) (-5 *1 (-647 *5 *6)))) (-1372 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-802 *5 (-888 *6)))) (-5 *4 (-114)) (-4 *5 (-466)) (-14 *6 (-663 (-1207))) (-5 *2 (-663 (-1077 *5 *6))) (-5 *1 (-647 *5 *6)))) (-2823 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-802 *5 (-888 *6)))) (-5 *4 (-114)) (-4 *5 (-466)) (-14 *6 (-663 (-1207))) (-5 *2 (-663 (-1177 *5 (-545 (-888 *6)) (-888 *6) (-802 *5 (-888 *6))))) (-5 *1 (-647 *5 *6)))) (-1688 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-802 *5 (-888 *6)))) (-5 *4 (-114)) (-4 *5 (-466)) (-14 *6 (-663 (-1207))) (-5 *2 (-663 (-1077 *5 *6))) (-5 *1 (-647 *5 *6)))) (-3409 (*1 *2 *2) (-12 (-5 *2 (-663 (-802 *3 (-888 *4)))) (-4 *3 (-466)) (-14 *4 (-663 (-1207))) (-5 *1 (-647 *3 *4)))) (-2701 (*1 *2 *2) (|partial| -12 (-5 *2 (-663 (-802 *3 (-888 *4)))) (-4 *3 (-466)) (-14 *4 (-663 (-1207))) (-5 *1 (-647 *3 *4)))) (-1789 (*1 *2 *3) (-12 (-5 *3 (-663 (-802 *4 (-888 *5)))) (-4 *4 (-466)) (-14 *5 (-663 (-1207))) (-5 *2 (-114)) (-5 *1 (-647 *4 *5)))))
+(-10 -7 (-15 -1789 ((-114) (-663 (-802 |#1| (-888 |#2|))))) (-15 -2701 ((-3 (-663 (-802 |#1| (-888 |#2|))) "failed") (-663 (-802 |#1| (-888 |#2|))))) (-15 -3409 ((-663 (-802 |#1| (-888 |#2|))) (-663 (-802 |#1| (-888 |#2|))))) (-15 -1688 ((-663 (-1077 |#1| |#2|)) (-663 (-802 |#1| (-888 |#2|))) (-114))) (-15 -2823 ((-663 (-1177 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|)))) (-663 (-802 |#1| (-888 |#2|))) (-114))) (-15 -1372 ((-663 (-1077 |#1| |#2|)) (-663 (-802 |#1| (-888 |#2|))) (-114))) (-15 -1372 ((-663 (-1177 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|)))) (-663 (-802 |#1| (-888 |#2|))) (-114))))
+((-3963 (((-115) (-115)) 88 T ELT)) (-3472 ((|#2| |#2|) 28 T ELT)) (-4288 ((|#2| |#2| (-1123 |#2|)) 84 T ELT) ((|#2| |#2| (-1207)) 50 T ELT)) (-3541 ((|#2| |#2|) 27 T ELT)) (-1791 ((|#2| |#2|) 29 T ELT)) (-3962 (((-114) (-115)) 33 T ELT)) (-3308 ((|#2| |#2|) 24 T ELT)) (-3491 ((|#2| |#2|) 26 T ELT)) (-2940 ((|#2| |#2|) 25 T ELT)))
+(((-648 |#1| |#2|) (-10 -7 (-15 -3962 ((-114) (-115))) (-15 -3963 ((-115) (-115))) (-15 -3491 (|#2| |#2|)) (-15 -3308 (|#2| |#2|)) (-15 -2940 (|#2| |#2|)) (-15 -3472 (|#2| |#2|)) (-15 -3541 (|#2| |#2|)) (-15 -1791 (|#2| |#2|)) (-15 -4288 (|#2| |#2| (-1207))) (-15 -4288 (|#2| |#2| (-1123 |#2|)))) (-571) (-13 (-435 |#1|) (-1033) (-1233))) (T -648))
+((-4288 (*1 *2 *2 *3) (-12 (-5 *3 (-1123 *2)) (-4 *2 (-13 (-435 *4) (-1033) (-1233))) (-4 *4 (-571)) (-5 *1 (-648 *4 *2)))) (-4288 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *1 (-648 *4 *2)) (-4 *2 (-13 (-435 *4) (-1033) (-1233))))) (-1791 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033) (-1233))))) (-3541 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033) (-1233))))) (-3472 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033) (-1233))))) (-2940 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033) (-1233))))) (-3308 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033) (-1233))))) (-3491 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2)) (-4 *2 (-13 (-435 *3) (-1033) (-1233))))) (-3963 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-648 *3 *4)) (-4 *4 (-13 (-435 *3) (-1033) (-1233))))) (-3962 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-648 *4 *5)) (-4 *5 (-13 (-435 *4) (-1033) (-1233))))))
+(-10 -7 (-15 -3962 ((-114) (-115))) (-15 -3963 ((-115) (-115))) (-15 -3491 (|#2| |#2|)) (-15 -3308 (|#2| |#2|)) (-15 -2940 (|#2| |#2|)) (-15 -3472 (|#2| |#2|)) (-15 -3541 (|#2| |#2|)) (-15 -1791 (|#2| |#2|)) (-15 -4288 (|#2| |#2| (-1207))) (-15 -4288 (|#2| |#2| (-1123 |#2|))))
+((-1982 (($ $) 38 T ELT)) (-1832 (($ $) 21 T ELT)) (-1958 (($ $) 37 T ELT)) (-1806 (($ $) 22 T ELT)) (-2003 (($ $) 36 T ELT)) (-1856 (($ $) 23 T ELT)) (-2503 (($) 48 T ELT)) (-2831 (($ $) 45 T ELT)) (-3472 (($ $) 17 T ELT)) (-4288 (($ $ (-1123 $)) 7 T ELT) (($ $ (-1207)) 6 T ELT)) (-2515 (($ $) 46 T ELT)) (-3541 (($ $) 15 T ELT)) (-1791 (($ $) 16 T ELT)) (-2013 (($ $) 35 T ELT)) (-1870 (($ $) 24 T ELT)) (-1992 (($ $) 34 T ELT)) (-1844 (($ $) 25 T ELT)) (-1972 (($ $) 33 T ELT)) (-1820 (($ $) 26 T ELT)) (-2042 (($ $) 44 T ELT)) (-1907 (($ $) 32 T ELT)) (-2022 (($ $) 43 T ELT)) (-1882 (($ $) 31 T ELT)) (-2059 (($ $) 42 T ELT)) (-1932 (($ $) 30 T ELT)) (-3392 (($ $) 41 T ELT)) (-1945 (($ $) 29 T ELT)) (-2050 (($ $) 40 T ELT)) (-1920 (($ $) 28 T ELT)) (-2032 (($ $) 39 T ELT)) (-1895 (($ $) 27 T ELT)) (-3308 (($ $) 19 T ELT)) (-3491 (($ $) 20 T ELT)) (-2940 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT)))
(((-649) (-142)) (T -649))
-((-2234 (*1 *1 *1) (-4 *1 (-649))) (-1408 (*1 *1 *1) (-4 *1 (-649))) (-2627 (*1 *1 *1) (-4 *1 (-649))) (-2344 (*1 *1 *1) (-4 *1 (-649))) (-3419 (*1 *1 *1) (-4 *1 (-649))) (-3387 (*1 *1 *1) (-4 *1 (-649))))
-(-13 (-989) (-1233) (-10 -8 (-15 -2234 ($ $)) (-15 -1408 ($ $)) (-15 -2627 ($ $)) (-15 -2344 ($ $)) (-15 -3419 ($ $)) (-15 -3387 ($ $))))
+((-3491 (*1 *1 *1) (-4 *1 (-649))) (-3308 (*1 *1 *1) (-4 *1 (-649))) (-2940 (*1 *1 *1) (-4 *1 (-649))) (-3472 (*1 *1 *1) (-4 *1 (-649))) (-1791 (*1 *1 *1) (-4 *1 (-649))) (-3541 (*1 *1 *1) (-4 *1 (-649))))
+(-13 (-989) (-1233) (-10 -8 (-15 -3491 ($ $)) (-15 -3308 ($ $)) (-15 -2940 ($ $)) (-15 -3472 ($ $)) (-15 -1791 ($ $)) (-15 -3541 ($ $))))
(((-35) . T) ((-95) . T) ((-296) . T) ((-507) . T) ((-989) . T) ((-1233) . T) ((-1236) . T))
-((-1775 (((-495 |#1| |#2|) (-255 |#1| |#2|)) 63 T ELT)) (-2684 (((-663 (-255 |#1| |#2|)) (-663 (-495 |#1| |#2|))) 89 T ELT)) (-2182 (((-495 |#1| |#2|) (-663 (-495 |#1| |#2|)) (-888 |#1|)) 91 T ELT) (((-495 |#1| |#2|) (-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|)) (-888 |#1|)) 90 T ELT)) (-1855 (((-2 (|:| |gblist| (-663 (-255 |#1| |#2|))) (|:| |gvlist| (-663 (-560)))) (-663 (-495 |#1| |#2|))) 134 T ELT)) (-4467 (((-663 (-495 |#1| |#2|)) (-888 |#1|) (-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|))) 104 T ELT)) (-3707 (((-2 (|:| |glbase| (-663 (-255 |#1| |#2|))) (|:| |glval| (-663 (-560)))) (-663 (-255 |#1| |#2|))) 145 T ELT)) (-1908 (((-1297 |#2|) (-495 |#1| |#2|) (-663 (-495 |#1| |#2|))) 68 T ELT)) (-3239 (((-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|))) 47 T ELT)) (-3512 (((-255 |#1| |#2|) (-255 |#1| |#2|) (-663 (-255 |#1| |#2|))) 60 T ELT)) (-4043 (((-255 |#1| |#2|) (-663 |#2|) (-255 |#1| |#2|) (-663 (-255 |#1| |#2|))) 112 T ELT)))
-(((-650 |#1| |#2|) (-10 -7 (-15 -1855 ((-2 (|:| |gblist| (-663 (-255 |#1| |#2|))) (|:| |gvlist| (-663 (-560)))) (-663 (-495 |#1| |#2|)))) (-15 -3707 ((-2 (|:| |glbase| (-663 (-255 |#1| |#2|))) (|:| |glval| (-663 (-560)))) (-663 (-255 |#1| |#2|)))) (-15 -2684 ((-663 (-255 |#1| |#2|)) (-663 (-495 |#1| |#2|)))) (-15 -2182 ((-495 |#1| |#2|) (-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|)) (-888 |#1|))) (-15 -2182 ((-495 |#1| |#2|) (-663 (-495 |#1| |#2|)) (-888 |#1|))) (-15 -3239 ((-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|)))) (-15 -1908 ((-1297 |#2|) (-495 |#1| |#2|) (-663 (-495 |#1| |#2|)))) (-15 -4043 ((-255 |#1| |#2|) (-663 |#2|) (-255 |#1| |#2|) (-663 (-255 |#1| |#2|)))) (-15 -4467 ((-663 (-495 |#1| |#2|)) (-888 |#1|) (-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|)))) (-15 -3512 ((-255 |#1| |#2|) (-255 |#1| |#2|) (-663 (-255 |#1| |#2|)))) (-15 -1775 ((-495 |#1| |#2|) (-255 |#1| |#2|)))) (-663 (-1207)) (-466)) (T -650))
-((-1775 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-663 (-1207))) (-4 *5 (-466)) (-5 *2 (-495 *4 *5)) (-5 *1 (-650 *4 *5)))) (-3512 (*1 *2 *2 *3) (-12 (-5 *3 (-663 (-255 *4 *5))) (-5 *2 (-255 *4 *5)) (-14 *4 (-663 (-1207))) (-4 *5 (-466)) (-5 *1 (-650 *4 *5)))) (-4467 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-663 (-495 *4 *5))) (-5 *3 (-888 *4)) (-14 *4 (-663 (-1207))) (-4 *5 (-466)) (-5 *1 (-650 *4 *5)))) (-4043 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 (-255 *5 *6))) (-4 *6 (-466)) (-5 *2 (-255 *5 *6)) (-14 *5 (-663 (-1207))) (-5 *1 (-650 *5 *6)))) (-1908 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-495 *5 *6))) (-5 *3 (-495 *5 *6)) (-14 *5 (-663 (-1207))) (-4 *6 (-466)) (-5 *2 (-1297 *6)) (-5 *1 (-650 *5 *6)))) (-3239 (*1 *2 *2) (-12 (-5 *2 (-663 (-495 *3 *4))) (-14 *3 (-663 (-1207))) (-4 *4 (-466)) (-5 *1 (-650 *3 *4)))) (-2182 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-495 *5 *6))) (-5 *4 (-888 *5)) (-14 *5 (-663 (-1207))) (-5 *2 (-495 *5 *6)) (-5 *1 (-650 *5 *6)) (-4 *6 (-466)))) (-2182 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-663 (-495 *5 *6))) (-5 *4 (-888 *5)) (-14 *5 (-663 (-1207))) (-5 *2 (-495 *5 *6)) (-5 *1 (-650 *5 *6)) (-4 *6 (-466)))) (-2684 (*1 *2 *3) (-12 (-5 *3 (-663 (-495 *4 *5))) (-14 *4 (-663 (-1207))) (-4 *5 (-466)) (-5 *2 (-663 (-255 *4 *5))) (-5 *1 (-650 *4 *5)))) (-3707 (*1 *2 *3) (-12 (-14 *4 (-663 (-1207))) (-4 *5 (-466)) (-5 *2 (-2 (|:| |glbase| (-663 (-255 *4 *5))) (|:| |glval| (-663 (-560))))) (-5 *1 (-650 *4 *5)) (-5 *3 (-663 (-255 *4 *5))))) (-1855 (*1 *2 *3) (-12 (-5 *3 (-663 (-495 *4 *5))) (-14 *4 (-663 (-1207))) (-4 *5 (-466)) (-5 *2 (-2 (|:| |gblist| (-663 (-255 *4 *5))) (|:| |gvlist| (-663 (-560))))) (-5 *1 (-650 *4 *5)))))
-(-10 -7 (-15 -1855 ((-2 (|:| |gblist| (-663 (-255 |#1| |#2|))) (|:| |gvlist| (-663 (-560)))) (-663 (-495 |#1| |#2|)))) (-15 -3707 ((-2 (|:| |glbase| (-663 (-255 |#1| |#2|))) (|:| |glval| (-663 (-560)))) (-663 (-255 |#1| |#2|)))) (-15 -2684 ((-663 (-255 |#1| |#2|)) (-663 (-495 |#1| |#2|)))) (-15 -2182 ((-495 |#1| |#2|) (-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|)) (-888 |#1|))) (-15 -2182 ((-495 |#1| |#2|) (-663 (-495 |#1| |#2|)) (-888 |#1|))) (-15 -3239 ((-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|)))) (-15 -1908 ((-1297 |#2|) (-495 |#1| |#2|) (-663 (-495 |#1| |#2|)))) (-15 -4043 ((-255 |#1| |#2|) (-663 |#2|) (-255 |#1| |#2|) (-663 (-255 |#1| |#2|)))) (-15 -4467 ((-663 (-495 |#1| |#2|)) (-888 |#1|) (-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|)))) (-15 -3512 ((-255 |#1| |#2|) (-255 |#1| |#2|) (-663 (-255 |#1| |#2|)))) (-15 -1775 ((-495 |#1| |#2|) (-255 |#1| |#2|))))
-((-1538 (((-114) $ $) NIL (-2304 (|has| (-51) (-102)) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-102))) ELT)) (-4083 (($) NIL T ELT) (($ (-663 (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))))) NIL T ELT)) (-3839 (((-1303) $ (-1189) (-1189)) NIL (|has| $ (-6 -4509)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 (((-51) $ (-1189) (-51)) 16 T ELT) (((-51) $ (-1207) (-51)) 17 T ELT)) (-3500 (($ (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4255 (((-3 (-51) "failed") (-1189) $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-1132))) ELT)) (-3390 (($ (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 (-51) "failed") (-1189) $) NIL T ELT)) (-2375 (($ (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 (((-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-1 (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) $ (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-1132))) ELT) (((-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-1 (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) $ (-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-1 (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3779 (((-51) $ (-1189) (-51)) NIL (|has| $ (-6 -4509)) ELT)) (-3709 (((-51) $ (-1189)) NIL T ELT)) (-2181 (((-663 (-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2671 (($ $) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-1189) $) NIL (|has| (-1189) (-871)) ELT)) (-2656 (((-663 (-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-1132))) ELT) (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-51) (-1132))) ELT)) (-2937 (((-1189) $) NIL (|has| (-1189) (-871)) ELT)) (-3768 (($ (-1 (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-4429 (($ (-402)) 9 T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (-2304 (|has| (-51) (-1132)) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-1132))) ELT)) (-2236 (((-663 (-1189)) $) NIL T ELT)) (-1445 (((-114) (-1189) $) NIL T ELT)) (-1576 (((-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) $) NIL T ELT)) (-3629 (($ (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) $) NIL T ELT)) (-3270 (((-663 (-1189)) $) NIL T ELT)) (-3586 (((-114) (-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL (-2304 (|has| (-51) (-1132)) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-1132))) ELT)) (-3637 (((-51) $) NIL (|has| (-1189) (-871)) ELT)) (-3329 (((-3 (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) "failed") (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) $) NIL T ELT)) (-3037 (($ $ (-51)) NIL (|has| $ (-6 -4509)) ELT)) (-2615 (((-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) $) NIL T ELT)) (-2787 (((-114) (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 (-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))))) NIL (-12 (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-321 (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))))) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-1132))) ELT) (($ $ (-305 (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))))) NIL (-12 (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-321 (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))))) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-1132))) ELT) (($ $ (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) NIL (-12 (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-321 (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))))) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-1132))) ELT) (($ $ (-663 (-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) (-663 (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))))) NIL (-12 (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-321 (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))))) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-1132))) ELT) (($ $ (-663 (-51)) (-663 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT) (($ $ (-305 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT) (($ $ (-663 (-305 (-51)))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-51) (-1132))) ELT)) (-3571 (((-663 (-51)) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 (((-51) $ (-1189)) 14 T ELT) (((-51) $ (-1189) (-51)) NIL T ELT) (((-51) $ (-1207)) 15 T ELT)) (-3897 (($) NIL T ELT) (($ (-663 (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))))) NIL T ELT)) (-3865 (((-793) (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-1132))) ELT) (((-793) (-51) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-51) (-1132))) ELT) (((-793) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) NIL (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-633 (-549))) ELT)) (-1592 (($ (-663 (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))))) NIL T ELT)) (-1578 (((-887) $) NIL (-2304 (|has| (-51) (-632 (-887))) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-632 (-887)))) ELT)) (-2275 (((-114) $ $) NIL (-2304 (|has| (-51) (-102)) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-102))) ELT)) (-3376 (($ (-663 (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))))) NIL T ELT)) (-1728 (((-114) (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) NIL (-2304 (|has| (-51) (-102)) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 (-51))) (-102))) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-651) (-13 (-1224 (-1189) (-51)) (-298 (-1207) (-51)) (-10 -8 (-15 -4429 ($ (-402))) (-15 -2671 ($ $)) (-15 -1773 ((-51) $ (-1207) (-51)))))) (T -651))
-((-4429 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-651)))) (-2671 (*1 *1 *1) (-5 *1 (-651))) (-1773 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1207)) (-5 *1 (-651)))))
-(-13 (-1224 (-1189) (-51)) (-298 (-1207) (-51)) (-10 -8 (-15 -4429 ($ (-402))) (-15 -2671 ($ $)) (-15 -1773 ((-51) $ (-1207) (-51)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-2489 (((-3 $ "failed")) NIL (-2304 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2545 (((-1297 (-711 |#1|))) NIL (|has| |#2| (-432 |#1|)) ELT) (((-1297 (-711 |#1|)) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1854 (((-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2238 (($) NIL T CONST)) (-4126 (((-3 (-2 (|:| |particular| $) (|:| -1954 (-663 $))) "failed")) NIL (-2304 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-3608 (((-3 $ "failed")) NIL (-2304 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2432 (((-711 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3346 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3135 (((-711 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) $ (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1713 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-4230 (((-1201 (-975 |#1|))) NIL (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-376))) ELT)) (-1866 (($ $ (-948)) NIL T ELT)) (-4092 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1822 (((-1201 |#1|) $) NIL (-2304 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-3392 ((|#1|) NIL (|has| |#2| (-432 |#1|)) ELT) ((|#1| (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3412 (((-1201 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3706 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4143 (($ (-1297 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (($ (-1297 |#1|) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1990 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2326 (((-948)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3157 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1784 (($ $ (-948)) NIL T ELT)) (-1794 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4320 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2959 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1398 (((-3 (-2 (|:| |particular| $) (|:| -1954 (-663 $))) "failed")) NIL (-2304 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2171 (((-3 $ "failed")) NIL (-2304 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-1501 (((-711 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3876 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2517 (((-711 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) $ (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3236 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-4133 (((-1201 (-975 |#1|))) NIL (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-376))) ELT)) (-3520 (($ $ (-948)) NIL T ELT)) (-2442 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4161 (((-1201 |#1|) $) NIL (-2304 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2456 ((|#1|) NIL (|has| |#2| (-432 |#1|)) ELT) ((|#1| (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3569 (((-1201 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2220 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2995 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1721 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2940 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2892 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3924 ((|#1| $ (-560)) NIL (|has| |#2| (-432 |#1|)) ELT)) (-2178 (((-711 |#1|) (-1297 $)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-1297 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) (-1297 $) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT) (((-1297 |#1|) $ (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1407 (($ (-1297 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-1297 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT)) (-4106 (((-663 (-975 |#1|))) NIL (|has| |#2| (-432 |#1|)) ELT) (((-663 (-975 |#1|)) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2013 (($ $ $) NIL T ELT)) (-2620 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1578 (((-887) $) NIL T ELT) ((|#2| $) 12 T ELT) (($ |#2|) 13 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1954 (((-1297 $)) NIL (|has| |#2| (-432 |#1|)) ELT)) (-1548 (((-663 (-1297 |#1|))) NIL (-2304 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-4128 (($ $ $ $) NIL T ELT)) (-1418 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3626 (($ (-711 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT)) (-3868 (($ $ $) NIL T ELT)) (-1405 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2493 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2423 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) 20 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 11 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-652 |#1| |#2|) (-13 (-766 |#1|) (-632 |#2|) (-10 -8 (-15 -1578 ($ |#2|)) (IF (|has| |#2| (-432 |#1|)) (-6 (-432 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|))) (-175) (-766 |#1|)) (T -652))
-((-1578 (*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-652 *3 *2)) (-4 *2 (-766 *3)))))
-(-13 (-766 |#1|) (-632 |#2|) (-10 -8 (-15 -1578 ($ |#2|)) (IF (|has| |#2| (-432 |#1|)) (-6 (-432 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|)))
-((-2594 (($ $ |#2|) 10 T ELT)))
-(((-653 |#1| |#2|) (-10 -8 (-15 -2594 (|#1| |#1| |#2|))) (-654 |#2|) (-175)) (T -653))
-NIL
-(-10 -8 (-15 -2594 (|#1| |#1| |#2|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1592 (($ $ $) 34 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ |#1|) 33 (|has| |#1| (-376)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT)))
+((-2593 (((-495 |#1| |#2|) (-255 |#1| |#2|)) 63 T ELT)) (-2287 (((-663 (-255 |#1| |#2|)) (-663 (-495 |#1| |#2|))) 89 T ELT)) (-4257 (((-495 |#1| |#2|) (-663 (-495 |#1| |#2|)) (-888 |#1|)) 91 T ELT) (((-495 |#1| |#2|) (-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|)) (-888 |#1|)) 90 T ELT)) (-4100 (((-2 (|:| |gblist| (-663 (-255 |#1| |#2|))) (|:| |gvlist| (-663 (-560)))) (-663 (-495 |#1| |#2|))) 134 T ELT)) (-1784 (((-663 (-495 |#1| |#2|)) (-888 |#1|) (-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|))) 104 T ELT)) (-2147 (((-2 (|:| |glbase| (-663 (-255 |#1| |#2|))) (|:| |glval| (-663 (-560)))) (-663 (-255 |#1| |#2|))) 145 T ELT)) (-3374 (((-1297 |#2|) (-495 |#1| |#2|) (-663 (-495 |#1| |#2|))) 68 T ELT)) (-4324 (((-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|))) 47 T ELT)) (-1987 (((-255 |#1| |#2|) (-255 |#1| |#2|) (-663 (-255 |#1| |#2|))) 60 T ELT)) (-2178 (((-255 |#1| |#2|) (-663 |#2|) (-255 |#1| |#2|) (-663 (-255 |#1| |#2|))) 112 T ELT)))
+(((-650 |#1| |#2|) (-10 -7 (-15 -4100 ((-2 (|:| |gblist| (-663 (-255 |#1| |#2|))) (|:| |gvlist| (-663 (-560)))) (-663 (-495 |#1| |#2|)))) (-15 -2147 ((-2 (|:| |glbase| (-663 (-255 |#1| |#2|))) (|:| |glval| (-663 (-560)))) (-663 (-255 |#1| |#2|)))) (-15 -2287 ((-663 (-255 |#1| |#2|)) (-663 (-495 |#1| |#2|)))) (-15 -4257 ((-495 |#1| |#2|) (-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|)) (-888 |#1|))) (-15 -4257 ((-495 |#1| |#2|) (-663 (-495 |#1| |#2|)) (-888 |#1|))) (-15 -4324 ((-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|)))) (-15 -3374 ((-1297 |#2|) (-495 |#1| |#2|) (-663 (-495 |#1| |#2|)))) (-15 -2178 ((-255 |#1| |#2|) (-663 |#2|) (-255 |#1| |#2|) (-663 (-255 |#1| |#2|)))) (-15 -1784 ((-663 (-495 |#1| |#2|)) (-888 |#1|) (-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|)))) (-15 -1987 ((-255 |#1| |#2|) (-255 |#1| |#2|) (-663 (-255 |#1| |#2|)))) (-15 -2593 ((-495 |#1| |#2|) (-255 |#1| |#2|)))) (-663 (-1207)) (-466)) (T -650))
+((-2593 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-663 (-1207))) (-4 *5 (-466)) (-5 *2 (-495 *4 *5)) (-5 *1 (-650 *4 *5)))) (-1987 (*1 *2 *2 *3) (-12 (-5 *3 (-663 (-255 *4 *5))) (-5 *2 (-255 *4 *5)) (-14 *4 (-663 (-1207))) (-4 *5 (-466)) (-5 *1 (-650 *4 *5)))) (-1784 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-663 (-495 *4 *5))) (-5 *3 (-888 *4)) (-14 *4 (-663 (-1207))) (-4 *5 (-466)) (-5 *1 (-650 *4 *5)))) (-2178 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 (-255 *5 *6))) (-4 *6 (-466)) (-5 *2 (-255 *5 *6)) (-14 *5 (-663 (-1207))) (-5 *1 (-650 *5 *6)))) (-3374 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-495 *5 *6))) (-5 *3 (-495 *5 *6)) (-14 *5 (-663 (-1207))) (-4 *6 (-466)) (-5 *2 (-1297 *6)) (-5 *1 (-650 *5 *6)))) (-4324 (*1 *2 *2) (-12 (-5 *2 (-663 (-495 *3 *4))) (-14 *3 (-663 (-1207))) (-4 *4 (-466)) (-5 *1 (-650 *3 *4)))) (-4257 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-495 *5 *6))) (-5 *4 (-888 *5)) (-14 *5 (-663 (-1207))) (-5 *2 (-495 *5 *6)) (-5 *1 (-650 *5 *6)) (-4 *6 (-466)))) (-4257 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-663 (-495 *5 *6))) (-5 *4 (-888 *5)) (-14 *5 (-663 (-1207))) (-5 *2 (-495 *5 *6)) (-5 *1 (-650 *5 *6)) (-4 *6 (-466)))) (-2287 (*1 *2 *3) (-12 (-5 *3 (-663 (-495 *4 *5))) (-14 *4 (-663 (-1207))) (-4 *5 (-466)) (-5 *2 (-663 (-255 *4 *5))) (-5 *1 (-650 *4 *5)))) (-2147 (*1 *2 *3) (-12 (-14 *4 (-663 (-1207))) (-4 *5 (-466)) (-5 *2 (-2 (|:| |glbase| (-663 (-255 *4 *5))) (|:| |glval| (-663 (-560))))) (-5 *1 (-650 *4 *5)) (-5 *3 (-663 (-255 *4 *5))))) (-4100 (*1 *2 *3) (-12 (-5 *3 (-663 (-495 *4 *5))) (-14 *4 (-663 (-1207))) (-4 *5 (-466)) (-5 *2 (-2 (|:| |gblist| (-663 (-255 *4 *5))) (|:| |gvlist| (-663 (-560))))) (-5 *1 (-650 *4 *5)))))
+(-10 -7 (-15 -4100 ((-2 (|:| |gblist| (-663 (-255 |#1| |#2|))) (|:| |gvlist| (-663 (-560)))) (-663 (-495 |#1| |#2|)))) (-15 -2147 ((-2 (|:| |glbase| (-663 (-255 |#1| |#2|))) (|:| |glval| (-663 (-560)))) (-663 (-255 |#1| |#2|)))) (-15 -2287 ((-663 (-255 |#1| |#2|)) (-663 (-495 |#1| |#2|)))) (-15 -4257 ((-495 |#1| |#2|) (-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|)) (-888 |#1|))) (-15 -4257 ((-495 |#1| |#2|) (-663 (-495 |#1| |#2|)) (-888 |#1|))) (-15 -4324 ((-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|)))) (-15 -3374 ((-1297 |#2|) (-495 |#1| |#2|) (-663 (-495 |#1| |#2|)))) (-15 -2178 ((-255 |#1| |#2|) (-663 |#2|) (-255 |#1| |#2|) (-663 (-255 |#1| |#2|)))) (-15 -1784 ((-663 (-495 |#1| |#2|)) (-888 |#1|) (-663 (-495 |#1| |#2|)) (-663 (-495 |#1| |#2|)))) (-15 -1987 ((-255 |#1| |#2|) (-255 |#1| |#2|) (-663 (-255 |#1| |#2|)))) (-15 -2593 ((-495 |#1| |#2|) (-255 |#1| |#2|))))
+((-2243 (((-114) $ $) NIL (-2196 (|has| (-51) (-102)) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-102))) ELT)) (-4236 (($) NIL T ELT) (($ (-663 (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))))) NIL T ELT)) (-2033 (((-1303) $ (-1189) (-1189)) NIL (|has| $ (-6 -4509)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 (((-51) $ (-1189) (-51)) 16 T ELT) (((-51) $ (-1207) (-51)) 17 T ELT)) (-1864 (($ (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3799 (((-3 (-51) "failed") (-1189) $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-1132))) ELT)) (-2091 (($ (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 (-51) "failed") (-1189) $) NIL T ELT)) (-3033 (($ (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 (((-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-1 (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) $ (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-1132))) ELT) (((-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-1 (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) $ (-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-1 (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3338 (((-51) $ (-1189) (-51)) NIL (|has| $ (-6 -4509)) ELT)) (-3274 (((-51) $ (-1189)) NIL T ELT)) (-3737 (((-663 (-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2155 (($ $) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-1189) $) NIL (|has| (-1189) (-871)) ELT)) (-3243 (((-663 (-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-1132))) ELT) (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-51) (-1132))) ELT)) (-4263 (((-1189) $) NIL (|has| (-1189) (-871)) ELT)) (-3324 (($ (-1 (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-3950 (($ (-402)) 9 T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (-2196 (|has| (-51) (-1132)) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-1132))) ELT)) (-4325 (((-663 (-1189)) $) NIL T ELT)) (-4124 (((-114) (-1189) $) NIL T ELT)) (-1878 (((-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) $) NIL T ELT)) (-3888 (($ (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) $) NIL T ELT)) (-3372 (((-663 (-1189)) $) NIL T ELT)) (-3439 (((-114) (-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL (-2196 (|has| (-51) (-1132)) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-1132))) ELT)) (-4334 (((-51) $) NIL (|has| (-1189) (-871)) ELT)) (-2708 (((-3 (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) "failed") (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) $) NIL T ELT)) (-2740 (($ $ (-51)) NIL (|has| $ (-6 -4509)) ELT)) (-2796 (((-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) $) NIL T ELT)) (-2086 (((-114) (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 (-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))))) NIL (-12 (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-321 (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))))) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-1132))) ELT) (($ $ (-305 (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))))) NIL (-12 (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-321 (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))))) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-1132))) ELT) (($ $ (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) NIL (-12 (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-321 (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))))) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-1132))) ELT) (($ $ (-663 (-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) (-663 (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))))) NIL (-12 (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-321 (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))))) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-1132))) ELT) (($ $ (-663 (-51)) (-663 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT) (($ $ (-305 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT) (($ $ (-663 (-305 (-51)))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-51) (-1132))) ELT)) (-1383 (((-663 (-51)) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 (((-51) $ (-1189)) 14 T ELT) (((-51) $ (-1189) (-51)) NIL T ELT) (((-51) $ (-1207)) 15 T ELT)) (-4468 (($) NIL T ELT) (($ (-663 (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))))) NIL T ELT)) (-3384 (((-793) (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-1132))) ELT) (((-793) (-51) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-51) (-1132))) ELT) (((-793) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) NIL (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-633 (-549))) ELT)) (-3924 (($ (-663 (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))))) NIL T ELT)) (-3913 (((-887) $) NIL (-2196 (|has| (-51) (-632 (-887))) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-632 (-887)))) ELT)) (-3925 (((-114) $ $) NIL (-2196 (|has| (-51) (-102)) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-102))) ELT)) (-3184 (($ (-663 (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))))) NIL T ELT)) (-2149 (((-114) (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) NIL (-2196 (|has| (-51) (-102)) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 (-51))) (-102))) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-651) (-13 (-1224 (-1189) (-51)) (-298 (-1207) (-51)) (-10 -8 (-15 -3950 ($ (-402))) (-15 -2155 ($ $)) (-15 -4083 ((-51) $ (-1207) (-51)))))) (T -651))
+((-3950 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-651)))) (-2155 (*1 *1 *1) (-5 *1 (-651))) (-4083 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1207)) (-5 *1 (-651)))))
+(-13 (-1224 (-1189) (-51)) (-298 (-1207) (-51)) (-10 -8 (-15 -3950 ($ (-402))) (-15 -2155 ($ $)) (-15 -4083 ((-51) $ (-1207) (-51)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-4184 (((-3 $ "failed")) NIL (-2196 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3398 (((-1297 (-711 |#1|))) NIL (|has| |#2| (-432 |#1|)) ELT) (((-1297 (-711 |#1|)) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4087 (((-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3525 (($) NIL T CONST)) (-1756 (((-3 (-2 (|:| |particular| $) (|:| -3822 (-663 $))) "failed")) NIL (-2196 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-3681 (((-3 $ "failed")) NIL (-2196 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-1691 (((-711 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2865 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2541 (((-711 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) $ (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2035 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-3474 (((-1201 (-975 |#1|))) NIL (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-376))) ELT)) (-4201 (($ $ (-948)) NIL T ELT)) (-2652 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1825 (((-1201 |#1|) $) NIL (-2196 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2098 ((|#1|) NIL (|has| |#2| (-432 |#1|)) ELT) ((|#1| (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2280 (((-1201 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2137 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1953 (($ (-1297 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (($ (-1297 |#1|) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2873 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-1604 (((-948)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1558 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1441 (($ $ (-948)) NIL T ELT)) (-1521 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3053 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4460 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1367 (((-3 (-2 (|:| |particular| $) (|:| -3822 (-663 $))) "failed")) NIL (-2196 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-4156 (((-3 $ "failed")) NIL (-2196 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-2999 (((-711 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4278 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4414 (((-711 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) $ (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4294 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-1828 (((-1201 (-975 |#1|))) NIL (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-376))) ELT)) (-2065 (($ $ (-948)) NIL T ELT)) (-1788 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2126 (((-1201 |#1|) $) NIL (-2196 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-1951 ((|#1|) NIL (|has| |#2| (-432 |#1|)) ELT) ((|#1| (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1364 (((-1201 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3361 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3577 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2107 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4289 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3905 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1507 ((|#1| $ (-560)) NIL (|has| |#2| (-432 |#1|)) ELT)) (-4226 (((-711 |#1|) (-1297 $)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-1297 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT) (((-711 |#1|) (-1297 $) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT) (((-1297 |#1|) $ (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2400 (($ (-1297 |#1|)) NIL (|has| |#2| (-432 |#1|)) ELT) (((-1297 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT)) (-1556 (((-663 (-975 |#1|))) NIL (|has| |#2| (-432 |#1|)) ELT) (((-663 (-975 |#1|)) (-1297 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3117 (($ $ $) NIL T ELT)) (-2848 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3913 (((-887) $) NIL T ELT) ((|#2| $) 12 T ELT) (($ |#2|) 13 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3822 (((-1297 $)) NIL (|has| |#2| (-432 |#1|)) ELT)) (-1601 (((-663 (-1297 |#1|))) NIL (-2196 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) ELT)) (-1777 (($ $ $ $) NIL T ELT)) (-3757 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4323 (($ (-711 |#1|) $) NIL (|has| |#2| (-432 |#1|)) ELT)) (-4209 (($ $ $) NIL T ELT)) (-4103 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4213 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1597 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) 20 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 11 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-652 |#1| |#2|) (-13 (-766 |#1|) (-632 |#2|) (-10 -8 (-15 -3913 ($ |#2|)) (IF (|has| |#2| (-432 |#1|)) (-6 (-432 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|))) (-175) (-766 |#1|)) (T -652))
+((-3913 (*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-652 *3 *2)) (-4 *2 (-766 *3)))))
+(-13 (-766 |#1|) (-632 |#2|) (-10 -8 (-15 -3913 ($ |#2|)) (IF (|has| |#2| (-432 |#1|)) (-6 (-432 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|)))
+((-2453 (($ $ |#2|) 10 T ELT)))
+(((-653 |#1| |#2|) (-10 -8 (-15 -2453 (|#1| |#1| |#2|))) (-654 |#2|) (-175)) (T -653))
+NIL
+(-10 -8 (-15 -2453 (|#1| |#1| |#2|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3924 (($ $ $) 34 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ |#1|) 33 (|has| |#1| (-376)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT)))
(((-654 |#1|) (-142) (-175)) (T -654))
-((-1592 (*1 *1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-175)))) (-2594 (*1 *1 *1 *2) (-12 (-4 *1 (-654 *2)) (-4 *2 (-175)) (-4 *2 (-376)))))
-(-13 (-739 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -1592 ($ $ $)) (IF (|has| |t#1| (-376)) (-15 -2594 ($ $ |t#1|)) |%noBranch|)))
+((-3924 (*1 *1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-175)))) (-2453 (*1 *1 *1 *2) (-12 (-4 *1 (-654 *2)) (-4 *2 (-175)) (-4 *2 (-376)))))
+(-13 (-739 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3924 ($ $ $)) (IF (|has| |t#1| (-376)) (-15 -2453 ($ $ |t#1|)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1132) . T) ((-1247) . T))
-((-2074 (((-3 (-864 |#2|) "failed") |#2| (-305 |#2|) (-1189)) 106 T ELT) (((-3 (-864 |#2|) (-2 (|:| |leftHandLimit| (-3 (-864 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-864 |#2|) "failed"))) "failed") |#2| (-305 (-864 |#2|))) 131 T ELT)) (-1399 (((-3 (-854 |#2|) "failed") |#2| (-305 (-854 |#2|))) 136 T ELT)))
-(((-655 |#1| |#2|) (-10 -7 (-15 -2074 ((-3 (-864 |#2|) (-2 (|:| |leftHandLimit| (-3 (-864 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-864 |#2|) "failed"))) "failed") |#2| (-305 (-864 |#2|)))) (-15 -1399 ((-3 (-854 |#2|) "failed") |#2| (-305 (-854 |#2|)))) (-15 -2074 ((-3 (-864 |#2|) "failed") |#2| (-305 |#2|) (-1189)))) (-13 (-466) (-1069 (-560)) (-660 (-560))) (-13 (-27) (-1233) (-435 |#1|))) (T -655))
-((-2074 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-305 *3)) (-5 *5 (-1189)) (-4 *3 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-864 *3)) (-5 *1 (-655 *6 *3)))) (-1399 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-305 (-854 *3))) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-854 *3)) (-5 *1 (-655 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))) (-2074 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-864 *3))) (-4 *3 (-13 (-27) (-1233) (-435 *5))) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-3 (-864 *3) (-2 (|:| |leftHandLimit| (-3 (-864 *3) "failed")) (|:| |rightHandLimit| (-3 (-864 *3) "failed"))) "failed")) (-5 *1 (-655 *5 *3)))))
-(-10 -7 (-15 -2074 ((-3 (-864 |#2|) (-2 (|:| |leftHandLimit| (-3 (-864 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-864 |#2|) "failed"))) "failed") |#2| (-305 (-864 |#2|)))) (-15 -1399 ((-3 (-854 |#2|) "failed") |#2| (-305 (-854 |#2|)))) (-15 -2074 ((-3 (-864 |#2|) "failed") |#2| (-305 |#2|) (-1189))))
-((-2074 (((-3 (-864 (-421 (-975 |#1|))) "failed") (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|))) (-1189)) 86 T ELT) (((-3 (-864 (-421 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed"))) "failed") (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|)))) 20 T ELT) (((-3 (-864 (-421 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed"))) "failed") (-421 (-975 |#1|)) (-305 (-864 (-975 |#1|)))) 35 T ELT)) (-1399 (((-854 (-421 (-975 |#1|))) (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|)))) 23 T ELT) (((-854 (-421 (-975 |#1|))) (-421 (-975 |#1|)) (-305 (-854 (-975 |#1|)))) 43 T ELT)))
-(((-656 |#1|) (-10 -7 (-15 -2074 ((-3 (-864 (-421 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed"))) "failed") (-421 (-975 |#1|)) (-305 (-864 (-975 |#1|))))) (-15 -2074 ((-3 (-864 (-421 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed"))) "failed") (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|))))) (-15 -1399 ((-854 (-421 (-975 |#1|))) (-421 (-975 |#1|)) (-305 (-854 (-975 |#1|))))) (-15 -1399 ((-854 (-421 (-975 |#1|))) (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|))))) (-15 -2074 ((-3 (-864 (-421 (-975 |#1|))) "failed") (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|))) (-1189)))) (-466)) (T -656))
-((-2074 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-305 (-421 (-975 *6)))) (-5 *5 (-1189)) (-5 *3 (-421 (-975 *6))) (-4 *6 (-466)) (-5 *2 (-864 *3)) (-5 *1 (-656 *6)))) (-1399 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-421 (-975 *5)))) (-5 *3 (-421 (-975 *5))) (-4 *5 (-466)) (-5 *2 (-854 *3)) (-5 *1 (-656 *5)))) (-1399 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-854 (-975 *5)))) (-4 *5 (-466)) (-5 *2 (-854 (-421 (-975 *5)))) (-5 *1 (-656 *5)) (-5 *3 (-421 (-975 *5))))) (-2074 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-421 (-975 *5)))) (-5 *3 (-421 (-975 *5))) (-4 *5 (-466)) (-5 *2 (-3 (-864 *3) (-2 (|:| |leftHandLimit| (-3 (-864 *3) "failed")) (|:| |rightHandLimit| (-3 (-864 *3) "failed"))) "failed")) (-5 *1 (-656 *5)))) (-2074 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-864 (-975 *5)))) (-4 *5 (-466)) (-5 *2 (-3 (-864 (-421 (-975 *5))) (-2 (|:| |leftHandLimit| (-3 (-864 (-421 (-975 *5))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-421 (-975 *5))) "failed"))) "failed")) (-5 *1 (-656 *5)) (-5 *3 (-421 (-975 *5))))))
-(-10 -7 (-15 -2074 ((-3 (-864 (-421 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed"))) "failed") (-421 (-975 |#1|)) (-305 (-864 (-975 |#1|))))) (-15 -2074 ((-3 (-864 (-421 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed"))) "failed") (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|))))) (-15 -1399 ((-854 (-421 (-975 |#1|))) (-421 (-975 |#1|)) (-305 (-854 (-975 |#1|))))) (-15 -1399 ((-854 (-421 (-975 |#1|))) (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|))))) (-15 -2074 ((-3 (-864 (-421 (-975 |#1|))) "failed") (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|))) (-1189))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3241 (((-793)) NIL T ELT)) (-2310 (($) NIL T ELT)) (-3825 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2820 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4419 (((-948) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3128 (($ (-948)) 11 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3063 (($ (-218 |#1|)) 12 T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-888 |#1|)) 7 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) NIL T ELT)))
-(((-657 |#1|) (-13 (-866) (-635 (-888 |#1|)) (-10 -8 (-15 -3063 ($ (-218 |#1|))))) (-663 (-1207))) (T -657))
-((-3063 (*1 *1 *2) (-12 (-5 *2 (-218 *3)) (-14 *3 (-663 (-1207))) (-5 *1 (-657 *3)))))
-(-13 (-866) (-635 (-888 |#1|)) (-10 -8 (-15 -3063 ($ (-218 |#1|)))))
-((-2088 (((-3 (-1297 (-421 |#1|)) "failed") (-1297 |#2|) |#2|) 64 (-1937 (|has| |#1| (-376))) ELT) (((-3 (-1297 |#1|) "failed") (-1297 |#2|) |#2|) 49 (|has| |#1| (-376)) ELT)) (-4174 (((-114) (-1297 |#2|)) 33 T ELT)) (-4102 (((-3 (-1297 |#1|) "failed") (-1297 |#2|)) 40 T ELT)))
-(((-658 |#1| |#2|) (-10 -7 (-15 -4174 ((-114) (-1297 |#2|))) (-15 -4102 ((-3 (-1297 |#1|) "failed") (-1297 |#2|))) (IF (|has| |#1| (-376)) (-15 -2088 ((-3 (-1297 |#1|) "failed") (-1297 |#2|) |#2|)) (-15 -2088 ((-3 (-1297 (-421 |#1|)) "failed") (-1297 |#2|) |#2|)))) (-571) (-13 (-1080) (-660 |#1|))) (T -658))
-((-2088 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1080) (-660 *5))) (-1937 (-4 *5 (-376))) (-4 *5 (-571)) (-5 *2 (-1297 (-421 *5))) (-5 *1 (-658 *5 *4)))) (-2088 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1080) (-660 *5))) (-4 *5 (-376)) (-4 *5 (-571)) (-5 *2 (-1297 *5)) (-5 *1 (-658 *5 *4)))) (-4102 (*1 *2 *3) (|partial| -12 (-5 *3 (-1297 *5)) (-4 *5 (-13 (-1080) (-660 *4))) (-4 *4 (-571)) (-5 *2 (-1297 *4)) (-5 *1 (-658 *4 *5)))) (-4174 (*1 *2 *3) (-12 (-5 *3 (-1297 *5)) (-4 *5 (-13 (-1080) (-660 *4))) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-658 *4 *5)))))
-(-10 -7 (-15 -4174 ((-114) (-1297 |#2|))) (-15 -4102 ((-3 (-1297 |#1|) "failed") (-1297 |#2|))) (IF (|has| |#1| (-376)) (-15 -2088 ((-3 (-1297 |#1|) "failed") (-1297 |#2|) |#2|)) (-15 -2088 ((-3 (-1297 (-421 |#1|)) "failed") (-1297 |#2|) |#2|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1425 (((-663 (-897 (-657 |#2|) |#1|)) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-1624 (($ $) NIL T ELT)) (-1417 (($ |#1| (-657 |#2|)) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4084 (($ (-663 |#1|)) 25 T ELT)) (-2094 (((-657 |#2|) $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3669 (((-136)) 16 T ELT)) (-2178 (((-1297 |#1|) $) 44 T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-657 |#2|)) 11 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 20 T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#1|) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 17 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-659 |#1| |#2|) (-13 (-1305 |#1|) (-635 (-657 |#2|)) (-523 |#1| (-657 |#2|)) (-10 -8 (-15 -4084 ($ (-663 |#1|))) (-15 -2178 ((-1297 |#1|) $)))) (-376) (-663 (-1207))) (T -659))
-((-4084 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-376)) (-5 *1 (-659 *3 *4)) (-14 *4 (-663 (-1207))))) (-2178 (*1 *2 *1) (-12 (-5 *2 (-1297 *3)) (-5 *1 (-659 *3 *4)) (-4 *3 (-376)) (-14 *4 (-663 (-1207))))))
-(-13 (-1305 |#1|) (-635 (-657 |#2|)) (-523 |#1| (-657 |#2|)) (-10 -8 (-15 -4084 ($ (-663 |#1|))) (-15 -2178 ((-1297 |#1|) $))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-3142 (((-711 |#1|) (-711 $)) 30 T ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 29 T ELT)) (-2484 (((-711 |#1|) (-1297 $)) 32 T ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 31 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#1| $) 27 T ELT)))
+((-2469 (((-3 (-864 |#2|) "failed") |#2| (-305 |#2|) (-1189)) 106 T ELT) (((-3 (-864 |#2|) (-2 (|:| |leftHandLimit| (-3 (-864 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-864 |#2|) "failed"))) "failed") |#2| (-305 (-864 |#2|))) 131 T ELT)) (-3192 (((-3 (-854 |#2|) "failed") |#2| (-305 (-854 |#2|))) 136 T ELT)))
+(((-655 |#1| |#2|) (-10 -7 (-15 -2469 ((-3 (-864 |#2|) (-2 (|:| |leftHandLimit| (-3 (-864 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-864 |#2|) "failed"))) "failed") |#2| (-305 (-864 |#2|)))) (-15 -3192 ((-3 (-854 |#2|) "failed") |#2| (-305 (-854 |#2|)))) (-15 -2469 ((-3 (-864 |#2|) "failed") |#2| (-305 |#2|) (-1189)))) (-13 (-466) (-1069 (-560)) (-660 (-560))) (-13 (-27) (-1233) (-435 |#1|))) (T -655))
+((-2469 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-305 *3)) (-5 *5 (-1189)) (-4 *3 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-864 *3)) (-5 *1 (-655 *6 *3)))) (-3192 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-305 (-854 *3))) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-854 *3)) (-5 *1 (-655 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))) (-2469 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-864 *3))) (-4 *3 (-13 (-27) (-1233) (-435 *5))) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-3 (-864 *3) (-2 (|:| |leftHandLimit| (-3 (-864 *3) "failed")) (|:| |rightHandLimit| (-3 (-864 *3) "failed"))) "failed")) (-5 *1 (-655 *5 *3)))))
+(-10 -7 (-15 -2469 ((-3 (-864 |#2|) (-2 (|:| |leftHandLimit| (-3 (-864 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-864 |#2|) "failed"))) "failed") |#2| (-305 (-864 |#2|)))) (-15 -3192 ((-3 (-854 |#2|) "failed") |#2| (-305 (-854 |#2|)))) (-15 -2469 ((-3 (-864 |#2|) "failed") |#2| (-305 |#2|) (-1189))))
+((-2469 (((-3 (-864 (-421 (-975 |#1|))) "failed") (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|))) (-1189)) 86 T ELT) (((-3 (-864 (-421 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed"))) "failed") (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|)))) 20 T ELT) (((-3 (-864 (-421 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed"))) "failed") (-421 (-975 |#1|)) (-305 (-864 (-975 |#1|)))) 35 T ELT)) (-3192 (((-854 (-421 (-975 |#1|))) (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|)))) 23 T ELT) (((-854 (-421 (-975 |#1|))) (-421 (-975 |#1|)) (-305 (-854 (-975 |#1|)))) 43 T ELT)))
+(((-656 |#1|) (-10 -7 (-15 -2469 ((-3 (-864 (-421 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed"))) "failed") (-421 (-975 |#1|)) (-305 (-864 (-975 |#1|))))) (-15 -2469 ((-3 (-864 (-421 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed"))) "failed") (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|))))) (-15 -3192 ((-854 (-421 (-975 |#1|))) (-421 (-975 |#1|)) (-305 (-854 (-975 |#1|))))) (-15 -3192 ((-854 (-421 (-975 |#1|))) (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|))))) (-15 -2469 ((-3 (-864 (-421 (-975 |#1|))) "failed") (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|))) (-1189)))) (-466)) (T -656))
+((-2469 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-305 (-421 (-975 *6)))) (-5 *5 (-1189)) (-5 *3 (-421 (-975 *6))) (-4 *6 (-466)) (-5 *2 (-864 *3)) (-5 *1 (-656 *6)))) (-3192 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-421 (-975 *5)))) (-5 *3 (-421 (-975 *5))) (-4 *5 (-466)) (-5 *2 (-854 *3)) (-5 *1 (-656 *5)))) (-3192 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-854 (-975 *5)))) (-4 *5 (-466)) (-5 *2 (-854 (-421 (-975 *5)))) (-5 *1 (-656 *5)) (-5 *3 (-421 (-975 *5))))) (-2469 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-421 (-975 *5)))) (-5 *3 (-421 (-975 *5))) (-4 *5 (-466)) (-5 *2 (-3 (-864 *3) (-2 (|:| |leftHandLimit| (-3 (-864 *3) "failed")) (|:| |rightHandLimit| (-3 (-864 *3) "failed"))) "failed")) (-5 *1 (-656 *5)))) (-2469 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-864 (-975 *5)))) (-4 *5 (-466)) (-5 *2 (-3 (-864 (-421 (-975 *5))) (-2 (|:| |leftHandLimit| (-3 (-864 (-421 (-975 *5))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-421 (-975 *5))) "failed"))) "failed")) (-5 *1 (-656 *5)) (-5 *3 (-421 (-975 *5))))))
+(-10 -7 (-15 -2469 ((-3 (-864 (-421 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed"))) "failed") (-421 (-975 |#1|)) (-305 (-864 (-975 |#1|))))) (-15 -2469 ((-3 (-864 (-421 (-975 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-864 (-421 (-975 |#1|))) "failed"))) "failed") (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|))))) (-15 -3192 ((-854 (-421 (-975 |#1|))) (-421 (-975 |#1|)) (-305 (-854 (-975 |#1|))))) (-15 -3192 ((-854 (-421 (-975 |#1|))) (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|))))) (-15 -2469 ((-3 (-864 (-421 (-975 |#1|))) "failed") (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|))) (-1189))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2552 (((-793)) NIL T ELT)) (-1812 (($) NIL T ELT)) (-2932 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4379 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2622 (((-948) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1591 (($ (-948)) 11 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3039 (($ (-218 |#1|)) 12 T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-888 |#1|)) 7 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) NIL T ELT)))
+(((-657 |#1|) (-13 (-866) (-635 (-888 |#1|)) (-10 -8 (-15 -3039 ($ (-218 |#1|))))) (-663 (-1207))) (T -657))
+((-3039 (*1 *1 *2) (-12 (-5 *2 (-218 *3)) (-14 *3 (-663 (-1207))) (-5 *1 (-657 *3)))))
+(-13 (-866) (-635 (-888 |#1|)) (-10 -8 (-15 -3039 ($ (-218 |#1|)))))
+((-2608 (((-3 (-1297 (-421 |#1|)) "failed") (-1297 |#2|) |#2|) 64 (-1394 (|has| |#1| (-376))) ELT) (((-3 (-1297 |#1|) "failed") (-1297 |#2|) |#2|) 49 (|has| |#1| (-376)) ELT)) (-4215 (((-114) (-1297 |#2|)) 33 T ELT)) (-2738 (((-3 (-1297 |#1|) "failed") (-1297 |#2|)) 40 T ELT)))
+(((-658 |#1| |#2|) (-10 -7 (-15 -4215 ((-114) (-1297 |#2|))) (-15 -2738 ((-3 (-1297 |#1|) "failed") (-1297 |#2|))) (IF (|has| |#1| (-376)) (-15 -2608 ((-3 (-1297 |#1|) "failed") (-1297 |#2|) |#2|)) (-15 -2608 ((-3 (-1297 (-421 |#1|)) "failed") (-1297 |#2|) |#2|)))) (-571) (-13 (-1080) (-660 |#1|))) (T -658))
+((-2608 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1080) (-660 *5))) (-1394 (-4 *5 (-376))) (-4 *5 (-571)) (-5 *2 (-1297 (-421 *5))) (-5 *1 (-658 *5 *4)))) (-2608 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1080) (-660 *5))) (-4 *5 (-376)) (-4 *5 (-571)) (-5 *2 (-1297 *5)) (-5 *1 (-658 *5 *4)))) (-2738 (*1 *2 *3) (|partial| -12 (-5 *3 (-1297 *5)) (-4 *5 (-13 (-1080) (-660 *4))) (-4 *4 (-571)) (-5 *2 (-1297 *4)) (-5 *1 (-658 *4 *5)))) (-4215 (*1 *2 *3) (-12 (-5 *3 (-1297 *5)) (-4 *5 (-13 (-1080) (-660 *4))) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-658 *4 *5)))))
+(-10 -7 (-15 -4215 ((-114) (-1297 |#2|))) (-15 -2738 ((-3 (-1297 |#1|) "failed") (-1297 |#2|))) (IF (|has| |#1| (-376)) (-15 -2608 ((-3 (-1297 |#1|) "failed") (-1297 |#2|) |#2|)) (-15 -2608 ((-3 (-1297 (-421 |#1|)) "failed") (-1297 |#2|) |#2|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-1465 (((-663 (-897 (-657 |#2|) |#1|)) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3062 (($ $) NIL T ELT)) (-4139 (($ |#1| (-657 |#2|)) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2575 (($ (-663 |#1|)) 25 T ELT)) (-1447 (((-657 |#2|) $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3015 (((-136)) 16 T ELT)) (-4226 (((-1297 |#1|) $) 44 T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-657 |#2|)) 11 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 20 T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#1|) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 17 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-659 |#1| |#2|) (-13 (-1305 |#1|) (-635 (-657 |#2|)) (-523 |#1| (-657 |#2|)) (-10 -8 (-15 -2575 ($ (-663 |#1|))) (-15 -4226 ((-1297 |#1|) $)))) (-376) (-663 (-1207))) (T -659))
+((-2575 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-376)) (-5 *1 (-659 *3 *4)) (-14 *4 (-663 (-1207))))) (-4226 (*1 *2 *1) (-12 (-5 *2 (-1297 *3)) (-5 *1 (-659 *3 *4)) (-4 *3 (-376)) (-14 *4 (-663 (-1207))))))
+(-13 (-1305 |#1|) (-635 (-657 |#2|)) (-523 |#1| (-657 |#2|)) (-10 -8 (-15 -2575 ($ (-663 |#1|))) (-15 -4226 ((-1297 |#1|) $))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-2619 (((-711 |#1|) (-711 $)) 30 T ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 29 T ELT)) (-4140 (((-711 |#1|) (-1297 $)) 32 T ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 31 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#1| $) 27 T ELT)))
(((-660 |#1|) (-142) (-1080)) (T -660))
-((-2484 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1080)) (-5 *2 (-711 *4)))) (-2484 (*1 *2 *3 *1) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1080)) (-5 *2 (-2 (|:| -3822 (-711 *4)) (|:| |vec| (-1297 *4)))))) (-3142 (*1 *2 *3) (-12 (-5 *3 (-711 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1080)) (-5 *2 (-711 *4)))) (-3142 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *1)) (-5 *4 (-1297 *1)) (-4 *1 (-660 *5)) (-4 *5 (-1080)) (-5 *2 (-2 (|:| -3822 (-711 *5)) (|:| |vec| (-1297 *5)))))))
-(-13 (-670 |t#1|) (-10 -8 (-15 -2484 ((-711 |t#1|) (-1297 $))) (-15 -2484 ((-2 (|:| -3822 (-711 |t#1|)) (|:| |vec| (-1297 |t#1|))) (-1297 $) $)) (-15 -3142 ((-711 |t#1|) (-711 $))) (-15 -3142 ((-2 (|:| -3822 (-711 |t#1|)) (|:| |vec| (-1297 |t#1|))) (-711 $) (-1297 $)))))
+((-4140 (*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1080)) (-5 *2 (-711 *4)))) (-4140 (*1 *2 *3 *1) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1080)) (-5 *2 (-2 (|:| -1871 (-711 *4)) (|:| |vec| (-1297 *4)))))) (-2619 (*1 *2 *3) (-12 (-5 *3 (-711 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1080)) (-5 *2 (-711 *4)))) (-2619 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *1)) (-5 *4 (-1297 *1)) (-4 *1 (-660 *5)) (-4 *5 (-1080)) (-5 *2 (-2 (|:| -1871 (-711 *5)) (|:| |vec| (-1297 *5)))))))
+(-13 (-670 |t#1|) (-10 -8 (-15 -4140 ((-711 |t#1|) (-1297 $))) (-15 -4140 ((-2 (|:| -1871 (-711 |t#1|)) (|:| |vec| (-1297 |t#1|))) (-1297 $) $)) (-15 -2619 ((-711 |t#1|) (-711 $))) (-15 -2619 ((-2 (|:| -1871 (-711 |t#1|)) (|:| |vec| (-1297 |t#1|))) (-711 $) (-1297 $)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-4431 (($ (-663 |#1|)) 23 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3924 ((|#1| $ (-659 |#1| |#2|)) 46 T ELT)) (-3669 (((-136)) 13 T ELT)) (-2178 (((-1297 |#1|) $) 42 T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 18 T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#1|) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 14 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-661 |#1| |#2|) (-13 (-1305 |#1|) (-298 (-659 |#1| |#2|) |#1|) (-10 -8 (-15 -4431 ($ (-663 |#1|))) (-15 -2178 ((-1297 |#1|) $)))) (-376) (-663 (-1207))) (T -661))
-((-4431 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-376)) (-5 *1 (-661 *3 *4)) (-14 *4 (-663 (-1207))))) (-2178 (*1 *2 *1) (-12 (-5 *2 (-1297 *3)) (-5 *1 (-661 *3 *4)) (-4 *3 (-376)) (-14 *4 (-663 (-1207))))))
-(-13 (-1305 |#1|) (-298 (-659 |#1| |#2|) |#1|) (-10 -8 (-15 -4431 ($ (-663 |#1|))) (-15 -2178 ((-1297 |#1|) $))))
-((-1538 (((-114) $ $) 7 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (* (($ |#1| $) 14 T ELT) (($ $ |#1|) 17 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2705 (($ (-663 |#1|)) 23 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1507 ((|#1| $ (-659 |#1| |#2|)) 46 T ELT)) (-3015 (((-136)) 13 T ELT)) (-4226 (((-1297 |#1|) $) 42 T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 18 T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#1|) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 14 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-661 |#1| |#2|) (-13 (-1305 |#1|) (-298 (-659 |#1| |#2|) |#1|) (-10 -8 (-15 -2705 ($ (-663 |#1|))) (-15 -4226 ((-1297 |#1|) $)))) (-376) (-663 (-1207))) (T -661))
+((-2705 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-376)) (-5 *1 (-661 *3 *4)) (-14 *4 (-663 (-1207))))) (-4226 (*1 *2 *1) (-12 (-5 *2 (-1297 *3)) (-5 *1 (-661 *3 *4)) (-4 *3 (-376)) (-14 *4 (-663 (-1207))))))
+(-13 (-1305 |#1|) (-298 (-659 |#1| |#2|) |#1|) (-10 -8 (-15 -2705 ($ (-663 |#1|))) (-15 -4226 ((-1297 |#1|) $))))
+((-2243 (((-114) $ $) 7 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (* (($ |#1| $) 14 T ELT) (($ $ |#1|) 17 T ELT)))
(((-662 |#1|) (-142) (-1143)) (T -662))
NIL
(-13 (-668 |t#1|) (-1082 |t#1|))
(((-102) . T) ((-632 (-887)) . T) ((-668 |#1|) . T) ((-1082 |#1|) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3853 ((|#1| $) NIL T ELT)) (-3273 ((|#1| $) NIL T ELT)) (-2270 (($ $) NIL T ELT)) (-3839 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-2194 (($ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4040 (((-114) $) NIL (|has| |#1| (-871)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-1703 (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| |#1| (-871))) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2286 (($ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-2869 ((|#1| $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2102 (($ $ $) NIL (|has| $ (-6 -4509)) ELT)) (-4319 ((|#1| $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3132 ((|#1| $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-1773 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4509)) ELT) (($ $ "rest" $) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2083 (($ $ (-663 $)) NIL (|has| $ (-6 -4509)) ELT)) (-3950 (($ $ $) 37 (|has| |#1| (-1132)) ELT)) (-2770 (($ $ $) 41 (|has| |#1| (-1132)) ELT)) (-1626 (($ $ $) 44 (|has| |#1| (-1132)) ELT)) (-3500 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-1982 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3264 ((|#1| $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-4391 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) NIL T ELT)) (-3649 (($ $) 23 T ELT) (($ $ (-793)) NIL T ELT)) (-2944 (($ $) NIL (|has| |#1| (-1132)) ELT)) (-3606 (($ $) 36 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3390 (($ |#1| $) NIL (|has| |#1| (-1132)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-2375 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3779 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-560)) NIL T ELT)) (-2267 (((-114) $) NIL T ELT)) (-1722 (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1132)) ELT) (((-560) |#1| $) NIL (|has| |#1| (-1132)) ELT) (((-560) (-1 (-114) |#1|) $) NIL T ELT)) (-2181 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1924 (((-114) $) 11 T ELT)) (-3092 (((-663 $) $) NIL T ELT)) (-3398 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2201 (($) 9 T CONST)) (-4095 (($ (-793) |#1|) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-1708 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3223 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 40 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2937 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-2045 (($ |#1|) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-3596 (((-663 |#1|) $) NIL T ELT)) (-2409 (((-114) $) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-2398 ((|#1| $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3629 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-3996 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) NIL T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3637 ((|#1| $) 20 T ELT) (($ $ (-793)) NIL T ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-3037 (($ $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3875 (((-114) $) NIL T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) NIL T ELT)) (-1663 (((-114) $) 39 T ELT)) (-3986 (($) 38 T ELT)) (-3924 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT) ((|#1| $ (-560)) 42 T ELT) ((|#1| $ (-560) |#1|) NIL T ELT)) (-1750 (((-560) $ $) NIL T ELT)) (-2249 (($ $ (-1264 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-4413 (($ $ (-1264 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-1978 (((-114) $) NIL T ELT)) (-1763 (($ $) NIL T ELT)) (-1915 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-1502 (((-793) $) NIL T ELT)) (-3458 (($ $) NIL T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3640 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) 53 (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) NIL T ELT)) (-1547 (($ |#1| $) 12 T ELT)) (-4354 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3415 (($ $ $) 35 T ELT) (($ |#1| $) 43 T ELT) (($ (-663 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-1578 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3955 (((-663 $) $) NIL T ELT)) (-2997 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2120 (($ $ $) 13 T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2735 (((-1189) $) 31 (|has| |#1| (-843)) ELT) (((-1189) $ (-114)) 32 (|has| |#1| (-843)) ELT) (((-1303) (-845) $) 33 (|has| |#1| (-843)) ELT) (((-1303) (-845) $ (-114)) 34 (|has| |#1| (-843)) ELT)) (-2536 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2521 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-663 |#1|) (-13 (-688 |#1|) (-10 -8 (-15 -2201 ($) -3081) (-15 -1924 ((-114) $)) (-15 -1547 ($ |#1| $)) (-15 -2120 ($ $ $)) (IF (|has| |#1| (-1132)) (PROGN (-15 -3950 ($ $ $)) (-15 -2770 ($ $ $)) (-15 -1626 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|))) (-1247)) (T -663))
-((-2201 (*1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1247)))) (-1924 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-663 *3)) (-4 *3 (-1247)))) (-1547 (*1 *1 *2 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1247)))) (-2120 (*1 *1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1247)))) (-3950 (*1 *1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1132)) (-4 *2 (-1247)))) (-2770 (*1 *1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1132)) (-4 *2 (-1247)))) (-1626 (*1 *1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1132)) (-4 *2 (-1247)))))
-(-13 (-688 |#1|) (-10 -8 (-15 -2201 ($) -3081) (-15 -1924 ((-114) $)) (-15 -1547 ($ |#1| $)) (-15 -2120 ($ $ $)) (IF (|has| |#1| (-1132)) (PROGN (-15 -3950 ($ $ $)) (-15 -2770 ($ $ $)) (-15 -1626 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|)))
-((-1520 (((-663 |#2|) (-1 |#2| |#1| |#2|) (-663 |#1|) |#2|) 16 T ELT)) (-4129 ((|#2| (-1 |#2| |#1| |#2|) (-663 |#1|) |#2|) 18 T ELT)) (-3957 (((-663 |#2|) (-1 |#2| |#1|) (-663 |#1|)) 13 T ELT)))
-(((-664 |#1| |#2|) (-10 -7 (-15 -1520 ((-663 |#2|) (-1 |#2| |#1| |#2|) (-663 |#1|) |#2|)) (-15 -4129 (|#2| (-1 |#2| |#1| |#2|) (-663 |#1|) |#2|)) (-15 -3957 ((-663 |#2|) (-1 |#2| |#1|) (-663 |#1|)))) (-1247) (-1247)) (T -664))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-663 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-663 *6)) (-5 *1 (-664 *5 *6)))) (-4129 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-663 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-664 *5 *2)))) (-1520 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-663 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-5 *2 (-663 *5)) (-5 *1 (-664 *6 *5)))))
-(-10 -7 (-15 -1520 ((-663 |#2|) (-1 |#2| |#1| |#2|) (-663 |#1|) |#2|)) (-15 -4129 (|#2| (-1 |#2| |#1| |#2|) (-663 |#1|) |#2|)) (-15 -3957 ((-663 |#2|) (-1 |#2| |#1|) (-663 |#1|))))
-((-4473 ((|#2| (-663 |#1|) (-663 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-663 |#1|) (-663 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|) |#2|) 17 T ELT) ((|#2| (-663 |#1|) (-663 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|)) 12 T ELT)))
-(((-665 |#1| |#2|) (-10 -7 (-15 -4473 ((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|))) (-15 -4473 (|#2| (-663 |#1|) (-663 |#2|) |#1|)) (-15 -4473 ((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|) |#2|)) (-15 -4473 (|#2| (-663 |#1|) (-663 |#2|) |#1| |#2|)) (-15 -4473 ((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|) (-1 |#2| |#1|))) (-15 -4473 (|#2| (-663 |#1|) (-663 |#2|) |#1| (-1 |#2| |#1|)))) (-1132) (-1247)) (T -665))
-((-4473 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1132)) (-4 *2 (-1247)) (-5 *1 (-665 *5 *2)))) (-4473 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-663 *5)) (-5 *4 (-663 *6)) (-4 *5 (-1132)) (-4 *6 (-1247)) (-5 *1 (-665 *5 *6)))) (-4473 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *2)) (-4 *5 (-1132)) (-4 *2 (-1247)) (-5 *1 (-665 *5 *2)))) (-4473 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 *5)) (-4 *6 (-1132)) (-4 *5 (-1247)) (-5 *2 (-1 *5 *6)) (-5 *1 (-665 *6 *5)))) (-4473 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *2)) (-4 *5 (-1132)) (-4 *2 (-1247)) (-5 *1 (-665 *5 *2)))) (-4473 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *6)) (-4 *5 (-1132)) (-4 *6 (-1247)) (-5 *2 (-1 *6 *5)) (-5 *1 (-665 *5 *6)))))
-(-10 -7 (-15 -4473 ((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|))) (-15 -4473 (|#2| (-663 |#1|) (-663 |#2|) |#1|)) (-15 -4473 ((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|) |#2|)) (-15 -4473 (|#2| (-663 |#1|) (-663 |#2|) |#1| |#2|)) (-15 -4473 ((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|) (-1 |#2| |#1|))) (-15 -4473 (|#2| (-663 |#1|) (-663 |#2|) |#1| (-1 |#2| |#1|))))
-((-3957 (((-663 |#3|) (-1 |#3| |#1| |#2|) (-663 |#1|) (-663 |#2|)) 21 T ELT)))
-(((-666 |#1| |#2| |#3|) (-10 -7 (-15 -3957 ((-663 |#3|) (-1 |#3| |#1| |#2|) (-663 |#1|) (-663 |#2|)))) (-1247) (-1247) (-1247)) (T -666))
-((-3957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-663 *6)) (-5 *5 (-663 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-663 *8)) (-5 *1 (-666 *6 *7 *8)))))
-(-10 -7 (-15 -3957 ((-663 |#3|) (-1 |#3| |#1| |#2|) (-663 |#1|) (-663 |#2|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 11 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1430 ((|#1| $) NIL T ELT)) (-3853 ((|#1| $) NIL T ELT)) (-3990 (($ $) NIL T ELT)) (-2033 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4367 (($ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-2152 (((-114) $) NIL (|has| |#1| (-871)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3152 (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| |#1| (-871))) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-1787 (($ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3654 ((|#1| $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-1518 (($ $ $) NIL (|has| $ (-6 -4509)) ELT)) (-3042 ((|#1| $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2509 ((|#1| $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-4083 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4509)) ELT) (($ $ "rest" $) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2566 (($ $ (-663 $)) NIL (|has| $ (-6 -4509)) ELT)) (-3763 (($ $ $) 37 (|has| |#1| (-1132)) ELT)) (-1917 (($ $ $) 41 (|has| |#1| (-1132)) ELT)) (-3570 (($ $ $) 44 (|has| |#1| (-1132)) ELT)) (-1864 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3923 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3839 ((|#1| $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) NIL T ELT)) (-4345 (($ $) 23 T ELT) (($ $ (-793)) NIL T ELT)) (-4329 (($ $) NIL (|has| |#1| (-1132)) ELT)) (-3658 (($ $) 36 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2091 (($ |#1| $) NIL (|has| |#1| (-1132)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3033 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3338 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-560)) NIL T ELT)) (-3843 (((-114) $) NIL T ELT)) (-2359 (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1132)) ELT) (((-560) |#1| $) NIL (|has| |#1| (-1132)) ELT) (((-560) (-1 (-114) |#1|) $) NIL T ELT)) (-3737 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1385 (((-114) $) 11 T ELT)) (-2104 (((-663 $) $) NIL T ELT)) (-2150 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2866 (($) 9 T CONST)) (-4246 (($ (-793) |#1|) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3204 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-4167 (($ $ $) NIL (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 40 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4263 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-2560 (($ |#1|) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL T ELT)) (-1485 (((-114) $) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3057 ((|#1| $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3888 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-2507 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) NIL T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-4334 ((|#1| $) 20 T ELT) (($ $ (-793)) NIL T ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2740 (($ $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-4270 (((-114) $) NIL T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) NIL T ELT)) (-2706 (((-114) $) 39 T ELT)) (-2832 (($) 38 T ELT)) (-1507 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT) ((|#1| $ (-560)) 42 T ELT) ((|#1| $ (-560) |#1|) NIL T ELT)) (-2374 (((-560) $ $) NIL T ELT)) (-3639 (($ $ (-1264 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-2579 (($ $ (-1264 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-2752 (((-114) $) NIL T ELT)) (-2493 (($ $) NIL T ELT)) (-3438 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-3010 (((-793) $) NIL T ELT)) (-1474 (($ $) NIL T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3993 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) 53 (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) NIL T ELT)) (-3219 (($ |#1| $) 12 T ELT)) (-3305 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-1955 (($ $ $) 35 T ELT) (($ |#1| $) 43 T ELT) (($ (-663 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-3913 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3809 (((-663 $) $) NIL T ELT)) (-3606 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1911 (($ $ $) 13 T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1581 (((-1189) $) 31 (|has| |#1| (-843)) ELT) (((-1189) $ (-114)) 32 (|has| |#1| (-843)) ELT) (((-1303) (-845) $) 33 (|has| |#1| (-843)) ELT) (((-1303) (-845) $ (-114)) 34 (|has| |#1| (-843)) ELT)) (-2396 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2386 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-663 |#1|) (-13 (-688 |#1|) (-10 -8 (-15 -2866 ($) -2650) (-15 -1385 ((-114) $)) (-15 -3219 ($ |#1| $)) (-15 -1911 ($ $ $)) (IF (|has| |#1| (-1132)) (PROGN (-15 -3763 ($ $ $)) (-15 -1917 ($ $ $)) (-15 -3570 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|))) (-1247)) (T -663))
+((-2866 (*1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1247)))) (-1385 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-663 *3)) (-4 *3 (-1247)))) (-3219 (*1 *1 *2 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1247)))) (-1911 (*1 *1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1247)))) (-3763 (*1 *1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1132)) (-4 *2 (-1247)))) (-1917 (*1 *1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1132)) (-4 *2 (-1247)))) (-3570 (*1 *1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1132)) (-4 *2 (-1247)))))
+(-13 (-688 |#1|) (-10 -8 (-15 -2866 ($) -2650) (-15 -1385 ((-114) $)) (-15 -3219 ($ |#1| $)) (-15 -1911 ($ $ $)) (IF (|has| |#1| (-1132)) (PROGN (-15 -3763 ($ $ $)) (-15 -1917 ($ $ $)) (-15 -3570 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-843)) (-6 (-843)) |%noBranch|)))
+((-2928 (((-663 |#2|) (-1 |#2| |#1| |#2|) (-663 |#1|) |#2|) 16 T ELT)) (-1778 ((|#2| (-1 |#2| |#1| |#2|) (-663 |#1|) |#2|) 18 T ELT)) (-2260 (((-663 |#2|) (-1 |#2| |#1|) (-663 |#1|)) 13 T ELT)))
+(((-664 |#1| |#2|) (-10 -7 (-15 -2928 ((-663 |#2|) (-1 |#2| |#1| |#2|) (-663 |#1|) |#2|)) (-15 -1778 (|#2| (-1 |#2| |#1| |#2|) (-663 |#1|) |#2|)) (-15 -2260 ((-663 |#2|) (-1 |#2| |#1|) (-663 |#1|)))) (-1247) (-1247)) (T -664))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-663 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-663 *6)) (-5 *1 (-664 *5 *6)))) (-1778 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-663 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-664 *5 *2)))) (-2928 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-663 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-5 *2 (-663 *5)) (-5 *1 (-664 *6 *5)))))
+(-10 -7 (-15 -2928 ((-663 |#2|) (-1 |#2| |#1| |#2|) (-663 |#1|) |#2|)) (-15 -1778 (|#2| (-1 |#2| |#1| |#2|) (-663 |#1|) |#2|)) (-15 -2260 ((-663 |#2|) (-1 |#2| |#1|) (-663 |#1|))))
+((-2707 ((|#2| (-663 |#1|) (-663 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-663 |#1|) (-663 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|) |#2|) 17 T ELT) ((|#2| (-663 |#1|) (-663 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|)) 12 T ELT)))
+(((-665 |#1| |#2|) (-10 -7 (-15 -2707 ((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|))) (-15 -2707 (|#2| (-663 |#1|) (-663 |#2|) |#1|)) (-15 -2707 ((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|) |#2|)) (-15 -2707 (|#2| (-663 |#1|) (-663 |#2|) |#1| |#2|)) (-15 -2707 ((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|) (-1 |#2| |#1|))) (-15 -2707 (|#2| (-663 |#1|) (-663 |#2|) |#1| (-1 |#2| |#1|)))) (-1132) (-1247)) (T -665))
+((-2707 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1132)) (-4 *2 (-1247)) (-5 *1 (-665 *5 *2)))) (-2707 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-663 *5)) (-5 *4 (-663 *6)) (-4 *5 (-1132)) (-4 *6 (-1247)) (-5 *1 (-665 *5 *6)))) (-2707 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *2)) (-4 *5 (-1132)) (-4 *2 (-1247)) (-5 *1 (-665 *5 *2)))) (-2707 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 *5)) (-4 *6 (-1132)) (-4 *5 (-1247)) (-5 *2 (-1 *5 *6)) (-5 *1 (-665 *6 *5)))) (-2707 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *2)) (-4 *5 (-1132)) (-4 *2 (-1247)) (-5 *1 (-665 *5 *2)))) (-2707 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *6)) (-4 *5 (-1132)) (-4 *6 (-1247)) (-5 *2 (-1 *6 *5)) (-5 *1 (-665 *5 *6)))))
+(-10 -7 (-15 -2707 ((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|))) (-15 -2707 (|#2| (-663 |#1|) (-663 |#2|) |#1|)) (-15 -2707 ((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|) |#2|)) (-15 -2707 (|#2| (-663 |#1|) (-663 |#2|) |#1| |#2|)) (-15 -2707 ((-1 |#2| |#1|) (-663 |#1|) (-663 |#2|) (-1 |#2| |#1|))) (-15 -2707 (|#2| (-663 |#1|) (-663 |#2|) |#1| (-1 |#2| |#1|))))
+((-2260 (((-663 |#3|) (-1 |#3| |#1| |#2|) (-663 |#1|) (-663 |#2|)) 21 T ELT)))
+(((-666 |#1| |#2| |#3|) (-10 -7 (-15 -2260 ((-663 |#3|) (-1 |#3| |#1| |#2|) (-663 |#1|) (-663 |#2|)))) (-1247) (-1247) (-1247)) (T -666))
+((-2260 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-663 *6)) (-5 *5 (-663 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-663 *8)) (-5 *1 (-666 *6 *7 *8)))))
+(-10 -7 (-15 -2260 ((-663 |#3|) (-1 |#3| |#1| |#2|) (-663 |#1|) (-663 |#2|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 11 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-667 |#1|) (-13 (-1114) (-632 |#1|)) (-1132)) (T -667))
NIL
(-13 (-1114) (-632 |#1|))
-((-1538 (((-114) $ $) 7 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (* (($ |#1| $) 14 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (* (($ |#1| $) 14 T ELT)))
(((-668 |#1|) (-142) (-1143)) (T -668))
((* (*1 *1 *2 *1) (-12 (-4 *1 (-668 *2)) (-4 *2 (-1143)))))
(-13 (-1132) (-10 -8 (-15 * ($ |t#1| $))))
(((-102) . T) ((-632 (-887)) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3867 (($ |#1| |#1| $) 43 T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-3500 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2238 (($) NIL T CONST)) (-2944 (($ $) 45 T ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3390 (($ |#1| $) 56 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4508)) ELT)) (-2375 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2181 (((-663 |#1|) $) 9 (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 37 T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-1576 ((|#1| $) 47 T ELT)) (-3629 (($ |#1| $) 29 T ELT) (($ |#1| $ (-793)) 42 T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2615 ((|#1| $) 50 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) 23 T ELT)) (-3986 (($) 28 T ELT)) (-1640 (((-114) $) 54 T ELT)) (-1797 (((-663 (-2 (|:| -2460 |#1|) (|:| -3865 (-793)))) $) 67 T ELT)) (-3897 (($) 26 T ELT) (($ (-663 |#1|)) 19 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 63 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1799 (($ $) 20 T ELT)) (-1407 (((-549) $) 34 (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) NIL T ELT)) (-1578 (((-887) $) 14 (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3376 (($ (-663 |#1|)) 24 T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 69 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 17 (|has| $ (-6 -4508)) ELT)))
-(((-669 |#1|) (-13 (-717 |#1|) (-10 -8 (-6 -4508) (-15 -1640 ((-114) $)) (-15 -3867 ($ |#1| |#1| $)))) (-1132)) (T -669))
-((-1640 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-669 *3)) (-4 *3 (-1132)))) (-3867 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-1132)))))
-(-13 (-717 |#1|) (-10 -8 (-6 -4508) (-15 -1640 ((-114) $)) (-15 -3867 ($ |#1| |#1| $))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#1| $) 27 T ELT)))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4198 (($ |#1| |#1| $) 43 T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-1864 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3525 (($) NIL T CONST)) (-4329 (($ $) 45 T ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2091 (($ |#1| $) 56 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4508)) ELT)) (-3033 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3737 (((-663 |#1|) $) 9 (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 37 T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-1878 ((|#1| $) 47 T ELT)) (-3888 (($ |#1| $) 29 T ELT) (($ |#1| $ (-793)) 42 T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2796 ((|#1| $) 50 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) 23 T ELT)) (-2832 (($) 28 T ELT)) (-3743 (((-114) $) 54 T ELT)) (-1553 (((-663 (-2 (|:| -3067 |#1|) (|:| -3384 (-793)))) $) 67 T ELT)) (-4468 (($) 26 T ELT) (($ (-663 |#1|)) 19 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 63 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4107 (($ $) 20 T ELT)) (-2400 (((-549) $) 34 (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) NIL T ELT)) (-3913 (((-887) $) 14 (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3184 (($ (-663 |#1|)) 24 T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 69 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 17 (|has| $ (-6 -4508)) ELT)))
+(((-669 |#1|) (-13 (-717 |#1|) (-10 -8 (-6 -4508) (-15 -3743 ((-114) $)) (-15 -4198 ($ |#1| |#1| $)))) (-1132)) (T -669))
+((-3743 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-669 *3)) (-4 *3 (-1132)))) (-4198 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-1132)))))
+(-13 (-717 |#1|) (-10 -8 (-6 -4508) (-15 -3743 ((-114) $)) (-15 -4198 ($ |#1| |#1| $))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#1| $) 27 T ELT)))
(((-670 |#1|) (-142) (-1088)) (T -670))
NIL
(-13 (-21) (-668 |t#1|))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-3241 (((-793) $) 17 T ELT)) (-4148 (($ $ |#1|) 69 T ELT)) (-4391 (($ $) 39 T ELT)) (-4292 (($ $) 37 T ELT)) (-2539 (((-3 |#1| "failed") $) 61 T ELT)) (-3330 ((|#1| $) NIL T ELT)) (-1392 (($ |#1| |#2| $) 79 T ELT) (($ $ $) 81 T ELT)) (-2983 (((-887) $ (-1 (-887) (-887) (-887)) (-1 (-887) (-887) (-887)) (-560)) 56 T ELT)) (-2461 ((|#1| $ (-560)) 35 T ELT)) (-2005 ((|#2| $ (-560)) 34 T ELT)) (-1942 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-3372 (($ (-1 |#2| |#2|) $) 47 T ELT)) (-2720 (($) 11 T ELT)) (-2230 (($ |#1| |#2|) 24 T ELT)) (-3542 (($ (-663 (-2 (|:| |gen| |#1|) (|:| -3251 |#2|)))) 25 T ELT)) (-4371 (((-663 (-2 (|:| |gen| |#1|) (|:| -3251 |#2|))) $) 14 T ELT)) (-3527 (($ |#1| $) 71 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3030 (((-114) $ $) 76 T ELT)) (-1578 (((-887) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 27 T ELT)))
-(((-671 |#1| |#2| |#3|) (-13 (-1132) (-1069 |#1|) (-10 -8 (-15 -2983 ((-887) $ (-1 (-887) (-887) (-887)) (-1 (-887) (-887) (-887)) (-560))) (-15 -4371 ((-663 (-2 (|:| |gen| |#1|) (|:| -3251 |#2|))) $)) (-15 -2230 ($ |#1| |#2|)) (-15 -3542 ($ (-663 (-2 (|:| |gen| |#1|) (|:| -3251 |#2|))))) (-15 -2005 (|#2| $ (-560))) (-15 -2461 (|#1| $ (-560))) (-15 -4292 ($ $)) (-15 -4391 ($ $)) (-15 -3241 ((-793) $)) (-15 -2720 ($)) (-15 -4148 ($ $ |#1|)) (-15 -3527 ($ |#1| $)) (-15 -1392 ($ |#1| |#2| $)) (-15 -1392 ($ $ $)) (-15 -3030 ((-114) $ $)) (-15 -3372 ($ (-1 |#2| |#2|) $)) (-15 -1942 ($ (-1 |#1| |#1|) $)))) (-1132) (-23) |#2|) (T -671))
-((-2983 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-887) (-887) (-887))) (-5 *4 (-560)) (-5 *2 (-887)) (-5 *1 (-671 *5 *6 *7)) (-4 *5 (-1132)) (-4 *6 (-23)) (-14 *7 *6))) (-4371 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -3251 *4)))) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-23)) (-14 *5 *4))) (-2230 (*1 *1 *2 *3) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23)) (-14 *4 *3))) (-3542 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -3251 *4)))) (-4 *3 (-1132)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-671 *3 *4 *5)))) (-2005 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *2 (-23)) (-5 *1 (-671 *4 *2 *5)) (-4 *4 (-1132)) (-14 *5 *2))) (-2461 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *2 (-1132)) (-5 *1 (-671 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4292 (*1 *1 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23)) (-14 *4 *3))) (-4391 (*1 *1 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23)) (-14 *4 *3))) (-3241 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-23)) (-14 *5 *4))) (-2720 (*1 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23)) (-14 *4 *3))) (-4148 (*1 *1 *1 *2) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23)) (-14 *4 *3))) (-3527 (*1 *1 *2 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23)) (-14 *4 *3))) (-1392 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23)) (-14 *4 *3))) (-1392 (*1 *1 *1 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23)) (-14 *4 *3))) (-3030 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-23)) (-14 *5 *4))) (-3372 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1132)))) (-1942 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1132)) (-5 *1 (-671 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1132) (-1069 |#1|) (-10 -8 (-15 -2983 ((-887) $ (-1 (-887) (-887) (-887)) (-1 (-887) (-887) (-887)) (-560))) (-15 -4371 ((-663 (-2 (|:| |gen| |#1|) (|:| -3251 |#2|))) $)) (-15 -2230 ($ |#1| |#2|)) (-15 -3542 ($ (-663 (-2 (|:| |gen| |#1|) (|:| -3251 |#2|))))) (-15 -2005 (|#2| $ (-560))) (-15 -2461 (|#1| $ (-560))) (-15 -4292 ($ $)) (-15 -4391 ($ $)) (-15 -3241 ((-793) $)) (-15 -2720 ($)) (-15 -4148 ($ $ |#1|)) (-15 -3527 ($ |#1| $)) (-15 -1392 ($ |#1| |#2| $)) (-15 -1392 ($ $ $)) (-15 -3030 ((-114) $ $)) (-15 -3372 ($ (-1 |#2| |#2|) $)) (-15 -1942 ($ (-1 |#1| |#1|) $))))
-((-2937 (((-560) $) 31 T ELT)) (-3996 (($ |#2| $ (-560)) 27 T ELT) (($ $ $ (-560)) NIL T ELT)) (-3270 (((-663 (-560)) $) 12 T ELT)) (-3586 (((-114) (-560) $) 18 T ELT)) (-3415 (($ $ |#2|) 24 T ELT) (($ |#2| $) 25 T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)))
-(((-672 |#1| |#2|) (-10 -8 (-15 -3996 (|#1| |#1| |#1| (-560))) (-15 -3996 (|#1| |#2| |#1| (-560))) (-15 -3415 (|#1| (-663 |#1|))) (-15 -3415 (|#1| |#1| |#1|)) (-15 -3415 (|#1| |#2| |#1|)) (-15 -3415 (|#1| |#1| |#2|)) (-15 -2937 ((-560) |#1|)) (-15 -3270 ((-663 (-560)) |#1|)) (-15 -3586 ((-114) (-560) |#1|))) (-673 |#2|) (-1247)) (T -672))
-NIL
-(-10 -8 (-15 -3996 (|#1| |#1| |#1| (-560))) (-15 -3996 (|#1| |#2| |#1| (-560))) (-15 -3415 (|#1| (-663 |#1|))) (-15 -3415 (|#1| |#1| |#1|)) (-15 -3415 (|#1| |#2| |#1|)) (-15 -3415 (|#1| |#1| |#2|)) (-15 -2937 ((-560) |#1|)) (-15 -3270 ((-663 (-560)) |#1|)) (-15 -3586 ((-114) (-560) |#1|)))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3839 (((-1303) $ (-560) (-560)) 41 (|has| $ (-6 -4509)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-1773 ((|#1| $ (-560) |#1|) 53 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) 60 (|has| $ (-6 -4509)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) 77 (|has| $ (-6 -4508)) ELT)) (-2238 (($) 7 T CONST)) (-3606 (($ $) 80 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2375 (($ |#1| $) 79 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 76 (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4508)) ELT)) (-3779 ((|#1| $ (-560) |#1|) 54 (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-560)) 52 T ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-4095 (($ (-793) |#1|) 70 T ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-1762 (((-560) $) 44 (|has| (-560) (-871)) ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2937 (((-560) $) 45 (|has| (-560) (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3996 (($ |#1| $ (-560)) 62 T ELT) (($ $ $ (-560)) 61 T ELT)) (-3270 (((-663 (-560)) $) 47 T ELT)) (-3586 (((-114) (-560) $) 48 T ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-3637 ((|#1| $) 43 (|has| (-560) (-871)) ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 73 T ELT)) (-3037 (($ $ |#1|) 42 (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-2914 (((-114) |#1| $) 46 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) 49 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3924 ((|#1| $ (-560) |#1|) 51 T ELT) ((|#1| $ (-560)) 50 T ELT) (($ $ (-1264 (-560))) 71 T ELT)) (-4413 (($ $ (-560)) 64 T ELT) (($ $ (-1264 (-560))) 63 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) 81 (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 72 T ELT)) (-3415 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-663 $)) 66 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2552 (((-793) $) 17 T ELT)) (-2010 (($ $ |#1|) 69 T ELT)) (-2372 (($ $) 39 T ELT)) (-4374 (($ $) 37 T ELT)) (-3929 (((-3 |#1| "failed") $) 61 T ELT)) (-3649 ((|#1| $) NIL T ELT)) (-4487 (($ |#1| |#2| $) 79 T ELT) (($ $ $) 81 T ELT)) (-3459 (((-887) $ (-1 (-887) (-887) (-887)) (-1 (-887) (-887) (-887)) (-560)) 56 T ELT)) (-1997 ((|#1| $ (-560)) 35 T ELT)) (-3038 ((|#2| $ (-560)) 34 T ELT)) (-3703 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-3143 (($ (-1 |#2| |#2|) $) 47 T ELT)) (-2654 (($) 11 T ELT)) (-3444 (($ |#1| |#2|) 24 T ELT)) (-4243 (($ (-663 (-2 (|:| |gen| |#1|) (|:| -2515 |#2|)))) 25 T ELT)) (-2208 (((-663 (-2 (|:| |gen| |#1|) (|:| -2515 |#2|))) $) 14 T ELT)) (-4075 (($ |#1| $) 71 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2681 (((-114) $ $) 76 T ELT)) (-3913 (((-887) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 27 T ELT)))
+(((-671 |#1| |#2| |#3|) (-13 (-1132) (-1069 |#1|) (-10 -8 (-15 -3459 ((-887) $ (-1 (-887) (-887) (-887)) (-1 (-887) (-887) (-887)) (-560))) (-15 -2208 ((-663 (-2 (|:| |gen| |#1|) (|:| -2515 |#2|))) $)) (-15 -3444 ($ |#1| |#2|)) (-15 -4243 ($ (-663 (-2 (|:| |gen| |#1|) (|:| -2515 |#2|))))) (-15 -3038 (|#2| $ (-560))) (-15 -1997 (|#1| $ (-560))) (-15 -4374 ($ $)) (-15 -2372 ($ $)) (-15 -2552 ((-793) $)) (-15 -2654 ($)) (-15 -2010 ($ $ |#1|)) (-15 -4075 ($ |#1| $)) (-15 -4487 ($ |#1| |#2| $)) (-15 -4487 ($ $ $)) (-15 -2681 ((-114) $ $)) (-15 -3143 ($ (-1 |#2| |#2|) $)) (-15 -3703 ($ (-1 |#1| |#1|) $)))) (-1132) (-23) |#2|) (T -671))
+((-3459 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-887) (-887) (-887))) (-5 *4 (-560)) (-5 *2 (-887)) (-5 *1 (-671 *5 *6 *7)) (-4 *5 (-1132)) (-4 *6 (-23)) (-14 *7 *6))) (-2208 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -2515 *4)))) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-23)) (-14 *5 *4))) (-3444 (*1 *1 *2 *3) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23)) (-14 *4 *3))) (-4243 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -2515 *4)))) (-4 *3 (-1132)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-671 *3 *4 *5)))) (-3038 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *2 (-23)) (-5 *1 (-671 *4 *2 *5)) (-4 *4 (-1132)) (-14 *5 *2))) (-1997 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *2 (-1132)) (-5 *1 (-671 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4374 (*1 *1 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23)) (-14 *4 *3))) (-2372 (*1 *1 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23)) (-14 *4 *3))) (-2552 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-23)) (-14 *5 *4))) (-2654 (*1 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23)) (-14 *4 *3))) (-2010 (*1 *1 *1 *2) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23)) (-14 *4 *3))) (-4075 (*1 *1 *2 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23)) (-14 *4 *3))) (-4487 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23)) (-14 *4 *3))) (-4487 (*1 *1 *1 *1) (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23)) (-14 *4 *3))) (-2681 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-23)) (-14 *5 *4))) (-3143 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1132)))) (-3703 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1132)) (-5 *1 (-671 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1132) (-1069 |#1|) (-10 -8 (-15 -3459 ((-887) $ (-1 (-887) (-887) (-887)) (-1 (-887) (-887) (-887)) (-560))) (-15 -2208 ((-663 (-2 (|:| |gen| |#1|) (|:| -2515 |#2|))) $)) (-15 -3444 ($ |#1| |#2|)) (-15 -4243 ($ (-663 (-2 (|:| |gen| |#1|) (|:| -2515 |#2|))))) (-15 -3038 (|#2| $ (-560))) (-15 -1997 (|#1| $ (-560))) (-15 -4374 ($ $)) (-15 -2372 ($ $)) (-15 -2552 ((-793) $)) (-15 -2654 ($)) (-15 -2010 ($ $ |#1|)) (-15 -4075 ($ |#1| $)) (-15 -4487 ($ |#1| |#2| $)) (-15 -4487 ($ $ $)) (-15 -2681 ((-114) $ $)) (-15 -3143 ($ (-1 |#2| |#2|) $)) (-15 -3703 ($ (-1 |#1| |#1|) $))))
+((-4263 (((-560) $) 31 T ELT)) (-2507 (($ |#2| $ (-560)) 27 T ELT) (($ $ $ (-560)) NIL T ELT)) (-3372 (((-663 (-560)) $) 12 T ELT)) (-3439 (((-114) (-560) $) 18 T ELT)) (-1955 (($ $ |#2|) 24 T ELT) (($ |#2| $) 25 T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)))
+(((-672 |#1| |#2|) (-10 -8 (-15 -2507 (|#1| |#1| |#1| (-560))) (-15 -2507 (|#1| |#2| |#1| (-560))) (-15 -1955 (|#1| (-663 |#1|))) (-15 -1955 (|#1| |#1| |#1|)) (-15 -1955 (|#1| |#2| |#1|)) (-15 -1955 (|#1| |#1| |#2|)) (-15 -4263 ((-560) |#1|)) (-15 -3372 ((-663 (-560)) |#1|)) (-15 -3439 ((-114) (-560) |#1|))) (-673 |#2|) (-1247)) (T -672))
+NIL
+(-10 -8 (-15 -2507 (|#1| |#1| |#1| (-560))) (-15 -2507 (|#1| |#2| |#1| (-560))) (-15 -1955 (|#1| (-663 |#1|))) (-15 -1955 (|#1| |#1| |#1|)) (-15 -1955 (|#1| |#2| |#1|)) (-15 -1955 (|#1| |#1| |#2|)) (-15 -4263 ((-560) |#1|)) (-15 -3372 ((-663 (-560)) |#1|)) (-15 -3439 ((-114) (-560) |#1|)))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2033 (((-1303) $ (-560) (-560)) 41 (|has| $ (-6 -4509)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-4083 ((|#1| $ (-560) |#1|) 53 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) 60 (|has| $ (-6 -4509)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) 77 (|has| $ (-6 -4508)) ELT)) (-3525 (($) 7 T CONST)) (-3658 (($ $) 80 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3033 (($ |#1| $) 79 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 76 (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4508)) ELT)) (-3338 ((|#1| $ (-560) |#1|) 54 (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-560)) 52 T ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-4246 (($ (-793) |#1|) 70 T ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-2483 (((-560) $) 44 (|has| (-560) (-871)) ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4263 (((-560) $) 45 (|has| (-560) (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-2507 (($ |#1| $ (-560)) 62 T ELT) (($ $ $ (-560)) 61 T ELT)) (-3372 (((-663 (-560)) $) 47 T ELT)) (-3439 (((-114) (-560) $) 48 T ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-4334 ((|#1| $) 43 (|has| (-560) (-871)) ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 73 T ELT)) (-2740 (($ $ |#1|) 42 (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-4019 (((-114) |#1| $) 46 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) 49 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1507 ((|#1| $ (-560) |#1|) 51 T ELT) ((|#1| $ (-560)) 50 T ELT) (($ $ (-1264 (-560))) 71 T ELT)) (-2579 (($ $ (-560)) 64 T ELT) (($ $ (-1264 (-560))) 63 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) 81 (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 72 T ELT)) (-1955 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-663 $)) 66 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-673 |#1|) (-142) (-1247)) (T -673))
-((-4095 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-4 *1 (-673 *3)) (-4 *3 (-1247)))) (-3415 (*1 *1 *1 *2) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1247)))) (-3415 (*1 *1 *2 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1247)))) (-3415 (*1 *1 *1 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1247)))) (-3415 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-673 *3)) (-4 *3 (-1247)))) (-3957 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-673 *3)) (-4 *3 (-1247)))) (-4413 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-673 *3)) (-4 *3 (-1247)))) (-4413 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 (-560))) (-4 *1 (-673 *3)) (-4 *3 (-1247)))) (-3996 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-673 *2)) (-4 *2 (-1247)))) (-3996 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-673 *3)) (-4 *3 (-1247)))) (-1773 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1264 (-560))) (|has| *1 (-6 -4509)) (-4 *1 (-673 *2)) (-4 *2 (-1247)))))
-(-13 (-618 (-560) |t#1|) (-153 |t#1|) (-298 (-1264 (-560)) $) (-10 -8 (-15 -4095 ($ (-793) |t#1|)) (-15 -3415 ($ $ |t#1|)) (-15 -3415 ($ |t#1| $)) (-15 -3415 ($ $ $)) (-15 -3415 ($ (-663 $))) (-15 -3957 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4413 ($ $ (-560))) (-15 -4413 ($ $ (-1264 (-560)))) (-15 -3996 ($ |t#1| $ (-560))) (-15 -3996 ($ $ $ (-560))) (IF (|has| $ (-6 -4509)) (-15 -1773 (|t#1| $ (-1264 (-560)) |t#1|)) |%noBranch|)))
-(((-34) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #0=(-560) |#1|) . T) ((-298 (-1264 (-560)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 15 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-3757 ((|#1| $) 23 T ELT)) (-3825 (($ $ $) NIL (|has| |#1| (-813)) ELT)) (-2820 (($ $ $) NIL (|has| |#1| (-813)) ELT)) (-1905 (((-1189) $) 48 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3771 ((|#3| $) 24 T ELT)) (-1578 (((-887) $) 43 T ELT)) (-2275 (((-114) $ $) 22 T ELT)) (-2001 (($) 10 T CONST)) (-2536 (((-114) $ $) NIL (|has| |#1| (-813)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#1| (-813)) ELT)) (-2473 (((-114) $ $) 20 T ELT)) (-2521 (((-114) $ $) NIL (|has| |#1| (-813)) ELT)) (-2495 (((-114) $ $) 26 (|has| |#1| (-813)) ELT)) (-2594 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-2580 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 29 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-674 |#1| |#2| |#3|) (-13 (-739 |#2|) (-10 -8 (IF (|has| |#1| (-813)) (-6 (-813)) |%noBranch|) (-15 -2594 ($ $ |#3|)) (-15 -2594 ($ |#1| |#3|)) (-15 -3757 (|#1| $)) (-15 -3771 (|#3| $)))) (-739 |#2|) (-175) (|SubsetCategory| (-748) |#2|)) (T -674))
-((-2594 (*1 *1 *1 *2) (-12 (-4 *4 (-175)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-739 *4)) (-4 *2 (|SubsetCategory| (-748) *4)))) (-2594 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-674 *2 *4 *3)) (-4 *2 (-739 *4)) (-4 *3 (|SubsetCategory| (-748) *4)))) (-3757 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-739 *3)) (-5 *1 (-674 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-748) *3)))) (-3771 (*1 *2 *1) (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-748) *4)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-739 *4)))))
-(-13 (-739 |#2|) (-10 -8 (IF (|has| |#1| (-813)) (-6 (-813)) |%noBranch|) (-15 -2594 ($ $ |#3|)) (-15 -2594 ($ |#1| |#3|)) (-15 -3757 (|#1| $)) (-15 -3771 (|#3| $))))
-((-1433 (((-3 |#2| "failed") |#3| |#2| (-1207) |#2| (-663 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -1954 (-663 |#2|))) "failed") |#3| |#2| (-1207)) 44 T ELT)))
-(((-675 |#1| |#2| |#3|) (-10 -7 (-15 -1433 ((-3 (-2 (|:| |particular| |#2|) (|:| -1954 (-663 |#2|))) "failed") |#3| |#2| (-1207))) (-15 -1433 ((-3 |#2| "failed") |#3| |#2| (-1207) |#2| (-663 |#2|)))) (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)) (-13 (-29 |#1|) (-1233) (-989)) (-680 |#2|)) (T -675))
-((-1433 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-663 *2)) (-4 *2 (-13 (-29 *6) (-1233) (-989))) (-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *1 (-675 *6 *2 *3)) (-4 *3 (-680 *2)))) (-1433 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1207)) (-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-4 *4 (-13 (-29 *6) (-1233) (-989))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1954 (-663 *4)))) (-5 *1 (-675 *6 *4 *3)) (-4 *3 (-680 *4)))))
-(-10 -7 (-15 -1433 ((-3 (-2 (|:| |particular| |#2|) (|:| -1954 (-663 |#2|))) "failed") |#3| |#2| (-1207))) (-15 -1433 ((-3 |#2| "failed") |#3| |#2| (-1207) |#2| (-663 |#2|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1550 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3026 (($ $ $) 28 (|has| |#1| (-376)) ELT)) (-4069 (($ $ (-793)) 31 (|has| |#1| (-376)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2029 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1900 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2440 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1998 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2836 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-4211 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2539 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3330 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-1624 (($ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2806 (($ $) NIL (|has| |#1| (-466)) ELT)) (-1581 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-793)) NIL T ELT)) (-2031 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-4113 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-3011 (((-793) $) NIL T ELT)) (-3990 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1438 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2736 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2712 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3456 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2253 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-1879 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-1597 ((|#1| $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1528 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-3924 ((|#1| $ |#1|) 24 T ELT)) (-1365 (($ $ $) 33 (|has| |#1| (-376)) ELT)) (-3630 (((-793) $) NIL T ELT)) (-2053 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-1578 (((-887) $) 20 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (($ |#1|) NIL T ELT)) (-3409 (((-663 |#1|) $) NIL T ELT)) (-2305 ((|#1| $ (-793)) NIL T ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-3626 ((|#1| $ |#1| |#1|) 23 T ELT)) (-4344 (($ $) NIL T ELT)) (-2001 (($) 21 T CONST)) (-2011 (($) 8 T CONST)) (-3305 (($) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+((-4246 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-4 *1 (-673 *3)) (-4 *3 (-1247)))) (-1955 (*1 *1 *1 *2) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1247)))) (-1955 (*1 *1 *2 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1247)))) (-1955 (*1 *1 *1 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1247)))) (-1955 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-673 *3)) (-4 *3 (-1247)))) (-2260 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-673 *3)) (-4 *3 (-1247)))) (-2579 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-673 *3)) (-4 *3 (-1247)))) (-2579 (*1 *1 *1 *2) (-12 (-5 *2 (-1264 (-560))) (-4 *1 (-673 *3)) (-4 *3 (-1247)))) (-2507 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-673 *2)) (-4 *2 (-1247)))) (-2507 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-673 *3)) (-4 *3 (-1247)))) (-4083 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1264 (-560))) (|has| *1 (-6 -4509)) (-4 *1 (-673 *2)) (-4 *2 (-1247)))))
+(-13 (-618 (-560) |t#1|) (-153 |t#1|) (-298 (-1264 (-560)) $) (-10 -8 (-15 -4246 ($ (-793) |t#1|)) (-15 -1955 ($ $ |t#1|)) (-15 -1955 ($ |t#1| $)) (-15 -1955 ($ $ $)) (-15 -1955 ($ (-663 $))) (-15 -2260 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2579 ($ $ (-560))) (-15 -2579 ($ $ (-1264 (-560)))) (-15 -2507 ($ |t#1| $ (-560))) (-15 -2507 ($ $ $ (-560))) (IF (|has| $ (-6 -4509)) (-15 -4083 (|t#1| $ (-1264 (-560)) |t#1|)) |%noBranch|)))
+(((-34) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #0=(-560) |#1|) . T) ((-298 (-1264 (-560)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 15 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2473 ((|#1| $) 23 T ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-813)) ELT)) (-4379 (($ $ $) NIL (|has| |#1| (-813)) ELT)) (-3358 (((-1189) $) 48 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2484 ((|#3| $) 24 T ELT)) (-3913 (((-887) $) 43 T ELT)) (-3925 (((-114) $ $) 22 T ELT)) (-1446 (($) 10 T CONST)) (-2396 (((-114) $ $) NIL (|has| |#1| (-813)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#1| (-813)) ELT)) (-2340 (((-114) $ $) 20 T ELT)) (-2386 (((-114) $ $) NIL (|has| |#1| (-813)) ELT)) (-2362 (((-114) $ $) 26 (|has| |#1| (-813)) ELT)) (-2453 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-2441 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 29 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT)))
+(((-674 |#1| |#2| |#3|) (-13 (-739 |#2|) (-10 -8 (IF (|has| |#1| (-813)) (-6 (-813)) |%noBranch|) (-15 -2453 ($ $ |#3|)) (-15 -2453 ($ |#1| |#3|)) (-15 -2473 (|#1| $)) (-15 -2484 (|#3| $)))) (-739 |#2|) (-175) (|SubsetCategory| (-748) |#2|)) (T -674))
+((-2453 (*1 *1 *1 *2) (-12 (-4 *4 (-175)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-739 *4)) (-4 *2 (|SubsetCategory| (-748) *4)))) (-2453 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-674 *2 *4 *3)) (-4 *2 (-739 *4)) (-4 *3 (|SubsetCategory| (-748) *4)))) (-2473 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-739 *3)) (-5 *1 (-674 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-748) *3)))) (-2484 (*1 *2 *1) (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-748) *4)) (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-739 *4)))))
+(-13 (-739 |#2|) (-10 -8 (IF (|has| |#1| (-813)) (-6 (-813)) |%noBranch|) (-15 -2453 ($ $ |#3|)) (-15 -2453 ($ |#1| |#3|)) (-15 -2473 (|#1| $)) (-15 -2484 (|#3| $))))
+((-1652 (((-3 |#2| "failed") |#3| |#2| (-1207) |#2| (-663 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -3822 (-663 |#2|))) "failed") |#3| |#2| (-1207)) 44 T ELT)))
+(((-675 |#1| |#2| |#3|) (-10 -7 (-15 -1652 ((-3 (-2 (|:| |particular| |#2|) (|:| -3822 (-663 |#2|))) "failed") |#3| |#2| (-1207))) (-15 -1652 ((-3 |#2| "failed") |#3| |#2| (-1207) |#2| (-663 |#2|)))) (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)) (-13 (-29 |#1|) (-1233) (-989)) (-680 |#2|)) (T -675))
+((-1652 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-663 *2)) (-4 *2 (-13 (-29 *6) (-1233) (-989))) (-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *1 (-675 *6 *2 *3)) (-4 *3 (-680 *2)))) (-1652 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1207)) (-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-4 *4 (-13 (-29 *6) (-1233) (-989))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3822 (-663 *4)))) (-5 *1 (-675 *6 *4 *3)) (-4 *3 (-680 *4)))))
+(-10 -7 (-15 -1652 ((-3 (-2 (|:| |particular| |#2|) (|:| -3822 (-663 |#2|))) "failed") |#3| |#2| (-1207))) (-15 -1652 ((-3 |#2| "failed") |#3| |#2| (-1207) |#2| (-663 |#2|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-1628 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3931 (($ $ $) 28 (|has| |#1| (-376)) ELT)) (-2444 (($ $ (-793)) 31 (|has| |#1| (-376)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2058 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3301 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1765 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2963 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-1388 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-1384 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3929 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3649 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-3062 (($ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4239 (($ $) NIL (|has| |#1| (-466)) ELT)) (-1918 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-793)) NIL T ELT)) (-2076 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-1624 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-3765 (((-793) $) NIL T ELT)) (-2883 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1613 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1594 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2581 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3687 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-4330 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3037 ((|#1| $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2233 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-1507 ((|#1| $ |#1|) 24 T ELT)) (-3805 (($ $ $) 33 (|has| |#1| (-376)) ELT)) (-3900 (((-793) $) NIL T ELT)) (-2264 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-3913 (((-887) $) 20 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (($ |#1|) NIL T ELT)) (-2247 (((-663 |#1|) $) NIL T ELT)) (-2920 ((|#1| $ (-793)) NIL T ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-4323 ((|#1| $ |#1| |#1|) 23 T ELT)) (-3244 (($ $) NIL T ELT)) (-1446 (($) 21 T CONST)) (-1456 (($) 8 T CONST)) (-2111 (($) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
(((-676 |#1| |#2|) (-680 |#1|) (-1080) (-1 |#1| |#1|)) (T -676))
NIL
(-680 |#1|)
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1550 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3026 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4069 (($ $ (-793)) NIL (|has| |#1| (-376)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2029 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1900 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2440 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1998 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2836 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-4211 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2539 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3330 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-1624 (($ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2806 (($ $) NIL (|has| |#1| (-466)) ELT)) (-1581 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-793)) NIL T ELT)) (-2031 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-4113 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-3011 (((-793) $) NIL T ELT)) (-3990 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1438 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2736 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2712 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3456 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2253 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-1879 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-1597 ((|#1| $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1528 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-3924 ((|#1| $ |#1|) NIL T ELT)) (-1365 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3630 (((-793) $) NIL T ELT)) (-2053 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (($ |#1|) NIL T ELT)) (-3409 (((-663 |#1|) $) NIL T ELT)) (-2305 ((|#1| $ (-793)) NIL T ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-3626 ((|#1| $ |#1| |#1|) NIL T ELT)) (-4344 (($ $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-1628 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3931 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2444 (($ $ (-793)) NIL (|has| |#1| (-376)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2058 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3301 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1765 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2963 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-1388 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-1384 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3929 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3649 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-3062 (($ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4239 (($ $) NIL (|has| |#1| (-466)) ELT)) (-1918 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-793)) NIL T ELT)) (-2076 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-1624 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-3765 (((-793) $) NIL T ELT)) (-2883 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1613 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1594 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2581 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3687 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-4330 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3037 ((|#1| $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2233 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-1507 ((|#1| $ |#1|) NIL T ELT)) (-3805 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3900 (((-793) $) NIL T ELT)) (-2264 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (($ |#1|) NIL T ELT)) (-2247 (((-663 |#1|) $) NIL T ELT)) (-2920 ((|#1| $ (-793)) NIL T ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-4323 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
(((-677 |#1|) (-680 |#1|) (-240)) (T -677))
NIL
(-680 |#1|)
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1550 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3026 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4069 (($ $ (-793)) NIL (|has| |#1| (-376)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2029 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1900 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2440 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1998 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2836 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-4211 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2539 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3330 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-1624 (($ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2806 (($ $) NIL (|has| |#1| (-466)) ELT)) (-1581 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-793)) NIL T ELT)) (-2031 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-4113 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-3011 (((-793) $) NIL T ELT)) (-3990 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1438 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2736 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2712 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3456 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2253 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-1879 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-1597 ((|#1| $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1528 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-3924 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-1365 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3630 (((-793) $) NIL T ELT)) (-2053 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (($ |#1|) NIL T ELT)) (-3409 (((-663 |#1|) $) NIL T ELT)) (-2305 ((|#1| $ (-793)) NIL T ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-3626 ((|#1| $ |#1| |#1|) NIL T ELT)) (-4344 (($ $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-678 |#1| |#2|) (-13 (-680 |#1|) (-298 |#2| |#2|)) (-240) (-13 (-670 |#1|) (-10 -8 (-15 -2894 ($ $))))) (T -678))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-1628 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3931 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2444 (($ $ (-793)) NIL (|has| |#1| (-376)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2058 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3301 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1765 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2963 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-1388 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-1384 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3929 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3649 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-3062 (($ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4239 (($ $) NIL (|has| |#1| (-466)) ELT)) (-1918 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-793)) NIL T ELT)) (-2076 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-1624 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-3765 (((-793) $) NIL T ELT)) (-2883 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1613 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1594 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2581 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3687 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-4330 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3037 ((|#1| $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2233 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-1507 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-3805 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3900 (((-793) $) NIL T ELT)) (-2264 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (($ |#1|) NIL T ELT)) (-2247 (((-663 |#1|) $) NIL T ELT)) (-2920 ((|#1| $ (-793)) NIL T ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-4323 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-678 |#1| |#2|) (-13 (-680 |#1|) (-298 |#2| |#2|)) (-240) (-13 (-670 |#1|) (-10 -8 (-15 -3161 ($ $))))) (T -678))
NIL
(-13 (-680 |#1|) (-298 |#2| |#2|))
-((-1550 (($ $) 29 T ELT)) (-4344 (($ $) 27 T ELT)) (-3305 (($) 13 T ELT)))
-(((-679 |#1| |#2|) (-10 -8 (-15 -1550 (|#1| |#1|)) (-15 -4344 (|#1| |#1|)) (-15 -3305 (|#1|))) (-680 |#2|) (-1080)) (T -679))
+((-1628 (($ $) 29 T ELT)) (-3244 (($ $) 27 T ELT)) (-2111 (($) 13 T ELT)))
+(((-679 |#1| |#2|) (-10 -8 (-15 -1628 (|#1| |#1|)) (-15 -3244 (|#1| |#1|)) (-15 -2111 (|#1|))) (-680 |#2|) (-1080)) (T -679))
NIL
-(-10 -8 (-15 -1550 (|#1| |#1|)) (-15 -4344 (|#1| |#1|)) (-15 -3305 (|#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-1550 (($ $) 87 (|has| |#1| (-376)) ELT)) (-3026 (($ $ $) 89 (|has| |#1| (-376)) ELT)) (-4069 (($ $ (-793)) 88 (|has| |#1| (-376)) ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-2029 (($ $ $) 50 (|has| |#1| (-376)) ELT)) (-1900 (($ $ $) 51 (|has| |#1| (-376)) ELT)) (-2440 (($ $ $) 53 (|has| |#1| (-376)) ELT)) (-1998 (($ $ $) 48 (|has| |#1| (-376)) ELT)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 47 (|has| |#1| (-376)) ELT)) (-2836 (((-3 $ "failed") $ $) 49 (|has| |#1| (-376)) ELT)) (-4211 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 52 (|has| |#1| (-376)) ELT)) (-2539 (((-3 (-560) "failed") $) 80 (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) 77 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 74 T ELT)) (-3330 (((-560) $) 79 (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) 76 (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) 75 T ELT)) (-1624 (($ $) 69 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-2806 (($ $) 60 (|has| |#1| (-466)) ELT)) (-1581 (((-114) $) 35 T ELT)) (-1417 (($ |#1| (-793)) 67 T ELT)) (-2031 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 62 (|has| |#1| (-571)) ELT)) (-4113 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 63 (|has| |#1| (-571)) ELT)) (-3011 (((-793) $) 71 T ELT)) (-3990 (($ $ $) 57 (|has| |#1| (-376)) ELT)) (-1438 (($ $ $) 58 (|has| |#1| (-376)) ELT)) (-2736 (($ $ $) 46 (|has| |#1| (-376)) ELT)) (-2712 (($ $ $) 55 (|has| |#1| (-376)) ELT)) (-3456 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 54 (|has| |#1| (-376)) ELT)) (-2253 (((-3 $ "failed") $ $) 56 (|has| |#1| (-376)) ELT)) (-1879 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 59 (|has| |#1| (-376)) ELT)) (-1597 ((|#1| $) 70 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1528 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-571)) ELT)) (-3924 ((|#1| $ |#1|) 92 T ELT)) (-1365 (($ $ $) 86 (|has| |#1| (-376)) ELT)) (-3630 (((-793) $) 72 T ELT)) (-2053 ((|#1| $) 61 (|has| |#1| (-466)) ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ (-421 (-560))) 78 (|has| |#1| (-1069 (-421 (-560)))) ELT) (($ |#1|) 73 T ELT)) (-3409 (((-663 |#1|) $) 66 T ELT)) (-2305 ((|#1| $ (-793)) 68 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-3626 ((|#1| $ |#1| |#1|) 65 T ELT)) (-4344 (($ $) 90 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($) 91 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 82 T ELT) (($ |#1| $) 81 T ELT)))
+(-10 -8 (-15 -1628 (|#1| |#1|)) (-15 -3244 (|#1| |#1|)) (-15 -2111 (|#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-1628 (($ $) 87 (|has| |#1| (-376)) ELT)) (-3931 (($ $ $) 89 (|has| |#1| (-376)) ELT)) (-2444 (($ $ (-793)) 88 (|has| |#1| (-376)) ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-2058 (($ $ $) 50 (|has| |#1| (-376)) ELT)) (-3301 (($ $ $) 51 (|has| |#1| (-376)) ELT)) (-1765 (($ $ $) 53 (|has| |#1| (-376)) ELT)) (-2963 (($ $ $) 48 (|has| |#1| (-376)) ELT)) (-2475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 47 (|has| |#1| (-376)) ELT)) (-1388 (((-3 $ "failed") $ $) 49 (|has| |#1| (-376)) ELT)) (-1384 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 52 (|has| |#1| (-376)) ELT)) (-3929 (((-3 (-560) "failed") $) 80 (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) 77 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 74 T ELT)) (-3649 (((-560) $) 79 (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) 76 (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) 75 T ELT)) (-3062 (($ $) 69 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-4239 (($ $) 60 (|has| |#1| (-466)) ELT)) (-1918 (((-114) $) 35 T ELT)) (-4139 (($ |#1| (-793)) 67 T ELT)) (-2076 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 62 (|has| |#1| (-571)) ELT)) (-1624 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 63 (|has| |#1| (-571)) ELT)) (-3765 (((-793) $) 71 T ELT)) (-2883 (($ $ $) 57 (|has| |#1| (-376)) ELT)) (-1613 (($ $ $) 58 (|has| |#1| (-376)) ELT)) (-1594 (($ $ $) 46 (|has| |#1| (-376)) ELT)) (-2581 (($ $ $) 55 (|has| |#1| (-376)) ELT)) (-2678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 54 (|has| |#1| (-376)) ELT)) (-3687 (((-3 $ "failed") $ $) 56 (|has| |#1| (-376)) ELT)) (-4330 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 59 (|has| |#1| (-376)) ELT)) (-3037 ((|#1| $) 70 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2233 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-571)) ELT)) (-1507 ((|#1| $ |#1|) 92 T ELT)) (-3805 (($ $ $) 86 (|has| |#1| (-376)) ELT)) (-3900 (((-793) $) 72 T ELT)) (-2264 ((|#1| $) 61 (|has| |#1| (-466)) ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ (-421 (-560))) 78 (|has| |#1| (-1069 (-421 (-560)))) ELT) (($ |#1|) 73 T ELT)) (-2247 (((-663 |#1|) $) 66 T ELT)) (-2920 ((|#1| $ (-793)) 68 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-4323 ((|#1| $ |#1| |#1|) 65 T ELT)) (-3244 (($ $) 90 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($) 91 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 82 T ELT) (($ |#1| $) 81 T ELT)))
(((-680 |#1|) (-142) (-1080)) (T -680))
-((-3305 (*1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1080)))) (-4344 (*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1080)))) (-3026 (*1 *1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-4069 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-680 *3)) (-4 *3 (-1080)) (-4 *3 (-376)))) (-1550 (*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-1365 (*1 *1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
-(-13 (-876 |t#1|) (-298 |t#1| |t#1|) (-10 -8 (-15 -3305 ($)) (-15 -4344 ($ $)) (IF (|has| |t#1| (-376)) (PROGN (-15 -3026 ($ $ $)) (-15 -4069 ($ $ (-793))) (-15 -1550 ($ $)) (-15 -1365 ($ $ $))) |%noBranch|)))
+((-2111 (*1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1080)))) (-3244 (*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1080)))) (-3931 (*1 *1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-2444 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-680 *3)) (-4 *3 (-1080)) (-4 *3 (-376)))) (-1628 (*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-3805 (*1 *1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
+(-13 (-876 |t#1|) (-298 |t#1| |t#1|) (-10 -8 (-15 -2111 ($)) (-15 -3244 ($ $)) (IF (|has| |t#1| (-376)) (PROGN (-15 -3931 ($ $ $)) (-15 -2444 ($ $ (-793))) (-15 -1628 ($ $)) (-15 -3805 ($ $ $))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-635 #0=(-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-632 (-887)) . T) ((-298 |#1| |#1|) . T) ((-426 |#1|) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) |has| |#1| (-175)) ((-739 |#1|) |has| |#1| (-175)) ((-748) . T) ((-1069 #0#) |has| |#1| (-1069 (-421 (-560)))) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 |#1|) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T) ((-876 |#1|) . T))
-((-2358 (((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|))) 85 (|has| |#1| (-27)) ELT)) (-4457 (((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|))) 84 (|has| |#1| (-27)) ELT) (((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|)) 19 T ELT)))
-(((-681 |#1| |#2|) (-10 -7 (-15 -4457 ((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4457 ((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|)))) (-15 -2358 ((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|))))) |%noBranch|)) (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))) (-1273 |#1|)) (T -681))
-((-2358 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-4 *5 (-1273 *4)) (-5 *2 (-663 (-677 (-421 *5)))) (-5 *1 (-681 *4 *5)) (-5 *3 (-677 (-421 *5))))) (-4457 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-4 *5 (-1273 *4)) (-5 *2 (-663 (-677 (-421 *5)))) (-5 *1 (-681 *4 *5)) (-5 *3 (-677 (-421 *5))))) (-4457 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-663 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-4 *6 (-1273 *5)) (-5 *2 (-663 (-677 (-421 *6)))) (-5 *1 (-681 *5 *6)) (-5 *3 (-677 (-421 *6))))))
-(-10 -7 (-15 -4457 ((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4457 ((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|)))) (-15 -2358 ((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|))))) |%noBranch|))
-((-3026 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-4069 ((|#2| |#2| (-793) (-1 |#1| |#1|)) 45 T ELT)) (-1365 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT)))
-(((-682 |#1| |#2|) (-10 -7 (-15 -3026 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4069 (|#2| |#2| (-793) (-1 |#1| |#1|))) (-15 -1365 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-376) (-680 |#1|)) (T -682))
-((-1365 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-682 *4 *2)) (-4 *2 (-680 *4)))) (-4069 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-793)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-5 *1 (-682 *5 *2)) (-4 *2 (-680 *5)))) (-3026 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-682 *4 *2)) (-4 *2 (-680 *4)))))
-(-10 -7 (-15 -3026 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -4069 (|#2| |#2| (-793) (-1 |#1| |#1|))) (-15 -1365 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-1616 (($ $ $) 9 T ELT)))
-(((-683 |#1|) (-10 -8 (-15 -1616 (|#1| |#1| |#1|))) (-684)) (T -683))
-NIL
-(-10 -8 (-15 -1616 (|#1| |#1| |#1|)))
-((-1562 (($ $) 8 T ELT)) (-1616 (($ $ $) 6 T ELT)) (-1602 (($ $ $) 7 T ELT)))
+((-2199 (((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|))) 85 (|has| |#1| (-27)) ELT)) (-4012 (((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|))) 84 (|has| |#1| (-27)) ELT) (((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|)) 19 T ELT)))
+(((-681 |#1| |#2|) (-10 -7 (-15 -4012 ((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4012 ((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|)))) (-15 -2199 ((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|))))) |%noBranch|)) (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))) (-1273 |#1|)) (T -681))
+((-2199 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-4 *5 (-1273 *4)) (-5 *2 (-663 (-677 (-421 *5)))) (-5 *1 (-681 *4 *5)) (-5 *3 (-677 (-421 *5))))) (-4012 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-4 *5 (-1273 *4)) (-5 *2 (-663 (-677 (-421 *5)))) (-5 *1 (-681 *4 *5)) (-5 *3 (-677 (-421 *5))))) (-4012 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-663 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-4 *6 (-1273 *5)) (-5 *2 (-663 (-677 (-421 *6)))) (-5 *1 (-681 *5 *6)) (-5 *3 (-677 (-421 *6))))))
+(-10 -7 (-15 -4012 ((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4012 ((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|)))) (-15 -2199 ((-663 (-677 (-421 |#2|))) (-677 (-421 |#2|))))) |%noBranch|))
+((-3931 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2444 ((|#2| |#2| (-793) (-1 |#1| |#1|)) 45 T ELT)) (-3805 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT)))
+(((-682 |#1| |#2|) (-10 -7 (-15 -3931 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2444 (|#2| |#2| (-793) (-1 |#1| |#1|))) (-15 -3805 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-376) (-680 |#1|)) (T -682))
+((-3805 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-682 *4 *2)) (-4 *2 (-680 *4)))) (-2444 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-793)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-5 *1 (-682 *5 *2)) (-4 *2 (-680 *5)))) (-3931 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-682 *4 *2)) (-4 *2 (-680 *4)))))
+(-10 -7 (-15 -3931 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2444 (|#2| |#2| (-793) (-1 |#1| |#1|))) (-15 -3805 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-2311 (($ $ $) 9 T ELT)))
+(((-683 |#1|) (-10 -8 (-15 -2311 (|#1| |#1| |#1|))) (-684)) (T -683))
+NIL
+(-10 -8 (-15 -2311 (|#1| |#1| |#1|)))
+((-2269 (($ $) 8 T ELT)) (-2311 (($ $ $) 6 T ELT)) (-2300 (($ $ $) 7 T ELT)))
(((-684) (-142)) (T -684))
-((-1562 (*1 *1 *1) (-4 *1 (-684))) (-1602 (*1 *1 *1 *1) (-4 *1 (-684))) (-1616 (*1 *1 *1 *1) (-4 *1 (-684))))
-(-13 (-1247) (-10 -8 (-15 -1562 ($ $)) (-15 -1602 ($ $ $)) (-15 -1616 ($ $ $))))
+((-2269 (*1 *1 *1) (-4 *1 (-684))) (-2300 (*1 *1 *1 *1) (-4 *1 (-684))) (-2311 (*1 *1 *1 *1) (-4 *1 (-684))))
+(-13 (-1247) (-10 -8 (-15 -2269 ($ $)) (-15 -2300 ($ $ $)) (-15 -2311 ($ $ $))))
(((-1247) . T))
-((-1747 (((-3 (-663 (-1201 |#1|)) "failed") (-663 (-1201 |#1|)) (-1201 |#1|)) 33 T ELT)))
-(((-685 |#1|) (-10 -7 (-15 -1747 ((-3 (-663 (-1201 |#1|)) "failed") (-663 (-1201 |#1|)) (-1201 |#1|)))) (-939)) (T -685))
-((-1747 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 (-1201 *4))) (-5 *3 (-1201 *4)) (-4 *4 (-939)) (-5 *1 (-685 *4)))))
-(-10 -7 (-15 -1747 ((-3 (-663 (-1201 |#1|)) "failed") (-663 (-1201 |#1|)) (-1201 |#1|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-2571 (((-663 |#1|) $) 84 T ELT)) (-2672 (($ $ (-793)) 94 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2942 (((-1322 |#1| |#2|) (-1322 |#1| |#2|) $) 50 T ELT)) (-2539 (((-3 (-694 |#1|) "failed") $) NIL T ELT)) (-3330 (((-694 |#1|) $) NIL T ELT)) (-1624 (($ $) 93 T ELT)) (-3531 (((-793) $) NIL T ELT)) (-3997 (((-663 $) $) NIL T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1471 (($ (-694 |#1|) |#2|) 70 T ELT)) (-2256 (($ $) 89 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4058 (((-1322 |#1| |#2|) (-1322 |#1| |#2|) $) 49 T ELT)) (-2064 (((-2 (|:| |k| (-694 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-1583 (((-694 |#1|) $) NIL T ELT)) (-1597 ((|#2| $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4187 (($ $ |#1| $) 32 T ELT) (($ $ (-663 |#1|) (-663 $)) 34 T ELT)) (-3630 (((-793) $) 91 T ELT)) (-1592 (($ $ $) 20 T ELT) (($ (-694 |#1|) (-694 |#1|)) 79 T ELT) (($ (-694 |#1|) $) 77 T ELT) (($ $ (-694 |#1|)) 78 T ELT)) (-1578 (((-887) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1313 |#1| |#2|) $) 60 T ELT) (((-1322 |#1| |#2|) $) 43 T ELT) (($ (-694 |#1|)) 27 T ELT)) (-3409 (((-663 |#2|) $) NIL T ELT)) (-2305 ((|#2| $ (-694 |#1|)) NIL T ELT)) (-2115 ((|#2| (-1322 |#1| |#2|) $) 45 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 23 T CONST)) (-4165 (((-663 (-2 (|:| |k| (-694 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-1712 (((-3 $ "failed") (-1313 |#1| |#2|)) 62 T ELT)) (-1440 (($ (-694 |#1|)) 14 T ELT)) (-2473 (((-114) $ $) 46 T ELT)) (-2594 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2580 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 31 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-694 |#1|)) NIL T ELT)))
-(((-686 |#1| |#2|) (-13 (-387 |#1| |#2|) (-397 |#2| (-694 |#1|)) (-10 -8 (-15 -1712 ((-3 $ "failed") (-1313 |#1| |#2|))) (-15 -1592 ($ (-694 |#1|) (-694 |#1|))) (-15 -1592 ($ (-694 |#1|) $)) (-15 -1592 ($ $ (-694 |#1|))))) (-871) (-175)) (T -686))
-((-1712 (*1 *1 *2) (|partial| -12 (-5 *2 (-1313 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) (-5 *1 (-686 *3 *4)))) (-1592 (*1 *1 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-5 *1 (-686 *3 *4)) (-4 *4 (-175)))) (-1592 (*1 *1 *2 *1) (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-5 *1 (-686 *3 *4)) (-4 *4 (-175)))) (-1592 (*1 *1 *1 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-5 *1 (-686 *3 *4)) (-4 *4 (-175)))))
-(-13 (-387 |#1| |#2|) (-397 |#2| (-694 |#1|)) (-10 -8 (-15 -1712 ((-3 $ "failed") (-1313 |#1| |#2|))) (-15 -1592 ($ (-694 |#1|) (-694 |#1|))) (-15 -1592 ($ (-694 |#1|) $)) (-15 -1592 ($ $ (-694 |#1|)))))
-((-4040 (((-114) $) NIL T ELT) (((-114) (-1 (-114) |#2| |#2|) $) 59 T ELT)) (-1703 (($ $) NIL T ELT) (($ (-1 (-114) |#2| |#2|) $) 12 T ELT)) (-3500 (($ (-1 (-114) |#2|) $) 29 T ELT)) (-4391 (($ $) 65 T ELT)) (-2944 (($ $) 74 T ELT)) (-3390 (($ |#2| $) NIL T ELT) (($ (-1 (-114) |#2|) $) 43 T ELT)) (-4129 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-1722 (((-560) |#2| $ (-560)) 71 T ELT) (((-560) |#2| $) NIL T ELT) (((-560) (-1 (-114) |#2|) $) 54 T ELT)) (-4095 (($ (-793) |#2|) 63 T ELT)) (-1708 (($ $ $) NIL T ELT) (($ (-1 (-114) |#2| |#2|) $ $) 31 T ELT)) (-3223 (($ $ $) NIL T ELT) (($ (-1 (-114) |#2| |#2|) $ $) 24 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-2045 (($ |#2|) 15 T ELT)) (-3629 (($ $ $ (-560)) 42 T ELT) (($ |#2| $ (-560)) 40 T ELT)) (-3329 (((-3 |#2| "failed") (-1 (-114) |#2|) $) 53 T ELT)) (-2249 (($ $ (-1264 (-560))) 51 T ELT) (($ $ (-560)) 44 T ELT)) (-3640 (($ $ $ (-560)) 70 T ELT)) (-1799 (($ $) 68 T ELT)) (-2495 (((-114) $ $) 76 T ELT)))
-(((-687 |#1| |#2|) (-10 -8 (-15 -2045 (|#1| |#2|)) (-15 -2249 (|#1| |#1| (-560))) (-15 -2249 (|#1| |#1| (-1264 (-560)))) (-15 -3390 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3629 (|#1| |#2| |#1| (-560))) (-15 -3629 (|#1| |#1| |#1| (-560))) (-15 -1708 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -3500 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3390 (|#1| |#2| |#1|)) (-15 -2944 (|#1| |#1|)) (-15 -1708 (|#1| |#1| |#1|)) (-15 -3223 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -4040 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -1722 ((-560) (-1 (-114) |#2|) |#1|)) (-15 -1722 ((-560) |#2| |#1|)) (-15 -1722 ((-560) |#2| |#1| (-560))) (-15 -3223 (|#1| |#1| |#1|)) (-15 -4040 ((-114) |#1|)) (-15 -3640 (|#1| |#1| |#1| (-560))) (-15 -4391 (|#1| |#1|)) (-15 -1703 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -1703 (|#1| |#1|)) (-15 -2495 ((-114) |#1| |#1|)) (-15 -4129 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4129 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4129 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3329 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -4095 (|#1| (-793) |#2|)) (-15 -3957 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1799 (|#1| |#1|))) (-688 |#2|) (-1247)) (T -687))
-NIL
-(-10 -8 (-15 -2045 (|#1| |#2|)) (-15 -2249 (|#1| |#1| (-560))) (-15 -2249 (|#1| |#1| (-1264 (-560)))) (-15 -3390 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3629 (|#1| |#2| |#1| (-560))) (-15 -3629 (|#1| |#1| |#1| (-560))) (-15 -1708 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -3500 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3390 (|#1| |#2| |#1|)) (-15 -2944 (|#1| |#1|)) (-15 -1708 (|#1| |#1| |#1|)) (-15 -3223 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -4040 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -1722 ((-560) (-1 (-114) |#2|) |#1|)) (-15 -1722 ((-560) |#2| |#1|)) (-15 -1722 ((-560) |#2| |#1| (-560))) (-15 -3223 (|#1| |#1| |#1|)) (-15 -4040 ((-114) |#1|)) (-15 -3640 (|#1| |#1| |#1| (-560))) (-15 -4391 (|#1| |#1|)) (-15 -1703 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -1703 (|#1| |#1|)) (-15 -2495 ((-114) |#1| |#1|)) (-15 -4129 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4129 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4129 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3329 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -4095 (|#1| (-793) |#2|)) (-15 -3957 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1799 (|#1| |#1|)))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3853 ((|#1| $) 49 T ELT)) (-3273 ((|#1| $) 66 T ELT)) (-2270 (($ $) 68 T ELT)) (-3839 (((-1303) $ (-560) (-560)) 99 (|has| $ (-6 -4509)) ELT)) (-2194 (($ $ (-560)) 53 (|has| $ (-6 -4509)) ELT)) (-4040 (((-114) $) 144 (|has| |#1| (-871)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) 138 T ELT)) (-1703 (($ $) 148 (-12 (|has| |#1| (-871)) (|has| $ (-6 -4509))) ELT) (($ (-1 (-114) |#1| |#1|) $) 147 (|has| $ (-6 -4509)) ELT)) (-2286 (($ $) 143 (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $) 137 T ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-2869 ((|#1| $ |#1|) 40 (|has| $ (-6 -4509)) ELT)) (-2102 (($ $ $) 57 (|has| $ (-6 -4509)) ELT)) (-4319 ((|#1| $ |#1|) 55 (|has| $ (-6 -4509)) ELT)) (-3132 ((|#1| $ |#1|) 59 (|has| $ (-6 -4509)) ELT)) (-1773 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4509)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4509)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4509)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) 119 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-560) |#1|) 88 (|has| $ (-6 -4509)) ELT)) (-2083 (($ $ (-663 $)) 42 (|has| $ (-6 -4509)) ELT)) (-3500 (($ (-1 (-114) |#1|) $) 131 T ELT)) (-1982 (($ (-1 (-114) |#1|) $) 104 (|has| $ (-6 -4508)) ELT)) (-3264 ((|#1| $) 67 T ELT)) (-2238 (($) 7 T CONST)) (-4391 (($ $) 146 (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) 136 T ELT)) (-3649 (($ $) 74 T ELT) (($ $ (-793)) 72 T ELT)) (-2944 (($ $) 133 (|has| |#1| (-1132)) ELT)) (-3606 (($ $) 101 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3390 (($ |#1| $) 132 (|has| |#1| (-1132)) ELT) (($ (-1 (-114) |#1|) $) 127 T ELT)) (-2375 (($ (-1 (-114) |#1|) $) 105 (|has| $ (-6 -4508)) ELT) (($ |#1| $) 102 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3779 ((|#1| $ (-560) |#1|) 87 (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-560)) 89 T ELT)) (-2267 (((-114) $) 85 T ELT)) (-1722 (((-560) |#1| $ (-560)) 141 (|has| |#1| (-1132)) ELT) (((-560) |#1| $) 140 (|has| |#1| (-1132)) ELT) (((-560) (-1 (-114) |#1|) $) 139 T ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-3092 (((-663 $) $) 51 T ELT)) (-3398 (((-114) $ $) 43 (|has| |#1| (-1132)) ELT)) (-4095 (($ (-793) |#1|) 111 T ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-1762 (((-560) $) 97 (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) 154 (|has| |#1| (-871)) ELT)) (-1708 (($ $ $) 134 (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 130 T ELT)) (-3223 (($ $ $) 142 (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 135 T ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2937 (((-560) $) 96 (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) 153 (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 114 T ELT)) (-2045 (($ |#1|) 124 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-3596 (((-663 |#1|) $) 46 T ELT)) (-2409 (((-114) $) 50 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-2398 ((|#1| $) 71 T ELT) (($ $ (-793)) 69 T ELT)) (-3629 (($ $ $ (-560)) 129 T ELT) (($ |#1| $ (-560)) 128 T ELT)) (-3996 (($ $ $ (-560)) 118 T ELT) (($ |#1| $ (-560)) 117 T ELT)) (-3270 (((-663 (-560)) $) 94 T ELT)) (-3586 (((-114) (-560) $) 93 T ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-3637 ((|#1| $) 77 T ELT) (($ $ (-793)) 75 T ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 108 T ELT)) (-3037 (($ $ |#1|) 98 (|has| $ (-6 -4509)) ELT)) (-3875 (((-114) $) 86 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-2914 (((-114) |#1| $) 95 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) 92 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3924 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT) (($ $ (-1264 (-560))) 110 T ELT) ((|#1| $ (-560)) 91 T ELT) ((|#1| $ (-560) |#1|) 90 T ELT)) (-1750 (((-560) $ $) 45 T ELT)) (-2249 (($ $ (-1264 (-560))) 126 T ELT) (($ $ (-560)) 125 T ELT)) (-4413 (($ $ (-1264 (-560))) 116 T ELT) (($ $ (-560)) 115 T ELT)) (-1978 (((-114) $) 47 T ELT)) (-1763 (($ $) 63 T ELT)) (-1915 (($ $) 60 (|has| $ (-6 -4509)) ELT)) (-1502 (((-793) $) 64 T ELT)) (-3458 (($ $) 65 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3640 (($ $ $ (-560)) 145 (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) 100 (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 109 T ELT)) (-4354 (($ $ $) 62 T ELT) (($ $ |#1|) 61 T ELT)) (-3415 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT) (($ (-663 $)) 113 T ELT) (($ $ |#1|) 112 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3955 (((-663 $) $) 52 T ELT)) (-2997 (((-114) $ $) 44 (|has| |#1| (-1132)) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2536 (((-114) $ $) 152 (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) 150 (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2521 (((-114) $ $) 151 (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) 149 (|has| |#1| (-871)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-2350 (((-3 (-663 (-1201 |#1|)) "failed") (-663 (-1201 |#1|)) (-1201 |#1|)) 33 T ELT)))
+(((-685 |#1|) (-10 -7 (-15 -2350 ((-3 (-663 (-1201 |#1|)) "failed") (-663 (-1201 |#1|)) (-1201 |#1|)))) (-939)) (T -685))
+((-2350 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 (-1201 *4))) (-5 *3 (-1201 *4)) (-4 *4 (-939)) (-5 *1 (-685 *4)))))
+(-10 -7 (-15 -2350 ((-3 (-663 (-1201 |#1|)) "failed") (-663 (-1201 |#1|)) (-1201 |#1|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-4356 (((-663 |#1|) $) 84 T ELT)) (-2165 (($ $ (-793)) 94 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-4308 (((-1322 |#1| |#2|) (-1322 |#1| |#2|) $) 50 T ELT)) (-3929 (((-3 (-694 |#1|) "failed") $) NIL T ELT)) (-3649 (((-694 |#1|) $) NIL T ELT)) (-3062 (($ $) 93 T ELT)) (-4127 (((-793) $) NIL T ELT)) (-2947 (((-663 $) $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-1405 (($ (-694 |#1|) |#2|) 70 T ELT)) (-3723 (($ $) 89 T ELT)) (-2260 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2343 (((-1322 |#1| |#2|) (-1322 |#1| |#2|) $) 49 T ELT)) (-2354 (((-2 (|:| |k| (-694 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3024 (((-694 |#1|) $) NIL T ELT)) (-3037 ((|#2| $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2371 (($ $ |#1| $) 32 T ELT) (($ $ (-663 |#1|) (-663 $)) 34 T ELT)) (-3900 (((-793) $) 91 T ELT)) (-3924 (($ $ $) 20 T ELT) (($ (-694 |#1|) (-694 |#1|)) 79 T ELT) (($ (-694 |#1|) $) 77 T ELT) (($ $ (-694 |#1|)) 78 T ELT)) (-3913 (((-887) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1313 |#1| |#2|) $) 60 T ELT) (((-1322 |#1| |#2|) $) 43 T ELT) (($ (-694 |#1|)) 27 T ELT)) (-2247 (((-663 |#2|) $) NIL T ELT)) (-2920 ((|#2| $ (-694 |#1|)) NIL T ELT)) (-2625 ((|#2| (-1322 |#1| |#2|) $) 45 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 23 T CONST)) (-4118 (((-663 (-2 (|:| |k| (-694 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-2026 (((-3 $ "failed") (-1313 |#1| |#2|)) 62 T ELT)) (-2700 (($ (-694 |#1|)) 14 T ELT)) (-2340 (((-114) $ $) 46 T ELT)) (-2453 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2441 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 31 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-694 |#1|)) NIL T ELT)))
+(((-686 |#1| |#2|) (-13 (-387 |#1| |#2|) (-397 |#2| (-694 |#1|)) (-10 -8 (-15 -2026 ((-3 $ "failed") (-1313 |#1| |#2|))) (-15 -3924 ($ (-694 |#1|) (-694 |#1|))) (-15 -3924 ($ (-694 |#1|) $)) (-15 -3924 ($ $ (-694 |#1|))))) (-871) (-175)) (T -686))
+((-2026 (*1 *1 *2) (|partial| -12 (-5 *2 (-1313 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) (-5 *1 (-686 *3 *4)))) (-3924 (*1 *1 *2 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-5 *1 (-686 *3 *4)) (-4 *4 (-175)))) (-3924 (*1 *1 *2 *1) (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-5 *1 (-686 *3 *4)) (-4 *4 (-175)))) (-3924 (*1 *1 *1 *2) (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-5 *1 (-686 *3 *4)) (-4 *4 (-175)))))
+(-13 (-387 |#1| |#2|) (-397 |#2| (-694 |#1|)) (-10 -8 (-15 -2026 ((-3 $ "failed") (-1313 |#1| |#2|))) (-15 -3924 ($ (-694 |#1|) (-694 |#1|))) (-15 -3924 ($ (-694 |#1|) $)) (-15 -3924 ($ $ (-694 |#1|)))))
+((-2152 (((-114) $) NIL T ELT) (((-114) (-1 (-114) |#2| |#2|) $) 59 T ELT)) (-3152 (($ $) NIL T ELT) (($ (-1 (-114) |#2| |#2|) $) 12 T ELT)) (-1864 (($ (-1 (-114) |#2|) $) 29 T ELT)) (-2372 (($ $) 65 T ELT)) (-4329 (($ $) 74 T ELT)) (-2091 (($ |#2| $) NIL T ELT) (($ (-1 (-114) |#2|) $) 43 T ELT)) (-1778 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-2359 (((-560) |#2| $ (-560)) 71 T ELT) (((-560) |#2| $) NIL T ELT) (((-560) (-1 (-114) |#2|) $) 54 T ELT)) (-4246 (($ (-793) |#2|) 63 T ELT)) (-3204 (($ $ $) NIL T ELT) (($ (-1 (-114) |#2| |#2|) $ $) 31 T ELT)) (-4167 (($ $ $) NIL T ELT) (($ (-1 (-114) |#2| |#2|) $ $) 24 T ELT)) (-2260 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-2560 (($ |#2|) 15 T ELT)) (-3888 (($ $ $ (-560)) 42 T ELT) (($ |#2| $ (-560)) 40 T ELT)) (-2708 (((-3 |#2| "failed") (-1 (-114) |#2|) $) 53 T ELT)) (-3639 (($ $ (-1264 (-560))) 51 T ELT) (($ $ (-560)) 44 T ELT)) (-3993 (($ $ $ (-560)) 70 T ELT)) (-4107 (($ $) 68 T ELT)) (-2362 (((-114) $ $) 76 T ELT)))
+(((-687 |#1| |#2|) (-10 -8 (-15 -2560 (|#1| |#2|)) (-15 -3639 (|#1| |#1| (-560))) (-15 -3639 (|#1| |#1| (-1264 (-560)))) (-15 -2091 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3888 (|#1| |#2| |#1| (-560))) (-15 -3888 (|#1| |#1| |#1| (-560))) (-15 -3204 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -1864 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -2091 (|#1| |#2| |#1|)) (-15 -4329 (|#1| |#1|)) (-15 -3204 (|#1| |#1| |#1|)) (-15 -4167 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -2152 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -2359 ((-560) (-1 (-114) |#2|) |#1|)) (-15 -2359 ((-560) |#2| |#1|)) (-15 -2359 ((-560) |#2| |#1| (-560))) (-15 -4167 (|#1| |#1| |#1|)) (-15 -2152 ((-114) |#1|)) (-15 -3993 (|#1| |#1| |#1| (-560))) (-15 -2372 (|#1| |#1|)) (-15 -3152 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -3152 (|#1| |#1|)) (-15 -2362 ((-114) |#1| |#1|)) (-15 -1778 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1778 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1778 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2708 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -4246 (|#1| (-793) |#2|)) (-15 -2260 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2260 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4107 (|#1| |#1|))) (-688 |#2|) (-1247)) (T -687))
+NIL
+(-10 -8 (-15 -2560 (|#1| |#2|)) (-15 -3639 (|#1| |#1| (-560))) (-15 -3639 (|#1| |#1| (-1264 (-560)))) (-15 -2091 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3888 (|#1| |#2| |#1| (-560))) (-15 -3888 (|#1| |#1| |#1| (-560))) (-15 -3204 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -1864 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -2091 (|#1| |#2| |#1|)) (-15 -4329 (|#1| |#1|)) (-15 -3204 (|#1| |#1| |#1|)) (-15 -4167 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -2152 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -2359 ((-560) (-1 (-114) |#2|) |#1|)) (-15 -2359 ((-560) |#2| |#1|)) (-15 -2359 ((-560) |#2| |#1| (-560))) (-15 -4167 (|#1| |#1| |#1|)) (-15 -2152 ((-114) |#1|)) (-15 -3993 (|#1| |#1| |#1| (-560))) (-15 -2372 (|#1| |#1|)) (-15 -3152 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -3152 (|#1| |#1|)) (-15 -2362 ((-114) |#1| |#1|)) (-15 -1778 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1778 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1778 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2708 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -4246 (|#1| (-793) |#2|)) (-15 -2260 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2260 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4107 (|#1| |#1|)))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1430 ((|#1| $) 49 T ELT)) (-3853 ((|#1| $) 66 T ELT)) (-3990 (($ $) 68 T ELT)) (-2033 (((-1303) $ (-560) (-560)) 99 (|has| $ (-6 -4509)) ELT)) (-4367 (($ $ (-560)) 53 (|has| $ (-6 -4509)) ELT)) (-2152 (((-114) $) 144 (|has| |#1| (-871)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) 138 T ELT)) (-3152 (($ $) 148 (-12 (|has| |#1| (-871)) (|has| $ (-6 -4509))) ELT) (($ (-1 (-114) |#1| |#1|) $) 147 (|has| $ (-6 -4509)) ELT)) (-1787 (($ $) 143 (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $) 137 T ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-3654 ((|#1| $ |#1|) 40 (|has| $ (-6 -4509)) ELT)) (-1518 (($ $ $) 57 (|has| $ (-6 -4509)) ELT)) (-3042 ((|#1| $ |#1|) 55 (|has| $ (-6 -4509)) ELT)) (-2509 ((|#1| $ |#1|) 59 (|has| $ (-6 -4509)) ELT)) (-4083 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4509)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4509)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4509)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) 119 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-560) |#1|) 88 (|has| $ (-6 -4509)) ELT)) (-2566 (($ $ (-663 $)) 42 (|has| $ (-6 -4509)) ELT)) (-1864 (($ (-1 (-114) |#1|) $) 131 T ELT)) (-3923 (($ (-1 (-114) |#1|) $) 104 (|has| $ (-6 -4508)) ELT)) (-3839 ((|#1| $) 67 T ELT)) (-3525 (($) 7 T CONST)) (-2372 (($ $) 146 (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) 136 T ELT)) (-4345 (($ $) 74 T ELT) (($ $ (-793)) 72 T ELT)) (-4329 (($ $) 133 (|has| |#1| (-1132)) ELT)) (-3658 (($ $) 101 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2091 (($ |#1| $) 132 (|has| |#1| (-1132)) ELT) (($ (-1 (-114) |#1|) $) 127 T ELT)) (-3033 (($ (-1 (-114) |#1|) $) 105 (|has| $ (-6 -4508)) ELT) (($ |#1| $) 102 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3338 ((|#1| $ (-560) |#1|) 87 (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-560)) 89 T ELT)) (-3843 (((-114) $) 85 T ELT)) (-2359 (((-560) |#1| $ (-560)) 141 (|has| |#1| (-1132)) ELT) (((-560) |#1| $) 140 (|has| |#1| (-1132)) ELT) (((-560) (-1 (-114) |#1|) $) 139 T ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-2104 (((-663 $) $) 51 T ELT)) (-2150 (((-114) $ $) 43 (|has| |#1| (-1132)) ELT)) (-4246 (($ (-793) |#1|) 111 T ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-2483 (((-560) $) 97 (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) 154 (|has| |#1| (-871)) ELT)) (-3204 (($ $ $) 134 (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 130 T ELT)) (-4167 (($ $ $) 142 (|has| |#1| (-871)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 135 T ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4263 (((-560) $) 96 (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) 153 (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 114 T ELT)) (-2560 (($ |#1|) 124 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-2656 (((-663 |#1|) $) 46 T ELT)) (-1485 (((-114) $) 50 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3057 ((|#1| $) 71 T ELT) (($ $ (-793)) 69 T ELT)) (-3888 (($ $ $ (-560)) 129 T ELT) (($ |#1| $ (-560)) 128 T ELT)) (-2507 (($ $ $ (-560)) 118 T ELT) (($ |#1| $ (-560)) 117 T ELT)) (-3372 (((-663 (-560)) $) 94 T ELT)) (-3439 (((-114) (-560) $) 93 T ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-4334 ((|#1| $) 77 T ELT) (($ $ (-793)) 75 T ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 108 T ELT)) (-2740 (($ $ |#1|) 98 (|has| $ (-6 -4509)) ELT)) (-4270 (((-114) $) 86 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-4019 (((-114) |#1| $) 95 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) 92 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1507 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT) (($ $ (-1264 (-560))) 110 T ELT) ((|#1| $ (-560)) 91 T ELT) ((|#1| $ (-560) |#1|) 90 T ELT)) (-2374 (((-560) $ $) 45 T ELT)) (-3639 (($ $ (-1264 (-560))) 126 T ELT) (($ $ (-560)) 125 T ELT)) (-2579 (($ $ (-1264 (-560))) 116 T ELT) (($ $ (-560)) 115 T ELT)) (-2752 (((-114) $) 47 T ELT)) (-2493 (($ $) 63 T ELT)) (-3438 (($ $) 60 (|has| $ (-6 -4509)) ELT)) (-3010 (((-793) $) 64 T ELT)) (-1474 (($ $) 65 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3993 (($ $ $ (-560)) 145 (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) 100 (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 109 T ELT)) (-3305 (($ $ $) 62 T ELT) (($ $ |#1|) 61 T ELT)) (-1955 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT) (($ (-663 $)) 113 T ELT) (($ $ |#1|) 112 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3809 (((-663 $) $) 52 T ELT)) (-3606 (((-114) $ $) 44 (|has| |#1| (-1132)) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2396 (((-114) $ $) 152 (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) 150 (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2386 (((-114) $ $) 151 (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) 149 (|has| |#1| (-871)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-688 |#1|) (-142) (-1247)) (T -688))
-((-2045 (*1 *1 *2) (-12 (-4 *1 (-688 *2)) (-4 *2 (-1247)))))
-(-13 (-1180 |t#1|) (-385 |t#1|) (-294 |t#1|) (-10 -8 (-15 -2045 ($ |t#1|))))
-(((-34) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-871)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-871)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #0=(-560) |#1|) . T) ((-298 (-1264 (-560)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-294 |#1|) . T) ((-385 |#1|) . T) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-673 |#1|) . T) ((-871) |has| |#1| (-871)) ((-874) |has| |#1| (-871)) ((-1041 |#1|) . T) ((-1132) -2304 (|has| |#1| (-1132)) (|has| |#1| (-871))) ((-1180 |#1|) . T) ((-1247) . T) ((-1286 |#1|) . T))
-((-1433 (((-663 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1954 (-663 |#3|)))) |#4| (-663 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1954 (-663 |#3|))) |#4| |#3|) 60 T ELT)) (-2326 (((-793) |#4| |#3|) 18 T ELT)) (-2123 (((-3 |#3| "failed") |#4| |#3|) 21 T ELT)) (-1555 (((-114) |#4| |#3|) 14 T ELT)))
-(((-689 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1433 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1954 (-663 |#3|))) |#4| |#3|)) (-15 -1433 ((-663 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1954 (-663 |#3|)))) |#4| (-663 |#3|))) (-15 -2123 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1555 ((-114) |#4| |#3|)) (-15 -2326 ((-793) |#4| |#3|))) (-376) (-13 (-385 |#1|) (-10 -7 (-6 -4509))) (-13 (-385 |#1|) (-10 -7 (-6 -4509))) (-708 |#1| |#2| |#3|)) (T -689))
-((-2326 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4509)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4509)))) (-5 *2 (-793)) (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))) (-1555 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4509)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4509)))) (-5 *2 (-114)) (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))) (-2123 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-376)) (-4 *5 (-13 (-385 *4) (-10 -7 (-6 -4509)))) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4509)))) (-5 *1 (-689 *4 *5 *2 *3)) (-4 *3 (-708 *4 *5 *2)))) (-1433 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4509)))) (-4 *7 (-13 (-385 *5) (-10 -7 (-6 -4509)))) (-5 *2 (-663 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1954 (-663 *7))))) (-5 *1 (-689 *5 *6 *7 *3)) (-5 *4 (-663 *7)) (-4 *3 (-708 *5 *6 *7)))) (-1433 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4509)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4509)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1954 (-663 *4)))) (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))))
-(-10 -7 (-15 -1433 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1954 (-663 |#3|))) |#4| |#3|)) (-15 -1433 ((-663 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1954 (-663 |#3|)))) |#4| (-663 |#3|))) (-15 -2123 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1555 ((-114) |#4| |#3|)) (-15 -2326 ((-793) |#4| |#3|)))
-((-1433 (((-663 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -1954 (-663 (-1297 |#1|))))) (-663 (-663 |#1|)) (-663 (-1297 |#1|))) 22 T ELT) (((-663 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -1954 (-663 (-1297 |#1|))))) (-711 |#1|) (-663 (-1297 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -1954 (-663 (-1297 |#1|)))) (-663 (-663 |#1|)) (-1297 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -1954 (-663 (-1297 |#1|)))) (-711 |#1|) (-1297 |#1|)) 14 T ELT)) (-2326 (((-793) (-711 |#1|) (-1297 |#1|)) 30 T ELT)) (-2123 (((-3 (-1297 |#1|) "failed") (-711 |#1|) (-1297 |#1|)) 24 T ELT)) (-1555 (((-114) (-711 |#1|) (-1297 |#1|)) 27 T ELT)))
-(((-690 |#1|) (-10 -7 (-15 -1433 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -1954 (-663 (-1297 |#1|)))) (-711 |#1|) (-1297 |#1|))) (-15 -1433 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -1954 (-663 (-1297 |#1|)))) (-663 (-663 |#1|)) (-1297 |#1|))) (-15 -1433 ((-663 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -1954 (-663 (-1297 |#1|))))) (-711 |#1|) (-663 (-1297 |#1|)))) (-15 -1433 ((-663 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -1954 (-663 (-1297 |#1|))))) (-663 (-663 |#1|)) (-663 (-1297 |#1|)))) (-15 -2123 ((-3 (-1297 |#1|) "failed") (-711 |#1|) (-1297 |#1|))) (-15 -1555 ((-114) (-711 |#1|) (-1297 |#1|))) (-15 -2326 ((-793) (-711 |#1|) (-1297 |#1|)))) (-376)) (T -690))
-((-2326 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-376)) (-5 *2 (-793)) (-5 *1 (-690 *5)))) (-1555 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-376)) (-5 *2 (-114)) (-5 *1 (-690 *5)))) (-2123 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1297 *4)) (-5 *3 (-711 *4)) (-4 *4 (-376)) (-5 *1 (-690 *4)))) (-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-663 *5))) (-4 *5 (-376)) (-5 *2 (-663 (-2 (|:| |particular| (-3 (-1297 *5) "failed")) (|:| -1954 (-663 (-1297 *5)))))) (-5 *1 (-690 *5)) (-5 *4 (-663 (-1297 *5))))) (-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *5)) (-4 *5 (-376)) (-5 *2 (-663 (-2 (|:| |particular| (-3 (-1297 *5) "failed")) (|:| -1954 (-663 (-1297 *5)))))) (-5 *1 (-690 *5)) (-5 *4 (-663 (-1297 *5))))) (-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-663 *5))) (-4 *5 (-376)) (-5 *2 (-2 (|:| |particular| (-3 (-1297 *5) "failed")) (|:| -1954 (-663 (-1297 *5))))) (-5 *1 (-690 *5)) (-5 *4 (-1297 *5)))) (-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |particular| (-3 (-1297 *5) "failed")) (|:| -1954 (-663 (-1297 *5))))) (-5 *1 (-690 *5)) (-5 *4 (-1297 *5)))))
-(-10 -7 (-15 -1433 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -1954 (-663 (-1297 |#1|)))) (-711 |#1|) (-1297 |#1|))) (-15 -1433 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -1954 (-663 (-1297 |#1|)))) (-663 (-663 |#1|)) (-1297 |#1|))) (-15 -1433 ((-663 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -1954 (-663 (-1297 |#1|))))) (-711 |#1|) (-663 (-1297 |#1|)))) (-15 -1433 ((-663 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -1954 (-663 (-1297 |#1|))))) (-663 (-663 |#1|)) (-663 (-1297 |#1|)))) (-15 -2123 ((-3 (-1297 |#1|) "failed") (-711 |#1|) (-1297 |#1|))) (-15 -1555 ((-114) (-711 |#1|) (-1297 |#1|))) (-15 -2326 ((-793) (-711 |#1|) (-1297 |#1|))))
-((-1833 (((-2 (|:| |particular| (-3 (-1297 (-421 |#4|)) "failed")) (|:| -1954 (-663 (-1297 (-421 |#4|))))) (-663 |#4|) (-663 |#3|)) 51 T ELT)))
-(((-691 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1833 ((-2 (|:| |particular| (-3 (-1297 (-421 |#4|)) "failed")) (|:| -1954 (-663 (-1297 (-421 |#4|))))) (-663 |#4|) (-663 |#3|)))) (-571) (-815) (-871) (-979 |#1| |#2| |#3|)) (T -691))
-((-1833 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *7)) (-4 *7 (-871)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-815)) (-5 *2 (-2 (|:| |particular| (-3 (-1297 (-421 *8)) "failed")) (|:| -1954 (-663 (-1297 (-421 *8)))))) (-5 *1 (-691 *5 *6 *7 *8)))))
-(-10 -7 (-15 -1833 ((-2 (|:| |particular| (-3 (-1297 (-421 |#4|)) "failed")) (|:| -1954 (-663 (-1297 (-421 |#4|))))) (-663 |#4|) (-663 |#3|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-2489 (((-3 $ "failed")) NIL (|has| |#2| (-571)) ELT)) (-3349 ((|#2| $) NIL T ELT)) (-4338 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2545 (((-1297 (-711 |#2|))) NIL T ELT) (((-1297 (-711 |#2|)) (-1297 $)) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-1854 (((-1297 $)) 42 T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-2733 (($ |#2|) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2677 (($ $) NIL (|has| |#2| (-319)) ELT)) (-3634 (((-246 |#1| |#2|) $ (-560)) NIL T ELT)) (-4126 (((-3 (-2 (|:| |particular| $) (|:| -1954 (-663 $))) "failed")) NIL (|has| |#2| (-571)) ELT)) (-3608 (((-3 $ "failed")) NIL (|has| |#2| (-571)) ELT)) (-2432 (((-711 |#2|)) NIL T ELT) (((-711 |#2|) (-1297 $)) NIL T ELT)) (-3346 ((|#2| $) NIL T ELT)) (-3135 (((-711 |#2|) $) NIL T ELT) (((-711 |#2|) $ (-1297 $)) NIL T ELT)) (-1713 (((-3 $ "failed") $) NIL (|has| |#2| (-571)) ELT)) (-4230 (((-1201 (-975 |#2|))) NIL (|has| |#2| (-376)) ELT)) (-1866 (($ $ (-948)) NIL T ELT)) (-4092 ((|#2| $) NIL T ELT)) (-1822 (((-1201 |#2|) $) NIL (|has| |#2| (-571)) ELT)) (-3392 ((|#2|) NIL T ELT) ((|#2| (-1297 $)) NIL T ELT)) (-3412 (((-1201 |#2|) $) NIL T ELT)) (-3706 (((-114)) NIL T ELT)) (-2539 (((-3 (-560) "failed") $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-3330 (((-560) $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) ((|#2| $) NIL T ELT)) (-4143 (($ (-1297 |#2|)) NIL T ELT) (($ (-1297 |#2|) (-1297 $)) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2326 (((-793) $) NIL (|has| |#2| (-571)) ELT) (((-948)) 43 T ELT)) (-3709 ((|#2| $ (-560) (-560)) NIL T ELT)) (-3157 (((-114)) NIL T ELT)) (-1784 (($ $ (-948)) NIL T ELT)) (-2181 (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1581 (((-114) $) NIL T ELT)) (-1401 (((-793) $) NIL (|has| |#2| (-571)) ELT)) (-2454 (((-663 (-246 |#1| |#2|)) $) NIL (|has| |#2| (-571)) ELT)) (-3648 (((-793) $) NIL T ELT)) (-1794 (((-114)) NIL T ELT)) (-3658 (((-793) $) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-3535 ((|#2| $) NIL (|has| |#2| (-6 (-4510 "*"))) ELT)) (-2711 (((-560) $) NIL T ELT)) (-2369 (((-560) $) NIL T ELT)) (-2656 (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-1468 (((-560) $) NIL T ELT)) (-2632 (((-560) $) NIL T ELT)) (-2589 (($ (-663 (-663 |#2|))) NIL T ELT)) (-3768 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2543 (((-663 (-663 |#2|)) $) NIL T ELT)) (-4320 (((-114)) NIL T ELT)) (-2959 (((-114)) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1398 (((-3 (-2 (|:| |particular| $) (|:| -1954 (-663 $))) "failed")) NIL (|has| |#2| (-571)) ELT)) (-2171 (((-3 $ "failed")) NIL (|has| |#2| (-571)) ELT)) (-1501 (((-711 |#2|)) NIL T ELT) (((-711 |#2|) (-1297 $)) NIL T ELT)) (-3876 ((|#2| $) NIL T ELT)) (-2517 (((-711 |#2|) $) NIL T ELT) (((-711 |#2|) $ (-1297 $)) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-711 |#2|) (-1297 $)) NIL T ELT)) (-3236 (((-3 $ "failed") $) NIL (|has| |#2| (-571)) ELT)) (-4133 (((-1201 (-975 |#2|))) NIL (|has| |#2| (-376)) ELT)) (-3520 (($ $ (-948)) NIL T ELT)) (-2442 ((|#2| $) NIL T ELT)) (-4161 (((-1201 |#2|) $) NIL (|has| |#2| (-571)) ELT)) (-2456 ((|#2|) NIL T ELT) ((|#2| (-1297 $)) NIL T ELT)) (-3569 (((-1201 |#2|) $) NIL T ELT)) (-2220 (((-114)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2995 (((-114)) NIL T ELT)) (-1721 (((-114)) NIL T ELT)) (-2940 (((-114)) NIL T ELT)) (-2141 (((-3 $ "failed") $) NIL (|has| |#2| (-376)) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2892 (((-114)) NIL T ELT)) (-1528 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT)) (-2787 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#2| $ (-560) (-560) |#2|) NIL T ELT) ((|#2| $ (-560) (-560)) 28 T ELT) ((|#2| $ (-560)) NIL T ELT)) (-2894 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-3195 ((|#2| $) NIL T ELT)) (-3323 (($ (-663 |#2|)) NIL T ELT)) (-3032 (((-114) $) NIL T ELT)) (-2716 (((-246 |#1| |#2|) $) NIL T ELT)) (-4227 ((|#2| $) NIL (|has| |#2| (-6 (-4510 "*"))) ELT)) (-3865 (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-1799 (($ $) NIL T ELT)) (-2178 (((-711 |#2|) (-1297 $)) NIL T ELT) (((-1297 |#2|) $) NIL T ELT) (((-711 |#2|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#2|) $ (-1297 $)) 31 T ELT)) (-1407 (($ (-1297 |#2|)) NIL T ELT) (((-1297 |#2|) $) NIL T ELT)) (-4106 (((-663 (-975 |#2|))) NIL T ELT) (((-663 (-975 |#2|)) (-1297 $)) NIL T ELT)) (-2013 (($ $ $) NIL T ELT)) (-2620 (((-114)) NIL T ELT)) (-1644 (((-246 |#1| |#2|) $ (-560)) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (($ |#2|) NIL T ELT) (((-711 |#2|) $) NIL T ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-1954 (((-1297 $)) 41 T ELT)) (-1548 (((-663 (-1297 |#2|))) NIL (|has| |#2| (-571)) ELT)) (-4128 (($ $ $ $) NIL T ELT)) (-1418 (((-114)) NIL T ELT)) (-3626 (($ (-711 |#2|) $) NIL T ELT)) (-1728 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2441 (((-114) $) NIL T ELT)) (-3868 (($ $ $) NIL T ELT)) (-1405 (((-114)) NIL T ELT)) (-2493 (((-114)) NIL T ELT)) (-2423 (((-114)) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#2| (-376)) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) NIL T ELT) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) NIL T ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+((-2560 (*1 *1 *2) (-12 (-4 *1 (-688 *2)) (-4 *2 (-1247)))))
+(-13 (-1180 |t#1|) (-385 |t#1|) (-294 |t#1|) (-10 -8 (-15 -2560 ($ |t#1|))))
+(((-34) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-871)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-871)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #0=(-560) |#1|) . T) ((-298 (-1264 (-560)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-294 |#1|) . T) ((-385 |#1|) . T) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-673 |#1|) . T) ((-871) |has| |#1| (-871)) ((-874) |has| |#1| (-871)) ((-1041 |#1|) . T) ((-1132) -2196 (|has| |#1| (-1132)) (|has| |#1| (-871))) ((-1180 |#1|) . T) ((-1247) . T) ((-1286 |#1|) . T))
+((-1652 (((-663 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3822 (-663 |#3|)))) |#4| (-663 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3822 (-663 |#3|))) |#4| |#3|) 60 T ELT)) (-1604 (((-793) |#4| |#3|) 18 T ELT)) (-1706 (((-3 |#3| "failed") |#4| |#3|) 21 T ELT)) (-1662 (((-114) |#4| |#3|) 14 T ELT)))
+(((-689 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1652 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3822 (-663 |#3|))) |#4| |#3|)) (-15 -1652 ((-663 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3822 (-663 |#3|)))) |#4| (-663 |#3|))) (-15 -1706 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1662 ((-114) |#4| |#3|)) (-15 -1604 ((-793) |#4| |#3|))) (-376) (-13 (-385 |#1|) (-10 -7 (-6 -4509))) (-13 (-385 |#1|) (-10 -7 (-6 -4509))) (-708 |#1| |#2| |#3|)) (T -689))
+((-1604 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4509)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4509)))) (-5 *2 (-793)) (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))) (-1662 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4509)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4509)))) (-5 *2 (-114)) (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))) (-1706 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-376)) (-4 *5 (-13 (-385 *4) (-10 -7 (-6 -4509)))) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4509)))) (-5 *1 (-689 *4 *5 *2 *3)) (-4 *3 (-708 *4 *5 *2)))) (-1652 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4509)))) (-4 *7 (-13 (-385 *5) (-10 -7 (-6 -4509)))) (-5 *2 (-663 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3822 (-663 *7))))) (-5 *1 (-689 *5 *6 *7 *3)) (-5 *4 (-663 *7)) (-4 *3 (-708 *5 *6 *7)))) (-1652 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4509)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4509)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3822 (-663 *4)))) (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))))
+(-10 -7 (-15 -1652 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3822 (-663 |#3|))) |#4| |#3|)) (-15 -1652 ((-663 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3822 (-663 |#3|)))) |#4| (-663 |#3|))) (-15 -1706 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1662 ((-114) |#4| |#3|)) (-15 -1604 ((-793) |#4| |#3|)))
+((-1652 (((-663 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -3822 (-663 (-1297 |#1|))))) (-663 (-663 |#1|)) (-663 (-1297 |#1|))) 22 T ELT) (((-663 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -3822 (-663 (-1297 |#1|))))) (-711 |#1|) (-663 (-1297 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -3822 (-663 (-1297 |#1|)))) (-663 (-663 |#1|)) (-1297 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -3822 (-663 (-1297 |#1|)))) (-711 |#1|) (-1297 |#1|)) 14 T ELT)) (-1604 (((-793) (-711 |#1|) (-1297 |#1|)) 30 T ELT)) (-1706 (((-3 (-1297 |#1|) "failed") (-711 |#1|) (-1297 |#1|)) 24 T ELT)) (-1662 (((-114) (-711 |#1|) (-1297 |#1|)) 27 T ELT)))
+(((-690 |#1|) (-10 -7 (-15 -1652 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -3822 (-663 (-1297 |#1|)))) (-711 |#1|) (-1297 |#1|))) (-15 -1652 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -3822 (-663 (-1297 |#1|)))) (-663 (-663 |#1|)) (-1297 |#1|))) (-15 -1652 ((-663 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -3822 (-663 (-1297 |#1|))))) (-711 |#1|) (-663 (-1297 |#1|)))) (-15 -1652 ((-663 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -3822 (-663 (-1297 |#1|))))) (-663 (-663 |#1|)) (-663 (-1297 |#1|)))) (-15 -1706 ((-3 (-1297 |#1|) "failed") (-711 |#1|) (-1297 |#1|))) (-15 -1662 ((-114) (-711 |#1|) (-1297 |#1|))) (-15 -1604 ((-793) (-711 |#1|) (-1297 |#1|)))) (-376)) (T -690))
+((-1604 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-376)) (-5 *2 (-793)) (-5 *1 (-690 *5)))) (-1662 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-376)) (-5 *2 (-114)) (-5 *1 (-690 *5)))) (-1706 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1297 *4)) (-5 *3 (-711 *4)) (-4 *4 (-376)) (-5 *1 (-690 *4)))) (-1652 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-663 *5))) (-4 *5 (-376)) (-5 *2 (-663 (-2 (|:| |particular| (-3 (-1297 *5) "failed")) (|:| -3822 (-663 (-1297 *5)))))) (-5 *1 (-690 *5)) (-5 *4 (-663 (-1297 *5))))) (-1652 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *5)) (-4 *5 (-376)) (-5 *2 (-663 (-2 (|:| |particular| (-3 (-1297 *5) "failed")) (|:| -3822 (-663 (-1297 *5)))))) (-5 *1 (-690 *5)) (-5 *4 (-663 (-1297 *5))))) (-1652 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-663 *5))) (-4 *5 (-376)) (-5 *2 (-2 (|:| |particular| (-3 (-1297 *5) "failed")) (|:| -3822 (-663 (-1297 *5))))) (-5 *1 (-690 *5)) (-5 *4 (-1297 *5)))) (-1652 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |particular| (-3 (-1297 *5) "failed")) (|:| -3822 (-663 (-1297 *5))))) (-5 *1 (-690 *5)) (-5 *4 (-1297 *5)))))
+(-10 -7 (-15 -1652 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -3822 (-663 (-1297 |#1|)))) (-711 |#1|) (-1297 |#1|))) (-15 -1652 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -3822 (-663 (-1297 |#1|)))) (-663 (-663 |#1|)) (-1297 |#1|))) (-15 -1652 ((-663 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -3822 (-663 (-1297 |#1|))))) (-711 |#1|) (-663 (-1297 |#1|)))) (-15 -1652 ((-663 (-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -3822 (-663 (-1297 |#1|))))) (-663 (-663 |#1|)) (-663 (-1297 |#1|)))) (-15 -1706 ((-3 (-1297 |#1|) "failed") (-711 |#1|) (-1297 |#1|))) (-15 -1662 ((-114) (-711 |#1|) (-1297 |#1|))) (-15 -1604 ((-793) (-711 |#1|) (-1297 |#1|))))
+((-1962 (((-2 (|:| |particular| (-3 (-1297 (-421 |#4|)) "failed")) (|:| -3822 (-663 (-1297 (-421 |#4|))))) (-663 |#4|) (-663 |#3|)) 51 T ELT)))
+(((-691 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1962 ((-2 (|:| |particular| (-3 (-1297 (-421 |#4|)) "failed")) (|:| -3822 (-663 (-1297 (-421 |#4|))))) (-663 |#4|) (-663 |#3|)))) (-571) (-815) (-871) (-979 |#1| |#2| |#3|)) (T -691))
+((-1962 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *7)) (-4 *7 (-871)) (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-815)) (-5 *2 (-2 (|:| |particular| (-3 (-1297 (-421 *8)) "failed")) (|:| -3822 (-663 (-1297 (-421 *8)))))) (-5 *1 (-691 *5 *6 *7 *8)))))
+(-10 -7 (-15 -1962 ((-2 (|:| |particular| (-3 (-1297 (-421 |#4|)) "failed")) (|:| -3822 (-663 (-1297 (-421 |#4|))))) (-663 |#4|) (-663 |#3|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-4184 (((-3 $ "failed")) NIL (|has| |#2| (-571)) ELT)) (-4113 ((|#2| $) NIL T ELT)) (-3202 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3398 (((-1297 (-711 |#2|))) NIL T ELT) (((-1297 (-711 |#2|)) (-1297 $)) NIL T ELT)) (-2798 (((-114) $) NIL T ELT)) (-4087 (((-1297 $)) 42 T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-1571 (($ |#2|) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2207 (($ $) NIL (|has| |#2| (-319)) ELT)) (-3942 (((-246 |#1| |#2|) $ (-560)) NIL T ELT)) (-1756 (((-3 (-2 (|:| |particular| $) (|:| -3822 (-663 $))) "failed")) NIL (|has| |#2| (-571)) ELT)) (-3681 (((-3 $ "failed")) NIL (|has| |#2| (-571)) ELT)) (-1691 (((-711 |#2|)) NIL T ELT) (((-711 |#2|) (-1297 $)) NIL T ELT)) (-2865 ((|#2| $) NIL T ELT)) (-2541 (((-711 |#2|) $) NIL T ELT) (((-711 |#2|) $ (-1297 $)) NIL T ELT)) (-2035 (((-3 $ "failed") $) NIL (|has| |#2| (-571)) ELT)) (-3474 (((-1201 (-975 |#2|))) NIL (|has| |#2| (-376)) ELT)) (-4201 (($ $ (-948)) NIL T ELT)) (-2652 ((|#2| $) NIL T ELT)) (-1825 (((-1201 |#2|) $) NIL (|has| |#2| (-571)) ELT)) (-2098 ((|#2|) NIL T ELT) ((|#2| (-1297 $)) NIL T ELT)) (-2280 (((-1201 |#2|) $) NIL T ELT)) (-2137 (((-114)) NIL T ELT)) (-3929 (((-3 (-560) "failed") $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-3649 (((-560) $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) ((|#2| $) NIL T ELT)) (-1953 (($ (-1297 |#2|)) NIL T ELT) (($ (-1297 |#2|) (-1297 $)) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1604 (((-793) $) NIL (|has| |#2| (-571)) ELT) (((-948)) 43 T ELT)) (-3274 ((|#2| $ (-560) (-560)) NIL T ELT)) (-1558 (((-114)) NIL T ELT)) (-1441 (($ $ (-948)) NIL T ELT)) (-3737 (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1918 (((-114) $) NIL T ELT)) (-3213 (((-793) $) NIL (|has| |#2| (-571)) ELT)) (-1927 (((-663 (-246 |#1| |#2|)) $) NIL (|has| |#2| (-571)) ELT)) (-2777 (((-793) $) NIL T ELT)) (-1521 (((-114)) NIL T ELT)) (-2789 (((-793) $) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-4174 ((|#2| $) NIL (|has| |#2| (-6 (-4510 "*"))) ELT)) (-2567 (((-560) $) NIL T ELT)) (-2313 (((-560) $) NIL T ELT)) (-3243 (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-1475 (((-560) $) NIL T ELT)) (-3004 (((-560) $) NIL T ELT)) (-3551 (($ (-663 (-663 |#2|))) NIL T ELT)) (-3324 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3378 (((-663 (-663 |#2|)) $) NIL T ELT)) (-3053 (((-114)) NIL T ELT)) (-4460 (((-114)) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-1367 (((-3 (-2 (|:| |particular| $) (|:| -3822 (-663 $))) "failed")) NIL (|has| |#2| (-571)) ELT)) (-4156 (((-3 $ "failed")) NIL (|has| |#2| (-571)) ELT)) (-2999 (((-711 |#2|)) NIL T ELT) (((-711 |#2|) (-1297 $)) NIL T ELT)) (-4278 ((|#2| $) NIL T ELT)) (-4414 (((-711 |#2|) $) NIL T ELT) (((-711 |#2|) $ (-1297 $)) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-711 |#2|) (-1297 $)) NIL T ELT)) (-4294 (((-3 $ "failed") $) NIL (|has| |#2| (-571)) ELT)) (-1828 (((-1201 (-975 |#2|))) NIL (|has| |#2| (-376)) ELT)) (-2065 (($ $ (-948)) NIL T ELT)) (-1788 ((|#2| $) NIL T ELT)) (-2126 (((-1201 |#2|) $) NIL (|has| |#2| (-571)) ELT)) (-1951 ((|#2|) NIL T ELT) ((|#2| (-1297 $)) NIL T ELT)) (-1364 (((-1201 |#2|) $) NIL T ELT)) (-3361 (((-114)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3577 (((-114)) NIL T ELT)) (-2107 (((-114)) NIL T ELT)) (-4289 (((-114)) NIL T ELT)) (-1906 (((-3 $ "failed") $) NIL (|has| |#2| (-376)) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3905 (((-114)) NIL T ELT)) (-2233 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT)) (-2086 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#2| $ (-560) (-560) |#2|) NIL T ELT) ((|#2| $ (-560) (-560)) 28 T ELT) ((|#2| $ (-560)) NIL T ELT)) (-3161 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-1931 ((|#2| $) NIL T ELT)) (-3926 (($ (-663 |#2|)) NIL T ELT)) (-2691 (((-114) $) NIL T ELT)) (-2621 (((-246 |#1| |#2|) $) NIL T ELT)) (-3441 ((|#2| $) NIL (|has| |#2| (-6 (-4510 "*"))) ELT)) (-3384 (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-4107 (($ $) NIL T ELT)) (-4226 (((-711 |#2|) (-1297 $)) NIL T ELT) (((-1297 |#2|) $) NIL T ELT) (((-711 |#2|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#2|) $ (-1297 $)) 31 T ELT)) (-2400 (($ (-1297 |#2|)) NIL T ELT) (((-1297 |#2|) $) NIL T ELT)) (-1556 (((-663 (-975 |#2|))) NIL T ELT) (((-663 (-975 |#2|)) (-1297 $)) NIL T ELT)) (-3117 (($ $ $) NIL T ELT)) (-2848 (((-114)) NIL T ELT)) (-3783 (((-246 |#1| |#2|) $ (-560)) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (($ |#2|) NIL T ELT) (((-711 |#2|) $) NIL T ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-3822 (((-1297 $)) 41 T ELT)) (-1601 (((-663 (-1297 |#2|))) NIL (|has| |#2| (-571)) ELT)) (-1777 (($ $ $ $) NIL T ELT)) (-3757 (((-114)) NIL T ELT)) (-4323 (($ (-711 |#2|) $) NIL T ELT)) (-2149 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1775 (((-114) $) NIL T ELT)) (-4209 (($ $ $) NIL T ELT)) (-4103 (((-114)) NIL T ELT)) (-4213 (((-114)) NIL T ELT)) (-1597 (((-114)) NIL T ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#2| (-376)) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) NIL T ELT) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) NIL T ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
(((-692 |#1| |#2|) (-13 (-1154 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-632 (-711 |#2|)) (-432 |#2|)) (-948) (-175)) (T -692))
NIL
(-13 (-1154 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-632 (-711 |#2|)) (-432 |#2|))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2668 (((-663 (-1166)) $) 10 T ELT)) (-1578 (((-887) $) 16 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-693) (-13 (-1114) (-10 -8 (-15 -2668 ((-663 (-1166)) $))))) (T -693))
-((-2668 (*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-693)))))
-(-13 (-1114) (-10 -8 (-15 -2668 ((-663 (-1166)) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2571 (((-663 |#1|) $) NIL T ELT)) (-4210 (($ $) 62 T ELT)) (-2285 (((-114) $) NIL T ELT)) (-2539 (((-3 |#1| "failed") $) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-4393 (((-3 $ "failed") (-841 |#1|)) 27 T ELT)) (-1694 (((-114) (-841 |#1|)) 17 T ELT)) (-2884 (($ (-841 |#1|)) 28 T ELT)) (-1863 (((-114) $ $) 36 T ELT)) (-4108 (((-948) $) 43 T ELT)) (-4198 (($ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4457 (((-663 $) (-841 |#1|)) 19 T ELT)) (-1578 (((-887) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-841 |#1|) $) 47 T ELT) (((-699 |#1|) $) 52 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2554 (((-58 (-663 $)) (-663 |#1|) (-948)) 67 T ELT)) (-4239 (((-663 $) (-663 |#1|) (-948)) 70 T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 63 T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 46 T ELT)))
-(((-694 |#1|) (-13 (-871) (-1069 |#1|) (-10 -8 (-15 -2285 ((-114) $)) (-15 -4198 ($ $)) (-15 -4210 ($ $)) (-15 -4108 ((-948) $)) (-15 -1863 ((-114) $ $)) (-15 -1578 ((-841 |#1|) $)) (-15 -1578 ((-699 |#1|) $)) (-15 -4457 ((-663 $) (-841 |#1|))) (-15 -1694 ((-114) (-841 |#1|))) (-15 -2884 ($ (-841 |#1|))) (-15 -4393 ((-3 $ "failed") (-841 |#1|))) (-15 -2571 ((-663 |#1|) $)) (-15 -2554 ((-58 (-663 $)) (-663 |#1|) (-948))) (-15 -4239 ((-663 $) (-663 |#1|) (-948))))) (-871)) (T -694))
-((-2285 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) (-4198 (*1 *1 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-871)))) (-4210 (*1 *1 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-871)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-948)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) (-1863 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-699 *3)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) (-4457 (*1 *2 *3) (-12 (-5 *3 (-841 *4)) (-4 *4 (-871)) (-5 *2 (-663 (-694 *4))) (-5 *1 (-694 *4)))) (-1694 (*1 *2 *3) (-12 (-5 *3 (-841 *4)) (-4 *4 (-871)) (-5 *2 (-114)) (-5 *1 (-694 *4)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-841 *3)) (-4 *3 (-871)) (-5 *1 (-694 *3)))) (-4393 (*1 *1 *2) (|partial| -12 (-5 *2 (-841 *3)) (-4 *3 (-871)) (-5 *1 (-694 *3)))) (-2571 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) (-2554 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-948)) (-4 *5 (-871)) (-5 *2 (-58 (-663 (-694 *5)))) (-5 *1 (-694 *5)))) (-4239 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-948)) (-4 *5 (-871)) (-5 *2 (-663 (-694 *5))) (-5 *1 (-694 *5)))))
-(-13 (-871) (-1069 |#1|) (-10 -8 (-15 -2285 ((-114) $)) (-15 -4198 ($ $)) (-15 -4210 ($ $)) (-15 -4108 ((-948) $)) (-15 -1863 ((-114) $ $)) (-15 -1578 ((-841 |#1|) $)) (-15 -1578 ((-699 |#1|) $)) (-15 -4457 ((-663 $) (-841 |#1|))) (-15 -1694 ((-114) (-841 |#1|))) (-15 -2884 ($ (-841 |#1|))) (-15 -4393 ((-3 $ "failed") (-841 |#1|))) (-15 -2571 ((-663 |#1|) $)) (-15 -2554 ((-58 (-663 $)) (-663 |#1|) (-948))) (-15 -4239 ((-663 $) (-663 |#1|) (-948)))))
-((-3853 ((|#2| $) 100 T ELT)) (-2270 (($ $) 121 T ELT)) (-3363 (((-114) $ (-793)) 35 T ELT)) (-3649 (($ $) 109 T ELT) (($ $ (-793)) 112 T ELT)) (-2267 (((-114) $) 122 T ELT)) (-3092 (((-663 $) $) 96 T ELT)) (-3398 (((-114) $ $) 92 T ELT)) (-4034 (((-114) $ (-793)) 33 T ELT)) (-1762 (((-560) $) 66 T ELT)) (-2937 (((-560) $) 65 T ELT)) (-1805 (((-114) $ (-793)) 31 T ELT)) (-2409 (((-114) $) 98 T ELT)) (-2398 ((|#2| $) 113 T ELT) (($ $ (-793)) 117 T ELT)) (-3996 (($ $ $ (-560)) 83 T ELT) (($ |#2| $ (-560)) 82 T ELT)) (-3270 (((-663 (-560)) $) 64 T ELT)) (-3586 (((-114) (-560) $) 59 T ELT)) (-3637 ((|#2| $) NIL T ELT) (($ $ (-793)) 108 T ELT)) (-4372 (($ $ (-560)) 125 T ELT)) (-3875 (((-114) $) 124 T ELT)) (-2787 (((-114) (-1 (-114) |#2|) $) 42 T ELT)) (-3571 (((-663 |#2|) $) 46 T ELT)) (-3924 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1264 (-560))) 79 T ELT) ((|#2| $ (-560)) 57 T ELT) ((|#2| $ (-560) |#2|) 58 T ELT)) (-1750 (((-560) $ $) 91 T ELT)) (-4413 (($ $ (-1264 (-560))) 78 T ELT) (($ $ (-560)) 72 T ELT)) (-1978 (((-114) $) 87 T ELT)) (-1763 (($ $) 105 T ELT)) (-1502 (((-793) $) 104 T ELT)) (-3458 (($ $) 103 T ELT)) (-1592 (($ (-663 |#2|)) 53 T ELT)) (-3266 (($ $) 126 T ELT)) (-3955 (((-663 $) $) 90 T ELT)) (-2997 (((-114) $ $) 89 T ELT)) (-1728 (((-114) (-1 (-114) |#2|) $) 41 T ELT)) (-2473 (((-114) $ $) 20 T ELT)) (-1553 (((-793) $) 39 T ELT)))
-(((-695 |#1| |#2|) (-10 -8 (-15 -2473 ((-114) |#1| |#1|)) (-15 -3266 (|#1| |#1|)) (-15 -4372 (|#1| |#1| (-560))) (-15 -2267 ((-114) |#1|)) (-15 -3875 ((-114) |#1|)) (-15 -3924 (|#2| |#1| (-560) |#2|)) (-15 -3924 (|#2| |#1| (-560))) (-15 -3571 ((-663 |#2|) |#1|)) (-15 -3586 ((-114) (-560) |#1|)) (-15 -3270 ((-663 (-560)) |#1|)) (-15 -2937 ((-560) |#1|)) (-15 -1762 ((-560) |#1|)) (-15 -1592 (|#1| (-663 |#2|))) (-15 -3924 (|#1| |#1| (-1264 (-560)))) (-15 -4413 (|#1| |#1| (-560))) (-15 -4413 (|#1| |#1| (-1264 (-560)))) (-15 -3996 (|#1| |#2| |#1| (-560))) (-15 -3996 (|#1| |#1| |#1| (-560))) (-15 -1763 (|#1| |#1|)) (-15 -1502 ((-793) |#1|)) (-15 -3458 (|#1| |#1|)) (-15 -2270 (|#1| |#1|)) (-15 -2398 (|#1| |#1| (-793))) (-15 -3924 (|#2| |#1| "last")) (-15 -2398 (|#2| |#1|)) (-15 -3649 (|#1| |#1| (-793))) (-15 -3924 (|#1| |#1| "rest")) (-15 -3649 (|#1| |#1|)) (-15 -3637 (|#1| |#1| (-793))) (-15 -3924 (|#2| |#1| "first")) (-15 -3637 (|#2| |#1|)) (-15 -3398 ((-114) |#1| |#1|)) (-15 -2997 ((-114) |#1| |#1|)) (-15 -1750 ((-560) |#1| |#1|)) (-15 -1978 ((-114) |#1|)) (-15 -3924 (|#2| |#1| "value")) (-15 -3853 (|#2| |#1|)) (-15 -2409 ((-114) |#1|)) (-15 -3092 ((-663 |#1|) |#1|)) (-15 -3955 ((-663 |#1|) |#1|)) (-15 -2787 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -1728 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -1553 ((-793) |#1|)) (-15 -3363 ((-114) |#1| (-793))) (-15 -4034 ((-114) |#1| (-793))) (-15 -1805 ((-114) |#1| (-793)))) (-696 |#2|) (-1247)) (T -695))
-NIL
-(-10 -8 (-15 -2473 ((-114) |#1| |#1|)) (-15 -3266 (|#1| |#1|)) (-15 -4372 (|#1| |#1| (-560))) (-15 -2267 ((-114) |#1|)) (-15 -3875 ((-114) |#1|)) (-15 -3924 (|#2| |#1| (-560) |#2|)) (-15 -3924 (|#2| |#1| (-560))) (-15 -3571 ((-663 |#2|) |#1|)) (-15 -3586 ((-114) (-560) |#1|)) (-15 -3270 ((-663 (-560)) |#1|)) (-15 -2937 ((-560) |#1|)) (-15 -1762 ((-560) |#1|)) (-15 -1592 (|#1| (-663 |#2|))) (-15 -3924 (|#1| |#1| (-1264 (-560)))) (-15 -4413 (|#1| |#1| (-560))) (-15 -4413 (|#1| |#1| (-1264 (-560)))) (-15 -3996 (|#1| |#2| |#1| (-560))) (-15 -3996 (|#1| |#1| |#1| (-560))) (-15 -1763 (|#1| |#1|)) (-15 -1502 ((-793) |#1|)) (-15 -3458 (|#1| |#1|)) (-15 -2270 (|#1| |#1|)) (-15 -2398 (|#1| |#1| (-793))) (-15 -3924 (|#2| |#1| "last")) (-15 -2398 (|#2| |#1|)) (-15 -3649 (|#1| |#1| (-793))) (-15 -3924 (|#1| |#1| "rest")) (-15 -3649 (|#1| |#1|)) (-15 -3637 (|#1| |#1| (-793))) (-15 -3924 (|#2| |#1| "first")) (-15 -3637 (|#2| |#1|)) (-15 -3398 ((-114) |#1| |#1|)) (-15 -2997 ((-114) |#1| |#1|)) (-15 -1750 ((-560) |#1| |#1|)) (-15 -1978 ((-114) |#1|)) (-15 -3924 (|#2| |#1| "value")) (-15 -3853 (|#2| |#1|)) (-15 -2409 ((-114) |#1|)) (-15 -3092 ((-663 |#1|) |#1|)) (-15 -3955 ((-663 |#1|) |#1|)) (-15 -2787 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -1728 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -1553 ((-793) |#1|)) (-15 -3363 ((-114) |#1| (-793))) (-15 -4034 ((-114) |#1| (-793))) (-15 -1805 ((-114) |#1| (-793))))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3853 ((|#1| $) 49 T ELT)) (-3273 ((|#1| $) 66 T ELT)) (-2270 (($ $) 68 T ELT)) (-3839 (((-1303) $ (-560) (-560)) 99 (|has| $ (-6 -4509)) ELT)) (-2194 (($ $ (-560)) 53 (|has| $ (-6 -4509)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-2869 ((|#1| $ |#1|) 40 (|has| $ (-6 -4509)) ELT)) (-2102 (($ $ $) 57 (|has| $ (-6 -4509)) ELT)) (-4319 ((|#1| $ |#1|) 55 (|has| $ (-6 -4509)) ELT)) (-3132 ((|#1| $ |#1|) 59 (|has| $ (-6 -4509)) ELT)) (-1773 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4509)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4509)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4509)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) 119 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-560) |#1|) 88 (|has| $ (-6 -4509)) ELT)) (-2083 (($ $ (-663 $)) 42 (|has| $ (-6 -4509)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) 104 T ELT)) (-3264 ((|#1| $) 67 T ELT)) (-2238 (($) 7 T CONST)) (-3568 (($ $) 126 T ELT)) (-3649 (($ $) 74 T ELT) (($ $ (-793)) 72 T ELT)) (-3606 (($ $) 101 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2375 (($ |#1| $) 102 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 105 T ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3779 ((|#1| $ (-560) |#1|) 87 (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-560)) 89 T ELT)) (-2267 (((-114) $) 85 T ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-2727 (((-793) $) 125 T ELT)) (-3092 (((-663 $) $) 51 T ELT)) (-3398 (((-114) $ $) 43 (|has| |#1| (-1132)) ELT)) (-4095 (($ (-793) |#1|) 111 T ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-1762 (((-560) $) 97 (|has| (-560) (-871)) ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2937 (((-560) $) 96 (|has| (-560) (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 114 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-3596 (((-663 |#1|) $) 46 T ELT)) (-2409 (((-114) $) 50 T ELT)) (-2501 (($ $) 128 T ELT)) (-3987 (((-114) $) 129 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-2398 ((|#1| $) 71 T ELT) (($ $ (-793)) 69 T ELT)) (-3996 (($ $ $ (-560)) 118 T ELT) (($ |#1| $ (-560)) 117 T ELT)) (-3270 (((-663 (-560)) $) 94 T ELT)) (-3586 (((-114) (-560) $) 93 T ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-3117 ((|#1| $) 127 T ELT)) (-3637 ((|#1| $) 77 T ELT) (($ $ (-793)) 75 T ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 108 T ELT)) (-3037 (($ $ |#1|) 98 (|has| $ (-6 -4509)) ELT)) (-4372 (($ $ (-560)) 124 T ELT)) (-3875 (((-114) $) 86 T ELT)) (-1606 (((-114) $) 130 T ELT)) (-3910 (((-114) $) 131 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-2914 (((-114) |#1| $) 95 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) 92 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3924 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT) (($ $ (-1264 (-560))) 110 T ELT) ((|#1| $ (-560)) 91 T ELT) ((|#1| $ (-560) |#1|) 90 T ELT)) (-1750 (((-560) $ $) 45 T ELT)) (-4413 (($ $ (-1264 (-560))) 116 T ELT) (($ $ (-560)) 115 T ELT)) (-1978 (((-114) $) 47 T ELT)) (-1763 (($ $) 63 T ELT)) (-1915 (($ $) 60 (|has| $ (-6 -4509)) ELT)) (-1502 (((-793) $) 64 T ELT)) (-3458 (($ $) 65 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) 100 (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 109 T ELT)) (-4354 (($ $ $) 62 (|has| $ (-6 -4509)) ELT) (($ $ |#1|) 61 (|has| $ (-6 -4509)) ELT)) (-3415 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT) (($ (-663 $)) 113 T ELT) (($ $ |#1|) 112 T ELT)) (-3266 (($ $) 123 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3955 (((-663 $) $) 52 T ELT)) (-2997 (((-114) $ $) 44 (|has| |#1| (-1132)) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2132 (((-663 (-1166)) $) 10 T ELT)) (-3913 (((-887) $) 16 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-693) (-13 (-1114) (-10 -8 (-15 -2132 ((-663 (-1166)) $))))) (T -693))
+((-2132 (*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-693)))))
+(-13 (-1114) (-10 -8 (-15 -2132 ((-663 (-1166)) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-4356 (((-663 |#1|) $) NIL T ELT)) (-4346 (($ $) 62 T ELT)) (-2736 (((-114) $) NIL T ELT)) (-3929 (((-3 |#1| "failed") $) NIL T ELT)) (-3649 ((|#1| $) NIL T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-2394 (((-3 $ "failed") (-841 |#1|)) 27 T ELT)) (-3054 (((-114) (-841 |#1|)) 17 T ELT)) (-3820 (($ (-841 |#1|)) 28 T ELT)) (-4171 (((-114) $ $) 36 T ELT)) (-2946 (((-948) $) 43 T ELT)) (-4335 (($ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4012 (((-663 $) (-841 |#1|)) 19 T ELT)) (-3913 (((-887) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-841 |#1|) $) 47 T ELT) (((-699 |#1|) $) 52 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3497 (((-58 (-663 $)) (-663 |#1|) (-948)) 67 T ELT)) (-3582 (((-663 $) (-663 |#1|) (-948)) 70 T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 63 T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 46 T ELT)))
+(((-694 |#1|) (-13 (-871) (-1069 |#1|) (-10 -8 (-15 -2736 ((-114) $)) (-15 -4335 ($ $)) (-15 -4346 ($ $)) (-15 -2946 ((-948) $)) (-15 -4171 ((-114) $ $)) (-15 -3913 ((-841 |#1|) $)) (-15 -3913 ((-699 |#1|) $)) (-15 -4012 ((-663 $) (-841 |#1|))) (-15 -3054 ((-114) (-841 |#1|))) (-15 -3820 ($ (-841 |#1|))) (-15 -2394 ((-3 $ "failed") (-841 |#1|))) (-15 -4356 ((-663 |#1|) $)) (-15 -3497 ((-58 (-663 $)) (-663 |#1|) (-948))) (-15 -3582 ((-663 $) (-663 |#1|) (-948))))) (-871)) (T -694))
+((-2736 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) (-4335 (*1 *1 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-871)))) (-4346 (*1 *1 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-871)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-948)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) (-4171 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-699 *3)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) (-4012 (*1 *2 *3) (-12 (-5 *3 (-841 *4)) (-4 *4 (-871)) (-5 *2 (-663 (-694 *4))) (-5 *1 (-694 *4)))) (-3054 (*1 *2 *3) (-12 (-5 *3 (-841 *4)) (-4 *4 (-871)) (-5 *2 (-114)) (-5 *1 (-694 *4)))) (-3820 (*1 *1 *2) (-12 (-5 *2 (-841 *3)) (-4 *3 (-871)) (-5 *1 (-694 *3)))) (-2394 (*1 *1 *2) (|partial| -12 (-5 *2 (-841 *3)) (-4 *3 (-871)) (-5 *1 (-694 *3)))) (-4356 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-694 *3)) (-4 *3 (-871)))) (-3497 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-948)) (-4 *5 (-871)) (-5 *2 (-58 (-663 (-694 *5)))) (-5 *1 (-694 *5)))) (-3582 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-948)) (-4 *5 (-871)) (-5 *2 (-663 (-694 *5))) (-5 *1 (-694 *5)))))
+(-13 (-871) (-1069 |#1|) (-10 -8 (-15 -2736 ((-114) $)) (-15 -4335 ($ $)) (-15 -4346 ($ $)) (-15 -2946 ((-948) $)) (-15 -4171 ((-114) $ $)) (-15 -3913 ((-841 |#1|) $)) (-15 -3913 ((-699 |#1|) $)) (-15 -4012 ((-663 $) (-841 |#1|))) (-15 -3054 ((-114) (-841 |#1|))) (-15 -3820 ($ (-841 |#1|))) (-15 -2394 ((-3 $ "failed") (-841 |#1|))) (-15 -4356 ((-663 |#1|) $)) (-15 -3497 ((-58 (-663 $)) (-663 |#1|) (-948))) (-15 -3582 ((-663 $) (-663 |#1|) (-948)))))
+((-1430 ((|#2| $) 100 T ELT)) (-3990 (($ $) 121 T ELT)) (-3045 (((-114) $ (-793)) 35 T ELT)) (-4345 (($ $) 109 T ELT) (($ $ (-793)) 112 T ELT)) (-3843 (((-114) $) 122 T ELT)) (-2104 (((-663 $) $) 96 T ELT)) (-2150 (((-114) $ $) 92 T ELT)) (-3332 (((-114) $ (-793)) 33 T ELT)) (-2483 (((-560) $) 66 T ELT)) (-4263 (((-560) $) 65 T ELT)) (-1634 (((-114) $ (-793)) 31 T ELT)) (-1485 (((-114) $) 98 T ELT)) (-3057 ((|#2| $) 113 T ELT) (($ $ (-793)) 117 T ELT)) (-2507 (($ $ $ (-560)) 83 T ELT) (($ |#2| $ (-560)) 82 T ELT)) (-3372 (((-663 (-560)) $) 64 T ELT)) (-3439 (((-114) (-560) $) 59 T ELT)) (-4334 ((|#2| $) NIL T ELT) (($ $ (-793)) 108 T ELT)) (-2219 (($ $ (-560)) 125 T ELT)) (-4270 (((-114) $) 124 T ELT)) (-2086 (((-114) (-1 (-114) |#2|) $) 42 T ELT)) (-1383 (((-663 |#2|) $) 46 T ELT)) (-1507 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1264 (-560))) 79 T ELT) ((|#2| $ (-560)) 57 T ELT) ((|#2| $ (-560) |#2|) 58 T ELT)) (-2374 (((-560) $ $) 91 T ELT)) (-2579 (($ $ (-1264 (-560))) 78 T ELT) (($ $ (-560)) 72 T ELT)) (-2752 (((-114) $) 87 T ELT)) (-2493 (($ $) 105 T ELT)) (-3010 (((-793) $) 104 T ELT)) (-1474 (($ $) 103 T ELT)) (-3924 (($ (-663 |#2|)) 53 T ELT)) (-3329 (($ $) 126 T ELT)) (-3809 (((-663 $) $) 90 T ELT)) (-3606 (((-114) $ $) 89 T ELT)) (-2149 (((-114) (-1 (-114) |#2|) $) 41 T ELT)) (-2340 (((-114) $ $) 20 T ELT)) (-2256 (((-793) $) 39 T ELT)))
+(((-695 |#1| |#2|) (-10 -8 (-15 -2340 ((-114) |#1| |#1|)) (-15 -3329 (|#1| |#1|)) (-15 -2219 (|#1| |#1| (-560))) (-15 -3843 ((-114) |#1|)) (-15 -4270 ((-114) |#1|)) (-15 -1507 (|#2| |#1| (-560) |#2|)) (-15 -1507 (|#2| |#1| (-560))) (-15 -1383 ((-663 |#2|) |#1|)) (-15 -3439 ((-114) (-560) |#1|)) (-15 -3372 ((-663 (-560)) |#1|)) (-15 -4263 ((-560) |#1|)) (-15 -2483 ((-560) |#1|)) (-15 -3924 (|#1| (-663 |#2|))) (-15 -1507 (|#1| |#1| (-1264 (-560)))) (-15 -2579 (|#1| |#1| (-560))) (-15 -2579 (|#1| |#1| (-1264 (-560)))) (-15 -2507 (|#1| |#2| |#1| (-560))) (-15 -2507 (|#1| |#1| |#1| (-560))) (-15 -2493 (|#1| |#1|)) (-15 -3010 ((-793) |#1|)) (-15 -1474 (|#1| |#1|)) (-15 -3990 (|#1| |#1|)) (-15 -3057 (|#1| |#1| (-793))) (-15 -1507 (|#2| |#1| "last")) (-15 -3057 (|#2| |#1|)) (-15 -4345 (|#1| |#1| (-793))) (-15 -1507 (|#1| |#1| "rest")) (-15 -4345 (|#1| |#1|)) (-15 -4334 (|#1| |#1| (-793))) (-15 -1507 (|#2| |#1| "first")) (-15 -4334 (|#2| |#1|)) (-15 -2150 ((-114) |#1| |#1|)) (-15 -3606 ((-114) |#1| |#1|)) (-15 -2374 ((-560) |#1| |#1|)) (-15 -2752 ((-114) |#1|)) (-15 -1507 (|#2| |#1| "value")) (-15 -1430 (|#2| |#1|)) (-15 -1485 ((-114) |#1|)) (-15 -2104 ((-663 |#1|) |#1|)) (-15 -3809 ((-663 |#1|) |#1|)) (-15 -2086 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2149 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2256 ((-793) |#1|)) (-15 -3045 ((-114) |#1| (-793))) (-15 -3332 ((-114) |#1| (-793))) (-15 -1634 ((-114) |#1| (-793)))) (-696 |#2|) (-1247)) (T -695))
+NIL
+(-10 -8 (-15 -2340 ((-114) |#1| |#1|)) (-15 -3329 (|#1| |#1|)) (-15 -2219 (|#1| |#1| (-560))) (-15 -3843 ((-114) |#1|)) (-15 -4270 ((-114) |#1|)) (-15 -1507 (|#2| |#1| (-560) |#2|)) (-15 -1507 (|#2| |#1| (-560))) (-15 -1383 ((-663 |#2|) |#1|)) (-15 -3439 ((-114) (-560) |#1|)) (-15 -3372 ((-663 (-560)) |#1|)) (-15 -4263 ((-560) |#1|)) (-15 -2483 ((-560) |#1|)) (-15 -3924 (|#1| (-663 |#2|))) (-15 -1507 (|#1| |#1| (-1264 (-560)))) (-15 -2579 (|#1| |#1| (-560))) (-15 -2579 (|#1| |#1| (-1264 (-560)))) (-15 -2507 (|#1| |#2| |#1| (-560))) (-15 -2507 (|#1| |#1| |#1| (-560))) (-15 -2493 (|#1| |#1|)) (-15 -3010 ((-793) |#1|)) (-15 -1474 (|#1| |#1|)) (-15 -3990 (|#1| |#1|)) (-15 -3057 (|#1| |#1| (-793))) (-15 -1507 (|#2| |#1| "last")) (-15 -3057 (|#2| |#1|)) (-15 -4345 (|#1| |#1| (-793))) (-15 -1507 (|#1| |#1| "rest")) (-15 -4345 (|#1| |#1|)) (-15 -4334 (|#1| |#1| (-793))) (-15 -1507 (|#2| |#1| "first")) (-15 -4334 (|#2| |#1|)) (-15 -2150 ((-114) |#1| |#1|)) (-15 -3606 ((-114) |#1| |#1|)) (-15 -2374 ((-560) |#1| |#1|)) (-15 -2752 ((-114) |#1|)) (-15 -1507 (|#2| |#1| "value")) (-15 -1430 (|#2| |#1|)) (-15 -1485 ((-114) |#1|)) (-15 -2104 ((-663 |#1|) |#1|)) (-15 -3809 ((-663 |#1|) |#1|)) (-15 -2086 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2149 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2256 ((-793) |#1|)) (-15 -3045 ((-114) |#1| (-793))) (-15 -3332 ((-114) |#1| (-793))) (-15 -1634 ((-114) |#1| (-793))))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1430 ((|#1| $) 49 T ELT)) (-3853 ((|#1| $) 66 T ELT)) (-3990 (($ $) 68 T ELT)) (-2033 (((-1303) $ (-560) (-560)) 99 (|has| $ (-6 -4509)) ELT)) (-4367 (($ $ (-560)) 53 (|has| $ (-6 -4509)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-3654 ((|#1| $ |#1|) 40 (|has| $ (-6 -4509)) ELT)) (-1518 (($ $ $) 57 (|has| $ (-6 -4509)) ELT)) (-3042 ((|#1| $ |#1|) 55 (|has| $ (-6 -4509)) ELT)) (-2509 ((|#1| $ |#1|) 59 (|has| $ (-6 -4509)) ELT)) (-4083 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4509)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4509)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4509)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) 119 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-560) |#1|) 88 (|has| $ (-6 -4509)) ELT)) (-2566 (($ $ (-663 $)) 42 (|has| $ (-6 -4509)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) 104 T ELT)) (-3839 ((|#1| $) 67 T ELT)) (-3525 (($) 7 T CONST)) (-1352 (($ $) 126 T ELT)) (-4345 (($ $) 74 T ELT) (($ $ (-793)) 72 T ELT)) (-3658 (($ $) 101 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3033 (($ |#1| $) 102 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 105 T ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3338 ((|#1| $ (-560) |#1|) 87 (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-560)) 89 T ELT)) (-3843 (((-114) $) 85 T ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-1511 (((-793) $) 125 T ELT)) (-2104 (((-663 $) $) 51 T ELT)) (-2150 (((-114) $ $) 43 (|has| |#1| (-1132)) ELT)) (-4246 (($ (-793) |#1|) 111 T ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-2483 (((-560) $) 97 (|has| (-560) (-871)) ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4263 (((-560) $) 96 (|has| (-560) (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 114 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-2656 (((-663 |#1|) $) 46 T ELT)) (-1485 (((-114) $) 50 T ELT)) (-4282 (($ $) 128 T ELT)) (-2844 (((-114) $) 129 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3057 ((|#1| $) 71 T ELT) (($ $ (-793)) 69 T ELT)) (-2507 (($ $ $ (-560)) 118 T ELT) (($ |#1| $ (-560)) 117 T ELT)) (-3372 (((-663 (-560)) $) 94 T ELT)) (-3439 (((-114) (-560) $) 93 T ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2356 ((|#1| $) 127 T ELT)) (-4334 ((|#1| $) 77 T ELT) (($ $ (-793)) 75 T ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 108 T ELT)) (-2740 (($ $ |#1|) 98 (|has| $ (-6 -4509)) ELT)) (-2219 (($ $ (-560)) 124 T ELT)) (-4270 (((-114) $) 86 T ELT)) (-3412 (((-114) $) 130 T ELT)) (-1426 (((-114) $) 131 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-4019 (((-114) |#1| $) 95 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) 92 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1507 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT) (($ $ (-1264 (-560))) 110 T ELT) ((|#1| $ (-560)) 91 T ELT) ((|#1| $ (-560) |#1|) 90 T ELT)) (-2374 (((-560) $ $) 45 T ELT)) (-2579 (($ $ (-1264 (-560))) 116 T ELT) (($ $ (-560)) 115 T ELT)) (-2752 (((-114) $) 47 T ELT)) (-2493 (($ $) 63 T ELT)) (-3438 (($ $) 60 (|has| $ (-6 -4509)) ELT)) (-3010 (((-793) $) 64 T ELT)) (-1474 (($ $) 65 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) 100 (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 109 T ELT)) (-3305 (($ $ $) 62 (|has| $ (-6 -4509)) ELT) (($ $ |#1|) 61 (|has| $ (-6 -4509)) ELT)) (-1955 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT) (($ (-663 $)) 113 T ELT) (($ $ |#1|) 112 T ELT)) (-3329 (($ $) 123 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3809 (((-663 $) $) 52 T ELT)) (-3606 (((-114) $ $) 44 (|has| |#1| (-1132)) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-696 |#1|) (-142) (-1247)) (T -696))
-((-2375 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-696 *3)) (-4 *3 (-1247)))) (-1982 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-696 *3)) (-4 *3 (-1247)))) (-3910 (*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))) (-3987 (*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))) (-2501 (*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1247)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1247)))) (-3568 (*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1247)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1247)) (-5 *2 (-793)))) (-4372 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-696 *3)) (-4 *3 (-1247)))) (-3266 (*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1247)))))
-(-13 (-1180 |t#1|) (-10 -8 (-15 -2375 ($ (-1 (-114) |t#1|) $)) (-15 -1982 ($ (-1 (-114) |t#1|) $)) (-15 -3910 ((-114) $)) (-15 -1606 ((-114) $)) (-15 -3987 ((-114) $)) (-15 -2501 ($ $)) (-15 -3117 (|t#1| $)) (-15 -3568 ($ $)) (-15 -2727 ((-793) $)) (-15 -4372 ($ $ (-560))) (-15 -3266 ($ $))))
-(((-34) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #0=(-560) |#1|) . T) ((-298 (-1264 (-560)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-673 |#1|) . T) ((-1041 |#1|) . T) ((-1132) |has| |#1| (-1132)) ((-1180 |#1|) . T) ((-1247) . T) ((-1286 |#1|) . T))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2033 (($ (-793) (-793) (-793)) 53 (|has| |#1| (-1080)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-2768 ((|#1| $ (-793) (-793) (-793) |#1|) 47 T ELT)) (-2238 (($) NIL T CONST)) (-1392 (($ $ $) 57 (|has| |#1| (-1080)) ELT)) (-2181 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3907 (((-1297 (-793)) $) 12 T ELT)) (-1725 (($ (-1207) $ $) 34 T ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-4243 (($ (-793)) 55 (|has| |#1| (-1080)) ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#1| $ (-793) (-793) (-793)) 44 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1799 (($ $) NIL T ELT)) (-1592 (($ (-663 (-663 (-663 |#1|)))) 67 T ELT)) (-1578 (($ (-987 (-987 (-987 |#1|)))) 23 T ELT) (((-987 (-987 (-987 |#1|))) $) 19 T ELT) (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-697 |#1|) (-13 (-503 |#1|) (-10 -8 (IF (|has| |#1| (-1080)) (PROGN (-15 -2033 ($ (-793) (-793) (-793))) (-15 -4243 ($ (-793))) (-15 -1392 ($ $ $))) |%noBranch|) (-15 -1592 ($ (-663 (-663 (-663 |#1|))))) (-15 -3924 (|#1| $ (-793) (-793) (-793))) (-15 -2768 (|#1| $ (-793) (-793) (-793) |#1|)) (-15 -1578 ($ (-987 (-987 (-987 |#1|))))) (-15 -1578 ((-987 (-987 (-987 |#1|))) $)) (-15 -1725 ($ (-1207) $ $)) (-15 -3907 ((-1297 (-793)) $)))) (-1132)) (T -697))
-((-2033 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-793)) (-5 *1 (-697 *3)) (-4 *3 (-1080)) (-4 *3 (-1132)))) (-4243 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-697 *3)) (-4 *3 (-1080)) (-4 *3 (-1132)))) (-1392 (*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-1080)) (-4 *2 (-1132)))) (-1592 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-663 *3)))) (-4 *3 (-1132)) (-5 *1 (-697 *3)))) (-3924 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-793)) (-5 *1 (-697 *2)) (-4 *2 (-1132)))) (-2768 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-697 *2)) (-4 *2 (-1132)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-987 (-987 (-987 *3)))) (-4 *3 (-1132)) (-5 *1 (-697 *3)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-987 (-987 (-987 *3)))) (-5 *1 (-697 *3)) (-4 *3 (-1132)))) (-1725 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-697 *3)) (-4 *3 (-1132)))) (-3907 (*1 *2 *1) (-12 (-5 *2 (-1297 (-793))) (-5 *1 (-697 *3)) (-4 *3 (-1132)))))
-(-13 (-503 |#1|) (-10 -8 (IF (|has| |#1| (-1080)) (PROGN (-15 -2033 ($ (-793) (-793) (-793))) (-15 -4243 ($ (-793))) (-15 -1392 ($ $ $))) |%noBranch|) (-15 -1592 ($ (-663 (-663 (-663 |#1|))))) (-15 -3924 (|#1| $ (-793) (-793) (-793))) (-15 -2768 (|#1| $ (-793) (-793) (-793) |#1|)) (-15 -1578 ($ (-987 (-987 (-987 |#1|))))) (-15 -1578 ((-987 (-987 (-987 |#1|))) $)) (-15 -1725 ($ (-1207) $ $)) (-15 -3907 ((-1297 (-793)) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-4317 (((-497) $) 10 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 19 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3625 (((-1166) $) 12 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-698) (-13 (-1114) (-10 -8 (-15 -4317 ((-497) $)) (-15 -3625 ((-1166) $))))) (T -698))
-((-4317 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-698)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-698)))))
-(-13 (-1114) (-10 -8 (-15 -4317 ((-497) $)) (-15 -3625 ((-1166) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2571 (((-663 |#1|) $) 15 T ELT)) (-4210 (($ $) 19 T ELT)) (-2285 (((-114) $) 20 T ELT)) (-2539 (((-3 |#1| "failed") $) 23 T ELT)) (-3330 ((|#1| $) 21 T ELT)) (-3649 (($ $) 37 T ELT)) (-2256 (($ $) 25 T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-1863 (((-114) $ $) 47 T ELT)) (-4108 (((-948) $) 40 T ELT)) (-4198 (($ $) 18 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3637 ((|#1| $) 36 T ELT)) (-1578 (((-887) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-841 |#1|) $) 28 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 13 T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT)))
-(((-699 |#1|) (-13 (-871) (-1069 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1578 ((-841 |#1|) $)) (-15 -3637 (|#1| $)) (-15 -4198 ($ $)) (-15 -4108 ((-948) $)) (-15 -1863 ((-114) $ $)) (-15 -2256 ($ $)) (-15 -3649 ($ $)) (-15 -2285 ((-114) $)) (-15 -4210 ($ $)) (-15 -2571 ((-663 |#1|) $)))) (-871)) (T -699))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-699 *3)) (-4 *3 (-871)))) (-3637 (*1 *2 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) (-4198 (*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-948)) (-5 *1 (-699 *3)) (-4 *3 (-871)))) (-1863 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-699 *3)) (-4 *3 (-871)))) (-2256 (*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) (-3649 (*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) (-2285 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-699 *3)) (-4 *3 (-871)))) (-4210 (*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) (-2571 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-699 *3)) (-4 *3 (-871)))))
-(-13 (-871) (-1069 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -1578 ((-841 |#1|) $)) (-15 -3637 (|#1| $)) (-15 -4198 ($ $)) (-15 -4108 ((-948) $)) (-15 -1863 ((-114) $ $)) (-15 -2256 ($ $)) (-15 -3649 ($ $)) (-15 -2285 ((-114) $)) (-15 -4210 ($ $)) (-15 -2571 ((-663 |#1|) $))))
-((-3507 ((|#1| (-1 |#1| (-793) |#1|) (-793) |#1|) 11 T ELT)) (-3202 ((|#1| (-1 |#1| |#1|) (-793) |#1|) 9 T ELT)))
-(((-700 |#1|) (-10 -7 (-15 -3202 (|#1| (-1 |#1| |#1|) (-793) |#1|)) (-15 -3507 (|#1| (-1 |#1| (-793) |#1|) (-793) |#1|))) (-1132)) (T -700))
-((-3507 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-793) *2)) (-5 *4 (-793)) (-4 *2 (-1132)) (-5 *1 (-700 *2)))) (-3202 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-793)) (-4 *2 (-1132)) (-5 *1 (-700 *2)))))
-(-10 -7 (-15 -3202 (|#1| (-1 |#1| |#1|) (-793) |#1|)) (-15 -3507 (|#1| (-1 |#1| (-793) |#1|) (-793) |#1|)))
-((-4434 ((|#2| |#1| |#2|) 9 T ELT)) (-4420 ((|#1| |#1| |#2|) 8 T ELT)))
-(((-701 |#1| |#2|) (-10 -7 (-15 -4420 (|#1| |#1| |#2|)) (-15 -4434 (|#2| |#1| |#2|))) (-1132) (-1132)) (T -701))
-((-4434 (*1 *2 *3 *2) (-12 (-5 *1 (-701 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132)))) (-4420 (*1 *2 *2 *3) (-12 (-5 *1 (-701 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))))
-(-10 -7 (-15 -4420 (|#1| |#1| |#2|)) (-15 -4434 (|#2| |#1| |#2|)))
-((-4348 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT)))
-(((-702 |#1| |#2| |#3|) (-10 -7 (-15 -4348 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1132) (-1132) (-1132)) (T -702))
-((-4348 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-1132)) (-5 *1 (-702 *5 *6 *2)))))
-(-10 -7 (-15 -4348 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-1660 (((-1248) $) 21 T ELT)) (-1613 (((-663 (-1248)) $) 19 T ELT)) (-2814 (($ (-663 (-1248)) (-1248)) 14 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 29 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT) (((-1248) $) 22 T ELT) (($ (-1146)) 10 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-703) (-13 (-1114) (-632 (-1248)) (-10 -8 (-15 -1578 ($ (-1146))) (-15 -2814 ($ (-663 (-1248)) (-1248))) (-15 -1613 ((-663 (-1248)) $)) (-15 -1660 ((-1248) $))))) (T -703))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1146)) (-5 *1 (-703)))) (-2814 (*1 *1 *2 *3) (-12 (-5 *2 (-663 (-1248))) (-5 *3 (-1248)) (-5 *1 (-703)))) (-1613 (*1 *2 *1) (-12 (-5 *2 (-663 (-1248))) (-5 *1 (-703)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-703)))))
-(-13 (-1114) (-632 (-1248)) (-10 -8 (-15 -1578 ($ (-1146))) (-15 -2814 ($ (-663 (-1248)) (-1248))) (-15 -1613 ((-663 (-1248)) $)) (-15 -1660 ((-1248) $))))
-((-3507 (((-1 |#1| (-793) |#1|) (-1 |#1| (-793) |#1|)) 26 T ELT)) (-1884 (((-1 |#1|) |#1|) 8 T ELT)) (-4300 ((|#1| |#1|) 19 T ELT)) (-2190 (((-663 |#1|) (-1 (-663 |#1|) (-663 |#1|)) (-560)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-1578 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-793)) 23 T ELT)))
-(((-704 |#1|) (-10 -7 (-15 -1884 ((-1 |#1|) |#1|)) (-15 -1578 ((-1 |#1|) |#1|)) (-15 -2190 (|#1| (-1 |#1| |#1|))) (-15 -2190 ((-663 |#1|) (-1 (-663 |#1|) (-663 |#1|)) (-560))) (-15 -4300 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-793))) (-15 -3507 ((-1 |#1| (-793) |#1|) (-1 |#1| (-793) |#1|)))) (-1132)) (T -704))
-((-3507 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-793) *3)) (-4 *3 (-1132)) (-5 *1 (-704 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-793)) (-4 *4 (-1132)) (-5 *1 (-704 *4)))) (-4300 (*1 *2 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-1132)))) (-2190 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-663 *5) (-663 *5))) (-5 *4 (-560)) (-5 *2 (-663 *5)) (-5 *1 (-704 *5)) (-4 *5 (-1132)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-704 *2)) (-4 *2 (-1132)))) (-1578 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-704 *3)) (-4 *3 (-1132)))) (-1884 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-704 *3)) (-4 *3 (-1132)))))
-(-10 -7 (-15 -1884 ((-1 |#1|) |#1|)) (-15 -1578 ((-1 |#1|) |#1|)) (-15 -2190 (|#1| (-1 |#1| |#1|))) (-15 -2190 ((-663 |#1|) (-1 (-663 |#1|) (-663 |#1|)) (-560))) (-15 -4300 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-793))) (-15 -3507 ((-1 |#1| (-793) |#1|) (-1 |#1| (-793) |#1|))))
-((-2095 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-3820 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-3081 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-4273 (((-1 |#2| |#1|) |#2|) 11 T ELT)))
-(((-705 |#1| |#2|) (-10 -7 (-15 -4273 ((-1 |#2| |#1|) |#2|)) (-15 -3820 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3081 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2095 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1132) (-1132)) (T -705))
-((-2095 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-5 *2 (-1 *5 *4)) (-5 *1 (-705 *4 *5)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1132)) (-5 *2 (-1 *5 *4)) (-5 *1 (-705 *4 *5)) (-4 *4 (-1132)))) (-3820 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-5 *2 (-1 *5)) (-5 *1 (-705 *4 *5)))) (-4273 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-705 *4 *3)) (-4 *4 (-1132)) (-4 *3 (-1132)))))
-(-10 -7 (-15 -4273 ((-1 |#2| |#1|) |#2|)) (-15 -3820 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -3081 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2095 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-2153 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-4377 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-3783 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-3627 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-3338 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT)))
-(((-706 |#1| |#2| |#3|) (-10 -7 (-15 -4377 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3783 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3627 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3338 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2153 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1132) (-1132) (-1132)) (T -706))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-1 *7 *5)) (-5 *1 (-706 *5 *6 *7)))) (-2153 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-706 *4 *5 *6)))) (-3338 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-706 *4 *5 *6)) (-4 *4 (-1132)))) (-3627 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1132)) (-4 *6 (-1132)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-706 *4 *5 *6)) (-4 *5 (-1132)))) (-3783 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *4 *5 *6)))) (-4377 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1132)) (-4 *4 (-1132)) (-4 *6 (-1132)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *5 *4 *6)))))
-(-10 -7 (-15 -4377 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -3783 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3627 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -3338 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2153 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-3759 (($ (-793) (-793)) 42 T ELT)) (-2370 (($ $ $) 73 T ELT)) (-2629 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-4338 (((-114) $) 36 T ELT)) (-2112 (($ $ (-560) (-560)) 84 T ELT)) (-2599 (($ $ (-560) (-560)) 85 T ELT)) (-1653 (($ $ (-560) (-560) (-560) (-560)) 90 T ELT)) (-4304 (($ $) 71 T ELT)) (-1673 (((-114) $) 15 T ELT)) (-2047 (($ $ (-560) (-560) $) 91 T ELT)) (-1773 ((|#2| $ (-560) (-560) |#2|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560)) $) 89 T ELT)) (-2733 (($ (-793) |#2|) 55 T ELT)) (-2589 (($ (-663 (-663 |#2|))) 51 T ELT) (($ (-793) (-793) (-1 |#2| (-560) (-560))) 53 T ELT)) (-2543 (((-663 (-663 |#2|)) $) 80 T ELT)) (-3049 (($ $ $) 72 T ELT)) (-1528 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-3924 ((|#2| $ (-560) (-560)) NIL T ELT) ((|#2| $ (-560) (-560) |#2|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560))) 88 T ELT)) (-3323 (($ (-663 |#2|)) 56 T ELT) (($ (-663 $)) 58 T ELT)) (-3032 (((-114) $) 28 T ELT)) (-1578 (($ |#4|) 63 T ELT) (((-887) $) NIL T ELT)) (-2441 (((-114) $) 38 T ELT)) (-2594 (($ $ |#2|) 124 T ELT)) (-2580 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-2567 (($ $ $) 93 T ELT)) (** (($ $ (-793)) 111 T ELT) (($ $ (-560)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-560) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT)))
-(((-707 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1578 ((-887) |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -2594 (|#1| |#1| |#2|)) (-15 -1528 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-793))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1|)) (-15 -2580 (|#1| |#1| |#1|)) (-15 -2567 (|#1| |#1| |#1|)) (-15 -2047 (|#1| |#1| (-560) (-560) |#1|)) (-15 -1653 (|#1| |#1| (-560) (-560) (-560) (-560))) (-15 -2599 (|#1| |#1| (-560) (-560))) (-15 -2112 (|#1| |#1| (-560) (-560))) (-15 -1773 (|#1| |#1| (-663 (-560)) (-663 (-560)) |#1|)) (-15 -3924 (|#1| |#1| (-663 (-560)) (-663 (-560)))) (-15 -2543 ((-663 (-663 |#2|)) |#1|)) (-15 -2370 (|#1| |#1| |#1|)) (-15 -3049 (|#1| |#1| |#1|)) (-15 -4304 (|#1| |#1|)) (-15 -2629 (|#1| |#1|)) (-15 -2629 (|#1| |#3|)) (-15 -1578 (|#1| |#4|)) (-15 -3323 (|#1| (-663 |#1|))) (-15 -3323 (|#1| (-663 |#2|))) (-15 -2733 (|#1| (-793) |#2|)) (-15 -2589 (|#1| (-793) (-793) (-1 |#2| (-560) (-560)))) (-15 -2589 (|#1| (-663 (-663 |#2|)))) (-15 -3759 (|#1| (-793) (-793))) (-15 -2441 ((-114) |#1|)) (-15 -4338 ((-114) |#1|)) (-15 -3032 ((-114) |#1|)) (-15 -1673 ((-114) |#1|)) (-15 -1773 (|#2| |#1| (-560) (-560) |#2|)) (-15 -3924 (|#2| |#1| (-560) (-560) |#2|)) (-15 -3924 (|#2| |#1| (-560) (-560)))) (-708 |#2| |#3| |#4|) (-1080) (-385 |#2|) (-385 |#2|)) (T -707))
-NIL
-(-10 -8 (-15 -1578 ((-887) |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -2594 (|#1| |#1| |#2|)) (-15 -1528 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-793))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1|)) (-15 -2580 (|#1| |#1| |#1|)) (-15 -2567 (|#1| |#1| |#1|)) (-15 -2047 (|#1| |#1| (-560) (-560) |#1|)) (-15 -1653 (|#1| |#1| (-560) (-560) (-560) (-560))) (-15 -2599 (|#1| |#1| (-560) (-560))) (-15 -2112 (|#1| |#1| (-560) (-560))) (-15 -1773 (|#1| |#1| (-663 (-560)) (-663 (-560)) |#1|)) (-15 -3924 (|#1| |#1| (-663 (-560)) (-663 (-560)))) (-15 -2543 ((-663 (-663 |#2|)) |#1|)) (-15 -2370 (|#1| |#1| |#1|)) (-15 -3049 (|#1| |#1| |#1|)) (-15 -4304 (|#1| |#1|)) (-15 -2629 (|#1| |#1|)) (-15 -2629 (|#1| |#3|)) (-15 -1578 (|#1| |#4|)) (-15 -3323 (|#1| (-663 |#1|))) (-15 -3323 (|#1| (-663 |#2|))) (-15 -2733 (|#1| (-793) |#2|)) (-15 -2589 (|#1| (-793) (-793) (-1 |#2| (-560) (-560)))) (-15 -2589 (|#1| (-663 (-663 |#2|)))) (-15 -3759 (|#1| (-793) (-793))) (-15 -2441 ((-114) |#1|)) (-15 -4338 ((-114) |#1|)) (-15 -3032 ((-114) |#1|)) (-15 -1673 ((-114) |#1|)) (-15 -1773 (|#2| |#1| (-560) (-560) |#2|)) (-15 -3924 (|#2| |#1| (-560) (-560) |#2|)) (-15 -3924 (|#2| |#1| (-560) (-560))))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3759 (($ (-793) (-793)) 99 T ELT)) (-2370 (($ $ $) 88 T ELT)) (-2629 (($ |#2|) 92 T ELT) (($ $) 91 T ELT)) (-4338 (((-114) $) 101 T ELT)) (-2112 (($ $ (-560) (-560)) 84 T ELT)) (-2599 (($ $ (-560) (-560)) 83 T ELT)) (-1653 (($ $ (-560) (-560) (-560) (-560)) 82 T ELT)) (-4304 (($ $) 90 T ELT)) (-1673 (((-114) $) 103 T ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-2047 (($ $ (-560) (-560) $) 81 T ELT)) (-1773 ((|#1| $ (-560) (-560) |#1|) 45 T ELT) (($ $ (-663 (-560)) (-663 (-560)) $) 85 T ELT)) (-3981 (($ $ (-560) |#2|) 43 T ELT)) (-2613 (($ $ (-560) |#3|) 42 T ELT)) (-2733 (($ (-793) |#1|) 96 T ELT)) (-2238 (($) 7 T CONST)) (-2677 (($ $) 68 (|has| |#1| (-319)) ELT)) (-3634 ((|#2| $ (-560)) 47 T ELT)) (-2326 (((-793) $) 67 (|has| |#1| (-571)) ELT)) (-3779 ((|#1| $ (-560) (-560) |#1|) 44 T ELT)) (-3709 ((|#1| $ (-560) (-560)) 49 T ELT)) (-2181 (((-663 |#1|) $) 31 T ELT)) (-1401 (((-793) $) 66 (|has| |#1| (-571)) ELT)) (-2454 (((-663 |#3|) $) 65 (|has| |#1| (-571)) ELT)) (-3648 (((-793) $) 52 T ELT)) (-4095 (($ (-793) (-793) |#1|) 58 T ELT)) (-3658 (((-793) $) 51 T ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-3535 ((|#1| $) 63 (|has| |#1| (-6 (-4510 "*"))) ELT)) (-2711 (((-560) $) 56 T ELT)) (-2369 (((-560) $) 54 T ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1468 (((-560) $) 55 T ELT)) (-2632 (((-560) $) 53 T ELT)) (-2589 (($ (-663 (-663 |#1|))) 98 T ELT) (($ (-793) (-793) (-1 |#1| (-560) (-560))) 97 T ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 41 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40 T ELT)) (-2543 (((-663 (-663 |#1|)) $) 87 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-2141 (((-3 $ "failed") $) 62 (|has| |#1| (-376)) ELT)) (-3049 (($ $ $) 89 T ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-3037 (($ $ |#1|) 57 T ELT)) (-1528 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-571)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3924 ((|#1| $ (-560) (-560)) 50 T ELT) ((|#1| $ (-560) (-560) |#1|) 48 T ELT) (($ $ (-663 (-560)) (-663 (-560))) 86 T ELT)) (-3323 (($ (-663 |#1|)) 95 T ELT) (($ (-663 $)) 94 T ELT)) (-3032 (((-114) $) 102 T ELT)) (-4227 ((|#1| $) 64 (|has| |#1| (-6 (-4510 "*"))) ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1644 ((|#3| $ (-560)) 46 T ELT)) (-1578 (($ |#3|) 93 T ELT) (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2441 (((-114) $) 100 T ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2594 (($ $ |#1|) 69 (|has| |#1| (-376)) ELT)) (-2580 (($ $ $) 79 T ELT) (($ $) 78 T ELT)) (-2567 (($ $ $) 80 T ELT)) (** (($ $ (-793)) 71 T ELT) (($ $ (-560)) 61 (|has| |#1| (-376)) ELT)) (* (($ $ $) 77 T ELT) (($ |#1| $) 76 T ELT) (($ $ |#1|) 75 T ELT) (($ (-560) $) 74 T ELT) ((|#3| $ |#3|) 73 T ELT) ((|#2| |#2| $) 72 T ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-3033 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-696 *3)) (-4 *3 (-1247)))) (-3923 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-696 *3)) (-4 *3 (-1247)))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))) (-3412 (*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))) (-2844 (*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))) (-4282 (*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1247)))) (-2356 (*1 *2 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1247)))) (-1352 (*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1247)))) (-1511 (*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1247)) (-5 *2 (-793)))) (-2219 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-696 *3)) (-4 *3 (-1247)))) (-3329 (*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1247)))))
+(-13 (-1180 |t#1|) (-10 -8 (-15 -3033 ($ (-1 (-114) |t#1|) $)) (-15 -3923 ($ (-1 (-114) |t#1|) $)) (-15 -1426 ((-114) $)) (-15 -3412 ((-114) $)) (-15 -2844 ((-114) $)) (-15 -4282 ($ $)) (-15 -2356 (|t#1| $)) (-15 -1352 ($ $)) (-15 -1511 ((-793) $)) (-15 -2219 ($ $ (-560))) (-15 -3329 ($ $))))
+(((-34) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #0=(-560) |#1|) . T) ((-298 (-1264 (-560)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-673 |#1|) . T) ((-1041 |#1|) . T) ((-1132) |has| |#1| (-1132)) ((-1180 |#1|) . T) ((-1247) . T) ((-1286 |#1|) . T))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2093 (($ (-793) (-793) (-793)) 53 (|has| |#1| (-1080)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-1908 ((|#1| $ (-793) (-793) (-793) |#1|) 47 T ELT)) (-3525 (($) NIL T CONST)) (-4487 (($ $ $) 57 (|has| |#1| (-1080)) ELT)) (-3737 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1397 (((-1297 (-793)) $) 12 T ELT)) (-2123 (($ (-1207) $ $) 34 T ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3635 (($ (-793)) 55 (|has| |#1| (-1080)) ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#1| $ (-793) (-793) (-793)) 44 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4107 (($ $) NIL T ELT)) (-3924 (($ (-663 (-663 (-663 |#1|)))) 67 T ELT)) (-3913 (($ (-987 (-987 (-987 |#1|)))) 23 T ELT) (((-987 (-987 (-987 |#1|))) $) 19 T ELT) (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-697 |#1|) (-13 (-503 |#1|) (-10 -8 (IF (|has| |#1| (-1080)) (PROGN (-15 -2093 ($ (-793) (-793) (-793))) (-15 -3635 ($ (-793))) (-15 -4487 ($ $ $))) |%noBranch|) (-15 -3924 ($ (-663 (-663 (-663 |#1|))))) (-15 -1507 (|#1| $ (-793) (-793) (-793))) (-15 -1908 (|#1| $ (-793) (-793) (-793) |#1|)) (-15 -3913 ($ (-987 (-987 (-987 |#1|))))) (-15 -3913 ((-987 (-987 (-987 |#1|))) $)) (-15 -2123 ($ (-1207) $ $)) (-15 -1397 ((-1297 (-793)) $)))) (-1132)) (T -697))
+((-2093 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-793)) (-5 *1 (-697 *3)) (-4 *3 (-1080)) (-4 *3 (-1132)))) (-3635 (*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-697 *3)) (-4 *3 (-1080)) (-4 *3 (-1132)))) (-4487 (*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-1080)) (-4 *2 (-1132)))) (-3924 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-663 *3)))) (-4 *3 (-1132)) (-5 *1 (-697 *3)))) (-1507 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-793)) (-5 *1 (-697 *2)) (-4 *2 (-1132)))) (-1908 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-697 *2)) (-4 *2 (-1132)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-987 (-987 (-987 *3)))) (-4 *3 (-1132)) (-5 *1 (-697 *3)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-987 (-987 (-987 *3)))) (-5 *1 (-697 *3)) (-4 *3 (-1132)))) (-2123 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-697 *3)) (-4 *3 (-1132)))) (-1397 (*1 *2 *1) (-12 (-5 *2 (-1297 (-793))) (-5 *1 (-697 *3)) (-4 *3 (-1132)))))
+(-13 (-503 |#1|) (-10 -8 (IF (|has| |#1| (-1080)) (PROGN (-15 -2093 ($ (-793) (-793) (-793))) (-15 -3635 ($ (-793))) (-15 -4487 ($ $ $))) |%noBranch|) (-15 -3924 ($ (-663 (-663 (-663 |#1|))))) (-15 -1507 (|#1| $ (-793) (-793) (-793))) (-15 -1908 (|#1| $ (-793) (-793) (-793) |#1|)) (-15 -3913 ($ (-987 (-987 (-987 |#1|))))) (-15 -3913 ((-987 (-987 (-987 |#1|))) $)) (-15 -2123 ($ (-1207) $ $)) (-15 -1397 ((-1297 (-793)) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3016 (((-497) $) 10 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 19 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-4400 (((-1166) $) 12 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-698) (-13 (-1114) (-10 -8 (-15 -3016 ((-497) $)) (-15 -4400 ((-1166) $))))) (T -698))
+((-3016 (*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-698)))) (-4400 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-698)))))
+(-13 (-1114) (-10 -8 (-15 -3016 ((-497) $)) (-15 -4400 ((-1166) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-4356 (((-663 |#1|) $) 15 T ELT)) (-4346 (($ $) 19 T ELT)) (-2736 (((-114) $) 20 T ELT)) (-3929 (((-3 |#1| "failed") $) 23 T ELT)) (-3649 ((|#1| $) 21 T ELT)) (-4345 (($ $) 37 T ELT)) (-3723 (($ $) 25 T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-4171 (((-114) $ $) 47 T ELT)) (-2946 (((-948) $) 40 T ELT)) (-4335 (($ $) 18 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4334 ((|#1| $) 36 T ELT)) (-3913 (((-887) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-841 |#1|) $) 28 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 13 T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT)))
+(((-699 |#1|) (-13 (-871) (-1069 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3913 ((-841 |#1|) $)) (-15 -4334 (|#1| $)) (-15 -4335 ($ $)) (-15 -2946 ((-948) $)) (-15 -4171 ((-114) $ $)) (-15 -3723 ($ $)) (-15 -4345 ($ $)) (-15 -2736 ((-114) $)) (-15 -4346 ($ $)) (-15 -4356 ((-663 |#1|) $)))) (-871)) (T -699))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-699 *3)) (-4 *3 (-871)))) (-4334 (*1 *2 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) (-4335 (*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-948)) (-5 *1 (-699 *3)) (-4 *3 (-871)))) (-4171 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-699 *3)) (-4 *3 (-871)))) (-3723 (*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) (-4345 (*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-699 *3)) (-4 *3 (-871)))) (-4346 (*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871)))) (-4356 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-699 *3)) (-4 *3 (-871)))))
+(-13 (-871) (-1069 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -3913 ((-841 |#1|) $)) (-15 -4334 (|#1| $)) (-15 -4335 ($ $)) (-15 -2946 ((-948) $)) (-15 -4171 ((-114) $ $)) (-15 -3723 ($ $)) (-15 -4345 ($ $)) (-15 -2736 ((-114) $)) (-15 -4346 ($ $)) (-15 -4356 ((-663 |#1|) $))))
+((-1926 ((|#1| (-1 |#1| (-793) |#1|) (-793) |#1|) 11 T ELT)) (-2451 ((|#1| (-1 |#1| |#1|) (-793) |#1|) 9 T ELT)))
+(((-700 |#1|) (-10 -7 (-15 -2451 (|#1| (-1 |#1| |#1|) (-793) |#1|)) (-15 -1926 (|#1| (-1 |#1| (-793) |#1|) (-793) |#1|))) (-1132)) (T -700))
+((-1926 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-793) *2)) (-5 *4 (-793)) (-4 *2 (-1132)) (-5 *1 (-700 *2)))) (-2451 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-793)) (-4 *2 (-1132)) (-5 *1 (-700 *2)))))
+(-10 -7 (-15 -2451 (|#1| (-1 |#1| |#1|) (-793) |#1|)) (-15 -1926 (|#1| (-1 |#1| (-793) |#1|) (-793) |#1|)))
+((-2675 ((|#2| |#1| |#2|) 9 T ELT)) (-2663 ((|#1| |#1| |#2|) 8 T ELT)))
+(((-701 |#1| |#2|) (-10 -7 (-15 -2663 (|#1| |#1| |#2|)) (-15 -2675 (|#2| |#1| |#2|))) (-1132) (-1132)) (T -701))
+((-2675 (*1 *2 *3 *2) (-12 (-5 *1 (-701 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132)))) (-2663 (*1 *2 *2 *3) (-12 (-5 *1 (-701 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))))
+(-10 -7 (-15 -2663 (|#1| |#1| |#2|)) (-15 -2675 (|#2| |#1| |#2|)))
+((-3196 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT)))
+(((-702 |#1| |#2| |#3|) (-10 -7 (-15 -3196 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1132) (-1132) (-1132)) (T -702))
+((-3196 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-1132)) (-5 *1 (-702 *5 *6 *2)))))
+(-10 -7 (-15 -3196 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3300 (((-1248) $) 21 T ELT)) (-3266 (((-663 (-1248)) $) 19 T ELT)) (-4315 (($ (-663 (-1248)) (-1248)) 14 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 29 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT) (((-1248) $) 22 T ELT) (($ (-1146)) 10 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-703) (-13 (-1114) (-632 (-1248)) (-10 -8 (-15 -3913 ($ (-1146))) (-15 -4315 ($ (-663 (-1248)) (-1248))) (-15 -3266 ((-663 (-1248)) $)) (-15 -3300 ((-1248) $))))) (T -703))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1146)) (-5 *1 (-703)))) (-4315 (*1 *1 *2 *3) (-12 (-5 *2 (-663 (-1248))) (-5 *3 (-1248)) (-5 *1 (-703)))) (-3266 (*1 *2 *1) (-12 (-5 *2 (-663 (-1248))) (-5 *1 (-703)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-703)))))
+(-13 (-1114) (-632 (-1248)) (-10 -8 (-15 -3913 ($ (-1146))) (-15 -4315 ($ (-663 (-1248)) (-1248))) (-15 -3266 ((-663 (-1248)) $)) (-15 -3300 ((-1248) $))))
+((-1926 (((-1 |#1| (-793) |#1|) (-1 |#1| (-793) |#1|)) 26 T ELT)) (-4380 (((-1 |#1|) |#1|) 8 T ELT)) (-3745 ((|#1| |#1|) 19 T ELT)) (-4336 (((-663 |#1|) (-1 (-663 |#1|) (-663 |#1|)) (-560)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-3913 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-793)) 23 T ELT)))
+(((-704 |#1|) (-10 -7 (-15 -4380 ((-1 |#1|) |#1|)) (-15 -3913 ((-1 |#1|) |#1|)) (-15 -4336 (|#1| (-1 |#1| |#1|))) (-15 -4336 ((-663 |#1|) (-1 (-663 |#1|) (-663 |#1|)) (-560))) (-15 -3745 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-793))) (-15 -1926 ((-1 |#1| (-793) |#1|) (-1 |#1| (-793) |#1|)))) (-1132)) (T -704))
+((-1926 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-793) *3)) (-4 *3 (-1132)) (-5 *1 (-704 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-793)) (-4 *4 (-1132)) (-5 *1 (-704 *4)))) (-3745 (*1 *2 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-1132)))) (-4336 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-663 *5) (-663 *5))) (-5 *4 (-560)) (-5 *2 (-663 *5)) (-5 *1 (-704 *5)) (-4 *5 (-1132)))) (-4336 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-704 *2)) (-4 *2 (-1132)))) (-3913 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-704 *3)) (-4 *3 (-1132)))) (-4380 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-704 *3)) (-4 *3 (-1132)))))
+(-10 -7 (-15 -4380 ((-1 |#1|) |#1|)) (-15 -3913 ((-1 |#1|) |#1|)) (-15 -4336 (|#1| (-1 |#1| |#1|))) (-15 -4336 ((-663 |#1|) (-1 (-663 |#1|) (-663 |#1|)) (-560))) (-15 -3745 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-793))) (-15 -1926 ((-1 |#1| (-793) |#1|) (-1 |#1| (-793) |#1|))))
+((-1458 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-1845 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-2650 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-3922 (((-1 |#2| |#1|) |#2|) 11 T ELT)))
+(((-705 |#1| |#2|) (-10 -7 (-15 -3922 ((-1 |#2| |#1|) |#2|)) (-15 -1845 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2650 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1458 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1132) (-1132)) (T -705))
+((-1458 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-5 *2 (-1 *5 *4)) (-5 *1 (-705 *4 *5)))) (-2650 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1132)) (-5 *2 (-1 *5 *4)) (-5 *1 (-705 *4 *5)) (-4 *4 (-1132)))) (-1845 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-5 *2 (-1 *5)) (-5 *1 (-705 *4 *5)))) (-3922 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-705 *4 *3)) (-4 *4 (-1132)) (-4 *3 (-1132)))))
+(-10 -7 (-15 -3922 ((-1 |#2| |#1|) |#2|)) (-15 -1845 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2650 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -1458 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-2020 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2254 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-1519 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-3862 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2780 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT)))
+(((-706 |#1| |#2| |#3|) (-10 -7 (-15 -2254 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1519 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3862 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2780 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2020 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1132) (-1132) (-1132)) (T -706))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-1 *7 *5)) (-5 *1 (-706 *5 *6 *7)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-706 *4 *5 *6)))) (-2780 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-706 *4 *5 *6)) (-4 *4 (-1132)))) (-3862 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1132)) (-4 *6 (-1132)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-706 *4 *5 *6)) (-4 *5 (-1132)))) (-1519 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *4 *5 *6)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1132)) (-4 *4 (-1132)) (-4 *6 (-1132)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *5 *4 *6)))))
+(-10 -7 (-15 -2254 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1519 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3862 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2780 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2020 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-3068 (($ (-793) (-793)) 42 T ELT)) (-2321 (($ $ $) 73 T ELT)) (-2966 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3202 (((-114) $) 36 T ELT)) (-1602 (($ $ (-560) (-560)) 84 T ELT)) (-3933 (($ $ (-560) (-560)) 85 T ELT)) (-3892 (($ $ (-560) (-560) (-560) (-560)) 90 T ELT)) (-2877 (($ $) 71 T ELT)) (-2798 (((-114) $) 15 T ELT)) (-2205 (($ $ (-560) (-560) $) 91 T ELT)) (-4083 ((|#2| $ (-560) (-560) |#2|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560)) $) 89 T ELT)) (-1571 (($ (-793) |#2|) 55 T ELT)) (-3551 (($ (-663 (-663 |#2|))) 51 T ELT) (($ (-793) (-793) (-1 |#2| (-560) (-560))) 53 T ELT)) (-3378 (((-663 (-663 |#2|)) $) 80 T ELT)) (-2857 (($ $ $) 72 T ELT)) (-2233 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-1507 ((|#2| $ (-560) (-560)) NIL T ELT) ((|#2| $ (-560) (-560) |#2|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560))) 88 T ELT)) (-3926 (($ (-663 |#2|)) 56 T ELT) (($ (-663 $)) 58 T ELT)) (-2691 (((-114) $) 28 T ELT)) (-3913 (($ |#4|) 63 T ELT) (((-887) $) NIL T ELT)) (-1775 (((-114) $) 38 T ELT)) (-2453 (($ $ |#2|) 124 T ELT)) (-2441 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-2429 (($ $ $) 93 T ELT)) (** (($ $ (-793)) 111 T ELT) (($ $ (-560)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-560) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT)))
+(((-707 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3913 ((-887) |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -2453 (|#1| |#1| |#2|)) (-15 -2233 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-793))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 -2441 (|#1| |#1| |#1|)) (-15 -2429 (|#1| |#1| |#1|)) (-15 -2205 (|#1| |#1| (-560) (-560) |#1|)) (-15 -3892 (|#1| |#1| (-560) (-560) (-560) (-560))) (-15 -3933 (|#1| |#1| (-560) (-560))) (-15 -1602 (|#1| |#1| (-560) (-560))) (-15 -4083 (|#1| |#1| (-663 (-560)) (-663 (-560)) |#1|)) (-15 -1507 (|#1| |#1| (-663 (-560)) (-663 (-560)))) (-15 -3378 ((-663 (-663 |#2|)) |#1|)) (-15 -2321 (|#1| |#1| |#1|)) (-15 -2857 (|#1| |#1| |#1|)) (-15 -2877 (|#1| |#1|)) (-15 -2966 (|#1| |#1|)) (-15 -2966 (|#1| |#3|)) (-15 -3913 (|#1| |#4|)) (-15 -3926 (|#1| (-663 |#1|))) (-15 -3926 (|#1| (-663 |#2|))) (-15 -1571 (|#1| (-793) |#2|)) (-15 -3551 (|#1| (-793) (-793) (-1 |#2| (-560) (-560)))) (-15 -3551 (|#1| (-663 (-663 |#2|)))) (-15 -3068 (|#1| (-793) (-793))) (-15 -1775 ((-114) |#1|)) (-15 -3202 ((-114) |#1|)) (-15 -2691 ((-114) |#1|)) (-15 -2798 ((-114) |#1|)) (-15 -4083 (|#2| |#1| (-560) (-560) |#2|)) (-15 -1507 (|#2| |#1| (-560) (-560) |#2|)) (-15 -1507 (|#2| |#1| (-560) (-560)))) (-708 |#2| |#3| |#4|) (-1080) (-385 |#2|) (-385 |#2|)) (T -707))
+NIL
+(-10 -8 (-15 -3913 ((-887) |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -2453 (|#1| |#1| |#2|)) (-15 -2233 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-793))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 -2441 (|#1| |#1| |#1|)) (-15 -2429 (|#1| |#1| |#1|)) (-15 -2205 (|#1| |#1| (-560) (-560) |#1|)) (-15 -3892 (|#1| |#1| (-560) (-560) (-560) (-560))) (-15 -3933 (|#1| |#1| (-560) (-560))) (-15 -1602 (|#1| |#1| (-560) (-560))) (-15 -4083 (|#1| |#1| (-663 (-560)) (-663 (-560)) |#1|)) (-15 -1507 (|#1| |#1| (-663 (-560)) (-663 (-560)))) (-15 -3378 ((-663 (-663 |#2|)) |#1|)) (-15 -2321 (|#1| |#1| |#1|)) (-15 -2857 (|#1| |#1| |#1|)) (-15 -2877 (|#1| |#1|)) (-15 -2966 (|#1| |#1|)) (-15 -2966 (|#1| |#3|)) (-15 -3913 (|#1| |#4|)) (-15 -3926 (|#1| (-663 |#1|))) (-15 -3926 (|#1| (-663 |#2|))) (-15 -1571 (|#1| (-793) |#2|)) (-15 -3551 (|#1| (-793) (-793) (-1 |#2| (-560) (-560)))) (-15 -3551 (|#1| (-663 (-663 |#2|)))) (-15 -3068 (|#1| (-793) (-793))) (-15 -1775 ((-114) |#1|)) (-15 -3202 ((-114) |#1|)) (-15 -2691 ((-114) |#1|)) (-15 -2798 ((-114) |#1|)) (-15 -4083 (|#2| |#1| (-560) (-560) |#2|)) (-15 -1507 (|#2| |#1| (-560) (-560) |#2|)) (-15 -1507 (|#2| |#1| (-560) (-560))))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3068 (($ (-793) (-793)) 99 T ELT)) (-2321 (($ $ $) 88 T ELT)) (-2966 (($ |#2|) 92 T ELT) (($ $) 91 T ELT)) (-3202 (((-114) $) 101 T ELT)) (-1602 (($ $ (-560) (-560)) 84 T ELT)) (-3933 (($ $ (-560) (-560)) 83 T ELT)) (-3892 (($ $ (-560) (-560) (-560) (-560)) 82 T ELT)) (-2877 (($ $) 90 T ELT)) (-2798 (((-114) $) 103 T ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-2205 (($ $ (-560) (-560) $) 81 T ELT)) (-4083 ((|#1| $ (-560) (-560) |#1|) 45 T ELT) (($ $ (-663 (-560)) (-663 (-560)) $) 85 T ELT)) (-2792 (($ $ (-560) |#2|) 43 T ELT)) (-2770 (($ $ (-560) |#3|) 42 T ELT)) (-1571 (($ (-793) |#1|) 96 T ELT)) (-3525 (($) 7 T CONST)) (-2207 (($ $) 68 (|has| |#1| (-319)) ELT)) (-3942 ((|#2| $ (-560)) 47 T ELT)) (-1604 (((-793) $) 67 (|has| |#1| (-571)) ELT)) (-3338 ((|#1| $ (-560) (-560) |#1|) 44 T ELT)) (-3274 ((|#1| $ (-560) (-560)) 49 T ELT)) (-3737 (((-663 |#1|) $) 31 T ELT)) (-3213 (((-793) $) 66 (|has| |#1| (-571)) ELT)) (-1927 (((-663 |#3|) $) 65 (|has| |#1| (-571)) ELT)) (-2777 (((-793) $) 52 T ELT)) (-4246 (($ (-793) (-793) |#1|) 58 T ELT)) (-2789 (((-793) $) 51 T ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-4174 ((|#1| $) 63 (|has| |#1| (-6 (-4510 "*"))) ELT)) (-2567 (((-560) $) 56 T ELT)) (-2313 (((-560) $) 54 T ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1475 (((-560) $) 55 T ELT)) (-3004 (((-560) $) 53 T ELT)) (-3551 (($ (-663 (-663 |#1|))) 98 T ELT) (($ (-793) (-793) (-1 |#1| (-560) (-560))) 97 T ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 41 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 40 T ELT)) (-3378 (((-663 (-663 |#1|)) $) 87 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-1906 (((-3 $ "failed") $) 62 (|has| |#1| (-376)) ELT)) (-2857 (($ $ $) 89 T ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2740 (($ $ |#1|) 57 T ELT)) (-2233 (((-3 $ "failed") $ |#1|) 70 (|has| |#1| (-571)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1507 ((|#1| $ (-560) (-560)) 50 T ELT) ((|#1| $ (-560) (-560) |#1|) 48 T ELT) (($ $ (-663 (-560)) (-663 (-560))) 86 T ELT)) (-3926 (($ (-663 |#1|)) 95 T ELT) (($ (-663 $)) 94 T ELT)) (-2691 (((-114) $) 102 T ELT)) (-3441 ((|#1| $) 64 (|has| |#1| (-6 (-4510 "*"))) ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-3783 ((|#3| $ (-560)) 46 T ELT)) (-3913 (($ |#3|) 93 T ELT) (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-1775 (((-114) $) 100 T ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2453 (($ $ |#1|) 69 (|has| |#1| (-376)) ELT)) (-2441 (($ $ $) 79 T ELT) (($ $) 78 T ELT)) (-2429 (($ $ $) 80 T ELT)) (** (($ $ (-793)) 71 T ELT) (($ $ (-560)) 61 (|has| |#1| (-376)) ELT)) (* (($ $ $) 77 T ELT) (($ |#1| $) 76 T ELT) (($ $ |#1|) 75 T ELT) (($ (-560) $) 74 T ELT) ((|#3| $ |#3|) 73 T ELT) ((|#2| |#2| $) 72 T ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-708 |#1| |#2| |#3|) (-142) (-1080) (-385 |t#1|) (-385 |t#1|)) (T -708))
-((-1673 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-3032 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-4338 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-2441 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-3759 (*1 *1 *2 *2) (-12 (-5 *2 (-793)) (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2589 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-1 *4 (-560) (-560))) (-4 *4 (-1080)) (-4 *1 (-708 *4 *5 *6)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) (-2733 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3323 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3323 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-1578 (*1 *1 *2) (-12 (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *2)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) (-2629 (*1 *1 *2) (-12 (-4 *3 (-1080)) (-4 *1 (-708 *3 *2 *4)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) (-2629 (*1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4304 (*1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-3049 (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2370 (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2543 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-663 (-663 *3))))) (-3924 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-663 (-560))) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-1773 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-663 (-560))) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2112 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2599 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-1653 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2047 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2567 (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2580 (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2580 (*1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-708 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-708 *3 *2 *4)) (-4 *3 (-1080)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-1528 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-571)))) (-2594 (*1 *1 *1 *2) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-376)))) (-2677 (*1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-319)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-571)) (-5 *2 (-793)))) (-1401 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-571)) (-5 *2 (-793)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-571)) (-5 *2 (-663 *5)))) (-4227 (*1 *2 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (|has| *2 (-6 (-4510 "*"))) (-4 *2 (-1080)))) (-3535 (*1 *2 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (|has| *2 (-6 (-4510 "*"))) (-4 *2 (-1080)))) (-2141 (*1 *1 *1) (|partial| -12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-376)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-376)))))
-(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4509) (-6 -4508) (-15 -1673 ((-114) $)) (-15 -3032 ((-114) $)) (-15 -4338 ((-114) $)) (-15 -2441 ((-114) $)) (-15 -3759 ($ (-793) (-793))) (-15 -2589 ($ (-663 (-663 |t#1|)))) (-15 -2589 ($ (-793) (-793) (-1 |t#1| (-560) (-560)))) (-15 -2733 ($ (-793) |t#1|)) (-15 -3323 ($ (-663 |t#1|))) (-15 -3323 ($ (-663 $))) (-15 -1578 ($ |t#3|)) (-15 -2629 ($ |t#2|)) (-15 -2629 ($ $)) (-15 -4304 ($ $)) (-15 -3049 ($ $ $)) (-15 -2370 ($ $ $)) (-15 -2543 ((-663 (-663 |t#1|)) $)) (-15 -3924 ($ $ (-663 (-560)) (-663 (-560)))) (-15 -1773 ($ $ (-663 (-560)) (-663 (-560)) $)) (-15 -2112 ($ $ (-560) (-560))) (-15 -2599 ($ $ (-560) (-560))) (-15 -1653 ($ $ (-560) (-560) (-560) (-560))) (-15 -2047 ($ $ (-560) (-560) $)) (-15 -2567 ($ $ $)) (-15 -2580 ($ $ $)) (-15 -2580 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-560) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-793))) (IF (|has| |t#1| (-571)) (-15 -1528 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-376)) (-15 -2594 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-319)) (-15 -2677 ($ $)) |%noBranch|) (IF (|has| |t#1| (-571)) (PROGN (-15 -2326 ((-793) $)) (-15 -1401 ((-793) $)) (-15 -2454 ((-663 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4510 "*"))) (PROGN (-15 -4227 (|t#1| $)) (-15 -3535 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-15 -2141 ((-3 $ "failed") $)) (-15 ** ($ $ (-560)))) |%noBranch|)))
-(((-34) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-57 |#1| |#2| |#3|) . T) ((-1247) . T))
-((-4129 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-3957 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT)))
-(((-709 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3957 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3957 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4129 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1080) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|) (-1080) (-385 |#5|) (-385 |#5|) (-708 |#5| |#6| |#7|)) (T -709))
-((-4129 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1080)) (-4 *2 (-1080)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *8 (-385 *2)) (-4 *9 (-385 *2)) (-5 *1 (-709 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-708 *5 *6 *7)) (-4 *10 (-708 *2 *8 *9)))) (-3957 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1080)) (-4 *8 (-1080)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-708 *8 *9 *10)) (-5 *1 (-709 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-708 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1080)) (-4 *8 (-1080)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-708 *8 *9 *10)) (-5 *1 (-709 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-708 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))))
-(-10 -7 (-15 -3957 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3957 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -4129 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-2677 ((|#4| |#4|) 92 (|has| |#1| (-319)) ELT)) (-2326 (((-793) |#4|) 120 (|has| |#1| (-571)) ELT)) (-1401 (((-793) |#4|) 96 (|has| |#1| (-571)) ELT)) (-2454 (((-663 |#3|) |#4|) 103 (|has| |#1| (-571)) ELT)) (-3756 (((-2 (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1|) 135 (|has| |#1| (-319)) ELT)) (-3535 ((|#1| |#4|) 52 T ELT)) (-3908 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-571)) ELT)) (-2141 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-376)) ELT)) (-2024 ((|#4| |#4|) 88 (|has| |#1| (-571)) ELT)) (-3345 ((|#4| |#4| |#1| (-560) (-560)) 60 T ELT)) (-2320 ((|#4| |#4| (-560) (-560)) 55 T ELT)) (-4343 ((|#4| |#4| |#1| (-560) (-560)) 65 T ELT)) (-4227 ((|#1| |#4|) 98 T ELT)) (-4344 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-571)) ELT)))
-(((-710 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4227 (|#1| |#4|)) (-15 -3535 (|#1| |#4|)) (-15 -2320 (|#4| |#4| (-560) (-560))) (-15 -3345 (|#4| |#4| |#1| (-560) (-560))) (-15 -4343 (|#4| |#4| |#1| (-560) (-560))) (IF (|has| |#1| (-571)) (PROGN (-15 -2326 ((-793) |#4|)) (-15 -1401 ((-793) |#4|)) (-15 -2454 ((-663 |#3|) |#4|)) (-15 -2024 (|#4| |#4|)) (-15 -3908 ((-3 |#4| "failed") |#4|)) (-15 -4344 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-319)) (PROGN (-15 -2677 (|#4| |#4|)) (-15 -3756 ((-2 (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -2141 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-175) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|)) (T -710))
-((-2141 (*1 *2 *2) (|partial| -12 (-4 *3 (-376)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-710 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-3756 (*1 *2 *3 *3) (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-2 (|:| -1774 *3) (|:| -2341 *3))) (-5 *1 (-710 *3 *4 *5 *6)) (-4 *6 (-708 *3 *4 *5)))) (-2677 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-710 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-4344 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3908 (*1 *2 *2) (|partial| -12 (-4 *3 (-571)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-710 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-2024 (*1 *2 *2) (-12 (-4 *3 (-571)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-710 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-2454 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-663 *6)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-1401 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-793)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-2326 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-793)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-4343 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-560)) (-4 *3 (-175)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) (-5 *1 (-710 *3 *5 *6 *2)) (-4 *2 (-708 *3 *5 *6)))) (-3345 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-560)) (-4 *3 (-175)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) (-5 *1 (-710 *3 *5 *6 *2)) (-4 *2 (-708 *3 *5 *6)))) (-2320 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-560)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *1 (-710 *4 *5 *6 *2)) (-4 *2 (-708 *4 *5 *6)))) (-3535 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-175)) (-5 *1 (-710 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5)))) (-4227 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-175)) (-5 *1 (-710 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5)))))
-(-10 -7 (-15 -4227 (|#1| |#4|)) (-15 -3535 (|#1| |#4|)) (-15 -2320 (|#4| |#4| (-560) (-560))) (-15 -3345 (|#4| |#4| |#1| (-560) (-560))) (-15 -4343 (|#4| |#4| |#1| (-560) (-560))) (IF (|has| |#1| (-571)) (PROGN (-15 -2326 ((-793) |#4|)) (-15 -1401 ((-793) |#4|)) (-15 -2454 ((-663 |#3|) |#4|)) (-15 -2024 (|#4| |#4|)) (-15 -3908 ((-3 |#4| "failed") |#4|)) (-15 -4344 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-319)) (PROGN (-15 -2677 (|#4| |#4|)) (-15 -3756 ((-2 (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -2141 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3759 (($ (-793) (-793)) 64 T ELT)) (-2370 (($ $ $) NIL T ELT)) (-2629 (($ (-1297 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-4338 (((-114) $) NIL T ELT)) (-2112 (($ $ (-560) (-560)) 22 T ELT)) (-2599 (($ $ (-560) (-560)) NIL T ELT)) (-1653 (($ $ (-560) (-560) (-560) (-560)) NIL T ELT)) (-4304 (($ $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-2047 (($ $ (-560) (-560) $) NIL T ELT)) (-1773 ((|#1| $ (-560) (-560) |#1|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560)) $) NIL T ELT)) (-3981 (($ $ (-560) (-1297 |#1|)) NIL T ELT)) (-2613 (($ $ (-560) (-1297 |#1|)) NIL T ELT)) (-2733 (($ (-793) |#1|) 37 T ELT)) (-2238 (($) NIL T CONST)) (-2677 (($ $) 46 (|has| |#1| (-319)) ELT)) (-3634 (((-1297 |#1|) $ (-560)) NIL T ELT)) (-2326 (((-793) $) 48 (|has| |#1| (-571)) ELT)) (-3779 ((|#1| $ (-560) (-560) |#1|) 69 T ELT)) (-3709 ((|#1| $ (-560) (-560)) NIL T ELT)) (-2181 (((-663 |#1|) $) NIL T ELT)) (-1401 (((-793) $) 50 (|has| |#1| (-571)) ELT)) (-2454 (((-663 (-1297 |#1|)) $) 53 (|has| |#1| (-571)) ELT)) (-3648 (((-793) $) 32 T ELT)) (-4095 (($ (-793) (-793) |#1|) 28 T ELT)) (-3658 (((-793) $) 33 T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-3535 ((|#1| $) 44 (|has| |#1| (-6 (-4510 "*"))) ELT)) (-2711 (((-560) $) 10 T ELT)) (-2369 (((-560) $) 11 T ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1468 (((-560) $) 14 T ELT)) (-2632 (((-560) $) 65 T ELT)) (-2589 (($ (-663 (-663 |#1|))) NIL T ELT) (($ (-793) (-793) (-1 |#1| (-560) (-560))) NIL T ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-2543 (((-663 (-663 |#1|)) $) 76 T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-2141 (((-3 $ "failed") $) 60 (|has| |#1| (-376)) ELT)) (-3049 (($ $ $) NIL T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3037 (($ $ |#1|) NIL T ELT)) (-1528 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#1| $ (-560) (-560)) NIL T ELT) ((|#1| $ (-560) (-560) |#1|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560))) NIL T ELT)) (-3323 (($ (-663 |#1|)) NIL T ELT) (($ (-663 $)) NIL T ELT) (($ (-1297 |#1|)) 70 T ELT)) (-3032 (((-114) $) NIL T ELT)) (-4227 ((|#1| $) 42 (|has| |#1| (-6 (-4510 "*"))) ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) 80 (|has| |#1| (-633 (-549))) ELT)) (-1644 (((-1297 |#1|) $ (-560)) NIL T ELT)) (-1578 (($ (-1297 |#1|)) NIL T ELT) (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2441 (((-114) $) NIL T ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-793)) 38 T ELT) (($ $ (-560)) 62 (|has| |#1| (-376)) ELT)) (* (($ $ $) 24 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-560) $) NIL T ELT) (((-1297 |#1|) $ (-1297 |#1|)) NIL T ELT) (((-1297 |#1|) (-1297 |#1|) $) NIL T ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-711 |#1|) (-13 (-708 |#1| (-1297 |#1|) (-1297 |#1|)) (-10 -8 (-15 -3323 ($ (-1297 |#1|))) (IF (|has| |#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -2141 ((-3 $ "failed") $)) |%noBranch|))) (-1080)) (T -711))
-((-2141 (*1 *1 *1) (|partial| -12 (-5 *1 (-711 *2)) (-4 *2 (-376)) (-4 *2 (-1080)))) (-3323 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1080)) (-5 *1 (-711 *3)))))
-(-13 (-708 |#1| (-1297 |#1|) (-1297 |#1|)) (-10 -8 (-15 -3323 ($ (-1297 |#1|))) (IF (|has| |#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -2141 ((-3 $ "failed") $)) |%noBranch|)))
-((-2757 (((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|)) 37 T ELT)) (-1871 (((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|) 32 T ELT)) (-4153 (((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-793)) 43 T ELT)) (-2824 (((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|)) 25 T ELT)) (-3689 (((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|)) 29 T ELT) (((-711 |#1|) (-711 |#1|) (-711 |#1|)) 27 T ELT)) (-2061 (((-711 |#1|) (-711 |#1|) |#1| (-711 |#1|)) 31 T ELT)) (-2573 (((-711 |#1|) (-711 |#1|) (-711 |#1|)) 23 T ELT)) (** (((-711 |#1|) (-711 |#1|) (-793)) 46 T ELT)))
-(((-712 |#1|) (-10 -7 (-15 -2573 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2824 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -3689 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -3689 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2061 ((-711 |#1|) (-711 |#1|) |#1| (-711 |#1|))) (-15 -1871 ((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|)) (-15 -2757 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -4153 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-793))) (-15 ** ((-711 |#1|) (-711 |#1|) (-793)))) (-1080)) (T -712))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-711 *4)) (-5 *3 (-793)) (-4 *4 (-1080)) (-5 *1 (-712 *4)))) (-4153 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-711 *4)) (-5 *3 (-793)) (-4 *4 (-1080)) (-5 *1 (-712 *4)))) (-2757 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))) (-1871 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))) (-2061 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))) (-3689 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))) (-3689 (*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))) (-2824 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))) (-2573 (*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))))
-(-10 -7 (-15 -2573 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2824 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -3689 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -3689 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2061 ((-711 |#1|) (-711 |#1|) |#1| (-711 |#1|))) (-15 -1871 ((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|)) (-15 -2757 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -4153 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-793))) (-15 ** ((-711 |#1|) (-711 |#1|) (-793))))
-((-2539 (((-3 |#1| "failed") $) 18 T ELT)) (-3330 ((|#1| $) NIL T ELT)) (-2673 (($) 7 T CONST)) (-3609 (($ |#1|) 8 T ELT)) (-1578 (($ |#1|) 16 T ELT) (((-887) $) 23 T ELT)) (-1991 (((-114) $ (|[\|\|]| |#1|)) 14 T ELT) (((-114) $ (|[\|\|]| -2673)) 11 T ELT)) (-1856 ((|#1| $) 15 T ELT)))
-(((-713 |#1|) (-13 (-1293) (-1069 |#1|) (-632 (-887)) (-10 -8 (-15 -3609 ($ |#1|)) (-15 -1991 ((-114) $ (|[\|\|]| |#1|))) (-15 -1991 ((-114) $ (|[\|\|]| -2673))) (-15 -1856 (|#1| $)) (-15 -2673 ($) -3081))) (-632 (-887))) (T -713))
-((-3609 (*1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-887))))) (-1991 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-632 (-887))) (-5 *2 (-114)) (-5 *1 (-713 *4)))) (-1991 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2673)) (-5 *2 (-114)) (-5 *1 (-713 *4)) (-4 *4 (-632 (-887))))) (-1856 (*1 *2 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-887))))) (-2673 (*1 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-887))))))
-(-13 (-1293) (-1069 |#1|) (-632 (-887)) (-10 -8 (-15 -3609 ($ |#1|)) (-15 -1991 ((-114) $ (|[\|\|]| |#1|))) (-15 -1991 ((-114) $ (|[\|\|]| -2673))) (-15 -1856 (|#1| $)) (-15 -2673 ($) -3081)))
-((-2537 ((|#2| |#2| |#4|) 29 T ELT)) (-3087 (((-711 |#2|) |#3| |#4|) 35 T ELT)) (-3716 (((-711 |#2|) |#2| |#4|) 34 T ELT)) (-1634 (((-1297 |#2|) |#2| |#4|) 16 T ELT)) (-1586 ((|#2| |#3| |#4|) 28 T ELT)) (-4355 (((-711 |#2|) |#3| |#4| (-793) (-793)) 47 T ELT)) (-4150 (((-711 |#2|) |#2| |#4| (-793)) 46 T ELT)))
-(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1634 ((-1297 |#2|) |#2| |#4|)) (-15 -1586 (|#2| |#3| |#4|)) (-15 -2537 (|#2| |#2| |#4|)) (-15 -3716 ((-711 |#2|) |#2| |#4|)) (-15 -4150 ((-711 |#2|) |#2| |#4| (-793))) (-15 -3087 ((-711 |#2|) |#3| |#4|)) (-15 -4355 ((-711 |#2|) |#3| |#4| (-793) (-793)))) (-1132) (-927 |#1|) (-385 |#2|) (-13 (-385 |#1|) (-10 -7 (-6 -4508)))) (T -714))
-((-4355 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-793)) (-4 *6 (-1132)) (-4 *7 (-927 *6)) (-5 *2 (-711 *7)) (-5 *1 (-714 *6 *7 *3 *4)) (-4 *3 (-385 *7)) (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4508)))))) (-3087 (*1 *2 *3 *4) (-12 (-4 *5 (-1132)) (-4 *6 (-927 *5)) (-5 *2 (-711 *6)) (-5 *1 (-714 *5 *6 *3 *4)) (-4 *3 (-385 *6)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4508)))))) (-4150 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-793)) (-4 *6 (-1132)) (-4 *3 (-927 *6)) (-5 *2 (-711 *3)) (-5 *1 (-714 *6 *3 *7 *4)) (-4 *7 (-385 *3)) (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4508)))))) (-3716 (*1 *2 *3 *4) (-12 (-4 *5 (-1132)) (-4 *3 (-927 *5)) (-5 *2 (-711 *3)) (-5 *1 (-714 *5 *3 *6 *4)) (-4 *6 (-385 *3)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4508)))))) (-2537 (*1 *2 *2 *3) (-12 (-4 *4 (-1132)) (-4 *2 (-927 *4)) (-5 *1 (-714 *4 *2 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-13 (-385 *4) (-10 -7 (-6 -4508)))))) (-1586 (*1 *2 *3 *4) (-12 (-4 *5 (-1132)) (-4 *2 (-927 *5)) (-5 *1 (-714 *5 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4508)))))) (-1634 (*1 *2 *3 *4) (-12 (-4 *5 (-1132)) (-4 *3 (-927 *5)) (-5 *2 (-1297 *3)) (-5 *1 (-714 *5 *3 *6 *4)) (-4 *6 (-385 *3)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4508)))))))
-(-10 -7 (-15 -1634 ((-1297 |#2|) |#2| |#4|)) (-15 -1586 (|#2| |#3| |#4|)) (-15 -2537 (|#2| |#2| |#4|)) (-15 -3716 ((-711 |#2|) |#2| |#4|)) (-15 -4150 ((-711 |#2|) |#2| |#4| (-793))) (-15 -3087 ((-711 |#2|) |#3| |#4|)) (-15 -4355 ((-711 |#2|) |#3| |#4| (-793) (-793))))
-((-1386 (((-2 (|:| |num| (-711 |#1|)) (|:| |den| |#1|)) (-711 |#2|)) 20 T ELT)) (-2323 ((|#1| (-711 |#2|)) 9 T ELT)) (-3590 (((-711 |#1|) (-711 |#2|)) 18 T ELT)))
-(((-715 |#1| |#2|) (-10 -7 (-15 -2323 (|#1| (-711 |#2|))) (-15 -3590 ((-711 |#1|) (-711 |#2|))) (-15 -1386 ((-2 (|:| |num| (-711 |#1|)) (|:| |den| |#1|)) (-711 |#2|)))) (-571) (-1022 |#1|)) (T -715))
-((-1386 (*1 *2 *3) (-12 (-5 *3 (-711 *5)) (-4 *5 (-1022 *4)) (-4 *4 (-571)) (-5 *2 (-2 (|:| |num| (-711 *4)) (|:| |den| *4))) (-5 *1 (-715 *4 *5)))) (-3590 (*1 *2 *3) (-12 (-5 *3 (-711 *5)) (-4 *5 (-1022 *4)) (-4 *4 (-571)) (-5 *2 (-711 *4)) (-5 *1 (-715 *4 *5)))) (-2323 (*1 *2 *3) (-12 (-5 *3 (-711 *4)) (-4 *4 (-1022 *2)) (-4 *2 (-571)) (-5 *1 (-715 *2 *4)))))
-(-10 -7 (-15 -2323 (|#1| (-711 |#2|))) (-15 -3590 ((-711 |#1|) (-711 |#2|))) (-15 -1386 ((-2 (|:| |num| (-711 |#1|)) (|:| |den| |#1|)) (-711 |#2|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-1698 (((-711 (-721))) NIL T ELT) (((-711 (-721)) (-1297 $)) NIL T ELT)) (-3349 (((-721) $) NIL T ELT)) (-4337 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-3455 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-2105 (((-1219 (-948) (-793)) (-560)) NIL (|has| (-721) (-363)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-721) (-319)) (|has| (-721) (-939))) ELT)) (-1804 (($ $) NIL (-2304 (-12 (|has| (-721) (-319)) (|has| (-721) (-939))) (|has| (-721) (-376))) ELT)) (-3023 (((-419 $) $) NIL (-2304 (-12 (|has| (-721) (-319)) (|has| (-721) (-939))) (|has| (-721) (-376))) ELT)) (-4471 (($ $) NIL (-12 (|has| (-721) (-1033)) (|has| (-721) (-1233))) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-721) (-319)) (|has| (-721) (-939))) ELT)) (-1615 (((-114) $ $) NIL (|has| (-721) (-319)) ELT)) (-3241 (((-793)) NIL (|has| (-721) (-381)) ELT)) (-4313 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-3430 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-4363 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-3477 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-721) "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| (-721) (-1069 (-421 (-560)))) ELT)) (-3330 (((-560) $) NIL T ELT) (((-721) $) NIL T ELT) (((-421 (-560)) $) NIL (|has| (-721) (-1069 (-421 (-560)))) ELT)) (-4143 (($ (-1297 (-721))) NIL T ELT) (($ (-1297 (-721)) (-1297 $)) NIL T ELT)) (-4217 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-721) (-363)) ELT)) (-1478 (($ $ $) NIL (|has| (-721) (-319)) ELT)) (-4333 (((-711 (-721)) $) NIL T ELT) (((-711 (-721)) $ (-1297 $)) NIL T ELT)) (-3142 (((-711 (-721)) (-711 $)) NIL T ELT) (((-2 (|:| -3822 (-711 (-721))) (|:| |vec| (-1297 (-721)))) (-711 $) (-1297 $)) NIL T ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| (-721) (-660 (-560))) ELT) (((-711 (-560)) (-711 $)) NIL (|has| (-721) (-660 (-560))) ELT)) (-4129 (((-3 $ "failed") (-421 (-1201 (-721)))) NIL (|has| (-721) (-376)) ELT) (($ (-1201 (-721))) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-4482 (((-721) $) 29 T ELT)) (-3643 (((-3 (-421 (-560)) "failed") $) NIL (|has| (-721) (-559)) ELT)) (-3469 (((-114) $) NIL (|has| (-721) (-559)) ELT)) (-3197 (((-421 (-560)) $) NIL (|has| (-721) (-559)) ELT)) (-2326 (((-948)) NIL T ELT)) (-2310 (($) NIL (|has| (-721) (-381)) ELT)) (-1490 (($ $ $) NIL (|has| (-721) (-319)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL (|has| (-721) (-319)) ELT)) (-4336 (($) NIL (|has| (-721) (-363)) ELT)) (-3976 (((-114) $) NIL (|has| (-721) (-363)) ELT)) (-1696 (($ $) NIL (|has| (-721) (-363)) ELT) (($ $ (-793)) NIL (|has| (-721) (-363)) ELT)) (-4330 (((-114) $) NIL (-2304 (-12 (|has| (-721) (-319)) (|has| (-721) (-939))) (|has| (-721) (-376))) ELT)) (-2647 (((-2 (|:| |r| (-721)) (|:| |phi| (-721))) $) NIL (-12 (|has| (-721) (-1091)) (|has| (-721) (-1233))) ELT)) (-3796 (($) NIL (|has| (-721) (-1233)) ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (|has| (-721) (-911 (-391))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (|has| (-721) (-911 (-560))) ELT)) (-3913 (((-854 (-948)) $) NIL (|has| (-721) (-363)) ELT) (((-948) $) NIL (|has| (-721) (-363)) ELT)) (-1581 (((-114) $) NIL T ELT)) (-2146 (($ $ (-560)) NIL (-12 (|has| (-721) (-1033)) (|has| (-721) (-1233))) ELT)) (-2032 (((-721) $) NIL T ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| (-721) (-363)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| (-721) (-319)) ELT)) (-1787 (((-1201 (-721)) $) NIL (|has| (-721) (-376)) ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-3957 (($ (-1 (-721) (-721)) $) NIL T ELT)) (-4419 (((-948) $) NIL (|has| (-721) (-381)) ELT)) (-2192 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-4116 (((-1201 (-721)) $) NIL T ELT)) (-2484 (((-711 (-721)) (-1297 $)) NIL T ELT) (((-2 (|:| -3822 (-711 (-721))) (|:| |vec| (-1297 (-721)))) (-1297 $) $) NIL T ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| (-721) (-660 (-560))) ELT) (((-711 (-560)) (-1297 $)) NIL (|has| (-721) (-660 (-560))) ELT)) (-2093 (($ (-663 $)) NIL (|has| (-721) (-319)) ELT) (($ $ $) NIL (|has| (-721) (-319)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL (|has| (-721) (-376)) ELT)) (-3161 (($) NIL (|has| (-721) (-363)) CONST)) (-3128 (($ (-948)) NIL (|has| (-721) (-381)) ELT)) (-3461 (($) NIL T ELT)) (-1335 (((-721) $) 31 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2748 (($) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| (-721) (-319)) ELT)) (-2132 (($ (-663 $)) NIL (|has| (-721) (-319)) ELT) (($ $ $) NIL (|has| (-721) (-319)) ELT)) (-3666 (((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))) NIL (|has| (-721) (-363)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-721) (-319)) (|has| (-721) (-939))) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-721) (-319)) (|has| (-721) (-939))) ELT)) (-4457 (((-419 $) $) NIL (-2304 (-12 (|has| (-721) (-319)) (|has| (-721) (-939))) (|has| (-721) (-376))) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-721) (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| (-721) (-319)) ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ (-721)) NIL (|has| (-721) (-571)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| (-721) (-319)) ELT)) (-3251 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-4187 (($ $ (-1207) (-721)) NIL (|has| (-721) (-528 (-1207) (-721))) ELT) (($ $ (-663 (-1207)) (-663 (-721))) NIL (|has| (-721) (-528 (-1207) (-721))) ELT) (($ $ (-663 (-305 (-721)))) NIL (|has| (-721) (-321 (-721))) ELT) (($ $ (-305 (-721))) NIL (|has| (-721) (-321 (-721))) ELT) (($ $ (-721) (-721)) NIL (|has| (-721) (-321 (-721))) ELT) (($ $ (-663 (-721)) (-663 (-721))) NIL (|has| (-721) (-321 (-721))) ELT)) (-2901 (((-793) $) NIL (|has| (-721) (-319)) ELT)) (-3924 (($ $ (-721)) NIL (|has| (-721) (-298 (-721) (-721))) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| (-721) (-319)) ELT)) (-2690 (((-721)) NIL T ELT) (((-721) (-1297 $)) NIL T ELT)) (-2364 (((-3 (-793) "failed") $ $) NIL (|has| (-721) (-363)) ELT) (((-793) $) NIL (|has| (-721) (-363)) ELT)) (-2894 (($ $ (-1 (-721) (-721)) (-793)) NIL T ELT) (($ $ (-1 (-721) (-721))) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2304 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-2304 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-2304 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-793)) NIL (-2304 (-12 (|has| (-721) (-240)) (|has| (-721) (-376))) (|has| (-721) (-239))) ELT) (($ $) NIL (-2304 (-12 (|has| (-721) (-240)) (|has| (-721) (-376))) (|has| (-721) (-239))) ELT)) (-3604 (((-711 (-721)) (-1297 $) (-1 (-721) (-721))) NIL (|has| (-721) (-376)) ELT)) (-4394 (((-1201 (-721))) NIL T ELT)) (-4373 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-3488 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-2243 (($) NIL (|has| (-721) (-363)) ELT)) (-4352 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-3466 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-4325 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-3443 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-2178 (((-711 (-721)) (-1297 $)) NIL T ELT) (((-1297 (-721)) $) NIL T ELT) (((-711 (-721)) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 (-721)) $ (-1297 $)) NIL T ELT)) (-1407 (((-549) $) NIL (|has| (-721) (-633 (-549))) ELT) (((-171 (-229)) $) NIL (|has| (-721) (-1051)) ELT) (((-171 (-391)) $) NIL (|has| (-721) (-1051)) ELT) (((-915 (-391)) $) NIL (|has| (-721) (-633 (-915 (-391)))) ELT) (((-915 (-560)) $) NIL (|has| (-721) (-633 (-915 (-560)))) ELT) (($ (-1201 (-721))) NIL T ELT) (((-1201 (-721)) $) NIL T ELT) (($ (-1297 (-721))) NIL T ELT) (((-1297 (-721)) $) NIL T ELT)) (-4122 (($ $) NIL T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-2304 (-12 (|has| (-721) (-319)) (|has| $ (-147)) (|has| (-721) (-939))) (|has| (-721) (-363))) ELT)) (-2245 (($ (-721) (-721)) 12 T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-721)) NIL T ELT) (($ (-171 (-391))) 13 T ELT) (($ (-171 (-560))) 19 T ELT) (($ (-171 (-721))) 28 T ELT) (($ (-171 (-723))) 25 T ELT) (((-171 (-391)) $) 33 T ELT) (($ (-421 (-560))) NIL (-2304 (|has| (-721) (-1069 (-421 (-560)))) (|has| (-721) (-376))) ELT)) (-1964 (($ $) NIL (|has| (-721) (-363)) ELT) (((-3 $ "failed") $) NIL (-2304 (-12 (|has| (-721) (-319)) (|has| $ (-147)) (|has| (-721) (-939))) (|has| (-721) (-147))) ELT)) (-2630 (((-1201 (-721)) $) NIL T ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-1954 (((-1297 $)) NIL T ELT)) (-4411 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-4263 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-4387 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-3499 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-4438 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-4287 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-3844 (((-721) $) NIL (|has| (-721) (-1233)) ELT)) (-3837 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-4302 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-4423 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-4275 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-4398 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-4252 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-2282 (($ $) NIL (|has| (-721) (-1091)) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $ (-1 (-721) (-721)) (-793)) NIL T ELT) (($ $ (-1 (-721) (-721))) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2304 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-2304 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-2304 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-793)) NIL (-2304 (-12 (|has| (-721) (-240)) (|has| (-721) (-376))) (|has| (-721) (-239))) ELT) (($ $) NIL (-2304 (-12 (|has| (-721) (-240)) (|has| (-721) (-376))) (|has| (-721) (-239))) ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) NIL T ELT)) (-2594 (($ $ $) NIL (|has| (-721) (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ $) NIL (|has| (-721) (-1233)) ELT) (($ $ (-421 (-560))) NIL (-12 (|has| (-721) (-1033)) (|has| (-721) (-1233))) ELT) (($ $ (-560)) NIL (|has| (-721) (-376)) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-721) $) NIL T ELT) (($ $ (-721)) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| (-721) (-376)) ELT) (($ $ (-421 (-560))) NIL (|has| (-721) (-376)) ELT)))
-(((-716) (-13 (-401) (-168 (-721)) (-10 -8 (-15 -1578 ($ (-171 (-391)))) (-15 -1578 ($ (-171 (-560)))) (-15 -1578 ($ (-171 (-721)))) (-15 -1578 ($ (-171 (-723)))) (-15 -1578 ((-171 (-391)) $))))) (T -716))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-716)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-171 (-560))) (-5 *1 (-716)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-171 (-721))) (-5 *1 (-716)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-171 (-723))) (-5 *1 (-716)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-716)))))
-(-13 (-401) (-168 (-721)) (-10 -8 (-15 -1578 ($ (-171 (-391)))) (-15 -1578 ($ (-171 (-560)))) (-15 -1578 ($ (-171 (-721)))) (-15 -1578 ($ (-171 (-723)))) (-15 -1578 ((-171 (-391)) $))))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-3500 (($ (-1 (-114) |#1|) $) 46 (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) 56 (|has| $ (-6 -4508)) ELT)) (-2238 (($) 7 T CONST)) (-2944 (($ $) 63 T ELT)) (-3606 (($ $) 59 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3390 (($ |#1| $) 48 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) |#1|) $) 47 (|has| $ (-6 -4508)) ELT)) (-2375 (($ |#1| $) 58 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 55 (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4508)) ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-1576 ((|#1| $) 40 T ELT)) (-3629 (($ |#1| $) 41 T ELT) (($ |#1| $ (-793)) 64 T ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 52 T ELT)) (-2615 ((|#1| $) 42 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-1797 (((-663 (-2 (|:| -2460 |#1|) (|:| -3865 (-793)))) $) 62 T ELT)) (-3897 (($) 50 T ELT) (($ (-663 |#1|)) 49 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) 60 (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 51 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-3376 (($ (-663 |#1|)) 43 T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-2798 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-2691 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-3068 (*1 *1 *2 *2) (-12 (-5 *2 (-793)) (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3551 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3551 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-1 *4 (-560) (-560))) (-4 *4 (-1080)) (-4 *1 (-708 *4 *5 *6)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) (-1571 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3926 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3926 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3913 (*1 *1 *2) (-12 (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *2)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) (-2966 (*1 *1 *2) (-12 (-4 *3 (-1080)) (-4 *1 (-708 *3 *2 *4)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) (-2966 (*1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2877 (*1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2857 (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2321 (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-3378 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-663 (-663 *3))))) (-1507 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-663 (-560))) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4083 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-663 (-560))) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-1602 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3933 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3892 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2205 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2429 (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2441 (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2441 (*1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-708 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-708 *3 *2 *4)) (-4 *3 (-1080)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2233 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-571)))) (-2453 (*1 *1 *1 *2) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-376)))) (-2207 (*1 *1 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-319)))) (-1604 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-571)) (-5 *2 (-793)))) (-3213 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-571)) (-5 *2 (-793)))) (-1927 (*1 *2 *1) (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-571)) (-5 *2 (-663 *5)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (|has| *2 (-6 (-4510 "*"))) (-4 *2 (-1080)))) (-4174 (*1 *2 *1) (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (|has| *2 (-6 (-4510 "*"))) (-4 *2 (-1080)))) (-1906 (*1 *1 *1) (|partial| -12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-376)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-376)))))
+(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4509) (-6 -4508) (-15 -2798 ((-114) $)) (-15 -2691 ((-114) $)) (-15 -3202 ((-114) $)) (-15 -1775 ((-114) $)) (-15 -3068 ($ (-793) (-793))) (-15 -3551 ($ (-663 (-663 |t#1|)))) (-15 -3551 ($ (-793) (-793) (-1 |t#1| (-560) (-560)))) (-15 -1571 ($ (-793) |t#1|)) (-15 -3926 ($ (-663 |t#1|))) (-15 -3926 ($ (-663 $))) (-15 -3913 ($ |t#3|)) (-15 -2966 ($ |t#2|)) (-15 -2966 ($ $)) (-15 -2877 ($ $)) (-15 -2857 ($ $ $)) (-15 -2321 ($ $ $)) (-15 -3378 ((-663 (-663 |t#1|)) $)) (-15 -1507 ($ $ (-663 (-560)) (-663 (-560)))) (-15 -4083 ($ $ (-663 (-560)) (-663 (-560)) $)) (-15 -1602 ($ $ (-560) (-560))) (-15 -3933 ($ $ (-560) (-560))) (-15 -3892 ($ $ (-560) (-560) (-560) (-560))) (-15 -2205 ($ $ (-560) (-560) $)) (-15 -2429 ($ $ $)) (-15 -2441 ($ $ $)) (-15 -2441 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-560) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-793))) (IF (|has| |t#1| (-571)) (-15 -2233 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-376)) (-15 -2453 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-319)) (-15 -2207 ($ $)) |%noBranch|) (IF (|has| |t#1| (-571)) (PROGN (-15 -1604 ((-793) $)) (-15 -3213 ((-793) $)) (-15 -1927 ((-663 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4510 "*"))) (PROGN (-15 -3441 (|t#1| $)) (-15 -4174 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-15 -1906 ((-3 $ "failed") $)) (-15 ** ($ $ (-560)))) |%noBranch|)))
+(((-34) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-57 |#1| |#2| |#3|) . T) ((-1247) . T))
+((-1778 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-2260 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT)))
+(((-709 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2260 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2260 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1778 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1080) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|) (-1080) (-385 |#5|) (-385 |#5|) (-708 |#5| |#6| |#7|)) (T -709))
+((-1778 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1080)) (-4 *2 (-1080)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *8 (-385 *2)) (-4 *9 (-385 *2)) (-5 *1 (-709 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-708 *5 *6 *7)) (-4 *10 (-708 *2 *8 *9)))) (-2260 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1080)) (-4 *8 (-1080)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-708 *8 *9 *10)) (-5 *1 (-709 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-708 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1080)) (-4 *8 (-1080)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-708 *8 *9 *10)) (-5 *1 (-709 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-708 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))))
+(-10 -7 (-15 -2260 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -2260 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1778 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-2207 ((|#4| |#4|) 92 (|has| |#1| (-319)) ELT)) (-1604 (((-793) |#4|) 120 (|has| |#1| (-571)) ELT)) (-3213 (((-793) |#4|) 96 (|has| |#1| (-571)) ELT)) (-1927 (((-663 |#3|) |#4|) 103 (|has| |#1| (-571)) ELT)) (-2555 (((-2 (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1|) 135 (|has| |#1| (-319)) ELT)) (-4174 ((|#1| |#4|) 52 T ELT)) (-1408 (((-3 |#4| "failed") |#4|) 84 (|has| |#1| (-571)) ELT)) (-1906 (((-3 |#4| "failed") |#4|) 100 (|has| |#1| (-376)) ELT)) (-3229 ((|#4| |#4|) 88 (|has| |#1| (-571)) ELT)) (-2854 ((|#4| |#4| |#1| (-560) (-560)) 60 T ELT)) (-3080 ((|#4| |#4| (-560) (-560)) 55 T ELT)) (-3234 ((|#4| |#4| |#1| (-560) (-560)) 65 T ELT)) (-3441 ((|#1| |#4|) 98 T ELT)) (-3244 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-571)) ELT)))
+(((-710 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3441 (|#1| |#4|)) (-15 -4174 (|#1| |#4|)) (-15 -3080 (|#4| |#4| (-560) (-560))) (-15 -2854 (|#4| |#4| |#1| (-560) (-560))) (-15 -3234 (|#4| |#4| |#1| (-560) (-560))) (IF (|has| |#1| (-571)) (PROGN (-15 -1604 ((-793) |#4|)) (-15 -3213 ((-793) |#4|)) (-15 -1927 ((-663 |#3|) |#4|)) (-15 -3229 (|#4| |#4|)) (-15 -1408 ((-3 |#4| "failed") |#4|)) (-15 -3244 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-319)) (PROGN (-15 -2207 (|#4| |#4|)) (-15 -2555 ((-2 (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -1906 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-175) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|)) (T -710))
+((-1906 (*1 *2 *2) (|partial| -12 (-4 *3 (-376)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-710 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-2555 (*1 *2 *3 *3) (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-2 (|:| -2584 *3) (|:| -3276 *3))) (-5 *1 (-710 *3 *4 *5 *6)) (-4 *6 (-708 *3 *4 *5)))) (-2207 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-710 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-3244 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-1408 (*1 *2 *2) (|partial| -12 (-4 *3 (-571)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-710 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-3229 (*1 *2 *2) (-12 (-4 *3 (-571)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-710 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-1927 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-663 *6)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3213 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-793)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-1604 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-793)) (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3234 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-560)) (-4 *3 (-175)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) (-5 *1 (-710 *3 *5 *6 *2)) (-4 *2 (-708 *3 *5 *6)))) (-2854 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-560)) (-4 *3 (-175)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) (-5 *1 (-710 *3 *5 *6 *2)) (-4 *2 (-708 *3 *5 *6)))) (-3080 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-560)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *1 (-710 *4 *5 *6 *2)) (-4 *2 (-708 *4 *5 *6)))) (-4174 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-175)) (-5 *1 (-710 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5)))) (-3441 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-175)) (-5 *1 (-710 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5)))))
+(-10 -7 (-15 -3441 (|#1| |#4|)) (-15 -4174 (|#1| |#4|)) (-15 -3080 (|#4| |#4| (-560) (-560))) (-15 -2854 (|#4| |#4| |#1| (-560) (-560))) (-15 -3234 (|#4| |#4| |#1| (-560) (-560))) (IF (|has| |#1| (-571)) (PROGN (-15 -1604 ((-793) |#4|)) (-15 -3213 ((-793) |#4|)) (-15 -1927 ((-663 |#3|) |#4|)) (-15 -3229 (|#4| |#4|)) (-15 -1408 ((-3 |#4| "failed") |#4|)) (-15 -3244 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-319)) (PROGN (-15 -2207 (|#4| |#4|)) (-15 -2555 ((-2 (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -1906 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3068 (($ (-793) (-793)) 64 T ELT)) (-2321 (($ $ $) NIL T ELT)) (-2966 (($ (-1297 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3202 (((-114) $) NIL T ELT)) (-1602 (($ $ (-560) (-560)) 22 T ELT)) (-3933 (($ $ (-560) (-560)) NIL T ELT)) (-3892 (($ $ (-560) (-560) (-560) (-560)) NIL T ELT)) (-2877 (($ $) NIL T ELT)) (-2798 (((-114) $) NIL T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-2205 (($ $ (-560) (-560) $) NIL T ELT)) (-4083 ((|#1| $ (-560) (-560) |#1|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560)) $) NIL T ELT)) (-2792 (($ $ (-560) (-1297 |#1|)) NIL T ELT)) (-2770 (($ $ (-560) (-1297 |#1|)) NIL T ELT)) (-1571 (($ (-793) |#1|) 37 T ELT)) (-3525 (($) NIL T CONST)) (-2207 (($ $) 46 (|has| |#1| (-319)) ELT)) (-3942 (((-1297 |#1|) $ (-560)) NIL T ELT)) (-1604 (((-793) $) 48 (|has| |#1| (-571)) ELT)) (-3338 ((|#1| $ (-560) (-560) |#1|) 69 T ELT)) (-3274 ((|#1| $ (-560) (-560)) NIL T ELT)) (-3737 (((-663 |#1|) $) NIL T ELT)) (-3213 (((-793) $) 50 (|has| |#1| (-571)) ELT)) (-1927 (((-663 (-1297 |#1|)) $) 53 (|has| |#1| (-571)) ELT)) (-2777 (((-793) $) 32 T ELT)) (-4246 (($ (-793) (-793) |#1|) 28 T ELT)) (-2789 (((-793) $) 33 T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-4174 ((|#1| $) 44 (|has| |#1| (-6 (-4510 "*"))) ELT)) (-2567 (((-560) $) 10 T ELT)) (-2313 (((-560) $) 11 T ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1475 (((-560) $) 14 T ELT)) (-3004 (((-560) $) 65 T ELT)) (-3551 (($ (-663 (-663 |#1|))) NIL T ELT) (($ (-793) (-793) (-1 |#1| (-560) (-560))) NIL T ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3378 (((-663 (-663 |#1|)) $) 76 T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-1906 (((-3 $ "failed") $) 60 (|has| |#1| (-376)) ELT)) (-2857 (($ $ $) NIL T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2740 (($ $ |#1|) NIL T ELT)) (-2233 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#1| $ (-560) (-560)) NIL T ELT) ((|#1| $ (-560) (-560) |#1|) NIL T ELT) (($ $ (-663 (-560)) (-663 (-560))) NIL T ELT)) (-3926 (($ (-663 |#1|)) NIL T ELT) (($ (-663 $)) NIL T ELT) (($ (-1297 |#1|)) 70 T ELT)) (-2691 (((-114) $) NIL T ELT)) (-3441 ((|#1| $) 42 (|has| |#1| (-6 (-4510 "*"))) ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) 80 (|has| |#1| (-633 (-549))) ELT)) (-3783 (((-1297 |#1|) $ (-560)) NIL T ELT)) (-3913 (($ (-1297 |#1|)) NIL T ELT) (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1775 (((-114) $) NIL T ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-793)) 38 T ELT) (($ $ (-560)) 62 (|has| |#1| (-376)) ELT)) (* (($ $ $) 24 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-560) $) NIL T ELT) (((-1297 |#1|) $ (-1297 |#1|)) NIL T ELT) (((-1297 |#1|) (-1297 |#1|) $) NIL T ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-711 |#1|) (-13 (-708 |#1| (-1297 |#1|) (-1297 |#1|)) (-10 -8 (-15 -3926 ($ (-1297 |#1|))) (IF (|has| |#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -1906 ((-3 $ "failed") $)) |%noBranch|))) (-1080)) (T -711))
+((-1906 (*1 *1 *1) (|partial| -12 (-5 *1 (-711 *2)) (-4 *2 (-376)) (-4 *2 (-1080)))) (-3926 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1080)) (-5 *1 (-711 *3)))))
+(-13 (-708 |#1| (-1297 |#1|) (-1297 |#1|)) (-10 -8 (-15 -3926 ($ (-1297 |#1|))) (IF (|has| |#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -1906 ((-3 $ "failed") $)) |%noBranch|)))
+((-1782 (((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|)) 37 T ELT)) (-4251 (((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|) 32 T ELT)) (-2056 (((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-793)) 43 T ELT)) (-4419 (((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|)) 25 T ELT)) (-3210 (((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|)) 29 T ELT) (((-711 |#1|) (-711 |#1|) (-711 |#1|)) 27 T ELT)) (-2324 (((-711 |#1|) (-711 |#1|) |#1| (-711 |#1|)) 31 T ELT)) (-3692 (((-711 |#1|) (-711 |#1|) (-711 |#1|)) 23 T ELT)) (** (((-711 |#1|) (-711 |#1|) (-793)) 46 T ELT)))
+(((-712 |#1|) (-10 -7 (-15 -3692 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -4419 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -3210 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -3210 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2324 ((-711 |#1|) (-711 |#1|) |#1| (-711 |#1|))) (-15 -4251 ((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|)) (-15 -1782 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2056 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-793))) (-15 ** ((-711 |#1|) (-711 |#1|) (-793)))) (-1080)) (T -712))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-711 *4)) (-5 *3 (-793)) (-4 *4 (-1080)) (-5 *1 (-712 *4)))) (-2056 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-711 *4)) (-5 *3 (-793)) (-4 *4 (-1080)) (-5 *1 (-712 *4)))) (-1782 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))) (-4251 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))) (-2324 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))) (-3210 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))) (-3210 (*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))) (-4419 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))) (-3692 (*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))))
+(-10 -7 (-15 -3692 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -4419 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -3210 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -3210 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2324 ((-711 |#1|) (-711 |#1|) |#1| (-711 |#1|))) (-15 -4251 ((-711 |#1|) (-711 |#1|) (-711 |#1|) |#1|)) (-15 -1782 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -2056 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-711 |#1|) (-793))) (-15 ** ((-711 |#1|) (-711 |#1|) (-793))))
+((-3929 (((-3 |#1| "failed") $) 18 T ELT)) (-3649 ((|#1| $) NIL T ELT)) (-1434 (($) 7 T CONST)) (-3693 (($ |#1|) 8 T ELT)) (-3913 (($ |#1|) 16 T ELT) (((-887) $) 23 T ELT)) (-1436 (((-114) $ (|[\|\|]| |#1|)) 14 T ELT) (((-114) $ (|[\|\|]| -1434)) 11 T ELT)) (-4168 ((|#1| $) 15 T ELT)))
+(((-713 |#1|) (-13 (-1293) (-1069 |#1|) (-632 (-887)) (-10 -8 (-15 -3693 ($ |#1|)) (-15 -1436 ((-114) $ (|[\|\|]| |#1|))) (-15 -1436 ((-114) $ (|[\|\|]| -1434))) (-15 -4168 (|#1| $)) (-15 -1434 ($) -2650))) (-632 (-887))) (T -713))
+((-3693 (*1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-887))))) (-1436 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-632 (-887))) (-5 *2 (-114)) (-5 *1 (-713 *4)))) (-1436 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1434)) (-5 *2 (-114)) (-5 *1 (-713 *4)) (-4 *4 (-632 (-887))))) (-4168 (*1 *2 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-887))))) (-1434 (*1 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-887))))))
+(-13 (-1293) (-1069 |#1|) (-632 (-887)) (-10 -8 (-15 -3693 ($ |#1|)) (-15 -1436 ((-114) $ (|[\|\|]| |#1|))) (-15 -1436 ((-114) $ (|[\|\|]| -1434))) (-15 -4168 (|#1| $)) (-15 -1434 ($) -2650)))
+((-1411 ((|#2| |#2| |#4|) 29 T ELT)) (-2057 (((-711 |#2|) |#3| |#4|) 35 T ELT)) (-2206 (((-711 |#2|) |#2| |#4|) 34 T ELT)) (-3674 (((-1297 |#2|) |#2| |#4|) 16 T ELT)) (-1969 ((|#2| |#3| |#4|) 28 T ELT)) (-3316 (((-711 |#2|) |#3| |#4| (-793) (-793)) 47 T ELT)) (-2029 (((-711 |#2|) |#2| |#4| (-793)) 46 T ELT)))
+(((-714 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3674 ((-1297 |#2|) |#2| |#4|)) (-15 -1969 (|#2| |#3| |#4|)) (-15 -1411 (|#2| |#2| |#4|)) (-15 -2206 ((-711 |#2|) |#2| |#4|)) (-15 -2029 ((-711 |#2|) |#2| |#4| (-793))) (-15 -2057 ((-711 |#2|) |#3| |#4|)) (-15 -3316 ((-711 |#2|) |#3| |#4| (-793) (-793)))) (-1132) (-927 |#1|) (-385 |#2|) (-13 (-385 |#1|) (-10 -7 (-6 -4508)))) (T -714))
+((-3316 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-793)) (-4 *6 (-1132)) (-4 *7 (-927 *6)) (-5 *2 (-711 *7)) (-5 *1 (-714 *6 *7 *3 *4)) (-4 *3 (-385 *7)) (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4508)))))) (-2057 (*1 *2 *3 *4) (-12 (-4 *5 (-1132)) (-4 *6 (-927 *5)) (-5 *2 (-711 *6)) (-5 *1 (-714 *5 *6 *3 *4)) (-4 *3 (-385 *6)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4508)))))) (-2029 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-793)) (-4 *6 (-1132)) (-4 *3 (-927 *6)) (-5 *2 (-711 *3)) (-5 *1 (-714 *6 *3 *7 *4)) (-4 *7 (-385 *3)) (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4508)))))) (-2206 (*1 *2 *3 *4) (-12 (-4 *5 (-1132)) (-4 *3 (-927 *5)) (-5 *2 (-711 *3)) (-5 *1 (-714 *5 *3 *6 *4)) (-4 *6 (-385 *3)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4508)))))) (-1411 (*1 *2 *2 *3) (-12 (-4 *4 (-1132)) (-4 *2 (-927 *4)) (-5 *1 (-714 *4 *2 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-13 (-385 *4) (-10 -7 (-6 -4508)))))) (-1969 (*1 *2 *3 *4) (-12 (-4 *5 (-1132)) (-4 *2 (-927 *5)) (-5 *1 (-714 *5 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4508)))))) (-3674 (*1 *2 *3 *4) (-12 (-4 *5 (-1132)) (-4 *3 (-927 *5)) (-5 *2 (-1297 *3)) (-5 *1 (-714 *5 *3 *6 *4)) (-4 *6 (-385 *3)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4508)))))))
+(-10 -7 (-15 -3674 ((-1297 |#2|) |#2| |#4|)) (-15 -1969 (|#2| |#3| |#4|)) (-15 -1411 (|#2| |#2| |#4|)) (-15 -2206 ((-711 |#2|) |#2| |#4|)) (-15 -2029 ((-711 |#2|) |#2| |#4| (-793))) (-15 -2057 ((-711 |#2|) |#3| |#4|)) (-15 -3316 ((-711 |#2|) |#3| |#4| (-793) (-793))))
+((-2685 (((-2 (|:| |num| (-711 |#1|)) (|:| |den| |#1|)) (-711 |#2|)) 20 T ELT)) (-3114 ((|#1| (-711 |#2|)) 9 T ELT)) (-3486 (((-711 |#1|) (-711 |#2|)) 18 T ELT)))
+(((-715 |#1| |#2|) (-10 -7 (-15 -3114 (|#1| (-711 |#2|))) (-15 -3486 ((-711 |#1|) (-711 |#2|))) (-15 -2685 ((-2 (|:| |num| (-711 |#1|)) (|:| |den| |#1|)) (-711 |#2|)))) (-571) (-1022 |#1|)) (T -715))
+((-2685 (*1 *2 *3) (-12 (-5 *3 (-711 *5)) (-4 *5 (-1022 *4)) (-4 *4 (-571)) (-5 *2 (-2 (|:| |num| (-711 *4)) (|:| |den| *4))) (-5 *1 (-715 *4 *5)))) (-3486 (*1 *2 *3) (-12 (-5 *3 (-711 *5)) (-4 *5 (-1022 *4)) (-4 *4 (-571)) (-5 *2 (-711 *4)) (-5 *1 (-715 *4 *5)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-711 *4)) (-4 *4 (-1022 *2)) (-4 *2 (-571)) (-5 *1 (-715 *2 *4)))))
+(-10 -7 (-15 -3114 (|#1| (-711 |#2|))) (-15 -3486 ((-711 |#1|) (-711 |#2|))) (-15 -2685 ((-2 (|:| |num| (-711 |#1|)) (|:| |den| |#1|)) (-711 |#2|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3100 (((-711 (-721))) NIL T ELT) (((-711 (-721)) (-1297 $)) NIL T ELT)) (-4113 (((-721) $) NIL T ELT)) (-1982 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1832 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1548 (((-1219 (-948) (-793)) (-560)) NIL (|has| (-721) (-363)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-721) (-319)) (|has| (-721) (-939))) ELT)) (-1621 (($ $) NIL (-2196 (-12 (|has| (-721) (-319)) (|has| (-721) (-939))) (|has| (-721) (-376))) ELT)) (-3898 (((-419 $) $) NIL (-2196 (-12 (|has| (-721) (-319)) (|has| (-721) (-939))) (|has| (-721) (-376))) ELT)) (-4021 (($ $) NIL (-12 (|has| (-721) (-1033)) (|has| (-721) (-1233))) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-721) (-319)) (|has| (-721) (-939))) ELT)) (-3476 (((-114) $ $) NIL (|has| (-721) (-319)) ELT)) (-2552 (((-793)) NIL (|has| (-721) (-381)) ELT)) (-1958 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1806 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-2003 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1856 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-721) "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| (-721) (-1069 (-421 (-560)))) ELT)) (-3649 (((-560) $) NIL T ELT) (((-721) $) NIL T ELT) (((-421 (-560)) $) NIL (|has| (-721) (-1069 (-421 (-560)))) ELT)) (-1953 (($ (-1297 (-721))) NIL T ELT) (($ (-1297 (-721)) (-1297 $)) NIL T ELT)) (-1433 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-721) (-363)) ELT)) (-2186 (($ $ $) NIL (|has| (-721) (-319)) ELT)) (-3160 (((-711 (-721)) $) NIL T ELT) (((-711 (-721)) $ (-1297 $)) NIL T ELT)) (-2619 (((-711 (-721)) (-711 $)) NIL T ELT) (((-2 (|:| -1871 (-711 (-721))) (|:| |vec| (-1297 (-721)))) (-711 $) (-1297 $)) NIL T ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| (-721) (-660 (-560))) ELT) (((-711 (-560)) (-711 $)) NIL (|has| (-721) (-660 (-560))) ELT)) (-1778 (((-3 $ "failed") (-421 (-1201 (-721)))) NIL (|has| (-721) (-376)) ELT) (($ (-1201 (-721))) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4034 (((-721) $) 29 T ELT)) (-2743 (((-3 (-421 (-560)) "failed") $) NIL (|has| (-721) (-559)) ELT)) (-1574 (((-114) $) NIL (|has| (-721) (-559)) ELT)) (-1957 (((-421 (-560)) $) NIL (|has| (-721) (-559)) ELT)) (-1604 (((-948)) NIL T ELT)) (-1812 (($) NIL (|has| (-721) (-381)) ELT)) (-2197 (($ $ $) NIL (|has| (-721) (-319)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL (|has| (-721) (-319)) ELT)) (-3191 (($) NIL (|has| (-721) (-363)) ELT)) (-4017 (((-114) $) NIL (|has| (-721) (-363)) ELT)) (-3079 (($ $) NIL (|has| (-721) (-363)) ELT) (($ $ (-793)) NIL (|has| (-721) (-363)) ELT)) (-3141 (((-114) $) NIL (-2196 (-12 (|has| (-721) (-319)) (|has| (-721) (-939))) (|has| (-721) (-376))) ELT)) (-3159 (((-2 (|:| |r| (-721)) (|:| |phi| (-721))) $) NIL (-12 (|has| (-721) (-1091)) (|has| (-721) (-1233))) ELT)) (-2503 (($) NIL (|has| (-721) (-1233)) ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (|has| (-721) (-911 (-391))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (|has| (-721) (-911 (-560))) ELT)) (-1460 (((-854 (-948)) $) NIL (|has| (-721) (-363)) ELT) (((-948) $) NIL (|has| (-721) (-363)) ELT)) (-1918 (((-114) $) NIL T ELT)) (-1956 (($ $ (-560)) NIL (-12 (|has| (-721) (-1033)) (|has| (-721) (-1233))) ELT)) (-2084 (((-721) $) NIL T ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| (-721) (-363)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| (-721) (-319)) ELT)) (-1471 (((-1201 (-721)) $) NIL (|has| (-721) (-376)) ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-2260 (($ (-1 (-721) (-721)) $) NIL T ELT)) (-2622 (((-948) $) NIL (|has| (-721) (-381)) ELT)) (-2831 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1767 (((-1201 (-721)) $) NIL T ELT)) (-4140 (((-711 (-721)) (-1297 $)) NIL T ELT) (((-2 (|:| -1871 (-711 (-721))) (|:| |vec| (-1297 (-721)))) (-1297 $) $) NIL T ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| (-721) (-660 (-560))) ELT) (((-711 (-560)) (-1297 $)) NIL (|has| (-721) (-660 (-560))) ELT)) (-1861 (($ (-663 $)) NIL (|has| (-721) (-319)) ELT) (($ $ $) NIL (|has| (-721) (-319)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL (|has| (-721) (-376)) ELT)) (-3239 (($) NIL (|has| (-721) (-363)) CONST)) (-1591 (($ (-948)) NIL (|has| (-721) (-381)) ELT)) (-1502 (($) NIL T ELT)) (-4044 (((-721) $) 31 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3583 (($) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| (-721) (-319)) ELT)) (-1938 (($ (-663 $)) NIL (|has| (-721) (-319)) ELT) (($ $ $) NIL (|has| (-721) (-319)) ELT)) (-2976 (((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))) NIL (|has| (-721) (-363)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-721) (-319)) (|has| (-721) (-939))) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-721) (-319)) (|has| (-721) (-939))) ELT)) (-4012 (((-419 $) $) NIL (-2196 (-12 (|has| (-721) (-319)) (|has| (-721) (-939))) (|has| (-721) (-376))) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-721) (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| (-721) (-319)) ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ (-721)) NIL (|has| (-721) (-571)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| (-721) (-319)) ELT)) (-2515 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-2371 (($ $ (-1207) (-721)) NIL (|has| (-721) (-528 (-1207) (-721))) ELT) (($ $ (-663 (-1207)) (-663 (-721))) NIL (|has| (-721) (-528 (-1207) (-721))) ELT) (($ $ (-663 (-305 (-721)))) NIL (|has| (-721) (-321 (-721))) ELT) (($ $ (-305 (-721))) NIL (|has| (-721) (-321 (-721))) ELT) (($ $ (-721) (-721)) NIL (|has| (-721) (-321 (-721))) ELT) (($ $ (-663 (-721)) (-663 (-721))) NIL (|has| (-721) (-321 (-721))) ELT)) (-3989 (((-793) $) NIL (|has| (-721) (-319)) ELT)) (-1507 (($ $ (-721)) NIL (|has| (-721) (-298 (-721) (-721))) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| (-721) (-319)) ELT)) (-2336 (((-721)) NIL T ELT) (((-721) (-1297 $)) NIL T ELT)) (-2258 (((-3 (-793) "failed") $ $) NIL (|has| (-721) (-363)) ELT) (((-793) $) NIL (|has| (-721) (-363)) ELT)) (-3161 (($ $ (-1 (-721) (-721)) (-793)) NIL T ELT) (($ $ (-1 (-721) (-721))) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2196 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-2196 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-2196 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-793)) NIL (-2196 (-12 (|has| (-721) (-240)) (|has| (-721) (-376))) (|has| (-721) (-239))) ELT) (($ $) NIL (-2196 (-12 (|has| (-721) (-240)) (|has| (-721) (-376))) (|has| (-721) (-239))) ELT)) (-3634 (((-711 (-721)) (-1297 $) (-1 (-721) (-721))) NIL (|has| (-721) (-376)) ELT)) (-2407 (((-1201 (-721))) NIL T ELT)) (-2013 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1870 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-3569 (($) NIL (|has| (-721) (-363)) ELT)) (-1992 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1844 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1972 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1820 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-4226 (((-711 (-721)) (-1297 $)) NIL T ELT) (((-1297 (-721)) $) NIL T ELT) (((-711 (-721)) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 (-721)) $ (-1297 $)) NIL T ELT)) (-2400 (((-549) $) NIL (|has| (-721) (-633 (-549))) ELT) (((-171 (-229)) $) NIL (|has| (-721) (-1051)) ELT) (((-171 (-391)) $) NIL (|has| (-721) (-1051)) ELT) (((-915 (-391)) $) NIL (|has| (-721) (-633 (-915 (-391)))) ELT) (((-915 (-560)) $) NIL (|has| (-721) (-633 (-915 (-560)))) ELT) (($ (-1201 (-721))) NIL T ELT) (((-1201 (-721)) $) NIL T ELT) (($ (-1297 (-721))) NIL T ELT) (((-1297 (-721)) $) NIL T ELT)) (-1714 (($ $) NIL T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-2196 (-12 (|has| (-721) (-319)) (|has| $ (-147)) (|has| (-721) (-939))) (|has| (-721) (-363))) ELT)) (-2917 (($ (-721) (-721)) 12 T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-721)) NIL T ELT) (($ (-171 (-391))) 13 T ELT) (($ (-171 (-560))) 19 T ELT) (($ (-171 (-721))) 28 T ELT) (($ (-171 (-723))) 25 T ELT) (((-171 (-391)) $) 33 T ELT) (($ (-421 (-560))) NIL (-2196 (|has| (-721) (-1069 (-421 (-560)))) (|has| (-721) (-376))) ELT)) (-3919 (($ $) NIL (|has| (-721) (-363)) ELT) (((-3 $ "failed") $) NIL (-2196 (-12 (|has| (-721) (-319)) (|has| $ (-147)) (|has| (-721) (-939))) (|has| (-721) (-147))) ELT)) (-2978 (((-1201 (-721)) $) NIL T ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-3822 (((-1297 $)) NIL T ELT)) (-2042 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1907 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-2022 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1882 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-2059 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1932 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-2069 (((-721) $) NIL (|has| (-721) (-1233)) ELT)) (-3392 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1945 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-2050 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1920 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-2032 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-1895 (($ $) NIL (|has| (-721) (-1233)) ELT)) (-2719 (($ $) NIL (|has| (-721) (-1091)) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $ (-1 (-721) (-721)) (-793)) NIL T ELT) (($ $ (-1 (-721) (-721))) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2196 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-2196 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-2196 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| (-721) (-376)) (|has| (-721) (-927 (-1207)))) (|has| (-721) (-929 (-1207)))) ELT) (($ $ (-793)) NIL (-2196 (-12 (|has| (-721) (-240)) (|has| (-721) (-376))) (|has| (-721) (-239))) ELT) (($ $) NIL (-2196 (-12 (|has| (-721) (-240)) (|has| (-721) (-376))) (|has| (-721) (-239))) ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) NIL T ELT)) (-2453 (($ $ $) NIL (|has| (-721) (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ $) NIL (|has| (-721) (-1233)) ELT) (($ $ (-421 (-560))) NIL (-12 (|has| (-721) (-1033)) (|has| (-721) (-1233))) ELT) (($ $ (-560)) NIL (|has| (-721) (-376)) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-721) $) NIL T ELT) (($ $ (-721)) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| (-721) (-376)) ELT) (($ $ (-421 (-560))) NIL (|has| (-721) (-376)) ELT)))
+(((-716) (-13 (-401) (-168 (-721)) (-10 -8 (-15 -3913 ($ (-171 (-391)))) (-15 -3913 ($ (-171 (-560)))) (-15 -3913 ($ (-171 (-721)))) (-15 -3913 ($ (-171 (-723)))) (-15 -3913 ((-171 (-391)) $))))) (T -716))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-716)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-171 (-560))) (-5 *1 (-716)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-171 (-721))) (-5 *1 (-716)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-171 (-723))) (-5 *1 (-716)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-716)))))
+(-13 (-401) (-168 (-721)) (-10 -8 (-15 -3913 ($ (-171 (-391)))) (-15 -3913 ($ (-171 (-560)))) (-15 -3913 ($ (-171 (-721)))) (-15 -3913 ($ (-171 (-723)))) (-15 -3913 ((-171 (-391)) $))))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-1864 (($ (-1 (-114) |#1|) $) 46 (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) 56 (|has| $ (-6 -4508)) ELT)) (-3525 (($) 7 T CONST)) (-4329 (($ $) 63 T ELT)) (-3658 (($ $) 59 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2091 (($ |#1| $) 48 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) |#1|) $) 47 (|has| $ (-6 -4508)) ELT)) (-3033 (($ |#1| $) 58 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 55 (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4508)) ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-1878 ((|#1| $) 40 T ELT)) (-3888 (($ |#1| $) 41 T ELT) (($ |#1| $ (-793)) 64 T ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 52 T ELT)) (-2796 ((|#1| $) 42 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1553 (((-663 (-2 (|:| -3067 |#1|) (|:| -3384 (-793)))) $) 62 T ELT)) (-4468 (($) 50 T ELT) (($ (-663 |#1|)) 49 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) 60 (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 51 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-3184 (($ (-663 |#1|)) 43 T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-717 |#1|) (-142) (-1132)) (T -717))
-((-3629 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-717 *2)) (-4 *2 (-1132)))) (-2944 (*1 *1 *1) (-12 (-4 *1 (-717 *2)) (-4 *2 (-1132)))) (-1797 (*1 *2 *1) (-12 (-4 *1 (-717 *3)) (-4 *3 (-1132)) (-5 *2 (-663 (-2 (|:| -2460 *3) (|:| -3865 (-793))))))))
-(-13 (-242 |t#1|) (-10 -8 (-15 -3629 ($ |t#1| $ (-793))) (-15 -2944 ($ $)) (-15 -1797 ((-663 (-2 (|:| -2460 |t#1|) (|:| -3865 (-793)))) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
-((-1415 (((-663 |#1|) (-663 (-2 (|:| -4457 |#1|) (|:| -3630 (-560)))) (-560)) 65 T ELT)) (-2393 ((|#1| |#1| (-560)) 62 T ELT)) (-2132 ((|#1| |#1| |#1| (-560)) 46 T ELT)) (-4457 (((-663 |#1|) |#1| (-560)) 49 T ELT)) (-3515 ((|#1| |#1| (-560) |#1| (-560)) 40 T ELT)) (-1943 (((-663 (-2 (|:| -4457 |#1|) (|:| -3630 (-560)))) |#1| (-560)) 61 T ELT)))
-(((-718 |#1|) (-10 -7 (-15 -2132 (|#1| |#1| |#1| (-560))) (-15 -2393 (|#1| |#1| (-560))) (-15 -4457 ((-663 |#1|) |#1| (-560))) (-15 -1943 ((-663 (-2 (|:| -4457 |#1|) (|:| -3630 (-560)))) |#1| (-560))) (-15 -1415 ((-663 |#1|) (-663 (-2 (|:| -4457 |#1|) (|:| -3630 (-560)))) (-560))) (-15 -3515 (|#1| |#1| (-560) |#1| (-560)))) (-1273 (-560))) (T -718))
-((-3515 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-718 *2)) (-4 *2 (-1273 *3)))) (-1415 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-2 (|:| -4457 *5) (|:| -3630 (-560))))) (-5 *4 (-560)) (-4 *5 (-1273 *4)) (-5 *2 (-663 *5)) (-5 *1 (-718 *5)))) (-1943 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-5 *2 (-663 (-2 (|:| -4457 *3) (|:| -3630 *4)))) (-5 *1 (-718 *3)) (-4 *3 (-1273 *4)))) (-4457 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-5 *2 (-663 *3)) (-5 *1 (-718 *3)) (-4 *3 (-1273 *4)))) (-2393 (*1 *2 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-718 *2)) (-4 *2 (-1273 *3)))) (-2132 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-718 *2)) (-4 *2 (-1273 *3)))))
-(-10 -7 (-15 -2132 (|#1| |#1| |#1| (-560))) (-15 -2393 (|#1| |#1| (-560))) (-15 -4457 ((-663 |#1|) |#1| (-560))) (-15 -1943 ((-663 (-2 (|:| -4457 |#1|) (|:| -3630 (-560)))) |#1| (-560))) (-15 -1415 ((-663 |#1|) (-663 (-2 (|:| -4457 |#1|) (|:| -3630 (-560)))) (-560))) (-15 -3515 (|#1| |#1| (-560) |#1| (-560))))
-((-3180 (((-1 (-972 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229) (-229))) 17 T ELT)) (-2703 (((-1164 (-229)) (-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-663 (-270))) 53 T ELT) (((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-663 (-270))) 55 T ELT) (((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) "undefined") (-1120 (-229)) (-1120 (-229)) (-663 (-270))) 57 T ELT)) (-2056 (((-1164 (-229)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-663 (-270))) NIL T ELT)) (-1362 (((-1164 (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) "undefined") (-1120 (-229)) (-1120 (-229)) (-663 (-270))) 58 T ELT)))
-(((-719) (-10 -7 (-15 -2703 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) "undefined") (-1120 (-229)) (-1120 (-229)) (-663 (-270)))) (-15 -2703 ((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-663 (-270)))) (-15 -2703 ((-1164 (-229)) (-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-663 (-270)))) (-15 -1362 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) "undefined") (-1120 (-229)) (-1120 (-229)) (-663 (-270)))) (-15 -2056 ((-1164 (-229)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-663 (-270)))) (-15 -3180 ((-1 (-972 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229) (-229)))))) (T -719))
-((-3180 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1 (-229) (-229) (-229) (-229))) (-5 *2 (-1 (-972 (-229)) (-229) (-229))) (-5 *1 (-719)))) (-2056 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1120 (-229))) (-5 *6 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-719)))) (-1362 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) "undefined")) (-5 *5 (-1120 (-229))) (-5 *6 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-719)))) (-2703 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1164 (-229))) (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1120 (-229))) (-5 *5 (-663 (-270))) (-5 *1 (-719)))) (-2703 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1120 (-229))) (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-719)))) (-2703 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) "undefined")) (-5 *5 (-1120 (-229))) (-5 *6 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-719)))))
-(-10 -7 (-15 -2703 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) "undefined") (-1120 (-229)) (-1120 (-229)) (-663 (-270)))) (-15 -2703 ((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-663 (-270)))) (-15 -2703 ((-1164 (-229)) (-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-663 (-270)))) (-15 -1362 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) "undefined") (-1120 (-229)) (-1120 (-229)) (-663 (-270)))) (-15 -2056 ((-1164 (-229)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-663 (-270)))) (-15 -3180 ((-1 (-972 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229) (-229)))))
-((-4457 (((-419 (-1201 |#4|)) (-1201 |#4|)) 86 T ELT) (((-419 |#4|) |#4|) 266 T ELT)))
-(((-720 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4457 ((-419 |#4|) |#4|)) (-15 -4457 ((-419 (-1201 |#4|)) (-1201 |#4|)))) (-871) (-815) (-363) (-979 |#3| |#2| |#1|)) (T -720))
-((-4457 (*1 *2 *3) (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-363)) (-4 *7 (-979 *6 *5 *4)) (-5 *2 (-419 (-1201 *7))) (-5 *1 (-720 *4 *5 *6 *7)) (-5 *3 (-1201 *7)))) (-4457 (*1 *2 *3) (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-363)) (-5 *2 (-419 *3)) (-5 *1 (-720 *4 *5 *6 *3)) (-4 *3 (-979 *6 *5 *4)))))
-(-10 -7 (-15 -4457 ((-419 |#4|) |#4|)) (-15 -4457 ((-419 (-1201 |#4|)) (-1201 |#4|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 97 T ELT)) (-3941 (((-560) $) 34 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-4267 (($ $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-4471 (($ $) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2138 (((-560) $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-1733 (($ $) NIL T ELT)) (-2539 (((-3 (-560) "failed") $) 85 T ELT) (((-3 (-421 (-560)) "failed") $) 28 T ELT) (((-3 (-391) "failed") $) 82 T ELT)) (-3330 (((-560) $) 87 T ELT) (((-421 (-560)) $) 79 T ELT) (((-391) $) 80 T ELT)) (-1478 (($ $ $) 109 T ELT)) (-1990 (((-3 $ "failed") $) 100 T ELT)) (-1490 (($ $ $) 108 T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-3788 (((-948)) 89 T ELT) (((-948) (-948)) 88 T ELT)) (-2928 (((-114) $) NIL T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL T ELT)) (-3913 (((-560) $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-2146 (($ $ (-560)) NIL T ELT)) (-2032 (($ $) NIL T ELT)) (-2960 (((-114) $) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2900 (((-560) (-560)) 94 T ELT) (((-560)) 95 T ELT)) (-3825 (($ $ $) NIL T ELT) (($) NIL (-12 (-1937 (|has| $ (-6 -4491))) (-1937 (|has| $ (-6 -4499)))) ELT)) (-2334 (((-560) (-560)) 92 T ELT) (((-560)) 93 T ELT)) (-2820 (($ $ $) NIL T ELT) (($) NIL (-12 (-1937 (|has| $ (-6 -4491))) (-1937 (|has| $ (-6 -4499)))) ELT)) (-3435 (((-560) $) 17 T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) 104 T ELT)) (-1347 (((-948) (-560)) NIL (|has| $ (-6 -4499)) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2652 (($ $) NIL T ELT)) (-2016 (($ $) NIL T ELT)) (-2917 (($ (-560) (-560)) NIL T ELT) (($ (-560) (-560) (-948)) NIL T ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) 105 T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3205 (((-560) $) 24 T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 107 T ELT)) (-1601 (((-948)) NIL T ELT) (((-948) (-948)) NIL (|has| $ (-6 -4499)) ELT)) (-4004 (((-948) (-560)) NIL (|has| $ (-6 -4499)) ELT)) (-1407 (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (((-915 (-391)) $) NIL T ELT)) (-1578 (((-887) $) 63 T ELT) (($ (-560)) 75 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 78 T ELT) (($ (-560)) 75 T ELT) (($ (-421 (-560))) 78 T ELT) (($ (-391)) 72 T ELT) (((-391) $) 61 T ELT) (($ (-723)) 66 T ELT)) (-2930 (((-793)) 119 T CONST)) (-2172 (($ (-560) (-560) (-948)) 54 T ELT)) (-1494 (($ $) NIL T ELT)) (-4139 (((-948)) NIL T ELT) (((-948) (-948)) NIL (|has| $ (-6 -4499)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1792 (((-948)) 91 T ELT) (((-948) (-948)) 90 T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2282 (($ $) NIL T ELT)) (-2001 (($) 37 T CONST)) (-2011 (($) 18 T CONST)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 96 T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 118 T ELT)) (-2594 (($ $ $) 77 T ELT)) (-2580 (($ $) 115 T ELT) (($ $ $) 116 T ELT)) (-2567 (($ $ $) 114 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT) (($ $ (-421 (-560))) 103 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 110 T ELT) (($ $ $) 101 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT)))
-(((-721) (-13 (-418) (-401) (-376) (-1069 (-391)) (-1069 (-421 (-560))) (-149) (-10 -8 (-15 -3788 ((-948) (-948))) (-15 -3788 ((-948))) (-15 -1792 ((-948) (-948))) (-15 -2334 ((-560) (-560))) (-15 -2334 ((-560))) (-15 -2900 ((-560) (-560))) (-15 -2900 ((-560))) (-15 -1578 ((-391) $)) (-15 -1578 ($ (-723))) (-15 -3435 ((-560) $)) (-15 -3205 ((-560) $)) (-15 -2172 ($ (-560) (-560) (-948)))))) (T -721))
-((-3205 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-721)))) (-3435 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-721)))) (-3788 (*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-721)))) (-3788 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-721)))) (-1792 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-721)))) (-2334 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721)))) (-2334 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721)))) (-2900 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721)))) (-2900 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-391)) (-5 *1 (-721)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-723)) (-5 *1 (-721)))) (-2172 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-948)) (-5 *1 (-721)))))
-(-13 (-418) (-401) (-376) (-1069 (-391)) (-1069 (-421 (-560))) (-149) (-10 -8 (-15 -3788 ((-948) (-948))) (-15 -3788 ((-948))) (-15 -1792 ((-948) (-948))) (-15 -2334 ((-560) (-560))) (-15 -2334 ((-560))) (-15 -2900 ((-560) (-560))) (-15 -2900 ((-560))) (-15 -1578 ((-391) $)) (-15 -1578 ($ (-723))) (-15 -3435 ((-560) $)) (-15 -3205 ((-560) $)) (-15 -2172 ($ (-560) (-560) (-948)))))
-((-3389 (((-711 |#1|) (-711 |#1|) |#1| |#1|) 85 T ELT)) (-2677 (((-711 |#1|) (-711 |#1|) |#1|) 66 T ELT)) (-1682 (((-711 |#1|) (-711 |#1|) |#1|) 86 T ELT)) (-2058 (((-711 |#1|) (-711 |#1|)) 67 T ELT)) (-3756 (((-2 (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1|) 84 T ELT)))
-(((-722 |#1|) (-10 -7 (-15 -2058 ((-711 |#1|) (-711 |#1|))) (-15 -2677 ((-711 |#1|) (-711 |#1|) |#1|)) (-15 -1682 ((-711 |#1|) (-711 |#1|) |#1|)) (-15 -3389 ((-711 |#1|) (-711 |#1|) |#1| |#1|)) (-15 -3756 ((-2 (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1|))) (-319)) (T -722))
-((-3756 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1774 *3) (|:| -2341 *3))) (-5 *1 (-722 *3)) (-4 *3 (-319)))) (-3389 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3)))) (-1682 (*1 *2 *2 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3)))) (-2677 (*1 *2 *2 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3)))) (-2058 (*1 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3)))))
-(-10 -7 (-15 -2058 ((-711 |#1|) (-711 |#1|))) (-15 -2677 ((-711 |#1|) (-711 |#1|) |#1|)) (-15 -1682 ((-711 |#1|) (-711 |#1|) |#1|)) (-15 -3389 ((-711 |#1|) (-711 |#1|) |#1| |#1|)) (-15 -3756 ((-2 (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-2791 (($ $ $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2970 (($ $ $ $) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2138 (((-560) $) NIL T ELT)) (-2331 (($ $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) 31 T ELT)) (-3330 (((-560) $) 29 T ELT)) (-1478 (($ $ $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL T ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-3643 (((-3 (-421 (-560)) "failed") $) NIL T ELT)) (-3469 (((-114) $) NIL T ELT)) (-3197 (((-421 (-560)) $) NIL T ELT)) (-2310 (($ $) NIL T ELT) (($) NIL T ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-1949 (($ $ $ $) NIL T ELT)) (-4322 (($ $ $) NIL T ELT)) (-2928 (((-114) $) NIL T ELT)) (-2708 (($ $ $) NIL T ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-3612 (((-114) $) NIL T ELT)) (-3009 (((-3 $ "failed") $) NIL T ELT)) (-2960 (((-114) $) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3651 (($ $ $ $) NIL T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2426 (((-948) (-948)) 10 T ELT) (((-948)) 9 T ELT)) (-2820 (($ $ $) NIL T ELT)) (-3890 (($ $) NIL T ELT)) (-4108 (($ $) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL T ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL T ELT)) (-2093 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2818 (($ $ $) NIL T ELT)) (-3161 (($) NIL T CONST)) (-3728 (($ $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1559 (($ $) NIL T ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1737 (((-114) $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2894 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-229) $) NIL T ELT) (((-391) $) NIL T ELT) (((-915 (-560)) $) NIL T ELT) (((-549) $) NIL T ELT) (((-560) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) 28 T ELT) (($ $) NIL T ELT) (($ (-560)) 28 T ELT) (((-326 $) (-326 (-560))) 18 T ELT)) (-2930 (((-793)) NIL T CONST)) (-3385 (((-114) $ $) NIL T ELT)) (-3271 (($ $ $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1792 (($) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-3260 (($ $ $ $) NIL T ELT)) (-2282 (($ $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT)))
-(((-723) (-13 (-401) (-559) (-10 -8 (-15 -2426 ((-948) (-948))) (-15 -2426 ((-948))) (-15 -1578 ((-326 $) (-326 (-560))))))) (T -723))
-((-2426 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-723)))) (-2426 (*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-723)))) (-1578 (*1 *2 *3) (-12 (-5 *3 (-326 (-560))) (-5 *2 (-326 (-723))) (-5 *1 (-723)))))
-(-13 (-401) (-559) (-10 -8 (-15 -2426 ((-948) (-948))) (-15 -2426 ((-948))) (-15 -1578 ((-326 $) (-326 (-560))))))
-((-1441 (((-1 |#4| |#2| |#3|) |#1| (-1207) (-1207)) 19 T ELT)) (-1489 (((-1 |#4| |#2| |#3|) (-1207)) 12 T ELT)))
-(((-724 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1489 ((-1 |#4| |#2| |#3|) (-1207))) (-15 -1441 ((-1 |#4| |#2| |#3|) |#1| (-1207) (-1207)))) (-633 (-549)) (-1247) (-1247) (-1247)) (T -724))
-((-1441 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1207)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-724 *3 *5 *6 *7)) (-4 *3 (-633 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247)) (-4 *7 (-1247)))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-724 *4 *5 *6 *7)) (-4 *4 (-633 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247)) (-4 *7 (-1247)))))
-(-10 -7 (-15 -1489 ((-1 |#4| |#2| |#3|) (-1207))) (-15 -1441 ((-1 |#4| |#2| |#3|) |#1| (-1207) (-1207))))
-((-4237 (((-1 (-229) (-229) (-229)) |#1| (-1207) (-1207)) 43 T ELT) (((-1 (-229) (-229)) |#1| (-1207)) 48 T ELT)))
-(((-725 |#1|) (-10 -7 (-15 -4237 ((-1 (-229) (-229)) |#1| (-1207))) (-15 -4237 ((-1 (-229) (-229) (-229)) |#1| (-1207) (-1207)))) (-633 (-549))) (T -725))
-((-4237 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1207)) (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-725 *3)) (-4 *3 (-633 (-549))))) (-4237 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-5 *2 (-1 (-229) (-229))) (-5 *1 (-725 *3)) (-4 *3 (-633 (-549))))))
-(-10 -7 (-15 -4237 ((-1 (-229) (-229)) |#1| (-1207))) (-15 -4237 ((-1 (-229) (-229) (-229)) |#1| (-1207) (-1207))))
-((-1975 (((-1207) |#1| (-1207) (-663 (-1207))) 10 T ELT) (((-1207) |#1| (-1207) (-1207) (-1207)) 13 T ELT) (((-1207) |#1| (-1207) (-1207)) 12 T ELT) (((-1207) |#1| (-1207)) 11 T ELT)))
-(((-726 |#1|) (-10 -7 (-15 -1975 ((-1207) |#1| (-1207))) (-15 -1975 ((-1207) |#1| (-1207) (-1207))) (-15 -1975 ((-1207) |#1| (-1207) (-1207) (-1207))) (-15 -1975 ((-1207) |#1| (-1207) (-663 (-1207))))) (-633 (-549))) (T -726))
-((-1975 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-663 (-1207))) (-5 *2 (-1207)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-549))))) (-1975 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-549))))) (-1975 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-549))))) (-1975 (*1 *2 *3 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-549))))))
-(-10 -7 (-15 -1975 ((-1207) |#1| (-1207))) (-15 -1975 ((-1207) |#1| (-1207) (-1207))) (-15 -1975 ((-1207) |#1| (-1207) (-1207) (-1207))) (-15 -1975 ((-1207) |#1| (-1207) (-663 (-1207)))))
-((-3404 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT)))
-(((-727 |#1| |#2|) (-10 -7 (-15 -3404 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1247) (-1247)) (T -727))
-((-3404 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-727 *3 *4)) (-4 *3 (-1247)) (-4 *4 (-1247)))))
-(-10 -7 (-15 -3404 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-2621 (((-1 |#3| |#2|) (-1207)) 11 T ELT)) (-1441 (((-1 |#3| |#2|) |#1| (-1207)) 21 T ELT)))
-(((-728 |#1| |#2| |#3|) (-10 -7 (-15 -2621 ((-1 |#3| |#2|) (-1207))) (-15 -1441 ((-1 |#3| |#2|) |#1| (-1207)))) (-633 (-549)) (-1247) (-1247)) (T -728))
-((-1441 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-5 *2 (-1 *6 *5)) (-5 *1 (-728 *3 *5 *6)) (-4 *3 (-633 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247)))) (-2621 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1 *6 *5)) (-5 *1 (-728 *4 *5 *6)) (-4 *4 (-633 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247)))))
-(-10 -7 (-15 -2621 ((-1 |#3| |#2|) (-1207))) (-15 -1441 ((-1 |#3| |#2|) |#1| (-1207))))
-((-3901 (((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-663 |#2|) (-663 (-1201 |#4|)) (-663 |#3|) (-663 |#4|) (-663 (-663 (-2 (|:| -3911 (-793)) (|:| |pcoef| |#4|)))) (-663 (-793)) (-1297 (-663 (-1201 |#3|))) |#3|) 92 T ELT)) (-1841 (((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-663 |#2|) (-663 (-1201 |#3|)) (-663 |#3|) (-663 |#4|) (-663 (-793)) |#3|) 110 T ELT)) (-3726 (((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-663 |#2|) (-663 |#3|) (-663 (-793)) (-663 (-1201 |#4|)) (-1297 (-663 (-1201 |#3|))) |#3|) 47 T ELT)))
-(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3726 ((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-663 |#2|) (-663 |#3|) (-663 (-793)) (-663 (-1201 |#4|)) (-1297 (-663 (-1201 |#3|))) |#3|)) (-15 -1841 ((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-663 |#2|) (-663 (-1201 |#3|)) (-663 |#3|) (-663 |#4|) (-663 (-793)) |#3|)) (-15 -3901 ((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-663 |#2|) (-663 (-1201 |#4|)) (-663 |#3|) (-663 |#4|) (-663 (-663 (-2 (|:| -3911 (-793)) (|:| |pcoef| |#4|)))) (-663 (-793)) (-1297 (-663 (-1201 |#3|))) |#3|))) (-815) (-871) (-319) (-979 |#3| |#1| |#2|)) (T -729))
-((-3901 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-663 (-1201 *13))) (-5 *3 (-1201 *13)) (-5 *4 (-663 *12)) (-5 *5 (-663 *10)) (-5 *6 (-663 *13)) (-5 *7 (-663 (-663 (-2 (|:| -3911 (-793)) (|:| |pcoef| *13))))) (-5 *8 (-663 (-793))) (-5 *9 (-1297 (-663 (-1201 *10)))) (-4 *12 (-871)) (-4 *10 (-319)) (-4 *13 (-979 *10 *11 *12)) (-4 *11 (-815)) (-5 *1 (-729 *11 *12 *10 *13)))) (-1841 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-663 *11)) (-5 *5 (-663 (-1201 *9))) (-5 *6 (-663 *9)) (-5 *7 (-663 *12)) (-5 *8 (-663 (-793))) (-4 *11 (-871)) (-4 *9 (-319)) (-4 *12 (-979 *9 *10 *11)) (-4 *10 (-815)) (-5 *2 (-663 (-1201 *12))) (-5 *1 (-729 *10 *11 *9 *12)) (-5 *3 (-1201 *12)))) (-3726 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-663 (-1201 *11))) (-5 *3 (-1201 *11)) (-5 *4 (-663 *10)) (-5 *5 (-663 *8)) (-5 *6 (-663 (-793))) (-5 *7 (-1297 (-663 (-1201 *8)))) (-4 *10 (-871)) (-4 *8 (-319)) (-4 *11 (-979 *8 *9 *10)) (-4 *9 (-815)) (-5 *1 (-729 *9 *10 *8 *11)))))
-(-10 -7 (-15 -3726 ((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-663 |#2|) (-663 |#3|) (-663 (-793)) (-663 (-1201 |#4|)) (-1297 (-663 (-1201 |#3|))) |#3|)) (-15 -1841 ((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-663 |#2|) (-663 (-1201 |#3|)) (-663 |#3|) (-663 |#4|) (-663 (-793)) |#3|)) (-15 -3901 ((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-663 |#2|) (-663 (-1201 |#4|)) (-663 |#3|) (-663 |#4|) (-663 (-663 (-2 (|:| -3911 (-793)) (|:| |pcoef| |#4|)))) (-663 (-793)) (-1297 (-663 (-1201 |#3|))) |#3|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1624 (($ $) 48 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-1417 (($ |#1| (-793)) 46 T ELT)) (-3011 (((-793) $) 50 T ELT)) (-1597 ((|#1| $) 49 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-3630 (((-793) $) 51 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 45 (|has| |#1| (-175)) ELT)) (-2305 ((|#1| $ (-793)) 47 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 53 T ELT) (($ |#1| $) 52 T ELT)))
+((-3888 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-717 *2)) (-4 *2 (-1132)))) (-4329 (*1 *1 *1) (-12 (-4 *1 (-717 *2)) (-4 *2 (-1132)))) (-1553 (*1 *2 *1) (-12 (-4 *1 (-717 *3)) (-4 *3 (-1132)) (-5 *2 (-663 (-2 (|:| -3067 *3) (|:| -3384 (-793))))))))
+(-13 (-242 |t#1|) (-10 -8 (-15 -3888 ($ |t#1| $ (-793))) (-15 -4329 ($ $)) (-15 -1553 ((-663 (-2 (|:| -3067 |t#1|) (|:| -3384 (-793)))) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
+((-2890 (((-663 |#1|) (-663 (-2 (|:| -4012 |#1|) (|:| -3900 (-560)))) (-560)) 65 T ELT)) (-2561 ((|#1| |#1| (-560)) 62 T ELT)) (-1938 ((|#1| |#1| |#1| (-560)) 46 T ELT)) (-4012 (((-663 |#1|) |#1| (-560)) 49 T ELT)) (-2017 ((|#1| |#1| (-560) |#1| (-560)) 40 T ELT)) (-3715 (((-663 (-2 (|:| -4012 |#1|) (|:| -3900 (-560)))) |#1| (-560)) 61 T ELT)))
+(((-718 |#1|) (-10 -7 (-15 -1938 (|#1| |#1| |#1| (-560))) (-15 -2561 (|#1| |#1| (-560))) (-15 -4012 ((-663 |#1|) |#1| (-560))) (-15 -3715 ((-663 (-2 (|:| -4012 |#1|) (|:| -3900 (-560)))) |#1| (-560))) (-15 -2890 ((-663 |#1|) (-663 (-2 (|:| -4012 |#1|) (|:| -3900 (-560)))) (-560))) (-15 -2017 (|#1| |#1| (-560) |#1| (-560)))) (-1273 (-560))) (T -718))
+((-2017 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-718 *2)) (-4 *2 (-1273 *3)))) (-2890 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-2 (|:| -4012 *5) (|:| -3900 (-560))))) (-5 *4 (-560)) (-4 *5 (-1273 *4)) (-5 *2 (-663 *5)) (-5 *1 (-718 *5)))) (-3715 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-5 *2 (-663 (-2 (|:| -4012 *3) (|:| -3900 *4)))) (-5 *1 (-718 *3)) (-4 *3 (-1273 *4)))) (-4012 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-5 *2 (-663 *3)) (-5 *1 (-718 *3)) (-4 *3 (-1273 *4)))) (-2561 (*1 *2 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-718 *2)) (-4 *2 (-1273 *3)))) (-1938 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-718 *2)) (-4 *2 (-1273 *3)))))
+(-10 -7 (-15 -1938 (|#1| |#1| |#1| (-560))) (-15 -2561 (|#1| |#1| (-560))) (-15 -4012 ((-663 |#1|) |#1| (-560))) (-15 -3715 ((-663 (-2 (|:| -4012 |#1|) (|:| -3900 (-560)))) |#1| (-560))) (-15 -2890 ((-663 |#1|) (-663 (-2 (|:| -4012 |#1|) (|:| -3900 (-560)))) (-560))) (-15 -2017 (|#1| |#1| (-560) |#1| (-560))))
+((-1780 (((-1 (-972 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229) (-229))) 17 T ELT)) (-2480 (((-1164 (-229)) (-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-663 (-270))) 53 T ELT) (((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-663 (-270))) 55 T ELT) (((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) "undefined") (-1120 (-229)) (-1120 (-229)) (-663 (-270))) 57 T ELT)) (-2294 (((-1164 (-229)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-663 (-270))) NIL T ELT)) (-3782 (((-1164 (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) "undefined") (-1120 (-229)) (-1120 (-229)) (-663 (-270))) 58 T ELT)))
+(((-719) (-10 -7 (-15 -2480 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) "undefined") (-1120 (-229)) (-1120 (-229)) (-663 (-270)))) (-15 -2480 ((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-663 (-270)))) (-15 -2480 ((-1164 (-229)) (-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-663 (-270)))) (-15 -3782 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) "undefined") (-1120 (-229)) (-1120 (-229)) (-663 (-270)))) (-15 -2294 ((-1164 (-229)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-663 (-270)))) (-15 -1780 ((-1 (-972 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229) (-229)))))) (T -719))
+((-1780 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1 (-229) (-229) (-229) (-229))) (-5 *2 (-1 (-972 (-229)) (-229) (-229))) (-5 *1 (-719)))) (-2294 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1120 (-229))) (-5 *6 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-719)))) (-3782 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) "undefined")) (-5 *5 (-1120 (-229))) (-5 *6 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-719)))) (-2480 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1164 (-229))) (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1120 (-229))) (-5 *5 (-663 (-270))) (-5 *1 (-719)))) (-2480 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1120 (-229))) (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-719)))) (-2480 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) "undefined")) (-5 *5 (-1120 (-229))) (-5 *6 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-719)))))
+(-10 -7 (-15 -2480 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) "undefined") (-1120 (-229)) (-1120 (-229)) (-663 (-270)))) (-15 -2480 ((-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-663 (-270)))) (-15 -2480 ((-1164 (-229)) (-1164 (-229)) (-1 (-972 (-229)) (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-663 (-270)))) (-15 -3782 ((-1164 (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) "undefined") (-1120 (-229)) (-1120 (-229)) (-663 (-270)))) (-15 -2294 ((-1164 (-229)) (-326 (-560)) (-326 (-560)) (-326 (-560)) (-1 (-229) (-229)) (-1120 (-229)) (-663 (-270)))) (-15 -1780 ((-1 (-972 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229) (-229)))))
+((-4012 (((-419 (-1201 |#4|)) (-1201 |#4|)) 86 T ELT) (((-419 |#4|) |#4|) 266 T ELT)))
+(((-720 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4012 ((-419 |#4|) |#4|)) (-15 -4012 ((-419 (-1201 |#4|)) (-1201 |#4|)))) (-871) (-815) (-363) (-979 |#3| |#2| |#1|)) (T -720))
+((-4012 (*1 *2 *3) (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-363)) (-4 *7 (-979 *6 *5 *4)) (-5 *2 (-419 (-1201 *7))) (-5 *1 (-720 *4 *5 *6 *7)) (-5 *3 (-1201 *7)))) (-4012 (*1 *2 *3) (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-363)) (-5 *2 (-419 *3)) (-5 *1 (-720 *4 *5 *6 *3)) (-4 *3 (-979 *6 *5 *4)))))
+(-10 -7 (-15 -4012 ((-419 |#4|) |#4|)) (-15 -4012 ((-419 (-1201 |#4|)) (-1201 |#4|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 97 T ELT)) (-3655 (((-560) $) 34 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3864 (($ $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-4021 (($ $) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-1869 (((-560) $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2198 (($ $) NIL T ELT)) (-3929 (((-3 (-560) "failed") $) 85 T ELT) (((-3 (-421 (-560)) "failed") $) 28 T ELT) (((-3 (-391) "failed") $) 82 T ELT)) (-3649 (((-560) $) 87 T ELT) (((-421 (-560)) $) 79 T ELT) (((-391) $) 80 T ELT)) (-2186 (($ $ $) 109 T ELT)) (-2873 (((-3 $ "failed") $) 100 T ELT)) (-2197 (($ $ $) 108 T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-2602 (((-948)) 89 T ELT) (((-948) (-948)) 88 T ELT)) (-4172 (((-114) $) NIL T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL T ELT)) (-1460 (((-560) $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-1956 (($ $ (-560)) NIL T ELT)) (-2084 (($ $) NIL T ELT)) (-4470 (((-114) $) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3978 (((-560) (-560)) 94 T ELT) (((-560)) 95 T ELT)) (-2932 (($ $ $) NIL T ELT) (($) NIL (-12 (-1394 (|has| $ (-6 -4491))) (-1394 (|has| $ (-6 -4499)))) ELT)) (-3206 (((-560) (-560)) 92 T ELT) (((-560)) 93 T ELT)) (-4379 (($ $ $) NIL T ELT) (($) NIL (-12 (-1394 (|has| $ (-6 -4491))) (-1394 (|has| $ (-6 -4499)))) ELT)) (-2048 (((-560) $) 17 T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) 104 T ELT)) (-3611 (((-948) (-560)) NIL (|has| $ (-6 -4499)) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3211 (($ $) NIL T ELT)) (-3147 (($ $) NIL T ELT)) (-2523 (($ (-560) (-560)) NIL T ELT) (($ (-560) (-560) (-948)) NIL T ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) 105 T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2030 (((-560) $) 24 T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 107 T ELT)) (-3370 (((-948)) NIL T ELT) (((-948) (-948)) NIL (|has| $ (-6 -4499)) ELT)) (-3036 (((-948) (-560)) NIL (|has| $ (-6 -4499)) ELT)) (-2400 (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (((-915 (-391)) $) NIL T ELT)) (-3913 (((-887) $) 63 T ELT) (($ (-560)) 75 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 78 T ELT) (($ (-560)) 75 T ELT) (($ (-421 (-560))) 78 T ELT) (($ (-391)) 72 T ELT) (((-391) $) 61 T ELT) (($ (-723)) 66 T ELT)) (-4191 (((-793)) 119 T CONST)) (-4166 (($ (-560) (-560) (-948)) 54 T ELT)) (-3622 (($ $) NIL T ELT)) (-1902 (((-948)) NIL T ELT) (((-948) (-948)) NIL (|has| $ (-6 -4499)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2671 (((-948)) 91 T ELT) (((-948) (-948)) 90 T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-2719 (($ $) NIL T ELT)) (-1446 (($) 37 T CONST)) (-1456 (($) 18 T CONST)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 96 T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 118 T ELT)) (-2453 (($ $ $) 77 T ELT)) (-2441 (($ $) 115 T ELT) (($ $ $) 116 T ELT)) (-2429 (($ $ $) 114 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT) (($ $ (-421 (-560))) 103 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 110 T ELT) (($ $ $) 101 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT)))
+(((-721) (-13 (-418) (-401) (-376) (-1069 (-391)) (-1069 (-421 (-560))) (-149) (-10 -8 (-15 -2602 ((-948) (-948))) (-15 -2602 ((-948))) (-15 -2671 ((-948) (-948))) (-15 -3206 ((-560) (-560))) (-15 -3206 ((-560))) (-15 -3978 ((-560) (-560))) (-15 -3978 ((-560))) (-15 -3913 ((-391) $)) (-15 -3913 ($ (-723))) (-15 -2048 ((-560) $)) (-15 -2030 ((-560) $)) (-15 -4166 ($ (-560) (-560) (-948)))))) (T -721))
+((-2030 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-721)))) (-2048 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-721)))) (-2602 (*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-721)))) (-2602 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-721)))) (-2671 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-721)))) (-3206 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721)))) (-3206 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721)))) (-3978 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721)))) (-3978 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-391)) (-5 *1 (-721)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-723)) (-5 *1 (-721)))) (-4166 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-948)) (-5 *1 (-721)))))
+(-13 (-418) (-401) (-376) (-1069 (-391)) (-1069 (-421 (-560))) (-149) (-10 -8 (-15 -2602 ((-948) (-948))) (-15 -2602 ((-948))) (-15 -2671 ((-948) (-948))) (-15 -3206 ((-560) (-560))) (-15 -3206 ((-560))) (-15 -3978 ((-560) (-560))) (-15 -3978 ((-560))) (-15 -3913 ((-391) $)) (-15 -3913 ($ (-723))) (-15 -2048 ((-560) $)) (-15 -2030 ((-560) $)) (-15 -4166 ($ (-560) (-560) (-948)))))
+((-3309 (((-711 |#1|) (-711 |#1|) |#1| |#1|) 85 T ELT)) (-2207 (((-711 |#1|) (-711 |#1|) |#1|) 66 T ELT)) (-2904 (((-711 |#1|) (-711 |#1|) |#1|) 86 T ELT)) (-2304 (((-711 |#1|) (-711 |#1|)) 67 T ELT)) (-2555 (((-2 (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1|) 84 T ELT)))
+(((-722 |#1|) (-10 -7 (-15 -2304 ((-711 |#1|) (-711 |#1|))) (-15 -2207 ((-711 |#1|) (-711 |#1|) |#1|)) (-15 -2904 ((-711 |#1|) (-711 |#1|) |#1|)) (-15 -3309 ((-711 |#1|) (-711 |#1|) |#1| |#1|)) (-15 -2555 ((-2 (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1|))) (-319)) (T -722))
+((-2555 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2584 *3) (|:| -3276 *3))) (-5 *1 (-722 *3)) (-4 *3 (-319)))) (-3309 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3)))) (-2904 (*1 *2 *2 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3)))) (-2207 (*1 *2 *2 *3) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3)))) (-2304 (*1 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3)))))
+(-10 -7 (-15 -2304 ((-711 |#1|) (-711 |#1|))) (-15 -2207 ((-711 |#1|) (-711 |#1|) |#1|)) (-15 -2904 ((-711 |#1|) (-711 |#1|) |#1|)) (-15 -3309 ((-711 |#1|) (-711 |#1|) |#1| |#1|)) (-15 -2555 ((-2 (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-4071 (($ $ $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3321 (($ $ $ $) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-1869 (((-560) $) NIL T ELT)) (-1786 (($ $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) 31 T ELT)) (-3649 (((-560) $) 29 T ELT)) (-2186 (($ $ $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL T ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-2743 (((-3 (-421 (-560)) "failed") $) NIL T ELT)) (-1574 (((-114) $) NIL T ELT)) (-1957 (((-421 (-560)) $) NIL T ELT)) (-1812 (($ $) NIL T ELT) (($) NIL T ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-3777 (($ $ $ $) NIL T ELT)) (-3078 (($ $ $) NIL T ELT)) (-4172 (((-114) $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-3729 (((-114) $) NIL T ELT)) (-3738 (((-3 $ "failed") $) NIL T ELT)) (-4470 (((-114) $) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2804 (($ $ $ $) NIL T ELT)) (-2932 (($ $ $) NIL T ELT)) (-1636 (((-948) (-948)) 10 T ELT) (((-948)) 9 T ELT)) (-4379 (($ $ $) NIL T ELT)) (-3105 (($ $) NIL T ELT)) (-2946 (($ $) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL T ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL T ELT)) (-1861 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-4359 (($ $ $) NIL T ELT)) (-3239 (($) NIL T CONST)) (-4079 (($ $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1704 (($ $) NIL T ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2244 (((-114) $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3161 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-2776 (($ $) NIL T ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-229) $) NIL T ELT) (((-391) $) NIL T ELT) (((-915 (-560)) $) NIL T ELT) (((-549) $) NIL T ELT) (((-560) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) 28 T ELT) (($ $) NIL T ELT) (($ (-560)) 28 T ELT) (((-326 $) (-326 (-560))) 18 T ELT)) (-4191 (((-793)) NIL T CONST)) (-3275 (((-114) $ $) NIL T ELT)) (-3381 (($ $ $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2671 (($) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-1369 (($ $ $ $) NIL T ELT)) (-2719 (($ $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT)))
+(((-723) (-13 (-401) (-559) (-10 -8 (-15 -1636 ((-948) (-948))) (-15 -1636 ((-948))) (-15 -3913 ((-326 $) (-326 (-560))))))) (T -723))
+((-1636 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-723)))) (-1636 (*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-723)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-326 (-560))) (-5 *2 (-326 (-723))) (-5 *1 (-723)))))
+(-13 (-401) (-559) (-10 -8 (-15 -1636 ((-948) (-948))) (-15 -1636 ((-948))) (-15 -3913 ((-326 $) (-326 (-560))))))
+((-2712 (((-1 |#4| |#2| |#3|) |#1| (-1207) (-1207)) 19 T ELT)) (-2641 (((-1 |#4| |#2| |#3|) (-1207)) 12 T ELT)))
+(((-724 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2641 ((-1 |#4| |#2| |#3|) (-1207))) (-15 -2712 ((-1 |#4| |#2| |#3|) |#1| (-1207) (-1207)))) (-633 (-549)) (-1247) (-1247) (-1247)) (T -724))
+((-2712 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1207)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-724 *3 *5 *6 *7)) (-4 *3 (-633 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247)) (-4 *7 (-1247)))) (-2641 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-724 *4 *5 *6 *7)) (-4 *4 (-633 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247)) (-4 *7 (-1247)))))
+(-10 -7 (-15 -2641 ((-1 |#4| |#2| |#3|) (-1207))) (-15 -2712 ((-1 |#4| |#2| |#3|) |#1| (-1207) (-1207))))
+((-3556 (((-1 (-229) (-229) (-229)) |#1| (-1207) (-1207)) 43 T ELT) (((-1 (-229) (-229)) |#1| (-1207)) 48 T ELT)))
+(((-725 |#1|) (-10 -7 (-15 -3556 ((-1 (-229) (-229)) |#1| (-1207))) (-15 -3556 ((-1 (-229) (-229) (-229)) |#1| (-1207) (-1207)))) (-633 (-549))) (T -725))
+((-3556 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1207)) (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-725 *3)) (-4 *3 (-633 (-549))))) (-3556 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-5 *2 (-1 (-229) (-229))) (-5 *1 (-725 *3)) (-4 *3 (-633 (-549))))))
+(-10 -7 (-15 -3556 ((-1 (-229) (-229)) |#1| (-1207))) (-15 -3556 ((-1 (-229) (-229) (-229)) |#1| (-1207) (-1207))))
+((-1608 (((-1207) |#1| (-1207) (-663 (-1207))) 10 T ELT) (((-1207) |#1| (-1207) (-1207) (-1207)) 13 T ELT) (((-1207) |#1| (-1207) (-1207)) 12 T ELT) (((-1207) |#1| (-1207)) 11 T ELT)))
+(((-726 |#1|) (-10 -7 (-15 -1608 ((-1207) |#1| (-1207))) (-15 -1608 ((-1207) |#1| (-1207) (-1207))) (-15 -1608 ((-1207) |#1| (-1207) (-1207) (-1207))) (-15 -1608 ((-1207) |#1| (-1207) (-663 (-1207))))) (-633 (-549))) (T -726))
+((-1608 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-663 (-1207))) (-5 *2 (-1207)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-549))))) (-1608 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-549))))) (-1608 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-549))))) (-1608 (*1 *2 *3 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-549))))))
+(-10 -7 (-15 -1608 ((-1207) |#1| (-1207))) (-15 -1608 ((-1207) |#1| (-1207) (-1207))) (-15 -1608 ((-1207) |#1| (-1207) (-1207) (-1207))) (-15 -1608 ((-1207) |#1| (-1207) (-663 (-1207)))))
+((-3985 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT)))
+(((-727 |#1| |#2|) (-10 -7 (-15 -3985 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1247) (-1247)) (T -727))
+((-3985 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-727 *3 *4)) (-4 *3 (-1247)) (-4 *4 (-1247)))))
+(-10 -7 (-15 -3985 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-2860 (((-1 |#3| |#2|) (-1207)) 11 T ELT)) (-2712 (((-1 |#3| |#2|) |#1| (-1207)) 21 T ELT)))
+(((-728 |#1| |#2| |#3|) (-10 -7 (-15 -2860 ((-1 |#3| |#2|) (-1207))) (-15 -2712 ((-1 |#3| |#2|) |#1| (-1207)))) (-633 (-549)) (-1247) (-1247)) (T -728))
+((-2712 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-5 *2 (-1 *6 *5)) (-5 *1 (-728 *3 *5 *6)) (-4 *3 (-633 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247)))) (-2860 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1 *6 *5)) (-5 *1 (-728 *4 *5 *6)) (-4 *4 (-633 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247)))))
+(-10 -7 (-15 -2860 ((-1 |#3| |#2|) (-1207))) (-15 -2712 ((-1 |#3| |#2|) |#1| (-1207))))
+((-1335 (((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-663 |#2|) (-663 (-1201 |#4|)) (-663 |#3|) (-663 |#4|) (-663 (-663 (-2 (|:| -1439 (-793)) (|:| |pcoef| |#4|)))) (-663 (-793)) (-1297 (-663 (-1201 |#3|))) |#3|) 92 T ELT)) (-3972 (((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-663 |#2|) (-663 (-1201 |#3|)) (-663 |#3|) (-663 |#4|) (-663 (-793)) |#3|) 110 T ELT)) (-2306 (((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-663 |#2|) (-663 |#3|) (-663 (-793)) (-663 (-1201 |#4|)) (-1297 (-663 (-1201 |#3|))) |#3|) 47 T ELT)))
+(((-729 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2306 ((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-663 |#2|) (-663 |#3|) (-663 (-793)) (-663 (-1201 |#4|)) (-1297 (-663 (-1201 |#3|))) |#3|)) (-15 -3972 ((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-663 |#2|) (-663 (-1201 |#3|)) (-663 |#3|) (-663 |#4|) (-663 (-793)) |#3|)) (-15 -1335 ((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-663 |#2|) (-663 (-1201 |#4|)) (-663 |#3|) (-663 |#4|) (-663 (-663 (-2 (|:| -1439 (-793)) (|:| |pcoef| |#4|)))) (-663 (-793)) (-1297 (-663 (-1201 |#3|))) |#3|))) (-815) (-871) (-319) (-979 |#3| |#1| |#2|)) (T -729))
+((-1335 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-663 (-1201 *13))) (-5 *3 (-1201 *13)) (-5 *4 (-663 *12)) (-5 *5 (-663 *10)) (-5 *6 (-663 *13)) (-5 *7 (-663 (-663 (-2 (|:| -1439 (-793)) (|:| |pcoef| *13))))) (-5 *8 (-663 (-793))) (-5 *9 (-1297 (-663 (-1201 *10)))) (-4 *12 (-871)) (-4 *10 (-319)) (-4 *13 (-979 *10 *11 *12)) (-4 *11 (-815)) (-5 *1 (-729 *11 *12 *10 *13)))) (-3972 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-663 *11)) (-5 *5 (-663 (-1201 *9))) (-5 *6 (-663 *9)) (-5 *7 (-663 *12)) (-5 *8 (-663 (-793))) (-4 *11 (-871)) (-4 *9 (-319)) (-4 *12 (-979 *9 *10 *11)) (-4 *10 (-815)) (-5 *2 (-663 (-1201 *12))) (-5 *1 (-729 *10 *11 *9 *12)) (-5 *3 (-1201 *12)))) (-2306 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-663 (-1201 *11))) (-5 *3 (-1201 *11)) (-5 *4 (-663 *10)) (-5 *5 (-663 *8)) (-5 *6 (-663 (-793))) (-5 *7 (-1297 (-663 (-1201 *8)))) (-4 *10 (-871)) (-4 *8 (-319)) (-4 *11 (-979 *8 *9 *10)) (-4 *9 (-815)) (-5 *1 (-729 *9 *10 *8 *11)))))
+(-10 -7 (-15 -2306 ((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-663 |#2|) (-663 |#3|) (-663 (-793)) (-663 (-1201 |#4|)) (-1297 (-663 (-1201 |#3|))) |#3|)) (-15 -3972 ((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-663 |#2|) (-663 (-1201 |#3|)) (-663 |#3|) (-663 |#4|) (-663 (-793)) |#3|)) (-15 -1335 ((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-663 |#2|) (-663 (-1201 |#4|)) (-663 |#3|) (-663 |#4|) (-663 (-663 (-2 (|:| -1439 (-793)) (|:| |pcoef| |#4|)))) (-663 (-793)) (-1297 (-663 (-1201 |#3|))) |#3|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-3062 (($ $) 48 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-4139 (($ |#1| (-793)) 46 T ELT)) (-3765 (((-793) $) 50 T ELT)) (-3037 ((|#1| $) 49 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3900 (((-793) $) 51 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 45 (|has| |#1| (-175)) ELT)) (-2920 ((|#1| $ (-793)) 47 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 53 T ELT) (($ |#1| $) 52 T ELT)))
(((-730 |#1|) (-142) (-1080)) (T -730))
-((-3630 (*1 *2 *1) (-12 (-4 *1 (-730 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))) (-3011 (*1 *2 *1) (-12 (-4 *1 (-730 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-730 *2)) (-4 *2 (-1080)))) (-1624 (*1 *1 *1) (-12 (-4 *1 (-730 *2)) (-4 *2 (-1080)))) (-2305 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-730 *2)) (-4 *2 (-1080)))) (-1417 (*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-730 *2)) (-4 *2 (-1080)))))
-(-13 (-1080) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3630 ((-793) $)) (-15 -3011 ((-793) $)) (-15 -1597 (|t#1| $)) (-15 -1624 ($ $)) (-15 -2305 (|t#1| $ (-793))) (-15 -1417 ($ |t#1| (-793)))))
+((-3900 (*1 *2 *1) (-12 (-4 *1 (-730 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))) (-3765 (*1 *2 *1) (-12 (-4 *1 (-730 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))) (-3037 (*1 *2 *1) (-12 (-4 *1 (-730 *2)) (-4 *2 (-1080)))) (-3062 (*1 *1 *1) (-12 (-4 *1 (-730 *2)) (-4 *2 (-1080)))) (-2920 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-730 *2)) (-4 *2 (-1080)))) (-4139 (*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-730 *2)) (-4 *2 (-1080)))))
+(-13 (-1080) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -3900 ((-793) $)) (-15 -3765 ((-793) $)) (-15 -3037 (|t#1| $)) (-15 -3062 ($ $)) (-15 -2920 (|t#1| $ (-793))) (-15 -4139 ($ |t#1| (-793)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) |has| |#1| (-175)) ((-739 |#1|) |has| |#1| (-175)) ((-748) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-3957 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT)))
-(((-731 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3957 (|#6| (-1 |#4| |#1|) |#3|))) (-571) (-1273 |#1|) (-1273 (-421 |#2|)) (-571) (-1273 |#4|) (-1273 (-421 |#5|))) (T -731))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-571)) (-4 *7 (-571)) (-4 *6 (-1273 *5)) (-4 *2 (-1273 (-421 *8))) (-5 *1 (-731 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1273 (-421 *6))) (-4 *8 (-1273 *7)))))
-(-10 -7 (-15 -3957 (|#6| (-1 |#4| |#1|) |#3|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2137 (((-1189) (-887)) 38 T ELT)) (-4358 (((-1303) (-1189)) 31 T ELT)) (-1457 (((-1189) (-887)) 28 T ELT)) (-3053 (((-1189) (-887)) 29 T ELT)) (-1578 (((-887) $) NIL T ELT) (((-1189) (-887)) 27 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-732) (-13 (-1132) (-10 -7 (-15 -1578 ((-1189) (-887))) (-15 -1457 ((-1189) (-887))) (-15 -3053 ((-1189) (-887))) (-15 -2137 ((-1189) (-887))) (-15 -4358 ((-1303) (-1189)))))) (T -732))
-((-1578 (*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1189)) (-5 *1 (-732)))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1189)) (-5 *1 (-732)))) (-3053 (*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1189)) (-5 *1 (-732)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1189)) (-5 *1 (-732)))) (-4358 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-732)))))
-(-13 (-1132) (-10 -7 (-15 -1578 ((-1189) (-887))) (-15 -1457 ((-1189) (-887))) (-15 -3053 ((-1189) (-887))) (-15 -2137 ((-1189) (-887))) (-15 -4358 ((-1303) (-1189)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-1478 (($ $ $) NIL T ELT)) (-4129 (($ |#1| |#2|) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2865 ((|#2| $) NIL T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2469 (((-3 $ "failed") $ $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) ((|#1| $) NIL T ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT)))
-(((-733 |#1| |#2| |#3| |#4| |#5|) (-13 (-376) (-10 -8 (-15 -2865 (|#2| $)) (-15 -1578 (|#1| $)) (-15 -4129 ($ |#1| |#2|)) (-15 -2469 ((-3 $ "failed") $ $)))) (-175) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -733))
-((-2865 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-733 *3 *2 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1578 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4129 (*1 *1 *2 *3) (-12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2469 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-376) (-10 -8 (-15 -2865 (|#2| $)) (-15 -1578 (|#1| $)) (-15 -4129 ($ |#1| |#2|)) (-15 -2469 ((-3 $ "failed") $ $))))
-((-1538 (((-114) $ $) 87 T ELT)) (-2388 (((-114) $) 36 T ELT)) (-4468 (((-1297 |#1|) $ (-793)) NIL T ELT)) (-1443 (((-663 (-1113)) $) NIL T ELT)) (-1667 (($ (-1201 |#1|)) NIL T ELT)) (-4422 (((-1201 $) $ (-1113)) NIL T ELT) (((-1201 |#1|) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3107 (((-793) $) NIL T ELT) (((-793) $ (-663 (-1113))) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-4182 (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1804 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1615 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3241 (((-793)) 54 (|has| |#1| (-381)) ELT)) (-3491 (($ $ (-793)) NIL T ELT)) (-3802 (($ $ (-793)) NIL T ELT)) (-3394 ((|#2| |#2|) 50 T ELT)) (-2498 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-466)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-1113) "failed") $) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-1113) $) NIL T ELT)) (-2788 (($ $ $ (-1113)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) NIL (|has| |#1| (-175)) ELT)) (-1478 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1624 (($ $) 40 T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-4129 (($ |#2|) 48 T ELT)) (-1990 (((-3 $ "failed") $) 97 T ELT)) (-2310 (($) 58 (|has| |#1| (-381)) ELT)) (-1490 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2186 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-4365 (((-2 (|:| -2115 |#1|) (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-2806 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#1| (-466)) ELT)) (-1608 (((-663 $) $) NIL T ELT)) (-4330 (((-114) $) NIL (|has| |#1| (-939)) ELT)) (-2929 (((-987 $)) 89 T ELT)) (-4342 (($ $ |#1| (-793) $) NIL T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1113) (-911 (-391))) (|has| |#1| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-1113) (-911 (-560))) (|has| |#1| (-911 (-560)))) ELT)) (-3913 (((-793) $ $) NIL (|has| |#1| (-571)) ELT)) (-1581 (((-114) $) NIL T ELT)) (-3531 (((-793) $) NIL T ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| |#1| (-1182)) ELT)) (-1427 (($ (-1201 |#1|) (-1113)) NIL T ELT) (($ (-1201 $) (-1113)) NIL T ELT)) (-3022 (($ $ (-793)) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-3997 (((-663 $) $) NIL T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-793)) 85 T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT)) (-3559 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $ (-1113)) NIL T ELT) (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2865 ((|#2|) 51 T ELT)) (-3011 (((-793) $) NIL T ELT) (((-793) $ (-1113)) NIL T ELT) (((-663 (-793)) $ (-663 (-1113))) NIL T ELT)) (-4321 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4381 (((-1201 |#1|) $) NIL T ELT)) (-1955 (((-3 (-1113) "failed") $) NIL T ELT)) (-4419 (((-948) $) NIL (|has| |#1| (-381)) ELT)) (-4116 ((|#2| $) 47 T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#1| $) 34 T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-4000 (((-2 (|:| -1774 $) (|:| -2341 $)) $ (-793)) NIL T ELT)) (-3479 (((-3 (-663 $) "failed") $) NIL T ELT)) (-2590 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3683 (((-3 (-2 (|:| |var| (-1113)) (|:| -3205 (-793))) "failed") $) NIL T ELT)) (-2518 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3161 (($) NIL (|has| |#1| (-1182)) CONST)) (-3128 (($ (-948)) NIL (|has| |#1| (-381)) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1554 (((-114) $) NIL T ELT)) (-1566 ((|#1| $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-466)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3557 (($ $) 88 (|has| |#1| (-363)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-4457 (((-419 $) $) NIL (|has| |#1| (-939)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-1528 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-571)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-4187 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-1113) |#1|) NIL T ELT) (($ $ (-663 (-1113)) (-663 |#1|)) NIL T ELT) (($ $ (-1113) $) NIL T ELT) (($ $ (-663 (-1113)) (-663 $)) NIL T ELT)) (-2901 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-3924 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-421 $) (-421 $) (-421 $)) NIL (|has| |#1| (-571)) ELT) ((|#1| (-421 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-421 $) $ (-421 $)) NIL (|has| |#1| (-571)) ELT)) (-1676 (((-3 $ "failed") $ (-793)) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 98 (|has| |#1| (-376)) ELT)) (-2690 (($ $ (-1113)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) NIL (|has| |#1| (-175)) ELT)) (-2894 (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-3630 (((-793) $) 38 T ELT) (((-793) $ (-1113)) NIL T ELT) (((-663 (-793)) $ (-663 (-1113))) NIL T ELT)) (-1407 (((-915 (-391)) $) NIL (-12 (|has| (-1113) (-633 (-915 (-391)))) (|has| |#1| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-1113) (-633 (-915 (-560)))) (|has| |#1| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-1113) (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-2053 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#1| (-466)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-2438 (((-987 $)) 42 T ELT)) (-1974 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT) (((-3 (-421 $) "failed") (-421 $) $) NIL (|has| |#1| (-571)) ELT)) (-1578 (((-887) $) 68 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) 65 T ELT) (($ (-1113)) NIL T ELT) (($ |#2|) 75 T ELT) (($ (-421 (-560))) NIL (-2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-3409 (((-663 |#1|) $) NIL T ELT)) (-2305 ((|#1| $ (-793)) 70 T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-2930 (((-793)) NIL T CONST)) (-2392 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2001 (($) 25 T CONST)) (-1806 (((-1297 |#1|) $) 83 T ELT)) (-3870 (($ (-1297 |#1|)) 57 T ELT)) (-2011 (($) 8 T CONST)) (-3305 (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-2258 (((-1297 |#1|) $) NIL T ELT)) (-2473 (((-114) $ $) 76 T ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $) 79 T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 39 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 92 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 64 T ELT) (($ $ $) 82 T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 62 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-734 |#1| |#2|) (-13 (-1273 |#1|) (-635 |#2|) (-10 -8 (-15 -3394 (|#2| |#2|)) (-15 -2865 (|#2|)) (-15 -4129 ($ |#2|)) (-15 -4116 (|#2| $)) (-15 -1806 ((-1297 |#1|) $)) (-15 -3870 ($ (-1297 |#1|))) (-15 -2258 ((-1297 |#1|) $)) (-15 -2929 ((-987 $))) (-15 -2438 ((-987 $))) (IF (|has| |#1| (-363)) (-15 -3557 ($ $)) |%noBranch|) (IF (|has| |#1| (-381)) (-6 (-381)) |%noBranch|))) (-1080) (-1273 |#1|)) (T -734))
-((-3394 (*1 *2 *2) (-12 (-4 *3 (-1080)) (-5 *1 (-734 *3 *2)) (-4 *2 (-1273 *3)))) (-2865 (*1 *2) (-12 (-4 *2 (-1273 *3)) (-5 *1 (-734 *3 *2)) (-4 *3 (-1080)))) (-4129 (*1 *1 *2) (-12 (-4 *3 (-1080)) (-5 *1 (-734 *3 *2)) (-4 *2 (-1273 *3)))) (-4116 (*1 *2 *1) (-12 (-4 *2 (-1273 *3)) (-5 *1 (-734 *3 *2)) (-4 *3 (-1080)))) (-1806 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-5 *2 (-1297 *3)) (-5 *1 (-734 *3 *4)) (-4 *4 (-1273 *3)))) (-3870 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1080)) (-5 *1 (-734 *3 *4)) (-4 *4 (-1273 *3)))) (-2258 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-5 *2 (-1297 *3)) (-5 *1 (-734 *3 *4)) (-4 *4 (-1273 *3)))) (-2929 (*1 *2) (-12 (-4 *3 (-1080)) (-5 *2 (-987 (-734 *3 *4))) (-5 *1 (-734 *3 *4)) (-4 *4 (-1273 *3)))) (-2438 (*1 *2) (-12 (-4 *3 (-1080)) (-5 *2 (-987 (-734 *3 *4))) (-5 *1 (-734 *3 *4)) (-4 *4 (-1273 *3)))) (-3557 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *2 (-1080)) (-5 *1 (-734 *2 *3)) (-4 *3 (-1273 *2)))))
-(-13 (-1273 |#1|) (-635 |#2|) (-10 -8 (-15 -3394 (|#2| |#2|)) (-15 -2865 (|#2|)) (-15 -4129 ($ |#2|)) (-15 -4116 (|#2| $)) (-15 -1806 ((-1297 |#1|) $)) (-15 -3870 ($ (-1297 |#1|))) (-15 -2258 ((-1297 |#1|) $)) (-15 -2929 ((-987 $))) (-15 -2438 ((-987 $))) (IF (|has| |#1| (-363)) (-15 -3557 ($ $)) |%noBranch|) (IF (|has| |#1| (-381)) (-6 (-381)) |%noBranch|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3128 ((|#1| $) 13 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3205 ((|#2| $) 12 T ELT)) (-1592 (($ |#1| |#2|) 16 T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-2 (|:| -3128 |#1|) (|:| -3205 |#2|))) 15 T ELT) (((-2 (|:| -3128 |#1|) (|:| -3205 |#2|)) $) 14 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 11 T ELT)))
-(((-735 |#1| |#2| |#3|) (-13 (-871) (-504 (-2 (|:| -3128 |#1|) (|:| -3205 |#2|))) (-10 -8 (-15 -3205 (|#2| $)) (-15 -3128 (|#1| $)) (-15 -1592 ($ |#1| |#2|)))) (-871) (-1132) (-1 (-114) (-2 (|:| -3128 |#1|) (|:| -3205 |#2|)) (-2 (|:| -3128 |#1|) (|:| -3205 |#2|)))) (T -735))
-((-3205 (*1 *2 *1) (-12 (-4 *2 (-1132)) (-5 *1 (-735 *3 *2 *4)) (-4 *3 (-871)) (-14 *4 (-1 (-114) (-2 (|:| -3128 *3) (|:| -3205 *2)) (-2 (|:| -3128 *3) (|:| -3205 *2)))))) (-3128 (*1 *2 *1) (-12 (-4 *2 (-871)) (-5 *1 (-735 *2 *3 *4)) (-4 *3 (-1132)) (-14 *4 (-1 (-114) (-2 (|:| -3128 *2) (|:| -3205 *3)) (-2 (|:| -3128 *2) (|:| -3205 *3)))))) (-1592 (*1 *1 *2 *3) (-12 (-5 *1 (-735 *2 *3 *4)) (-4 *2 (-871)) (-4 *3 (-1132)) (-14 *4 (-1 (-114) (-2 (|:| -3128 *2) (|:| -3205 *3)) (-2 (|:| -3128 *2) (|:| -3205 *3)))))))
-(-13 (-871) (-504 (-2 (|:| -3128 |#1|) (|:| -3205 |#2|))) (-10 -8 (-15 -3205 (|#2| $)) (-15 -3128 (|#1| $)) (-15 -1592 ($ |#1| |#2|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 66 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) 102 T ELT) (((-3 (-115) "failed") $) 108 T ELT)) (-3330 ((|#1| $) NIL T ELT) (((-115) $) 39 T ELT)) (-1990 (((-3 $ "failed") $) 103 T ELT)) (-3425 ((|#2| (-115) |#2|) 93 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-1665 (($ |#1| (-374 (-115))) 14 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2154 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2041 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-3924 ((|#2| $ |#2|) 33 T ELT)) (-2470 ((|#1| |#1|) 118 (|has| |#1| (-175)) ELT)) (-1578 (((-887) $) 73 T ELT) (($ (-560)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-115)) 23 T ELT)) (-1964 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-2930 (((-793)) 37 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-4344 (($ $) 112 (|has| |#1| (-175)) ELT) (($ $ $) 116 (|has| |#1| (-175)) ELT)) (-2001 (($) 21 T CONST)) (-2011 (($) 9 T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 83 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ (-115) (-560)) NIL T ELT) (($ $ (-560)) 64 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 111 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 109 (|has| |#1| (-175)) ELT) (($ $ |#1|) 110 (|has| |#1| (-175)) ELT)))
-(((-736 |#1| |#2|) (-13 (-1080) (-1069 |#1|) (-1069 (-115)) (-298 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -4344 ($ $)) (-15 -4344 ($ $ $)) (-15 -2470 (|#1| |#1|))) |%noBranch|) (-15 -2041 ($ $ (-1 |#2| |#2|))) (-15 -2154 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-560))) (-15 ** ($ $ (-560))) (-15 -3425 (|#2| (-115) |#2|)) (-15 -1665 ($ |#1| (-374 (-115)))))) (-1080) (-670 |#1|)) (T -736))
-((-4344 (*1 *1 *1) (-12 (-4 *2 (-175)) (-4 *2 (-1080)) (-5 *1 (-736 *2 *3)) (-4 *3 (-670 *2)))) (-4344 (*1 *1 *1 *1) (-12 (-4 *2 (-175)) (-4 *2 (-1080)) (-5 *1 (-736 *2 *3)) (-4 *3 (-670 *2)))) (-2470 (*1 *2 *2) (-12 (-4 *2 (-175)) (-4 *2 (-1080)) (-5 *1 (-736 *2 *3)) (-4 *3 (-670 *2)))) (-2041 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-670 *3)) (-4 *3 (-1080)) (-5 *1 (-736 *3 *4)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-670 *3)) (-4 *3 (-1080)) (-5 *1 (-736 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-560)) (-4 *4 (-1080)) (-5 *1 (-736 *4 *5)) (-4 *5 (-670 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *3 (-1080)) (-5 *1 (-736 *3 *4)) (-4 *4 (-670 *3)))) (-3425 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1080)) (-5 *1 (-736 *4 *2)) (-4 *2 (-670 *4)))) (-1665 (*1 *1 *2 *3) (-12 (-5 *3 (-374 (-115))) (-4 *2 (-1080)) (-5 *1 (-736 *2 *4)) (-4 *4 (-670 *2)))))
-(-13 (-1080) (-1069 |#1|) (-1069 (-115)) (-298 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -4344 ($ $)) (-15 -4344 ($ $ $)) (-15 -2470 (|#1| |#1|))) |%noBranch|) (-15 -2041 ($ $ (-1 |#2| |#2|))) (-15 -2154 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-560))) (-15 ** ($ $ (-560))) (-15 -3425 (|#2| (-115) |#2|)) (-15 -1665 ($ |#1| (-374 (-115))))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 33 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-4129 (($ |#1| |#2|) 25 T ELT)) (-1990 (((-3 $ "failed") $) 51 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-2865 ((|#2| $) 12 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) 52 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2469 (((-3 $ "failed") $ $) 50 T ELT)) (-1578 (((-887) $) 24 T ELT) (($ (-560)) 19 T ELT) ((|#1| $) 13 T ELT)) (-2930 (((-793)) 28 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 16 T CONST)) (-2011 (($) 30 T CONST)) (-2473 (((-114) $ $) 41 T ELT)) (-2580 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-2567 (($ $ $) 43 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 21 T ELT) (($ $ $) 20 T ELT)))
-(((-737 |#1| |#2| |#3| |#4| |#5|) (-13 (-1080) (-10 -8 (-15 -2865 (|#2| $)) (-15 -1578 (|#1| $)) (-15 -4129 ($ |#1| |#2|)) (-15 -2469 ((-3 $ "failed") $ $)) (-15 -1990 ((-3 $ "failed") $)) (-15 -1544 ($ $)))) (-175) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -737))
-((-1990 (*1 *1 *1) (|partial| -12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2865 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-737 *3 *2 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-1578 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4129 (*1 *1 *2 *3) (-12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2469 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1544 (*1 *1 *1) (-12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-1080) (-10 -8 (-15 -2865 (|#2| $)) (-15 -1578 (|#1| $)) (-15 -4129 ($ |#1| |#2|)) (-15 -2469 ((-3 $ "failed") $ $)) (-15 -1990 ((-3 $ "failed") $)) (-15 -1544 ($ $))))
+((-2260 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT)))
+(((-731 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2260 (|#6| (-1 |#4| |#1|) |#3|))) (-571) (-1273 |#1|) (-1273 (-421 |#2|)) (-571) (-1273 |#4|) (-1273 (-421 |#5|))) (T -731))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-571)) (-4 *7 (-571)) (-4 *6 (-1273 *5)) (-4 *2 (-1273 (-421 *8))) (-5 *1 (-731 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1273 (-421 *6))) (-4 *8 (-1273 *7)))))
+(-10 -7 (-15 -2260 (|#6| (-1 |#4| |#1|) |#3|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1852 (((-1189) (-887)) 38 T ELT)) (-3884 (((-1303) (-1189)) 31 T ELT)) (-2760 (((-1189) (-887)) 28 T ELT)) (-2911 (((-1189) (-887)) 29 T ELT)) (-3913 (((-887) $) NIL T ELT) (((-1189) (-887)) 27 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-732) (-13 (-1132) (-10 -7 (-15 -3913 ((-1189) (-887))) (-15 -2760 ((-1189) (-887))) (-15 -2911 ((-1189) (-887))) (-15 -1852 ((-1189) (-887))) (-15 -3884 ((-1303) (-1189)))))) (T -732))
+((-3913 (*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1189)) (-5 *1 (-732)))) (-2760 (*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1189)) (-5 *1 (-732)))) (-2911 (*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1189)) (-5 *1 (-732)))) (-1852 (*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1189)) (-5 *1 (-732)))) (-3884 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-732)))))
+(-13 (-1132) (-10 -7 (-15 -3913 ((-1189) (-887))) (-15 -2760 ((-1189) (-887))) (-15 -2911 ((-1189) (-887))) (-15 -1852 ((-1189) (-887))) (-15 -3884 ((-1303) (-1189)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2186 (($ $ $) NIL T ELT)) (-1778 (($ |#1| |#2|) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3601 ((|#2| $) NIL T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2064 (((-3 $ "failed") $ $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) ((|#1| $) NIL T ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT)))
+(((-733 |#1| |#2| |#3| |#4| |#5|) (-13 (-376) (-10 -8 (-15 -3601 (|#2| $)) (-15 -3913 (|#1| $)) (-15 -1778 ($ |#1| |#2|)) (-15 -2064 ((-3 $ "failed") $ $)))) (-175) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -733))
+((-3601 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-733 *3 *2 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3913 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1778 (*1 *1 *2 *3) (-12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2064 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-376) (-10 -8 (-15 -3601 (|#2| $)) (-15 -3913 (|#1| $)) (-15 -1778 ($ |#1| |#2|)) (-15 -2064 ((-3 $ "failed") $ $))))
+((-2243 (((-114) $ $) 87 T ELT)) (-2505 (((-114) $) 36 T ELT)) (-1797 (((-1297 |#1|) $ (-793)) NIL T ELT)) (-4162 (((-663 (-1113)) $) NIL T ELT)) (-2746 (($ (-1201 |#1|)) NIL T ELT)) (-3981 (((-1201 $) $ (-1113)) NIL T ELT) (((-1201 |#1|) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-2250 (((-793) $) NIL T ELT) (((-793) $ (-663 (-1113))) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-4293 (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1621 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-3476 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-2552 (((-793)) 54 (|has| |#1| (-381)) ELT)) (-1776 (($ $ (-793)) NIL T ELT)) (-1677 (($ $ (-793)) NIL T ELT)) (-2117 ((|#2| |#2|) 50 T ELT)) (-4254 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-466)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-1113) "failed") $) NIL T ELT)) (-3649 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-1113) $) NIL T ELT)) (-2096 (($ $ $ (-1113)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) NIL (|has| |#1| (-175)) ELT)) (-2186 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3062 (($ $) 40 T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-1778 (($ |#2|) 48 T ELT)) (-2873 (((-3 $ "failed") $) 97 T ELT)) (-1812 (($) 58 (|has| |#1| (-381)) ELT)) (-2197 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4295 (($ $ $) NIL T ELT)) (-3457 (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-3390 (((-2 (|:| -2625 |#1|) (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4239 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#1| (-466)) ELT)) (-3048 (((-663 $) $) NIL T ELT)) (-3141 (((-114) $) NIL (|has| |#1| (-939)) ELT)) (-4181 (((-987 $)) 89 T ELT)) (-3224 (($ $ |#1| (-793) $) NIL T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1113) (-911 (-391))) (|has| |#1| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-1113) (-911 (-560))) (|has| |#1| (-911 (-560)))) ELT)) (-1460 (((-793) $ $) NIL (|has| |#1| (-571)) ELT)) (-1918 (((-114) $) NIL T ELT)) (-4127 (((-793) $) NIL T ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| |#1| (-1182)) ELT)) (-4149 (($ (-1201 |#1|) (-1113)) NIL T ELT) (($ (-1201 $) (-1113)) NIL T ELT)) (-3886 (($ $ (-793)) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-2947 (((-663 $) $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-793)) 85 T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT)) (-4415 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $ (-1113)) NIL T ELT) (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3601 ((|#2|) 51 T ELT)) (-3765 (((-793) $) NIL T ELT) (((-793) $ (-1113)) NIL T ELT) (((-663 (-793)) $ (-663 (-1113))) NIL T ELT)) (-3060 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2298 (((-1201 |#1|) $) NIL T ELT)) (-3835 (((-3 (-1113) "failed") $) NIL T ELT)) (-2622 (((-948) $) NIL (|has| |#1| (-381)) ELT)) (-1767 ((|#2| $) 47 T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#1| $) 34 T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2985 (((-2 (|:| -2584 $) (|:| -3276 $)) $ (-793)) NIL T ELT)) (-1669 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3849 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3149 (((-3 (-2 (|:| |var| (-1113)) (|:| -2030 (-793))) "failed") $) NIL T ELT)) (-4424 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3239 (($) NIL (|has| |#1| (-1182)) CONST)) (-1591 (($ (-948)) NIL (|has| |#1| (-381)) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3000 (((-114) $) NIL T ELT)) (-3011 ((|#1| $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-466)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-4395 (($ $) 88 (|has| |#1| (-363)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-4012 (((-419 $) $) NIL (|has| |#1| (-939)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2233 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-571)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-2371 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-1113) |#1|) NIL T ELT) (($ $ (-663 (-1113)) (-663 |#1|)) NIL T ELT) (($ $ (-1113) $) NIL T ELT) (($ $ (-663 (-1113)) (-663 $)) NIL T ELT)) (-3989 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-1507 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-421 $) (-421 $) (-421 $)) NIL (|has| |#1| (-571)) ELT) ((|#1| (-421 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-421 $) $ (-421 $)) NIL (|has| |#1| (-571)) ELT)) (-2829 (((-3 $ "failed") $ (-793)) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 98 (|has| |#1| (-376)) ELT)) (-2336 (($ $ (-1113)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) NIL (|has| |#1| (-175)) ELT)) (-3161 (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-3900 (((-793) $) 38 T ELT) (((-793) $ (-1113)) NIL T ELT) (((-663 (-793)) $ (-663 (-1113))) NIL T ELT)) (-2400 (((-915 (-391)) $) NIL (-12 (|has| (-1113) (-633 (-915 (-391)))) (|has| |#1| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-1113) (-633 (-915 (-560)))) (|has| |#1| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-1113) (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-2264 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#1| (-466)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-1745 (((-987 $)) 42 T ELT)) (-2730 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT) (((-3 (-421 $) "failed") (-421 $) $) NIL (|has| |#1| (-571)) ELT)) (-3913 (((-887) $) 68 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) 65 T ELT) (($ (-1113)) NIL T ELT) (($ |#2|) 75 T ELT) (($ (-421 (-560))) NIL (-2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-2247 (((-663 |#1|) $) NIL T ELT)) (-2920 ((|#1| $ (-793)) 70 T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-4191 (((-793)) NIL T CONST)) (-2548 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-1446 (($) 25 T CONST)) (-1645 (((-1297 |#1|) $) 83 T ELT)) (-4225 (($ (-1297 |#1|)) 57 T ELT)) (-1456 (($) 8 T CONST)) (-2111 (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-3747 (((-1297 |#1|) $) NIL T ELT)) (-2340 (((-114) $ $) 76 T ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $) 79 T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 39 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 92 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 64 T ELT) (($ $ $) 82 T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 62 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-734 |#1| |#2|) (-13 (-1273 |#1|) (-635 |#2|) (-10 -8 (-15 -2117 (|#2| |#2|)) (-15 -3601 (|#2|)) (-15 -1778 ($ |#2|)) (-15 -1767 (|#2| $)) (-15 -1645 ((-1297 |#1|) $)) (-15 -4225 ($ (-1297 |#1|))) (-15 -3747 ((-1297 |#1|) $)) (-15 -4181 ((-987 $))) (-15 -1745 ((-987 $))) (IF (|has| |#1| (-363)) (-15 -4395 ($ $)) |%noBranch|) (IF (|has| |#1| (-381)) (-6 (-381)) |%noBranch|))) (-1080) (-1273 |#1|)) (T -734))
+((-2117 (*1 *2 *2) (-12 (-4 *3 (-1080)) (-5 *1 (-734 *3 *2)) (-4 *2 (-1273 *3)))) (-3601 (*1 *2) (-12 (-4 *2 (-1273 *3)) (-5 *1 (-734 *3 *2)) (-4 *3 (-1080)))) (-1778 (*1 *1 *2) (-12 (-4 *3 (-1080)) (-5 *1 (-734 *3 *2)) (-4 *2 (-1273 *3)))) (-1767 (*1 *2 *1) (-12 (-4 *2 (-1273 *3)) (-5 *1 (-734 *3 *2)) (-4 *3 (-1080)))) (-1645 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-5 *2 (-1297 *3)) (-5 *1 (-734 *3 *4)) (-4 *4 (-1273 *3)))) (-4225 (*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1080)) (-5 *1 (-734 *3 *4)) (-4 *4 (-1273 *3)))) (-3747 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-5 *2 (-1297 *3)) (-5 *1 (-734 *3 *4)) (-4 *4 (-1273 *3)))) (-4181 (*1 *2) (-12 (-4 *3 (-1080)) (-5 *2 (-987 (-734 *3 *4))) (-5 *1 (-734 *3 *4)) (-4 *4 (-1273 *3)))) (-1745 (*1 *2) (-12 (-4 *3 (-1080)) (-5 *2 (-987 (-734 *3 *4))) (-5 *1 (-734 *3 *4)) (-4 *4 (-1273 *3)))) (-4395 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *2 (-1080)) (-5 *1 (-734 *2 *3)) (-4 *3 (-1273 *2)))))
+(-13 (-1273 |#1|) (-635 |#2|) (-10 -8 (-15 -2117 (|#2| |#2|)) (-15 -3601 (|#2|)) (-15 -1778 ($ |#2|)) (-15 -1767 (|#2| $)) (-15 -1645 ((-1297 |#1|) $)) (-15 -4225 ($ (-1297 |#1|))) (-15 -3747 ((-1297 |#1|) $)) (-15 -4181 ((-987 $))) (-15 -1745 ((-987 $))) (IF (|has| |#1| (-363)) (-15 -4395 ($ $)) |%noBranch|) (IF (|has| |#1| (-381)) (-6 (-381)) |%noBranch|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1591 ((|#1| $) 13 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2030 ((|#2| $) 12 T ELT)) (-3924 (($ |#1| |#2|) 16 T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-2 (|:| -1591 |#1|) (|:| -2030 |#2|))) 15 T ELT) (((-2 (|:| -1591 |#1|) (|:| -2030 |#2|)) $) 14 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 11 T ELT)))
+(((-735 |#1| |#2| |#3|) (-13 (-871) (-504 (-2 (|:| -1591 |#1|) (|:| -2030 |#2|))) (-10 -8 (-15 -2030 (|#2| $)) (-15 -1591 (|#1| $)) (-15 -3924 ($ |#1| |#2|)))) (-871) (-1132) (-1 (-114) (-2 (|:| -1591 |#1|) (|:| -2030 |#2|)) (-2 (|:| -1591 |#1|) (|:| -2030 |#2|)))) (T -735))
+((-2030 (*1 *2 *1) (-12 (-4 *2 (-1132)) (-5 *1 (-735 *3 *2 *4)) (-4 *3 (-871)) (-14 *4 (-1 (-114) (-2 (|:| -1591 *3) (|:| -2030 *2)) (-2 (|:| -1591 *3) (|:| -2030 *2)))))) (-1591 (*1 *2 *1) (-12 (-4 *2 (-871)) (-5 *1 (-735 *2 *3 *4)) (-4 *3 (-1132)) (-14 *4 (-1 (-114) (-2 (|:| -1591 *2) (|:| -2030 *3)) (-2 (|:| -1591 *2) (|:| -2030 *3)))))) (-3924 (*1 *1 *2 *3) (-12 (-5 *1 (-735 *2 *3 *4)) (-4 *2 (-871)) (-4 *3 (-1132)) (-14 *4 (-1 (-114) (-2 (|:| -1591 *2) (|:| -2030 *3)) (-2 (|:| -1591 *2) (|:| -2030 *3)))))))
+(-13 (-871) (-504 (-2 (|:| -1591 |#1|) (|:| -2030 |#2|))) (-10 -8 (-15 -2030 (|#2| $)) (-15 -1591 (|#1| $)) (-15 -3924 ($ |#1| |#2|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 66 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) 102 T ELT) (((-3 (-115) "failed") $) 108 T ELT)) (-3649 ((|#1| $) NIL T ELT) (((-115) $) 39 T ELT)) (-2873 (((-3 $ "failed") $) 103 T ELT)) (-2388 ((|#2| (-115) |#2|) 93 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-2725 (($ |#1| (-374 (-115))) 14 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2031 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2154 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-1507 ((|#2| $ |#2|) 33 T ELT)) (-2072 ((|#1| |#1|) 118 (|has| |#1| (-175)) ELT)) (-3913 (((-887) $) 73 T ELT) (($ (-560)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-115)) 23 T ELT)) (-3919 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-4191 (((-793)) 37 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-3244 (($ $) 112 (|has| |#1| (-175)) ELT) (($ $ $) 116 (|has| |#1| (-175)) ELT)) (-1446 (($) 21 T CONST)) (-1456 (($) 9 T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 83 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ (-115) (-560)) NIL T ELT) (($ $ (-560)) 64 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 111 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 109 (|has| |#1| (-175)) ELT) (($ $ |#1|) 110 (|has| |#1| (-175)) ELT)))
+(((-736 |#1| |#2|) (-13 (-1080) (-1069 |#1|) (-1069 (-115)) (-298 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -3244 ($ $)) (-15 -3244 ($ $ $)) (-15 -2072 (|#1| |#1|))) |%noBranch|) (-15 -2154 ($ $ (-1 |#2| |#2|))) (-15 -2031 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-560))) (-15 ** ($ $ (-560))) (-15 -2388 (|#2| (-115) |#2|)) (-15 -2725 ($ |#1| (-374 (-115)))))) (-1080) (-670 |#1|)) (T -736))
+((-3244 (*1 *1 *1) (-12 (-4 *2 (-175)) (-4 *2 (-1080)) (-5 *1 (-736 *2 *3)) (-4 *3 (-670 *2)))) (-3244 (*1 *1 *1 *1) (-12 (-4 *2 (-175)) (-4 *2 (-1080)) (-5 *1 (-736 *2 *3)) (-4 *3 (-670 *2)))) (-2072 (*1 *2 *2) (-12 (-4 *2 (-175)) (-4 *2 (-1080)) (-5 *1 (-736 *2 *3)) (-4 *3 (-670 *2)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-670 *3)) (-4 *3 (-1080)) (-5 *1 (-736 *3 *4)))) (-2031 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-670 *3)) (-4 *3 (-1080)) (-5 *1 (-736 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-560)) (-4 *4 (-1080)) (-5 *1 (-736 *4 *5)) (-4 *5 (-670 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *3 (-1080)) (-5 *1 (-736 *3 *4)) (-4 *4 (-670 *3)))) (-2388 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1080)) (-5 *1 (-736 *4 *2)) (-4 *2 (-670 *4)))) (-2725 (*1 *1 *2 *3) (-12 (-5 *3 (-374 (-115))) (-4 *2 (-1080)) (-5 *1 (-736 *2 *4)) (-4 *4 (-670 *2)))))
+(-13 (-1080) (-1069 |#1|) (-1069 (-115)) (-298 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -3244 ($ $)) (-15 -3244 ($ $ $)) (-15 -2072 (|#1| |#1|))) |%noBranch|) (-15 -2154 ($ $ (-1 |#2| |#2|))) (-15 -2031 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-560))) (-15 ** ($ $ (-560))) (-15 -2388 (|#2| (-115) |#2|)) (-15 -2725 ($ |#1| (-374 (-115))))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 33 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-1778 (($ |#1| |#2|) 25 T ELT)) (-2873 (((-3 $ "failed") $) 51 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3601 ((|#2| $) 12 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) 52 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2064 (((-3 $ "failed") $ $) 50 T ELT)) (-3913 (((-887) $) 24 T ELT) (($ (-560)) 19 T ELT) ((|#1| $) 13 T ELT)) (-4191 (((-793)) 28 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 16 T CONST)) (-1456 (($) 30 T CONST)) (-2340 (((-114) $ $) 41 T ELT)) (-2441 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-2429 (($ $ $) 43 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 21 T ELT) (($ $ $) 20 T ELT)))
+(((-737 |#1| |#2| |#3| |#4| |#5|) (-13 (-1080) (-10 -8 (-15 -3601 (|#2| $)) (-15 -3913 (|#1| $)) (-15 -1778 ($ |#1| |#2|)) (-15 -2064 ((-3 $ "failed") $ $)) (-15 -2873 ((-3 $ "failed") $)) (-15 -2986 ($ $)))) (-175) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -737))
+((-2873 (*1 *1 *1) (|partial| -12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-3601 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-737 *3 *2 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-3913 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1778 (*1 *1 *2 *3) (-12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2064 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2986 (*1 *1 *1) (-12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-1080) (-10 -8 (-15 -3601 (|#2| $)) (-15 -3913 (|#1| $)) (-15 -1778 ($ |#1| |#2|)) (-15 -2064 ((-3 $ "failed") $ $)) (-15 -2873 ((-3 $ "failed") $)) (-15 -2986 ($ $))))
((* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT)))
(((-738 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|))) (-739 |#2|) (-175)) (T -738))
NIL
(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT)))
(((-739 |#1|) (-142) (-175)) (T -739))
NIL
(-13 (-111 |t#1| |t#1|) (-662 |t#1|))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2331 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-4166 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-2238 (($) NIL T CONST)) (-1990 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-1412 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) 16 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4187 ((|#1| $ |#1|) 24 T ELT) (((-854 |#1|) $ (-854 |#1|)) 32 T ELT)) (-4122 (($ $ $) NIL T ELT)) (-2013 (($ $ $) NIL T ELT)) (-1578 (((-887) $) 39 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2011 (($) 9 T CONST)) (-2473 (((-114) $ $) 48 T ELT)) (-2594 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ $ $) 14 T ELT)))
-(((-740 |#1|) (-13 (-487) (-10 -8 (-15 -1412 ($ |#1| |#1| |#1| |#1|)) (-15 -2331 ($ |#1|)) (-15 -4166 ($ |#1|)) (-15 -1990 ($)) (-15 -2331 ($ $ |#1|)) (-15 -4166 ($ $ |#1|)) (-15 -1990 ($ $)) (-15 -4187 (|#1| $ |#1|)) (-15 -4187 ((-854 |#1|) $ (-854 |#1|))))) (-376)) (T -740))
-((-1412 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-2331 (*1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-4166 (*1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-1990 (*1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-2331 (*1 *1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-4166 (*1 *1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-1990 (*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-4187 (*1 *2 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-4187 (*1 *2 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-376)) (-5 *1 (-740 *3)))))
-(-13 (-487) (-10 -8 (-15 -1412 ($ |#1| |#1| |#1| |#1|)) (-15 -2331 ($ |#1|)) (-15 -4166 ($ |#1|)) (-15 -1990 ($)) (-15 -2331 ($ $ |#1|)) (-15 -4166 ($ $ |#1|)) (-15 -1990 ($ $)) (-15 -4187 (|#1| $ |#1|)) (-15 -4187 ((-854 |#1|) $ (-854 |#1|)))))
-((-1866 (($ $ (-948)) 19 T ELT)) (-3520 (($ $ (-948)) 20 T ELT)) (** (($ $ (-948)) 10 T ELT)))
-(((-741 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-948))) (-15 -3520 (|#1| |#1| (-948))) (-15 -1866 (|#1| |#1| (-948)))) (-742)) (T -741))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-948))) (-15 -3520 (|#1| |#1| (-948))) (-15 -1866 (|#1| |#1| (-948))))
-((-1538 (((-114) $ $) 7 T ELT)) (-1866 (($ $ (-948)) 16 T ELT)) (-3520 (($ $ (-948)) 15 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (** (($ $ (-948)) 14 T ELT)) (* (($ $ $) 17 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-1786 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-4130 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-3525 (($) NIL T CONST)) (-2873 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-2645 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) 16 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2371 ((|#1| $ |#1|) 24 T ELT) (((-854 |#1|) $ (-854 |#1|)) 32 T ELT)) (-1714 (($ $ $) NIL T ELT)) (-3117 (($ $ $) NIL T ELT)) (-3913 (((-887) $) 39 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1456 (($) 9 T CONST)) (-2340 (((-114) $ $) 48 T ELT)) (-2453 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ $ $) 14 T ELT)))
+(((-740 |#1|) (-13 (-487) (-10 -8 (-15 -2645 ($ |#1| |#1| |#1| |#1|)) (-15 -1786 ($ |#1|)) (-15 -4130 ($ |#1|)) (-15 -2873 ($)) (-15 -1786 ($ $ |#1|)) (-15 -4130 ($ $ |#1|)) (-15 -2873 ($ $)) (-15 -2371 (|#1| $ |#1|)) (-15 -2371 ((-854 |#1|) $ (-854 |#1|))))) (-376)) (T -740))
+((-2645 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-1786 (*1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-4130 (*1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-2873 (*1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-1786 (*1 *1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-4130 (*1 *1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-2873 (*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-2371 (*1 *2 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))) (-2371 (*1 *2 *1 *2) (-12 (-5 *2 (-854 *3)) (-4 *3 (-376)) (-5 *1 (-740 *3)))))
+(-13 (-487) (-10 -8 (-15 -2645 ($ |#1| |#1| |#1| |#1|)) (-15 -1786 ($ |#1|)) (-15 -4130 ($ |#1|)) (-15 -2873 ($)) (-15 -1786 ($ $ |#1|)) (-15 -4130 ($ $ |#1|)) (-15 -2873 ($ $)) (-15 -2371 (|#1| $ |#1|)) (-15 -2371 ((-854 |#1|) $ (-854 |#1|)))))
+((-4201 (($ $ (-948)) 19 T ELT)) (-2065 (($ $ (-948)) 20 T ELT)) (** (($ $ (-948)) 10 T ELT)))
+(((-741 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-948))) (-15 -2065 (|#1| |#1| (-948))) (-15 -4201 (|#1| |#1| (-948)))) (-742)) (T -741))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-948))) (-15 -2065 (|#1| |#1| (-948))) (-15 -4201 (|#1| |#1| (-948))))
+((-2243 (((-114) $ $) 7 T ELT)) (-4201 (($ $ (-948)) 16 T ELT)) (-2065 (($ $ (-948)) 15 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (** (($ $ (-948)) 14 T ELT)) (* (($ $ $) 17 T ELT)))
(((-742) (-142)) (T -742))
-((* (*1 *1 *1 *1) (-4 *1 (-742))) (-1866 (*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-948)))) (-3520 (*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-948)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-948)))))
-(-13 (-1132) (-10 -8 (-15 * ($ $ $)) (-15 -1866 ($ $ (-948))) (-15 -3520 ($ $ (-948))) (-15 ** ($ $ (-948)))))
+((* (*1 *1 *1 *1) (-4 *1 (-742))) (-4201 (*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-948)))) (-2065 (*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-948)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-948)))))
+(-13 (-1132) (-10 -8 (-15 * ($ $ $)) (-15 -4201 ($ $ (-948))) (-15 -2065 ($ $ (-948))) (-15 ** ($ $ (-948)))))
(((-102) . T) ((-632 (-887)) . T) ((-1132) . T) ((-1247) . T))
-((-1866 (($ $ (-948)) NIL T ELT) (($ $ (-793)) 18 T ELT)) (-1581 (((-114) $) 10 T ELT)) (-3520 (($ $ (-948)) NIL T ELT) (($ $ (-793)) 19 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 16 T ELT)))
-(((-743 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-793))) (-15 -3520 (|#1| |#1| (-793))) (-15 -1866 (|#1| |#1| (-793))) (-15 -1581 ((-114) |#1|)) (-15 ** (|#1| |#1| (-948))) (-15 -3520 (|#1| |#1| (-948))) (-15 -1866 (|#1| |#1| (-948)))) (-744)) (T -743))
+((-4201 (($ $ (-948)) NIL T ELT) (($ $ (-793)) 18 T ELT)) (-1918 (((-114) $) 10 T ELT)) (-2065 (($ $ (-948)) NIL T ELT) (($ $ (-793)) 19 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 16 T ELT)))
+(((-743 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-793))) (-15 -2065 (|#1| |#1| (-793))) (-15 -4201 (|#1| |#1| (-793))) (-15 -1918 ((-114) |#1|)) (-15 ** (|#1| |#1| (-948))) (-15 -2065 (|#1| |#1| (-948))) (-15 -4201 (|#1| |#1| (-948)))) (-744)) (T -743))
NIL
-(-10 -8 (-15 ** (|#1| |#1| (-793))) (-15 -3520 (|#1| |#1| (-793))) (-15 -1866 (|#1| |#1| (-793))) (-15 -1581 ((-114) |#1|)) (-15 ** (|#1| |#1| (-948))) (-15 -3520 (|#1| |#1| (-948))) (-15 -1866 (|#1| |#1| (-948))))
-((-1538 (((-114) $ $) 7 T ELT)) (-1713 (((-3 $ "failed") $) 18 T ELT)) (-1866 (($ $ (-948)) 16 T ELT) (($ $ (-793)) 23 T ELT)) (-1990 (((-3 $ "failed") $) 20 T ELT)) (-1581 (((-114) $) 24 T ELT)) (-3236 (((-3 $ "failed") $) 19 T ELT)) (-3520 (($ $ (-948)) 15 T ELT) (($ $ (-793)) 22 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2011 (($) 25 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (** (($ $ (-948)) 14 T ELT) (($ $ (-793)) 21 T ELT)) (* (($ $ $) 17 T ELT)))
+(-10 -8 (-15 ** (|#1| |#1| (-793))) (-15 -2065 (|#1| |#1| (-793))) (-15 -4201 (|#1| |#1| (-793))) (-15 -1918 ((-114) |#1|)) (-15 ** (|#1| |#1| (-948))) (-15 -2065 (|#1| |#1| (-948))) (-15 -4201 (|#1| |#1| (-948))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2035 (((-3 $ "failed") $) 18 T ELT)) (-4201 (($ $ (-948)) 16 T ELT) (($ $ (-793)) 23 T ELT)) (-2873 (((-3 $ "failed") $) 20 T ELT)) (-1918 (((-114) $) 24 T ELT)) (-4294 (((-3 $ "failed") $) 19 T ELT)) (-2065 (($ $ (-948)) 15 T ELT) (($ $ (-793)) 22 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1456 (($) 25 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (** (($ $ (-948)) 14 T ELT) (($ $ (-793)) 21 T ELT)) (* (($ $ $) 17 T ELT)))
(((-744) (-142)) (T -744))
-((-2011 (*1 *1) (-4 *1 (-744))) (-1581 (*1 *2 *1) (-12 (-4 *1 (-744)) (-5 *2 (-114)))) (-1866 (*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-793)))) (-3520 (*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-793)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-793)))) (-1990 (*1 *1 *1) (|partial| -4 *1 (-744))) (-3236 (*1 *1 *1) (|partial| -4 *1 (-744))) (-1713 (*1 *1 *1) (|partial| -4 *1 (-744))))
-(-13 (-742) (-10 -8 (-15 (-2011) ($) -3081) (-15 -1581 ((-114) $)) (-15 -1866 ($ $ (-793))) (-15 -3520 ($ $ (-793))) (-15 ** ($ $ (-793))) (-15 -1990 ((-3 $ "failed") $)) (-15 -3236 ((-3 $ "failed") $)) (-15 -1713 ((-3 $ "failed") $))))
+((-1456 (*1 *1) (-4 *1 (-744))) (-1918 (*1 *2 *1) (-12 (-4 *1 (-744)) (-5 *2 (-114)))) (-4201 (*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-793)))) (-2065 (*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-793)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-793)))) (-2873 (*1 *1 *1) (|partial| -4 *1 (-744))) (-4294 (*1 *1 *1) (|partial| -4 *1 (-744))) (-2035 (*1 *1 *1) (|partial| -4 *1 (-744))))
+(-13 (-742) (-10 -8 (-15 (-1456) ($) -2650) (-15 -1918 ((-114) $)) (-15 -4201 ($ $ (-793))) (-15 -2065 ($ $ (-793))) (-15 ** ($ $ (-793))) (-15 -2873 ((-3 $ "failed") $)) (-15 -4294 ((-3 $ "failed") $)) (-15 -2035 ((-3 $ "failed") $))))
(((-102) . T) ((-632 (-887)) . T) ((-742) . T) ((-1132) . T) ((-1247) . T))
-((-3241 (((-793)) 39 T ELT)) (-2539 (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 26 T ELT)) (-3330 (((-560) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-4129 (($ |#3|) NIL T ELT) (((-3 $ "failed") (-421 |#3|)) 49 T ELT)) (-1990 (((-3 $ "failed") $) 69 T ELT)) (-2310 (($) 43 T ELT)) (-2032 ((|#2| $) 21 T ELT)) (-2748 (($) 18 T ELT)) (-2894 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-3604 (((-711 |#2|) (-1297 $) (-1 |#2| |#2|)) 64 T ELT)) (-1407 (((-1297 |#2|) $) NIL T ELT) (($ (-1297 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2630 ((|#3| $) 36 T ELT)) (-1954 (((-1297 $)) 33 T ELT)))
-(((-745 |#1| |#2| |#3|) (-10 -8 (-15 -2894 (|#1| |#1|)) (-15 -2894 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1| (-1207))) (-15 -2894 (|#1| |#1| (-663 (-1207)))) (-15 -2894 (|#1| |#1| (-1207) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -2310 (|#1|)) (-15 -3241 ((-793))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3604 ((-711 |#2|) (-1297 |#1|) (-1 |#2| |#2|))) (-15 -4129 ((-3 |#1| "failed") (-421 |#3|))) (-15 -1407 (|#1| |#3|)) (-15 -4129 (|#1| |#3|)) (-15 -2748 (|#1|)) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3330 ((-560) |#1|)) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -1407 (|#3| |#1|)) (-15 -1407 (|#1| (-1297 |#2|))) (-15 -1407 ((-1297 |#2|) |#1|)) (-15 -1954 ((-1297 |#1|))) (-15 -2630 (|#3| |#1|)) (-15 -2032 (|#2| |#1|)) (-15 -1990 ((-3 |#1| "failed") |#1|))) (-746 |#2| |#3|) (-175) (-1273 |#2|)) (T -745))
-((-3241 (*1 *2) (-12 (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-793)) (-5 *1 (-745 *3 *4 *5)) (-4 *3 (-746 *4 *5)))))
-(-10 -8 (-15 -2894 (|#1| |#1|)) (-15 -2894 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1| (-1207))) (-15 -2894 (|#1| |#1| (-663 (-1207)))) (-15 -2894 (|#1| |#1| (-1207) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -2310 (|#1|)) (-15 -3241 ((-793))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3604 ((-711 |#2|) (-1297 |#1|) (-1 |#2| |#2|))) (-15 -4129 ((-3 |#1| "failed") (-421 |#3|))) (-15 -1407 (|#1| |#3|)) (-15 -4129 (|#1| |#3|)) (-15 -2748 (|#1|)) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3330 ((-560) |#1|)) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -1407 (|#3| |#1|)) (-15 -1407 (|#1| (-1297 |#2|))) (-15 -1407 ((-1297 |#2|) |#1|)) (-15 -1954 ((-1297 |#1|))) (-15 -2630 (|#3| |#1|)) (-15 -2032 (|#2| |#1|)) (-15 -1990 ((-3 |#1| "failed") |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 105 (|has| |#1| (-376)) ELT)) (-3244 (($ $) 106 (|has| |#1| (-376)) ELT)) (-4093 (((-114) $) 108 (|has| |#1| (-376)) ELT)) (-1698 (((-711 |#1|) (-1297 $)) 53 T ELT) (((-711 |#1|)) 68 T ELT)) (-3349 ((|#1| $) 59 T ELT)) (-2105 (((-1219 (-948) (-793)) (-560)) 158 (|has| |#1| (-363)) ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-1804 (($ $) 125 (|has| |#1| (-376)) ELT)) (-3023 (((-419 $) $) 126 (|has| |#1| (-376)) ELT)) (-1615 (((-114) $ $) 116 (|has| |#1| (-376)) ELT)) (-3241 (((-793)) 99 (|has| |#1| (-381)) ELT)) (-2238 (($) 18 T CONST)) (-2539 (((-3 (-560) "failed") $) 185 (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) 183 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 180 T ELT)) (-3330 (((-560) $) 184 (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) 182 (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) 181 T ELT)) (-4143 (($ (-1297 |#1|) (-1297 $)) 55 T ELT) (($ (-1297 |#1|)) 71 T ELT)) (-4217 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-363)) ELT)) (-1478 (($ $ $) 120 (|has| |#1| (-376)) ELT)) (-4333 (((-711 |#1|) $ (-1297 $)) 60 T ELT) (((-711 |#1|) $) 66 T ELT)) (-3142 (((-711 (-560)) (-711 $)) 177 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 176 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 175 T ELT) (((-711 |#1|) (-711 $)) 174 T ELT)) (-4129 (($ |#2|) 169 T ELT) (((-3 $ "failed") (-421 |#2|)) 166 (|has| |#1| (-376)) ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-2326 (((-948)) 61 T ELT)) (-2310 (($) 102 (|has| |#1| (-381)) ELT)) (-1490 (($ $ $) 119 (|has| |#1| (-376)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 114 (|has| |#1| (-376)) ELT)) (-4336 (($) 160 (|has| |#1| (-363)) ELT)) (-3976 (((-114) $) 161 (|has| |#1| (-363)) ELT)) (-1696 (($ $ (-793)) 152 (|has| |#1| (-363)) ELT) (($ $) 151 (|has| |#1| (-363)) ELT)) (-4330 (((-114) $) 127 (|has| |#1| (-376)) ELT)) (-3913 (((-948) $) 163 (|has| |#1| (-363)) ELT) (((-854 (-948)) $) 149 (|has| |#1| (-363)) ELT)) (-1581 (((-114) $) 35 T ELT)) (-2032 ((|#1| $) 58 T ELT)) (-3009 (((-3 $ "failed") $) 153 (|has| |#1| (-363)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 123 (|has| |#1| (-376)) ELT)) (-1787 ((|#2| $) 51 (|has| |#1| (-376)) ELT)) (-4419 (((-948) $) 101 (|has| |#1| (-381)) ELT)) (-4116 ((|#2| $) 167 T ELT)) (-2484 (((-711 (-560)) (-1297 $)) 179 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 178 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 173 T ELT) (((-711 |#1|) (-1297 $)) 172 T ELT)) (-2093 (($ (-663 $)) 112 (|has| |#1| (-376)) ELT) (($ $ $) 111 (|has| |#1| (-376)) ELT)) (-1905 (((-1189) $) 10 T ELT)) (-1544 (($ $) 128 (|has| |#1| (-376)) ELT)) (-3161 (($) 154 (|has| |#1| (-363)) CONST)) (-3128 (($ (-948)) 100 (|has| |#1| (-381)) ELT)) (-3855 (((-1151) $) 11 T ELT)) (-2748 (($) 171 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 113 (|has| |#1| (-376)) ELT)) (-2132 (($ (-663 $)) 110 (|has| |#1| (-376)) ELT) (($ $ $) 109 (|has| |#1| (-376)) ELT)) (-3666 (((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))) 157 (|has| |#1| (-363)) ELT)) (-4457 (((-419 $) $) 124 (|has| |#1| (-376)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 121 (|has| |#1| (-376)) ELT)) (-1528 (((-3 $ "failed") $ $) 104 (|has| |#1| (-376)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 115 (|has| |#1| (-376)) ELT)) (-2901 (((-793) $) 117 (|has| |#1| (-376)) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 118 (|has| |#1| (-376)) ELT)) (-2690 ((|#1| (-1297 $)) 54 T ELT) ((|#1|) 67 T ELT)) (-2364 (((-793) $) 162 (|has| |#1| (-363)) ELT) (((-3 (-793) "failed") $ $) 150 (|has| |#1| (-363)) ELT)) (-2894 (($ $ (-793)) 147 (-2304 (-1953 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) 145 (-2304 (-1953 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 141 (-1953 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1207) (-793)) 140 (-1953 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1207))) 139 (-1953 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1207)) 137 (-1953 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1 |#1| |#1|)) 136 (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-793)) 135 (|has| |#1| (-376)) ELT)) (-3604 (((-711 |#1|) (-1297 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-376)) ELT)) (-4394 ((|#2|) 170 T ELT)) (-2243 (($) 159 (|has| |#1| (-363)) ELT)) (-2178 (((-1297 |#1|) $ (-1297 $)) 57 T ELT) (((-711 |#1|) (-1297 $) (-1297 $)) 56 T ELT) (((-1297 |#1|) $) 73 T ELT) (((-711 |#1|) (-1297 $)) 72 T ELT)) (-1407 (((-1297 |#1|) $) 70 T ELT) (($ (-1297 |#1|)) 69 T ELT) ((|#2| $) 186 T ELT) (($ |#2|) 168 T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) 156 (|has| |#1| (-363)) ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 44 T ELT) (($ $) 103 (|has| |#1| (-376)) ELT) (($ (-421 (-560))) 98 (-2304 (|has| |#1| (-376)) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-1964 (($ $) 155 (|has| |#1| (-363)) ELT) (((-3 $ "failed") $) 50 (|has| |#1| (-147)) ELT)) (-2630 ((|#2| $) 52 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-1954 (((-1297 $)) 74 T ELT)) (-2948 (((-114) $ $) 107 (|has| |#1| (-376)) ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($ $ (-793)) 148 (-2304 (-1953 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) 146 (-2304 (-1953 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 144 (-1953 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1207) (-793)) 143 (-1953 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1207))) 142 (-1953 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1207)) 138 (-1953 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-793)) 133 (|has| |#1| (-376)) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ $) 132 (|has| |#1| (-376)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 129 (|has| |#1| (-376)) ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT) (($ (-421 (-560)) $) 131 (|has| |#1| (-376)) ELT) (($ $ (-421 (-560))) 130 (|has| |#1| (-376)) ELT)))
+((-2552 (((-793)) 39 T ELT)) (-3929 (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 26 T ELT)) (-3649 (((-560) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-1778 (($ |#3|) NIL T ELT) (((-3 $ "failed") (-421 |#3|)) 49 T ELT)) (-2873 (((-3 $ "failed") $) 69 T ELT)) (-1812 (($) 43 T ELT)) (-2084 ((|#2| $) 21 T ELT)) (-3583 (($) 18 T ELT)) (-3161 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-3634 (((-711 |#2|) (-1297 $) (-1 |#2| |#2|)) 64 T ELT)) (-2400 (((-1297 |#2|) $) NIL T ELT) (($ (-1297 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2978 ((|#3| $) 36 T ELT)) (-3822 (((-1297 $)) 33 T ELT)))
+(((-745 |#1| |#2| |#3|) (-10 -8 (-15 -3161 (|#1| |#1|)) (-15 -3161 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1| (-1207))) (-15 -3161 (|#1| |#1| (-663 (-1207)))) (-15 -3161 (|#1| |#1| (-1207) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -1812 (|#1|)) (-15 -2552 ((-793))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3634 ((-711 |#2|) (-1297 |#1|) (-1 |#2| |#2|))) (-15 -1778 ((-3 |#1| "failed") (-421 |#3|))) (-15 -2400 (|#1| |#3|)) (-15 -1778 (|#1| |#3|)) (-15 -3583 (|#1|)) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3649 ((-560) |#1|)) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -2400 (|#3| |#1|)) (-15 -2400 (|#1| (-1297 |#2|))) (-15 -2400 ((-1297 |#2|) |#1|)) (-15 -3822 ((-1297 |#1|))) (-15 -2978 (|#3| |#1|)) (-15 -2084 (|#2| |#1|)) (-15 -2873 ((-3 |#1| "failed") |#1|))) (-746 |#2| |#3|) (-175) (-1273 |#2|)) (T -745))
+((-2552 (*1 *2) (-12 (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-793)) (-5 *1 (-745 *3 *4 *5)) (-4 *3 (-746 *4 *5)))))
+(-10 -8 (-15 -3161 (|#1| |#1|)) (-15 -3161 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1| (-1207))) (-15 -3161 (|#1| |#1| (-663 (-1207)))) (-15 -3161 (|#1| |#1| (-1207) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -1812 (|#1|)) (-15 -2552 ((-793))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3634 ((-711 |#2|) (-1297 |#1|) (-1 |#2| |#2|))) (-15 -1778 ((-3 |#1| "failed") (-421 |#3|))) (-15 -2400 (|#1| |#3|)) (-15 -1778 (|#1| |#3|)) (-15 -3583 (|#1|)) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3649 ((-560) |#1|)) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -2400 (|#3| |#1|)) (-15 -2400 (|#1| (-1297 |#2|))) (-15 -2400 ((-1297 |#2|) |#1|)) (-15 -3822 ((-1297 |#1|))) (-15 -2978 (|#3| |#1|)) (-15 -2084 (|#2| |#1|)) (-15 -2873 ((-3 |#1| "failed") |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 105 (|has| |#1| (-376)) ELT)) (-4366 (($ $) 106 (|has| |#1| (-376)) ELT)) (-2667 (((-114) $) 108 (|has| |#1| (-376)) ELT)) (-3100 (((-711 |#1|) (-1297 $)) 53 T ELT) (((-711 |#1|)) 68 T ELT)) (-4113 ((|#1| $) 59 T ELT)) (-1548 (((-1219 (-948) (-793)) (-560)) 158 (|has| |#1| (-363)) ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-1621 (($ $) 125 (|has| |#1| (-376)) ELT)) (-3898 (((-419 $) $) 126 (|has| |#1| (-376)) ELT)) (-3476 (((-114) $ $) 116 (|has| |#1| (-376)) ELT)) (-2552 (((-793)) 99 (|has| |#1| (-381)) ELT)) (-3525 (($) 18 T CONST)) (-3929 (((-3 (-560) "failed") $) 185 (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) 183 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 180 T ELT)) (-3649 (((-560) $) 184 (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) 182 (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) 181 T ELT)) (-1953 (($ (-1297 |#1|) (-1297 $)) 55 T ELT) (($ (-1297 |#1|)) 71 T ELT)) (-1433 (((-3 "prime" "polynomial" "normal" "cyclic")) 164 (|has| |#1| (-363)) ELT)) (-2186 (($ $ $) 120 (|has| |#1| (-376)) ELT)) (-3160 (((-711 |#1|) $ (-1297 $)) 60 T ELT) (((-711 |#1|) $) 66 T ELT)) (-2619 (((-711 (-560)) (-711 $)) 177 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 176 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 175 T ELT) (((-711 |#1|) (-711 $)) 174 T ELT)) (-1778 (($ |#2|) 169 T ELT) (((-3 $ "failed") (-421 |#2|)) 166 (|has| |#1| (-376)) ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1604 (((-948)) 61 T ELT)) (-1812 (($) 102 (|has| |#1| (-381)) ELT)) (-2197 (($ $ $) 119 (|has| |#1| (-376)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 114 (|has| |#1| (-376)) ELT)) (-3191 (($) 160 (|has| |#1| (-363)) ELT)) (-4017 (((-114) $) 161 (|has| |#1| (-363)) ELT)) (-3079 (($ $ (-793)) 152 (|has| |#1| (-363)) ELT) (($ $) 151 (|has| |#1| (-363)) ELT)) (-3141 (((-114) $) 127 (|has| |#1| (-376)) ELT)) (-1460 (((-948) $) 163 (|has| |#1| (-363)) ELT) (((-854 (-948)) $) 149 (|has| |#1| (-363)) ELT)) (-1918 (((-114) $) 35 T ELT)) (-2084 ((|#1| $) 58 T ELT)) (-3738 (((-3 $ "failed") $) 153 (|has| |#1| (-363)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 123 (|has| |#1| (-376)) ELT)) (-1471 ((|#2| $) 51 (|has| |#1| (-376)) ELT)) (-2622 (((-948) $) 101 (|has| |#1| (-381)) ELT)) (-1767 ((|#2| $) 167 T ELT)) (-4140 (((-711 (-560)) (-1297 $)) 179 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 178 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 173 T ELT) (((-711 |#1|) (-1297 $)) 172 T ELT)) (-1861 (($ (-663 $)) 112 (|has| |#1| (-376)) ELT) (($ $ $) 111 (|has| |#1| (-376)) ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2986 (($ $) 128 (|has| |#1| (-376)) ELT)) (-3239 (($) 154 (|has| |#1| (-363)) CONST)) (-1591 (($ (-948)) 100 (|has| |#1| (-381)) ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3583 (($) 171 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 113 (|has| |#1| (-376)) ELT)) (-1938 (($ (-663 $)) 110 (|has| |#1| (-376)) ELT) (($ $ $) 109 (|has| |#1| (-376)) ELT)) (-2976 (((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))) 157 (|has| |#1| (-363)) ELT)) (-4012 (((-419 $) $) 124 (|has| |#1| (-376)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 122 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 121 (|has| |#1| (-376)) ELT)) (-2233 (((-3 $ "failed") $ $) 104 (|has| |#1| (-376)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 115 (|has| |#1| (-376)) ELT)) (-3989 (((-793) $) 117 (|has| |#1| (-376)) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 118 (|has| |#1| (-376)) ELT)) (-2336 ((|#1| (-1297 $)) 54 T ELT) ((|#1|) 67 T ELT)) (-2258 (((-793) $) 162 (|has| |#1| (-363)) ELT) (((-3 (-793) "failed") $ $) 150 (|has| |#1| (-363)) ELT)) (-3161 (($ $ (-793)) 147 (-2196 (-1404 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) 145 (-2196 (-1404 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 141 (-1404 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1207) (-793)) 140 (-1404 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1207))) 139 (-1404 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1207)) 137 (-1404 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1 |#1| |#1|)) 136 (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-793)) 135 (|has| |#1| (-376)) ELT)) (-3634 (((-711 |#1|) (-1297 $) (-1 |#1| |#1|)) 165 (|has| |#1| (-376)) ELT)) (-2407 ((|#2|) 170 T ELT)) (-3569 (($) 159 (|has| |#1| (-363)) ELT)) (-4226 (((-1297 |#1|) $ (-1297 $)) 57 T ELT) (((-711 |#1|) (-1297 $) (-1297 $)) 56 T ELT) (((-1297 |#1|) $) 73 T ELT) (((-711 |#1|) (-1297 $)) 72 T ELT)) (-2400 (((-1297 |#1|) $) 70 T ELT) (($ (-1297 |#1|)) 69 T ELT) ((|#2| $) 186 T ELT) (($ |#2|) 168 T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) 156 (|has| |#1| (-363)) ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 44 T ELT) (($ $) 103 (|has| |#1| (-376)) ELT) (($ (-421 (-560))) 98 (-2196 (|has| |#1| (-376)) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-3919 (($ $) 155 (|has| |#1| (-363)) ELT) (((-3 $ "failed") $) 50 (|has| |#1| (-147)) ELT)) (-2978 ((|#2| $) 52 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-3822 (((-1297 $)) 74 T ELT)) (-4361 (((-114) $ $) 107 (|has| |#1| (-376)) ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($ $ (-793)) 148 (-2196 (-1404 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) 146 (-2196 (-1404 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 144 (-1404 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1207) (-793)) 143 (-1404 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1207))) 142 (-1404 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1207)) 138 (-1404 (|has| |#1| (-929 (-1207))) (|has| |#1| (-376))) ELT) (($ $ (-1 |#1| |#1|)) 134 (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-793)) 133 (|has| |#1| (-376)) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ $) 132 (|has| |#1| (-376)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 129 (|has| |#1| (-376)) ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT) (($ (-421 (-560)) $) 131 (|has| |#1| (-376)) ELT) (($ $ (-421 (-560))) 130 (|has| |#1| (-376)) ELT)))
(((-746 |#1| |#2|) (-142) (-175) (-1273 |t#1|)) (T -746))
-((-2748 (*1 *1) (-12 (-4 *2 (-175)) (-4 *1 (-746 *2 *3)) (-4 *3 (-1273 *2)))) (-4394 (*1 *2) (-12 (-4 *1 (-746 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1273 *3)))) (-4129 (*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-746 *3 *2)) (-4 *2 (-1273 *3)))) (-1407 (*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-746 *3 *2)) (-4 *2 (-1273 *3)))) (-4116 (*1 *2 *1) (-12 (-4 *1 (-746 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1273 *3)))) (-4129 (*1 *1 *2) (|partial| -12 (-5 *2 (-421 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-376)) (-4 *3 (-175)) (-4 *1 (-746 *3 *4)))) (-3604 (*1 *2 *3 *4) (-12 (-5 *3 (-1297 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-4 *1 (-746 *5 *6)) (-4 *5 (-175)) (-4 *6 (-1273 *5)) (-5 *2 (-711 *5)))))
-(-13 (-424 |t#1| |t#2|) (-175) (-633 |t#2|) (-426 |t#1|) (-390 |t#1|) (-10 -8 (-15 -2748 ($)) (-15 -4394 (|t#2|)) (-15 -4129 ($ |t#2|)) (-15 -1407 ($ |t#2|)) (-15 -4116 (|t#2| $)) (IF (|has| |t#1| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-6 (-376)) (-6 (-234 |t#1|)) (-15 -4129 ((-3 $ "failed") (-421 |t#2|))) (-15 -3604 ((-711 |t#1|) (-1297 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-38 |#1|) . T) ((-38 $) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-102) . T) ((-111 #0# #0#) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -2304 (|has| |#1| (-363)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-635 #0#) -2304 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-363)) (|has| |#1| (-376))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 $) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-632 (-887)) . T) ((-175) . T) ((-633 |#2|) . T) ((-236 $) -2304 (|has| |#1| (-363)) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-234 |#1|) |has| |#1| (-376)) ((-240) -2304 (|has| |#1| (-363)) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-239) -2304 (|has| |#1| (-363)) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-274 |#1|) |has| |#1| (-376)) ((-250) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-302) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-319) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-376) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-416) |has| |#1| (-363)) ((-381) -2304 (|has| |#1| (-381)) (|has| |#1| (-363))) ((-363) |has| |#1| (-363)) ((-383 |#1| |#2|) . T) ((-424 |#1| |#2|) . T) ((-390 |#1|) . T) ((-426 |#1|) . T) ((-466) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-571) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-668 #0#) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-670 #1=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-662 |#1|) . T) ((-662 $) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-660 #1#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #0#) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-739 |#1|) . T) ((-739 $) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-748) . T) ((-921 $ #2=(-1207)) -2304 (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207))))) ((-927 (-1207)) -12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) ((-929 #2#) -2304 (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207))))) ((-950) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1069 (-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 |#1|) . T) ((-1082 #0#) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1082 |#1|) . T) ((-1082 $) . T) ((-1087 #0#) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1087 |#1|) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1182) |has| |#1| (-363)) ((-1247) . T) ((-1252) -2304 (|has| |#1| (-363)) (|has| |#1| (-376))))
-((-2238 (($) 11 T ELT)) (-1990 (((-3 $ "failed") $) 14 T ELT)) (-1581 (((-114) $) 10 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 20 T ELT)))
-(((-747 |#1|) (-10 -8 (-15 -1990 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-793))) (-15 -1581 ((-114) |#1|)) (-15 -2238 (|#1|)) (-15 ** (|#1| |#1| (-948)))) (-748)) (T -747))
-NIL
-(-10 -8 (-15 -1990 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-793))) (-15 -1581 ((-114) |#1|)) (-15 -2238 (|#1|)) (-15 ** (|#1| |#1| (-948))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2238 (($) 19 T CONST)) (-1990 (((-3 $ "failed") $) 16 T ELT)) (-1581 (((-114) $) 18 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2011 (($) 20 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (** (($ $ (-948)) 14 T ELT) (($ $ (-793)) 17 T ELT)) (* (($ $ $) 15 T ELT)))
+((-3583 (*1 *1) (-12 (-4 *2 (-175)) (-4 *1 (-746 *2 *3)) (-4 *3 (-1273 *2)))) (-2407 (*1 *2) (-12 (-4 *1 (-746 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1273 *3)))) (-1778 (*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-746 *3 *2)) (-4 *2 (-1273 *3)))) (-2400 (*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-746 *3 *2)) (-4 *2 (-1273 *3)))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-746 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1273 *3)))) (-1778 (*1 *1 *2) (|partial| -12 (-5 *2 (-421 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-376)) (-4 *3 (-175)) (-4 *1 (-746 *3 *4)))) (-3634 (*1 *2 *3 *4) (-12 (-5 *3 (-1297 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-4 *1 (-746 *5 *6)) (-4 *5 (-175)) (-4 *6 (-1273 *5)) (-5 *2 (-711 *5)))))
+(-13 (-424 |t#1| |t#2|) (-175) (-633 |t#2|) (-426 |t#1|) (-390 |t#1|) (-10 -8 (-15 -3583 ($)) (-15 -2407 (|t#2|)) (-15 -1778 ($ |t#2|)) (-15 -2400 ($ |t#2|)) (-15 -1767 (|t#2| $)) (IF (|has| |t#1| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-6 (-376)) (-6 (-234 |t#1|)) (-15 -1778 ((-3 $ "failed") (-421 |t#2|))) (-15 -3634 ((-711 |t#1|) (-1297 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-38 |#1|) . T) ((-38 $) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-102) . T) ((-111 #0# #0#) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -2196 (|has| |#1| (-363)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-635 #0#) -2196 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-363)) (|has| |#1| (-376))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 $) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-632 (-887)) . T) ((-175) . T) ((-633 |#2|) . T) ((-236 $) -2196 (|has| |#1| (-363)) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-234 |#1|) |has| |#1| (-376)) ((-240) -2196 (|has| |#1| (-363)) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-239) -2196 (|has| |#1| (-363)) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-274 |#1|) |has| |#1| (-376)) ((-250) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-302) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-319) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-376) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-416) |has| |#1| (-363)) ((-381) -2196 (|has| |#1| (-381)) (|has| |#1| (-363))) ((-363) |has| |#1| (-363)) ((-383 |#1| |#2|) . T) ((-424 |#1| |#2|) . T) ((-390 |#1|) . T) ((-426 |#1|) . T) ((-466) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-571) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-668 #0#) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-670 #1=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-662 |#1|) . T) ((-662 $) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-660 #1#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #0#) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-739 |#1|) . T) ((-739 $) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-748) . T) ((-921 $ #2=(-1207)) -2196 (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207))))) ((-927 (-1207)) -12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207)))) ((-929 #2#) -2196 (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-927 (-1207))))) ((-950) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1069 (-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 |#1|) . T) ((-1082 #0#) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1082 |#1|) . T) ((-1082 $) . T) ((-1087 #0#) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1087 |#1|) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1182) |has| |#1| (-363)) ((-1247) . T) ((-1252) -2196 (|has| |#1| (-363)) (|has| |#1| (-376))))
+((-3525 (($) 11 T ELT)) (-2873 (((-3 $ "failed") $) 14 T ELT)) (-1918 (((-114) $) 10 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 20 T ELT)))
+(((-747 |#1|) (-10 -8 (-15 -2873 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-793))) (-15 -1918 ((-114) |#1|)) (-15 -3525 (|#1|)) (-15 ** (|#1| |#1| (-948)))) (-748)) (T -747))
+NIL
+(-10 -8 (-15 -2873 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-793))) (-15 -1918 ((-114) |#1|)) (-15 -3525 (|#1|)) (-15 ** (|#1| |#1| (-948))))
+((-2243 (((-114) $ $) 7 T ELT)) (-3525 (($) 19 T CONST)) (-2873 (((-3 $ "failed") $) 16 T ELT)) (-1918 (((-114) $) 18 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1456 (($) 20 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (** (($ $ (-948)) 14 T ELT) (($ $ (-793)) 17 T ELT)) (* (($ $ $) 15 T ELT)))
(((-748) (-142)) (T -748))
-((-2011 (*1 *1) (-4 *1 (-748))) (-2238 (*1 *1) (-4 *1 (-748))) (-1581 (*1 *2 *1) (-12 (-4 *1 (-748)) (-5 *2 (-114)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-748)) (-5 *2 (-793)))) (-1990 (*1 *1 *1) (|partial| -4 *1 (-748))))
-(-13 (-1143) (-10 -8 (-15 (-2011) ($) -3081) (-15 -2238 ($) -3081) (-15 -1581 ((-114) $)) (-15 ** ($ $ (-793))) (-15 -1990 ((-3 $ "failed") $))))
+((-1456 (*1 *1) (-4 *1 (-748))) (-3525 (*1 *1) (-4 *1 (-748))) (-1918 (*1 *2 *1) (-12 (-4 *1 (-748)) (-5 *2 (-114)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-748)) (-5 *2 (-793)))) (-2873 (*1 *1 *1) (|partial| -4 *1 (-748))))
+(-13 (-1143) (-10 -8 (-15 (-1456) ($) -2650) (-15 -3525 ($) -2650) (-15 -1918 ((-114) $)) (-15 ** ($ $ (-793))) (-15 -2873 ((-3 $ "failed") $))))
(((-102) . T) ((-632 (-887)) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-2595 (((-2 (|:| -2773 (-419 |#2|)) (|:| |special| (-419 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-1513 (((-2 (|:| -2773 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-1416 ((|#2| (-421 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3448 (((-2 (|:| |poly| |#2|) (|:| -2773 (-421 |#2|)) (|:| |special| (-421 |#2|))) (-421 |#2|) (-1 |#2| |#2|)) 48 T ELT)))
-(((-749 |#1| |#2|) (-10 -7 (-15 -1513 ((-2 (|:| -2773 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2595 ((-2 (|:| -2773 (-419 |#2|)) (|:| |special| (-419 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1416 (|#2| (-421 |#2|) (-1 |#2| |#2|))) (-15 -3448 ((-2 (|:| |poly| |#2|) (|:| -2773 (-421 |#2|)) (|:| |special| (-421 |#2|))) (-421 |#2|) (-1 |#2| |#2|)))) (-376) (-1273 |#1|)) (T -749))
-((-3448 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |poly| *6) (|:| -2773 (-421 *6)) (|:| |special| (-421 *6)))) (-5 *1 (-749 *5 *6)) (-5 *3 (-421 *6)))) (-1416 (*1 *2 *3 *4) (-12 (-5 *3 (-421 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1273 *5)) (-5 *1 (-749 *5 *2)) (-4 *5 (-376)))) (-2595 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -2773 (-419 *3)) (|:| |special| (-419 *3)))) (-5 *1 (-749 *5 *3)))) (-1513 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -2773 *3) (|:| |special| *3))) (-5 *1 (-749 *5 *3)))))
-(-10 -7 (-15 -1513 ((-2 (|:| -2773 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2595 ((-2 (|:| -2773 (-419 |#2|)) (|:| |special| (-419 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1416 (|#2| (-421 |#2|) (-1 |#2| |#2|))) (-15 -3448 ((-2 (|:| |poly| |#2|) (|:| -2773 (-421 |#2|)) (|:| |special| (-421 |#2|))) (-421 |#2|) (-1 |#2| |#2|))))
-((-1607 ((|#7| (-663 |#5|) |#6|) NIL T ELT)) (-3957 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT)))
-(((-750 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3957 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1607 (|#7| (-663 |#5|) |#6|))) (-871) (-815) (-815) (-1080) (-1080) (-979 |#4| |#2| |#1|) (-979 |#5| |#3| |#1|)) (T -750))
-((-1607 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *9)) (-4 *9 (-1080)) (-4 *5 (-871)) (-4 *6 (-815)) (-4 *8 (-1080)) (-4 *2 (-979 *9 *7 *5)) (-5 *1 (-750 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-815)) (-4 *4 (-979 *8 *6 *5)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1080)) (-4 *9 (-1080)) (-4 *5 (-871)) (-4 *6 (-815)) (-4 *2 (-979 *9 *7 *5)) (-5 *1 (-750 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-815)) (-4 *4 (-979 *8 *6 *5)))))
-(-10 -7 (-15 -3957 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -1607 (|#7| (-663 |#5|) |#6|)))
-((-3957 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT)))
-(((-751 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3957 (|#7| (-1 |#2| |#1|) |#6|))) (-871) (-871) (-815) (-815) (-1080) (-979 |#5| |#3| |#1|) (-979 |#5| |#4| |#2|)) (T -751))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-871)) (-4 *6 (-871)) (-4 *7 (-815)) (-4 *9 (-1080)) (-4 *2 (-979 *9 *8 *6)) (-5 *1 (-751 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-815)) (-4 *4 (-979 *9 *7 *5)))))
-(-10 -7 (-15 -3957 (|#7| (-1 |#2| |#1|) |#6|)))
-((-4457 (((-419 |#4|) |#4|) 42 T ELT)))
-(((-752 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4457 ((-419 |#4|) |#4|))) (-815) (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $)) (-15 -2462 ((-3 $ "failed") (-1207))))) (-319) (-979 (-975 |#3|) |#1| |#2|)) (T -752))
-((-4457 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $)) (-15 -2462 ((-3 $ "failed") (-1207)))))) (-4 *6 (-319)) (-5 *2 (-419 *3)) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-979 (-975 *6) *4 *5)))))
-(-10 -7 (-15 -4457 ((-419 |#4|) |#4|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1443 (((-663 (-888 |#1|)) $) NIL T ELT)) (-4422 (((-1201 $) $ (-888 |#1|)) NIL T ELT) (((-1201 |#2|) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#2| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#2| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#2| (-571)) ELT)) (-3107 (((-793) $) NIL T ELT) (((-793) $ (-663 (-888 |#1|))) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-1804 (($ $) NIL (|has| |#2| (-466)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#2| (-466)) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-3 (-888 |#1|) "failed") $) NIL T ELT)) (-3330 ((|#2| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-888 |#1|) $) NIL T ELT)) (-2788 (($ $ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-1624 (($ $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2806 (($ $) NIL (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-1608 (((-663 $) $) NIL T ELT)) (-4330 (((-114) $) NIL (|has| |#2| (-939)) ELT)) (-4342 (($ $ |#2| (-545 (-888 |#1|)) $) NIL T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-391))) (|has| |#2| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-560))) (|has| |#2| (-911 (-560)))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-3531 (((-793) $) NIL T ELT)) (-1427 (($ (-1201 |#2|) (-888 |#1|)) NIL T ELT) (($ (-1201 $) (-888 |#1|)) NIL T ELT)) (-3997 (((-663 $) $) NIL T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#2| (-545 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT)) (-3559 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $ (-888 |#1|)) NIL T ELT)) (-3011 (((-545 (-888 |#1|)) $) NIL T ELT) (((-793) $ (-888 |#1|)) NIL T ELT) (((-663 (-793)) $ (-663 (-888 |#1|))) NIL T ELT)) (-4321 (($ (-1 (-545 (-888 |#1|)) (-545 (-888 |#1|))) $) NIL T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-1955 (((-3 (-888 |#1|) "failed") $) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-711 |#2|) (-1297 $)) NIL T ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#2| $) NIL T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3479 (((-3 (-663 $) "failed") $) NIL T ELT)) (-2590 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3683 (((-3 (-2 (|:| |var| (-888 |#1|)) (|:| -3205 (-793))) "failed") $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1554 (((-114) $) NIL T ELT)) (-1566 ((|#2| $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#2| (-466)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-4457 (((-419 $) $) NIL (|has| |#2| (-939)) ELT)) (-1528 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-571)) ELT)) (-4187 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-888 |#1|) |#2|) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 |#2|)) NIL T ELT) (($ $ (-888 |#1|) $) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 $)) NIL T ELT)) (-2690 (($ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2894 (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) NIL T ELT)) (-3630 (((-545 (-888 |#1|)) $) NIL T ELT) (((-793) $ (-888 |#1|)) NIL T ELT) (((-663 (-793)) $ (-663 (-888 |#1|))) NIL T ELT)) (-1407 (((-915 (-391)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-915 (-391)))) (|has| |#2| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-915 (-560)))) (|has| |#2| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-888 |#1|) (-633 (-549))) (|has| |#2| (-633 (-549)))) ELT)) (-2053 ((|#2| $) NIL (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-939))) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-888 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-571)) ELT) (($ (-421 (-560))) NIL (-2304 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1069 (-421 (-560))))) ELT)) (-3409 (((-663 |#2|) $) NIL T ELT)) (-2305 ((|#2| $ (-545 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| |#2| (-939))) (|has| |#2| (-147))) ELT)) (-2930 (((-793)) NIL T CONST)) (-2392 (($ $ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL (|has| |#2| (-571)) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
+((-3887 (((-2 (|:| -3967 (-419 |#2|)) (|:| |special| (-419 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-1626 (((-2 (|:| -3967 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-3744 ((|#2| (-421 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-2595 (((-2 (|:| |poly| |#2|) (|:| -3967 (-421 |#2|)) (|:| |special| (-421 |#2|))) (-421 |#2|) (-1 |#2| |#2|)) 48 T ELT)))
+(((-749 |#1| |#2|) (-10 -7 (-15 -1626 ((-2 (|:| -3967 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3887 ((-2 (|:| -3967 (-419 |#2|)) (|:| |special| (-419 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3744 (|#2| (-421 |#2|) (-1 |#2| |#2|))) (-15 -2595 ((-2 (|:| |poly| |#2|) (|:| -3967 (-421 |#2|)) (|:| |special| (-421 |#2|))) (-421 |#2|) (-1 |#2| |#2|)))) (-376) (-1273 |#1|)) (T -749))
+((-2595 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3967 (-421 *6)) (|:| |special| (-421 *6)))) (-5 *1 (-749 *5 *6)) (-5 *3 (-421 *6)))) (-3744 (*1 *2 *3 *4) (-12 (-5 *3 (-421 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1273 *5)) (-5 *1 (-749 *5 *2)) (-4 *5 (-376)))) (-3887 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -3967 (-419 *3)) (|:| |special| (-419 *3)))) (-5 *1 (-749 *5 *3)))) (-1626 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -3967 *3) (|:| |special| *3))) (-5 *1 (-749 *5 *3)))))
+(-10 -7 (-15 -1626 ((-2 (|:| -3967 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -3887 ((-2 (|:| -3967 (-419 |#2|)) (|:| |special| (-419 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -3744 (|#2| (-421 |#2|) (-1 |#2| |#2|))) (-15 -2595 ((-2 (|:| |poly| |#2|) (|:| -3967 (-421 |#2|)) (|:| |special| (-421 |#2|))) (-421 |#2|) (-1 |#2| |#2|))))
+((-2266 ((|#7| (-663 |#5|) |#6|) NIL T ELT)) (-2260 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT)))
+(((-750 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2260 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2266 (|#7| (-663 |#5|) |#6|))) (-871) (-815) (-815) (-1080) (-1080) (-979 |#4| |#2| |#1|) (-979 |#5| |#3| |#1|)) (T -750))
+((-2266 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *9)) (-4 *9 (-1080)) (-4 *5 (-871)) (-4 *6 (-815)) (-4 *8 (-1080)) (-4 *2 (-979 *9 *7 *5)) (-5 *1 (-750 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-815)) (-4 *4 (-979 *8 *6 *5)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1080)) (-4 *9 (-1080)) (-4 *5 (-871)) (-4 *6 (-815)) (-4 *2 (-979 *9 *7 *5)) (-5 *1 (-750 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-815)) (-4 *4 (-979 *8 *6 *5)))))
+(-10 -7 (-15 -2260 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2266 (|#7| (-663 |#5|) |#6|)))
+((-2260 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT)))
+(((-751 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -2260 (|#7| (-1 |#2| |#1|) |#6|))) (-871) (-871) (-815) (-815) (-1080) (-979 |#5| |#3| |#1|) (-979 |#5| |#4| |#2|)) (T -751))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-871)) (-4 *6 (-871)) (-4 *7 (-815)) (-4 *9 (-1080)) (-4 *2 (-979 *9 *8 *6)) (-5 *1 (-751 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-815)) (-4 *4 (-979 *9 *7 *5)))))
+(-10 -7 (-15 -2260 (|#7| (-1 |#2| |#1|) |#6|)))
+((-4012 (((-419 |#4|) |#4|) 42 T ELT)))
+(((-752 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4012 ((-419 |#4|) |#4|))) (-815) (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $)) (-15 -2558 ((-3 $ "failed") (-1207))))) (-319) (-979 (-975 |#3|) |#1| |#2|)) (T -752))
+((-4012 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $)) (-15 -2558 ((-3 $ "failed") (-1207)))))) (-4 *6 (-319)) (-5 *2 (-419 *3)) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-979 (-975 *6) *4 *5)))))
+(-10 -7 (-15 -4012 ((-419 |#4|) |#4|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-4162 (((-663 (-888 |#1|)) $) NIL T ELT)) (-3981 (((-1201 $) $ (-888 |#1|)) NIL T ELT) (((-1201 |#2|) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#2| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#2| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#2| (-571)) ELT)) (-2250 (((-793) $) NIL T ELT) (((-793) $ (-663 (-888 |#1|))) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-1621 (($ $) NIL (|has| |#2| (-466)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#2| (-466)) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-3 (-888 |#1|) "failed") $) NIL T ELT)) (-3649 ((|#2| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-888 |#1|) $) NIL T ELT)) (-2096 (($ $ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-3062 (($ $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4239 (($ $) NIL (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-3048 (((-663 $) $) NIL T ELT)) (-3141 (((-114) $) NIL (|has| |#2| (-939)) ELT)) (-3224 (($ $ |#2| (-545 (-888 |#1|)) $) NIL T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-391))) (|has| |#2| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-888 |#1|) (-911 (-560))) (|has| |#2| (-911 (-560)))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-4127 (((-793) $) NIL T ELT)) (-4149 (($ (-1201 |#2|) (-888 |#1|)) NIL T ELT) (($ (-1201 $) (-888 |#1|)) NIL T ELT)) (-2947 (((-663 $) $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#2| (-545 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT)) (-4415 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $ (-888 |#1|)) NIL T ELT)) (-3765 (((-545 (-888 |#1|)) $) NIL T ELT) (((-793) $ (-888 |#1|)) NIL T ELT) (((-663 (-793)) $ (-663 (-888 |#1|))) NIL T ELT)) (-3060 (($ (-1 (-545 (-888 |#1|)) (-545 (-888 |#1|))) $) NIL T ELT)) (-2260 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3835 (((-3 (-888 |#1|) "failed") $) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-711 |#2|) (-1297 $)) NIL T ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#2| $) NIL T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1669 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3849 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3149 (((-3 (-2 (|:| |var| (-888 |#1|)) (|:| -2030 (-793))) "failed") $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3000 (((-114) $) NIL T ELT)) (-3011 ((|#2| $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#2| (-466)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-4012 (((-419 $) $) NIL (|has| |#2| (-939)) ELT)) (-2233 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-571)) ELT)) (-2371 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-888 |#1|) |#2|) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 |#2|)) NIL T ELT) (($ $ (-888 |#1|) $) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 $)) NIL T ELT)) (-2336 (($ $ (-888 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-3161 (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) NIL T ELT)) (-3900 (((-545 (-888 |#1|)) $) NIL T ELT) (((-793) $ (-888 |#1|)) NIL T ELT) (((-663 (-793)) $ (-663 (-888 |#1|))) NIL T ELT)) (-2400 (((-915 (-391)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-915 (-391)))) (|has| |#2| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-888 |#1|) (-633 (-915 (-560)))) (|has| |#2| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-888 |#1|) (-633 (-549))) (|has| |#2| (-633 (-549)))) ELT)) (-2264 ((|#2| $) NIL (|has| |#2| (-466)) ELT) (($ $ (-888 |#1|)) NIL (|has| |#2| (-466)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-939))) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-888 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-571)) ELT) (($ (-421 (-560))) NIL (-2196 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1069 (-421 (-560))))) ELT)) (-2247 (((-663 |#2|) $) NIL T ELT)) (-2920 ((|#2| $ (-545 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| |#2| (-939))) (|has| |#2| (-147))) ELT)) (-4191 (((-793)) NIL T CONST)) (-2548 (($ $ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL (|has| |#2| (-571)) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $ (-663 (-888 |#1|)) (-663 (-793))) NIL T ELT) (($ $ (-888 |#1|) (-793)) NIL T ELT) (($ $ (-663 (-888 |#1|))) NIL T ELT) (($ $ (-888 |#1|)) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
(((-753 |#1| |#2|) (-979 |#2| (-545 (-888 |#1|)) (-888 |#1|)) (-663 (-1207)) (-1080)) (T -753))
NIL
(-979 |#2| (-545 (-888 |#1|)) (-888 |#1|))
-((-2963 (((-2 (|:| -3168 (-975 |#3|)) (|:| -4238 (-975 |#3|))) |#4|) 14 T ELT)) (-2699 ((|#4| |#4| |#2|) 33 T ELT)) (-2867 ((|#4| (-421 (-975 |#3|)) |#2|) 64 T ELT)) (-1628 ((|#4| (-1201 (-975 |#3|)) |#2|) 77 T ELT)) (-4280 ((|#4| (-1201 |#4|) |#2|) 51 T ELT)) (-2446 ((|#4| |#4| |#2|) 54 T ELT)) (-4457 (((-419 |#4|) |#4|) 40 T ELT)))
-(((-754 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2963 ((-2 (|:| -3168 (-975 |#3|)) (|:| -4238 (-975 |#3|))) |#4|)) (-15 -2446 (|#4| |#4| |#2|)) (-15 -4280 (|#4| (-1201 |#4|) |#2|)) (-15 -2699 (|#4| |#4| |#2|)) (-15 -1628 (|#4| (-1201 (-975 |#3|)) |#2|)) (-15 -2867 (|#4| (-421 (-975 |#3|)) |#2|)) (-15 -4457 ((-419 |#4|) |#4|))) (-815) (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $)))) (-571) (-979 (-421 (-975 |#3|)) |#1| |#2|)) (T -754))
-((-4457 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $))))) (-4 *6 (-571)) (-5 *2 (-419 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-979 (-421 (-975 *6)) *4 *5)))) (-2867 (*1 *2 *3 *4) (-12 (-4 *6 (-571)) (-4 *2 (-979 *3 *5 *4)) (-5 *1 (-754 *5 *4 *6 *2)) (-5 *3 (-421 (-975 *6))) (-4 *5 (-815)) (-4 *4 (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $))))))) (-1628 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 (-975 *6))) (-4 *6 (-571)) (-4 *2 (-979 (-421 (-975 *6)) *5 *4)) (-5 *1 (-754 *5 *4 *6 *2)) (-4 *5 (-815)) (-4 *4 (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $))))))) (-2699 (*1 *2 *2 *3) (-12 (-4 *4 (-815)) (-4 *3 (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $))))) (-4 *5 (-571)) (-5 *1 (-754 *4 *3 *5 *2)) (-4 *2 (-979 (-421 (-975 *5)) *4 *3)))) (-4280 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 *2)) (-4 *2 (-979 (-421 (-975 *6)) *5 *4)) (-5 *1 (-754 *5 *4 *6 *2)) (-4 *5 (-815)) (-4 *4 (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $))))) (-4 *6 (-571)))) (-2446 (*1 *2 *2 *3) (-12 (-4 *4 (-815)) (-4 *3 (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $))))) (-4 *5 (-571)) (-5 *1 (-754 *4 *3 *5 *2)) (-4 *2 (-979 (-421 (-975 *5)) *4 *3)))) (-2963 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $))))) (-4 *6 (-571)) (-5 *2 (-2 (|:| -3168 (-975 *6)) (|:| -4238 (-975 *6)))) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-979 (-421 (-975 *6)) *4 *5)))))
-(-10 -7 (-15 -2963 ((-2 (|:| -3168 (-975 |#3|)) (|:| -4238 (-975 |#3|))) |#4|)) (-15 -2446 (|#4| |#4| |#2|)) (-15 -4280 (|#4| (-1201 |#4|) |#2|)) (-15 -2699 (|#4| |#4| |#2|)) (-15 -1628 (|#4| (-1201 (-975 |#3|)) |#2|)) (-15 -2867 (|#4| (-421 (-975 |#3|)) |#2|)) (-15 -4457 ((-419 |#4|) |#4|)))
-((-4457 (((-419 |#4|) |#4|) 54 T ELT)))
-(((-755 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4457 ((-419 |#4|) |#4|))) (-815) (-871) (-13 (-319) (-149)) (-979 (-421 |#3|) |#1| |#2|)) (T -755))
-((-4457 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-419 *3)) (-5 *1 (-755 *4 *5 *6 *3)) (-4 *3 (-979 (-421 *6) *4 *5)))))
-(-10 -7 (-15 -4457 ((-419 |#4|) |#4|)))
-((-3957 (((-757 |#2| |#3|) (-1 |#2| |#1|) (-757 |#1| |#3|)) 18 T ELT)))
-(((-756 |#1| |#2| |#3|) (-10 -7 (-15 -3957 ((-757 |#2| |#3|) (-1 |#2| |#1|) (-757 |#1| |#3|)))) (-1080) (-1080) (-748)) (T -756))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-757 *5 *7)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-4 *7 (-748)) (-5 *2 (-757 *6 *7)) (-5 *1 (-756 *5 *6 *7)))))
-(-10 -7 (-15 -3957 ((-757 |#2| |#3|) (-1 |#2| |#1|) (-757 |#1| |#3|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 36 T ELT)) (-1425 (((-663 (-2 (|:| -2115 |#1|) (|:| -1471 |#2|))) $) 37 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-3241 (((-793)) 22 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#2| "failed") $) 76 T ELT) (((-3 |#1| "failed") $) 79 T ELT)) (-3330 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-1624 (($ $) 102 (|has| |#2| (-871)) ELT)) (-1990 (((-3 $ "failed") $) 85 T ELT)) (-2310 (($) 48 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-3531 (((-793) $) 70 T ELT)) (-3997 (((-663 $) $) 52 T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#1| |#2|) 17 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-4419 (((-948) $) 43 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-1583 ((|#2| $) 101 (|has| |#2| (-871)) ELT)) (-1597 ((|#1| $) 100 (|has| |#2| (-871)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3128 (($ (-948)) 35 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 99 T ELT) (($ (-560)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-663 (-2 (|:| -2115 |#1|) (|:| -1471 |#2|)))) 11 T ELT)) (-3409 (((-663 |#1|) $) 54 T ELT)) (-2305 ((|#1| $ |#2|) 115 T ELT)) (-1964 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 12 T CONST)) (-2011 (($) 44 T CONST)) (-2473 (((-114) $ $) 105 T ELT)) (-2580 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 33 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 66 T ELT) (($ $ $) 118 T ELT) (($ |#1| $) 63 (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT)))
-(((-757 |#1| |#2|) (-13 (-1080) (-1069 |#2|) (-1069 |#1|) (-10 -8 (-15 -1417 ($ |#1| |#2|)) (-15 -2305 (|#1| $ |#2|)) (-15 -1578 ($ (-663 (-2 (|:| -2115 |#1|) (|:| -1471 |#2|))))) (-15 -1425 ((-663 (-2 (|:| -2115 |#1|) (|:| -1471 |#2|))) $)) (-15 -3957 ($ (-1 |#1| |#1|) $)) (-15 -1556 ((-114) $)) (-15 -3409 ((-663 |#1|) $)) (-15 -3997 ((-663 $) $)) (-15 -3531 ((-793) $)) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-871)) (PROGN (-15 -1583 (|#2| $)) (-15 -1597 (|#1| $)) (-15 -1624 ($ $))) |%noBranch|))) (-1080) (-748)) (T -757))
-((-1417 (*1 *1 *2 *3) (-12 (-5 *1 (-757 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-748)))) (-2305 (*1 *2 *1 *3) (-12 (-4 *2 (-1080)) (-5 *1 (-757 *2 *3)) (-4 *3 (-748)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| -2115 *3) (|:| -1471 *4)))) (-4 *3 (-1080)) (-4 *4 (-748)) (-5 *1 (-757 *3 *4)))) (-1425 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| -2115 *3) (|:| -1471 *4)))) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-748)))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-757 *3 *4)) (-4 *4 (-748)))) (-1556 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-748)))) (-3409 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-748)))) (-3997 (*1 *2 *1) (-12 (-5 *2 (-663 (-757 *3 *4))) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-748)))) (-3531 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-748)))) (-1583 (*1 *2 *1) (-12 (-4 *2 (-748)) (-4 *2 (-871)) (-5 *1 (-757 *3 *2)) (-4 *3 (-1080)))) (-1597 (*1 *2 *1) (-12 (-4 *2 (-1080)) (-5 *1 (-757 *2 *3)) (-4 *3 (-871)) (-4 *3 (-748)))) (-1624 (*1 *1 *1) (-12 (-5 *1 (-757 *2 *3)) (-4 *3 (-871)) (-4 *2 (-1080)) (-4 *3 (-748)))))
-(-13 (-1080) (-1069 |#2|) (-1069 |#1|) (-10 -8 (-15 -1417 ($ |#1| |#2|)) (-15 -2305 (|#1| $ |#2|)) (-15 -1578 ($ (-663 (-2 (|:| -2115 |#1|) (|:| -1471 |#2|))))) (-15 -1425 ((-663 (-2 (|:| -2115 |#1|) (|:| -1471 |#2|))) $)) (-15 -3957 ($ (-1 |#1| |#1|) $)) (-15 -1556 ((-114) $)) (-15 -3409 ((-663 |#1|) $)) (-15 -3997 ((-663 $) $)) (-15 -3531 ((-793) $)) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-871)) (PROGN (-15 -1583 (|#2| $)) (-15 -1597 (|#1| $)) (-15 -1624 ($ $))) |%noBranch|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-4028 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 92 T ELT)) (-1830 (($ $ $) 96 T ELT)) (-3963 (((-114) $ $) 104 T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1850 (($ (-663 |#1|)) 26 T ELT) (($) 17 T ELT)) (-3500 (($ (-1 (-114) |#1|) $) 83 (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2238 (($) NIL T CONST)) (-2944 (($ $) 85 T ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3390 (($ |#1| $) 70 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) |#1|) $) 77 (|has| $ (-6 -4508)) ELT) (($ |#1| $ (-560)) 75 T ELT) (($ (-1 (-114) |#1|) $ (-560)) 78 T ELT)) (-2375 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (($ |#1| $ (-560)) 80 T ELT) (($ (-1 (-114) |#1|) $ (-560)) 81 T ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2181 (((-663 |#1|) $) 32 (|has| $ (-6 -4508)) ELT)) (-2250 (((-114) $ $) 103 T ELT)) (-4046 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-663 |#1|)) 23 T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 |#1|) $) 38 T ELT)) (-2321 (((-114) |#1| $) 65 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 89 T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1903 (($ $ $) 94 T ELT)) (-1576 ((|#1| $) 62 T ELT)) (-3629 (($ |#1| $) 63 T ELT) (($ |#1| $ (-793)) 86 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2615 ((|#1| $) 61 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) 56 T ELT)) (-3986 (($) 14 T ELT)) (-1797 (((-663 (-2 (|:| -2460 |#1|) (|:| -3865 (-793)))) $) 55 T ELT)) (-3733 (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3897 (($) 16 T ELT) (($ (-663 |#1|)) 25 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 68 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1799 (($ $) 79 T ELT)) (-1407 (((-549) $) 36 (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 22 T ELT)) (-1578 (((-887) $) 49 T ELT)) (-1364 (($ (-663 |#1|)) 27 T ELT) (($) 18 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-3376 (($ (-663 |#1|)) 24 T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 100 T ELT)) (-1553 (((-793) $) 67 (|has| $ (-6 -4508)) ELT)))
-(((-758 |#1|) (-13 (-759 |#1|) (-10 -8 (-6 -4508) (-6 -4509) (-15 -4046 ($)) (-15 -4046 ($ |#1|)) (-15 -4046 ($ (-663 |#1|))) (-15 -2656 ((-663 |#1|) $)) (-15 -2375 ($ |#1| $ (-560))) (-15 -2375 ($ (-1 (-114) |#1|) $ (-560))) (-15 -3390 ($ |#1| $ (-560))) (-15 -3390 ($ (-1 (-114) |#1|) $ (-560))))) (-1132)) (T -758))
-((-4046 (*1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1132)))) (-4046 (*1 *1 *2) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1132)))) (-4046 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-758 *3)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-758 *3)) (-4 *3 (-1132)))) (-2375 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-758 *2)) (-4 *2 (-1132)))) (-2375 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-560)) (-4 *4 (-1132)) (-5 *1 (-758 *4)))) (-3390 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-758 *2)) (-4 *2 (-1132)))) (-3390 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-560)) (-4 *4 (-1132)) (-5 *1 (-758 *4)))))
-(-13 (-759 |#1|) (-10 -8 (-6 -4508) (-6 -4509) (-15 -4046 ($)) (-15 -4046 ($ |#1|)) (-15 -4046 ($ (-663 |#1|))) (-15 -2656 ((-663 |#1|) $)) (-15 -2375 ($ |#1| $ (-560))) (-15 -2375 ($ (-1 (-114) |#1|) $ (-560))) (-15 -3390 ($ |#1| $ (-560))) (-15 -3390 ($ (-1 (-114) |#1|) $ (-560)))))
-((-1538 (((-114) $ $) 20 T ELT)) (-4028 (($ |#1| $) 77 T ELT) (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1830 (($ $ $) 73 T ELT)) (-3963 (((-114) $ $) 74 T ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-1850 (($ (-663 |#1|)) 69 T ELT) (($) 68 T ELT)) (-3500 (($ (-1 (-114) |#1|) $) 46 (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) 56 (|has| $ (-6 -4508)) ELT)) (-2238 (($) 7 T CONST)) (-2944 (($ $) 63 T ELT)) (-3606 (($ $) 59 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3390 (($ |#1| $) 48 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) |#1|) $) 47 (|has| $ (-6 -4508)) ELT)) (-2375 (($ |#1| $) 58 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 55 (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4508)) ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-2250 (((-114) $ $) 65 T ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-1905 (((-1189) $) 23 T ELT)) (-1903 (($ $ $) 70 T ELT)) (-1576 ((|#1| $) 40 T ELT)) (-3629 (($ |#1| $) 41 T ELT) (($ |#1| $ (-793)) 64 T ELT)) (-3855 (((-1151) $) 22 T ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 52 T ELT)) (-2615 ((|#1| $) 42 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-1797 (((-663 (-2 (|:| -2460 |#1|) (|:| -3865 (-793)))) $) 62 T ELT)) (-3733 (($ $ |#1|) 72 T ELT) (($ $ $) 71 T ELT)) (-3897 (($) 50 T ELT) (($ (-663 |#1|)) 49 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) 60 (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 51 T ELT)) (-1578 (((-887) $) 18 T ELT)) (-1364 (($ (-663 |#1|)) 67 T ELT) (($) 66 T ELT)) (-2275 (((-114) $ $) 21 T ELT)) (-3376 (($ (-663 |#1|)) 43 T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 T ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-1349 (((-2 (|:| -1651 (-975 |#3|)) (|:| -3568 (-975 |#3|))) |#4|) 14 T ELT)) (-2437 ((|#4| |#4| |#2|) 33 T ELT)) (-3630 ((|#4| (-421 (-975 |#3|)) |#2|) 64 T ELT)) (-3597 ((|#4| (-1201 (-975 |#3|)) |#2|) 77 T ELT)) (-3984 ((|#4| (-1201 |#4|) |#2|) 51 T ELT)) (-1839 ((|#4| |#4| |#2|) 54 T ELT)) (-4012 (((-419 |#4|) |#4|) 40 T ELT)))
+(((-754 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1349 ((-2 (|:| -1651 (-975 |#3|)) (|:| -3568 (-975 |#3|))) |#4|)) (-15 -1839 (|#4| |#4| |#2|)) (-15 -3984 (|#4| (-1201 |#4|) |#2|)) (-15 -2437 (|#4| |#4| |#2|)) (-15 -3597 (|#4| (-1201 (-975 |#3|)) |#2|)) (-15 -3630 (|#4| (-421 (-975 |#3|)) |#2|)) (-15 -4012 ((-419 |#4|) |#4|))) (-815) (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $)))) (-571) (-979 (-421 (-975 |#3|)) |#1| |#2|)) (T -754))
+((-4012 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $))))) (-4 *6 (-571)) (-5 *2 (-419 *3)) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-979 (-421 (-975 *6)) *4 *5)))) (-3630 (*1 *2 *3 *4) (-12 (-4 *6 (-571)) (-4 *2 (-979 *3 *5 *4)) (-5 *1 (-754 *5 *4 *6 *2)) (-5 *3 (-421 (-975 *6))) (-4 *5 (-815)) (-4 *4 (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $))))))) (-3597 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 (-975 *6))) (-4 *6 (-571)) (-4 *2 (-979 (-421 (-975 *6)) *5 *4)) (-5 *1 (-754 *5 *4 *6 *2)) (-4 *5 (-815)) (-4 *4 (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $))))))) (-2437 (*1 *2 *2 *3) (-12 (-4 *4 (-815)) (-4 *3 (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $))))) (-4 *5 (-571)) (-5 *1 (-754 *4 *3 *5 *2)) (-4 *2 (-979 (-421 (-975 *5)) *4 *3)))) (-3984 (*1 *2 *3 *4) (-12 (-5 *3 (-1201 *2)) (-4 *2 (-979 (-421 (-975 *6)) *5 *4)) (-5 *1 (-754 *5 *4 *6 *2)) (-4 *5 (-815)) (-4 *4 (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $))))) (-4 *6 (-571)))) (-1839 (*1 *2 *2 *3) (-12 (-4 *4 (-815)) (-4 *3 (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $))))) (-4 *5 (-571)) (-5 *1 (-754 *4 *3 *5 *2)) (-4 *2 (-979 (-421 (-975 *5)) *4 *3)))) (-1349 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $))))) (-4 *6 (-571)) (-5 *2 (-2 (|:| -1651 (-975 *6)) (|:| -3568 (-975 *6)))) (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-979 (-421 (-975 *6)) *4 *5)))))
+(-10 -7 (-15 -1349 ((-2 (|:| -1651 (-975 |#3|)) (|:| -3568 (-975 |#3|))) |#4|)) (-15 -1839 (|#4| |#4| |#2|)) (-15 -3984 (|#4| (-1201 |#4|) |#2|)) (-15 -2437 (|#4| |#4| |#2|)) (-15 -3597 (|#4| (-1201 (-975 |#3|)) |#2|)) (-15 -3630 (|#4| (-421 (-975 |#3|)) |#2|)) (-15 -4012 ((-419 |#4|) |#4|)))
+((-4012 (((-419 |#4|) |#4|) 54 T ELT)))
+(((-755 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4012 ((-419 |#4|) |#4|))) (-815) (-871) (-13 (-319) (-149)) (-979 (-421 |#3|) |#1| |#2|)) (T -755))
+((-4012 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-419 *3)) (-5 *1 (-755 *4 *5 *6 *3)) (-4 *3 (-979 (-421 *6) *4 *5)))))
+(-10 -7 (-15 -4012 ((-419 |#4|) |#4|)))
+((-2260 (((-757 |#2| |#3|) (-1 |#2| |#1|) (-757 |#1| |#3|)) 18 T ELT)))
+(((-756 |#1| |#2| |#3|) (-10 -7 (-15 -2260 ((-757 |#2| |#3|) (-1 |#2| |#1|) (-757 |#1| |#3|)))) (-1080) (-1080) (-748)) (T -756))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-757 *5 *7)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-4 *7 (-748)) (-5 *2 (-757 *6 *7)) (-5 *1 (-756 *5 *6 *7)))))
+(-10 -7 (-15 -2260 ((-757 |#2| |#3|) (-1 |#2| |#1|) (-757 |#1| |#3|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 36 T ELT)) (-1465 (((-663 (-2 (|:| -2625 |#1|) (|:| -1405 |#2|))) $) 37 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2552 (((-793)) 22 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#2| "failed") $) 76 T ELT) (((-3 |#1| "failed") $) 79 T ELT)) (-3649 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-3062 (($ $) 102 (|has| |#2| (-871)) ELT)) (-2873 (((-3 $ "failed") $) 85 T ELT)) (-1812 (($) 48 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-4127 (((-793) $) 70 T ELT)) (-2947 (((-663 $) $) 52 T ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#1| |#2|) 17 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2622 (((-948) $) 43 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-3024 ((|#2| $) 101 (|has| |#2| (-871)) ELT)) (-3037 ((|#1| $) 100 (|has| |#2| (-871)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1591 (($ (-948)) 35 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 99 T ELT) (($ (-560)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-663 (-2 (|:| -2625 |#1|) (|:| -1405 |#2|)))) 11 T ELT)) (-2247 (((-663 |#1|) $) 54 T ELT)) (-2920 ((|#1| $ |#2|) 115 T ELT)) (-3919 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 12 T CONST)) (-1456 (($) 44 T CONST)) (-2340 (((-114) $ $) 105 T ELT)) (-2441 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 33 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 66 T ELT) (($ $ $) 118 T ELT) (($ |#1| $) 63 (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT)))
+(((-757 |#1| |#2|) (-13 (-1080) (-1069 |#2|) (-1069 |#1|) (-10 -8 (-15 -4139 ($ |#1| |#2|)) (-15 -2920 (|#1| $ |#2|)) (-15 -3913 ($ (-663 (-2 (|:| -2625 |#1|) (|:| -1405 |#2|))))) (-15 -1465 ((-663 (-2 (|:| -2625 |#1|) (|:| -1405 |#2|))) $)) (-15 -2260 ($ (-1 |#1| |#1|) $)) (-15 -1673 ((-114) $)) (-15 -2247 ((-663 |#1|) $)) (-15 -2947 ((-663 $) $)) (-15 -4127 ((-793) $)) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-871)) (PROGN (-15 -3024 (|#2| $)) (-15 -3037 (|#1| $)) (-15 -3062 ($ $))) |%noBranch|))) (-1080) (-748)) (T -757))
+((-4139 (*1 *1 *2 *3) (-12 (-5 *1 (-757 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-748)))) (-2920 (*1 *2 *1 *3) (-12 (-4 *2 (-1080)) (-5 *1 (-757 *2 *3)) (-4 *3 (-748)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| -2625 *3) (|:| -1405 *4)))) (-4 *3 (-1080)) (-4 *4 (-748)) (-5 *1 (-757 *3 *4)))) (-1465 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| -2625 *3) (|:| -1405 *4)))) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-748)))) (-2260 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-757 *3 *4)) (-4 *4 (-748)))) (-1673 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-748)))) (-2247 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-748)))) (-2947 (*1 *2 *1) (-12 (-5 *2 (-663 (-757 *3 *4))) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-748)))) (-4127 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-748)))) (-3024 (*1 *2 *1) (-12 (-4 *2 (-748)) (-4 *2 (-871)) (-5 *1 (-757 *3 *2)) (-4 *3 (-1080)))) (-3037 (*1 *2 *1) (-12 (-4 *2 (-1080)) (-5 *1 (-757 *2 *3)) (-4 *3 (-871)) (-4 *3 (-748)))) (-3062 (*1 *1 *1) (-12 (-5 *1 (-757 *2 *3)) (-4 *3 (-871)) (-4 *2 (-1080)) (-4 *3 (-748)))))
+(-13 (-1080) (-1069 |#2|) (-1069 |#1|) (-10 -8 (-15 -4139 ($ |#1| |#2|)) (-15 -2920 (|#1| $ |#2|)) (-15 -3913 ($ (-663 (-2 (|:| -2625 |#1|) (|:| -1405 |#2|))))) (-15 -1465 ((-663 (-2 (|:| -2625 |#1|) (|:| -1405 |#2|))) $)) (-15 -2260 ($ (-1 |#1| |#1|) $)) (-15 -1673 ((-114) $)) (-15 -2247 ((-663 |#1|) $)) (-15 -2947 ((-663 $) $)) (-15 -4127 ((-793) $)) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-871)) (PROGN (-15 -3024 (|#2| $)) (-15 -3037 (|#1| $)) (-15 -3062 ($ $))) |%noBranch|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3574 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 92 T ELT)) (-1925 (($ $ $) 96 T ELT)) (-3895 (((-114) $ $) 104 T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-2512 (($ (-663 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1864 (($ (-1 (-114) |#1|) $) 83 (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3525 (($) NIL T CONST)) (-4329 (($ $) 85 T ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2091 (($ |#1| $) 70 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) |#1|) $) 77 (|has| $ (-6 -4508)) ELT) (($ |#1| $ (-560)) 75 T ELT) (($ (-1 (-114) |#1|) $ (-560)) 78 T ELT)) (-3033 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (($ |#1| $ (-560)) 80 T ELT) (($ (-1 (-114) |#1|) $ (-560)) 81 T ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3737 (((-663 |#1|) $) 32 (|has| $ (-6 -4508)) ELT)) (-3653 (((-114) $ $) 103 T ELT)) (-2213 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-663 |#1|)) 23 T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-3243 (((-663 |#1|) $) 38 T ELT)) (-3091 (((-114) |#1| $) 65 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 88 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 89 T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3334 (($ $ $) 94 T ELT)) (-1878 ((|#1| $) 62 T ELT)) (-3888 (($ |#1| $) 63 T ELT) (($ |#1| $ (-793)) 86 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2796 ((|#1| $) 61 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) 56 T ELT)) (-2832 (($) 14 T ELT)) (-1553 (((-663 (-2 (|:| -3067 |#1|) (|:| -3384 (-793)))) $) 55 T ELT)) (-2358 (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-4468 (($) 16 T ELT) (($ (-663 |#1|)) 25 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 68 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4107 (($ $) 79 T ELT)) (-2400 (((-549) $) 36 (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 22 T ELT)) (-3913 (((-887) $) 49 T ELT)) (-4074 (($ (-663 |#1|)) 27 T ELT) (($) 18 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3184 (($ (-663 |#1|)) 24 T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 100 T ELT)) (-2256 (((-793) $) 67 (|has| $ (-6 -4508)) ELT)))
+(((-758 |#1|) (-13 (-759 |#1|) (-10 -8 (-6 -4508) (-6 -4509) (-15 -2213 ($)) (-15 -2213 ($ |#1|)) (-15 -2213 ($ (-663 |#1|))) (-15 -3243 ((-663 |#1|) $)) (-15 -3033 ($ |#1| $ (-560))) (-15 -3033 ($ (-1 (-114) |#1|) $ (-560))) (-15 -2091 ($ |#1| $ (-560))) (-15 -2091 ($ (-1 (-114) |#1|) $ (-560))))) (-1132)) (T -758))
+((-2213 (*1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1132)))) (-2213 (*1 *1 *2) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1132)))) (-2213 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-758 *3)))) (-3243 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-758 *3)) (-4 *3 (-1132)))) (-3033 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-758 *2)) (-4 *2 (-1132)))) (-3033 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-560)) (-4 *4 (-1132)) (-5 *1 (-758 *4)))) (-2091 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-758 *2)) (-4 *2 (-1132)))) (-2091 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-560)) (-4 *4 (-1132)) (-5 *1 (-758 *4)))))
+(-13 (-759 |#1|) (-10 -8 (-6 -4508) (-6 -4509) (-15 -2213 ($)) (-15 -2213 ($ |#1|)) (-15 -2213 ($ (-663 |#1|))) (-15 -3243 ((-663 |#1|) $)) (-15 -3033 ($ |#1| $ (-560))) (-15 -3033 ($ (-1 (-114) |#1|) $ (-560))) (-15 -2091 ($ |#1| $ (-560))) (-15 -2091 ($ (-1 (-114) |#1|) $ (-560)))))
+((-2243 (((-114) $ $) 20 T ELT)) (-3574 (($ |#1| $) 77 T ELT) (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1925 (($ $ $) 73 T ELT)) (-3895 (((-114) $ $) 74 T ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-2512 (($ (-663 |#1|)) 69 T ELT) (($) 68 T ELT)) (-1864 (($ (-1 (-114) |#1|) $) 46 (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) 56 (|has| $ (-6 -4508)) ELT)) (-3525 (($) 7 T CONST)) (-4329 (($ $) 63 T ELT)) (-3658 (($ $) 59 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2091 (($ |#1| $) 48 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) |#1|) $) 47 (|has| $ (-6 -4508)) ELT)) (-3033 (($ |#1| $) 58 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 55 (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4508)) ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-3653 (((-114) $ $) 65 T ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-3358 (((-1189) $) 23 T ELT)) (-3334 (($ $ $) 70 T ELT)) (-1878 ((|#1| $) 40 T ELT)) (-3888 (($ |#1| $) 41 T ELT) (($ |#1| $ (-793)) 64 T ELT)) (-3376 (((-1151) $) 22 T ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 52 T ELT)) (-2796 ((|#1| $) 42 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1553 (((-663 (-2 (|:| -3067 |#1|) (|:| -3384 (-793)))) $) 62 T ELT)) (-2358 (($ $ |#1|) 72 T ELT) (($ $ $) 71 T ELT)) (-4468 (($) 50 T ELT) (($ (-663 |#1|)) 49 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) 60 (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 51 T ELT)) (-3913 (((-887) $) 18 T ELT)) (-4074 (($ (-663 |#1|)) 67 T ELT) (($) 66 T ELT)) (-3925 (((-114) $ $) 21 T ELT)) (-3184 (($ (-663 |#1|)) 43 T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 T ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-759 |#1|) (-142) (-1132)) (T -759))
NIL
(-13 (-717 |t#1|) (-1130 |t#1|))
(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-632 (-887)) . T) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-717 |#1|) . T) ((-1130 |#1|) . T) ((-1132) . T) ((-1247) . T))
-((-2743 (((-1303) (-1189)) 8 T ELT)))
-(((-760) (-10 -7 (-15 -2743 ((-1303) (-1189))))) (T -760))
-((-2743 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-760)))))
-(-10 -7 (-15 -2743 ((-1303) (-1189))))
-((-3016 (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 15 T ELT)))
-(((-761 |#1|) (-10 -7 (-15 -3016 ((-663 |#1|) (-663 |#1|) (-663 |#1|)))) (-871)) (T -761))
-((-3016 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-761 *3)))))
-(-10 -7 (-15 -3016 ((-663 |#1|) (-663 |#1|) (-663 |#1|))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-1443 (((-663 |#2|) $) 149 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 142 (|has| |#1| (-571)) ELT)) (-3244 (($ $) 141 (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) 139 (|has| |#1| (-571)) ELT)) (-4337 (($ $) 98 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3455 (($ $) 81 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-4471 (($ $) 80 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4313 (($ $) 97 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3430 (($ $) 82 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4363 (($ $) 96 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3477 (($ $) 83 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2238 (($) 18 T CONST)) (-1624 (($ $) 133 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-3739 (((-975 |#1|) $ (-793)) 111 T ELT) (((-975 |#1|) $ (-793) (-793)) 110 T ELT)) (-4386 (((-114) $) 150 T ELT)) (-3796 (($) 108 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3913 (((-793) $ |#2|) 113 T ELT) (((-793) $ |#2| (-793)) 112 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-2146 (($ $ (-560)) 79 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1556 (((-114) $) 131 T ELT)) (-1417 (($ $ (-663 |#2|) (-663 (-545 |#2|))) 148 T ELT) (($ $ |#2| (-545 |#2|)) 147 T ELT) (($ |#1| (-545 |#2|)) 132 T ELT) (($ $ |#2| (-793)) 115 T ELT) (($ $ (-663 |#2|) (-663 (-793))) 114 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 130 T ELT)) (-2192 (($ $) 105 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1583 (($ $) 128 T ELT)) (-1597 ((|#1| $) 127 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-2518 (($ $ |#2|) 109 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3855 (((-1151) $) 11 T ELT)) (-4372 (($ $ (-793)) 116 T ELT)) (-1528 (((-3 $ "failed") $ $) 143 (|has| |#1| (-571)) ELT)) (-3251 (($ $) 106 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4187 (($ $ |#2| $) 124 T ELT) (($ $ (-663 |#2|) (-663 $)) 123 T ELT) (($ $ (-663 (-305 $))) 122 T ELT) (($ $ (-305 $)) 121 T ELT) (($ $ $ $) 120 T ELT) (($ $ (-663 $) (-663 $)) 119 T ELT)) (-2894 (($ $ (-663 |#2|) (-663 (-793))) 44 T ELT) (($ $ |#2| (-793)) 43 T ELT) (($ $ (-663 |#2|)) 42 T ELT) (($ $ |#2|) 40 T ELT)) (-3630 (((-545 |#2|) $) 129 T ELT)) (-4373 (($ $) 95 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3488 (($ $) 84 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4352 (($ $) 94 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3466 (($ $) 85 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4325 (($ $) 93 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3443 (($ $) 86 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3266 (($ $) 151 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 146 (|has| |#1| (-175)) ELT) (($ $) 144 (|has| |#1| (-571)) ELT) (($ (-421 (-560))) 136 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2305 ((|#1| $ (-545 |#2|)) 134 T ELT) (($ $ |#2| (-793)) 118 T ELT) (($ $ (-663 |#2|) (-663 (-793))) 117 T ELT)) (-1964 (((-3 $ "failed") $) 145 (|has| |#1| (-147)) ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-4411 (($ $) 104 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4263 (($ $) 92 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2948 (((-114) $ $) 140 (|has| |#1| (-571)) ELT)) (-4387 (($ $) 103 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3499 (($ $) 91 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4438 (($ $) 102 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4287 (($ $) 90 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3837 (($ $) 101 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4302 (($ $) 89 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4423 (($ $) 100 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4275 (($ $) 88 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4398 (($ $) 99 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4252 (($ $) 87 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($ $ (-663 |#2|) (-663 (-793))) 47 T ELT) (($ $ |#2| (-793)) 46 T ELT) (($ $ (-663 |#2|)) 45 T ELT) (($ $ |#2|) 41 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ |#1|) 135 (|has| |#1| (-376)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ $) 107 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 78 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 138 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) 137 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 126 T ELT) (($ $ |#1|) 125 T ELT)))
+((-3944 (((-1303) (-1189)) 8 T ELT)))
+(((-760) (-10 -7 (-15 -3944 ((-1303) (-1189))))) (T -760))
+((-3944 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-760)))))
+(-10 -7 (-15 -3944 ((-1303) (-1189))))
+((-3811 (((-663 |#1|) (-663 |#1|) (-663 |#1|)) 15 T ELT)))
+(((-761 |#1|) (-10 -7 (-15 -3811 ((-663 |#1|) (-663 |#1|) (-663 |#1|)))) (-871)) (T -761))
+((-3811 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-761 *3)))))
+(-10 -7 (-15 -3811 ((-663 |#1|) (-663 |#1|) (-663 |#1|))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-4162 (((-663 |#2|) $) 149 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 142 (|has| |#1| (-571)) ELT)) (-4366 (($ $) 141 (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) 139 (|has| |#1| (-571)) ELT)) (-1982 (($ $) 98 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1832 (($ $) 81 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-4021 (($ $) 80 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1958 (($ $) 97 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1806 (($ $) 82 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2003 (($ $) 96 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1856 (($ $) 83 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3525 (($) 18 T CONST)) (-3062 (($ $) 133 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-4153 (((-975 |#1|) $ (-793)) 111 T ELT) (((-975 |#1|) $ (-793) (-793)) 110 T ELT)) (-2328 (((-114) $) 150 T ELT)) (-2503 (($) 108 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1460 (((-793) $ |#2|) 113 T ELT) (((-793) $ |#2| (-793)) 112 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-1956 (($ $ (-560)) 79 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1673 (((-114) $) 131 T ELT)) (-4139 (($ $ (-663 |#2|) (-663 (-545 |#2|))) 148 T ELT) (($ $ |#2| (-545 |#2|)) 147 T ELT) (($ |#1| (-545 |#2|)) 132 T ELT) (($ $ |#2| (-793)) 115 T ELT) (($ $ (-663 |#2|) (-663 (-793))) 114 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 130 T ELT)) (-2831 (($ $) 105 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3024 (($ $) 128 T ELT)) (-3037 ((|#1| $) 127 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-4424 (($ $ |#2|) 109 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2219 (($ $ (-793)) 116 T ELT)) (-2233 (((-3 $ "failed") $ $) 143 (|has| |#1| (-571)) ELT)) (-2515 (($ $) 106 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2371 (($ $ |#2| $) 124 T ELT) (($ $ (-663 |#2|) (-663 $)) 123 T ELT) (($ $ (-663 (-305 $))) 122 T ELT) (($ $ (-305 $)) 121 T ELT) (($ $ $ $) 120 T ELT) (($ $ (-663 $) (-663 $)) 119 T ELT)) (-3161 (($ $ (-663 |#2|) (-663 (-793))) 44 T ELT) (($ $ |#2| (-793)) 43 T ELT) (($ $ (-663 |#2|)) 42 T ELT) (($ $ |#2|) 40 T ELT)) (-3900 (((-545 |#2|) $) 129 T ELT)) (-2013 (($ $) 95 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1870 (($ $) 84 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1992 (($ $) 94 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1844 (($ $) 85 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1972 (($ $) 93 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1820 (($ $) 86 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3329 (($ $) 151 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 146 (|has| |#1| (-175)) ELT) (($ $) 144 (|has| |#1| (-571)) ELT) (($ (-421 (-560))) 136 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2920 ((|#1| $ (-545 |#2|)) 134 T ELT) (($ $ |#2| (-793)) 118 T ELT) (($ $ (-663 |#2|) (-663 (-793))) 117 T ELT)) (-3919 (((-3 $ "failed") $) 145 (|has| |#1| (-147)) ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-2042 (($ $) 104 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1907 (($ $) 92 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4361 (((-114) $ $) 140 (|has| |#1| (-571)) ELT)) (-2022 (($ $) 103 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1882 (($ $) 91 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2059 (($ $) 102 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1932 (($ $) 90 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3392 (($ $) 101 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1945 (($ $) 89 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2050 (($ $) 100 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1920 (($ $) 88 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2032 (($ $) 99 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1895 (($ $) 87 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($ $ (-663 |#2|) (-663 (-793))) 47 T ELT) (($ $ |#2| (-793)) 46 T ELT) (($ $ (-663 |#2|)) 45 T ELT) (($ $ |#2|) 41 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ |#1|) 135 (|has| |#1| (-376)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ $) 107 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 78 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 138 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) 137 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 126 T ELT) (($ $ |#1|) 125 T ELT)))
(((-762 |#1| |#2|) (-142) (-1080) (-871)) (T -762))
-((-2305 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *2)) (-4 *4 (-1080)) (-4 *2 (-871)))) (-2305 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *5)) (-5 *3 (-663 (-793))) (-4 *1 (-762 *4 *5)) (-4 *4 (-1080)) (-4 *5 (-871)))) (-4372 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-762 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-871)))) (-1417 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *2)) (-4 *4 (-1080)) (-4 *2 (-871)))) (-1417 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *5)) (-5 *3 (-663 (-793))) (-4 *1 (-762 *4 *5)) (-4 *4 (-1080)) (-4 *5 (-871)))) (-3913 (*1 *2 *1 *3) (-12 (-4 *1 (-762 *4 *3)) (-4 *4 (-1080)) (-4 *3 (-871)) (-5 *2 (-793)))) (-3913 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-793)) (-4 *1 (-762 *4 *3)) (-4 *4 (-1080)) (-4 *3 (-871)))) (-3739 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *5)) (-4 *4 (-1080)) (-4 *5 (-871)) (-5 *2 (-975 *4)))) (-3739 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *5)) (-4 *4 (-1080)) (-4 *5 (-871)) (-5 *2 (-975 *4)))) (-2518 (*1 *1 *1 *2) (-12 (-4 *1 (-762 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-871)) (-4 *3 (-38 (-421 (-560)))))))
-(-13 (-927 |t#2|) (-1004 |t#1| (-545 |t#2|) |t#2|) (-528 |t#2| $) (-321 $) (-10 -8 (-15 -2305 ($ $ |t#2| (-793))) (-15 -2305 ($ $ (-663 |t#2|) (-663 (-793)))) (-15 -4372 ($ $ (-793))) (-15 -1417 ($ $ |t#2| (-793))) (-15 -1417 ($ $ (-663 |t#2|) (-663 (-793)))) (-15 -3913 ((-793) $ |t#2|)) (-15 -3913 ((-793) $ |t#2| (-793))) (-15 -3739 ((-975 |t#1|) $ (-793))) (-15 -3739 ((-975 |t#1|) $ (-793) (-793))) (IF (|has| |t#1| (-38 (-421 (-560)))) (PROGN (-15 -2518 ($ $ |t#2|)) (-6 (-1033)) (-6 (-1233))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-545 |#2|)) . T) ((-25) . T) ((-38 #1=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-571)) ((-35) |has| |#1| (-38 (-421 (-560)))) ((-95) |has| |#1| (-38 (-421 (-560)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) |has| |#1| (-38 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) |has| |#1| (-571)) ((-632 (-887)) . T) ((-175) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-296) |has| |#1| (-38 (-421 (-560)))) ((-302) |has| |#1| (-571)) ((-321 $) . T) ((-507) |has| |#1| (-38 (-421 (-560)))) ((-528 |#2| $) . T) ((-528 $ $) . T) ((-571) |has| |#1| (-571)) ((-668 #1#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) |has| |#1| (-38 (-421 (-560)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-571)) ((-739 #1#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-571)) ((-748) . T) ((-921 $ |#2|) . T) ((-927 |#2|) . T) ((-929 |#2|) . T) ((-1004 |#1| #0# |#2|) . T) ((-1033) |has| |#1| (-38 (-421 (-560)))) ((-1082 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1082 |#1|) . T) ((-1082 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1087 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1087 |#1|) . T) ((-1087 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1233) |has| |#1| (-38 (-421 (-560)))) ((-1236) |has| |#1| (-38 (-421 (-560)))) ((-1247) . T))
-((-4457 (((-419 (-1201 |#4|)) (-1201 |#4|)) 30 T ELT) (((-419 |#4|) |#4|) 26 T ELT)))
-(((-763 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4457 ((-419 |#4|) |#4|)) (-15 -4457 ((-419 (-1201 |#4|)) (-1201 |#4|)))) (-871) (-815) (-13 (-319) (-149)) (-979 |#3| |#2| |#1|)) (T -763))
-((-4457 (*1 *2 *3) (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-979 *6 *5 *4)) (-5 *2 (-419 (-1201 *7))) (-5 *1 (-763 *4 *5 *6 *7)) (-5 *3 (-1201 *7)))) (-4457 (*1 *2 *3) (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-419 *3)) (-5 *1 (-763 *4 *5 *6 *3)) (-4 *3 (-979 *6 *5 *4)))))
-(-10 -7 (-15 -4457 ((-419 |#4|) |#4|)) (-15 -4457 ((-419 (-1201 |#4|)) (-1201 |#4|))))
-((-2435 (((-419 |#4|) |#4| |#2|) 140 T ELT)) (-2962 (((-419 |#4|) |#4|) NIL T ELT)) (-3023 (((-419 (-1201 |#4|)) (-1201 |#4|)) 127 T ELT) (((-419 |#4|) |#4|) 52 T ELT)) (-2379 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-663 (-2 (|:| -4457 (-1201 |#4|)) (|:| -3205 (-560)))))) (-1201 |#4|) (-663 |#2|) (-663 (-663 |#3|))) 81 T ELT)) (-1811 (((-1201 |#3|) (-1201 |#3|) (-560)) 166 T ELT)) (-3966 (((-663 (-793)) (-1201 |#4|) (-663 |#2|) (-793)) 75 T ELT)) (-4116 (((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-1201 |#3|) (-1201 |#3|) |#4| (-663 |#2|) (-663 (-793)) (-663 |#3|)) 79 T ELT)) (-3696 (((-2 (|:| |upol| (-1201 |#3|)) (|:| |Lval| (-663 |#3|)) (|:| |Lfact| (-663 (-2 (|:| -4457 (-1201 |#3|)) (|:| -3205 (-560))))) (|:| |ctpol| |#3|)) (-1201 |#4|) (-663 |#2|) (-663 (-663 |#3|))) 27 T ELT)) (-3813 (((-2 (|:| -2738 (-1201 |#4|)) (|:| |polval| (-1201 |#3|))) (-1201 |#4|) (-1201 |#3|) (-560)) 72 T ELT)) (-4340 (((-560) (-663 (-2 (|:| -4457 (-1201 |#3|)) (|:| -3205 (-560))))) 162 T ELT)) (-3816 ((|#4| (-560) (-419 |#4|)) 73 T ELT)) (-2617 (((-114) (-663 (-2 (|:| -4457 (-1201 |#3|)) (|:| -3205 (-560)))) (-663 (-2 (|:| -4457 (-1201 |#3|)) (|:| -3205 (-560))))) NIL T ELT)))
-(((-764 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3023 ((-419 |#4|) |#4|)) (-15 -3023 ((-419 (-1201 |#4|)) (-1201 |#4|))) (-15 -2962 ((-419 |#4|) |#4|)) (-15 -4340 ((-560) (-663 (-2 (|:| -4457 (-1201 |#3|)) (|:| -3205 (-560)))))) (-15 -2435 ((-419 |#4|) |#4| |#2|)) (-15 -3813 ((-2 (|:| -2738 (-1201 |#4|)) (|:| |polval| (-1201 |#3|))) (-1201 |#4|) (-1201 |#3|) (-560))) (-15 -2379 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-663 (-2 (|:| -4457 (-1201 |#4|)) (|:| -3205 (-560)))))) (-1201 |#4|) (-663 |#2|) (-663 (-663 |#3|)))) (-15 -3696 ((-2 (|:| |upol| (-1201 |#3|)) (|:| |Lval| (-663 |#3|)) (|:| |Lfact| (-663 (-2 (|:| -4457 (-1201 |#3|)) (|:| -3205 (-560))))) (|:| |ctpol| |#3|)) (-1201 |#4|) (-663 |#2|) (-663 (-663 |#3|)))) (-15 -3816 (|#4| (-560) (-419 |#4|))) (-15 -2617 ((-114) (-663 (-2 (|:| -4457 (-1201 |#3|)) (|:| -3205 (-560)))) (-663 (-2 (|:| -4457 (-1201 |#3|)) (|:| -3205 (-560)))))) (-15 -4116 ((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-1201 |#3|) (-1201 |#3|) |#4| (-663 |#2|) (-663 (-793)) (-663 |#3|))) (-15 -3966 ((-663 (-793)) (-1201 |#4|) (-663 |#2|) (-793))) (-15 -1811 ((-1201 |#3|) (-1201 |#3|) (-560)))) (-815) (-871) (-319) (-979 |#3| |#1| |#2|)) (T -764))
-((-1811 (*1 *2 *2 *3) (-12 (-5 *2 (-1201 *6)) (-5 *3 (-560)) (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-979 *6 *4 *5)))) (-3966 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1201 *9)) (-5 *4 (-663 *7)) (-4 *7 (-871)) (-4 *9 (-979 *8 *6 *7)) (-4 *6 (-815)) (-4 *8 (-319)) (-5 *2 (-663 (-793))) (-5 *1 (-764 *6 *7 *8 *9)) (-5 *5 (-793)))) (-4116 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1201 *11)) (-5 *6 (-663 *10)) (-5 *7 (-663 (-793))) (-5 *8 (-663 *11)) (-4 *10 (-871)) (-4 *11 (-319)) (-4 *9 (-815)) (-4 *5 (-979 *11 *9 *10)) (-5 *2 (-663 (-1201 *5))) (-5 *1 (-764 *9 *10 *11 *5)) (-5 *3 (-1201 *5)))) (-2617 (*1 *2 *3 *3) (-12 (-5 *3 (-663 (-2 (|:| -4457 (-1201 *6)) (|:| -3205 (-560))))) (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)) (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-979 *6 *4 *5)))) (-3816 (*1 *2 *3 *4) (-12 (-5 *3 (-560)) (-5 *4 (-419 *2)) (-4 *2 (-979 *7 *5 *6)) (-5 *1 (-764 *5 *6 *7 *2)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-319)))) (-3696 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1201 *9)) (-5 *4 (-663 *7)) (-5 *5 (-663 (-663 *8))) (-4 *7 (-871)) (-4 *8 (-319)) (-4 *9 (-979 *8 *6 *7)) (-4 *6 (-815)) (-5 *2 (-2 (|:| |upol| (-1201 *8)) (|:| |Lval| (-663 *8)) (|:| |Lfact| (-663 (-2 (|:| -4457 (-1201 *8)) (|:| -3205 (-560))))) (|:| |ctpol| *8))) (-5 *1 (-764 *6 *7 *8 *9)))) (-2379 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-663 *7)) (-5 *5 (-663 (-663 *8))) (-4 *7 (-871)) (-4 *8 (-319)) (-4 *6 (-815)) (-4 *9 (-979 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-663 (-2 (|:| -4457 (-1201 *9)) (|:| -3205 (-560))))))) (-5 *1 (-764 *6 *7 *8 *9)) (-5 *3 (-1201 *9)))) (-3813 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-560)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-319)) (-4 *9 (-979 *8 *6 *7)) (-5 *2 (-2 (|:| -2738 (-1201 *9)) (|:| |polval| (-1201 *8)))) (-5 *1 (-764 *6 *7 *8 *9)) (-5 *3 (-1201 *9)) (-5 *4 (-1201 *8)))) (-2435 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-319)) (-5 *2 (-419 *3)) (-5 *1 (-764 *5 *4 *6 *3)) (-4 *3 (-979 *6 *5 *4)))) (-4340 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -4457 (-1201 *6)) (|:| -3205 (-560))))) (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-560)) (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-979 *6 *4 *5)))) (-2962 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) (-5 *2 (-419 *3)) (-5 *1 (-764 *4 *5 *6 *3)) (-4 *3 (-979 *6 *4 *5)))) (-3023 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-419 (-1201 *7))) (-5 *1 (-764 *4 *5 *6 *7)) (-5 *3 (-1201 *7)))) (-3023 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) (-5 *2 (-419 *3)) (-5 *1 (-764 *4 *5 *6 *3)) (-4 *3 (-979 *6 *4 *5)))))
-(-10 -7 (-15 -3023 ((-419 |#4|) |#4|)) (-15 -3023 ((-419 (-1201 |#4|)) (-1201 |#4|))) (-15 -2962 ((-419 |#4|) |#4|)) (-15 -4340 ((-560) (-663 (-2 (|:| -4457 (-1201 |#3|)) (|:| -3205 (-560)))))) (-15 -2435 ((-419 |#4|) |#4| |#2|)) (-15 -3813 ((-2 (|:| -2738 (-1201 |#4|)) (|:| |polval| (-1201 |#3|))) (-1201 |#4|) (-1201 |#3|) (-560))) (-15 -2379 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-663 (-2 (|:| -4457 (-1201 |#4|)) (|:| -3205 (-560)))))) (-1201 |#4|) (-663 |#2|) (-663 (-663 |#3|)))) (-15 -3696 ((-2 (|:| |upol| (-1201 |#3|)) (|:| |Lval| (-663 |#3|)) (|:| |Lfact| (-663 (-2 (|:| -4457 (-1201 |#3|)) (|:| -3205 (-560))))) (|:| |ctpol| |#3|)) (-1201 |#4|) (-663 |#2|) (-663 (-663 |#3|)))) (-15 -3816 (|#4| (-560) (-419 |#4|))) (-15 -2617 ((-114) (-663 (-2 (|:| -4457 (-1201 |#3|)) (|:| -3205 (-560)))) (-663 (-2 (|:| -4457 (-1201 |#3|)) (|:| -3205 (-560)))))) (-15 -4116 ((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-1201 |#3|) (-1201 |#3|) |#4| (-663 |#2|) (-663 (-793)) (-663 |#3|))) (-15 -3966 ((-663 (-793)) (-1201 |#4|) (-663 |#2|) (-793))) (-15 -1811 ((-1201 |#3|) (-1201 |#3|) (-560))))
-((-1784 (($ $ (-948)) 17 T ELT)))
-(((-765 |#1| |#2|) (-10 -8 (-15 -1784 (|#1| |#1| (-948)))) (-766 |#2|) (-175)) (T -765))
-NIL
-(-10 -8 (-15 -1784 (|#1| |#1| (-948))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1866 (($ $ (-948)) 31 T ELT)) (-1784 (($ $ (-948)) 38 T ELT)) (-3520 (($ $ (-948)) 32 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-2013 (($ $ $) 28 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-4128 (($ $ $ $) 29 T ELT)) (-3868 (($ $ $) 27 T ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 33 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT)))
+((-2920 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *2)) (-4 *4 (-1080)) (-4 *2 (-871)))) (-2920 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *5)) (-5 *3 (-663 (-793))) (-4 *1 (-762 *4 *5)) (-4 *4 (-1080)) (-4 *5 (-871)))) (-2219 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-762 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-871)))) (-4139 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *2)) (-4 *4 (-1080)) (-4 *2 (-871)))) (-4139 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *5)) (-5 *3 (-663 (-793))) (-4 *1 (-762 *4 *5)) (-4 *4 (-1080)) (-4 *5 (-871)))) (-1460 (*1 *2 *1 *3) (-12 (-4 *1 (-762 *4 *3)) (-4 *4 (-1080)) (-4 *3 (-871)) (-5 *2 (-793)))) (-1460 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-793)) (-4 *1 (-762 *4 *3)) (-4 *4 (-1080)) (-4 *3 (-871)))) (-4153 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *5)) (-4 *4 (-1080)) (-4 *5 (-871)) (-5 *2 (-975 *4)))) (-4153 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *5)) (-4 *4 (-1080)) (-4 *5 (-871)) (-5 *2 (-975 *4)))) (-4424 (*1 *1 *1 *2) (-12 (-4 *1 (-762 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-871)) (-4 *3 (-38 (-421 (-560)))))))
+(-13 (-927 |t#2|) (-1004 |t#1| (-545 |t#2|) |t#2|) (-528 |t#2| $) (-321 $) (-10 -8 (-15 -2920 ($ $ |t#2| (-793))) (-15 -2920 ($ $ (-663 |t#2|) (-663 (-793)))) (-15 -2219 ($ $ (-793))) (-15 -4139 ($ $ |t#2| (-793))) (-15 -4139 ($ $ (-663 |t#2|) (-663 (-793)))) (-15 -1460 ((-793) $ |t#2|)) (-15 -1460 ((-793) $ |t#2| (-793))) (-15 -4153 ((-975 |t#1|) $ (-793))) (-15 -4153 ((-975 |t#1|) $ (-793) (-793))) (IF (|has| |t#1| (-38 (-421 (-560)))) (PROGN (-15 -4424 ($ $ |t#2|)) (-6 (-1033)) (-6 (-1233))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-545 |#2|)) . T) ((-25) . T) ((-38 #1=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-571)) ((-35) |has| |#1| (-38 (-421 (-560)))) ((-95) |has| |#1| (-38 (-421 (-560)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) |has| |#1| (-38 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) |has| |#1| (-571)) ((-632 (-887)) . T) ((-175) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-296) |has| |#1| (-38 (-421 (-560)))) ((-302) |has| |#1| (-571)) ((-321 $) . T) ((-507) |has| |#1| (-38 (-421 (-560)))) ((-528 |#2| $) . T) ((-528 $ $) . T) ((-571) |has| |#1| (-571)) ((-668 #1#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) |has| |#1| (-38 (-421 (-560)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-571)) ((-739 #1#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-571)) ((-748) . T) ((-921 $ |#2|) . T) ((-927 |#2|) . T) ((-929 |#2|) . T) ((-1004 |#1| #0# |#2|) . T) ((-1033) |has| |#1| (-38 (-421 (-560)))) ((-1082 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1082 |#1|) . T) ((-1082 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1087 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1087 |#1|) . T) ((-1087 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1233) |has| |#1| (-38 (-421 (-560)))) ((-1236) |has| |#1| (-38 (-421 (-560)))) ((-1247) . T))
+((-4012 (((-419 (-1201 |#4|)) (-1201 |#4|)) 30 T ELT) (((-419 |#4|) |#4|) 26 T ELT)))
+(((-763 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4012 ((-419 |#4|) |#4|)) (-15 -4012 ((-419 (-1201 |#4|)) (-1201 |#4|)))) (-871) (-815) (-13 (-319) (-149)) (-979 |#3| |#2| |#1|)) (T -763))
+((-4012 (*1 *2 *3) (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-979 *6 *5 *4)) (-5 *2 (-419 (-1201 *7))) (-5 *1 (-763 *4 *5 *6 *7)) (-5 *3 (-1201 *7)))) (-4012 (*1 *2 *3) (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-419 *3)) (-5 *1 (-763 *4 *5 *6 *3)) (-4 *3 (-979 *6 *5 *4)))))
+(-10 -7 (-15 -4012 ((-419 |#4|) |#4|)) (-15 -4012 ((-419 (-1201 |#4|)) (-1201 |#4|))))
+((-1724 (((-419 |#4|) |#4| |#2|) 140 T ELT)) (-1337 (((-419 |#4|) |#4|) NIL T ELT)) (-3898 (((-419 (-1201 |#4|)) (-1201 |#4|)) 127 T ELT) (((-419 |#4|) |#4|) 52 T ELT)) (-2410 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-663 (-2 (|:| -4012 (-1201 |#4|)) (|:| -2030 (-560)))))) (-1201 |#4|) (-663 |#2|) (-663 (-663 |#3|))) 81 T ELT)) (-1700 (((-1201 |#3|) (-1201 |#3|) (-560)) 166 T ELT)) (-3927 (((-663 (-793)) (-1201 |#4|) (-663 |#2|) (-793)) 75 T ELT)) (-1767 (((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-1201 |#3|) (-1201 |#3|) |#4| (-663 |#2|) (-663 (-793)) (-663 |#3|)) 79 T ELT)) (-3270 (((-2 (|:| |upol| (-1201 |#3|)) (|:| |Lval| (-663 |#3|)) (|:| |Lfact| (-663 (-2 (|:| -4012 (-1201 |#3|)) (|:| -2030 (-560))))) (|:| |ctpol| |#3|)) (-1201 |#4|) (-663 |#2|) (-663 (-663 |#3|))) 27 T ELT)) (-1772 (((-2 (|:| -1617 (-1201 |#4|)) (|:| |polval| (-1201 |#3|))) (-1201 |#4|) (-1201 |#3|) (-560)) 72 T ELT)) (-3212 (((-560) (-663 (-2 (|:| -4012 (-1201 |#3|)) (|:| -2030 (-560))))) 162 T ELT)) (-1795 ((|#4| (-560) (-419 |#4|)) 73 T ELT)) (-2816 (((-114) (-663 (-2 (|:| -4012 (-1201 |#3|)) (|:| -2030 (-560)))) (-663 (-2 (|:| -4012 (-1201 |#3|)) (|:| -2030 (-560))))) NIL T ELT)))
+(((-764 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3898 ((-419 |#4|) |#4|)) (-15 -3898 ((-419 (-1201 |#4|)) (-1201 |#4|))) (-15 -1337 ((-419 |#4|) |#4|)) (-15 -3212 ((-560) (-663 (-2 (|:| -4012 (-1201 |#3|)) (|:| -2030 (-560)))))) (-15 -1724 ((-419 |#4|) |#4| |#2|)) (-15 -1772 ((-2 (|:| -1617 (-1201 |#4|)) (|:| |polval| (-1201 |#3|))) (-1201 |#4|) (-1201 |#3|) (-560))) (-15 -2410 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-663 (-2 (|:| -4012 (-1201 |#4|)) (|:| -2030 (-560)))))) (-1201 |#4|) (-663 |#2|) (-663 (-663 |#3|)))) (-15 -3270 ((-2 (|:| |upol| (-1201 |#3|)) (|:| |Lval| (-663 |#3|)) (|:| |Lfact| (-663 (-2 (|:| -4012 (-1201 |#3|)) (|:| -2030 (-560))))) (|:| |ctpol| |#3|)) (-1201 |#4|) (-663 |#2|) (-663 (-663 |#3|)))) (-15 -1795 (|#4| (-560) (-419 |#4|))) (-15 -2816 ((-114) (-663 (-2 (|:| -4012 (-1201 |#3|)) (|:| -2030 (-560)))) (-663 (-2 (|:| -4012 (-1201 |#3|)) (|:| -2030 (-560)))))) (-15 -1767 ((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-1201 |#3|) (-1201 |#3|) |#4| (-663 |#2|) (-663 (-793)) (-663 |#3|))) (-15 -3927 ((-663 (-793)) (-1201 |#4|) (-663 |#2|) (-793))) (-15 -1700 ((-1201 |#3|) (-1201 |#3|) (-560)))) (-815) (-871) (-319) (-979 |#3| |#1| |#2|)) (T -764))
+((-1700 (*1 *2 *2 *3) (-12 (-5 *2 (-1201 *6)) (-5 *3 (-560)) (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-979 *6 *4 *5)))) (-3927 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1201 *9)) (-5 *4 (-663 *7)) (-4 *7 (-871)) (-4 *9 (-979 *8 *6 *7)) (-4 *6 (-815)) (-4 *8 (-319)) (-5 *2 (-663 (-793))) (-5 *1 (-764 *6 *7 *8 *9)) (-5 *5 (-793)))) (-1767 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1201 *11)) (-5 *6 (-663 *10)) (-5 *7 (-663 (-793))) (-5 *8 (-663 *11)) (-4 *10 (-871)) (-4 *11 (-319)) (-4 *9 (-815)) (-4 *5 (-979 *11 *9 *10)) (-5 *2 (-663 (-1201 *5))) (-5 *1 (-764 *9 *10 *11 *5)) (-5 *3 (-1201 *5)))) (-2816 (*1 *2 *3 *3) (-12 (-5 *3 (-663 (-2 (|:| -4012 (-1201 *6)) (|:| -2030 (-560))))) (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)) (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-979 *6 *4 *5)))) (-1795 (*1 *2 *3 *4) (-12 (-5 *3 (-560)) (-5 *4 (-419 *2)) (-4 *2 (-979 *7 *5 *6)) (-5 *1 (-764 *5 *6 *7 *2)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-319)))) (-3270 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1201 *9)) (-5 *4 (-663 *7)) (-5 *5 (-663 (-663 *8))) (-4 *7 (-871)) (-4 *8 (-319)) (-4 *9 (-979 *8 *6 *7)) (-4 *6 (-815)) (-5 *2 (-2 (|:| |upol| (-1201 *8)) (|:| |Lval| (-663 *8)) (|:| |Lfact| (-663 (-2 (|:| -4012 (-1201 *8)) (|:| -2030 (-560))))) (|:| |ctpol| *8))) (-5 *1 (-764 *6 *7 *8 *9)))) (-2410 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-663 *7)) (-5 *5 (-663 (-663 *8))) (-4 *7 (-871)) (-4 *8 (-319)) (-4 *6 (-815)) (-4 *9 (-979 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-663 (-2 (|:| -4012 (-1201 *9)) (|:| -2030 (-560))))))) (-5 *1 (-764 *6 *7 *8 *9)) (-5 *3 (-1201 *9)))) (-1772 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-560)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-319)) (-4 *9 (-979 *8 *6 *7)) (-5 *2 (-2 (|:| -1617 (-1201 *9)) (|:| |polval| (-1201 *8)))) (-5 *1 (-764 *6 *7 *8 *9)) (-5 *3 (-1201 *9)) (-5 *4 (-1201 *8)))) (-1724 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-319)) (-5 *2 (-419 *3)) (-5 *1 (-764 *5 *4 *6 *3)) (-4 *3 (-979 *6 *5 *4)))) (-3212 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -4012 (-1201 *6)) (|:| -2030 (-560))))) (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-560)) (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-979 *6 *4 *5)))) (-1337 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) (-5 *2 (-419 *3)) (-5 *1 (-764 *4 *5 *6 *3)) (-4 *3 (-979 *6 *4 *5)))) (-3898 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-419 (-1201 *7))) (-5 *1 (-764 *4 *5 *6 *7)) (-5 *3 (-1201 *7)))) (-3898 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) (-5 *2 (-419 *3)) (-5 *1 (-764 *4 *5 *6 *3)) (-4 *3 (-979 *6 *4 *5)))))
+(-10 -7 (-15 -3898 ((-419 |#4|) |#4|)) (-15 -3898 ((-419 (-1201 |#4|)) (-1201 |#4|))) (-15 -1337 ((-419 |#4|) |#4|)) (-15 -3212 ((-560) (-663 (-2 (|:| -4012 (-1201 |#3|)) (|:| -2030 (-560)))))) (-15 -1724 ((-419 |#4|) |#4| |#2|)) (-15 -1772 ((-2 (|:| -1617 (-1201 |#4|)) (|:| |polval| (-1201 |#3|))) (-1201 |#4|) (-1201 |#3|) (-560))) (-15 -2410 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-663 (-2 (|:| -4012 (-1201 |#4|)) (|:| -2030 (-560)))))) (-1201 |#4|) (-663 |#2|) (-663 (-663 |#3|)))) (-15 -3270 ((-2 (|:| |upol| (-1201 |#3|)) (|:| |Lval| (-663 |#3|)) (|:| |Lfact| (-663 (-2 (|:| -4012 (-1201 |#3|)) (|:| -2030 (-560))))) (|:| |ctpol| |#3|)) (-1201 |#4|) (-663 |#2|) (-663 (-663 |#3|)))) (-15 -1795 (|#4| (-560) (-419 |#4|))) (-15 -2816 ((-114) (-663 (-2 (|:| -4012 (-1201 |#3|)) (|:| -2030 (-560)))) (-663 (-2 (|:| -4012 (-1201 |#3|)) (|:| -2030 (-560)))))) (-15 -1767 ((-3 (-663 (-1201 |#4|)) "failed") (-1201 |#4|) (-1201 |#3|) (-1201 |#3|) |#4| (-663 |#2|) (-663 (-793)) (-663 |#3|))) (-15 -3927 ((-663 (-793)) (-1201 |#4|) (-663 |#2|) (-793))) (-15 -1700 ((-1201 |#3|) (-1201 |#3|) (-560))))
+((-1441 (($ $ (-948)) 17 T ELT)))
+(((-765 |#1| |#2|) (-10 -8 (-15 -1441 (|#1| |#1| (-948)))) (-766 |#2|) (-175)) (T -765))
+NIL
+(-10 -8 (-15 -1441 (|#1| |#1| (-948))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-4201 (($ $ (-948)) 31 T ELT)) (-1441 (($ $ (-948)) 38 T ELT)) (-2065 (($ $ (-948)) 32 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3117 (($ $ $) 28 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1777 (($ $ $ $) 29 T ELT)) (-4209 (($ $ $) 27 T ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 33 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT)))
(((-766 |#1|) (-142) (-175)) (T -766))
-((-1784 (*1 *1 *1 *2) (-12 (-5 *2 (-948)) (-4 *1 (-766 *3)) (-4 *3 (-175)))))
-(-13 (-783) (-739 |t#1|) (-10 -8 (-15 -1784 ($ $ (-948)))))
+((-1441 (*1 *1 *1 *2) (-12 (-5 *2 (-948)) (-4 *1 (-766 *3)) (-4 *3 (-175)))))
+(-13 (-783) (-739 |t#1|) (-10 -8 (-15 -1441 ($ $ (-948)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-742) . T) ((-783) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1132) . T) ((-1247) . T))
-((-1463 (((-1066) (-711 (-229)) (-560) (-114) (-560)) 26 T ELT)) (-3279 (((-1066) (-711 (-229)) (-560) (-114) (-560)) 25 T ELT)))
-(((-767) (-10 -7 (-15 -3279 ((-1066) (-711 (-229)) (-560) (-114) (-560))) (-15 -1463 ((-1066) (-711 (-229)) (-560) (-114) (-560))))) (T -767))
-((-1463 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-114)) (-5 *2 (-1066)) (-5 *1 (-767)))) (-3279 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-114)) (-5 *2 (-1066)) (-5 *1 (-767)))))
-(-10 -7 (-15 -3279 ((-1066) (-711 (-229)) (-560) (-114) (-560))) (-15 -1463 ((-1066) (-711 (-229)) (-560) (-114) (-560))))
-((-3163 (((-1066) (-560) (-560) (-560) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) 43 T ELT)) (-1475 (((-1066) (-560) (-560) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) 39 T ELT)) (-3424 (((-1066) (-229) (-229) (-229) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284)))) 32 T ELT)))
-(((-768) (-10 -7 (-15 -3424 ((-1066) (-229) (-229) (-229) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284))))) (-15 -1475 ((-1066) (-560) (-560) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN))))) (-15 -3163 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN))))))) (T -768))
-((-3163 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1066)) (-5 *1 (-768)))) (-1475 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1066)) (-5 *1 (-768)))) (-3424 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284)))) (-5 *2 (-1066)) (-5 *1 (-768)))))
-(-10 -7 (-15 -3424 ((-1066) (-229) (-229) (-229) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284))))) (-15 -1475 ((-1066) (-560) (-560) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN))))) (-15 -3163 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN))))))
-((-3744 (((-1066) (-560) (-560) (-711 (-229)) (-560)) 34 T ELT)) (-3422 (((-1066) (-560) (-560) (-711 (-229)) (-560)) 33 T ELT)) (-1809 (((-1066) (-560) (-711 (-229)) (-560)) 32 T ELT)) (-4301 (((-1066) (-560) (-711 (-229)) (-560)) 31 T ELT)) (-1349 (((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 30 T ELT)) (-1691 (((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 29 T ELT)) (-4485 (((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-560)) 28 T ELT)) (-3137 (((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-560)) 27 T ELT)) (-3840 (((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560)) 24 T ELT)) (-2722 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560)) 23 T ELT)) (-3778 (((-1066) (-560) (-711 (-229)) (-560)) 22 T ELT)) (-2436 (((-1066) (-560) (-711 (-229)) (-560)) 21 T ELT)))
-(((-769) (-10 -7 (-15 -2436 ((-1066) (-560) (-711 (-229)) (-560))) (-15 -3778 ((-1066) (-560) (-711 (-229)) (-560))) (-15 -2722 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3840 ((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3137 ((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-560))) (-15 -4485 ((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-560))) (-15 -1691 ((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -1349 ((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -4301 ((-1066) (-560) (-711 (-229)) (-560))) (-15 -1809 ((-1066) (-560) (-711 (-229)) (-560))) (-15 -3422 ((-1066) (-560) (-560) (-711 (-229)) (-560))) (-15 -3744 ((-1066) (-560) (-560) (-711 (-229)) (-560))))) (T -769))
-((-3744 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-3422 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-1809 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-4301 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-1349 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-1189)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-1691 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-1189)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-4485 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-1189)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-3137 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-1189)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-3840 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-2722 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-3778 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-2436 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))))
-(-10 -7 (-15 -2436 ((-1066) (-560) (-711 (-229)) (-560))) (-15 -3778 ((-1066) (-560) (-711 (-229)) (-560))) (-15 -2722 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3840 ((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3137 ((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-560))) (-15 -4485 ((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-560))) (-15 -1691 ((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -1349 ((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -4301 ((-1066) (-560) (-711 (-229)) (-560))) (-15 -1809 ((-1066) (-560) (-711 (-229)) (-560))) (-15 -3422 ((-1066) (-560) (-560) (-711 (-229)) (-560))) (-15 -3744 ((-1066) (-560) (-560) (-711 (-229)) (-560))))
-((-3885 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560) (-229) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) 52 T ELT)) (-4437 (((-1066) (-711 (-229)) (-711 (-229)) (-560) (-560)) 51 T ELT)) (-2530 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) 50 T ELT)) (-3524 (((-1066) (-229) (-229) (-560) (-560) (-560) (-560)) 46 T ELT)) (-1476 (((-1066) (-229) (-229) (-560) (-229) (-560) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 45 T ELT)) (-3773 (((-1066) (-229) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 44 T ELT)) (-3951 (((-1066) (-229) (-229) (-229) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 43 T ELT)) (-1950 (((-1066) (-229) (-229) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 42 T ELT)) (-1972 (((-1066) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284)))) 38 T ELT)) (-3028 (((-1066) (-229) (-229) (-560) (-711 (-229)) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284)))) 37 T ELT)) (-3400 (((-1066) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284)))) 33 T ELT)) (-3082 (((-1066) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284)))) 32 T ELT)))
-(((-770) (-10 -7 (-15 -3082 ((-1066) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284))))) (-15 -3400 ((-1066) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284))))) (-15 -3028 ((-1066) (-229) (-229) (-560) (-711 (-229)) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284))))) (-15 -1972 ((-1066) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284))))) (-15 -1950 ((-1066) (-229) (-229) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -3951 ((-1066) (-229) (-229) (-229) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -3773 ((-1066) (-229) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -1476 ((-1066) (-229) (-229) (-560) (-229) (-560) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -3524 ((-1066) (-229) (-229) (-560) (-560) (-560) (-560))) (-15 -2530 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))) (-15 -4437 ((-1066) (-711 (-229)) (-711 (-229)) (-560) (-560))) (-15 -3885 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560) (-229) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))))) (T -770))
-((-3885 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-4437 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-770)))) (-2530 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-3524 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-770)))) (-1476 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-3773 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-3951 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-1950 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-1972 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-3028 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284)))) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-770)))) (-3400 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-3082 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284)))) (-5 *2 (-1066)) (-5 *1 (-770)))))
-(-10 -7 (-15 -3082 ((-1066) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284))))) (-15 -3400 ((-1066) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284))))) (-15 -3028 ((-1066) (-229) (-229) (-560) (-711 (-229)) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284))))) (-15 -1972 ((-1066) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284))))) (-15 -1950 ((-1066) (-229) (-229) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -3951 ((-1066) (-229) (-229) (-229) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -3773 ((-1066) (-229) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -1476 ((-1066) (-229) (-229) (-560) (-229) (-560) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -3524 ((-1066) (-229) (-229) (-560) (-560) (-560) (-560))) (-15 -2530 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))) (-15 -4437 ((-1066) (-711 (-229)) (-711 (-229)) (-560) (-560))) (-15 -3885 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560) (-229) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))))
-((-2127 (((-1066) (-560) (-560) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP)))) 76 T ELT)) (-2134 (((-1066) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))) (-402) (-402)) 69 T ELT) (((-1066) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) 68 T ELT)) (-3211 (((-1066) (-229) (-229) (-560) (-229) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG)))) 57 T ELT)) (-3183 (((-1066) (-711 (-229)) (-711 (-229)) (-560) (-229) (-229) (-229) (-560) (-560) (-560) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) 50 T ELT)) (-1383 (((-1066) (-229) (-560) (-560) (-1189) (-560) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) 49 T ELT)) (-3152 (((-1066) (-229) (-560) (-560) (-229) (-1189) (-229) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) 45 T ELT)) (-3148 (((-1066) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) 42 T ELT)) (-2241 (((-1066) (-229) (-560) (-560) (-560) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) 38 T ELT)))
-(((-771) (-10 -7 (-15 -2241 ((-1066) (-229) (-560) (-560) (-560) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -3148 ((-1066) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))) (-15 -3152 ((-1066) (-229) (-560) (-560) (-229) (-1189) (-229) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -1383 ((-1066) (-229) (-560) (-560) (-1189) (-560) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -3183 ((-1066) (-711 (-229)) (-711 (-229)) (-560) (-229) (-229) (-229) (-560) (-560) (-560) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))) (-15 -3211 ((-1066) (-229) (-229) (-560) (-229) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG))))) (-15 -2134 ((-1066) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))))) (-15 -2134 ((-1066) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))) (-402) (-402))) (-15 -2127 ((-1066) (-560) (-560) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP))))))) (T -771))
-((-2127 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP)))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))) (-2134 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-402)) (-5 *2 (-1066)) (-5 *1 (-771)))) (-2134 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1066)) (-5 *1 (-771)))) (-3211 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))) (-3183 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1066)) (-5 *1 (-771)))) (-1383 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-560)) (-5 *5 (-1189)) (-5 *6 (-711 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))) (-3152 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-560)) (-5 *5 (-1189)) (-5 *6 (-711 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))) (-3148 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))) (-2241 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))))
-(-10 -7 (-15 -2241 ((-1066) (-229) (-560) (-560) (-560) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -3148 ((-1066) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))) (-15 -3152 ((-1066) (-229) (-560) (-560) (-229) (-1189) (-229) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -1383 ((-1066) (-229) (-560) (-560) (-1189) (-560) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -3183 ((-1066) (-711 (-229)) (-711 (-229)) (-560) (-229) (-229) (-229) (-560) (-560) (-560) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))) (-15 -3211 ((-1066) (-229) (-229) (-560) (-229) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG))))) (-15 -2134 ((-1066) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))))) (-15 -2134 ((-1066) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))) (-402) (-402))) (-15 -2127 ((-1066) (-560) (-560) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP))))))
-((-1350 (((-1066) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-697 (-229)) (-560)) 46 T ELT)) (-2324 (((-1066) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-1189) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY)))) 41 T ELT)) (-3228 (((-1066) (-560) (-560) (-560) (-560) (-229) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 23 T ELT)))
-(((-772) (-10 -7 (-15 -3228 ((-1066) (-560) (-560) (-560) (-560) (-229) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2324 ((-1066) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-1189) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY))))) (-15 -1350 ((-1066) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-697 (-229)) (-560))))) (T -772))
-((-1350 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-697 (-229))) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-772)))) (-2324 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-1189)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1066)) (-5 *1 (-772)))) (-3228 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-772)))))
-(-10 -7 (-15 -3228 ((-1066) (-560) (-560) (-560) (-560) (-229) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2324 ((-1066) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-1189) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY))))) (-15 -1350 ((-1066) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-697 (-229)) (-560))))
-((-1788 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-711 (-229)) (-229) (-229) (-560)) 35 T ELT)) (-4220 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-229) (-229) (-560)) 34 T ELT)) (-3898 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-711 (-229)) (-229) (-229) (-560)) 33 T ELT)) (-2165 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 29 T ELT)) (-2709 (((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 28 T ELT)) (-4176 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560)) 27 T ELT)) (-1847 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-560)) 24 T ELT)) (-4082 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-560)) 23 T ELT)) (-3167 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560)) 22 T ELT)) (-2113 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560)) 21 T ELT)))
-(((-773) (-10 -7 (-15 -2113 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560))) (-15 -3167 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -4082 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -1847 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -4176 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560))) (-15 -2709 ((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2165 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3898 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-711 (-229)) (-229) (-229) (-560))) (-15 -4220 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-229) (-229) (-560))) (-15 -1788 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-711 (-229)) (-229) (-229) (-560))))) (T -773))
-((-1788 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1066)) (-5 *1 (-773)))) (-4220 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1066)) (-5 *1 (-773)))) (-3898 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *6 (-229)) (-5 *3 (-560)) (-5 *2 (-1066)) (-5 *1 (-773)))) (-2165 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-773)))) (-2709 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-773)))) (-4176 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1066)) (-5 *1 (-773)))) (-1847 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-773)))) (-4082 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-773)))) (-3167 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-773)))) (-2113 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-773)))))
-(-10 -7 (-15 -2113 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560))) (-15 -3167 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -4082 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -1847 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -4176 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560))) (-15 -2709 ((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2165 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3898 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-711 (-229)) (-229) (-229) (-560))) (-15 -4220 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-229) (-229) (-560))) (-15 -1788 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-711 (-229)) (-229) (-229) (-560))))
-((-1442 (((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560)) 45 T ELT)) (-4154 (((-1066) (-560) (-560) (-560) (-229) (-711 (-229)) (-711 (-229)) (-560)) 44 T ELT)) (-1951 (((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560)) 43 T ELT)) (-4307 (((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 42 T ELT)) (-3485 (((-1066) (-1189) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560)) 41 T ELT)) (-2302 (((-1066) (-1189) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560)) 40 T ELT)) (-3902 (((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560) (-560) (-560) (-229) (-711 (-229)) (-560)) 39 T ELT)) (-1514 (((-1066) (-1189) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-560))) 38 T ELT)) (-4416 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560)) 35 T ELT)) (-1637 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560)) 34 T ELT)) (-2858 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560)) 33 T ELT)) (-4096 (((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 32 T ELT)) (-2373 (((-1066) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-229) (-560)) 31 T ELT)) (-1931 (((-1066) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-560)) 30 T ELT)) (-3088 (((-1066) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-560) (-560) (-560)) 29 T ELT)) (-3027 (((-1066) (-560) (-560) (-560) (-229) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560) (-711 (-560)) (-560) (-560) (-560)) 28 T ELT)) (-2924 (((-1066) (-560) (-711 (-229)) (-229) (-560)) 24 T ELT)) (-3079 (((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 21 T ELT)))
-(((-774) (-10 -7 (-15 -3079 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2924 ((-1066) (-560) (-711 (-229)) (-229) (-560))) (-15 -3027 ((-1066) (-560) (-560) (-560) (-229) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560) (-711 (-560)) (-560) (-560) (-560))) (-15 -3088 ((-1066) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-560) (-560) (-560))) (-15 -1931 ((-1066) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-560))) (-15 -2373 ((-1066) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-229) (-560))) (-15 -4096 ((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2858 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560))) (-15 -1637 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560))) (-15 -4416 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -1514 ((-1066) (-1189) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-560)))) (-15 -3902 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560) (-560) (-560) (-229) (-711 (-229)) (-560))) (-15 -2302 ((-1066) (-1189) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560))) (-15 -3485 ((-1066) (-1189) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -4307 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -1951 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560))) (-15 -4154 ((-1066) (-560) (-560) (-560) (-229) (-711 (-229)) (-711 (-229)) (-560))) (-15 -1442 ((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560))))) (T -774))
-((-1442 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-774)))) (-4154 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-1951 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-774)))) (-4307 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-774)))) (-3485 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-2302 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1189)) (-5 *5 (-711 (-229))) (-5 *6 (-229)) (-5 *7 (-711 (-560))) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-3902 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *6 (-229)) (-5 *3 (-560)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-1514 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1189)) (-5 *5 (-711 (-229))) (-5 *6 (-229)) (-5 *7 (-711 (-560))) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-4416 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-774)))) (-1637 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-2858 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-4096 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-774)))) (-2373 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-1931 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-3088 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-3027 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-711 (-229))) (-5 *6 (-711 (-560))) (-5 *3 (-560)) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-2924 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-3079 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-774)))))
-(-10 -7 (-15 -3079 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2924 ((-1066) (-560) (-711 (-229)) (-229) (-560))) (-15 -3027 ((-1066) (-560) (-560) (-560) (-229) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560) (-711 (-560)) (-560) (-560) (-560))) (-15 -3088 ((-1066) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-560) (-560) (-560))) (-15 -1931 ((-1066) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-560))) (-15 -2373 ((-1066) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-229) (-560))) (-15 -4096 ((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2858 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560))) (-15 -1637 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560))) (-15 -4416 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -1514 ((-1066) (-1189) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-560)))) (-15 -3902 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560) (-560) (-560) (-229) (-711 (-229)) (-560))) (-15 -2302 ((-1066) (-1189) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560))) (-15 -3485 ((-1066) (-1189) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -4307 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -1951 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560))) (-15 -4154 ((-1066) (-560) (-560) (-560) (-229) (-711 (-229)) (-711 (-229)) (-560))) (-15 -1442 ((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560))))
-((-4002 (((-1066) (-560) (-560) (-560) (-229) (-711 (-229)) (-560) (-711 (-229)) (-560)) 64 T ELT)) (-1783 (((-1066) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-114) (-229) (-560) (-229) (-229) (-114) (-229) (-229) (-229) (-229) (-114) (-560) (-560) (-560) (-560) (-560) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-560)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) 63 T ELT)) (-1789 (((-1066) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-114) (-114) (-114) (-560) (-560) (-711 (-229)) (-711 (-560)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS)))) 59 T ELT)) (-3819 (((-1066) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-114) (-560) (-560) (-711 (-229)) (-560)) 52 T ELT)) (-2211 (((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1)))) 51 T ELT)) (-4185 (((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2)))) 47 T ELT)) (-1657 (((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1)))) 43 T ELT)) (-2062 (((-1066) (-560) (-229) (-229) (-560) (-229) (-114) (-229) (-229) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) 39 T ELT)))
-(((-775) (-10 -7 (-15 -2062 ((-1066) (-560) (-229) (-229) (-560) (-229) (-114) (-229) (-229) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))) (-15 -1657 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1))))) (-15 -4185 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2))))) (-15 -2211 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1))))) (-15 -3819 ((-1066) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-114) (-560) (-560) (-711 (-229)) (-560))) (-15 -1789 ((-1066) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-114) (-114) (-114) (-560) (-560) (-711 (-229)) (-711 (-560)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS))))) (-15 -1783 ((-1066) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-114) (-229) (-560) (-229) (-229) (-114) (-229) (-229) (-229) (-229) (-114) (-560) (-560) (-560) (-560) (-560) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-560)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))) (-15 -4002 ((-1066) (-560) (-560) (-560) (-229) (-711 (-229)) (-560) (-711 (-229)) (-560))))) (T -775))
-((-4002 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-775)))) (-1783 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) (-5 *7 (-711 (-560))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-560)) (-5 *2 (-1066)) (-5 *1 (-775)))) (-1789 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-711 (-229))) (-5 *6 (-114)) (-5 *7 (-711 (-560))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-560)) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-775)))) (-3819 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-114)) (-5 *2 (-1066)) (-5 *1 (-775)))) (-2211 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1066)) (-5 *1 (-775)))) (-4185 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1066)) (-5 *1 (-775)))) (-1657 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1066)) (-5 *1 (-775)))) (-2062 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-560)) (-5 *5 (-114)) (-5 *6 (-711 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-775)))))
-(-10 -7 (-15 -2062 ((-1066) (-560) (-229) (-229) (-560) (-229) (-114) (-229) (-229) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))) (-15 -1657 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1))))) (-15 -4185 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2))))) (-15 -2211 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1))))) (-15 -3819 ((-1066) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-114) (-560) (-560) (-711 (-229)) (-560))) (-15 -1789 ((-1066) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-114) (-114) (-114) (-560) (-560) (-711 (-229)) (-711 (-560)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS))))) (-15 -1783 ((-1066) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-114) (-229) (-560) (-229) (-229) (-114) (-229) (-229) (-229) (-229) (-114) (-560) (-560) (-560) (-560) (-560) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-560)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))) (-15 -4002 ((-1066) (-560) (-560) (-560) (-229) (-711 (-229)) (-560) (-711 (-229)) (-560))))
-((-3396 (((-1066) (-1189) (-560) (-560) (-560) (-560) (-711 (-171 (-229))) (-711 (-171 (-229))) (-560)) 47 T ELT)) (-2106 (((-1066) (-1189) (-1189) (-560) (-560) (-711 (-171 (-229))) (-560) (-711 (-171 (-229))) (-560) (-560) (-711 (-171 (-229))) (-560)) 46 T ELT)) (-4368 (((-1066) (-560) (-560) (-560) (-711 (-171 (-229))) (-560)) 45 T ELT)) (-3534 (((-1066) (-1189) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560)) 40 T ELT)) (-3919 (((-1066) (-1189) (-1189) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-711 (-229)) (-560)) 39 T ELT)) (-2912 (((-1066) (-560) (-560) (-560) (-711 (-229)) (-560)) 36 T ELT)) (-1395 (((-1066) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560)) 35 T ELT)) (-3947 (((-1066) (-560) (-560) (-560) (-560) (-663 (-114)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-229) (-229) (-560)) 34 T ELT)) (-2832 (((-1066) (-560) (-560) (-560) (-711 (-560)) (-711 (-560)) (-711 (-560)) (-711 (-560)) (-114) (-229) (-114) (-711 (-560)) (-711 (-229)) (-560)) 33 T ELT)) (-2828 (((-1066) (-560) (-560) (-560) (-560) (-229) (-114) (-114) (-663 (-114)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-560)) 32 T ELT)))
-(((-776) (-10 -7 (-15 -2828 ((-1066) (-560) (-560) (-560) (-560) (-229) (-114) (-114) (-663 (-114)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-560))) (-15 -2832 ((-1066) (-560) (-560) (-560) (-711 (-560)) (-711 (-560)) (-711 (-560)) (-711 (-560)) (-114) (-229) (-114) (-711 (-560)) (-711 (-229)) (-560))) (-15 -3947 ((-1066) (-560) (-560) (-560) (-560) (-663 (-114)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-229) (-229) (-560))) (-15 -1395 ((-1066) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560))) (-15 -2912 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-560))) (-15 -3919 ((-1066) (-1189) (-1189) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-711 (-229)) (-560))) (-15 -3534 ((-1066) (-1189) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -4368 ((-1066) (-560) (-560) (-560) (-711 (-171 (-229))) (-560))) (-15 -2106 ((-1066) (-1189) (-1189) (-560) (-560) (-711 (-171 (-229))) (-560) (-711 (-171 (-229))) (-560) (-560) (-711 (-171 (-229))) (-560))) (-15 -3396 ((-1066) (-1189) (-560) (-560) (-560) (-560) (-711 (-171 (-229))) (-711 (-171 (-229))) (-560))))) (T -776))
-((-3396 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-171 (-229)))) (-5 *2 (-1066)) (-5 *1 (-776)))) (-2106 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-171 (-229)))) (-5 *2 (-1066)) (-5 *1 (-776)))) (-4368 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-171 (-229)))) (-5 *2 (-1066)) (-5 *1 (-776)))) (-3534 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-776)))) (-3919 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-776)))) (-2912 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-776)))) (-1395 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560)) (-5 *2 (-1066)) (-5 *1 (-776)))) (-3947 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-663 (-114))) (-5 *5 (-711 (-229))) (-5 *6 (-711 (-560))) (-5 *7 (-229)) (-5 *3 (-560)) (-5 *2 (-1066)) (-5 *1 (-776)))) (-2832 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-711 (-560))) (-5 *5 (-114)) (-5 *7 (-711 (-229))) (-5 *3 (-560)) (-5 *6 (-229)) (-5 *2 (-1066)) (-5 *1 (-776)))) (-2828 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-663 (-114))) (-5 *7 (-711 (-229))) (-5 *8 (-711 (-560))) (-5 *3 (-560)) (-5 *4 (-229)) (-5 *5 (-114)) (-5 *2 (-1066)) (-5 *1 (-776)))))
-(-10 -7 (-15 -2828 ((-1066) (-560) (-560) (-560) (-560) (-229) (-114) (-114) (-663 (-114)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-560))) (-15 -2832 ((-1066) (-560) (-560) (-560) (-711 (-560)) (-711 (-560)) (-711 (-560)) (-711 (-560)) (-114) (-229) (-114) (-711 (-560)) (-711 (-229)) (-560))) (-15 -3947 ((-1066) (-560) (-560) (-560) (-560) (-663 (-114)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-229) (-229) (-560))) (-15 -1395 ((-1066) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560))) (-15 -2912 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-560))) (-15 -3919 ((-1066) (-1189) (-1189) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-711 (-229)) (-560))) (-15 -3534 ((-1066) (-1189) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -4368 ((-1066) (-560) (-560) (-560) (-711 (-171 (-229))) (-560))) (-15 -2106 ((-1066) (-1189) (-1189) (-560) (-560) (-711 (-171 (-229))) (-560) (-711 (-171 (-229))) (-560) (-560) (-711 (-171 (-229))) (-560))) (-15 -3396 ((-1066) (-1189) (-560) (-560) (-560) (-560) (-711 (-171 (-229))) (-711 (-171 (-229))) (-560))))
-((-2566 (((-1066) (-560) (-560) (-560) (-560) (-560) (-114) (-560) (-114) (-560) (-711 (-171 (-229))) (-711 (-171 (-229))) (-560)) 79 T ELT)) (-3012 (((-1066) (-560) (-560) (-560) (-560) (-560) (-114) (-560) (-114) (-560) (-711 (-229)) (-711 (-229)) (-560)) 68 T ELT)) (-1846 (((-1066) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))) (-402)) 56 T ELT) (((-1066) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) 55 T ELT)) (-2130 (((-1066) (-560) (-560) (-560) (-229) (-114) (-560) (-711 (-229)) (-711 (-229)) (-560)) 37 T ELT)) (-4310 (((-1066) (-560) (-560) (-229) (-229) (-560) (-560) (-711 (-229)) (-560)) 33 T ELT)) (-3274 (((-1066) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-560) (-560) (-560)) 30 T ELT)) (-2838 (((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560)) 29 T ELT)) (-1894 (((-1066) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560)) 28 T ELT)) (-2861 (((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560)) 27 T ELT)) (-3222 (((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-560)) 26 T ELT)) (-2059 (((-1066) (-560) (-560) (-711 (-229)) (-560)) 25 T ELT)) (-4234 (((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560)) 24 T ELT)) (-2231 (((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560)) 23 T ELT)) (-2549 (((-1066) (-711 (-229)) (-560) (-560) (-560) (-560)) 22 T ELT)) (-2550 (((-1066) (-560) (-560) (-711 (-229)) (-560)) 21 T ELT)))
-(((-777) (-10 -7 (-15 -2550 ((-1066) (-560) (-560) (-711 (-229)) (-560))) (-15 -2549 ((-1066) (-711 (-229)) (-560) (-560) (-560) (-560))) (-15 -2231 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -4234 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2059 ((-1066) (-560) (-560) (-711 (-229)) (-560))) (-15 -3222 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-560))) (-15 -2861 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -1894 ((-1066) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2838 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3274 ((-1066) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-560) (-560) (-560))) (-15 -4310 ((-1066) (-560) (-560) (-229) (-229) (-560) (-560) (-711 (-229)) (-560))) (-15 -2130 ((-1066) (-560) (-560) (-560) (-229) (-114) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -1846 ((-1066) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))))) (-15 -1846 ((-1066) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))) (-402))) (-15 -3012 ((-1066) (-560) (-560) (-560) (-560) (-560) (-114) (-560) (-114) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2566 ((-1066) (-560) (-560) (-560) (-560) (-560) (-114) (-560) (-114) (-560) (-711 (-171 (-229))) (-711 (-171 (-229))) (-560))))) (T -777))
-((-2566 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-114)) (-5 *5 (-711 (-171 (-229)))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-3012 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-114)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-1846 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-402)) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-777)))) (-1846 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-777)))) (-2130 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-560)) (-5 *5 (-114)) (-5 *6 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-777)))) (-4310 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-777)))) (-3274 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-777)))) (-2838 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-1894 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-2861 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-3222 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-2059 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-4234 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-2231 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-2549 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-777)))) (-2550 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))))
-(-10 -7 (-15 -2550 ((-1066) (-560) (-560) (-711 (-229)) (-560))) (-15 -2549 ((-1066) (-711 (-229)) (-560) (-560) (-560) (-560))) (-15 -2231 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -4234 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2059 ((-1066) (-560) (-560) (-711 (-229)) (-560))) (-15 -3222 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-560))) (-15 -2861 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -1894 ((-1066) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2838 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3274 ((-1066) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-560) (-560) (-560))) (-15 -4310 ((-1066) (-560) (-560) (-229) (-229) (-560) (-560) (-711 (-229)) (-560))) (-15 -2130 ((-1066) (-560) (-560) (-560) (-229) (-114) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -1846 ((-1066) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))))) (-15 -1846 ((-1066) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))) (-402))) (-15 -3012 ((-1066) (-560) (-560) (-560) (-560) (-560) (-114) (-560) (-114) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2566 ((-1066) (-560) (-560) (-560) (-560) (-560) (-114) (-560) (-114) (-560) (-711 (-171 (-229))) (-711 (-171 (-229))) (-560))))
-((-3817 (((-1066) (-560) (-560) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))) 64 T ELT)) (-2976 (((-1066) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-560)) (-560) (-711 (-229)) (-560) (-560) (-560) (-560)) 60 T ELT)) (-2280 (((-1066) (-560) (-711 (-229)) (-114) (-229) (-560) (-560) (-560) (-560) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE)))) 59 T ELT)) (-3406 (((-1066) (-560) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560) (-711 (-560)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560)) 37 T ELT)) (-2295 (((-1066) (-560) (-560) (-560) (-229) (-560) (-711 (-229)) (-711 (-229)) (-560)) 36 T ELT)) (-3454 (((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 33 T ELT)) (-1791 (((-1066) (-560) (-711 (-229)) (-560) (-711 (-560)) (-711 (-560)) (-560) (-711 (-560)) (-711 (-229))) 32 T ELT)) (-3968 (((-1066) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-560)) 28 T ELT)) (-2978 (((-1066) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560)) 27 T ELT)) (-2160 (((-1066) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560)) 26 T ELT)) (-3591 (((-1066) (-560) (-711 (-171 (-229))) (-560) (-560) (-560) (-560) (-711 (-171 (-229))) (-560)) 22 T ELT)))
-(((-778) (-10 -7 (-15 -3591 ((-1066) (-560) (-711 (-171 (-229))) (-560) (-560) (-560) (-560) (-711 (-171 (-229))) (-560))) (-15 -2160 ((-1066) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -2978 ((-1066) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -3968 ((-1066) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-560))) (-15 -1791 ((-1066) (-560) (-711 (-229)) (-560) (-711 (-560)) (-711 (-560)) (-560) (-711 (-560)) (-711 (-229)))) (-15 -3454 ((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2295 ((-1066) (-560) (-560) (-560) (-229) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3406 ((-1066) (-560) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560) (-711 (-560)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560))) (-15 -2280 ((-1066) (-560) (-711 (-229)) (-114) (-229) (-560) (-560) (-560) (-560) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE))))) (-15 -2976 ((-1066) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-560)) (-560) (-711 (-229)) (-560) (-560) (-560) (-560))) (-15 -3817 ((-1066) (-560) (-560) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD))))))) (T -778))
-((-3817 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-778)))) (-2976 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560)) (-5 *2 (-1066)) (-5 *1 (-778)))) (-2280 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1066)) (-5 *1 (-778)))) (-3406 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560)) (-5 *2 (-1066)) (-5 *1 (-778)))) (-2295 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-778)))) (-3454 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-778)))) (-1791 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560)) (-5 *2 (-1066)) (-5 *1 (-778)))) (-3968 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-778)))) (-2978 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-778)))) (-2160 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-778)))) (-3591 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-171 (-229)))) (-5 *2 (-1066)) (-5 *1 (-778)))))
-(-10 -7 (-15 -3591 ((-1066) (-560) (-711 (-171 (-229))) (-560) (-560) (-560) (-560) (-711 (-171 (-229))) (-560))) (-15 -2160 ((-1066) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -2978 ((-1066) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -3968 ((-1066) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-560))) (-15 -1791 ((-1066) (-560) (-711 (-229)) (-560) (-711 (-560)) (-711 (-560)) (-560) (-711 (-560)) (-711 (-229)))) (-15 -3454 ((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2295 ((-1066) (-560) (-560) (-560) (-229) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3406 ((-1066) (-560) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560) (-711 (-560)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560))) (-15 -2280 ((-1066) (-560) (-711 (-229)) (-114) (-229) (-560) (-560) (-560) (-560) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE))))) (-15 -2976 ((-1066) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-560)) (-560) (-711 (-229)) (-560) (-560) (-560) (-560))) (-15 -3817 ((-1066) (-560) (-560) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD))))))
-((-3357 (((-1066) (-1189) (-560) (-560) (-711 (-229)) (-560) (-560) (-711 (-229))) 29 T ELT)) (-3284 (((-1066) (-1189) (-560) (-560) (-711 (-229))) 28 T ELT)) (-1402 (((-1066) (-1189) (-560) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560) (-711 (-229))) 27 T ELT)) (-2299 (((-1066) (-560) (-560) (-560) (-711 (-229))) 21 T ELT)))
-(((-779) (-10 -7 (-15 -2299 ((-1066) (-560) (-560) (-560) (-711 (-229)))) (-15 -1402 ((-1066) (-1189) (-560) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560) (-711 (-229)))) (-15 -3284 ((-1066) (-1189) (-560) (-560) (-711 (-229)))) (-15 -3357 ((-1066) (-1189) (-560) (-560) (-711 (-229)) (-560) (-560) (-711 (-229)))))) (T -779))
-((-3357 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-779)))) (-3284 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-779)))) (-1402 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1189)) (-5 *5 (-711 (-229))) (-5 *6 (-711 (-560))) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-779)))) (-2299 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-779)))))
-(-10 -7 (-15 -2299 ((-1066) (-560) (-560) (-560) (-711 (-229)))) (-15 -1402 ((-1066) (-1189) (-560) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560) (-711 (-229)))) (-15 -3284 ((-1066) (-1189) (-560) (-560) (-711 (-229)))) (-15 -3357 ((-1066) (-1189) (-560) (-560) (-711 (-229)) (-560) (-560) (-711 (-229)))))
-((-2073 (((-1066) (-229) (-229) (-229) (-229) (-560)) 62 T ELT)) (-2975 (((-1066) (-229) (-229) (-229) (-560)) 61 T ELT)) (-4426 (((-1066) (-229) (-229) (-229) (-560)) 60 T ELT)) (-3291 (((-1066) (-229) (-229) (-560)) 59 T ELT)) (-3216 (((-1066) (-229) (-560)) 58 T ELT)) (-3532 (((-1066) (-229) (-560)) 57 T ELT)) (-2649 (((-1066) (-229) (-560)) 56 T ELT)) (-2864 (((-1066) (-229) (-560)) 55 T ELT)) (-2752 (((-1066) (-229) (-560)) 54 T ELT)) (-4127 (((-1066) (-229) (-560)) 53 T ELT)) (-2140 (((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560)) 52 T ELT)) (-2403 (((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560)) 51 T ELT)) (-2715 (((-1066) (-229) (-560)) 50 T ELT)) (-1820 (((-1066) (-229) (-560)) 49 T ELT)) (-2076 (((-1066) (-229) (-560)) 48 T ELT)) (-3748 (((-1066) (-229) (-560)) 47 T ELT)) (-3493 (((-1066) (-560) (-229) (-171 (-229)) (-560) (-1189) (-560)) 46 T ELT)) (-3382 (((-1066) (-1189) (-171 (-229)) (-1189) (-560)) 45 T ELT)) (-3050 (((-1066) (-1189) (-171 (-229)) (-1189) (-560)) 44 T ELT)) (-4103 (((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560)) 43 T ELT)) (-3642 (((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560)) 42 T ELT)) (-4481 (((-1066) (-229) (-560)) 39 T ELT)) (-4409 (((-1066) (-229) (-560)) 38 T ELT)) (-2025 (((-1066) (-229) (-560)) 37 T ELT)) (-4031 (((-1066) (-229) (-560)) 36 T ELT)) (-4486 (((-1066) (-229) (-560)) 35 T ELT)) (-1857 (((-1066) (-229) (-560)) 34 T ELT)) (-3219 (((-1066) (-229) (-560)) 33 T ELT)) (-3555 (((-1066) (-229) (-560)) 32 T ELT)) (-1525 (((-1066) (-229) (-560)) 31 T ELT)) (-4050 (((-1066) (-229) (-560)) 30 T ELT)) (-3145 (((-1066) (-229) (-229) (-229) (-560)) 29 T ELT)) (-4233 (((-1066) (-229) (-560)) 28 T ELT)) (-3698 (((-1066) (-229) (-560)) 27 T ELT)) (-1340 (((-1066) (-229) (-560)) 26 T ELT)) (-3468 (((-1066) (-229) (-560)) 25 T ELT)) (-2805 (((-1066) (-229) (-560)) 24 T ELT)) (-4251 (((-1066) (-171 (-229)) (-560)) 21 T ELT)))
-(((-780) (-10 -7 (-15 -4251 ((-1066) (-171 (-229)) (-560))) (-15 -2805 ((-1066) (-229) (-560))) (-15 -3468 ((-1066) (-229) (-560))) (-15 -1340 ((-1066) (-229) (-560))) (-15 -3698 ((-1066) (-229) (-560))) (-15 -4233 ((-1066) (-229) (-560))) (-15 -3145 ((-1066) (-229) (-229) (-229) (-560))) (-15 -4050 ((-1066) (-229) (-560))) (-15 -1525 ((-1066) (-229) (-560))) (-15 -3555 ((-1066) (-229) (-560))) (-15 -3219 ((-1066) (-229) (-560))) (-15 -1857 ((-1066) (-229) (-560))) (-15 -4486 ((-1066) (-229) (-560))) (-15 -4031 ((-1066) (-229) (-560))) (-15 -2025 ((-1066) (-229) (-560))) (-15 -4409 ((-1066) (-229) (-560))) (-15 -4481 ((-1066) (-229) (-560))) (-15 -3642 ((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560))) (-15 -4103 ((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560))) (-15 -3050 ((-1066) (-1189) (-171 (-229)) (-1189) (-560))) (-15 -3382 ((-1066) (-1189) (-171 (-229)) (-1189) (-560))) (-15 -3493 ((-1066) (-560) (-229) (-171 (-229)) (-560) (-1189) (-560))) (-15 -3748 ((-1066) (-229) (-560))) (-15 -2076 ((-1066) (-229) (-560))) (-15 -1820 ((-1066) (-229) (-560))) (-15 -2715 ((-1066) (-229) (-560))) (-15 -2403 ((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560))) (-15 -2140 ((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560))) (-15 -4127 ((-1066) (-229) (-560))) (-15 -2752 ((-1066) (-229) (-560))) (-15 -2864 ((-1066) (-229) (-560))) (-15 -2649 ((-1066) (-229) (-560))) (-15 -3532 ((-1066) (-229) (-560))) (-15 -3216 ((-1066) (-229) (-560))) (-15 -3291 ((-1066) (-229) (-229) (-560))) (-15 -4426 ((-1066) (-229) (-229) (-229) (-560))) (-15 -2975 ((-1066) (-229) (-229) (-229) (-560))) (-15 -2073 ((-1066) (-229) (-229) (-229) (-229) (-560))))) (T -780))
-((-2073 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2975 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-4426 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3291 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3216 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3532 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2649 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2864 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2752 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-4127 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2140 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1189)) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2403 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1189)) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2715 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-1820 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2076 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3748 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3493 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-560)) (-5 *5 (-171 (-229))) (-5 *6 (-1189)) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3382 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1189)) (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3050 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1189)) (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-4103 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1189)) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3642 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1189)) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-4481 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-4409 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2025 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-4031 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-4486 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-1857 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3219 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3555 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-1525 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-4050 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3145 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-4233 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3698 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-1340 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2805 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-4251 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-229))) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(-10 -7 (-15 -4251 ((-1066) (-171 (-229)) (-560))) (-15 -2805 ((-1066) (-229) (-560))) (-15 -3468 ((-1066) (-229) (-560))) (-15 -1340 ((-1066) (-229) (-560))) (-15 -3698 ((-1066) (-229) (-560))) (-15 -4233 ((-1066) (-229) (-560))) (-15 -3145 ((-1066) (-229) (-229) (-229) (-560))) (-15 -4050 ((-1066) (-229) (-560))) (-15 -1525 ((-1066) (-229) (-560))) (-15 -3555 ((-1066) (-229) (-560))) (-15 -3219 ((-1066) (-229) (-560))) (-15 -1857 ((-1066) (-229) (-560))) (-15 -4486 ((-1066) (-229) (-560))) (-15 -4031 ((-1066) (-229) (-560))) (-15 -2025 ((-1066) (-229) (-560))) (-15 -4409 ((-1066) (-229) (-560))) (-15 -4481 ((-1066) (-229) (-560))) (-15 -3642 ((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560))) (-15 -4103 ((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560))) (-15 -3050 ((-1066) (-1189) (-171 (-229)) (-1189) (-560))) (-15 -3382 ((-1066) (-1189) (-171 (-229)) (-1189) (-560))) (-15 -3493 ((-1066) (-560) (-229) (-171 (-229)) (-560) (-1189) (-560))) (-15 -3748 ((-1066) (-229) (-560))) (-15 -2076 ((-1066) (-229) (-560))) (-15 -1820 ((-1066) (-229) (-560))) (-15 -2715 ((-1066) (-229) (-560))) (-15 -2403 ((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560))) (-15 -2140 ((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560))) (-15 -4127 ((-1066) (-229) (-560))) (-15 -2752 ((-1066) (-229) (-560))) (-15 -2864 ((-1066) (-229) (-560))) (-15 -2649 ((-1066) (-229) (-560))) (-15 -3532 ((-1066) (-229) (-560))) (-15 -3216 ((-1066) (-229) (-560))) (-15 -3291 ((-1066) (-229) (-229) (-560))) (-15 -4426 ((-1066) (-229) (-229) (-229) (-560))) (-15 -2975 ((-1066) (-229) (-229) (-229) (-560))) (-15 -2073 ((-1066) (-229) (-229) (-229) (-229) (-560))))
-((-3660 (((-1303)) 20 T ELT)) (-1832 (((-1189)) 34 T ELT)) (-3069 (((-1189)) 33 T ELT)) (-2558 (((-1134) (-1207) (-711 (-560))) 47 T ELT) (((-1134) (-1207) (-711 (-229))) 43 T ELT)) (-3694 (((-114)) 19 T ELT)) (-3513 (((-1189) (-1189)) 37 T ELT)))
-(((-781) (-10 -7 (-15 -3069 ((-1189))) (-15 -1832 ((-1189))) (-15 -3513 ((-1189) (-1189))) (-15 -2558 ((-1134) (-1207) (-711 (-229)))) (-15 -2558 ((-1134) (-1207) (-711 (-560)))) (-15 -3694 ((-114))) (-15 -3660 ((-1303))))) (T -781))
-((-3660 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-781)))) (-3694 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-781)))) (-2558 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-711 (-560))) (-5 *2 (-1134)) (-5 *1 (-781)))) (-2558 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-711 (-229))) (-5 *2 (-1134)) (-5 *1 (-781)))) (-3513 (*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-781)))) (-1832 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-781)))) (-3069 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-781)))))
-(-10 -7 (-15 -3069 ((-1189))) (-15 -1832 ((-1189))) (-15 -3513 ((-1189) (-1189))) (-15 -2558 ((-1134) (-1207) (-711 (-229)))) (-15 -2558 ((-1134) (-1207) (-711 (-560)))) (-15 -3694 ((-114))) (-15 -3660 ((-1303))))
-((-2013 (($ $ $) 10 T ELT)) (-4128 (($ $ $ $) 9 T ELT)) (-3868 (($ $ $) 12 T ELT)))
-(((-782 |#1|) (-10 -8 (-15 -3868 (|#1| |#1| |#1|)) (-15 -2013 (|#1| |#1| |#1|)) (-15 -4128 (|#1| |#1| |#1| |#1|))) (-783)) (T -782))
-NIL
-(-10 -8 (-15 -3868 (|#1| |#1| |#1|)) (-15 -2013 (|#1| |#1| |#1|)) (-15 -4128 (|#1| |#1| |#1| |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1866 (($ $ (-948)) 31 T ELT)) (-3520 (($ $ (-948)) 32 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-2013 (($ $ $) 28 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-4128 (($ $ $ $) 29 T ELT)) (-3868 (($ $ $) 27 T ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 33 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 30 T ELT)))
+((-4404 (((-1066) (-711 (-229)) (-560) (-114) (-560)) 26 T ELT)) (-3454 (((-1066) (-711 (-229)) (-560) (-114) (-560)) 25 T ELT)))
+(((-767) (-10 -7 (-15 -3454 ((-1066) (-711 (-229)) (-560) (-114) (-560))) (-15 -4404 ((-1066) (-711 (-229)) (-560) (-114) (-560))))) (T -767))
+((-4404 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-114)) (-5 *2 (-1066)) (-5 *1 (-767)))) (-3454 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-114)) (-5 *2 (-1066)) (-5 *1 (-767)))))
+(-10 -7 (-15 -3454 ((-1066) (-711 (-229)) (-560) (-114) (-560))) (-15 -4404 ((-1066) (-711 (-229)) (-560) (-114) (-560))))
+((-1603 (((-1066) (-560) (-560) (-560) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) 43 T ELT)) (-4080 (((-1066) (-560) (-560) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) 39 T ELT)) (-2376 (((-1066) (-229) (-229) (-229) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683)))) 32 T ELT)))
+(((-768) (-10 -7 (-15 -2376 ((-1066) (-229) (-229) (-229) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683))))) (-15 -4080 ((-1066) (-560) (-560) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN))))) (-15 -1603 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN))))))) (T -768))
+((-1603 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1066)) (-5 *1 (-768)))) (-4080 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1066)) (-5 *1 (-768)))) (-2376 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683)))) (-5 *2 (-1066)) (-5 *1 (-768)))))
+(-10 -7 (-15 -2376 ((-1066) (-229) (-229) (-229) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683))))) (-15 -4080 ((-1066) (-560) (-560) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN))))) (-15 -1603 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN))))))
+((-2436 (((-1066) (-560) (-560) (-711 (-229)) (-560)) 34 T ELT)) (-2363 (((-1066) (-560) (-560) (-711 (-229)) (-560)) 33 T ELT)) (-1679 (((-1066) (-560) (-711 (-229)) (-560)) 32 T ELT)) (-2850 (((-1066) (-560) (-711 (-229)) (-560)) 31 T ELT)) (-3637 (((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 30 T ELT)) (-3018 (((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 29 T ELT)) (-1948 (((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-560)) 28 T ELT)) (-2565 (((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-560)) 27 T ELT)) (-2044 (((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560)) 24 T ELT)) (-2683 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560)) 23 T ELT)) (-2715 (((-1066) (-560) (-711 (-229)) (-560)) 22 T ELT)) (-1734 (((-1066) (-560) (-711 (-229)) (-560)) 21 T ELT)))
+(((-769) (-10 -7 (-15 -1734 ((-1066) (-560) (-711 (-229)) (-560))) (-15 -2715 ((-1066) (-560) (-711 (-229)) (-560))) (-15 -2683 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2044 ((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2565 ((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-560))) (-15 -1948 ((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3018 ((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3637 ((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2850 ((-1066) (-560) (-711 (-229)) (-560))) (-15 -1679 ((-1066) (-560) (-711 (-229)) (-560))) (-15 -2363 ((-1066) (-560) (-560) (-711 (-229)) (-560))) (-15 -2436 ((-1066) (-560) (-560) (-711 (-229)) (-560))))) (T -769))
+((-2436 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-2363 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-1679 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-2850 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-3637 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-1189)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-3018 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-1189)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-1948 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-1189)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-2565 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-1189)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-2044 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-2683 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-2715 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))) (-1734 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-769)))))
+(-10 -7 (-15 -1734 ((-1066) (-560) (-711 (-229)) (-560))) (-15 -2715 ((-1066) (-560) (-711 (-229)) (-560))) (-15 -2683 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2044 ((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2565 ((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-560))) (-15 -1948 ((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3018 ((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3637 ((-1066) (-560) (-560) (-1189) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2850 ((-1066) (-560) (-711 (-229)) (-560))) (-15 -1679 ((-1066) (-560) (-711 (-229)) (-560))) (-15 -2363 ((-1066) (-560) (-560) (-711 (-229)) (-560))) (-15 -2436 ((-1066) (-560) (-560) (-711 (-229)) (-560))))
+((-4360 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560) (-229) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) 52 T ELT)) (-2744 (((-1066) (-711 (-229)) (-711 (-229)) (-560) (-560)) 51 T ELT)) (-1353 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) 50 T ELT)) (-4046 (((-1066) (-229) (-229) (-560) (-560) (-560) (-560)) 46 T ELT)) (-4095 (((-1066) (-229) (-229) (-560) (-229) (-560) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 45 T ELT)) (-2657 (((-1066) (-229) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 44 T ELT)) (-3775 (((-1066) (-229) (-229) (-229) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 43 T ELT)) (-3788 (((-1066) (-229) (-229) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 42 T ELT)) (-2713 (((-1066) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683)))) 38 T ELT)) (-2668 (((-1066) (-229) (-229) (-560) (-711 (-229)) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683)))) 37 T ELT)) (-2169 (((-1066) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683)))) 33 T ELT)) (-3230 (((-1066) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683)))) 32 T ELT)))
+(((-770) (-10 -7 (-15 -3230 ((-1066) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683))))) (-15 -2169 ((-1066) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683))))) (-15 -2668 ((-1066) (-229) (-229) (-560) (-711 (-229)) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683))))) (-15 -2713 ((-1066) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683))))) (-15 -3788 ((-1066) (-229) (-229) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -3775 ((-1066) (-229) (-229) (-229) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2657 ((-1066) (-229) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -4095 ((-1066) (-229) (-229) (-560) (-229) (-560) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -4046 ((-1066) (-229) (-229) (-560) (-560) (-560) (-560))) (-15 -1353 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))) (-15 -2744 ((-1066) (-711 (-229)) (-711 (-229)) (-560) (-560))) (-15 -4360 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560) (-229) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))))) (T -770))
+((-4360 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-2744 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-770)))) (-1353 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-4046 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-770)))) (-4095 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-2657 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-3775 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-3788 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-2713 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-2668 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683)))) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-770)))) (-2169 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683)))) (-5 *2 (-1066)) (-5 *1 (-770)))) (-3230 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683)))) (-5 *2 (-1066)) (-5 *1 (-770)))))
+(-10 -7 (-15 -3230 ((-1066) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683))))) (-15 -2169 ((-1066) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683))))) (-15 -2668 ((-1066) (-229) (-229) (-560) (-711 (-229)) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683))))) (-15 -2713 ((-1066) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683))))) (-15 -3788 ((-1066) (-229) (-229) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -3775 ((-1066) (-229) (-229) (-229) (-229) (-560) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2657 ((-1066) (-229) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -4095 ((-1066) (-229) (-229) (-560) (-229) (-560) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -4046 ((-1066) (-229) (-229) (-560) (-560) (-560) (-560))) (-15 -1353 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560) (-229) (-560) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))) (-15 -2744 ((-1066) (-711 (-229)) (-711 (-229)) (-560) (-560))) (-15 -4360 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560) (-229) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))))
+((-1748 (((-1066) (-560) (-560) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP)))) 76 T ELT)) (-1819 (((-1066) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))) (-402) (-402)) 69 T ELT) (((-1066) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) 68 T ELT)) (-4028 (((-1066) (-229) (-229) (-560) (-229) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG)))) 57 T ELT)) (-1818 (((-1066) (-711 (-229)) (-711 (-229)) (-560) (-229) (-229) (-229) (-560) (-560) (-560) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) 50 T ELT)) (-2099 (((-1066) (-229) (-560) (-560) (-1189) (-560) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) 49 T ELT)) (-1508 (((-1066) (-229) (-560) (-560) (-229) (-1189) (-229) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) 45 T ELT)) (-1467 (((-1066) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) 42 T ELT)) (-3545 (((-1066) (-229) (-560) (-560) (-560) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) 38 T ELT)))
+(((-771) (-10 -7 (-15 -3545 ((-1066) (-229) (-560) (-560) (-560) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -1467 ((-1066) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))) (-15 -1508 ((-1066) (-229) (-560) (-560) (-229) (-1189) (-229) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2099 ((-1066) (-229) (-560) (-560) (-1189) (-560) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -1818 ((-1066) (-711 (-229)) (-711 (-229)) (-560) (-229) (-229) (-229) (-560) (-560) (-560) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))) (-15 -4028 ((-1066) (-229) (-229) (-560) (-229) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG))))) (-15 -1819 ((-1066) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))))) (-15 -1819 ((-1066) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))) (-402) (-402))) (-15 -1748 ((-1066) (-560) (-560) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP))))))) (T -771))
+((-1748 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP)))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))) (-1819 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-402)) (-5 *2 (-1066)) (-5 *1 (-771)))) (-1819 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1066)) (-5 *1 (-771)))) (-4028 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))) (-1818 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1066)) (-5 *1 (-771)))) (-2099 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-560)) (-5 *5 (-1189)) (-5 *6 (-711 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))) (-1508 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-560)) (-5 *5 (-1189)) (-5 *6 (-711 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))) (-1467 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))) (-3545 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))))
+(-10 -7 (-15 -3545 ((-1066) (-229) (-560) (-560) (-560) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -1467 ((-1066) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))) (-15 -1508 ((-1066) (-229) (-560) (-560) (-229) (-1189) (-229) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2099 ((-1066) (-229) (-560) (-560) (-1189) (-560) (-229) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -1818 ((-1066) (-711 (-229)) (-711 (-229)) (-560) (-229) (-229) (-229) (-560) (-560) (-560) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))) (-15 -4028 ((-1066) (-229) (-229) (-560) (-229) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG))))) (-15 -1819 ((-1066) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))))) (-15 -1819 ((-1066) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))) (-402) (-402))) (-15 -1748 ((-1066) (-560) (-560) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP))))))
+((-3651 (((-1066) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-697 (-229)) (-560)) 46 T ELT)) (-3124 (((-1066) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-1189) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY)))) 41 T ELT)) (-4217 (((-1066) (-560) (-560) (-560) (-560) (-229) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 23 T ELT)))
+(((-772) (-10 -7 (-15 -4217 ((-1066) (-560) (-560) (-560) (-560) (-229) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3124 ((-1066) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-1189) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY))))) (-15 -3651 ((-1066) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-697 (-229)) (-560))))) (T -772))
+((-3651 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-697 (-229))) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-772)))) (-3124 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-1189)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1066)) (-5 *1 (-772)))) (-4217 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-772)))))
+(-10 -7 (-15 -4217 ((-1066) (-560) (-560) (-560) (-560) (-229) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3124 ((-1066) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-1189) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY))))) (-15 -3651 ((-1066) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-697 (-229)) (-560))))
+((-1483 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-711 (-229)) (-229) (-229) (-560)) 35 T ELT)) (-1466 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-229) (-229) (-560)) 34 T ELT)) (-4479 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-711 (-229)) (-229) (-229) (-560)) 33 T ELT)) (-4081 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 29 T ELT)) (-2544 (((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 28 T ELT)) (-4234 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560)) 27 T ELT)) (-4033 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-560)) 24 T ELT)) (-2564 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-560)) 23 T ELT)) (-1641 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560)) 22 T ELT)) (-1615 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560)) 21 T ELT)))
+(((-773) (-10 -7 (-15 -1615 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560))) (-15 -1641 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2564 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -4033 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -4234 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560))) (-15 -2544 ((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -4081 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -4479 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-711 (-229)) (-229) (-229) (-560))) (-15 -1466 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-229) (-229) (-560))) (-15 -1483 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-711 (-229)) (-229) (-229) (-560))))) (T -773))
+((-1483 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1066)) (-5 *1 (-773)))) (-1466 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1066)) (-5 *1 (-773)))) (-4479 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *6 (-229)) (-5 *3 (-560)) (-5 *2 (-1066)) (-5 *1 (-773)))) (-4081 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-773)))) (-2544 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-773)))) (-4234 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1066)) (-5 *1 (-773)))) (-4033 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-773)))) (-2564 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-773)))) (-1641 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-773)))) (-1615 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-773)))))
+(-10 -7 (-15 -1615 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560))) (-15 -1641 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2564 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -4033 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -4234 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-229) (-560))) (-15 -2544 ((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -4081 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -4479 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-711 (-229)) (-229) (-229) (-560))) (-15 -1466 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-229) (-229) (-560))) (-15 -1483 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-711 (-229)) (-229) (-229) (-560))))
+((-3563 (((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560)) 45 T ELT)) (-2066 (((-1066) (-560) (-560) (-560) (-229) (-711 (-229)) (-711 (-229)) (-560)) 44 T ELT)) (-3800 (((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560)) 43 T ELT)) (-2915 (((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 42 T ELT)) (-1735 (((-1066) (-1189) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560)) 41 T ELT)) (-2892 (((-1066) (-1189) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560)) 40 T ELT)) (-1344 (((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560) (-560) (-560) (-229) (-711 (-229)) (-560)) 39 T ELT)) (-1638 (((-1066) (-1189) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-560))) 38 T ELT)) (-2592 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560)) 35 T ELT)) (-3708 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560)) 34 T ELT)) (-3516 (((-1066) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560)) 33 T ELT)) (-2687 (((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 32 T ELT)) (-2352 (((-1066) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-229) (-560)) 31 T ELT)) (-3605 (((-1066) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-560)) 30 T ELT)) (-2067 (((-1066) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-560) (-560) (-560)) 29 T ELT)) (-2655 (((-1066) (-560) (-560) (-560) (-229) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560) (-711 (-560)) (-560) (-560) (-560)) 28 T ELT)) (-4125 (((-1066) (-560) (-711 (-229)) (-229) (-560)) 24 T ELT)) (-3209 (((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 21 T ELT)))
+(((-774) (-10 -7 (-15 -3209 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -4125 ((-1066) (-560) (-711 (-229)) (-229) (-560))) (-15 -2655 ((-1066) (-560) (-560) (-560) (-229) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560) (-711 (-560)) (-560) (-560) (-560))) (-15 -2067 ((-1066) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-560) (-560) (-560))) (-15 -3605 ((-1066) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-560))) (-15 -2352 ((-1066) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-229) (-560))) (-15 -2687 ((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3516 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560))) (-15 -3708 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560))) (-15 -2592 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -1638 ((-1066) (-1189) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-560)))) (-15 -1344 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560) (-560) (-560) (-229) (-711 (-229)) (-560))) (-15 -2892 ((-1066) (-1189) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560))) (-15 -1735 ((-1066) (-1189) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2915 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3800 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560))) (-15 -2066 ((-1066) (-560) (-560) (-560) (-229) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3563 ((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560))))) (T -774))
+((-3563 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-774)))) (-2066 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-3800 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-774)))) (-2915 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-774)))) (-1735 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-2892 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1189)) (-5 *5 (-711 (-229))) (-5 *6 (-229)) (-5 *7 (-711 (-560))) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-1344 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *6 (-229)) (-5 *3 (-560)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-1638 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1189)) (-5 *5 (-711 (-229))) (-5 *6 (-229)) (-5 *7 (-711 (-560))) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-2592 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-774)))) (-3708 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-3516 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-2687 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-774)))) (-2352 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-3605 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-2067 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-2655 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-711 (-229))) (-5 *6 (-711 (-560))) (-5 *3 (-560)) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-4125 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))) (-3209 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-774)))))
+(-10 -7 (-15 -3209 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -4125 ((-1066) (-560) (-711 (-229)) (-229) (-560))) (-15 -2655 ((-1066) (-560) (-560) (-560) (-229) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560) (-711 (-560)) (-560) (-560) (-560))) (-15 -2067 ((-1066) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-560) (-560) (-560))) (-15 -3605 ((-1066) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-229) (-560) (-560) (-560))) (-15 -2352 ((-1066) (-560) (-229) (-229) (-711 (-229)) (-560) (-560) (-229) (-560))) (-15 -2687 ((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3516 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560))) (-15 -3708 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560))) (-15 -2592 ((-1066) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -1638 ((-1066) (-1189) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-560)))) (-15 -1344 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560) (-560) (-560) (-229) (-711 (-229)) (-560))) (-15 -2892 ((-1066) (-1189) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560))) (-15 -1735 ((-1066) (-1189) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2915 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3800 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560))) (-15 -2066 ((-1066) (-560) (-560) (-560) (-229) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3563 ((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560) (-711 (-229)) (-711 (-229)) (-560) (-560) (-560))))
+((-3009 (((-1066) (-560) (-560) (-560) (-229) (-711 (-229)) (-560) (-711 (-229)) (-560)) 64 T ELT)) (-1428 (((-1066) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-114) (-229) (-560) (-229) (-229) (-114) (-229) (-229) (-229) (-229) (-114) (-560) (-560) (-560) (-560) (-560) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-560)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) 63 T ELT)) (-1492 (((-1066) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-114) (-114) (-114) (-560) (-560) (-711 (-229)) (-711 (-560)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS)))) 59 T ELT)) (-1834 (((-1066) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-114) (-560) (-560) (-711 (-229)) (-560)) 52 T ELT)) (-1357 (((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1)))) 51 T ELT)) (-4322 (((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2)))) 47 T ELT)) (-2646 (((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1)))) 43 T ELT)) (-2333 (((-1066) (-560) (-229) (-229) (-560) (-229) (-114) (-229) (-229) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) 39 T ELT)))
+(((-775) (-10 -7 (-15 -2333 ((-1066) (-560) (-229) (-229) (-560) (-229) (-114) (-229) (-229) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))) (-15 -2646 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1))))) (-15 -4322 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2))))) (-15 -1357 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1))))) (-15 -1834 ((-1066) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-114) (-560) (-560) (-711 (-229)) (-560))) (-15 -1492 ((-1066) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-114) (-114) (-114) (-560) (-560) (-711 (-229)) (-711 (-560)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS))))) (-15 -1428 ((-1066) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-114) (-229) (-560) (-229) (-229) (-114) (-229) (-229) (-229) (-229) (-114) (-560) (-560) (-560) (-560) (-560) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-560)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))) (-15 -3009 ((-1066) (-560) (-560) (-560) (-229) (-711 (-229)) (-560) (-711 (-229)) (-560))))) (T -775))
+((-3009 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-775)))) (-1428 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) (-5 *7 (-711 (-560))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-560)) (-5 *2 (-1066)) (-5 *1 (-775)))) (-1492 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-711 (-229))) (-5 *6 (-114)) (-5 *7 (-711 (-560))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-560)) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-775)))) (-1834 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-114)) (-5 *2 (-1066)) (-5 *1 (-775)))) (-1357 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1066)) (-5 *1 (-775)))) (-4322 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1066)) (-5 *1 (-775)))) (-2646 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1066)) (-5 *1 (-775)))) (-2333 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-560)) (-5 *5 (-114)) (-5 *6 (-711 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-775)))))
+(-10 -7 (-15 -2333 ((-1066) (-560) (-229) (-229) (-560) (-229) (-114) (-229) (-229) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))) (-15 -2646 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1))))) (-15 -4322 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2))))) (-15 -1357 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1))))) (-15 -1834 ((-1066) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-114) (-560) (-560) (-711 (-229)) (-560))) (-15 -1492 ((-1066) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-229) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-114) (-114) (-114) (-560) (-560) (-711 (-229)) (-711 (-560)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS))))) (-15 -1428 ((-1066) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-560) (-114) (-229) (-560) (-229) (-229) (-114) (-229) (-229) (-229) (-229) (-114) (-560) (-560) (-560) (-560) (-560) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-560) (-711 (-560)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))) (-15 -3009 ((-1066) (-560) (-560) (-560) (-229) (-711 (-229)) (-560) (-711 (-229)) (-560))))
+((-2134 (((-1066) (-1189) (-560) (-560) (-560) (-560) (-711 (-171 (-229))) (-711 (-171 (-229))) (-560)) 47 T ELT)) (-1559 (((-1066) (-1189) (-1189) (-560) (-560) (-711 (-171 (-229))) (-560) (-711 (-171 (-229))) (-560) (-560) (-711 (-171 (-229))) (-560)) 46 T ELT)) (-3421 (((-1066) (-560) (-560) (-560) (-711 (-171 (-229))) (-560)) 45 T ELT)) (-4164 (((-1066) (-1189) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560)) 40 T ELT)) (-3426 (((-1066) (-1189) (-1189) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-711 (-229)) (-560)) 39 T ELT)) (-4001 (((-1066) (-560) (-560) (-560) (-711 (-229)) (-560)) 36 T ELT)) (-1343 (((-1066) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560)) 35 T ELT)) (-3724 (((-1066) (-560) (-560) (-560) (-560) (-663 (-114)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-229) (-229) (-560)) 34 T ELT)) (-1346 (((-1066) (-560) (-560) (-560) (-711 (-560)) (-711 (-560)) (-711 (-560)) (-711 (-560)) (-114) (-229) (-114) (-711 (-560)) (-711 (-229)) (-560)) 33 T ELT)) (-4457 (((-1066) (-560) (-560) (-560) (-560) (-229) (-114) (-114) (-663 (-114)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-560)) 32 T ELT)))
+(((-776) (-10 -7 (-15 -4457 ((-1066) (-560) (-560) (-560) (-560) (-229) (-114) (-114) (-663 (-114)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-560))) (-15 -1346 ((-1066) (-560) (-560) (-560) (-711 (-560)) (-711 (-560)) (-711 (-560)) (-711 (-560)) (-114) (-229) (-114) (-711 (-560)) (-711 (-229)) (-560))) (-15 -3724 ((-1066) (-560) (-560) (-560) (-560) (-663 (-114)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-229) (-229) (-560))) (-15 -1343 ((-1066) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560))) (-15 -4001 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-560))) (-15 -3426 ((-1066) (-1189) (-1189) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-711 (-229)) (-560))) (-15 -4164 ((-1066) (-1189) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3421 ((-1066) (-560) (-560) (-560) (-711 (-171 (-229))) (-560))) (-15 -1559 ((-1066) (-1189) (-1189) (-560) (-560) (-711 (-171 (-229))) (-560) (-711 (-171 (-229))) (-560) (-560) (-711 (-171 (-229))) (-560))) (-15 -2134 ((-1066) (-1189) (-560) (-560) (-560) (-560) (-711 (-171 (-229))) (-711 (-171 (-229))) (-560))))) (T -776))
+((-2134 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-171 (-229)))) (-5 *2 (-1066)) (-5 *1 (-776)))) (-1559 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-171 (-229)))) (-5 *2 (-1066)) (-5 *1 (-776)))) (-3421 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-171 (-229)))) (-5 *2 (-1066)) (-5 *1 (-776)))) (-4164 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-776)))) (-3426 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-776)))) (-4001 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-776)))) (-1343 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560)) (-5 *2 (-1066)) (-5 *1 (-776)))) (-3724 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-663 (-114))) (-5 *5 (-711 (-229))) (-5 *6 (-711 (-560))) (-5 *7 (-229)) (-5 *3 (-560)) (-5 *2 (-1066)) (-5 *1 (-776)))) (-1346 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-711 (-560))) (-5 *5 (-114)) (-5 *7 (-711 (-229))) (-5 *3 (-560)) (-5 *6 (-229)) (-5 *2 (-1066)) (-5 *1 (-776)))) (-4457 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-663 (-114))) (-5 *7 (-711 (-229))) (-5 *8 (-711 (-560))) (-5 *3 (-560)) (-5 *4 (-229)) (-5 *5 (-114)) (-5 *2 (-1066)) (-5 *1 (-776)))))
+(-10 -7 (-15 -4457 ((-1066) (-560) (-560) (-560) (-560) (-229) (-114) (-114) (-663 (-114)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-560))) (-15 -1346 ((-1066) (-560) (-560) (-560) (-711 (-560)) (-711 (-560)) (-711 (-560)) (-711 (-560)) (-114) (-229) (-114) (-711 (-560)) (-711 (-229)) (-560))) (-15 -3724 ((-1066) (-560) (-560) (-560) (-560) (-663 (-114)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-229) (-229) (-560))) (-15 -1343 ((-1066) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560))) (-15 -4001 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-560))) (-15 -3426 ((-1066) (-1189) (-1189) (-560) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-711 (-229)) (-560))) (-15 -4164 ((-1066) (-1189) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3421 ((-1066) (-560) (-560) (-560) (-711 (-171 (-229))) (-560))) (-15 -1559 ((-1066) (-1189) (-1189) (-560) (-560) (-711 (-171 (-229))) (-560) (-711 (-171 (-229))) (-560) (-560) (-711 (-171 (-229))) (-560))) (-15 -2134 ((-1066) (-1189) (-560) (-560) (-560) (-560) (-711 (-171 (-229))) (-711 (-171 (-229))) (-560))))
+((-3647 (((-1066) (-560) (-560) (-560) (-560) (-560) (-114) (-560) (-114) (-560) (-711 (-171 (-229))) (-711 (-171 (-229))) (-560)) 79 T ELT)) (-3778 (((-1066) (-560) (-560) (-560) (-560) (-560) (-114) (-560) (-114) (-560) (-711 (-229)) (-711 (-229)) (-560)) 68 T ELT)) (-4020 (((-1066) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))) (-402)) 56 T ELT) (((-1066) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) 55 T ELT)) (-1781 (((-1066) (-560) (-560) (-560) (-229) (-114) (-560) (-711 (-229)) (-711 (-229)) (-560)) 37 T ELT)) (-2954 (((-1066) (-560) (-560) (-229) (-229) (-560) (-560) (-711 (-229)) (-560)) 33 T ELT)) (-3404 (((-1066) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-560) (-560) (-560)) 30 T ELT)) (-1409 (((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560)) 29 T ELT)) (-4482 (((-1066) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560)) 28 T ELT)) (-3548 (((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560)) 27 T ELT)) (-4157 (((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-560)) 26 T ELT)) (-2315 (((-1066) (-560) (-560) (-711 (-229)) (-560)) 25 T ELT)) (-3521 (((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560)) 24 T ELT)) (-3455 (((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560)) 23 T ELT)) (-3440 (((-1066) (-711 (-229)) (-560) (-560) (-560) (-560)) 22 T ELT)) (-3450 (((-1066) (-560) (-560) (-711 (-229)) (-560)) 21 T ELT)))
+(((-777) (-10 -7 (-15 -3450 ((-1066) (-560) (-560) (-711 (-229)) (-560))) (-15 -3440 ((-1066) (-711 (-229)) (-560) (-560) (-560) (-560))) (-15 -3455 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3521 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2315 ((-1066) (-560) (-560) (-711 (-229)) (-560))) (-15 -4157 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-560))) (-15 -3548 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -4482 ((-1066) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -1409 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3404 ((-1066) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-560) (-560) (-560))) (-15 -2954 ((-1066) (-560) (-560) (-229) (-229) (-560) (-560) (-711 (-229)) (-560))) (-15 -1781 ((-1066) (-560) (-560) (-560) (-229) (-114) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -4020 ((-1066) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))))) (-15 -4020 ((-1066) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))) (-402))) (-15 -3778 ((-1066) (-560) (-560) (-560) (-560) (-560) (-114) (-560) (-114) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3647 ((-1066) (-560) (-560) (-560) (-560) (-560) (-114) (-560) (-114) (-560) (-711 (-171 (-229))) (-711 (-171 (-229))) (-560))))) (T -777))
+((-3647 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-114)) (-5 *5 (-711 (-171 (-229)))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-3778 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *4 (-114)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-4020 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-402)) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-777)))) (-4020 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-777)))) (-1781 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-560)) (-5 *5 (-114)) (-5 *6 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-777)))) (-2954 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-777)))) (-3404 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-777)))) (-1409 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-4482 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-3548 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-4157 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-2315 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-3521 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-3455 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))) (-3440 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-777)))) (-3450 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-777)))))
+(-10 -7 (-15 -3450 ((-1066) (-560) (-560) (-711 (-229)) (-560))) (-15 -3440 ((-1066) (-711 (-229)) (-560) (-560) (-560) (-560))) (-15 -3455 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3521 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2315 ((-1066) (-560) (-560) (-711 (-229)) (-560))) (-15 -4157 ((-1066) (-560) (-560) (-560) (-560) (-711 (-229)) (-560))) (-15 -3548 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -4482 ((-1066) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -1409 ((-1066) (-560) (-560) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3404 ((-1066) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-560) (-560) (-560))) (-15 -2954 ((-1066) (-560) (-560) (-229) (-229) (-560) (-560) (-711 (-229)) (-560))) (-15 -1781 ((-1066) (-560) (-560) (-560) (-229) (-114) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -4020 ((-1066) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))))) (-15 -4020 ((-1066) (-560) (-560) (-229) (-560) (-560) (-560) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))) (-402))) (-15 -3778 ((-1066) (-560) (-560) (-560) (-560) (-560) (-114) (-560) (-114) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -3647 ((-1066) (-560) (-560) (-560) (-560) (-560) (-114) (-560) (-114) (-560) (-711 (-171 (-229))) (-711 (-171 (-229))) (-560))))
+((-1807 (((-1066) (-560) (-560) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))) 64 T ELT)) (-3385 (((-1066) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-560)) (-560) (-711 (-229)) (-560) (-560) (-560) (-560)) 60 T ELT)) (-2698 (((-1066) (-560) (-711 (-229)) (-114) (-229) (-560) (-560) (-560) (-560) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE)))) 59 T ELT)) (-2212 (((-1066) (-560) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560) (-711 (-560)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560)) 37 T ELT)) (-2819 (((-1066) (-560) (-560) (-560) (-229) (-560) (-711 (-229)) (-711 (-229)) (-560)) 36 T ELT)) (-2665 (((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560)) 33 T ELT)) (-1501 (((-1066) (-560) (-711 (-229)) (-560) (-711 (-560)) (-711 (-560)) (-560) (-711 (-560)) (-711 (-229))) 32 T ELT)) (-3938 (((-1066) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-560)) 28 T ELT)) (-3407 (((-1066) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560)) 27 T ELT)) (-4029 (((-1066) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560)) 26 T ELT)) (-3498 (((-1066) (-560) (-711 (-171 (-229))) (-560) (-560) (-560) (-560) (-711 (-171 (-229))) (-560)) 22 T ELT)))
+(((-778) (-10 -7 (-15 -3498 ((-1066) (-560) (-711 (-171 (-229))) (-560) (-560) (-560) (-560) (-711 (-171 (-229))) (-560))) (-15 -4029 ((-1066) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -3407 ((-1066) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -3938 ((-1066) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-560))) (-15 -1501 ((-1066) (-560) (-711 (-229)) (-560) (-711 (-560)) (-711 (-560)) (-560) (-711 (-560)) (-711 (-229)))) (-15 -2665 ((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2819 ((-1066) (-560) (-560) (-560) (-229) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2212 ((-1066) (-560) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560) (-711 (-560)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560))) (-15 -2698 ((-1066) (-560) (-711 (-229)) (-114) (-229) (-560) (-560) (-560) (-560) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE))))) (-15 -3385 ((-1066) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-560)) (-560) (-711 (-229)) (-560) (-560) (-560) (-560))) (-15 -1807 ((-1066) (-560) (-560) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD))))))) (T -778))
+((-1807 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-778)))) (-3385 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560)) (-5 *2 (-1066)) (-5 *1 (-778)))) (-2698 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1066)) (-5 *1 (-778)))) (-2212 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560)) (-5 *2 (-1066)) (-5 *1 (-778)))) (-2819 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-778)))) (-2665 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-778)))) (-1501 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560)) (-5 *2 (-1066)) (-5 *1 (-778)))) (-3938 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-778)))) (-3407 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-778)))) (-4029 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-778)))) (-3498 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-171 (-229)))) (-5 *2 (-1066)) (-5 *1 (-778)))))
+(-10 -7 (-15 -3498 ((-1066) (-560) (-711 (-171 (-229))) (-560) (-560) (-560) (-560) (-711 (-171 (-229))) (-560))) (-15 -4029 ((-1066) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -3407 ((-1066) (-560) (-711 (-229)) (-560) (-711 (-229)) (-560))) (-15 -3938 ((-1066) (-711 (-229)) (-560) (-711 (-229)) (-560) (-560) (-560))) (-15 -1501 ((-1066) (-560) (-711 (-229)) (-560) (-711 (-560)) (-711 (-560)) (-560) (-711 (-560)) (-711 (-229)))) (-15 -2665 ((-1066) (-560) (-560) (-711 (-229)) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2819 ((-1066) (-560) (-560) (-560) (-229) (-560) (-711 (-229)) (-711 (-229)) (-560))) (-15 -2212 ((-1066) (-560) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560) (-711 (-560)) (-711 (-229)) (-711 (-560)) (-711 (-560)) (-711 (-229)) (-711 (-229)) (-711 (-560)) (-560))) (-15 -2698 ((-1066) (-560) (-711 (-229)) (-114) (-229) (-560) (-560) (-560) (-560) (-229) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE))))) (-15 -3385 ((-1066) (-560) (-711 (-229)) (-560) (-711 (-229)) (-711 (-560)) (-560) (-711 (-229)) (-560) (-560) (-560) (-560))) (-15 -1807 ((-1066) (-560) (-560) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-711 (-229)) (-560) (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD))))))
+((-2984 (((-1066) (-1189) (-560) (-560) (-711 (-229)) (-560) (-560) (-711 (-229))) 29 T ELT)) (-3502 (((-1066) (-1189) (-560) (-560) (-711 (-229))) 28 T ELT)) (-3576 (((-1066) (-1189) (-560) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560) (-711 (-229))) 27 T ELT)) (-2867 (((-1066) (-560) (-560) (-560) (-711 (-229))) 21 T ELT)))
+(((-779) (-10 -7 (-15 -2867 ((-1066) (-560) (-560) (-560) (-711 (-229)))) (-15 -3576 ((-1066) (-1189) (-560) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560) (-711 (-229)))) (-15 -3502 ((-1066) (-1189) (-560) (-560) (-711 (-229)))) (-15 -2984 ((-1066) (-1189) (-560) (-560) (-711 (-229)) (-560) (-560) (-711 (-229)))))) (T -779))
+((-2984 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-779)))) (-3502 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-779)))) (-3576 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1189)) (-5 *5 (-711 (-229))) (-5 *6 (-711 (-560))) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-779)))) (-2867 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066)) (-5 *1 (-779)))))
+(-10 -7 (-15 -2867 ((-1066) (-560) (-560) (-560) (-711 (-229)))) (-15 -3576 ((-1066) (-1189) (-560) (-560) (-711 (-229)) (-560) (-711 (-560)) (-560) (-711 (-229)))) (-15 -3502 ((-1066) (-1189) (-560) (-560) (-711 (-229)))) (-15 -2984 ((-1066) (-1189) (-560) (-560) (-711 (-229)) (-560) (-560) (-711 (-229)))))
+((-2459 (((-1066) (-229) (-229) (-229) (-229) (-560)) 62 T ELT)) (-3375 (((-1066) (-229) (-229) (-229) (-560)) 61 T ELT)) (-2674 (((-1066) (-229) (-229) (-229) (-560)) 60 T ELT)) (-3586 (((-1066) (-229) (-229) (-560)) 59 T ELT)) (-4082 (((-1066) (-229) (-560)) 58 T ELT)) (-4141 (((-1066) (-229) (-560)) 57 T ELT)) (-3180 (((-1066) (-229) (-560)) 56 T ELT)) (-3588 (((-1066) (-229) (-560)) 55 T ELT)) (-1730 (((-1066) (-229) (-560)) 54 T ELT)) (-1766 (((-1066) (-229) (-560)) 53 T ELT)) (-1892 (((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560)) 52 T ELT)) (-2648 (((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560)) 51 T ELT)) (-2610 (((-1066) (-229) (-560)) 50 T ELT)) (-1799 (((-1066) (-229) (-560)) 49 T ELT)) (-2489 (((-1066) (-229) (-560)) 48 T ELT)) (-2471 (((-1066) (-229) (-560)) 47 T ELT)) (-1800 (((-1066) (-560) (-229) (-171 (-229)) (-560) (-1189) (-560)) 46 T ELT)) (-3246 (((-1066) (-1189) (-171 (-229)) (-1189) (-560)) 45 T ELT)) (-2871 (((-1066) (-1189) (-171 (-229)) (-1189) (-560)) 44 T ELT)) (-2749 (((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560)) 43 T ELT)) (-2731 (((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560)) 42 T ELT)) (-1910 (((-1066) (-229) (-560)) 39 T ELT)) (-2545 (((-1066) (-229) (-560)) 38 T ELT)) (-3240 (((-1066) (-229) (-560)) 37 T ELT)) (-3311 (((-1066) (-229) (-560)) 36 T ELT)) (-1961 (((-1066) (-229) (-560)) 35 T ELT)) (-4112 (((-1066) (-229) (-560)) 34 T ELT)) (-4120 (((-1066) (-229) (-560)) 33 T ELT)) (-4373 (((-1066) (-229) (-560)) 32 T ELT)) (-2612 (((-1066) (-229) (-560)) 31 T ELT)) (-2259 (((-1066) (-229) (-560)) 30 T ELT)) (-1435 (((-1066) (-229) (-229) (-229) (-560)) 29 T ELT)) (-3510 (((-1066) (-229) (-560)) 28 T ELT)) (-3290 (((-1066) (-229) (-560)) 27 T ELT)) (-3546 (((-1066) (-229) (-560)) 26 T ELT)) (-1562 (((-1066) (-229) (-560)) 25 T ELT)) (-4228 (((-1066) (-229) (-560)) 24 T ELT)) (-3706 (((-1066) (-171 (-229)) (-560)) 21 T ELT)))
+(((-780) (-10 -7 (-15 -3706 ((-1066) (-171 (-229)) (-560))) (-15 -4228 ((-1066) (-229) (-560))) (-15 -1562 ((-1066) (-229) (-560))) (-15 -3546 ((-1066) (-229) (-560))) (-15 -3290 ((-1066) (-229) (-560))) (-15 -3510 ((-1066) (-229) (-560))) (-15 -1435 ((-1066) (-229) (-229) (-229) (-560))) (-15 -2259 ((-1066) (-229) (-560))) (-15 -2612 ((-1066) (-229) (-560))) (-15 -4373 ((-1066) (-229) (-560))) (-15 -4120 ((-1066) (-229) (-560))) (-15 -4112 ((-1066) (-229) (-560))) (-15 -1961 ((-1066) (-229) (-560))) (-15 -3311 ((-1066) (-229) (-560))) (-15 -3240 ((-1066) (-229) (-560))) (-15 -2545 ((-1066) (-229) (-560))) (-15 -1910 ((-1066) (-229) (-560))) (-15 -2731 ((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560))) (-15 -2749 ((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560))) (-15 -2871 ((-1066) (-1189) (-171 (-229)) (-1189) (-560))) (-15 -3246 ((-1066) (-1189) (-171 (-229)) (-1189) (-560))) (-15 -1800 ((-1066) (-560) (-229) (-171 (-229)) (-560) (-1189) (-560))) (-15 -2471 ((-1066) (-229) (-560))) (-15 -2489 ((-1066) (-229) (-560))) (-15 -1799 ((-1066) (-229) (-560))) (-15 -2610 ((-1066) (-229) (-560))) (-15 -2648 ((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560))) (-15 -1892 ((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560))) (-15 -1766 ((-1066) (-229) (-560))) (-15 -1730 ((-1066) (-229) (-560))) (-15 -3588 ((-1066) (-229) (-560))) (-15 -3180 ((-1066) (-229) (-560))) (-15 -4141 ((-1066) (-229) (-560))) (-15 -4082 ((-1066) (-229) (-560))) (-15 -3586 ((-1066) (-229) (-229) (-560))) (-15 -2674 ((-1066) (-229) (-229) (-229) (-560))) (-15 -3375 ((-1066) (-229) (-229) (-229) (-560))) (-15 -2459 ((-1066) (-229) (-229) (-229) (-229) (-560))))) (T -780))
+((-2459 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3375 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2674 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3586 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-4082 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-4141 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3180 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3588 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-1730 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-1766 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-1892 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1189)) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2648 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1189)) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2610 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-1799 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2489 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2471 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-1800 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-560)) (-5 *5 (-171 (-229))) (-5 *6 (-1189)) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3246 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1189)) (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2871 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1189)) (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2749 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1189)) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2731 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1189)) (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-1910 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2545 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3240 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3311 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-1961 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-4112 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-4120 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-4373 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2612 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-2259 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-1435 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3510 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3290 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3546 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-1562 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-4228 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))) (-3706 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-229))) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(-10 -7 (-15 -3706 ((-1066) (-171 (-229)) (-560))) (-15 -4228 ((-1066) (-229) (-560))) (-15 -1562 ((-1066) (-229) (-560))) (-15 -3546 ((-1066) (-229) (-560))) (-15 -3290 ((-1066) (-229) (-560))) (-15 -3510 ((-1066) (-229) (-560))) (-15 -1435 ((-1066) (-229) (-229) (-229) (-560))) (-15 -2259 ((-1066) (-229) (-560))) (-15 -2612 ((-1066) (-229) (-560))) (-15 -4373 ((-1066) (-229) (-560))) (-15 -4120 ((-1066) (-229) (-560))) (-15 -4112 ((-1066) (-229) (-560))) (-15 -1961 ((-1066) (-229) (-560))) (-15 -3311 ((-1066) (-229) (-560))) (-15 -3240 ((-1066) (-229) (-560))) (-15 -2545 ((-1066) (-229) (-560))) (-15 -1910 ((-1066) (-229) (-560))) (-15 -2731 ((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560))) (-15 -2749 ((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560))) (-15 -2871 ((-1066) (-1189) (-171 (-229)) (-1189) (-560))) (-15 -3246 ((-1066) (-1189) (-171 (-229)) (-1189) (-560))) (-15 -1800 ((-1066) (-560) (-229) (-171 (-229)) (-560) (-1189) (-560))) (-15 -2471 ((-1066) (-229) (-560))) (-15 -2489 ((-1066) (-229) (-560))) (-15 -1799 ((-1066) (-229) (-560))) (-15 -2610 ((-1066) (-229) (-560))) (-15 -2648 ((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560))) (-15 -1892 ((-1066) (-229) (-171 (-229)) (-560) (-1189) (-560))) (-15 -1766 ((-1066) (-229) (-560))) (-15 -1730 ((-1066) (-229) (-560))) (-15 -3588 ((-1066) (-229) (-560))) (-15 -3180 ((-1066) (-229) (-560))) (-15 -4141 ((-1066) (-229) (-560))) (-15 -4082 ((-1066) (-229) (-560))) (-15 -3586 ((-1066) (-229) (-229) (-560))) (-15 -2674 ((-1066) (-229) (-229) (-229) (-560))) (-15 -3375 ((-1066) (-229) (-229) (-229) (-560))) (-15 -2459 ((-1066) (-229) (-229) (-229) (-229) (-560))))
+((-2898 (((-1303)) 20 T ELT)) (-1950 (((-1189)) 34 T ELT)) (-3106 (((-1189)) 33 T ELT)) (-3543 (((-1134) (-1207) (-711 (-560))) 47 T ELT) (((-1134) (-1207) (-711 (-229))) 43 T ELT)) (-3389 (((-114)) 19 T ELT)) (-1998 (((-1189) (-1189)) 37 T ELT)))
+(((-781) (-10 -7 (-15 -3106 ((-1189))) (-15 -1950 ((-1189))) (-15 -1998 ((-1189) (-1189))) (-15 -3543 ((-1134) (-1207) (-711 (-229)))) (-15 -3543 ((-1134) (-1207) (-711 (-560)))) (-15 -3389 ((-114))) (-15 -2898 ((-1303))))) (T -781))
+((-2898 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-781)))) (-3389 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-781)))) (-3543 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-711 (-560))) (-5 *2 (-1134)) (-5 *1 (-781)))) (-3543 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-711 (-229))) (-5 *2 (-1134)) (-5 *1 (-781)))) (-1998 (*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-781)))) (-1950 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-781)))) (-3106 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-781)))))
+(-10 -7 (-15 -3106 ((-1189))) (-15 -1950 ((-1189))) (-15 -1998 ((-1189) (-1189))) (-15 -3543 ((-1134) (-1207) (-711 (-229)))) (-15 -3543 ((-1134) (-1207) (-711 (-560)))) (-15 -3389 ((-114))) (-15 -2898 ((-1303))))
+((-3117 (($ $ $) 10 T ELT)) (-1777 (($ $ $ $) 9 T ELT)) (-4209 (($ $ $) 12 T ELT)))
+(((-782 |#1|) (-10 -8 (-15 -4209 (|#1| |#1| |#1|)) (-15 -3117 (|#1| |#1| |#1|)) (-15 -1777 (|#1| |#1| |#1| |#1|))) (-783)) (T -782))
+NIL
+(-10 -8 (-15 -4209 (|#1| |#1| |#1|)) (-15 -3117 (|#1| |#1| |#1|)) (-15 -1777 (|#1| |#1| |#1| |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-4201 (($ $ (-948)) 31 T ELT)) (-2065 (($ $ (-948)) 32 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3117 (($ $ $) 28 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1777 (($ $ $ $) 29 T ELT)) (-4209 (($ $ $) 27 T ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 33 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 30 T ELT)))
(((-783) (-142)) (T -783))
-((-4128 (*1 *1 *1 *1 *1) (-4 *1 (-783))) (-2013 (*1 *1 *1 *1) (-4 *1 (-783))) (-3868 (*1 *1 *1 *1) (-4 *1 (-783))))
-(-13 (-21) (-742) (-10 -8 (-15 -4128 ($ $ $ $)) (-15 -2013 ($ $ $)) (-15 -3868 ($ $ $))))
+((-1777 (*1 *1 *1 *1 *1) (-4 *1 (-783))) (-3117 (*1 *1 *1 *1) (-4 *1 (-783))) (-4209 (*1 *1 *1 *1) (-4 *1 (-783))))
+(-13 (-21) (-742) (-10 -8 (-15 -1777 ($ $ $ $)) (-15 -3117 ($ $ $)) (-15 -4209 ($ $ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-742) . T) ((-1132) . T) ((-1247) . T))
-((-1578 (((-887) $) NIL T ELT) (($ (-560)) 10 T ELT)))
-(((-784 |#1|) (-10 -8 (-15 -1578 (|#1| (-560))) (-15 -1578 ((-887) |#1|))) (-785)) (T -784))
+((-3913 (((-887) $) NIL T ELT) (($ (-560)) 10 T ELT)))
+(((-784 |#1|) (-10 -8 (-15 -3913 (|#1| (-560))) (-15 -3913 ((-887) |#1|))) (-785)) (T -784))
NIL
-(-10 -8 (-15 -1578 (|#1| (-560))) (-15 -1578 ((-887) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1713 (((-3 $ "failed") $) 43 T ELT)) (-1866 (($ $ (-948)) 31 T ELT) (($ $ (-793)) 38 T ELT)) (-1990 (((-3 $ "failed") $) 41 T ELT)) (-1581 (((-114) $) 37 T ELT)) (-3236 (((-3 $ "failed") $) 42 T ELT)) (-3520 (($ $ (-948)) 32 T ELT) (($ $ (-793)) 39 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-2013 (($ $ $) 28 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 34 T ELT)) (-2930 (((-793)) 35 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-4128 (($ $ $ $) 29 T ELT)) (-3868 (($ $ $) 27 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 36 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 33 T ELT) (($ $ (-793)) 40 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 30 T ELT)))
+(-10 -8 (-15 -3913 (|#1| (-560))) (-15 -3913 ((-887) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-2035 (((-3 $ "failed") $) 43 T ELT)) (-4201 (($ $ (-948)) 31 T ELT) (($ $ (-793)) 38 T ELT)) (-2873 (((-3 $ "failed") $) 41 T ELT)) (-1918 (((-114) $) 37 T ELT)) (-4294 (((-3 $ "failed") $) 42 T ELT)) (-2065 (($ $ (-948)) 32 T ELT) (($ $ (-793)) 39 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3117 (($ $ $) 28 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 34 T ELT)) (-4191 (((-793)) 35 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-1777 (($ $ $ $) 29 T ELT)) (-4209 (($ $ $) 27 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 36 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 33 T ELT) (($ $ (-793)) 40 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 30 T ELT)))
(((-785) (-142)) (T -785))
-((-2930 (*1 *2) (-12 (-4 *1 (-785)) (-5 *2 (-793)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-785)))))
-(-13 (-783) (-744) (-10 -8 (-15 -2930 ((-793)) -3081) (-15 -1578 ($ (-560)))))
+((-4191 (*1 *2) (-12 (-4 *1 (-785)) (-5 *2 (-793)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-785)))))
+(-13 (-783) (-744) (-10 -8 (-15 -4191 ((-793)) -2650) (-15 -3913 ($ (-560)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-742) . T) ((-744) . T) ((-783) . T) ((-1132) . T) ((-1247) . T))
-((-2707 (((-663 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 (-171 |#1|)))))) (-711 (-171 (-421 (-560)))) |#1|) 33 T ELT)) (-3304 (((-663 (-171 |#1|)) (-711 (-171 (-421 (-560)))) |#1|) 23 T ELT)) (-2630 (((-975 (-171 (-421 (-560)))) (-711 (-171 (-421 (-560)))) (-1207)) 20 T ELT) (((-975 (-171 (-421 (-560)))) (-711 (-171 (-421 (-560))))) 19 T ELT)))
-(((-786 |#1|) (-10 -7 (-15 -2630 ((-975 (-171 (-421 (-560)))) (-711 (-171 (-421 (-560)))))) (-15 -2630 ((-975 (-171 (-421 (-560)))) (-711 (-171 (-421 (-560)))) (-1207))) (-15 -3304 ((-663 (-171 |#1|)) (-711 (-171 (-421 (-560)))) |#1|)) (-15 -2707 ((-663 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 (-171 |#1|)))))) (-711 (-171 (-421 (-560)))) |#1|))) (-13 (-376) (-870))) (T -786))
-((-2707 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-171 (-421 (-560))))) (-5 *2 (-663 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 (-171 *4))))))) (-5 *1 (-786 *4)) (-4 *4 (-13 (-376) (-870))))) (-3304 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-171 (-421 (-560))))) (-5 *2 (-663 (-171 *4))) (-5 *1 (-786 *4)) (-4 *4 (-13 (-376) (-870))))) (-2630 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-171 (-421 (-560))))) (-5 *4 (-1207)) (-5 *2 (-975 (-171 (-421 (-560))))) (-5 *1 (-786 *5)) (-4 *5 (-13 (-376) (-870))))) (-2630 (*1 *2 *3) (-12 (-5 *3 (-711 (-171 (-421 (-560))))) (-5 *2 (-975 (-171 (-421 (-560))))) (-5 *1 (-786 *4)) (-4 *4 (-13 (-376) (-870))))))
-(-10 -7 (-15 -2630 ((-975 (-171 (-421 (-560)))) (-711 (-171 (-421 (-560)))))) (-15 -2630 ((-975 (-171 (-421 (-560)))) (-711 (-171 (-421 (-560)))) (-1207))) (-15 -3304 ((-663 (-171 |#1|)) (-711 (-171 (-421 (-560)))) |#1|)) (-15 -2707 ((-663 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 (-171 |#1|)))))) (-711 (-171 (-421 (-560)))) |#1|)))
-((-1567 (((-177 (-560)) |#1|) 27 T ELT)))
-(((-787 |#1|) (-10 -7 (-15 -1567 ((-177 (-560)) |#1|))) (-418)) (T -787))
-((-1567 (*1 *2 *3) (-12 (-5 *2 (-177 (-560))) (-5 *1 (-787 *3)) (-4 *3 (-418)))))
-(-10 -7 (-15 -1567 ((-177 (-560)) |#1|)))
-((-3990 ((|#1| |#1| |#1|) 28 T ELT)) (-1438 ((|#1| |#1| |#1|) 27 T ELT)) (-2736 ((|#1| |#1| |#1|) 38 T ELT)) (-2712 ((|#1| |#1| |#1|) 34 T ELT)) (-2253 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-1879 (((-2 (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1|) 26 T ELT)))
-(((-788 |#1| |#2|) (-10 -7 (-15 -1879 ((-2 (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1|)) (-15 -1438 (|#1| |#1| |#1|)) (-15 -3990 (|#1| |#1| |#1|)) (-15 -2253 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2712 (|#1| |#1| |#1|)) (-15 -2736 (|#1| |#1| |#1|))) (-730 |#2|) (-376)) (T -788))
-((-2736 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) (-2712 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) (-2253 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) (-3990 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) (-1438 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) (-1879 (*1 *2 *3 *3) (-12 (-4 *4 (-376)) (-5 *2 (-2 (|:| -1774 *3) (|:| -2341 *3))) (-5 *1 (-788 *3 *4)) (-4 *3 (-730 *4)))))
-(-10 -7 (-15 -1879 ((-2 (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1|)) (-15 -1438 (|#1| |#1| |#1|)) (-15 -3990 (|#1| |#1| |#1|)) (-15 -2253 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2712 (|#1| |#1| |#1|)) (-15 -2736 (|#1| |#1| |#1|)))
-((-3740 (((-713 (-1256)) $ (-1256)) 26 T ELT)) (-4475 (((-713 (-564)) $ (-564)) 25 T ELT)) (-3159 (((-793) $ (-131)) 27 T ELT)) (-3720 (((-713 (-130)) $ (-130)) 24 T ELT)) (-1397 (((-713 (-1256)) $) 12 T ELT)) (-2487 (((-713 (-1254)) $) 8 T ELT)) (-2499 (((-713 (-1253)) $) 10 T ELT)) (-2066 (((-713 (-564)) $) 13 T ELT)) (-2034 (((-713 (-562)) $) 9 T ELT)) (-3006 (((-713 (-561)) $) 11 T ELT)) (-3256 (((-793) $ (-131)) 7 T ELT)) (-1907 (((-713 (-130)) $) 14 T ELT)) (-3040 (((-114) $) 31 T ELT)) (-3884 (((-713 $) |#1| (-983)) 32 T ELT)) (-4474 (($ $) 6 T ELT)))
+((-2525 (((-663 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 (-171 |#1|)))))) (-711 (-171 (-421 (-560)))) |#1|) 33 T ELT)) (-3734 (((-663 (-171 |#1|)) (-711 (-171 (-421 (-560)))) |#1|) 23 T ELT)) (-2978 (((-975 (-171 (-421 (-560)))) (-711 (-171 (-421 (-560)))) (-1207)) 20 T ELT) (((-975 (-171 (-421 (-560)))) (-711 (-171 (-421 (-560))))) 19 T ELT)))
+(((-786 |#1|) (-10 -7 (-15 -2978 ((-975 (-171 (-421 (-560)))) (-711 (-171 (-421 (-560)))))) (-15 -2978 ((-975 (-171 (-421 (-560)))) (-711 (-171 (-421 (-560)))) (-1207))) (-15 -3734 ((-663 (-171 |#1|)) (-711 (-171 (-421 (-560)))) |#1|)) (-15 -2525 ((-663 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 (-171 |#1|)))))) (-711 (-171 (-421 (-560)))) |#1|))) (-13 (-376) (-870))) (T -786))
+((-2525 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-171 (-421 (-560))))) (-5 *2 (-663 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 (-171 *4))))))) (-5 *1 (-786 *4)) (-4 *4 (-13 (-376) (-870))))) (-3734 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-171 (-421 (-560))))) (-5 *2 (-663 (-171 *4))) (-5 *1 (-786 *4)) (-4 *4 (-13 (-376) (-870))))) (-2978 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-171 (-421 (-560))))) (-5 *4 (-1207)) (-5 *2 (-975 (-171 (-421 (-560))))) (-5 *1 (-786 *5)) (-4 *5 (-13 (-376) (-870))))) (-2978 (*1 *2 *3) (-12 (-5 *3 (-711 (-171 (-421 (-560))))) (-5 *2 (-975 (-171 (-421 (-560))))) (-5 *1 (-786 *4)) (-4 *4 (-13 (-376) (-870))))))
+(-10 -7 (-15 -2978 ((-975 (-171 (-421 (-560)))) (-711 (-171 (-421 (-560)))))) (-15 -2978 ((-975 (-171 (-421 (-560)))) (-711 (-171 (-421 (-560)))) (-1207))) (-15 -3734 ((-663 (-171 |#1|)) (-711 (-171 (-421 (-560)))) |#1|)) (-15 -2525 ((-663 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 (-171 |#1|)))))) (-711 (-171 (-421 (-560)))) |#1|)))
+((-1768 (((-177 (-560)) |#1|) 27 T ELT)))
+(((-787 |#1|) (-10 -7 (-15 -1768 ((-177 (-560)) |#1|))) (-418)) (T -787))
+((-1768 (*1 *2 *3) (-12 (-5 *2 (-177 (-560))) (-5 *1 (-787 *3)) (-4 *3 (-418)))))
+(-10 -7 (-15 -1768 ((-177 (-560)) |#1|)))
+((-2883 ((|#1| |#1| |#1|) 28 T ELT)) (-1613 ((|#1| |#1| |#1|) 27 T ELT)) (-1594 ((|#1| |#1| |#1|) 38 T ELT)) (-2581 ((|#1| |#1| |#1|) 34 T ELT)) (-3687 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-4330 (((-2 (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1|) 26 T ELT)))
+(((-788 |#1| |#2|) (-10 -7 (-15 -4330 ((-2 (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1|)) (-15 -1613 (|#1| |#1| |#1|)) (-15 -2883 (|#1| |#1| |#1|)) (-15 -3687 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2581 (|#1| |#1| |#1|)) (-15 -1594 (|#1| |#1| |#1|))) (-730 |#2|) (-376)) (T -788))
+((-1594 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) (-2581 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) (-3687 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) (-2883 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) (-1613 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3)))) (-4330 (*1 *2 *3 *3) (-12 (-4 *4 (-376)) (-5 *2 (-2 (|:| -2584 *3) (|:| -3276 *3))) (-5 *1 (-788 *3 *4)) (-4 *3 (-730 *4)))))
+(-10 -7 (-15 -4330 ((-2 (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1|)) (-15 -1613 (|#1| |#1| |#1|)) (-15 -2883 (|#1| |#1| |#1|)) (-15 -3687 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2581 (|#1| |#1| |#1|)) (-15 -1594 (|#1| |#1| |#1|)))
+((-2406 (((-713 (-1256)) $ (-1256)) 26 T ELT)) (-1847 (((-713 (-564)) $ (-564)) 25 T ELT)) (-1580 (((-793) $ (-131)) 27 T ELT)) (-2241 (((-713 (-130)) $ (-130)) 24 T ELT)) (-1355 (((-713 (-1256)) $) 12 T ELT)) (-4163 (((-713 (-1254)) $) 8 T ELT)) (-4262 (((-713 (-1253)) $) 10 T ELT)) (-2380 (((-713 (-564)) $) 13 T ELT)) (-2103 (((-713 (-562)) $) 9 T ELT)) (-3714 (((-713 (-561)) $) 11 T ELT)) (-4478 (((-793) $ (-131)) 7 T ELT)) (-3366 (((-713 (-130)) $) 14 T ELT)) (-2772 (((-114) $) 31 T ELT)) (-4350 (((-713 $) |#1| (-983)) 32 T ELT)) (-1835 (($ $) 6 T ELT)))
(((-789 |#1|) (-142) (-1132)) (T -789))
-((-3884 (*1 *2 *3 *4) (-12 (-5 *4 (-983)) (-4 *3 (-1132)) (-5 *2 (-713 *1)) (-4 *1 (-789 *3)))) (-3040 (*1 *2 *1) (-12 (-4 *1 (-789 *3)) (-4 *3 (-1132)) (-5 *2 (-114)))))
-(-13 (-590) (-10 -8 (-15 -3884 ((-713 $) |t#1| (-983))) (-15 -3040 ((-114) $))))
+((-4350 (*1 *2 *3 *4) (-12 (-5 *4 (-983)) (-4 *3 (-1132)) (-5 *2 (-713 *1)) (-4 *1 (-789 *3)))) (-2772 (*1 *2 *1) (-12 (-4 *1 (-789 *3)) (-4 *3 (-1132)) (-5 *2 (-114)))))
+(-13 (-590) (-10 -8 (-15 -4350 ((-713 $) |t#1| (-983))) (-15 -2772 ((-114) $))))
(((-176) . T) ((-541) . T) ((-590) . T) ((-885) . T))
-((-2215 (((-2 (|:| -1954 (-711 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-711 (-560)))) (-560)) 71 T ELT)) (-3932 (((-2 (|:| -1954 (-711 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-711 (-560))))) 69 T ELT)) (-2690 (((-560)) 85 T ELT)))
-(((-790 |#1| |#2|) (-10 -7 (-15 -2690 ((-560))) (-15 -3932 ((-2 (|:| -1954 (-711 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-711 (-560)))))) (-15 -2215 ((-2 (|:| -1954 (-711 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-711 (-560)))) (-560)))) (-1273 (-560)) (-424 (-560) |#1|)) (T -790))
-((-2215 (*1 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-1273 *3)) (-5 *2 (-2 (|:| -1954 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-5 *1 (-790 *4 *5)) (-4 *5 (-424 *3 *4)))) (-3932 (*1 *2) (-12 (-4 *3 (-1273 (-560))) (-5 *2 (-2 (|:| -1954 (-711 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-711 (-560))))) (-5 *1 (-790 *3 *4)) (-4 *4 (-424 (-560) *3)))) (-2690 (*1 *2) (-12 (-4 *3 (-1273 *2)) (-5 *2 (-560)) (-5 *1 (-790 *3 *4)) (-4 *4 (-424 *2 *3)))))
-(-10 -7 (-15 -2690 ((-560))) (-15 -3932 ((-2 (|:| -1954 (-711 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-711 (-560)))))) (-15 -2215 ((-2 (|:| -1954 (-711 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-711 (-560)))) (-560))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3330 (((-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) $) 21 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 20 T ELT) (($ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 13 T ELT) (($ (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 16 T ELT) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) 18 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-791) (-13 (-1132) (-10 -8 (-15 -1578 ($ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1578 ($ (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1578 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (-15 -3330 ((-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) $))))) (T -791))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-791)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-791)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-5 *1 (-791)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-5 *1 (-791)))))
-(-13 (-1132) (-10 -8 (-15 -1578 ($ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1578 ($ (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1578 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (-15 -3330 ((-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) $))))
-((-2329 (((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|))) 18 T ELT) (((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|)) (-663 (-1207))) 17 T ELT)) (-1433 (((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|))) 20 T ELT) (((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|)) (-663 (-1207))) 19 T ELT)))
-(((-792 |#1|) (-10 -7 (-15 -2329 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|)) (-663 (-1207)))) (-15 -2329 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|)))) (-15 -1433 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|)) (-663 (-1207)))) (-15 -1433 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|))))) (-571)) (T -792))
-((-1433 (*1 *2 *3) (-12 (-5 *3 (-663 (-975 *4))) (-4 *4 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-975 *4)))))) (-5 *1 (-792 *4)))) (-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-663 (-1207))) (-4 *5 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-975 *5)))))) (-5 *1 (-792 *5)))) (-2329 (*1 *2 *3) (-12 (-5 *3 (-663 (-975 *4))) (-4 *4 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-975 *4)))))) (-5 *1 (-792 *4)))) (-2329 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-663 (-1207))) (-4 *5 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-975 *5)))))) (-5 *1 (-792 *5)))))
-(-10 -7 (-15 -2329 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|)) (-663 (-1207)))) (-15 -2329 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|)))) (-15 -1433 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|)) (-663 (-1207)))) (-15 -1433 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3168 (($ $ $) 10 T ELT)) (-3068 (((-3 $ "failed") $ $) 15 T ELT)) (-2331 (($ $ (-560)) 11 T ELT)) (-2238 (($) NIL T CONST)) (-1478 (($ $ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2310 (($ $) NIL T ELT)) (-1490 (($ $ $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2132 (($ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 6 T CONST)) (-2011 (($) NIL T CONST)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-948)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ $ $) NIL T ELT)))
-(((-793) (-13 (-815) (-748) (-10 -8 (-15 -1490 ($ $ $)) (-15 -1478 ($ $ $)) (-15 -2132 ($ $ $)) (-15 -2205 ((-2 (|:| -1774 $) (|:| -2341 $)) $ $)) (-15 -1528 ((-3 $ "failed") $ $)) (-15 -2331 ($ $ (-560))) (-15 -2310 ($ $)) (-6 (-4510 "*"))))) (T -793))
-((-1490 (*1 *1 *1 *1) (-5 *1 (-793))) (-1478 (*1 *1 *1 *1) (-5 *1 (-793))) (-2132 (*1 *1 *1 *1) (-5 *1 (-793))) (-2205 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1774 (-793)) (|:| -2341 (-793)))) (-5 *1 (-793)))) (-1528 (*1 *1 *1 *1) (|partial| -5 *1 (-793))) (-2331 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-793)))) (-2310 (*1 *1 *1) (-5 *1 (-793))))
-(-13 (-815) (-748) (-10 -8 (-15 -1490 ($ $ $)) (-15 -1478 ($ $ $)) (-15 -2132 ($ $ $)) (-15 -2205 ((-2 (|:| -1774 $) (|:| -2341 $)) $ $)) (-15 -1528 ((-3 $ "failed") $ $)) (-15 -2331 ($ $ (-560))) (-15 -2310 ($ $)) (-6 (-4510 "*"))))
+((-1396 (((-2 (|:| -3822 (-711 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-711 (-560)))) (-560)) 71 T ELT)) (-3538 (((-2 (|:| -3822 (-711 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-711 (-560))))) 69 T ELT)) (-2336 (((-560)) 85 T ELT)))
+(((-790 |#1| |#2|) (-10 -7 (-15 -2336 ((-560))) (-15 -3538 ((-2 (|:| -3822 (-711 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-711 (-560)))))) (-15 -1396 ((-2 (|:| -3822 (-711 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-711 (-560)))) (-560)))) (-1273 (-560)) (-424 (-560) |#1|)) (T -790))
+((-1396 (*1 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-1273 *3)) (-5 *2 (-2 (|:| -3822 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-5 *1 (-790 *4 *5)) (-4 *5 (-424 *3 *4)))) (-3538 (*1 *2) (-12 (-4 *3 (-1273 (-560))) (-5 *2 (-2 (|:| -3822 (-711 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-711 (-560))))) (-5 *1 (-790 *3 *4)) (-4 *4 (-424 (-560) *3)))) (-2336 (*1 *2) (-12 (-4 *3 (-1273 *2)) (-5 *2 (-560)) (-5 *1 (-790 *3 *4)) (-4 *4 (-424 *2 *3)))))
+(-10 -7 (-15 -2336 ((-560))) (-15 -3538 ((-2 (|:| -3822 (-711 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-711 (-560)))))) (-15 -1396 ((-2 (|:| -3822 (-711 (-560))) (|:| |basisDen| (-560)) (|:| |basisInv| (-711 (-560)))) (-560))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3649 (((-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) $) 21 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 20 T ELT) (($ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 13 T ELT) (($ (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 16 T ELT) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) 18 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-791) (-13 (-1132) (-10 -8 (-15 -3913 ($ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3913 ($ (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3913 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (-15 -3649 ((-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) $))))) (T -791))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-791)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-791)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-5 *1 (-791)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-5 *1 (-791)))))
+(-13 (-1132) (-10 -8 (-15 -3913 ($ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3913 ($ (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3913 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (-15 -3649 ((-3 (|:| |nia| (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) $))))
+((-3165 (((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|))) 18 T ELT) (((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|)) (-663 (-1207))) 17 T ELT)) (-1652 (((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|))) 20 T ELT) (((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|)) (-663 (-1207))) 19 T ELT)))
+(((-792 |#1|) (-10 -7 (-15 -3165 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|)) (-663 (-1207)))) (-15 -3165 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|)))) (-15 -1652 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|)) (-663 (-1207)))) (-15 -1652 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|))))) (-571)) (T -792))
+((-1652 (*1 *2 *3) (-12 (-5 *3 (-663 (-975 *4))) (-4 *4 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-975 *4)))))) (-5 *1 (-792 *4)))) (-1652 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-663 (-1207))) (-4 *5 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-975 *5)))))) (-5 *1 (-792 *5)))) (-3165 (*1 *2 *3) (-12 (-5 *3 (-663 (-975 *4))) (-4 *4 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-975 *4)))))) (-5 *1 (-792 *4)))) (-3165 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-663 (-1207))) (-4 *5 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-975 *5)))))) (-5 *1 (-792 *5)))))
+(-10 -7 (-15 -3165 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|)) (-663 (-1207)))) (-15 -3165 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|)))) (-15 -1652 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|)) (-663 (-1207)))) (-15 -1652 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-975 |#1|)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-1651 (($ $ $) 10 T ELT)) (-3094 (((-3 $ "failed") $ $) 15 T ELT)) (-1786 (($ $ (-560)) 11 T ELT)) (-3525 (($) NIL T CONST)) (-2186 (($ $ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1812 (($ $) NIL T ELT)) (-2197 (($ $ $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1938 (($ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 6 T CONST)) (-1456 (($) NIL T CONST)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-948)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ $ $) NIL T ELT)))
+(((-793) (-13 (-815) (-748) (-10 -8 (-15 -2197 ($ $ $)) (-15 -2186 ($ $ $)) (-15 -1938 ($ $ $)) (-15 -4455 ((-2 (|:| -2584 $) (|:| -3276 $)) $ $)) (-15 -2233 ((-3 $ "failed") $ $)) (-15 -1786 ($ $ (-560))) (-15 -1812 ($ $)) (-6 (-4510 "*"))))) (T -793))
+((-2197 (*1 *1 *1 *1) (-5 *1 (-793))) (-2186 (*1 *1 *1 *1) (-5 *1 (-793))) (-1938 (*1 *1 *1 *1) (-5 *1 (-793))) (-4455 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2584 (-793)) (|:| -3276 (-793)))) (-5 *1 (-793)))) (-2233 (*1 *1 *1 *1) (|partial| -5 *1 (-793))) (-1786 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-793)))) (-1812 (*1 *1 *1) (-5 *1 (-793))))
+(-13 (-815) (-748) (-10 -8 (-15 -2197 ($ $ $)) (-15 -2186 ($ $ $)) (-15 -1938 ($ $ $)) (-15 -4455 ((-2 (|:| -2584 $) (|:| -3276 $)) $ $)) (-15 -2233 ((-3 $ "failed") $ $)) (-15 -1786 ($ $ (-560))) (-15 -1812 ($ $)) (-6 (-4510 "*"))))
((|Integer|) (|%not| (|%ilt| |#1| 0)))
-((-1433 (((-3 |#2| "failed") |#2| |#2| (-115) (-1207)) 37 T ELT)))
-(((-794 |#1| |#2|) (-10 -7 (-15 -1433 ((-3 |#2| "failed") |#2| |#2| (-115) (-1207)))) (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)) (-13 (-29 |#1|) (-1233) (-989))) (T -794))
-((-1433 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *1 (-794 *5 *2)) (-4 *2 (-13 (-29 *5) (-1233) (-989))))))
-(-10 -7 (-15 -1433 ((-3 |#2| "failed") |#2| |#2| (-115) (-1207))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 7 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 9 T ELT)))
+((-1652 (((-3 |#2| "failed") |#2| |#2| (-115) (-1207)) 37 T ELT)))
+(((-794 |#1| |#2|) (-10 -7 (-15 -1652 ((-3 |#2| "failed") |#2| |#2| (-115) (-1207)))) (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)) (-13 (-29 |#1|) (-1233) (-989))) (T -794))
+((-1652 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *1 (-794 *5 *2)) (-4 *2 (-13 (-29 *5) (-1233) (-989))))))
+(-10 -7 (-15 -1652 ((-3 |#2| "failed") |#2| |#2| (-115) (-1207))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 7 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 9 T ELT)))
(((-795) (-1132)) (T -795))
NIL
(-1132)
-((-1578 (((-795) |#1|) 8 T ELT)))
-(((-796 |#1|) (-10 -7 (-15 -1578 ((-795) |#1|))) (-1247)) (T -796))
-((-1578 (*1 *2 *3) (-12 (-5 *2 (-795)) (-5 *1 (-796 *3)) (-4 *3 (-1247)))))
-(-10 -7 (-15 -1578 ((-795) |#1|)))
-((-2032 ((|#2| |#4|) 35 T ELT)))
-(((-797 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2032 (|#2| |#4|))) (-466) (-1273 |#1|) (-746 |#1| |#2|) (-1273 |#3|)) (T -797))
-((-2032 (*1 *2 *3) (-12 (-4 *4 (-466)) (-4 *5 (-746 *4 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-797 *4 *2 *5 *3)) (-4 *3 (-1273 *5)))))
-(-10 -7 (-15 -2032 (|#2| |#4|)))
-((-1990 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-1564 (((-1303) (-1189) (-1189) |#4| |#5|) 33 T ELT)) (-1390 ((|#4| |#4| |#5|) 74 T ELT)) (-3639 (((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#5|) 79 T ELT)) (-3348 (((-663 (-2 (|:| |val| (-114)) (|:| -4297 |#5|))) |#4| |#5|) 16 T ELT)))
-(((-798 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1990 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1390 (|#4| |#4| |#5|)) (-15 -3639 ((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#5|)) (-15 -1564 ((-1303) (-1189) (-1189) |#4| |#5|)) (-15 -3348 ((-663 (-2 (|:| |val| (-114)) (|:| -4297 |#5|))) |#4| |#5|))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -798))
-((-3348 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -4297 *4)))) (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1564 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1189)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *4 (-1096 *6 *7 *8)) (-5 *2 (-1303)) (-5 *1 (-798 *6 *7 *8 *4 *5)) (-4 *5 (-1102 *6 *7 *8 *4)))) (-3639 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *4)))) (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1390 (*1 *2 *2 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *2 (-1096 *4 *5 *6)) (-5 *1 (-798 *4 *5 *6 *2 *3)) (-4 *3 (-1102 *4 *5 *6 *2)))) (-1990 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
-(-10 -7 (-15 -1990 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1390 (|#4| |#4| |#5|)) (-15 -3639 ((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#5|)) (-15 -1564 ((-1303) (-1189) (-1189) |#4| |#5|)) (-15 -3348 ((-663 (-2 (|:| |val| (-114)) (|:| -4297 |#5|))) |#4| |#5|)))
-((-2539 (((-3 (-1201 (-1201 |#1|)) "failed") |#4|) 51 T ELT)) (-2744 (((-663 |#4|) |#4|) 22 T ELT)) (-3054 ((|#4| |#4|) 17 T ELT)))
-(((-799 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2744 ((-663 |#4|) |#4|)) (-15 -2539 ((-3 (-1201 (-1201 |#1|)) "failed") |#4|)) (-15 -3054 (|#4| |#4|))) (-363) (-341 |#1|) (-1273 |#2|) (-1273 |#3|) (-948)) (T -799))
-((-3054 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-341 *3)) (-4 *5 (-1273 *4)) (-5 *1 (-799 *3 *4 *5 *2 *6)) (-4 *2 (-1273 *5)) (-14 *6 (-948)))) (-2539 (*1 *2 *3) (|partial| -12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1273 *5)) (-5 *2 (-1201 (-1201 *4))) (-5 *1 (-799 *4 *5 *6 *3 *7)) (-4 *3 (-1273 *6)) (-14 *7 (-948)))) (-2744 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1273 *5)) (-5 *2 (-663 *3)) (-5 *1 (-799 *4 *5 *6 *3 *7)) (-4 *3 (-1273 *6)) (-14 *7 (-948)))))
-(-10 -7 (-15 -2744 ((-663 |#4|) |#4|)) (-15 -2539 ((-3 (-1201 (-1201 |#1|)) "failed") |#4|)) (-15 -3054 (|#4| |#4|)))
-((-1859 (((-2 (|:| |deter| (-663 (-1201 |#5|))) (|:| |dterm| (-663 (-663 (-2 (|:| -3911 (-793)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-663 |#1|)) (|:| |nlead| (-663 |#5|))) (-1201 |#5|) (-663 |#1|) (-663 |#5|)) 72 T ELT)) (-3252 (((-663 (-793)) |#1|) 20 T ELT)))
-(((-800 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1859 ((-2 (|:| |deter| (-663 (-1201 |#5|))) (|:| |dterm| (-663 (-663 (-2 (|:| -3911 (-793)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-663 |#1|)) (|:| |nlead| (-663 |#5|))) (-1201 |#5|) (-663 |#1|) (-663 |#5|))) (-15 -3252 ((-663 (-793)) |#1|))) (-1273 |#4|) (-815) (-871) (-319) (-979 |#4| |#2| |#3|)) (T -800))
-((-3252 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) (-5 *2 (-663 (-793))) (-5 *1 (-800 *3 *4 *5 *6 *7)) (-4 *3 (-1273 *6)) (-4 *7 (-979 *6 *4 *5)))) (-1859 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1273 *9)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *9 (-319)) (-4 *10 (-979 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-663 (-1201 *10))) (|:| |dterm| (-663 (-663 (-2 (|:| -3911 (-793)) (|:| |pcoef| *10))))) (|:| |nfacts| (-663 *6)) (|:| |nlead| (-663 *10)))) (-5 *1 (-800 *6 *7 *8 *9 *10)) (-5 *3 (-1201 *10)) (-5 *4 (-663 *6)) (-5 *5 (-663 *10)))))
-(-10 -7 (-15 -1859 ((-2 (|:| |deter| (-663 (-1201 |#5|))) (|:| |dterm| (-663 (-663 (-2 (|:| -3911 (-793)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-663 |#1|)) (|:| |nlead| (-663 |#5|))) (-1201 |#5|) (-663 |#1|) (-663 |#5|))) (-15 -3252 ((-663 (-793)) |#1|)))
-((-3158 (((-663 (-2 (|:| |outval| |#1|) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 |#1|))))) (-711 (-421 (-560))) |#1|) 31 T ELT)) (-1664 (((-663 |#1|) (-711 (-421 (-560))) |#1|) 21 T ELT)) (-2630 (((-975 (-421 (-560))) (-711 (-421 (-560))) (-1207)) 18 T ELT) (((-975 (-421 (-560))) (-711 (-421 (-560)))) 17 T ELT)))
-(((-801 |#1|) (-10 -7 (-15 -2630 ((-975 (-421 (-560))) (-711 (-421 (-560))))) (-15 -2630 ((-975 (-421 (-560))) (-711 (-421 (-560))) (-1207))) (-15 -1664 ((-663 |#1|) (-711 (-421 (-560))) |#1|)) (-15 -3158 ((-663 (-2 (|:| |outval| |#1|) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 |#1|))))) (-711 (-421 (-560))) |#1|))) (-13 (-376) (-870))) (T -801))
-((-3158 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-421 (-560)))) (-5 *2 (-663 (-2 (|:| |outval| *4) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 *4)))))) (-5 *1 (-801 *4)) (-4 *4 (-13 (-376) (-870))))) (-1664 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-421 (-560)))) (-5 *2 (-663 *4)) (-5 *1 (-801 *4)) (-4 *4 (-13 (-376) (-870))))) (-2630 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-421 (-560)))) (-5 *4 (-1207)) (-5 *2 (-975 (-421 (-560)))) (-5 *1 (-801 *5)) (-4 *5 (-13 (-376) (-870))))) (-2630 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-560)))) (-5 *2 (-975 (-421 (-560)))) (-5 *1 (-801 *4)) (-4 *4 (-13 (-376) (-870))))))
-(-10 -7 (-15 -2630 ((-975 (-421 (-560))) (-711 (-421 (-560))))) (-15 -2630 ((-975 (-421 (-560))) (-711 (-421 (-560))) (-1207))) (-15 -1664 ((-663 |#1|) (-711 (-421 (-560))) |#1|)) (-15 -3158 ((-663 (-2 (|:| |outval| |#1|) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 |#1|))))) (-711 (-421 (-560))) |#1|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 36 T ELT)) (-1443 (((-663 |#2|) $) NIL T ELT)) (-4422 (((-1201 $) $ |#2|) NIL T ELT) (((-1201 |#1|) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3107 (((-793) $) NIL T ELT) (((-793) $ (-663 |#2|)) NIL T ELT)) (-2270 (($ $) 30 T ELT)) (-3336 (((-114) $ $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-4182 (($ $ $) 110 (|has| |#1| (-571)) ELT)) (-4440 (((-663 $) $ $) 123 (|has| |#1| (-571)) ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1804 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 |#2| "failed") $) NIL T ELT) (((-3 $ "failed") (-975 (-421 (-560)))) NIL (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1207)))) ELT) (((-3 $ "failed") (-975 (-560))) NIL (-2304 (-12 (|has| |#1| (-38 (-560))) (|has| |#2| (-633 (-1207))) (-1937 (|has| |#1| (-38 (-421 (-560)))))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1207))))) ELT) (((-3 $ "failed") (-975 |#1|)) NIL (-2304 (-12 (|has| |#2| (-633 (-1207))) (-1937 (|has| |#1| (-38 (-421 (-560))))) (-1937 (|has| |#1| (-38 (-560))))) (-12 (|has| |#1| (-38 (-560))) (|has| |#2| (-633 (-1207))) (-1937 (|has| |#1| (-38 (-421 (-560))))) (-1937 (|has| |#1| (-559)))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1207))) (-1937 (|has| |#1| (-1022 (-560)))))) ELT) (((-3 (-1156 |#1| |#2|) "failed") $) 21 T ELT)) (-3330 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) ((|#2| $) NIL T ELT) (($ (-975 (-421 (-560)))) NIL (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1207)))) ELT) (($ (-975 (-560))) NIL (-2304 (-12 (|has| |#1| (-38 (-560))) (|has| |#2| (-633 (-1207))) (-1937 (|has| |#1| (-38 (-421 (-560)))))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1207))))) ELT) (($ (-975 |#1|)) NIL (-2304 (-12 (|has| |#2| (-633 (-1207))) (-1937 (|has| |#1| (-38 (-421 (-560))))) (-1937 (|has| |#1| (-38 (-560))))) (-12 (|has| |#1| (-38 (-560))) (|has| |#2| (-633 (-1207))) (-1937 (|has| |#1| (-38 (-421 (-560))))) (-1937 (|has| |#1| (-559)))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1207))) (-1937 (|has| |#1| (-1022 (-560)))))) ELT) (((-1156 |#1| |#2|) $) NIL T ELT)) (-2788 (($ $ $ |#2|) NIL (|has| |#1| (-175)) ELT) (($ $ $) 121 (|has| |#1| (-571)) ELT)) (-1624 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-3989 (((-114) $ $) NIL T ELT) (((-114) $ (-663 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-4070 (((-114) $) NIL T ELT)) (-4365 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 81 T ELT)) (-3070 (($ $) 136 (|has| |#1| (-466)) ELT)) (-2806 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ |#2|) NIL (|has| |#1| (-466)) ELT)) (-1608 (((-663 $) $) NIL T ELT)) (-4330 (((-114) $) NIL (|has| |#1| (-939)) ELT)) (-3516 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2663 (($ $) NIL (|has| |#1| (-571)) ELT)) (-3562 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1393 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-4342 (($ $ |#1| (-545 |#2|) $) NIL T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| |#1| (-911 (-391))) (|has| |#2| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| |#1| (-911 (-560))) (|has| |#2| (-911 (-560)))) ELT)) (-1581 (((-114) $) 57 T ELT)) (-3531 (((-793) $) NIL T ELT)) (-3544 (((-114) $ $) NIL T ELT) (((-114) $ (-663 $)) NIL T ELT)) (-1684 (($ $ $ $ $) 107 (|has| |#1| (-571)) ELT)) (-4132 ((|#2| $) 22 T ELT)) (-1427 (($ (-1201 |#1|) |#2|) NIL T ELT) (($ (-1201 $) |#2|) NIL T ELT)) (-3997 (((-663 $) $) NIL T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-545 |#2|)) NIL T ELT) (($ $ |#2| (-793)) 38 T ELT) (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT)) (-3230 (($ $ $) 63 T ELT)) (-3559 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $ |#2|) NIL T ELT)) (-4265 (((-114) $) NIL T ELT)) (-3011 (((-545 |#2|) $) NIL T ELT) (((-793) $ |#2|) NIL T ELT) (((-663 (-793)) $ (-663 |#2|)) NIL T ELT)) (-1605 (((-793) $) 23 T ELT)) (-4321 (($ (-1 (-545 |#2|) (-545 |#2|)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1955 (((-3 |#2| "failed") $) NIL T ELT)) (-4464 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3671 (($ $) NIL (|has| |#1| (-466)) ELT)) (-4145 (((-663 $) $) NIL T ELT)) (-2271 (($ $) 39 T ELT)) (-1436 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3111 (((-663 $) $) 43 T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-3593 (($ $) 41 T ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-2927 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4191 (-793))) $ $) 96 T ELT)) (-1577 (((-2 (|:| -2115 $) (|:| |gap| (-793)) (|:| -1774 $) (|:| -2341 $)) $ $) 78 T ELT) (((-2 (|:| -2115 $) (|:| |gap| (-793)) (|:| -1774 $) (|:| -2341 $)) $ $ |#2|) NIL T ELT)) (-3864 (((-2 (|:| -2115 $) (|:| |gap| (-793)) (|:| -2341 $)) $ $) NIL T ELT) (((-2 (|:| -2115 $) (|:| |gap| (-793)) (|:| -2341 $)) $ $ |#2|) NIL T ELT)) (-3071 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-2741 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-4130 (($ $ $) 125 (|has| |#1| (-571)) ELT)) (-2235 (((-663 $) $) 32 T ELT)) (-3479 (((-3 (-663 $) "failed") $) NIL T ELT)) (-2590 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3683 (((-3 (-2 (|:| |var| |#2|) (|:| -3205 (-793))) "failed") $) NIL T ELT)) (-3548 (((-114) $ $) NIL T ELT) (((-114) $ (-663 $)) NIL T ELT)) (-3212 (($ $ $) NIL T ELT)) (-3161 (($ $) 24 T ELT)) (-2925 (((-114) $ $) NIL T ELT)) (-1563 (((-114) $ $) NIL T ELT) (((-114) $ (-663 $)) NIL T ELT)) (-3171 (($ $ $) NIL T ELT)) (-4317 (($ $) 26 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4073 (((-2 (|:| -2132 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-571)) ELT)) (-4086 (((-2 (|:| -2132 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-571)) ELT)) (-1554 (((-114) $) 56 T ELT)) (-1566 ((|#1| $) 58 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-466)) ELT)) (-2132 ((|#1| |#1| $) 133 (|has| |#1| (-466)) ELT) (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-4457 (((-419 $) $) NIL (|has| |#1| (-939)) ELT)) (-4131 (((-2 (|:| -2132 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-571)) ELT)) (-1528 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 98 (|has| |#1| (-571)) ELT)) (-3290 (($ $ |#1|) 129 (|has| |#1| (-571)) ELT) (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-4379 (($ $ |#1|) 128 (|has| |#1| (-571)) ELT) (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-4187 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-663 |#2|) (-663 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-663 |#2|) (-663 $)) NIL T ELT)) (-2690 (($ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-2894 (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3630 (((-545 |#2|) $) NIL T ELT) (((-793) $ |#2|) 45 T ELT) (((-663 (-793)) $ (-663 |#2|)) NIL T ELT)) (-2529 (($ $) NIL T ELT)) (-4081 (($ $) 35 T ELT)) (-1407 (((-915 (-391)) $) NIL (-12 (|has| |#1| (-633 (-915 (-391)))) (|has| |#2| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| |#1| (-633 (-915 (-560)))) (|has| |#2| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| |#1| (-633 (-549))) (|has| |#2| (-633 (-549)))) ELT) (($ (-975 (-421 (-560)))) NIL (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1207)))) ELT) (($ (-975 (-560))) NIL (-2304 (-12 (|has| |#1| (-38 (-560))) (|has| |#2| (-633 (-1207))) (-1937 (|has| |#1| (-38 (-421 (-560)))))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1207))))) ELT) (($ (-975 |#1|)) NIL (|has| |#2| (-633 (-1207))) ELT) (((-1189) $) NIL (-12 (|has| |#1| (-1069 (-560))) (|has| |#2| (-633 (-1207)))) ELT) (((-975 |#1|) $) NIL (|has| |#2| (-633 (-1207))) ELT)) (-2053 ((|#1| $) 132 (|has| |#1| (-466)) ELT) (($ $ |#2|) NIL (|has| |#1| (-466)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-975 |#1|) $) NIL (|has| |#2| (-633 (-1207))) ELT) (((-1156 |#1| |#2|) $) 18 T ELT) (($ (-1156 |#1| |#2|)) 19 T ELT) (($ (-421 (-560))) NIL (-2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-3409 (((-663 |#1|) $) NIL T ELT)) (-2305 ((|#1| $ (-545 |#2|)) NIL T ELT) (($ $ |#2| (-793)) 47 T ELT) (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-2930 (((-793)) NIL T CONST)) (-2392 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2001 (($) 13 T CONST)) (-1546 (((-3 (-114) "failed") $ $) NIL T ELT)) (-2011 (($) 37 T CONST)) (-4316 (($ $ $ $ (-793)) 105 (|has| |#1| (-571)) ELT)) (-2973 (($ $ $ (-793)) 104 (|has| |#1| (-571)) ELT)) (-3305 (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-2567 (($ $ $) 85 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 70 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT)))
+((-3913 (((-795) |#1|) 8 T ELT)))
+(((-796 |#1|) (-10 -7 (-15 -3913 ((-795) |#1|))) (-1247)) (T -796))
+((-3913 (*1 *2 *3) (-12 (-5 *2 (-795)) (-5 *1 (-796 *3)) (-4 *3 (-1247)))))
+(-10 -7 (-15 -3913 ((-795) |#1|)))
+((-2084 ((|#2| |#4|) 35 T ELT)))
+(((-797 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2084 (|#2| |#4|))) (-466) (-1273 |#1|) (-746 |#1| |#2|) (-1273 |#3|)) (T -797))
+((-2084 (*1 *2 *3) (-12 (-4 *4 (-466)) (-4 *5 (-746 *4 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-797 *4 *2 *5 *3)) (-4 *3 (-1273 *5)))))
+(-10 -7 (-15 -2084 (|#2| |#4|)))
+((-2873 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-1747 (((-1303) (-1189) (-1189) |#4| |#5|) 33 T ELT)) (-2992 ((|#4| |#4| |#5|) 74 T ELT)) (-3983 (((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#5|) 79 T ELT)) (-2893 (((-663 (-2 (|:| |val| (-114)) (|:| -3859 |#5|))) |#4| |#5|) 16 T ELT)))
+(((-798 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2873 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2992 (|#4| |#4| |#5|)) (-15 -3983 ((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#5|)) (-15 -1747 ((-1303) (-1189) (-1189) |#4| |#5|)) (-15 -2893 ((-663 (-2 (|:| |val| (-114)) (|:| -3859 |#5|))) |#4| |#5|))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -798))
+((-2893 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -3859 *4)))) (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1747 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1189)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *4 (-1096 *6 *7 *8)) (-5 *2 (-1303)) (-5 *1 (-798 *6 *7 *8 *4 *5)) (-4 *5 (-1102 *6 *7 *8 *4)))) (-3983 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *4)))) (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-2992 (*1 *2 *2 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *2 (-1096 *4 *5 *6)) (-5 *1 (-798 *4 *5 *6 *2 *3)) (-4 *3 (-1102 *4 *5 *6 *2)))) (-2873 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+(-10 -7 (-15 -2873 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2992 (|#4| |#4| |#5|)) (-15 -3983 ((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#5|)) (-15 -1747 ((-1303) (-1189) (-1189) |#4| |#5|)) (-15 -2893 ((-663 (-2 (|:| |val| (-114)) (|:| -3859 |#5|))) |#4| |#5|)))
+((-3929 (((-3 (-1201 (-1201 |#1|)) "failed") |#4|) 51 T ELT)) (-1676 (((-663 |#4|) |#4|) 22 T ELT)) (-2925 ((|#4| |#4|) 17 T ELT)))
+(((-799 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1676 ((-663 |#4|) |#4|)) (-15 -3929 ((-3 (-1201 (-1201 |#1|)) "failed") |#4|)) (-15 -2925 (|#4| |#4|))) (-363) (-341 |#1|) (-1273 |#2|) (-1273 |#3|) (-948)) (T -799))
+((-2925 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-341 *3)) (-4 *5 (-1273 *4)) (-5 *1 (-799 *3 *4 *5 *2 *6)) (-4 *2 (-1273 *5)) (-14 *6 (-948)))) (-3929 (*1 *2 *3) (|partial| -12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1273 *5)) (-5 *2 (-1201 (-1201 *4))) (-5 *1 (-799 *4 *5 *6 *3 *7)) (-4 *3 (-1273 *6)) (-14 *7 (-948)))) (-1676 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1273 *5)) (-5 *2 (-663 *3)) (-5 *1 (-799 *4 *5 *6 *3 *7)) (-4 *3 (-1273 *6)) (-14 *7 (-948)))))
+(-10 -7 (-15 -1676 ((-663 |#4|) |#4|)) (-15 -3929 ((-3 (-1201 (-1201 |#1|)) "failed") |#4|)) (-15 -2925 (|#4| |#4|)))
+((-4137 (((-2 (|:| |deter| (-663 (-1201 |#5|))) (|:| |dterm| (-663 (-663 (-2 (|:| -1439 (-793)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-663 |#1|)) (|:| |nlead| (-663 |#5|))) (-1201 |#5|) (-663 |#1|) (-663 |#5|)) 72 T ELT)) (-4435 (((-663 (-793)) |#1|) 20 T ELT)))
+(((-800 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4137 ((-2 (|:| |deter| (-663 (-1201 |#5|))) (|:| |dterm| (-663 (-663 (-2 (|:| -1439 (-793)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-663 |#1|)) (|:| |nlead| (-663 |#5|))) (-1201 |#5|) (-663 |#1|) (-663 |#5|))) (-15 -4435 ((-663 (-793)) |#1|))) (-1273 |#4|) (-815) (-871) (-319) (-979 |#4| |#2| |#3|)) (T -800))
+((-4435 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) (-5 *2 (-663 (-793))) (-5 *1 (-800 *3 *4 *5 *6 *7)) (-4 *3 (-1273 *6)) (-4 *7 (-979 *6 *4 *5)))) (-4137 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1273 *9)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *9 (-319)) (-4 *10 (-979 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-663 (-1201 *10))) (|:| |dterm| (-663 (-663 (-2 (|:| -1439 (-793)) (|:| |pcoef| *10))))) (|:| |nfacts| (-663 *6)) (|:| |nlead| (-663 *10)))) (-5 *1 (-800 *6 *7 *8 *9 *10)) (-5 *3 (-1201 *10)) (-5 *4 (-663 *6)) (-5 *5 (-663 *10)))))
+(-10 -7 (-15 -4137 ((-2 (|:| |deter| (-663 (-1201 |#5|))) (|:| |dterm| (-663 (-663 (-2 (|:| -1439 (-793)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-663 |#1|)) (|:| |nlead| (-663 |#5|))) (-1201 |#5|) (-663 |#1|) (-663 |#5|))) (-15 -4435 ((-663 (-793)) |#1|)))
+((-1568 (((-663 (-2 (|:| |outval| |#1|) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 |#1|))))) (-711 (-421 (-560))) |#1|) 31 T ELT)) (-2718 (((-663 |#1|) (-711 (-421 (-560))) |#1|) 21 T ELT)) (-2978 (((-975 (-421 (-560))) (-711 (-421 (-560))) (-1207)) 18 T ELT) (((-975 (-421 (-560))) (-711 (-421 (-560)))) 17 T ELT)))
+(((-801 |#1|) (-10 -7 (-15 -2978 ((-975 (-421 (-560))) (-711 (-421 (-560))))) (-15 -2978 ((-975 (-421 (-560))) (-711 (-421 (-560))) (-1207))) (-15 -2718 ((-663 |#1|) (-711 (-421 (-560))) |#1|)) (-15 -1568 ((-663 (-2 (|:| |outval| |#1|) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 |#1|))))) (-711 (-421 (-560))) |#1|))) (-13 (-376) (-870))) (T -801))
+((-1568 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-421 (-560)))) (-5 *2 (-663 (-2 (|:| |outval| *4) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 *4)))))) (-5 *1 (-801 *4)) (-4 *4 (-13 (-376) (-870))))) (-2718 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-421 (-560)))) (-5 *2 (-663 *4)) (-5 *1 (-801 *4)) (-4 *4 (-13 (-376) (-870))))) (-2978 (*1 *2 *3 *4) (-12 (-5 *3 (-711 (-421 (-560)))) (-5 *4 (-1207)) (-5 *2 (-975 (-421 (-560)))) (-5 *1 (-801 *5)) (-4 *5 (-13 (-376) (-870))))) (-2978 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-560)))) (-5 *2 (-975 (-421 (-560)))) (-5 *1 (-801 *4)) (-4 *4 (-13 (-376) (-870))))))
+(-10 -7 (-15 -2978 ((-975 (-421 (-560))) (-711 (-421 (-560))))) (-15 -2978 ((-975 (-421 (-560))) (-711 (-421 (-560))) (-1207))) (-15 -2718 ((-663 |#1|) (-711 (-421 (-560))) |#1|)) (-15 -1568 ((-663 (-2 (|:| |outval| |#1|) (|:| |outmult| (-560)) (|:| |outvect| (-663 (-711 |#1|))))) (-711 (-421 (-560))) |#1|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 36 T ELT)) (-4162 (((-663 |#2|) $) NIL T ELT)) (-3981 (((-1201 $) $ |#2|) NIL T ELT) (((-1201 |#1|) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-2250 (((-793) $) NIL T ELT) (((-793) $ (-663 |#2|)) NIL T ELT)) (-3990 (($ $) 30 T ELT)) (-2758 (((-114) $ $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-4293 (($ $ $) 110 (|has| |#1| (-571)) ELT)) (-2765 (((-663 $) $ $) 123 (|has| |#1| (-571)) ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1621 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 |#2| "failed") $) NIL T ELT) (((-3 $ "failed") (-975 (-421 (-560)))) NIL (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1207)))) ELT) (((-3 $ "failed") (-975 (-560))) NIL (-2196 (-12 (|has| |#1| (-38 (-560))) (|has| |#2| (-633 (-1207))) (-1394 (|has| |#1| (-38 (-421 (-560)))))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1207))))) ELT) (((-3 $ "failed") (-975 |#1|)) NIL (-2196 (-12 (|has| |#2| (-633 (-1207))) (-1394 (|has| |#1| (-38 (-421 (-560))))) (-1394 (|has| |#1| (-38 (-560))))) (-12 (|has| |#1| (-38 (-560))) (|has| |#2| (-633 (-1207))) (-1394 (|has| |#1| (-38 (-421 (-560))))) (-1394 (|has| |#1| (-559)))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1207))) (-1394 (|has| |#1| (-1022 (-560)))))) ELT) (((-3 (-1156 |#1| |#2|) "failed") $) 21 T ELT)) (-3649 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) ((|#2| $) NIL T ELT) (($ (-975 (-421 (-560)))) NIL (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1207)))) ELT) (($ (-975 (-560))) NIL (-2196 (-12 (|has| |#1| (-38 (-560))) (|has| |#2| (-633 (-1207))) (-1394 (|has| |#1| (-38 (-421 (-560)))))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1207))))) ELT) (($ (-975 |#1|)) NIL (-2196 (-12 (|has| |#2| (-633 (-1207))) (-1394 (|has| |#1| (-38 (-421 (-560))))) (-1394 (|has| |#1| (-38 (-560))))) (-12 (|has| |#1| (-38 (-560))) (|has| |#2| (-633 (-1207))) (-1394 (|has| |#1| (-38 (-421 (-560))))) (-1394 (|has| |#1| (-559)))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1207))) (-1394 (|has| |#1| (-1022 (-560)))))) ELT) (((-1156 |#1| |#2|) $) NIL T ELT)) (-2096 (($ $ $ |#2|) NIL (|has| |#1| (-175)) ELT) (($ $ $) 121 (|has| |#1| (-571)) ELT)) (-3062 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-2869 (((-114) $ $) NIL T ELT) (((-114) $ (-663 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-2456 (((-114) $) NIL T ELT)) (-3390 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 81 T ELT)) (-3118 (($ $) 136 (|has| |#1| (-466)) ELT)) (-4239 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ |#2|) NIL (|has| |#1| (-466)) ELT)) (-3048 (((-663 $) $) NIL T ELT)) (-3141 (((-114) $) NIL (|has| |#1| (-939)) ELT)) (-2028 (($ $) NIL (|has| |#1| (-571)) ELT)) (-3315 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4442 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-2927 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3224 (($ $ |#1| (-545 |#2|) $) NIL T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| |#1| (-911 (-391))) (|has| |#2| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| |#1| (-911 (-560))) (|has| |#2| (-911 (-560)))) ELT)) (-1918 (((-114) $) 57 T ELT)) (-4127 (((-793) $) NIL T ELT)) (-4264 (((-114) $ $) NIL T ELT) (((-114) $ (-663 $)) NIL T ELT)) (-2931 (($ $ $ $ $) 107 (|has| |#1| (-571)) ELT)) (-1816 ((|#2| $) 22 T ELT)) (-4149 (($ (-1201 |#1|) |#2|) NIL T ELT) (($ (-1201 $) |#2|) NIL T ELT)) (-2947 (((-663 $) $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-545 |#2|)) NIL T ELT) (($ $ |#2| (-793)) 38 T ELT) (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT)) (-4238 (($ $ $) 63 T ELT)) (-4415 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $ |#2|) NIL T ELT)) (-3838 (((-114) $) NIL T ELT)) (-3765 (((-545 |#2|) $) NIL T ELT) (((-793) $ |#2|) NIL T ELT) (((-663 (-793)) $ (-663 |#2|)) NIL T ELT)) (-3402 (((-793) $) 23 T ELT)) (-3060 (($ (-1 (-545 |#2|) (-545 |#2|)) $) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3835 (((-3 |#2| "failed") $) NIL T ELT)) (-1752 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3041 (($ $) NIL (|has| |#1| (-466)) ELT)) (-1979 (((-663 $) $) NIL T ELT)) (-3881 (($ $) 39 T ELT)) (-1587 (($ $) NIL (|has| |#1| (-466)) ELT)) (-2295 (((-663 $) $) 43 T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-3520 (($ $) 41 T ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-4161 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4375 (-793))) $ $) 96 T ELT)) (-1893 (((-2 (|:| -2625 $) (|:| |gap| (-793)) (|:| -2584 $) (|:| -3276 $)) $ $) 78 T ELT) (((-2 (|:| -2625 $) (|:| |gap| (-793)) (|:| -2584 $) (|:| -3276 $)) $ $ |#2|) NIL T ELT)) (-4179 (((-2 (|:| -2625 $) (|:| |gap| (-793)) (|:| -3276 $)) $ $) NIL T ELT) (((-2 (|:| -2625 $) (|:| |gap| (-793)) (|:| -3276 $)) $ $ |#2|) NIL T ELT)) (-3128 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1655 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1790 (($ $ $) 125 (|has| |#1| (-571)) ELT)) (-3503 (((-663 $) $) 32 T ELT)) (-1669 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3849 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3149 (((-3 (-2 (|:| |var| |#2|) (|:| -2030 (-793))) "failed") $) NIL T ELT)) (-4301 (((-114) $ $) NIL T ELT) (((-114) $ (-663 $)) NIL T ELT)) (-4039 (($ $ $) NIL T ELT)) (-3239 (($ $) 24 T ELT)) (-4138 (((-114) $ $) NIL T ELT)) (-1737 (((-114) $ $) NIL T ELT) (((-114) $ (-663 $)) NIL T ELT)) (-1686 (($ $ $) NIL T ELT)) (-3016 (($ $) 26 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2487 (((-2 (|:| -1938 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-571)) ELT)) (-2596 (((-2 (|:| -1938 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-571)) ELT)) (-3000 (((-114) $) 56 T ELT)) (-3011 ((|#1| $) 58 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-466)) ELT)) (-1938 ((|#1| |#1| $) 133 (|has| |#1| (-466)) ELT) (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-4012 (((-419 $) $) NIL (|has| |#1| (-939)) ELT)) (-1802 (((-2 (|:| -1938 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-571)) ELT)) (-2233 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 98 (|has| |#1| (-571)) ELT)) (-3573 (($ $ |#1|) 129 (|has| |#1| (-571)) ELT) (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-2278 (($ $ |#1|) 128 (|has| |#1| (-571)) ELT) (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-2371 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-663 |#2|) (-663 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-663 |#2|) (-663 $)) NIL T ELT)) (-2336 (($ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-3161 (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3900 (((-545 |#2|) $) NIL T ELT) (((-793) $ |#2|) 45 T ELT) (((-663 (-793)) $ (-663 |#2|)) NIL T ELT)) (-1340 (($ $) NIL T ELT)) (-2551 (($ $) 35 T ELT)) (-2400 (((-915 (-391)) $) NIL (-12 (|has| |#1| (-633 (-915 (-391)))) (|has| |#2| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| |#1| (-633 (-915 (-560)))) (|has| |#2| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| |#1| (-633 (-549))) (|has| |#2| (-633 (-549)))) ELT) (($ (-975 (-421 (-560)))) NIL (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1207)))) ELT) (($ (-975 (-560))) NIL (-2196 (-12 (|has| |#1| (-38 (-560))) (|has| |#2| (-633 (-1207))) (-1394 (|has| |#1| (-38 (-421 (-560)))))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#2| (-633 (-1207))))) ELT) (($ (-975 |#1|)) NIL (|has| |#2| (-633 (-1207))) ELT) (((-1189) $) NIL (-12 (|has| |#1| (-1069 (-560))) (|has| |#2| (-633 (-1207)))) ELT) (((-975 |#1|) $) NIL (|has| |#2| (-633 (-1207))) ELT)) (-2264 ((|#1| $) 132 (|has| |#1| (-466)) ELT) (($ $ |#2|) NIL (|has| |#1| (-466)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-975 |#1|) $) NIL (|has| |#2| (-633 (-1207))) ELT) (((-1156 |#1| |#2|) $) 18 T ELT) (($ (-1156 |#1| |#2|)) 19 T ELT) (($ (-421 (-560))) NIL (-2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-2247 (((-663 |#1|) $) NIL T ELT)) (-2920 ((|#1| $ (-545 |#2|)) NIL T ELT) (($ $ |#2| (-793)) 47 T ELT) (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-4191 (((-793)) NIL T CONST)) (-2548 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-1446 (($) 13 T CONST)) (-1590 (((-3 (-114) "failed") $ $) NIL T ELT)) (-1456 (($) 37 T CONST)) (-3005 (($ $ $ $ (-793)) 105 (|has| |#1| (-571)) ELT)) (-3357 (($ $ $ (-793)) 104 (|has| |#1| (-571)) ELT)) (-2111 (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-2429 (($ $ $) 85 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 70 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT)))
(((-802 |#1| |#2|) (-13 (-1096 |#1| (-545 |#2|) |#2|) (-632 (-1156 |#1| |#2|)) (-1069 (-1156 |#1| |#2|))) (-1080) (-871)) (T -802))
NIL
(-13 (-1096 |#1| (-545 |#2|) |#2|) (-632 (-1156 |#1| |#2|)) (-1069 (-1156 |#1| |#2|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 12 T ELT)) (-4468 (((-1297 |#1|) $ (-793)) NIL T ELT)) (-1443 (((-663 (-1113)) $) NIL T ELT)) (-1667 (($ (-1201 |#1|)) NIL T ELT)) (-4422 (((-1201 $) $ (-1113)) NIL T ELT) (((-1201 |#1|) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3107 (((-793) $) NIL T ELT) (((-793) $ (-663 (-1113))) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1371 (((-663 $) $ $) 54 (|has| |#1| (-571)) ELT)) (-4182 (($ $ $) 50 (|has| |#1| (-571)) ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1804 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1615 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3491 (($ $ (-793)) NIL T ELT)) (-3802 (($ $ (-793)) NIL T ELT)) (-2498 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-466)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-1113) "failed") $) NIL T ELT) (((-3 (-1201 |#1|) "failed") $) 10 T ELT)) (-3330 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-1113) $) NIL T ELT) (((-1201 |#1|) $) NIL T ELT)) (-2788 (($ $ $ (-1113)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) 58 (|has| |#1| (-175)) ELT)) (-1478 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1624 (($ $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1490 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2186 (($ $ $) NIL T ELT)) (-2853 (($ $ $) 87 (|has| |#1| (-571)) ELT)) (-4365 (((-2 (|:| -2115 |#1|) (|:| -1774 $) (|:| -2341 $)) $ $) 86 (|has| |#1| (-571)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-2806 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#1| (-466)) ELT)) (-1608 (((-663 $) $) NIL T ELT)) (-4330 (((-114) $) NIL (|has| |#1| (-939)) ELT)) (-4342 (($ $ |#1| (-793) $) NIL T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1113) (-911 (-391))) (|has| |#1| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-1113) (-911 (-560))) (|has| |#1| (-911 (-560)))) ELT)) (-3913 (((-793) $ $) NIL (|has| |#1| (-571)) ELT)) (-1581 (((-114) $) NIL T ELT)) (-3531 (((-793) $) NIL T ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| |#1| (-1182)) ELT)) (-1427 (($ (-1201 |#1|) (-1113)) NIL T ELT) (($ (-1201 $) (-1113)) NIL T ELT)) (-3022 (($ $ (-793)) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-3997 (((-663 $) $) NIL T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-793)) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT)) (-3230 (($ $ $) 27 T ELT)) (-3559 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $ (-1113)) NIL T ELT) (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-3011 (((-793) $) NIL T ELT) (((-793) $ (-1113)) NIL T ELT) (((-663 (-793)) $ (-663 (-1113))) NIL T ELT)) (-4321 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4381 (((-1201 |#1|) $) NIL T ELT)) (-1955 (((-3 (-1113) "failed") $) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-2927 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4191 (-793))) $ $) 37 T ELT)) (-1604 (($ $ $) 41 T ELT)) (-2631 (($ $ $) 47 T ELT)) (-1577 (((-2 (|:| -2115 |#1|) (|:| |gap| (-793)) (|:| -1774 $) (|:| -2341 $)) $ $) 46 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-4130 (($ $ $) 56 (|has| |#1| (-571)) ELT)) (-4000 (((-2 (|:| -1774 $) (|:| -2341 $)) $ (-793)) NIL T ELT)) (-3479 (((-3 (-663 $) "failed") $) NIL T ELT)) (-2590 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3683 (((-3 (-2 (|:| |var| (-1113)) (|:| -3205 (-793))) "failed") $) NIL T ELT)) (-2518 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3161 (($) NIL (|has| |#1| (-1182)) CONST)) (-3855 (((-1151) $) NIL T ELT)) (-4073 (((-2 (|:| -2132 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-571)) ELT)) (-4086 (((-2 (|:| -2132 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-571)) ELT)) (-4425 (((-2 (|:| -2788 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-571)) ELT)) (-3729 (((-2 (|:| -2788 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-571)) ELT)) (-1554 (((-114) $) 13 T ELT)) (-1566 ((|#1| $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-466)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-4369 (($ $ (-793) |#1| $) 26 T ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-4457 (((-419 $) $) NIL (|has| |#1| (-939)) ELT)) (-4131 (((-2 (|:| -2132 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-571)) ELT)) (-1373 (((-2 (|:| -2788 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-571)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-1528 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-4187 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-1113) |#1|) NIL T ELT) (($ $ (-663 (-1113)) (-663 |#1|)) NIL T ELT) (($ $ (-1113) $) NIL T ELT) (($ $ (-663 (-1113)) (-663 $)) NIL T ELT)) (-2901 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-3924 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-421 $) (-421 $) (-421 $)) NIL (|has| |#1| (-571)) ELT) ((|#1| (-421 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-421 $) $ (-421 $)) NIL (|has| |#1| (-571)) ELT)) (-1676 (((-3 $ "failed") $ (-793)) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2690 (($ $ (-1113)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) NIL (|has| |#1| (-175)) ELT)) (-2894 (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-3630 (((-793) $) NIL T ELT) (((-793) $ (-1113)) NIL T ELT) (((-663 (-793)) $ (-663 (-1113))) NIL T ELT)) (-1407 (((-915 (-391)) $) NIL (-12 (|has| (-1113) (-633 (-915 (-391)))) (|has| |#1| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-1113) (-633 (-915 (-560)))) (|has| |#1| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-1113) (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-2053 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#1| (-466)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-1974 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT) (((-3 (-421 $) "failed") (-421 $) $) NIL (|has| |#1| (-571)) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1113)) NIL T ELT) (((-1201 |#1|) $) 7 T ELT) (($ (-1201 |#1|)) 8 T ELT) (($ (-421 (-560))) NIL (-2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-3409 (((-663 |#1|) $) NIL T ELT)) (-2305 ((|#1| $ (-793)) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-2930 (((-793)) NIL T CONST)) (-2392 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2001 (($) 28 T CONST)) (-2011 (($) 32 T CONST)) (-3305 (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-803 |#1|) (-13 (-1273 |#1|) (-632 (-1201 |#1|)) (-1069 (-1201 |#1|)) (-10 -8 (-15 -4369 ($ $ (-793) |#1| $)) (-15 -3230 ($ $ $)) (-15 -2927 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4191 (-793))) $ $)) (-15 -1604 ($ $ $)) (-15 -1577 ((-2 (|:| -2115 |#1|) (|:| |gap| (-793)) (|:| -1774 $) (|:| -2341 $)) $ $)) (-15 -2631 ($ $ $)) (IF (|has| |#1| (-571)) (PROGN (-15 -1371 ((-663 $) $ $)) (-15 -4130 ($ $ $)) (-15 -4131 ((-2 (|:| -2132 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4086 ((-2 (|:| -2132 $) (|:| |coef1| $)) $ $)) (-15 -4073 ((-2 (|:| -2132 $) (|:| |coef2| $)) $ $)) (-15 -1373 ((-2 (|:| -2788 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3729 ((-2 (|:| -2788 |#1|) (|:| |coef1| $)) $ $)) (-15 -4425 ((-2 (|:| -2788 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1080)) (T -803))
-((-4369 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-793)) (-5 *1 (-803 *3)) (-4 *3 (-1080)))) (-3230 (*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1080)))) (-2927 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-803 *3)) (|:| |polden| *3) (|:| -4191 (-793)))) (-5 *1 (-803 *3)) (-4 *3 (-1080)))) (-1604 (*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1080)))) (-1577 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2115 *3) (|:| |gap| (-793)) (|:| -1774 (-803 *3)) (|:| -2341 (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-1080)))) (-2631 (*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1080)))) (-1371 (*1 *2 *1 *1) (-12 (-5 *2 (-663 (-803 *3))) (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080)))) (-4130 (*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-571)) (-4 *2 (-1080)))) (-4131 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2132 (-803 *3)) (|:| |coef1| (-803 *3)) (|:| |coef2| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080)))) (-4086 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2132 (-803 *3)) (|:| |coef1| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080)))) (-4073 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2132 (-803 *3)) (|:| |coef2| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080)))) (-1373 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2788 *3) (|:| |coef1| (-803 *3)) (|:| |coef2| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080)))) (-3729 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2788 *3) (|:| |coef1| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080)))) (-4425 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2788 *3) (|:| |coef2| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080)))))
-(-13 (-1273 |#1|) (-632 (-1201 |#1|)) (-1069 (-1201 |#1|)) (-10 -8 (-15 -4369 ($ $ (-793) |#1| $)) (-15 -3230 ($ $ $)) (-15 -2927 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4191 (-793))) $ $)) (-15 -1604 ($ $ $)) (-15 -1577 ((-2 (|:| -2115 |#1|) (|:| |gap| (-793)) (|:| -1774 $) (|:| -2341 $)) $ $)) (-15 -2631 ($ $ $)) (IF (|has| |#1| (-571)) (PROGN (-15 -1371 ((-663 $) $ $)) (-15 -4130 ($ $ $)) (-15 -4131 ((-2 (|:| -2132 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4086 ((-2 (|:| -2132 $) (|:| |coef1| $)) $ $)) (-15 -4073 ((-2 (|:| -2132 $) (|:| |coef2| $)) $ $)) (-15 -1373 ((-2 (|:| -2788 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3729 ((-2 (|:| -2788 |#1|) (|:| |coef1| $)) $ $)) (-15 -4425 ((-2 (|:| -2788 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-3957 (((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|)) 13 T ELT)))
-(((-804 |#1| |#2|) (-10 -7 (-15 -3957 ((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|)))) (-1080) (-1080)) (T -804))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-803 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-5 *2 (-803 *6)) (-5 *1 (-804 *5 *6)))))
-(-10 -7 (-15 -3957 ((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|))))
-((-4477 ((|#1| (-793) |#1|) 33 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2801 ((|#1| (-793) |#1|) 23 T ELT)) (-3321 ((|#1| (-793) |#1|) 35 (|has| |#1| (-38 (-421 (-560)))) ELT)))
-(((-805 |#1|) (-10 -7 (-15 -2801 (|#1| (-793) |#1|)) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -3321 (|#1| (-793) |#1|)) (-15 -4477 (|#1| (-793) |#1|))) |%noBranch|)) (-175)) (T -805))
-((-4477 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-175)))) (-3321 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-175)))) (-2801 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-175)))))
-(-10 -7 (-15 -2801 (|#1| (-793) |#1|)) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -3321 (|#1| (-793) |#1|)) (-15 -4477 (|#1| (-793) |#1|))) |%noBranch|))
-((-1538 (((-114) $ $) 7 T ELT)) (-3721 (((-663 (-2 (|:| -4332 $) (|:| -2109 (-663 |#4|)))) (-663 |#4|)) 86 T ELT)) (-3904 (((-663 $) (-663 |#4|)) 87 T ELT) (((-663 $) (-663 |#4|) (-114)) 112 T ELT)) (-1443 (((-663 |#3|) $) 34 T ELT)) (-1466 (((-114) $) 27 T ELT)) (-3101 (((-114) $) 18 (|has| |#1| (-571)) ELT)) (-3036 (((-114) |#4| $) 102 T ELT) (((-114) $) 98 T ELT)) (-1813 ((|#4| |#4| $) 93 T ELT)) (-1804 (((-663 (-2 (|:| |val| |#4|) (|:| -4297 $))) |#4| $) 127 T ELT)) (-2286 (((-2 (|:| |under| $) (|:| -2016 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-3363 (((-114) $ (-793)) 45 T ELT)) (-1982 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4508)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-2238 (($) 46 T CONST)) (-4436 (((-114) $) 23 (|has| |#1| (-571)) ELT)) (-4246 (((-114) $ $) 25 (|has| |#1| (-571)) ELT)) (-1860 (((-114) $ $) 24 (|has| |#1| (-571)) ELT)) (-3745 (((-114) $) 26 (|has| |#1| (-571)) ELT)) (-1477 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 94 T ELT)) (-4027 (((-663 |#4|) (-663 |#4|) $) 19 (|has| |#1| (-571)) ELT)) (-2528 (((-663 |#4|) (-663 |#4|) $) 20 (|has| |#1| (-571)) ELT)) (-2539 (((-3 $ "failed") (-663 |#4|)) 37 T ELT)) (-3330 (($ (-663 |#4|)) 36 T ELT)) (-3649 (((-3 $ "failed") $) 83 T ELT)) (-2841 ((|#4| |#4| $) 90 T ELT)) (-3606 (($ $) 69 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2375 (($ |#4| $) 68 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4508)) ELT)) (-2341 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-571)) ELT)) (-3989 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 103 T ELT)) (-3093 ((|#4| |#4| $) 88 T ELT)) (-4129 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4508)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4508)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 95 T ELT)) (-1723 (((-2 (|:| -4332 (-663 |#4|)) (|:| -2109 (-663 |#4|))) $) 106 T ELT)) (-2330 (((-114) |#4| $) 137 T ELT)) (-2728 (((-114) |#4| $) 134 T ELT)) (-2420 (((-114) |#4| $) 138 T ELT) (((-114) $) 135 T ELT)) (-2181 (((-663 |#4|) $) 53 (|has| $ (-6 -4508)) ELT)) (-3544 (((-114) |#4| $) 105 T ELT) (((-114) $) 104 T ELT)) (-4132 ((|#3| $) 35 T ELT)) (-4034 (((-114) $ (-793)) 44 T ELT)) (-2656 (((-663 |#4|) $) 54 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-1918 (((-663 |#3|) $) 33 T ELT)) (-2724 (((-114) |#3| $) 32 T ELT)) (-1805 (((-114) $ (-793)) 43 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3482 (((-3 |#4| (-663 $)) |#4| |#4| $) 129 T ELT)) (-4130 (((-663 (-2 (|:| |val| |#4|) (|:| -4297 $))) |#4| |#4| $) 128 T ELT)) (-2398 (((-3 |#4| "failed") $) 84 T ELT)) (-3221 (((-663 $) |#4| $) 130 T ELT)) (-3979 (((-3 (-114) (-663 $)) |#4| $) 133 T ELT)) (-2411 (((-663 (-2 (|:| |val| (-114)) (|:| -4297 $))) |#4| $) 132 T ELT) (((-114) |#4| $) 131 T ELT)) (-1903 (((-663 $) |#4| $) 126 T ELT) (((-663 $) (-663 |#4|) $) 125 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 124 T ELT) (((-663 $) |#4| (-663 $)) 123 T ELT)) (-2534 (($ |#4| $) 118 T ELT) (($ (-663 |#4|) $) 117 T ELT)) (-1756 (((-663 |#4|) $) 108 T ELT)) (-3548 (((-114) |#4| $) 100 T ELT) (((-114) $) 96 T ELT)) (-3212 ((|#4| |#4| $) 91 T ELT)) (-2925 (((-114) $ $) 111 T ELT)) (-2557 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-571)) ELT)) (-1563 (((-114) |#4| $) 101 T ELT) (((-114) $) 97 T ELT)) (-3171 ((|#4| |#4| $) 92 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-3637 (((-3 |#4| "failed") $) 85 T ELT)) (-3329 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-1370 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-4372 (($ $ |#4|) 78 T ELT) (((-663 $) |#4| $) 116 T ELT) (((-663 $) |#4| (-663 $)) 115 T ELT) (((-663 $) (-663 |#4|) $) 114 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 113 T ELT)) (-2787 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 |#4|) (-663 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-4124 (((-114) $ $) 39 T ELT)) (-1663 (((-114) $) 42 T ELT)) (-3986 (($) 41 T ELT)) (-3630 (((-793) $) 107 T ELT)) (-3865 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) 40 T ELT)) (-1407 (((-549) $) 70 (|has| |#4| (-633 (-549))) ELT)) (-1592 (($ (-663 |#4|)) 61 T ELT)) (-3752 (($ $ |#3|) 29 T ELT)) (-4288 (($ $ |#3|) 31 T ELT)) (-2886 (($ $) 89 T ELT)) (-4397 (($ $ |#3|) 30 T ELT)) (-1578 (((-887) $) 12 T ELT) (((-663 |#4|) $) 38 T ELT)) (-1582 (((-793) $) 77 (|has| |#3| (-381)) ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-1810 (((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 109 T ELT)) (-4006 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) 99 T ELT)) (-2796 (((-663 $) |#4| $) 122 T ELT) (((-663 $) |#4| (-663 $)) 121 T ELT) (((-663 $) (-663 |#4|) $) 120 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 119 T ELT)) (-1728 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4508)) ELT)) (-3938 (((-663 |#3|) $) 82 T ELT)) (-4395 (((-114) |#4| $) 136 T ELT)) (-3602 (((-114) |#3| $) 81 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-1553 (((-793) $) 47 (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 12 T ELT)) (-1797 (((-1297 |#1|) $ (-793)) NIL T ELT)) (-4162 (((-663 (-1113)) $) NIL T ELT)) (-2746 (($ (-1201 |#1|)) NIL T ELT)) (-3981 (((-1201 $) $ (-1113)) NIL T ELT) (((-1201 |#1|) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-2250 (((-793) $) NIL T ELT) (((-793) $ (-663 (-1113))) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3879 (((-663 $) $ $) 54 (|has| |#1| (-571)) ELT)) (-4293 (($ $ $) 50 (|has| |#1| (-571)) ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1621 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-3476 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-1776 (($ $ (-793)) NIL T ELT)) (-1677 (($ $ (-793)) NIL T ELT)) (-4254 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-466)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-1113) "failed") $) NIL T ELT) (((-3 (-1201 |#1|) "failed") $) 10 T ELT)) (-3649 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-1113) $) NIL T ELT) (((-1201 |#1|) $) NIL T ELT)) (-2096 (($ $ $ (-1113)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) 58 (|has| |#1| (-175)) ELT)) (-2186 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3062 (($ $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-2197 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4295 (($ $ $) NIL T ELT)) (-3457 (($ $ $) 87 (|has| |#1| (-571)) ELT)) (-3390 (((-2 (|:| -2625 |#1|) (|:| -2584 $) (|:| -3276 $)) $ $) 86 (|has| |#1| (-571)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4239 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#1| (-466)) ELT)) (-3048 (((-663 $) $) NIL T ELT)) (-3141 (((-114) $) NIL (|has| |#1| (-939)) ELT)) (-3224 (($ $ |#1| (-793) $) NIL T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1113) (-911 (-391))) (|has| |#1| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-1113) (-911 (-560))) (|has| |#1| (-911 (-560)))) ELT)) (-1460 (((-793) $ $) NIL (|has| |#1| (-571)) ELT)) (-1918 (((-114) $) NIL T ELT)) (-4127 (((-793) $) NIL T ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| |#1| (-1182)) ELT)) (-4149 (($ (-1201 |#1|) (-1113)) NIL T ELT) (($ (-1201 $) (-1113)) NIL T ELT)) (-3886 (($ $ (-793)) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-2947 (((-663 $) $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-793)) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT)) (-4238 (($ $ $) 27 T ELT)) (-4415 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $ (-1113)) NIL T ELT) (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3765 (((-793) $) NIL T ELT) (((-793) $ (-1113)) NIL T ELT) (((-663 (-793)) $ (-663 (-1113))) NIL T ELT)) (-3060 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2298 (((-1201 |#1|) $) NIL T ELT)) (-3835 (((-3 (-1113) "failed") $) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-4161 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4375 (-793))) $ $) 37 T ELT)) (-3391 (($ $ $) 41 T ELT)) (-2989 (($ $ $) 47 T ELT)) (-1893 (((-2 (|:| -2625 |#1|) (|:| |gap| (-793)) (|:| -2584 $) (|:| -3276 $)) $ $) 46 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1790 (($ $ $) 56 (|has| |#1| (-571)) ELT)) (-2985 (((-2 (|:| -2584 $) (|:| -3276 $)) $ (-793)) NIL T ELT)) (-1669 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3849 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3149 (((-3 (-2 (|:| |var| (-1113)) (|:| -2030 (-793))) "failed") $) NIL T ELT)) (-4424 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3239 (($) NIL (|has| |#1| (-1182)) CONST)) (-3376 (((-1151) $) NIL T ELT)) (-2487 (((-2 (|:| -1938 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-571)) ELT)) (-2596 (((-2 (|:| -1938 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-571)) ELT)) (-2661 (((-2 (|:| -2096 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-571)) ELT)) (-2326 (((-2 (|:| -2096 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-571)) ELT)) (-3000 (((-114) $) 13 T ELT)) (-3011 ((|#1| $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-466)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-2183 (($ $ (-793) |#1| $) 26 T ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-4012 (((-419 $) $) NIL (|has| |#1| (-939)) ELT)) (-1802 (((-2 (|:| -1938 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-571)) ELT)) (-2261 (((-2 (|:| -2096 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-571)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2233 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-2371 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-1113) |#1|) NIL T ELT) (($ $ (-663 (-1113)) (-663 |#1|)) NIL T ELT) (($ $ (-1113) $) NIL T ELT) (($ $ (-663 (-1113)) (-663 $)) NIL T ELT)) (-3989 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-1507 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-421 $) (-421 $) (-421 $)) NIL (|has| |#1| (-571)) ELT) ((|#1| (-421 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-421 $) $ (-421 $)) NIL (|has| |#1| (-571)) ELT)) (-2829 (((-3 $ "failed") $ (-793)) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2336 (($ $ (-1113)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) NIL (|has| |#1| (-175)) ELT)) (-3161 (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-3900 (((-793) $) NIL T ELT) (((-793) $ (-1113)) NIL T ELT) (((-663 (-793)) $ (-663 (-1113))) NIL T ELT)) (-2400 (((-915 (-391)) $) NIL (-12 (|has| (-1113) (-633 (-915 (-391)))) (|has| |#1| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-1113) (-633 (-915 (-560)))) (|has| |#1| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-1113) (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-2264 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#1| (-466)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-2730 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT) (((-3 (-421 $) "failed") (-421 $) $) NIL (|has| |#1| (-571)) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1113)) NIL T ELT) (((-1201 |#1|) $) 7 T ELT) (($ (-1201 |#1|)) 8 T ELT) (($ (-421 (-560))) NIL (-2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-2247 (((-663 |#1|) $) NIL T ELT)) (-2920 ((|#1| $ (-793)) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-4191 (((-793)) NIL T CONST)) (-2548 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-1446 (($) 28 T CONST)) (-1456 (($) 32 T CONST)) (-2111 (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-803 |#1|) (-13 (-1273 |#1|) (-632 (-1201 |#1|)) (-1069 (-1201 |#1|)) (-10 -8 (-15 -2183 ($ $ (-793) |#1| $)) (-15 -4238 ($ $ $)) (-15 -4161 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4375 (-793))) $ $)) (-15 -3391 ($ $ $)) (-15 -1893 ((-2 (|:| -2625 |#1|) (|:| |gap| (-793)) (|:| -2584 $) (|:| -3276 $)) $ $)) (-15 -2989 ($ $ $)) (IF (|has| |#1| (-571)) (PROGN (-15 -3879 ((-663 $) $ $)) (-15 -1790 ($ $ $)) (-15 -1802 ((-2 (|:| -1938 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2596 ((-2 (|:| -1938 $) (|:| |coef1| $)) $ $)) (-15 -2487 ((-2 (|:| -1938 $) (|:| |coef2| $)) $ $)) (-15 -2261 ((-2 (|:| -2096 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2326 ((-2 (|:| -2096 |#1|) (|:| |coef1| $)) $ $)) (-15 -2661 ((-2 (|:| -2096 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1080)) (T -803))
+((-2183 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-793)) (-5 *1 (-803 *3)) (-4 *3 (-1080)))) (-4238 (*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1080)))) (-4161 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-803 *3)) (|:| |polden| *3) (|:| -4375 (-793)))) (-5 *1 (-803 *3)) (-4 *3 (-1080)))) (-3391 (*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1080)))) (-1893 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2625 *3) (|:| |gap| (-793)) (|:| -2584 (-803 *3)) (|:| -3276 (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-1080)))) (-2989 (*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1080)))) (-3879 (*1 *2 *1 *1) (-12 (-5 *2 (-663 (-803 *3))) (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080)))) (-1790 (*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-571)) (-4 *2 (-1080)))) (-1802 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1938 (-803 *3)) (|:| |coef1| (-803 *3)) (|:| |coef2| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080)))) (-2596 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1938 (-803 *3)) (|:| |coef1| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080)))) (-2487 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1938 (-803 *3)) (|:| |coef2| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080)))) (-2261 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2096 *3) (|:| |coef1| (-803 *3)) (|:| |coef2| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080)))) (-2326 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2096 *3) (|:| |coef1| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080)))) (-2661 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2096 *3) (|:| |coef2| (-803 *3)))) (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080)))))
+(-13 (-1273 |#1|) (-632 (-1201 |#1|)) (-1069 (-1201 |#1|)) (-10 -8 (-15 -2183 ($ $ (-793) |#1| $)) (-15 -4238 ($ $ $)) (-15 -4161 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4375 (-793))) $ $)) (-15 -3391 ($ $ $)) (-15 -1893 ((-2 (|:| -2625 |#1|) (|:| |gap| (-793)) (|:| -2584 $) (|:| -3276 $)) $ $)) (-15 -2989 ($ $ $)) (IF (|has| |#1| (-571)) (PROGN (-15 -3879 ((-663 $) $ $)) (-15 -1790 ($ $ $)) (-15 -1802 ((-2 (|:| -1938 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2596 ((-2 (|:| -1938 $) (|:| |coef1| $)) $ $)) (-15 -2487 ((-2 (|:| -1938 $) (|:| |coef2| $)) $ $)) (-15 -2261 ((-2 (|:| -2096 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2326 ((-2 (|:| -2096 |#1|) (|:| |coef1| $)) $ $)) (-15 -2661 ((-2 (|:| -2096 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-2260 (((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|)) 13 T ELT)))
+(((-804 |#1| |#2|) (-10 -7 (-15 -2260 ((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|)))) (-1080) (-1080)) (T -804))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-803 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-5 *2 (-803 *6)) (-5 *1 (-804 *5 *6)))))
+(-10 -7 (-15 -2260 ((-803 |#2|) (-1 |#2| |#1|) (-803 |#1|))))
+((-1859 ((|#1| (-793) |#1|) 33 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4188 ((|#1| (-793) |#1|) 23 T ELT)) (-3904 ((|#1| (-793) |#1|) 35 (|has| |#1| (-38 (-421 (-560)))) ELT)))
+(((-805 |#1|) (-10 -7 (-15 -4188 (|#1| (-793) |#1|)) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -3904 (|#1| (-793) |#1|)) (-15 -1859 (|#1| (-793) |#1|))) |%noBranch|)) (-175)) (T -805))
+((-1859 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-175)))) (-3904 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-175)))) (-4188 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-175)))))
+(-10 -7 (-15 -4188 (|#1| (-793) |#1|)) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -3904 (|#1| (-793) |#1|)) (-15 -1859 (|#1| (-793) |#1|))) |%noBranch|))
+((-2243 (((-114) $ $) 7 T ELT)) (-2253 (((-663 (-2 (|:| -1924 $) (|:| -2888 (-663 |#4|)))) (-663 |#4|)) 86 T ELT)) (-1372 (((-663 $) (-663 |#4|)) 87 T ELT) (((-663 $) (-663 |#4|) (-114)) 112 T ELT)) (-4162 (((-663 |#3|) $) 34 T ELT)) (-1362 (((-114) $) 27 T ELT)) (-2179 (((-114) $) 18 (|has| |#1| (-571)) ELT)) (-2729 (((-114) |#4| $) 102 T ELT) (((-114) $) 98 T ELT)) (-1722 ((|#4| |#4| $) 93 T ELT)) (-1621 (((-663 (-2 (|:| |val| |#4|) (|:| -3859 $))) |#4| $) 127 T ELT)) (-1787 (((-2 (|:| |under| $) (|:| -3147 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-3045 (((-114) $ (-793)) 45 T ELT)) (-3923 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4508)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-3525 (($) 46 T CONST)) (-2733 (((-114) $) 23 (|has| |#1| (-571)) ELT)) (-3672 (((-114) $ $) 25 (|has| |#1| (-571)) ELT)) (-4148 (((-114) $ $) 24 (|has| |#1| (-571)) ELT)) (-2449 (((-114) $) 26 (|has| |#1| (-571)) ELT)) (-4108 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 94 T ELT)) (-3277 (((-663 |#4|) (-663 |#4|) $) 19 (|has| |#1| (-571)) ELT)) (-4485 (((-663 |#4|) (-663 |#4|) $) 20 (|has| |#1| (-571)) ELT)) (-3929 (((-3 $ "failed") (-663 |#4|)) 37 T ELT)) (-3649 (($ (-663 |#4|)) 36 T ELT)) (-4345 (((-3 $ "failed") $) 83 T ELT)) (-1440 ((|#4| |#4| $) 90 T ELT)) (-3658 (($ $) 69 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3033 (($ |#4| $) 68 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4508)) ELT)) (-3276 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-571)) ELT)) (-2869 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 103 T ELT)) (-2113 ((|#4| |#4| $) 88 T ELT)) (-1778 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4508)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4508)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 95 T ELT)) (-2115 (((-2 (|:| -1924 (-663 |#4|)) (|:| -2888 (-663 |#4|))) $) 106 T ELT)) (-3175 (((-114) |#4| $) 137 T ELT)) (-1520 (((-114) |#4| $) 134 T ELT)) (-1575 (((-114) |#4| $) 138 T ELT) (((-114) $) 135 T ELT)) (-3737 (((-663 |#4|) $) 53 (|has| $ (-6 -4508)) ELT)) (-4264 (((-114) |#4| $) 105 T ELT) (((-114) $) 104 T ELT)) (-1816 ((|#3| $) 35 T ELT)) (-3332 (((-114) $ (-793)) 44 T ELT)) (-3243 (((-663 |#4|) $) 54 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3471 (((-663 |#3|) $) 33 T ELT)) (-2703 (((-114) |#3| $) 32 T ELT)) (-1634 (((-114) $ (-793)) 43 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-1702 (((-3 |#4| (-663 $)) |#4| |#4| $) 129 T ELT)) (-1790 (((-663 (-2 (|:| |val| |#4|) (|:| -3859 $))) |#4| |#4| $) 128 T ELT)) (-3057 (((-3 |#4| "failed") $) 84 T ELT)) (-4144 (((-663 $) |#4| $) 130 T ELT)) (-2769 (((-3 (-114) (-663 $)) |#4| $) 133 T ELT)) (-1503 (((-663 (-2 (|:| |val| (-114)) (|:| -3859 $))) |#4| $) 132 T ELT) (((-114) |#4| $) 131 T ELT)) (-3334 (((-663 $) |#4| $) 126 T ELT) (((-663 $) (-663 |#4|) $) 125 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 124 T ELT) (((-663 $) |#4| (-663 $)) 123 T ELT)) (-1392 (($ |#4| $) 118 T ELT) (($ (-663 |#4|) $) 117 T ELT)) (-2428 (((-663 |#4|) $) 108 T ELT)) (-4301 (((-114) |#4| $) 100 T ELT) (((-114) $) 96 T ELT)) (-4039 ((|#4| |#4| $) 91 T ELT)) (-4138 (((-114) $ $) 111 T ELT)) (-3531 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-571)) ELT)) (-1737 (((-114) |#4| $) 101 T ELT) (((-114) $) 97 T ELT)) (-1686 ((|#4| |#4| $) 92 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4334 (((-3 |#4| "failed") $) 85 T ELT)) (-2708 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-3867 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-2219 (($ $ |#4|) 78 T ELT) (((-663 $) |#4| $) 116 T ELT) (((-663 $) |#4| (-663 $)) 115 T ELT) (((-663 $) (-663 |#4|) $) 114 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 113 T ELT)) (-2086 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 |#4|) (-663 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-1736 (((-114) $ $) 39 T ELT)) (-2706 (((-114) $) 42 T ELT)) (-2832 (($) 41 T ELT)) (-3900 (((-793) $) 107 T ELT)) (-3384 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) 40 T ELT)) (-2400 (((-549) $) 70 (|has| |#4| (-633 (-549))) ELT)) (-3924 (($ (-663 |#4|)) 61 T ELT)) (-2511 (($ $ |#3|) 29 T ELT)) (-4047 (($ $ |#3|) 31 T ELT)) (-3833 (($ $) 89 T ELT)) (-2438 (($ $ |#3|) 30 T ELT)) (-3913 (((-887) $) 12 T ELT) (((-663 |#4|) $) 38 T ELT)) (-1930 (((-793) $) 77 (|has| |#3| (-381)) ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1690 (((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 109 T ELT)) (-3058 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) 99 T ELT)) (-4135 (((-663 $) |#4| $) 122 T ELT) (((-663 $) |#4| (-663 $)) 121 T ELT) (((-663 $) (-663 |#4|) $) 120 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 119 T ELT)) (-2149 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4508)) ELT)) (-3616 (((-663 |#3|) $) 82 T ELT)) (-2416 (((-114) |#4| $) 136 T ELT)) (-3621 (((-114) |#3| $) 81 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2256 (((-793) $) 47 (|has| $ (-6 -4508)) ELT)))
(((-806 |#1| |#2| |#3| |#4|) (-142) (-466) (-815) (-871) (-1096 |t#1| |t#2| |t#3|)) (T -806))
NIL
(-13 (-1102 |t#1| |t#2| |t#3| |t#4|))
(((-34) . T) ((-102) . T) ((-632 (-663 |#4|)) . T) ((-632 (-887)) . T) ((-153 |#4|) . T) ((-633 (-549)) |has| |#4| (-633 (-549))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ((-503 |#4|) . T) ((-528 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ((-1007 |#1| |#2| |#3| |#4|) . T) ((-1102 |#1| |#2| |#3| |#4|) . T) ((-1132) . T) ((-1242 |#1| |#2| |#3| |#4|) . T) ((-1247) . T))
-((-2772 (((-3 (-391) "failed") (-326 |#1|) (-948)) 62 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-3 (-391) "failed") (-326 |#1|)) 54 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-3 (-391) "failed") (-421 (-975 |#1|)) (-948)) 41 (|has| |#1| (-571)) ELT) (((-3 (-391) "failed") (-421 (-975 |#1|))) 40 (|has| |#1| (-571)) ELT) (((-3 (-391) "failed") (-975 |#1|) (-948)) 31 (|has| |#1| (-1080)) ELT) (((-3 (-391) "failed") (-975 |#1|)) 30 (|has| |#1| (-1080)) ELT)) (-3918 (((-391) (-326 |#1|) (-948)) 99 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-391) (-326 |#1|)) 94 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-391) (-421 (-975 |#1|)) (-948)) 91 (|has| |#1| (-571)) ELT) (((-391) (-421 (-975 |#1|))) 90 (|has| |#1| (-571)) ELT) (((-391) (-975 |#1|) (-948)) 86 (|has| |#1| (-1080)) ELT) (((-391) (-975 |#1|)) 85 (|has| |#1| (-1080)) ELT) (((-391) |#1| (-948)) 76 T ELT) (((-391) |#1|) 22 T ELT)) (-2314 (((-3 (-171 (-391)) "failed") (-326 (-171 |#1|)) (-948)) 71 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-3 (-171 (-391)) "failed") (-326 (-171 |#1|))) 70 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-3 (-171 (-391)) "failed") (-326 |#1|) (-948)) 63 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-3 (-171 (-391)) "failed") (-326 |#1|)) 61 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-3 (-171 (-391)) "failed") (-421 (-975 (-171 |#1|))) (-948)) 46 (|has| |#1| (-571)) ELT) (((-3 (-171 (-391)) "failed") (-421 (-975 (-171 |#1|)))) 45 (|has| |#1| (-571)) ELT) (((-3 (-171 (-391)) "failed") (-421 (-975 |#1|)) (-948)) 39 (|has| |#1| (-571)) ELT) (((-3 (-171 (-391)) "failed") (-421 (-975 |#1|))) 38 (|has| |#1| (-571)) ELT) (((-3 (-171 (-391)) "failed") (-975 |#1|) (-948)) 28 (|has| |#1| (-1080)) ELT) (((-3 (-171 (-391)) "failed") (-975 |#1|)) 26 (|has| |#1| (-1080)) ELT) (((-3 (-171 (-391)) "failed") (-975 (-171 |#1|)) (-948)) 18 (|has| |#1| (-175)) ELT) (((-3 (-171 (-391)) "failed") (-975 (-171 |#1|))) 15 (|has| |#1| (-175)) ELT)) (-4362 (((-171 (-391)) (-326 (-171 |#1|)) (-948)) 102 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-171 (-391)) (-326 (-171 |#1|))) 101 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-171 (-391)) (-326 |#1|) (-948)) 100 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-171 (-391)) (-326 |#1|)) 98 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-171 (-391)) (-421 (-975 (-171 |#1|))) (-948)) 93 (|has| |#1| (-571)) ELT) (((-171 (-391)) (-421 (-975 (-171 |#1|)))) 92 (|has| |#1| (-571)) ELT) (((-171 (-391)) (-421 (-975 |#1|)) (-948)) 89 (|has| |#1| (-571)) ELT) (((-171 (-391)) (-421 (-975 |#1|))) 88 (|has| |#1| (-571)) ELT) (((-171 (-391)) (-975 |#1|) (-948)) 84 (|has| |#1| (-1080)) ELT) (((-171 (-391)) (-975 |#1|)) 83 (|has| |#1| (-1080)) ELT) (((-171 (-391)) (-975 (-171 |#1|)) (-948)) 78 (|has| |#1| (-175)) ELT) (((-171 (-391)) (-975 (-171 |#1|))) 77 (|has| |#1| (-175)) ELT) (((-171 (-391)) (-171 |#1|) (-948)) 80 (|has| |#1| (-175)) ELT) (((-171 (-391)) (-171 |#1|)) 79 (|has| |#1| (-175)) ELT) (((-171 (-391)) |#1| (-948)) 27 T ELT) (((-171 (-391)) |#1|) 25 T ELT)))
-(((-807 |#1|) (-10 -7 (-15 -3918 ((-391) |#1|)) (-15 -3918 ((-391) |#1| (-948))) (-15 -4362 ((-171 (-391)) |#1|)) (-15 -4362 ((-171 (-391)) |#1| (-948))) (IF (|has| |#1| (-175)) (PROGN (-15 -4362 ((-171 (-391)) (-171 |#1|))) (-15 -4362 ((-171 (-391)) (-171 |#1|) (-948))) (-15 -4362 ((-171 (-391)) (-975 (-171 |#1|)))) (-15 -4362 ((-171 (-391)) (-975 (-171 |#1|)) (-948)))) |%noBranch|) (IF (|has| |#1| (-1080)) (PROGN (-15 -3918 ((-391) (-975 |#1|))) (-15 -3918 ((-391) (-975 |#1|) (-948))) (-15 -4362 ((-171 (-391)) (-975 |#1|))) (-15 -4362 ((-171 (-391)) (-975 |#1|) (-948)))) |%noBranch|) (IF (|has| |#1| (-571)) (PROGN (-15 -3918 ((-391) (-421 (-975 |#1|)))) (-15 -3918 ((-391) (-421 (-975 |#1|)) (-948))) (-15 -4362 ((-171 (-391)) (-421 (-975 |#1|)))) (-15 -4362 ((-171 (-391)) (-421 (-975 |#1|)) (-948))) (-15 -4362 ((-171 (-391)) (-421 (-975 (-171 |#1|))))) (-15 -4362 ((-171 (-391)) (-421 (-975 (-171 |#1|))) (-948))) (IF (|has| |#1| (-871)) (PROGN (-15 -3918 ((-391) (-326 |#1|))) (-15 -3918 ((-391) (-326 |#1|) (-948))) (-15 -4362 ((-171 (-391)) (-326 |#1|))) (-15 -4362 ((-171 (-391)) (-326 |#1|) (-948))) (-15 -4362 ((-171 (-391)) (-326 (-171 |#1|)))) (-15 -4362 ((-171 (-391)) (-326 (-171 |#1|)) (-948)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-15 -2314 ((-3 (-171 (-391)) "failed") (-975 (-171 |#1|)))) (-15 -2314 ((-3 (-171 (-391)) "failed") (-975 (-171 |#1|)) (-948)))) |%noBranch|) (IF (|has| |#1| (-1080)) (PROGN (-15 -2772 ((-3 (-391) "failed") (-975 |#1|))) (-15 -2772 ((-3 (-391) "failed") (-975 |#1|) (-948))) (-15 -2314 ((-3 (-171 (-391)) "failed") (-975 |#1|))) (-15 -2314 ((-3 (-171 (-391)) "failed") (-975 |#1|) (-948)))) |%noBranch|) (IF (|has| |#1| (-571)) (PROGN (-15 -2772 ((-3 (-391) "failed") (-421 (-975 |#1|)))) (-15 -2772 ((-3 (-391) "failed") (-421 (-975 |#1|)) (-948))) (-15 -2314 ((-3 (-171 (-391)) "failed") (-421 (-975 |#1|)))) (-15 -2314 ((-3 (-171 (-391)) "failed") (-421 (-975 |#1|)) (-948))) (-15 -2314 ((-3 (-171 (-391)) "failed") (-421 (-975 (-171 |#1|))))) (-15 -2314 ((-3 (-171 (-391)) "failed") (-421 (-975 (-171 |#1|))) (-948))) (IF (|has| |#1| (-871)) (PROGN (-15 -2772 ((-3 (-391) "failed") (-326 |#1|))) (-15 -2772 ((-3 (-391) "failed") (-326 |#1|) (-948))) (-15 -2314 ((-3 (-171 (-391)) "failed") (-326 |#1|))) (-15 -2314 ((-3 (-171 (-391)) "failed") (-326 |#1|) (-948))) (-15 -2314 ((-3 (-171 (-391)) "failed") (-326 (-171 |#1|)))) (-15 -2314 ((-3 (-171 (-391)) "failed") (-326 (-171 |#1|)) (-948)))) |%noBranch|)) |%noBranch|)) (-633 (-391))) (T -807))
-((-2314 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-871)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-2314 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-571)) (-4 *4 (-871)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-2314 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-871)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-2314 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-871)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-2772 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-871)) (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5)))) (-2772 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-871)) (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4)))) (-2314 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-421 (-975 (-171 *5)))) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-2314 (*1 *2 *3) (|partial| -12 (-5 *3 (-421 (-975 (-171 *4)))) (-4 *4 (-571)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-2314 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-2314 (*1 *2 *3) (|partial| -12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-2772 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5)))) (-2772 (*1 *2 *3) (|partial| -12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571)) (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4)))) (-2314 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-975 *5)) (-5 *4 (-948)) (-4 *5 (-1080)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-2314 (*1 *2 *3) (|partial| -12 (-5 *3 (-975 *4)) (-4 *4 (-1080)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-2772 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-975 *5)) (-5 *4 (-948)) (-4 *5 (-1080)) (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5)))) (-2772 (*1 *2 *3) (|partial| -12 (-5 *3 (-975 *4)) (-4 *4 (-1080)) (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4)))) (-2314 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-975 (-171 *5))) (-5 *4 (-948)) (-4 *5 (-175)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-2314 (*1 *2 *3) (|partial| -12 (-5 *3 (-975 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-4362 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-871)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-4362 (*1 *2 *3) (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-571)) (-4 *4 (-871)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-4362 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-871)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-4362 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-871)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-3918 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-871)) (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5)))) (-3918 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-871)) (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4)))) (-4362 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 (-171 *5)))) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-4362 (*1 *2 *3) (-12 (-5 *3 (-421 (-975 (-171 *4)))) (-4 *4 (-571)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-4362 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-4362 (*1 *2 *3) (-12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-3918 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5)))) (-3918 (*1 *2 *3) (-12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571)) (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4)))) (-4362 (*1 *2 *3 *4) (-12 (-5 *3 (-975 *5)) (-5 *4 (-948)) (-4 *5 (-1080)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-4362 (*1 *2 *3) (-12 (-5 *3 (-975 *4)) (-4 *4 (-1080)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-3918 (*1 *2 *3 *4) (-12 (-5 *3 (-975 *5)) (-5 *4 (-948)) (-4 *5 (-1080)) (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5)))) (-3918 (*1 *2 *3) (-12 (-5 *3 (-975 *4)) (-4 *4 (-1080)) (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4)))) (-4362 (*1 *2 *3 *4) (-12 (-5 *3 (-975 (-171 *5))) (-5 *4 (-948)) (-4 *5 (-175)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-4362 (*1 *2 *3) (-12 (-5 *3 (-975 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-4362 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-948)) (-4 *5 (-175)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-4362 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-175)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-4362 (*1 *2 *3 *4) (-12 (-5 *4 (-948)) (-5 *2 (-171 (-391))) (-5 *1 (-807 *3)) (-4 *3 (-633 (-391))))) (-4362 (*1 *2 *3) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-807 *3)) (-4 *3 (-633 (-391))))) (-3918 (*1 *2 *3 *4) (-12 (-5 *4 (-948)) (-5 *2 (-391)) (-5 *1 (-807 *3)) (-4 *3 (-633 *2)))) (-3918 (*1 *2 *3) (-12 (-5 *2 (-391)) (-5 *1 (-807 *3)) (-4 *3 (-633 *2)))))
-(-10 -7 (-15 -3918 ((-391) |#1|)) (-15 -3918 ((-391) |#1| (-948))) (-15 -4362 ((-171 (-391)) |#1|)) (-15 -4362 ((-171 (-391)) |#1| (-948))) (IF (|has| |#1| (-175)) (PROGN (-15 -4362 ((-171 (-391)) (-171 |#1|))) (-15 -4362 ((-171 (-391)) (-171 |#1|) (-948))) (-15 -4362 ((-171 (-391)) (-975 (-171 |#1|)))) (-15 -4362 ((-171 (-391)) (-975 (-171 |#1|)) (-948)))) |%noBranch|) (IF (|has| |#1| (-1080)) (PROGN (-15 -3918 ((-391) (-975 |#1|))) (-15 -3918 ((-391) (-975 |#1|) (-948))) (-15 -4362 ((-171 (-391)) (-975 |#1|))) (-15 -4362 ((-171 (-391)) (-975 |#1|) (-948)))) |%noBranch|) (IF (|has| |#1| (-571)) (PROGN (-15 -3918 ((-391) (-421 (-975 |#1|)))) (-15 -3918 ((-391) (-421 (-975 |#1|)) (-948))) (-15 -4362 ((-171 (-391)) (-421 (-975 |#1|)))) (-15 -4362 ((-171 (-391)) (-421 (-975 |#1|)) (-948))) (-15 -4362 ((-171 (-391)) (-421 (-975 (-171 |#1|))))) (-15 -4362 ((-171 (-391)) (-421 (-975 (-171 |#1|))) (-948))) (IF (|has| |#1| (-871)) (PROGN (-15 -3918 ((-391) (-326 |#1|))) (-15 -3918 ((-391) (-326 |#1|) (-948))) (-15 -4362 ((-171 (-391)) (-326 |#1|))) (-15 -4362 ((-171 (-391)) (-326 |#1|) (-948))) (-15 -4362 ((-171 (-391)) (-326 (-171 |#1|)))) (-15 -4362 ((-171 (-391)) (-326 (-171 |#1|)) (-948)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-15 -2314 ((-3 (-171 (-391)) "failed") (-975 (-171 |#1|)))) (-15 -2314 ((-3 (-171 (-391)) "failed") (-975 (-171 |#1|)) (-948)))) |%noBranch|) (IF (|has| |#1| (-1080)) (PROGN (-15 -2772 ((-3 (-391) "failed") (-975 |#1|))) (-15 -2772 ((-3 (-391) "failed") (-975 |#1|) (-948))) (-15 -2314 ((-3 (-171 (-391)) "failed") (-975 |#1|))) (-15 -2314 ((-3 (-171 (-391)) "failed") (-975 |#1|) (-948)))) |%noBranch|) (IF (|has| |#1| (-571)) (PROGN (-15 -2772 ((-3 (-391) "failed") (-421 (-975 |#1|)))) (-15 -2772 ((-3 (-391) "failed") (-421 (-975 |#1|)) (-948))) (-15 -2314 ((-3 (-171 (-391)) "failed") (-421 (-975 |#1|)))) (-15 -2314 ((-3 (-171 (-391)) "failed") (-421 (-975 |#1|)) (-948))) (-15 -2314 ((-3 (-171 (-391)) "failed") (-421 (-975 (-171 |#1|))))) (-15 -2314 ((-3 (-171 (-391)) "failed") (-421 (-975 (-171 |#1|))) (-948))) (IF (|has| |#1| (-871)) (PROGN (-15 -2772 ((-3 (-391) "failed") (-326 |#1|))) (-15 -2772 ((-3 (-391) "failed") (-326 |#1|) (-948))) (-15 -2314 ((-3 (-171 (-391)) "failed") (-326 |#1|))) (-15 -2314 ((-3 (-171 (-391)) "failed") (-326 |#1|) (-948))) (-15 -2314 ((-3 (-171 (-391)) "failed") (-326 (-171 |#1|)))) (-15 -2314 ((-3 (-171 (-391)) "failed") (-326 (-171 |#1|)) (-948)))) |%noBranch|)) |%noBranch|))
-((-4367 (((-948) (-1189)) 89 T ELT)) (-1729 (((-3 (-391) "failed") (-1189)) 36 T ELT)) (-3514 (((-391) (-1189)) 34 T ELT)) (-4430 (((-948) (-1189)) 63 T ELT)) (-2042 (((-1189) (-948)) 73 T ELT)) (-4357 (((-1189) (-948)) 62 T ELT)))
-(((-808) (-10 -7 (-15 -4357 ((-1189) (-948))) (-15 -4430 ((-948) (-1189))) (-15 -2042 ((-1189) (-948))) (-15 -4367 ((-948) (-1189))) (-15 -3514 ((-391) (-1189))) (-15 -1729 ((-3 (-391) "failed") (-1189))))) (T -808))
-((-1729 (*1 *2 *3) (|partial| -12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-808)))) (-3514 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-808)))) (-4367 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-948)) (-5 *1 (-808)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1189)) (-5 *1 (-808)))) (-4430 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-948)) (-5 *1 (-808)))) (-4357 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1189)) (-5 *1 (-808)))))
-(-10 -7 (-15 -4357 ((-1189) (-948))) (-15 -4430 ((-948) (-1189))) (-15 -2042 ((-1189) (-948))) (-15 -4367 ((-948) (-1189))) (-15 -3514 ((-391) (-1189))) (-15 -1729 ((-3 (-391) "failed") (-1189))))
-((-1538 (((-114) $ $) 7 T ELT)) (-1672 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 16 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 14 T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 17 T ELT) (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 15 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2473 (((-114) $ $) 8 T ELT)))
+((-1946 (((-3 (-391) "failed") (-326 |#1|) (-948)) 62 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-3 (-391) "failed") (-326 |#1|)) 54 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-3 (-391) "failed") (-421 (-975 |#1|)) (-948)) 41 (|has| |#1| (-571)) ELT) (((-3 (-391) "failed") (-421 (-975 |#1|))) 40 (|has| |#1| (-571)) ELT) (((-3 (-391) "failed") (-975 |#1|) (-948)) 31 (|has| |#1| (-1080)) ELT) (((-3 (-391) "failed") (-975 |#1|)) 30 (|has| |#1| (-1080)) ELT)) (-4312 (((-391) (-326 |#1|) (-948)) 99 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-391) (-326 |#1|)) 94 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-391) (-421 (-975 |#1|)) (-948)) 91 (|has| |#1| (-571)) ELT) (((-391) (-421 (-975 |#1|))) 90 (|has| |#1| (-571)) ELT) (((-391) (-975 |#1|) (-948)) 86 (|has| |#1| (-1080)) ELT) (((-391) (-975 |#1|)) 85 (|has| |#1| (-1080)) ELT) (((-391) |#1| (-948)) 76 T ELT) (((-391) |#1|) 22 T ELT)) (-3019 (((-3 (-171 (-391)) "failed") (-326 (-171 |#1|)) (-948)) 71 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-3 (-171 (-391)) "failed") (-326 (-171 |#1|))) 70 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-3 (-171 (-391)) "failed") (-326 |#1|) (-948)) 63 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-3 (-171 (-391)) "failed") (-326 |#1|)) 61 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-3 (-171 (-391)) "failed") (-421 (-975 (-171 |#1|))) (-948)) 46 (|has| |#1| (-571)) ELT) (((-3 (-171 (-391)) "failed") (-421 (-975 (-171 |#1|)))) 45 (|has| |#1| (-571)) ELT) (((-3 (-171 (-391)) "failed") (-421 (-975 |#1|)) (-948)) 39 (|has| |#1| (-571)) ELT) (((-3 (-171 (-391)) "failed") (-421 (-975 |#1|))) 38 (|has| |#1| (-571)) ELT) (((-3 (-171 (-391)) "failed") (-975 |#1|) (-948)) 28 (|has| |#1| (-1080)) ELT) (((-3 (-171 (-391)) "failed") (-975 |#1|)) 26 (|has| |#1| (-1080)) ELT) (((-3 (-171 (-391)) "failed") (-975 (-171 |#1|)) (-948)) 18 (|has| |#1| (-175)) ELT) (((-3 (-171 (-391)) "failed") (-975 (-171 |#1|))) 15 (|has| |#1| (-175)) ELT)) (-3930 (((-171 (-391)) (-326 (-171 |#1|)) (-948)) 102 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-171 (-391)) (-326 (-171 |#1|))) 101 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-171 (-391)) (-326 |#1|) (-948)) 100 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-171 (-391)) (-326 |#1|)) 98 (-12 (|has| |#1| (-571)) (|has| |#1| (-871))) ELT) (((-171 (-391)) (-421 (-975 (-171 |#1|))) (-948)) 93 (|has| |#1| (-571)) ELT) (((-171 (-391)) (-421 (-975 (-171 |#1|)))) 92 (|has| |#1| (-571)) ELT) (((-171 (-391)) (-421 (-975 |#1|)) (-948)) 89 (|has| |#1| (-571)) ELT) (((-171 (-391)) (-421 (-975 |#1|))) 88 (|has| |#1| (-571)) ELT) (((-171 (-391)) (-975 |#1|) (-948)) 84 (|has| |#1| (-1080)) ELT) (((-171 (-391)) (-975 |#1|)) 83 (|has| |#1| (-1080)) ELT) (((-171 (-391)) (-975 (-171 |#1|)) (-948)) 78 (|has| |#1| (-175)) ELT) (((-171 (-391)) (-975 (-171 |#1|))) 77 (|has| |#1| (-175)) ELT) (((-171 (-391)) (-171 |#1|) (-948)) 80 (|has| |#1| (-175)) ELT) (((-171 (-391)) (-171 |#1|)) 79 (|has| |#1| (-175)) ELT) (((-171 (-391)) |#1| (-948)) 27 T ELT) (((-171 (-391)) |#1|) 25 T ELT)))
+(((-807 |#1|) (-10 -7 (-15 -4312 ((-391) |#1|)) (-15 -4312 ((-391) |#1| (-948))) (-15 -3930 ((-171 (-391)) |#1|)) (-15 -3930 ((-171 (-391)) |#1| (-948))) (IF (|has| |#1| (-175)) (PROGN (-15 -3930 ((-171 (-391)) (-171 |#1|))) (-15 -3930 ((-171 (-391)) (-171 |#1|) (-948))) (-15 -3930 ((-171 (-391)) (-975 (-171 |#1|)))) (-15 -3930 ((-171 (-391)) (-975 (-171 |#1|)) (-948)))) |%noBranch|) (IF (|has| |#1| (-1080)) (PROGN (-15 -4312 ((-391) (-975 |#1|))) (-15 -4312 ((-391) (-975 |#1|) (-948))) (-15 -3930 ((-171 (-391)) (-975 |#1|))) (-15 -3930 ((-171 (-391)) (-975 |#1|) (-948)))) |%noBranch|) (IF (|has| |#1| (-571)) (PROGN (-15 -4312 ((-391) (-421 (-975 |#1|)))) (-15 -4312 ((-391) (-421 (-975 |#1|)) (-948))) (-15 -3930 ((-171 (-391)) (-421 (-975 |#1|)))) (-15 -3930 ((-171 (-391)) (-421 (-975 |#1|)) (-948))) (-15 -3930 ((-171 (-391)) (-421 (-975 (-171 |#1|))))) (-15 -3930 ((-171 (-391)) (-421 (-975 (-171 |#1|))) (-948))) (IF (|has| |#1| (-871)) (PROGN (-15 -4312 ((-391) (-326 |#1|))) (-15 -4312 ((-391) (-326 |#1|) (-948))) (-15 -3930 ((-171 (-391)) (-326 |#1|))) (-15 -3930 ((-171 (-391)) (-326 |#1|) (-948))) (-15 -3930 ((-171 (-391)) (-326 (-171 |#1|)))) (-15 -3930 ((-171 (-391)) (-326 (-171 |#1|)) (-948)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-15 -3019 ((-3 (-171 (-391)) "failed") (-975 (-171 |#1|)))) (-15 -3019 ((-3 (-171 (-391)) "failed") (-975 (-171 |#1|)) (-948)))) |%noBranch|) (IF (|has| |#1| (-1080)) (PROGN (-15 -1946 ((-3 (-391) "failed") (-975 |#1|))) (-15 -1946 ((-3 (-391) "failed") (-975 |#1|) (-948))) (-15 -3019 ((-3 (-171 (-391)) "failed") (-975 |#1|))) (-15 -3019 ((-3 (-171 (-391)) "failed") (-975 |#1|) (-948)))) |%noBranch|) (IF (|has| |#1| (-571)) (PROGN (-15 -1946 ((-3 (-391) "failed") (-421 (-975 |#1|)))) (-15 -1946 ((-3 (-391) "failed") (-421 (-975 |#1|)) (-948))) (-15 -3019 ((-3 (-171 (-391)) "failed") (-421 (-975 |#1|)))) (-15 -3019 ((-3 (-171 (-391)) "failed") (-421 (-975 |#1|)) (-948))) (-15 -3019 ((-3 (-171 (-391)) "failed") (-421 (-975 (-171 |#1|))))) (-15 -3019 ((-3 (-171 (-391)) "failed") (-421 (-975 (-171 |#1|))) (-948))) (IF (|has| |#1| (-871)) (PROGN (-15 -1946 ((-3 (-391) "failed") (-326 |#1|))) (-15 -1946 ((-3 (-391) "failed") (-326 |#1|) (-948))) (-15 -3019 ((-3 (-171 (-391)) "failed") (-326 |#1|))) (-15 -3019 ((-3 (-171 (-391)) "failed") (-326 |#1|) (-948))) (-15 -3019 ((-3 (-171 (-391)) "failed") (-326 (-171 |#1|)))) (-15 -3019 ((-3 (-171 (-391)) "failed") (-326 (-171 |#1|)) (-948)))) |%noBranch|)) |%noBranch|)) (-633 (-391))) (T -807))
+((-3019 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-871)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-3019 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-571)) (-4 *4 (-871)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-3019 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-871)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-3019 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-871)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-1946 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-871)) (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5)))) (-1946 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-871)) (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4)))) (-3019 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-421 (-975 (-171 *5)))) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-3019 (*1 *2 *3) (|partial| -12 (-5 *3 (-421 (-975 (-171 *4)))) (-4 *4 (-571)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-3019 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-3019 (*1 *2 *3) (|partial| -12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-1946 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5)))) (-1946 (*1 *2 *3) (|partial| -12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571)) (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4)))) (-3019 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-975 *5)) (-5 *4 (-948)) (-4 *5 (-1080)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-3019 (*1 *2 *3) (|partial| -12 (-5 *3 (-975 *4)) (-4 *4 (-1080)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-1946 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-975 *5)) (-5 *4 (-948)) (-4 *5 (-1080)) (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5)))) (-1946 (*1 *2 *3) (|partial| -12 (-5 *3 (-975 *4)) (-4 *4 (-1080)) (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4)))) (-3019 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-975 (-171 *5))) (-5 *4 (-948)) (-4 *5 (-175)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-3019 (*1 *2 *3) (|partial| -12 (-5 *3 (-975 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-3930 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-871)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-571)) (-4 *4 (-871)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-3930 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-871)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-871)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-4312 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-871)) (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5)))) (-4312 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-871)) (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4)))) (-3930 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 (-171 *5)))) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-421 (-975 (-171 *4)))) (-4 *4 (-571)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-3930 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-4312 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5)))) (-4312 (*1 *2 *3) (-12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571)) (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4)))) (-3930 (*1 *2 *3 *4) (-12 (-5 *3 (-975 *5)) (-5 *4 (-948)) (-4 *5 (-1080)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-975 *4)) (-4 *4 (-1080)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-4312 (*1 *2 *3 *4) (-12 (-5 *3 (-975 *5)) (-5 *4 (-948)) (-4 *5 (-1080)) (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5)))) (-4312 (*1 *2 *3) (-12 (-5 *3 (-975 *4)) (-4 *4 (-1080)) (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4)))) (-3930 (*1 *2 *3 *4) (-12 (-5 *3 (-975 (-171 *5))) (-5 *4 (-948)) (-4 *5 (-175)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-975 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-3930 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-948)) (-4 *5 (-175)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5)))) (-3930 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-175)) (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4)))) (-3930 (*1 *2 *3 *4) (-12 (-5 *4 (-948)) (-5 *2 (-171 (-391))) (-5 *1 (-807 *3)) (-4 *3 (-633 (-391))))) (-3930 (*1 *2 *3) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-807 *3)) (-4 *3 (-633 (-391))))) (-4312 (*1 *2 *3 *4) (-12 (-5 *4 (-948)) (-5 *2 (-391)) (-5 *1 (-807 *3)) (-4 *3 (-633 *2)))) (-4312 (*1 *2 *3) (-12 (-5 *2 (-391)) (-5 *1 (-807 *3)) (-4 *3 (-633 *2)))))
+(-10 -7 (-15 -4312 ((-391) |#1|)) (-15 -4312 ((-391) |#1| (-948))) (-15 -3930 ((-171 (-391)) |#1|)) (-15 -3930 ((-171 (-391)) |#1| (-948))) (IF (|has| |#1| (-175)) (PROGN (-15 -3930 ((-171 (-391)) (-171 |#1|))) (-15 -3930 ((-171 (-391)) (-171 |#1|) (-948))) (-15 -3930 ((-171 (-391)) (-975 (-171 |#1|)))) (-15 -3930 ((-171 (-391)) (-975 (-171 |#1|)) (-948)))) |%noBranch|) (IF (|has| |#1| (-1080)) (PROGN (-15 -4312 ((-391) (-975 |#1|))) (-15 -4312 ((-391) (-975 |#1|) (-948))) (-15 -3930 ((-171 (-391)) (-975 |#1|))) (-15 -3930 ((-171 (-391)) (-975 |#1|) (-948)))) |%noBranch|) (IF (|has| |#1| (-571)) (PROGN (-15 -4312 ((-391) (-421 (-975 |#1|)))) (-15 -4312 ((-391) (-421 (-975 |#1|)) (-948))) (-15 -3930 ((-171 (-391)) (-421 (-975 |#1|)))) (-15 -3930 ((-171 (-391)) (-421 (-975 |#1|)) (-948))) (-15 -3930 ((-171 (-391)) (-421 (-975 (-171 |#1|))))) (-15 -3930 ((-171 (-391)) (-421 (-975 (-171 |#1|))) (-948))) (IF (|has| |#1| (-871)) (PROGN (-15 -4312 ((-391) (-326 |#1|))) (-15 -4312 ((-391) (-326 |#1|) (-948))) (-15 -3930 ((-171 (-391)) (-326 |#1|))) (-15 -3930 ((-171 (-391)) (-326 |#1|) (-948))) (-15 -3930 ((-171 (-391)) (-326 (-171 |#1|)))) (-15 -3930 ((-171 (-391)) (-326 (-171 |#1|)) (-948)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-15 -3019 ((-3 (-171 (-391)) "failed") (-975 (-171 |#1|)))) (-15 -3019 ((-3 (-171 (-391)) "failed") (-975 (-171 |#1|)) (-948)))) |%noBranch|) (IF (|has| |#1| (-1080)) (PROGN (-15 -1946 ((-3 (-391) "failed") (-975 |#1|))) (-15 -1946 ((-3 (-391) "failed") (-975 |#1|) (-948))) (-15 -3019 ((-3 (-171 (-391)) "failed") (-975 |#1|))) (-15 -3019 ((-3 (-171 (-391)) "failed") (-975 |#1|) (-948)))) |%noBranch|) (IF (|has| |#1| (-571)) (PROGN (-15 -1946 ((-3 (-391) "failed") (-421 (-975 |#1|)))) (-15 -1946 ((-3 (-391) "failed") (-421 (-975 |#1|)) (-948))) (-15 -3019 ((-3 (-171 (-391)) "failed") (-421 (-975 |#1|)))) (-15 -3019 ((-3 (-171 (-391)) "failed") (-421 (-975 |#1|)) (-948))) (-15 -3019 ((-3 (-171 (-391)) "failed") (-421 (-975 (-171 |#1|))))) (-15 -3019 ((-3 (-171 (-391)) "failed") (-421 (-975 (-171 |#1|))) (-948))) (IF (|has| |#1| (-871)) (PROGN (-15 -1946 ((-3 (-391) "failed") (-326 |#1|))) (-15 -1946 ((-3 (-391) "failed") (-326 |#1|) (-948))) (-15 -3019 ((-3 (-171 (-391)) "failed") (-326 |#1|))) (-15 -3019 ((-3 (-171 (-391)) "failed") (-326 |#1|) (-948))) (-15 -3019 ((-3 (-171 (-391)) "failed") (-326 (-171 |#1|)))) (-15 -3019 ((-3 (-171 (-391)) "failed") (-326 (-171 |#1|)) (-948)))) |%noBranch|)) |%noBranch|))
+((-3411 (((-948) (-1189)) 89 T ELT)) (-2157 (((-3 (-391) "failed") (-1189)) 36 T ELT)) (-2008 (((-391) (-1189)) 34 T ELT)) (-2694 (((-948) (-1189)) 63 T ELT)) (-2162 (((-1189) (-948)) 73 T ELT)) (-3337 (((-1189) (-948)) 62 T ELT)))
+(((-808) (-10 -7 (-15 -3337 ((-1189) (-948))) (-15 -2694 ((-948) (-1189))) (-15 -2162 ((-1189) (-948))) (-15 -3411 ((-948) (-1189))) (-15 -2008 ((-391) (-1189))) (-15 -2157 ((-3 (-391) "failed") (-1189))))) (T -808))
+((-2157 (*1 *2 *3) (|partial| -12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-808)))) (-2008 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-808)))) (-3411 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-948)) (-5 *1 (-808)))) (-2162 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1189)) (-5 *1 (-808)))) (-2694 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-948)) (-5 *1 (-808)))) (-3337 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1189)) (-5 *1 (-808)))))
+(-10 -7 (-15 -3337 ((-1189) (-948))) (-15 -2694 ((-948) (-1189))) (-15 -2162 ((-1189) (-948))) (-15 -3411 ((-948) (-1189))) (-15 -2008 ((-391) (-1189))) (-15 -2157 ((-3 (-391) "failed") (-1189))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2788 (((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 16 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)) 14 T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 17 T ELT) (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 15 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2340 (((-114) $ $) 8 T ELT)))
(((-809) (-142)) (T -809))
-((-3613 (*1 *2 *3 *4) (-12 (-4 *1 (-809)) (-5 *3 (-1094)) (-5 *4 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066)))))) (-1672 (*1 *2 *3 *2) (-12 (-4 *1 (-809)) (-5 *2 (-1066)) (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-3613 (*1 *2 *3 *4) (-12 (-4 *1 (-809)) (-5 *3 (-1094)) (-5 *4 (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066)))))) (-1672 (*1 *2 *3 *2) (-12 (-4 *1 (-809)) (-5 *2 (-1066)) (-5 *3 (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))))
-(-13 (-1132) (-10 -7 (-15 -3613 ((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1672 ((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066))) (-15 -3613 ((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1672 ((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)))))
+((-3741 (*1 *2 *3 *4) (-12 (-4 *1 (-809)) (-5 *3 (-1094)) (-5 *4 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066)))))) (-2788 (*1 *2 *3 *2) (-12 (-4 *1 (-809)) (-5 *2 (-1066)) (-5 *3 (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-3741 (*1 *2 *3 *4) (-12 (-4 *1 (-809)) (-5 *3 (-1094)) (-5 *4 (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066)))))) (-2788 (*1 *2 *3 *2) (-12 (-4 *1 (-809)) (-5 *2 (-1066)) (-5 *3 (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))))
+(-13 (-1132) (-10 -7 (-15 -3741 ((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2788 ((-1066) (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229))) (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066))) (-15 -3741 ((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)) (|:| |extra| (-1066))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2788 ((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1066)))))
(((-102) . T) ((-632 (-887)) . T) ((-1132) . T) ((-1247) . T))
-((-2680 (((-1303) (-1297 (-391)) (-560) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -2486 (-391))) (-391) (-1297 (-391)) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391))) 55 T ELT) (((-1303) (-1297 (-391)) (-560) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -2486 (-391))) (-391) (-1297 (-391)) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391))) 52 T ELT)) (-4107 (((-1303) (-1297 (-391)) (-560) (-391) (-391) (-560) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391))) 61 T ELT)) (-3851 (((-1303) (-1297 (-391)) (-560) (-391) (-391) (-391) (-391) (-560) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391))) 50 T ELT)) (-2191 (((-1303) (-1297 (-391)) (-560) (-391) (-391) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391))) 63 T ELT) (((-1303) (-1297 (-391)) (-560) (-391) (-391) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391))) 62 T ELT)))
-(((-810) (-10 -7 (-15 -2191 ((-1303) (-1297 (-391)) (-560) (-391) (-391) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -2191 ((-1303) (-1297 (-391)) (-560) (-391) (-391) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)))) (-15 -3851 ((-1303) (-1297 (-391)) (-560) (-391) (-391) (-391) (-391) (-560) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -2680 ((-1303) (-1297 (-391)) (-560) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -2486 (-391))) (-391) (-1297 (-391)) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -2680 ((-1303) (-1297 (-391)) (-560) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -2486 (-391))) (-391) (-1297 (-391)) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)))) (-15 -4107 ((-1303) (-1297 (-391)) (-560) (-391) (-391) (-560) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))))) (T -810))
-((-4107 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-810)))) (-2680 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-560)) (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -2486 (-391)))) (-5 *7 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-810)))) (-2680 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-560)) (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -2486 (-391)))) (-5 *7 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-810)))) (-3851 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-810)))) (-2191 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-810)))) (-2191 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-810)))))
-(-10 -7 (-15 -2191 ((-1303) (-1297 (-391)) (-560) (-391) (-391) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -2191 ((-1303) (-1297 (-391)) (-560) (-391) (-391) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)))) (-15 -3851 ((-1303) (-1297 (-391)) (-560) (-391) (-391) (-391) (-391) (-560) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -2680 ((-1303) (-1297 (-391)) (-560) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -2486 (-391))) (-391) (-1297 (-391)) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -2680 ((-1303) (-1297 (-391)) (-560) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -2486 (-391))) (-391) (-1297 (-391)) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)))) (-15 -4107 ((-1303) (-1297 (-391)) (-560) (-391) (-391) (-560) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))))
-((-1727 (((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560)) 64 T ELT)) (-4483 (((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560)) 40 T ELT)) (-2800 (((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560)) 63 T ELT)) (-4231 (((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560)) 38 T ELT)) (-3838 (((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560)) 62 T ELT)) (-2845 (((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560)) 24 T ELT)) (-1452 (((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560)) 41 T ELT)) (-1461 (((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560)) 39 T ELT)) (-4141 (((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560)) 37 T ELT)))
-(((-811) (-10 -7 (-15 -4141 ((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560))) (-15 -1461 ((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560))) (-15 -1452 ((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560))) (-15 -2845 ((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -4231 ((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -4483 ((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -3838 ((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -2800 ((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -1727 ((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))))) (T -811))
-((-1727 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3853 *4) (|:| -4223 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-2800 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3853 *4) (|:| -4223 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-3838 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3853 *4) (|:| -4223 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-4483 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3853 *4) (|:| -4223 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-4231 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3853 *4) (|:| -4223 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-2845 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3853 *4) (|:| -4223 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-1452 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3853 *4) (|:| -4223 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-1461 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3853 *4) (|:| -4223 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-4141 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3853 *4) (|:| -4223 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))))
-(-10 -7 (-15 -4141 ((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560))) (-15 -1461 ((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560))) (-15 -1452 ((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560))) (-15 -2845 ((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -4231 ((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -4483 ((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -3838 ((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -2800 ((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -1727 ((-2 (|:| -3853 (-391)) (|:| -4223 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))))
-((-1821 (((-1243 |#1|) |#1| (-229) (-560)) 69 T ELT)))
-(((-812 |#1|) (-10 -7 (-15 -1821 ((-1243 |#1|) |#1| (-229) (-560)))) (-1005)) (T -812))
-((-1821 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-229)) (-5 *5 (-560)) (-5 *2 (-1243 *3)) (-5 *1 (-812 *3)) (-4 *3 (-1005)))))
-(-10 -7 (-15 -1821 ((-1243 |#1|) |#1| (-229) (-560))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 26 T ELT)) (-3068 (((-3 $ "failed") $ $) 28 T ELT)) (-2238 (($) 25 T CONST)) (-3825 (($ $ $) 20 T ELT)) (-2820 (($ $ $) 19 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 24 T CONST)) (-2536 (((-114) $ $) 18 T ELT)) (-2508 (((-114) $ $) 16 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 17 T ELT)) (-2495 (((-114) $ $) 15 T ELT)) (-2580 (($ $ $) 32 T ELT) (($ $) 31 T ELT)) (-2567 (($ $ $) 22 T ELT)) (* (($ (-948) $) 23 T ELT) (($ (-793) $) 27 T ELT) (($ (-560) $) 30 T ELT)))
+((-2240 (((-1303) (-1297 (-391)) (-560) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1490 (-391))) (-391) (-1297 (-391)) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391))) 55 T ELT) (((-1303) (-1297 (-391)) (-560) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1490 (-391))) (-391) (-1297 (-391)) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391))) 52 T ELT)) (-1566 (((-1303) (-1297 (-391)) (-560) (-391) (-391) (-560) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391))) 61 T ELT)) (-4060 (((-1303) (-1297 (-391)) (-560) (-391) (-391) (-391) (-391) (-560) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391))) 50 T ELT)) (-4348 (((-1303) (-1297 (-391)) (-560) (-391) (-391) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391))) 63 T ELT) (((-1303) (-1297 (-391)) (-560) (-391) (-391) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391))) 62 T ELT)))
+(((-810) (-10 -7 (-15 -4348 ((-1303) (-1297 (-391)) (-560) (-391) (-391) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -4348 ((-1303) (-1297 (-391)) (-560) (-391) (-391) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)))) (-15 -4060 ((-1303) (-1297 (-391)) (-560) (-391) (-391) (-391) (-391) (-560) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -2240 ((-1303) (-1297 (-391)) (-560) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1490 (-391))) (-391) (-1297 (-391)) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -2240 ((-1303) (-1297 (-391)) (-560) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1490 (-391))) (-391) (-1297 (-391)) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)))) (-15 -1566 ((-1303) (-1297 (-391)) (-560) (-391) (-391) (-560) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))))) (T -810))
+((-1566 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-810)))) (-2240 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-560)) (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1490 (-391)))) (-5 *7 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-810)))) (-2240 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-560)) (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1490 (-391)))) (-5 *7 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-810)))) (-4060 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-810)))) (-4348 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-810)))) (-4348 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391))) (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303)) (-5 *1 (-810)))))
+(-10 -7 (-15 -4348 ((-1303) (-1297 (-391)) (-560) (-391) (-391) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -4348 ((-1303) (-1297 (-391)) (-560) (-391) (-391) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)))) (-15 -4060 ((-1303) (-1297 (-391)) (-560) (-391) (-391) (-391) (-391) (-560) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -2240 ((-1303) (-1297 (-391)) (-560) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1490 (-391))) (-391) (-1297 (-391)) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))) (-15 -2240 ((-1303) (-1297 (-391)) (-560) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1490 (-391))) (-391) (-1297 (-391)) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)) (-1297 (-391)))) (-15 -1566 ((-1303) (-1297 (-391)) (-560) (-391) (-391) (-560) (-1 (-1303) (-1297 (-391)) (-1297 (-391)) (-391)))))
+((-2142 (((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560)) 64 T ELT)) (-1923 (((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560)) 40 T ELT)) (-4178 (((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560)) 63 T ELT)) (-3487 (((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560)) 38 T ELT)) (-2024 (((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560)) 62 T ELT)) (-1481 (((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560)) 24 T ELT)) (-1963 (((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560)) 41 T ELT)) (-4381 (((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560)) 39 T ELT)) (-1928 (((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560)) 37 T ELT)))
+(((-811) (-10 -7 (-15 -1928 ((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560))) (-15 -4381 ((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560))) (-15 -1963 ((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560))) (-15 -1481 ((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -3487 ((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -1923 ((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -2024 ((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -4178 ((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -2142 ((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))))) (T -811))
+((-2142 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -1430 *4) (|:| -2403 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-4178 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -1430 *4) (|:| -2403 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-2024 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -1430 *4) (|:| -2403 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-1923 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -1430 *4) (|:| -2403 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-3487 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -1430 *4) (|:| -2403 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-1481 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -1430 *4) (|:| -2403 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-1963 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -1430 *4) (|:| -2403 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-4381 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -1430 *4) (|:| -2403 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))) (-1928 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -1430 *4) (|:| -2403 *4) (|:| |totalpts| (-560)) (|:| |success| (-114)))) (-5 *1 (-811)) (-5 *5 (-560)))))
+(-10 -7 (-15 -1928 ((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560))) (-15 -4381 ((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560))) (-15 -1963 ((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560) (-560))) (-15 -1481 ((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -3487 ((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -1923 ((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -2024 ((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -4178 ((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))) (-15 -2142 ((-2 (|:| -1430 (-391)) (|:| -2403 (-391)) (|:| |totalpts| (-560)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-560) (-560))))
+((-1811 (((-1243 |#1|) |#1| (-229) (-560)) 69 T ELT)))
+(((-812 |#1|) (-10 -7 (-15 -1811 ((-1243 |#1|) |#1| (-229) (-560)))) (-1005)) (T -812))
+((-1811 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-229)) (-5 *5 (-560)) (-5 *2 (-1243 *3)) (-5 *1 (-812 *3)) (-4 *3 (-1005)))))
+(-10 -7 (-15 -1811 ((-1243 |#1|) |#1| (-229) (-560))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 26 T ELT)) (-3094 (((-3 $ "failed") $ $) 28 T ELT)) (-3525 (($) 25 T CONST)) (-2932 (($ $ $) 20 T ELT)) (-4379 (($ $ $) 19 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 24 T CONST)) (-2396 (((-114) $ $) 18 T ELT)) (-2373 (((-114) $ $) 16 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 17 T ELT)) (-2362 (((-114) $ $) 15 T ELT)) (-2441 (($ $ $) 32 T ELT) (($ $) 31 T ELT)) (-2429 (($ $ $) 22 T ELT)) (* (($ (-948) $) 23 T ELT) (($ (-793) $) 27 T ELT) (($ (-560) $) 30 T ELT)))
(((-813) (-142)) (T -813))
NIL
(-13 (-819) (-21))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-871) . T) ((-874) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 26 T ELT)) (-2238 (($) 25 T CONST)) (-3825 (($ $ $) 20 T ELT)) (-2820 (($ $ $) 19 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 24 T CONST)) (-2536 (((-114) $ $) 18 T ELT)) (-2508 (((-114) $ $) 16 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 17 T ELT)) (-2495 (((-114) $ $) 15 T ELT)) (-2567 (($ $ $) 22 T ELT)) (* (($ (-948) $) 23 T ELT) (($ (-793) $) 27 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 26 T ELT)) (-3525 (($) 25 T CONST)) (-2932 (($ $ $) 20 T ELT)) (-4379 (($ $ $) 19 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 24 T CONST)) (-2396 (((-114) $ $) 18 T ELT)) (-2373 (((-114) $ $) 16 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 17 T ELT)) (-2362 (((-114) $ $) 15 T ELT)) (-2429 (($ $ $) 22 T ELT)) (* (($ (-948) $) 23 T ELT) (($ (-793) $) 27 T ELT)))
(((-814) (-142)) (T -814))
NIL
(-13 (-816) (-23))
(((-23) . T) ((-25) . T) ((-102) . T) ((-632 (-887)) . T) ((-816) . T) ((-871) . T) ((-874) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 26 T ELT)) (-3168 (($ $ $) 29 T ELT)) (-3068 (((-3 $ "failed") $ $) 28 T ELT)) (-2238 (($) 25 T CONST)) (-3825 (($ $ $) 20 T ELT)) (-2820 (($ $ $) 19 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 24 T CONST)) (-2536 (((-114) $ $) 18 T ELT)) (-2508 (((-114) $ $) 16 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 17 T ELT)) (-2495 (((-114) $ $) 15 T ELT)) (-2567 (($ $ $) 22 T ELT)) (* (($ (-948) $) 23 T ELT) (($ (-793) $) 27 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 26 T ELT)) (-1651 (($ $ $) 29 T ELT)) (-3094 (((-3 $ "failed") $ $) 28 T ELT)) (-3525 (($) 25 T CONST)) (-2932 (($ $ $) 20 T ELT)) (-4379 (($ $ $) 19 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 24 T CONST)) (-2396 (((-114) $ $) 18 T ELT)) (-2373 (((-114) $ $) 16 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 17 T ELT)) (-2362 (((-114) $ $) 15 T ELT)) (-2429 (($ $ $) 22 T ELT)) (* (($ (-948) $) 23 T ELT) (($ (-793) $) 27 T ELT)))
(((-815) (-142)) (T -815))
-((-3168 (*1 *1 *1 *1) (-4 *1 (-815))))
-(-13 (-819) (-10 -8 (-15 -3168 ($ $ $))))
+((-1651 (*1 *1 *1 *1) (-4 *1 (-815))))
+(-13 (-819) (-10 -8 (-15 -1651 ($ $ $))))
(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-887)) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-871) . T) ((-874) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) 7 T ELT)) (-3825 (($ $ $) 20 T ELT)) (-2820 (($ $ $) 19 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2536 (((-114) $ $) 18 T ELT)) (-2508 (((-114) $ $) 16 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 17 T ELT)) (-2495 (((-114) $ $) 15 T ELT)) (-2567 (($ $ $) 22 T ELT)) (* (($ (-948) $) 23 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2932 (($ $ $) 20 T ELT)) (-4379 (($ $ $) 19 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2396 (((-114) $ $) 18 T ELT)) (-2373 (((-114) $ $) 16 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 17 T ELT)) (-2362 (((-114) $ $) 15 T ELT)) (-2429 (($ $ $) 22 T ELT)) (* (($ (-948) $) 23 T ELT)))
(((-816) (-142)) (T -816))
NIL
(-13 (-871) (-25))
(((-25) . T) ((-102) . T) ((-632 (-887)) . T) ((-871) . T) ((-874) . T) ((-1132) . T) ((-1247) . T))
-((-2388 (((-114) $) 42 T ELT)) (-2539 (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 45 T ELT)) (-3330 (((-560) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3643 (((-3 (-421 (-560)) "failed") $) 78 T ELT)) (-3469 (((-114) $) 72 T ELT)) (-3197 (((-421 (-560)) $) 76 T ELT)) (-2032 ((|#2| $) 26 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-1544 (($ $) 58 T ELT)) (-1407 (((-549) $) 67 T ELT)) (-4122 (($ $) 21 T ELT)) (-1578 (((-887) $) 53 T ELT) (($ (-560)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-421 (-560))) NIL T ELT)) (-2930 (((-793)) 10 T ELT)) (-2282 ((|#2| $) 71 T ELT)) (-2473 (((-114) $ $) 30 T ELT)) (-2495 (((-114) $ $) 69 T ELT)) (-2580 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 31 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT)))
-(((-817 |#1| |#2|) (-10 -8 (-15 -2495 ((-114) |#1| |#1|)) (-15 -1407 ((-549) |#1|)) (-15 -1544 (|#1| |#1|)) (-15 -3643 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3197 ((-421 (-560)) |#1|)) (-15 -3469 ((-114) |#1|)) (-15 -2282 (|#2| |#1|)) (-15 -2032 (|#2| |#1|)) (-15 -4122 (|#1| |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -3330 ((-560) |#1|)) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -1578 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2930 ((-793))) (-15 -1578 (|#1| (-560))) (-15 * (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 -2388 ((-114) |#1|)) (-15 * (|#1| (-948) |#1|)) (-15 -2567 (|#1| |#1| |#1|)) (-15 -1578 ((-887) |#1|)) (-15 -2473 ((-114) |#1| |#1|))) (-818 |#2|) (-175)) (T -817))
-((-2930 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-817 *3 *4)) (-4 *3 (-818 *4)))))
-(-10 -8 (-15 -2495 ((-114) |#1| |#1|)) (-15 -1407 ((-549) |#1|)) (-15 -1544 (|#1| |#1|)) (-15 -3643 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3197 ((-421 (-560)) |#1|)) (-15 -3469 ((-114) |#1|)) (-15 -2282 (|#2| |#1|)) (-15 -2032 (|#2| |#1|)) (-15 -4122 (|#1| |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -3330 ((-560) |#1|)) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -1578 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2930 ((-793))) (-15 -1578 (|#1| (-560))) (-15 * (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 -2388 ((-114) |#1|)) (-15 * (|#1| (-948) |#1|)) (-15 -2567 (|#1| |#1| |#1|)) (-15 -1578 ((-887) |#1|)) (-15 -2473 ((-114) |#1| |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-3241 (((-793)) 59 (|has| |#1| (-381)) ELT)) (-2238 (($) 18 T CONST)) (-2539 (((-3 (-560) "failed") $) 101 (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) 98 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 95 T ELT)) (-3330 (((-560) $) 100 (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) 97 (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) 96 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-4482 ((|#1| $) 85 T ELT)) (-3643 (((-3 (-421 (-560)) "failed") $) 72 (|has| |#1| (-559)) ELT)) (-3469 (((-114) $) 74 (|has| |#1| (-559)) ELT)) (-3197 (((-421 (-560)) $) 73 (|has| |#1| (-559)) ELT)) (-2310 (($) 62 (|has| |#1| (-381)) ELT)) (-1581 (((-114) $) 35 T ELT)) (-1456 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 76 T ELT)) (-2032 ((|#1| $) 77 T ELT)) (-3825 (($ $ $) 63 (|has| |#1| (-871)) ELT)) (-2820 (($ $ $) 64 (|has| |#1| (-871)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-4419 (((-948) $) 61 (|has| |#1| (-381)) ELT)) (-1905 (((-1189) $) 10 T ELT)) (-1544 (($ $) 71 (|has| |#1| (-376)) ELT)) (-3128 (($ (-948)) 60 (|has| |#1| (-381)) ELT)) (-3916 ((|#1| $) 82 T ELT)) (-2678 ((|#1| $) 83 T ELT)) (-2639 ((|#1| $) 84 T ELT)) (-2593 ((|#1| $) 78 T ELT)) (-3259 ((|#1| $) 79 T ELT)) (-3953 ((|#1| $) 80 T ELT)) (-3523 ((|#1| $) 81 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-4187 (($ $ (-663 |#1|) (-663 |#1|)) 93 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 92 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 91 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) 90 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) 89 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) 88 (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-3924 (($ $ |#1|) 94 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-1407 (((-549) $) 69 (|has| |#1| (-633 (-549))) ELT)) (-4122 (($ $) 86 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 44 T ELT) (($ (-421 (-560))) 99 (|has| |#1| (-1069 (-421 (-560)))) ELT)) (-1964 (((-3 $ "failed") $) 70 (|has| |#1| (-147)) ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2282 ((|#1| $) 75 (|has| |#1| (-1091)) ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2536 (((-114) $ $) 65 (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) 67 (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 66 (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) 68 (|has| |#1| (-871)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
+((-2505 (((-114) $) 42 T ELT)) (-3929 (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 45 T ELT)) (-3649 (((-560) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-2743 (((-3 (-421 (-560)) "failed") $) 78 T ELT)) (-1574 (((-114) $) 72 T ELT)) (-1957 (((-421 (-560)) $) 76 T ELT)) (-2084 ((|#2| $) 26 T ELT)) (-2260 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2986 (($ $) 58 T ELT)) (-2400 (((-549) $) 67 T ELT)) (-1714 (($ $) 21 T ELT)) (-3913 (((-887) $) 53 T ELT) (($ (-560)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-421 (-560))) NIL T ELT)) (-4191 (((-793)) 10 T ELT)) (-2719 ((|#2| $) 71 T ELT)) (-2340 (((-114) $ $) 30 T ELT)) (-2362 (((-114) $ $) 69 T ELT)) (-2441 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 31 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT)))
+(((-817 |#1| |#2|) (-10 -8 (-15 -2362 ((-114) |#1| |#1|)) (-15 -2400 ((-549) |#1|)) (-15 -2986 (|#1| |#1|)) (-15 -2743 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -1957 ((-421 (-560)) |#1|)) (-15 -1574 ((-114) |#1|)) (-15 -2719 (|#2| |#1|)) (-15 -2084 (|#2| |#1|)) (-15 -1714 (|#1| |#1|)) (-15 -2260 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -3649 ((-560) |#1|)) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -3913 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4191 ((-793))) (-15 -3913 (|#1| (-560))) (-15 * (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 -2505 ((-114) |#1|)) (-15 * (|#1| (-948) |#1|)) (-15 -2429 (|#1| |#1| |#1|)) (-15 -3913 ((-887) |#1|)) (-15 -2340 ((-114) |#1| |#1|))) (-818 |#2|) (-175)) (T -817))
+((-4191 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-817 *3 *4)) (-4 *3 (-818 *4)))))
+(-10 -8 (-15 -2362 ((-114) |#1| |#1|)) (-15 -2400 ((-549) |#1|)) (-15 -2986 (|#1| |#1|)) (-15 -2743 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -1957 ((-421 (-560)) |#1|)) (-15 -1574 ((-114) |#1|)) (-15 -2719 (|#2| |#1|)) (-15 -2084 (|#2| |#1|)) (-15 -1714 (|#1| |#1|)) (-15 -2260 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -3649 ((-560) |#1|)) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -3913 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4191 ((-793))) (-15 -3913 (|#1| (-560))) (-15 * (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 -2505 ((-114) |#1|)) (-15 * (|#1| (-948) |#1|)) (-15 -2429 (|#1| |#1| |#1|)) (-15 -3913 ((-887) |#1|)) (-15 -2340 ((-114) |#1| |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-2552 (((-793)) 59 (|has| |#1| (-381)) ELT)) (-3525 (($) 18 T CONST)) (-3929 (((-3 (-560) "failed") $) 101 (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) 98 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 95 T ELT)) (-3649 (((-560) $) 100 (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) 97 (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) 96 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-4034 ((|#1| $) 85 T ELT)) (-2743 (((-3 (-421 (-560)) "failed") $) 72 (|has| |#1| (-559)) ELT)) (-1574 (((-114) $) 74 (|has| |#1| (-559)) ELT)) (-1957 (((-421 (-560)) $) 73 (|has| |#1| (-559)) ELT)) (-1812 (($) 62 (|has| |#1| (-381)) ELT)) (-1918 (((-114) $) 35 T ELT)) (-2750 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 76 T ELT)) (-2084 ((|#1| $) 77 T ELT)) (-2932 (($ $ $) 63 (|has| |#1| (-871)) ELT)) (-4379 (($ $ $) 64 (|has| |#1| (-871)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 87 T ELT)) (-2622 (((-948) $) 61 (|has| |#1| (-381)) ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2986 (($ $) 71 (|has| |#1| (-376)) ELT)) (-1591 (($ (-948)) 60 (|has| |#1| (-381)) ELT)) (-3405 ((|#1| $) 82 T ELT)) (-2217 ((|#1| $) 83 T ELT)) (-3085 ((|#1| $) 84 T ELT)) (-3875 ((|#1| $) 78 T ELT)) (-1358 ((|#1| $) 79 T ELT)) (-3798 ((|#1| $) 80 T ELT)) (-4035 ((|#1| $) 81 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2371 (($ $ (-663 |#1|) (-663 |#1|)) 93 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 92 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 91 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) 90 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) 89 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) 88 (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-1507 (($ $ |#1|) 94 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-2400 (((-549) $) 69 (|has| |#1| (-633 (-549))) ELT)) (-1714 (($ $) 86 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 44 T ELT) (($ (-421 (-560))) 99 (|has| |#1| (-1069 (-421 (-560)))) ELT)) (-3919 (((-3 $ "failed") $) 70 (|has| |#1| (-147)) ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-2719 ((|#1| $) 75 (|has| |#1| (-1091)) ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2396 (((-114) $ $) 65 (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) 67 (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 66 (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) 68 (|has| |#1| (-871)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT)))
(((-818 |#1|) (-142) (-175)) (T -818))
-((-4122 (*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-4482 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-2639 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-2678 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-3916 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-3953 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-2593 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-2032 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-1456 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-2282 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)) (-4 *2 (-1091)))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-114)))) (-3197 (*1 *2 *1) (-12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-560))))) (-3643 (*1 *2 *1) (|partial| -12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-560))))) (-1544 (*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)) (-4 *2 (-376)))))
-(-13 (-38 |t#1|) (-426 |t#1|) (-351 |t#1|) (-10 -8 (-15 -4122 ($ $)) (-15 -4482 (|t#1| $)) (-15 -2639 (|t#1| $)) (-15 -2678 (|t#1| $)) (-15 -3916 (|t#1| $)) (-15 -3523 (|t#1| $)) (-15 -3953 (|t#1| $)) (-15 -3259 (|t#1| $)) (-15 -2593 (|t#1| $)) (-15 -2032 (|t#1| $)) (-15 -1456 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#1| (-871)) (-6 (-871)) |%noBranch|) (IF (|has| |t#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1091)) (-15 -2282 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -3469 ((-114) $)) (-15 -3197 ((-421 (-560)) $)) (-15 -3643 ((-3 (-421 (-560)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-376)) (-15 -1544 ($ $)) |%noBranch|)))
+((-1714 (*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-4034 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-3085 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-2217 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-4035 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-1358 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-3875 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-2084 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-2750 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-2719 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)) (-4 *2 (-1091)))) (-1574 (*1 *2 *1) (-12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-114)))) (-1957 (*1 *2 *1) (-12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-560))))) (-2743 (*1 *2 *1) (|partial| -12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-560))))) (-2986 (*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)) (-4 *2 (-376)))))
+(-13 (-38 |t#1|) (-426 |t#1|) (-351 |t#1|) (-10 -8 (-15 -1714 ($ $)) (-15 -4034 (|t#1| $)) (-15 -3085 (|t#1| $)) (-15 -2217 (|t#1| $)) (-15 -3405 (|t#1| $)) (-15 -4035 (|t#1| $)) (-15 -3798 (|t#1| $)) (-15 -1358 (|t#1| $)) (-15 -3875 (|t#1| $)) (-15 -2084 (|t#1| $)) (-15 -2750 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#1| (-871)) (-6 (-871)) |%noBranch|) (IF (|has| |t#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1091)) (-15 -2719 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -1574 ((-114) $)) (-15 -1957 ((-421 (-560)) $)) (-15 -2743 ((-3 (-421 (-560)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-376)) (-15 -2986 ($ $)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0=(-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-632 (-887)) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-381) |has| |#1| (-381)) ((-351 |#1|) . T) ((-426 |#1|) . T) ((-528 (-1207) |#1|) |has| |#1| (-528 (-1207) |#1|)) ((-528 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-748) . T) ((-871) |has| |#1| (-871)) ((-874) |has| |#1| (-871)) ((-1069 #0#) |has| |#1| (-1069 (-421 (-560)))) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 |#1|) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 26 T ELT)) (-3068 (((-3 $ "failed") $ $) 28 T ELT)) (-2238 (($) 25 T CONST)) (-3825 (($ $ $) 20 T ELT)) (-2820 (($ $ $) 19 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 24 T CONST)) (-2536 (((-114) $ $) 18 T ELT)) (-2508 (((-114) $ $) 16 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 17 T ELT)) (-2495 (((-114) $ $) 15 T ELT)) (-2567 (($ $ $) 22 T ELT)) (* (($ (-948) $) 23 T ELT) (($ (-793) $) 27 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 26 T ELT)) (-3094 (((-3 $ "failed") $ $) 28 T ELT)) (-3525 (($) 25 T CONST)) (-2932 (($ $ $) 20 T ELT)) (-4379 (($ $ $) 19 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 24 T CONST)) (-2396 (((-114) $ $) 18 T ELT)) (-2373 (((-114) $ $) 16 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 17 T ELT)) (-2362 (((-114) $ $) 15 T ELT)) (-2429 (($ $ $) 22 T ELT)) (* (($ (-948) $) 23 T ELT) (($ (-793) $) 27 T ELT)))
(((-819) (-142)) (T -819))
NIL
(-13 (-814) (-133))
(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-887)) . T) ((-814) . T) ((-816) . T) ((-871) . T) ((-874) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-3241 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-1027 |#1|) "failed") $) 35 T ELT) (((-3 (-560) "failed") $) NIL (-2304 (|has| (-1027 |#1|) (-1069 (-560))) (|has| |#1| (-1069 (-560)))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (-2304 (|has| (-1027 |#1|) (-1069 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-3330 ((|#1| $) NIL T ELT) (((-1027 |#1|) $) 33 T ELT) (((-560) $) NIL (-2304 (|has| (-1027 |#1|) (-1069 (-560))) (|has| |#1| (-1069 (-560)))) ELT) (((-421 (-560)) $) NIL (-2304 (|has| (-1027 |#1|) (-1069 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-4482 ((|#1| $) 16 T ELT)) (-3643 (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-559)) ELT)) (-3469 (((-114) $) NIL (|has| |#1| (-559)) ELT)) (-3197 (((-421 (-560)) $) NIL (|has| |#1| (-559)) ELT)) (-2310 (($) NIL (|has| |#1| (-381)) ELT)) (-1581 (((-114) $) NIL T ELT)) (-1456 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-1027 |#1|) (-1027 |#1|)) 29 T ELT)) (-2032 ((|#1| $) NIL T ELT)) (-3825 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4419 (((-948) $) NIL (|has| |#1| (-381)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3128 (($ (-948)) NIL (|has| |#1| (-381)) ELT)) (-3916 ((|#1| $) 22 T ELT)) (-2678 ((|#1| $) 20 T ELT)) (-2639 ((|#1| $) 18 T ELT)) (-2593 ((|#1| $) 26 T ELT)) (-3259 ((|#1| $) 25 T ELT)) (-3953 ((|#1| $) 24 T ELT)) (-3523 ((|#1| $) 23 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4187 (($ $ (-663 |#1|) (-663 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-3924 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-1407 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-4122 (($ $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1027 |#1|)) 30 T ELT) (($ (-421 (-560))) NIL (-2304 (|has| (-1027 |#1|) (-1069 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-1964 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2282 ((|#1| $) NIL (|has| |#1| (-1091)) ELT)) (-2001 (($) 8 T CONST)) (-2011 (($) 12 T CONST)) (-2536 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-820 |#1|) (-13 (-818 |#1|) (-426 (-1027 |#1|)) (-10 -8 (-15 -1456 ($ (-1027 |#1|) (-1027 |#1|))))) (-175)) (T -820))
-((-1456 (*1 *1 *2 *2) (-12 (-5 *2 (-1027 *3)) (-4 *3 (-175)) (-5 *1 (-820 *3)))))
-(-13 (-818 |#1|) (-426 (-1027 |#1|)) (-10 -8 (-15 -1456 ($ (-1027 |#1|) (-1027 |#1|)))))
-((-3957 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT)))
-(((-821 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#3| (-1 |#4| |#2|) |#1|))) (-818 |#2|) (-175) (-818 |#4|) (-175)) (T -821))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-818 *6)) (-5 *1 (-821 *4 *5 *2 *6)) (-4 *4 (-818 *5)))))
-(-10 -7 (-15 -3957 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 15 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2555 (((-1066) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 14 T ELT)) (-2473 (((-114) $ $) 8 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2552 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-1027 |#1|) "failed") $) 35 T ELT) (((-3 (-560) "failed") $) NIL (-2196 (|has| (-1027 |#1|) (-1069 (-560))) (|has| |#1| (-1069 (-560)))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (-2196 (|has| (-1027 |#1|) (-1069 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-3649 ((|#1| $) NIL T ELT) (((-1027 |#1|) $) 33 T ELT) (((-560) $) NIL (-2196 (|has| (-1027 |#1|) (-1069 (-560))) (|has| |#1| (-1069 (-560)))) ELT) (((-421 (-560)) $) NIL (-2196 (|has| (-1027 |#1|) (-1069 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4034 ((|#1| $) 16 T ELT)) (-2743 (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-559)) ELT)) (-1574 (((-114) $) NIL (|has| |#1| (-559)) ELT)) (-1957 (((-421 (-560)) $) NIL (|has| |#1| (-559)) ELT)) (-1812 (($) NIL (|has| |#1| (-381)) ELT)) (-1918 (((-114) $) NIL T ELT)) (-2750 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-1027 |#1|) (-1027 |#1|)) 29 T ELT)) (-2084 ((|#1| $) NIL T ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2622 (((-948) $) NIL (|has| |#1| (-381)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL (|has| |#1| (-376)) ELT)) (-1591 (($ (-948)) NIL (|has| |#1| (-381)) ELT)) (-3405 ((|#1| $) 22 T ELT)) (-2217 ((|#1| $) 20 T ELT)) (-3085 ((|#1| $) 18 T ELT)) (-3875 ((|#1| $) 26 T ELT)) (-1358 ((|#1| $) 25 T ELT)) (-3798 ((|#1| $) 24 T ELT)) (-4035 ((|#1| $) 23 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2371 (($ $ (-663 |#1|) (-663 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-1507 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-2400 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-1714 (($ $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1027 |#1|)) 30 T ELT) (($ (-421 (-560))) NIL (-2196 (|has| (-1027 |#1|) (-1069 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-3919 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-2719 ((|#1| $) NIL (|has| |#1| (-1091)) ELT)) (-1446 (($) 8 T CONST)) (-1456 (($) 12 T CONST)) (-2396 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-820 |#1|) (-13 (-818 |#1|) (-426 (-1027 |#1|)) (-10 -8 (-15 -2750 ($ (-1027 |#1|) (-1027 |#1|))))) (-175)) (T -820))
+((-2750 (*1 *1 *2 *2) (-12 (-5 *2 (-1027 *3)) (-4 *3 (-175)) (-5 *1 (-820 *3)))))
+(-13 (-818 |#1|) (-426 (-1027 |#1|)) (-10 -8 (-15 -2750 ($ (-1027 |#1|) (-1027 |#1|)))))
+((-2260 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT)))
+(((-821 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2260 (|#3| (-1 |#4| |#2|) |#1|))) (-818 |#2|) (-175) (-818 |#4|) (-175)) (T -821))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-818 *6)) (-5 *1 (-821 *4 *5 *2 *6)) (-4 *4 (-818 *5)))))
+(-10 -7 (-15 -2260 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 15 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-3508 (((-1066) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 14 T ELT)) (-2340 (((-114) $ $) 8 T ELT)))
(((-822) (-142)) (T -822))
-((-3613 (*1 *2 *3 *4) (-12 (-4 *1 (-822)) (-5 *3 (-1094)) (-5 *4 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)))))) (-2555 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-1066)))))
-(-13 (-1132) (-10 -7 (-15 -3613 ((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2555 ((-1066) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))))
+((-3741 (*1 *2 *3 *4) (-12 (-4 *1 (-822)) (-5 *3 (-1094)) (-5 *4 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)))))) (-3508 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-1066)))))
+(-13 (-1132) (-10 -7 (-15 -3741 ((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3508 ((-1066) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))))
(((-102) . T) ((-632 (-887)) . T) ((-1132) . T) ((-1247) . T))
-((-4256 (((-2 (|:| |particular| |#2|) (|:| -1954 (-663 |#2|))) |#3| |#2| (-1207)) 19 T ELT)))
-(((-823 |#1| |#2| |#3|) (-10 -7 (-15 -4256 ((-2 (|:| |particular| |#2|) (|:| -1954 (-663 |#2|))) |#3| |#2| (-1207)))) (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)) (-13 (-29 |#1|) (-1233) (-989)) (-680 |#2|)) (T -823))
-((-4256 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1207)) (-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-4 *4 (-13 (-29 *6) (-1233) (-989))) (-5 *2 (-2 (|:| |particular| *4) (|:| -1954 (-663 *4)))) (-5 *1 (-823 *6 *4 *3)) (-4 *3 (-680 *4)))))
-(-10 -7 (-15 -4256 ((-2 (|:| |particular| |#2|) (|:| -1954 (-663 |#2|))) |#3| |#2| (-1207))))
-((-1433 (((-3 |#2| "failed") |#2| (-115) (-305 |#2|) (-663 |#2|)) 28 T ELT) (((-3 |#2| "failed") (-305 |#2|) (-115) (-305 |#2|) (-663 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -1954 (-663 |#2|))) |#2| "failed") |#2| (-115) (-1207)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -1954 (-663 |#2|))) |#2| "failed") (-305 |#2|) (-115) (-1207)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -1954 (-663 (-1297 |#2|)))) "failed") (-663 |#2|) (-663 (-115)) (-1207)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -1954 (-663 (-1297 |#2|)))) "failed") (-663 (-305 |#2|)) (-663 (-115)) (-1207)) 26 T ELT) (((-3 (-663 (-1297 |#2|)) "failed") (-711 |#2|) (-1207)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -1954 (-663 (-1297 |#2|)))) "failed") (-711 |#2|) (-1297 |#2|) (-1207)) 35 T ELT)))
-(((-824 |#1| |#2|) (-10 -7 (-15 -1433 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -1954 (-663 (-1297 |#2|)))) "failed") (-711 |#2|) (-1297 |#2|) (-1207))) (-15 -1433 ((-3 (-663 (-1297 |#2|)) "failed") (-711 |#2|) (-1207))) (-15 -1433 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -1954 (-663 (-1297 |#2|)))) "failed") (-663 (-305 |#2|)) (-663 (-115)) (-1207))) (-15 -1433 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -1954 (-663 (-1297 |#2|)))) "failed") (-663 |#2|) (-663 (-115)) (-1207))) (-15 -1433 ((-3 (-2 (|:| |particular| |#2|) (|:| -1954 (-663 |#2|))) |#2| "failed") (-305 |#2|) (-115) (-1207))) (-15 -1433 ((-3 (-2 (|:| |particular| |#2|) (|:| -1954 (-663 |#2|))) |#2| "failed") |#2| (-115) (-1207))) (-15 -1433 ((-3 |#2| "failed") (-305 |#2|) (-115) (-305 |#2|) (-663 |#2|))) (-15 -1433 ((-3 |#2| "failed") |#2| (-115) (-305 |#2|) (-663 |#2|)))) (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)) (-13 (-29 |#1|) (-1233) (-989))) (T -824))
-((-1433 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-305 *2)) (-5 *5 (-663 *2)) (-4 *2 (-13 (-29 *6) (-1233) (-989))) (-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *1 (-824 *6 *2)))) (-1433 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-305 *2)) (-5 *4 (-115)) (-5 *5 (-663 *2)) (-4 *2 (-13 (-29 *6) (-1233) (-989))) (-5 *1 (-824 *6 *2)) (-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))))) (-1433 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1207)) (-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -1954 (-663 *3))) *3 "failed")) (-5 *1 (-824 *6 *3)) (-4 *3 (-13 (-29 *6) (-1233) (-989))))) (-1433 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-1207)) (-4 *7 (-13 (-29 *6) (-1233) (-989))) (-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -1954 (-663 *7))) *7 "failed")) (-5 *1 (-824 *6 *7)))) (-1433 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-663 *7)) (-5 *4 (-663 (-115))) (-5 *5 (-1207)) (-4 *7 (-13 (-29 *6) (-1233) (-989))) (-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-2 (|:| |particular| (-1297 *7)) (|:| -1954 (-663 (-1297 *7))))) (-5 *1 (-824 *6 *7)))) (-1433 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-663 (-305 *7))) (-5 *4 (-663 (-115))) (-5 *5 (-1207)) (-4 *7 (-13 (-29 *6) (-1233) (-989))) (-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-2 (|:| |particular| (-1297 *7)) (|:| -1954 (-663 (-1297 *7))))) (-5 *1 (-824 *6 *7)))) (-1433 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-711 *6)) (-5 *4 (-1207)) (-4 *6 (-13 (-29 *5) (-1233) (-989))) (-4 *5 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-663 (-1297 *6))) (-5 *1 (-824 *5 *6)))) (-1433 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-711 *7)) (-5 *5 (-1207)) (-4 *7 (-13 (-29 *6) (-1233) (-989))) (-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-2 (|:| |particular| (-1297 *7)) (|:| -1954 (-663 (-1297 *7))))) (-5 *1 (-824 *6 *7)) (-5 *4 (-1297 *7)))))
-(-10 -7 (-15 -1433 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -1954 (-663 (-1297 |#2|)))) "failed") (-711 |#2|) (-1297 |#2|) (-1207))) (-15 -1433 ((-3 (-663 (-1297 |#2|)) "failed") (-711 |#2|) (-1207))) (-15 -1433 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -1954 (-663 (-1297 |#2|)))) "failed") (-663 (-305 |#2|)) (-663 (-115)) (-1207))) (-15 -1433 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -1954 (-663 (-1297 |#2|)))) "failed") (-663 |#2|) (-663 (-115)) (-1207))) (-15 -1433 ((-3 (-2 (|:| |particular| |#2|) (|:| -1954 (-663 |#2|))) |#2| "failed") (-305 |#2|) (-115) (-1207))) (-15 -1433 ((-3 (-2 (|:| |particular| |#2|) (|:| -1954 (-663 |#2|))) |#2| "failed") |#2| (-115) (-1207))) (-15 -1433 ((-3 |#2| "failed") (-305 |#2|) (-115) (-305 |#2|) (-663 |#2|))) (-15 -1433 ((-3 |#2| "failed") |#2| (-115) (-305 |#2|) (-663 |#2|))))
-((-1952 (($) 9 T ELT)) (-4240 (((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 30 T ELT)) (-2236 (((-663 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $) 27 T ELT)) (-3629 (($ (-2 (|:| -2968 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2460 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) 24 T ELT)) (-1868 (($ (-663 (-2 (|:| -2968 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2460 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) 22 T ELT)) (-2616 (((-1303)) 11 T ELT)))
-(((-825) (-10 -8 (-15 -1952 ($)) (-15 -2616 ((-1303))) (-15 -2236 ((-663 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -1868 ($ (-663 (-2 (|:| -2968 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2460 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))))) (-15 -3629 ($ (-2 (|:| -2968 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2460 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-15 -4240 ((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -825))
-((-4240 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) (-5 *1 (-825)))) (-3629 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -2968 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2460 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) (-5 *1 (-825)))) (-1868 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| -2968 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2460 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-5 *1 (-825)))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-5 *1 (-825)))) (-2616 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-825)))) (-1952 (*1 *1) (-5 *1 (-825))))
-(-10 -8 (-15 -1952 ($)) (-15 -2616 ((-1303))) (-15 -2236 ((-663 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -1868 ($ (-663 (-2 (|:| -2968 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2460 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))))) (-15 -3629 ($ (-2 (|:| -2968 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2460 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-15 -4240 ((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))
-((-4339 ((|#2| |#2| (-1207)) 17 T ELT)) (-1647 ((|#2| |#2| (-1207)) 56 T ELT)) (-3327 (((-1 |#2| |#2|) (-1207)) 11 T ELT)))
-(((-826 |#1| |#2|) (-10 -7 (-15 -4339 (|#2| |#2| (-1207))) (-15 -1647 (|#2| |#2| (-1207))) (-15 -3327 ((-1 |#2| |#2|) (-1207)))) (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)) (-13 (-29 |#1|) (-1233) (-989))) (T -826))
-((-3327 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-1 *5 *5)) (-5 *1 (-826 *4 *5)) (-4 *5 (-13 (-29 *4) (-1233) (-989))))) (-1647 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *1 (-826 *4 *2)) (-4 *2 (-13 (-29 *4) (-1233) (-989))))) (-4339 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *1 (-826 *4 *2)) (-4 *2 (-13 (-29 *4) (-1233) (-989))))))
-(-10 -7 (-15 -4339 (|#2| |#2| (-1207))) (-15 -1647 (|#2| |#2| (-1207))) (-15 -3327 ((-1 |#2| |#2|) (-1207))))
-((-1433 (((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-663 (-391)) (-391) (-391)) 128 T ELT) (((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-663 (-391)) (-391)) 129 T ELT) (((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-663 (-391)) (-391)) 131 T ELT) (((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-391)) 133 T ELT) (((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-391)) 134 T ELT) (((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391))) 136 T ELT) (((-1066) (-830) (-1094)) 120 T ELT) (((-1066) (-830)) 121 T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189)))) (-830) (-1094)) 80 T ELT) (((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189)))) (-830)) 82 T ELT)))
-(((-827) (-10 -7 (-15 -1433 ((-1066) (-830))) (-15 -1433 ((-1066) (-830) (-1094))) (-15 -1433 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)))) (-15 -1433 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-391))) (-15 -1433 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-391))) (-15 -1433 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-663 (-391)) (-391))) (-15 -1433 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-663 (-391)) (-391))) (-15 -1433 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-663 (-391)) (-391) (-391))) (-15 -3613 ((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189)))) (-830))) (-15 -3613 ((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189)))) (-830) (-1094))))) (T -827))
-((-3613 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1094)) (-5 *2 (-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189))))) (-5 *1 (-827)))) (-3613 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189))))) (-5 *1 (-827)))) (-1433 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1297 (-326 *4))) (-5 *5 (-663 (-391))) (-5 *6 (-326 (-391))) (-5 *4 (-391)) (-5 *2 (-1066)) (-5 *1 (-827)))) (-1433 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1297 (-326 *4))) (-5 *5 (-663 (-391))) (-5 *6 (-326 (-391))) (-5 *4 (-391)) (-5 *2 (-1066)) (-5 *1 (-827)))) (-1433 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1297 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-663 *4)) (-5 *2 (-1066)) (-5 *1 (-827)))) (-1433 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1297 (-326 *4))) (-5 *5 (-663 (-391))) (-5 *6 (-326 (-391))) (-5 *4 (-391)) (-5 *2 (-1066)) (-5 *1 (-827)))) (-1433 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1297 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-663 *4)) (-5 *2 (-1066)) (-5 *1 (-827)))) (-1433 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1297 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-663 *4)) (-5 *2 (-1066)) (-5 *1 (-827)))) (-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1094)) (-5 *2 (-1066)) (-5 *1 (-827)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1066)) (-5 *1 (-827)))))
-(-10 -7 (-15 -1433 ((-1066) (-830))) (-15 -1433 ((-1066) (-830) (-1094))) (-15 -1433 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)))) (-15 -1433 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-391))) (-15 -1433 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-391))) (-15 -1433 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-663 (-391)) (-391))) (-15 -1433 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-663 (-391)) (-391))) (-15 -1433 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-663 (-391)) (-391) (-391))) (-15 -3613 ((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189)))) (-830))) (-15 -3613 ((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189)))) (-830) (-1094))))
-((-3724 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1954 (-663 |#4|))) (-677 |#4|) |#4|) 33 T ELT)))
-(((-828 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3724 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1954 (-663 |#4|))) (-677 |#4|) |#4|))) (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))) (-1273 |#1|) (-1273 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -828))
-((-3724 (*1 *2 *3 *4) (-12 (-5 *3 (-677 *4)) (-4 *4 (-355 *5 *6 *7)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1954 (-663 *4)))) (-5 *1 (-828 *5 *6 *7 *4)))))
-(-10 -7 (-15 -3724 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -1954 (-663 |#4|))) (-677 |#4|) |#4|)))
-((-1386 (((-2 (|:| -3192 |#3|) (|:| |rh| (-663 (-421 |#2|)))) |#4| (-663 (-421 |#2|))) 53 T ELT)) (-3653 (((-663 (-2 (|:| -3355 |#2|) (|:| -3439 |#2|))) |#4| |#2|) 62 T ELT) (((-663 (-2 (|:| -3355 |#2|) (|:| -3439 |#2|))) |#4|) 61 T ELT) (((-663 (-2 (|:| -3355 |#2|) (|:| -3439 |#2|))) |#3| |#2|) 20 T ELT) (((-663 (-2 (|:| -3355 |#2|) (|:| -3439 |#2|))) |#3|) 21 T ELT)) (-2410 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-3506 ((|#2| |#3| (-663 (-421 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-421 |#2|)) 105 T ELT)))
-(((-829 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3506 ((-3 |#2| "failed") |#3| (-421 |#2|))) (-15 -3506 (|#2| |#3| (-663 (-421 |#2|)))) (-15 -3653 ((-663 (-2 (|:| -3355 |#2|) (|:| -3439 |#2|))) |#3|)) (-15 -3653 ((-663 (-2 (|:| -3355 |#2|) (|:| -3439 |#2|))) |#3| |#2|)) (-15 -2410 (|#2| |#3| |#1|)) (-15 -3653 ((-663 (-2 (|:| -3355 |#2|) (|:| -3439 |#2|))) |#4|)) (-15 -3653 ((-663 (-2 (|:| -3355 |#2|) (|:| -3439 |#2|))) |#4| |#2|)) (-15 -2410 (|#2| |#4| |#1|)) (-15 -1386 ((-2 (|:| -3192 |#3|) (|:| |rh| (-663 (-421 |#2|)))) |#4| (-663 (-421 |#2|))))) (-13 (-376) (-149) (-1069 (-421 (-560)))) (-1273 |#1|) (-680 |#2|) (-680 (-421 |#2|))) (T -829))
-((-1386 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *6 (-1273 *5)) (-5 *2 (-2 (|:| -3192 *7) (|:| |rh| (-663 (-421 *6))))) (-5 *1 (-829 *5 *6 *7 *3)) (-5 *4 (-663 (-421 *6))) (-4 *7 (-680 *6)) (-4 *3 (-680 (-421 *6))))) (-2410 (*1 *2 *3 *4) (-12 (-4 *2 (-1273 *4)) (-5 *1 (-829 *4 *2 *5 *3)) (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *5 (-680 *2)) (-4 *3 (-680 (-421 *2))))) (-3653 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *4 (-1273 *5)) (-5 *2 (-663 (-2 (|:| -3355 *4) (|:| -3439 *4)))) (-5 *1 (-829 *5 *4 *6 *3)) (-4 *6 (-680 *4)) (-4 *3 (-680 (-421 *4))))) (-3653 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *5 (-1273 *4)) (-5 *2 (-663 (-2 (|:| -3355 *5) (|:| -3439 *5)))) (-5 *1 (-829 *4 *5 *6 *3)) (-4 *6 (-680 *5)) (-4 *3 (-680 (-421 *5))))) (-2410 (*1 *2 *3 *4) (-12 (-4 *2 (-1273 *4)) (-5 *1 (-829 *4 *2 *3 *5)) (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *3 (-680 *2)) (-4 *5 (-680 (-421 *2))))) (-3653 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *4 (-1273 *5)) (-5 *2 (-663 (-2 (|:| -3355 *4) (|:| -3439 *4)))) (-5 *1 (-829 *5 *4 *3 *6)) (-4 *3 (-680 *4)) (-4 *6 (-680 (-421 *4))))) (-3653 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *5 (-1273 *4)) (-5 *2 (-663 (-2 (|:| -3355 *5) (|:| -3439 *5)))) (-5 *1 (-829 *4 *5 *3 *6)) (-4 *3 (-680 *5)) (-4 *6 (-680 (-421 *5))))) (-3506 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-421 *2))) (-4 *2 (-1273 *5)) (-5 *1 (-829 *5 *2 *3 *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *3 (-680 *2)) (-4 *6 (-680 (-421 *2))))) (-3506 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-421 *2)) (-4 *2 (-1273 *5)) (-5 *1 (-829 *5 *2 *3 *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *3 (-680 *2)) (-4 *6 (-680 *4)))))
-(-10 -7 (-15 -3506 ((-3 |#2| "failed") |#3| (-421 |#2|))) (-15 -3506 (|#2| |#3| (-663 (-421 |#2|)))) (-15 -3653 ((-663 (-2 (|:| -3355 |#2|) (|:| -3439 |#2|))) |#3|)) (-15 -3653 ((-663 (-2 (|:| -3355 |#2|) (|:| -3439 |#2|))) |#3| |#2|)) (-15 -2410 (|#2| |#3| |#1|)) (-15 -3653 ((-663 (-2 (|:| -3355 |#2|) (|:| -3439 |#2|))) |#4|)) (-15 -3653 ((-663 (-2 (|:| -3355 |#2|) (|:| -3439 |#2|))) |#4| |#2|)) (-15 -2410 (|#2| |#4| |#1|)) (-15 -1386 ((-2 (|:| -3192 |#3|) (|:| |rh| (-663 (-421 |#2|)))) |#4| (-663 (-421 |#2|)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3330 (((-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) $) 13 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 15 T ELT) (($ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 12 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-830) (-13 (-1132) (-10 -8 (-15 -1578 ($ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3330 ((-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) $))))) (T -830))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-830)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-830)))))
-(-13 (-1132) (-10 -8 (-15 -1578 ($ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3330 ((-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) $))))
-((-3061 (((-663 (-2 (|:| |frac| (-421 |#2|)) (|:| -3192 |#3|))) |#3| (-1 (-663 |#2|) |#2| (-1201 |#2|)) (-1 (-419 |#2|) |#2|)) 154 T ELT)) (-1508 (((-663 (-2 (|:| |poly| |#2|) (|:| -3192 |#3|))) |#3| (-1 (-663 |#1|) |#2|)) 52 T ELT)) (-4171 (((-663 (-2 (|:| |deg| (-793)) (|:| -3192 |#2|))) |#3|) 122 T ELT)) (-2675 ((|#2| |#3|) 42 T ELT)) (-1752 (((-663 (-2 (|:| -3081 |#1|) (|:| -3192 |#3|))) |#3| (-1 (-663 |#1|) |#2|)) 99 T ELT)) (-2909 ((|#3| |#3| (-421 |#2|)) 72 T ELT) ((|#3| |#3| |#2|) 96 T ELT)))
-(((-831 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2675 (|#2| |#3|)) (-15 -4171 ((-663 (-2 (|:| |deg| (-793)) (|:| -3192 |#2|))) |#3|)) (-15 -1752 ((-663 (-2 (|:| -3081 |#1|) (|:| -3192 |#3|))) |#3| (-1 (-663 |#1|) |#2|))) (-15 -1508 ((-663 (-2 (|:| |poly| |#2|) (|:| -3192 |#3|))) |#3| (-1 (-663 |#1|) |#2|))) (-15 -3061 ((-663 (-2 (|:| |frac| (-421 |#2|)) (|:| -3192 |#3|))) |#3| (-1 (-663 |#2|) |#2| (-1201 |#2|)) (-1 (-419 |#2|) |#2|))) (-15 -2909 (|#3| |#3| |#2|)) (-15 -2909 (|#3| |#3| (-421 |#2|)))) (-13 (-376) (-149) (-1069 (-421 (-560)))) (-1273 |#1|) (-680 |#2|) (-680 (-421 |#2|))) (T -831))
-((-2909 (*1 *2 *2 *3) (-12 (-5 *3 (-421 *5)) (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *5 (-1273 *4)) (-5 *1 (-831 *4 *5 *2 *6)) (-4 *2 (-680 *5)) (-4 *6 (-680 *3)))) (-2909 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *3 (-1273 *4)) (-5 *1 (-831 *4 *3 *2 *5)) (-4 *2 (-680 *3)) (-4 *5 (-680 (-421 *3))))) (-3061 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-663 *7) *7 (-1201 *7))) (-5 *5 (-1 (-419 *7) *7)) (-4 *7 (-1273 *6)) (-4 *6 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-5 *2 (-663 (-2 (|:| |frac| (-421 *7)) (|:| -3192 *3)))) (-5 *1 (-831 *6 *7 *3 *8)) (-4 *3 (-680 *7)) (-4 *8 (-680 (-421 *7))))) (-1508 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-663 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *6 (-1273 *5)) (-5 *2 (-663 (-2 (|:| |poly| *6) (|:| -3192 *3)))) (-5 *1 (-831 *5 *6 *3 *7)) (-4 *3 (-680 *6)) (-4 *7 (-680 (-421 *6))))) (-1752 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-663 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *6 (-1273 *5)) (-5 *2 (-663 (-2 (|:| -3081 *5) (|:| -3192 *3)))) (-5 *1 (-831 *5 *6 *3 *7)) (-4 *3 (-680 *6)) (-4 *7 (-680 (-421 *6))))) (-4171 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *5 (-1273 *4)) (-5 *2 (-663 (-2 (|:| |deg| (-793)) (|:| -3192 *5)))) (-5 *1 (-831 *4 *5 *3 *6)) (-4 *3 (-680 *5)) (-4 *6 (-680 (-421 *5))))) (-2675 (*1 *2 *3) (-12 (-4 *2 (-1273 *4)) (-5 *1 (-831 *4 *2 *3 *5)) (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *3 (-680 *2)) (-4 *5 (-680 (-421 *2))))))
-(-10 -7 (-15 -2675 (|#2| |#3|)) (-15 -4171 ((-663 (-2 (|:| |deg| (-793)) (|:| -3192 |#2|))) |#3|)) (-15 -1752 ((-663 (-2 (|:| -3081 |#1|) (|:| -3192 |#3|))) |#3| (-1 (-663 |#1|) |#2|))) (-15 -1508 ((-663 (-2 (|:| |poly| |#2|) (|:| -3192 |#3|))) |#3| (-1 (-663 |#1|) |#2|))) (-15 -3061 ((-663 (-2 (|:| |frac| (-421 |#2|)) (|:| -3192 |#3|))) |#3| (-1 (-663 |#2|) |#2| (-1201 |#2|)) (-1 (-419 |#2|) |#2|))) (-15 -2909 (|#3| |#3| |#2|)) (-15 -2909 (|#3| |#3| (-421 |#2|))))
-((-2851 (((-2 (|:| -1954 (-663 (-421 |#2|))) (|:| -3822 (-711 |#1|))) (-678 |#2| (-421 |#2|)) (-663 (-421 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-421 |#2|) "failed")) (|:| -1954 (-663 (-421 |#2|)))) (-678 |#2| (-421 |#2|)) (-421 |#2|)) 145 T ELT) (((-2 (|:| -1954 (-663 (-421 |#2|))) (|:| -3822 (-711 |#1|))) (-677 (-421 |#2|)) (-663 (-421 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-421 |#2|) "failed")) (|:| -1954 (-663 (-421 |#2|)))) (-677 (-421 |#2|)) (-421 |#2|)) 138 T ELT)) (-3203 ((|#2| (-678 |#2| (-421 |#2|))) 87 T ELT) ((|#2| (-677 (-421 |#2|))) 90 T ELT)))
-(((-832 |#1| |#2|) (-10 -7 (-15 -2851 ((-2 (|:| |particular| (-3 (-421 |#2|) "failed")) (|:| -1954 (-663 (-421 |#2|)))) (-677 (-421 |#2|)) (-421 |#2|))) (-15 -2851 ((-2 (|:| -1954 (-663 (-421 |#2|))) (|:| -3822 (-711 |#1|))) (-677 (-421 |#2|)) (-663 (-421 |#2|)))) (-15 -2851 ((-2 (|:| |particular| (-3 (-421 |#2|) "failed")) (|:| -1954 (-663 (-421 |#2|)))) (-678 |#2| (-421 |#2|)) (-421 |#2|))) (-15 -2851 ((-2 (|:| -1954 (-663 (-421 |#2|))) (|:| -3822 (-711 |#1|))) (-678 |#2| (-421 |#2|)) (-663 (-421 |#2|)))) (-15 -3203 (|#2| (-677 (-421 |#2|)))) (-15 -3203 (|#2| (-678 |#2| (-421 |#2|))))) (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))) (-1273 |#1|)) (T -832))
-((-3203 (*1 *2 *3) (-12 (-5 *3 (-678 *2 (-421 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-832 *4 *2)) (-4 *4 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))))) (-3203 (*1 *2 *3) (-12 (-5 *3 (-677 (-421 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-832 *4 *2)) (-4 *4 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))))) (-2851 (*1 *2 *3 *4) (-12 (-5 *3 (-678 *6 (-421 *6))) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-5 *2 (-2 (|:| -1954 (-663 (-421 *6))) (|:| -3822 (-711 *5)))) (-5 *1 (-832 *5 *6)) (-5 *4 (-663 (-421 *6))))) (-2851 (*1 *2 *3 *4) (-12 (-5 *3 (-678 *6 (-421 *6))) (-5 *4 (-421 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1954 (-663 *4)))) (-5 *1 (-832 *5 *6)))) (-2851 (*1 *2 *3 *4) (-12 (-5 *3 (-677 (-421 *6))) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-5 *2 (-2 (|:| -1954 (-663 (-421 *6))) (|:| -3822 (-711 *5)))) (-5 *1 (-832 *5 *6)) (-5 *4 (-663 (-421 *6))))) (-2851 (*1 *2 *3 *4) (-12 (-5 *3 (-677 (-421 *6))) (-5 *4 (-421 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1954 (-663 *4)))) (-5 *1 (-832 *5 *6)))))
-(-10 -7 (-15 -2851 ((-2 (|:| |particular| (-3 (-421 |#2|) "failed")) (|:| -1954 (-663 (-421 |#2|)))) (-677 (-421 |#2|)) (-421 |#2|))) (-15 -2851 ((-2 (|:| -1954 (-663 (-421 |#2|))) (|:| -3822 (-711 |#1|))) (-677 (-421 |#2|)) (-663 (-421 |#2|)))) (-15 -2851 ((-2 (|:| |particular| (-3 (-421 |#2|) "failed")) (|:| -1954 (-663 (-421 |#2|)))) (-678 |#2| (-421 |#2|)) (-421 |#2|))) (-15 -2851 ((-2 (|:| -1954 (-663 (-421 |#2|))) (|:| -3822 (-711 |#1|))) (-678 |#2| (-421 |#2|)) (-663 (-421 |#2|)))) (-15 -3203 (|#2| (-677 (-421 |#2|)))) (-15 -3203 (|#2| (-678 |#2| (-421 |#2|)))))
-((-1382 (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#1|))) |#5| |#4|) 49 T ELT)))
-(((-833 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1382 ((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#1|))) |#5| |#4|))) (-376) (-680 |#1|) (-1273 |#1|) (-746 |#1| |#3|) (-680 |#4|)) (T -833))
-((-1382 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *7 (-1273 *5)) (-4 *4 (-746 *5 *7)) (-5 *2 (-2 (|:| -3822 (-711 *6)) (|:| |vec| (-1297 *5)))) (-5 *1 (-833 *5 *6 *7 *4 *3)) (-4 *6 (-680 *5)) (-4 *3 (-680 *4)))))
-(-10 -7 (-15 -1382 ((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#1|))) |#5| |#4|)))
-((-3061 (((-663 (-2 (|:| |frac| (-421 |#2|)) (|:| -3192 (-678 |#2| (-421 |#2|))))) (-678 |#2| (-421 |#2|)) (-1 (-419 |#2|) |#2|)) 47 T ELT)) (-3592 (((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-419 |#2|) |#2|)) 167 (|has| |#1| (-27)) ELT) (((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-419 |#2|) |#2|)) 168 (|has| |#1| (-27)) ELT) (((-663 (-421 |#2|)) (-677 (-421 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|) (-1 (-419 |#2|) |#2|)) 38 T ELT) (((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|)) 39 T ELT) (((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|) (-1 (-419 |#2|) |#2|)) 36 T ELT) (((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|)) 37 T ELT)) (-1508 (((-663 (-2 (|:| |poly| |#2|) (|:| -3192 (-678 |#2| (-421 |#2|))))) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|)) 96 T ELT)))
-(((-834 |#1| |#2|) (-10 -7 (-15 -3592 ((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (-15 -3592 ((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|) (-1 (-419 |#2|) |#2|))) (-15 -3592 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (-15 -3592 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|) (-1 (-419 |#2|) |#2|))) (-15 -3061 ((-663 (-2 (|:| |frac| (-421 |#2|)) (|:| -3192 (-678 |#2| (-421 |#2|))))) (-678 |#2| (-421 |#2|)) (-1 (-419 |#2|) |#2|))) (-15 -1508 ((-663 (-2 (|:| |poly| |#2|) (|:| -3192 (-678 |#2| (-421 |#2|))))) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3592 ((-663 (-421 |#2|)) (-677 (-421 |#2|)))) (-15 -3592 ((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-419 |#2|) |#2|))) (-15 -3592 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)))) (-15 -3592 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-419 |#2|) |#2|)))) |%noBranch|)) (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))) (-1273 |#1|)) (T -834))
-((-3592 (*1 *2 *3 *4) (-12 (-5 *3 (-678 *6 (-421 *6))) (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-5 *2 (-663 (-421 *6))) (-5 *1 (-834 *5 *6)))) (-3592 (*1 *2 *3) (-12 (-5 *3 (-678 *5 (-421 *5))) (-4 *5 (-1273 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-5 *2 (-663 (-421 *5))) (-5 *1 (-834 *4 *5)))) (-3592 (*1 *2 *3 *4) (-12 (-5 *3 (-677 (-421 *6))) (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-5 *2 (-663 (-421 *6))) (-5 *1 (-834 *5 *6)))) (-3592 (*1 *2 *3) (-12 (-5 *3 (-677 (-421 *5))) (-4 *5 (-1273 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-5 *2 (-663 (-421 *5))) (-5 *1 (-834 *4 *5)))) (-1508 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-663 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-4 *6 (-1273 *5)) (-5 *2 (-663 (-2 (|:| |poly| *6) (|:| -3192 (-678 *6 (-421 *6)))))) (-5 *1 (-834 *5 *6)) (-5 *3 (-678 *6 (-421 *6))))) (-3061 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-5 *2 (-663 (-2 (|:| |frac| (-421 *6)) (|:| -3192 (-678 *6 (-421 *6)))))) (-5 *1 (-834 *5 *6)) (-5 *3 (-678 *6 (-421 *6))))) (-3592 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-678 *7 (-421 *7))) (-5 *4 (-1 (-663 *6) *7)) (-5 *5 (-1 (-419 *7) *7)) (-4 *6 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-4 *7 (-1273 *6)) (-5 *2 (-663 (-421 *7))) (-5 *1 (-834 *6 *7)))) (-3592 (*1 *2 *3 *4) (-12 (-5 *3 (-678 *6 (-421 *6))) (-5 *4 (-1 (-663 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-4 *6 (-1273 *5)) (-5 *2 (-663 (-421 *6))) (-5 *1 (-834 *5 *6)))) (-3592 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-677 (-421 *7))) (-5 *4 (-1 (-663 *6) *7)) (-5 *5 (-1 (-419 *7) *7)) (-4 *6 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-4 *7 (-1273 *6)) (-5 *2 (-663 (-421 *7))) (-5 *1 (-834 *6 *7)))) (-3592 (*1 *2 *3 *4) (-12 (-5 *3 (-677 (-421 *6))) (-5 *4 (-1 (-663 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-4 *6 (-1273 *5)) (-5 *2 (-663 (-421 *6))) (-5 *1 (-834 *5 *6)))))
-(-10 -7 (-15 -3592 ((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (-15 -3592 ((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|) (-1 (-419 |#2|) |#2|))) (-15 -3592 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (-15 -3592 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|) (-1 (-419 |#2|) |#2|))) (-15 -3061 ((-663 (-2 (|:| |frac| (-421 |#2|)) (|:| -3192 (-678 |#2| (-421 |#2|))))) (-678 |#2| (-421 |#2|)) (-1 (-419 |#2|) |#2|))) (-15 -1508 ((-663 (-2 (|:| |poly| |#2|) (|:| -3192 (-678 |#2| (-421 |#2|))))) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3592 ((-663 (-421 |#2|)) (-677 (-421 |#2|)))) (-15 -3592 ((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-419 |#2|) |#2|))) (-15 -3592 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)))) (-15 -3592 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-419 |#2|) |#2|)))) |%noBranch|))
-((-3237 (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#1|))) (-711 |#2|) (-1297 |#1|)) 110 T ELT) (((-2 (|:| A (-711 |#1|)) (|:| |eqs| (-663 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1297 |#1|)) (|:| -3192 |#2|) (|:| |rh| |#1|))))) (-711 |#1|) (-1297 |#1|)) 15 T ELT)) (-2329 (((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -1954 (-663 (-1297 |#1|)))) (-711 |#2|) (-1297 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1954 (-663 |#1|))) |#2| |#1|)) 116 T ELT)) (-1433 (((-3 (-2 (|:| |particular| (-1297 |#1|)) (|:| -1954 (-711 |#1|))) "failed") (-711 |#1|) (-1297 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1954 (-663 |#1|))) "failed") |#2| |#1|)) 54 T ELT)))
-(((-835 |#1| |#2|) (-10 -7 (-15 -3237 ((-2 (|:| A (-711 |#1|)) (|:| |eqs| (-663 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1297 |#1|)) (|:| -3192 |#2|) (|:| |rh| |#1|))))) (-711 |#1|) (-1297 |#1|))) (-15 -3237 ((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#1|))) (-711 |#2|) (-1297 |#1|))) (-15 -1433 ((-3 (-2 (|:| |particular| (-1297 |#1|)) (|:| -1954 (-711 |#1|))) "failed") (-711 |#1|) (-1297 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1954 (-663 |#1|))) "failed") |#2| |#1|))) (-15 -2329 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -1954 (-663 (-1297 |#1|)))) (-711 |#2|) (-1297 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1954 (-663 |#1|))) |#2| |#1|)))) (-376) (-680 |#1|)) (T -835))
-((-2329 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1954 (-663 *6))) *7 *6)) (-4 *6 (-376)) (-4 *7 (-680 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1297 *6) "failed")) (|:| -1954 (-663 (-1297 *6))))) (-5 *1 (-835 *6 *7)) (-5 *4 (-1297 *6)))) (-1433 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -1954 (-663 *6))) "failed") *7 *6)) (-4 *6 (-376)) (-4 *7 (-680 *6)) (-5 *2 (-2 (|:| |particular| (-1297 *6)) (|:| -1954 (-711 *6)))) (-5 *1 (-835 *6 *7)) (-5 *3 (-711 *6)) (-5 *4 (-1297 *6)))) (-3237 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-680 *5)) (-5 *2 (-2 (|:| -3822 (-711 *6)) (|:| |vec| (-1297 *5)))) (-5 *1 (-835 *5 *6)) (-5 *3 (-711 *6)) (-5 *4 (-1297 *5)))) (-3237 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| A (-711 *5)) (|:| |eqs| (-663 (-2 (|:| C (-711 *5)) (|:| |g| (-1297 *5)) (|:| -3192 *6) (|:| |rh| *5)))))) (-5 *1 (-835 *5 *6)) (-5 *3 (-711 *5)) (-5 *4 (-1297 *5)) (-4 *6 (-680 *5)))))
-(-10 -7 (-15 -3237 ((-2 (|:| A (-711 |#1|)) (|:| |eqs| (-663 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1297 |#1|)) (|:| -3192 |#2|) (|:| |rh| |#1|))))) (-711 |#1|) (-1297 |#1|))) (-15 -3237 ((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#1|))) (-711 |#2|) (-1297 |#1|))) (-15 -1433 ((-3 (-2 (|:| |particular| (-1297 |#1|)) (|:| -1954 (-711 |#1|))) "failed") (-711 |#1|) (-1297 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -1954 (-663 |#1|))) "failed") |#2| |#1|))) (-15 -2329 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -1954 (-663 (-1297 |#1|)))) (-711 |#2|) (-1297 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -1954 (-663 |#1|))) |#2| |#1|))))
-((-1346 (((-711 |#1|) (-663 |#1|) (-793)) 14 T ELT) (((-711 |#1|) (-663 |#1|)) 15 T ELT)) (-4264 (((-3 (-1297 |#1|) "failed") |#2| |#1| (-663 |#1|)) 39 T ELT)) (-2123 (((-3 |#1| "failed") |#2| |#1| (-663 |#1|) (-1 |#1| |#1|)) 46 T ELT)))
-(((-836 |#1| |#2|) (-10 -7 (-15 -1346 ((-711 |#1|) (-663 |#1|))) (-15 -1346 ((-711 |#1|) (-663 |#1|) (-793))) (-15 -4264 ((-3 (-1297 |#1|) "failed") |#2| |#1| (-663 |#1|))) (-15 -2123 ((-3 |#1| "failed") |#2| |#1| (-663 |#1|) (-1 |#1| |#1|)))) (-376) (-680 |#1|)) (T -836))
-((-2123 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-663 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-376)) (-5 *1 (-836 *2 *3)) (-4 *3 (-680 *2)))) (-4264 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-663 *4)) (-4 *4 (-376)) (-5 *2 (-1297 *4)) (-5 *1 (-836 *4 *3)) (-4 *3 (-680 *4)))) (-1346 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-793)) (-4 *5 (-376)) (-5 *2 (-711 *5)) (-5 *1 (-836 *5 *6)) (-4 *6 (-680 *5)))) (-1346 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-376)) (-5 *2 (-711 *4)) (-5 *1 (-836 *4 *5)) (-4 *5 (-680 *4)))))
-(-10 -7 (-15 -1346 ((-711 |#1|) (-663 |#1|))) (-15 -1346 ((-711 |#1|) (-663 |#1|) (-793))) (-15 -4264 ((-3 (-1297 |#1|) "failed") |#2| |#1| (-663 |#1|))) (-15 -2123 ((-3 |#1| "failed") |#2| |#1| (-663 |#1|) (-1 |#1| |#1|))))
-((-1538 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2388 (((-114) $) NIL (|has| |#2| (-23)) ELT)) (-1521 (($ (-948)) NIL (|has| |#2| (-1080)) ELT)) (-3839 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-3168 (($ $ $) NIL (|has| |#2| (-815)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL (|has| |#2| (-133)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-3241 (((-793)) NIL (|has| |#2| (-381)) ELT)) (-1773 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) NIL (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (-12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1132)) ELT)) (-3330 (((-560) $) NIL (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) ELT) (((-421 (-560)) $) NIL (-12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) ((|#2| $) NIL (|has| |#2| (-1132)) ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-711 $)) NIL (|has| |#2| (-1080)) ELT)) (-1990 (((-3 $ "failed") $) NIL (|has| |#2| (-1080)) ELT)) (-2310 (($) NIL (|has| |#2| (-381)) ELT)) (-3779 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#2| $ (-560)) NIL T ELT)) (-2181 (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1581 (((-114) $) NIL (|has| |#2| (-1080)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-2656 (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-2937 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-3768 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4419 (((-948) $) NIL (|has| |#2| (-381)) ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-1297 $)) NIL (|has| |#2| (-1080)) ELT)) (-1905 (((-1189) $) NIL (|has| |#2| (-1132)) ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) NIL T ELT)) (-3128 (($ (-948)) NIL (|has| |#2| (-381)) ELT)) (-3855 (((-1151) $) NIL (|has| |#2| (-1132)) ELT)) (-3637 ((|#2| $) NIL (|has| (-560) (-871)) ELT)) (-3037 (($ $ |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-3571 (((-663 |#2|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#2| $ (-560) |#2|) NIL T ELT) ((|#2| $ (-560)) NIL T ELT)) (-3232 ((|#2| $ $) NIL (|has| |#2| (-1080)) ELT)) (-1343 (($ (-1297 |#2|)) NIL T ELT)) (-3669 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-2894 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1080)) ELT)) (-3865 (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-1799 (($ $) NIL T ELT)) (-1578 (((-1297 |#2|) $) NIL T ELT) (($ (-560)) NIL (-2304 (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) (|has| |#2| (-1080))) ELT) (($ (-421 (-560))) NIL (-12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) (($ |#2|) NIL (|has| |#2| (-1132)) ELT) (((-887) $) NIL (|has| |#2| (-632 (-887))) ELT)) (-2930 (((-793)) NIL (|has| |#2| (-1080)) CONST)) (-2275 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2001 (($) NIL (|has| |#2| (-23)) CONST)) (-2011 (($) NIL (|has| |#2| (-1080)) CONST)) (-3305 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1080)) ELT)) (-2536 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2521 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2495 (((-114) $ $) 11 (|has| |#2| (-871)) ELT)) (-2594 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2580 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-2567 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-793)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-948)) NIL (|has| |#2| (-1080)) ELT)) (* (($ $ $) NIL (|has| |#2| (-1080)) ELT) (($ $ |#2|) NIL (|has| |#2| (-748)) ELT) (($ |#2| $) NIL (|has| |#2| (-748)) ELT) (($ (-560) $) NIL (|has| |#2| (-21)) ELT) (($ (-793) $) NIL (|has| |#2| (-23)) ELT) (($ (-948) $) NIL (|has| |#2| (-25)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+((-3742 (((-2 (|:| |particular| |#2|) (|:| -3822 (-663 |#2|))) |#3| |#2| (-1207)) 19 T ELT)))
+(((-823 |#1| |#2| |#3|) (-10 -7 (-15 -3742 ((-2 (|:| |particular| |#2|) (|:| -3822 (-663 |#2|))) |#3| |#2| (-1207)))) (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)) (-13 (-29 |#1|) (-1233) (-989)) (-680 |#2|)) (T -823))
+((-3742 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1207)) (-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-4 *4 (-13 (-29 *6) (-1233) (-989))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3822 (-663 *4)))) (-5 *1 (-823 *6 *4 *3)) (-4 *3 (-680 *4)))))
+(-10 -7 (-15 -3742 ((-2 (|:| |particular| |#2|) (|:| -3822 (-663 |#2|))) |#3| |#2| (-1207))))
+((-1652 (((-3 |#2| "failed") |#2| (-115) (-305 |#2|) (-663 |#2|)) 28 T ELT) (((-3 |#2| "failed") (-305 |#2|) (-115) (-305 |#2|) (-663 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -3822 (-663 |#2|))) |#2| "failed") |#2| (-115) (-1207)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -3822 (-663 |#2|))) |#2| "failed") (-305 |#2|) (-115) (-1207)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -3822 (-663 (-1297 |#2|)))) "failed") (-663 |#2|) (-663 (-115)) (-1207)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -3822 (-663 (-1297 |#2|)))) "failed") (-663 (-305 |#2|)) (-663 (-115)) (-1207)) 26 T ELT) (((-3 (-663 (-1297 |#2|)) "failed") (-711 |#2|) (-1207)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -3822 (-663 (-1297 |#2|)))) "failed") (-711 |#2|) (-1297 |#2|) (-1207)) 35 T ELT)))
+(((-824 |#1| |#2|) (-10 -7 (-15 -1652 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -3822 (-663 (-1297 |#2|)))) "failed") (-711 |#2|) (-1297 |#2|) (-1207))) (-15 -1652 ((-3 (-663 (-1297 |#2|)) "failed") (-711 |#2|) (-1207))) (-15 -1652 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -3822 (-663 (-1297 |#2|)))) "failed") (-663 (-305 |#2|)) (-663 (-115)) (-1207))) (-15 -1652 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -3822 (-663 (-1297 |#2|)))) "failed") (-663 |#2|) (-663 (-115)) (-1207))) (-15 -1652 ((-3 (-2 (|:| |particular| |#2|) (|:| -3822 (-663 |#2|))) |#2| "failed") (-305 |#2|) (-115) (-1207))) (-15 -1652 ((-3 (-2 (|:| |particular| |#2|) (|:| -3822 (-663 |#2|))) |#2| "failed") |#2| (-115) (-1207))) (-15 -1652 ((-3 |#2| "failed") (-305 |#2|) (-115) (-305 |#2|) (-663 |#2|))) (-15 -1652 ((-3 |#2| "failed") |#2| (-115) (-305 |#2|) (-663 |#2|)))) (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)) (-13 (-29 |#1|) (-1233) (-989))) (T -824))
+((-1652 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-305 *2)) (-5 *5 (-663 *2)) (-4 *2 (-13 (-29 *6) (-1233) (-989))) (-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *1 (-824 *6 *2)))) (-1652 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-305 *2)) (-5 *4 (-115)) (-5 *5 (-663 *2)) (-4 *2 (-13 (-29 *6) (-1233) (-989))) (-5 *1 (-824 *6 *2)) (-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))))) (-1652 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1207)) (-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3822 (-663 *3))) *3 "failed")) (-5 *1 (-824 *6 *3)) (-4 *3 (-13 (-29 *6) (-1233) (-989))))) (-1652 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-1207)) (-4 *7 (-13 (-29 *6) (-1233) (-989))) (-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3822 (-663 *7))) *7 "failed")) (-5 *1 (-824 *6 *7)))) (-1652 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-663 *7)) (-5 *4 (-663 (-115))) (-5 *5 (-1207)) (-4 *7 (-13 (-29 *6) (-1233) (-989))) (-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-2 (|:| |particular| (-1297 *7)) (|:| -3822 (-663 (-1297 *7))))) (-5 *1 (-824 *6 *7)))) (-1652 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-663 (-305 *7))) (-5 *4 (-663 (-115))) (-5 *5 (-1207)) (-4 *7 (-13 (-29 *6) (-1233) (-989))) (-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-2 (|:| |particular| (-1297 *7)) (|:| -3822 (-663 (-1297 *7))))) (-5 *1 (-824 *6 *7)))) (-1652 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-711 *6)) (-5 *4 (-1207)) (-4 *6 (-13 (-29 *5) (-1233) (-989))) (-4 *5 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-663 (-1297 *6))) (-5 *1 (-824 *5 *6)))) (-1652 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-711 *7)) (-5 *5 (-1207)) (-4 *7 (-13 (-29 *6) (-1233) (-989))) (-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-2 (|:| |particular| (-1297 *7)) (|:| -3822 (-663 (-1297 *7))))) (-5 *1 (-824 *6 *7)) (-5 *4 (-1297 *7)))))
+(-10 -7 (-15 -1652 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -3822 (-663 (-1297 |#2|)))) "failed") (-711 |#2|) (-1297 |#2|) (-1207))) (-15 -1652 ((-3 (-663 (-1297 |#2|)) "failed") (-711 |#2|) (-1207))) (-15 -1652 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -3822 (-663 (-1297 |#2|)))) "failed") (-663 (-305 |#2|)) (-663 (-115)) (-1207))) (-15 -1652 ((-3 (-2 (|:| |particular| (-1297 |#2|)) (|:| -3822 (-663 (-1297 |#2|)))) "failed") (-663 |#2|) (-663 (-115)) (-1207))) (-15 -1652 ((-3 (-2 (|:| |particular| |#2|) (|:| -3822 (-663 |#2|))) |#2| "failed") (-305 |#2|) (-115) (-1207))) (-15 -1652 ((-3 (-2 (|:| |particular| |#2|) (|:| -3822 (-663 |#2|))) |#2| "failed") |#2| (-115) (-1207))) (-15 -1652 ((-3 |#2| "failed") (-305 |#2|) (-115) (-305 |#2|) (-663 |#2|))) (-15 -1652 ((-3 |#2| "failed") |#2| (-115) (-305 |#2|) (-663 |#2|))))
+((-3812 (($) 9 T ELT)) (-3596 (((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 30 T ELT)) (-4325 (((-663 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $) 27 T ELT)) (-3888 (($ (-2 (|:| -1438 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -3067 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) 24 T ELT)) (-4220 (($ (-663 (-2 (|:| -1438 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -3067 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) 22 T ELT)) (-2805 (((-1303)) 11 T ELT)))
+(((-825) (-10 -8 (-15 -3812 ($)) (-15 -2805 ((-1303))) (-15 -4325 ((-663 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -4220 ($ (-663 (-2 (|:| -1438 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -3067 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))))) (-15 -3888 ($ (-2 (|:| -1438 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -3067 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-15 -3596 ((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -825))
+((-3596 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) (-5 *1 (-825)))) (-3888 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1438 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -3067 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) (-5 *1 (-825)))) (-4220 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| -1438 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -3067 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-5 *1 (-825)))) (-4325 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-5 *1 (-825)))) (-2805 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-825)))) (-3812 (*1 *1) (-5 *1 (-825))))
+(-10 -8 (-15 -3812 ($)) (-15 -2805 ((-1303))) (-15 -4325 ((-663 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -4220 ($ (-663 (-2 (|:| -1438 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -3067 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))))) (-15 -3888 ($ (-2 (|:| -1438 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -3067 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-15 -3596 ((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))
+((-2660 ((|#2| |#2| (-1207)) 17 T ELT)) (-3816 ((|#2| |#2| (-1207)) 56 T ELT)) (-3969 (((-1 |#2| |#2|) (-1207)) 11 T ELT)))
+(((-826 |#1| |#2|) (-10 -7 (-15 -2660 (|#2| |#2| (-1207))) (-15 -3816 (|#2| |#2| (-1207))) (-15 -3969 ((-1 |#2| |#2|) (-1207)))) (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)) (-13 (-29 |#1|) (-1233) (-989))) (T -826))
+((-3969 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-1 *5 *5)) (-5 *1 (-826 *4 *5)) (-4 *5 (-13 (-29 *4) (-1233) (-989))))) (-3816 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *1 (-826 *4 *2)) (-4 *2 (-13 (-29 *4) (-1233) (-989))))) (-2660 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *1 (-826 *4 *2)) (-4 *2 (-13 (-29 *4) (-1233) (-989))))))
+(-10 -7 (-15 -2660 (|#2| |#2| (-1207))) (-15 -3816 (|#2| |#2| (-1207))) (-15 -3969 ((-1 |#2| |#2|) (-1207))))
+((-1652 (((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-663 (-391)) (-391) (-391)) 128 T ELT) (((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-663 (-391)) (-391)) 129 T ELT) (((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-663 (-391)) (-391)) 131 T ELT) (((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-391)) 133 T ELT) (((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-391)) 134 T ELT) (((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391))) 136 T ELT) (((-1066) (-830) (-1094)) 120 T ELT) (((-1066) (-830)) 121 T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189)))) (-830) (-1094)) 80 T ELT) (((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189)))) (-830)) 82 T ELT)))
+(((-827) (-10 -7 (-15 -1652 ((-1066) (-830))) (-15 -1652 ((-1066) (-830) (-1094))) (-15 -1652 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)))) (-15 -1652 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-391))) (-15 -1652 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-391))) (-15 -1652 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-663 (-391)) (-391))) (-15 -1652 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-663 (-391)) (-391))) (-15 -1652 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-663 (-391)) (-391) (-391))) (-15 -3741 ((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189)))) (-830))) (-15 -3741 ((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189)))) (-830) (-1094))))) (T -827))
+((-3741 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1094)) (-5 *2 (-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189))))) (-5 *1 (-827)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189))))) (-5 *1 (-827)))) (-1652 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1297 (-326 *4))) (-5 *5 (-663 (-391))) (-5 *6 (-326 (-391))) (-5 *4 (-391)) (-5 *2 (-1066)) (-5 *1 (-827)))) (-1652 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1297 (-326 *4))) (-5 *5 (-663 (-391))) (-5 *6 (-326 (-391))) (-5 *4 (-391)) (-5 *2 (-1066)) (-5 *1 (-827)))) (-1652 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1297 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-663 *4)) (-5 *2 (-1066)) (-5 *1 (-827)))) (-1652 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1297 (-326 *4))) (-5 *5 (-663 (-391))) (-5 *6 (-326 (-391))) (-5 *4 (-391)) (-5 *2 (-1066)) (-5 *1 (-827)))) (-1652 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1297 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-663 *4)) (-5 *2 (-1066)) (-5 *1 (-827)))) (-1652 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1297 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-663 *4)) (-5 *2 (-1066)) (-5 *1 (-827)))) (-1652 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1094)) (-5 *2 (-1066)) (-5 *1 (-827)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1066)) (-5 *1 (-827)))))
+(-10 -7 (-15 -1652 ((-1066) (-830))) (-15 -1652 ((-1066) (-830) (-1094))) (-15 -1652 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)))) (-15 -1652 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-391))) (-15 -1652 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-391))) (-15 -1652 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-663 (-391)) (-391))) (-15 -1652 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-663 (-391)) (-391))) (-15 -1652 ((-1066) (-1297 (-326 (-391))) (-391) (-391) (-663 (-391)) (-326 (-391)) (-663 (-391)) (-391) (-391))) (-15 -3741 ((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189)))) (-830))) (-15 -3741 ((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189)))) (-830) (-1094))))
+((-2288 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3822 (-663 |#4|))) (-677 |#4|) |#4|) 33 T ELT)))
+(((-828 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2288 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3822 (-663 |#4|))) (-677 |#4|) |#4|))) (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))) (-1273 |#1|) (-1273 (-421 |#2|)) (-355 |#1| |#2| |#3|)) (T -828))
+((-2288 (*1 *2 *3 *4) (-12 (-5 *3 (-677 *4)) (-4 *4 (-355 *5 *6 *7)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3822 (-663 *4)))) (-5 *1 (-828 *5 *6 *7 *4)))))
+(-10 -7 (-15 -2288 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3822 (-663 |#4|))) (-677 |#4|) |#4|)))
+((-2685 (((-2 (|:| -2439 |#3|) (|:| |rh| (-663 (-421 |#2|)))) |#4| (-663 (-421 |#2|))) 53 T ELT)) (-2826 (((-663 (-2 (|:| -1351 |#2|) (|:| -2793 |#2|))) |#4| |#2|) 62 T ELT) (((-663 (-2 (|:| -1351 |#2|) (|:| -2793 |#2|))) |#4|) 61 T ELT) (((-663 (-2 (|:| -1351 |#2|) (|:| -2793 |#2|))) |#3| |#2|) 20 T ELT) (((-663 (-2 (|:| -1351 |#2|) (|:| -2793 |#2|))) |#3|) 21 T ELT)) (-1493 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-1914 ((|#2| |#3| (-663 (-421 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-421 |#2|)) 105 T ELT)))
+(((-829 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1914 ((-3 |#2| "failed") |#3| (-421 |#2|))) (-15 -1914 (|#2| |#3| (-663 (-421 |#2|)))) (-15 -2826 ((-663 (-2 (|:| -1351 |#2|) (|:| -2793 |#2|))) |#3|)) (-15 -2826 ((-663 (-2 (|:| -1351 |#2|) (|:| -2793 |#2|))) |#3| |#2|)) (-15 -1493 (|#2| |#3| |#1|)) (-15 -2826 ((-663 (-2 (|:| -1351 |#2|) (|:| -2793 |#2|))) |#4|)) (-15 -2826 ((-663 (-2 (|:| -1351 |#2|) (|:| -2793 |#2|))) |#4| |#2|)) (-15 -1493 (|#2| |#4| |#1|)) (-15 -2685 ((-2 (|:| -2439 |#3|) (|:| |rh| (-663 (-421 |#2|)))) |#4| (-663 (-421 |#2|))))) (-13 (-376) (-149) (-1069 (-421 (-560)))) (-1273 |#1|) (-680 |#2|) (-680 (-421 |#2|))) (T -829))
+((-2685 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *6 (-1273 *5)) (-5 *2 (-2 (|:| -2439 *7) (|:| |rh| (-663 (-421 *6))))) (-5 *1 (-829 *5 *6 *7 *3)) (-5 *4 (-663 (-421 *6))) (-4 *7 (-680 *6)) (-4 *3 (-680 (-421 *6))))) (-1493 (*1 *2 *3 *4) (-12 (-4 *2 (-1273 *4)) (-5 *1 (-829 *4 *2 *5 *3)) (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *5 (-680 *2)) (-4 *3 (-680 (-421 *2))))) (-2826 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *4 (-1273 *5)) (-5 *2 (-663 (-2 (|:| -1351 *4) (|:| -2793 *4)))) (-5 *1 (-829 *5 *4 *6 *3)) (-4 *6 (-680 *4)) (-4 *3 (-680 (-421 *4))))) (-2826 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *5 (-1273 *4)) (-5 *2 (-663 (-2 (|:| -1351 *5) (|:| -2793 *5)))) (-5 *1 (-829 *4 *5 *6 *3)) (-4 *6 (-680 *5)) (-4 *3 (-680 (-421 *5))))) (-1493 (*1 *2 *3 *4) (-12 (-4 *2 (-1273 *4)) (-5 *1 (-829 *4 *2 *3 *5)) (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *3 (-680 *2)) (-4 *5 (-680 (-421 *2))))) (-2826 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *4 (-1273 *5)) (-5 *2 (-663 (-2 (|:| -1351 *4) (|:| -2793 *4)))) (-5 *1 (-829 *5 *4 *3 *6)) (-4 *3 (-680 *4)) (-4 *6 (-680 (-421 *4))))) (-2826 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *5 (-1273 *4)) (-5 *2 (-663 (-2 (|:| -1351 *5) (|:| -2793 *5)))) (-5 *1 (-829 *4 *5 *3 *6)) (-4 *3 (-680 *5)) (-4 *6 (-680 (-421 *5))))) (-1914 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-421 *2))) (-4 *2 (-1273 *5)) (-5 *1 (-829 *5 *2 *3 *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *3 (-680 *2)) (-4 *6 (-680 (-421 *2))))) (-1914 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-421 *2)) (-4 *2 (-1273 *5)) (-5 *1 (-829 *5 *2 *3 *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *3 (-680 *2)) (-4 *6 (-680 *4)))))
+(-10 -7 (-15 -1914 ((-3 |#2| "failed") |#3| (-421 |#2|))) (-15 -1914 (|#2| |#3| (-663 (-421 |#2|)))) (-15 -2826 ((-663 (-2 (|:| -1351 |#2|) (|:| -2793 |#2|))) |#3|)) (-15 -2826 ((-663 (-2 (|:| -1351 |#2|) (|:| -2793 |#2|))) |#3| |#2|)) (-15 -1493 (|#2| |#3| |#1|)) (-15 -2826 ((-663 (-2 (|:| -1351 |#2|) (|:| -2793 |#2|))) |#4|)) (-15 -2826 ((-663 (-2 (|:| -1351 |#2|) (|:| -2793 |#2|))) |#4| |#2|)) (-15 -1493 (|#2| |#4| |#1|)) (-15 -2685 ((-2 (|:| -2439 |#3|) (|:| |rh| (-663 (-421 |#2|)))) |#4| (-663 (-421 |#2|)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3649 (((-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) $) 13 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 15 T ELT) (($ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 12 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-830) (-13 (-1132) (-10 -8 (-15 -3913 ($ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3649 ((-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) $))))) (T -830))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-830)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-830)))))
+(-13 (-1132) (-10 -8 (-15 -3913 ($ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3649 ((-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) $))))
+((-3012 (((-663 (-2 (|:| |frac| (-421 |#2|)) (|:| -2439 |#3|))) |#3| (-1 (-663 |#2|) |#2| (-1201 |#2|)) (-1 (-419 |#2|) |#2|)) 154 T ELT)) (-1418 (((-663 (-2 (|:| |poly| |#2|) (|:| -2439 |#3|))) |#3| (-1 (-663 |#1|) |#2|)) 52 T ELT)) (-4185 (((-663 (-2 (|:| |deg| (-793)) (|:| -2439 |#2|))) |#3|) 122 T ELT)) (-2181 ((|#2| |#3|) 42 T ELT)) (-2395 (((-663 (-2 (|:| -2650 |#1|) (|:| -2439 |#3|))) |#3| (-1 (-663 |#1|) |#2|)) 99 T ELT)) (-3973 ((|#3| |#3| (-421 |#2|)) 72 T ELT) ((|#3| |#3| |#2|) 96 T ELT)))
+(((-831 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2181 (|#2| |#3|)) (-15 -4185 ((-663 (-2 (|:| |deg| (-793)) (|:| -2439 |#2|))) |#3|)) (-15 -2395 ((-663 (-2 (|:| -2650 |#1|) (|:| -2439 |#3|))) |#3| (-1 (-663 |#1|) |#2|))) (-15 -1418 ((-663 (-2 (|:| |poly| |#2|) (|:| -2439 |#3|))) |#3| (-1 (-663 |#1|) |#2|))) (-15 -3012 ((-663 (-2 (|:| |frac| (-421 |#2|)) (|:| -2439 |#3|))) |#3| (-1 (-663 |#2|) |#2| (-1201 |#2|)) (-1 (-419 |#2|) |#2|))) (-15 -3973 (|#3| |#3| |#2|)) (-15 -3973 (|#3| |#3| (-421 |#2|)))) (-13 (-376) (-149) (-1069 (-421 (-560)))) (-1273 |#1|) (-680 |#2|) (-680 (-421 |#2|))) (T -831))
+((-3973 (*1 *2 *2 *3) (-12 (-5 *3 (-421 *5)) (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *5 (-1273 *4)) (-5 *1 (-831 *4 *5 *2 *6)) (-4 *2 (-680 *5)) (-4 *6 (-680 *3)))) (-3973 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *3 (-1273 *4)) (-5 *1 (-831 *4 *3 *2 *5)) (-4 *2 (-680 *3)) (-4 *5 (-680 (-421 *3))))) (-3012 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-663 *7) *7 (-1201 *7))) (-5 *5 (-1 (-419 *7) *7)) (-4 *7 (-1273 *6)) (-4 *6 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-5 *2 (-663 (-2 (|:| |frac| (-421 *7)) (|:| -2439 *3)))) (-5 *1 (-831 *6 *7 *3 *8)) (-4 *3 (-680 *7)) (-4 *8 (-680 (-421 *7))))) (-1418 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-663 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *6 (-1273 *5)) (-5 *2 (-663 (-2 (|:| |poly| *6) (|:| -2439 *3)))) (-5 *1 (-831 *5 *6 *3 *7)) (-4 *3 (-680 *6)) (-4 *7 (-680 (-421 *6))))) (-2395 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-663 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *6 (-1273 *5)) (-5 *2 (-663 (-2 (|:| -2650 *5) (|:| -2439 *3)))) (-5 *1 (-831 *5 *6 *3 *7)) (-4 *3 (-680 *6)) (-4 *7 (-680 (-421 *6))))) (-4185 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *5 (-1273 *4)) (-5 *2 (-663 (-2 (|:| |deg| (-793)) (|:| -2439 *5)))) (-5 *1 (-831 *4 *5 *3 *6)) (-4 *3 (-680 *5)) (-4 *6 (-680 (-421 *5))))) (-2181 (*1 *2 *3) (-12 (-4 *2 (-1273 *4)) (-5 *1 (-831 *4 *2 *3 *5)) (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *3 (-680 *2)) (-4 *5 (-680 (-421 *2))))))
+(-10 -7 (-15 -2181 (|#2| |#3|)) (-15 -4185 ((-663 (-2 (|:| |deg| (-793)) (|:| -2439 |#2|))) |#3|)) (-15 -2395 ((-663 (-2 (|:| -2650 |#1|) (|:| -2439 |#3|))) |#3| (-1 (-663 |#1|) |#2|))) (-15 -1418 ((-663 (-2 (|:| |poly| |#2|) (|:| -2439 |#3|))) |#3| (-1 (-663 |#1|) |#2|))) (-15 -3012 ((-663 (-2 (|:| |frac| (-421 |#2|)) (|:| -2439 |#3|))) |#3| (-1 (-663 |#2|) |#2| (-1201 |#2|)) (-1 (-419 |#2|) |#2|))) (-15 -3973 (|#3| |#3| |#2|)) (-15 -3973 (|#3| |#3| (-421 |#2|))))
+((-3446 (((-2 (|:| -3822 (-663 (-421 |#2|))) (|:| -1871 (-711 |#1|))) (-678 |#2| (-421 |#2|)) (-663 (-421 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-421 |#2|) "failed")) (|:| -3822 (-663 (-421 |#2|)))) (-678 |#2| (-421 |#2|)) (-421 |#2|)) 145 T ELT) (((-2 (|:| -3822 (-663 (-421 |#2|))) (|:| -1871 (-711 |#1|))) (-677 (-421 |#2|)) (-663 (-421 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-421 |#2|) "failed")) (|:| -3822 (-663 (-421 |#2|)))) (-677 (-421 |#2|)) (-421 |#2|)) 138 T ELT)) (-2011 ((|#2| (-678 |#2| (-421 |#2|))) 87 T ELT) ((|#2| (-677 (-421 |#2|))) 90 T ELT)))
+(((-832 |#1| |#2|) (-10 -7 (-15 -3446 ((-2 (|:| |particular| (-3 (-421 |#2|) "failed")) (|:| -3822 (-663 (-421 |#2|)))) (-677 (-421 |#2|)) (-421 |#2|))) (-15 -3446 ((-2 (|:| -3822 (-663 (-421 |#2|))) (|:| -1871 (-711 |#1|))) (-677 (-421 |#2|)) (-663 (-421 |#2|)))) (-15 -3446 ((-2 (|:| |particular| (-3 (-421 |#2|) "failed")) (|:| -3822 (-663 (-421 |#2|)))) (-678 |#2| (-421 |#2|)) (-421 |#2|))) (-15 -3446 ((-2 (|:| -3822 (-663 (-421 |#2|))) (|:| -1871 (-711 |#1|))) (-678 |#2| (-421 |#2|)) (-663 (-421 |#2|)))) (-15 -2011 (|#2| (-677 (-421 |#2|)))) (-15 -2011 (|#2| (-678 |#2| (-421 |#2|))))) (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))) (-1273 |#1|)) (T -832))
+((-2011 (*1 *2 *3) (-12 (-5 *3 (-678 *2 (-421 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-832 *4 *2)) (-4 *4 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))))) (-2011 (*1 *2 *3) (-12 (-5 *3 (-677 (-421 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-832 *4 *2)) (-4 *4 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))))) (-3446 (*1 *2 *3 *4) (-12 (-5 *3 (-678 *6 (-421 *6))) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-5 *2 (-2 (|:| -3822 (-663 (-421 *6))) (|:| -1871 (-711 *5)))) (-5 *1 (-832 *5 *6)) (-5 *4 (-663 (-421 *6))))) (-3446 (*1 *2 *3 *4) (-12 (-5 *3 (-678 *6 (-421 *6))) (-5 *4 (-421 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3822 (-663 *4)))) (-5 *1 (-832 *5 *6)))) (-3446 (*1 *2 *3 *4) (-12 (-5 *3 (-677 (-421 *6))) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-5 *2 (-2 (|:| -3822 (-663 (-421 *6))) (|:| -1871 (-711 *5)))) (-5 *1 (-832 *5 *6)) (-5 *4 (-663 (-421 *6))))) (-3446 (*1 *2 *3 *4) (-12 (-5 *3 (-677 (-421 *6))) (-5 *4 (-421 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3822 (-663 *4)))) (-5 *1 (-832 *5 *6)))))
+(-10 -7 (-15 -3446 ((-2 (|:| |particular| (-3 (-421 |#2|) "failed")) (|:| -3822 (-663 (-421 |#2|)))) (-677 (-421 |#2|)) (-421 |#2|))) (-15 -3446 ((-2 (|:| -3822 (-663 (-421 |#2|))) (|:| -1871 (-711 |#1|))) (-677 (-421 |#2|)) (-663 (-421 |#2|)))) (-15 -3446 ((-2 (|:| |particular| (-3 (-421 |#2|) "failed")) (|:| -3822 (-663 (-421 |#2|)))) (-678 |#2| (-421 |#2|)) (-421 |#2|))) (-15 -3446 ((-2 (|:| -3822 (-663 (-421 |#2|))) (|:| -1871 (-711 |#1|))) (-678 |#2| (-421 |#2|)) (-663 (-421 |#2|)))) (-15 -2011 (|#2| (-677 (-421 |#2|)))) (-15 -2011 (|#2| (-678 |#2| (-421 |#2|)))))
+((-2090 (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#1|))) |#5| |#4|) 49 T ELT)))
+(((-833 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2090 ((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#1|))) |#5| |#4|))) (-376) (-680 |#1|) (-1273 |#1|) (-746 |#1| |#3|) (-680 |#4|)) (T -833))
+((-2090 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *7 (-1273 *5)) (-4 *4 (-746 *5 *7)) (-5 *2 (-2 (|:| -1871 (-711 *6)) (|:| |vec| (-1297 *5)))) (-5 *1 (-833 *5 *6 *7 *4 *3)) (-4 *6 (-680 *5)) (-4 *3 (-680 *4)))))
+(-10 -7 (-15 -2090 ((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#1|))) |#5| |#4|)))
+((-3012 (((-663 (-2 (|:| |frac| (-421 |#2|)) (|:| -2439 (-678 |#2| (-421 |#2|))))) (-678 |#2| (-421 |#2|)) (-1 (-419 |#2|) |#2|)) 47 T ELT)) (-3509 (((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-419 |#2|) |#2|)) 167 (|has| |#1| (-27)) ELT) (((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-419 |#2|) |#2|)) 168 (|has| |#1| (-27)) ELT) (((-663 (-421 |#2|)) (-677 (-421 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|) (-1 (-419 |#2|) |#2|)) 38 T ELT) (((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|)) 39 T ELT) (((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|) (-1 (-419 |#2|) |#2|)) 36 T ELT) (((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|)) 37 T ELT)) (-1418 (((-663 (-2 (|:| |poly| |#2|) (|:| -2439 (-678 |#2| (-421 |#2|))))) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|)) 96 T ELT)))
+(((-834 |#1| |#2|) (-10 -7 (-15 -3509 ((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (-15 -3509 ((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|) (-1 (-419 |#2|) |#2|))) (-15 -3509 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (-15 -3509 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|) (-1 (-419 |#2|) |#2|))) (-15 -3012 ((-663 (-2 (|:| |frac| (-421 |#2|)) (|:| -2439 (-678 |#2| (-421 |#2|))))) (-678 |#2| (-421 |#2|)) (-1 (-419 |#2|) |#2|))) (-15 -1418 ((-663 (-2 (|:| |poly| |#2|) (|:| -2439 (-678 |#2| (-421 |#2|))))) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3509 ((-663 (-421 |#2|)) (-677 (-421 |#2|)))) (-15 -3509 ((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-419 |#2|) |#2|))) (-15 -3509 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)))) (-15 -3509 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-419 |#2|) |#2|)))) |%noBranch|)) (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))) (-1273 |#1|)) (T -834))
+((-3509 (*1 *2 *3 *4) (-12 (-5 *3 (-678 *6 (-421 *6))) (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-5 *2 (-663 (-421 *6))) (-5 *1 (-834 *5 *6)))) (-3509 (*1 *2 *3) (-12 (-5 *3 (-678 *5 (-421 *5))) (-4 *5 (-1273 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-5 *2 (-663 (-421 *5))) (-5 *1 (-834 *4 *5)))) (-3509 (*1 *2 *3 *4) (-12 (-5 *3 (-677 (-421 *6))) (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-5 *2 (-663 (-421 *6))) (-5 *1 (-834 *5 *6)))) (-3509 (*1 *2 *3) (-12 (-5 *3 (-677 (-421 *5))) (-4 *5 (-1273 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-5 *2 (-663 (-421 *5))) (-5 *1 (-834 *4 *5)))) (-1418 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-663 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-4 *6 (-1273 *5)) (-5 *2 (-663 (-2 (|:| |poly| *6) (|:| -2439 (-678 *6 (-421 *6)))))) (-5 *1 (-834 *5 *6)) (-5 *3 (-678 *6 (-421 *6))))) (-3012 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-5 *2 (-663 (-2 (|:| |frac| (-421 *6)) (|:| -2439 (-678 *6 (-421 *6)))))) (-5 *1 (-834 *5 *6)) (-5 *3 (-678 *6 (-421 *6))))) (-3509 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-678 *7 (-421 *7))) (-5 *4 (-1 (-663 *6) *7)) (-5 *5 (-1 (-419 *7) *7)) (-4 *6 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-4 *7 (-1273 *6)) (-5 *2 (-663 (-421 *7))) (-5 *1 (-834 *6 *7)))) (-3509 (*1 *2 *3 *4) (-12 (-5 *3 (-678 *6 (-421 *6))) (-5 *4 (-1 (-663 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-4 *6 (-1273 *5)) (-5 *2 (-663 (-421 *6))) (-5 *1 (-834 *5 *6)))) (-3509 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-677 (-421 *7))) (-5 *4 (-1 (-663 *6) *7)) (-5 *5 (-1 (-419 *7) *7)) (-4 *6 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-4 *7 (-1273 *6)) (-5 *2 (-663 (-421 *7))) (-5 *1 (-834 *6 *7)))) (-3509 (*1 *2 *3 *4) (-12 (-5 *3 (-677 (-421 *6))) (-5 *4 (-1 (-663 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))) (-4 *6 (-1273 *5)) (-5 *2 (-663 (-421 *6))) (-5 *1 (-834 *5 *6)))))
+(-10 -7 (-15 -3509 ((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (-15 -3509 ((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-663 |#1|) |#2|) (-1 (-419 |#2|) |#2|))) (-15 -3509 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (-15 -3509 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|) (-1 (-419 |#2|) |#2|))) (-15 -3012 ((-663 (-2 (|:| |frac| (-421 |#2|)) (|:| -2439 (-678 |#2| (-421 |#2|))))) (-678 |#2| (-421 |#2|)) (-1 (-419 |#2|) |#2|))) (-15 -1418 ((-663 (-2 (|:| |poly| |#2|) (|:| -2439 (-678 |#2| (-421 |#2|))))) (-678 |#2| (-421 |#2|)) (-1 (-663 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -3509 ((-663 (-421 |#2|)) (-677 (-421 |#2|)))) (-15 -3509 ((-663 (-421 |#2|)) (-677 (-421 |#2|)) (-1 (-419 |#2|) |#2|))) (-15 -3509 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)))) (-15 -3509 ((-663 (-421 |#2|)) (-678 |#2| (-421 |#2|)) (-1 (-419 |#2|) |#2|)))) |%noBranch|))
+((-4303 (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#1|))) (-711 |#2|) (-1297 |#1|)) 110 T ELT) (((-2 (|:| A (-711 |#1|)) (|:| |eqs| (-663 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1297 |#1|)) (|:| -2439 |#2|) (|:| |rh| |#1|))))) (-711 |#1|) (-1297 |#1|)) 15 T ELT)) (-3165 (((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -3822 (-663 (-1297 |#1|)))) (-711 |#2|) (-1297 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3822 (-663 |#1|))) |#2| |#1|)) 116 T ELT)) (-1652 (((-3 (-2 (|:| |particular| (-1297 |#1|)) (|:| -3822 (-711 |#1|))) "failed") (-711 |#1|) (-1297 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3822 (-663 |#1|))) "failed") |#2| |#1|)) 54 T ELT)))
+(((-835 |#1| |#2|) (-10 -7 (-15 -4303 ((-2 (|:| A (-711 |#1|)) (|:| |eqs| (-663 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1297 |#1|)) (|:| -2439 |#2|) (|:| |rh| |#1|))))) (-711 |#1|) (-1297 |#1|))) (-15 -4303 ((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#1|))) (-711 |#2|) (-1297 |#1|))) (-15 -1652 ((-3 (-2 (|:| |particular| (-1297 |#1|)) (|:| -3822 (-711 |#1|))) "failed") (-711 |#1|) (-1297 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3822 (-663 |#1|))) "failed") |#2| |#1|))) (-15 -3165 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -3822 (-663 (-1297 |#1|)))) (-711 |#2|) (-1297 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3822 (-663 |#1|))) |#2| |#1|)))) (-376) (-680 |#1|)) (T -835))
+((-3165 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3822 (-663 *6))) *7 *6)) (-4 *6 (-376)) (-4 *7 (-680 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1297 *6) "failed")) (|:| -3822 (-663 (-1297 *6))))) (-5 *1 (-835 *6 *7)) (-5 *4 (-1297 *6)))) (-1652 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3822 (-663 *6))) "failed") *7 *6)) (-4 *6 (-376)) (-4 *7 (-680 *6)) (-5 *2 (-2 (|:| |particular| (-1297 *6)) (|:| -3822 (-711 *6)))) (-5 *1 (-835 *6 *7)) (-5 *3 (-711 *6)) (-5 *4 (-1297 *6)))) (-4303 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-680 *5)) (-5 *2 (-2 (|:| -1871 (-711 *6)) (|:| |vec| (-1297 *5)))) (-5 *1 (-835 *5 *6)) (-5 *3 (-711 *6)) (-5 *4 (-1297 *5)))) (-4303 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| A (-711 *5)) (|:| |eqs| (-663 (-2 (|:| C (-711 *5)) (|:| |g| (-1297 *5)) (|:| -2439 *6) (|:| |rh| *5)))))) (-5 *1 (-835 *5 *6)) (-5 *3 (-711 *5)) (-5 *4 (-1297 *5)) (-4 *6 (-680 *5)))))
+(-10 -7 (-15 -4303 ((-2 (|:| A (-711 |#1|)) (|:| |eqs| (-663 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1297 |#1|)) (|:| -2439 |#2|) (|:| |rh| |#1|))))) (-711 |#1|) (-1297 |#1|))) (-15 -4303 ((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#1|))) (-711 |#2|) (-1297 |#1|))) (-15 -1652 ((-3 (-2 (|:| |particular| (-1297 |#1|)) (|:| -3822 (-711 |#1|))) "failed") (-711 |#1|) (-1297 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3822 (-663 |#1|))) "failed") |#2| |#1|))) (-15 -3165 ((-2 (|:| |particular| (-3 (-1297 |#1|) "failed")) (|:| -3822 (-663 (-1297 |#1|)))) (-711 |#2|) (-1297 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3822 (-663 |#1|))) |#2| |#1|))))
+((-3598 (((-711 |#1|) (-663 |#1|) (-793)) 14 T ELT) (((-711 |#1|) (-663 |#1|)) 15 T ELT)) (-3826 (((-3 (-1297 |#1|) "failed") |#2| |#1| (-663 |#1|)) 39 T ELT)) (-1706 (((-3 |#1| "failed") |#2| |#1| (-663 |#1|) (-1 |#1| |#1|)) 46 T ELT)))
+(((-836 |#1| |#2|) (-10 -7 (-15 -3598 ((-711 |#1|) (-663 |#1|))) (-15 -3598 ((-711 |#1|) (-663 |#1|) (-793))) (-15 -3826 ((-3 (-1297 |#1|) "failed") |#2| |#1| (-663 |#1|))) (-15 -1706 ((-3 |#1| "failed") |#2| |#1| (-663 |#1|) (-1 |#1| |#1|)))) (-376) (-680 |#1|)) (T -836))
+((-1706 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-663 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-376)) (-5 *1 (-836 *2 *3)) (-4 *3 (-680 *2)))) (-3826 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-663 *4)) (-4 *4 (-376)) (-5 *2 (-1297 *4)) (-5 *1 (-836 *4 *3)) (-4 *3 (-680 *4)))) (-3598 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-793)) (-4 *5 (-376)) (-5 *2 (-711 *5)) (-5 *1 (-836 *5 *6)) (-4 *6 (-680 *5)))) (-3598 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-376)) (-5 *2 (-711 *4)) (-5 *1 (-836 *4 *5)) (-4 *5 (-680 *4)))))
+(-10 -7 (-15 -3598 ((-711 |#1|) (-663 |#1|))) (-15 -3598 ((-711 |#1|) (-663 |#1|) (-793))) (-15 -3826 ((-3 (-1297 |#1|) "failed") |#2| |#1| (-663 |#1|))) (-15 -1706 ((-3 |#1| "failed") |#2| |#1| (-663 |#1|) (-1 |#1| |#1|))))
+((-2243 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2505 (((-114) $) NIL (|has| |#2| (-23)) ELT)) (-3101 (($ (-948)) NIL (|has| |#2| (-1080)) ELT)) (-2033 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-1651 (($ $ $) NIL (|has| |#2| (-815)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL (|has| |#2| (-133)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-2552 (((-793)) NIL (|has| |#2| (-381)) ELT)) (-4083 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) NIL (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (-12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1132)) ELT)) (-3649 (((-560) $) NIL (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) ELT) (((-421 (-560)) $) NIL (-12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) ((|#2| $) NIL (|has| |#2| (-1132)) ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-711 $)) NIL (|has| |#2| (-1080)) ELT)) (-2873 (((-3 $ "failed") $) NIL (|has| |#2| (-1080)) ELT)) (-1812 (($) NIL (|has| |#2| (-381)) ELT)) (-3338 ((|#2| $ (-560) |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#2| $ (-560)) NIL T ELT)) (-3737 (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1918 (((-114) $) NIL (|has| |#2| (-1080)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-3243 (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-4263 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-3324 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2622 (((-948) $) NIL (|has| |#2| (-381)) ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#2| (-1080))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL (|has| |#2| (-1080)) ELT) (((-711 |#2|) (-1297 $)) NIL (|has| |#2| (-1080)) ELT)) (-3358 (((-1189) $) NIL (|has| |#2| (-1132)) ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) NIL T ELT)) (-1591 (($ (-948)) NIL (|has| |#2| (-381)) ELT)) (-3376 (((-1151) $) NIL (|has| |#2| (-1132)) ELT)) (-4334 ((|#2| $) NIL (|has| (-560) (-871)) ELT)) (-2740 (($ $ |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-1383 (((-663 |#2|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#2| $ (-560) |#2|) NIL T ELT) ((|#2| $ (-560)) NIL T ELT)) (-4258 ((|#2| $ $) NIL (|has| |#2| (-1080)) ELT)) (-4050 (($ (-1297 |#2|)) NIL T ELT)) (-3015 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-3161 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1080)) ELT)) (-3384 (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-4107 (($ $) NIL T ELT)) (-3913 (((-1297 |#2|) $) NIL T ELT) (($ (-560)) NIL (-2196 (-12 (|has| |#2| (-1069 (-560))) (|has| |#2| (-1132))) (|has| |#2| (-1080))) ELT) (($ (-421 (-560))) NIL (-12 (|has| |#2| (-1069 (-421 (-560)))) (|has| |#2| (-1132))) ELT) (($ |#2|) NIL (|has| |#2| (-1132)) ELT) (((-887) $) NIL (|has| |#2| (-632 (-887))) ELT)) (-4191 (((-793)) NIL (|has| |#2| (-1080)) CONST)) (-3925 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1446 (($) NIL (|has| |#2| (-23)) CONST)) (-1456 (($) NIL (|has| |#2| (-1080)) CONST)) (-2111 (($ $ (-793)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#2| (-929 (-1207))) (|has| |#2| (-1080))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#2| (-1080)) ELT)) (-2396 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2386 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2362 (((-114) $ $) 11 (|has| |#2| (-871)) ELT)) (-2453 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2441 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-2429 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-793)) NIL (|has| |#2| (-1080)) ELT) (($ $ (-948)) NIL (|has| |#2| (-1080)) ELT)) (* (($ $ $) NIL (|has| |#2| (-1080)) ELT) (($ $ |#2|) NIL (|has| |#2| (-748)) ELT) (($ |#2| $) NIL (|has| |#2| (-748)) ELT) (($ (-560) $) NIL (|has| |#2| (-21)) ELT) (($ (-793) $) NIL (|has| |#2| (-23)) ELT) (($ (-948) $) NIL (|has| |#2| (-25)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
(((-837 |#1| |#2| |#3|) (-245 |#1| |#2|) (-793) (-815) (-1 (-114) (-1297 |#2|) (-1297 |#2|))) (T -837))
NIL
(-245 |#1| |#2|)
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3066 (((-663 (-793)) $) NIL T ELT) (((-663 (-793)) $ (-1207)) NIL T ELT)) (-4441 (((-793) $) NIL T ELT) (((-793) $ (-1207)) NIL T ELT)) (-1443 (((-663 (-840 (-1207))) $) NIL T ELT)) (-4422 (((-1201 $) $ (-840 (-1207))) NIL T ELT) (((-1201 |#1|) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3107 (((-793) $) NIL T ELT) (((-793) $ (-663 (-840 (-1207)))) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1804 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-2972 (($ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-840 (-1207)) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL T ELT) (((-3 (-1156 |#1| (-1207)) "failed") $) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-840 (-1207)) $) NIL T ELT) (((-1207) $) NIL T ELT) (((-1156 |#1| (-1207)) $) NIL T ELT)) (-2788 (($ $ $ (-840 (-1207))) NIL (|has| |#1| (-175)) ELT)) (-1624 (($ $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2806 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ (-840 (-1207))) NIL (|has| |#1| (-466)) ELT)) (-1608 (((-663 $) $) NIL T ELT)) (-4330 (((-114) $) NIL (|has| |#1| (-939)) ELT)) (-4342 (($ $ |#1| (-545 (-840 (-1207))) $) NIL T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-840 (-1207)) (-911 (-391))) (|has| |#1| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-840 (-1207)) (-911 (-560))) (|has| |#1| (-911 (-560)))) ELT)) (-3913 (((-793) $ (-1207)) NIL T ELT) (((-793) $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-3531 (((-793) $) NIL T ELT)) (-1427 (($ (-1201 |#1|) (-840 (-1207))) NIL T ELT) (($ (-1201 $) (-840 (-1207))) NIL T ELT)) (-3997 (((-663 $) $) NIL T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-545 (-840 (-1207)))) NIL T ELT) (($ $ (-840 (-1207)) (-793)) NIL T ELT) (($ $ (-663 (-840 (-1207))) (-663 (-793))) NIL T ELT)) (-3559 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $ (-840 (-1207))) NIL T ELT)) (-3011 (((-545 (-840 (-1207))) $) NIL T ELT) (((-793) $ (-840 (-1207))) NIL T ELT) (((-663 (-793)) $ (-663 (-840 (-1207)))) NIL T ELT)) (-4321 (($ (-1 (-545 (-840 (-1207))) (-545 (-840 (-1207)))) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2966 (((-1 $ (-793)) (-1207)) NIL T ELT) (((-1 $ (-793)) $) NIL (|has| |#1| (-240)) ELT)) (-1955 (((-3 (-840 (-1207)) "failed") $) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-4427 (((-840 (-1207)) $) NIL T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2367 (((-114) $) NIL T ELT)) (-3479 (((-3 (-663 $) "failed") $) NIL T ELT)) (-2590 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3683 (((-3 (-2 (|:| |var| (-840 (-1207))) (|:| -3205 (-793))) "failed") $) NIL T ELT)) (-3991 (($ $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1554 (((-114) $) NIL T ELT)) (-1566 ((|#1| $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-466)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-4457 (((-419 $) $) NIL (|has| |#1| (-939)) ELT)) (-1528 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-4187 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-840 (-1207)) |#1|) NIL T ELT) (($ $ (-663 (-840 (-1207))) (-663 |#1|)) NIL T ELT) (($ $ (-840 (-1207)) $) NIL T ELT) (($ $ (-663 (-840 (-1207))) (-663 $)) NIL T ELT) (($ $ (-1207) $) NIL (|has| |#1| (-240)) ELT) (($ $ (-663 (-1207)) (-663 $)) NIL (|has| |#1| (-240)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-2690 (($ $ (-840 (-1207))) NIL (|has| |#1| (-175)) ELT)) (-2894 (($ $ (-663 (-840 (-1207))) (-663 (-793))) NIL T ELT) (($ $ (-840 (-1207)) (-793)) NIL T ELT) (($ $ (-663 (-840 (-1207)))) NIL T ELT) (($ $ (-840 (-1207))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-3141 (((-663 (-1207)) $) NIL T ELT)) (-3630 (((-545 (-840 (-1207))) $) NIL T ELT) (((-793) $ (-840 (-1207))) NIL T ELT) (((-663 (-793)) $ (-663 (-840 (-1207)))) NIL T ELT) (((-793) $ (-1207)) NIL T ELT)) (-1407 (((-915 (-391)) $) NIL (-12 (|has| (-840 (-1207)) (-633 (-915 (-391)))) (|has| |#1| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-840 (-1207)) (-633 (-915 (-560)))) (|has| |#1| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-840 (-1207)) (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-2053 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ (-840 (-1207))) NIL (|has| |#1| (-466)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-840 (-1207))) NIL T ELT) (($ (-1207)) NIL T ELT) (($ (-1156 |#1| (-1207))) NIL T ELT) (($ (-421 (-560))) NIL (-2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-3409 (((-663 |#1|) $) NIL T ELT)) (-2305 ((|#1| $ (-545 (-840 (-1207)))) NIL T ELT) (($ $ (-840 (-1207)) (-793)) NIL T ELT) (($ $ (-663 (-840 (-1207))) (-663 (-793))) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-2930 (((-793)) NIL T CONST)) (-2392 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $ (-663 (-840 (-1207))) (-663 (-793))) NIL T ELT) (($ $ (-840 (-1207)) (-793)) NIL T ELT) (($ $ (-663 (-840 (-1207)))) NIL T ELT) (($ $ (-840 (-1207))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3074 (((-663 (-793)) $) NIL T ELT) (((-663 (-793)) $ (-1207)) NIL T ELT)) (-2775 (((-793) $) NIL T ELT) (((-793) $ (-1207)) NIL T ELT)) (-4162 (((-663 (-840 (-1207))) $) NIL T ELT)) (-3981 (((-1201 $) $ (-840 (-1207))) NIL T ELT) (((-1201 |#1|) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-2250 (((-793) $) NIL T ELT) (((-793) $ (-663 (-840 (-1207)))) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1621 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-3345 (($ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-840 (-1207)) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL T ELT) (((-3 (-1156 |#1| (-1207)) "failed") $) NIL T ELT)) (-3649 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-840 (-1207)) $) NIL T ELT) (((-1207) $) NIL T ELT) (((-1156 |#1| (-1207)) $) NIL T ELT)) (-2096 (($ $ $ (-840 (-1207))) NIL (|has| |#1| (-175)) ELT)) (-3062 (($ $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4239 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ (-840 (-1207))) NIL (|has| |#1| (-466)) ELT)) (-3048 (((-663 $) $) NIL T ELT)) (-3141 (((-114) $) NIL (|has| |#1| (-939)) ELT)) (-3224 (($ $ |#1| (-545 (-840 (-1207))) $) NIL T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-840 (-1207)) (-911 (-391))) (|has| |#1| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-840 (-1207)) (-911 (-560))) (|has| |#1| (-911 (-560)))) ELT)) (-1460 (((-793) $ (-1207)) NIL T ELT) (((-793) $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-4127 (((-793) $) NIL T ELT)) (-4149 (($ (-1201 |#1|) (-840 (-1207))) NIL T ELT) (($ (-1201 $) (-840 (-1207))) NIL T ELT)) (-2947 (((-663 $) $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-545 (-840 (-1207)))) NIL T ELT) (($ $ (-840 (-1207)) (-793)) NIL T ELT) (($ $ (-663 (-840 (-1207))) (-663 (-793))) NIL T ELT)) (-4415 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $ (-840 (-1207))) NIL T ELT)) (-3765 (((-545 (-840 (-1207))) $) NIL T ELT) (((-793) $ (-840 (-1207))) NIL T ELT) (((-663 (-793)) $ (-663 (-840 (-1207)))) NIL T ELT)) (-3060 (($ (-1 (-545 (-840 (-1207))) (-545 (-840 (-1207)))) $) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3288 (((-1 $ (-793)) (-1207)) NIL T ELT) (((-1 $ (-793)) $) NIL (|has| |#1| (-240)) ELT)) (-3835 (((-3 (-840 (-1207)) "failed") $) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-1726 (((-840 (-1207)) $) NIL T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2291 (((-114) $) NIL T ELT)) (-1669 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3849 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3149 (((-3 (-2 (|:| |var| (-840 (-1207))) (|:| -2030 (-793))) "failed") $) NIL T ELT)) (-2689 (($ $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3000 (((-114) $) NIL T ELT)) (-3011 ((|#1| $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-466)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-4012 (((-419 $) $) NIL (|has| |#1| (-939)) ELT)) (-2233 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-2371 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-840 (-1207)) |#1|) NIL T ELT) (($ $ (-663 (-840 (-1207))) (-663 |#1|)) NIL T ELT) (($ $ (-840 (-1207)) $) NIL T ELT) (($ $ (-663 (-840 (-1207))) (-663 $)) NIL T ELT) (($ $ (-1207) $) NIL (|has| |#1| (-240)) ELT) (($ $ (-663 (-1207)) (-663 $)) NIL (|has| |#1| (-240)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-2336 (($ $ (-840 (-1207))) NIL (|has| |#1| (-175)) ELT)) (-3161 (($ $ (-663 (-840 (-1207))) (-663 (-793))) NIL T ELT) (($ $ (-840 (-1207)) (-793)) NIL T ELT) (($ $ (-663 (-840 (-1207)))) NIL T ELT) (($ $ (-840 (-1207))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-2606 (((-663 (-1207)) $) NIL T ELT)) (-3900 (((-545 (-840 (-1207))) $) NIL T ELT) (((-793) $ (-840 (-1207))) NIL T ELT) (((-663 (-793)) $ (-663 (-840 (-1207)))) NIL T ELT) (((-793) $ (-1207)) NIL T ELT)) (-2400 (((-915 (-391)) $) NIL (-12 (|has| (-840 (-1207)) (-633 (-915 (-391)))) (|has| |#1| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-840 (-1207)) (-633 (-915 (-560)))) (|has| |#1| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-840 (-1207)) (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-2264 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ (-840 (-1207))) NIL (|has| |#1| (-466)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-840 (-1207))) NIL T ELT) (($ (-1207)) NIL T ELT) (($ (-1156 |#1| (-1207))) NIL T ELT) (($ (-421 (-560))) NIL (-2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-2247 (((-663 |#1|) $) NIL T ELT)) (-2920 ((|#1| $ (-545 (-840 (-1207)))) NIL T ELT) (($ $ (-840 (-1207)) (-793)) NIL T ELT) (($ $ (-663 (-840 (-1207))) (-663 (-793))) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-4191 (((-793)) NIL T CONST)) (-2548 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $ (-663 (-840 (-1207))) (-663 (-793))) NIL T ELT) (($ $ (-840 (-1207)) (-793)) NIL T ELT) (($ $ (-663 (-840 (-1207)))) NIL T ELT) (($ $ (-840 (-1207))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
(((-838 |#1|) (-13 (-262 |#1| (-1207) (-840 (-1207)) (-545 (-840 (-1207)))) (-1069 (-1156 |#1| (-1207)))) (-1080)) (T -838))
NIL
(-13 (-262 |#1| (-1207) (-840 (-1207)) (-545 (-840 (-1207)))) (-1069 (-1156 |#1| (-1207))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#2| (-376)) ELT)) (-3244 (($ $) NIL (|has| |#2| (-376)) ELT)) (-4093 (((-114) $) NIL (|has| |#2| (-376)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL (|has| |#2| (-376)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#2| (-376)) ELT)) (-1615 (((-114) $ $) NIL (|has| |#2| (-376)) ELT)) (-2238 (($) NIL T CONST)) (-1478 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1490 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL (|has| |#2| (-376)) ELT)) (-4330 (((-114) $) NIL (|has| |#2| (-376)) ELT)) (-1581 (((-114) $) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#2| (-376)) ELT)) (-2093 (($ (-663 $)) NIL (|has| |#2| (-376)) ELT) (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) 20 (|has| |#2| (-376)) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#2| (-376)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#2| (-376)) ELT) (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-4457 (((-419 $) $) NIL (|has| |#2| (-376)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-1528 (((-3 $ "failed") $ $) NIL (|has| |#2| (-376)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#2| (-376)) ELT)) (-2901 (((-793) $) NIL (|has| |#2| (-376)) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-2894 (($ $) 13 T ELT) (($ $ (-793)) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-421 (-560))) NIL (|has| |#2| (-376)) ELT) (($ $) NIL (|has| |#2| (-376)) ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL (|has| |#2| (-376)) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ $) 15 (|has| |#2| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-948)) NIL T ELT) (($ $ (-560)) 18 (|has| |#2| (-376)) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| |#2| (-376)) ELT) (($ $ (-421 (-560))) NIL (|has| |#2| (-376)) ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#2| (-376)) ELT)) (-4366 (($ $) NIL (|has| |#2| (-376)) ELT)) (-2667 (((-114) $) NIL (|has| |#2| (-376)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL (|has| |#2| (-376)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#2| (-376)) ELT)) (-3476 (((-114) $ $) NIL (|has| |#2| (-376)) ELT)) (-3525 (($) NIL T CONST)) (-2186 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-2197 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL (|has| |#2| (-376)) ELT)) (-3141 (((-114) $) NIL (|has| |#2| (-376)) ELT)) (-1918 (((-114) $) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#2| (-376)) ELT)) (-1861 (($ (-663 $)) NIL (|has| |#2| (-376)) ELT) (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) 20 (|has| |#2| (-376)) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#2| (-376)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#2| (-376)) ELT) (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-4012 (((-419 $) $) NIL (|has| |#2| (-376)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-2233 (((-3 $ "failed") $ $) NIL (|has| |#2| (-376)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#2| (-376)) ELT)) (-3989 (((-793) $) NIL (|has| |#2| (-376)) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3161 (($ $) 13 T ELT) (($ $ (-793)) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-421 (-560))) NIL (|has| |#2| (-376)) ELT) (($ $) NIL (|has| |#2| (-376)) ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL (|has| |#2| (-376)) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ $) 15 (|has| |#2| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-948)) NIL T ELT) (($ $ (-560)) 18 (|has| |#2| (-376)) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| |#2| (-376)) ELT) (($ $ (-421 (-560))) NIL (|has| |#2| (-376)) ELT)))
(((-839 |#1| |#2| |#3|) (-13 (-111 $ $) (-240) (-504 |#2|) (-10 -7 (IF (|has| |#2| (-376)) (-6 (-376)) |%noBranch|))) (-1132) (-927 |#1|) |#1|) (T -839))
NIL
(-13 (-111 $ $) (-240) (-504 |#2|) (-10 -7 (IF (|has| |#2| (-376)) (-6 (-376)) |%noBranch|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-4441 (((-793) $) NIL T ELT)) (-2462 ((|#1| $) 10 T ELT)) (-2539 (((-3 |#1| "failed") $) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT)) (-3913 (((-793) $) 11 T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-2966 (($ |#1| (-793)) 9 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2894 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-3305 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2775 (((-793) $) NIL T ELT)) (-2558 ((|#1| $) 10 T ELT)) (-3929 (((-3 |#1| "failed") $) NIL T ELT)) (-3649 ((|#1| $) NIL T ELT)) (-1460 (((-793) $) 11 T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-3288 (($ |#1| (-793)) 9 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3161 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2111 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) NIL T ELT)))
(((-840 |#1|) (-277 |#1|) (-871)) (T -840))
NIL
(-277 |#1|)
-((-1538 (((-114) $ $) NIL T ELT)) (-2571 (((-663 |#1|) $) 38 T ELT)) (-3241 (((-793) $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2942 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ |#1|) 28 T ELT)) (-2539 (((-3 |#1| "failed") $) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT)) (-3649 (($ $) 42 T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1338 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-2461 ((|#1| $ (-560)) NIL T ELT)) (-2005 (((-793) $ (-560)) NIL T ELT)) (-2256 (($ $) 54 T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-1942 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3372 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-4058 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ |#1|) 25 T ELT)) (-1863 (((-114) $ $) 51 T ELT)) (-4108 (((-793) $) 34 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3889 (($ $ $) NIL T ELT)) (-1890 (($ $ $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3637 ((|#1| $) 41 T ELT)) (-3764 (((-663 (-2 (|:| |gen| |#1|) (|:| -3251 (-793)))) $) NIL T ELT)) (-2205 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL T ELT)) (-1515 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2011 (($) 20 T CONST)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 53 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ |#1| (-793)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-841 |#1|) (-13 (-399 |#1|) (-868) (-10 -8 (-15 -3637 (|#1| $)) (-15 -3649 ($ $)) (-15 -2256 ($ $)) (-15 -1863 ((-114) $ $)) (-15 -4058 ((-3 $ "failed") $ |#1|)) (-15 -2942 ((-3 $ "failed") $ |#1|)) (-15 -1515 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4108 ((-793) $)) (-15 -2571 ((-663 |#1|) $)))) (-871)) (T -841))
-((-3637 (*1 *2 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-871)))) (-3649 (*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-871)))) (-2256 (*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-871)))) (-1863 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-841 *3)) (-4 *3 (-871)))) (-4058 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-841 *2)) (-4 *2 (-871)))) (-2942 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-841 *2)) (-4 *2 (-871)))) (-1515 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-841 *3)) (|:| |rm| (-841 *3)))) (-5 *1 (-841 *3)) (-4 *3 (-871)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-841 *3)) (-4 *3 (-871)))) (-2571 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-841 *3)) (-4 *3 (-871)))))
-(-13 (-399 |#1|) (-868) (-10 -8 (-15 -3637 (|#1| $)) (-15 -3649 ($ $)) (-15 -2256 ($ $)) (-15 -1863 ((-114) $ $)) (-15 -4058 ((-3 $ "failed") $ |#1|)) (-15 -2942 ((-3 $ "failed") $ |#1|)) (-15 -1515 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -4108 ((-793) $)) (-15 -2571 ((-663 |#1|) $))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-3244 (($ $) 46 T ELT)) (-4093 (((-114) $) 44 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2138 (((-560) $) 60 T ELT)) (-2238 (($) 18 T CONST)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-2928 (((-114) $) 58 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-2960 (((-114) $) 59 T ELT)) (-3825 (($ $ $) 52 T ELT)) (-2820 (($ $ $) 53 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1528 (((-3 $ "failed") $ $) 48 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 45 T ELT)) (-2282 (($ $) 61 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2536 (((-114) $ $) 54 T ELT)) (-2508 (((-114) $ $) 56 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 55 T ELT)) (-2495 (((-114) $ $) 57 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-4356 (((-663 |#1|) $) 38 T ELT)) (-2552 (((-793) $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-4308 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ |#1|) 28 T ELT)) (-3929 (((-3 |#1| "failed") $) NIL T ELT)) (-3649 ((|#1| $) NIL T ELT)) (-4345 (($ $) 42 T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-3523 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-1997 ((|#1| $ (-560)) NIL T ELT)) (-3038 (((-793) $ (-560)) NIL T ELT)) (-3723 (($ $) 54 T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-3703 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3143 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-2343 (((-3 $ "failed") $ $) NIL T ELT) (((-3 $ "failed") $ |#1|) 25 T ELT)) (-4171 (((-114) $ $) 51 T ELT)) (-2946 (((-793) $) 34 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-4397 (($ $ $) NIL T ELT)) (-4439 (($ $ $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4334 ((|#1| $) 41 T ELT)) (-2609 (((-663 (-2 (|:| |gen| |#1|) (|:| -2515 (-793)))) $) NIL T ELT)) (-4455 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL T ELT)) (-2221 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1456 (($) 20 T CONST)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 53 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ |#1| (-793)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-841 |#1|) (-13 (-399 |#1|) (-868) (-10 -8 (-15 -4334 (|#1| $)) (-15 -4345 ($ $)) (-15 -3723 ($ $)) (-15 -4171 ((-114) $ $)) (-15 -2343 ((-3 $ "failed") $ |#1|)) (-15 -4308 ((-3 $ "failed") $ |#1|)) (-15 -2221 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2946 ((-793) $)) (-15 -4356 ((-663 |#1|) $)))) (-871)) (T -841))
+((-4334 (*1 *2 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-871)))) (-4345 (*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-871)))) (-3723 (*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-871)))) (-4171 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-841 *3)) (-4 *3 (-871)))) (-2343 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-841 *2)) (-4 *2 (-871)))) (-4308 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-841 *2)) (-4 *2 (-871)))) (-2221 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-841 *3)) (|:| |rm| (-841 *3)))) (-5 *1 (-841 *3)) (-4 *3 (-871)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-841 *3)) (-4 *3 (-871)))) (-4356 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-841 *3)) (-4 *3 (-871)))))
+(-13 (-399 |#1|) (-868) (-10 -8 (-15 -4334 (|#1| $)) (-15 -4345 ($ $)) (-15 -3723 ($ $)) (-15 -4171 ((-114) $ $)) (-15 -2343 ((-3 $ "failed") $ |#1|)) (-15 -4308 ((-3 $ "failed") $ |#1|)) (-15 -2221 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -2946 ((-793) $)) (-15 -4356 ((-663 |#1|) $))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-4366 (($ $) 46 T ELT)) (-2667 (((-114) $) 44 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-1869 (((-560) $) 60 T ELT)) (-3525 (($) 18 T CONST)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-4172 (((-114) $) 58 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-4470 (((-114) $) 59 T ELT)) (-2932 (($ $ $) 52 T ELT)) (-4379 (($ $ $) 53 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2233 (((-3 $ "failed") $ $) 48 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 45 T ELT)) (-2719 (($ $) 61 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2396 (((-114) $ $) 54 T ELT)) (-2373 (((-114) $ $) 56 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 55 T ELT)) (-2362 (((-114) $ $) 57 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
(((-842) (-142)) (T -842))
NIL
(-13 (-571) (-870))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-302) . T) ((-571) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-813) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-870) . T) ((-871) . T) ((-874) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-2735 (((-1303) (-845) $ (-114)) 9 T ELT) (((-1303) (-845) $) 8 T ELT) (((-1189) $ (-114)) 7 T ELT) (((-1189) $) 6 T ELT)))
+((-1581 (((-1303) (-845) $ (-114)) 9 T ELT) (((-1303) (-845) $) 8 T ELT) (((-1189) $ (-114)) 7 T ELT) (((-1189) $) 6 T ELT)))
(((-843) (-142)) (T -843))
-((-2735 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-843)) (-5 *3 (-845)) (-5 *4 (-114)) (-5 *2 (-1303)))) (-2735 (*1 *2 *3 *1) (-12 (-4 *1 (-843)) (-5 *3 (-845)) (-5 *2 (-1303)))) (-2735 (*1 *2 *1 *3) (-12 (-4 *1 (-843)) (-5 *3 (-114)) (-5 *2 (-1189)))) (-2735 (*1 *2 *1) (-12 (-4 *1 (-843)) (-5 *2 (-1189)))))
-(-13 (-10 -8 (-15 -2735 ((-1189) $)) (-15 -2735 ((-1189) $ (-114))) (-15 -2735 ((-1303) (-845) $)) (-15 -2735 ((-1303) (-845) $ (-114)))))
-((-3238 (($ (-1151)) 7 T ELT)) (-1465 (((-114) $ (-1189) (-1151)) 15 T ELT)) (-4056 (((-845) $) 12 T ELT)) (-2163 (((-845) $) 11 T ELT)) (-2500 (((-1303) $) 9 T ELT)) (-4479 (((-114) $ (-1151)) 16 T ELT)))
-(((-844) (-10 -8 (-15 -3238 ($ (-1151))) (-15 -2500 ((-1303) $)) (-15 -2163 ((-845) $)) (-15 -4056 ((-845) $)) (-15 -1465 ((-114) $ (-1189) (-1151))) (-15 -4479 ((-114) $ (-1151))))) (T -844))
-((-4479 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-114)) (-5 *1 (-844)))) (-1465 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-1151)) (-5 *2 (-114)) (-5 *1 (-844)))) (-4056 (*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-844)))) (-2163 (*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-844)))) (-2500 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-3238 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-844)))))
-(-10 -8 (-15 -3238 ($ (-1151))) (-15 -2500 ((-1303) $)) (-15 -2163 ((-845) $)) (-15 -4056 ((-845) $)) (-15 -1465 ((-114) $ (-1189) (-1151))) (-15 -4479 ((-114) $ (-1151))))
-((-1912 (((-1303) $ (-846)) 12 T ELT)) (-2664 (((-1303) $ (-1207)) 32 T ELT)) (-4469 (((-1303) $ (-1189) (-1189)) 34 T ELT)) (-3805 (((-1303) $ (-1189)) 33 T ELT)) (-1444 (((-1303) $) 19 T ELT)) (-1630 (((-1303) $ (-560)) 28 T ELT)) (-3464 (((-1303) $ (-229)) 30 T ELT)) (-3462 (((-1303) $) 18 T ELT)) (-1861 (((-1303) $) 26 T ELT)) (-1470 (((-1303) $) 25 T ELT)) (-1517 (((-1303) $) 23 T ELT)) (-2214 (((-1303) $) 24 T ELT)) (-1659 (((-1303) $) 22 T ELT)) (-2020 (((-1303) $) 21 T ELT)) (-2874 (((-1303) $) 20 T ELT)) (-1697 (((-1303) $) 16 T ELT)) (-2173 (((-1303) $) 17 T ELT)) (-2956 (((-1303) $) 15 T ELT)) (-2121 (((-1303) $) 14 T ELT)) (-1450 (((-1303) $) 13 T ELT)) (-4435 (($ (-1189) (-846)) 9 T ELT)) (-3576 (($ (-1189) (-1189) (-846)) 8 T ELT)) (-1333 (((-1207) $) 51 T ELT)) (-4214 (((-1207) $) 55 T ELT)) (-2834 (((-2 (|:| |cd| (-1189)) (|:| -3614 (-1189))) $) 54 T ELT)) (-4047 (((-1189) $) 52 T ELT)) (-2155 (((-1303) $) 41 T ELT)) (-1650 (((-560) $) 49 T ELT)) (-3173 (((-229) $) 50 T ELT)) (-2935 (((-1303) $) 40 T ELT)) (-4162 (((-1303) $) 48 T ELT)) (-2579 (((-1303) $) 47 T ELT)) (-4447 (((-1303) $) 45 T ELT)) (-4157 (((-1303) $) 46 T ELT)) (-1824 (((-1303) $) 44 T ELT)) (-3835 (((-1303) $) 43 T ELT)) (-2833 (((-1303) $) 42 T ELT)) (-2519 (((-1303) $) 38 T ELT)) (-1993 (((-1303) $) 39 T ELT)) (-3062 (((-1303) $) 37 T ELT)) (-2394 (((-1303) $) 36 T ELT)) (-3675 (((-1303) $) 35 T ELT)) (-2372 (((-1303) $) 11 T ELT)))
-(((-845) (-10 -8 (-15 -3576 ($ (-1189) (-1189) (-846))) (-15 -4435 ($ (-1189) (-846))) (-15 -2372 ((-1303) $)) (-15 -1912 ((-1303) $ (-846))) (-15 -1450 ((-1303) $)) (-15 -2121 ((-1303) $)) (-15 -2956 ((-1303) $)) (-15 -1697 ((-1303) $)) (-15 -2173 ((-1303) $)) (-15 -3462 ((-1303) $)) (-15 -1444 ((-1303) $)) (-15 -2874 ((-1303) $)) (-15 -2020 ((-1303) $)) (-15 -1659 ((-1303) $)) (-15 -1517 ((-1303) $)) (-15 -2214 ((-1303) $)) (-15 -1470 ((-1303) $)) (-15 -1861 ((-1303) $)) (-15 -1630 ((-1303) $ (-560))) (-15 -3464 ((-1303) $ (-229))) (-15 -2664 ((-1303) $ (-1207))) (-15 -3805 ((-1303) $ (-1189))) (-15 -4469 ((-1303) $ (-1189) (-1189))) (-15 -3675 ((-1303) $)) (-15 -2394 ((-1303) $)) (-15 -3062 ((-1303) $)) (-15 -2519 ((-1303) $)) (-15 -1993 ((-1303) $)) (-15 -2935 ((-1303) $)) (-15 -2155 ((-1303) $)) (-15 -2833 ((-1303) $)) (-15 -3835 ((-1303) $)) (-15 -1824 ((-1303) $)) (-15 -4447 ((-1303) $)) (-15 -4157 ((-1303) $)) (-15 -2579 ((-1303) $)) (-15 -4162 ((-1303) $)) (-15 -1650 ((-560) $)) (-15 -3173 ((-229) $)) (-15 -1333 ((-1207) $)) (-15 -4047 ((-1189) $)) (-15 -2834 ((-2 (|:| |cd| (-1189)) (|:| -3614 (-1189))) $)) (-15 -4214 ((-1207) $)))) (T -845))
-((-4214 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-845)))) (-2834 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1189)) (|:| -3614 (-1189)))) (-5 *1 (-845)))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-845)))) (-1333 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-845)))) (-3173 (*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-845)))) (-1650 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-845)))) (-4162 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2579 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-4157 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-4447 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-1824 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-3835 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2833 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2155 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2935 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2519 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-3062 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2394 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-3675 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-4469 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-845)))) (-3805 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-845)))) (-2664 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-845)))) (-3464 (*1 *2 *1 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1303)) (-5 *1 (-845)))) (-1630 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-845)))) (-1861 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-1470 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2214 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-1517 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2874 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-1444 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-3462 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2173 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-1697 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2121 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-1450 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-1912 (*1 *2 *1 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1303)) (-5 *1 (-845)))) (-2372 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-4435 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-846)) (-5 *1 (-845)))) (-3576 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-846)) (-5 *1 (-845)))))
-(-10 -8 (-15 -3576 ($ (-1189) (-1189) (-846))) (-15 -4435 ($ (-1189) (-846))) (-15 -2372 ((-1303) $)) (-15 -1912 ((-1303) $ (-846))) (-15 -1450 ((-1303) $)) (-15 -2121 ((-1303) $)) (-15 -2956 ((-1303) $)) (-15 -1697 ((-1303) $)) (-15 -2173 ((-1303) $)) (-15 -3462 ((-1303) $)) (-15 -1444 ((-1303) $)) (-15 -2874 ((-1303) $)) (-15 -2020 ((-1303) $)) (-15 -1659 ((-1303) $)) (-15 -1517 ((-1303) $)) (-15 -2214 ((-1303) $)) (-15 -1470 ((-1303) $)) (-15 -1861 ((-1303) $)) (-15 -1630 ((-1303) $ (-560))) (-15 -3464 ((-1303) $ (-229))) (-15 -2664 ((-1303) $ (-1207))) (-15 -3805 ((-1303) $ (-1189))) (-15 -4469 ((-1303) $ (-1189) (-1189))) (-15 -3675 ((-1303) $)) (-15 -2394 ((-1303) $)) (-15 -3062 ((-1303) $)) (-15 -2519 ((-1303) $)) (-15 -1993 ((-1303) $)) (-15 -2935 ((-1303) $)) (-15 -2155 ((-1303) $)) (-15 -2833 ((-1303) $)) (-15 -3835 ((-1303) $)) (-15 -1824 ((-1303) $)) (-15 -4447 ((-1303) $)) (-15 -4157 ((-1303) $)) (-15 -2579 ((-1303) $)) (-15 -4162 ((-1303) $)) (-15 -1650 ((-560) $)) (-15 -3173 ((-229) $)) (-15 -1333 ((-1207) $)) (-15 -4047 ((-1189) $)) (-15 -2834 ((-2 (|:| |cd| (-1189)) (|:| -3614 (-1189))) $)) (-15 -4214 ((-1207) $)))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 13 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1565 (($) 16 T ELT)) (-3253 (($) 14 T ELT)) (-3863 (($) 17 T ELT)) (-2043 (($) 15 T ELT)) (-2473 (((-114) $ $) 9 T ELT)))
-(((-846) (-13 (-1132) (-10 -8 (-15 -3253 ($)) (-15 -1565 ($)) (-15 -3863 ($)) (-15 -2043 ($))))) (T -846))
-((-3253 (*1 *1) (-5 *1 (-846))) (-1565 (*1 *1) (-5 *1 (-846))) (-3863 (*1 *1) (-5 *1 (-846))) (-2043 (*1 *1) (-5 *1 (-846))))
-(-13 (-1132) (-10 -8 (-15 -3253 ($)) (-15 -1565 ($)) (-15 -3863 ($)) (-15 -2043 ($))))
-((-1538 (((-114) $ $) NIL T ELT)) (-4152 (($ (-848) (-663 (-1207))) 32 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1467 (((-848) $) 33 T ELT)) (-3445 (((-663 (-1207)) $) 34 T ELT)) (-1578 (((-887) $) 31 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-847) (-13 (-1132) (-10 -8 (-15 -1467 ((-848) $)) (-15 -3445 ((-663 (-1207)) $)) (-15 -4152 ($ (-848) (-663 (-1207))))))) (T -847))
-((-1467 (*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-847)))) (-3445 (*1 *2 *1) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-847)))) (-4152 (*1 *1 *2 *3) (-12 (-5 *2 (-848)) (-5 *3 (-663 (-1207))) (-5 *1 (-847)))))
-(-13 (-1132) (-10 -8 (-15 -1467 ((-848) $)) (-15 -3445 ((-663 (-1207)) $)) (-15 -4152 ($ (-848) (-663 (-1207))))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 23 T ELT) (($ (-1207)) 19 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1825 (((-114) $) 10 T ELT)) (-4323 (((-114) $) 9 T ELT)) (-1817 (((-114) $) 11 T ELT)) (-4253 (((-114) $) 8 T ELT)) (-2473 (((-114) $ $) 21 T ELT)))
-(((-848) (-13 (-1132) (-10 -8 (-15 -1578 ($ (-1207))) (-15 -4253 ((-114) $)) (-15 -4323 ((-114) $)) (-15 -1825 ((-114) $)) (-15 -1817 ((-114) $))))) (T -848))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-848)))) (-4253 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848)))) (-4323 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848)))) (-1825 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848)))) (-1817 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848)))))
-(-13 (-1132) (-10 -8 (-15 -1578 ($ (-1207))) (-15 -4253 ((-114) $)) (-15 -4323 ((-114) $)) (-15 -1825 ((-114) $)) (-15 -1817 ((-114) $))))
-((-2735 (((-1303) (-845) (-326 |#1|) (-114)) 23 T ELT) (((-1303) (-845) (-326 |#1|)) 88 T ELT) (((-1189) (-326 |#1|) (-114)) 87 T ELT) (((-1189) (-326 |#1|)) 86 T ELT)))
-(((-849 |#1|) (-10 -7 (-15 -2735 ((-1189) (-326 |#1|))) (-15 -2735 ((-1189) (-326 |#1|) (-114))) (-15 -2735 ((-1303) (-845) (-326 |#1|))) (-15 -2735 ((-1303) (-845) (-326 |#1|) (-114)))) (-13 (-843) (-1080))) (T -849))
-((-2735 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-845)) (-5 *4 (-326 *6)) (-5 *5 (-114)) (-4 *6 (-13 (-843) (-1080))) (-5 *2 (-1303)) (-5 *1 (-849 *6)))) (-2735 (*1 *2 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-843) (-1080))) (-5 *2 (-1303)) (-5 *1 (-849 *5)))) (-2735 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-114)) (-4 *5 (-13 (-843) (-1080))) (-5 *2 (-1189)) (-5 *1 (-849 *5)))) (-2735 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-843) (-1080))) (-5 *2 (-1189)) (-5 *1 (-849 *4)))))
-(-10 -7 (-15 -2735 ((-1189) (-326 |#1|))) (-15 -2735 ((-1189) (-326 |#1|) (-114))) (-15 -2735 ((-1303) (-845) (-326 |#1|))) (-15 -2735 ((-1303) (-845) (-326 |#1|) (-114))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-1624 (($ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-3888 ((|#1| $) 10 T ELT)) (-3967 (($ |#1|) 9 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-1417 (($ |#2| (-793)) NIL T ELT)) (-3011 (((-793) $) NIL T ELT)) (-1597 ((|#2| $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2894 (($ $) NIL (|has| |#1| (-240)) ELT) (($ $ (-793)) NIL (|has| |#1| (-240)) ELT)) (-3630 (((-793) $) NIL T ELT)) (-1578 (((-887) $) 17 T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-175)) ELT)) (-2305 ((|#2| $ (-793)) NIL T ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $) NIL (|has| |#1| (-240)) ELT) (($ $ (-793)) NIL (|has| |#1| (-240)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
-(((-850 |#1| |#2|) (-13 (-730 |#2|) (-10 -8 (IF (|has| |#1| (-240)) (-6 (-240)) |%noBranch|) (-15 -3967 ($ |#1|)) (-15 -3888 (|#1| $)))) (-730 |#2|) (-1080)) (T -850))
-((-3967 (*1 *1 *2) (-12 (-4 *3 (-1080)) (-5 *1 (-850 *2 *3)) (-4 *2 (-730 *3)))) (-3888 (*1 *2 *1) (-12 (-4 *2 (-730 *3)) (-5 *1 (-850 *2 *3)) (-4 *3 (-1080)))))
-(-13 (-730 |#2|) (-10 -8 (IF (|has| |#1| (-240)) (-6 (-240)) |%noBranch|) (-15 -3967 ($ |#1|)) (-15 -3888 (|#1| $))))
-((-3667 (((-323) (-1189) (-1189)) 12 T ELT)) (-2015 (((-114) (-1189) (-1189)) 34 T ELT)) (-2212 (((-114) (-1189)) 33 T ELT)) (-2396 (((-51) (-1189)) 25 T ELT)) (-4364 (((-51) (-1189)) 23 T ELT)) (-2308 (((-51) (-845)) 17 T ELT)) (-3408 (((-663 (-1189)) (-1189)) 28 T ELT)) (-1594 (((-663 (-1189))) 27 T ELT)))
-(((-851) (-10 -7 (-15 -2308 ((-51) (-845))) (-15 -4364 ((-51) (-1189))) (-15 -2396 ((-51) (-1189))) (-15 -1594 ((-663 (-1189)))) (-15 -3408 ((-663 (-1189)) (-1189))) (-15 -2212 ((-114) (-1189))) (-15 -2015 ((-114) (-1189) (-1189))) (-15 -3667 ((-323) (-1189) (-1189))))) (T -851))
-((-3667 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323)) (-5 *1 (-851)))) (-2015 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-114)) (-5 *1 (-851)))) (-2212 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-114)) (-5 *1 (-851)))) (-3408 (*1 *2 *3) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-851)) (-5 *3 (-1189)))) (-1594 (*1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-851)))) (-2396 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-51)) (-5 *1 (-851)))) (-4364 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-51)) (-5 *1 (-851)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-51)) (-5 *1 (-851)))))
-(-10 -7 (-15 -2308 ((-51) (-845))) (-15 -4364 ((-51) (-1189))) (-15 -2396 ((-51) (-1189))) (-15 -1594 ((-663 (-1189)))) (-15 -3408 ((-663 (-1189)) (-1189))) (-15 -2212 ((-114) (-1189))) (-15 -2015 ((-114) (-1189) (-1189))) (-15 -3667 ((-323) (-1189) (-1189))))
-((-1538 (((-114) $ $) 20 T ELT)) (-4028 (($ |#1| $) 77 T ELT) (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1830 (($ $ $) 73 T ELT)) (-3963 (((-114) $ $) 74 T ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-1850 (($ (-663 |#1|)) 69 T ELT) (($) 68 T ELT)) (-3500 (($ (-1 (-114) |#1|) $) 46 (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) 56 (|has| $ (-6 -4508)) ELT)) (-2238 (($) 7 T CONST)) (-2944 (($ $) 63 T ELT)) (-3606 (($ $) 59 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3390 (($ |#1| $) 48 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) |#1|) $) 47 (|has| $ (-6 -4508)) ELT)) (-2375 (($ |#1| $) 58 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 55 (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4508)) ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-2250 (((-114) $ $) 65 T ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-3825 ((|#1| $) 79 T ELT)) (-1708 (($ $ $) 82 T ELT)) (-3223 (($ $ $) 81 T ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2820 ((|#1| $) 80 T ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-1905 (((-1189) $) 23 T ELT)) (-1903 (($ $ $) 70 T ELT)) (-1576 ((|#1| $) 40 T ELT)) (-3629 (($ |#1| $) 41 T ELT) (($ |#1| $ (-793)) 64 T ELT)) (-3855 (((-1151) $) 22 T ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 52 T ELT)) (-2615 ((|#1| $) 42 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-1797 (((-663 (-2 (|:| -2460 |#1|) (|:| -3865 (-793)))) $) 62 T ELT)) (-3733 (($ $ |#1|) 72 T ELT) (($ $ $) 71 T ELT)) (-3897 (($) 50 T ELT) (($ (-663 |#1|)) 49 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) 60 (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 51 T ELT)) (-1578 (((-887) $) 18 T ELT)) (-1364 (($ (-663 |#1|)) 67 T ELT) (($) 66 T ELT)) (-2275 (((-114) $ $) 21 T ELT)) (-3376 (($ (-663 |#1|)) 43 T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 T ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-1581 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-843)) (-5 *3 (-845)) (-5 *4 (-114)) (-5 *2 (-1303)))) (-1581 (*1 *2 *3 *1) (-12 (-4 *1 (-843)) (-5 *3 (-845)) (-5 *2 (-1303)))) (-1581 (*1 *2 *1 *3) (-12 (-4 *1 (-843)) (-5 *3 (-114)) (-5 *2 (-1189)))) (-1581 (*1 *2 *1) (-12 (-4 *1 (-843)) (-5 *2 (-1189)))))
+(-13 (-10 -8 (-15 -1581 ((-1189) $)) (-15 -1581 ((-1189) $ (-114))) (-15 -1581 ((-1303) (-845) $)) (-15 -1581 ((-1303) (-845) $ (-114)))))
+((-4314 (($ (-1151)) 7 T ELT)) (-1350 (((-114) $ (-1189) (-1151)) 15 T ELT)) (-2323 (((-845) $) 12 T ELT)) (-4057 (((-845) $) 11 T ELT)) (-4273 (((-1303) $) 9 T ELT)) (-1885 (((-114) $ (-1151)) 16 T ELT)))
+(((-844) (-10 -8 (-15 -4314 ($ (-1151))) (-15 -4273 ((-1303) $)) (-15 -4057 ((-845) $)) (-15 -2323 ((-845) $)) (-15 -1350 ((-114) $ (-1189) (-1151))) (-15 -1885 ((-114) $ (-1151))))) (T -844))
+((-1885 (*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-114)) (-5 *1 (-844)))) (-1350 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-1151)) (-5 *2 (-114)) (-5 *1 (-844)))) (-2323 (*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-844)))) (-4057 (*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-844)))) (-4273 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))) (-4314 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-844)))))
+(-10 -8 (-15 -4314 ($ (-1151))) (-15 -4273 ((-1303) $)) (-15 -4057 ((-845) $)) (-15 -2323 ((-845) $)) (-15 -1350 ((-114) $ (-1189) (-1151))) (-15 -1885 ((-114) $ (-1151))))
+((-3408 (((-1303) $ (-846)) 12 T ELT)) (-3323 (((-1303) $ (-1207)) 32 T ELT)) (-1809 (((-1303) $ (-1189) (-1189)) 34 T ELT)) (-1707 (((-1303) $ (-1189)) 33 T ELT)) (-4115 (((-1303) $) 19 T ELT)) (-3625 (((-1303) $ (-560)) 28 T ELT)) (-1532 (((-1303) $ (-229)) 30 T ELT)) (-1514 (((-1303) $) 18 T ELT)) (-4160 (((-1303) $) 26 T ELT)) (-1888 (((-1303) $) 25 T ELT)) (-2901 (((-1303) $) 23 T ELT)) (-1386 (((-1303) $) 24 T ELT)) (-2676 (((-1303) $) 22 T ELT)) (-3188 (((-1303) $) 21 T ELT)) (-3713 (((-1303) $) 20 T ELT)) (-3089 (((-1303) $) 16 T ELT)) (-4177 (((-1303) $) 17 T ELT)) (-4431 (((-1303) $) 15 T ELT)) (-1685 (((-1303) $) 14 T ELT)) (-1936 (((-1303) $) 13 T ELT)) (-2724 (($ (-1189) (-846)) 9 T ELT)) (-1431 (($ (-1189) (-1189) (-846)) 8 T ELT)) (-3477 (((-1207) $) 51 T ELT)) (-1403 (((-1207) $) 55 T ELT)) (-1371 (((-2 (|:| |cd| (-1189)) (|:| -4389 (-1189))) $) 54 T ELT)) (-2225 (((-1189) $) 52 T ELT)) (-2041 (((-1303) $) 41 T ELT)) (-3854 (((-560) $) 49 T ELT)) (-1705 (((-229) $) 50 T ELT)) (-4242 (((-1303) $) 40 T ELT)) (-2136 (((-1303) $) 48 T ELT)) (-3767 (((-1303) $) 47 T ELT)) (-1619 (((-1303) $) 45 T ELT)) (-2092 (((-1303) $) 46 T ELT)) (-1848 (((-1303) $) 44 T ELT)) (-2005 (((-1303) $) 43 T ELT)) (-1359 (((-1303) $) 42 T ELT)) (-4433 (((-1303) $) 38 T ELT)) (-2896 (((-1303) $) 39 T ELT)) (-3026 (((-1303) $) 37 T ELT)) (-2573 (((-1303) $) 36 T ELT)) (-3065 (((-1303) $) 35 T ELT)) (-2342 (((-1303) $) 11 T ELT)))
+(((-845) (-10 -8 (-15 -1431 ($ (-1189) (-1189) (-846))) (-15 -2724 ($ (-1189) (-846))) (-15 -2342 ((-1303) $)) (-15 -3408 ((-1303) $ (-846))) (-15 -1936 ((-1303) $)) (-15 -1685 ((-1303) $)) (-15 -4431 ((-1303) $)) (-15 -3089 ((-1303) $)) (-15 -4177 ((-1303) $)) (-15 -1514 ((-1303) $)) (-15 -4115 ((-1303) $)) (-15 -3713 ((-1303) $)) (-15 -3188 ((-1303) $)) (-15 -2676 ((-1303) $)) (-15 -2901 ((-1303) $)) (-15 -1386 ((-1303) $)) (-15 -1888 ((-1303) $)) (-15 -4160 ((-1303) $)) (-15 -3625 ((-1303) $ (-560))) (-15 -1532 ((-1303) $ (-229))) (-15 -3323 ((-1303) $ (-1207))) (-15 -1707 ((-1303) $ (-1189))) (-15 -1809 ((-1303) $ (-1189) (-1189))) (-15 -3065 ((-1303) $)) (-15 -2573 ((-1303) $)) (-15 -3026 ((-1303) $)) (-15 -4433 ((-1303) $)) (-15 -2896 ((-1303) $)) (-15 -4242 ((-1303) $)) (-15 -2041 ((-1303) $)) (-15 -1359 ((-1303) $)) (-15 -2005 ((-1303) $)) (-15 -1848 ((-1303) $)) (-15 -1619 ((-1303) $)) (-15 -2092 ((-1303) $)) (-15 -3767 ((-1303) $)) (-15 -2136 ((-1303) $)) (-15 -3854 ((-560) $)) (-15 -1705 ((-229) $)) (-15 -3477 ((-1207) $)) (-15 -2225 ((-1189) $)) (-15 -1371 ((-2 (|:| |cd| (-1189)) (|:| -4389 (-1189))) $)) (-15 -1403 ((-1207) $)))) (T -845))
+((-1403 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-845)))) (-1371 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1189)) (|:| -4389 (-1189)))) (-5 *1 (-845)))) (-2225 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-845)))) (-3477 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-845)))) (-1705 (*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-845)))) (-3854 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-845)))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-3767 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2092 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-1848 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2005 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-1359 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2041 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-4242 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2896 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-4433 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-3026 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2573 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-3065 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-1809 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-845)))) (-1707 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-845)))) (-3323 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-845)))) (-1532 (*1 *2 *1 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1303)) (-5 *1 (-845)))) (-3625 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-845)))) (-4160 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-1888 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-1386 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2901 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2676 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-3188 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-3713 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-4115 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-4177 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-4431 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-1685 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-1936 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-3408 (*1 *2 *1 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1303)) (-5 *1 (-845)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))) (-2724 (*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-846)) (-5 *1 (-845)))) (-1431 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-846)) (-5 *1 (-845)))))
+(-10 -8 (-15 -1431 ($ (-1189) (-1189) (-846))) (-15 -2724 ($ (-1189) (-846))) (-15 -2342 ((-1303) $)) (-15 -3408 ((-1303) $ (-846))) (-15 -1936 ((-1303) $)) (-15 -1685 ((-1303) $)) (-15 -4431 ((-1303) $)) (-15 -3089 ((-1303) $)) (-15 -4177 ((-1303) $)) (-15 -1514 ((-1303) $)) (-15 -4115 ((-1303) $)) (-15 -3713 ((-1303) $)) (-15 -3188 ((-1303) $)) (-15 -2676 ((-1303) $)) (-15 -2901 ((-1303) $)) (-15 -1386 ((-1303) $)) (-15 -1888 ((-1303) $)) (-15 -4160 ((-1303) $)) (-15 -3625 ((-1303) $ (-560))) (-15 -1532 ((-1303) $ (-229))) (-15 -3323 ((-1303) $ (-1207))) (-15 -1707 ((-1303) $ (-1189))) (-15 -1809 ((-1303) $ (-1189) (-1189))) (-15 -3065 ((-1303) $)) (-15 -2573 ((-1303) $)) (-15 -3026 ((-1303) $)) (-15 -4433 ((-1303) $)) (-15 -2896 ((-1303) $)) (-15 -4242 ((-1303) $)) (-15 -2041 ((-1303) $)) (-15 -1359 ((-1303) $)) (-15 -2005 ((-1303) $)) (-15 -1848 ((-1303) $)) (-15 -1619 ((-1303) $)) (-15 -2092 ((-1303) $)) (-15 -3767 ((-1303) $)) (-15 -2136 ((-1303) $)) (-15 -3854 ((-560) $)) (-15 -1705 ((-229) $)) (-15 -3477 ((-1207) $)) (-15 -2225 ((-1189) $)) (-15 -1371 ((-2 (|:| |cd| (-1189)) (|:| -4389 (-1189))) $)) (-15 -1403 ((-1207) $)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 13 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1757 (($) 16 T ELT)) (-4444 (($) 14 T ELT)) (-4170 (($) 17 T ELT)) (-2172 (($) 15 T ELT)) (-2340 (((-114) $ $) 9 T ELT)))
+(((-846) (-13 (-1132) (-10 -8 (-15 -4444 ($)) (-15 -1757 ($)) (-15 -4170 ($)) (-15 -2172 ($))))) (T -846))
+((-4444 (*1 *1) (-5 *1 (-846))) (-1757 (*1 *1) (-5 *1 (-846))) (-4170 (*1 *1) (-5 *1 (-846))) (-2172 (*1 *1) (-5 *1 (-846))))
+(-13 (-1132) (-10 -8 (-15 -4444 ($)) (-15 -1757 ($)) (-15 -4170 ($)) (-15 -2172 ($))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2049 (($ (-848) (-663 (-1207))) 32 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1464 (((-848) $) 33 T ELT)) (-2562 (((-663 (-1207)) $) 34 T ELT)) (-3913 (((-887) $) 31 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-847) (-13 (-1132) (-10 -8 (-15 -1464 ((-848) $)) (-15 -2562 ((-663 (-1207)) $)) (-15 -2049 ($ (-848) (-663 (-1207))))))) (T -847))
+((-1464 (*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-847)))) (-2562 (*1 *2 *1) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-847)))) (-2049 (*1 *1 *2 *3) (-12 (-5 *2 (-848)) (-5 *3 (-663 (-1207))) (-5 *1 (-847)))))
+(-13 (-1132) (-10 -8 (-15 -1464 ((-848) $)) (-15 -2562 ((-663 (-1207)) $)) (-15 -2049 ($ (-848) (-663 (-1207))))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 23 T ELT) (($ (-1207)) 19 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1862 (((-114) $) 10 T ELT)) (-3087 (((-114) $) 9 T ELT)) (-1763 (((-114) $) 11 T ELT)) (-3718 (((-114) $) 8 T ELT)) (-2340 (((-114) $ $) 21 T ELT)))
+(((-848) (-13 (-1132) (-10 -8 (-15 -3913 ($ (-1207))) (-15 -3718 ((-114) $)) (-15 -3087 ((-114) $)) (-15 -1862 ((-114) $)) (-15 -1763 ((-114) $))))) (T -848))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-848)))) (-3718 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848)))) (-3087 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848)))) (-1862 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848)))) (-1763 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848)))))
+(-13 (-1132) (-10 -8 (-15 -3913 ($ (-1207))) (-15 -3718 ((-114) $)) (-15 -3087 ((-114) $)) (-15 -1862 ((-114) $)) (-15 -1763 ((-114) $))))
+((-1581 (((-1303) (-845) (-326 |#1|) (-114)) 23 T ELT) (((-1303) (-845) (-326 |#1|)) 88 T ELT) (((-1189) (-326 |#1|) (-114)) 87 T ELT) (((-1189) (-326 |#1|)) 86 T ELT)))
+(((-849 |#1|) (-10 -7 (-15 -1581 ((-1189) (-326 |#1|))) (-15 -1581 ((-1189) (-326 |#1|) (-114))) (-15 -1581 ((-1303) (-845) (-326 |#1|))) (-15 -1581 ((-1303) (-845) (-326 |#1|) (-114)))) (-13 (-843) (-1080))) (T -849))
+((-1581 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-845)) (-5 *4 (-326 *6)) (-5 *5 (-114)) (-4 *6 (-13 (-843) (-1080))) (-5 *2 (-1303)) (-5 *1 (-849 *6)))) (-1581 (*1 *2 *3 *4) (-12 (-5 *3 (-845)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-843) (-1080))) (-5 *2 (-1303)) (-5 *1 (-849 *5)))) (-1581 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-114)) (-4 *5 (-13 (-843) (-1080))) (-5 *2 (-1189)) (-5 *1 (-849 *5)))) (-1581 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-843) (-1080))) (-5 *2 (-1189)) (-5 *1 (-849 *4)))))
+(-10 -7 (-15 -1581 ((-1189) (-326 |#1|))) (-15 -1581 ((-1189) (-326 |#1|) (-114))) (-15 -1581 ((-1303) (-845) (-326 |#1|))) (-15 -1581 ((-1303) (-845) (-326 |#1|) (-114))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3062 (($ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4388 ((|#1| $) 10 T ELT)) (-3494 (($ |#1|) 9 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-4139 (($ |#2| (-793)) NIL T ELT)) (-3765 (((-793) $) NIL T ELT)) (-3037 ((|#2| $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3161 (($ $) NIL (|has| |#1| (-240)) ELT) (($ $ (-793)) NIL (|has| |#1| (-240)) ELT)) (-3900 (((-793) $) NIL T ELT)) (-3913 (((-887) $) 17 T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-175)) ELT)) (-2920 ((|#2| $ (-793)) NIL T ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $) NIL (|has| |#1| (-240)) ELT) (($ $ (-793)) NIL (|has| |#1| (-240)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
+(((-850 |#1| |#2|) (-13 (-730 |#2|) (-10 -8 (IF (|has| |#1| (-240)) (-6 (-240)) |%noBranch|) (-15 -3494 ($ |#1|)) (-15 -4388 (|#1| $)))) (-730 |#2|) (-1080)) (T -850))
+((-3494 (*1 *1 *2) (-12 (-4 *3 (-1080)) (-5 *1 (-850 *2 *3)) (-4 *2 (-730 *3)))) (-4388 (*1 *2 *1) (-12 (-4 *2 (-730 *3)) (-5 *1 (-850 *2 *3)) (-4 *3 (-1080)))))
+(-13 (-730 |#2|) (-10 -8 (IF (|has| |#1| (-240)) (-6 (-240)) |%noBranch|) (-15 -3494 ($ |#1|)) (-15 -4388 (|#1| $))))
+((-2990 (((-323) (-1189) (-1189)) 12 T ELT)) (-3138 (((-114) (-1189) (-1189)) 34 T ELT)) (-1370 (((-114) (-1189)) 33 T ELT)) (-2594 (((-51) (-1189)) 25 T ELT)) (-3379 (((-51) (-1189)) 23 T ELT)) (-2955 (((-51) (-845)) 17 T ELT)) (-2235 (((-663 (-1189)) (-1189)) 28 T ELT)) (-3306 (((-663 (-1189))) 27 T ELT)))
+(((-851) (-10 -7 (-15 -2955 ((-51) (-845))) (-15 -3379 ((-51) (-1189))) (-15 -2594 ((-51) (-1189))) (-15 -3306 ((-663 (-1189)))) (-15 -2235 ((-663 (-1189)) (-1189))) (-15 -1370 ((-114) (-1189))) (-15 -3138 ((-114) (-1189) (-1189))) (-15 -2990 ((-323) (-1189) (-1189))))) (T -851))
+((-2990 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323)) (-5 *1 (-851)))) (-3138 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-114)) (-5 *1 (-851)))) (-1370 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-114)) (-5 *1 (-851)))) (-2235 (*1 *2 *3) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-851)) (-5 *3 (-1189)))) (-3306 (*1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-851)))) (-2594 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-51)) (-5 *1 (-851)))) (-3379 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-51)) (-5 *1 (-851)))) (-2955 (*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-51)) (-5 *1 (-851)))))
+(-10 -7 (-15 -2955 ((-51) (-845))) (-15 -3379 ((-51) (-1189))) (-15 -2594 ((-51) (-1189))) (-15 -3306 ((-663 (-1189)))) (-15 -2235 ((-663 (-1189)) (-1189))) (-15 -1370 ((-114) (-1189))) (-15 -3138 ((-114) (-1189) (-1189))) (-15 -2990 ((-323) (-1189) (-1189))))
+((-2243 (((-114) $ $) 20 T ELT)) (-3574 (($ |#1| $) 77 T ELT) (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1925 (($ $ $) 73 T ELT)) (-3895 (((-114) $ $) 74 T ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-2512 (($ (-663 |#1|)) 69 T ELT) (($) 68 T ELT)) (-1864 (($ (-1 (-114) |#1|) $) 46 (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) 56 (|has| $ (-6 -4508)) ELT)) (-3525 (($) 7 T CONST)) (-4329 (($ $) 63 T ELT)) (-3658 (($ $) 59 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2091 (($ |#1| $) 48 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) |#1|) $) 47 (|has| $ (-6 -4508)) ELT)) (-3033 (($ |#1| $) 58 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 55 (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4508)) ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-3653 (((-114) $ $) 65 T ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-2932 ((|#1| $) 79 T ELT)) (-3204 (($ $ $) 82 T ELT)) (-4167 (($ $ $) 81 T ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4379 ((|#1| $) 80 T ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-3358 (((-1189) $) 23 T ELT)) (-3334 (($ $ $) 70 T ELT)) (-1878 ((|#1| $) 40 T ELT)) (-3888 (($ |#1| $) 41 T ELT) (($ |#1| $ (-793)) 64 T ELT)) (-3376 (((-1151) $) 22 T ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 52 T ELT)) (-2796 ((|#1| $) 42 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1553 (((-663 (-2 (|:| -3067 |#1|) (|:| -3384 (-793)))) $) 62 T ELT)) (-2358 (($ $ |#1|) 72 T ELT) (($ $ $) 71 T ELT)) (-4468 (($) 50 T ELT) (($ (-663 |#1|)) 49 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) 60 (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 51 T ELT)) (-3913 (((-887) $) 18 T ELT)) (-4074 (($ (-663 |#1|)) 67 T ELT) (($) 66 T ELT)) (-3925 (((-114) $ $) 21 T ELT)) (-3184 (($ (-663 |#1|)) 43 T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 T ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-852 |#1|) (-142) (-871)) (T -852))
-((-3825 (*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-871)))))
-(-13 (-759 |t#1|) (-999 |t#1|) (-10 -8 (-15 -3825 (|t#1| $))))
+((-2932 (*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-871)))))
+(-13 (-759 |t#1|) (-999 |t#1|) (-10 -8 (-15 -2932 (|t#1| $))))
(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-632 (-887)) . T) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-717 |#1|) . T) ((-759 |#1|) . T) ((-999 |#1|) . T) ((-1130 |#1|) . T) ((-1132) . T) ((-1247) . T))
-((-3628 (((-1303) (-1151) (-1151)) 48 T ELT)) (-4197 (((-1303) (-844) (-51)) 45 T ELT)) (-3014 (((-51) (-844)) 16 T ELT)))
-(((-853) (-10 -7 (-15 -3014 ((-51) (-844))) (-15 -4197 ((-1303) (-844) (-51))) (-15 -3628 ((-1303) (-1151) (-1151))))) (T -853))
-((-3628 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1303)) (-5 *1 (-853)))) (-4197 (*1 *2 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-51)) (-5 *2 (-1303)) (-5 *1 (-853)))) (-3014 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-51)) (-5 *1 (-853)))))
-(-10 -7 (-15 -3014 ((-51) (-844))) (-15 -4197 ((-1303) (-844) (-51))) (-15 -3628 ((-1303) (-1151) (-1151))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL (|has| |#1| (-21)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-2138 (((-560) $) NIL (|has| |#1| (-870)) ELT)) (-2238 (($) NIL (|has| |#1| (-21)) CONST)) (-2539 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 15 T ELT)) (-3330 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) 9 T ELT)) (-1990 (((-3 $ "failed") $) 42 (|has| |#1| (-870)) ELT)) (-3643 (((-3 (-421 (-560)) "failed") $) 52 (|has| |#1| (-559)) ELT)) (-3469 (((-114) $) 46 (|has| |#1| (-559)) ELT)) (-3197 (((-421 (-560)) $) 49 (|has| |#1| (-559)) ELT)) (-2928 (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-1581 (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-2960 (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-3825 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2820 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3806 (($) 13 T ELT)) (-2931 (((-114) $) 12 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1518 (((-114) $) 11 T ELT)) (-1578 (((-887) $) 18 T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (($ |#1|) 8 T ELT) (($ (-560)) NIL (-2304 (|has| |#1| (-870)) (|has| |#1| (-1069 (-560)))) ELT)) (-2930 (((-793)) 36 (|has| |#1| (-870)) CONST)) (-2275 (((-114) $ $) 54 T ELT)) (-2282 (($ $) NIL (|has| |#1| (-870)) ELT)) (-2001 (($) 23 (|has| |#1| (-21)) CONST)) (-2011 (($) 33 (|has| |#1| (-870)) CONST)) (-2536 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-2473 (((-114) $ $) 21 T ELT)) (-2521 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-2495 (((-114) $ $) 45 (|has| |#1| (-870)) ELT)) (-2580 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-2567 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-948)) NIL (|has| |#1| (-870)) ELT) (($ $ (-793)) NIL (|has| |#1| (-870)) ELT)) (* (($ $ $) 39 (|has| |#1| (-870)) ELT) (($ (-560) $) 27 (|has| |#1| (-21)) ELT) (($ (-793) $) NIL (|has| |#1| (-21)) ELT) (($ (-948) $) NIL (|has| |#1| (-21)) ELT)))
-(((-854 |#1|) (-13 (-1132) (-426 |#1|) (-10 -8 (-15 -3806 ($)) (-15 -1518 ((-114) $)) (-15 -2931 ((-114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3469 ((-114) $)) (-15 -3197 ((-421 (-560)) $)) (-15 -3643 ((-3 (-421 (-560)) "failed") $))) |%noBranch|))) (-1132)) (T -854))
-((-3806 (*1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1132)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-1132)))) (-2931 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-1132)))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-559)) (-4 *3 (-1132)))) (-3197 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-854 *3)) (-4 *3 (-559)) (-4 *3 (-1132)))) (-3643 (*1 *2 *1) (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-854 *3)) (-4 *3 (-559)) (-4 *3 (-1132)))))
-(-13 (-1132) (-426 |#1|) (-10 -8 (-15 -3806 ($)) (-15 -1518 ((-114) $)) (-15 -2931 ((-114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3469 ((-114) $)) (-15 -3197 ((-421 (-560)) $)) (-15 -3643 ((-3 (-421 (-560)) "failed") $))) |%noBranch|)))
-((-3957 (((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|)) 12 T ELT) (((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|)) 13 T ELT)))
-(((-855 |#1| |#2|) (-10 -7 (-15 -3957 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|))) (-15 -3957 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|)))) (-1132) (-1132)) (T -855))
-((-3957 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-854 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *1 (-855 *5 *6)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *2 (-854 *6)) (-5 *1 (-855 *5 *6)))))
-(-10 -7 (-15 -3957 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|))) (-15 -3957 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-115) "failed") $) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT) (((-115) $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-3425 ((|#1| (-115) |#1|) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-1665 (($ |#1| (-374 (-115))) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2154 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2041 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-3924 ((|#1| $ |#1|) NIL T ELT)) (-2470 ((|#1| |#1|) NIL (|has| |#1| (-175)) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-115)) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-4344 (($ $) NIL (|has| |#1| (-175)) ELT) (($ $ $) NIL (|has| |#1| (-175)) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ (-115) (-560)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT)))
-(((-856 |#1|) (-13 (-1080) (-1069 |#1|) (-1069 (-115)) (-298 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -4344 ($ $)) (-15 -4344 ($ $ $)) (-15 -2470 (|#1| |#1|))) |%noBranch|) (-15 -2041 ($ $ (-1 |#1| |#1|))) (-15 -2154 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-560))) (-15 ** ($ $ (-560))) (-15 -3425 (|#1| (-115) |#1|)) (-15 -1665 ($ |#1| (-374 (-115)))))) (-1080)) (T -856))
-((-4344 (*1 *1 *1) (-12 (-5 *1 (-856 *2)) (-4 *2 (-175)) (-4 *2 (-1080)))) (-4344 (*1 *1 *1 *1) (-12 (-5 *1 (-856 *2)) (-4 *2 (-175)) (-4 *2 (-1080)))) (-2470 (*1 *2 *2) (-12 (-5 *1 (-856 *2)) (-4 *2 (-175)) (-4 *2 (-1080)))) (-2041 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-856 *3)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-856 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-560)) (-5 *1 (-856 *4)) (-4 *4 (-1080)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-856 *3)) (-4 *3 (-1080)))) (-3425 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-856 *2)) (-4 *2 (-1080)))) (-1665 (*1 *1 *2 *3) (-12 (-5 *3 (-374 (-115))) (-5 *1 (-856 *2)) (-4 *2 (-1080)))))
-(-13 (-1080) (-1069 |#1|) (-1069 (-115)) (-298 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -4344 ($ $)) (-15 -4344 ($ $ $)) (-15 -2470 (|#1| |#1|))) |%noBranch|) (-15 -2041 ($ $ (-1 |#1| |#1|))) (-15 -2154 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-560))) (-15 ** ($ $ (-560))) (-15 -3425 (|#1| (-115) |#1|)) (-15 -1665 ($ |#1| (-374 (-115))))))
-((-2784 (((-114) $ |#2|) 14 T ELT)) (-1578 (((-887) $) 11 T ELT)))
-(((-857 |#1| |#2|) (-10 -8 (-15 -2784 ((-114) |#1| |#2|)) (-15 -1578 ((-887) |#1|))) (-858 |#2|) (-1132)) (T -857))
-NIL
-(-10 -8 (-15 -2784 ((-114) |#1| |#2|)) (-15 -1578 ((-887) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-3614 ((|#1| $) 16 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-2784 (((-114) $ |#1|) 14 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-3617 (((-55) $) 15 T ELT)) (-2473 (((-114) $ $) 8 T ELT)))
+((-3874 (((-1303) (-1151) (-1151)) 48 T ELT)) (-4425 (((-1303) (-844) (-51)) 45 T ELT)) (-3789 (((-51) (-844)) 16 T ELT)))
+(((-853) (-10 -7 (-15 -3789 ((-51) (-844))) (-15 -4425 ((-1303) (-844) (-51))) (-15 -3874 ((-1303) (-1151) (-1151))))) (T -853))
+((-3874 (*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1303)) (-5 *1 (-853)))) (-4425 (*1 *2 *3 *4) (-12 (-5 *3 (-844)) (-5 *4 (-51)) (-5 *2 (-1303)) (-5 *1 (-853)))) (-3789 (*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-51)) (-5 *1 (-853)))))
+(-10 -7 (-15 -3789 ((-51) (-844))) (-15 -4425 ((-1303) (-844) (-51))) (-15 -3874 ((-1303) (-1151) (-1151))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL (|has| |#1| (-21)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1869 (((-560) $) NIL (|has| |#1| (-870)) ELT)) (-3525 (($) NIL (|has| |#1| (-21)) CONST)) (-3929 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 15 T ELT)) (-3649 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) 9 T ELT)) (-2873 (((-3 $ "failed") $) 42 (|has| |#1| (-870)) ELT)) (-2743 (((-3 (-421 (-560)) "failed") $) 52 (|has| |#1| (-559)) ELT)) (-1574 (((-114) $) 46 (|has| |#1| (-559)) ELT)) (-1957 (((-421 (-560)) $) 49 (|has| |#1| (-559)) ELT)) (-4172 (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-1918 (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-4470 (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4379 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2517 (($) 13 T ELT)) (-4202 (((-114) $) 12 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2916 (((-114) $) 11 T ELT)) (-3913 (((-887) $) 18 T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (($ |#1|) 8 T ELT) (($ (-560)) NIL (-2196 (|has| |#1| (-870)) (|has| |#1| (-1069 (-560)))) ELT)) (-4191 (((-793)) 36 (|has| |#1| (-870)) CONST)) (-3925 (((-114) $ $) 54 T ELT)) (-2719 (($ $) NIL (|has| |#1| (-870)) ELT)) (-1446 (($) 23 (|has| |#1| (-21)) CONST)) (-1456 (($) 33 (|has| |#1| (-870)) CONST)) (-2396 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-2340 (((-114) $ $) 21 T ELT)) (-2386 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-2362 (((-114) $ $) 45 (|has| |#1| (-870)) ELT)) (-2441 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-2429 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-948)) NIL (|has| |#1| (-870)) ELT) (($ $ (-793)) NIL (|has| |#1| (-870)) ELT)) (* (($ $ $) 39 (|has| |#1| (-870)) ELT) (($ (-560) $) 27 (|has| |#1| (-21)) ELT) (($ (-793) $) NIL (|has| |#1| (-21)) ELT) (($ (-948) $) NIL (|has| |#1| (-21)) ELT)))
+(((-854 |#1|) (-13 (-1132) (-426 |#1|) (-10 -8 (-15 -2517 ($)) (-15 -2916 ((-114) $)) (-15 -4202 ((-114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -1574 ((-114) $)) (-15 -1957 ((-421 (-560)) $)) (-15 -2743 ((-3 (-421 (-560)) "failed") $))) |%noBranch|))) (-1132)) (T -854))
+((-2517 (*1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1132)))) (-2916 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-1132)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-1132)))) (-1574 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-559)) (-4 *3 (-1132)))) (-1957 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-854 *3)) (-4 *3 (-559)) (-4 *3 (-1132)))) (-2743 (*1 *2 *1) (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-854 *3)) (-4 *3 (-559)) (-4 *3 (-1132)))))
+(-13 (-1132) (-426 |#1|) (-10 -8 (-15 -2517 ($)) (-15 -2916 ((-114) $)) (-15 -4202 ((-114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -1574 ((-114) $)) (-15 -1957 ((-421 (-560)) $)) (-15 -2743 ((-3 (-421 (-560)) "failed") $))) |%noBranch|)))
+((-2260 (((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|)) 12 T ELT) (((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|)) 13 T ELT)))
+(((-855 |#1| |#2|) (-10 -7 (-15 -2260 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|))) (-15 -2260 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|)))) (-1132) (-1132)) (T -855))
+((-2260 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-854 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *1 (-855 *5 *6)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *2 (-854 *6)) (-5 *1 (-855 *5 *6)))))
+(-10 -7 (-15 -2260 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|))) (-15 -2260 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-115) "failed") $) NIL T ELT)) (-3649 ((|#1| $) NIL T ELT) (((-115) $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-2388 ((|#1| (-115) |#1|) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-2725 (($ |#1| (-374 (-115))) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2031 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2154 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-1507 ((|#1| $ |#1|) NIL T ELT)) (-2072 ((|#1| |#1|) NIL (|has| |#1| (-175)) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-115)) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-3244 (($ $) NIL (|has| |#1| (-175)) ELT) (($ $ $) NIL (|has| |#1| (-175)) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ (-115) (-560)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT)))
+(((-856 |#1|) (-13 (-1080) (-1069 |#1|) (-1069 (-115)) (-298 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -3244 ($ $)) (-15 -3244 ($ $ $)) (-15 -2072 (|#1| |#1|))) |%noBranch|) (-15 -2154 ($ $ (-1 |#1| |#1|))) (-15 -2031 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-560))) (-15 ** ($ $ (-560))) (-15 -2388 (|#1| (-115) |#1|)) (-15 -2725 ($ |#1| (-374 (-115)))))) (-1080)) (T -856))
+((-3244 (*1 *1 *1) (-12 (-5 *1 (-856 *2)) (-4 *2 (-175)) (-4 *2 (-1080)))) (-3244 (*1 *1 *1 *1) (-12 (-5 *1 (-856 *2)) (-4 *2 (-175)) (-4 *2 (-1080)))) (-2072 (*1 *2 *2) (-12 (-5 *1 (-856 *2)) (-4 *2 (-175)) (-4 *2 (-1080)))) (-2154 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-856 *3)))) (-2031 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-856 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-560)) (-5 *1 (-856 *4)) (-4 *4 (-1080)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-856 *3)) (-4 *3 (-1080)))) (-2388 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-856 *2)) (-4 *2 (-1080)))) (-2725 (*1 *1 *2 *3) (-12 (-5 *3 (-374 (-115))) (-5 *1 (-856 *2)) (-4 *2 (-1080)))))
+(-13 (-1080) (-1069 |#1|) (-1069 (-115)) (-298 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -3244 ($ $)) (-15 -3244 ($ $ $)) (-15 -2072 (|#1| |#1|))) |%noBranch|) (-15 -2154 ($ $ (-1 |#1| |#1|))) (-15 -2031 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-560))) (-15 ** ($ $ (-560))) (-15 -2388 (|#1| (-115) |#1|)) (-15 -2725 ($ |#1| (-374 (-115))))))
+((-2060 (((-114) $ |#2|) 14 T ELT)) (-3913 (((-887) $) 11 T ELT)))
+(((-857 |#1| |#2|) (-10 -8 (-15 -2060 ((-114) |#1| |#2|)) (-15 -3913 ((-887) |#1|))) (-858 |#2|) (-1132)) (T -857))
+NIL
+(-10 -8 (-15 -2060 ((-114) |#1| |#2|)) (-15 -3913 ((-887) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-4389 ((|#1| $) 16 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2060 (((-114) $ |#1|) 14 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-3780 (((-55) $) 15 T ELT)) (-2340 (((-114) $ $) 8 T ELT)))
(((-858 |#1|) (-142) (-1132)) (T -858))
-((-3614 (*1 *2 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1132)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1132)) (-5 *2 (-55)))) (-2784 (*1 *2 *1 *3) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1132)) (-5 *2 (-114)))))
-(-13 (-1132) (-10 -8 (-15 -3614 (|t#1| $)) (-15 -3617 ((-55) $)) (-15 -2784 ((-114) $ |t#1|))))
+((-4389 (*1 *2 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1132)))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1132)) (-5 *2 (-55)))) (-2060 (*1 *2 *1 *3) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1132)) (-5 *2 (-114)))))
+(-13 (-1132) (-10 -8 (-15 -4389 (|t#1| $)) (-15 -3780 ((-55) $)) (-15 -2060 ((-114) $ |t#1|))))
(((-102) . T) ((-632 (-887)) . T) ((-1132) . T) ((-1247) . T))
-((-3010 (((-217 (-516)) (-1189)) 9 T ELT)))
-(((-859) (-10 -7 (-15 -3010 ((-217 (-516)) (-1189))))) (T -859))
-((-3010 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-217 (-516))) (-5 *1 (-859)))))
-(-10 -7 (-15 -3010 ((-217 (-516)) (-1189))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3736 (((-1146) $) 10 T ELT)) (-3614 (((-520) $) 9 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2784 (((-114) $ (-520)) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1592 (($ (-520) (-1146)) 8 T ELT)) (-1578 (((-887) $) 25 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-3617 (((-55) $) 20 T ELT)) (-2473 (((-114) $ $) 12 T ELT)))
-(((-860) (-13 (-858 (-520)) (-10 -8 (-15 -3736 ((-1146) $)) (-15 -1592 ($ (-520) (-1146)))))) (T -860))
-((-3736 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-860)))) (-1592 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1146)) (-5 *1 (-860)))))
-(-13 (-858 (-520)) (-10 -8 (-15 -3736 ((-1146) $)) (-15 -1592 ($ (-520) (-1146)))))
-((-1538 (((-114) $ $) 7 T ELT)) (-1700 (((-1066) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) 15 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 14 T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 17 T ELT) (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) 16 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2473 (((-114) $ $) 8 T ELT)))
+((-3751 (((-217 (-516)) (-1189)) 9 T ELT)))
+(((-859) (-10 -7 (-15 -3751 ((-217 (-516)) (-1189))))) (T -859))
+((-3751 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-217 (-516))) (-5 *1 (-859)))))
+(-10 -7 (-15 -3751 ((-217 (-516)) (-1189))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3216 (((-1146) $) 10 T ELT)) (-4389 (((-520) $) 9 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2060 (((-114) $ (-520)) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3924 (($ (-520) (-1146)) 8 T ELT)) (-3913 (((-887) $) 25 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3780 (((-55) $) 20 T ELT)) (-2340 (((-114) $ $) 12 T ELT)))
+(((-860) (-13 (-858 (-520)) (-10 -8 (-15 -3216 ((-1146) $)) (-15 -3924 ($ (-520) (-1146)))))) (T -860))
+((-3216 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-860)))) (-3924 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1146)) (-5 *1 (-860)))))
+(-13 (-858 (-520)) (-10 -8 (-15 -3216 ((-1146) $)) (-15 -3924 ($ (-520) (-1146)))))
+((-2243 (((-114) $ $) 7 T ELT)) (-3122 (((-1066) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) 15 T ELT) (((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 14 T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 17 T ELT) (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) 16 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2340 (((-114) $ $) 8 T ELT)))
(((-861) (-142)) (T -861))
-((-3613 (*1 *2 *3 *4) (-12 (-4 *1 (-861)) (-5 *3 (-1094)) (-5 *4 (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (-5 *2 (-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)))))) (-3613 (*1 *2 *3 *4) (-12 (-4 *1 (-861)) (-5 *3 (-1094)) (-5 *4 (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) (-5 *2 (-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)))))) (-1700 (*1 *2 *3) (-12 (-4 *1 (-861)) (-5 *3 (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) (-5 *2 (-1066)))) (-1700 (*1 *2 *3) (-12 (-4 *1 (-861)) (-5 *3 (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (-5 *2 (-1066)))))
-(-13 (-1132) (-10 -7 (-15 -3613 ((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229))))))) (-15 -3613 ((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229)))))) (-15 -1700 ((-1066) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229)))))) (-15 -1700 ((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))))))
+((-3741 (*1 *2 *3 *4) (-12 (-4 *1 (-861)) (-5 *3 (-1094)) (-5 *4 (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (-5 *2 (-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)))))) (-3741 (*1 *2 *3 *4) (-12 (-4 *1 (-861)) (-5 *3 (-1094)) (-5 *4 (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) (-5 *2 (-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)))))) (-3122 (*1 *2 *3) (-12 (-4 *1 (-861)) (-5 *3 (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) (-5 *2 (-1066)))) (-3122 (*1 *2 *3) (-12 (-4 *1 (-861)) (-5 *3 (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (-5 *2 (-1066)))))
+(-13 (-1132) (-10 -7 (-15 -3741 ((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229))))))) (-15 -3741 ((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229)))))) (-15 -3122 ((-1066) (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229)))))) (-15 -3122 ((-1066) (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))))))
(((-102) . T) ((-632 (-887)) . T) ((-1132) . T) ((-1247) . T))
-((-2471 (((-1066) (-663 (-326 (-391))) (-663 (-391))) 166 T ELT) (((-1066) (-326 (-391)) (-663 (-391))) 164 T ELT) (((-1066) (-326 (-391)) (-663 (-391)) (-663 (-864 (-391))) (-663 (-864 (-391)))) 162 T ELT) (((-1066) (-326 (-391)) (-663 (-391)) (-663 (-864 (-391))) (-663 (-326 (-391))) (-663 (-864 (-391)))) 160 T ELT) (((-1066) (-863)) 125 T ELT) (((-1066) (-863) (-1094)) 124 T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189)))) (-863) (-1094)) 85 T ELT) (((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189)))) (-863)) 87 T ELT)) (-2145 (((-1066) (-663 (-326 (-391))) (-663 (-391))) 167 T ELT) (((-1066) (-863)) 150 T ELT)))
-(((-862) (-10 -7 (-15 -3613 ((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189)))) (-863))) (-15 -3613 ((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189)))) (-863) (-1094))) (-15 -2471 ((-1066) (-863) (-1094))) (-15 -2471 ((-1066) (-863))) (-15 -2145 ((-1066) (-863))) (-15 -2471 ((-1066) (-326 (-391)) (-663 (-391)) (-663 (-864 (-391))) (-663 (-326 (-391))) (-663 (-864 (-391))))) (-15 -2471 ((-1066) (-326 (-391)) (-663 (-391)) (-663 (-864 (-391))) (-663 (-864 (-391))))) (-15 -2471 ((-1066) (-326 (-391)) (-663 (-391)))) (-15 -2471 ((-1066) (-663 (-326 (-391))) (-663 (-391)))) (-15 -2145 ((-1066) (-663 (-326 (-391))) (-663 (-391)))))) (T -862))
-((-2145 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-326 (-391)))) (-5 *4 (-663 (-391))) (-5 *2 (-1066)) (-5 *1 (-862)))) (-2471 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-326 (-391)))) (-5 *4 (-663 (-391))) (-5 *2 (-1066)) (-5 *1 (-862)))) (-2471 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-391))) (-5 *2 (-1066)) (-5 *1 (-862)))) (-2471 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-391))) (-5 *5 (-663 (-864 (-391)))) (-5 *2 (-1066)) (-5 *1 (-862)))) (-2471 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-663 (-391))) (-5 *5 (-663 (-864 (-391)))) (-5 *6 (-663 (-326 (-391)))) (-5 *3 (-326 (-391))) (-5 *2 (-1066)) (-5 *1 (-862)))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1066)) (-5 *1 (-862)))) (-2471 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1066)) (-5 *1 (-862)))) (-2471 (*1 *2 *3 *4) (-12 (-5 *3 (-863)) (-5 *4 (-1094)) (-5 *2 (-1066)) (-5 *1 (-862)))) (-3613 (*1 *2 *3 *4) (-12 (-5 *3 (-863)) (-5 *4 (-1094)) (-5 *2 (-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189))))) (-5 *1 (-862)))) (-3613 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189))))) (-5 *1 (-862)))))
-(-10 -7 (-15 -3613 ((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189)))) (-863))) (-15 -3613 ((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189)))) (-863) (-1094))) (-15 -2471 ((-1066) (-863) (-1094))) (-15 -2471 ((-1066) (-863))) (-15 -2145 ((-1066) (-863))) (-15 -2471 ((-1066) (-326 (-391)) (-663 (-391)) (-663 (-864 (-391))) (-663 (-326 (-391))) (-663 (-864 (-391))))) (-15 -2471 ((-1066) (-326 (-391)) (-663 (-391)) (-663 (-864 (-391))) (-663 (-864 (-391))))) (-15 -2471 ((-1066) (-326 (-391)) (-663 (-391)))) (-15 -2471 ((-1066) (-663 (-326 (-391))) (-663 (-391)))) (-15 -2145 ((-1066) (-663 (-326 (-391))) (-663 (-391)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3330 (((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229)))))) $) 21 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 20 T ELT) (($ (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 14 T ELT) (($ (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) 16 T ELT) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))))) 18 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-863) (-13 (-1132) (-10 -8 (-15 -1578 ($ (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229))))))) (-15 -1578 ($ (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229)))))) (-15 -1578 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229)))))))) (-15 -3330 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229)))))) $))))) (T -863))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (-5 *1 (-863)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))) (-5 *1 (-863)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))))) (-5 *1 (-863)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229))))))) (-5 *1 (-863)))))
-(-13 (-1132) (-10 -8 (-15 -1578 ($ (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229))))))) (-15 -1578 ($ (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229)))))) (-15 -1578 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229)))))))) (-15 -3330 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229)))))) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL (|has| |#1| (-21)) ELT)) (-2810 (((-1151) $) 31 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-2138 (((-560) $) NIL (|has| |#1| (-870)) ELT)) (-2238 (($) NIL (|has| |#1| (-21)) CONST)) (-2539 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 18 T ELT)) (-3330 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) 9 T ELT)) (-1990 (((-3 $ "failed") $) 58 (|has| |#1| (-870)) ELT)) (-3643 (((-3 (-421 (-560)) "failed") $) 65 (|has| |#1| (-559)) ELT)) (-3469 (((-114) $) 60 (|has| |#1| (-559)) ELT)) (-3197 (((-421 (-560)) $) 63 (|has| |#1| (-559)) ELT)) (-2928 (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-3833 (($) 14 T ELT)) (-1581 (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-2960 (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-3846 (($) 16 T ELT)) (-3825 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-2820 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2931 (((-114) $) 12 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1518 (((-114) $) 11 T ELT)) (-1578 (((-887) $) 24 T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (($ |#1|) 8 T ELT) (($ (-560)) NIL (-2304 (|has| |#1| (-870)) (|has| |#1| (-1069 (-560)))) ELT)) (-2930 (((-793)) 51 (|has| |#1| (-870)) CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2282 (($ $) NIL (|has| |#1| (-870)) ELT)) (-2001 (($) 37 (|has| |#1| (-21)) CONST)) (-2011 (($) 48 (|has| |#1| (-870)) CONST)) (-2536 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-2473 (((-114) $ $) 35 T ELT)) (-2521 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-2495 (((-114) $ $) 59 (|has| |#1| (-870)) ELT)) (-2580 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 44 (|has| |#1| (-21)) ELT)) (-2567 (($ $ $) 46 (|has| |#1| (-21)) ELT)) (** (($ $ (-948)) NIL (|has| |#1| (-870)) ELT) (($ $ (-793)) NIL (|has| |#1| (-870)) ELT)) (* (($ $ $) 55 (|has| |#1| (-870)) ELT) (($ (-560) $) 42 (|has| |#1| (-21)) ELT) (($ (-793) $) NIL (|has| |#1| (-21)) ELT) (($ (-948) $) NIL (|has| |#1| (-21)) ELT)))
-(((-864 |#1|) (-13 (-1132) (-426 |#1|) (-10 -8 (-15 -3833 ($)) (-15 -3846 ($)) (-15 -1518 ((-114) $)) (-15 -2931 ((-114) $)) (-15 -2810 ((-1151) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3469 ((-114) $)) (-15 -3197 ((-421 (-560)) $)) (-15 -3643 ((-3 (-421 (-560)) "failed") $))) |%noBranch|))) (-1132)) (T -864))
-((-3833 (*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1132)))) (-3846 (*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1132)))) (-1518 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-864 *3)) (-4 *3 (-1132)))) (-2931 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-864 *3)) (-4 *3 (-1132)))) (-2810 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-864 *3)) (-4 *3 (-1132)))) (-3469 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-864 *3)) (-4 *3 (-559)) (-4 *3 (-1132)))) (-3197 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-864 *3)) (-4 *3 (-559)) (-4 *3 (-1132)))) (-3643 (*1 *2 *1) (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-864 *3)) (-4 *3 (-559)) (-4 *3 (-1132)))))
-(-13 (-1132) (-426 |#1|) (-10 -8 (-15 -3833 ($)) (-15 -3846 ($)) (-15 -1518 ((-114) $)) (-15 -2931 ((-114) $)) (-15 -2810 ((-1151) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -3469 ((-114) $)) (-15 -3197 ((-421 (-560)) $)) (-15 -3643 ((-3 (-421 (-560)) "failed") $))) |%noBranch|)))
-((-3957 (((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|) (-864 |#2|) (-864 |#2|)) 13 T ELT) (((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|)) 14 T ELT)))
-(((-865 |#1| |#2|) (-10 -7 (-15 -3957 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|))) (-15 -3957 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|) (-864 |#2|) (-864 |#2|)))) (-1132) (-1132)) (T -865))
-((-3957 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-864 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *1 (-865 *5 *6)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *2 (-864 *6)) (-5 *1 (-865 *5 *6)))))
-(-10 -7 (-15 -3957 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|))) (-15 -3957 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|) (-864 |#2|) (-864 |#2|))))
-((-1538 (((-114) $ $) 7 T ELT)) (-3241 (((-793)) 24 T ELT)) (-2310 (($) 27 T ELT)) (-3825 (($ $ $) 20 T ELT) (($) 23 T CONST)) (-2820 (($ $ $) 19 T ELT) (($) 22 T CONST)) (-4419 (((-948) $) 26 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3128 (($ (-948)) 25 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2536 (((-114) $ $) 18 T ELT)) (-2508 (((-114) $ $) 16 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 17 T ELT)) (-2495 (((-114) $ $) 15 T ELT)))
+((-3132 (((-1066) (-663 (-326 (-391))) (-663 (-391))) 166 T ELT) (((-1066) (-326 (-391)) (-663 (-391))) 164 T ELT) (((-1066) (-326 (-391)) (-663 (-391)) (-663 (-864 (-391))) (-663 (-864 (-391)))) 162 T ELT) (((-1066) (-326 (-391)) (-663 (-391)) (-663 (-864 (-391))) (-663 (-326 (-391))) (-663 (-864 (-391)))) 160 T ELT) (((-1066) (-863)) 125 T ELT) (((-1066) (-863) (-1094)) 124 T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189)))) (-863) (-1094)) 85 T ELT) (((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189)))) (-863)) 87 T ELT)) (-1944 (((-1066) (-663 (-326 (-391))) (-663 (-391))) 167 T ELT) (((-1066) (-863)) 150 T ELT)))
+(((-862) (-10 -7 (-15 -3741 ((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189)))) (-863))) (-15 -3741 ((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189)))) (-863) (-1094))) (-15 -3132 ((-1066) (-863) (-1094))) (-15 -3132 ((-1066) (-863))) (-15 -1944 ((-1066) (-863))) (-15 -3132 ((-1066) (-326 (-391)) (-663 (-391)) (-663 (-864 (-391))) (-663 (-326 (-391))) (-663 (-864 (-391))))) (-15 -3132 ((-1066) (-326 (-391)) (-663 (-391)) (-663 (-864 (-391))) (-663 (-864 (-391))))) (-15 -3132 ((-1066) (-326 (-391)) (-663 (-391)))) (-15 -3132 ((-1066) (-663 (-326 (-391))) (-663 (-391)))) (-15 -1944 ((-1066) (-663 (-326 (-391))) (-663 (-391)))))) (T -862))
+((-1944 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-326 (-391)))) (-5 *4 (-663 (-391))) (-5 *2 (-1066)) (-5 *1 (-862)))) (-3132 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-326 (-391)))) (-5 *4 (-663 (-391))) (-5 *2 (-1066)) (-5 *1 (-862)))) (-3132 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-391))) (-5 *2 (-1066)) (-5 *1 (-862)))) (-3132 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-391))) (-5 *5 (-663 (-864 (-391)))) (-5 *2 (-1066)) (-5 *1 (-862)))) (-3132 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-663 (-391))) (-5 *5 (-663 (-864 (-391)))) (-5 *6 (-663 (-326 (-391)))) (-5 *3 (-326 (-391))) (-5 *2 (-1066)) (-5 *1 (-862)))) (-1944 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1066)) (-5 *1 (-862)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1066)) (-5 *1 (-862)))) (-3132 (*1 *2 *3 *4) (-12 (-5 *3 (-863)) (-5 *4 (-1094)) (-5 *2 (-1066)) (-5 *1 (-862)))) (-3741 (*1 *2 *3 *4) (-12 (-5 *3 (-863)) (-5 *4 (-1094)) (-5 *2 (-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189))))) (-5 *1 (-862)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189))))) (-5 *1 (-862)))))
+(-10 -7 (-15 -3741 ((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189)))) (-863))) (-15 -3741 ((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189)))) (-863) (-1094))) (-15 -3132 ((-1066) (-863) (-1094))) (-15 -3132 ((-1066) (-863))) (-15 -1944 ((-1066) (-863))) (-15 -3132 ((-1066) (-326 (-391)) (-663 (-391)) (-663 (-864 (-391))) (-663 (-326 (-391))) (-663 (-864 (-391))))) (-15 -3132 ((-1066) (-326 (-391)) (-663 (-391)) (-663 (-864 (-391))) (-663 (-864 (-391))))) (-15 -3132 ((-1066) (-326 (-391)) (-663 (-391)))) (-15 -3132 ((-1066) (-663 (-326 (-391))) (-663 (-391)))) (-15 -1944 ((-1066) (-663 (-326 (-391))) (-663 (-391)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3649 (((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229)))))) $) 21 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 20 T ELT) (($ (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) 14 T ELT) (($ (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) 16 T ELT) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))))) 18 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-863) (-13 (-1132) (-10 -8 (-15 -3913 ($ (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229))))))) (-15 -3913 ($ (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229)))))) (-15 -3913 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229)))))))) (-15 -3649 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229)))))) $))))) (T -863))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (-5 *1 (-863)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))) (-5 *1 (-863)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))))) (-5 *1 (-863)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229))))))) (-5 *1 (-863)))))
+(-13 (-1132) (-10 -8 (-15 -3913 ($ (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229))))))) (-15 -3913 ($ (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229)))))) (-15 -3913 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229)))))))) (-15 -3649 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229))) (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229)))) (|:| |ub| (-663 (-864 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229)))))) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL (|has| |#1| (-21)) ELT)) (-4279 (((-1151) $) 31 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1869 (((-560) $) NIL (|has| |#1| (-870)) ELT)) (-3525 (($) NIL (|has| |#1| (-21)) CONST)) (-3929 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 18 T ELT)) (-3649 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) 9 T ELT)) (-2873 (((-3 $ "failed") $) 58 (|has| |#1| (-870)) ELT)) (-2743 (((-3 (-421 (-560)) "failed") $) 65 (|has| |#1| (-559)) ELT)) (-1574 (((-114) $) 60 (|has| |#1| (-559)) ELT)) (-1957 (((-421 (-560)) $) 63 (|has| |#1| (-559)) ELT)) (-4172 (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-1401 (($) 14 T ELT)) (-1918 (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-4470 (((-114) $) NIL (|has| |#1| (-870)) ELT)) (-1412 (($) 16 T ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-4379 (($ $ $) NIL (|has| |#1| (-870)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-4202 (((-114) $) 12 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2916 (((-114) $) 11 T ELT)) (-3913 (((-887) $) 24 T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (($ |#1|) 8 T ELT) (($ (-560)) NIL (-2196 (|has| |#1| (-870)) (|has| |#1| (-1069 (-560)))) ELT)) (-4191 (((-793)) 51 (|has| |#1| (-870)) CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-2719 (($ $) NIL (|has| |#1| (-870)) ELT)) (-1446 (($) 37 (|has| |#1| (-21)) CONST)) (-1456 (($) 48 (|has| |#1| (-870)) CONST)) (-2396 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-2340 (((-114) $ $) 35 T ELT)) (-2386 (((-114) $ $) NIL (|has| |#1| (-870)) ELT)) (-2362 (((-114) $ $) 59 (|has| |#1| (-870)) ELT)) (-2441 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 44 (|has| |#1| (-21)) ELT)) (-2429 (($ $ $) 46 (|has| |#1| (-21)) ELT)) (** (($ $ (-948)) NIL (|has| |#1| (-870)) ELT) (($ $ (-793)) NIL (|has| |#1| (-870)) ELT)) (* (($ $ $) 55 (|has| |#1| (-870)) ELT) (($ (-560) $) 42 (|has| |#1| (-21)) ELT) (($ (-793) $) NIL (|has| |#1| (-21)) ELT) (($ (-948) $) NIL (|has| |#1| (-21)) ELT)))
+(((-864 |#1|) (-13 (-1132) (-426 |#1|) (-10 -8 (-15 -1401 ($)) (-15 -1412 ($)) (-15 -2916 ((-114) $)) (-15 -4202 ((-114) $)) (-15 -4279 ((-1151) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -1574 ((-114) $)) (-15 -1957 ((-421 (-560)) $)) (-15 -2743 ((-3 (-421 (-560)) "failed") $))) |%noBranch|))) (-1132)) (T -864))
+((-1401 (*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1132)))) (-1412 (*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1132)))) (-2916 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-864 *3)) (-4 *3 (-1132)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-864 *3)) (-4 *3 (-1132)))) (-4279 (*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-864 *3)) (-4 *3 (-1132)))) (-1574 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-864 *3)) (-4 *3 (-559)) (-4 *3 (-1132)))) (-1957 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-864 *3)) (-4 *3 (-559)) (-4 *3 (-1132)))) (-2743 (*1 *2 *1) (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-864 *3)) (-4 *3 (-559)) (-4 *3 (-1132)))))
+(-13 (-1132) (-426 |#1|) (-10 -8 (-15 -1401 ($)) (-15 -1412 ($)) (-15 -2916 ((-114) $)) (-15 -4202 ((-114) $)) (-15 -4279 ((-1151) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-870)) (-6 (-870)) |%noBranch|) (IF (|has| |#1| (-559)) (PROGN (-15 -1574 ((-114) $)) (-15 -1957 ((-421 (-560)) $)) (-15 -2743 ((-3 (-421 (-560)) "failed") $))) |%noBranch|)))
+((-2260 (((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|) (-864 |#2|) (-864 |#2|)) 13 T ELT) (((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|)) 14 T ELT)))
+(((-865 |#1| |#2|) (-10 -7 (-15 -2260 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|))) (-15 -2260 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|) (-864 |#2|) (-864 |#2|)))) (-1132) (-1132)) (T -865))
+((-2260 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-864 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *1 (-865 *5 *6)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *2 (-864 *6)) (-5 *1 (-865 *5 *6)))))
+(-10 -7 (-15 -2260 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|))) (-15 -2260 ((-864 |#2|) (-1 |#2| |#1|) (-864 |#1|) (-864 |#2|) (-864 |#2|))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2552 (((-793)) 24 T ELT)) (-1812 (($) 27 T ELT)) (-2932 (($ $ $) 20 T ELT) (($) 23 T CONST)) (-4379 (($ $ $) 19 T ELT) (($) 22 T CONST)) (-2622 (((-948) $) 26 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-1591 (($ (-948)) 25 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2396 (((-114) $ $) 18 T ELT)) (-2373 (((-114) $ $) 16 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 17 T ELT)) (-2362 (((-114) $ $) 15 T ELT)))
(((-866) (-142)) (T -866))
-((-3825 (*1 *1) (-4 *1 (-866))) (-2820 (*1 *1) (-4 *1 (-866))))
-(-13 (-871) (-381) (-10 -8 (-15 -3825 ($) -3081) (-15 -2820 ($) -3081)))
+((-2932 (*1 *1) (-4 *1 (-866))) (-4379 (*1 *1) (-4 *1 (-866))))
+(-13 (-871) (-381) (-10 -8 (-15 -2932 ($) -2650) (-15 -4379 ($) -2650)))
(((-102) . T) ((-632 (-887)) . T) ((-381) . T) ((-871) . T) ((-874) . T) ((-1132) . T) ((-1247) . T))
-((-3807 (((-114) (-1297 |#2|) (-1297 |#2|)) 19 T ELT)) (-2825 (((-114) (-1297 |#2|) (-1297 |#2|)) 20 T ELT)) (-2889 (((-114) (-1297 |#2|) (-1297 |#2|)) 16 T ELT)))
-(((-867 |#1| |#2|) (-10 -7 (-15 -2889 ((-114) (-1297 |#2|) (-1297 |#2|))) (-15 -3807 ((-114) (-1297 |#2|) (-1297 |#2|))) (-15 -2825 ((-114) (-1297 |#2|) (-1297 |#2|)))) (-793) (-814)) (T -867))
-((-2825 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *5)) (-4 *5 (-814)) (-5 *2 (-114)) (-5 *1 (-867 *4 *5)) (-14 *4 (-793)))) (-3807 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *5)) (-4 *5 (-814)) (-5 *2 (-114)) (-5 *1 (-867 *4 *5)) (-14 *4 (-793)))) (-2889 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *5)) (-4 *5 (-814)) (-5 *2 (-114)) (-5 *1 (-867 *4 *5)) (-14 *4 (-793)))))
-(-10 -7 (-15 -2889 ((-114) (-1297 |#2|) (-1297 |#2|))) (-15 -3807 ((-114) (-1297 |#2|) (-1297 |#2|))) (-15 -2825 ((-114) (-1297 |#2|) (-1297 |#2|))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2238 (($) 25 T CONST)) (-1990 (((-3 $ "failed") $) 28 T ELT)) (-1581 (((-114) $) 26 T ELT)) (-3825 (($ $ $) 20 T ELT)) (-2820 (($ $ $) 19 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2011 (($) 24 T CONST)) (-2536 (((-114) $ $) 18 T ELT)) (-2508 (((-114) $ $) 16 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 17 T ELT)) (-2495 (((-114) $ $) 15 T ELT)) (** (($ $ (-948)) 23 T ELT) (($ $ (-793)) 27 T ELT)) (* (($ $ $) 22 T ELT)))
+((-1719 (((-114) (-1297 |#2|) (-1297 |#2|)) 19 T ELT)) (-4429 (((-114) (-1297 |#2|) (-1297 |#2|)) 20 T ELT)) (-3871 (((-114) (-1297 |#2|) (-1297 |#2|)) 16 T ELT)))
+(((-867 |#1| |#2|) (-10 -7 (-15 -3871 ((-114) (-1297 |#2|) (-1297 |#2|))) (-15 -1719 ((-114) (-1297 |#2|) (-1297 |#2|))) (-15 -4429 ((-114) (-1297 |#2|) (-1297 |#2|)))) (-793) (-814)) (T -867))
+((-4429 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *5)) (-4 *5 (-814)) (-5 *2 (-114)) (-5 *1 (-867 *4 *5)) (-14 *4 (-793)))) (-1719 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *5)) (-4 *5 (-814)) (-5 *2 (-114)) (-5 *1 (-867 *4 *5)) (-14 *4 (-793)))) (-3871 (*1 *2 *3 *3) (-12 (-5 *3 (-1297 *5)) (-4 *5 (-814)) (-5 *2 (-114)) (-5 *1 (-867 *4 *5)) (-14 *4 (-793)))))
+(-10 -7 (-15 -3871 ((-114) (-1297 |#2|) (-1297 |#2|))) (-15 -1719 ((-114) (-1297 |#2|) (-1297 |#2|))) (-15 -4429 ((-114) (-1297 |#2|) (-1297 |#2|))))
+((-2243 (((-114) $ $) 7 T ELT)) (-3525 (($) 25 T CONST)) (-2873 (((-3 $ "failed") $) 28 T ELT)) (-1918 (((-114) $) 26 T ELT)) (-2932 (($ $ $) 20 T ELT)) (-4379 (($ $ $) 19 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1456 (($) 24 T CONST)) (-2396 (((-114) $ $) 18 T ELT)) (-2373 (((-114) $ $) 16 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 17 T ELT)) (-2362 (((-114) $ $) 15 T ELT)) (** (($ $ (-948)) 23 T ELT) (($ $ (-793)) 27 T ELT)) (* (($ $ $) 22 T ELT)))
(((-868) (-142)) (T -868))
NIL
(-13 (-881) (-748))
(((-102) . T) ((-632 (-887)) . T) ((-748) . T) ((-881) . T) ((-871) . T) ((-874) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-2138 (((-560) $) 21 T ELT)) (-2928 (((-114) $) 10 T ELT)) (-2960 (((-114) $) 12 T ELT)) (-2282 (($ $) 23 T ELT)))
-(((-869 |#1|) (-10 -8 (-15 -2282 (|#1| |#1|)) (-15 -2138 ((-560) |#1|)) (-15 -2960 ((-114) |#1|)) (-15 -2928 ((-114) |#1|))) (-870)) (T -869))
+((-1869 (((-560) $) 21 T ELT)) (-4172 (((-114) $) 10 T ELT)) (-4470 (((-114) $) 12 T ELT)) (-2719 (($ $) 23 T ELT)))
+(((-869 |#1|) (-10 -8 (-15 -2719 (|#1| |#1|)) (-15 -1869 ((-560) |#1|)) (-15 -4470 ((-114) |#1|)) (-15 -4172 ((-114) |#1|))) (-870)) (T -869))
NIL
-(-10 -8 (-15 -2282 (|#1| |#1|)) (-15 -2138 ((-560) |#1|)) (-15 -2960 ((-114) |#1|)) (-15 -2928 ((-114) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 26 T ELT)) (-3068 (((-3 $ "failed") $ $) 28 T ELT)) (-2138 (((-560) $) 38 T ELT)) (-2238 (($) 25 T CONST)) (-1990 (((-3 $ "failed") $) 43 T ELT)) (-2928 (((-114) $) 40 T ELT)) (-1581 (((-114) $) 45 T ELT)) (-2960 (((-114) $) 39 T ELT)) (-3825 (($ $ $) 20 T ELT)) (-2820 (($ $ $) 19 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 47 T ELT)) (-2930 (((-793)) 48 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2282 (($ $) 37 T ELT)) (-2001 (($) 24 T CONST)) (-2011 (($) 46 T CONST)) (-2536 (((-114) $ $) 18 T ELT)) (-2508 (((-114) $ $) 16 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 17 T ELT)) (-2495 (((-114) $ $) 15 T ELT)) (-2580 (($ $ $) 32 T ELT) (($ $) 31 T ELT)) (-2567 (($ $ $) 22 T ELT)) (** (($ $ (-793)) 44 T ELT) (($ $ (-948)) 41 T ELT)) (* (($ (-948) $) 23 T ELT) (($ (-793) $) 27 T ELT) (($ (-560) $) 30 T ELT) (($ $ $) 42 T ELT)))
+(-10 -8 (-15 -2719 (|#1| |#1|)) (-15 -1869 ((-560) |#1|)) (-15 -4470 ((-114) |#1|)) (-15 -4172 ((-114) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 26 T ELT)) (-3094 (((-3 $ "failed") $ $) 28 T ELT)) (-1869 (((-560) $) 38 T ELT)) (-3525 (($) 25 T CONST)) (-2873 (((-3 $ "failed") $) 43 T ELT)) (-4172 (((-114) $) 40 T ELT)) (-1918 (((-114) $) 45 T ELT)) (-4470 (((-114) $) 39 T ELT)) (-2932 (($ $ $) 20 T ELT)) (-4379 (($ $ $) 19 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 47 T ELT)) (-4191 (((-793)) 48 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-2719 (($ $) 37 T ELT)) (-1446 (($) 24 T CONST)) (-1456 (($) 46 T CONST)) (-2396 (((-114) $ $) 18 T ELT)) (-2373 (((-114) $ $) 16 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 17 T ELT)) (-2362 (((-114) $ $) 15 T ELT)) (-2441 (($ $ $) 32 T ELT) (($ $) 31 T ELT)) (-2429 (($ $ $) 22 T ELT)) (** (($ $ (-793)) 44 T ELT) (($ $ (-948)) 41 T ELT)) (* (($ (-948) $) 23 T ELT) (($ (-793) $) 27 T ELT) (($ (-560) $) 30 T ELT) (($ $ $) 42 T ELT)))
(((-870) (-142)) (T -870))
-((-2928 (*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-114)))) (-2960 (*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-114)))) (-2138 (*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-560)))) (-2282 (*1 *1 *1) (-4 *1 (-870))))
-(-13 (-813) (-1080) (-748) (-10 -8 (-15 -2928 ((-114) $)) (-15 -2960 ((-114) $)) (-15 -2138 ((-560) $)) (-15 -2282 ($ $))))
+((-4172 (*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-114)))) (-4470 (*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-114)))) (-1869 (*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-560)))) (-2719 (*1 *1 *1) (-4 *1 (-870))))
+(-13 (-813) (-1080) (-748) (-10 -8 (-15 -4172 ((-114) $)) (-15 -4470 ((-114) $)) (-15 -1869 ((-560) $)) (-15 -2719 ($ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-560)) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-813) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-871) . T) ((-874) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) 7 T ELT)) (-3825 (($ $ $) 20 T ELT)) (-2820 (($ $ $) 19 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2536 (((-114) $ $) 18 T ELT)) (-2508 (((-114) $ $) 16 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 17 T ELT)) (-2495 (((-114) $ $) 15 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2932 (($ $ $) 20 T ELT)) (-4379 (($ $ $) 19 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2396 (((-114) $ $) 18 T ELT)) (-2373 (((-114) $ $) 16 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 17 T ELT)) (-2362 (((-114) $ $) 15 T ELT)))
(((-871) (-142)) (T -871))
NIL
(-13 (-1132) (-874))
(((-102) . T) ((-632 (-887)) . T) ((-874) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-1578 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-887) $) 15 (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 12 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-3913 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-887) $) 15 (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 12 T ELT)))
(((-872 |#1| |#2|) (-13 (-874) (-504 |#1|) (-10 -7 (IF (|has| |#1| (-632 (-887))) (-6 (-632 (-887))) |%noBranch|))) (-1247) (-1 (-114) |#1| |#1|)) (T -872))
NIL
(-13 (-874) (-504 |#1|) (-10 -7 (IF (|has| |#1| (-632 (-887))) (-6 (-632 (-887))) |%noBranch|)))
-((-3825 (($ $ $) 16 T ELT)) (-2820 (($ $ $) 15 T ELT)) (-2275 (((-114) $ $) 17 T ELT)) (-2536 (((-114) $ $) 12 T ELT)) (-2508 (((-114) $ $) 9 T ELT)) (-2473 (((-114) $ $) 14 T ELT)) (-2521 (((-114) $ $) 11 T ELT)))
-(((-873 |#1|) (-10 -8 (-15 -3825 (|#1| |#1| |#1|)) (-15 -2820 (|#1| |#1| |#1|)) (-15 -2536 ((-114) |#1| |#1|)) (-15 -2521 ((-114) |#1| |#1|)) (-15 -2508 ((-114) |#1| |#1|)) (-15 -2275 ((-114) |#1| |#1|)) (-15 -2473 ((-114) |#1| |#1|))) (-874)) (T -873))
+((-2932 (($ $ $) 16 T ELT)) (-4379 (($ $ $) 15 T ELT)) (-3925 (((-114) $ $) 17 T ELT)) (-2396 (((-114) $ $) 12 T ELT)) (-2373 (((-114) $ $) 9 T ELT)) (-2340 (((-114) $ $) 14 T ELT)) (-2386 (((-114) $ $) 11 T ELT)))
+(((-873 |#1|) (-10 -8 (-15 -2932 (|#1| |#1| |#1|)) (-15 -4379 (|#1| |#1| |#1|)) (-15 -2396 ((-114) |#1| |#1|)) (-15 -2386 ((-114) |#1| |#1|)) (-15 -2373 ((-114) |#1| |#1|)) (-15 -3925 ((-114) |#1| |#1|)) (-15 -2340 ((-114) |#1| |#1|))) (-874)) (T -873))
NIL
-(-10 -8 (-15 -3825 (|#1| |#1| |#1|)) (-15 -2820 (|#1| |#1| |#1|)) (-15 -2536 ((-114) |#1| |#1|)) (-15 -2521 ((-114) |#1| |#1|)) (-15 -2508 ((-114) |#1| |#1|)) (-15 -2275 ((-114) |#1| |#1|)) (-15 -2473 ((-114) |#1| |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-3825 (($ $ $) 9 T ELT)) (-2820 (($ $ $) 10 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2536 (((-114) $ $) 11 T ELT)) (-2508 (((-114) $ $) 13 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 12 T ELT)) (-2495 (((-114) $ $) 14 T ELT)))
+(-10 -8 (-15 -2932 (|#1| |#1| |#1|)) (-15 -4379 (|#1| |#1| |#1|)) (-15 -2396 ((-114) |#1| |#1|)) (-15 -2386 ((-114) |#1| |#1|)) (-15 -2373 ((-114) |#1| |#1|)) (-15 -3925 ((-114) |#1| |#1|)) (-15 -2340 ((-114) |#1| |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2932 (($ $ $) 9 T ELT)) (-4379 (($ $ $) 10 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2396 (((-114) $ $) 11 T ELT)) (-2373 (((-114) $ $) 13 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 12 T ELT)) (-2362 (((-114) $ $) 14 T ELT)))
(((-874) (-142)) (T -874))
-((-2495 (*1 *2 *1 *1) (-12 (-4 *1 (-874)) (-5 *2 (-114)))) (-2508 (*1 *2 *1 *1) (-12 (-4 *1 (-874)) (-5 *2 (-114)))) (-2521 (*1 *2 *1 *1) (-12 (-4 *1 (-874)) (-5 *2 (-114)))) (-2536 (*1 *2 *1 *1) (-12 (-4 *1 (-874)) (-5 *2 (-114)))) (-2820 (*1 *1 *1 *1) (-4 *1 (-874))) (-3825 (*1 *1 *1 *1) (-4 *1 (-874))))
-(-13 (-102) (-10 -8 (-15 -2495 ((-114) $ $)) (-15 -2508 ((-114) $ $)) (-15 -2521 ((-114) $ $)) (-15 -2536 ((-114) $ $)) (-15 -2820 ($ $ $)) (-15 -3825 ($ $ $))))
+((-2362 (*1 *2 *1 *1) (-12 (-4 *1 (-874)) (-5 *2 (-114)))) (-2373 (*1 *2 *1 *1) (-12 (-4 *1 (-874)) (-5 *2 (-114)))) (-2386 (*1 *2 *1 *1) (-12 (-4 *1 (-874)) (-5 *2 (-114)))) (-2396 (*1 *2 *1 *1) (-12 (-4 *1 (-874)) (-5 *2 (-114)))) (-4379 (*1 *1 *1 *1) (-4 *1 (-874))) (-2932 (*1 *1 *1 *1) (-4 *1 (-874))))
+(-13 (-102) (-10 -8 (-15 -2362 ((-114) $ $)) (-15 -2373 ((-114) $ $)) (-15 -2386 ((-114) $ $)) (-15 -2396 ((-114) $ $)) (-15 -4379 ($ $ $)) (-15 -2932 ($ $ $))))
(((-102) . T) ((-1247) . T))
-((-2029 (($ $ $) 49 T ELT)) (-1900 (($ $ $) 48 T ELT)) (-2440 (($ $ $) 46 T ELT)) (-1998 (($ $ $) 55 T ELT)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 50 T ELT)) (-2836 (((-3 $ "failed") $ $) 53 T ELT)) (-2539 (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 29 T ELT)) (-2806 (($ $) 39 T ELT)) (-3990 (($ $ $) 43 T ELT)) (-1438 (($ $ $) 42 T ELT)) (-2736 (($ $ $) 51 T ELT)) (-2712 (($ $ $) 57 T ELT)) (-3456 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 45 T ELT)) (-2253 (((-3 $ "failed") $ $) 52 T ELT)) (-1528 (((-3 $ "failed") $ |#2|) 32 T ELT)) (-2053 ((|#2| $) 36 T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#2|) 13 T ELT)) (-3409 (((-663 |#2|) $) 21 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT)))
-(((-875 |#1| |#2|) (-10 -8 (-15 -2736 (|#1| |#1| |#1|)) (-15 -2385 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2748 |#1|)) |#1| |#1|)) (-15 -1998 (|#1| |#1| |#1|)) (-15 -2836 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2029 (|#1| |#1| |#1|)) (-15 -1900 (|#1| |#1| |#1|)) (-15 -2440 (|#1| |#1| |#1|)) (-15 -3456 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2748 |#1|)) |#1| |#1|)) (-15 -2712 (|#1| |#1| |#1|)) (-15 -2253 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3990 (|#1| |#1| |#1|)) (-15 -1438 (|#1| |#1| |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -2053 (|#2| |#1|)) (-15 -1528 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3409 ((-663 |#2|) |#1|)) (-15 -1578 (|#1| |#2|)) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1578 (|#1| (-560))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|)) (-15 -1578 ((-887) |#1|))) (-876 |#2|) (-1080)) (T -875))
+((-2058 (($ $ $) 49 T ELT)) (-3301 (($ $ $) 48 T ELT)) (-1765 (($ $ $) 46 T ELT)) (-2963 (($ $ $) 55 T ELT)) (-2475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 50 T ELT)) (-1388 (((-3 $ "failed") $ $) 53 T ELT)) (-3929 (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 29 T ELT)) (-4239 (($ $) 39 T ELT)) (-2883 (($ $ $) 43 T ELT)) (-1613 (($ $ $) 42 T ELT)) (-1594 (($ $ $) 51 T ELT)) (-2581 (($ $ $) 57 T ELT)) (-2678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 45 T ELT)) (-3687 (((-3 $ "failed") $ $) 52 T ELT)) (-2233 (((-3 $ "failed") $ |#2|) 32 T ELT)) (-2264 ((|#2| $) 36 T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#2|) 13 T ELT)) (-2247 (((-663 |#2|) $) 21 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT)))
+(((-875 |#1| |#2|) (-10 -8 (-15 -1594 (|#1| |#1| |#1|)) (-15 -2475 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3583 |#1|)) |#1| |#1|)) (-15 -2963 (|#1| |#1| |#1|)) (-15 -1388 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2058 (|#1| |#1| |#1|)) (-15 -3301 (|#1| |#1| |#1|)) (-15 -1765 (|#1| |#1| |#1|)) (-15 -2678 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3583 |#1|)) |#1| |#1|)) (-15 -2581 (|#1| |#1| |#1|)) (-15 -3687 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2883 (|#1| |#1| |#1|)) (-15 -1613 (|#1| |#1| |#1|)) (-15 -4239 (|#1| |#1|)) (-15 -2264 (|#2| |#1|)) (-15 -2233 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2247 ((-663 |#2|) |#1|)) (-15 -3913 (|#1| |#2|)) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3913 (|#1| (-560))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|)) (-15 -3913 ((-887) |#1|))) (-876 |#2|) (-1080)) (T -875))
NIL
-(-10 -8 (-15 -2736 (|#1| |#1| |#1|)) (-15 -2385 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2748 |#1|)) |#1| |#1|)) (-15 -1998 (|#1| |#1| |#1|)) (-15 -2836 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2029 (|#1| |#1| |#1|)) (-15 -1900 (|#1| |#1| |#1|)) (-15 -2440 (|#1| |#1| |#1|)) (-15 -3456 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2748 |#1|)) |#1| |#1|)) (-15 -2712 (|#1| |#1| |#1|)) (-15 -2253 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3990 (|#1| |#1| |#1|)) (-15 -1438 (|#1| |#1| |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -2053 (|#2| |#1|)) (-15 -1528 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3409 ((-663 |#2|) |#1|)) (-15 -1578 (|#1| |#2|)) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -1578 (|#1| (-560))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|)) (-15 -1578 ((-887) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-2029 (($ $ $) 50 (|has| |#1| (-376)) ELT)) (-1900 (($ $ $) 51 (|has| |#1| (-376)) ELT)) (-2440 (($ $ $) 53 (|has| |#1| (-376)) ELT)) (-1998 (($ $ $) 48 (|has| |#1| (-376)) ELT)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 47 (|has| |#1| (-376)) ELT)) (-2836 (((-3 $ "failed") $ $) 49 (|has| |#1| (-376)) ELT)) (-4211 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 52 (|has| |#1| (-376)) ELT)) (-2539 (((-3 (-560) "failed") $) 80 (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) 77 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 74 T ELT)) (-3330 (((-560) $) 79 (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) 76 (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) 75 T ELT)) (-1624 (($ $) 69 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-2806 (($ $) 60 (|has| |#1| (-466)) ELT)) (-1581 (((-114) $) 35 T ELT)) (-1417 (($ |#1| (-793)) 67 T ELT)) (-2031 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 62 (|has| |#1| (-571)) ELT)) (-4113 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 63 (|has| |#1| (-571)) ELT)) (-3011 (((-793) $) 71 T ELT)) (-3990 (($ $ $) 57 (|has| |#1| (-376)) ELT)) (-1438 (($ $ $) 58 (|has| |#1| (-376)) ELT)) (-2736 (($ $ $) 46 (|has| |#1| (-376)) ELT)) (-2712 (($ $ $) 55 (|has| |#1| (-376)) ELT)) (-3456 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 54 (|has| |#1| (-376)) ELT)) (-2253 (((-3 $ "failed") $ $) 56 (|has| |#1| (-376)) ELT)) (-1879 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 59 (|has| |#1| (-376)) ELT)) (-1597 ((|#1| $) 70 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1528 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-571)) ELT)) (-3630 (((-793) $) 72 T ELT)) (-2053 ((|#1| $) 61 (|has| |#1| (-466)) ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ (-421 (-560))) 78 (|has| |#1| (-1069 (-421 (-560)))) ELT) (($ |#1|) 73 T ELT)) (-3409 (((-663 |#1|) $) 66 T ELT)) (-2305 ((|#1| $ (-793)) 68 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-3626 ((|#1| $ |#1| |#1|) 65 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 82 T ELT) (($ |#1| $) 81 T ELT)))
+(-10 -8 (-15 -1594 (|#1| |#1| |#1|)) (-15 -2475 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3583 |#1|)) |#1| |#1|)) (-15 -2963 (|#1| |#1| |#1|)) (-15 -1388 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2058 (|#1| |#1| |#1|)) (-15 -3301 (|#1| |#1| |#1|)) (-15 -1765 (|#1| |#1| |#1|)) (-15 -2678 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -3583 |#1|)) |#1| |#1|)) (-15 -2581 (|#1| |#1| |#1|)) (-15 -3687 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2883 (|#1| |#1| |#1|)) (-15 -1613 (|#1| |#1| |#1|)) (-15 -4239 (|#1| |#1|)) (-15 -2264 (|#2| |#1|)) (-15 -2233 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2247 ((-663 |#2|) |#1|)) (-15 -3913 (|#1| |#2|)) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3913 (|#1| (-560))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|)) (-15 -3913 ((-887) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-2058 (($ $ $) 50 (|has| |#1| (-376)) ELT)) (-3301 (($ $ $) 51 (|has| |#1| (-376)) ELT)) (-1765 (($ $ $) 53 (|has| |#1| (-376)) ELT)) (-2963 (($ $ $) 48 (|has| |#1| (-376)) ELT)) (-2475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 47 (|has| |#1| (-376)) ELT)) (-1388 (((-3 $ "failed") $ $) 49 (|has| |#1| (-376)) ELT)) (-1384 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 52 (|has| |#1| (-376)) ELT)) (-3929 (((-3 (-560) "failed") $) 80 (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) 77 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 74 T ELT)) (-3649 (((-560) $) 79 (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) 76 (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) 75 T ELT)) (-3062 (($ $) 69 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-4239 (($ $) 60 (|has| |#1| (-466)) ELT)) (-1918 (((-114) $) 35 T ELT)) (-4139 (($ |#1| (-793)) 67 T ELT)) (-2076 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 62 (|has| |#1| (-571)) ELT)) (-1624 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 63 (|has| |#1| (-571)) ELT)) (-3765 (((-793) $) 71 T ELT)) (-2883 (($ $ $) 57 (|has| |#1| (-376)) ELT)) (-1613 (($ $ $) 58 (|has| |#1| (-376)) ELT)) (-1594 (($ $ $) 46 (|has| |#1| (-376)) ELT)) (-2581 (($ $ $) 55 (|has| |#1| (-376)) ELT)) (-2678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 54 (|has| |#1| (-376)) ELT)) (-3687 (((-3 $ "failed") $ $) 56 (|has| |#1| (-376)) ELT)) (-4330 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 59 (|has| |#1| (-376)) ELT)) (-3037 ((|#1| $) 70 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2233 (((-3 $ "failed") $ |#1|) 64 (|has| |#1| (-571)) ELT)) (-3900 (((-793) $) 72 T ELT)) (-2264 ((|#1| $) 61 (|has| |#1| (-466)) ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ (-421 (-560))) 78 (|has| |#1| (-1069 (-421 (-560)))) ELT) (($ |#1|) 73 T ELT)) (-2247 (((-663 |#1|) $) 66 T ELT)) (-2920 ((|#1| $ (-793)) 68 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-4323 ((|#1| $ |#1| |#1|) 65 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 82 T ELT) (($ |#1| $) 81 T ELT)))
(((-876 |#1|) (-142) (-1080)) (T -876))
-((-3630 (*1 *2 *1) (-12 (-4 *1 (-876 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))) (-3011 (*1 *2 *1) (-12 (-4 *1 (-876 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))) (-1597 (*1 *2 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)))) (-1624 (*1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)))) (-2305 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-876 *2)) (-4 *2 (-1080)))) (-1417 (*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-876 *2)) (-4 *2 (-1080)))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-876 *3)) (-4 *3 (-1080)) (-5 *2 (-663 *3)))) (-3626 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)))) (-1528 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-571)))) (-4113 (*1 *2 *1 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| -1774 *1) (|:| -2341 *1))) (-4 *1 (-876 *3)))) (-2031 (*1 *2 *1 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| -1774 *1) (|:| -2341 *1))) (-4 *1 (-876 *3)))) (-2053 (*1 *2 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-466)))) (-2806 (*1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-466)))) (-1879 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| -1774 *1) (|:| -2341 *1))) (-4 *1 (-876 *3)))) (-1438 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-3990 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-2253 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-2712 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-3456 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2748 *1))) (-4 *1 (-876 *3)))) (-2440 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-4211 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| -1774 *1) (|:| -2341 *1))) (-4 *1 (-876 *3)))) (-1900 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-2029 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-2836 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-1998 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-2385 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2748 *1))) (-4 *1 (-876 *3)))) (-2736 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
-(-13 (-1080) (-111 |t#1| |t#1|) (-426 |t#1|) (-10 -8 (-15 -3630 ((-793) $)) (-15 -3011 ((-793) $)) (-15 -1597 (|t#1| $)) (-15 -1624 ($ $)) (-15 -2305 (|t#1| $ (-793))) (-15 -1417 ($ |t#1| (-793))) (-15 -3409 ((-663 |t#1|) $)) (-15 -3626 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-571)) (PROGN (-15 -1528 ((-3 $ "failed") $ |t#1|)) (-15 -4113 ((-2 (|:| -1774 $) (|:| -2341 $)) $ $)) (-15 -2031 ((-2 (|:| -1774 $) (|:| -2341 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-466)) (PROGN (-15 -2053 (|t#1| $)) (-15 -2806 ($ $))) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-15 -1879 ((-2 (|:| -1774 $) (|:| -2341 $)) $ $)) (-15 -1438 ($ $ $)) (-15 -3990 ($ $ $)) (-15 -2253 ((-3 $ "failed") $ $)) (-15 -2712 ($ $ $)) (-15 -3456 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $)) (-15 -2440 ($ $ $)) (-15 -4211 ((-2 (|:| -1774 $) (|:| -2341 $)) $ $)) (-15 -1900 ($ $ $)) (-15 -2029 ($ $ $)) (-15 -2836 ((-3 $ "failed") $ $)) (-15 -1998 ($ $ $)) (-15 -2385 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $)) (-15 -2736 ($ $ $))) |%noBranch|)))
+((-3900 (*1 *2 *1) (-12 (-4 *1 (-876 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))) (-3765 (*1 *2 *1) (-12 (-4 *1 (-876 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))) (-3037 (*1 *2 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)))) (-3062 (*1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)))) (-2920 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-876 *2)) (-4 *2 (-1080)))) (-4139 (*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-876 *2)) (-4 *2 (-1080)))) (-2247 (*1 *2 *1) (-12 (-4 *1 (-876 *3)) (-4 *3 (-1080)) (-5 *2 (-663 *3)))) (-4323 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)))) (-2233 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-571)))) (-1624 (*1 *2 *1 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| -2584 *1) (|:| -3276 *1))) (-4 *1 (-876 *3)))) (-2076 (*1 *2 *1 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| -2584 *1) (|:| -3276 *1))) (-4 *1 (-876 *3)))) (-2264 (*1 *2 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-466)))) (-4239 (*1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-466)))) (-4330 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| -2584 *1) (|:| -3276 *1))) (-4 *1 (-876 *3)))) (-1613 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-2883 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-3687 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-2581 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-2678 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3583 *1))) (-4 *1 (-876 *3)))) (-1765 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-1384 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| -2584 *1) (|:| -3276 *1))) (-4 *1 (-876 *3)))) (-3301 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-2058 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-1388 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-2963 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-2475 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3583 *1))) (-4 *1 (-876 *3)))) (-1594 (*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
+(-13 (-1080) (-111 |t#1| |t#1|) (-426 |t#1|) (-10 -8 (-15 -3900 ((-793) $)) (-15 -3765 ((-793) $)) (-15 -3037 (|t#1| $)) (-15 -3062 ($ $)) (-15 -2920 (|t#1| $ (-793))) (-15 -4139 ($ |t#1| (-793))) (-15 -2247 ((-663 |t#1|) $)) (-15 -4323 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-571)) (PROGN (-15 -2233 ((-3 $ "failed") $ |t#1|)) (-15 -1624 ((-2 (|:| -2584 $) (|:| -3276 $)) $ $)) (-15 -2076 ((-2 (|:| -2584 $) (|:| -3276 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-466)) (PROGN (-15 -2264 (|t#1| $)) (-15 -4239 ($ $))) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-15 -4330 ((-2 (|:| -2584 $) (|:| -3276 $)) $ $)) (-15 -1613 ($ $ $)) (-15 -2883 ($ $ $)) (-15 -3687 ((-3 $ "failed") $ $)) (-15 -2581 ($ $ $)) (-15 -2678 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $)) (-15 -1765 ($ $ $)) (-15 -1384 ((-2 (|:| -2584 $) (|:| -3276 $)) $ $)) (-15 -3301 ($ $ $)) (-15 -2058 ($ $ $)) (-15 -1388 ((-3 $ "failed") $ $)) (-15 -2963 ($ $ $)) (-15 -2475 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $)) (-15 -1594 ($ $ $))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-635 #0=(-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-632 (-887)) . T) ((-426 |#1|) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) |has| |#1| (-175)) ((-739 |#1|) |has| |#1| (-175)) ((-748) . T) ((-1069 #0#) |has| |#1| (-1069 (-421 (-560)))) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 |#1|) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-1428 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-4211 (((-2 (|:| -1774 |#2|) (|:| -2341 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-376)) ELT)) (-2031 (((-2 (|:| -1774 |#2|) (|:| -2341 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-571)) ELT)) (-4113 (((-2 (|:| -1774 |#2|) (|:| -2341 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-571)) ELT)) (-1879 (((-2 (|:| -1774 |#2|) (|:| -2341 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-376)) ELT)) (-3626 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33 T ELT)))
-(((-877 |#1| |#2|) (-10 -7 (-15 -1428 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3626 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-571)) (PROGN (-15 -4113 ((-2 (|:| -1774 |#2|) (|:| -2341 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2031 ((-2 (|:| -1774 |#2|) (|:| -2341 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -1879 ((-2 (|:| -1774 |#2|) (|:| -2341 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4211 ((-2 (|:| -1774 |#2|) (|:| -2341 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1080) (-876 |#1|)) (T -877))
-((-4211 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1080)) (-5 *2 (-2 (|:| -1774 *3) (|:| -2341 *3))) (-5 *1 (-877 *5 *3)) (-4 *3 (-876 *5)))) (-1879 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1080)) (-5 *2 (-2 (|:| -1774 *3) (|:| -2341 *3))) (-5 *1 (-877 *5 *3)) (-4 *3 (-876 *5)))) (-2031 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-571)) (-4 *5 (-1080)) (-5 *2 (-2 (|:| -1774 *3) (|:| -2341 *3))) (-5 *1 (-877 *5 *3)) (-4 *3 (-876 *5)))) (-4113 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-571)) (-4 *5 (-1080)) (-5 *2 (-2 (|:| -1774 *3) (|:| -2341 *3))) (-5 *1 (-877 *5 *3)) (-4 *3 (-876 *5)))) (-3626 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1080)) (-5 *1 (-877 *2 *3)) (-4 *3 (-876 *2)))) (-1428 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1080)) (-5 *1 (-877 *5 *2)) (-4 *2 (-876 *5)))))
-(-10 -7 (-15 -1428 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -3626 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-571)) (PROGN (-15 -4113 ((-2 (|:| -1774 |#2|) (|:| -2341 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2031 ((-2 (|:| -1774 |#2|) (|:| -2341 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -1879 ((-2 (|:| -1774 |#2|) (|:| -2341 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -4211 ((-2 (|:| -1774 |#2|) (|:| -2341 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2029 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1900 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2440 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1998 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2836 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-4211 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 34 (|has| |#1| (-376)) ELT)) (-2539 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3330 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-1624 (($ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2806 (($ $) NIL (|has| |#1| (-466)) ELT)) (-2983 (((-887) $ (-887)) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-793)) NIL T ELT)) (-2031 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 30 (|has| |#1| (-571)) ELT)) (-4113 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 28 (|has| |#1| (-571)) ELT)) (-3011 (((-793) $) NIL T ELT)) (-3990 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1438 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2736 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2712 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3456 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2253 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-1879 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 32 (|has| |#1| (-376)) ELT)) (-1597 ((|#1| $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1528 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-3630 (((-793) $) NIL T ELT)) (-2053 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (($ |#1|) NIL T ELT)) (-3409 (((-663 |#1|) $) NIL T ELT)) (-2305 ((|#1| $ (-793)) NIL T ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-3626 ((|#1| $ |#1| |#1|) 15 T ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) 23 T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) 19 T ELT) (($ $ (-793)) 24 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
-(((-878 |#1| |#2| |#3|) (-13 (-876 |#1|) (-10 -8 (-15 -2983 ((-887) $ (-887))))) (-1080) (-99 |#1|) (-1 |#1| |#1|)) (T -878))
-((-2983 (*1 *2 *1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-878 *3 *4 *5)) (-4 *3 (-1080)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-876 |#1|) (-10 -8 (-15 -2983 ((-887) $ (-887)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2029 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-1900 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2440 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-1998 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2385 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-2836 (((-3 $ "failed") $ $) NIL (|has| |#2| (-376)) ELT)) (-4211 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-2539 (((-3 (-560) "failed") $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-3330 (((-560) $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) ((|#2| $) NIL T ELT)) (-1624 (($ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2806 (($ $) NIL (|has| |#2| (-466)) ELT)) (-1581 (((-114) $) NIL T ELT)) (-1417 (($ |#2| (-793)) 17 T ELT)) (-2031 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#2| (-571)) ELT)) (-4113 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#2| (-571)) ELT)) (-3011 (((-793) $) NIL T ELT)) (-3990 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-1438 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2736 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2712 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3456 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-2253 (((-3 $ "failed") $ $) NIL (|has| |#2| (-376)) ELT)) (-1879 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-1597 ((|#2| $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1528 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT)) (-3630 (((-793) $) NIL T ELT)) (-2053 ((|#2| $) NIL (|has| |#2| (-466)) ELT)) (-1578 (((-887) $) 24 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (($ |#2|) NIL T ELT) (($ (-1294 |#1|)) 19 T ELT)) (-3409 (((-663 |#2|) $) NIL T ELT)) (-2305 ((|#2| $ (-793)) NIL T ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-3626 ((|#2| $ |#2| |#2|) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) 13 T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
+((-1368 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-1384 (((-2 (|:| -2584 |#2|) (|:| -3276 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-376)) ELT)) (-2076 (((-2 (|:| -2584 |#2|) (|:| -3276 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-571)) ELT)) (-1624 (((-2 (|:| -2584 |#2|) (|:| -3276 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-571)) ELT)) (-4330 (((-2 (|:| -2584 |#2|) (|:| -3276 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-376)) ELT)) (-4323 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33 T ELT)))
+(((-877 |#1| |#2|) (-10 -7 (-15 -1368 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -4323 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-571)) (PROGN (-15 -1624 ((-2 (|:| -2584 |#2|) (|:| -3276 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2076 ((-2 (|:| -2584 |#2|) (|:| -3276 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -4330 ((-2 (|:| -2584 |#2|) (|:| -3276 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1384 ((-2 (|:| -2584 |#2|) (|:| -3276 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1080) (-876 |#1|)) (T -877))
+((-1384 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1080)) (-5 *2 (-2 (|:| -2584 *3) (|:| -3276 *3))) (-5 *1 (-877 *5 *3)) (-4 *3 (-876 *5)))) (-4330 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1080)) (-5 *2 (-2 (|:| -2584 *3) (|:| -3276 *3))) (-5 *1 (-877 *5 *3)) (-4 *3 (-876 *5)))) (-2076 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-571)) (-4 *5 (-1080)) (-5 *2 (-2 (|:| -2584 *3) (|:| -3276 *3))) (-5 *1 (-877 *5 *3)) (-4 *3 (-876 *5)))) (-1624 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-571)) (-4 *5 (-1080)) (-5 *2 (-2 (|:| -2584 *3) (|:| -3276 *3))) (-5 *1 (-877 *5 *3)) (-4 *3 (-876 *5)))) (-4323 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1080)) (-5 *1 (-877 *2 *3)) (-4 *3 (-876 *2)))) (-1368 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1080)) (-5 *1 (-877 *5 *2)) (-4 *2 (-876 *5)))))
+(-10 -7 (-15 -1368 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -4323 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-571)) (PROGN (-15 -1624 ((-2 (|:| -2584 |#2|) (|:| -3276 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2076 ((-2 (|:| -2584 |#2|) (|:| -3276 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -4330 ((-2 (|:| -2584 |#2|) (|:| -3276 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -1384 ((-2 (|:| -2584 |#2|) (|:| -3276 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2058 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3301 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1765 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2963 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-1388 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-1384 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 34 (|has| |#1| (-376)) ELT)) (-3929 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3649 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-3062 (($ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4239 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3459 (((-887) $ (-887)) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-793)) NIL T ELT)) (-2076 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 30 (|has| |#1| (-571)) ELT)) (-1624 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 28 (|has| |#1| (-571)) ELT)) (-3765 (((-793) $) NIL T ELT)) (-2883 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1613 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1594 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2581 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3687 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-4330 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 32 (|has| |#1| (-376)) ELT)) (-3037 ((|#1| $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2233 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-3900 (((-793) $) NIL T ELT)) (-2264 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (($ |#1|) NIL T ELT)) (-2247 (((-663 |#1|) $) NIL T ELT)) (-2920 ((|#1| $ (-793)) NIL T ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-4323 ((|#1| $ |#1| |#1|) 15 T ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) 23 T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) 19 T ELT) (($ $ (-793)) 24 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT)))
+(((-878 |#1| |#2| |#3|) (-13 (-876 |#1|) (-10 -8 (-15 -3459 ((-887) $ (-887))))) (-1080) (-99 |#1|) (-1 |#1| |#1|)) (T -878))
+((-3459 (*1 *2 *1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-878 *3 *4 *5)) (-4 *3 (-1080)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-876 |#1|) (-10 -8 (-15 -3459 ((-887) $ (-887)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2058 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3301 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-1765 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2963 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2475 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-1388 (((-3 $ "failed") $ $) NIL (|has| |#2| (-376)) ELT)) (-1384 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3929 (((-3 (-560) "failed") $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-3649 (((-560) $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) ((|#2| $) NIL T ELT)) (-3062 (($ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4239 (($ $) NIL (|has| |#2| (-466)) ELT)) (-1918 (((-114) $) NIL T ELT)) (-4139 (($ |#2| (-793)) 17 T ELT)) (-2076 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#2| (-571)) ELT)) (-1624 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#2| (-571)) ELT)) (-3765 (((-793) $) NIL T ELT)) (-2883 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-1613 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-1594 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2581 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2678 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3687 (((-3 $ "failed") $ $) NIL (|has| |#2| (-376)) ELT)) (-4330 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3037 ((|#2| $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2233 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT)) (-3900 (((-793) $) NIL T ELT)) (-2264 ((|#2| $) NIL (|has| |#2| (-466)) ELT)) (-3913 (((-887) $) 24 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (($ |#2|) NIL T ELT) (($ (-1294 |#1|)) 19 T ELT)) (-2247 (((-663 |#2|) $) NIL T ELT)) (-2920 ((|#2| $ (-793)) NIL T ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-4323 ((|#2| $ |#2| |#2|) NIL T ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) 13 T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT)))
(((-879 |#1| |#2| |#3| |#4|) (-13 (-876 |#2|) (-635 (-1294 |#1|))) (-1207) (-1080) (-99 |#2|) (-1 |#2| |#2|)) (T -879))
NIL
(-13 (-876 |#2|) (-635 (-1294 |#1|)))
-((-2985 ((|#1| (-793) |#1|) 45 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3097 ((|#1| (-793) (-793) |#1|) 36 T ELT) ((|#1| (-793) |#1|) 24 T ELT)) (-4262 ((|#1| (-793) |#1|) 40 T ELT)) (-1678 ((|#1| (-793) |#1|) 38 T ELT)) (-2228 ((|#1| (-793) |#1|) 37 T ELT)))
-(((-880 |#1|) (-10 -7 (-15 -2228 (|#1| (-793) |#1|)) (-15 -1678 (|#1| (-793) |#1|)) (-15 -4262 (|#1| (-793) |#1|)) (-15 -3097 (|#1| (-793) |#1|)) (-15 -3097 (|#1| (-793) (-793) |#1|)) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -2985 (|#1| (-793) |#1|)) |%noBranch|)) (-175)) (T -880))
-((-2985 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-175)))) (-3097 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175)))) (-3097 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175)))) (-4262 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175)))) (-1678 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175)))) (-2228 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175)))))
-(-10 -7 (-15 -2228 (|#1| (-793) |#1|)) (-15 -1678 (|#1| (-793) |#1|)) (-15 -4262 (|#1| (-793) |#1|)) (-15 -3097 (|#1| (-793) |#1|)) (-15 -3097 (|#1| (-793) (-793) |#1|)) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -2985 (|#1| (-793) |#1|)) |%noBranch|))
-((-1538 (((-114) $ $) 7 T ELT)) (-3825 (($ $ $) 20 T ELT)) (-2820 (($ $ $) 19 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2536 (((-114) $ $) 18 T ELT)) (-2508 (((-114) $ $) 16 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 17 T ELT)) (-2495 (((-114) $ $) 15 T ELT)) (** (($ $ (-948)) 23 T ELT)) (* (($ $ $) 22 T ELT)))
+((-3482 ((|#1| (-793) |#1|) 45 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2146 ((|#1| (-793) (-793) |#1|) 36 T ELT) ((|#1| (-793) |#1|) 24 T ELT)) (-3815 ((|#1| (-793) |#1|) 40 T ELT)) (-2852 ((|#1| (-793) |#1|) 38 T ELT)) (-3424 ((|#1| (-793) |#1|) 37 T ELT)))
+(((-880 |#1|) (-10 -7 (-15 -3424 (|#1| (-793) |#1|)) (-15 -2852 (|#1| (-793) |#1|)) (-15 -3815 (|#1| (-793) |#1|)) (-15 -2146 (|#1| (-793) |#1|)) (-15 -2146 (|#1| (-793) (-793) |#1|)) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -3482 (|#1| (-793) |#1|)) |%noBranch|)) (-175)) (T -880))
+((-3482 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-175)))) (-2146 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175)))) (-2146 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175)))) (-3815 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175)))) (-2852 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175)))) (-3424 (*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175)))))
+(-10 -7 (-15 -3424 (|#1| (-793) |#1|)) (-15 -2852 (|#1| (-793) |#1|)) (-15 -3815 (|#1| (-793) |#1|)) (-15 -2146 (|#1| (-793) |#1|)) (-15 -2146 (|#1| (-793) (-793) |#1|)) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -3482 (|#1| (-793) |#1|)) |%noBranch|))
+((-2243 (((-114) $ $) 7 T ELT)) (-2932 (($ $ $) 20 T ELT)) (-4379 (($ $ $) 19 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2396 (((-114) $ $) 18 T ELT)) (-2373 (((-114) $ $) 16 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 17 T ELT)) (-2362 (((-114) $ $) 15 T ELT)) (** (($ $ (-948)) 23 T ELT)) (* (($ $ $) 22 T ELT)))
(((-881) (-142)) (T -881))
NIL
(-13 (-871) (-1143))
(((-102) . T) ((-632 (-887)) . T) ((-871) . T) ((-874) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-3853 (((-560) $) 14 T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 20 T ELT) (($ (-560)) 13 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 9 T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 11 T ELT)))
-(((-882) (-13 (-871) (-10 -8 (-15 -1578 ($ (-560))) (-15 -3853 ((-560) $))))) (T -882))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-882)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-882)))))
-(-13 (-871) (-10 -8 (-15 -1578 ($ (-560))) (-15 -3853 ((-560) $))))
-((-2606 (((-1303) (-663 (-51))) 23 T ELT)) (-2592 (((-1303) (-1189) (-887)) 13 T ELT) (((-1303) (-887)) 8 T ELT) (((-1303) (-1189)) 10 T ELT)))
-(((-883) (-10 -7 (-15 -2592 ((-1303) (-1189))) (-15 -2592 ((-1303) (-887))) (-15 -2592 ((-1303) (-1189) (-887))) (-15 -2606 ((-1303) (-663 (-51)))))) (T -883))
-((-2606 (*1 *2 *3) (-12 (-5 *3 (-663 (-51))) (-5 *2 (-1303)) (-5 *1 (-883)))) (-2592 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-887)) (-5 *2 (-1303)) (-5 *1 (-883)))) (-2592 (*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1303)) (-5 *1 (-883)))) (-2592 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-883)))))
-(-10 -7 (-15 -2592 ((-1303) (-1189))) (-15 -2592 ((-1303) (-887))) (-15 -2592 ((-1303) (-1189) (-887))) (-15 -2606 ((-1303) (-663 (-51)))))
-((-3740 (((-713 (-1256)) $ (-1256)) 15 T ELT)) (-4475 (((-713 (-564)) $ (-564)) 12 T ELT)) (-3159 (((-793) $ (-131)) 30 T ELT)))
-(((-884 |#1|) (-10 -8 (-15 -3159 ((-793) |#1| (-131))) (-15 -3740 ((-713 (-1256)) |#1| (-1256))) (-15 -4475 ((-713 (-564)) |#1| (-564)))) (-885)) (T -884))
-NIL
-(-10 -8 (-15 -3159 ((-793) |#1| (-131))) (-15 -3740 ((-713 (-1256)) |#1| (-1256))) (-15 -4475 ((-713 (-564)) |#1| (-564))))
-((-3740 (((-713 (-1256)) $ (-1256)) 8 T ELT)) (-4475 (((-713 (-564)) $ (-564)) 9 T ELT)) (-3159 (((-793) $ (-131)) 7 T ELT)) (-3720 (((-713 (-130)) $ (-130)) 10 T ELT)) (-4474 (($ $) 6 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-1430 (((-560) $) 14 T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 20 T ELT) (($ (-560)) 13 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 9 T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 11 T ELT)))
+(((-882) (-13 (-871) (-10 -8 (-15 -3913 ($ (-560))) (-15 -1430 ((-560) $))))) (T -882))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-882)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-882)))))
+(-13 (-871) (-10 -8 (-15 -3913 ($ (-560))) (-15 -1430 ((-560) $))))
+((-3618 (((-1303) (-663 (-51))) 23 T ELT)) (-2016 (((-1303) (-1189) (-887)) 13 T ELT) (((-1303) (-887)) 8 T ELT) (((-1303) (-1189)) 10 T ELT)))
+(((-883) (-10 -7 (-15 -2016 ((-1303) (-1189))) (-15 -2016 ((-1303) (-887))) (-15 -2016 ((-1303) (-1189) (-887))) (-15 -3618 ((-1303) (-663 (-51)))))) (T -883))
+((-3618 (*1 *2 *3) (-12 (-5 *3 (-663 (-51))) (-5 *2 (-1303)) (-5 *1 (-883)))) (-2016 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-887)) (-5 *2 (-1303)) (-5 *1 (-883)))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1303)) (-5 *1 (-883)))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-883)))))
+(-10 -7 (-15 -2016 ((-1303) (-1189))) (-15 -2016 ((-1303) (-887))) (-15 -2016 ((-1303) (-1189) (-887))) (-15 -3618 ((-1303) (-663 (-51)))))
+((-2406 (((-713 (-1256)) $ (-1256)) 15 T ELT)) (-1847 (((-713 (-564)) $ (-564)) 12 T ELT)) (-1580 (((-793) $ (-131)) 30 T ELT)))
+(((-884 |#1|) (-10 -8 (-15 -1580 ((-793) |#1| (-131))) (-15 -2406 ((-713 (-1256)) |#1| (-1256))) (-15 -1847 ((-713 (-564)) |#1| (-564)))) (-885)) (T -884))
+NIL
+(-10 -8 (-15 -1580 ((-793) |#1| (-131))) (-15 -2406 ((-713 (-1256)) |#1| (-1256))) (-15 -1847 ((-713 (-564)) |#1| (-564))))
+((-2406 (((-713 (-1256)) $ (-1256)) 8 T ELT)) (-1847 (((-713 (-564)) $ (-564)) 9 T ELT)) (-1580 (((-793) $ (-131)) 7 T ELT)) (-2241 (((-713 (-130)) $ (-130)) 10 T ELT)) (-1835 (($ $) 6 T ELT)))
(((-885) (-142)) (T -885))
-((-3720 (*1 *2 *1 *3) (-12 (-4 *1 (-885)) (-5 *2 (-713 (-130))) (-5 *3 (-130)))) (-4475 (*1 *2 *1 *3) (-12 (-4 *1 (-885)) (-5 *2 (-713 (-564))) (-5 *3 (-564)))) (-3740 (*1 *2 *1 *3) (-12 (-4 *1 (-885)) (-5 *2 (-713 (-1256))) (-5 *3 (-1256)))) (-3159 (*1 *2 *1 *3) (-12 (-4 *1 (-885)) (-5 *3 (-131)) (-5 *2 (-793)))))
-(-13 (-176) (-10 -8 (-15 -3720 ((-713 (-130)) $ (-130))) (-15 -4475 ((-713 (-564)) $ (-564))) (-15 -3740 ((-713 (-1256)) $ (-1256))) (-15 -3159 ((-793) $ (-131)))))
+((-2241 (*1 *2 *1 *3) (-12 (-4 *1 (-885)) (-5 *2 (-713 (-130))) (-5 *3 (-130)))) (-1847 (*1 *2 *1 *3) (-12 (-4 *1 (-885)) (-5 *2 (-713 (-564))) (-5 *3 (-564)))) (-2406 (*1 *2 *1 *3) (-12 (-4 *1 (-885)) (-5 *2 (-713 (-1256))) (-5 *3 (-1256)))) (-1580 (*1 *2 *1 *3) (-12 (-4 *1 (-885)) (-5 *3 (-131)) (-5 *2 (-793)))))
+(-13 (-176) (-10 -8 (-15 -2241 ((-713 (-130)) $ (-130))) (-15 -1847 ((-713 (-564)) $ (-564))) (-15 -2406 ((-713 (-1256)) $ (-1256))) (-15 -1580 ((-793) $ (-131)))))
(((-176) . T))
-((-3740 (((-713 (-1256)) $ (-1256)) NIL T ELT)) (-4475 (((-713 (-564)) $ (-564)) NIL T ELT)) (-3159 (((-793) $ (-131)) NIL T ELT)) (-3720 (((-713 (-130)) $ (-130)) 22 T ELT)) (-2268 (($ (-402)) 12 T ELT) (($ (-1189)) 14 T ELT)) (-3856 (((-114) $) 19 T ELT)) (-1578 (((-887) $) 26 T ELT)) (-4474 (($ $) 23 T ELT)))
-(((-886) (-13 (-885) (-632 (-887)) (-10 -8 (-15 -2268 ($ (-402))) (-15 -2268 ($ (-1189))) (-15 -3856 ((-114) $))))) (T -886))
-((-2268 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-886)))) (-2268 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-886)))) (-3856 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-886)))))
-(-13 (-885) (-632 (-887)) (-10 -8 (-15 -2268 ($ (-402))) (-15 -2268 ($ (-1189))) (-15 -3856 ((-114) $))))
-((-1538 (((-114) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2553 (($ $ $) 125 T ELT)) (-3423 (((-560) $) 31 T ELT) (((-560)) 36 T ELT)) (-2958 (($ (-560)) 53 T ELT)) (-3498 (($ $ $) 54 T ELT) (($ (-663 $)) 84 T ELT)) (-1885 (($ $ (-663 $)) 82 T ELT)) (-2920 (((-560) $) 34 T ELT)) (-1776 (($ $ $) 73 T ELT)) (-4061 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-3383 (((-560) $) 33 T ELT)) (-2600 (($ $ $) 72 T ELT)) (-1620 (($ $) 114 T ELT)) (-4044 (($ $ $) 129 T ELT)) (-1939 (($ (-663 $)) 61 T ELT)) (-4213 (($ $ (-663 $)) 79 T ELT)) (-2291 (($ (-560) (-560)) 55 T ELT)) (-4179 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-4210 (($ $ (-560)) 43 T ELT) (($ $) 46 T ELT)) (-1478 (($ $ $) 97 T ELT)) (-2424 (($ $ $) 132 T ELT)) (-3529 (($ $) 115 T ELT)) (-1490 (($ $ $) 98 T ELT)) (-2401 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2209 (((-1303) $) 10 T ELT)) (-4119 (($ $) 118 T ELT) (($ $ (-793)) 122 T ELT)) (-1512 (($ $ $) 75 T ELT)) (-4114 (($ $ $) 74 T ELT)) (-2513 (($ $ (-663 $)) 110 T ELT)) (-2898 (($ $ $) 113 T ELT)) (-2646 (($ (-663 $)) 59 T ELT)) (-2753 (($ $) 70 T ELT) (($ (-663 $)) 71 T ELT)) (-3316 (($ $ $) 123 T ELT)) (-3046 (($ $) 116 T ELT)) (-3580 (($ $ $) 128 T ELT)) (-2983 (($ (-560)) 21 T ELT) (($ (-1207)) 23 T ELT) (($ (-1189)) 30 T ELT) (($ (-229)) 25 T ELT)) (-1961 (($ $ $) 101 T ELT)) (-1937 (($ $) 102 T ELT)) (-2730 (((-1303) (-1189)) 15 T ELT)) (-2640 (($ (-1189)) 14 T ELT)) (-2589 (($ (-663 (-663 $))) 58 T ELT)) (-4198 (($ $ (-560)) 42 T ELT) (($ $) 45 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3673 (($ $ $) 131 T ELT)) (-4339 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-3878 (((-114) $) 108 T ELT)) (-3403 (($ $ (-663 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-1959 (($ (-560)) 39 T ELT)) (-2107 (((-560) $) 32 T ELT) (((-560)) 35 T ELT)) (-3560 (($ $ $) 40 T ELT) (($ (-663 $)) 83 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1528 (($ $ $) 99 T ELT)) (-3986 (($) 13 T ELT)) (-3924 (($ $ (-663 $)) 109 T ELT)) (-1981 (((-1189) (-1189)) 8 T ELT)) (-3232 (($ $) 117 T ELT) (($ $ (-793)) 121 T ELT)) (-1515 (($ $ $) 96 T ELT)) (-2894 (($ $ (-793)) 139 T ELT)) (-2902 (($ (-663 $)) 60 T ELT)) (-1578 (((-887) $) 19 T ELT)) (-3355 (($ $ (-560)) 41 T ELT) (($ $) 44 T ELT)) (-2391 (($ $) 68 T ELT) (($ (-663 $)) 69 T ELT)) (-1364 (($ $) 66 T ELT) (($ (-663 $)) 67 T ELT)) (-3579 (($ $) 124 T ELT)) (-2208 (($ (-663 $)) 65 T ELT)) (-3271 (($ $ $) 105 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2149 (($ $ $) 130 T ELT)) (-1953 (($ $ $) 100 T ELT)) (-1524 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2536 (($ $ $) 89 T ELT)) (-2508 (($ $ $) 87 T ELT)) (-2473 (((-114) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2521 (($ $ $) 88 T ELT)) (-2495 (($ $ $) 86 T ELT)) (-2594 (($ $ $) 94 T ELT)) (-2580 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-2567 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT)))
-(((-887) (-13 (-1132) (-10 -8 (-15 -2209 ((-1303) $)) (-15 -2640 ($ (-1189))) (-15 -2730 ((-1303) (-1189))) (-15 -2983 ($ (-560))) (-15 -2983 ($ (-1207))) (-15 -2983 ($ (-1189))) (-15 -2983 ($ (-229))) (-15 -3986 ($)) (-15 -1981 ((-1189) (-1189))) (-15 -3423 ((-560) $)) (-15 -2107 ((-560) $)) (-15 -3423 ((-560))) (-15 -2107 ((-560))) (-15 -3383 ((-560) $)) (-15 -2920 ((-560) $)) (-15 -1959 ($ (-560))) (-15 -2958 ($ (-560))) (-15 -2291 ($ (-560) (-560))) (-15 -4198 ($ $ (-560))) (-15 -4210 ($ $ (-560))) (-15 -3355 ($ $ (-560))) (-15 -4198 ($ $)) (-15 -4210 ($ $)) (-15 -3355 ($ $)) (-15 -3560 ($ $ $)) (-15 -3498 ($ $ $)) (-15 -3560 ($ (-663 $))) (-15 -3498 ($ (-663 $))) (-15 -2513 ($ $ (-663 $))) (-15 -3403 ($ $ (-663 $))) (-15 -3403 ($ $ $ $)) (-15 -2898 ($ $ $)) (-15 -3878 ((-114) $)) (-15 -3924 ($ $ (-663 $))) (-15 -1620 ($ $)) (-15 -3673 ($ $ $)) (-15 -3579 ($ $)) (-15 -2589 ($ (-663 (-663 $)))) (-15 -2553 ($ $ $)) (-15 -4179 ($ $)) (-15 -4179 ($ $ $)) (-15 -3580 ($ $ $)) (-15 -4044 ($ $ $)) (-15 -2149 ($ $ $)) (-15 -2424 ($ $ $)) (-15 -2894 ($ $ (-793))) (-15 -3271 ($ $ $)) (-15 -2600 ($ $ $)) (-15 -1776 ($ $ $)) (-15 -4114 ($ $ $)) (-15 -1512 ($ $ $)) (-15 -4213 ($ $ (-663 $))) (-15 -1885 ($ $ (-663 $))) (-15 -3529 ($ $)) (-15 -3232 ($ $)) (-15 -3232 ($ $ (-793))) (-15 -4119 ($ $)) (-15 -4119 ($ $ (-793))) (-15 -3046 ($ $)) (-15 -3316 ($ $ $)) (-15 -4061 ($ $)) (-15 -4061 ($ $ $)) (-15 -4061 ($ $ $ $)) (-15 -2401 ($ $)) (-15 -2401 ($ $ $)) (-15 -2401 ($ $ $ $)) (-15 -4339 ($ $)) (-15 -4339 ($ $ $)) (-15 -4339 ($ $ $ $)) (-15 -1364 ($ $)) (-15 -1364 ($ (-663 $))) (-15 -2391 ($ $)) (-15 -2391 ($ (-663 $))) (-15 -2753 ($ $)) (-15 -2753 ($ (-663 $))) (-15 -2646 ($ (-663 $))) (-15 -2902 ($ (-663 $))) (-15 -1939 ($ (-663 $))) (-15 -2208 ($ (-663 $))) (-15 -2473 ($ $ $)) (-15 -1538 ($ $ $)) (-15 -2495 ($ $ $)) (-15 -2508 ($ $ $)) (-15 -2521 ($ $ $)) (-15 -2536 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -2580 ($ $ $)) (-15 -2580 ($ $)) (-15 * ($ $ $)) (-15 -2594 ($ $ $)) (-15 ** ($ $ $)) (-15 -1515 ($ $ $)) (-15 -1478 ($ $ $)) (-15 -1490 ($ $ $)) (-15 -1528 ($ $ $)) (-15 -1953 ($ $ $)) (-15 -1961 ($ $ $)) (-15 -1937 ($ $)) (-15 -1524 ($ $ $)) (-15 -1524 ($ $))))) (T -887))
-((-2209 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-887)))) (-2640 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-887)))) (-2730 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-887)))) (-2983 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-2983 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-887)))) (-2983 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-887)))) (-2983 (*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-887)))) (-3986 (*1 *1) (-5 *1 (-887))) (-1981 (*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-887)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-2107 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-3423 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-2107 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-3383 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-2920 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-1959 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-2958 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-2291 (*1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-4198 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-4210 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-3355 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-4198 (*1 *1 *1) (-5 *1 (-887))) (-4210 (*1 *1 *1) (-5 *1 (-887))) (-3355 (*1 *1 *1) (-5 *1 (-887))) (-3560 (*1 *1 *1 *1) (-5 *1 (-887))) (-3498 (*1 *1 *1 *1) (-5 *1 (-887))) (-3560 (*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-3498 (*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-2513 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-3403 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-3403 (*1 *1 *1 *1 *1) (-5 *1 (-887))) (-2898 (*1 *1 *1 *1) (-5 *1 (-887))) (-3878 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-887)))) (-3924 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-1620 (*1 *1 *1) (-5 *1 (-887))) (-3673 (*1 *1 *1 *1) (-5 *1 (-887))) (-3579 (*1 *1 *1) (-5 *1 (-887))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-887)))) (-5 *1 (-887)))) (-2553 (*1 *1 *1 *1) (-5 *1 (-887))) (-4179 (*1 *1 *1) (-5 *1 (-887))) (-4179 (*1 *1 *1 *1) (-5 *1 (-887))) (-3580 (*1 *1 *1 *1) (-5 *1 (-887))) (-4044 (*1 *1 *1 *1) (-5 *1 (-887))) (-2149 (*1 *1 *1 *1) (-5 *1 (-887))) (-2424 (*1 *1 *1 *1) (-5 *1 (-887))) (-2894 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-887)))) (-3271 (*1 *1 *1 *1) (-5 *1 (-887))) (-2600 (*1 *1 *1 *1) (-5 *1 (-887))) (-1776 (*1 *1 *1 *1) (-5 *1 (-887))) (-4114 (*1 *1 *1 *1) (-5 *1 (-887))) (-1512 (*1 *1 *1 *1) (-5 *1 (-887))) (-4213 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-1885 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-3529 (*1 *1 *1) (-5 *1 (-887))) (-3232 (*1 *1 *1) (-5 *1 (-887))) (-3232 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-887)))) (-4119 (*1 *1 *1) (-5 *1 (-887))) (-4119 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-887)))) (-3046 (*1 *1 *1) (-5 *1 (-887))) (-3316 (*1 *1 *1 *1) (-5 *1 (-887))) (-4061 (*1 *1 *1) (-5 *1 (-887))) (-4061 (*1 *1 *1 *1) (-5 *1 (-887))) (-4061 (*1 *1 *1 *1 *1) (-5 *1 (-887))) (-2401 (*1 *1 *1) (-5 *1 (-887))) (-2401 (*1 *1 *1 *1) (-5 *1 (-887))) (-2401 (*1 *1 *1 *1 *1) (-5 *1 (-887))) (-4339 (*1 *1 *1) (-5 *1 (-887))) (-4339 (*1 *1 *1 *1) (-5 *1 (-887))) (-4339 (*1 *1 *1 *1 *1) (-5 *1 (-887))) (-1364 (*1 *1 *1) (-5 *1 (-887))) (-1364 (*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-2391 (*1 *1 *1) (-5 *1 (-887))) (-2391 (*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-2753 (*1 *1 *1) (-5 *1 (-887))) (-2753 (*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-2646 (*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-2902 (*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-1939 (*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-2208 (*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-2473 (*1 *1 *1 *1) (-5 *1 (-887))) (-1538 (*1 *1 *1 *1) (-5 *1 (-887))) (-2495 (*1 *1 *1 *1) (-5 *1 (-887))) (-2508 (*1 *1 *1 *1) (-5 *1 (-887))) (-2521 (*1 *1 *1 *1) (-5 *1 (-887))) (-2536 (*1 *1 *1 *1) (-5 *1 (-887))) (-2567 (*1 *1 *1 *1) (-5 *1 (-887))) (-2580 (*1 *1 *1 *1) (-5 *1 (-887))) (-2580 (*1 *1 *1) (-5 *1 (-887))) (* (*1 *1 *1 *1) (-5 *1 (-887))) (-2594 (*1 *1 *1 *1) (-5 *1 (-887))) (** (*1 *1 *1 *1) (-5 *1 (-887))) (-1515 (*1 *1 *1 *1) (-5 *1 (-887))) (-1478 (*1 *1 *1 *1) (-5 *1 (-887))) (-1490 (*1 *1 *1 *1) (-5 *1 (-887))) (-1528 (*1 *1 *1 *1) (-5 *1 (-887))) (-1953 (*1 *1 *1 *1) (-5 *1 (-887))) (-1961 (*1 *1 *1 *1) (-5 *1 (-887))) (-1937 (*1 *1 *1) (-5 *1 (-887))) (-1524 (*1 *1 *1 *1) (-5 *1 (-887))) (-1524 (*1 *1 *1) (-5 *1 (-887))))
-(-13 (-1132) (-10 -8 (-15 -2209 ((-1303) $)) (-15 -2640 ($ (-1189))) (-15 -2730 ((-1303) (-1189))) (-15 -2983 ($ (-560))) (-15 -2983 ($ (-1207))) (-15 -2983 ($ (-1189))) (-15 -2983 ($ (-229))) (-15 -3986 ($)) (-15 -1981 ((-1189) (-1189))) (-15 -3423 ((-560) $)) (-15 -2107 ((-560) $)) (-15 -3423 ((-560))) (-15 -2107 ((-560))) (-15 -3383 ((-560) $)) (-15 -2920 ((-560) $)) (-15 -1959 ($ (-560))) (-15 -2958 ($ (-560))) (-15 -2291 ($ (-560) (-560))) (-15 -4198 ($ $ (-560))) (-15 -4210 ($ $ (-560))) (-15 -3355 ($ $ (-560))) (-15 -4198 ($ $)) (-15 -4210 ($ $)) (-15 -3355 ($ $)) (-15 -3560 ($ $ $)) (-15 -3498 ($ $ $)) (-15 -3560 ($ (-663 $))) (-15 -3498 ($ (-663 $))) (-15 -2513 ($ $ (-663 $))) (-15 -3403 ($ $ (-663 $))) (-15 -3403 ($ $ $ $)) (-15 -2898 ($ $ $)) (-15 -3878 ((-114) $)) (-15 -3924 ($ $ (-663 $))) (-15 -1620 ($ $)) (-15 -3673 ($ $ $)) (-15 -3579 ($ $)) (-15 -2589 ($ (-663 (-663 $)))) (-15 -2553 ($ $ $)) (-15 -4179 ($ $)) (-15 -4179 ($ $ $)) (-15 -3580 ($ $ $)) (-15 -4044 ($ $ $)) (-15 -2149 ($ $ $)) (-15 -2424 ($ $ $)) (-15 -2894 ($ $ (-793))) (-15 -3271 ($ $ $)) (-15 -2600 ($ $ $)) (-15 -1776 ($ $ $)) (-15 -4114 ($ $ $)) (-15 -1512 ($ $ $)) (-15 -4213 ($ $ (-663 $))) (-15 -1885 ($ $ (-663 $))) (-15 -3529 ($ $)) (-15 -3232 ($ $)) (-15 -3232 ($ $ (-793))) (-15 -4119 ($ $)) (-15 -4119 ($ $ (-793))) (-15 -3046 ($ $)) (-15 -3316 ($ $ $)) (-15 -4061 ($ $)) (-15 -4061 ($ $ $)) (-15 -4061 ($ $ $ $)) (-15 -2401 ($ $)) (-15 -2401 ($ $ $)) (-15 -2401 ($ $ $ $)) (-15 -4339 ($ $)) (-15 -4339 ($ $ $)) (-15 -4339 ($ $ $ $)) (-15 -1364 ($ $)) (-15 -1364 ($ (-663 $))) (-15 -2391 ($ $)) (-15 -2391 ($ (-663 $))) (-15 -2753 ($ $)) (-15 -2753 ($ (-663 $))) (-15 -2646 ($ (-663 $))) (-15 -2902 ($ (-663 $))) (-15 -1939 ($ (-663 $))) (-15 -2208 ($ (-663 $))) (-15 -2473 ($ $ $)) (-15 -1538 ($ $ $)) (-15 -2495 ($ $ $)) (-15 -2508 ($ $ $)) (-15 -2521 ($ $ $)) (-15 -2536 ($ $ $)) (-15 -2567 ($ $ $)) (-15 -2580 ($ $ $)) (-15 -2580 ($ $)) (-15 * ($ $ $)) (-15 -2594 ($ $ $)) (-15 ** ($ $ $)) (-15 -1515 ($ $ $)) (-15 -1478 ($ $ $)) (-15 -1490 ($ $ $)) (-15 -1528 ($ $ $)) (-15 -1953 ($ $ $)) (-15 -1961 ($ $ $)) (-15 -1937 ($ $)) (-15 -1524 ($ $ $)) (-15 -1524 ($ $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2462 (((-3 $ "failed") (-1207)) 36 T ELT)) (-3241 (((-793)) 32 T ELT)) (-2310 (($) NIL T ELT)) (-3825 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2820 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4419 (((-948) $) 29 T ELT)) (-1905 (((-1189) $) 43 T ELT)) (-3128 (($ (-948)) 28 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1407 (((-1207) $) 13 T ELT) (((-549) $) 19 T ELT) (((-915 (-391)) $) 26 T ELT) (((-915 (-560)) $) 22 T ELT)) (-1578 (((-887) $) 16 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 40 T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 38 T ELT)))
-(((-888 |#1|) (-13 (-866) (-633 (-1207)) (-633 (-549)) (-633 (-915 (-391))) (-633 (-915 (-560))) (-10 -8 (-15 -2462 ((-3 $ "failed") (-1207))))) (-663 (-1207))) (T -888))
-((-2462 (*1 *1 *2) (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-888 *3)) (-14 *3 (-663 *2)))))
-(-13 (-866) (-633 (-1207)) (-633 (-549)) (-633 (-915 (-391))) (-633 (-915 (-560))) (-10 -8 (-15 -2462 ((-3 $ "failed") (-1207)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3614 (((-520) $) 9 T ELT)) (-2656 (((-663 (-453)) $) 13 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 21 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 16 T ELT)))
-(((-889) (-13 (-1132) (-10 -8 (-15 -3614 ((-520) $)) (-15 -2656 ((-663 (-453)) $))))) (T -889))
-((-3614 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-889)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-663 (-453))) (-5 *1 (-889)))))
-(-13 (-1132) (-10 -8 (-15 -3614 ((-520) $)) (-15 -2656 ((-663 (-453)) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-975 |#1|)) NIL T ELT) (((-975 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT)) (-2930 (((-793)) NIL T CONST)) (-1379 (((-1303) (-793)) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT)))
-(((-890 |#1| |#2| |#3| |#4|) (-13 (-1080) (-504 (-975 |#1|)) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -2594 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1379 ((-1303) (-793))))) (-1080) (-663 (-1207)) (-663 (-793)) (-793)) (T -890))
-((-2594 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-890 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *2 (-1080)) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-793))) (-14 *5 (-793)))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-890 *4 *5 *6 *7)) (-4 *4 (-1080)) (-14 *5 (-663 (-1207))) (-14 *6 (-663 *3)) (-14 *7 *3))))
-(-13 (-1080) (-504 (-975 |#1|)) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -2594 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1379 ((-1303) (-793)))))
-((-3948 (((-3 (-177 |#3|) "failed") (-793) (-793) |#2| |#2|) 38 T ELT)) (-4405 (((-3 (-421 |#3|) "failed") (-793) (-793) |#2| |#2|) 29 T ELT)))
-(((-891 |#1| |#2| |#3|) (-10 -7 (-15 -4405 ((-3 (-421 |#3|) "failed") (-793) (-793) |#2| |#2|)) (-15 -3948 ((-3 (-177 |#3|) "failed") (-793) (-793) |#2| |#2|))) (-376) (-1290 |#1|) (-1273 |#1|)) (T -891))
-((-3948 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-793)) (-4 *5 (-376)) (-5 *2 (-177 *6)) (-5 *1 (-891 *5 *4 *6)) (-4 *4 (-1290 *5)) (-4 *6 (-1273 *5)))) (-4405 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-793)) (-4 *5 (-376)) (-5 *2 (-421 *6)) (-5 *1 (-891 *5 *4 *6)) (-4 *4 (-1290 *5)) (-4 *6 (-1273 *5)))))
-(-10 -7 (-15 -4405 ((-3 (-421 |#3|) "failed") (-793) (-793) |#2| |#2|)) (-15 -3948 ((-3 (-177 |#3|) "failed") (-793) (-793) |#2| |#2|)))
-((-4405 (((-3 (-421 (-1266 |#2| |#1|)) "failed") (-793) (-793) (-1287 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-421 (-1266 |#2| |#1|)) "failed") (-793) (-793) (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|)) 28 T ELT)))
-(((-892 |#1| |#2| |#3|) (-10 -7 (-15 -4405 ((-3 (-421 (-1266 |#2| |#1|)) "failed") (-793) (-793) (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|))) (-15 -4405 ((-3 (-421 (-1266 |#2| |#1|)) "failed") (-793) (-793) (-1287 |#1| |#2| |#3|)))) (-376) (-1207) |#1|) (T -892))
-((-4405 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-793)) (-5 *4 (-1287 *5 *6 *7)) (-4 *5 (-376)) (-14 *6 (-1207)) (-14 *7 *5) (-5 *2 (-421 (-1266 *6 *5))) (-5 *1 (-892 *5 *6 *7)))) (-4405 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-793)) (-5 *4 (-1287 *5 *6 *7)) (-4 *5 (-376)) (-14 *6 (-1207)) (-14 *7 *5) (-5 *2 (-421 (-1266 *6 *5))) (-5 *1 (-892 *5 *6 *7)))))
-(-10 -7 (-15 -4405 ((-3 (-421 (-1266 |#2| |#1|)) "failed") (-793) (-793) (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|))) (-15 -4405 ((-3 (-421 (-1266 |#2| |#1|)) "failed") (-793) (-793) (-1287 |#1| |#2| |#3|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-4471 (($ $ (-560)) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-4179 (($ (-1201 (-560)) (-560)) NIL T ELT)) (-1478 (($ $ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1736 (($ $) NIL T ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-3913 (((-793) $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2865 (((-560)) NIL T ELT)) (-1715 (((-560) $) NIL T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-4372 (($ $ (-560)) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-1601 (((-1185 (-560)) $) NIL T ELT)) (-3266 (($ $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2239 (((-560) $ (-560)) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT)))
+((-2406 (((-713 (-1256)) $ (-1256)) NIL T ELT)) (-1847 (((-713 (-564)) $ (-564)) NIL T ELT)) (-1580 (((-793) $ (-131)) NIL T ELT)) (-2241 (((-713 (-130)) $ (-130)) 22 T ELT)) (-3855 (($ (-402)) 12 T ELT) (($ (-1189)) 14 T ELT)) (-4097 (((-114) $) 19 T ELT)) (-3913 (((-887) $) 26 T ELT)) (-1835 (($ $) 23 T ELT)))
+(((-886) (-13 (-885) (-632 (-887)) (-10 -8 (-15 -3855 ($ (-402))) (-15 -3855 ($ (-1189))) (-15 -4097 ((-114) $))))) (T -886))
+((-3855 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-886)))) (-3855 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-886)))) (-4097 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-886)))))
+(-13 (-885) (-632 (-887)) (-10 -8 (-15 -3855 ($ (-402))) (-15 -3855 ($ (-1189))) (-15 -4097 ((-114) $))))
+((-2243 (((-114) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-3485 (($ $ $) 125 T ELT)) (-4158 (((-560) $) 31 T ELT) (((-560)) 36 T ELT)) (-4450 (($ (-560)) 53 T ELT)) (-1849 (($ $ $) 54 T ELT) (($ (-663 $)) 84 T ELT)) (-4393 (($ $ (-663 $)) 82 T ELT)) (-4072 (((-560) $) 34 T ELT)) (-4452 (($ $ $) 73 T ELT)) (-2961 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-3254 (((-560) $) 33 T ELT)) (-3941 (($ $ $) 72 T ELT)) (-2903 (($ $) 114 T ELT)) (-2189 (($ $ $) 129 T ELT)) (-3680 (($ (-663 $)) 61 T ELT)) (-2958 (($ $ (-663 $)) 79 T ELT)) (-2791 (($ (-560) (-560)) 55 T ELT)) (-4266 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-4346 (($ $ (-560)) 43 T ELT) (($ $) 46 T ELT)) (-2186 (($ $ $) 97 T ELT)) (-1610 (($ $ $) 132 T ELT)) (-4101 (($ $) 115 T ELT)) (-2197 (($ $ $) 98 T ELT)) (-2627 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-2190 (((-1303) $) 10 T ELT)) (-1682 (($ $) 118 T ELT) (($ $ (-793)) 122 T ELT)) (-1546 (($ $ $) 75 T ELT)) (-1637 (($ $ $) 74 T ELT)) (-1903 (($ $ (-663 $)) 110 T ELT)) (-3959 (($ $ $) 113 T ELT)) (-3148 (($ (-663 $)) 59 T ELT)) (-1740 (($ $) 70 T ELT) (($ (-663 $)) 71 T ELT)) (-3856 (($ $ $) 123 T ELT)) (-2824 (($ $) 116 T ELT)) (-3377 (($ $ $) 128 T ELT)) (-3459 (($ (-560)) 21 T ELT) (($ (-1207)) 23 T ELT) (($ (-1189)) 30 T ELT) (($ (-229)) 25 T ELT)) (-1415 (($ $ $) 101 T ELT)) (-1394 (($ $) 102 T ELT)) (-1540 (((-1303) (-1189)) 15 T ELT)) (-2062 (($ (-1189)) 14 T ELT)) (-3551 (($ (-663 (-663 $))) 58 T ELT)) (-4335 (($ $ (-560)) 42 T ELT) (($ $) 45 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2841 (($ $ $) 131 T ELT)) (-2660 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-3092 (((-114) $) 108 T ELT)) (-2187 (($ $ (-663 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-3873 (($ (-560)) 39 T ELT)) (-3827 (((-560) $) 32 T ELT) (((-560)) 35 T ELT)) (-4423 (($ $ $) 40 T ELT) (($ (-663 $)) 83 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2233 (($ $ $) 99 T ELT)) (-2832 (($) 13 T ELT)) (-1507 (($ $ (-663 $)) 109 T ELT)) (-2782 (((-1189) (-1189)) 8 T ELT)) (-4258 (($ $) 117 T ELT) (($ $ (-793)) 121 T ELT)) (-2221 (($ $ $) 96 T ELT)) (-3161 (($ $ (-793)) 139 T ELT)) (-3998 (($ (-663 $)) 60 T ELT)) (-3913 (((-887) $) 19 T ELT)) (-1351 (($ $ (-560)) 41 T ELT) (($ $) 44 T ELT)) (-2538 (($ $) 68 T ELT) (($ (-663 $)) 69 T ELT)) (-4074 (($ $) 66 T ELT) (($ (-663 $)) 67 T ELT)) (-3061 (($ $) 124 T ELT)) (-1332 (($ (-663 $)) 65 T ELT)) (-3381 (($ $ $) 105 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1991 (($ $ $) 130 T ELT)) (-1404 (($ $ $) 100 T ELT)) (-2224 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2396 (($ $ $) 89 T ELT)) (-2373 (($ $ $) 87 T ELT)) (-2340 (((-114) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-2386 (($ $ $) 88 T ELT)) (-2362 (($ $ $) 86 T ELT)) (-2453 (($ $ $) 94 T ELT)) (-2441 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-2429 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT)))
+(((-887) (-13 (-1132) (-10 -8 (-15 -2190 ((-1303) $)) (-15 -2062 ($ (-1189))) (-15 -1540 ((-1303) (-1189))) (-15 -3459 ($ (-560))) (-15 -3459 ($ (-1207))) (-15 -3459 ($ (-1189))) (-15 -3459 ($ (-229))) (-15 -2832 ($)) (-15 -2782 ((-1189) (-1189))) (-15 -4158 ((-560) $)) (-15 -3827 ((-560) $)) (-15 -4158 ((-560))) (-15 -3827 ((-560))) (-15 -3254 ((-560) $)) (-15 -4072 ((-560) $)) (-15 -3873 ($ (-560))) (-15 -4450 ($ (-560))) (-15 -2791 ($ (-560) (-560))) (-15 -4335 ($ $ (-560))) (-15 -4346 ($ $ (-560))) (-15 -1351 ($ $ (-560))) (-15 -4335 ($ $)) (-15 -4346 ($ $)) (-15 -1351 ($ $)) (-15 -4423 ($ $ $)) (-15 -1849 ($ $ $)) (-15 -4423 ($ (-663 $))) (-15 -1849 ($ (-663 $))) (-15 -1903 ($ $ (-663 $))) (-15 -2187 ($ $ (-663 $))) (-15 -2187 ($ $ $ $)) (-15 -3959 ($ $ $)) (-15 -3092 ((-114) $)) (-15 -1507 ($ $ (-663 $))) (-15 -2903 ($ $)) (-15 -2841 ($ $ $)) (-15 -3061 ($ $)) (-15 -3551 ($ (-663 (-663 $)))) (-15 -3485 ($ $ $)) (-15 -4266 ($ $)) (-15 -4266 ($ $ $)) (-15 -3377 ($ $ $)) (-15 -2189 ($ $ $)) (-15 -1991 ($ $ $)) (-15 -1610 ($ $ $)) (-15 -3161 ($ $ (-793))) (-15 -3381 ($ $ $)) (-15 -3941 ($ $ $)) (-15 -4452 ($ $ $)) (-15 -1637 ($ $ $)) (-15 -1546 ($ $ $)) (-15 -2958 ($ $ (-663 $))) (-15 -4393 ($ $ (-663 $))) (-15 -4101 ($ $)) (-15 -4258 ($ $)) (-15 -4258 ($ $ (-793))) (-15 -1682 ($ $)) (-15 -1682 ($ $ (-793))) (-15 -2824 ($ $)) (-15 -3856 ($ $ $)) (-15 -2961 ($ $)) (-15 -2961 ($ $ $)) (-15 -2961 ($ $ $ $)) (-15 -2627 ($ $)) (-15 -2627 ($ $ $)) (-15 -2627 ($ $ $ $)) (-15 -2660 ($ $)) (-15 -2660 ($ $ $)) (-15 -2660 ($ $ $ $)) (-15 -4074 ($ $)) (-15 -4074 ($ (-663 $))) (-15 -2538 ($ $)) (-15 -2538 ($ (-663 $))) (-15 -1740 ($ $)) (-15 -1740 ($ (-663 $))) (-15 -3148 ($ (-663 $))) (-15 -3998 ($ (-663 $))) (-15 -3680 ($ (-663 $))) (-15 -1332 ($ (-663 $))) (-15 -2340 ($ $ $)) (-15 -2243 ($ $ $)) (-15 -2362 ($ $ $)) (-15 -2373 ($ $ $)) (-15 -2386 ($ $ $)) (-15 -2396 ($ $ $)) (-15 -2429 ($ $ $)) (-15 -2441 ($ $ $)) (-15 -2441 ($ $)) (-15 * ($ $ $)) (-15 -2453 ($ $ $)) (-15 ** ($ $ $)) (-15 -2221 ($ $ $)) (-15 -2186 ($ $ $)) (-15 -2197 ($ $ $)) (-15 -2233 ($ $ $)) (-15 -1404 ($ $ $)) (-15 -1415 ($ $ $)) (-15 -1394 ($ $)) (-15 -2224 ($ $ $)) (-15 -2224 ($ $))))) (T -887))
+((-2190 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-887)))) (-2062 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-887)))) (-1540 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-887)))) (-3459 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-3459 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-887)))) (-3459 (*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-887)))) (-3459 (*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-887)))) (-2832 (*1 *1) (-5 *1 (-887))) (-2782 (*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-887)))) (-4158 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-3827 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-4158 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-3827 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-4072 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-3873 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-4450 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-2791 (*1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-4335 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-4346 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-1351 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))) (-4335 (*1 *1 *1) (-5 *1 (-887))) (-4346 (*1 *1 *1) (-5 *1 (-887))) (-1351 (*1 *1 *1) (-5 *1 (-887))) (-4423 (*1 *1 *1 *1) (-5 *1 (-887))) (-1849 (*1 *1 *1 *1) (-5 *1 (-887))) (-4423 (*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-1849 (*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-1903 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-2187 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-2187 (*1 *1 *1 *1 *1) (-5 *1 (-887))) (-3959 (*1 *1 *1 *1) (-5 *1 (-887))) (-3092 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-887)))) (-1507 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-2903 (*1 *1 *1) (-5 *1 (-887))) (-2841 (*1 *1 *1 *1) (-5 *1 (-887))) (-3061 (*1 *1 *1) (-5 *1 (-887))) (-3551 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-887)))) (-5 *1 (-887)))) (-3485 (*1 *1 *1 *1) (-5 *1 (-887))) (-4266 (*1 *1 *1) (-5 *1 (-887))) (-4266 (*1 *1 *1 *1) (-5 *1 (-887))) (-3377 (*1 *1 *1 *1) (-5 *1 (-887))) (-2189 (*1 *1 *1 *1) (-5 *1 (-887))) (-1991 (*1 *1 *1 *1) (-5 *1 (-887))) (-1610 (*1 *1 *1 *1) (-5 *1 (-887))) (-3161 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-887)))) (-3381 (*1 *1 *1 *1) (-5 *1 (-887))) (-3941 (*1 *1 *1 *1) (-5 *1 (-887))) (-4452 (*1 *1 *1 *1) (-5 *1 (-887))) (-1637 (*1 *1 *1 *1) (-5 *1 (-887))) (-1546 (*1 *1 *1 *1) (-5 *1 (-887))) (-2958 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-4393 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-4101 (*1 *1 *1) (-5 *1 (-887))) (-4258 (*1 *1 *1) (-5 *1 (-887))) (-4258 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-887)))) (-1682 (*1 *1 *1) (-5 *1 (-887))) (-1682 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-887)))) (-2824 (*1 *1 *1) (-5 *1 (-887))) (-3856 (*1 *1 *1 *1) (-5 *1 (-887))) (-2961 (*1 *1 *1) (-5 *1 (-887))) (-2961 (*1 *1 *1 *1) (-5 *1 (-887))) (-2961 (*1 *1 *1 *1 *1) (-5 *1 (-887))) (-2627 (*1 *1 *1) (-5 *1 (-887))) (-2627 (*1 *1 *1 *1) (-5 *1 (-887))) (-2627 (*1 *1 *1 *1 *1) (-5 *1 (-887))) (-2660 (*1 *1 *1) (-5 *1 (-887))) (-2660 (*1 *1 *1 *1) (-5 *1 (-887))) (-2660 (*1 *1 *1 *1 *1) (-5 *1 (-887))) (-4074 (*1 *1 *1) (-5 *1 (-887))) (-4074 (*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-2538 (*1 *1 *1) (-5 *1 (-887))) (-2538 (*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-1740 (*1 *1 *1) (-5 *1 (-887))) (-1740 (*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-3998 (*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-3680 (*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-1332 (*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))) (-2340 (*1 *1 *1 *1) (-5 *1 (-887))) (-2243 (*1 *1 *1 *1) (-5 *1 (-887))) (-2362 (*1 *1 *1 *1) (-5 *1 (-887))) (-2373 (*1 *1 *1 *1) (-5 *1 (-887))) (-2386 (*1 *1 *1 *1) (-5 *1 (-887))) (-2396 (*1 *1 *1 *1) (-5 *1 (-887))) (-2429 (*1 *1 *1 *1) (-5 *1 (-887))) (-2441 (*1 *1 *1 *1) (-5 *1 (-887))) (-2441 (*1 *1 *1) (-5 *1 (-887))) (* (*1 *1 *1 *1) (-5 *1 (-887))) (-2453 (*1 *1 *1 *1) (-5 *1 (-887))) (** (*1 *1 *1 *1) (-5 *1 (-887))) (-2221 (*1 *1 *1 *1) (-5 *1 (-887))) (-2186 (*1 *1 *1 *1) (-5 *1 (-887))) (-2197 (*1 *1 *1 *1) (-5 *1 (-887))) (-2233 (*1 *1 *1 *1) (-5 *1 (-887))) (-1404 (*1 *1 *1 *1) (-5 *1 (-887))) (-1415 (*1 *1 *1 *1) (-5 *1 (-887))) (-1394 (*1 *1 *1) (-5 *1 (-887))) (-2224 (*1 *1 *1 *1) (-5 *1 (-887))) (-2224 (*1 *1 *1) (-5 *1 (-887))))
+(-13 (-1132) (-10 -8 (-15 -2190 ((-1303) $)) (-15 -2062 ($ (-1189))) (-15 -1540 ((-1303) (-1189))) (-15 -3459 ($ (-560))) (-15 -3459 ($ (-1207))) (-15 -3459 ($ (-1189))) (-15 -3459 ($ (-229))) (-15 -2832 ($)) (-15 -2782 ((-1189) (-1189))) (-15 -4158 ((-560) $)) (-15 -3827 ((-560) $)) (-15 -4158 ((-560))) (-15 -3827 ((-560))) (-15 -3254 ((-560) $)) (-15 -4072 ((-560) $)) (-15 -3873 ($ (-560))) (-15 -4450 ($ (-560))) (-15 -2791 ($ (-560) (-560))) (-15 -4335 ($ $ (-560))) (-15 -4346 ($ $ (-560))) (-15 -1351 ($ $ (-560))) (-15 -4335 ($ $)) (-15 -4346 ($ $)) (-15 -1351 ($ $)) (-15 -4423 ($ $ $)) (-15 -1849 ($ $ $)) (-15 -4423 ($ (-663 $))) (-15 -1849 ($ (-663 $))) (-15 -1903 ($ $ (-663 $))) (-15 -2187 ($ $ (-663 $))) (-15 -2187 ($ $ $ $)) (-15 -3959 ($ $ $)) (-15 -3092 ((-114) $)) (-15 -1507 ($ $ (-663 $))) (-15 -2903 ($ $)) (-15 -2841 ($ $ $)) (-15 -3061 ($ $)) (-15 -3551 ($ (-663 (-663 $)))) (-15 -3485 ($ $ $)) (-15 -4266 ($ $)) (-15 -4266 ($ $ $)) (-15 -3377 ($ $ $)) (-15 -2189 ($ $ $)) (-15 -1991 ($ $ $)) (-15 -1610 ($ $ $)) (-15 -3161 ($ $ (-793))) (-15 -3381 ($ $ $)) (-15 -3941 ($ $ $)) (-15 -4452 ($ $ $)) (-15 -1637 ($ $ $)) (-15 -1546 ($ $ $)) (-15 -2958 ($ $ (-663 $))) (-15 -4393 ($ $ (-663 $))) (-15 -4101 ($ $)) (-15 -4258 ($ $)) (-15 -4258 ($ $ (-793))) (-15 -1682 ($ $)) (-15 -1682 ($ $ (-793))) (-15 -2824 ($ $)) (-15 -3856 ($ $ $)) (-15 -2961 ($ $)) (-15 -2961 ($ $ $)) (-15 -2961 ($ $ $ $)) (-15 -2627 ($ $)) (-15 -2627 ($ $ $)) (-15 -2627 ($ $ $ $)) (-15 -2660 ($ $)) (-15 -2660 ($ $ $)) (-15 -2660 ($ $ $ $)) (-15 -4074 ($ $)) (-15 -4074 ($ (-663 $))) (-15 -2538 ($ $)) (-15 -2538 ($ (-663 $))) (-15 -1740 ($ $)) (-15 -1740 ($ (-663 $))) (-15 -3148 ($ (-663 $))) (-15 -3998 ($ (-663 $))) (-15 -3680 ($ (-663 $))) (-15 -1332 ($ (-663 $))) (-15 -2340 ($ $ $)) (-15 -2243 ($ $ $)) (-15 -2362 ($ $ $)) (-15 -2373 ($ $ $)) (-15 -2386 ($ $ $)) (-15 -2396 ($ $ $)) (-15 -2429 ($ $ $)) (-15 -2441 ($ $ $)) (-15 -2441 ($ $)) (-15 * ($ $ $)) (-15 -2453 ($ $ $)) (-15 ** ($ $ $)) (-15 -2221 ($ $ $)) (-15 -2186 ($ $ $)) (-15 -2197 ($ $ $)) (-15 -2233 ($ $ $)) (-15 -1404 ($ $ $)) (-15 -1415 ($ $ $)) (-15 -1394 ($ $)) (-15 -2224 ($ $ $)) (-15 -2224 ($ $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2558 (((-3 $ "failed") (-1207)) 36 T ELT)) (-2552 (((-793)) 32 T ELT)) (-1812 (($) NIL T ELT)) (-2932 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4379 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2622 (((-948) $) 29 T ELT)) (-3358 (((-1189) $) 43 T ELT)) (-1591 (($ (-948)) 28 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2400 (((-1207) $) 13 T ELT) (((-549) $) 19 T ELT) (((-915 (-391)) $) 26 T ELT) (((-915 (-560)) $) 22 T ELT)) (-3913 (((-887) $) 16 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 40 T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 38 T ELT)))
+(((-888 |#1|) (-13 (-866) (-633 (-1207)) (-633 (-549)) (-633 (-915 (-391))) (-633 (-915 (-560))) (-10 -8 (-15 -2558 ((-3 $ "failed") (-1207))))) (-663 (-1207))) (T -888))
+((-2558 (*1 *1 *2) (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-888 *3)) (-14 *3 (-663 *2)))))
+(-13 (-866) (-633 (-1207)) (-633 (-549)) (-633 (-915 (-391))) (-633 (-915 (-560))) (-10 -8 (-15 -2558 ((-3 $ "failed") (-1207)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-4389 (((-520) $) 9 T ELT)) (-3243 (((-663 (-453)) $) 13 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 21 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 16 T ELT)))
+(((-889) (-13 (-1132) (-10 -8 (-15 -4389 ((-520) $)) (-15 -3243 ((-663 (-453)) $))))) (T -889))
+((-4389 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-889)))) (-3243 (*1 *2 *1) (-12 (-5 *2 (-663 (-453))) (-5 *1 (-889)))))
+(-13 (-1132) (-10 -8 (-15 -4389 ((-520) $)) (-15 -3243 ((-663 (-453)) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-975 |#1|)) NIL T ELT) (((-975 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT)) (-4191 (((-793)) NIL T CONST)) (-4013 (((-1303) (-793)) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT)))
+(((-890 |#1| |#2| |#3| |#4|) (-13 (-1080) (-504 (-975 |#1|)) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -2453 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4013 ((-1303) (-793))))) (-1080) (-663 (-1207)) (-663 (-793)) (-793)) (T -890))
+((-2453 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-890 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *2 (-1080)) (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-793))) (-14 *5 (-793)))) (-4013 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-890 *4 *5 *6 *7)) (-4 *4 (-1080)) (-14 *5 (-663 (-1207))) (-14 *6 (-663 *3)) (-14 *7 *3))))
+(-13 (-1080) (-504 (-975 |#1|)) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -2453 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4013 ((-1303) (-793)))))
+((-3736 (((-3 (-177 |#3|) "failed") (-793) (-793) |#2| |#2|) 38 T ELT)) (-2501 (((-3 (-421 |#3|) "failed") (-793) (-793) |#2| |#2|) 29 T ELT)))
+(((-891 |#1| |#2| |#3|) (-10 -7 (-15 -2501 ((-3 (-421 |#3|) "failed") (-793) (-793) |#2| |#2|)) (-15 -3736 ((-3 (-177 |#3|) "failed") (-793) (-793) |#2| |#2|))) (-376) (-1290 |#1|) (-1273 |#1|)) (T -891))
+((-3736 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-793)) (-4 *5 (-376)) (-5 *2 (-177 *6)) (-5 *1 (-891 *5 *4 *6)) (-4 *4 (-1290 *5)) (-4 *6 (-1273 *5)))) (-2501 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-793)) (-4 *5 (-376)) (-5 *2 (-421 *6)) (-5 *1 (-891 *5 *4 *6)) (-4 *4 (-1290 *5)) (-4 *6 (-1273 *5)))))
+(-10 -7 (-15 -2501 ((-3 (-421 |#3|) "failed") (-793) (-793) |#2| |#2|)) (-15 -3736 ((-3 (-177 |#3|) "failed") (-793) (-793) |#2| |#2|)))
+((-2501 (((-3 (-421 (-1266 |#2| |#1|)) "failed") (-793) (-793) (-1287 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-421 (-1266 |#2| |#1|)) "failed") (-793) (-793) (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|)) 28 T ELT)))
+(((-892 |#1| |#2| |#3|) (-10 -7 (-15 -2501 ((-3 (-421 (-1266 |#2| |#1|)) "failed") (-793) (-793) (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|))) (-15 -2501 ((-3 (-421 (-1266 |#2| |#1|)) "failed") (-793) (-793) (-1287 |#1| |#2| |#3|)))) (-376) (-1207) |#1|) (T -892))
+((-2501 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-793)) (-5 *4 (-1287 *5 *6 *7)) (-4 *5 (-376)) (-14 *6 (-1207)) (-14 *7 *5) (-5 *2 (-421 (-1266 *6 *5))) (-5 *1 (-892 *5 *6 *7)))) (-2501 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-793)) (-5 *4 (-1287 *5 *6 *7)) (-4 *5 (-376)) (-14 *6 (-1207)) (-14 *7 *5) (-5 *2 (-421 (-1266 *6 *5))) (-5 *1 (-892 *5 *6 *7)))))
+(-10 -7 (-15 -2501 ((-3 (-421 (-1266 |#2| |#1|)) "failed") (-793) (-793) (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|))) (-15 -2501 ((-3 (-421 (-1266 |#2| |#1|)) "failed") (-793) (-793) (-1287 |#1| |#2| |#3|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-4021 (($ $ (-560)) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-4266 (($ (-1201 (-560)) (-560)) NIL T ELT)) (-2186 (($ $ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-2232 (($ $) NIL T ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-1460 (((-793) $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3601 (((-560)) NIL T ELT)) (-2053 (((-560) $) NIL T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2219 (($ $ (-560)) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3370 (((-1185 (-560)) $) NIL T ELT)) (-3329 (($ $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-2905 (((-560) $ (-560)) NIL T ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT)))
(((-893 |#1|) (-894 |#1|) (-560)) (T -893))
NIL
(-894 |#1|)
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-3244 (($ $) 46 T ELT)) (-4093 (((-114) $) 44 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-4471 (($ $ (-560)) 68 T ELT)) (-1615 (((-114) $ $) 65 T ELT)) (-2238 (($) 18 T CONST)) (-4179 (($ (-1201 (-560)) (-560)) 67 T ELT)) (-1478 (($ $ $) 61 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1736 (($ $) 70 T ELT)) (-1490 (($ $ $) 62 T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 57 T ELT)) (-3913 (((-793) $) 75 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-2865 (((-560)) 72 T ELT)) (-1715 (((-560) $) 71 T ELT)) (-2093 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-2132 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-4372 (($ $ (-560)) 74 T ELT)) (-1528 (((-3 $ "failed") $ $) 48 T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-2901 (((-793) $) 64 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 63 T ELT)) (-1601 (((-1185 (-560)) $) 76 T ELT)) (-3266 (($ $) 73 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 45 T ELT)) (-2239 (((-560) $ (-560)) 69 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-4366 (($ $) 46 T ELT)) (-2667 (((-114) $) 44 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-4021 (($ $ (-560)) 68 T ELT)) (-3476 (((-114) $ $) 65 T ELT)) (-3525 (($) 18 T CONST)) (-4266 (($ (-1201 (-560)) (-560)) 67 T ELT)) (-2186 (($ $ $) 61 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-2232 (($ $) 70 T ELT)) (-2197 (($ $ $) 62 T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 57 T ELT)) (-1460 (((-793) $) 75 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-3601 (((-560)) 72 T ELT)) (-2053 (((-560) $) 71 T ELT)) (-1861 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-1938 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-2219 (($ $ (-560)) 74 T ELT)) (-2233 (((-3 $ "failed") $ $) 48 T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-3989 (((-793) $) 64 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 63 T ELT)) (-3370 (((-1185 (-560)) $) 76 T ELT)) (-3329 (($ $) 73 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 45 T ELT)) (-2905 (((-560) $ (-560)) 69 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
(((-894 |#1|) (-142) (-560)) (T -894))
-((-1601 (*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-5 *2 (-1185 (-560))))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-5 *2 (-793)))) (-4372 (*1 *1 *1 *2) (-12 (-4 *1 (-894 *3)) (-5 *2 (-560)))) (-3266 (*1 *1 *1) (-4 *1 (-894 *2))) (-2865 (*1 *2) (-12 (-4 *1 (-894 *3)) (-5 *2 (-560)))) (-1715 (*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-5 *2 (-560)))) (-1736 (*1 *1 *1) (-4 *1 (-894 *2))) (-2239 (*1 *2 *1 *2) (-12 (-4 *1 (-894 *3)) (-5 *2 (-560)))) (-4471 (*1 *1 *1 *2) (-12 (-4 *1 (-894 *3)) (-5 *2 (-560)))) (-4179 (*1 *1 *2 *3) (-12 (-5 *2 (-1201 (-560))) (-5 *3 (-560)) (-4 *1 (-894 *4)))))
-(-13 (-319) (-149) (-10 -8 (-15 -1601 ((-1185 (-560)) $)) (-15 -3913 ((-793) $)) (-15 -4372 ($ $ (-560))) (-15 -3266 ($ $)) (-15 -2865 ((-560))) (-15 -1715 ((-560) $)) (-15 -1736 ($ $)) (-15 -2239 ((-560) $ (-560))) (-15 -4471 ($ $ (-560))) (-15 -4179 ($ (-1201 (-560)) (-560)))))
+((-3370 (*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-5 *2 (-1185 (-560))))) (-1460 (*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-5 *2 (-793)))) (-2219 (*1 *1 *1 *2) (-12 (-4 *1 (-894 *3)) (-5 *2 (-560)))) (-3329 (*1 *1 *1) (-4 *1 (-894 *2))) (-3601 (*1 *2) (-12 (-4 *1 (-894 *3)) (-5 *2 (-560)))) (-2053 (*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-5 *2 (-560)))) (-2232 (*1 *1 *1) (-4 *1 (-894 *2))) (-2905 (*1 *2 *1 *2) (-12 (-4 *1 (-894 *3)) (-5 *2 (-560)))) (-4021 (*1 *1 *1 *2) (-12 (-4 *1 (-894 *3)) (-5 *2 (-560)))) (-4266 (*1 *1 *2 *3) (-12 (-5 *2 (-1201 (-560))) (-5 *3 (-560)) (-4 *1 (-894 *4)))))
+(-13 (-319) (-149) (-10 -8 (-15 -3370 ((-1185 (-560)) $)) (-15 -1460 ((-793) $)) (-15 -2219 ($ $ (-560))) (-15 -3329 ($ $)) (-15 -3601 ((-560))) (-15 -2053 ((-560) $)) (-15 -2232 ($ $)) (-15 -2905 ((-560) $ (-560))) (-15 -4021 ($ $ (-560))) (-15 -4266 ($ (-1201 (-560)) (-560)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-302) . T) ((-319) . T) ((-466) . T) ((-571) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-950) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3941 (((-893 |#1|) $) NIL (|has| (-893 |#1|) (-319)) ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-893 |#1|) (-939)) ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| (-893 |#1|) (-939)) ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2138 (((-560) $) NIL (|has| (-893 |#1|) (-842)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-893 |#1|) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (|has| (-893 |#1|) (-1069 (-1207))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| (-893 |#1|) (-1069 (-560))) ELT) (((-3 (-560) "failed") $) NIL (|has| (-893 |#1|) (-1069 (-560))) ELT)) (-3330 (((-893 |#1|) $) NIL T ELT) (((-1207) $) NIL (|has| (-893 |#1|) (-1069 (-1207))) ELT) (((-421 (-560)) $) NIL (|has| (-893 |#1|) (-1069 (-560))) ELT) (((-560) $) NIL (|has| (-893 |#1|) (-1069 (-560))) ELT)) (-3298 (($ $) NIL T ELT) (($ (-560) $) NIL T ELT)) (-1478 (($ $ $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| (-893 |#1|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| (-893 |#1|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-893 |#1|))) (|:| |vec| (-1297 (-893 |#1|)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-893 |#1|)) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2310 (($) NIL (|has| (-893 |#1|) (-559)) ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-2928 (((-114) $) NIL (|has| (-893 |#1|) (-842)) ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (|has| (-893 |#1|) (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (|has| (-893 |#1|) (-911 (-391))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-1617 (($ $) NIL T ELT)) (-3757 (((-893 |#1|) $) NIL T ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| (-893 |#1|) (-1182)) ELT)) (-2960 (((-114) $) NIL (|has| (-893 |#1|) (-842)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3825 (($ $ $) NIL (|has| (-893 |#1|) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| (-893 |#1|) (-871)) ELT)) (-3957 (($ (-1 (-893 |#1|) (-893 |#1|)) $) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| (-893 |#1|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| (-893 |#1|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-893 |#1|))) (|:| |vec| (-1297 (-893 |#1|)))) (-1297 $) $) NIL T ELT) (((-711 (-893 |#1|)) (-1297 $)) NIL T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-3161 (($) NIL (|has| (-893 |#1|) (-1182)) CONST)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2652 (($ $) NIL (|has| (-893 |#1|) (-319)) ELT)) (-2016 (((-893 |#1|) $) NIL (|has| (-893 |#1|) (-559)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-893 |#1|) (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-893 |#1|) (-939)) ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-4187 (($ $ (-663 (-893 |#1|)) (-663 (-893 |#1|))) NIL (|has| (-893 |#1|) (-321 (-893 |#1|))) ELT) (($ $ (-893 |#1|) (-893 |#1|)) NIL (|has| (-893 |#1|) (-321 (-893 |#1|))) ELT) (($ $ (-305 (-893 |#1|))) NIL (|has| (-893 |#1|) (-321 (-893 |#1|))) ELT) (($ $ (-663 (-305 (-893 |#1|)))) NIL (|has| (-893 |#1|) (-321 (-893 |#1|))) ELT) (($ $ (-663 (-1207)) (-663 (-893 |#1|))) NIL (|has| (-893 |#1|) (-528 (-1207) (-893 |#1|))) ELT) (($ $ (-1207) (-893 |#1|)) NIL (|has| (-893 |#1|) (-528 (-1207) (-893 |#1|))) ELT)) (-2901 (((-793) $) NIL T ELT)) (-3924 (($ $ (-893 |#1|)) NIL (|has| (-893 |#1|) (-298 (-893 |#1|) (-893 |#1|))) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2894 (($ $ (-1 (-893 |#1|) (-893 |#1|))) NIL T ELT) (($ $ (-1 (-893 |#1|) (-893 |#1|)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-893 |#1|) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-893 |#1|) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-893 |#1|) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-893 |#1|) (-929 (-1207))) ELT) (($ $) NIL (|has| (-893 |#1|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-893 |#1|) (-239)) ELT)) (-3056 (($ $) NIL T ELT)) (-3771 (((-893 |#1|) $) NIL T ELT)) (-1407 (((-915 (-560)) $) NIL (|has| (-893 |#1|) (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) NIL (|has| (-893 |#1|) (-633 (-915 (-391)))) ELT) (((-549) $) NIL (|has| (-893 |#1|) (-633 (-549))) ELT) (((-391) $) NIL (|has| (-893 |#1|) (-1051)) ELT) (((-229) $) NIL (|has| (-893 |#1|) (-1051)) ELT)) (-1567 (((-177 (-421 (-560))) $) NIL T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-893 |#1|) (-939))) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-893 |#1|)) NIL T ELT) (($ (-1207)) NIL (|has| (-893 |#1|) (-1069 (-1207))) ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| (-893 |#1|) (-939))) (|has| (-893 |#1|) (-147))) ELT)) (-2930 (((-793)) NIL T CONST)) (-1494 (((-893 |#1|) $) NIL (|has| (-893 |#1|) (-559)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2239 (((-421 (-560)) $ (-560)) NIL T ELT)) (-2282 (($ $) NIL (|has| (-893 |#1|) (-842)) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $ (-1 (-893 |#1|) (-893 |#1|))) NIL T ELT) (($ $ (-1 (-893 |#1|) (-893 |#1|)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-893 |#1|) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-893 |#1|) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-893 |#1|) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-893 |#1|) (-929 (-1207))) ELT) (($ $) NIL (|has| (-893 |#1|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-893 |#1|) (-239)) ELT)) (-2536 (((-114) $ $) NIL (|has| (-893 |#1|) (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| (-893 |#1|) (-871)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL (|has| (-893 |#1|) (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| (-893 |#1|) (-871)) ELT)) (-2594 (($ $ $) NIL T ELT) (($ (-893 |#1|) (-893 |#1|)) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ (-893 |#1|) $) NIL T ELT) (($ $ (-893 |#1|)) NIL T ELT)))
-(((-895 |#1|) (-13 (-1022 (-893 |#1|)) (-10 -8 (-15 -2239 ((-421 (-560)) $ (-560))) (-15 -1567 ((-177 (-421 (-560))) $)) (-15 -3298 ($ $)) (-15 -3298 ($ (-560) $)))) (-560)) (T -895))
-((-2239 (*1 *2 *1 *3) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-895 *4)) (-14 *4 *3) (-5 *3 (-560)))) (-1567 (*1 *2 *1) (-12 (-5 *2 (-177 (-421 (-560)))) (-5 *1 (-895 *3)) (-14 *3 (-560)))) (-3298 (*1 *1 *1) (-12 (-5 *1 (-895 *2)) (-14 *2 (-560)))) (-3298 (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-895 *3)) (-14 *3 *2))))
-(-13 (-1022 (-893 |#1|)) (-10 -8 (-15 -2239 ((-421 (-560)) $ (-560))) (-15 -1567 ((-177 (-421 (-560))) $)) (-15 -3298 ($ $)) (-15 -3298 ($ (-560) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3941 ((|#2| $) NIL (|has| |#2| (-319)) ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2138 (((-560) $) NIL (|has| |#2| (-842)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (|has| |#2| (-1069 (-1207))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#2| (-1069 (-560))) ELT)) (-3330 ((|#2| $) NIL T ELT) (((-1207) $) NIL (|has| |#2| (-1069 (-1207))) ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-560) $) NIL (|has| |#2| (-1069 (-560))) ELT)) (-3298 (($ $) 35 T ELT) (($ (-560) $) 38 T ELT)) (-1478 (($ $ $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) 64 T ELT)) (-2310 (($) NIL (|has| |#2| (-559)) ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-2928 (((-114) $) NIL (|has| |#2| (-842)) ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (|has| |#2| (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (|has| |#2| (-911 (-391))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-1617 (($ $) NIL T ELT)) (-3757 ((|#2| $) NIL T ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| |#2| (-1182)) ELT)) (-2960 (((-114) $) NIL (|has| |#2| (-842)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3825 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-711 |#2|) (-1297 $)) NIL T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) 60 T ELT)) (-3161 (($) NIL (|has| |#2| (-1182)) CONST)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2652 (($ $) NIL (|has| |#2| (-319)) ELT)) (-2016 ((|#2| $) NIL (|has| |#2| (-559)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-4187 (($ $ (-663 |#2|) (-663 |#2|)) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-305 |#2|)) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-663 (-305 |#2|))) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-663 (-1207)) (-663 |#2|)) NIL (|has| |#2| (-528 (-1207) |#2|)) ELT) (($ $ (-1207) |#2|) NIL (|has| |#2| (-528 (-1207) |#2|)) ELT)) (-2901 (((-793) $) NIL T ELT)) (-3924 (($ $ |#2|) NIL (|has| |#2| (-298 |#2| |#2|)) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2894 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT)) (-3056 (($ $) NIL T ELT)) (-3771 ((|#2| $) NIL T ELT)) (-1407 (((-915 (-560)) $) NIL (|has| |#2| (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) NIL (|has| |#2| (-633 (-915 (-391)))) ELT) (((-549) $) NIL (|has| |#2| (-633 (-549))) ELT) (((-391) $) NIL (|has| |#2| (-1051)) ELT) (((-229) $) NIL (|has| |#2| (-1051)) ELT)) (-1567 (((-177 (-421 (-560))) $) 78 T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-939))) ELT)) (-1578 (((-887) $) 106 T ELT) (($ (-560)) 20 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1207)) NIL (|has| |#2| (-1069 (-1207))) ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| |#2| (-939))) (|has| |#2| (-147))) ELT)) (-2930 (((-793)) NIL T CONST)) (-1494 ((|#2| $) NIL (|has| |#2| (-559)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2239 (((-421 (-560)) $ (-560)) 71 T ELT)) (-2282 (($ $) NIL (|has| |#2| (-842)) ELT)) (-2001 (($) 15 T CONST)) (-2011 (($) 17 T CONST)) (-3305 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT)) (-2536 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2473 (((-114) $ $) 46 T ELT)) (-2521 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2594 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-2580 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-2567 (($ $ $) 48 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 61 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-896 |#1| |#2|) (-13 (-1022 |#2|) (-10 -8 (-15 -2239 ((-421 (-560)) $ (-560))) (-15 -1567 ((-177 (-421 (-560))) $)) (-15 -3298 ($ $)) (-15 -3298 ($ (-560) $)))) (-560) (-894 |#1|)) (T -896))
-((-2239 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-421 (-560))) (-5 *1 (-896 *4 *5)) (-5 *3 (-560)) (-4 *5 (-894 *4)))) (-1567 (*1 *2 *1) (-12 (-14 *3 (-560)) (-5 *2 (-177 (-421 (-560)))) (-5 *1 (-896 *3 *4)) (-4 *4 (-894 *3)))) (-3298 (*1 *1 *1) (-12 (-14 *2 (-560)) (-5 *1 (-896 *2 *3)) (-4 *3 (-894 *2)))) (-3298 (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-14 *3 *2) (-5 *1 (-896 *3 *4)) (-4 *4 (-894 *3)))))
-(-13 (-1022 |#2|) (-10 -8 (-15 -2239 ((-421 (-560)) $ (-560))) (-15 -1567 ((-177 (-421 (-560))) $)) (-15 -3298 ($ $)) (-15 -3298 ($ (-560) $))))
-((-1538 (((-114) $ $) NIL (-12 (|has| |#1| (-1132)) (|has| |#2| (-1132))) ELT)) (-3264 ((|#2| $) 12 T ELT)) (-3160 (($ |#1| |#2|) 9 T ELT)) (-1905 (((-1189) $) NIL (-12 (|has| |#1| (-1132)) (|has| |#2| (-1132))) ELT)) (-3855 (((-1151) $) NIL (-12 (|has| |#1| (-1132)) (|has| |#2| (-1132))) ELT)) (-3637 ((|#1| $) 11 T ELT)) (-1592 (($ |#1| |#2|) 10 T ELT)) (-1578 (((-887) $) 18 (-2304 (-12 (|has| |#1| (-632 (-887))) (|has| |#2| (-632 (-887)))) (-12 (|has| |#1| (-1132)) (|has| |#2| (-1132)))) ELT)) (-2275 (((-114) $ $) NIL (-12 (|has| |#1| (-1132)) (|has| |#2| (-1132))) ELT)) (-2473 (((-114) $ $) 23 (-12 (|has| |#1| (-1132)) (|has| |#2| (-1132))) ELT)))
-(((-897 |#1| |#2|) (-13 (-1247) (-10 -8 (IF (|has| |#1| (-632 (-887))) (IF (|has| |#2| (-632 (-887))) (-6 (-632 (-887))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1132)) (IF (|has| |#2| (-1132)) (-6 (-1132)) |%noBranch|) |%noBranch|) (-15 -3160 ($ |#1| |#2|)) (-15 -1592 ($ |#1| |#2|)) (-15 -3637 (|#1| $)) (-15 -3264 (|#2| $)))) (-1247) (-1247)) (T -897))
-((-3160 (*1 *1 *2 *3) (-12 (-5 *1 (-897 *2 *3)) (-4 *2 (-1247)) (-4 *3 (-1247)))) (-1592 (*1 *1 *2 *3) (-12 (-5 *1 (-897 *2 *3)) (-4 *2 (-1247)) (-4 *3 (-1247)))) (-3637 (*1 *2 *1) (-12 (-4 *2 (-1247)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1247)))) (-3264 (*1 *2 *1) (-12 (-4 *2 (-1247)) (-5 *1 (-897 *3 *2)) (-4 *3 (-1247)))))
-(-13 (-1247) (-10 -8 (IF (|has| |#1| (-632 (-887))) (IF (|has| |#2| (-632 (-887))) (-6 (-632 (-887))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1132)) (IF (|has| |#2| (-1132)) (-6 (-1132)) |%noBranch|) |%noBranch|) (-15 -3160 ($ |#1| |#2|)) (-15 -1592 ($ |#1| |#2|)) (-15 -3637 (|#1| $)) (-15 -3264 (|#2| $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3774 (((-560) $) 16 T ELT)) (-2246 (($ (-159)) 13 T ELT)) (-2932 (($ (-159)) 14 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1826 (((-159) $) 15 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1834 (($ (-159)) 11 T ELT)) (-2999 (($ (-159)) 10 T ELT)) (-1578 (((-887) $) 24 T ELT) (($ (-159)) 17 T ELT)) (-4163 (($ (-159)) 12 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-898) (-13 (-1132) (-10 -8 (-15 -2999 ($ (-159))) (-15 -1834 ($ (-159))) (-15 -4163 ($ (-159))) (-15 -2246 ($ (-159))) (-15 -2932 ($ (-159))) (-15 -1826 ((-159) $)) (-15 -3774 ((-560) $)) (-15 -1578 ($ (-159)))))) (T -898))
-((-2999 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))) (-1834 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))) (-4163 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))) (-2246 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))) (-2932 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))) (-1826 (*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-898)))) (-3774 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-898)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))))
-(-13 (-1132) (-10 -8 (-15 -2999 ($ (-159))) (-15 -1834 ($ (-159))) (-15 -4163 ($ (-159))) (-15 -2246 ($ (-159))) (-15 -2932 ($ (-159))) (-15 -1826 ((-159) $)) (-15 -3774 ((-560) $)) (-15 -1578 ($ (-159)))))
-((-1578 (((-326 (-560)) (-421 (-975 (-48)))) 23 T ELT) (((-326 (-560)) (-975 (-48))) 18 T ELT)))
-(((-899) (-10 -7 (-15 -1578 ((-326 (-560)) (-975 (-48)))) (-15 -1578 ((-326 (-560)) (-421 (-975 (-48))))))) (T -899))
-((-1578 (*1 *2 *3) (-12 (-5 *3 (-421 (-975 (-48)))) (-5 *2 (-326 (-560))) (-5 *1 (-899)))) (-1578 (*1 *2 *3) (-12 (-5 *3 (-975 (-48))) (-5 *2 (-326 (-560))) (-5 *1 (-899)))))
-(-10 -7 (-15 -1578 ((-326 (-560)) (-975 (-48)))) (-15 -1578 ((-326 (-560)) (-421 (-975 (-48))))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 18 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1991 (((-114) $ (|[\|\|]| (-520))) 9 T ELT) (((-114) $ (|[\|\|]| (-1189))) 13 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1856 (((-520) $) 10 T ELT) (((-1189) $) 14 T ELT)) (-2473 (((-114) $ $) 15 T ELT)))
-(((-900) (-13 (-1114) (-1293) (-10 -8 (-15 -1991 ((-114) $ (|[\|\|]| (-520)))) (-15 -1856 ((-520) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-1189)))) (-15 -1856 ((-1189) $))))) (T -900))
-((-1991 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-114)) (-5 *1 (-900)))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-900)))) (-1991 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-114)) (-5 *1 (-900)))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-900)))))
-(-13 (-1114) (-1293) (-10 -8 (-15 -1991 ((-114) $ (|[\|\|]| (-520)))) (-15 -1856 ((-520) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-1189)))) (-15 -1856 ((-1189) $))))
-((-3957 (((-902 |#2|) (-1 |#2| |#1|) (-902 |#1|)) 15 T ELT)))
-(((-901 |#1| |#2|) (-10 -7 (-15 -3957 ((-902 |#2|) (-1 |#2| |#1|) (-902 |#1|)))) (-1247) (-1247)) (T -901))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-902 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-902 *6)) (-5 *1 (-901 *5 *6)))))
-(-10 -7 (-15 -3957 ((-902 |#2|) (-1 |#2| |#1|) (-902 |#1|))))
-((-2934 (($ |#1| |#1|) 8 T ELT)) (-3858 ((|#1| $ (-793)) 15 T ELT)))
-(((-902 |#1|) (-10 -8 (-15 -2934 ($ |#1| |#1|)) (-15 -3858 (|#1| $ (-793)))) (-1247)) (T -902))
-((-3858 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-902 *2)) (-4 *2 (-1247)))) (-2934 (*1 *1 *2 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1247)))))
-(-10 -8 (-15 -2934 ($ |#1| |#1|)) (-15 -3858 (|#1| $ (-793))))
-((-3957 (((-904 |#2|) (-1 |#2| |#1|) (-904 |#1|)) 15 T ELT)))
-(((-903 |#1| |#2|) (-10 -7 (-15 -3957 ((-904 |#2|) (-1 |#2| |#1|) (-904 |#1|)))) (-1247) (-1247)) (T -903))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-904 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-904 *6)) (-5 *1 (-903 *5 *6)))))
-(-10 -7 (-15 -3957 ((-904 |#2|) (-1 |#2| |#1|) (-904 |#1|))))
-((-2934 (($ |#1| |#1| |#1|) 8 T ELT)) (-3858 ((|#1| $ (-793)) 15 T ELT)))
-(((-904 |#1|) (-10 -8 (-15 -2934 ($ |#1| |#1| |#1|)) (-15 -3858 (|#1| $ (-793)))) (-1247)) (T -904))
-((-3858 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-904 *2)) (-4 *2 (-1247)))) (-2934 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1247)))))
-(-10 -8 (-15 -2934 ($ |#1| |#1| |#1|)) (-15 -3858 (|#1| $ (-793))))
-((-4007 (((-663 (-1212)) (-1189)) 9 T ELT)))
-(((-905) (-10 -7 (-15 -4007 ((-663 (-1212)) (-1189))))) (T -905))
-((-4007 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-663 (-1212))) (-5 *1 (-905)))))
-(-10 -7 (-15 -4007 ((-663 (-1212)) (-1189))))
-((-3957 (((-907 |#2|) (-1 |#2| |#1|) (-907 |#1|)) 15 T ELT)))
-(((-906 |#1| |#2|) (-10 -7 (-15 -3957 ((-907 |#2|) (-1 |#2| |#1|) (-907 |#1|)))) (-1247) (-1247)) (T -906))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-907 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-907 *6)) (-5 *1 (-906 *5 *6)))))
-(-10 -7 (-15 -3957 ((-907 |#2|) (-1 |#2| |#1|) (-907 |#1|))))
-((-4048 (($ |#1| |#1| |#1|) 8 T ELT)) (-3858 ((|#1| $ (-793)) 15 T ELT)))
-(((-907 |#1|) (-10 -8 (-15 -4048 ($ |#1| |#1| |#1|)) (-15 -3858 (|#1| $ (-793)))) (-1247)) (T -907))
-((-3858 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-907 *2)) (-4 *2 (-1247)))) (-4048 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1247)))))
-(-10 -8 (-15 -4048 ($ |#1| |#1| |#1|)) (-15 -3858 (|#1| $ (-793))))
-((-2971 (((-1185 (-663 (-560))) (-663 (-560)) (-1185 (-663 (-560)))) 41 T ELT)) (-3496 (((-1185 (-663 (-560))) (-663 (-560)) (-663 (-560))) 31 T ELT)) (-3240 (((-1185 (-663 (-560))) (-663 (-560))) 53 T ELT) (((-1185 (-663 (-560))) (-663 (-560)) (-663 (-560))) 50 T ELT)) (-3795 (((-1185 (-663 (-560))) (-560)) 55 T ELT)) (-2903 (((-1185 (-663 (-948))) (-1185 (-663 (-948)))) 22 T ELT)) (-4122 (((-663 (-948)) (-663 (-948))) 18 T ELT)))
-(((-908) (-10 -7 (-15 -4122 ((-663 (-948)) (-663 (-948)))) (-15 -2903 ((-1185 (-663 (-948))) (-1185 (-663 (-948))))) (-15 -3496 ((-1185 (-663 (-560))) (-663 (-560)) (-663 (-560)))) (-15 -2971 ((-1185 (-663 (-560))) (-663 (-560)) (-1185 (-663 (-560))))) (-15 -3240 ((-1185 (-663 (-560))) (-663 (-560)) (-663 (-560)))) (-15 -3240 ((-1185 (-663 (-560))) (-663 (-560)))) (-15 -3795 ((-1185 (-663 (-560))) (-560))))) (T -908))
-((-3795 (*1 *2 *3) (-12 (-5 *2 (-1185 (-663 (-560)))) (-5 *1 (-908)) (-5 *3 (-560)))) (-3240 (*1 *2 *3) (-12 (-5 *2 (-1185 (-663 (-560)))) (-5 *1 (-908)) (-5 *3 (-663 (-560))))) (-3240 (*1 *2 *3 *3) (-12 (-5 *2 (-1185 (-663 (-560)))) (-5 *1 (-908)) (-5 *3 (-663 (-560))))) (-2971 (*1 *2 *3 *2) (-12 (-5 *2 (-1185 (-663 (-560)))) (-5 *3 (-663 (-560))) (-5 *1 (-908)))) (-3496 (*1 *2 *3 *3) (-12 (-5 *2 (-1185 (-663 (-560)))) (-5 *1 (-908)) (-5 *3 (-663 (-560))))) (-2903 (*1 *2 *2) (-12 (-5 *2 (-1185 (-663 (-948)))) (-5 *1 (-908)))) (-4122 (*1 *2 *2) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-908)))))
-(-10 -7 (-15 -4122 ((-663 (-948)) (-663 (-948)))) (-15 -2903 ((-1185 (-663 (-948))) (-1185 (-663 (-948))))) (-15 -3496 ((-1185 (-663 (-560))) (-663 (-560)) (-663 (-560)))) (-15 -2971 ((-1185 (-663 (-560))) (-663 (-560)) (-1185 (-663 (-560))))) (-15 -3240 ((-1185 (-663 (-560))) (-663 (-560)) (-663 (-560)))) (-15 -3240 ((-1185 (-663 (-560))) (-663 (-560)))) (-15 -3795 ((-1185 (-663 (-560))) (-560))))
-((-1407 (((-915 (-391)) $) 9 (|has| |#1| (-633 (-915 (-391)))) ELT) (((-915 (-560)) $) 8 (|has| |#1| (-633 (-915 (-560)))) ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3655 (((-893 |#1|) $) NIL (|has| (-893 |#1|) (-319)) ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-893 |#1|) (-939)) ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| (-893 |#1|) (-939)) ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-1869 (((-560) $) NIL (|has| (-893 |#1|) (-842)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-893 |#1|) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (|has| (-893 |#1|) (-1069 (-1207))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| (-893 |#1|) (-1069 (-560))) ELT) (((-3 (-560) "failed") $) NIL (|has| (-893 |#1|) (-1069 (-560))) ELT)) (-3649 (((-893 |#1|) $) NIL T ELT) (((-1207) $) NIL (|has| (-893 |#1|) (-1069 (-1207))) ELT) (((-421 (-560)) $) NIL (|has| (-893 |#1|) (-1069 (-560))) ELT) (((-560) $) NIL (|has| (-893 |#1|) (-1069 (-560))) ELT)) (-3665 (($ $) NIL T ELT) (($ (-560) $) NIL T ELT)) (-2186 (($ $ $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| (-893 |#1|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| (-893 |#1|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-893 |#1|))) (|:| |vec| (-1297 (-893 |#1|)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-893 |#1|)) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1812 (($) NIL (|has| (-893 |#1|) (-559)) ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-4172 (((-114) $) NIL (|has| (-893 |#1|) (-842)) ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (|has| (-893 |#1|) (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (|has| (-893 |#1|) (-911 (-391))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-3490 (($ $) NIL T ELT)) (-2473 (((-893 |#1|) $) NIL T ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| (-893 |#1|) (-1182)) ELT)) (-4470 (((-114) $) NIL (|has| (-893 |#1|) (-842)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2932 (($ $ $) NIL (|has| (-893 |#1|) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| (-893 |#1|) (-871)) ELT)) (-2260 (($ (-1 (-893 |#1|) (-893 |#1|)) $) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| (-893 |#1|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| (-893 |#1|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-893 |#1|))) (|:| |vec| (-1297 (-893 |#1|)))) (-1297 $) $) NIL T ELT) (((-711 (-893 |#1|)) (-1297 $)) NIL T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3239 (($) NIL (|has| (-893 |#1|) (-1182)) CONST)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3211 (($ $) NIL (|has| (-893 |#1|) (-319)) ELT)) (-3147 (((-893 |#1|) $) NIL (|has| (-893 |#1|) (-559)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-893 |#1|) (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-893 |#1|) (-939)) ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2371 (($ $ (-663 (-893 |#1|)) (-663 (-893 |#1|))) NIL (|has| (-893 |#1|) (-321 (-893 |#1|))) ELT) (($ $ (-893 |#1|) (-893 |#1|)) NIL (|has| (-893 |#1|) (-321 (-893 |#1|))) ELT) (($ $ (-305 (-893 |#1|))) NIL (|has| (-893 |#1|) (-321 (-893 |#1|))) ELT) (($ $ (-663 (-305 (-893 |#1|)))) NIL (|has| (-893 |#1|) (-321 (-893 |#1|))) ELT) (($ $ (-663 (-1207)) (-663 (-893 |#1|))) NIL (|has| (-893 |#1|) (-528 (-1207) (-893 |#1|))) ELT) (($ $ (-1207) (-893 |#1|)) NIL (|has| (-893 |#1|) (-528 (-1207) (-893 |#1|))) ELT)) (-3989 (((-793) $) NIL T ELT)) (-1507 (($ $ (-893 |#1|)) NIL (|has| (-893 |#1|) (-298 (-893 |#1|) (-893 |#1|))) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3161 (($ $ (-1 (-893 |#1|) (-893 |#1|))) NIL T ELT) (($ $ (-1 (-893 |#1|) (-893 |#1|)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-893 |#1|) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-893 |#1|) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-893 |#1|) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-893 |#1|) (-929 (-1207))) ELT) (($ $) NIL (|has| (-893 |#1|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-893 |#1|) (-239)) ELT)) (-2951 (($ $) NIL T ELT)) (-2484 (((-893 |#1|) $) NIL T ELT)) (-2400 (((-915 (-560)) $) NIL (|has| (-893 |#1|) (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) NIL (|has| (-893 |#1|) (-633 (-915 (-391)))) ELT) (((-549) $) NIL (|has| (-893 |#1|) (-633 (-549))) ELT) (((-391) $) NIL (|has| (-893 |#1|) (-1051)) ELT) (((-229) $) NIL (|has| (-893 |#1|) (-1051)) ELT)) (-1768 (((-177 (-421 (-560))) $) NIL T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-893 |#1|) (-939))) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-893 |#1|)) NIL T ELT) (($ (-1207)) NIL (|has| (-893 |#1|) (-1069 (-1207))) ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| (-893 |#1|) (-939))) (|has| (-893 |#1|) (-147))) ELT)) (-4191 (((-793)) NIL T CONST)) (-3622 (((-893 |#1|) $) NIL (|has| (-893 |#1|) (-559)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-2905 (((-421 (-560)) $ (-560)) NIL T ELT)) (-2719 (($ $) NIL (|has| (-893 |#1|) (-842)) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $ (-1 (-893 |#1|) (-893 |#1|))) NIL T ELT) (($ $ (-1 (-893 |#1|) (-893 |#1|)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-893 |#1|) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-893 |#1|) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-893 |#1|) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-893 |#1|) (-929 (-1207))) ELT) (($ $) NIL (|has| (-893 |#1|) (-239)) ELT) (($ $ (-793)) NIL (|has| (-893 |#1|) (-239)) ELT)) (-2396 (((-114) $ $) NIL (|has| (-893 |#1|) (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| (-893 |#1|) (-871)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL (|has| (-893 |#1|) (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| (-893 |#1|) (-871)) ELT)) (-2453 (($ $ $) NIL T ELT) (($ (-893 |#1|) (-893 |#1|)) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ (-893 |#1|) $) NIL T ELT) (($ $ (-893 |#1|)) NIL T ELT)))
+(((-895 |#1|) (-13 (-1022 (-893 |#1|)) (-10 -8 (-15 -2905 ((-421 (-560)) $ (-560))) (-15 -1768 ((-177 (-421 (-560))) $)) (-15 -3665 ($ $)) (-15 -3665 ($ (-560) $)))) (-560)) (T -895))
+((-2905 (*1 *2 *1 *3) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-895 *4)) (-14 *4 *3) (-5 *3 (-560)))) (-1768 (*1 *2 *1) (-12 (-5 *2 (-177 (-421 (-560)))) (-5 *1 (-895 *3)) (-14 *3 (-560)))) (-3665 (*1 *1 *1) (-12 (-5 *1 (-895 *2)) (-14 *2 (-560)))) (-3665 (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-895 *3)) (-14 *3 *2))))
+(-13 (-1022 (-893 |#1|)) (-10 -8 (-15 -2905 ((-421 (-560)) $ (-560))) (-15 -1768 ((-177 (-421 (-560))) $)) (-15 -3665 ($ $)) (-15 -3665 ($ (-560) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3655 ((|#2| $) NIL (|has| |#2| (-319)) ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-1869 (((-560) $) NIL (|has| |#2| (-842)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (|has| |#2| (-1069 (-1207))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#2| (-1069 (-560))) ELT)) (-3649 ((|#2| $) NIL T ELT) (((-1207) $) NIL (|has| |#2| (-1069 (-1207))) ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-560) $) NIL (|has| |#2| (-1069 (-560))) ELT)) (-3665 (($ $) 35 T ELT) (($ (-560) $) 38 T ELT)) (-2186 (($ $ $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) 64 T ELT)) (-1812 (($) NIL (|has| |#2| (-559)) ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-4172 (((-114) $) NIL (|has| |#2| (-842)) ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (|has| |#2| (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (|has| |#2| (-911 (-391))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-3490 (($ $) NIL T ELT)) (-2473 ((|#2| $) NIL T ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| |#2| (-1182)) ELT)) (-4470 (((-114) $) NIL (|has| |#2| (-842)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2932 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#2| (-871)) ELT)) (-2260 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-711 |#2|) (-1297 $)) NIL T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) 60 T ELT)) (-3239 (($) NIL (|has| |#2| (-1182)) CONST)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3211 (($ $) NIL (|has| |#2| (-319)) ELT)) (-3147 ((|#2| $) NIL (|has| |#2| (-559)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2371 (($ $ (-663 |#2|) (-663 |#2|)) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-305 |#2|)) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-663 (-305 |#2|))) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-663 (-1207)) (-663 |#2|)) NIL (|has| |#2| (-528 (-1207) |#2|)) ELT) (($ $ (-1207) |#2|) NIL (|has| |#2| (-528 (-1207) |#2|)) ELT)) (-3989 (((-793) $) NIL T ELT)) (-1507 (($ $ |#2|) NIL (|has| |#2| (-298 |#2| |#2|)) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3161 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT)) (-2951 (($ $) NIL T ELT)) (-2484 ((|#2| $) NIL T ELT)) (-2400 (((-915 (-560)) $) NIL (|has| |#2| (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) NIL (|has| |#2| (-633 (-915 (-391)))) ELT) (((-549) $) NIL (|has| |#2| (-633 (-549))) ELT) (((-391) $) NIL (|has| |#2| (-1051)) ELT) (((-229) $) NIL (|has| |#2| (-1051)) ELT)) (-1768 (((-177 (-421 (-560))) $) 78 T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-939))) ELT)) (-3913 (((-887) $) 106 T ELT) (($ (-560)) 20 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1207)) NIL (|has| |#2| (-1069 (-1207))) ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| |#2| (-939))) (|has| |#2| (-147))) ELT)) (-4191 (((-793)) NIL T CONST)) (-3622 ((|#2| $) NIL (|has| |#2| (-559)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-2905 (((-421 (-560)) $ (-560)) 71 T ELT)) (-2719 (($ $) NIL (|has| |#2| (-842)) ELT)) (-1446 (($) 15 T CONST)) (-1456 (($) 17 T CONST)) (-2111 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT)) (-2396 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2340 (((-114) $ $) 46 T ELT)) (-2386 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| |#2| (-871)) ELT)) (-2453 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-2441 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-2429 (($ $ $) 48 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) 61 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT)))
+(((-896 |#1| |#2|) (-13 (-1022 |#2|) (-10 -8 (-15 -2905 ((-421 (-560)) $ (-560))) (-15 -1768 ((-177 (-421 (-560))) $)) (-15 -3665 ($ $)) (-15 -3665 ($ (-560) $)))) (-560) (-894 |#1|)) (T -896))
+((-2905 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-421 (-560))) (-5 *1 (-896 *4 *5)) (-5 *3 (-560)) (-4 *5 (-894 *4)))) (-1768 (*1 *2 *1) (-12 (-14 *3 (-560)) (-5 *2 (-177 (-421 (-560)))) (-5 *1 (-896 *3 *4)) (-4 *4 (-894 *3)))) (-3665 (*1 *1 *1) (-12 (-14 *2 (-560)) (-5 *1 (-896 *2 *3)) (-4 *3 (-894 *2)))) (-3665 (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-14 *3 *2) (-5 *1 (-896 *3 *4)) (-4 *4 (-894 *3)))))
+(-13 (-1022 |#2|) (-10 -8 (-15 -2905 ((-421 (-560)) $ (-560))) (-15 -1768 ((-177 (-421 (-560))) $)) (-15 -3665 ($ $)) (-15 -3665 ($ (-560) $))))
+((-2243 (((-114) $ $) NIL (-12 (|has| |#1| (-1132)) (|has| |#2| (-1132))) ELT)) (-3839 ((|#2| $) 12 T ELT)) (-1630 (($ |#1| |#2|) 9 T ELT)) (-3358 (((-1189) $) NIL (-12 (|has| |#1| (-1132)) (|has| |#2| (-1132))) ELT)) (-3376 (((-1151) $) NIL (-12 (|has| |#1| (-1132)) (|has| |#2| (-1132))) ELT)) (-4334 ((|#1| $) 11 T ELT)) (-3924 (($ |#1| |#2|) 10 T ELT)) (-3913 (((-887) $) 18 (-2196 (-12 (|has| |#1| (-632 (-887))) (|has| |#2| (-632 (-887)))) (-12 (|has| |#1| (-1132)) (|has| |#2| (-1132)))) ELT)) (-3925 (((-114) $ $) NIL (-12 (|has| |#1| (-1132)) (|has| |#2| (-1132))) ELT)) (-2340 (((-114) $ $) 23 (-12 (|has| |#1| (-1132)) (|has| |#2| (-1132))) ELT)))
+(((-897 |#1| |#2|) (-13 (-1247) (-10 -8 (IF (|has| |#1| (-632 (-887))) (IF (|has| |#2| (-632 (-887))) (-6 (-632 (-887))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1132)) (IF (|has| |#2| (-1132)) (-6 (-1132)) |%noBranch|) |%noBranch|) (-15 -1630 ($ |#1| |#2|)) (-15 -3924 ($ |#1| |#2|)) (-15 -4334 (|#1| $)) (-15 -3839 (|#2| $)))) (-1247) (-1247)) (T -897))
+((-1630 (*1 *1 *2 *3) (-12 (-5 *1 (-897 *2 *3)) (-4 *2 (-1247)) (-4 *3 (-1247)))) (-3924 (*1 *1 *2 *3) (-12 (-5 *1 (-897 *2 *3)) (-4 *2 (-1247)) (-4 *3 (-1247)))) (-4334 (*1 *2 *1) (-12 (-4 *2 (-1247)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1247)))) (-3839 (*1 *2 *1) (-12 (-4 *2 (-1247)) (-5 *1 (-897 *3 *2)) (-4 *3 (-1247)))))
+(-13 (-1247) (-10 -8 (IF (|has| |#1| (-632 (-887))) (IF (|has| |#2| (-632 (-887))) (-6 (-632 (-887))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1132)) (IF (|has| |#2| (-1132)) (-6 (-1132)) |%noBranch|) |%noBranch|) (-15 -1630 ($ |#1| |#2|)) (-15 -3924 ($ |#1| |#2|)) (-15 -4334 (|#1| $)) (-15 -3839 (|#2| $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2672 (((-560) $) 16 T ELT)) (-3599 (($ (-159)) 13 T ELT)) (-4211 (($ (-159)) 14 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1874 (((-159) $) 15 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3662 (($ (-159)) 11 T ELT)) (-3632 (($ (-159)) 10 T ELT)) (-3913 (((-887) $) 24 T ELT) (($ (-159)) 17 T ELT)) (-2346 (($ (-159)) 12 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-898) (-13 (-1132) (-10 -8 (-15 -3632 ($ (-159))) (-15 -3662 ($ (-159))) (-15 -2346 ($ (-159))) (-15 -3599 ($ (-159))) (-15 -4211 ($ (-159))) (-15 -1874 ((-159) $)) (-15 -2672 ((-560) $)) (-15 -3913 ($ (-159)))))) (T -898))
+((-3632 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))) (-3662 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))) (-2346 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))) (-3599 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))) (-4211 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))) (-1874 (*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-898)))) (-2672 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-898)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))))
+(-13 (-1132) (-10 -8 (-15 -3632 ($ (-159))) (-15 -3662 ($ (-159))) (-15 -2346 ($ (-159))) (-15 -3599 ($ (-159))) (-15 -4211 ($ (-159))) (-15 -1874 ((-159) $)) (-15 -2672 ((-560) $)) (-15 -3913 ($ (-159)))))
+((-3913 (((-326 (-560)) (-421 (-975 (-48)))) 23 T ELT) (((-326 (-560)) (-975 (-48))) 18 T ELT)))
+(((-899) (-10 -7 (-15 -3913 ((-326 (-560)) (-975 (-48)))) (-15 -3913 ((-326 (-560)) (-421 (-975 (-48))))))) (T -899))
+((-3913 (*1 *2 *3) (-12 (-5 *3 (-421 (-975 (-48)))) (-5 *2 (-326 (-560))) (-5 *1 (-899)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-975 (-48))) (-5 *2 (-326 (-560))) (-5 *1 (-899)))))
+(-10 -7 (-15 -3913 ((-326 (-560)) (-975 (-48)))) (-15 -3913 ((-326 (-560)) (-421 (-975 (-48))))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 18 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1436 (((-114) $ (|[\|\|]| (-520))) 9 T ELT) (((-114) $ (|[\|\|]| (-1189))) 13 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4168 (((-520) $) 10 T ELT) (((-1189) $) 14 T ELT)) (-2340 (((-114) $ $) 15 T ELT)))
+(((-900) (-13 (-1114) (-1293) (-10 -8 (-15 -1436 ((-114) $ (|[\|\|]| (-520)))) (-15 -4168 ((-520) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-1189)))) (-15 -4168 ((-1189) $))))) (T -900))
+((-1436 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-114)) (-5 *1 (-900)))) (-4168 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-900)))) (-1436 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-114)) (-5 *1 (-900)))) (-4168 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-900)))))
+(-13 (-1114) (-1293) (-10 -8 (-15 -1436 ((-114) $ (|[\|\|]| (-520)))) (-15 -4168 ((-520) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-1189)))) (-15 -4168 ((-1189) $))))
+((-2260 (((-902 |#2|) (-1 |#2| |#1|) (-902 |#1|)) 15 T ELT)))
+(((-901 |#1| |#2|) (-10 -7 (-15 -2260 ((-902 |#2|) (-1 |#2| |#1|) (-902 |#1|)))) (-1247) (-1247)) (T -901))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-902 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-902 *6)) (-5 *1 (-901 *5 *6)))))
+(-10 -7 (-15 -2260 ((-902 |#2|) (-1 |#2| |#1|) (-902 |#1|))))
+((-4231 (($ |#1| |#1|) 8 T ELT)) (-4122 ((|#1| $ (-793)) 15 T ELT)))
+(((-902 |#1|) (-10 -8 (-15 -4231 ($ |#1| |#1|)) (-15 -4122 (|#1| $ (-793)))) (-1247)) (T -902))
+((-4122 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-902 *2)) (-4 *2 (-1247)))) (-4231 (*1 *1 *2 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1247)))))
+(-10 -8 (-15 -4231 ($ |#1| |#1|)) (-15 -4122 (|#1| $ (-793))))
+((-2260 (((-904 |#2|) (-1 |#2| |#1|) (-904 |#1|)) 15 T ELT)))
+(((-903 |#1| |#2|) (-10 -7 (-15 -2260 ((-904 |#2|) (-1 |#2| |#1|) (-904 |#1|)))) (-1247) (-1247)) (T -903))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-904 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-904 *6)) (-5 *1 (-903 *5 *6)))))
+(-10 -7 (-15 -2260 ((-904 |#2|) (-1 |#2| |#1|) (-904 |#1|))))
+((-4231 (($ |#1| |#1| |#1|) 8 T ELT)) (-4122 ((|#1| $ (-793)) 15 T ELT)))
+(((-904 |#1|) (-10 -8 (-15 -4231 ($ |#1| |#1| |#1|)) (-15 -4122 (|#1| $ (-793)))) (-1247)) (T -904))
+((-4122 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-904 *2)) (-4 *2 (-1247)))) (-4231 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1247)))))
+(-10 -8 (-15 -4231 ($ |#1| |#1| |#1|)) (-15 -4122 (|#1| $ (-793))))
+((-3073 (((-663 (-1212)) (-1189)) 9 T ELT)))
+(((-905) (-10 -7 (-15 -3073 ((-663 (-1212)) (-1189))))) (T -905))
+((-3073 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-663 (-1212))) (-5 *1 (-905)))))
+(-10 -7 (-15 -3073 ((-663 (-1212)) (-1189))))
+((-2260 (((-907 |#2|) (-1 |#2| |#1|) (-907 |#1|)) 15 T ELT)))
+(((-906 |#1| |#2|) (-10 -7 (-15 -2260 ((-907 |#2|) (-1 |#2| |#1|) (-907 |#1|)))) (-1247) (-1247)) (T -906))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-907 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-907 *6)) (-5 *1 (-906 *5 *6)))))
+(-10 -7 (-15 -2260 ((-907 |#2|) (-1 |#2| |#1|) (-907 |#1|))))
+((-2237 (($ |#1| |#1| |#1|) 8 T ELT)) (-4122 ((|#1| $ (-793)) 15 T ELT)))
+(((-907 |#1|) (-10 -8 (-15 -2237 ($ |#1| |#1| |#1|)) (-15 -4122 (|#1| $ (-793)))) (-1247)) (T -907))
+((-4122 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-907 *2)) (-4 *2 (-1247)))) (-2237 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1247)))))
+(-10 -8 (-15 -2237 ($ |#1| |#1| |#1|)) (-15 -4122 (|#1| $ (-793))))
+((-3333 (((-1185 (-663 (-560))) (-663 (-560)) (-1185 (-663 (-560)))) 41 T ELT)) (-1838 (((-1185 (-663 (-560))) (-663 (-560)) (-663 (-560))) 31 T ELT)) (-4337 (((-1185 (-663 (-560))) (-663 (-560))) 53 T ELT) (((-1185 (-663 (-560))) (-663 (-560)) (-663 (-560))) 50 T ELT)) (-1618 (((-1185 (-663 (-560))) (-560)) 55 T ELT)) (-4009 (((-1185 (-663 (-948))) (-1185 (-663 (-948)))) 22 T ELT)) (-1714 (((-663 (-948)) (-663 (-948))) 18 T ELT)))
+(((-908) (-10 -7 (-15 -1714 ((-663 (-948)) (-663 (-948)))) (-15 -4009 ((-1185 (-663 (-948))) (-1185 (-663 (-948))))) (-15 -1838 ((-1185 (-663 (-560))) (-663 (-560)) (-663 (-560)))) (-15 -3333 ((-1185 (-663 (-560))) (-663 (-560)) (-1185 (-663 (-560))))) (-15 -4337 ((-1185 (-663 (-560))) (-663 (-560)) (-663 (-560)))) (-15 -4337 ((-1185 (-663 (-560))) (-663 (-560)))) (-15 -1618 ((-1185 (-663 (-560))) (-560))))) (T -908))
+((-1618 (*1 *2 *3) (-12 (-5 *2 (-1185 (-663 (-560)))) (-5 *1 (-908)) (-5 *3 (-560)))) (-4337 (*1 *2 *3) (-12 (-5 *2 (-1185 (-663 (-560)))) (-5 *1 (-908)) (-5 *3 (-663 (-560))))) (-4337 (*1 *2 *3 *3) (-12 (-5 *2 (-1185 (-663 (-560)))) (-5 *1 (-908)) (-5 *3 (-663 (-560))))) (-3333 (*1 *2 *3 *2) (-12 (-5 *2 (-1185 (-663 (-560)))) (-5 *3 (-663 (-560))) (-5 *1 (-908)))) (-1838 (*1 *2 *3 *3) (-12 (-5 *2 (-1185 (-663 (-560)))) (-5 *1 (-908)) (-5 *3 (-663 (-560))))) (-4009 (*1 *2 *2) (-12 (-5 *2 (-1185 (-663 (-948)))) (-5 *1 (-908)))) (-1714 (*1 *2 *2) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-908)))))
+(-10 -7 (-15 -1714 ((-663 (-948)) (-663 (-948)))) (-15 -4009 ((-1185 (-663 (-948))) (-1185 (-663 (-948))))) (-15 -1838 ((-1185 (-663 (-560))) (-663 (-560)) (-663 (-560)))) (-15 -3333 ((-1185 (-663 (-560))) (-663 (-560)) (-1185 (-663 (-560))))) (-15 -4337 ((-1185 (-663 (-560))) (-663 (-560)) (-663 (-560)))) (-15 -4337 ((-1185 (-663 (-560))) (-663 (-560)))) (-15 -1618 ((-1185 (-663 (-560))) (-560))))
+((-2400 (((-915 (-391)) $) 9 (|has| |#1| (-633 (-915 (-391)))) ELT) (((-915 (-560)) $) 8 (|has| |#1| (-633 (-915 (-560)))) ELT)))
(((-909 |#1|) (-142) (-1247)) (T -909))
NIL
(-13 (-10 -7 (IF (|has| |t#1| (-633 (-915 (-560)))) (-6 (-633 (-915 (-560)))) |%noBranch|) (IF (|has| |t#1| (-633 (-915 (-391)))) (-6 (-633 (-915 (-391)))) |%noBranch|)))
(((-633 (-915 (-391))) |has| |#1| (-633 (-915 (-391)))) ((-633 (-915 (-560))) |has| |#1| (-633 (-915 (-560)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-4095 (($) 14 T ELT)) (-2758 (($ (-913 |#1| |#2|) (-913 |#1| |#3|)) 28 T ELT)) (-2407 (((-913 |#1| |#3|) $) 16 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2881 (((-114) $) 22 T ELT)) (-2060 (($) 19 T ELT)) (-1578 (((-887) $) 31 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-4167 (((-913 |#1| |#2|) $) 15 T ELT)) (-2473 (((-114) $ $) 26 T ELT)))
-(((-910 |#1| |#2| |#3|) (-13 (-1132) (-10 -8 (-15 -2881 ((-114) $)) (-15 -2060 ($)) (-15 -4095 ($)) (-15 -2758 ($ (-913 |#1| |#2|) (-913 |#1| |#3|))) (-15 -4167 ((-913 |#1| |#2|) $)) (-15 -2407 ((-913 |#1| |#3|) $)))) (-1132) (-1132) (-688 |#2|)) (T -910))
-((-2881 (*1 *2 *1) (-12 (-4 *4 (-1132)) (-5 *2 (-114)) (-5 *1 (-910 *3 *4 *5)) (-4 *3 (-1132)) (-4 *5 (-688 *4)))) (-2060 (*1 *1) (-12 (-4 *3 (-1132)) (-5 *1 (-910 *2 *3 *4)) (-4 *2 (-1132)) (-4 *4 (-688 *3)))) (-4095 (*1 *1) (-12 (-4 *3 (-1132)) (-5 *1 (-910 *2 *3 *4)) (-4 *2 (-1132)) (-4 *4 (-688 *3)))) (-2758 (*1 *1 *2 *3) (-12 (-5 *2 (-913 *4 *5)) (-5 *3 (-913 *4 *6)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-688 *5)) (-5 *1 (-910 *4 *5 *6)))) (-4167 (*1 *2 *1) (-12 (-4 *4 (-1132)) (-5 *2 (-913 *3 *4)) (-5 *1 (-910 *3 *4 *5)) (-4 *3 (-1132)) (-4 *5 (-688 *4)))) (-2407 (*1 *2 *1) (-12 (-4 *4 (-1132)) (-5 *2 (-913 *3 *5)) (-5 *1 (-910 *3 *4 *5)) (-4 *3 (-1132)) (-4 *5 (-688 *4)))))
-(-13 (-1132) (-10 -8 (-15 -2881 ((-114) $)) (-15 -2060 ($)) (-15 -4095 ($)) (-15 -2758 ($ (-913 |#1| |#2|) (-913 |#1| |#3|))) (-15 -4167 ((-913 |#1| |#2|) $)) (-15 -2407 ((-913 |#1| |#3|) $))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2427 (((-913 |#1| $) $ (-915 |#1|) (-913 |#1| $)) 14 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2473 (((-114) $ $) 8 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-4246 (($) 14 T ELT)) (-1796 (($ (-913 |#1| |#2|) (-913 |#1| |#3|)) 28 T ELT)) (-2339 (((-913 |#1| |#3|) $) 16 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3786 (((-114) $) 22 T ELT)) (-2717 (($) 19 T ELT)) (-3913 (((-887) $) 31 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4142 (((-913 |#1| |#2|) $) 15 T ELT)) (-2340 (((-114) $ $) 26 T ELT)))
+(((-910 |#1| |#2| |#3|) (-13 (-1132) (-10 -8 (-15 -3786 ((-114) $)) (-15 -2717 ($)) (-15 -4246 ($)) (-15 -1796 ($ (-913 |#1| |#2|) (-913 |#1| |#3|))) (-15 -4142 ((-913 |#1| |#2|) $)) (-15 -2339 ((-913 |#1| |#3|) $)))) (-1132) (-1132) (-688 |#2|)) (T -910))
+((-3786 (*1 *2 *1) (-12 (-4 *4 (-1132)) (-5 *2 (-114)) (-5 *1 (-910 *3 *4 *5)) (-4 *3 (-1132)) (-4 *5 (-688 *4)))) (-2717 (*1 *1) (-12 (-4 *3 (-1132)) (-5 *1 (-910 *2 *3 *4)) (-4 *2 (-1132)) (-4 *4 (-688 *3)))) (-4246 (*1 *1) (-12 (-4 *3 (-1132)) (-5 *1 (-910 *2 *3 *4)) (-4 *2 (-1132)) (-4 *4 (-688 *3)))) (-1796 (*1 *1 *2 *3) (-12 (-5 *2 (-913 *4 *5)) (-5 *3 (-913 *4 *6)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-688 *5)) (-5 *1 (-910 *4 *5 *6)))) (-4142 (*1 *2 *1) (-12 (-4 *4 (-1132)) (-5 *2 (-913 *3 *4)) (-5 *1 (-910 *3 *4 *5)) (-4 *3 (-1132)) (-4 *5 (-688 *4)))) (-2339 (*1 *2 *1) (-12 (-4 *4 (-1132)) (-5 *2 (-913 *3 *5)) (-5 *1 (-910 *3 *4 *5)) (-4 *3 (-1132)) (-4 *5 (-688 *4)))))
+(-13 (-1132) (-10 -8 (-15 -3786 ((-114) $)) (-15 -2717 ($)) (-15 -4246 ($)) (-15 -1796 ($ (-913 |#1| |#2|) (-913 |#1| |#3|))) (-15 -4142 ((-913 |#1| |#2|) $)) (-15 -2339 ((-913 |#1| |#3|) $))))
+((-2243 (((-114) $ $) 7 T ELT)) (-1646 (((-913 |#1| $) $ (-915 |#1|) (-913 |#1| $)) 14 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2340 (((-114) $ $) 8 T ELT)))
(((-911 |#1|) (-142) (-1132)) (T -911))
-((-2427 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-913 *4 *1)) (-5 *3 (-915 *4)) (-4 *1 (-911 *4)) (-4 *4 (-1132)))))
-(-13 (-1132) (-10 -8 (-15 -2427 ((-913 |t#1| $) $ (-915 |t#1|) (-913 |t#1| $)))))
+((-1646 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-913 *4 *1)) (-5 *3 (-915 *4)) (-4 *1 (-911 *4)) (-4 *4 (-1132)))))
+(-13 (-1132) (-10 -8 (-15 -1646 ((-913 |t#1| $) $ (-915 |t#1|) (-913 |t#1| $)))))
(((-102) . T) ((-632 (-887)) . T) ((-1132) . T) ((-1247) . T))
-((-2784 (((-114) (-663 |#2|) |#3|) 23 T ELT) (((-114) |#2| |#3|) 18 T ELT)) (-1899 (((-913 |#1| |#2|) |#2| |#3|) 45 (-12 (-1937 (|has| |#2| (-1069 (-1207)))) (-1937 (|has| |#2| (-1080)))) ELT) (((-663 (-305 (-975 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1080)) (-1937 (|has| |#2| (-1069 (-1207))))) ELT) (((-663 (-305 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1069 (-1207))) ELT) (((-910 |#1| |#2| (-663 |#2|)) (-663 |#2|) |#3|) 21 T ELT)))
-(((-912 |#1| |#2| |#3|) (-10 -7 (-15 -2784 ((-114) |#2| |#3|)) (-15 -2784 ((-114) (-663 |#2|) |#3|)) (-15 -1899 ((-910 |#1| |#2| (-663 |#2|)) (-663 |#2|) |#3|)) (IF (|has| |#2| (-1069 (-1207))) (-15 -1899 ((-663 (-305 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1080)) (-15 -1899 ((-663 (-305 (-975 |#2|))) |#2| |#3|)) (-15 -1899 ((-913 |#1| |#2|) |#2| |#3|))))) (-1132) (-911 |#1|) (-633 (-915 |#1|))) (T -912))
-((-1899 (*1 *2 *3 *4) (-12 (-4 *5 (-1132)) (-5 *2 (-913 *5 *3)) (-5 *1 (-912 *5 *3 *4)) (-1937 (-4 *3 (-1069 (-1207)))) (-1937 (-4 *3 (-1080))) (-4 *3 (-911 *5)) (-4 *4 (-633 (-915 *5))))) (-1899 (*1 *2 *3 *4) (-12 (-4 *5 (-1132)) (-5 *2 (-663 (-305 (-975 *3)))) (-5 *1 (-912 *5 *3 *4)) (-4 *3 (-1080)) (-1937 (-4 *3 (-1069 (-1207)))) (-4 *3 (-911 *5)) (-4 *4 (-633 (-915 *5))))) (-1899 (*1 *2 *3 *4) (-12 (-4 *5 (-1132)) (-5 *2 (-663 (-305 *3))) (-5 *1 (-912 *5 *3 *4)) (-4 *3 (-1069 (-1207))) (-4 *3 (-911 *5)) (-4 *4 (-633 (-915 *5))))) (-1899 (*1 *2 *3 *4) (-12 (-4 *5 (-1132)) (-4 *6 (-911 *5)) (-5 *2 (-910 *5 *6 (-663 *6))) (-5 *1 (-912 *5 *6 *4)) (-5 *3 (-663 *6)) (-4 *4 (-633 (-915 *5))))) (-2784 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6)) (-4 *6 (-911 *5)) (-4 *5 (-1132)) (-5 *2 (-114)) (-5 *1 (-912 *5 *6 *4)) (-4 *4 (-633 (-915 *5))))) (-2784 (*1 *2 *3 *4) (-12 (-4 *5 (-1132)) (-5 *2 (-114)) (-5 *1 (-912 *5 *3 *4)) (-4 *3 (-911 *5)) (-4 *4 (-633 (-915 *5))))))
-(-10 -7 (-15 -2784 ((-114) |#2| |#3|)) (-15 -2784 ((-114) (-663 |#2|) |#3|)) (-15 -1899 ((-910 |#1| |#2| (-663 |#2|)) (-663 |#2|) |#3|)) (IF (|has| |#2| (-1069 (-1207))) (-15 -1899 ((-663 (-305 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1080)) (-15 -1899 ((-663 (-305 (-975 |#2|))) |#2| |#3|)) (-15 -1899 ((-913 |#1| |#2|) |#2| |#3|)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-4028 (($ $ $) 40 T ELT)) (-3191 (((-3 (-114) "failed") $ (-915 |#1|)) 37 T ELT)) (-4095 (($) 12 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3857 (($ (-915 |#1|) |#2| $) 20 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2408 (((-3 |#2| "failed") (-915 |#1|) $) 51 T ELT)) (-2881 (((-114) $) 15 T ELT)) (-2060 (($) 13 T ELT)) (-1374 (((-663 (-2 (|:| -2968 (-1207)) (|:| -2460 |#2|))) $) 25 T ELT)) (-1592 (($ (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 |#2|)))) 23 T ELT)) (-1578 (((-887) $) 45 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-3379 (($ (-915 |#1|) |#2| $ |#2|) 49 T ELT)) (-2265 (($ (-915 |#1|) |#2| $) 48 T ELT)) (-2473 (((-114) $ $) 42 T ELT)))
-(((-913 |#1| |#2|) (-13 (-1132) (-10 -8 (-15 -2881 ((-114) $)) (-15 -2060 ($)) (-15 -4095 ($)) (-15 -4028 ($ $ $)) (-15 -2408 ((-3 |#2| "failed") (-915 |#1|) $)) (-15 -2265 ($ (-915 |#1|) |#2| $)) (-15 -3857 ($ (-915 |#1|) |#2| $)) (-15 -3379 ($ (-915 |#1|) |#2| $ |#2|)) (-15 -1374 ((-663 (-2 (|:| -2968 (-1207)) (|:| -2460 |#2|))) $)) (-15 -1592 ($ (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 |#2|))))) (-15 -3191 ((-3 (-114) "failed") $ (-915 |#1|))))) (-1132) (-1132)) (T -913))
-((-2881 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-913 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))) (-2060 (*1 *1) (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))) (-4095 (*1 *1) (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))) (-4028 (*1 *1 *1 *1) (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))) (-2408 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-915 *4)) (-4 *4 (-1132)) (-4 *2 (-1132)) (-5 *1 (-913 *4 *2)))) (-2265 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-915 *4)) (-4 *4 (-1132)) (-5 *1 (-913 *4 *3)) (-4 *3 (-1132)))) (-3857 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-915 *4)) (-4 *4 (-1132)) (-5 *1 (-913 *4 *3)) (-4 *3 (-1132)))) (-3379 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-915 *4)) (-4 *4 (-1132)) (-5 *1 (-913 *4 *3)) (-4 *3 (-1132)))) (-1374 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 *4)))) (-5 *1 (-913 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))) (-1592 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 *4)))) (-4 *4 (-1132)) (-5 *1 (-913 *3 *4)) (-4 *3 (-1132)))) (-3191 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-915 *4)) (-4 *4 (-1132)) (-5 *2 (-114)) (-5 *1 (-913 *4 *5)) (-4 *5 (-1132)))))
-(-13 (-1132) (-10 -8 (-15 -2881 ((-114) $)) (-15 -2060 ($)) (-15 -4095 ($)) (-15 -4028 ($ $ $)) (-15 -2408 ((-3 |#2| "failed") (-915 |#1|) $)) (-15 -2265 ($ (-915 |#1|) |#2| $)) (-15 -3857 ($ (-915 |#1|) |#2| $)) (-15 -3379 ($ (-915 |#1|) |#2| $ |#2|)) (-15 -1374 ((-663 (-2 (|:| -2968 (-1207)) (|:| -2460 |#2|))) $)) (-15 -1592 ($ (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 |#2|))))) (-15 -3191 ((-3 (-114) "failed") $ (-915 |#1|)))))
-((-3957 (((-913 |#1| |#3|) (-1 |#3| |#2|) (-913 |#1| |#2|)) 22 T ELT)))
-(((-914 |#1| |#2| |#3|) (-10 -7 (-15 -3957 ((-913 |#1| |#3|) (-1 |#3| |#2|) (-913 |#1| |#2|)))) (-1132) (-1132) (-1132)) (T -914))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-913 *5 *6)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-913 *5 *7)) (-5 *1 (-914 *5 *6 *7)))))
-(-10 -7 (-15 -3957 ((-913 |#1| |#3|) (-1 |#3| |#2|) (-913 |#1| |#2|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2312 (($ $ (-663 (-51))) 74 T ELT)) (-1443 (((-663 $) $) 139 T ELT)) (-2904 (((-2 (|:| |var| (-663 (-1207))) (|:| |pred| (-51))) $) 30 T ELT)) (-2691 (((-114) $) 35 T ELT)) (-2259 (($ $ (-663 (-1207)) (-51)) 31 T ELT)) (-4156 (($ $ (-663 (-51))) 73 T ELT)) (-2539 (((-3 |#1| "failed") $) 71 T ELT) (((-3 (-1207) "failed") $) 164 T ELT)) (-3330 ((|#1| $) 68 T ELT) (((-1207) $) NIL T ELT)) (-3189 (($ $) 126 T ELT)) (-1337 (((-114) $) 55 T ELT)) (-2026 (((-663 (-51)) $) 50 T ELT)) (-2081 (($ (-1207) (-114) (-114) (-114)) 75 T ELT)) (-1780 (((-3 (-663 $) "failed") (-663 $)) 82 T ELT)) (-3114 (((-114) $) 58 T ELT)) (-2244 (((-114) $) 57 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3479 (((-3 (-663 $) "failed") $) 41 T ELT)) (-2051 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48 T ELT)) (-3436 (((-3 (-2 (|:| |val| $) (|:| -3205 $)) "failed") $) 97 T ELT)) (-2590 (((-3 (-663 $) "failed") $) 40 T ELT)) (-2980 (((-3 (-663 $) "failed") $ (-115)) 124 T ELT) (((-3 (-2 (|:| -3967 (-115)) (|:| |arg| (-663 $))) "failed") $) 107 T ELT)) (-3814 (((-3 (-663 $) "failed") $) 42 T ELT)) (-3683 (((-3 (-2 (|:| |val| $) (|:| -3205 (-793))) "failed") $) 45 T ELT)) (-3473 (((-114) $) 34 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1648 (((-114) $) 28 T ELT)) (-3575 (((-114) $) 52 T ELT)) (-2895 (((-663 (-51)) $) 130 T ELT)) (-2075 (((-114) $) 56 T ELT)) (-3924 (($ (-115) (-663 $)) 104 T ELT)) (-3470 (((-793) $) 33 T ELT)) (-1799 (($ $) 72 T ELT)) (-1407 (($ (-663 $)) 69 T ELT)) (-4305 (((-114) $) 32 T ELT)) (-1578 (((-887) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1207)) 76 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2467 (($ $ (-51)) 129 T ELT)) (-2001 (($) 103 T CONST)) (-2011 (($) 83 T CONST)) (-2473 (((-114) $ $) 93 T ELT)) (-2594 (($ $ $) 117 T ELT)) (-2567 (($ $ $) 121 T ELT)) (** (($ $ (-793)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT)))
-(((-915 |#1|) (-13 (-1132) (-1069 |#1|) (-1069 (-1207)) (-10 -8 (-15 0 ($) -3081) (-15 1 ($) -3081) (-15 -2590 ((-3 (-663 $) "failed") $)) (-15 -3479 ((-3 (-663 $) "failed") $)) (-15 -2980 ((-3 (-663 $) "failed") $ (-115))) (-15 -2980 ((-3 (-2 (|:| -3967 (-115)) (|:| |arg| (-663 $))) "failed") $)) (-15 -3683 ((-3 (-2 (|:| |val| $) (|:| -3205 (-793))) "failed") $)) (-15 -2051 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3814 ((-3 (-663 $) "failed") $)) (-15 -3436 ((-3 (-2 (|:| |val| $) (|:| -3205 $)) "failed") $)) (-15 -3924 ($ (-115) (-663 $))) (-15 -2567 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-793))) (-15 ** ($ $ $)) (-15 -2594 ($ $ $)) (-15 -3470 ((-793) $)) (-15 -1407 ($ (-663 $))) (-15 -1799 ($ $)) (-15 -3473 ((-114) $)) (-15 -1337 ((-114) $)) (-15 -2691 ((-114) $)) (-15 -4305 ((-114) $)) (-15 -2075 ((-114) $)) (-15 -2244 ((-114) $)) (-15 -3114 ((-114) $)) (-15 -3575 ((-114) $)) (-15 -2026 ((-663 (-51)) $)) (-15 -4156 ($ $ (-663 (-51)))) (-15 -2312 ($ $ (-663 (-51)))) (-15 -2081 ($ (-1207) (-114) (-114) (-114))) (-15 -2259 ($ $ (-663 (-1207)) (-51))) (-15 -2904 ((-2 (|:| |var| (-663 (-1207))) (|:| |pred| (-51))) $)) (-15 -1648 ((-114) $)) (-15 -3189 ($ $)) (-15 -2467 ($ $ (-51))) (-15 -2895 ((-663 (-51)) $)) (-15 -1443 ((-663 $) $)) (-15 -1780 ((-3 (-663 $) "failed") (-663 $))))) (-1132)) (T -915))
-((-2001 (*1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132)))) (-2011 (*1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132)))) (-2590 (*1 *2 *1) (|partial| -12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-3479 (*1 *2 *1) (|partial| -12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-2980 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-663 (-915 *4))) (-5 *1 (-915 *4)) (-4 *4 (-1132)))) (-2980 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3967 (-115)) (|:| |arg| (-663 (-915 *3))))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-3683 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-915 *3)) (|:| -3205 (-793)))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-2051 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-915 *3)) (|:| |den| (-915 *3)))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-3814 (*1 *2 *1) (|partial| -12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-3436 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-915 *3)) (|:| -3205 (-915 *3)))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-3924 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-663 (-915 *4))) (-5 *1 (-915 *4)) (-4 *4 (-1132)))) (-2567 (*1 *1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132)))) (-2594 (*1 *1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132)))) (-3470 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-1407 (*1 *1 *2) (-12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-1799 (*1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132)))) (-3473 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-1337 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-4305 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-2075 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-2244 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-3114 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-3575 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-2026 (*1 *2 *1) (-12 (-5 *2 (-663 (-51))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-4156 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-51))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-2312 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-51))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-2081 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-114)) (-5 *1 (-915 *4)) (-4 *4 (-1132)))) (-2259 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-51)) (-5 *1 (-915 *4)) (-4 *4 (-1132)))) (-2904 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-663 (-1207))) (|:| |pred| (-51)))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-1648 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-3189 (*1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132)))) (-2467 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-2895 (*1 *2 *1) (-12 (-5 *2 (-663 (-51))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-1443 (*1 *2 *1) (-12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-1780 (*1 *2 *2) (|partial| -12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
-(-13 (-1132) (-1069 |#1|) (-1069 (-1207)) (-10 -8 (-15 (-2001) ($) -3081) (-15 (-2011) ($) -3081) (-15 -2590 ((-3 (-663 $) "failed") $)) (-15 -3479 ((-3 (-663 $) "failed") $)) (-15 -2980 ((-3 (-663 $) "failed") $ (-115))) (-15 -2980 ((-3 (-2 (|:| -3967 (-115)) (|:| |arg| (-663 $))) "failed") $)) (-15 -3683 ((-3 (-2 (|:| |val| $) (|:| -3205 (-793))) "failed") $)) (-15 -2051 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -3814 ((-3 (-663 $) "failed") $)) (-15 -3436 ((-3 (-2 (|:| |val| $) (|:| -3205 $)) "failed") $)) (-15 -3924 ($ (-115) (-663 $))) (-15 -2567 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-793))) (-15 ** ($ $ $)) (-15 -2594 ($ $ $)) (-15 -3470 ((-793) $)) (-15 -1407 ($ (-663 $))) (-15 -1799 ($ $)) (-15 -3473 ((-114) $)) (-15 -1337 ((-114) $)) (-15 -2691 ((-114) $)) (-15 -4305 ((-114) $)) (-15 -2075 ((-114) $)) (-15 -2244 ((-114) $)) (-15 -3114 ((-114) $)) (-15 -3575 ((-114) $)) (-15 -2026 ((-663 (-51)) $)) (-15 -4156 ($ $ (-663 (-51)))) (-15 -2312 ($ $ (-663 (-51)))) (-15 -2081 ($ (-1207) (-114) (-114) (-114))) (-15 -2259 ($ $ (-663 (-1207)) (-51))) (-15 -2904 ((-2 (|:| |var| (-663 (-1207))) (|:| |pred| (-51))) $)) (-15 -1648 ((-114) $)) (-15 -3189 ($ $)) (-15 -2467 ($ $ (-51))) (-15 -2895 ((-663 (-51)) $)) (-15 -1443 ((-663 $) $)) (-15 -1780 ((-3 (-663 $) "failed") (-663 $)))))
-((-1375 (((-915 |#1|) (-915 |#1|) (-663 (-1207)) (-1 (-114) (-663 |#2|))) 32 T ELT) (((-915 |#1|) (-915 |#1|) (-663 (-1 (-114) |#2|))) 46 T ELT) (((-915 |#1|) (-915 |#1|) (-1 (-114) |#2|)) 35 T ELT)) (-3191 (((-114) (-663 |#2|) (-915 |#1|)) 42 T ELT) (((-114) |#2| (-915 |#1|)) 36 T ELT)) (-1940 (((-1 (-114) |#2|) (-915 |#1|)) 16 T ELT)) (-2764 (((-663 |#2|) (-915 |#1|)) 24 T ELT)) (-2467 (((-915 |#1|) (-915 |#1|) |#2|) 20 T ELT)))
-(((-916 |#1| |#2|) (-10 -7 (-15 -1375 ((-915 |#1|) (-915 |#1|) (-1 (-114) |#2|))) (-15 -1375 ((-915 |#1|) (-915 |#1|) (-663 (-1 (-114) |#2|)))) (-15 -1375 ((-915 |#1|) (-915 |#1|) (-663 (-1207)) (-1 (-114) (-663 |#2|)))) (-15 -1940 ((-1 (-114) |#2|) (-915 |#1|))) (-15 -3191 ((-114) |#2| (-915 |#1|))) (-15 -3191 ((-114) (-663 |#2|) (-915 |#1|))) (-15 -2467 ((-915 |#1|) (-915 |#1|) |#2|)) (-15 -2764 ((-663 |#2|) (-915 |#1|)))) (-1132) (-1247)) (T -916))
-((-2764 (*1 *2 *3) (-12 (-5 *3 (-915 *4)) (-4 *4 (-1132)) (-5 *2 (-663 *5)) (-5 *1 (-916 *4 *5)) (-4 *5 (-1247)))) (-2467 (*1 *2 *2 *3) (-12 (-5 *2 (-915 *4)) (-4 *4 (-1132)) (-5 *1 (-916 *4 *3)) (-4 *3 (-1247)))) (-3191 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6)) (-5 *4 (-915 *5)) (-4 *5 (-1132)) (-4 *6 (-1247)) (-5 *2 (-114)) (-5 *1 (-916 *5 *6)))) (-3191 (*1 *2 *3 *4) (-12 (-5 *4 (-915 *5)) (-4 *5 (-1132)) (-5 *2 (-114)) (-5 *1 (-916 *5 *3)) (-4 *3 (-1247)))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-915 *4)) (-4 *4 (-1132)) (-5 *2 (-1 (-114) *5)) (-5 *1 (-916 *4 *5)) (-4 *5 (-1247)))) (-1375 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-915 *5)) (-5 *3 (-663 (-1207))) (-5 *4 (-1 (-114) (-663 *6))) (-4 *5 (-1132)) (-4 *6 (-1247)) (-5 *1 (-916 *5 *6)))) (-1375 (*1 *2 *2 *3) (-12 (-5 *2 (-915 *4)) (-5 *3 (-663 (-1 (-114) *5))) (-4 *4 (-1132)) (-4 *5 (-1247)) (-5 *1 (-916 *4 *5)))) (-1375 (*1 *2 *2 *3) (-12 (-5 *2 (-915 *4)) (-5 *3 (-1 (-114) *5)) (-4 *4 (-1132)) (-4 *5 (-1247)) (-5 *1 (-916 *4 *5)))))
-(-10 -7 (-15 -1375 ((-915 |#1|) (-915 |#1|) (-1 (-114) |#2|))) (-15 -1375 ((-915 |#1|) (-915 |#1|) (-663 (-1 (-114) |#2|)))) (-15 -1375 ((-915 |#1|) (-915 |#1|) (-663 (-1207)) (-1 (-114) (-663 |#2|)))) (-15 -1940 ((-1 (-114) |#2|) (-915 |#1|))) (-15 -3191 ((-114) |#2| (-915 |#1|))) (-15 -3191 ((-114) (-663 |#2|) (-915 |#1|))) (-15 -2467 ((-915 |#1|) (-915 |#1|) |#2|)) (-15 -2764 ((-663 |#2|) (-915 |#1|))))
-((-3957 (((-915 |#2|) (-1 |#2| |#1|) (-915 |#1|)) 19 T ELT)))
-(((-917 |#1| |#2|) (-10 -7 (-15 -3957 ((-915 |#2|) (-1 |#2| |#1|) (-915 |#1|)))) (-1132) (-1132)) (T -917))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-915 *5)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *2 (-915 *6)) (-5 *1 (-917 *5 *6)))))
-(-10 -7 (-15 -3957 ((-915 |#2|) (-1 |#2| |#1|) (-915 |#1|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2571 (((-663 |#1|) $) 19 T ELT)) (-2285 (((-114) $) 49 T ELT)) (-2539 (((-3 (-694 |#1|) "failed") $) 56 T ELT)) (-3330 (((-694 |#1|) $) 54 T ELT)) (-3649 (($ $) 23 T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-4108 (((-793) $) 61 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3637 (((-694 |#1|) $) 21 T ELT)) (-1578 (((-887) $) 47 T ELT) (($ (-694 |#1|)) 26 T ELT) (((-841 |#1|) $) 36 T ELT) (($ |#1|) 25 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2011 (($) 9 T CONST)) (-4165 (((-663 (-694 |#1|)) $) 28 T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 12 T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 67 T ELT)))
-(((-918 |#1|) (-13 (-871) (-1069 (-694 |#1|)) (-10 -8 (-15 1 ($) -3081) (-15 -1578 ((-841 |#1|) $)) (-15 -1578 ($ |#1|)) (-15 -3637 ((-694 |#1|) $)) (-15 -4108 ((-793) $)) (-15 -4165 ((-663 (-694 |#1|)) $)) (-15 -3649 ($ $)) (-15 -2285 ((-114) $)) (-15 -2571 ((-663 |#1|) $)))) (-871)) (T -918))
-((-2011 (*1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-871)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-918 *3)) (-4 *3 (-871)))) (-1578 (*1 *1 *2) (-12 (-5 *1 (-918 *2)) (-4 *2 (-871)))) (-3637 (*1 *2 *1) (-12 (-5 *2 (-694 *3)) (-5 *1 (-918 *3)) (-4 *3 (-871)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-918 *3)) (-4 *3 (-871)))) (-4165 (*1 *2 *1) (-12 (-5 *2 (-663 (-694 *3))) (-5 *1 (-918 *3)) (-4 *3 (-871)))) (-3649 (*1 *1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-871)))) (-2285 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-918 *3)) (-4 *3 (-871)))) (-2571 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-918 *3)) (-4 *3 (-871)))))
-(-13 (-871) (-1069 (-694 |#1|)) (-10 -8 (-15 (-2011) ($) -3081) (-15 -1578 ((-841 |#1|) $)) (-15 -1578 ($ |#1|)) (-15 -3637 ((-694 |#1|) $)) (-15 -4108 ((-793) $)) (-15 -4165 ((-663 (-694 |#1|)) $)) (-15 -3649 ($ $)) (-15 -2285 ((-114) $)) (-15 -2571 ((-663 |#1|) $))))
-((-2003 ((|#1| |#1| |#1|) 19 T ELT)))
-(((-919 |#1| |#2|) (-10 -7 (-15 -2003 (|#1| |#1| |#1|))) (-1273 |#2|) (-1080)) (T -919))
-((-2003 (*1 *2 *2 *2) (-12 (-4 *3 (-1080)) (-5 *1 (-919 *2 *3)) (-4 *2 (-1273 *3)))))
-(-10 -7 (-15 -2003 (|#1| |#1| |#1|)))
-((-3305 ((|#2| $ |#3|) 10 T ELT)))
-(((-920 |#1| |#2| |#3|) (-10 -8 (-15 -3305 (|#2| |#1| |#3|))) (-921 |#2| |#3|) (-1247) (-1247)) (T -920))
-NIL
-(-10 -8 (-15 -3305 (|#2| |#1| |#3|)))
-((-2894 ((|#1| $ |#2|) 7 T ELT)) (-3305 ((|#1| $ |#2|) 6 T ELT)))
+((-2060 (((-114) (-663 |#2|) |#3|) 23 T ELT) (((-114) |#2| |#3|) 18 T ELT)) (-3289 (((-913 |#1| |#2|) |#2| |#3|) 45 (-12 (-1394 (|has| |#2| (-1069 (-1207)))) (-1394 (|has| |#2| (-1080)))) ELT) (((-663 (-305 (-975 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1080)) (-1394 (|has| |#2| (-1069 (-1207))))) ELT) (((-663 (-305 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1069 (-1207))) ELT) (((-910 |#1| |#2| (-663 |#2|)) (-663 |#2|) |#3|) 21 T ELT)))
+(((-912 |#1| |#2| |#3|) (-10 -7 (-15 -2060 ((-114) |#2| |#3|)) (-15 -2060 ((-114) (-663 |#2|) |#3|)) (-15 -3289 ((-910 |#1| |#2| (-663 |#2|)) (-663 |#2|) |#3|)) (IF (|has| |#2| (-1069 (-1207))) (-15 -3289 ((-663 (-305 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1080)) (-15 -3289 ((-663 (-305 (-975 |#2|))) |#2| |#3|)) (-15 -3289 ((-913 |#1| |#2|) |#2| |#3|))))) (-1132) (-911 |#1|) (-633 (-915 |#1|))) (T -912))
+((-3289 (*1 *2 *3 *4) (-12 (-4 *5 (-1132)) (-5 *2 (-913 *5 *3)) (-5 *1 (-912 *5 *3 *4)) (-1394 (-4 *3 (-1069 (-1207)))) (-1394 (-4 *3 (-1080))) (-4 *3 (-911 *5)) (-4 *4 (-633 (-915 *5))))) (-3289 (*1 *2 *3 *4) (-12 (-4 *5 (-1132)) (-5 *2 (-663 (-305 (-975 *3)))) (-5 *1 (-912 *5 *3 *4)) (-4 *3 (-1080)) (-1394 (-4 *3 (-1069 (-1207)))) (-4 *3 (-911 *5)) (-4 *4 (-633 (-915 *5))))) (-3289 (*1 *2 *3 *4) (-12 (-4 *5 (-1132)) (-5 *2 (-663 (-305 *3))) (-5 *1 (-912 *5 *3 *4)) (-4 *3 (-1069 (-1207))) (-4 *3 (-911 *5)) (-4 *4 (-633 (-915 *5))))) (-3289 (*1 *2 *3 *4) (-12 (-4 *5 (-1132)) (-4 *6 (-911 *5)) (-5 *2 (-910 *5 *6 (-663 *6))) (-5 *1 (-912 *5 *6 *4)) (-5 *3 (-663 *6)) (-4 *4 (-633 (-915 *5))))) (-2060 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6)) (-4 *6 (-911 *5)) (-4 *5 (-1132)) (-5 *2 (-114)) (-5 *1 (-912 *5 *6 *4)) (-4 *4 (-633 (-915 *5))))) (-2060 (*1 *2 *3 *4) (-12 (-4 *5 (-1132)) (-5 *2 (-114)) (-5 *1 (-912 *5 *3 *4)) (-4 *3 (-911 *5)) (-4 *4 (-633 (-915 *5))))))
+(-10 -7 (-15 -2060 ((-114) |#2| |#3|)) (-15 -2060 ((-114) (-663 |#2|) |#3|)) (-15 -3289 ((-910 |#1| |#2| (-663 |#2|)) (-663 |#2|) |#3|)) (IF (|has| |#2| (-1069 (-1207))) (-15 -3289 ((-663 (-305 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1080)) (-15 -3289 ((-663 (-305 (-975 |#2|))) |#2| |#3|)) (-15 -3289 ((-913 |#1| |#2|) |#2| |#3|)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3574 (($ $ $) 40 T ELT)) (-1894 (((-3 (-114) "failed") $ (-915 |#1|)) 37 T ELT)) (-4246 (($) 12 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-4110 (($ (-915 |#1|) |#2| $) 20 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1473 (((-3 |#2| "failed") (-915 |#1|) $) 51 T ELT)) (-3786 (((-114) $) 15 T ELT)) (-2717 (($) 13 T ELT)) (-4090 (((-663 (-2 (|:| -1438 (-1207)) (|:| -3067 |#2|))) $) 25 T ELT)) (-3924 (($ (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 |#2|)))) 23 T ELT)) (-3913 (((-887) $) 45 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3215 (($ (-915 |#1|) |#2| $ |#2|) 49 T ELT)) (-3818 (($ (-915 |#1|) |#2| $) 48 T ELT)) (-2340 (((-114) $ $) 42 T ELT)))
+(((-913 |#1| |#2|) (-13 (-1132) (-10 -8 (-15 -3786 ((-114) $)) (-15 -2717 ($)) (-15 -4246 ($)) (-15 -3574 ($ $ $)) (-15 -1473 ((-3 |#2| "failed") (-915 |#1|) $)) (-15 -3818 ($ (-915 |#1|) |#2| $)) (-15 -4110 ($ (-915 |#1|) |#2| $)) (-15 -3215 ($ (-915 |#1|) |#2| $ |#2|)) (-15 -4090 ((-663 (-2 (|:| -1438 (-1207)) (|:| -3067 |#2|))) $)) (-15 -3924 ($ (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 |#2|))))) (-15 -1894 ((-3 (-114) "failed") $ (-915 |#1|))))) (-1132) (-1132)) (T -913))
+((-3786 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-913 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))) (-2717 (*1 *1) (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))) (-4246 (*1 *1) (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))) (-3574 (*1 *1 *1 *1) (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))) (-1473 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-915 *4)) (-4 *4 (-1132)) (-4 *2 (-1132)) (-5 *1 (-913 *4 *2)))) (-3818 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-915 *4)) (-4 *4 (-1132)) (-5 *1 (-913 *4 *3)) (-4 *3 (-1132)))) (-4110 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-915 *4)) (-4 *4 (-1132)) (-5 *1 (-913 *4 *3)) (-4 *3 (-1132)))) (-3215 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-915 *4)) (-4 *4 (-1132)) (-5 *1 (-913 *4 *3)) (-4 *3 (-1132)))) (-4090 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 *4)))) (-5 *1 (-913 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))) (-3924 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 *4)))) (-4 *4 (-1132)) (-5 *1 (-913 *3 *4)) (-4 *3 (-1132)))) (-1894 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-915 *4)) (-4 *4 (-1132)) (-5 *2 (-114)) (-5 *1 (-913 *4 *5)) (-4 *5 (-1132)))))
+(-13 (-1132) (-10 -8 (-15 -3786 ((-114) $)) (-15 -2717 ($)) (-15 -4246 ($)) (-15 -3574 ($ $ $)) (-15 -1473 ((-3 |#2| "failed") (-915 |#1|) $)) (-15 -3818 ($ (-915 |#1|) |#2| $)) (-15 -4110 ($ (-915 |#1|) |#2| $)) (-15 -3215 ($ (-915 |#1|) |#2| $ |#2|)) (-15 -4090 ((-663 (-2 (|:| -1438 (-1207)) (|:| -3067 |#2|))) $)) (-15 -3924 ($ (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 |#2|))))) (-15 -1894 ((-3 (-114) "failed") $ (-915 |#1|)))))
+((-2260 (((-913 |#1| |#3|) (-1 |#3| |#2|) (-913 |#1| |#2|)) 22 T ELT)))
+(((-914 |#1| |#2| |#3|) (-10 -7 (-15 -2260 ((-913 |#1| |#3|) (-1 |#3| |#2|) (-913 |#1| |#2|)))) (-1132) (-1132) (-1132)) (T -914))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-913 *5 *6)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-913 *5 *7)) (-5 *1 (-914 *5 *6 *7)))))
+(-10 -7 (-15 -2260 ((-913 |#1| |#3|) (-1 |#3| |#2|) (-913 |#1| |#2|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2995 (($ $ (-663 (-51))) 74 T ELT)) (-4162 (((-663 $) $) 139 T ELT)) (-4018 (((-2 (|:| |var| (-663 (-1207))) (|:| |pred| (-51))) $) 30 T ELT)) (-2347 (((-114) $) 35 T ELT)) (-3761 (($ $ (-663 (-1207)) (-51)) 31 T ELT)) (-2082 (($ $ (-663 (-51))) 73 T ELT)) (-3929 (((-3 |#1| "failed") $) 71 T ELT) (((-3 (-1207) "failed") $) 164 T ELT)) (-3649 ((|#1| $) 68 T ELT) (((-1207) $) NIL T ELT)) (-1868 (($ $) 126 T ELT)) (-3511 (((-114) $) 55 T ELT)) (-3249 (((-663 (-51)) $) 50 T ELT)) (-2542 (($ (-1207) (-114) (-114) (-114)) 75 T ELT)) (-1399 (((-3 (-663 $) "failed") (-663 $)) 82 T ELT)) (-2325 (((-114) $) 58 T ELT)) (-3587 (((-114) $) 57 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1669 (((-3 (-663 $) "failed") $) 41 T ELT)) (-3768 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 48 T ELT)) (-2486 (((-3 (-2 (|:| |val| $) (|:| -2030 $)) "failed") $) 97 T ELT)) (-3849 (((-3 (-663 $) "failed") $) 40 T ELT)) (-3427 (((-3 (-663 $) "failed") $ (-115)) 124 T ELT) (((-3 (-2 (|:| -3494 (-115)) (|:| |arg| (-663 $))) "failed") $) 107 T ELT)) (-1783 (((-3 (-663 $) "failed") $) 42 T ELT)) (-3149 (((-3 (-2 (|:| |val| $) (|:| -2030 (-793))) "failed") $) 45 T ELT)) (-1611 (((-114) $) 34 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3828 (((-114) $) 28 T ELT)) (-1420 (((-114) $) 52 T ELT)) (-3928 (((-663 (-51)) $) 130 T ELT)) (-2478 (((-114) $) 56 T ELT)) (-1507 (($ (-115) (-663 $)) 104 T ELT)) (-3063 (((-793) $) 33 T ELT)) (-4107 (($ $) 72 T ELT)) (-2400 (($ (-663 $)) 69 T ELT)) (-2889 (((-114) $) 32 T ELT)) (-3913 (((-887) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1207)) 76 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2047 (($ $ (-51)) 129 T ELT)) (-1446 (($) 103 T CONST)) (-1456 (($) 83 T CONST)) (-2340 (((-114) $ $) 93 T ELT)) (-2453 (($ $ $) 117 T ELT)) (-2429 (($ $ $) 121 T ELT)) (** (($ $ (-793)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT)))
+(((-915 |#1|) (-13 (-1132) (-1069 |#1|) (-1069 (-1207)) (-10 -8 (-15 0 ($) -2650) (-15 1 ($) -2650) (-15 -3849 ((-3 (-663 $) "failed") $)) (-15 -1669 ((-3 (-663 $) "failed") $)) (-15 -3427 ((-3 (-663 $) "failed") $ (-115))) (-15 -3427 ((-3 (-2 (|:| -3494 (-115)) (|:| |arg| (-663 $))) "failed") $)) (-15 -3149 ((-3 (-2 (|:| |val| $) (|:| -2030 (-793))) "failed") $)) (-15 -3768 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1783 ((-3 (-663 $) "failed") $)) (-15 -2486 ((-3 (-2 (|:| |val| $) (|:| -2030 $)) "failed") $)) (-15 -1507 ($ (-115) (-663 $))) (-15 -2429 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-793))) (-15 ** ($ $ $)) (-15 -2453 ($ $ $)) (-15 -3063 ((-793) $)) (-15 -2400 ($ (-663 $))) (-15 -4107 ($ $)) (-15 -1611 ((-114) $)) (-15 -3511 ((-114) $)) (-15 -2347 ((-114) $)) (-15 -2889 ((-114) $)) (-15 -2478 ((-114) $)) (-15 -3587 ((-114) $)) (-15 -2325 ((-114) $)) (-15 -1420 ((-114) $)) (-15 -3249 ((-663 (-51)) $)) (-15 -2082 ($ $ (-663 (-51)))) (-15 -2995 ($ $ (-663 (-51)))) (-15 -2542 ($ (-1207) (-114) (-114) (-114))) (-15 -3761 ($ $ (-663 (-1207)) (-51))) (-15 -4018 ((-2 (|:| |var| (-663 (-1207))) (|:| |pred| (-51))) $)) (-15 -3828 ((-114) $)) (-15 -1868 ($ $)) (-15 -2047 ($ $ (-51))) (-15 -3928 ((-663 (-51)) $)) (-15 -4162 ((-663 $) $)) (-15 -1399 ((-3 (-663 $) "failed") (-663 $))))) (-1132)) (T -915))
+((-1446 (*1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132)))) (-1456 (*1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132)))) (-3849 (*1 *2 *1) (|partial| -12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-1669 (*1 *2 *1) (|partial| -12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-3427 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-663 (-915 *4))) (-5 *1 (-915 *4)) (-4 *4 (-1132)))) (-3427 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -3494 (-115)) (|:| |arg| (-663 (-915 *3))))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-3149 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-915 *3)) (|:| -2030 (-793)))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-3768 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-915 *3)) (|:| |den| (-915 *3)))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-1783 (*1 *2 *1) (|partial| -12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-2486 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-915 *3)) (|:| -2030 (-915 *3)))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-1507 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-663 (-915 *4))) (-5 *1 (-915 *4)) (-4 *4 (-1132)))) (-2429 (*1 *1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132)))) (-2453 (*1 *1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132)))) (-3063 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-2400 (*1 *1 *2) (-12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-4107 (*1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-2347 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-2478 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-2325 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-1420 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-663 (-51))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-2082 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-51))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-2995 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-51))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-2542 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-114)) (-5 *1 (-915 *4)) (-4 *4 (-1132)))) (-3761 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-51)) (-5 *1 (-915 *4)) (-4 *4 (-1132)))) (-4018 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-663 (-1207))) (|:| |pred| (-51)))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-3828 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-1868 (*1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132)))) (-2047 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-663 (-51))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-4162 (*1 *2 *1) (-12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))) (-1399 (*1 *2 *2) (|partial| -12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
+(-13 (-1132) (-1069 |#1|) (-1069 (-1207)) (-10 -8 (-15 (-1446) ($) -2650) (-15 (-1456) ($) -2650) (-15 -3849 ((-3 (-663 $) "failed") $)) (-15 -1669 ((-3 (-663 $) "failed") $)) (-15 -3427 ((-3 (-663 $) "failed") $ (-115))) (-15 -3427 ((-3 (-2 (|:| -3494 (-115)) (|:| |arg| (-663 $))) "failed") $)) (-15 -3149 ((-3 (-2 (|:| |val| $) (|:| -2030 (-793))) "failed") $)) (-15 -3768 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1783 ((-3 (-663 $) "failed") $)) (-15 -2486 ((-3 (-2 (|:| |val| $) (|:| -2030 $)) "failed") $)) (-15 -1507 ($ (-115) (-663 $))) (-15 -2429 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-793))) (-15 ** ($ $ $)) (-15 -2453 ($ $ $)) (-15 -3063 ((-793) $)) (-15 -2400 ($ (-663 $))) (-15 -4107 ($ $)) (-15 -1611 ((-114) $)) (-15 -3511 ((-114) $)) (-15 -2347 ((-114) $)) (-15 -2889 ((-114) $)) (-15 -2478 ((-114) $)) (-15 -3587 ((-114) $)) (-15 -2325 ((-114) $)) (-15 -1420 ((-114) $)) (-15 -3249 ((-663 (-51)) $)) (-15 -2082 ($ $ (-663 (-51)))) (-15 -2995 ($ $ (-663 (-51)))) (-15 -2542 ($ (-1207) (-114) (-114) (-114))) (-15 -3761 ($ $ (-663 (-1207)) (-51))) (-15 -4018 ((-2 (|:| |var| (-663 (-1207))) (|:| |pred| (-51))) $)) (-15 -3828 ((-114) $)) (-15 -1868 ($ $)) (-15 -2047 ($ $ (-51))) (-15 -3928 ((-663 (-51)) $)) (-15 -4162 ((-663 $) $)) (-15 -1399 ((-3 (-663 $) "failed") (-663 $)))))
+((-2141 (((-915 |#1|) (-915 |#1|) (-663 (-1207)) (-1 (-114) (-663 |#2|))) 32 T ELT) (((-915 |#1|) (-915 |#1|) (-663 (-1 (-114) |#2|))) 46 T ELT) (((-915 |#1|) (-915 |#1|) (-1 (-114) |#2|)) 35 T ELT)) (-1894 (((-114) (-663 |#2|) (-915 |#1|)) 42 T ELT) (((-114) |#2| (-915 |#1|)) 36 T ELT)) (-1442 (((-1 (-114) |#2|) (-915 |#1|)) 16 T ELT)) (-1857 (((-663 |#2|) (-915 |#1|)) 24 T ELT)) (-2047 (((-915 |#1|) (-915 |#1|) |#2|) 20 T ELT)))
+(((-916 |#1| |#2|) (-10 -7 (-15 -2141 ((-915 |#1|) (-915 |#1|) (-1 (-114) |#2|))) (-15 -2141 ((-915 |#1|) (-915 |#1|) (-663 (-1 (-114) |#2|)))) (-15 -2141 ((-915 |#1|) (-915 |#1|) (-663 (-1207)) (-1 (-114) (-663 |#2|)))) (-15 -1442 ((-1 (-114) |#2|) (-915 |#1|))) (-15 -1894 ((-114) |#2| (-915 |#1|))) (-15 -1894 ((-114) (-663 |#2|) (-915 |#1|))) (-15 -2047 ((-915 |#1|) (-915 |#1|) |#2|)) (-15 -1857 ((-663 |#2|) (-915 |#1|)))) (-1132) (-1247)) (T -916))
+((-1857 (*1 *2 *3) (-12 (-5 *3 (-915 *4)) (-4 *4 (-1132)) (-5 *2 (-663 *5)) (-5 *1 (-916 *4 *5)) (-4 *5 (-1247)))) (-2047 (*1 *2 *2 *3) (-12 (-5 *2 (-915 *4)) (-4 *4 (-1132)) (-5 *1 (-916 *4 *3)) (-4 *3 (-1247)))) (-1894 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6)) (-5 *4 (-915 *5)) (-4 *5 (-1132)) (-4 *6 (-1247)) (-5 *2 (-114)) (-5 *1 (-916 *5 *6)))) (-1894 (*1 *2 *3 *4) (-12 (-5 *4 (-915 *5)) (-4 *5 (-1132)) (-5 *2 (-114)) (-5 *1 (-916 *5 *3)) (-4 *3 (-1247)))) (-1442 (*1 *2 *3) (-12 (-5 *3 (-915 *4)) (-4 *4 (-1132)) (-5 *2 (-1 (-114) *5)) (-5 *1 (-916 *4 *5)) (-4 *5 (-1247)))) (-2141 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-915 *5)) (-5 *3 (-663 (-1207))) (-5 *4 (-1 (-114) (-663 *6))) (-4 *5 (-1132)) (-4 *6 (-1247)) (-5 *1 (-916 *5 *6)))) (-2141 (*1 *2 *2 *3) (-12 (-5 *2 (-915 *4)) (-5 *3 (-663 (-1 (-114) *5))) (-4 *4 (-1132)) (-4 *5 (-1247)) (-5 *1 (-916 *4 *5)))) (-2141 (*1 *2 *2 *3) (-12 (-5 *2 (-915 *4)) (-5 *3 (-1 (-114) *5)) (-4 *4 (-1132)) (-4 *5 (-1247)) (-5 *1 (-916 *4 *5)))))
+(-10 -7 (-15 -2141 ((-915 |#1|) (-915 |#1|) (-1 (-114) |#2|))) (-15 -2141 ((-915 |#1|) (-915 |#1|) (-663 (-1 (-114) |#2|)))) (-15 -2141 ((-915 |#1|) (-915 |#1|) (-663 (-1207)) (-1 (-114) (-663 |#2|)))) (-15 -1442 ((-1 (-114) |#2|) (-915 |#1|))) (-15 -1894 ((-114) |#2| (-915 |#1|))) (-15 -1894 ((-114) (-663 |#2|) (-915 |#1|))) (-15 -2047 ((-915 |#1|) (-915 |#1|) |#2|)) (-15 -1857 ((-663 |#2|) (-915 |#1|))))
+((-2260 (((-915 |#2|) (-1 |#2| |#1|) (-915 |#1|)) 19 T ELT)))
+(((-917 |#1| |#2|) (-10 -7 (-15 -2260 ((-915 |#2|) (-1 |#2| |#1|) (-915 |#1|)))) (-1132) (-1132)) (T -917))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-915 *5)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *2 (-915 *6)) (-5 *1 (-917 *5 *6)))))
+(-10 -7 (-15 -2260 ((-915 |#2|) (-1 |#2| |#1|) (-915 |#1|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-4356 (((-663 |#1|) $) 19 T ELT)) (-2736 (((-114) $) 49 T ELT)) (-3929 (((-3 (-694 |#1|) "failed") $) 56 T ELT)) (-3649 (((-694 |#1|) $) 54 T ELT)) (-4345 (($ $) 23 T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-2946 (((-793) $) 61 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4334 (((-694 |#1|) $) 21 T ELT)) (-3913 (((-887) $) 47 T ELT) (($ (-694 |#1|)) 26 T ELT) (((-841 |#1|) $) 36 T ELT) (($ |#1|) 25 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1456 (($) 9 T CONST)) (-4118 (((-663 (-694 |#1|)) $) 28 T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 12 T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 67 T ELT)))
+(((-918 |#1|) (-13 (-871) (-1069 (-694 |#1|)) (-10 -8 (-15 1 ($) -2650) (-15 -3913 ((-841 |#1|) $)) (-15 -3913 ($ |#1|)) (-15 -4334 ((-694 |#1|) $)) (-15 -2946 ((-793) $)) (-15 -4118 ((-663 (-694 |#1|)) $)) (-15 -4345 ($ $)) (-15 -2736 ((-114) $)) (-15 -4356 ((-663 |#1|) $)))) (-871)) (T -918))
+((-1456 (*1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-871)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-918 *3)) (-4 *3 (-871)))) (-3913 (*1 *1 *2) (-12 (-5 *1 (-918 *2)) (-4 *2 (-871)))) (-4334 (*1 *2 *1) (-12 (-5 *2 (-694 *3)) (-5 *1 (-918 *3)) (-4 *3 (-871)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-918 *3)) (-4 *3 (-871)))) (-4118 (*1 *2 *1) (-12 (-5 *2 (-663 (-694 *3))) (-5 *1 (-918 *3)) (-4 *3 (-871)))) (-4345 (*1 *1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-871)))) (-2736 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-918 *3)) (-4 *3 (-871)))) (-4356 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-918 *3)) (-4 *3 (-871)))))
+(-13 (-871) (-1069 (-694 |#1|)) (-10 -8 (-15 (-1456) ($) -2650) (-15 -3913 ((-841 |#1|) $)) (-15 -3913 ($ |#1|)) (-15 -4334 ((-694 |#1|) $)) (-15 -2946 ((-793) $)) (-15 -4118 ((-663 (-694 |#1|)) $)) (-15 -4345 ($ $)) (-15 -2736 ((-114) $)) (-15 -4356 ((-663 |#1|) $))))
+((-3013 ((|#1| |#1| |#1|) 19 T ELT)))
+(((-919 |#1| |#2|) (-10 -7 (-15 -3013 (|#1| |#1| |#1|))) (-1273 |#2|) (-1080)) (T -919))
+((-3013 (*1 *2 *2 *2) (-12 (-4 *3 (-1080)) (-5 *1 (-919 *2 *3)) (-4 *2 (-1273 *3)))))
+(-10 -7 (-15 -3013 (|#1| |#1| |#1|)))
+((-2111 ((|#2| $ |#3|) 10 T ELT)))
+(((-920 |#1| |#2| |#3|) (-10 -8 (-15 -2111 (|#2| |#1| |#3|))) (-921 |#2| |#3|) (-1247) (-1247)) (T -920))
+NIL
+(-10 -8 (-15 -2111 (|#2| |#1| |#3|)))
+((-3161 ((|#1| $ |#2|) 7 T ELT)) (-2111 ((|#1| $ |#2|) 6 T ELT)))
(((-921 |#1| |#2|) (-142) (-1247) (-1247)) (T -921))
-((-2894 (*1 *2 *1 *3) (-12 (-4 *1 (-921 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1247)))) (-3305 (*1 *2 *1 *3) (-12 (-4 *1 (-921 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1247)))))
-(-13 (-1247) (-10 -8 (-15 -2894 (|t#1| $ |t#2|)) (-15 -3305 (|t#1| $ |t#2|))))
+((-3161 (*1 *2 *1 *3) (-12 (-4 *1 (-921 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1247)))) (-2111 (*1 *2 *1 *3) (-12 (-4 *1 (-921 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1247)))))
+(-13 (-1247) (-10 -8 (-15 -3161 (|t#1| $ |t#2|)) (-15 -2111 (|t#1| $ |t#2|))))
(((-1247) . T))
-((-1538 (((-114) $ $) 7 T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 15 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2415 (((-1066) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 14 T ELT)) (-2473 (((-114) $ $) 8 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 15 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1523 (((-1066) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 14 T ELT)) (-2340 (((-114) $ $) 8 T ELT)))
(((-922) (-142)) (T -922))
-((-3613 (*1 *2 *3 *4) (-12 (-4 *1 (-922)) (-5 *3 (-1094)) (-5 *4 (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) (-5 *2 (-2 (|:| -3613 (-391)) (|:| |explanations| (-1189)))))) (-2415 (*1 *2 *3) (-12 (-4 *1 (-922)) (-5 *3 (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) (-5 *2 (-1066)))))
-(-13 (-1132) (-10 -7 (-15 -3613 ((-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))))) (-15 -2415 ((-1066) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))))))
+((-3741 (*1 *2 *3 *4) (-12 (-4 *1 (-922)) (-5 *3 (-1094)) (-5 *4 (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) (-5 *2 (-2 (|:| -3741 (-391)) (|:| |explanations| (-1189)))))) (-1523 (*1 *2 *3) (-12 (-4 *1 (-922)) (-5 *3 (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) (-5 *2 (-1066)))))
+(-13 (-1132) (-10 -7 (-15 -3741 ((-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))) (-1094) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))))) (-15 -1523 ((-1066) (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))))))
(((-102) . T) ((-632 (-887)) . T) ((-1132) . T) ((-1247) . T))
-((-2750 ((|#1| |#1| (-793)) 27 T ELT)) (-3668 (((-3 |#1| "failed") |#1| |#1|) 24 T ELT)) (-3448 (((-3 (-2 (|:| -4198 |#1|) (|:| -4210 |#1|)) "failed") |#1| (-793) (-793)) 30 T ELT) (((-663 |#1|) |#1|) 38 T ELT)))
-(((-923 |#1| |#2|) (-10 -7 (-15 -3448 ((-663 |#1|) |#1|)) (-15 -3448 ((-3 (-2 (|:| -4198 |#1|) (|:| -4210 |#1|)) "failed") |#1| (-793) (-793))) (-15 -3668 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2750 (|#1| |#1| (-793)))) (-1273 |#2|) (-376)) (T -923))
-((-2750 (*1 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-376)) (-5 *1 (-923 *2 *4)) (-4 *2 (-1273 *4)))) (-3668 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-376)) (-5 *1 (-923 *2 *3)) (-4 *2 (-1273 *3)))) (-3448 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-793)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -4198 *3) (|:| -4210 *3))) (-5 *1 (-923 *3 *5)) (-4 *3 (-1273 *5)))) (-3448 (*1 *2 *3) (-12 (-4 *4 (-376)) (-5 *2 (-663 *3)) (-5 *1 (-923 *3 *4)) (-4 *3 (-1273 *4)))))
-(-10 -7 (-15 -3448 ((-663 |#1|) |#1|)) (-15 -3448 ((-3 (-2 (|:| -4198 |#1|) (|:| -4210 |#1|)) "failed") |#1| (-793) (-793))) (-15 -3668 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2750 (|#1| |#1| (-793))))
-((-1433 (((-1066) (-391) (-391) (-391) (-391) (-793) (-793) (-663 (-326 (-391))) (-663 (-663 (-326 (-391)))) (-1189)) 104 T ELT) (((-1066) (-391) (-391) (-391) (-391) (-793) (-793) (-663 (-326 (-391))) (-663 (-663 (-326 (-391)))) (-1189) (-229)) 100 T ELT) (((-1066) (-925) (-1094)) 92 T ELT) (((-1066) (-925)) 93 T ELT)) (-3613 (((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189)))) (-925) (-1094)) 62 T ELT) (((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189)))) (-925)) 64 T ELT)))
-(((-924) (-10 -7 (-15 -1433 ((-1066) (-925))) (-15 -1433 ((-1066) (-925) (-1094))) (-15 -1433 ((-1066) (-391) (-391) (-391) (-391) (-793) (-793) (-663 (-326 (-391))) (-663 (-663 (-326 (-391)))) (-1189) (-229))) (-15 -1433 ((-1066) (-391) (-391) (-391) (-391) (-793) (-793) (-663 (-326 (-391))) (-663 (-663 (-326 (-391)))) (-1189))) (-15 -3613 ((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189)))) (-925))) (-15 -3613 ((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189)))) (-925) (-1094))))) (T -924))
-((-3613 (*1 *2 *3 *4) (-12 (-5 *3 (-925)) (-5 *4 (-1094)) (-5 *2 (-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189))))) (-5 *1 (-924)))) (-3613 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189))))) (-5 *1 (-924)))) (-1433 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-793)) (-5 *6 (-663 (-663 (-326 *3)))) (-5 *7 (-1189)) (-5 *5 (-663 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1066)) (-5 *1 (-924)))) (-1433 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-793)) (-5 *6 (-663 (-663 (-326 *3)))) (-5 *7 (-1189)) (-5 *8 (-229)) (-5 *5 (-663 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1066)) (-5 *1 (-924)))) (-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-925)) (-5 *4 (-1094)) (-5 *2 (-1066)) (-5 *1 (-924)))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1066)) (-5 *1 (-924)))))
-(-10 -7 (-15 -1433 ((-1066) (-925))) (-15 -1433 ((-1066) (-925) (-1094))) (-15 -1433 ((-1066) (-391) (-391) (-391) (-391) (-793) (-793) (-663 (-326 (-391))) (-663 (-663 (-326 (-391)))) (-1189) (-229))) (-15 -1433 ((-1066) (-391) (-391) (-391) (-391) (-793) (-793) (-663 (-326 (-391))) (-663 (-663 (-326 (-391)))) (-1189))) (-15 -3613 ((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189)))) (-925))) (-15 -3613 ((-2 (|:| -3613 (-391)) (|:| -3614 (-1189)) (|:| |explanations| (-663 (-1189)))) (-925) (-1094))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3330 (((-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))) $) 19 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 21 T ELT) (($ (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 18 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-925) (-13 (-1132) (-10 -8 (-15 -1578 ($ (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))))) (-15 -3330 ((-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))) $))))) (T -925))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) (-5 *1 (-925)))) (-3330 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) (-5 *1 (-925)))))
-(-13 (-1132) (-10 -8 (-15 -1578 ($ (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))))) (-15 -3330 ((-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))) $))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-2894 (($ $ (-663 |#2|) (-663 (-793))) 39 T ELT) (($ $ |#2| (-793)) 38 T ELT) (($ $ (-663 |#2|)) 37 T ELT) (($ $ |#2|) 35 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-3305 (($ $ (-663 |#2|) (-663 (-793))) 42 T ELT) (($ $ |#2| (-793)) 41 T ELT) (($ $ (-663 |#2|)) 40 T ELT) (($ $ |#2|) 36 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT)))
+((-1708 ((|#1| |#1| (-793)) 27 T ELT)) (-3003 (((-3 |#1| "failed") |#1| |#1|) 24 T ELT)) (-2595 (((-3 (-2 (|:| -4335 |#1|) (|:| -4346 |#1|)) "failed") |#1| (-793) (-793)) 30 T ELT) (((-663 |#1|) |#1|) 38 T ELT)))
+(((-923 |#1| |#2|) (-10 -7 (-15 -2595 ((-663 |#1|) |#1|)) (-15 -2595 ((-3 (-2 (|:| -4335 |#1|) (|:| -4346 |#1|)) "failed") |#1| (-793) (-793))) (-15 -3003 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1708 (|#1| |#1| (-793)))) (-1273 |#2|) (-376)) (T -923))
+((-1708 (*1 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-376)) (-5 *1 (-923 *2 *4)) (-4 *2 (-1273 *4)))) (-3003 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-376)) (-5 *1 (-923 *2 *3)) (-4 *2 (-1273 *3)))) (-2595 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-793)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -4335 *3) (|:| -4346 *3))) (-5 *1 (-923 *3 *5)) (-4 *3 (-1273 *5)))) (-2595 (*1 *2 *3) (-12 (-4 *4 (-376)) (-5 *2 (-663 *3)) (-5 *1 (-923 *3 *4)) (-4 *3 (-1273 *4)))))
+(-10 -7 (-15 -2595 ((-663 |#1|) |#1|)) (-15 -2595 ((-3 (-2 (|:| -4335 |#1|) (|:| -4346 |#1|)) "failed") |#1| (-793) (-793))) (-15 -3003 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1708 (|#1| |#1| (-793))))
+((-1652 (((-1066) (-391) (-391) (-391) (-391) (-793) (-793) (-663 (-326 (-391))) (-663 (-663 (-326 (-391)))) (-1189)) 104 T ELT) (((-1066) (-391) (-391) (-391) (-391) (-793) (-793) (-663 (-326 (-391))) (-663 (-663 (-326 (-391)))) (-1189) (-229)) 100 T ELT) (((-1066) (-925) (-1094)) 92 T ELT) (((-1066) (-925)) 93 T ELT)) (-3741 (((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189)))) (-925) (-1094)) 62 T ELT) (((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189)))) (-925)) 64 T ELT)))
+(((-924) (-10 -7 (-15 -1652 ((-1066) (-925))) (-15 -1652 ((-1066) (-925) (-1094))) (-15 -1652 ((-1066) (-391) (-391) (-391) (-391) (-793) (-793) (-663 (-326 (-391))) (-663 (-663 (-326 (-391)))) (-1189) (-229))) (-15 -1652 ((-1066) (-391) (-391) (-391) (-391) (-793) (-793) (-663 (-326 (-391))) (-663 (-663 (-326 (-391)))) (-1189))) (-15 -3741 ((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189)))) (-925))) (-15 -3741 ((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189)))) (-925) (-1094))))) (T -924))
+((-3741 (*1 *2 *3 *4) (-12 (-5 *3 (-925)) (-5 *4 (-1094)) (-5 *2 (-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189))))) (-5 *1 (-924)))) (-3741 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189))))) (-5 *1 (-924)))) (-1652 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-793)) (-5 *6 (-663 (-663 (-326 *3)))) (-5 *7 (-1189)) (-5 *5 (-663 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1066)) (-5 *1 (-924)))) (-1652 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-793)) (-5 *6 (-663 (-663 (-326 *3)))) (-5 *7 (-1189)) (-5 *8 (-229)) (-5 *5 (-663 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1066)) (-5 *1 (-924)))) (-1652 (*1 *2 *3 *4) (-12 (-5 *3 (-925)) (-5 *4 (-1094)) (-5 *2 (-1066)) (-5 *1 (-924)))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1066)) (-5 *1 (-924)))))
+(-10 -7 (-15 -1652 ((-1066) (-925))) (-15 -1652 ((-1066) (-925) (-1094))) (-15 -1652 ((-1066) (-391) (-391) (-391) (-391) (-793) (-793) (-663 (-326 (-391))) (-663 (-663 (-326 (-391)))) (-1189) (-229))) (-15 -1652 ((-1066) (-391) (-391) (-391) (-391) (-793) (-793) (-663 (-326 (-391))) (-663 (-663 (-326 (-391)))) (-1189))) (-15 -3741 ((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189)))) (-925))) (-15 -3741 ((-2 (|:| -3741 (-391)) (|:| -4389 (-1189)) (|:| |explanations| (-663 (-1189)))) (-925) (-1094))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3649 (((-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))) $) 19 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 21 T ELT) (($ (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) 18 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-925) (-13 (-1132) (-10 -8 (-15 -3913 ($ (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))))) (-15 -3649 ((-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))) $))))) (T -925))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) (-5 *1 (-925)))) (-3649 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229)))) (-5 *1 (-925)))))
+(-13 (-1132) (-10 -8 (-15 -3913 ($ (-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))))) (-15 -3649 ((-2 (|:| |pde| (-663 (-326 (-229)))) (|:| |constraints| (-663 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-793)) (|:| |boundaryType| (-560)) (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229)))))) (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189)) (|:| |tol| (-229))) $))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3161 (($ $ (-663 |#2|) (-663 (-793))) 39 T ELT) (($ $ |#2| (-793)) 38 T ELT) (($ $ (-663 |#2|)) 37 T ELT) (($ $ |#2|) 35 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-2111 (($ $ (-663 |#2|) (-663 (-793))) 42 T ELT) (($ $ |#2| (-793)) 41 T ELT) (($ $ (-663 |#2|)) 40 T ELT) (($ $ |#2|) 36 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT)))
(((-926 |#1| |#2|) (-142) (-1080) (-1132)) (T -926))
NIL
(-13 (-111 |t#1| |t#1|) (-929 |t#2|) (-10 -7 (IF (|has| |t#1| (-175)) (-6 (-739 |t#1|)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) |has| |#1| (-175)) ((-739 |#1|) |has| |#1| (-175)) ((-921 $ |#2|) . T) ((-929 |#2|) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-2894 (($ $ (-663 |#1|) (-663 (-793))) 44 T ELT) (($ $ |#1| (-793)) 43 T ELT) (($ $ (-663 |#1|)) 42 T ELT) (($ $ |#1|) 40 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($ $ (-663 |#1|) (-663 (-793))) 47 T ELT) (($ $ |#1| (-793)) 46 T ELT) (($ $ (-663 |#1|)) 45 T ELT) (($ $ |#1|) 41 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3161 (($ $ (-663 |#1|) (-663 (-793))) 44 T ELT) (($ $ |#1| (-793)) 43 T ELT) (($ $ (-663 |#1|)) 42 T ELT) (($ $ |#1|) 40 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($ $ (-663 |#1|) (-663 (-793))) 47 T ELT) (($ $ |#1| (-793)) 46 T ELT) (($ $ (-663 |#1|)) 45 T ELT) (($ $ |#1|) 41 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
(((-927 |#1|) (-142) (-1132)) (T -927))
NIL
(-13 (-1080) (-929 |t#1|))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-560)) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-921 $ |#1|) . T) ((-929 |#1|) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-2894 (($ $ |#2|) NIL T ELT) (($ $ (-663 |#2|)) 10 T ELT) (($ $ |#2| (-793)) 12 T ELT) (($ $ (-663 |#2|) (-663 (-793))) 15 T ELT)) (-3305 (($ $ |#2|) 16 T ELT) (($ $ (-663 |#2|)) 18 T ELT) (($ $ |#2| (-793)) 19 T ELT) (($ $ (-663 |#2|) (-663 (-793))) 21 T ELT)))
-(((-928 |#1| |#2|) (-10 -8 (-15 -3305 (|#1| |#1| (-663 |#2|) (-663 (-793)))) (-15 -3305 (|#1| |#1| |#2| (-793))) (-15 -3305 (|#1| |#1| (-663 |#2|))) (-15 -2894 (|#1| |#1| (-663 |#2|) (-663 (-793)))) (-15 -2894 (|#1| |#1| |#2| (-793))) (-15 -2894 (|#1| |#1| (-663 |#2|))) (-15 -3305 (|#1| |#1| |#2|)) (-15 -2894 (|#1| |#1| |#2|))) (-929 |#2|) (-1132)) (T -928))
+((-3161 (($ $ |#2|) NIL T ELT) (($ $ (-663 |#2|)) 10 T ELT) (($ $ |#2| (-793)) 12 T ELT) (($ $ (-663 |#2|) (-663 (-793))) 15 T ELT)) (-2111 (($ $ |#2|) 16 T ELT) (($ $ (-663 |#2|)) 18 T ELT) (($ $ |#2| (-793)) 19 T ELT) (($ $ (-663 |#2|) (-663 (-793))) 21 T ELT)))
+(((-928 |#1| |#2|) (-10 -8 (-15 -2111 (|#1| |#1| (-663 |#2|) (-663 (-793)))) (-15 -2111 (|#1| |#1| |#2| (-793))) (-15 -2111 (|#1| |#1| (-663 |#2|))) (-15 -3161 (|#1| |#1| (-663 |#2|) (-663 (-793)))) (-15 -3161 (|#1| |#1| |#2| (-793))) (-15 -3161 (|#1| |#1| (-663 |#2|))) (-15 -2111 (|#1| |#1| |#2|)) (-15 -3161 (|#1| |#1| |#2|))) (-929 |#2|) (-1132)) (T -928))
NIL
-(-10 -8 (-15 -3305 (|#1| |#1| (-663 |#2|) (-663 (-793)))) (-15 -3305 (|#1| |#1| |#2| (-793))) (-15 -3305 (|#1| |#1| (-663 |#2|))) (-15 -2894 (|#1| |#1| (-663 |#2|) (-663 (-793)))) (-15 -2894 (|#1| |#1| |#2| (-793))) (-15 -2894 (|#1| |#1| (-663 |#2|))) (-15 -3305 (|#1| |#1| |#2|)) (-15 -2894 (|#1| |#1| |#2|)))
-((-2894 (($ $ |#1|) 7 T ELT) (($ $ (-663 |#1|)) 15 T ELT) (($ $ |#1| (-793)) 14 T ELT) (($ $ (-663 |#1|) (-663 (-793))) 13 T ELT)) (-3305 (($ $ |#1|) 6 T ELT) (($ $ (-663 |#1|)) 12 T ELT) (($ $ |#1| (-793)) 11 T ELT) (($ $ (-663 |#1|) (-663 (-793))) 10 T ELT)))
+(-10 -8 (-15 -2111 (|#1| |#1| (-663 |#2|) (-663 (-793)))) (-15 -2111 (|#1| |#1| |#2| (-793))) (-15 -2111 (|#1| |#1| (-663 |#2|))) (-15 -3161 (|#1| |#1| (-663 |#2|) (-663 (-793)))) (-15 -3161 (|#1| |#1| |#2| (-793))) (-15 -3161 (|#1| |#1| (-663 |#2|))) (-15 -2111 (|#1| |#1| |#2|)) (-15 -3161 (|#1| |#1| |#2|)))
+((-3161 (($ $ |#1|) 7 T ELT) (($ $ (-663 |#1|)) 15 T ELT) (($ $ |#1| (-793)) 14 T ELT) (($ $ (-663 |#1|) (-663 (-793))) 13 T ELT)) (-2111 (($ $ |#1|) 6 T ELT) (($ $ (-663 |#1|)) 12 T ELT) (($ $ |#1| (-793)) 11 T ELT) (($ $ (-663 |#1|) (-663 (-793))) 10 T ELT)))
(((-929 |#1|) (-142) (-1132)) (T -929))
-((-2894 (*1 *1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *1 (-929 *3)) (-4 *3 (-1132)))) (-2894 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-929 *2)) (-4 *2 (-1132)))) (-2894 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 (-793))) (-4 *1 (-929 *4)) (-4 *4 (-1132)))) (-3305 (*1 *1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *1 (-929 *3)) (-4 *3 (-1132)))) (-3305 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-929 *2)) (-4 *2 (-1132)))) (-3305 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 (-793))) (-4 *1 (-929 *4)) (-4 *4 (-1132)))))
-(-13 (-921 $ |t#1|) (-10 -8 (-15 -2894 ($ $ (-663 |t#1|))) (-15 -2894 ($ $ |t#1| (-793))) (-15 -2894 ($ $ (-663 |t#1|) (-663 (-793)))) (-15 -3305 ($ $ (-663 |t#1|))) (-15 -3305 ($ $ |t#1| (-793))) (-15 -3305 ($ $ (-663 |t#1|) (-663 (-793))))))
+((-3161 (*1 *1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *1 (-929 *3)) (-4 *3 (-1132)))) (-3161 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-929 *2)) (-4 *2 (-1132)))) (-3161 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 (-793))) (-4 *1 (-929 *4)) (-4 *4 (-1132)))) (-2111 (*1 *1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *1 (-929 *3)) (-4 *3 (-1132)))) (-2111 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-929 *2)) (-4 *2 (-1132)))) (-2111 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 (-793))) (-4 *1 (-929 *4)) (-4 *4 (-1132)))))
+(-13 (-921 $ |t#1|) (-10 -8 (-15 -3161 ($ $ (-663 |t#1|))) (-15 -3161 ($ $ |t#1| (-793))) (-15 -3161 ($ $ (-663 |t#1|) (-663 (-793)))) (-15 -2111 ($ $ (-663 |t#1|))) (-15 -2111 ($ $ |t#1| (-793))) (-15 -2111 ($ $ (-663 |t#1|) (-663 (-793))))))
(((-921 $ |#1|) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3853 ((|#1| $) 26 T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-2869 ((|#1| $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2023 (($ $ $) NIL (|has| $ (-6 -4509)) ELT)) (-2361 (($ $ $) NIL (|has| $ (-6 -4509)) ELT)) (-1773 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4509)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4509)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4509)) ELT)) (-2083 (($ $ (-663 $)) NIL (|has| $ (-6 -4509)) ELT)) (-2238 (($) NIL T CONST)) (-4210 (($ $) 25 T ELT)) (-4462 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-2181 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3092 (((-663 $) $) NIL T ELT)) (-3398 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-4198 (($ $) 23 T ELT)) (-3596 (((-663 |#1|) $) NIL T ELT)) (-2409 (((-114) $) 20 T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-1750 (((-560) $ $) NIL T ELT)) (-1978 (((-114) $) NIL T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1799 (($ $) NIL T ELT)) (-1578 (((-1234 |#1|) $) 9 T ELT) (((-887) $) 29 (|has| |#1| (-632 (-887))) ELT)) (-3955 (((-663 $) $) NIL T ELT)) (-2997 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-930 |#1|) (-13 (-121 |#1|) (-632 (-1234 |#1|)) (-10 -8 (-15 -4462 ($ |#1|)) (-15 -4462 ($ $ $)))) (-1132)) (T -930))
-((-4462 (*1 *1 *2) (-12 (-5 *1 (-930 *2)) (-4 *2 (-1132)))) (-4462 (*1 *1 *1 *1) (-12 (-5 *1 (-930 *2)) (-4 *2 (-1132)))))
-(-13 (-121 |#1|) (-632 (-1234 |#1|)) (-10 -8 (-15 -4462 ($ |#1|)) (-15 -4462 ($ $ $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1901 (((-1128 |#1|) $) 60 T ELT)) (-2286 (((-663 $) (-663 $)) 103 T ELT)) (-2138 (((-560) $) 83 T ELT)) (-2238 (($) NIL T CONST)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-3913 (((-793) $) 80 T ELT)) (-2156 (((-1128 |#1|) $ |#1|) 70 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-3612 (((-114) $) 88 T ELT)) (-2731 (((-793) $) 84 T ELT)) (-3825 (($ $ $) NIL (-2304 (|has| |#1| (-381)) (|has| |#1| (-871))) ELT)) (-2820 (($ $ $) NIL (-2304 (|has| |#1| (-381)) (|has| |#1| (-871))) ELT)) (-2362 (((-2 (|:| |preimage| (-663 |#1|)) (|:| |image| (-663 |#1|))) $) 55 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) 130 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3309 (((-1128 |#1|) $) 136 (|has| |#1| (-381)) ELT)) (-1737 (((-114) $) 81 T ELT)) (-3924 ((|#1| $ |#1|) 68 T ELT)) (-3630 (((-793) $) 62 T ELT)) (-2417 (($ (-663 (-663 |#1|))) 118 T ELT)) (-2387 (((-1002) $) 74 T ELT)) (-3312 (($ (-663 |#1|)) 32 T ELT)) (-4122 (($ $ $) NIL T ELT)) (-2013 (($ $ $) NIL T ELT)) (-2847 (($ (-663 (-663 |#1|))) 57 T ELT)) (-2670 (($ (-663 (-663 |#1|))) 123 T ELT)) (-2218 (($ (-663 |#1|)) 132 T ELT)) (-1578 (((-887) $) 117 T ELT) (($ (-663 (-663 |#1|))) 91 T ELT) (($ (-663 |#1|)) 92 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2011 (($) 24 T CONST)) (-2536 (((-114) $ $) NIL (-2304 (|has| |#1| (-381)) (|has| |#1| (-871))) ELT)) (-2508 (((-114) $ $) NIL (-2304 (|has| |#1| (-381)) (|has| |#1| (-871))) ELT)) (-2473 (((-114) $ $) 66 T ELT)) (-2521 (((-114) $ $) NIL (-2304 (|has| |#1| (-381)) (|has| |#1| (-871))) ELT)) (-2495 (((-114) $ $) 90 T ELT)) (-2594 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ $ $) 33 T ELT)))
-(((-931 |#1|) (-13 (-933 |#1|) (-10 -8 (-15 -2362 ((-2 (|:| |preimage| (-663 |#1|)) (|:| |image| (-663 |#1|))) $)) (-15 -2847 ($ (-663 (-663 |#1|)))) (-15 -1578 ($ (-663 (-663 |#1|)))) (-15 -1578 ($ (-663 |#1|))) (-15 -2670 ($ (-663 (-663 |#1|)))) (-15 -3630 ((-793) $)) (-15 -2387 ((-1002) $)) (-15 -3913 ((-793) $)) (-15 -2731 ((-793) $)) (-15 -2138 ((-560) $)) (-15 -1737 ((-114) $)) (-15 -3612 ((-114) $)) (-15 -2286 ((-663 $) (-663 $))) (IF (|has| |#1| (-381)) (-15 -3309 ((-1128 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-559)) (-15 -2218 ($ (-663 |#1|))) (IF (|has| |#1| (-381)) (-15 -2218 ($ (-663 |#1|))) |%noBranch|)))) (-1132)) (T -931))
-((-2362 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-663 *3)) (|:| |image| (-663 *3)))) (-5 *1 (-931 *3)) (-4 *3 (-1132)))) (-2847 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1132)) (-5 *1 (-931 *3)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1132)) (-5 *1 (-931 *3)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-931 *3)))) (-2670 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1132)) (-5 *1 (-931 *3)))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-931 *3)) (-4 *3 (-1132)))) (-2387 (*1 *2 *1) (-12 (-5 *2 (-1002)) (-5 *1 (-931 *3)) (-4 *3 (-1132)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-931 *3)) (-4 *3 (-1132)))) (-2731 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-931 *3)) (-4 *3 (-1132)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-931 *3)) (-4 *3 (-1132)))) (-1737 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-931 *3)) (-4 *3 (-1132)))) (-3612 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-931 *3)) (-4 *3 (-1132)))) (-2286 (*1 *2 *2) (-12 (-5 *2 (-663 (-931 *3))) (-5 *1 (-931 *3)) (-4 *3 (-1132)))) (-3309 (*1 *2 *1) (-12 (-5 *2 (-1128 *3)) (-5 *1 (-931 *3)) (-4 *3 (-381)) (-4 *3 (-1132)))) (-2218 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-931 *3)))))
-(-13 (-933 |#1|) (-10 -8 (-15 -2362 ((-2 (|:| |preimage| (-663 |#1|)) (|:| |image| (-663 |#1|))) $)) (-15 -2847 ($ (-663 (-663 |#1|)))) (-15 -1578 ($ (-663 (-663 |#1|)))) (-15 -1578 ($ (-663 |#1|))) (-15 -2670 ($ (-663 (-663 |#1|)))) (-15 -3630 ((-793) $)) (-15 -2387 ((-1002) $)) (-15 -3913 ((-793) $)) (-15 -2731 ((-793) $)) (-15 -2138 ((-560) $)) (-15 -1737 ((-114) $)) (-15 -3612 ((-114) $)) (-15 -2286 ((-663 $) (-663 $))) (IF (|has| |#1| (-381)) (-15 -3309 ((-1128 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-559)) (-15 -2218 ($ (-663 |#1|))) (IF (|has| |#1| (-381)) (-15 -2218 ($ (-663 |#1|))) |%noBranch|))))
-((-2564 ((|#2| (-1173 |#1| |#2|)) 48 T ELT)))
-(((-932 |#1| |#2|) (-10 -7 (-15 -2564 (|#2| (-1173 |#1| |#2|)))) (-948) (-13 (-1080) (-10 -7 (-6 (-4510 "*"))))) (T -932))
-((-2564 (*1 *2 *3) (-12 (-5 *3 (-1173 *4 *2)) (-14 *4 (-948)) (-4 *2 (-13 (-1080) (-10 -7 (-6 (-4510 "*"))))) (-5 *1 (-932 *4 *2)))))
-(-10 -7 (-15 -2564 (|#2| (-1173 |#1| |#2|))))
-((-1538 (((-114) $ $) 7 T ELT)) (-1901 (((-1128 |#1|) $) 36 T ELT)) (-2238 (($) 19 T CONST)) (-1990 (((-3 $ "failed") $) 16 T ELT)) (-2156 (((-1128 |#1|) $ |#1|) 35 T ELT)) (-1581 (((-114) $) 18 T ELT)) (-3825 (($ $ $) 29 (-2304 (|has| |#1| (-871)) (|has| |#1| (-381))) ELT)) (-2820 (($ $ $) 30 (-2304 (|has| |#1| (-871)) (|has| |#1| (-381))) ELT)) (-1905 (((-1189) $) 10 T ELT)) (-1544 (($ $) 25 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-3924 ((|#1| $ |#1|) 39 T ELT)) (-2417 (($ (-663 (-663 |#1|))) 37 T ELT)) (-3312 (($ (-663 |#1|)) 38 T ELT)) (-4122 (($ $ $) 22 T ELT)) (-2013 (($ $ $) 21 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2011 (($) 20 T CONST)) (-2536 (((-114) $ $) 31 (-2304 (|has| |#1| (-871)) (|has| |#1| (-381))) ELT)) (-2508 (((-114) $ $) 33 (-2304 (|has| |#1| (-871)) (|has| |#1| (-381))) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 32 (-2304 (|has| |#1| (-871)) (|has| |#1| (-381))) ELT)) (-2495 (((-114) $ $) 34 T ELT)) (-2594 (($ $ $) 24 T ELT)) (** (($ $ (-948)) 14 T ELT) (($ $ (-793)) 17 T ELT) (($ $ (-560)) 23 T ELT)) (* (($ $ $) 15 T ELT)))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1430 ((|#1| $) 26 T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3654 ((|#1| $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3220 (($ $ $) NIL (|has| $ (-6 -4509)) ELT)) (-2220 (($ $ $) NIL (|has| $ (-6 -4509)) ELT)) (-4083 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4509)) ELT) (($ $ "left" $) NIL (|has| $ (-6 -4509)) ELT) (($ $ "right" $) NIL (|has| $ (-6 -4509)) ELT)) (-2566 (($ $ (-663 $)) NIL (|has| $ (-6 -4509)) ELT)) (-3525 (($) NIL T CONST)) (-4346 (($ $) 25 T ELT)) (-3445 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-3737 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2104 (((-663 $) $) NIL T ELT)) (-2150 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-4335 (($ $) 23 T ELT)) (-2656 (((-663 |#1|) $) NIL T ELT)) (-1485 (((-114) $) 20 T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#1| $ "value") NIL T ELT) (($ $ "left") NIL T ELT) (($ $ "right") NIL T ELT)) (-2374 (((-560) $ $) NIL T ELT)) (-2752 (((-114) $) NIL T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4107 (($ $) NIL T ELT)) (-3913 (((-1234 |#1|) $) 9 T ELT) (((-887) $) 29 (|has| |#1| (-632 (-887))) ELT)) (-3809 (((-663 $) $) NIL T ELT)) (-3606 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-930 |#1|) (-13 (-121 |#1|) (-632 (-1234 |#1|)) (-10 -8 (-15 -3445 ($ |#1|)) (-15 -3445 ($ $ $)))) (-1132)) (T -930))
+((-3445 (*1 *1 *2) (-12 (-5 *1 (-930 *2)) (-4 *2 (-1132)))) (-3445 (*1 *1 *1 *1) (-12 (-5 *1 (-930 *2)) (-4 *2 (-1132)))))
+(-13 (-121 |#1|) (-632 (-1234 |#1|)) (-10 -8 (-15 -3445 ($ |#1|)) (-15 -3445 ($ $ $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3312 (((-1128 |#1|) $) 60 T ELT)) (-1787 (((-663 $) (-663 $)) 103 T ELT)) (-1869 (((-560) $) 83 T ELT)) (-3525 (($) NIL T CONST)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1460 (((-793) $) 80 T ELT)) (-3986 (((-1128 |#1|) $ |#1|) 70 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-3729 (((-114) $) 88 T ELT)) (-1551 (((-793) $) 84 T ELT)) (-2932 (($ $ $) NIL (-2196 (|has| |#1| (-381)) (|has| |#1| (-871))) ELT)) (-4379 (($ $ $) NIL (-2196 (|has| |#1| (-381)) (|has| |#1| (-871))) ELT)) (-2236 (((-2 (|:| |preimage| (-663 |#1|)) (|:| |image| (-663 |#1|))) $) 55 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) 130 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3784 (((-1128 |#1|) $) 136 (|has| |#1| (-381)) ELT)) (-2244 (((-114) $) 81 T ELT)) (-1507 ((|#1| $ |#1|) 68 T ELT)) (-3900 (((-793) $) 62 T ELT)) (-1543 (($ (-663 (-663 |#1|))) 118 T ELT)) (-2495 (((-1002) $) 74 T ELT)) (-3819 (($ (-663 |#1|)) 32 T ELT)) (-1714 (($ $ $) NIL T ELT)) (-3117 (($ $ $) NIL T ELT)) (-3415 (($ (-663 (-663 |#1|))) 57 T ELT)) (-2148 (($ (-663 (-663 |#1|))) 123 T ELT)) (-3340 (($ (-663 |#1|)) 132 T ELT)) (-3913 (((-887) $) 117 T ELT) (($ (-663 (-663 |#1|))) 91 T ELT) (($ (-663 |#1|)) 92 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1456 (($) 24 T CONST)) (-2396 (((-114) $ $) NIL (-2196 (|has| |#1| (-381)) (|has| |#1| (-871))) ELT)) (-2373 (((-114) $ $) NIL (-2196 (|has| |#1| (-381)) (|has| |#1| (-871))) ELT)) (-2340 (((-114) $ $) 66 T ELT)) (-2386 (((-114) $ $) NIL (-2196 (|has| |#1| (-381)) (|has| |#1| (-871))) ELT)) (-2362 (((-114) $ $) 90 T ELT)) (-2453 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ $ $) 33 T ELT)))
+(((-931 |#1|) (-13 (-933 |#1|) (-10 -8 (-15 -2236 ((-2 (|:| |preimage| (-663 |#1|)) (|:| |image| (-663 |#1|))) $)) (-15 -3415 ($ (-663 (-663 |#1|)))) (-15 -3913 ($ (-663 (-663 |#1|)))) (-15 -3913 ($ (-663 |#1|))) (-15 -2148 ($ (-663 (-663 |#1|)))) (-15 -3900 ((-793) $)) (-15 -2495 ((-1002) $)) (-15 -1460 ((-793) $)) (-15 -1551 ((-793) $)) (-15 -1869 ((-560) $)) (-15 -2244 ((-114) $)) (-15 -3729 ((-114) $)) (-15 -1787 ((-663 $) (-663 $))) (IF (|has| |#1| (-381)) (-15 -3784 ((-1128 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-559)) (-15 -3340 ($ (-663 |#1|))) (IF (|has| |#1| (-381)) (-15 -3340 ($ (-663 |#1|))) |%noBranch|)))) (-1132)) (T -931))
+((-2236 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-663 *3)) (|:| |image| (-663 *3)))) (-5 *1 (-931 *3)) (-4 *3 (-1132)))) (-3415 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1132)) (-5 *1 (-931 *3)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1132)) (-5 *1 (-931 *3)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-931 *3)))) (-2148 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1132)) (-5 *1 (-931 *3)))) (-3900 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-931 *3)) (-4 *3 (-1132)))) (-2495 (*1 *2 *1) (-12 (-5 *2 (-1002)) (-5 *1 (-931 *3)) (-4 *3 (-1132)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-931 *3)) (-4 *3 (-1132)))) (-1551 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-931 *3)) (-4 *3 (-1132)))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-931 *3)) (-4 *3 (-1132)))) (-2244 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-931 *3)) (-4 *3 (-1132)))) (-3729 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-931 *3)) (-4 *3 (-1132)))) (-1787 (*1 *2 *2) (-12 (-5 *2 (-663 (-931 *3))) (-5 *1 (-931 *3)) (-4 *3 (-1132)))) (-3784 (*1 *2 *1) (-12 (-5 *2 (-1128 *3)) (-5 *1 (-931 *3)) (-4 *3 (-381)) (-4 *3 (-1132)))) (-3340 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-931 *3)))))
+(-13 (-933 |#1|) (-10 -8 (-15 -2236 ((-2 (|:| |preimage| (-663 |#1|)) (|:| |image| (-663 |#1|))) $)) (-15 -3415 ($ (-663 (-663 |#1|)))) (-15 -3913 ($ (-663 (-663 |#1|)))) (-15 -3913 ($ (-663 |#1|))) (-15 -2148 ($ (-663 (-663 |#1|)))) (-15 -3900 ((-793) $)) (-15 -2495 ((-1002) $)) (-15 -1460 ((-793) $)) (-15 -1551 ((-793) $)) (-15 -1869 ((-560) $)) (-15 -2244 ((-114) $)) (-15 -3729 ((-114) $)) (-15 -1787 ((-663 $) (-663 $))) (IF (|has| |#1| (-381)) (-15 -3784 ((-1128 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-559)) (-15 -3340 ($ (-663 |#1|))) (IF (|has| |#1| (-381)) (-15 -3340 ($ (-663 |#1|))) |%noBranch|))))
+((-3620 ((|#2| (-1173 |#1| |#2|)) 48 T ELT)))
+(((-932 |#1| |#2|) (-10 -7 (-15 -3620 (|#2| (-1173 |#1| |#2|)))) (-948) (-13 (-1080) (-10 -7 (-6 (-4510 "*"))))) (T -932))
+((-3620 (*1 *2 *3) (-12 (-5 *3 (-1173 *4 *2)) (-14 *4 (-948)) (-4 *2 (-13 (-1080) (-10 -7 (-6 (-4510 "*"))))) (-5 *1 (-932 *4 *2)))))
+(-10 -7 (-15 -3620 (|#2| (-1173 |#1| |#2|))))
+((-2243 (((-114) $ $) 7 T ELT)) (-3312 (((-1128 |#1|) $) 36 T ELT)) (-3525 (($) 19 T CONST)) (-2873 (((-3 $ "failed") $) 16 T ELT)) (-3986 (((-1128 |#1|) $ |#1|) 35 T ELT)) (-1918 (((-114) $) 18 T ELT)) (-2932 (($ $ $) 29 (-2196 (|has| |#1| (-871)) (|has| |#1| (-381))) ELT)) (-4379 (($ $ $) 30 (-2196 (|has| |#1| (-871)) (|has| |#1| (-381))) ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2986 (($ $) 25 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-1507 ((|#1| $ |#1|) 39 T ELT)) (-1543 (($ (-663 (-663 |#1|))) 37 T ELT)) (-3819 (($ (-663 |#1|)) 38 T ELT)) (-1714 (($ $ $) 22 T ELT)) (-3117 (($ $ $) 21 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1456 (($) 20 T CONST)) (-2396 (((-114) $ $) 31 (-2196 (|has| |#1| (-871)) (|has| |#1| (-381))) ELT)) (-2373 (((-114) $ $) 33 (-2196 (|has| |#1| (-871)) (|has| |#1| (-381))) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 32 (-2196 (|has| |#1| (-871)) (|has| |#1| (-381))) ELT)) (-2362 (((-114) $ $) 34 T ELT)) (-2453 (($ $ $) 24 T ELT)) (** (($ $ (-948)) 14 T ELT) (($ $ (-793)) 17 T ELT) (($ $ (-560)) 23 T ELT)) (* (($ $ $) 15 T ELT)))
(((-933 |#1|) (-142) (-1132)) (T -933))
-((-3312 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-4 *1 (-933 *3)))) (-2417 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1132)) (-4 *1 (-933 *3)))) (-1901 (*1 *2 *1) (-12 (-4 *1 (-933 *3)) (-4 *3 (-1132)) (-5 *2 (-1128 *3)))) (-2156 (*1 *2 *1 *3) (-12 (-4 *1 (-933 *3)) (-4 *3 (-1132)) (-5 *2 (-1128 *3)))) (-2495 (*1 *2 *1 *1) (-12 (-4 *1 (-933 *3)) (-4 *3 (-1132)) (-5 *2 (-114)))))
-(-13 (-487) (-298 |t#1| |t#1|) (-10 -8 (-15 -3312 ($ (-663 |t#1|))) (-15 -2417 ($ (-663 (-663 |t#1|)))) (-15 -1901 ((-1128 |t#1|) $)) (-15 -2156 ((-1128 |t#1|) $ |t#1|)) (-15 -2495 ((-114) $ $)) (IF (|has| |t#1| (-871)) (-6 (-871)) |%noBranch|) (IF (|has| |t#1| (-381)) (-6 (-871)) |%noBranch|)))
-(((-102) . T) ((-632 (-887)) . T) ((-298 |#1| |#1|) . T) ((-487) . T) ((-748) . T) ((-871) -2304 (|has| |#1| (-871)) (|has| |#1| (-381))) ((-874) -2304 (|has| |#1| (-871)) (|has| |#1| (-381))) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2303 (((-663 (-663 (-793))) $) 160 T ELT)) (-2082 (((-663 (-793)) (-931 |#1|) $) 188 T ELT)) (-2857 (((-663 (-793)) (-931 |#1|) $) 189 T ELT)) (-1901 (((-1128 |#1|) $) 152 T ELT)) (-4142 (((-663 (-931 |#1|)) $) 149 T ELT)) (-2310 (((-931 |#1|) $ (-560)) 154 T ELT) (((-931 |#1|) $) 155 T ELT)) (-2654 (($ (-663 (-931 |#1|))) 162 T ELT)) (-3913 (((-793) $) 156 T ELT)) (-2288 (((-1128 (-1128 |#1|)) $) 186 T ELT)) (-2156 (((-1128 |#1|) $ |#1|) 177 T ELT) (((-1128 (-1128 |#1|)) $ (-1128 |#1|)) 197 T ELT) (((-1128 (-663 |#1|)) $ (-663 |#1|)) 200 T ELT)) (-2321 (((-114) (-931 |#1|) $) 137 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3994 (((-1303) $) 142 T ELT) (((-1303) $ (-560) (-560)) 201 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4424 (((-663 (-931 |#1|)) $) 143 T ELT)) (-3924 (((-931 |#1|) $ (-793)) 150 T ELT)) (-3630 (((-793) $) 157 T ELT)) (-1578 (((-887) $) 174 T ELT) (((-663 (-931 |#1|)) $) 28 T ELT) (($ (-663 (-931 |#1|))) 161 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1792 (((-663 |#1|) $) 159 T ELT)) (-2473 (((-114) $ $) 194 T ELT)) (-2521 (((-114) $ $) 192 T ELT)) (-2495 (((-114) $ $) 191 T ELT)))
-(((-934 |#1|) (-13 (-1132) (-10 -8 (-15 -1578 ((-663 (-931 |#1|)) $)) (-15 -4424 ((-663 (-931 |#1|)) $)) (-15 -3924 ((-931 |#1|) $ (-793))) (-15 -2310 ((-931 |#1|) $ (-560))) (-15 -2310 ((-931 |#1|) $)) (-15 -3913 ((-793) $)) (-15 -3630 ((-793) $)) (-15 -1792 ((-663 |#1|) $)) (-15 -4142 ((-663 (-931 |#1|)) $)) (-15 -2303 ((-663 (-663 (-793))) $)) (-15 -1578 ($ (-663 (-931 |#1|)))) (-15 -2654 ($ (-663 (-931 |#1|)))) (-15 -2156 ((-1128 |#1|) $ |#1|)) (-15 -2288 ((-1128 (-1128 |#1|)) $)) (-15 -2156 ((-1128 (-1128 |#1|)) $ (-1128 |#1|))) (-15 -2156 ((-1128 (-663 |#1|)) $ (-663 |#1|))) (-15 -2321 ((-114) (-931 |#1|) $)) (-15 -2082 ((-663 (-793)) (-931 |#1|) $)) (-15 -2857 ((-663 (-793)) (-931 |#1|) $)) (-15 -1901 ((-1128 |#1|) $)) (-15 -2495 ((-114) $ $)) (-15 -2521 ((-114) $ $)) (-15 -3994 ((-1303) $)) (-15 -3994 ((-1303) $ (-560) (-560))))) (-1132)) (T -934))
-((-1578 (*1 *2 *1) (-12 (-5 *2 (-663 (-931 *3))) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-4424 (*1 *2 *1) (-12 (-5 *2 (-663 (-931 *3))) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-931 *4)) (-5 *1 (-934 *4)) (-4 *4 (-1132)))) (-2310 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-931 *4)) (-5 *1 (-934 *4)) (-4 *4 (-1132)))) (-2310 (*1 *2 *1) (-12 (-5 *2 (-931 *3)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-3630 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-1792 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-4142 (*1 *2 *1) (-12 (-5 *2 (-663 (-931 *3))) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-2303 (*1 *2 *1) (-12 (-5 *2 (-663 (-663 (-793)))) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-663 (-931 *3))) (-4 *3 (-1132)) (-5 *1 (-934 *3)))) (-2654 (*1 *1 *2) (-12 (-5 *2 (-663 (-931 *3))) (-4 *3 (-1132)) (-5 *1 (-934 *3)))) (-2156 (*1 *2 *1 *3) (-12 (-5 *2 (-1128 *3)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-2288 (*1 *2 *1) (-12 (-5 *2 (-1128 (-1128 *3))) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-2156 (*1 *2 *1 *3) (-12 (-4 *4 (-1132)) (-5 *2 (-1128 (-1128 *4))) (-5 *1 (-934 *4)) (-5 *3 (-1128 *4)))) (-2156 (*1 *2 *1 *3) (-12 (-4 *4 (-1132)) (-5 *2 (-1128 (-663 *4))) (-5 *1 (-934 *4)) (-5 *3 (-663 *4)))) (-2321 (*1 *2 *3 *1) (-12 (-5 *3 (-931 *4)) (-4 *4 (-1132)) (-5 *2 (-114)) (-5 *1 (-934 *4)))) (-2082 (*1 *2 *3 *1) (-12 (-5 *3 (-931 *4)) (-4 *4 (-1132)) (-5 *2 (-663 (-793))) (-5 *1 (-934 *4)))) (-2857 (*1 *2 *3 *1) (-12 (-5 *3 (-931 *4)) (-4 *4 (-1132)) (-5 *2 (-663 (-793))) (-5 *1 (-934 *4)))) (-1901 (*1 *2 *1) (-12 (-5 *2 (-1128 *3)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-2495 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-2521 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-3994 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-934 *4)) (-4 *4 (-1132)))))
-(-13 (-1132) (-10 -8 (-15 -1578 ((-663 (-931 |#1|)) $)) (-15 -4424 ((-663 (-931 |#1|)) $)) (-15 -3924 ((-931 |#1|) $ (-793))) (-15 -2310 ((-931 |#1|) $ (-560))) (-15 -2310 ((-931 |#1|) $)) (-15 -3913 ((-793) $)) (-15 -3630 ((-793) $)) (-15 -1792 ((-663 |#1|) $)) (-15 -4142 ((-663 (-931 |#1|)) $)) (-15 -2303 ((-663 (-663 (-793))) $)) (-15 -1578 ($ (-663 (-931 |#1|)))) (-15 -2654 ($ (-663 (-931 |#1|)))) (-15 -2156 ((-1128 |#1|) $ |#1|)) (-15 -2288 ((-1128 (-1128 |#1|)) $)) (-15 -2156 ((-1128 (-1128 |#1|)) $ (-1128 |#1|))) (-15 -2156 ((-1128 (-663 |#1|)) $ (-663 |#1|))) (-15 -2321 ((-114) (-931 |#1|) $)) (-15 -2082 ((-663 (-793)) (-931 |#1|) $)) (-15 -2857 ((-663 (-793)) (-931 |#1|) $)) (-15 -1901 ((-1128 |#1|) $)) (-15 -2495 ((-114) $ $)) (-15 -2521 ((-114) $ $)) (-15 -3994 ((-1303) $)) (-15 -3994 ((-1303) $ (-560) (-560)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-1947 (((-114) $) NIL T ELT)) (-1796 (((-793)) NIL T ELT)) (-3349 (($ $ (-948)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-2105 (((-1219 (-948) (-793)) (-560)) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-3241 (((-793)) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 $ "failed") $) NIL T ELT)) (-3330 (($ $) NIL T ELT)) (-4143 (($ (-1297 $)) NIL T ELT)) (-4217 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-1478 (($ $ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2310 (($) NIL T ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4336 (($) NIL T ELT)) (-3976 (((-114) $) NIL T ELT)) (-1696 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-3913 (((-854 (-948)) $) NIL T ELT) (((-948) $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-4417 (($) NIL (|has| $ (-381)) ELT)) (-2863 (((-114) $) NIL (|has| $ (-381)) ELT)) (-2032 (($ $ (-948)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-3009 (((-3 $ "failed") $) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1787 (((-1201 $) $ (-948)) NIL (|has| $ (-381)) ELT) (((-1201 $) $) NIL T ELT)) (-4419 (((-948) $) NIL T ELT)) (-1543 (((-1201 $) $) NIL (|has| $ (-381)) ELT)) (-4449 (((-3 (-1201 $) "failed") $ $) NIL (|has| $ (-381)) ELT) (((-1201 $) $) NIL (|has| $ (-381)) ELT)) (-3384 (($ $ (-1201 $)) NIL (|has| $ (-381)) ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-3161 (($) NIL T CONST)) (-3128 (($ (-948)) NIL T ELT)) (-3583 (((-114) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2748 (($) NIL (|has| $ (-381)) ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3666 (((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))) NIL T ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-2969 (((-948)) NIL T ELT) (((-854 (-948))) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2364 (((-3 (-793) "failed") $ $) NIL T ELT) (((-793) $) NIL T ELT)) (-3669 (((-136)) NIL T ELT)) (-2894 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3630 (((-948) $) NIL T ELT) (((-854 (-948)) $) NIL T ELT)) (-4394 (((-1201 $)) NIL T ELT)) (-2243 (($) NIL T ELT)) (-3988 (($) NIL (|has| $ (-381)) ELT)) (-2178 (((-711 $) (-1297 $)) NIL T ELT) (((-1297 $) $) NIL T ELT)) (-1407 (((-560) $) NIL T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL T ELT) (($ $) NIL T ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-1954 (((-1297 $) (-948)) NIL T ELT) (((-1297 $)) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-3602 (((-114) $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3054 (($ $ (-793)) NIL (|has| $ (-381)) ELT) (($ $) NIL (|has| $ (-381)) ELT)) (-3305 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT)))
+((-3819 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-4 *1 (-933 *3)))) (-1543 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1132)) (-4 *1 (-933 *3)))) (-3312 (*1 *2 *1) (-12 (-4 *1 (-933 *3)) (-4 *3 (-1132)) (-5 *2 (-1128 *3)))) (-3986 (*1 *2 *1 *3) (-12 (-4 *1 (-933 *3)) (-4 *3 (-1132)) (-5 *2 (-1128 *3)))) (-2362 (*1 *2 *1 *1) (-12 (-4 *1 (-933 *3)) (-4 *3 (-1132)) (-5 *2 (-114)))))
+(-13 (-487) (-298 |t#1| |t#1|) (-10 -8 (-15 -3819 ($ (-663 |t#1|))) (-15 -1543 ($ (-663 (-663 |t#1|)))) (-15 -3312 ((-1128 |t#1|) $)) (-15 -3986 ((-1128 |t#1|) $ |t#1|)) (-15 -2362 ((-114) $ $)) (IF (|has| |t#1| (-871)) (-6 (-871)) |%noBranch|) (IF (|has| |t#1| (-381)) (-6 (-871)) |%noBranch|)))
+(((-102) . T) ((-632 (-887)) . T) ((-298 |#1| |#1|) . T) ((-487) . T) ((-748) . T) ((-871) -2196 (|has| |#1| (-871)) (|has| |#1| (-381))) ((-874) -2196 (|has| |#1| (-871)) (|has| |#1| (-381))) ((-1143) . T) ((-1132) . T) ((-1247) . T))
+((-2243 (((-114) $ $) NIL T ELT)) (-2907 (((-663 (-663 (-793))) $) 160 T ELT)) (-2554 (((-663 (-793)) (-931 |#1|) $) 188 T ELT)) (-3505 (((-663 (-793)) (-931 |#1|) $) 189 T ELT)) (-3312 (((-1128 |#1|) $) 152 T ELT)) (-1941 (((-663 (-931 |#1|)) $) 149 T ELT)) (-1812 (((-931 |#1|) $ (-560)) 154 T ELT) (((-931 |#1|) $) 155 T ELT)) (-3233 (($ (-663 (-931 |#1|))) 162 T ELT)) (-1460 (((-793) $) 156 T ELT)) (-2757 (((-1128 (-1128 |#1|)) $) 186 T ELT)) (-3986 (((-1128 |#1|) $ |#1|) 177 T ELT) (((-1128 (-1128 |#1|)) $ (-1128 |#1|)) 197 T ELT) (((-1128 (-663 |#1|)) $ (-663 |#1|)) 200 T ELT)) (-3091 (((-114) (-931 |#1|) $) 137 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2921 (((-1303) $) 142 T ELT) (((-1303) $ (-560) (-560)) 201 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2644 (((-663 (-931 |#1|)) $) 143 T ELT)) (-1507 (((-931 |#1|) $ (-793)) 150 T ELT)) (-3900 (((-793) $) 157 T ELT)) (-3913 (((-887) $) 174 T ELT) (((-663 (-931 |#1|)) $) 28 T ELT) (($ (-663 (-931 |#1|))) 161 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2671 (((-663 |#1|) $) 159 T ELT)) (-2340 (((-114) $ $) 194 T ELT)) (-2386 (((-114) $ $) 192 T ELT)) (-2362 (((-114) $ $) 191 T ELT)))
+(((-934 |#1|) (-13 (-1132) (-10 -8 (-15 -3913 ((-663 (-931 |#1|)) $)) (-15 -2644 ((-663 (-931 |#1|)) $)) (-15 -1507 ((-931 |#1|) $ (-793))) (-15 -1812 ((-931 |#1|) $ (-560))) (-15 -1812 ((-931 |#1|) $)) (-15 -1460 ((-793) $)) (-15 -3900 ((-793) $)) (-15 -2671 ((-663 |#1|) $)) (-15 -1941 ((-663 (-931 |#1|)) $)) (-15 -2907 ((-663 (-663 (-793))) $)) (-15 -3913 ($ (-663 (-931 |#1|)))) (-15 -3233 ($ (-663 (-931 |#1|)))) (-15 -3986 ((-1128 |#1|) $ |#1|)) (-15 -2757 ((-1128 (-1128 |#1|)) $)) (-15 -3986 ((-1128 (-1128 |#1|)) $ (-1128 |#1|))) (-15 -3986 ((-1128 (-663 |#1|)) $ (-663 |#1|))) (-15 -3091 ((-114) (-931 |#1|) $)) (-15 -2554 ((-663 (-793)) (-931 |#1|) $)) (-15 -3505 ((-663 (-793)) (-931 |#1|) $)) (-15 -3312 ((-1128 |#1|) $)) (-15 -2362 ((-114) $ $)) (-15 -2386 ((-114) $ $)) (-15 -2921 ((-1303) $)) (-15 -2921 ((-1303) $ (-560) (-560))))) (-1132)) (T -934))
+((-3913 (*1 *2 *1) (-12 (-5 *2 (-663 (-931 *3))) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-2644 (*1 *2 *1) (-12 (-5 *2 (-663 (-931 *3))) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-1507 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-931 *4)) (-5 *1 (-934 *4)) (-4 *4 (-1132)))) (-1812 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-931 *4)) (-5 *1 (-934 *4)) (-4 *4 (-1132)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-931 *3)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-1460 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-3900 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-1941 (*1 *2 *1) (-12 (-5 *2 (-663 (-931 *3))) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-2907 (*1 *2 *1) (-12 (-5 *2 (-663 (-663 (-793)))) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-663 (-931 *3))) (-4 *3 (-1132)) (-5 *1 (-934 *3)))) (-3233 (*1 *1 *2) (-12 (-5 *2 (-663 (-931 *3))) (-4 *3 (-1132)) (-5 *1 (-934 *3)))) (-3986 (*1 *2 *1 *3) (-12 (-5 *2 (-1128 *3)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-2757 (*1 *2 *1) (-12 (-5 *2 (-1128 (-1128 *3))) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-3986 (*1 *2 *1 *3) (-12 (-4 *4 (-1132)) (-5 *2 (-1128 (-1128 *4))) (-5 *1 (-934 *4)) (-5 *3 (-1128 *4)))) (-3986 (*1 *2 *1 *3) (-12 (-4 *4 (-1132)) (-5 *2 (-1128 (-663 *4))) (-5 *1 (-934 *4)) (-5 *3 (-663 *4)))) (-3091 (*1 *2 *3 *1) (-12 (-5 *3 (-931 *4)) (-4 *4 (-1132)) (-5 *2 (-114)) (-5 *1 (-934 *4)))) (-2554 (*1 *2 *3 *1) (-12 (-5 *3 (-931 *4)) (-4 *4 (-1132)) (-5 *2 (-663 (-793))) (-5 *1 (-934 *4)))) (-3505 (*1 *2 *3 *1) (-12 (-5 *3 (-931 *4)) (-4 *4 (-1132)) (-5 *2 (-663 (-793))) (-5 *1 (-934 *4)))) (-3312 (*1 *2 *1) (-12 (-5 *2 (-1128 *3)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-2362 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-2386 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))) (-2921 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-934 *4)) (-4 *4 (-1132)))))
+(-13 (-1132) (-10 -8 (-15 -3913 ((-663 (-931 |#1|)) $)) (-15 -2644 ((-663 (-931 |#1|)) $)) (-15 -1507 ((-931 |#1|) $ (-793))) (-15 -1812 ((-931 |#1|) $ (-560))) (-15 -1812 ((-931 |#1|) $)) (-15 -1460 ((-793) $)) (-15 -3900 ((-793) $)) (-15 -2671 ((-663 |#1|) $)) (-15 -1941 ((-663 (-931 |#1|)) $)) (-15 -2907 ((-663 (-663 (-793))) $)) (-15 -3913 ($ (-663 (-931 |#1|)))) (-15 -3233 ($ (-663 (-931 |#1|)))) (-15 -3986 ((-1128 |#1|) $ |#1|)) (-15 -2757 ((-1128 (-1128 |#1|)) $)) (-15 -3986 ((-1128 (-1128 |#1|)) $ (-1128 |#1|))) (-15 -3986 ((-1128 (-663 |#1|)) $ (-663 |#1|))) (-15 -3091 ((-114) (-931 |#1|) $)) (-15 -2554 ((-663 (-793)) (-931 |#1|) $)) (-15 -3505 ((-663 (-793)) (-931 |#1|) $)) (-15 -3312 ((-1128 |#1|) $)) (-15 -2362 ((-114) $ $)) (-15 -2386 ((-114) $ $)) (-15 -2921 ((-1303) $)) (-15 -2921 ((-1303) $ (-560) (-560)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3752 (((-114) $) NIL T ELT)) (-1542 (((-793)) NIL T ELT)) (-4113 (($ $ (-948)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-1548 (((-1219 (-948) (-793)) (-560)) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-2552 (((-793)) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 $ "failed") $) NIL T ELT)) (-3649 (($ $) NIL T ELT)) (-1953 (($ (-1297 $)) NIL T ELT)) (-1433 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2186 (($ $ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1812 (($) NIL T ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3191 (($) NIL T ELT)) (-4017 (((-114) $) NIL T ELT)) (-3079 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-1460 (((-854 (-948)) $) NIL T ELT) (((-948) $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-2601 (($) NIL (|has| $ (-381)) ELT)) (-3572 (((-114) $) NIL (|has| $ (-381)) ELT)) (-2084 (($ $ (-948)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-3738 (((-3 $ "failed") $) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1471 (((-1201 $) $ (-948)) NIL (|has| $ (-381)) ELT) (((-1201 $) $) NIL T ELT)) (-2622 (((-948) $) NIL T ELT)) (-1567 (((-1201 $) $) NIL (|has| $ (-381)) ELT)) (-1644 (((-3 (-1201 $) "failed") $ $) NIL (|has| $ (-381)) ELT) (((-1201 $) $) NIL (|has| $ (-381)) ELT)) (-3264 (($ $ (-1201 $)) NIL (|has| $ (-381)) ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3239 (($) NIL T CONST)) (-1591 (($ (-948)) NIL T ELT)) (-3410 (((-114) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3583 (($) NIL (|has| $ (-381)) ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2976 (((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))) NIL T ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-3313 (((-948)) NIL T ELT) (((-854 (-948))) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-2258 (((-3 (-793) "failed") $ $) NIL T ELT) (((-793) $) NIL T ELT)) (-3015 (((-136)) NIL T ELT)) (-3161 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3900 (((-948) $) NIL T ELT) (((-854 (-948)) $) NIL T ELT)) (-2407 (((-1201 $)) NIL T ELT)) (-3569 (($) NIL T ELT)) (-2855 (($) NIL (|has| $ (-381)) ELT)) (-4226 (((-711 $) (-1297 $)) NIL T ELT) (((-1297 $) $) NIL T ELT)) (-2400 (((-560) $) NIL T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL T ELT) (($ $) NIL T ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-3822 (((-1297 $) (-948)) NIL T ELT) (((-1297 $)) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-3621 (((-114) $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2925 (($ $ (-793)) NIL (|has| $ (-381)) ELT) (($ $) NIL (|has| $ (-381)) ELT)) (-2111 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT)))
(((-935 |#1|) (-13 (-363) (-341 $) (-633 (-560))) (-948)) (T -935))
NIL
(-13 (-363) (-341 $) (-633 (-560)))
-((-4036 (((-3 (-663 (-1201 |#4|)) "failed") (-663 (-1201 |#4|)) (-1201 |#4|)) 160 T ELT)) (-3001 ((|#1|) 97 T ELT)) (-3677 (((-419 (-1201 |#4|)) (-1201 |#4|)) 169 T ELT)) (-3364 (((-419 (-1201 |#4|)) (-663 |#3|) (-1201 |#4|)) 84 T ELT)) (-2785 (((-419 (-1201 |#4|)) (-1201 |#4|)) 179 T ELT)) (-4026 (((-3 (-663 (-1201 |#4|)) "failed") (-663 (-1201 |#4|)) (-1201 |#4|) |#3|) 113 T ELT)))
-(((-936 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4036 ((-3 (-663 (-1201 |#4|)) "failed") (-663 (-1201 |#4|)) (-1201 |#4|))) (-15 -2785 ((-419 (-1201 |#4|)) (-1201 |#4|))) (-15 -3677 ((-419 (-1201 |#4|)) (-1201 |#4|))) (-15 -3001 (|#1|)) (-15 -4026 ((-3 (-663 (-1201 |#4|)) "failed") (-663 (-1201 |#4|)) (-1201 |#4|) |#3|)) (-15 -3364 ((-419 (-1201 |#4|)) (-663 |#3|) (-1201 |#4|)))) (-939) (-815) (-871) (-979 |#1| |#2| |#3|)) (T -936))
-((-3364 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *7)) (-4 *7 (-871)) (-4 *5 (-939)) (-4 *6 (-815)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-419 (-1201 *8))) (-5 *1 (-936 *5 *6 *7 *8)) (-5 *4 (-1201 *8)))) (-4026 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-663 (-1201 *7))) (-5 *3 (-1201 *7)) (-4 *7 (-979 *5 *6 *4)) (-4 *5 (-939)) (-4 *6 (-815)) (-4 *4 (-871)) (-5 *1 (-936 *5 *6 *4 *7)))) (-3001 (*1 *2) (-12 (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-939)) (-5 *1 (-936 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4)))) (-3677 (*1 *2 *3) (-12 (-4 *4 (-939)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-419 (-1201 *7))) (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-1201 *7)))) (-2785 (*1 *2 *3) (-12 (-4 *4 (-939)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-419 (-1201 *7))) (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-1201 *7)))) (-4036 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 (-1201 *7))) (-5 *3 (-1201 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-939)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-936 *4 *5 *6 *7)))))
-(-10 -7 (-15 -4036 ((-3 (-663 (-1201 |#4|)) "failed") (-663 (-1201 |#4|)) (-1201 |#4|))) (-15 -2785 ((-419 (-1201 |#4|)) (-1201 |#4|))) (-15 -3677 ((-419 (-1201 |#4|)) (-1201 |#4|))) (-15 -3001 (|#1|)) (-15 -4026 ((-3 (-663 (-1201 |#4|)) "failed") (-663 (-1201 |#4|)) (-1201 |#4|) |#3|)) (-15 -3364 ((-419 (-1201 |#4|)) (-663 |#3|) (-1201 |#4|))))
-((-4036 (((-3 (-663 (-1201 |#2|)) "failed") (-663 (-1201 |#2|)) (-1201 |#2|)) 39 T ELT)) (-3001 ((|#1|) 72 T ELT)) (-3677 (((-419 (-1201 |#2|)) (-1201 |#2|)) 121 T ELT)) (-3364 (((-419 (-1201 |#2|)) (-1201 |#2|)) 105 T ELT)) (-2785 (((-419 (-1201 |#2|)) (-1201 |#2|)) 132 T ELT)))
-(((-937 |#1| |#2|) (-10 -7 (-15 -4036 ((-3 (-663 (-1201 |#2|)) "failed") (-663 (-1201 |#2|)) (-1201 |#2|))) (-15 -2785 ((-419 (-1201 |#2|)) (-1201 |#2|))) (-15 -3677 ((-419 (-1201 |#2|)) (-1201 |#2|))) (-15 -3001 (|#1|)) (-15 -3364 ((-419 (-1201 |#2|)) (-1201 |#2|)))) (-939) (-1273 |#1|)) (T -937))
-((-3364 (*1 *2 *3) (-12 (-4 *4 (-939)) (-4 *5 (-1273 *4)) (-5 *2 (-419 (-1201 *5))) (-5 *1 (-937 *4 *5)) (-5 *3 (-1201 *5)))) (-3001 (*1 *2) (-12 (-4 *2 (-939)) (-5 *1 (-937 *2 *3)) (-4 *3 (-1273 *2)))) (-3677 (*1 *2 *3) (-12 (-4 *4 (-939)) (-4 *5 (-1273 *4)) (-5 *2 (-419 (-1201 *5))) (-5 *1 (-937 *4 *5)) (-5 *3 (-1201 *5)))) (-2785 (*1 *2 *3) (-12 (-4 *4 (-939)) (-4 *5 (-1273 *4)) (-5 *2 (-419 (-1201 *5))) (-5 *1 (-937 *4 *5)) (-5 *3 (-1201 *5)))) (-4036 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 (-1201 *5))) (-5 *3 (-1201 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-939)) (-5 *1 (-937 *4 *5)))))
-(-10 -7 (-15 -4036 ((-3 (-663 (-1201 |#2|)) "failed") (-663 (-1201 |#2|)) (-1201 |#2|))) (-15 -2785 ((-419 (-1201 |#2|)) (-1201 |#2|))) (-15 -3677 ((-419 (-1201 |#2|)) (-1201 |#2|))) (-15 -3001 (|#1|)) (-15 -3364 ((-419 (-1201 |#2|)) (-1201 |#2|))))
-((-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 42 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 18 T ELT)) (-1964 (((-3 $ "failed") $) 36 T ELT)))
-(((-938 |#1|) (-10 -8 (-15 -1964 ((-3 |#1| "failed") |#1|)) (-15 -3713 ((-3 (-663 (-1201 |#1|)) "failed") (-663 (-1201 |#1|)) (-1201 |#1|))) (-15 -1882 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|)))) (-939)) (T -938))
-NIL
-(-10 -8 (-15 -1964 ((-3 |#1| "failed") |#1|)) (-15 -3713 ((-3 (-663 (-1201 |#1|)) "failed") (-663 (-1201 |#1|)) (-1201 |#1|))) (-15 -1882 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-3244 (($ $) 46 T ELT)) (-4093 (((-114) $) 44 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) 66 T ELT)) (-1804 (($ $) 57 T ELT)) (-3023 (((-419 $) $) 58 T ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 63 T ELT)) (-2238 (($) 18 T CONST)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-4330 (((-114) $) 59 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-2093 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-2132 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) 64 T ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) 65 T ELT)) (-4457 (((-419 $) $) 56 T ELT)) (-1528 (((-3 $ "failed") $ $) 48 T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) 62 (|has| $ (-147)) ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT)) (-1964 (((-3 $ "failed") $) 61 (|has| $ (-147)) ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 45 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
+((-3354 (((-3 (-663 (-1201 |#4|)) "failed") (-663 (-1201 |#4|)) (-1201 |#4|)) 160 T ELT)) (-3657 ((|#1|) 97 T ELT)) (-3086 (((-419 (-1201 |#4|)) (-1201 |#4|)) 169 T ELT)) (-3055 (((-419 (-1201 |#4|)) (-663 |#3|) (-1201 |#4|)) 84 T ELT)) (-2070 (((-419 (-1201 |#4|)) (-1201 |#4|)) 179 T ELT)) (-3265 (((-3 (-663 (-1201 |#4|)) "failed") (-663 (-1201 |#4|)) (-1201 |#4|) |#3|) 113 T ELT)))
+(((-936 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3354 ((-3 (-663 (-1201 |#4|)) "failed") (-663 (-1201 |#4|)) (-1201 |#4|))) (-15 -2070 ((-419 (-1201 |#4|)) (-1201 |#4|))) (-15 -3086 ((-419 (-1201 |#4|)) (-1201 |#4|))) (-15 -3657 (|#1|)) (-15 -3265 ((-3 (-663 (-1201 |#4|)) "failed") (-663 (-1201 |#4|)) (-1201 |#4|) |#3|)) (-15 -3055 ((-419 (-1201 |#4|)) (-663 |#3|) (-1201 |#4|)))) (-939) (-815) (-871) (-979 |#1| |#2| |#3|)) (T -936))
+((-3055 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *7)) (-4 *7 (-871)) (-4 *5 (-939)) (-4 *6 (-815)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-419 (-1201 *8))) (-5 *1 (-936 *5 *6 *7 *8)) (-5 *4 (-1201 *8)))) (-3265 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-663 (-1201 *7))) (-5 *3 (-1201 *7)) (-4 *7 (-979 *5 *6 *4)) (-4 *5 (-939)) (-4 *6 (-815)) (-4 *4 (-871)) (-5 *1 (-936 *5 *6 *4 *7)))) (-3657 (*1 *2) (-12 (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-939)) (-5 *1 (-936 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4)))) (-3086 (*1 *2 *3) (-12 (-4 *4 (-939)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-419 (-1201 *7))) (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-1201 *7)))) (-2070 (*1 *2 *3) (-12 (-4 *4 (-939)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-419 (-1201 *7))) (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-1201 *7)))) (-3354 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 (-1201 *7))) (-5 *3 (-1201 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-939)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-936 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3354 ((-3 (-663 (-1201 |#4|)) "failed") (-663 (-1201 |#4|)) (-1201 |#4|))) (-15 -2070 ((-419 (-1201 |#4|)) (-1201 |#4|))) (-15 -3086 ((-419 (-1201 |#4|)) (-1201 |#4|))) (-15 -3657 (|#1|)) (-15 -3265 ((-3 (-663 (-1201 |#4|)) "failed") (-663 (-1201 |#4|)) (-1201 |#4|) |#3|)) (-15 -3055 ((-419 (-1201 |#4|)) (-663 |#3|) (-1201 |#4|))))
+((-3354 (((-3 (-663 (-1201 |#2|)) "failed") (-663 (-1201 |#2|)) (-1201 |#2|)) 39 T ELT)) (-3657 ((|#1|) 72 T ELT)) (-3086 (((-419 (-1201 |#2|)) (-1201 |#2|)) 121 T ELT)) (-3055 (((-419 (-1201 |#2|)) (-1201 |#2|)) 105 T ELT)) (-2070 (((-419 (-1201 |#2|)) (-1201 |#2|)) 132 T ELT)))
+(((-937 |#1| |#2|) (-10 -7 (-15 -3354 ((-3 (-663 (-1201 |#2|)) "failed") (-663 (-1201 |#2|)) (-1201 |#2|))) (-15 -2070 ((-419 (-1201 |#2|)) (-1201 |#2|))) (-15 -3086 ((-419 (-1201 |#2|)) (-1201 |#2|))) (-15 -3657 (|#1|)) (-15 -3055 ((-419 (-1201 |#2|)) (-1201 |#2|)))) (-939) (-1273 |#1|)) (T -937))
+((-3055 (*1 *2 *3) (-12 (-4 *4 (-939)) (-4 *5 (-1273 *4)) (-5 *2 (-419 (-1201 *5))) (-5 *1 (-937 *4 *5)) (-5 *3 (-1201 *5)))) (-3657 (*1 *2) (-12 (-4 *2 (-939)) (-5 *1 (-937 *2 *3)) (-4 *3 (-1273 *2)))) (-3086 (*1 *2 *3) (-12 (-4 *4 (-939)) (-4 *5 (-1273 *4)) (-5 *2 (-419 (-1201 *5))) (-5 *1 (-937 *4 *5)) (-5 *3 (-1201 *5)))) (-2070 (*1 *2 *3) (-12 (-4 *4 (-939)) (-4 *5 (-1273 *4)) (-5 *2 (-419 (-1201 *5))) (-5 *1 (-937 *4 *5)) (-5 *3 (-1201 *5)))) (-3354 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 (-1201 *5))) (-5 *3 (-1201 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-939)) (-5 *1 (-937 *4 *5)))))
+(-10 -7 (-15 -3354 ((-3 (-663 (-1201 |#2|)) "failed") (-663 (-1201 |#2|)) (-1201 |#2|))) (-15 -2070 ((-419 (-1201 |#2|)) (-1201 |#2|))) (-15 -3086 ((-419 (-1201 |#2|)) (-1201 |#2|))) (-15 -3657 (|#1|)) (-15 -3055 ((-419 (-1201 |#2|)) (-1201 |#2|))))
+((-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 42 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 18 T ELT)) (-3919 (((-3 $ "failed") $) 36 T ELT)))
+(((-938 |#1|) (-10 -8 (-15 -3919 ((-3 |#1| "failed") |#1|)) (-15 -2182 ((-3 (-663 (-1201 |#1|)) "failed") (-663 (-1201 |#1|)) (-1201 |#1|))) (-15 -4362 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|)))) (-939)) (T -938))
+NIL
+(-10 -8 (-15 -3919 ((-3 |#1| "failed") |#1|)) (-15 -2182 ((-3 (-663 (-1201 |#1|)) "failed") (-663 (-1201 |#1|)) (-1201 |#1|))) (-15 -4362 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-4366 (($ $) 46 T ELT)) (-2667 (((-114) $) 44 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) 66 T ELT)) (-1621 (($ $) 57 T ELT)) (-3898 (((-419 $) $) 58 T ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 63 T ELT)) (-3525 (($) 18 T CONST)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-3141 (((-114) $) 59 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-1861 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-1938 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) 64 T ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) 65 T ELT)) (-4012 (((-419 $) $) 56 T ELT)) (-2233 (((-3 $ "failed") $ $) 48 T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) 62 (|has| $ (-147)) ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT)) (-3919 (((-3 $ "failed") $) 61 (|has| $ (-147)) ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 45 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
(((-939) (-142)) (T -939))
-((-1882 (*1 *2 *2 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-939)))) (-2704 (*1 *2 *3) (-12 (-4 *1 (-939)) (-5 *2 (-419 (-1201 *1))) (-5 *3 (-1201 *1)))) (-1960 (*1 *2 *3) (-12 (-4 *1 (-939)) (-5 *2 (-419 (-1201 *1))) (-5 *3 (-1201 *1)))) (-1941 (*1 *2 *3) (-12 (-4 *1 (-939)) (-5 *2 (-419 (-1201 *1))) (-5 *3 (-1201 *1)))) (-3713 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 (-1201 *1))) (-5 *3 (-1201 *1)) (-4 *1 (-939)))) (-2048 (*1 *2 *3) (|partial| -12 (-5 *3 (-711 *1)) (-4 *1 (-147)) (-4 *1 (-939)) (-5 *2 (-1297 *1)))) (-1964 (*1 *1 *1) (|partial| -12 (-4 *1 (-147)) (-4 *1 (-939)))))
-(-13 (-1252) (-10 -8 (-15 -2704 ((-419 (-1201 $)) (-1201 $))) (-15 -1960 ((-419 (-1201 $)) (-1201 $))) (-15 -1941 ((-419 (-1201 $)) (-1201 $))) (-15 -1882 ((-1201 $) (-1201 $) (-1201 $))) (-15 -3713 ((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $))) (IF (|has| $ (-147)) (PROGN (-15 -2048 ((-3 (-1297 $) "failed") (-711 $))) (-15 -1964 ((-3 $ "failed") $))) |%noBranch|)))
+((-4362 (*1 *2 *2 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-939)))) (-2491 (*1 *2 *3) (-12 (-4 *1 (-939)) (-5 *2 (-419 (-1201 *1))) (-5 *3 (-1201 *1)))) (-3885 (*1 *2 *3) (-12 (-4 *1 (-939)) (-5 *2 (-419 (-1201 *1))) (-5 *3 (-1201 *1)))) (-3690 (*1 *2 *3) (-12 (-4 *1 (-939)) (-5 *2 (-419 (-1201 *1))) (-5 *3 (-1201 *1)))) (-2182 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-663 (-1201 *1))) (-5 *3 (-1201 *1)) (-4 *1 (-939)))) (-2215 (*1 *2 *3) (|partial| -12 (-5 *3 (-711 *1)) (-4 *1 (-147)) (-4 *1 (-939)) (-5 *2 (-1297 *1)))) (-3919 (*1 *1 *1) (|partial| -12 (-4 *1 (-147)) (-4 *1 (-939)))))
+(-13 (-1252) (-10 -8 (-15 -2491 ((-419 (-1201 $)) (-1201 $))) (-15 -3885 ((-419 (-1201 $)) (-1201 $))) (-15 -3690 ((-419 (-1201 $)) (-1201 $))) (-15 -4362 ((-1201 $) (-1201 $) (-1201 $))) (-15 -2182 ((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $))) (IF (|has| $ (-147)) (PROGN (-15 -2215 ((-3 (-1297 $) "failed") (-711 $))) (-15 -3919 ((-3 $ "failed") $))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-302) . T) ((-466) . T) ((-571) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T) ((-1252) . T))
-((-1839 (((-3 (-2 (|:| -3913 (-793)) (|:| -1975 |#5|)) "failed") (-346 |#2| |#3| |#4| |#5|)) 77 T ELT)) (-3723 (((-114) (-346 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-3913 (((-3 (-793) "failed") (-346 |#2| |#3| |#4| |#5|)) 15 T ELT)))
-(((-940 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3913 ((-3 (-793) "failed") (-346 |#2| |#3| |#4| |#5|))) (-15 -3723 ((-114) (-346 |#2| |#3| |#4| |#5|))) (-15 -1839 ((-3 (-2 (|:| -3913 (-793)) (|:| -1975 |#5|)) "failed") (-346 |#2| |#3| |#4| |#5|)))) (-13 (-571) (-1069 (-560))) (-435 |#1|) (-1273 |#2|) (-1273 (-421 |#3|)) (-355 |#2| |#3| |#4|)) (T -940))
-((-1839 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-2 (|:| -3913 (-793)) (|:| -1975 *8))) (-5 *1 (-940 *4 *5 *6 *7 *8)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-114)) (-5 *1 (-940 *4 *5 *6 *7 *8)))) (-3913 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-793)) (-5 *1 (-940 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3913 ((-3 (-793) "failed") (-346 |#2| |#3| |#4| |#5|))) (-15 -3723 ((-114) (-346 |#2| |#3| |#4| |#5|))) (-15 -1839 ((-3 (-2 (|:| -3913 (-793)) (|:| -1975 |#5|)) "failed") (-346 |#2| |#3| |#4| |#5|))))
-((-1839 (((-3 (-2 (|:| -3913 (-793)) (|:| -1975 |#3|)) "failed") (-346 (-421 (-560)) |#1| |#2| |#3|)) 64 T ELT)) (-3723 (((-114) (-346 (-421 (-560)) |#1| |#2| |#3|)) 16 T ELT)) (-3913 (((-3 (-793) "failed") (-346 (-421 (-560)) |#1| |#2| |#3|)) 14 T ELT)))
-(((-941 |#1| |#2| |#3|) (-10 -7 (-15 -3913 ((-3 (-793) "failed") (-346 (-421 (-560)) |#1| |#2| |#3|))) (-15 -3723 ((-114) (-346 (-421 (-560)) |#1| |#2| |#3|))) (-15 -1839 ((-3 (-2 (|:| -3913 (-793)) (|:| -1975 |#3|)) "failed") (-346 (-421 (-560)) |#1| |#2| |#3|)))) (-1273 (-421 (-560))) (-1273 (-421 |#1|)) (-355 (-421 (-560)) |#1| |#2|)) (T -941))
-((-1839 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 (-421 (-560)) *4 *5 *6)) (-4 *4 (-1273 (-421 (-560)))) (-4 *5 (-1273 (-421 *4))) (-4 *6 (-355 (-421 (-560)) *4 *5)) (-5 *2 (-2 (|:| -3913 (-793)) (|:| -1975 *6))) (-5 *1 (-941 *4 *5 *6)))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-346 (-421 (-560)) *4 *5 *6)) (-4 *4 (-1273 (-421 (-560)))) (-4 *5 (-1273 (-421 *4))) (-4 *6 (-355 (-421 (-560)) *4 *5)) (-5 *2 (-114)) (-5 *1 (-941 *4 *5 *6)))) (-3913 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 (-421 (-560)) *4 *5 *6)) (-4 *4 (-1273 (-421 (-560)))) (-4 *5 (-1273 (-421 *4))) (-4 *6 (-355 (-421 (-560)) *4 *5)) (-5 *2 (-793)) (-5 *1 (-941 *4 *5 *6)))))
-(-10 -7 (-15 -3913 ((-3 (-793) "failed") (-346 (-421 (-560)) |#1| |#2| |#3|))) (-15 -3723 ((-114) (-346 (-421 (-560)) |#1| |#2| |#3|))) (-15 -1839 ((-3 (-2 (|:| -3913 (-793)) (|:| -1975 |#3|)) "failed") (-346 (-421 (-560)) |#1| |#2| |#3|))))
-((-3566 ((|#2| |#2|) 26 T ELT)) (-3652 (((-560) (-663 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))))) 15 T ELT)) (-2035 (((-948) (-560)) 38 T ELT)) (-3008 (((-560) |#2|) 45 T ELT)) (-3830 (((-560) |#2|) 21 T ELT) (((-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))) |#1|) 20 T ELT)))
-(((-942 |#1| |#2|) (-10 -7 (-15 -2035 ((-948) (-560))) (-15 -3830 ((-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))) |#1|)) (-15 -3830 ((-560) |#2|)) (-15 -3652 ((-560) (-663 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560)))))) (-15 -3008 ((-560) |#2|)) (-15 -3566 (|#2| |#2|))) (-1273 (-421 (-560))) (-1273 (-421 |#1|))) (T -942))
-((-3566 (*1 *2 *2) (-12 (-4 *3 (-1273 (-421 (-560)))) (-5 *1 (-942 *3 *2)) (-4 *2 (-1273 (-421 *3))))) (-3008 (*1 *2 *3) (-12 (-4 *4 (-1273 (-421 *2))) (-5 *2 (-560)) (-5 *1 (-942 *4 *3)) (-4 *3 (-1273 (-421 *4))))) (-3652 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))))) (-4 *4 (-1273 (-421 *2))) (-5 *2 (-560)) (-5 *1 (-942 *4 *5)) (-4 *5 (-1273 (-421 *4))))) (-3830 (*1 *2 *3) (-12 (-4 *4 (-1273 (-421 *2))) (-5 *2 (-560)) (-5 *1 (-942 *4 *3)) (-4 *3 (-1273 (-421 *4))))) (-3830 (*1 *2 *3) (-12 (-4 *3 (-1273 (-421 (-560)))) (-5 *2 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560)))) (-5 *1 (-942 *3 *4)) (-4 *4 (-1273 (-421 *3))))) (-2035 (*1 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-1273 (-421 *3))) (-5 *2 (-948)) (-5 *1 (-942 *4 *5)) (-4 *5 (-1273 (-421 *4))))))
-(-10 -7 (-15 -2035 ((-948) (-560))) (-15 -3830 ((-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))) |#1|)) (-15 -3830 ((-560) |#2|)) (-15 -3652 ((-560) (-663 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560)))))) (-15 -3008 ((-560) |#2|)) (-15 -3566 (|#2| |#2|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3941 ((|#1| $) 100 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-1478 (($ $ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) 94 T ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-2681 (($ |#1| (-419 |#1|)) 92 T ELT)) (-1999 (((-1201 |#1|) |#1| |#1|) 53 T ELT)) (-4117 (($ $) 61 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-2457 (((-560) $) 97 T ELT)) (-4277 (($ $ (-560)) 99 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3109 ((|#1| $) 96 T ELT)) (-1913 (((-419 |#1|) $) 95 T ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) 93 T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-3697 (($ $) 50 T ELT)) (-1578 (((-887) $) 124 T ELT) (($ (-560)) 73 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) 41 T ELT) (((-421 |#1|) $) 78 T ELT) (($ (-421 (-419 |#1|))) 86 T ELT)) (-2930 (((-793)) 71 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2001 (($) 26 T CONST)) (-2011 (($) 15 T CONST)) (-2473 (((-114) $ $) 87 T ELT)) (-2594 (($ $ $) NIL T ELT)) (-2580 (($ $) 108 T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 49 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 110 T ELT) (($ $ $) 48 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ |#1| $) 109 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-943 |#1|) (-13 (-376) (-38 |#1|) (-10 -8 (-15 -1578 ((-421 |#1|) $)) (-15 -1578 ($ (-421 (-419 |#1|)))) (-15 -3697 ($ $)) (-15 -1913 ((-419 |#1|) $)) (-15 -3109 (|#1| $)) (-15 -4277 ($ $ (-560))) (-15 -2457 ((-560) $)) (-15 -1999 ((-1201 |#1|) |#1| |#1|)) (-15 -4117 ($ $)) (-15 -2681 ($ |#1| (-419 |#1|))) (-15 -3941 (|#1| $)))) (-319)) (T -943))
-((-1578 (*1 *2 *1) (-12 (-5 *2 (-421 *3)) (-5 *1 (-943 *3)) (-4 *3 (-319)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-421 (-419 *3))) (-4 *3 (-319)) (-5 *1 (-943 *3)))) (-3697 (*1 *1 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319)))) (-1913 (*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-943 *3)) (-4 *3 (-319)))) (-3109 (*1 *2 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319)))) (-4277 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-943 *3)) (-4 *3 (-319)))) (-2457 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-943 *3)) (-4 *3 (-319)))) (-1999 (*1 *2 *3 *3) (-12 (-5 *2 (-1201 *3)) (-5 *1 (-943 *3)) (-4 *3 (-319)))) (-4117 (*1 *1 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319)))) (-2681 (*1 *1 *2 *3) (-12 (-5 *3 (-419 *2)) (-4 *2 (-319)) (-5 *1 (-943 *2)))) (-3941 (*1 *2 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319)))))
-(-13 (-376) (-38 |#1|) (-10 -8 (-15 -1578 ((-421 |#1|) $)) (-15 -1578 ($ (-421 (-419 |#1|)))) (-15 -3697 ($ $)) (-15 -1913 ((-419 |#1|) $)) (-15 -3109 (|#1| $)) (-15 -4277 ($ $ (-560))) (-15 -2457 ((-560) $)) (-15 -1999 ((-1201 |#1|) |#1| |#1|)) (-15 -4117 ($ $)) (-15 -2681 ($ |#1| (-419 |#1|))) (-15 -3941 (|#1| $))))
-((-2681 (((-51) (-975 |#1|) (-419 (-975 |#1|)) (-1207)) 17 T ELT) (((-51) (-421 (-975 |#1|)) (-1207)) 18 T ELT)))
-(((-944 |#1|) (-10 -7 (-15 -2681 ((-51) (-421 (-975 |#1|)) (-1207))) (-15 -2681 ((-51) (-975 |#1|) (-419 (-975 |#1|)) (-1207)))) (-13 (-319) (-149))) (T -944))
-((-2681 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-419 (-975 *6))) (-5 *5 (-1207)) (-5 *3 (-975 *6)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-944 *6)))) (-2681 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-944 *5)))))
-(-10 -7 (-15 -2681 ((-51) (-421 (-975 |#1|)) (-1207))) (-15 -2681 ((-51) (-975 |#1|) (-419 (-975 |#1|)) (-1207))))
-((-3060 ((|#4| (-663 |#4|)) 147 T ELT) (((-1201 |#4|) (-1201 |#4|) (-1201 |#4|)) 84 T ELT) ((|#4| |#4| |#4|) 146 T ELT)) (-2132 (((-1201 |#4|) (-663 (-1201 |#4|))) 140 T ELT) (((-1201 |#4|) (-1201 |#4|) (-1201 |#4|)) 61 T ELT) ((|#4| (-663 |#4|)) 69 T ELT) ((|#4| |#4| |#4|) 107 T ELT)))
-(((-945 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2132 (|#4| |#4| |#4|)) (-15 -2132 (|#4| (-663 |#4|))) (-15 -2132 ((-1201 |#4|) (-1201 |#4|) (-1201 |#4|))) (-15 -2132 ((-1201 |#4|) (-663 (-1201 |#4|)))) (-15 -3060 (|#4| |#4| |#4|)) (-15 -3060 ((-1201 |#4|) (-1201 |#4|) (-1201 |#4|))) (-15 -3060 (|#4| (-663 |#4|)))) (-815) (-871) (-319) (-979 |#3| |#1| |#2|)) (T -945))
-((-3060 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-979 *6 *4 *5)) (-5 *1 (-945 *4 *5 *6 *2)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)))) (-3060 (*1 *2 *2 *2) (-12 (-5 *2 (-1201 *6)) (-4 *6 (-979 *5 *3 *4)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-319)) (-5 *1 (-945 *3 *4 *5 *6)))) (-3060 (*1 *2 *2 *2) (-12 (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-319)) (-5 *1 (-945 *3 *4 *5 *2)) (-4 *2 (-979 *5 *3 *4)))) (-2132 (*1 *2 *3) (-12 (-5 *3 (-663 (-1201 *7))) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) (-5 *2 (-1201 *7)) (-5 *1 (-945 *4 *5 *6 *7)) (-4 *7 (-979 *6 *4 *5)))) (-2132 (*1 *2 *2 *2) (-12 (-5 *2 (-1201 *6)) (-4 *6 (-979 *5 *3 *4)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-319)) (-5 *1 (-945 *3 *4 *5 *6)))) (-2132 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-979 *6 *4 *5)) (-5 *1 (-945 *4 *5 *6 *2)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)))) (-2132 (*1 *2 *2 *2) (-12 (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-319)) (-5 *1 (-945 *3 *4 *5 *2)) (-4 *2 (-979 *5 *3 *4)))))
-(-10 -7 (-15 -2132 (|#4| |#4| |#4|)) (-15 -2132 (|#4| (-663 |#4|))) (-15 -2132 ((-1201 |#4|) (-1201 |#4|) (-1201 |#4|))) (-15 -2132 ((-1201 |#4|) (-663 (-1201 |#4|)))) (-15 -3060 (|#4| |#4| |#4|)) (-15 -3060 ((-1201 |#4|) (-1201 |#4|) (-1201 |#4|))) (-15 -3060 (|#4| (-663 |#4|))))
-((-1531 (((-934 (-560)) (-1002)) 38 T ELT) (((-934 (-560)) (-663 (-560))) 34 T ELT)) (-3541 (((-934 (-560)) (-663 (-560))) 67 T ELT) (((-934 (-560)) (-948)) 68 T ELT)) (-3906 (((-934 (-560))) 39 T ELT)) (-4136 (((-934 (-560))) 53 T ELT) (((-934 (-560)) (-663 (-560))) 52 T ELT)) (-3459 (((-934 (-560))) 51 T ELT) (((-934 (-560)) (-663 (-560))) 50 T ELT)) (-2151 (((-934 (-560))) 49 T ELT) (((-934 (-560)) (-663 (-560))) 48 T ELT)) (-3214 (((-934 (-560))) 47 T ELT) (((-934 (-560)) (-663 (-560))) 46 T ELT)) (-3678 (((-934 (-560))) 45 T ELT) (((-934 (-560)) (-663 (-560))) 44 T ELT)) (-2428 (((-934 (-560))) 55 T ELT) (((-934 (-560)) (-663 (-560))) 54 T ELT)) (-4268 (((-934 (-560)) (-663 (-560))) 72 T ELT) (((-934 (-560)) (-948)) 74 T ELT)) (-3380 (((-934 (-560)) (-663 (-560))) 69 T ELT) (((-934 (-560)) (-948)) 70 T ELT)) (-4098 (((-934 (-560)) (-663 (-560))) 65 T ELT) (((-934 (-560)) (-948)) 66 T ELT)) (-4109 (((-934 (-560)) (-663 (-948))) 57 T ELT)))
-(((-946) (-10 -7 (-15 -3541 ((-934 (-560)) (-948))) (-15 -3541 ((-934 (-560)) (-663 (-560)))) (-15 -4098 ((-934 (-560)) (-948))) (-15 -4098 ((-934 (-560)) (-663 (-560)))) (-15 -4109 ((-934 (-560)) (-663 (-948)))) (-15 -3380 ((-934 (-560)) (-948))) (-15 -3380 ((-934 (-560)) (-663 (-560)))) (-15 -4268 ((-934 (-560)) (-948))) (-15 -4268 ((-934 (-560)) (-663 (-560)))) (-15 -3678 ((-934 (-560)) (-663 (-560)))) (-15 -3678 ((-934 (-560)))) (-15 -3214 ((-934 (-560)) (-663 (-560)))) (-15 -3214 ((-934 (-560)))) (-15 -2151 ((-934 (-560)) (-663 (-560)))) (-15 -2151 ((-934 (-560)))) (-15 -3459 ((-934 (-560)) (-663 (-560)))) (-15 -3459 ((-934 (-560)))) (-15 -4136 ((-934 (-560)) (-663 (-560)))) (-15 -4136 ((-934 (-560)))) (-15 -2428 ((-934 (-560)) (-663 (-560)))) (-15 -2428 ((-934 (-560)))) (-15 -3906 ((-934 (-560)))) (-15 -1531 ((-934 (-560)) (-663 (-560)))) (-15 -1531 ((-934 (-560)) (-1002))))) (T -946))
-((-1531 (*1 *2 *3) (-12 (-5 *3 (-1002)) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-1531 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-3906 (*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-2428 (*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-2428 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-4136 (*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-4136 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-3459 (*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-2151 (*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-3214 (*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-3214 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-3678 (*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-3678 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-4268 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-4268 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-3380 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-3380 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-4109 (*1 *2 *3) (-12 (-5 *3 (-663 (-948))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-4098 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-4098 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-3541 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-3541 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
-(-10 -7 (-15 -3541 ((-934 (-560)) (-948))) (-15 -3541 ((-934 (-560)) (-663 (-560)))) (-15 -4098 ((-934 (-560)) (-948))) (-15 -4098 ((-934 (-560)) (-663 (-560)))) (-15 -4109 ((-934 (-560)) (-663 (-948)))) (-15 -3380 ((-934 (-560)) (-948))) (-15 -3380 ((-934 (-560)) (-663 (-560)))) (-15 -4268 ((-934 (-560)) (-948))) (-15 -4268 ((-934 (-560)) (-663 (-560)))) (-15 -3678 ((-934 (-560)) (-663 (-560)))) (-15 -3678 ((-934 (-560)))) (-15 -3214 ((-934 (-560)) (-663 (-560)))) (-15 -3214 ((-934 (-560)))) (-15 -2151 ((-934 (-560)) (-663 (-560)))) (-15 -2151 ((-934 (-560)))) (-15 -3459 ((-934 (-560)) (-663 (-560)))) (-15 -3459 ((-934 (-560)))) (-15 -4136 ((-934 (-560)) (-663 (-560)))) (-15 -4136 ((-934 (-560)))) (-15 -2428 ((-934 (-560)) (-663 (-560)))) (-15 -2428 ((-934 (-560)))) (-15 -3906 ((-934 (-560)))) (-15 -1531 ((-934 (-560)) (-663 (-560)))) (-15 -1531 ((-934 (-560)) (-1002))))
-((-3452 (((-663 (-975 |#1|)) (-663 (-975 |#1|)) (-663 (-1207))) 14 T ELT)) (-1802 (((-663 (-975 |#1|)) (-663 (-975 |#1|)) (-663 (-1207))) 13 T ELT)))
-(((-947 |#1|) (-10 -7 (-15 -1802 ((-663 (-975 |#1|)) (-663 (-975 |#1|)) (-663 (-1207)))) (-15 -3452 ((-663 (-975 |#1|)) (-663 (-975 |#1|)) (-663 (-1207))))) (-466)) (T -947))
-((-3452 (*1 *2 *2 *3) (-12 (-5 *2 (-663 (-975 *4))) (-5 *3 (-663 (-1207))) (-4 *4 (-466)) (-5 *1 (-947 *4)))) (-1802 (*1 *2 *2 *3) (-12 (-5 *2 (-663 (-975 *4))) (-5 *3 (-663 (-1207))) (-4 *4 (-466)) (-5 *1 (-947 *4)))))
-(-10 -7 (-15 -1802 ((-663 (-975 |#1|)) (-663 (-975 |#1|)) (-663 (-1207)))) (-15 -3452 ((-663 (-975 |#1|)) (-663 (-975 |#1|)) (-663 (-1207)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2132 (($ $ $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2011 (($) NIL T CONST)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-948)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ $ $) NIL T ELT)))
-(((-948) (-13 (-816) (-748) (-10 -8 (-15 -2132 ($ $ $)) (-6 (-4510 "*"))))) (T -948))
-((-2132 (*1 *1 *1 *1) (-5 *1 (-948))))
-(-13 (-816) (-748) (-10 -8 (-15 -2132 ($ $ $)) (-6 (-4510 "*"))))
+((-3952 (((-3 (-2 (|:| -1460 (-793)) (|:| -1608 |#5|)) "failed") (-346 |#2| |#3| |#4| |#5|)) 77 T ELT)) (-2277 (((-114) (-346 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-1460 (((-3 (-793) "failed") (-346 |#2| |#3| |#4| |#5|)) 15 T ELT)))
+(((-940 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1460 ((-3 (-793) "failed") (-346 |#2| |#3| |#4| |#5|))) (-15 -2277 ((-114) (-346 |#2| |#3| |#4| |#5|))) (-15 -3952 ((-3 (-2 (|:| -1460 (-793)) (|:| -1608 |#5|)) "failed") (-346 |#2| |#3| |#4| |#5|)))) (-13 (-571) (-1069 (-560))) (-435 |#1|) (-1273 |#2|) (-1273 (-421 |#3|)) (-355 |#2| |#3| |#4|)) (T -940))
+((-3952 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-2 (|:| -1460 (-793)) (|:| -1608 *8))) (-5 *1 (-940 *4 *5 *6 *7 *8)))) (-2277 (*1 *2 *3) (-12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-114)) (-5 *1 (-940 *4 *5 *6 *7 *8)))) (-1460 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-793)) (-5 *1 (-940 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -1460 ((-3 (-793) "failed") (-346 |#2| |#3| |#4| |#5|))) (-15 -2277 ((-114) (-346 |#2| |#3| |#4| |#5|))) (-15 -3952 ((-3 (-2 (|:| -1460 (-793)) (|:| -1608 |#5|)) "failed") (-346 |#2| |#3| |#4| |#5|))))
+((-3952 (((-3 (-2 (|:| -1460 (-793)) (|:| -1608 |#3|)) "failed") (-346 (-421 (-560)) |#1| |#2| |#3|)) 64 T ELT)) (-2277 (((-114) (-346 (-421 (-560)) |#1| |#2| |#3|)) 16 T ELT)) (-1460 (((-3 (-793) "failed") (-346 (-421 (-560)) |#1| |#2| |#3|)) 14 T ELT)))
+(((-941 |#1| |#2| |#3|) (-10 -7 (-15 -1460 ((-3 (-793) "failed") (-346 (-421 (-560)) |#1| |#2| |#3|))) (-15 -2277 ((-114) (-346 (-421 (-560)) |#1| |#2| |#3|))) (-15 -3952 ((-3 (-2 (|:| -1460 (-793)) (|:| -1608 |#3|)) "failed") (-346 (-421 (-560)) |#1| |#2| |#3|)))) (-1273 (-421 (-560))) (-1273 (-421 |#1|)) (-355 (-421 (-560)) |#1| |#2|)) (T -941))
+((-3952 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 (-421 (-560)) *4 *5 *6)) (-4 *4 (-1273 (-421 (-560)))) (-4 *5 (-1273 (-421 *4))) (-4 *6 (-355 (-421 (-560)) *4 *5)) (-5 *2 (-2 (|:| -1460 (-793)) (|:| -1608 *6))) (-5 *1 (-941 *4 *5 *6)))) (-2277 (*1 *2 *3) (-12 (-5 *3 (-346 (-421 (-560)) *4 *5 *6)) (-4 *4 (-1273 (-421 (-560)))) (-4 *5 (-1273 (-421 *4))) (-4 *6 (-355 (-421 (-560)) *4 *5)) (-5 *2 (-114)) (-5 *1 (-941 *4 *5 *6)))) (-1460 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 (-421 (-560)) *4 *5 *6)) (-4 *4 (-1273 (-421 (-560)))) (-4 *5 (-1273 (-421 *4))) (-4 *6 (-355 (-421 (-560)) *4 *5)) (-5 *2 (-793)) (-5 *1 (-941 *4 *5 *6)))))
+(-10 -7 (-15 -1460 ((-3 (-793) "failed") (-346 (-421 (-560)) |#1| |#2| |#3|))) (-15 -2277 ((-114) (-346 (-421 (-560)) |#1| |#2| |#3|))) (-15 -3952 ((-3 (-2 (|:| -1460 (-793)) (|:| -1608 |#3|)) "failed") (-346 (-421 (-560)) |#1| |#2| |#3|))))
+((-4484 ((|#2| |#2|) 26 T ELT)) (-2815 (((-560) (-663 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))))) 15 T ELT)) (-2112 (((-948) (-560)) 38 T ELT)) (-3726 (((-560) |#2|) 45 T ELT)) (-1959 (((-560) |#2|) 21 T ELT) (((-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))) |#1|) 20 T ELT)))
+(((-942 |#1| |#2|) (-10 -7 (-15 -2112 ((-948) (-560))) (-15 -1959 ((-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))) |#1|)) (-15 -1959 ((-560) |#2|)) (-15 -2815 ((-560) (-663 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560)))))) (-15 -3726 ((-560) |#2|)) (-15 -4484 (|#2| |#2|))) (-1273 (-421 (-560))) (-1273 (-421 |#1|))) (T -942))
+((-4484 (*1 *2 *2) (-12 (-4 *3 (-1273 (-421 (-560)))) (-5 *1 (-942 *3 *2)) (-4 *2 (-1273 (-421 *3))))) (-3726 (*1 *2 *3) (-12 (-4 *4 (-1273 (-421 *2))) (-5 *2 (-560)) (-5 *1 (-942 *4 *3)) (-4 *3 (-1273 (-421 *4))))) (-2815 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))))) (-4 *4 (-1273 (-421 *2))) (-5 *2 (-560)) (-5 *1 (-942 *4 *5)) (-4 *5 (-1273 (-421 *4))))) (-1959 (*1 *2 *3) (-12 (-4 *4 (-1273 (-421 *2))) (-5 *2 (-560)) (-5 *1 (-942 *4 *3)) (-4 *3 (-1273 (-421 *4))))) (-1959 (*1 *2 *3) (-12 (-4 *3 (-1273 (-421 (-560)))) (-5 *2 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560)))) (-5 *1 (-942 *3 *4)) (-4 *4 (-1273 (-421 *3))))) (-2112 (*1 *2 *3) (-12 (-5 *3 (-560)) (-4 *4 (-1273 (-421 *3))) (-5 *2 (-948)) (-5 *1 (-942 *4 *5)) (-4 *5 (-1273 (-421 *4))))))
+(-10 -7 (-15 -2112 ((-948) (-560))) (-15 -1959 ((-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))) |#1|)) (-15 -1959 ((-560) |#2|)) (-15 -2815 ((-560) (-663 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560)))))) (-15 -3726 ((-560) |#2|)) (-15 -4484 (|#2| |#2|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3655 ((|#1| $) 100 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2186 (($ $ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) 94 T ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-2252 (($ |#1| (-419 |#1|)) 92 T ELT)) (-2977 (((-1201 |#1|) |#1| |#1|) 53 T ELT)) (-1660 (($ $) 61 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-1966 (((-560) $) 97 T ELT)) (-3955 (($ $ (-560)) 99 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2274 ((|#1| $) 96 T ELT)) (-3418 (((-419 |#1|) $) 95 T ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) 93 T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3279 (($ $) 50 T ELT)) (-3913 (((-887) $) 124 T ELT) (($ (-560)) 73 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) 41 T ELT) (((-421 |#1|) $) 78 T ELT) (($ (-421 (-419 |#1|))) 86 T ELT)) (-4191 (((-793)) 71 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-1446 (($) 26 T CONST)) (-1456 (($) 15 T CONST)) (-2340 (((-114) $ $) 87 T ELT)) (-2453 (($ $ $) NIL T ELT)) (-2441 (($ $) 108 T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 49 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 110 T ELT) (($ $ $) 48 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ |#1| $) 109 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-943 |#1|) (-13 (-376) (-38 |#1|) (-10 -8 (-15 -3913 ((-421 |#1|) $)) (-15 -3913 ($ (-421 (-419 |#1|)))) (-15 -3279 ($ $)) (-15 -3418 ((-419 |#1|) $)) (-15 -2274 (|#1| $)) (-15 -3955 ($ $ (-560))) (-15 -1966 ((-560) $)) (-15 -2977 ((-1201 |#1|) |#1| |#1|)) (-15 -1660 ($ $)) (-15 -2252 ($ |#1| (-419 |#1|))) (-15 -3655 (|#1| $)))) (-319)) (T -943))
+((-3913 (*1 *2 *1) (-12 (-5 *2 (-421 *3)) (-5 *1 (-943 *3)) (-4 *3 (-319)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-421 (-419 *3))) (-4 *3 (-319)) (-5 *1 (-943 *3)))) (-3279 (*1 *1 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319)))) (-3418 (*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-943 *3)) (-4 *3 (-319)))) (-2274 (*1 *2 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319)))) (-3955 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-943 *3)) (-4 *3 (-319)))) (-1966 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-943 *3)) (-4 *3 (-319)))) (-2977 (*1 *2 *3 *3) (-12 (-5 *2 (-1201 *3)) (-5 *1 (-943 *3)) (-4 *3 (-319)))) (-1660 (*1 *1 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319)))) (-2252 (*1 *1 *2 *3) (-12 (-5 *3 (-419 *2)) (-4 *2 (-319)) (-5 *1 (-943 *2)))) (-3655 (*1 *2 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319)))))
+(-13 (-376) (-38 |#1|) (-10 -8 (-15 -3913 ((-421 |#1|) $)) (-15 -3913 ($ (-421 (-419 |#1|)))) (-15 -3279 ($ $)) (-15 -3418 ((-419 |#1|) $)) (-15 -2274 (|#1| $)) (-15 -3955 ($ $ (-560))) (-15 -1966 ((-560) $)) (-15 -2977 ((-1201 |#1|) |#1| |#1|)) (-15 -1660 ($ $)) (-15 -2252 ($ |#1| (-419 |#1|))) (-15 -3655 (|#1| $))))
+((-2252 (((-51) (-975 |#1|) (-419 (-975 |#1|)) (-1207)) 17 T ELT) (((-51) (-421 (-975 |#1|)) (-1207)) 18 T ELT)))
+(((-944 |#1|) (-10 -7 (-15 -2252 ((-51) (-421 (-975 |#1|)) (-1207))) (-15 -2252 ((-51) (-975 |#1|) (-419 (-975 |#1|)) (-1207)))) (-13 (-319) (-149))) (T -944))
+((-2252 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-419 (-975 *6))) (-5 *5 (-1207)) (-5 *3 (-975 *6)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-944 *6)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-944 *5)))))
+(-10 -7 (-15 -2252 ((-51) (-421 (-975 |#1|)) (-1207))) (-15 -2252 ((-51) (-975 |#1|) (-419 (-975 |#1|)) (-1207))))
+((-3001 ((|#4| (-663 |#4|)) 147 T ELT) (((-1201 |#4|) (-1201 |#4|) (-1201 |#4|)) 84 T ELT) ((|#4| |#4| |#4|) 146 T ELT)) (-1938 (((-1201 |#4|) (-663 (-1201 |#4|))) 140 T ELT) (((-1201 |#4|) (-1201 |#4|) (-1201 |#4|)) 61 T ELT) ((|#4| (-663 |#4|)) 69 T ELT) ((|#4| |#4| |#4|) 107 T ELT)))
+(((-945 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1938 (|#4| |#4| |#4|)) (-15 -1938 (|#4| (-663 |#4|))) (-15 -1938 ((-1201 |#4|) (-1201 |#4|) (-1201 |#4|))) (-15 -1938 ((-1201 |#4|) (-663 (-1201 |#4|)))) (-15 -3001 (|#4| |#4| |#4|)) (-15 -3001 ((-1201 |#4|) (-1201 |#4|) (-1201 |#4|))) (-15 -3001 (|#4| (-663 |#4|)))) (-815) (-871) (-319) (-979 |#3| |#1| |#2|)) (T -945))
+((-3001 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-979 *6 *4 *5)) (-5 *1 (-945 *4 *5 *6 *2)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)))) (-3001 (*1 *2 *2 *2) (-12 (-5 *2 (-1201 *6)) (-4 *6 (-979 *5 *3 *4)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-319)) (-5 *1 (-945 *3 *4 *5 *6)))) (-3001 (*1 *2 *2 *2) (-12 (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-319)) (-5 *1 (-945 *3 *4 *5 *2)) (-4 *2 (-979 *5 *3 *4)))) (-1938 (*1 *2 *3) (-12 (-5 *3 (-663 (-1201 *7))) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) (-5 *2 (-1201 *7)) (-5 *1 (-945 *4 *5 *6 *7)) (-4 *7 (-979 *6 *4 *5)))) (-1938 (*1 *2 *2 *2) (-12 (-5 *2 (-1201 *6)) (-4 *6 (-979 *5 *3 *4)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-319)) (-5 *1 (-945 *3 *4 *5 *6)))) (-1938 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-979 *6 *4 *5)) (-5 *1 (-945 *4 *5 *6 *2)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)))) (-1938 (*1 *2 *2 *2) (-12 (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-319)) (-5 *1 (-945 *3 *4 *5 *2)) (-4 *2 (-979 *5 *3 *4)))))
+(-10 -7 (-15 -1938 (|#4| |#4| |#4|)) (-15 -1938 (|#4| (-663 |#4|))) (-15 -1938 ((-1201 |#4|) (-1201 |#4|) (-1201 |#4|))) (-15 -1938 ((-1201 |#4|) (-663 (-1201 |#4|)))) (-15 -3001 (|#4| |#4| |#4|)) (-15 -3001 ((-1201 |#4|) (-1201 |#4|) (-1201 |#4|))) (-15 -3001 (|#4| (-663 |#4|))))
+((-2447 (((-934 (-560)) (-1002)) 38 T ELT) (((-934 (-560)) (-663 (-560))) 34 T ELT)) (-4232 (((-934 (-560)) (-663 (-560))) 67 T ELT) (((-934 (-560)) (-948)) 68 T ELT)) (-1389 (((-934 (-560))) 39 T ELT)) (-1865 (((-934 (-560))) 53 T ELT) (((-934 (-560)) (-663 (-560))) 52 T ELT)) (-1484 (((-934 (-560))) 51 T ELT) (((-934 (-560)) (-663 (-560))) 50 T ELT)) (-2002 (((-934 (-560))) 49 T ELT) (((-934 (-560)) (-663 (-560))) 48 T ELT)) (-4058 (((-934 (-560))) 47 T ELT) (((-934 (-560)) (-663 (-560))) 46 T ELT)) (-3096 (((-934 (-560))) 45 T ELT) (((-934 (-560)) (-663 (-560))) 44 T ELT)) (-1659 (((-934 (-560))) 55 T ELT) (((-934 (-560)) (-663 (-560))) 54 T ELT)) (-3876 (((-934 (-560)) (-663 (-560))) 72 T ELT) (((-934 (-560)) (-948)) 74 T ELT)) (-3226 (((-934 (-560)) (-663 (-560))) 69 T ELT) (((-934 (-560)) (-948)) 70 T ELT)) (-2710 (((-934 (-560)) (-663 (-560))) 65 T ELT) (((-934 (-560)) (-948)) 66 T ELT)) (-1577 (((-934 (-560)) (-663 (-948))) 57 T ELT)))
+(((-946) (-10 -7 (-15 -4232 ((-934 (-560)) (-948))) (-15 -4232 ((-934 (-560)) (-663 (-560)))) (-15 -2710 ((-934 (-560)) (-948))) (-15 -2710 ((-934 (-560)) (-663 (-560)))) (-15 -1577 ((-934 (-560)) (-663 (-948)))) (-15 -3226 ((-934 (-560)) (-948))) (-15 -3226 ((-934 (-560)) (-663 (-560)))) (-15 -3876 ((-934 (-560)) (-948))) (-15 -3876 ((-934 (-560)) (-663 (-560)))) (-15 -3096 ((-934 (-560)) (-663 (-560)))) (-15 -3096 ((-934 (-560)))) (-15 -4058 ((-934 (-560)) (-663 (-560)))) (-15 -4058 ((-934 (-560)))) (-15 -2002 ((-934 (-560)) (-663 (-560)))) (-15 -2002 ((-934 (-560)))) (-15 -1484 ((-934 (-560)) (-663 (-560)))) (-15 -1484 ((-934 (-560)))) (-15 -1865 ((-934 (-560)) (-663 (-560)))) (-15 -1865 ((-934 (-560)))) (-15 -1659 ((-934 (-560)) (-663 (-560)))) (-15 -1659 ((-934 (-560)))) (-15 -1389 ((-934 (-560)))) (-15 -2447 ((-934 (-560)) (-663 (-560)))) (-15 -2447 ((-934 (-560)) (-1002))))) (T -946))
+((-2447 (*1 *2 *3) (-12 (-5 *3 (-1002)) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-1389 (*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-1659 (*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-1865 (*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-1865 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-1484 (*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-1484 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-2002 (*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-2002 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-4058 (*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-4058 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-3096 (*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-3096 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-3876 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-3876 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-3226 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-663 (-948))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-2710 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-4232 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))) (-4232 (*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
+(-10 -7 (-15 -4232 ((-934 (-560)) (-948))) (-15 -4232 ((-934 (-560)) (-663 (-560)))) (-15 -2710 ((-934 (-560)) (-948))) (-15 -2710 ((-934 (-560)) (-663 (-560)))) (-15 -1577 ((-934 (-560)) (-663 (-948)))) (-15 -3226 ((-934 (-560)) (-948))) (-15 -3226 ((-934 (-560)) (-663 (-560)))) (-15 -3876 ((-934 (-560)) (-948))) (-15 -3876 ((-934 (-560)) (-663 (-560)))) (-15 -3096 ((-934 (-560)) (-663 (-560)))) (-15 -3096 ((-934 (-560)))) (-15 -4058 ((-934 (-560)) (-663 (-560)))) (-15 -4058 ((-934 (-560)))) (-15 -2002 ((-934 (-560)) (-663 (-560)))) (-15 -2002 ((-934 (-560)))) (-15 -1484 ((-934 (-560)) (-663 (-560)))) (-15 -1484 ((-934 (-560)))) (-15 -1865 ((-934 (-560)) (-663 (-560)))) (-15 -1865 ((-934 (-560)))) (-15 -1659 ((-934 (-560)) (-663 (-560)))) (-15 -1659 ((-934 (-560)))) (-15 -1389 ((-934 (-560)))) (-15 -2447 ((-934 (-560)) (-663 (-560)))) (-15 -2447 ((-934 (-560)) (-1002))))
+((-2639 (((-663 (-975 |#1|)) (-663 (-975 |#1|)) (-663 (-1207))) 14 T ELT)) (-1596 (((-663 (-975 |#1|)) (-663 (-975 |#1|)) (-663 (-1207))) 13 T ELT)))
+(((-947 |#1|) (-10 -7 (-15 -1596 ((-663 (-975 |#1|)) (-663 (-975 |#1|)) (-663 (-1207)))) (-15 -2639 ((-663 (-975 |#1|)) (-663 (-975 |#1|)) (-663 (-1207))))) (-466)) (T -947))
+((-2639 (*1 *2 *2 *3) (-12 (-5 *2 (-663 (-975 *4))) (-5 *3 (-663 (-1207))) (-4 *4 (-466)) (-5 *1 (-947 *4)))) (-1596 (*1 *2 *2 *3) (-12 (-5 *2 (-663 (-975 *4))) (-5 *3 (-663 (-1207))) (-4 *4 (-466)) (-5 *1 (-947 *4)))))
+(-10 -7 (-15 -1596 ((-663 (-975 |#1|)) (-663 (-975 |#1|)) (-663 (-1207)))) (-15 -2639 ((-663 (-975 |#1|)) (-663 (-975 |#1|)) (-663 (-1207)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1938 (($ $ $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1456 (($) NIL T CONST)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-948)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ $ $) NIL T ELT)))
+(((-948) (-13 (-816) (-748) (-10 -8 (-15 -1938 ($ $ $)) (-6 (-4510 "*"))))) (T -948))
+((-1938 (*1 *1 *1 *1) (-5 *1 (-948))))
+(-13 (-816) (-748) (-10 -8 (-15 -1938 ($ $ $)) (-6 (-4510 "*"))))
((|NonNegativeInteger|) (|%ilt| 0 |#1|))
-((-1578 (((-326 |#1|) (-491)) 16 T ELT)))
-(((-949 |#1|) (-10 -7 (-15 -1578 ((-326 |#1|) (-491)))) (-571)) (T -949))
-((-1578 (*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-326 *4)) (-5 *1 (-949 *4)) (-4 *4 (-571)))))
-(-10 -7 (-15 -1578 ((-326 |#1|) (-491))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-3244 (($ $) 46 T ELT)) (-4093 (((-114) $) 44 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 57 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-2093 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-2132 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-1528 (((-3 $ "failed") $ $) 48 T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 45 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
+((-3913 (((-326 |#1|) (-491)) 16 T ELT)))
+(((-949 |#1|) (-10 -7 (-15 -3913 ((-326 |#1|) (-491)))) (-571)) (T -949))
+((-3913 (*1 *2 *3) (-12 (-5 *3 (-491)) (-5 *2 (-326 *4)) (-5 *1 (-949 *4)) (-4 *4 (-571)))))
+(-10 -7 (-15 -3913 ((-326 |#1|) (-491))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-4366 (($ $) 46 T ELT)) (-2667 (((-114) $) 44 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 57 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-1861 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-1938 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-2233 (((-3 $ "failed") $ $) 48 T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 45 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
(((-950) (-142)) (T -950))
-((-2950 (*1 *2 *3) (-12 (-4 *1 (-950)) (-5 *2 (-2 (|:| -2115 (-663 *1)) (|:| -2748 *1))) (-5 *3 (-663 *1)))) (-2661 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-663 *1)) (-4 *1 (-950)))))
-(-13 (-466) (-10 -8 (-15 -2950 ((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $))) (-15 -2661 ((-3 (-663 $) "failed") (-663 $) $))))
+((-4382 (*1 *2 *3) (-12 (-4 *1 (-950)) (-5 *2 (-2 (|:| -2625 (-663 *1)) (|:| -3583 *1))) (-5 *3 (-663 *1)))) (-3291 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-663 *1)) (-4 *1 (-950)))))
+(-13 (-466) (-10 -8 (-15 -4382 ((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $))) (-15 -3291 ((-3 (-663 $) "failed") (-663 $) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-302) . T) ((-466) . T) ((-571) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-3866 (((-1201 |#2|) (-663 |#2|) (-663 |#2|)) 17 T ELT) (((-1266 |#1| |#2|) (-1266 |#1| |#2|) (-663 |#2|) (-663 |#2|)) 13 T ELT)))
-(((-951 |#1| |#2|) (-10 -7 (-15 -3866 ((-1266 |#1| |#2|) (-1266 |#1| |#2|) (-663 |#2|) (-663 |#2|))) (-15 -3866 ((-1201 |#2|) (-663 |#2|) (-663 |#2|)))) (-1207) (-376)) (T -951))
-((-3866 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *5)) (-4 *5 (-376)) (-5 *2 (-1201 *5)) (-5 *1 (-951 *4 *5)) (-14 *4 (-1207)))) (-3866 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1266 *4 *5)) (-5 *3 (-663 *5)) (-14 *4 (-1207)) (-4 *5 (-376)) (-5 *1 (-951 *4 *5)))))
-(-10 -7 (-15 -3866 ((-1266 |#1| |#2|) (-1266 |#1| |#2|) (-663 |#2|) (-663 |#2|))) (-15 -3866 ((-1201 |#2|) (-663 |#2|) (-663 |#2|))))
-((-2014 ((|#2| (-663 |#1|) (-663 |#1|)) 28 T ELT)))
-(((-952 |#1| |#2|) (-10 -7 (-15 -2014 (|#2| (-663 |#1|) (-663 |#1|)))) (-376) (-1273 |#1|)) (T -952))
-((-2014 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-376)) (-4 *2 (-1273 *4)) (-5 *1 (-952 *4 *2)))))
-(-10 -7 (-15 -2014 (|#2| (-663 |#1|) (-663 |#1|))))
-((-4146 (((-560) (-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-1189)) 174 T ELT)) (-3974 ((|#4| |#4|) 193 T ELT)) (-2989 (((-663 (-421 (-975 |#1|))) (-663 (-1207))) 146 T ELT)) (-3510 (((-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))) (-711 |#4|) (-663 (-421 (-975 |#1|))) (-663 (-663 |#4|)) (-793) (-793) (-560)) 88 T ELT)) (-4451 (((-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|)))))) (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|)))))) (-663 |#4|)) 69 T ELT)) (-1988 (((-711 |#4|) (-711 |#4|) (-663 |#4|)) 65 T ELT)) (-2237 (((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-1189)) 186 T ELT)) (-2701 (((-560) (-711 |#4|) (-948) (-1189)) 166 T ELT) (((-560) (-711 |#4|) (-663 (-1207)) (-948) (-1189)) 165 T ELT) (((-560) (-711 |#4|) (-663 |#4|) (-948) (-1189)) 164 T ELT) (((-560) (-711 |#4|) (-1189)) 154 T ELT) (((-560) (-711 |#4|) (-663 (-1207)) (-1189)) 153 T ELT) (((-560) (-711 |#4|) (-663 |#4|) (-1189)) 152 T ELT) (((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-948)) 151 T ELT) (((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 (-1207)) (-948)) 150 T ELT) (((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 |#4|) (-948)) 149 T ELT) (((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|)) 148 T ELT) (((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 (-1207))) 147 T ELT) (((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 |#4|)) 143 T ELT)) (-3810 ((|#4| (-975 |#1|)) 80 T ELT)) (-1808 (((-114) (-663 |#4|) (-663 (-663 |#4|))) 190 T ELT)) (-4016 (((-663 (-663 (-560))) (-560) (-560)) 159 T ELT)) (-3108 (((-663 (-663 |#4|)) (-663 (-663 |#4|))) 106 T ELT)) (-3937 (((-793) (-663 (-2 (|:| -2326 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|))))) 100 T ELT)) (-2826 (((-793) (-663 (-2 (|:| -2326 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|))))) 99 T ELT)) (-2918 (((-114) (-663 (-975 |#1|))) 19 T ELT) (((-114) (-663 |#4|)) 15 T ELT)) (-1680 (((-2 (|:| |sysok| (-114)) (|:| |z0| (-663 |#4|)) (|:| |n0| (-663 |#4|))) (-663 |#4|) (-663 |#4|)) 84 T ELT)) (-4051 (((-663 |#4|) |#4|) 57 T ELT)) (-3636 (((-663 (-421 (-975 |#1|))) (-663 |#4|)) 142 T ELT) (((-711 (-421 (-975 |#1|))) (-711 |#4|)) 66 T ELT) (((-421 (-975 |#1|)) |#4|) 139 T ELT)) (-1658 (((-2 (|:| |rgl| (-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|)))))))))) (|:| |rgsz| (-560))) (-711 |#4|) (-663 (-421 (-975 |#1|))) (-793) (-1189) (-560)) 112 T ELT)) (-4194 (((-663 (-2 (|:| -2326 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|)))) (-711 |#4|) (-793)) 98 T ELT)) (-3342 (((-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560))))) (-711 |#4|) (-793)) 121 T ELT)) (-2596 (((-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|)))))) (-2 (|:| -3822 (-711 (-421 (-975 |#1|)))) (|:| |vec| (-663 (-421 (-975 |#1|)))) (|:| -2326 (-793)) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560))))) 56 T ELT)))
-(((-953 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2701 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 |#4|))) (-15 -2701 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 (-1207)))) (-15 -2701 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|))) (-15 -2701 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 |#4|) (-948))) (-15 -2701 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 (-1207)) (-948))) (-15 -2701 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-948))) (-15 -2701 ((-560) (-711 |#4|) (-663 |#4|) (-1189))) (-15 -2701 ((-560) (-711 |#4|) (-663 (-1207)) (-1189))) (-15 -2701 ((-560) (-711 |#4|) (-1189))) (-15 -2701 ((-560) (-711 |#4|) (-663 |#4|) (-948) (-1189))) (-15 -2701 ((-560) (-711 |#4|) (-663 (-1207)) (-948) (-1189))) (-15 -2701 ((-560) (-711 |#4|) (-948) (-1189))) (-15 -4146 ((-560) (-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-1189))) (-15 -2237 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-1189))) (-15 -1658 ((-2 (|:| |rgl| (-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|)))))))))) (|:| |rgsz| (-560))) (-711 |#4|) (-663 (-421 (-975 |#1|))) (-793) (-1189) (-560))) (-15 -3636 ((-421 (-975 |#1|)) |#4|)) (-15 -3636 ((-711 (-421 (-975 |#1|))) (-711 |#4|))) (-15 -3636 ((-663 (-421 (-975 |#1|))) (-663 |#4|))) (-15 -2989 ((-663 (-421 (-975 |#1|))) (-663 (-1207)))) (-15 -3810 (|#4| (-975 |#1|))) (-15 -1680 ((-2 (|:| |sysok| (-114)) (|:| |z0| (-663 |#4|)) (|:| |n0| (-663 |#4|))) (-663 |#4|) (-663 |#4|))) (-15 -4194 ((-663 (-2 (|:| -2326 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|)))) (-711 |#4|) (-793))) (-15 -4451 ((-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|)))))) (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|)))))) (-663 |#4|))) (-15 -2596 ((-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|)))))) (-2 (|:| -3822 (-711 (-421 (-975 |#1|)))) (|:| |vec| (-663 (-421 (-975 |#1|)))) (|:| -2326 (-793)) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (-15 -4051 ((-663 |#4|) |#4|)) (-15 -2826 ((-793) (-663 (-2 (|:| -2326 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|)))))) (-15 -3937 ((-793) (-663 (-2 (|:| -2326 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|)))))) (-15 -3108 ((-663 (-663 |#4|)) (-663 (-663 |#4|)))) (-15 -4016 ((-663 (-663 (-560))) (-560) (-560))) (-15 -1808 ((-114) (-663 |#4|) (-663 (-663 |#4|)))) (-15 -3342 ((-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560))))) (-711 |#4|) (-793))) (-15 -1988 ((-711 |#4|) (-711 |#4|) (-663 |#4|))) (-15 -3510 ((-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))) (-711 |#4|) (-663 (-421 (-975 |#1|))) (-663 (-663 |#4|)) (-793) (-793) (-560))) (-15 -3974 (|#4| |#4|)) (-15 -2918 ((-114) (-663 |#4|))) (-15 -2918 ((-114) (-663 (-975 |#1|))))) (-13 (-319) (-149)) (-13 (-871) (-633 (-1207))) (-815) (-979 |#1| |#3| |#2|)) (T -953))
-((-2918 (*1 *2 *3) (-12 (-5 *3 (-663 (-975 *4))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-114)) (-5 *1 (-953 *4 *5 *6 *7)) (-4 *7 (-979 *4 *6 *5)))) (-2918 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-979 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-114)) (-5 *1 (-953 *4 *5 *6 *7)))) (-3974 (*1 *2 *2) (-12 (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-871) (-633 (-1207)))) (-4 *5 (-815)) (-5 *1 (-953 *3 *4 *5 *2)) (-4 *2 (-979 *3 *5 *4)))) (-3510 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560))))) (-5 *4 (-711 *12)) (-5 *5 (-663 (-421 (-975 *9)))) (-5 *6 (-663 (-663 *12))) (-5 *7 (-793)) (-5 *8 (-560)) (-4 *9 (-13 (-319) (-149))) (-4 *12 (-979 *9 *11 *10)) (-4 *10 (-13 (-871) (-633 (-1207)))) (-4 *11 (-815)) (-5 *2 (-2 (|:| |eqzro| (-663 *12)) (|:| |neqzro| (-663 *12)) (|:| |wcond| (-663 (-975 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 *9)))) (|:| -1954 (-663 (-1297 (-421 (-975 *9))))))))) (-5 *1 (-953 *9 *10 *11 *12)))) (-1988 (*1 *2 *2 *3) (-12 (-5 *2 (-711 *7)) (-5 *3 (-663 *7)) (-4 *7 (-979 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *1 (-953 *4 *5 *6 *7)))) (-3342 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-5 *4 (-793)) (-4 *8 (-979 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-663 (-2 (|:| |det| *8) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (-5 *1 (-953 *5 *6 *7 *8)))) (-1808 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-663 *8))) (-5 *3 (-663 *8)) (-4 *8 (-979 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-114)) (-5 *1 (-953 *5 *6 *7 *8)))) (-4016 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-663 (-663 (-560)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-560)) (-4 *7 (-979 *4 *6 *5)))) (-3108 (*1 *2 *2) (-12 (-5 *2 (-663 (-663 *6))) (-4 *6 (-979 *3 *5 *4)) (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-871) (-633 (-1207)))) (-4 *5 (-815)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3937 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -2326 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| *7) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 *7))))) (-4 *7 (-979 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-793)) (-5 *1 (-953 *4 *5 *6 *7)))) (-2826 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -2326 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| *7) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 *7))))) (-4 *7 (-979 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-793)) (-5 *1 (-953 *4 *5 *6 *7)))) (-4051 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-663 *3)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-979 *4 *6 *5)))) (-2596 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3822 (-711 (-421 (-975 *4)))) (|:| |vec| (-663 (-421 (-975 *4)))) (|:| -2326 (-793)) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560))))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-2 (|:| |partsol| (-1297 (-421 (-975 *4)))) (|:| -1954 (-663 (-1297 (-421 (-975 *4))))))) (-5 *1 (-953 *4 *5 *6 *7)) (-4 *7 (-979 *4 *6 *5)))) (-4451 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1297 (-421 (-975 *4)))) (|:| -1954 (-663 (-1297 (-421 (-975 *4))))))) (-5 *3 (-663 *7)) (-4 *4 (-13 (-319) (-149))) (-4 *7 (-979 *4 *6 *5)) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *1 (-953 *4 *5 *6 *7)))) (-4194 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-4 *8 (-979 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-663 (-2 (|:| -2326 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| *8) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 *8))))) (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-793)))) (-1680 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-4 *7 (-979 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-114)) (|:| |z0| (-663 *7)) (|:| |n0| (-663 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-3810 (*1 *2 *3) (-12 (-5 *3 (-975 *4)) (-4 *4 (-13 (-319) (-149))) (-4 *2 (-979 *4 *6 *5)) (-5 *1 (-953 *4 *5 *6 *2)) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-663 (-1207))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-663 (-421 (-975 *4)))) (-5 *1 (-953 *4 *5 *6 *7)) (-4 *7 (-979 *4 *6 *5)))) (-3636 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-979 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-663 (-421 (-975 *4)))) (-5 *1 (-953 *4 *5 *6 *7)))) (-3636 (*1 *2 *3) (-12 (-5 *3 (-711 *7)) (-4 *7 (-979 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-711 (-421 (-975 *4)))) (-5 *1 (-953 *4 *5 *6 *7)))) (-3636 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-421 (-975 *4))) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-979 *4 *6 *5)))) (-1658 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-711 *11)) (-5 *4 (-663 (-421 (-975 *8)))) (-5 *5 (-793)) (-5 *6 (-1189)) (-4 *8 (-13 (-319) (-149))) (-4 *11 (-979 *8 *10 *9)) (-4 *9 (-13 (-871) (-633 (-1207)))) (-4 *10 (-815)) (-5 *2 (-2 (|:| |rgl| (-663 (-2 (|:| |eqzro| (-663 *11)) (|:| |neqzro| (-663 *11)) (|:| |wcond| (-663 (-975 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 *8)))) (|:| -1954 (-663 (-1297 (-421 (-975 *8)))))))))) (|:| |rgsz| (-560)))) (-5 *1 (-953 *8 *9 *10 *11)) (-5 *7 (-560)))) (-2237 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-663 (-2 (|:| |eqzro| (-663 *7)) (|:| |neqzro| (-663 *7)) (|:| |wcond| (-663 (-975 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 *4)))) (|:| -1954 (-663 (-1297 (-421 (-975 *4)))))))))) (-5 *1 (-953 *4 *5 *6 *7)) (-4 *7 (-979 *4 *6 *5)))) (-4146 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-2 (|:| |eqzro| (-663 *8)) (|:| |neqzro| (-663 *8)) (|:| |wcond| (-663 (-975 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 *5)))) (|:| -1954 (-663 (-1297 (-421 (-975 *5)))))))))) (-5 *4 (-1189)) (-4 *5 (-13 (-319) (-149))) (-4 *8 (-979 *5 *7 *6)) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-560)) (-5 *1 (-953 *5 *6 *7 *8)))) (-2701 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *9)) (-5 *4 (-948)) (-5 *5 (-1189)) (-4 *9 (-979 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-871) (-633 (-1207)))) (-4 *8 (-815)) (-5 *2 (-560)) (-5 *1 (-953 *6 *7 *8 *9)))) (-2701 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-711 *10)) (-5 *4 (-663 (-1207))) (-5 *5 (-948)) (-5 *6 (-1189)) (-4 *10 (-979 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) (-4 *8 (-13 (-871) (-633 (-1207)))) (-4 *9 (-815)) (-5 *2 (-560)) (-5 *1 (-953 *7 *8 *9 *10)))) (-2701 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-711 *10)) (-5 *4 (-663 *10)) (-5 *5 (-948)) (-5 *6 (-1189)) (-4 *10 (-979 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) (-4 *8 (-13 (-871) (-633 (-1207)))) (-4 *9 (-815)) (-5 *2 (-560)) (-5 *1 (-953 *7 *8 *9 *10)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-5 *4 (-1189)) (-4 *8 (-979 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-560)) (-5 *1 (-953 *5 *6 *7 *8)))) (-2701 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *9)) (-5 *4 (-663 (-1207))) (-5 *5 (-1189)) (-4 *9 (-979 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-871) (-633 (-1207)))) (-4 *8 (-815)) (-5 *2 (-560)) (-5 *1 (-953 *6 *7 *8 *9)))) (-2701 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *9)) (-5 *4 (-663 *9)) (-5 *5 (-1189)) (-4 *9 (-979 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-871) (-633 (-1207)))) (-4 *8 (-815)) (-5 *2 (-560)) (-5 *1 (-953 *6 *7 *8 *9)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-5 *4 (-948)) (-4 *8 (-979 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-663 (-2 (|:| |eqzro| (-663 *8)) (|:| |neqzro| (-663 *8)) (|:| |wcond| (-663 (-975 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 *5)))) (|:| -1954 (-663 (-1297 (-421 (-975 *5)))))))))) (-5 *1 (-953 *5 *6 *7 *8)))) (-2701 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *9)) (-5 *4 (-663 (-1207))) (-5 *5 (-948)) (-4 *9 (-979 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-871) (-633 (-1207)))) (-4 *8 (-815)) (-5 *2 (-663 (-2 (|:| |eqzro| (-663 *9)) (|:| |neqzro| (-663 *9)) (|:| |wcond| (-663 (-975 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 *6)))) (|:| -1954 (-663 (-1297 (-421 (-975 *6)))))))))) (-5 *1 (-953 *6 *7 *8 *9)))) (-2701 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *9)) (-5 *5 (-948)) (-4 *9 (-979 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-871) (-633 (-1207)))) (-4 *8 (-815)) (-5 *2 (-663 (-2 (|:| |eqzro| (-663 *9)) (|:| |neqzro| (-663 *9)) (|:| |wcond| (-663 (-975 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 *6)))) (|:| -1954 (-663 (-1297 (-421 (-975 *6)))))))))) (-5 *1 (-953 *6 *7 *8 *9)) (-5 *4 (-663 *9)))) (-2701 (*1 *2 *3) (-12 (-5 *3 (-711 *7)) (-4 *7 (-979 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-663 (-2 (|:| |eqzro| (-663 *7)) (|:| |neqzro| (-663 *7)) (|:| |wcond| (-663 (-975 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 *4)))) (|:| -1954 (-663 (-1297 (-421 (-975 *4)))))))))) (-5 *1 (-953 *4 *5 *6 *7)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-5 *4 (-663 (-1207))) (-4 *8 (-979 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-663 (-2 (|:| |eqzro| (-663 *8)) (|:| |neqzro| (-663 *8)) (|:| |wcond| (-663 (-975 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 *5)))) (|:| -1954 (-663 (-1297 (-421 (-975 *5)))))))))) (-5 *1 (-953 *5 *6 *7 *8)))) (-2701 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-4 *8 (-979 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-663 (-2 (|:| |eqzro| (-663 *8)) (|:| |neqzro| (-663 *8)) (|:| |wcond| (-663 (-975 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 *5)))) (|:| -1954 (-663 (-1297 (-421 (-975 *5)))))))))) (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-663 *8)))))
-(-10 -7 (-15 -2701 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 |#4|))) (-15 -2701 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 (-1207)))) (-15 -2701 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|))) (-15 -2701 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 |#4|) (-948))) (-15 -2701 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 (-1207)) (-948))) (-15 -2701 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-948))) (-15 -2701 ((-560) (-711 |#4|) (-663 |#4|) (-1189))) (-15 -2701 ((-560) (-711 |#4|) (-663 (-1207)) (-1189))) (-15 -2701 ((-560) (-711 |#4|) (-1189))) (-15 -2701 ((-560) (-711 |#4|) (-663 |#4|) (-948) (-1189))) (-15 -2701 ((-560) (-711 |#4|) (-663 (-1207)) (-948) (-1189))) (-15 -2701 ((-560) (-711 |#4|) (-948) (-1189))) (-15 -4146 ((-560) (-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-1189))) (-15 -2237 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|))))))))) (-1189))) (-15 -1658 ((-2 (|:| |rgl| (-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|)))))))))) (|:| |rgsz| (-560))) (-711 |#4|) (-663 (-421 (-975 |#1|))) (-793) (-1189) (-560))) (-15 -3636 ((-421 (-975 |#1|)) |#4|)) (-15 -3636 ((-711 (-421 (-975 |#1|))) (-711 |#4|))) (-15 -3636 ((-663 (-421 (-975 |#1|))) (-663 |#4|))) (-15 -2989 ((-663 (-421 (-975 |#1|))) (-663 (-1207)))) (-15 -3810 (|#4| (-975 |#1|))) (-15 -1680 ((-2 (|:| |sysok| (-114)) (|:| |z0| (-663 |#4|)) (|:| |n0| (-663 |#4|))) (-663 |#4|) (-663 |#4|))) (-15 -4194 ((-663 (-2 (|:| -2326 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|)))) (-711 |#4|) (-793))) (-15 -4451 ((-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|)))))) (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|)))))) (-663 |#4|))) (-15 -2596 ((-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|)))))) (-2 (|:| -3822 (-711 (-421 (-975 |#1|)))) (|:| |vec| (-663 (-421 (-975 |#1|)))) (|:| -2326 (-793)) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (-15 -4051 ((-663 |#4|) |#4|)) (-15 -2826 ((-793) (-663 (-2 (|:| -2326 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|)))))) (-15 -3937 ((-793) (-663 (-2 (|:| -2326 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|)))))) (-15 -3108 ((-663 (-663 |#4|)) (-663 (-663 |#4|)))) (-15 -4016 ((-663 (-663 (-560))) (-560) (-560))) (-15 -1808 ((-114) (-663 |#4|) (-663 (-663 |#4|)))) (-15 -3342 ((-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560))))) (-711 |#4|) (-793))) (-15 -1988 ((-711 |#4|) (-711 |#4|) (-663 |#4|))) (-15 -3510 ((-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -1954 (-663 (-1297 (-421 (-975 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))) (-711 |#4|) (-663 (-421 (-975 |#1|))) (-663 (-663 |#4|)) (-793) (-793) (-560))) (-15 -3974 (|#4| |#4|)) (-15 -2918 ((-114) (-663 |#4|))) (-15 -2918 ((-114) (-663 (-975 |#1|)))))
-((-2674 (($ $ (-1120 (-229))) 122 T ELT) (($ $ (-1120 (-229)) (-1120 (-229))) 123 T ELT)) (-3747 (((-1120 (-229)) $) 73 T ELT)) (-3732 (((-1120 (-229)) $) 72 T ELT)) (-2131 (((-1120 (-229)) $) 74 T ELT)) (-4465 (((-560) (-560)) 66 T ELT)) (-1717 (((-560) (-560)) 61 T ELT)) (-3288 (((-560) (-560)) 64 T ELT)) (-4169 (((-114) (-114)) 68 T ELT)) (-3048 (((-560)) 65 T ELT)) (-4075 (($ $ (-1120 (-229))) 126 T ELT) (($ $) 127 T ELT)) (-2266 (($ (-1 (-972 (-229)) (-229)) (-1120 (-229))) 141 T ELT) (($ (-1 (-972 (-229)) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229))) 142 T ELT)) (-2597 (($ (-1 (-229) (-229)) (-1120 (-229))) 149 T ELT) (($ (-1 (-229) (-229))) 153 T ELT)) (-3791 (($ (-1 (-229) (-229)) (-1120 (-229))) 137 T ELT) (($ (-1 (-229) (-229)) (-1120 (-229)) (-1120 (-229))) 138 T ELT) (($ (-663 (-1 (-229) (-229))) (-1120 (-229))) 146 T ELT) (($ (-663 (-1 (-229) (-229))) (-1120 (-229)) (-1120 (-229))) 147 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229))) 139 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229))) 140 T ELT) (($ $ (-1120 (-229))) 128 T ELT)) (-3905 (((-114) $) 69 T ELT)) (-3892 (((-560)) 70 T ELT)) (-2002 (((-560)) 59 T ELT)) (-3537 (((-560)) 62 T ELT)) (-4071 (((-663 (-663 (-972 (-229)))) $) 35 T ELT)) (-3297 (((-114) (-114)) 71 T ELT)) (-1578 (((-887) $) 167 T ELT)) (-3177 (((-114)) 67 T ELT)))
-(((-954) (-13 (-984) (-10 -8 (-15 -3791 ($ (-1 (-229) (-229)) (-1120 (-229)))) (-15 -3791 ($ (-1 (-229) (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -3791 ($ (-663 (-1 (-229) (-229))) (-1120 (-229)))) (-15 -3791 ($ (-663 (-1 (-229) (-229))) (-1120 (-229)) (-1120 (-229)))) (-15 -3791 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229)))) (-15 -3791 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -2266 ($ (-1 (-972 (-229)) (-229)) (-1120 (-229)))) (-15 -2266 ($ (-1 (-972 (-229)) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -2597 ($ (-1 (-229) (-229)) (-1120 (-229)))) (-15 -2597 ($ (-1 (-229) (-229)))) (-15 -3791 ($ $ (-1120 (-229)))) (-15 -3905 ((-114) $)) (-15 -2674 ($ $ (-1120 (-229)))) (-15 -2674 ($ $ (-1120 (-229)) (-1120 (-229)))) (-15 -4075 ($ $ (-1120 (-229)))) (-15 -4075 ($ $)) (-15 -2131 ((-1120 (-229)) $)) (-15 -2002 ((-560))) (-15 -1717 ((-560) (-560))) (-15 -3537 ((-560))) (-15 -3288 ((-560) (-560))) (-15 -3048 ((-560))) (-15 -4465 ((-560) (-560))) (-15 -3177 ((-114))) (-15 -4169 ((-114) (-114))) (-15 -3892 ((-560))) (-15 -3297 ((-114) (-114)))))) (T -954))
-((-3791 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229))) (-5 *1 (-954)))) (-3791 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229))) (-5 *1 (-954)))) (-3791 (*1 *1 *2 *3) (-12 (-5 *2 (-663 (-1 (-229) (-229)))) (-5 *3 (-1120 (-229))) (-5 *1 (-954)))) (-3791 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-663 (-1 (-229) (-229)))) (-5 *3 (-1120 (-229))) (-5 *1 (-954)))) (-3791 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229))) (-5 *1 (-954)))) (-3791 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229))) (-5 *1 (-954)))) (-2266 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1120 (-229))) (-5 *1 (-954)))) (-2266 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1120 (-229))) (-5 *1 (-954)))) (-2597 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229))) (-5 *1 (-954)))) (-2597 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-954)))) (-3791 (*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-954)))) (-3905 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-954)))) (-2674 (*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-954)))) (-2674 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-954)))) (-4075 (*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-954)))) (-4075 (*1 *1 *1) (-5 *1 (-954))) (-2131 (*1 *2 *1) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-954)))) (-2002 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))) (-1717 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))) (-3537 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))) (-3288 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))) (-3048 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))) (-4465 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))) (-3177 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-954)))) (-4169 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-954)))) (-3892 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))) (-3297 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-954)))))
-(-13 (-984) (-10 -8 (-15 -3791 ($ (-1 (-229) (-229)) (-1120 (-229)))) (-15 -3791 ($ (-1 (-229) (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -3791 ($ (-663 (-1 (-229) (-229))) (-1120 (-229)))) (-15 -3791 ($ (-663 (-1 (-229) (-229))) (-1120 (-229)) (-1120 (-229)))) (-15 -3791 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229)))) (-15 -3791 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -2266 ($ (-1 (-972 (-229)) (-229)) (-1120 (-229)))) (-15 -2266 ($ (-1 (-972 (-229)) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -2597 ($ (-1 (-229) (-229)) (-1120 (-229)))) (-15 -2597 ($ (-1 (-229) (-229)))) (-15 -3791 ($ $ (-1120 (-229)))) (-15 -3905 ((-114) $)) (-15 -2674 ($ $ (-1120 (-229)))) (-15 -2674 ($ $ (-1120 (-229)) (-1120 (-229)))) (-15 -4075 ($ $ (-1120 (-229)))) (-15 -4075 ($ $)) (-15 -2131 ((-1120 (-229)) $)) (-15 -2002 ((-560))) (-15 -1717 ((-560) (-560))) (-15 -3537 ((-560))) (-15 -3288 ((-560) (-560))) (-15 -3048 ((-560))) (-15 -4465 ((-560) (-560))) (-15 -3177 ((-114))) (-15 -4169 ((-114) (-114))) (-15 -3892 ((-560))) (-15 -3297 ((-114) (-114)))))
-((-2597 (((-954) |#1| (-1207)) 17 T ELT) (((-954) |#1| (-1207) (-1120 (-229))) 21 T ELT)) (-3791 (((-954) |#1| |#1| (-1207) (-1120 (-229))) 19 T ELT) (((-954) |#1| (-1207) (-1120 (-229))) 15 T ELT)))
-(((-955 |#1|) (-10 -7 (-15 -3791 ((-954) |#1| (-1207) (-1120 (-229)))) (-15 -3791 ((-954) |#1| |#1| (-1207) (-1120 (-229)))) (-15 -2597 ((-954) |#1| (-1207) (-1120 (-229)))) (-15 -2597 ((-954) |#1| (-1207)))) (-633 (-549))) (T -955))
-((-2597 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-5 *2 (-954)) (-5 *1 (-955 *3)) (-4 *3 (-633 (-549))))) (-2597 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1207)) (-5 *5 (-1120 (-229))) (-5 *2 (-954)) (-5 *1 (-955 *3)) (-4 *3 (-633 (-549))))) (-3791 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1207)) (-5 *5 (-1120 (-229))) (-5 *2 (-954)) (-5 *1 (-955 *3)) (-4 *3 (-633 (-549))))) (-3791 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1207)) (-5 *5 (-1120 (-229))) (-5 *2 (-954)) (-5 *1 (-955 *3)) (-4 *3 (-633 (-549))))))
-(-10 -7 (-15 -3791 ((-954) |#1| (-1207) (-1120 (-229)))) (-15 -3791 ((-954) |#1| |#1| (-1207) (-1120 (-229)))) (-15 -2597 ((-954) |#1| (-1207) (-1120 (-229)))) (-15 -2597 ((-954) |#1| (-1207))))
-((-2674 (($ $ (-1120 (-229)) (-1120 (-229)) (-1120 (-229))) 121 T ELT)) (-3760 (((-1120 (-229)) $) 64 T ELT)) (-3747 (((-1120 (-229)) $) 63 T ELT)) (-3732 (((-1120 (-229)) $) 62 T ELT)) (-2774 (((-663 (-663 (-229))) $) 69 T ELT)) (-2131 (((-1120 (-229)) $) 65 T ELT)) (-1984 (((-560) (-560)) 57 T ELT)) (-3440 (((-560) (-560)) 52 T ELT)) (-2347 (((-560) (-560)) 55 T ELT)) (-2520 (((-114) (-114)) 59 T ELT)) (-3549 (((-560)) 56 T ELT)) (-4075 (($ $ (-1120 (-229))) 124 T ELT) (($ $) 125 T ELT)) (-2266 (($ (-1 (-972 (-229)) (-229)) (-1120 (-229))) 131 T ELT) (($ (-1 (-972 (-229)) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229))) 132 T ELT)) (-3791 (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229))) 134 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229))) 135 T ELT) (($ $ (-1120 (-229))) 127 T ELT)) (-3377 (((-560)) 60 T ELT)) (-2382 (((-560)) 50 T ELT)) (-4329 (((-560)) 53 T ELT)) (-4071 (((-663 (-663 (-972 (-229)))) $) 151 T ELT)) (-3365 (((-114) (-114)) 61 T ELT)) (-1578 (((-887) $) 149 T ELT)) (-3282 (((-114)) 58 T ELT)))
-(((-956) (-13 (-1005) (-10 -8 (-15 -2266 ($ (-1 (-972 (-229)) (-229)) (-1120 (-229)))) (-15 -2266 ($ (-1 (-972 (-229)) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -3791 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229)))) (-15 -3791 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -3791 ($ $ (-1120 (-229)))) (-15 -2674 ($ $ (-1120 (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -4075 ($ $ (-1120 (-229)))) (-15 -4075 ($ $)) (-15 -2131 ((-1120 (-229)) $)) (-15 -2774 ((-663 (-663 (-229))) $)) (-15 -2382 ((-560))) (-15 -3440 ((-560) (-560))) (-15 -4329 ((-560))) (-15 -2347 ((-560) (-560))) (-15 -3549 ((-560))) (-15 -1984 ((-560) (-560))) (-15 -3282 ((-114))) (-15 -2520 ((-114) (-114))) (-15 -3377 ((-560))) (-15 -3365 ((-114) (-114)))))) (T -956))
-((-2266 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1120 (-229))) (-5 *1 (-956)))) (-2266 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1120 (-229))) (-5 *1 (-956)))) (-3791 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229))) (-5 *1 (-956)))) (-3791 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229))) (-5 *1 (-956)))) (-3791 (*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-956)))) (-2674 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-956)))) (-4075 (*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-956)))) (-4075 (*1 *1 *1) (-5 *1 (-956))) (-2131 (*1 *2 *1) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-956)))) (-2774 (*1 *2 *1) (-12 (-5 *2 (-663 (-663 (-229)))) (-5 *1 (-956)))) (-2382 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))) (-3440 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))) (-4329 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))) (-2347 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))) (-3549 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))) (-1984 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))) (-3282 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-956)))) (-2520 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-956)))) (-3377 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))) (-3365 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-956)))))
-(-13 (-1005) (-10 -8 (-15 -2266 ($ (-1 (-972 (-229)) (-229)) (-1120 (-229)))) (-15 -2266 ($ (-1 (-972 (-229)) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -3791 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229)))) (-15 -3791 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -3791 ($ $ (-1120 (-229)))) (-15 -2674 ($ $ (-1120 (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -4075 ($ $ (-1120 (-229)))) (-15 -4075 ($ $)) (-15 -2131 ((-1120 (-229)) $)) (-15 -2774 ((-663 (-663 (-229))) $)) (-15 -2382 ((-560))) (-15 -3440 ((-560) (-560))) (-15 -4329 ((-560))) (-15 -2347 ((-560) (-560))) (-15 -3549 ((-560))) (-15 -1984 ((-560) (-560))) (-15 -3282 ((-114))) (-15 -2520 ((-114) (-114))) (-15 -3377 ((-560))) (-15 -3365 ((-114) (-114)))))
-((-2101 (((-663 (-1120 (-229))) (-663 (-663 (-972 (-229))))) 34 T ELT)))
-(((-957) (-10 -7 (-15 -2101 ((-663 (-1120 (-229))) (-663 (-663 (-972 (-229)))))))) (T -957))
-((-2101 (*1 *2 *3) (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *2 (-663 (-1120 (-229)))) (-5 *1 (-957)))))
-(-10 -7 (-15 -2101 ((-663 (-1120 (-229))) (-663 (-663 (-972 (-229)))))))
-((-3504 (((-326 (-560)) (-1207)) 16 T ELT)) (-4454 (((-326 (-560)) (-1207)) 14 T ELT)) (-3081 (((-326 (-560)) (-1207)) 12 T ELT)) (-1354 (((-326 (-560)) (-1207) (-520)) 19 T ELT)))
-(((-958) (-10 -7 (-15 -1354 ((-326 (-560)) (-1207) (-520))) (-15 -3081 ((-326 (-560)) (-1207))) (-15 -3504 ((-326 (-560)) (-1207))) (-15 -4454 ((-326 (-560)) (-1207))))) (T -958))
-((-4454 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-326 (-560))) (-5 *1 (-958)))) (-3504 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-326 (-560))) (-5 *1 (-958)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-326 (-560))) (-5 *1 (-958)))) (-1354 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-520)) (-5 *2 (-326 (-560))) (-5 *1 (-958)))))
-(-10 -7 (-15 -1354 ((-326 (-560)) (-1207) (-520))) (-15 -3081 ((-326 (-560)) (-1207))) (-15 -3504 ((-326 (-560)) (-1207))) (-15 -4454 ((-326 (-560)) (-1207))))
-((-3504 ((|#2| |#2|) 28 T ELT)) (-4454 ((|#2| |#2|) 29 T ELT)) (-3081 ((|#2| |#2|) 27 T ELT)) (-1354 ((|#2| |#2| (-520)) 26 T ELT)))
-(((-959 |#1| |#2|) (-10 -7 (-15 -1354 (|#2| |#2| (-520))) (-15 -3081 (|#2| |#2|)) (-15 -3504 (|#2| |#2|)) (-15 -4454 (|#2| |#2|))) (-1132) (-435 |#1|)) (T -959))
-((-4454 (*1 *2 *2) (-12 (-4 *3 (-1132)) (-5 *1 (-959 *3 *2)) (-4 *2 (-435 *3)))) (-3504 (*1 *2 *2) (-12 (-4 *3 (-1132)) (-5 *1 (-959 *3 *2)) (-4 *2 (-435 *3)))) (-3081 (*1 *2 *2) (-12 (-4 *3 (-1132)) (-5 *1 (-959 *3 *2)) (-4 *2 (-435 *3)))) (-1354 (*1 *2 *2 *3) (-12 (-5 *3 (-520)) (-4 *4 (-1132)) (-5 *1 (-959 *4 *2)) (-4 *2 (-435 *4)))))
-(-10 -7 (-15 -1354 (|#2| |#2| (-520))) (-15 -3081 (|#2| |#2|)) (-15 -3504 (|#2| |#2|)) (-15 -4454 (|#2| |#2|)))
-((-2427 (((-913 |#1| |#3|) |#2| (-915 |#1|) (-913 |#1| |#3|)) 25 T ELT)) (-2477 (((-1 (-114) |#2|) (-1 (-114) |#3|)) 13 T ELT)))
-(((-960 |#1| |#2| |#3|) (-10 -7 (-15 -2477 ((-1 (-114) |#2|) (-1 (-114) |#3|))) (-15 -2427 ((-913 |#1| |#3|) |#2| (-915 |#1|) (-913 |#1| |#3|)))) (-1132) (-911 |#1|) (-13 (-1132) (-1069 |#2|))) (T -960))
-((-2427 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *6)) (-5 *4 (-915 *5)) (-4 *5 (-1132)) (-4 *6 (-13 (-1132) (-1069 *3))) (-4 *3 (-911 *5)) (-5 *1 (-960 *5 *3 *6)))) (-2477 (*1 *2 *3) (-12 (-5 *3 (-1 (-114) *6)) (-4 *6 (-13 (-1132) (-1069 *5))) (-4 *5 (-911 *4)) (-4 *4 (-1132)) (-5 *2 (-1 (-114) *5)) (-5 *1 (-960 *4 *5 *6)))))
-(-10 -7 (-15 -2477 ((-1 (-114) |#2|) (-1 (-114) |#3|))) (-15 -2427 ((-913 |#1| |#3|) |#2| (-915 |#1|) (-913 |#1| |#3|))))
-((-2427 (((-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|)) 30 T ELT)))
-(((-961 |#1| |#2| |#3|) (-10 -7 (-15 -2427 ((-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|)))) (-1132) (-13 (-571) (-911 |#1|)) (-13 (-435 |#2|) (-633 (-915 |#1|)) (-911 |#1|) (-1069 (-630 $)))) (T -961))
-((-2427 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1132)) (-4 *3 (-13 (-435 *6) (-633 *4) (-911 *5) (-1069 (-630 $)))) (-5 *4 (-915 *5)) (-4 *6 (-13 (-571) (-911 *5))) (-5 *1 (-961 *5 *6 *3)))))
-(-10 -7 (-15 -2427 ((-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|))))
-((-2427 (((-913 (-560) |#1|) |#1| (-915 (-560)) (-913 (-560) |#1|)) 13 T ELT)))
-(((-962 |#1|) (-10 -7 (-15 -2427 ((-913 (-560) |#1|) |#1| (-915 (-560)) (-913 (-560) |#1|)))) (-559)) (T -962))
-((-2427 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 (-560) *3)) (-5 *4 (-915 (-560))) (-4 *3 (-559)) (-5 *1 (-962 *3)))))
-(-10 -7 (-15 -2427 ((-913 (-560) |#1|) |#1| (-915 (-560)) (-913 (-560) |#1|))))
-((-2427 (((-913 |#1| |#2|) (-630 |#2|) (-915 |#1|) (-913 |#1| |#2|)) 57 T ELT)))
-(((-963 |#1| |#2|) (-10 -7 (-15 -2427 ((-913 |#1| |#2|) (-630 |#2|) (-915 |#1|) (-913 |#1| |#2|)))) (-1132) (-13 (-1132) (-1069 (-630 $)) (-633 (-915 |#1|)) (-911 |#1|))) (T -963))
-((-2427 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *6)) (-5 *3 (-630 *6)) (-4 *5 (-1132)) (-4 *6 (-13 (-1132) (-1069 (-630 $)) (-633 *4) (-911 *5))) (-5 *4 (-915 *5)) (-5 *1 (-963 *5 *6)))))
-(-10 -7 (-15 -2427 ((-913 |#1| |#2|) (-630 |#2|) (-915 |#1|) (-913 |#1| |#2|))))
-((-2427 (((-910 |#1| |#2| |#3|) |#3| (-915 |#1|) (-910 |#1| |#2| |#3|)) 17 T ELT)))
-(((-964 |#1| |#2| |#3|) (-10 -7 (-15 -2427 ((-910 |#1| |#2| |#3|) |#3| (-915 |#1|) (-910 |#1| |#2| |#3|)))) (-1132) (-911 |#1|) (-688 |#2|)) (T -964))
-((-2427 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-910 *5 *6 *3)) (-5 *4 (-915 *5)) (-4 *5 (-1132)) (-4 *6 (-911 *5)) (-4 *3 (-688 *6)) (-5 *1 (-964 *5 *6 *3)))))
-(-10 -7 (-15 -2427 ((-910 |#1| |#2| |#3|) |#3| (-915 |#1|) (-910 |#1| |#2| |#3|))))
-((-2427 (((-913 |#1| |#5|) |#5| (-915 |#1|) (-913 |#1| |#5|)) 17 (|has| |#3| (-911 |#1|)) ELT) (((-913 |#1| |#5|) |#5| (-915 |#1|) (-913 |#1| |#5|) (-1 (-913 |#1| |#5|) |#3| (-915 |#1|) (-913 |#1| |#5|))) 16 T ELT)))
-(((-965 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2427 ((-913 |#1| |#5|) |#5| (-915 |#1|) (-913 |#1| |#5|) (-1 (-913 |#1| |#5|) |#3| (-915 |#1|) (-913 |#1| |#5|)))) (IF (|has| |#3| (-911 |#1|)) (-15 -2427 ((-913 |#1| |#5|) |#5| (-915 |#1|) (-913 |#1| |#5|))) |%noBranch|)) (-1132) (-815) (-871) (-13 (-1080) (-911 |#1|)) (-13 (-979 |#4| |#2| |#3|) (-633 (-915 |#1|)))) (T -965))
-((-2427 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1132)) (-4 *3 (-13 (-979 *8 *6 *7) (-633 *4))) (-5 *4 (-915 *5)) (-4 *7 (-911 *5)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-13 (-1080) (-911 *5))) (-5 *1 (-965 *5 *6 *7 *8 *3)))) (-2427 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-913 *6 *3) *8 (-915 *6) (-913 *6 *3))) (-4 *8 (-871)) (-5 *2 (-913 *6 *3)) (-5 *4 (-915 *6)) (-4 *6 (-1132)) (-4 *3 (-13 (-979 *9 *7 *8) (-633 *4))) (-4 *7 (-815)) (-4 *9 (-13 (-1080) (-911 *6))) (-5 *1 (-965 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -2427 ((-913 |#1| |#5|) |#5| (-915 |#1|) (-913 |#1| |#5|) (-1 (-913 |#1| |#5|) |#3| (-915 |#1|) (-913 |#1| |#5|)))) (IF (|has| |#3| (-911 |#1|)) (-15 -2427 ((-913 |#1| |#5|) |#5| (-915 |#1|) (-913 |#1| |#5|))) |%noBranch|))
-((-1375 (((-326 (-560)) (-1207) (-663 (-1 (-114) |#1|))) 18 T ELT) (((-326 (-560)) (-1207) (-1 (-114) |#1|)) 15 T ELT)))
-(((-966 |#1|) (-10 -7 (-15 -1375 ((-326 (-560)) (-1207) (-1 (-114) |#1|))) (-15 -1375 ((-326 (-560)) (-1207) (-663 (-1 (-114) |#1|))))) (-1247)) (T -966))
-((-1375 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-663 (-1 (-114) *5))) (-4 *5 (-1247)) (-5 *2 (-326 (-560))) (-5 *1 (-966 *5)))) (-1375 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-1 (-114) *5)) (-4 *5 (-1247)) (-5 *2 (-326 (-560))) (-5 *1 (-966 *5)))))
-(-10 -7 (-15 -1375 ((-326 (-560)) (-1207) (-1 (-114) |#1|))) (-15 -1375 ((-326 (-560)) (-1207) (-663 (-1 (-114) |#1|)))))
-((-1375 ((|#2| |#2| (-663 (-1 (-114) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-114) |#3|)) 13 T ELT)))
-(((-967 |#1| |#2| |#3|) (-10 -7 (-15 -1375 (|#2| |#2| (-1 (-114) |#3|))) (-15 -1375 (|#2| |#2| (-663 (-1 (-114) |#3|))))) (-1132) (-435 |#1|) (-1247)) (T -967))
-((-1375 (*1 *2 *2 *3) (-12 (-5 *3 (-663 (-1 (-114) *5))) (-4 *5 (-1247)) (-4 *4 (-1132)) (-5 *1 (-967 *4 *2 *5)) (-4 *2 (-435 *4)))) (-1375 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *5)) (-4 *5 (-1247)) (-4 *4 (-1132)) (-5 *1 (-967 *4 *2 *5)) (-4 *2 (-435 *4)))))
-(-10 -7 (-15 -1375 (|#2| |#2| (-1 (-114) |#3|))) (-15 -1375 (|#2| |#2| (-663 (-1 (-114) |#3|)))))
-((-2427 (((-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|)) 25 T ELT)))
-(((-968 |#1| |#2| |#3|) (-10 -7 (-15 -2427 ((-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|)))) (-1132) (-13 (-571) (-911 |#1|) (-633 (-915 |#1|))) (-1022 |#2|)) (T -968))
-((-2427 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1132)) (-4 *3 (-1022 *6)) (-4 *6 (-13 (-571) (-911 *5) (-633 *4))) (-5 *4 (-915 *5)) (-5 *1 (-968 *5 *6 *3)))))
-(-10 -7 (-15 -2427 ((-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|))))
-((-2427 (((-913 |#1| (-1207)) (-1207) (-915 |#1|) (-913 |#1| (-1207))) 18 T ELT)))
-(((-969 |#1|) (-10 -7 (-15 -2427 ((-913 |#1| (-1207)) (-1207) (-915 |#1|) (-913 |#1| (-1207))))) (-1132)) (T -969))
-((-2427 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 (-1207))) (-5 *3 (-1207)) (-5 *4 (-915 *5)) (-4 *5 (-1132)) (-5 *1 (-969 *5)))))
-(-10 -7 (-15 -2427 ((-913 |#1| (-1207)) (-1207) (-915 |#1|) (-913 |#1| (-1207)))))
-((-2926 (((-913 |#1| |#3|) (-663 |#3|) (-663 (-915 |#1|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|))) 34 T ELT)) (-2427 (((-913 |#1| |#3|) (-663 |#3|) (-663 (-915 |#1|)) (-1 |#3| (-663 |#3|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|))) 33 T ELT)))
-(((-970 |#1| |#2| |#3|) (-10 -7 (-15 -2427 ((-913 |#1| |#3|) (-663 |#3|) (-663 (-915 |#1|)) (-1 |#3| (-663 |#3|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|)))) (-15 -2926 ((-913 |#1| |#3|) (-663 |#3|) (-663 (-915 |#1|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|))))) (-1132) (-1080) (-13 (-1080) (-633 (-915 |#1|)) (-1069 |#2|))) (T -970))
-((-2926 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 (-915 *6))) (-5 *5 (-1 (-913 *6 *8) *8 (-915 *6) (-913 *6 *8))) (-4 *6 (-1132)) (-4 *8 (-13 (-1080) (-633 (-915 *6)) (-1069 *7))) (-5 *2 (-913 *6 *8)) (-4 *7 (-1080)) (-5 *1 (-970 *6 *7 *8)))) (-2427 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-663 (-915 *7))) (-5 *5 (-1 *9 (-663 *9))) (-5 *6 (-1 (-913 *7 *9) *9 (-915 *7) (-913 *7 *9))) (-4 *7 (-1132)) (-4 *9 (-13 (-1080) (-633 (-915 *7)) (-1069 *8))) (-5 *2 (-913 *7 *9)) (-5 *3 (-663 *9)) (-4 *8 (-1080)) (-5 *1 (-970 *7 *8 *9)))))
-(-10 -7 (-15 -2427 ((-913 |#1| |#3|) (-663 |#3|) (-663 (-915 |#1|)) (-1 |#3| (-663 |#3|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|)))) (-15 -2926 ((-913 |#1| |#3|) (-663 |#3|) (-663 (-915 |#1|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|)))))
-((-3995 (((-1201 (-421 (-560))) (-560)) 79 T ELT)) (-2635 (((-1201 (-560)) (-560)) 82 T ELT)) (-1627 (((-1201 (-560)) (-560)) 76 T ELT)) (-1618 (((-560) (-1201 (-560))) 72 T ELT)) (-3121 (((-1201 (-421 (-560))) (-560)) 65 T ELT)) (-2801 (((-1201 (-560)) (-560)) 49 T ELT)) (-1678 (((-1201 (-560)) (-560)) 84 T ELT)) (-2228 (((-1201 (-560)) (-560)) 83 T ELT)) (-3283 (((-1201 (-421 (-560))) (-560)) 67 T ELT)))
-(((-971) (-10 -7 (-15 -3283 ((-1201 (-421 (-560))) (-560))) (-15 -2228 ((-1201 (-560)) (-560))) (-15 -1678 ((-1201 (-560)) (-560))) (-15 -2801 ((-1201 (-560)) (-560))) (-15 -3121 ((-1201 (-421 (-560))) (-560))) (-15 -1618 ((-560) (-1201 (-560)))) (-15 -1627 ((-1201 (-560)) (-560))) (-15 -2635 ((-1201 (-560)) (-560))) (-15 -3995 ((-1201 (-421 (-560))) (-560))))) (T -971))
-((-3995 (*1 *2 *3) (-12 (-5 *2 (-1201 (-421 (-560)))) (-5 *1 (-971)) (-5 *3 (-560)))) (-2635 (*1 *2 *3) (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-971)) (-5 *3 (-560)))) (-1627 (*1 *2 *3) (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-971)) (-5 *3 (-560)))) (-1618 (*1 *2 *3) (-12 (-5 *3 (-1201 (-560))) (-5 *2 (-560)) (-5 *1 (-971)))) (-3121 (*1 *2 *3) (-12 (-5 *2 (-1201 (-421 (-560)))) (-5 *1 (-971)) (-5 *3 (-560)))) (-2801 (*1 *2 *3) (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-971)) (-5 *3 (-560)))) (-1678 (*1 *2 *3) (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-971)) (-5 *3 (-560)))) (-2228 (*1 *2 *3) (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-971)) (-5 *3 (-560)))) (-3283 (*1 *2 *3) (-12 (-5 *2 (-1201 (-421 (-560)))) (-5 *1 (-971)) (-5 *3 (-560)))))
-(-10 -7 (-15 -3283 ((-1201 (-421 (-560))) (-560))) (-15 -2228 ((-1201 (-560)) (-560))) (-15 -1678 ((-1201 (-560)) (-560))) (-15 -2801 ((-1201 (-560)) (-560))) (-15 -3121 ((-1201 (-421 (-560))) (-560))) (-15 -1618 ((-560) (-1201 (-560)))) (-15 -1627 ((-1201 (-560)) (-560))) (-15 -2635 ((-1201 (-560)) (-560))) (-15 -3995 ((-1201 (-421 (-560))) (-560))))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3759 (($ (-793)) NIL (|has| |#1| (-23)) ELT)) (-3839 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4040 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-1703 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| |#1| (-871))) ELT)) (-2286 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2238 (($) NIL T CONST)) (-4391 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) NIL T ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2375 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3779 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-560)) NIL T ELT)) (-1722 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1132)) ELT)) (-3743 (($ (-663 |#1|)) 9 T ELT)) (-2181 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1848 (((-711 |#1|) $ $) NIL (|has| |#1| (-1080)) ELT)) (-4095 (($ (-793) |#1|) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3223 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2937 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4216 ((|#1| $) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1080))) ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-4108 ((|#1| $) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1080))) ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3996 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) NIL T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3637 ((|#1| $) NIL (|has| (-560) (-871)) ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-3037 (($ $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-4372 (($ $ (-663 |#1|)) 25 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) 18 T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-3232 ((|#1| $ $) NIL (|has| |#1| (-1080)) ELT)) (-3669 (((-948) $) 13 T ELT)) (-4413 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-2046 (($ $ $) 23 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3640 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT) (($ (-663 |#1|)) 14 T ELT)) (-1592 (($ (-663 |#1|)) NIL T ELT)) (-3415 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-663 $)) NIL T ELT)) (-1578 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2536 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2521 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2580 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-560) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-748)) ELT) (($ $ |#1|) NIL (|has| |#1| (-748)) ELT)) (-1553 (((-793) $) 11 (|has| $ (-6 -4508)) ELT)))
+((-4189 (((-1201 |#2|) (-663 |#2|) (-663 |#2|)) 17 T ELT) (((-1266 |#1| |#2|) (-1266 |#1| |#2|) (-663 |#2|) (-663 |#2|)) 13 T ELT)))
+(((-951 |#1| |#2|) (-10 -7 (-15 -4189 ((-1266 |#1| |#2|) (-1266 |#1| |#2|) (-663 |#2|) (-663 |#2|))) (-15 -4189 ((-1201 |#2|) (-663 |#2|) (-663 |#2|)))) (-1207) (-376)) (T -951))
+((-4189 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *5)) (-4 *5 (-376)) (-5 *2 (-1201 *5)) (-5 *1 (-951 *4 *5)) (-14 *4 (-1207)))) (-4189 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1266 *4 *5)) (-5 *3 (-663 *5)) (-14 *4 (-1207)) (-4 *5 (-376)) (-5 *1 (-951 *4 *5)))))
+(-10 -7 (-15 -4189 ((-1266 |#1| |#2|) (-1266 |#1| |#2|) (-663 |#2|) (-663 |#2|))) (-15 -4189 ((-1201 |#2|) (-663 |#2|) (-663 |#2|))))
+((-3127 ((|#2| (-663 |#1|) (-663 |#1|)) 28 T ELT)))
+(((-952 |#1| |#2|) (-10 -7 (-15 -3127 (|#2| (-663 |#1|) (-663 |#1|)))) (-376) (-1273 |#1|)) (T -952))
+((-3127 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-376)) (-4 *2 (-1273 *4)) (-5 *1 (-952 *4 *2)))))
+(-10 -7 (-15 -3127 (|#2| (-663 |#1|) (-663 |#1|))))
+((-1989 (((-560) (-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-1189)) 174 T ELT)) (-3999 ((|#4| |#4|) 193 T ELT)) (-3518 (((-663 (-421 (-975 |#1|))) (-663 (-1207))) 146 T ELT)) (-1967 (((-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))) (-711 |#4|) (-663 (-421 (-975 |#1|))) (-663 (-663 |#4|)) (-793) (-793) (-560)) 88 T ELT)) (-1667 (((-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|)))))) (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|)))))) (-663 |#4|)) 69 T ELT)) (-2846 (((-711 |#4|) (-711 |#4|) (-663 |#4|)) 65 T ELT)) (-3513 (((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-1189)) 186 T ELT)) (-2462 (((-560) (-711 |#4|) (-948) (-1189)) 166 T ELT) (((-560) (-711 |#4|) (-663 (-1207)) (-948) (-1189)) 165 T ELT) (((-560) (-711 |#4|) (-663 |#4|) (-948) (-1189)) 164 T ELT) (((-560) (-711 |#4|) (-1189)) 154 T ELT) (((-560) (-711 |#4|) (-663 (-1207)) (-1189)) 153 T ELT) (((-560) (-711 |#4|) (-663 |#4|) (-1189)) 152 T ELT) (((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-948)) 151 T ELT) (((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 (-1207)) (-948)) 150 T ELT) (((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 |#4|) (-948)) 149 T ELT) (((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|)) 148 T ELT) (((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 (-1207))) 147 T ELT) (((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 |#4|)) 143 T ELT)) (-1741 ((|#4| (-975 |#1|)) 80 T ELT)) (-1668 (((-114) (-663 |#4|) (-663 (-663 |#4|))) 190 T ELT)) (-3166 (((-663 (-663 (-560))) (-560) (-560)) 159 T ELT)) (-2263 (((-663 (-663 |#4|)) (-663 (-663 |#4|))) 106 T ELT)) (-3602 (((-793) (-663 (-2 (|:| -1604 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|))))) 100 T ELT)) (-4438 (((-793) (-663 (-2 (|:| -1604 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|))))) 99 T ELT)) (-4051 (((-114) (-663 (-975 |#1|))) 19 T ELT) (((-114) (-663 |#4|)) 15 T ELT)) (-2880 (((-2 (|:| |sysok| (-114)) (|:| |z0| (-663 |#4|)) (|:| |n0| (-663 |#4|))) (-663 |#4|) (-663 |#4|)) 84 T ELT)) (-2272 (((-663 |#4|) |#4|) 57 T ELT)) (-3965 (((-663 (-421 (-975 |#1|))) (-663 |#4|)) 142 T ELT) (((-711 (-421 (-975 |#1|))) (-711 |#4|)) 66 T ELT) (((-421 (-975 |#1|)) |#4|) 139 T ELT)) (-2664 (((-2 (|:| |rgl| (-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|)))))))))) (|:| |rgsz| (-560))) (-711 |#4|) (-663 (-421 (-975 |#1|))) (-793) (-1189) (-560)) 112 T ELT)) (-4396 (((-663 (-2 (|:| -1604 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|)))) (-711 |#4|) (-793)) 98 T ELT)) (-2820 (((-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560))))) (-711 |#4|) (-793)) 121 T ELT)) (-3899 (((-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|)))))) (-2 (|:| -1871 (-711 (-421 (-975 |#1|)))) (|:| |vec| (-663 (-421 (-975 |#1|)))) (|:| -1604 (-793)) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560))))) 56 T ELT)))
+(((-953 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2462 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 |#4|))) (-15 -2462 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 (-1207)))) (-15 -2462 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|))) (-15 -2462 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 |#4|) (-948))) (-15 -2462 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 (-1207)) (-948))) (-15 -2462 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-948))) (-15 -2462 ((-560) (-711 |#4|) (-663 |#4|) (-1189))) (-15 -2462 ((-560) (-711 |#4|) (-663 (-1207)) (-1189))) (-15 -2462 ((-560) (-711 |#4|) (-1189))) (-15 -2462 ((-560) (-711 |#4|) (-663 |#4|) (-948) (-1189))) (-15 -2462 ((-560) (-711 |#4|) (-663 (-1207)) (-948) (-1189))) (-15 -2462 ((-560) (-711 |#4|) (-948) (-1189))) (-15 -1989 ((-560) (-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-1189))) (-15 -3513 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-1189))) (-15 -2664 ((-2 (|:| |rgl| (-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|)))))))))) (|:| |rgsz| (-560))) (-711 |#4|) (-663 (-421 (-975 |#1|))) (-793) (-1189) (-560))) (-15 -3965 ((-421 (-975 |#1|)) |#4|)) (-15 -3965 ((-711 (-421 (-975 |#1|))) (-711 |#4|))) (-15 -3965 ((-663 (-421 (-975 |#1|))) (-663 |#4|))) (-15 -3518 ((-663 (-421 (-975 |#1|))) (-663 (-1207)))) (-15 -1741 (|#4| (-975 |#1|))) (-15 -2880 ((-2 (|:| |sysok| (-114)) (|:| |z0| (-663 |#4|)) (|:| |n0| (-663 |#4|))) (-663 |#4|) (-663 |#4|))) (-15 -4396 ((-663 (-2 (|:| -1604 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|)))) (-711 |#4|) (-793))) (-15 -1667 ((-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|)))))) (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|)))))) (-663 |#4|))) (-15 -3899 ((-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|)))))) (-2 (|:| -1871 (-711 (-421 (-975 |#1|)))) (|:| |vec| (-663 (-421 (-975 |#1|)))) (|:| -1604 (-793)) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (-15 -2272 ((-663 |#4|) |#4|)) (-15 -4438 ((-793) (-663 (-2 (|:| -1604 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|)))))) (-15 -3602 ((-793) (-663 (-2 (|:| -1604 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|)))))) (-15 -2263 ((-663 (-663 |#4|)) (-663 (-663 |#4|)))) (-15 -3166 ((-663 (-663 (-560))) (-560) (-560))) (-15 -1668 ((-114) (-663 |#4|) (-663 (-663 |#4|)))) (-15 -2820 ((-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560))))) (-711 |#4|) (-793))) (-15 -2846 ((-711 |#4|) (-711 |#4|) (-663 |#4|))) (-15 -1967 ((-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))) (-711 |#4|) (-663 (-421 (-975 |#1|))) (-663 (-663 |#4|)) (-793) (-793) (-560))) (-15 -3999 (|#4| |#4|)) (-15 -4051 ((-114) (-663 |#4|))) (-15 -4051 ((-114) (-663 (-975 |#1|))))) (-13 (-319) (-149)) (-13 (-871) (-633 (-1207))) (-815) (-979 |#1| |#3| |#2|)) (T -953))
+((-4051 (*1 *2 *3) (-12 (-5 *3 (-663 (-975 *4))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-114)) (-5 *1 (-953 *4 *5 *6 *7)) (-4 *7 (-979 *4 *6 *5)))) (-4051 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-979 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-114)) (-5 *1 (-953 *4 *5 *6 *7)))) (-3999 (*1 *2 *2) (-12 (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-871) (-633 (-1207)))) (-4 *5 (-815)) (-5 *1 (-953 *3 *4 *5 *2)) (-4 *2 (-979 *3 *5 *4)))) (-1967 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560))))) (-5 *4 (-711 *12)) (-5 *5 (-663 (-421 (-975 *9)))) (-5 *6 (-663 (-663 *12))) (-5 *7 (-793)) (-5 *8 (-560)) (-4 *9 (-13 (-319) (-149))) (-4 *12 (-979 *9 *11 *10)) (-4 *10 (-13 (-871) (-633 (-1207)))) (-4 *11 (-815)) (-5 *2 (-2 (|:| |eqzro| (-663 *12)) (|:| |neqzro| (-663 *12)) (|:| |wcond| (-663 (-975 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 *9)))) (|:| -3822 (-663 (-1297 (-421 (-975 *9))))))))) (-5 *1 (-953 *9 *10 *11 *12)))) (-2846 (*1 *2 *2 *3) (-12 (-5 *2 (-711 *7)) (-5 *3 (-663 *7)) (-4 *7 (-979 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *1 (-953 *4 *5 *6 *7)))) (-2820 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-5 *4 (-793)) (-4 *8 (-979 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-663 (-2 (|:| |det| *8) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (-5 *1 (-953 *5 *6 *7 *8)))) (-1668 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-663 *8))) (-5 *3 (-663 *8)) (-4 *8 (-979 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-114)) (-5 *1 (-953 *5 *6 *7 *8)))) (-3166 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-663 (-663 (-560)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-560)) (-4 *7 (-979 *4 *6 *5)))) (-2263 (*1 *2 *2) (-12 (-5 *2 (-663 (-663 *6))) (-4 *6 (-979 *3 *5 *4)) (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-871) (-633 (-1207)))) (-4 *5 (-815)) (-5 *1 (-953 *3 *4 *5 *6)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -1604 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| *7) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 *7))))) (-4 *7 (-979 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-793)) (-5 *1 (-953 *4 *5 *6 *7)))) (-4438 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -1604 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| *7) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 *7))))) (-4 *7 (-979 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-793)) (-5 *1 (-953 *4 *5 *6 *7)))) (-2272 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-663 *3)) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-979 *4 *6 *5)))) (-3899 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1871 (-711 (-421 (-975 *4)))) (|:| |vec| (-663 (-421 (-975 *4)))) (|:| -1604 (-793)) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560))))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-2 (|:| |partsol| (-1297 (-421 (-975 *4)))) (|:| -3822 (-663 (-1297 (-421 (-975 *4))))))) (-5 *1 (-953 *4 *5 *6 *7)) (-4 *7 (-979 *4 *6 *5)))) (-1667 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1297 (-421 (-975 *4)))) (|:| -3822 (-663 (-1297 (-421 (-975 *4))))))) (-5 *3 (-663 *7)) (-4 *4 (-13 (-319) (-149))) (-4 *7 (-979 *4 *6 *5)) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *1 (-953 *4 *5 *6 *7)))) (-4396 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-4 *8 (-979 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-663 (-2 (|:| -1604 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| *8) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 *8))))) (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-793)))) (-2880 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-4 *7 (-979 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-114)) (|:| |z0| (-663 *7)) (|:| |n0| (-663 *7)))) (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-1741 (*1 *2 *3) (-12 (-5 *3 (-975 *4)) (-4 *4 (-13 (-319) (-149))) (-4 *2 (-979 *4 *6 *5)) (-5 *1 (-953 *4 *5 *6 *2)) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-663 (-1207))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-663 (-421 (-975 *4)))) (-5 *1 (-953 *4 *5 *6 *7)) (-4 *7 (-979 *4 *6 *5)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-979 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-663 (-421 (-975 *4)))) (-5 *1 (-953 *4 *5 *6 *7)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-711 *7)) (-4 *7 (-979 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-711 (-421 (-975 *4)))) (-5 *1 (-953 *4 *5 *6 *7)))) (-3965 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-421 (-975 *4))) (-5 *1 (-953 *4 *5 *6 *3)) (-4 *3 (-979 *4 *6 *5)))) (-2664 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-711 *11)) (-5 *4 (-663 (-421 (-975 *8)))) (-5 *5 (-793)) (-5 *6 (-1189)) (-4 *8 (-13 (-319) (-149))) (-4 *11 (-979 *8 *10 *9)) (-4 *9 (-13 (-871) (-633 (-1207)))) (-4 *10 (-815)) (-5 *2 (-2 (|:| |rgl| (-663 (-2 (|:| |eqzro| (-663 *11)) (|:| |neqzro| (-663 *11)) (|:| |wcond| (-663 (-975 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 *8)))) (|:| -3822 (-663 (-1297 (-421 (-975 *8)))))))))) (|:| |rgsz| (-560)))) (-5 *1 (-953 *8 *9 *10 *11)) (-5 *7 (-560)))) (-3513 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-663 (-2 (|:| |eqzro| (-663 *7)) (|:| |neqzro| (-663 *7)) (|:| |wcond| (-663 (-975 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 *4)))) (|:| -3822 (-663 (-1297 (-421 (-975 *4)))))))))) (-5 *1 (-953 *4 *5 *6 *7)) (-4 *7 (-979 *4 *6 *5)))) (-1989 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-2 (|:| |eqzro| (-663 *8)) (|:| |neqzro| (-663 *8)) (|:| |wcond| (-663 (-975 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 *5)))) (|:| -3822 (-663 (-1297 (-421 (-975 *5)))))))))) (-5 *4 (-1189)) (-4 *5 (-13 (-319) (-149))) (-4 *8 (-979 *5 *7 *6)) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-560)) (-5 *1 (-953 *5 *6 *7 *8)))) (-2462 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *9)) (-5 *4 (-948)) (-5 *5 (-1189)) (-4 *9 (-979 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-871) (-633 (-1207)))) (-4 *8 (-815)) (-5 *2 (-560)) (-5 *1 (-953 *6 *7 *8 *9)))) (-2462 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-711 *10)) (-5 *4 (-663 (-1207))) (-5 *5 (-948)) (-5 *6 (-1189)) (-4 *10 (-979 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) (-4 *8 (-13 (-871) (-633 (-1207)))) (-4 *9 (-815)) (-5 *2 (-560)) (-5 *1 (-953 *7 *8 *9 *10)))) (-2462 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-711 *10)) (-5 *4 (-663 *10)) (-5 *5 (-948)) (-5 *6 (-1189)) (-4 *10 (-979 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) (-4 *8 (-13 (-871) (-633 (-1207)))) (-4 *9 (-815)) (-5 *2 (-560)) (-5 *1 (-953 *7 *8 *9 *10)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-5 *4 (-1189)) (-4 *8 (-979 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-560)) (-5 *1 (-953 *5 *6 *7 *8)))) (-2462 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *9)) (-5 *4 (-663 (-1207))) (-5 *5 (-1189)) (-4 *9 (-979 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-871) (-633 (-1207)))) (-4 *8 (-815)) (-5 *2 (-560)) (-5 *1 (-953 *6 *7 *8 *9)))) (-2462 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *9)) (-5 *4 (-663 *9)) (-5 *5 (-1189)) (-4 *9 (-979 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-871) (-633 (-1207)))) (-4 *8 (-815)) (-5 *2 (-560)) (-5 *1 (-953 *6 *7 *8 *9)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-5 *4 (-948)) (-4 *8 (-979 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-663 (-2 (|:| |eqzro| (-663 *8)) (|:| |neqzro| (-663 *8)) (|:| |wcond| (-663 (-975 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 *5)))) (|:| -3822 (-663 (-1297 (-421 (-975 *5)))))))))) (-5 *1 (-953 *5 *6 *7 *8)))) (-2462 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *9)) (-5 *4 (-663 (-1207))) (-5 *5 (-948)) (-4 *9 (-979 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-871) (-633 (-1207)))) (-4 *8 (-815)) (-5 *2 (-663 (-2 (|:| |eqzro| (-663 *9)) (|:| |neqzro| (-663 *9)) (|:| |wcond| (-663 (-975 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 *6)))) (|:| -3822 (-663 (-1297 (-421 (-975 *6)))))))))) (-5 *1 (-953 *6 *7 *8 *9)))) (-2462 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-711 *9)) (-5 *5 (-948)) (-4 *9 (-979 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-871) (-633 (-1207)))) (-4 *8 (-815)) (-5 *2 (-663 (-2 (|:| |eqzro| (-663 *9)) (|:| |neqzro| (-663 *9)) (|:| |wcond| (-663 (-975 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 *6)))) (|:| -3822 (-663 (-1297 (-421 (-975 *6)))))))))) (-5 *1 (-953 *6 *7 *8 *9)) (-5 *4 (-663 *9)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-711 *7)) (-4 *7 (-979 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-663 (-2 (|:| |eqzro| (-663 *7)) (|:| |neqzro| (-663 *7)) (|:| |wcond| (-663 (-975 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 *4)))) (|:| -3822 (-663 (-1297 (-421 (-975 *4)))))))))) (-5 *1 (-953 *4 *5 *6 *7)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-5 *4 (-663 (-1207))) (-4 *8 (-979 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-663 (-2 (|:| |eqzro| (-663 *8)) (|:| |neqzro| (-663 *8)) (|:| |wcond| (-663 (-975 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 *5)))) (|:| -3822 (-663 (-1297 (-421 (-975 *5)))))))))) (-5 *1 (-953 *5 *6 *7 *8)))) (-2462 (*1 *2 *3 *4) (-12 (-5 *3 (-711 *8)) (-4 *8 (-979 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-663 (-2 (|:| |eqzro| (-663 *8)) (|:| |neqzro| (-663 *8)) (|:| |wcond| (-663 (-975 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 *5)))) (|:| -3822 (-663 (-1297 (-421 (-975 *5)))))))))) (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-663 *8)))))
+(-10 -7 (-15 -2462 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 |#4|))) (-15 -2462 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 (-1207)))) (-15 -2462 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|))) (-15 -2462 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 |#4|) (-948))) (-15 -2462 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-663 (-1207)) (-948))) (-15 -2462 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-711 |#4|) (-948))) (-15 -2462 ((-560) (-711 |#4|) (-663 |#4|) (-1189))) (-15 -2462 ((-560) (-711 |#4|) (-663 (-1207)) (-1189))) (-15 -2462 ((-560) (-711 |#4|) (-1189))) (-15 -2462 ((-560) (-711 |#4|) (-663 |#4|) (-948) (-1189))) (-15 -2462 ((-560) (-711 |#4|) (-663 (-1207)) (-948) (-1189))) (-15 -2462 ((-560) (-711 |#4|) (-948) (-1189))) (-15 -1989 ((-560) (-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-1189))) (-15 -3513 ((-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|))))))))) (-1189))) (-15 -2664 ((-2 (|:| |rgl| (-663 (-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|)))))))))) (|:| |rgsz| (-560))) (-711 |#4|) (-663 (-421 (-975 |#1|))) (-793) (-1189) (-560))) (-15 -3965 ((-421 (-975 |#1|)) |#4|)) (-15 -3965 ((-711 (-421 (-975 |#1|))) (-711 |#4|))) (-15 -3965 ((-663 (-421 (-975 |#1|))) (-663 |#4|))) (-15 -3518 ((-663 (-421 (-975 |#1|))) (-663 (-1207)))) (-15 -1741 (|#4| (-975 |#1|))) (-15 -2880 ((-2 (|:| |sysok| (-114)) (|:| |z0| (-663 |#4|)) (|:| |n0| (-663 |#4|))) (-663 |#4|) (-663 |#4|))) (-15 -4396 ((-663 (-2 (|:| -1604 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|)))) (-711 |#4|) (-793))) (-15 -1667 ((-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|)))))) (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|)))))) (-663 |#4|))) (-15 -3899 ((-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|)))))) (-2 (|:| -1871 (-711 (-421 (-975 |#1|)))) (|:| |vec| (-663 (-421 (-975 |#1|)))) (|:| -1604 (-793)) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (-15 -2272 ((-663 |#4|) |#4|)) (-15 -4438 ((-793) (-663 (-2 (|:| -1604 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|)))))) (-15 -3602 ((-793) (-663 (-2 (|:| -1604 (-793)) (|:| |eqns| (-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))) (|:| |fgb| (-663 |#4|)))))) (-15 -2263 ((-663 (-663 |#4|)) (-663 (-663 |#4|)))) (-15 -3166 ((-663 (-663 (-560))) (-560) (-560))) (-15 -1668 ((-114) (-663 |#4|) (-663 (-663 |#4|)))) (-15 -2820 ((-663 (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560))))) (-711 |#4|) (-793))) (-15 -2846 ((-711 |#4|) (-711 |#4|) (-663 |#4|))) (-15 -1967 ((-2 (|:| |eqzro| (-663 |#4|)) (|:| |neqzro| (-663 |#4|)) (|:| |wcond| (-663 (-975 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1297 (-421 (-975 |#1|)))) (|:| -3822 (-663 (-1297 (-421 (-975 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))) (-711 |#4|) (-663 (-421 (-975 |#1|))) (-663 (-663 |#4|)) (-793) (-793) (-560))) (-15 -3999 (|#4| |#4|)) (-15 -4051 ((-114) (-663 |#4|))) (-15 -4051 ((-114) (-663 (-975 |#1|)))))
+((-2174 (($ $ (-1120 (-229))) 122 T ELT) (($ $ (-1120 (-229)) (-1120 (-229))) 123 T ELT)) (-3307 (((-1120 (-229)) $) 73 T ELT)) (-3295 (((-1120 (-229)) $) 72 T ELT)) (-1793 (((-1120 (-229)) $) 74 T ELT)) (-1762 (((-560) (-560)) 66 T ELT)) (-2071 (((-560) (-560)) 61 T ELT)) (-3549 (((-560) (-560)) 64 T ELT)) (-4165 (((-114) (-114)) 68 T ELT)) (-2847 (((-560)) 65 T ELT)) (-2496 (($ $ (-1120 (-229))) 126 T ELT) (($ $) 127 T ELT)) (-3830 (($ (-1 (-972 (-229)) (-229)) (-1120 (-229))) 141 T ELT) (($ (-1 (-972 (-229)) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229))) 142 T ELT)) (-3909 (($ (-1 (-229) (-229)) (-1120 (-229))) 149 T ELT) (($ (-1 (-229) (-229))) 153 T ELT)) (-1582 (($ (-1 (-229) (-229)) (-1120 (-229))) 137 T ELT) (($ (-1 (-229) (-229)) (-1120 (-229)) (-1120 (-229))) 138 T ELT) (($ (-663 (-1 (-229) (-229))) (-1120 (-229))) 146 T ELT) (($ (-663 (-1 (-229) (-229))) (-1120 (-229)) (-1120 (-229))) 147 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229))) 139 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229))) 140 T ELT) (($ $ (-1120 (-229))) 128 T ELT)) (-1381 (((-114) $) 69 T ELT)) (-4420 (((-560)) 70 T ELT)) (-3002 (((-560)) 59 T ELT)) (-4192 (((-560)) 62 T ELT)) (-2467 (((-663 (-663 (-972 (-229)))) $) 35 T ELT)) (-2102 (((-114) (-114)) 71 T ELT)) (-3913 (((-887) $) 167 T ELT)) (-1749 (((-114)) 67 T ELT)))
+(((-954) (-13 (-984) (-10 -8 (-15 -1582 ($ (-1 (-229) (-229)) (-1120 (-229)))) (-15 -1582 ($ (-1 (-229) (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -1582 ($ (-663 (-1 (-229) (-229))) (-1120 (-229)))) (-15 -1582 ($ (-663 (-1 (-229) (-229))) (-1120 (-229)) (-1120 (-229)))) (-15 -1582 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229)))) (-15 -1582 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -3830 ($ (-1 (-972 (-229)) (-229)) (-1120 (-229)))) (-15 -3830 ($ (-1 (-972 (-229)) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -3909 ($ (-1 (-229) (-229)) (-1120 (-229)))) (-15 -3909 ($ (-1 (-229) (-229)))) (-15 -1582 ($ $ (-1120 (-229)))) (-15 -1381 ((-114) $)) (-15 -2174 ($ $ (-1120 (-229)))) (-15 -2174 ($ $ (-1120 (-229)) (-1120 (-229)))) (-15 -2496 ($ $ (-1120 (-229)))) (-15 -2496 ($ $)) (-15 -1793 ((-1120 (-229)) $)) (-15 -3002 ((-560))) (-15 -2071 ((-560) (-560))) (-15 -4192 ((-560))) (-15 -3549 ((-560) (-560))) (-15 -2847 ((-560))) (-15 -1762 ((-560) (-560))) (-15 -1749 ((-114))) (-15 -4165 ((-114) (-114))) (-15 -4420 ((-560))) (-15 -2102 ((-114) (-114)))))) (T -954))
+((-1582 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229))) (-5 *1 (-954)))) (-1582 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229))) (-5 *1 (-954)))) (-1582 (*1 *1 *2 *3) (-12 (-5 *2 (-663 (-1 (-229) (-229)))) (-5 *3 (-1120 (-229))) (-5 *1 (-954)))) (-1582 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-663 (-1 (-229) (-229)))) (-5 *3 (-1120 (-229))) (-5 *1 (-954)))) (-1582 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229))) (-5 *1 (-954)))) (-1582 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229))) (-5 *1 (-954)))) (-3830 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1120 (-229))) (-5 *1 (-954)))) (-3830 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1120 (-229))) (-5 *1 (-954)))) (-3909 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229))) (-5 *1 (-954)))) (-3909 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-954)))) (-1582 (*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-954)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-954)))) (-2174 (*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-954)))) (-2174 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-954)))) (-2496 (*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-954)))) (-2496 (*1 *1 *1) (-5 *1 (-954))) (-1793 (*1 *2 *1) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-954)))) (-3002 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))) (-2071 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))) (-4192 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))) (-3549 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))) (-2847 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))) (-1762 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))) (-1749 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-954)))) (-4165 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-954)))) (-4420 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))) (-2102 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-954)))))
+(-13 (-984) (-10 -8 (-15 -1582 ($ (-1 (-229) (-229)) (-1120 (-229)))) (-15 -1582 ($ (-1 (-229) (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -1582 ($ (-663 (-1 (-229) (-229))) (-1120 (-229)))) (-15 -1582 ($ (-663 (-1 (-229) (-229))) (-1120 (-229)) (-1120 (-229)))) (-15 -1582 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229)))) (-15 -1582 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -3830 ($ (-1 (-972 (-229)) (-229)) (-1120 (-229)))) (-15 -3830 ($ (-1 (-972 (-229)) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -3909 ($ (-1 (-229) (-229)) (-1120 (-229)))) (-15 -3909 ($ (-1 (-229) (-229)))) (-15 -1582 ($ $ (-1120 (-229)))) (-15 -1381 ((-114) $)) (-15 -2174 ($ $ (-1120 (-229)))) (-15 -2174 ($ $ (-1120 (-229)) (-1120 (-229)))) (-15 -2496 ($ $ (-1120 (-229)))) (-15 -2496 ($ $)) (-15 -1793 ((-1120 (-229)) $)) (-15 -3002 ((-560))) (-15 -2071 ((-560) (-560))) (-15 -4192 ((-560))) (-15 -3549 ((-560) (-560))) (-15 -2847 ((-560))) (-15 -1762 ((-560) (-560))) (-15 -1749 ((-114))) (-15 -4165 ((-114) (-114))) (-15 -4420 ((-560))) (-15 -2102 ((-114) (-114)))))
+((-3909 (((-954) |#1| (-1207)) 17 T ELT) (((-954) |#1| (-1207) (-1120 (-229))) 21 T ELT)) (-1582 (((-954) |#1| |#1| (-1207) (-1120 (-229))) 19 T ELT) (((-954) |#1| (-1207) (-1120 (-229))) 15 T ELT)))
+(((-955 |#1|) (-10 -7 (-15 -1582 ((-954) |#1| (-1207) (-1120 (-229)))) (-15 -1582 ((-954) |#1| |#1| (-1207) (-1120 (-229)))) (-15 -3909 ((-954) |#1| (-1207) (-1120 (-229)))) (-15 -3909 ((-954) |#1| (-1207)))) (-633 (-549))) (T -955))
+((-3909 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-5 *2 (-954)) (-5 *1 (-955 *3)) (-4 *3 (-633 (-549))))) (-3909 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1207)) (-5 *5 (-1120 (-229))) (-5 *2 (-954)) (-5 *1 (-955 *3)) (-4 *3 (-633 (-549))))) (-1582 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1207)) (-5 *5 (-1120 (-229))) (-5 *2 (-954)) (-5 *1 (-955 *3)) (-4 *3 (-633 (-549))))) (-1582 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1207)) (-5 *5 (-1120 (-229))) (-5 *2 (-954)) (-5 *1 (-955 *3)) (-4 *3 (-633 (-549))))))
+(-10 -7 (-15 -1582 ((-954) |#1| (-1207) (-1120 (-229)))) (-15 -1582 ((-954) |#1| |#1| (-1207) (-1120 (-229)))) (-15 -3909 ((-954) |#1| (-1207) (-1120 (-229)))) (-15 -3909 ((-954) |#1| (-1207))))
+((-2174 (($ $ (-1120 (-229)) (-1120 (-229)) (-1120 (-229))) 121 T ELT)) (-3318 (((-1120 (-229)) $) 64 T ELT)) (-3307 (((-1120 (-229)) $) 63 T ELT)) (-3295 (((-1120 (-229)) $) 62 T ELT)) (-1960 (((-663 (-663 (-229))) $) 69 T ELT)) (-1793 (((-1120 (-229)) $) 65 T ELT)) (-2803 (((-560) (-560)) 57 T ELT)) (-2519 (((-560) (-560)) 52 T ELT)) (-2100 (((-560) (-560)) 55 T ELT)) (-4441 (((-114) (-114)) 59 T ELT)) (-4310 (((-560)) 56 T ELT)) (-2496 (($ $ (-1120 (-229))) 124 T ELT) (($ $) 125 T ELT)) (-3830 (($ (-1 (-972 (-229)) (-229)) (-1120 (-229))) 131 T ELT) (($ (-1 (-972 (-229)) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229))) 132 T ELT)) (-1582 (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229))) 134 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229))) 135 T ELT) (($ $ (-1120 (-229))) 127 T ELT)) (-3194 (((-560)) 60 T ELT)) (-2442 (((-560)) 50 T ELT)) (-3131 (((-560)) 53 T ELT)) (-2467 (((-663 (-663 (-972 (-229)))) $) 151 T ELT)) (-3071 (((-114) (-114)) 61 T ELT)) (-3913 (((-887) $) 149 T ELT)) (-3479 (((-114)) 58 T ELT)))
+(((-956) (-13 (-1005) (-10 -8 (-15 -3830 ($ (-1 (-972 (-229)) (-229)) (-1120 (-229)))) (-15 -3830 ($ (-1 (-972 (-229)) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -1582 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229)))) (-15 -1582 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -1582 ($ $ (-1120 (-229)))) (-15 -2174 ($ $ (-1120 (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -2496 ($ $ (-1120 (-229)))) (-15 -2496 ($ $)) (-15 -1793 ((-1120 (-229)) $)) (-15 -1960 ((-663 (-663 (-229))) $)) (-15 -2442 ((-560))) (-15 -2519 ((-560) (-560))) (-15 -3131 ((-560))) (-15 -2100 ((-560) (-560))) (-15 -4310 ((-560))) (-15 -2803 ((-560) (-560))) (-15 -3479 ((-114))) (-15 -4441 ((-114) (-114))) (-15 -3194 ((-560))) (-15 -3071 ((-114) (-114)))))) (T -956))
+((-3830 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1120 (-229))) (-5 *1 (-956)))) (-3830 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1120 (-229))) (-5 *1 (-956)))) (-1582 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229))) (-5 *1 (-956)))) (-1582 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229))) (-5 *1 (-956)))) (-1582 (*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-956)))) (-2174 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-956)))) (-2496 (*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-956)))) (-2496 (*1 *1 *1) (-5 *1 (-956))) (-1793 (*1 *2 *1) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-956)))) (-1960 (*1 *2 *1) (-12 (-5 *2 (-663 (-663 (-229)))) (-5 *1 (-956)))) (-2442 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))) (-2519 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))) (-3131 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))) (-2100 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))) (-4310 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))) (-2803 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))) (-3479 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-956)))) (-4441 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-956)))) (-3194 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))) (-3071 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-956)))))
+(-13 (-1005) (-10 -8 (-15 -3830 ($ (-1 (-972 (-229)) (-229)) (-1120 (-229)))) (-15 -3830 ($ (-1 (-972 (-229)) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -1582 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229)))) (-15 -1582 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -1582 ($ $ (-1120 (-229)))) (-15 -2174 ($ $ (-1120 (-229)) (-1120 (-229)) (-1120 (-229)))) (-15 -2496 ($ $ (-1120 (-229)))) (-15 -2496 ($ $)) (-15 -1793 ((-1120 (-229)) $)) (-15 -1960 ((-663 (-663 (-229))) $)) (-15 -2442 ((-560))) (-15 -2519 ((-560) (-560))) (-15 -3131 ((-560))) (-15 -2100 ((-560) (-560))) (-15 -4310 ((-560))) (-15 -2803 ((-560) (-560))) (-15 -3479 ((-114))) (-15 -4441 ((-114) (-114))) (-15 -3194 ((-560))) (-15 -3071 ((-114) (-114)))))
+((-1509 (((-663 (-1120 (-229))) (-663 (-663 (-972 (-229))))) 34 T ELT)))
+(((-957) (-10 -7 (-15 -1509 ((-663 (-1120 (-229))) (-663 (-663 (-972 (-229)))))))) (T -957))
+((-1509 (*1 *2 *3) (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *2 (-663 (-1120 (-229)))) (-5 *1 (-957)))))
+(-10 -7 (-15 -1509 ((-663 (-1120 (-229))) (-663 (-663 (-972 (-229)))))))
+((-4229 (((-326 (-560)) (-1207)) 16 T ELT)) (-2077 (((-326 (-560)) (-1207)) 14 T ELT)) (-2650 (((-326 (-560)) (-1207)) 12 T ELT)) (-2282 (((-326 (-560)) (-1207) (-520)) 19 T ELT)))
+(((-958) (-10 -7 (-15 -2282 ((-326 (-560)) (-1207) (-520))) (-15 -2650 ((-326 (-560)) (-1207))) (-15 -4229 ((-326 (-560)) (-1207))) (-15 -2077 ((-326 (-560)) (-1207))))) (T -958))
+((-2077 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-326 (-560))) (-5 *1 (-958)))) (-4229 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-326 (-560))) (-5 *1 (-958)))) (-2650 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-326 (-560))) (-5 *1 (-958)))) (-2282 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-520)) (-5 *2 (-326 (-560))) (-5 *1 (-958)))))
+(-10 -7 (-15 -2282 ((-326 (-560)) (-1207) (-520))) (-15 -2650 ((-326 (-560)) (-1207))) (-15 -4229 ((-326 (-560)) (-1207))) (-15 -2077 ((-326 (-560)) (-1207))))
+((-4229 ((|#2| |#2|) 28 T ELT)) (-2077 ((|#2| |#2|) 29 T ELT)) (-2650 ((|#2| |#2|) 27 T ELT)) (-2282 ((|#2| |#2| (-520)) 26 T ELT)))
+(((-959 |#1| |#2|) (-10 -7 (-15 -2282 (|#2| |#2| (-520))) (-15 -2650 (|#2| |#2|)) (-15 -4229 (|#2| |#2|)) (-15 -2077 (|#2| |#2|))) (-1132) (-435 |#1|)) (T -959))
+((-2077 (*1 *2 *2) (-12 (-4 *3 (-1132)) (-5 *1 (-959 *3 *2)) (-4 *2 (-435 *3)))) (-4229 (*1 *2 *2) (-12 (-4 *3 (-1132)) (-5 *1 (-959 *3 *2)) (-4 *2 (-435 *3)))) (-2650 (*1 *2 *2) (-12 (-4 *3 (-1132)) (-5 *1 (-959 *3 *2)) (-4 *2 (-435 *3)))) (-2282 (*1 *2 *2 *3) (-12 (-5 *3 (-520)) (-4 *4 (-1132)) (-5 *1 (-959 *4 *2)) (-4 *2 (-435 *4)))))
+(-10 -7 (-15 -2282 (|#2| |#2| (-520))) (-15 -2650 (|#2| |#2|)) (-15 -4229 (|#2| |#2|)) (-15 -2077 (|#2| |#2|)))
+((-1646 (((-913 |#1| |#3|) |#2| (-915 |#1|) (-913 |#1| |#3|)) 25 T ELT)) (-4053 (((-1 (-114) |#2|) (-1 (-114) |#3|)) 13 T ELT)))
+(((-960 |#1| |#2| |#3|) (-10 -7 (-15 -4053 ((-1 (-114) |#2|) (-1 (-114) |#3|))) (-15 -1646 ((-913 |#1| |#3|) |#2| (-915 |#1|) (-913 |#1| |#3|)))) (-1132) (-911 |#1|) (-13 (-1132) (-1069 |#2|))) (T -960))
+((-1646 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *6)) (-5 *4 (-915 *5)) (-4 *5 (-1132)) (-4 *6 (-13 (-1132) (-1069 *3))) (-4 *3 (-911 *5)) (-5 *1 (-960 *5 *3 *6)))) (-4053 (*1 *2 *3) (-12 (-5 *3 (-1 (-114) *6)) (-4 *6 (-13 (-1132) (-1069 *5))) (-4 *5 (-911 *4)) (-4 *4 (-1132)) (-5 *2 (-1 (-114) *5)) (-5 *1 (-960 *4 *5 *6)))))
+(-10 -7 (-15 -4053 ((-1 (-114) |#2|) (-1 (-114) |#3|))) (-15 -1646 ((-913 |#1| |#3|) |#2| (-915 |#1|) (-913 |#1| |#3|))))
+((-1646 (((-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|)) 30 T ELT)))
+(((-961 |#1| |#2| |#3|) (-10 -7 (-15 -1646 ((-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|)))) (-1132) (-13 (-571) (-911 |#1|)) (-13 (-435 |#2|) (-633 (-915 |#1|)) (-911 |#1|) (-1069 (-630 $)))) (T -961))
+((-1646 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1132)) (-4 *3 (-13 (-435 *6) (-633 *4) (-911 *5) (-1069 (-630 $)))) (-5 *4 (-915 *5)) (-4 *6 (-13 (-571) (-911 *5))) (-5 *1 (-961 *5 *6 *3)))))
+(-10 -7 (-15 -1646 ((-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|))))
+((-1646 (((-913 (-560) |#1|) |#1| (-915 (-560)) (-913 (-560) |#1|)) 13 T ELT)))
+(((-962 |#1|) (-10 -7 (-15 -1646 ((-913 (-560) |#1|) |#1| (-915 (-560)) (-913 (-560) |#1|)))) (-559)) (T -962))
+((-1646 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 (-560) *3)) (-5 *4 (-915 (-560))) (-4 *3 (-559)) (-5 *1 (-962 *3)))))
+(-10 -7 (-15 -1646 ((-913 (-560) |#1|) |#1| (-915 (-560)) (-913 (-560) |#1|))))
+((-1646 (((-913 |#1| |#2|) (-630 |#2|) (-915 |#1|) (-913 |#1| |#2|)) 57 T ELT)))
+(((-963 |#1| |#2|) (-10 -7 (-15 -1646 ((-913 |#1| |#2|) (-630 |#2|) (-915 |#1|) (-913 |#1| |#2|)))) (-1132) (-13 (-1132) (-1069 (-630 $)) (-633 (-915 |#1|)) (-911 |#1|))) (T -963))
+((-1646 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *6)) (-5 *3 (-630 *6)) (-4 *5 (-1132)) (-4 *6 (-13 (-1132) (-1069 (-630 $)) (-633 *4) (-911 *5))) (-5 *4 (-915 *5)) (-5 *1 (-963 *5 *6)))))
+(-10 -7 (-15 -1646 ((-913 |#1| |#2|) (-630 |#2|) (-915 |#1|) (-913 |#1| |#2|))))
+((-1646 (((-910 |#1| |#2| |#3|) |#3| (-915 |#1|) (-910 |#1| |#2| |#3|)) 17 T ELT)))
+(((-964 |#1| |#2| |#3|) (-10 -7 (-15 -1646 ((-910 |#1| |#2| |#3|) |#3| (-915 |#1|) (-910 |#1| |#2| |#3|)))) (-1132) (-911 |#1|) (-688 |#2|)) (T -964))
+((-1646 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-910 *5 *6 *3)) (-5 *4 (-915 *5)) (-4 *5 (-1132)) (-4 *6 (-911 *5)) (-4 *3 (-688 *6)) (-5 *1 (-964 *5 *6 *3)))))
+(-10 -7 (-15 -1646 ((-910 |#1| |#2| |#3|) |#3| (-915 |#1|) (-910 |#1| |#2| |#3|))))
+((-1646 (((-913 |#1| |#5|) |#5| (-915 |#1|) (-913 |#1| |#5|)) 17 (|has| |#3| (-911 |#1|)) ELT) (((-913 |#1| |#5|) |#5| (-915 |#1|) (-913 |#1| |#5|) (-1 (-913 |#1| |#5|) |#3| (-915 |#1|) (-913 |#1| |#5|))) 16 T ELT)))
+(((-965 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1646 ((-913 |#1| |#5|) |#5| (-915 |#1|) (-913 |#1| |#5|) (-1 (-913 |#1| |#5|) |#3| (-915 |#1|) (-913 |#1| |#5|)))) (IF (|has| |#3| (-911 |#1|)) (-15 -1646 ((-913 |#1| |#5|) |#5| (-915 |#1|) (-913 |#1| |#5|))) |%noBranch|)) (-1132) (-815) (-871) (-13 (-1080) (-911 |#1|)) (-13 (-979 |#4| |#2| |#3|) (-633 (-915 |#1|)))) (T -965))
+((-1646 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1132)) (-4 *3 (-13 (-979 *8 *6 *7) (-633 *4))) (-5 *4 (-915 *5)) (-4 *7 (-911 *5)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-13 (-1080) (-911 *5))) (-5 *1 (-965 *5 *6 *7 *8 *3)))) (-1646 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-913 *6 *3) *8 (-915 *6) (-913 *6 *3))) (-4 *8 (-871)) (-5 *2 (-913 *6 *3)) (-5 *4 (-915 *6)) (-4 *6 (-1132)) (-4 *3 (-13 (-979 *9 *7 *8) (-633 *4))) (-4 *7 (-815)) (-4 *9 (-13 (-1080) (-911 *6))) (-5 *1 (-965 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -1646 ((-913 |#1| |#5|) |#5| (-915 |#1|) (-913 |#1| |#5|) (-1 (-913 |#1| |#5|) |#3| (-915 |#1|) (-913 |#1| |#5|)))) (IF (|has| |#3| (-911 |#1|)) (-15 -1646 ((-913 |#1| |#5|) |#5| (-915 |#1|) (-913 |#1| |#5|))) |%noBranch|))
+((-2141 (((-326 (-560)) (-1207) (-663 (-1 (-114) |#1|))) 18 T ELT) (((-326 (-560)) (-1207) (-1 (-114) |#1|)) 15 T ELT)))
+(((-966 |#1|) (-10 -7 (-15 -2141 ((-326 (-560)) (-1207) (-1 (-114) |#1|))) (-15 -2141 ((-326 (-560)) (-1207) (-663 (-1 (-114) |#1|))))) (-1247)) (T -966))
+((-2141 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-663 (-1 (-114) *5))) (-4 *5 (-1247)) (-5 *2 (-326 (-560))) (-5 *1 (-966 *5)))) (-2141 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-1 (-114) *5)) (-4 *5 (-1247)) (-5 *2 (-326 (-560))) (-5 *1 (-966 *5)))))
+(-10 -7 (-15 -2141 ((-326 (-560)) (-1207) (-1 (-114) |#1|))) (-15 -2141 ((-326 (-560)) (-1207) (-663 (-1 (-114) |#1|)))))
+((-2141 ((|#2| |#2| (-663 (-1 (-114) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-114) |#3|)) 13 T ELT)))
+(((-967 |#1| |#2| |#3|) (-10 -7 (-15 -2141 (|#2| |#2| (-1 (-114) |#3|))) (-15 -2141 (|#2| |#2| (-663 (-1 (-114) |#3|))))) (-1132) (-435 |#1|) (-1247)) (T -967))
+((-2141 (*1 *2 *2 *3) (-12 (-5 *3 (-663 (-1 (-114) *5))) (-4 *5 (-1247)) (-4 *4 (-1132)) (-5 *1 (-967 *4 *2 *5)) (-4 *2 (-435 *4)))) (-2141 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *5)) (-4 *5 (-1247)) (-4 *4 (-1132)) (-5 *1 (-967 *4 *2 *5)) (-4 *2 (-435 *4)))))
+(-10 -7 (-15 -2141 (|#2| |#2| (-1 (-114) |#3|))) (-15 -2141 (|#2| |#2| (-663 (-1 (-114) |#3|)))))
+((-1646 (((-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|)) 25 T ELT)))
+(((-968 |#1| |#2| |#3|) (-10 -7 (-15 -1646 ((-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|)))) (-1132) (-13 (-571) (-911 |#1|) (-633 (-915 |#1|))) (-1022 |#2|)) (T -968))
+((-1646 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1132)) (-4 *3 (-1022 *6)) (-4 *6 (-13 (-571) (-911 *5) (-633 *4))) (-5 *4 (-915 *5)) (-5 *1 (-968 *5 *6 *3)))))
+(-10 -7 (-15 -1646 ((-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|))))
+((-1646 (((-913 |#1| (-1207)) (-1207) (-915 |#1|) (-913 |#1| (-1207))) 18 T ELT)))
+(((-969 |#1|) (-10 -7 (-15 -1646 ((-913 |#1| (-1207)) (-1207) (-915 |#1|) (-913 |#1| (-1207))))) (-1132)) (T -969))
+((-1646 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-913 *5 (-1207))) (-5 *3 (-1207)) (-5 *4 (-915 *5)) (-4 *5 (-1132)) (-5 *1 (-969 *5)))))
+(-10 -7 (-15 -1646 ((-913 |#1| (-1207)) (-1207) (-915 |#1|) (-913 |#1| (-1207)))))
+((-4147 (((-913 |#1| |#3|) (-663 |#3|) (-663 (-915 |#1|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|))) 34 T ELT)) (-1646 (((-913 |#1| |#3|) (-663 |#3|) (-663 (-915 |#1|)) (-1 |#3| (-663 |#3|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|))) 33 T ELT)))
+(((-970 |#1| |#2| |#3|) (-10 -7 (-15 -1646 ((-913 |#1| |#3|) (-663 |#3|) (-663 (-915 |#1|)) (-1 |#3| (-663 |#3|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|)))) (-15 -4147 ((-913 |#1| |#3|) (-663 |#3|) (-663 (-915 |#1|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|))))) (-1132) (-1080) (-13 (-1080) (-633 (-915 |#1|)) (-1069 |#2|))) (T -970))
+((-4147 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 (-915 *6))) (-5 *5 (-1 (-913 *6 *8) *8 (-915 *6) (-913 *6 *8))) (-4 *6 (-1132)) (-4 *8 (-13 (-1080) (-633 (-915 *6)) (-1069 *7))) (-5 *2 (-913 *6 *8)) (-4 *7 (-1080)) (-5 *1 (-970 *6 *7 *8)))) (-1646 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-663 (-915 *7))) (-5 *5 (-1 *9 (-663 *9))) (-5 *6 (-1 (-913 *7 *9) *9 (-915 *7) (-913 *7 *9))) (-4 *7 (-1132)) (-4 *9 (-13 (-1080) (-633 (-915 *7)) (-1069 *8))) (-5 *2 (-913 *7 *9)) (-5 *3 (-663 *9)) (-4 *8 (-1080)) (-5 *1 (-970 *7 *8 *9)))))
+(-10 -7 (-15 -1646 ((-913 |#1| |#3|) (-663 |#3|) (-663 (-915 |#1|)) (-1 |#3| (-663 |#3|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|)))) (-15 -4147 ((-913 |#1| |#3|) (-663 |#3|) (-663 (-915 |#1|)) (-913 |#1| |#3|) (-1 (-913 |#1| |#3|) |#3| (-915 |#1|) (-913 |#1| |#3|)))))
+((-2934 (((-1201 (-421 (-560))) (-560)) 79 T ELT)) (-3040 (((-1201 (-560)) (-560)) 82 T ELT)) (-3585 (((-1201 (-560)) (-560)) 76 T ELT)) (-3501 (((-560) (-1201 (-560))) 72 T ELT)) (-2404 (((-1201 (-421 (-560))) (-560)) 65 T ELT)) (-4188 (((-1201 (-560)) (-560)) 49 T ELT)) (-2852 (((-1201 (-560)) (-560)) 84 T ELT)) (-3424 (((-1201 (-560)) (-560)) 83 T ELT)) (-3492 (((-1201 (-421 (-560))) (-560)) 67 T ELT)))
+(((-971) (-10 -7 (-15 -3492 ((-1201 (-421 (-560))) (-560))) (-15 -3424 ((-1201 (-560)) (-560))) (-15 -2852 ((-1201 (-560)) (-560))) (-15 -4188 ((-1201 (-560)) (-560))) (-15 -2404 ((-1201 (-421 (-560))) (-560))) (-15 -3501 ((-560) (-1201 (-560)))) (-15 -3585 ((-1201 (-560)) (-560))) (-15 -3040 ((-1201 (-560)) (-560))) (-15 -2934 ((-1201 (-421 (-560))) (-560))))) (T -971))
+((-2934 (*1 *2 *3) (-12 (-5 *2 (-1201 (-421 (-560)))) (-5 *1 (-971)) (-5 *3 (-560)))) (-3040 (*1 *2 *3) (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-971)) (-5 *3 (-560)))) (-3585 (*1 *2 *3) (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-971)) (-5 *3 (-560)))) (-3501 (*1 *2 *3) (-12 (-5 *3 (-1201 (-560))) (-5 *2 (-560)) (-5 *1 (-971)))) (-2404 (*1 *2 *3) (-12 (-5 *2 (-1201 (-421 (-560)))) (-5 *1 (-971)) (-5 *3 (-560)))) (-4188 (*1 *2 *3) (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-971)) (-5 *3 (-560)))) (-2852 (*1 *2 *3) (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-971)) (-5 *3 (-560)))) (-3424 (*1 *2 *3) (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-971)) (-5 *3 (-560)))) (-3492 (*1 *2 *3) (-12 (-5 *2 (-1201 (-421 (-560)))) (-5 *1 (-971)) (-5 *3 (-560)))))
+(-10 -7 (-15 -3492 ((-1201 (-421 (-560))) (-560))) (-15 -3424 ((-1201 (-560)) (-560))) (-15 -2852 ((-1201 (-560)) (-560))) (-15 -4188 ((-1201 (-560)) (-560))) (-15 -2404 ((-1201 (-421 (-560))) (-560))) (-15 -3501 ((-560) (-1201 (-560)))) (-15 -3585 ((-1201 (-560)) (-560))) (-15 -3040 ((-1201 (-560)) (-560))) (-15 -2934 ((-1201 (-421 (-560))) (-560))))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3068 (($ (-793)) NIL (|has| |#1| (-23)) ELT)) (-2033 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-2152 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-3152 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| |#1| (-871))) ELT)) (-1787 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3525 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) NIL T ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3033 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3338 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-560)) NIL T ELT)) (-2359 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1132)) ELT)) (-2843 (($ (-663 |#1|)) 9 T ELT)) (-3737 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1451 (((-711 |#1|) $ $) NIL (|has| |#1| (-1080)) ELT)) (-4246 (($ (-793) |#1|) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-4167 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4263 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-1422 ((|#1| $) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1080))) ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-2946 ((|#1| $) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1080))) ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-2507 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) NIL T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-4334 ((|#1| $) NIL (|has| (-560) (-871)) ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2740 (($ $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2219 (($ $ (-663 |#1|)) 25 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) 18 T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-4258 ((|#1| $ $) NIL (|has| |#1| (-1080)) ELT)) (-3015 (((-948) $) 13 T ELT)) (-2579 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-2192 (($ $ $) 23 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3993 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT) (($ (-663 |#1|)) 14 T ELT)) (-3924 (($ (-663 |#1|)) NIL T ELT)) (-1955 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-663 $)) NIL T ELT)) (-3913 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2396 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2386 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2441 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-2429 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-560) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-748)) ELT) (($ $ |#1|) NIL (|has| |#1| (-748)) ELT)) (-2256 (((-793) $) 11 (|has| $ (-6 -4508)) ELT)))
(((-972 |#1|) (-1011 |#1|) (-1080)) (T -972))
NIL
(-1011 |#1|)
-((-2946 (((-495 |#1| |#2|) (-975 |#2|)) 22 T ELT)) (-3623 (((-255 |#1| |#2|) (-975 |#2|)) 35 T ELT)) (-4442 (((-975 |#2|) (-495 |#1| |#2|)) 27 T ELT)) (-1976 (((-255 |#1| |#2|) (-495 |#1| |#2|)) 57 T ELT)) (-1526 (((-975 |#2|) (-255 |#1| |#2|)) 32 T ELT)) (-1533 (((-495 |#1| |#2|) (-255 |#1| |#2|)) 48 T ELT)))
-(((-973 |#1| |#2|) (-10 -7 (-15 -1533 ((-495 |#1| |#2|) (-255 |#1| |#2|))) (-15 -1976 ((-255 |#1| |#2|) (-495 |#1| |#2|))) (-15 -2946 ((-495 |#1| |#2|) (-975 |#2|))) (-15 -4442 ((-975 |#2|) (-495 |#1| |#2|))) (-15 -1526 ((-975 |#2|) (-255 |#1| |#2|))) (-15 -3623 ((-255 |#1| |#2|) (-975 |#2|)))) (-663 (-1207)) (-1080)) (T -973))
-((-3623 (*1 *2 *3) (-12 (-5 *3 (-975 *5)) (-4 *5 (-1080)) (-5 *2 (-255 *4 *5)) (-5 *1 (-973 *4 *5)) (-14 *4 (-663 (-1207))))) (-1526 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-663 (-1207))) (-4 *5 (-1080)) (-5 *2 (-975 *5)) (-5 *1 (-973 *4 *5)))) (-4442 (*1 *2 *3) (-12 (-5 *3 (-495 *4 *5)) (-14 *4 (-663 (-1207))) (-4 *5 (-1080)) (-5 *2 (-975 *5)) (-5 *1 (-973 *4 *5)))) (-2946 (*1 *2 *3) (-12 (-5 *3 (-975 *5)) (-4 *5 (-1080)) (-5 *2 (-495 *4 *5)) (-5 *1 (-973 *4 *5)) (-14 *4 (-663 (-1207))))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-495 *4 *5)) (-14 *4 (-663 (-1207))) (-4 *5 (-1080)) (-5 *2 (-255 *4 *5)) (-5 *1 (-973 *4 *5)))) (-1533 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-663 (-1207))) (-4 *5 (-1080)) (-5 *2 (-495 *4 *5)) (-5 *1 (-973 *4 *5)))))
-(-10 -7 (-15 -1533 ((-495 |#1| |#2|) (-255 |#1| |#2|))) (-15 -1976 ((-255 |#1| |#2|) (-495 |#1| |#2|))) (-15 -2946 ((-495 |#1| |#2|) (-975 |#2|))) (-15 -4442 ((-975 |#2|) (-495 |#1| |#2|))) (-15 -1526 ((-975 |#2|) (-255 |#1| |#2|))) (-15 -3623 ((-255 |#1| |#2|) (-975 |#2|))))
-((-3289 (((-663 |#2|) |#2| |#2|) 10 T ELT)) (-1482 (((-793) (-663 |#1|)) 48 (|has| |#1| (-870)) ELT)) (-3880 (((-663 |#2|) |#2|) 11 T ELT)) (-1357 (((-793) (-663 |#1|) (-560) (-560)) 52 (|has| |#1| (-870)) ELT)) (-1595 ((|#1| |#2|) 38 (|has| |#1| (-870)) ELT)))
-(((-974 |#1| |#2|) (-10 -7 (-15 -3289 ((-663 |#2|) |#2| |#2|)) (-15 -3880 ((-663 |#2|) |#2|)) (IF (|has| |#1| (-870)) (PROGN (-15 -1595 (|#1| |#2|)) (-15 -1482 ((-793) (-663 |#1|))) (-15 -1357 ((-793) (-663 |#1|) (-560) (-560)))) |%noBranch|)) (-376) (-1273 |#1|)) (T -974))
-((-1357 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-560)) (-4 *5 (-870)) (-4 *5 (-376)) (-5 *2 (-793)) (-5 *1 (-974 *5 *6)) (-4 *6 (-1273 *5)))) (-1482 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-870)) (-4 *4 (-376)) (-5 *2 (-793)) (-5 *1 (-974 *4 *5)) (-4 *5 (-1273 *4)))) (-1595 (*1 *2 *3) (-12 (-4 *2 (-376)) (-4 *2 (-870)) (-5 *1 (-974 *2 *3)) (-4 *3 (-1273 *2)))) (-3880 (*1 *2 *3) (-12 (-4 *4 (-376)) (-5 *2 (-663 *3)) (-5 *1 (-974 *4 *3)) (-4 *3 (-1273 *4)))) (-3289 (*1 *2 *3 *3) (-12 (-4 *4 (-376)) (-5 *2 (-663 *3)) (-5 *1 (-974 *4 *3)) (-4 *3 (-1273 *4)))))
-(-10 -7 (-15 -3289 ((-663 |#2|) |#2| |#2|)) (-15 -3880 ((-663 |#2|) |#2|)) (IF (|has| |#1| (-870)) (PROGN (-15 -1595 (|#1| |#2|)) (-15 -1482 ((-793) (-663 |#1|))) (-15 -1357 ((-793) (-663 |#1|) (-560) (-560)))) |%noBranch|))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1443 (((-663 (-1207)) $) 16 T ELT)) (-4422 (((-1201 $) $ (-1207)) 21 T ELT) (((-1201 |#1|) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3107 (((-793) $) NIL T ELT) (((-793) $ (-663 (-1207))) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1804 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) 8 T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-1207) "failed") $) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-1207) $) NIL T ELT)) (-2788 (($ $ $ (-1207)) NIL (|has| |#1| (-175)) ELT)) (-1624 (($ $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2806 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-466)) ELT)) (-1608 (((-663 $) $) NIL T ELT)) (-4330 (((-114) $) NIL (|has| |#1| (-939)) ELT)) (-4342 (($ $ |#1| (-545 (-1207)) $) NIL T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1207) (-911 (-391))) (|has| |#1| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-1207) (-911 (-560))) (|has| |#1| (-911 (-560)))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-3531 (((-793) $) NIL T ELT)) (-1427 (($ (-1201 |#1|) (-1207)) NIL T ELT) (($ (-1201 $) (-1207)) NIL T ELT)) (-3997 (((-663 $) $) NIL T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-545 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT)) (-3559 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $ (-1207)) NIL T ELT)) (-3011 (((-545 (-1207)) $) NIL T ELT) (((-793) $ (-1207)) NIL T ELT) (((-663 (-793)) $ (-663 (-1207))) NIL T ELT)) (-4321 (($ (-1 (-545 (-1207)) (-545 (-1207))) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1955 (((-3 (-1207) "failed") $) 19 T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3479 (((-3 (-663 $) "failed") $) NIL T ELT)) (-2590 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3683 (((-3 (-2 (|:| |var| (-1207)) (|:| -3205 (-793))) "failed") $) NIL T ELT)) (-2518 (($ $ (-1207)) 29 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1554 (((-114) $) NIL T ELT)) (-1566 ((|#1| $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-466)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-4457 (((-419 $) $) NIL (|has| |#1| (-939)) ELT)) (-1528 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-4187 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-1207) |#1|) NIL T ELT) (($ $ (-663 (-1207)) (-663 |#1|)) NIL T ELT) (($ $ (-1207) $) NIL T ELT) (($ $ (-663 (-1207)) (-663 $)) NIL T ELT)) (-2690 (($ $ (-1207)) NIL (|has| |#1| (-175)) ELT)) (-2894 (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT)) (-3630 (((-545 (-1207)) $) NIL T ELT) (((-793) $ (-1207)) NIL T ELT) (((-663 (-793)) $ (-663 (-1207))) NIL T ELT)) (-1407 (((-915 (-391)) $) NIL (-12 (|has| (-1207) (-633 (-915 (-391)))) (|has| |#1| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-1207) (-633 (-915 (-560)))) (|has| |#1| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-1207) (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-2053 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-466)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-1578 (((-887) $) 25 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1207)) 27 T ELT) (($ (-421 (-560))) NIL (-2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-3409 (((-663 |#1|) $) NIL T ELT)) (-2305 ((|#1| $ (-545 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-2930 (((-793)) NIL T CONST)) (-2392 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-975 |#1|) (-13 (-979 |#1| (-545 (-1207)) (-1207)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -2518 ($ $ (-1207))) |%noBranch|))) (-1080)) (T -975))
-((-2518 (*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-975 *3)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)))))
-(-13 (-979 |#1| (-545 (-1207)) (-1207)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -2518 ($ $ (-1207))) |%noBranch|)))
-((-3957 (((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)) 19 T ELT)))
-(((-976 |#1| |#2|) (-10 -7 (-15 -3957 ((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)))) (-1080) (-1080)) (T -976))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-975 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-5 *2 (-975 *6)) (-5 *1 (-976 *5 *6)))))
-(-10 -7 (-15 -3957 ((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|))))
-((-4422 (((-1266 |#1| (-975 |#2|)) (-975 |#2|) (-1294 |#1|)) 18 T ELT)))
-(((-977 |#1| |#2|) (-10 -7 (-15 -4422 ((-1266 |#1| (-975 |#2|)) (-975 |#2|) (-1294 |#1|)))) (-1207) (-1080)) (T -977))
-((-4422 (*1 *2 *3 *4) (-12 (-5 *4 (-1294 *5)) (-14 *5 (-1207)) (-4 *6 (-1080)) (-5 *2 (-1266 *5 (-975 *6))) (-5 *1 (-977 *5 *6)) (-5 *3 (-975 *6)))))
-(-10 -7 (-15 -4422 ((-1266 |#1| (-975 |#2|)) (-975 |#2|) (-1294 |#1|))))
-((-3107 (((-793) $) 88 T ELT) (((-793) $ (-663 |#4|)) 93 T ELT)) (-1804 (($ $) 203 T ELT)) (-3023 (((-419 $) $) 195 T ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 141 T ELT)) (-2539 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 (-560) "failed") $) NIL T ELT) (((-3 |#4| "failed") $) 74 T ELT)) (-3330 ((|#2| $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) (((-560) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-2788 (($ $ $ |#4|) 95 T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL T ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) 131 T ELT) (((-711 |#2|) (-711 $)) 121 T ELT)) (-2806 (($ $) 210 T ELT) (($ $ |#4|) 213 T ELT)) (-1608 (((-663 $) $) 77 T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 229 T ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 222 T ELT)) (-3997 (((-663 $) $) 34 T ELT)) (-1417 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-793)) NIL T ELT) (($ $ (-663 |#4|) (-663 (-793))) 71 T ELT)) (-3559 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $ |#4|) 192 T ELT)) (-3479 (((-3 (-663 $) "failed") $) 52 T ELT)) (-2590 (((-3 (-663 $) "failed") $) 39 T ELT)) (-3683 (((-3 (-2 (|:| |var| |#4|) (|:| -3205 (-793))) "failed") $) 57 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 134 T ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) 147 T ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) 145 T ELT)) (-4457 (((-419 $) $) 165 T ELT)) (-4187 (($ $ (-663 (-305 $))) 24 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-663 |#4|) (-663 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-663 |#4|) (-663 $)) NIL T ELT)) (-2690 (($ $ |#4|) 97 T ELT)) (-1407 (((-915 (-391)) $) 243 T ELT) (((-915 (-560)) $) 236 T ELT) (((-549) $) 251 T ELT)) (-2053 ((|#2| $) NIL T ELT) (($ $ |#4|) 205 T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) 184 T ELT)) (-2305 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-793)) 62 T ELT) (($ $ (-663 |#4|) (-663 (-793))) 69 T ELT)) (-1964 (((-3 $ "failed") $) 186 T ELT)) (-2275 (((-114) $ $) 216 T ELT)))
-(((-978 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1882 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|))) (-15 -3023 ((-419 |#1|) |#1|)) (-15 -1804 (|#1| |#1|)) (-15 -1964 ((-3 |#1| "failed") |#1|)) (-15 -1407 ((-549) |#1|)) (-15 -1407 ((-915 (-560)) |#1|)) (-15 -1407 ((-915 (-391)) |#1|)) (-15 -2427 ((-913 (-560) |#1|) |#1| (-915 (-560)) (-913 (-560) |#1|))) (-15 -2427 ((-913 (-391) |#1|) |#1| (-915 (-391)) (-913 (-391) |#1|))) (-15 -4457 ((-419 |#1|) |#1|)) (-15 -1960 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -1941 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -3713 ((-3 (-663 (-1201 |#1|)) "failed") (-663 (-1201 |#1|)) (-1201 |#1|))) (-15 -2048 ((-3 (-1297 |#1|) "failed") (-711 |#1|))) (-15 -2806 (|#1| |#1| |#4|)) (-15 -2053 (|#1| |#1| |#4|)) (-15 -2690 (|#1| |#1| |#4|)) (-15 -2788 (|#1| |#1| |#1| |#4|)) (-15 -1608 ((-663 |#1|) |#1|)) (-15 -3107 ((-793) |#1| (-663 |#4|))) (-15 -3107 ((-793) |#1|)) (-15 -3683 ((-3 (-2 (|:| |var| |#4|) (|:| -3205 (-793))) "failed") |#1|)) (-15 -3479 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -2590 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -1417 (|#1| |#1| (-663 |#4|) (-663 (-793)))) (-15 -1417 (|#1| |#1| |#4| (-793))) (-15 -3559 ((-2 (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1| |#4|)) (-15 -3997 ((-663 |#1|) |#1|)) (-15 -2305 (|#1| |#1| (-663 |#4|) (-663 (-793)))) (-15 -2305 (|#1| |#1| |#4| (-793))) (-15 -3142 ((-711 |#2|) (-711 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 |#1|) (-1297 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -3142 ((-711 (-560)) (-711 |#1|))) (-15 -2539 ((-3 |#4| "failed") |#1|)) (-15 -3330 (|#4| |#1|)) (-15 -4187 (|#1| |#1| (-663 |#4|) (-663 |#1|))) (-15 -4187 (|#1| |#1| |#4| |#1|)) (-15 -4187 (|#1| |#1| (-663 |#4|) (-663 |#2|))) (-15 -4187 (|#1| |#1| |#4| |#2|)) (-15 -4187 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -4187 (|#1| |#1| |#1| |#1|)) (-15 -4187 (|#1| |#1| (-305 |#1|))) (-15 -4187 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -1417 (|#1| |#2| |#3|)) (-15 -2305 (|#2| |#1| |#3|)) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -3330 ((-560) |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -2053 (|#2| |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -2275 ((-114) |#1| |#1|))) (-979 |#2| |#3| |#4|) (-1080) (-815) (-871)) (T -978))
-NIL
-(-10 -8 (-15 -1882 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|))) (-15 -3023 ((-419 |#1|) |#1|)) (-15 -1804 (|#1| |#1|)) (-15 -1964 ((-3 |#1| "failed") |#1|)) (-15 -1407 ((-549) |#1|)) (-15 -1407 ((-915 (-560)) |#1|)) (-15 -1407 ((-915 (-391)) |#1|)) (-15 -2427 ((-913 (-560) |#1|) |#1| (-915 (-560)) (-913 (-560) |#1|))) (-15 -2427 ((-913 (-391) |#1|) |#1| (-915 (-391)) (-913 (-391) |#1|))) (-15 -4457 ((-419 |#1|) |#1|)) (-15 -1960 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -1941 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -3713 ((-3 (-663 (-1201 |#1|)) "failed") (-663 (-1201 |#1|)) (-1201 |#1|))) (-15 -2048 ((-3 (-1297 |#1|) "failed") (-711 |#1|))) (-15 -2806 (|#1| |#1| |#4|)) (-15 -2053 (|#1| |#1| |#4|)) (-15 -2690 (|#1| |#1| |#4|)) (-15 -2788 (|#1| |#1| |#1| |#4|)) (-15 -1608 ((-663 |#1|) |#1|)) (-15 -3107 ((-793) |#1| (-663 |#4|))) (-15 -3107 ((-793) |#1|)) (-15 -3683 ((-3 (-2 (|:| |var| |#4|) (|:| -3205 (-793))) "failed") |#1|)) (-15 -3479 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -2590 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -1417 (|#1| |#1| (-663 |#4|) (-663 (-793)))) (-15 -1417 (|#1| |#1| |#4| (-793))) (-15 -3559 ((-2 (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1| |#4|)) (-15 -3997 ((-663 |#1|) |#1|)) (-15 -2305 (|#1| |#1| (-663 |#4|) (-663 (-793)))) (-15 -2305 (|#1| |#1| |#4| (-793))) (-15 -3142 ((-711 |#2|) (-711 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 |#1|) (-1297 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -3142 ((-711 (-560)) (-711 |#1|))) (-15 -2539 ((-3 |#4| "failed") |#1|)) (-15 -3330 (|#4| |#1|)) (-15 -4187 (|#1| |#1| (-663 |#4|) (-663 |#1|))) (-15 -4187 (|#1| |#1| |#4| |#1|)) (-15 -4187 (|#1| |#1| (-663 |#4|) (-663 |#2|))) (-15 -4187 (|#1| |#1| |#4| |#2|)) (-15 -4187 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -4187 (|#1| |#1| |#1| |#1|)) (-15 -4187 (|#1| |#1| (-305 |#1|))) (-15 -4187 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -1417 (|#1| |#2| |#3|)) (-15 -2305 (|#2| |#1| |#3|)) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -3330 ((-560) |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -2053 (|#2| |#1|)) (-15 -2806 (|#1| |#1|)) (-15 -2275 ((-114) |#1| |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-1443 (((-663 |#3|) $) 113 T ELT)) (-4422 (((-1201 $) $ |#3|) 128 T ELT) (((-1201 |#1|) $) 127 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 90 (|has| |#1| (-571)) ELT)) (-3244 (($ $) 91 (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) 93 (|has| |#1| (-571)) ELT)) (-3107 (((-793) $) 115 T ELT) (((-793) $ (-663 |#3|)) 114 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) 103 (|has| |#1| (-939)) ELT)) (-1804 (($ $) 101 (|has| |#1| (-466)) ELT)) (-3023 (((-419 $) $) 100 (|has| |#1| (-466)) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 106 (|has| |#1| (-939)) ELT)) (-2238 (($) 18 T CONST)) (-2539 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-421 (-560)) "failed") $) 168 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) 166 (|has| |#1| (-1069 (-560))) ELT) (((-3 |#3| "failed") $) 143 T ELT)) (-3330 ((|#1| $) 170 T ELT) (((-421 (-560)) $) 169 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) 167 (|has| |#1| (-1069 (-560))) ELT) ((|#3| $) 144 T ELT)) (-2788 (($ $ $ |#3|) 111 (|has| |#1| (-175)) ELT)) (-1624 (($ $) 161 T ELT)) (-3142 (((-711 (-560)) (-711 $)) 139 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 138 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 137 T ELT) (((-711 |#1|) (-711 $)) 136 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-2806 (($ $) 183 (|has| |#1| (-466)) ELT) (($ $ |#3|) 108 (|has| |#1| (-466)) ELT)) (-1608 (((-663 $) $) 112 T ELT)) (-4330 (((-114) $) 99 (|has| |#1| (-939)) ELT)) (-4342 (($ $ |#1| |#2| $) 179 T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 87 (-12 (|has| |#3| (-911 (-391))) (|has| |#1| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 86 (-12 (|has| |#3| (-911 (-560))) (|has| |#1| (-911 (-560)))) ELT)) (-1581 (((-114) $) 35 T ELT)) (-3531 (((-793) $) 176 T ELT)) (-1427 (($ (-1201 |#1|) |#3|) 120 T ELT) (($ (-1201 $) |#3|) 119 T ELT)) (-3997 (((-663 $) $) 129 T ELT)) (-1556 (((-114) $) 159 T ELT)) (-1417 (($ |#1| |#2|) 160 T ELT) (($ $ |#3| (-793)) 122 T ELT) (($ $ (-663 |#3|) (-663 (-793))) 121 T ELT)) (-3559 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $ |#3|) 123 T ELT)) (-3011 ((|#2| $) 177 T ELT) (((-793) $ |#3|) 125 T ELT) (((-663 (-793)) $ (-663 |#3|)) 124 T ELT)) (-4321 (($ (-1 |#2| |#2|) $) 178 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-1955 (((-3 |#3| "failed") $) 126 T ELT)) (-2484 (((-711 (-560)) (-1297 $)) 141 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 140 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 135 T ELT) (((-711 |#1|) (-1297 $)) 134 T ELT)) (-1583 (($ $) 156 T ELT)) (-1597 ((|#1| $) 155 T ELT)) (-2093 (($ (-663 $)) 97 (|has| |#1| (-466)) ELT) (($ $ $) 96 (|has| |#1| (-466)) ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3479 (((-3 (-663 $) "failed") $) 117 T ELT)) (-2590 (((-3 (-663 $) "failed") $) 118 T ELT)) (-3683 (((-3 (-2 (|:| |var| |#3|) (|:| -3205 (-793))) "failed") $) 116 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1554 (((-114) $) 173 T ELT)) (-1566 ((|#1| $) 174 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 98 (|has| |#1| (-466)) ELT)) (-2132 (($ (-663 $)) 95 (|has| |#1| (-466)) ELT) (($ $ $) 94 (|has| |#1| (-466)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) 105 (|has| |#1| (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) 104 (|has| |#1| (-939)) ELT)) (-4457 (((-419 $) $) 102 (|has| |#1| (-939)) ELT)) (-1528 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-571)) ELT)) (-4187 (($ $ (-663 (-305 $))) 152 T ELT) (($ $ (-305 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-663 $) (-663 $)) 149 T ELT) (($ $ |#3| |#1|) 148 T ELT) (($ $ (-663 |#3|) (-663 |#1|)) 147 T ELT) (($ $ |#3| $) 146 T ELT) (($ $ (-663 |#3|) (-663 $)) 145 T ELT)) (-2690 (($ $ |#3|) 110 (|has| |#1| (-175)) ELT)) (-2894 (($ $ (-663 |#3|) (-663 (-793))) 44 T ELT) (($ $ |#3| (-793)) 43 T ELT) (($ $ (-663 |#3|)) 42 T ELT) (($ $ |#3|) 40 T ELT)) (-3630 ((|#2| $) 157 T ELT) (((-793) $ |#3|) 133 T ELT) (((-663 (-793)) $ (-663 |#3|)) 132 T ELT)) (-1407 (((-915 (-391)) $) 85 (-12 (|has| |#3| (-633 (-915 (-391)))) (|has| |#1| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) 84 (-12 (|has| |#3| (-633 (-915 (-560)))) (|has| |#1| (-633 (-915 (-560))))) ELT) (((-549) $) 83 (-12 (|has| |#3| (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-2053 ((|#1| $) 182 (|has| |#1| (-466)) ELT) (($ $ |#3|) 109 (|has| |#1| (-466)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) 107 (-1953 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 172 T ELT) (($ |#3|) 142 T ELT) (($ $) 88 (|has| |#1| (-571)) ELT) (($ (-421 (-560))) 81 (-2304 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ELT)) (-3409 (((-663 |#1|) $) 175 T ELT)) (-2305 ((|#1| $ |#2|) 162 T ELT) (($ $ |#3| (-793)) 131 T ELT) (($ $ (-663 |#3|) (-663 (-793))) 130 T ELT)) (-1964 (((-3 $ "failed") $) 82 (-2304 (-1953 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-2930 (((-793)) 32 T CONST)) (-2392 (($ $ $ (-793)) 180 (|has| |#1| (-175)) ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 92 (|has| |#1| (-571)) ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($ $ (-663 |#3|) (-663 (-793))) 47 T ELT) (($ $ |#3| (-793)) 46 T ELT) (($ $ (-663 |#3|)) 45 T ELT) (($ $ |#3|) 41 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ |#1|) 163 (|has| |#1| (-376)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 165 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) 164 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT)))
+((-4341 (((-495 |#1| |#2|) (-975 |#2|)) 22 T ELT)) (-3837 (((-255 |#1| |#2|) (-975 |#2|)) 35 T ELT)) (-2787 (((-975 |#2|) (-495 |#1| |#2|)) 27 T ELT)) (-2741 (((-255 |#1| |#2|) (-495 |#1| |#2|)) 57 T ELT)) (-3344 (((-975 |#2|) (-255 |#1| |#2|)) 32 T ELT)) (-1487 (((-495 |#1| |#2|) (-255 |#1| |#2|)) 48 T ELT)))
+(((-973 |#1| |#2|) (-10 -7 (-15 -1487 ((-495 |#1| |#2|) (-255 |#1| |#2|))) (-15 -2741 ((-255 |#1| |#2|) (-495 |#1| |#2|))) (-15 -4341 ((-495 |#1| |#2|) (-975 |#2|))) (-15 -2787 ((-975 |#2|) (-495 |#1| |#2|))) (-15 -3344 ((-975 |#2|) (-255 |#1| |#2|))) (-15 -3837 ((-255 |#1| |#2|) (-975 |#2|)))) (-663 (-1207)) (-1080)) (T -973))
+((-3837 (*1 *2 *3) (-12 (-5 *3 (-975 *5)) (-4 *5 (-1080)) (-5 *2 (-255 *4 *5)) (-5 *1 (-973 *4 *5)) (-14 *4 (-663 (-1207))))) (-3344 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-663 (-1207))) (-4 *5 (-1080)) (-5 *2 (-975 *5)) (-5 *1 (-973 *4 *5)))) (-2787 (*1 *2 *3) (-12 (-5 *3 (-495 *4 *5)) (-14 *4 (-663 (-1207))) (-4 *5 (-1080)) (-5 *2 (-975 *5)) (-5 *1 (-973 *4 *5)))) (-4341 (*1 *2 *3) (-12 (-5 *3 (-975 *5)) (-4 *5 (-1080)) (-5 *2 (-495 *4 *5)) (-5 *1 (-973 *4 *5)) (-14 *4 (-663 (-1207))))) (-2741 (*1 *2 *3) (-12 (-5 *3 (-495 *4 *5)) (-14 *4 (-663 (-1207))) (-4 *5 (-1080)) (-5 *2 (-255 *4 *5)) (-5 *1 (-973 *4 *5)))) (-1487 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-663 (-1207))) (-4 *5 (-1080)) (-5 *2 (-495 *4 *5)) (-5 *1 (-973 *4 *5)))))
+(-10 -7 (-15 -1487 ((-495 |#1| |#2|) (-255 |#1| |#2|))) (-15 -2741 ((-255 |#1| |#2|) (-495 |#1| |#2|))) (-15 -4341 ((-495 |#1| |#2|) (-975 |#2|))) (-15 -2787 ((-975 |#2|) (-495 |#1| |#2|))) (-15 -3344 ((-975 |#2|) (-255 |#1| |#2|))) (-15 -3837 ((-255 |#1| |#2|) (-975 |#2|))))
+((-3560 (((-663 |#2|) |#2| |#2|) 10 T ELT)) (-3331 (((-793) (-663 |#1|)) 48 (|has| |#1| (-870)) ELT)) (-4306 (((-663 |#2|) |#2|) 11 T ELT)) (-3720 (((-793) (-663 |#1|) (-560) (-560)) 52 (|has| |#1| (-870)) ELT)) (-3317 ((|#1| |#2|) 38 (|has| |#1| (-870)) ELT)))
+(((-974 |#1| |#2|) (-10 -7 (-15 -3560 ((-663 |#2|) |#2| |#2|)) (-15 -4306 ((-663 |#2|) |#2|)) (IF (|has| |#1| (-870)) (PROGN (-15 -3317 (|#1| |#2|)) (-15 -3331 ((-793) (-663 |#1|))) (-15 -3720 ((-793) (-663 |#1|) (-560) (-560)))) |%noBranch|)) (-376) (-1273 |#1|)) (T -974))
+((-3720 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-560)) (-4 *5 (-870)) (-4 *5 (-376)) (-5 *2 (-793)) (-5 *1 (-974 *5 *6)) (-4 *6 (-1273 *5)))) (-3331 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-870)) (-4 *4 (-376)) (-5 *2 (-793)) (-5 *1 (-974 *4 *5)) (-4 *5 (-1273 *4)))) (-3317 (*1 *2 *3) (-12 (-4 *2 (-376)) (-4 *2 (-870)) (-5 *1 (-974 *2 *3)) (-4 *3 (-1273 *2)))) (-4306 (*1 *2 *3) (-12 (-4 *4 (-376)) (-5 *2 (-663 *3)) (-5 *1 (-974 *4 *3)) (-4 *3 (-1273 *4)))) (-3560 (*1 *2 *3 *3) (-12 (-4 *4 (-376)) (-5 *2 (-663 *3)) (-5 *1 (-974 *4 *3)) (-4 *3 (-1273 *4)))))
+(-10 -7 (-15 -3560 ((-663 |#2|) |#2| |#2|)) (-15 -4306 ((-663 |#2|) |#2|)) (IF (|has| |#1| (-870)) (PROGN (-15 -3317 (|#1| |#2|)) (-15 -3331 ((-793) (-663 |#1|))) (-15 -3720 ((-793) (-663 |#1|) (-560) (-560)))) |%noBranch|))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-4162 (((-663 (-1207)) $) 16 T ELT)) (-3981 (((-1201 $) $ (-1207)) 21 T ELT) (((-1201 |#1|) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-2250 (((-793) $) NIL T ELT) (((-793) $ (-663 (-1207))) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1621 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) 8 T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-1207) "failed") $) NIL T ELT)) (-3649 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-1207) $) NIL T ELT)) (-2096 (($ $ $ (-1207)) NIL (|has| |#1| (-175)) ELT)) (-3062 (($ $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4239 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-466)) ELT)) (-3048 (((-663 $) $) NIL T ELT)) (-3141 (((-114) $) NIL (|has| |#1| (-939)) ELT)) (-3224 (($ $ |#1| (-545 (-1207)) $) NIL T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1207) (-911 (-391))) (|has| |#1| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-1207) (-911 (-560))) (|has| |#1| (-911 (-560)))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-4127 (((-793) $) NIL T ELT)) (-4149 (($ (-1201 |#1|) (-1207)) NIL T ELT) (($ (-1201 $) (-1207)) NIL T ELT)) (-2947 (((-663 $) $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-545 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT)) (-4415 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $ (-1207)) NIL T ELT)) (-3765 (((-545 (-1207)) $) NIL T ELT) (((-793) $ (-1207)) NIL T ELT) (((-663 (-793)) $ (-663 (-1207))) NIL T ELT)) (-3060 (($ (-1 (-545 (-1207)) (-545 (-1207))) $) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3835 (((-3 (-1207) "failed") $) 19 T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1669 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3849 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3149 (((-3 (-2 (|:| |var| (-1207)) (|:| -2030 (-793))) "failed") $) NIL T ELT)) (-4424 (($ $ (-1207)) 29 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3000 (((-114) $) NIL T ELT)) (-3011 ((|#1| $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-466)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-4012 (((-419 $) $) NIL (|has| |#1| (-939)) ELT)) (-2233 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-2371 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-1207) |#1|) NIL T ELT) (($ $ (-663 (-1207)) (-663 |#1|)) NIL T ELT) (($ $ (-1207) $) NIL T ELT) (($ $ (-663 (-1207)) (-663 $)) NIL T ELT)) (-2336 (($ $ (-1207)) NIL (|has| |#1| (-175)) ELT)) (-3161 (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT)) (-3900 (((-545 (-1207)) $) NIL T ELT) (((-793) $ (-1207)) NIL T ELT) (((-663 (-793)) $ (-663 (-1207))) NIL T ELT)) (-2400 (((-915 (-391)) $) NIL (-12 (|has| (-1207) (-633 (-915 (-391)))) (|has| |#1| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-1207) (-633 (-915 (-560)))) (|has| |#1| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-1207) (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-2264 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-466)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-3913 (((-887) $) 25 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1207)) 27 T ELT) (($ (-421 (-560))) NIL (-2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-2247 (((-663 |#1|) $) NIL T ELT)) (-2920 ((|#1| $ (-545 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-4191 (((-793)) NIL T CONST)) (-2548 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-975 |#1|) (-13 (-979 |#1| (-545 (-1207)) (-1207)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4424 ($ $ (-1207))) |%noBranch|))) (-1080)) (T -975))
+((-4424 (*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-975 *3)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)))))
+(-13 (-979 |#1| (-545 (-1207)) (-1207)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4424 ($ $ (-1207))) |%noBranch|)))
+((-2260 (((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)) 19 T ELT)))
+(((-976 |#1| |#2|) (-10 -7 (-15 -2260 ((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|)))) (-1080) (-1080)) (T -976))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-975 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-5 *2 (-975 *6)) (-5 *1 (-976 *5 *6)))))
+(-10 -7 (-15 -2260 ((-975 |#2|) (-1 |#2| |#1|) (-975 |#1|))))
+((-3981 (((-1266 |#1| (-975 |#2|)) (-975 |#2|) (-1294 |#1|)) 18 T ELT)))
+(((-977 |#1| |#2|) (-10 -7 (-15 -3981 ((-1266 |#1| (-975 |#2|)) (-975 |#2|) (-1294 |#1|)))) (-1207) (-1080)) (T -977))
+((-3981 (*1 *2 *3 *4) (-12 (-5 *4 (-1294 *5)) (-14 *5 (-1207)) (-4 *6 (-1080)) (-5 *2 (-1266 *5 (-975 *6))) (-5 *1 (-977 *5 *6)) (-5 *3 (-975 *6)))))
+(-10 -7 (-15 -3981 ((-1266 |#1| (-975 |#2|)) (-975 |#2|) (-1294 |#1|))))
+((-2250 (((-793) $) 88 T ELT) (((-793) $ (-663 |#4|)) 93 T ELT)) (-1621 (($ $) 203 T ELT)) (-3898 (((-419 $) $) 195 T ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 141 T ELT)) (-3929 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 (-560) "failed") $) NIL T ELT) (((-3 |#4| "failed") $) 74 T ELT)) (-3649 ((|#2| $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) (((-560) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-2096 (($ $ $ |#4|) 95 T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL T ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) 131 T ELT) (((-711 |#2|) (-711 $)) 121 T ELT)) (-4239 (($ $) 210 T ELT) (($ $ |#4|) 213 T ELT)) (-3048 (((-663 $) $) 77 T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 229 T ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 222 T ELT)) (-2947 (((-663 $) $) 34 T ELT)) (-4139 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-793)) NIL T ELT) (($ $ (-663 |#4|) (-663 (-793))) 71 T ELT)) (-4415 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $ |#4|) 192 T ELT)) (-1669 (((-3 (-663 $) "failed") $) 52 T ELT)) (-3849 (((-3 (-663 $) "failed") $) 39 T ELT)) (-3149 (((-3 (-2 (|:| |var| |#4|) (|:| -2030 (-793))) "failed") $) 57 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 134 T ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) 147 T ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) 145 T ELT)) (-4012 (((-419 $) $) 165 T ELT)) (-2371 (($ $ (-663 (-305 $))) 24 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-663 |#4|) (-663 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-663 |#4|) (-663 $)) NIL T ELT)) (-2336 (($ $ |#4|) 97 T ELT)) (-2400 (((-915 (-391)) $) 243 T ELT) (((-915 (-560)) $) 236 T ELT) (((-549) $) 251 T ELT)) (-2264 ((|#2| $) NIL T ELT) (($ $ |#4|) 205 T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) 184 T ELT)) (-2920 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-793)) 62 T ELT) (($ $ (-663 |#4|) (-663 (-793))) 69 T ELT)) (-3919 (((-3 $ "failed") $) 186 T ELT)) (-3925 (((-114) $ $) 216 T ELT)))
+(((-978 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4362 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|))) (-15 -3898 ((-419 |#1|) |#1|)) (-15 -1621 (|#1| |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1|)) (-15 -2400 ((-549) |#1|)) (-15 -2400 ((-915 (-560)) |#1|)) (-15 -2400 ((-915 (-391)) |#1|)) (-15 -1646 ((-913 (-560) |#1|) |#1| (-915 (-560)) (-913 (-560) |#1|))) (-15 -1646 ((-913 (-391) |#1|) |#1| (-915 (-391)) (-913 (-391) |#1|))) (-15 -4012 ((-419 |#1|) |#1|)) (-15 -3885 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -3690 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -2182 ((-3 (-663 (-1201 |#1|)) "failed") (-663 (-1201 |#1|)) (-1201 |#1|))) (-15 -2215 ((-3 (-1297 |#1|) "failed") (-711 |#1|))) (-15 -4239 (|#1| |#1| |#4|)) (-15 -2264 (|#1| |#1| |#4|)) (-15 -2336 (|#1| |#1| |#4|)) (-15 -2096 (|#1| |#1| |#1| |#4|)) (-15 -3048 ((-663 |#1|) |#1|)) (-15 -2250 ((-793) |#1| (-663 |#4|))) (-15 -2250 ((-793) |#1|)) (-15 -3149 ((-3 (-2 (|:| |var| |#4|) (|:| -2030 (-793))) "failed") |#1|)) (-15 -1669 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -3849 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -4139 (|#1| |#1| (-663 |#4|) (-663 (-793)))) (-15 -4139 (|#1| |#1| |#4| (-793))) (-15 -4415 ((-2 (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1| |#4|)) (-15 -2947 ((-663 |#1|) |#1|)) (-15 -2920 (|#1| |#1| (-663 |#4|) (-663 (-793)))) (-15 -2920 (|#1| |#1| |#4| (-793))) (-15 -2619 ((-711 |#2|) (-711 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 |#1|) (-1297 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -2619 ((-711 (-560)) (-711 |#1|))) (-15 -3929 ((-3 |#4| "failed") |#1|)) (-15 -3649 (|#4| |#1|)) (-15 -2371 (|#1| |#1| (-663 |#4|) (-663 |#1|))) (-15 -2371 (|#1| |#1| |#4| |#1|)) (-15 -2371 (|#1| |#1| (-663 |#4|) (-663 |#2|))) (-15 -2371 (|#1| |#1| |#4| |#2|)) (-15 -2371 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -2371 (|#1| |#1| |#1| |#1|)) (-15 -2371 (|#1| |#1| (-305 |#1|))) (-15 -2371 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -4139 (|#1| |#2| |#3|)) (-15 -2920 (|#2| |#1| |#3|)) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -3649 ((-560) |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -2264 (|#2| |#1|)) (-15 -4239 (|#1| |#1|)) (-15 -3925 ((-114) |#1| |#1|))) (-979 |#2| |#3| |#4|) (-1080) (-815) (-871)) (T -978))
+NIL
+(-10 -8 (-15 -4362 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|))) (-15 -3898 ((-419 |#1|) |#1|)) (-15 -1621 (|#1| |#1|)) (-15 -3919 ((-3 |#1| "failed") |#1|)) (-15 -2400 ((-549) |#1|)) (-15 -2400 ((-915 (-560)) |#1|)) (-15 -2400 ((-915 (-391)) |#1|)) (-15 -1646 ((-913 (-560) |#1|) |#1| (-915 (-560)) (-913 (-560) |#1|))) (-15 -1646 ((-913 (-391) |#1|) |#1| (-915 (-391)) (-913 (-391) |#1|))) (-15 -4012 ((-419 |#1|) |#1|)) (-15 -3885 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -3690 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -2182 ((-3 (-663 (-1201 |#1|)) "failed") (-663 (-1201 |#1|)) (-1201 |#1|))) (-15 -2215 ((-3 (-1297 |#1|) "failed") (-711 |#1|))) (-15 -4239 (|#1| |#1| |#4|)) (-15 -2264 (|#1| |#1| |#4|)) (-15 -2336 (|#1| |#1| |#4|)) (-15 -2096 (|#1| |#1| |#1| |#4|)) (-15 -3048 ((-663 |#1|) |#1|)) (-15 -2250 ((-793) |#1| (-663 |#4|))) (-15 -2250 ((-793) |#1|)) (-15 -3149 ((-3 (-2 (|:| |var| |#4|) (|:| -2030 (-793))) "failed") |#1|)) (-15 -1669 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -3849 ((-3 (-663 |#1|) "failed") |#1|)) (-15 -4139 (|#1| |#1| (-663 |#4|) (-663 (-793)))) (-15 -4139 (|#1| |#1| |#4| (-793))) (-15 -4415 ((-2 (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1| |#4|)) (-15 -2947 ((-663 |#1|) |#1|)) (-15 -2920 (|#1| |#1| (-663 |#4|) (-663 (-793)))) (-15 -2920 (|#1| |#1| |#4| (-793))) (-15 -2619 ((-711 |#2|) (-711 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 |#1|) (-1297 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -2619 ((-711 (-560)) (-711 |#1|))) (-15 -3929 ((-3 |#4| "failed") |#1|)) (-15 -3649 (|#4| |#1|)) (-15 -2371 (|#1| |#1| (-663 |#4|) (-663 |#1|))) (-15 -2371 (|#1| |#1| |#4| |#1|)) (-15 -2371 (|#1| |#1| (-663 |#4|) (-663 |#2|))) (-15 -2371 (|#1| |#1| |#4| |#2|)) (-15 -2371 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -2371 (|#1| |#1| |#1| |#1|)) (-15 -2371 (|#1| |#1| (-305 |#1|))) (-15 -2371 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -4139 (|#1| |#2| |#3|)) (-15 -2920 (|#2| |#1| |#3|)) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -3649 ((-560) |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -2264 (|#2| |#1|)) (-15 -4239 (|#1| |#1|)) (-15 -3925 ((-114) |#1| |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-4162 (((-663 |#3|) $) 113 T ELT)) (-3981 (((-1201 $) $ |#3|) 128 T ELT) (((-1201 |#1|) $) 127 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 90 (|has| |#1| (-571)) ELT)) (-4366 (($ $) 91 (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) 93 (|has| |#1| (-571)) ELT)) (-2250 (((-793) $) 115 T ELT) (((-793) $ (-663 |#3|)) 114 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) 103 (|has| |#1| (-939)) ELT)) (-1621 (($ $) 101 (|has| |#1| (-466)) ELT)) (-3898 (((-419 $) $) 100 (|has| |#1| (-466)) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 106 (|has| |#1| (-939)) ELT)) (-3525 (($) 18 T CONST)) (-3929 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-421 (-560)) "failed") $) 168 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) 166 (|has| |#1| (-1069 (-560))) ELT) (((-3 |#3| "failed") $) 143 T ELT)) (-3649 ((|#1| $) 170 T ELT) (((-421 (-560)) $) 169 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) 167 (|has| |#1| (-1069 (-560))) ELT) ((|#3| $) 144 T ELT)) (-2096 (($ $ $ |#3|) 111 (|has| |#1| (-175)) ELT)) (-3062 (($ $) 161 T ELT)) (-2619 (((-711 (-560)) (-711 $)) 139 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 138 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 137 T ELT) (((-711 |#1|) (-711 $)) 136 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-4239 (($ $) 183 (|has| |#1| (-466)) ELT) (($ $ |#3|) 108 (|has| |#1| (-466)) ELT)) (-3048 (((-663 $) $) 112 T ELT)) (-3141 (((-114) $) 99 (|has| |#1| (-939)) ELT)) (-3224 (($ $ |#1| |#2| $) 179 T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 87 (-12 (|has| |#3| (-911 (-391))) (|has| |#1| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 86 (-12 (|has| |#3| (-911 (-560))) (|has| |#1| (-911 (-560)))) ELT)) (-1918 (((-114) $) 35 T ELT)) (-4127 (((-793) $) 176 T ELT)) (-4149 (($ (-1201 |#1|) |#3|) 120 T ELT) (($ (-1201 $) |#3|) 119 T ELT)) (-2947 (((-663 $) $) 129 T ELT)) (-1673 (((-114) $) 159 T ELT)) (-4139 (($ |#1| |#2|) 160 T ELT) (($ $ |#3| (-793)) 122 T ELT) (($ $ (-663 |#3|) (-663 (-793))) 121 T ELT)) (-4415 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $ |#3|) 123 T ELT)) (-3765 ((|#2| $) 177 T ELT) (((-793) $ |#3|) 125 T ELT) (((-663 (-793)) $ (-663 |#3|)) 124 T ELT)) (-3060 (($ (-1 |#2| |#2|) $) 178 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-3835 (((-3 |#3| "failed") $) 126 T ELT)) (-4140 (((-711 (-560)) (-1297 $)) 141 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 140 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 135 T ELT) (((-711 |#1|) (-1297 $)) 134 T ELT)) (-3024 (($ $) 156 T ELT)) (-3037 ((|#1| $) 155 T ELT)) (-1861 (($ (-663 $)) 97 (|has| |#1| (-466)) ELT) (($ $ $) 96 (|has| |#1| (-466)) ELT)) (-3358 (((-1189) $) 10 T ELT)) (-1669 (((-3 (-663 $) "failed") $) 117 T ELT)) (-3849 (((-3 (-663 $) "failed") $) 118 T ELT)) (-3149 (((-3 (-2 (|:| |var| |#3|) (|:| -2030 (-793))) "failed") $) 116 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3000 (((-114) $) 173 T ELT)) (-3011 ((|#1| $) 174 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 98 (|has| |#1| (-466)) ELT)) (-1938 (($ (-663 $)) 95 (|has| |#1| (-466)) ELT) (($ $ $) 94 (|has| |#1| (-466)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) 105 (|has| |#1| (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) 104 (|has| |#1| (-939)) ELT)) (-4012 (((-419 $) $) 102 (|has| |#1| (-939)) ELT)) (-2233 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-571)) ELT)) (-2371 (($ $ (-663 (-305 $))) 152 T ELT) (($ $ (-305 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-663 $) (-663 $)) 149 T ELT) (($ $ |#3| |#1|) 148 T ELT) (($ $ (-663 |#3|) (-663 |#1|)) 147 T ELT) (($ $ |#3| $) 146 T ELT) (($ $ (-663 |#3|) (-663 $)) 145 T ELT)) (-2336 (($ $ |#3|) 110 (|has| |#1| (-175)) ELT)) (-3161 (($ $ (-663 |#3|) (-663 (-793))) 44 T ELT) (($ $ |#3| (-793)) 43 T ELT) (($ $ (-663 |#3|)) 42 T ELT) (($ $ |#3|) 40 T ELT)) (-3900 ((|#2| $) 157 T ELT) (((-793) $ |#3|) 133 T ELT) (((-663 (-793)) $ (-663 |#3|)) 132 T ELT)) (-2400 (((-915 (-391)) $) 85 (-12 (|has| |#3| (-633 (-915 (-391)))) (|has| |#1| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) 84 (-12 (|has| |#3| (-633 (-915 (-560)))) (|has| |#1| (-633 (-915 (-560))))) ELT) (((-549) $) 83 (-12 (|has| |#3| (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-2264 ((|#1| $) 182 (|has| |#1| (-466)) ELT) (($ $ |#3|) 109 (|has| |#1| (-466)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) 107 (-1404 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 172 T ELT) (($ |#3|) 142 T ELT) (($ $) 88 (|has| |#1| (-571)) ELT) (($ (-421 (-560))) 81 (-2196 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ELT)) (-2247 (((-663 |#1|) $) 175 T ELT)) (-2920 ((|#1| $ |#2|) 162 T ELT) (($ $ |#3| (-793)) 131 T ELT) (($ $ (-663 |#3|) (-663 (-793))) 130 T ELT)) (-3919 (((-3 $ "failed") $) 82 (-2196 (-1404 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-4191 (((-793)) 32 T CONST)) (-2548 (($ $ $ (-793)) 180 (|has| |#1| (-175)) ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 92 (|has| |#1| (-571)) ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($ $ (-663 |#3|) (-663 (-793))) 47 T ELT) (($ $ |#3| (-793)) 46 T ELT) (($ $ (-663 |#3|)) 45 T ELT) (($ $ |#3|) 41 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ |#1|) 163 (|has| |#1| (-376)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 165 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) 164 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT)))
(((-979 |#1| |#2| |#3|) (-142) (-1080) (-815) (-871)) (T -979))
-((-2806 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-466)))) (-3630 (*1 *2 *1 *3) (-12 (-4 *1 (-979 *4 *5 *3)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-5 *2 (-793)))) (-3630 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *6)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 (-793))))) (-2305 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-979 *4 *5 *2)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *2 (-871)))) (-2305 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *6)) (-5 *3 (-663 (-793))) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)))) (-3997 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-979 *3 *4 *5)))) (-4422 (*1 *2 *1 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-5 *2 (-1201 *1)) (-4 *1 (-979 *4 *5 *3)))) (-4422 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-1201 *3)))) (-1955 (*1 *2 *1) (|partial| -12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-3011 (*1 *2 *1 *3) (-12 (-4 *1 (-979 *4 *5 *3)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-5 *2 (-793)))) (-3011 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *6)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 (-793))))) (-3559 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-5 *2 (-2 (|:| -1774 *1) (|:| -2341 *1))) (-4 *1 (-979 *4 *5 *3)))) (-1417 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-979 *4 *5 *2)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *2 (-871)))) (-1417 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *6)) (-5 *3 (-663 (-793))) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)))) (-1427 (*1 *1 *2 *3) (-12 (-5 *2 (-1201 *4)) (-4 *4 (-1080)) (-4 *1 (-979 *4 *5 *3)) (-4 *5 (-815)) (-4 *3 (-871)))) (-1427 (*1 *1 *2 *3) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-979 *4 *5 *3)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)))) (-2590 (*1 *2 *1) (|partial| -12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-979 *3 *4 *5)))) (-3479 (*1 *2 *1) (|partial| -12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-979 *3 *4 *5)))) (-3683 (*1 *2 *1) (|partial| -12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| |var| *5) (|:| -3205 (-793)))))) (-3107 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-793)))) (-3107 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *6)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-793)))) (-1443 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *5)))) (-1608 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-979 *3 *4 *5)))) (-2788 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)) (-4 *3 (-175)))) (-2690 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)) (-4 *3 (-175)))) (-2053 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)) (-4 *3 (-466)))) (-2806 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)) (-4 *3 (-466)))) (-1804 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-466)))) (-3023 (*1 *2 *1) (-12 (-4 *3 (-466)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-419 *1)) (-4 *1 (-979 *3 *4 *5)))))
-(-13 (-927 |t#3|) (-338 |t#1| |t#2|) (-321 $) (-528 |t#3| |t#1|) (-528 |t#3| $) (-1069 |t#3|) (-390 |t#1|) (-10 -8 (-15 -3630 ((-793) $ |t#3|)) (-15 -3630 ((-663 (-793)) $ (-663 |t#3|))) (-15 -2305 ($ $ |t#3| (-793))) (-15 -2305 ($ $ (-663 |t#3|) (-663 (-793)))) (-15 -3997 ((-663 $) $)) (-15 -4422 ((-1201 $) $ |t#3|)) (-15 -4422 ((-1201 |t#1|) $)) (-15 -1955 ((-3 |t#3| "failed") $)) (-15 -3011 ((-793) $ |t#3|)) (-15 -3011 ((-663 (-793)) $ (-663 |t#3|))) (-15 -3559 ((-2 (|:| -1774 $) (|:| -2341 $)) $ $ |t#3|)) (-15 -1417 ($ $ |t#3| (-793))) (-15 -1417 ($ $ (-663 |t#3|) (-663 (-793)))) (-15 -1427 ($ (-1201 |t#1|) |t#3|)) (-15 -1427 ($ (-1201 $) |t#3|)) (-15 -2590 ((-3 (-663 $) "failed") $)) (-15 -3479 ((-3 (-663 $) "failed") $)) (-15 -3683 ((-3 (-2 (|:| |var| |t#3|) (|:| -3205 (-793))) "failed") $)) (-15 -3107 ((-793) $)) (-15 -3107 ((-793) $ (-663 |t#3|))) (-15 -1443 ((-663 |t#3|) $)) (-15 -1608 ((-663 $) $)) (IF (|has| |t#1| (-633 (-549))) (IF (|has| |t#3| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-633 (-915 (-560)))) (IF (|has| |t#3| (-633 (-915 (-560)))) (-6 (-633 (-915 (-560)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-633 (-915 (-391)))) (IF (|has| |t#3| (-633 (-915 (-391)))) (-6 (-633 (-915 (-391)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-911 (-560))) (IF (|has| |t#3| (-911 (-560))) (-6 (-911 (-560))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-911 (-391))) (IF (|has| |t#3| (-911 (-391))) (-6 (-911 (-391))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-15 -2788 ($ $ $ |t#3|)) (-15 -2690 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-466)) (PROGN (-6 (-466)) (-15 -2053 ($ $ |t#3|)) (-15 -2806 ($ $)) (-15 -2806 ($ $ |t#3|)) (-15 -3023 ((-419 $) $)) (-15 -1804 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4506)) (-6 -4506) |%noBranch|) (IF (|has| |t#1| (-939)) (-6 (-939)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) -2304 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 |#3|) . T) ((-635 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-632 (-887)) . T) ((-175) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-633 (-549)) -12 (|has| |#1| (-633 (-549))) (|has| |#3| (-633 (-549)))) ((-633 (-915 (-391))) -12 (|has| |#1| (-633 (-915 (-391)))) (|has| |#3| (-633 (-915 (-391))))) ((-633 (-915 (-560))) -12 (|has| |#1| (-633 (-915 (-560)))) (|has| |#3| (-633 (-915 (-560))))) ((-302) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-321 $) . T) ((-338 |#1| |#2|) . T) ((-390 |#1|) . T) ((-426 |#1|) . T) ((-466) -2304 (|has| |#1| (-939)) (|has| |#1| (-466))) ((-528 |#3| |#1|) . T) ((-528 |#3| $) . T) ((-528 $ $) . T) ((-571) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-668 #0#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-38 (-421 (-560)))) ((-670 #1=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-660 #1#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #0#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-748) . T) ((-921 $ |#3|) . T) ((-927 |#3|) . T) ((-929 |#3|) . T) ((-911 (-391)) -12 (|has| |#1| (-911 (-391))) (|has| |#3| (-911 (-391)))) ((-911 (-560)) -12 (|has| |#1| (-911 (-560))) (|has| |#3| (-911 (-560)))) ((-939) |has| |#1| (-939)) ((-1069 (-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 |#1|) . T) ((-1069 |#3|) . T) ((-1082 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1082 |#1|) . T) ((-1082 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1087 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1087 |#1|) . T) ((-1087 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T) ((-1252) |has| |#1| (-939)))
-((-1443 (((-663 |#2|) |#5|) 40 T ELT)) (-4422 (((-1201 |#5|) |#5| |#2| (-1201 |#5|)) 23 T ELT) (((-421 (-1201 |#5|)) |#5| |#2|) 16 T ELT)) (-1427 ((|#5| (-421 (-1201 |#5|)) |#2|) 30 T ELT)) (-1955 (((-3 |#2| "failed") |#5|) 71 T ELT)) (-3479 (((-3 (-663 |#5|) "failed") |#5|) 65 T ELT)) (-3436 (((-3 (-2 (|:| |val| |#5|) (|:| -3205 (-560))) "failed") |#5|) 53 T ELT)) (-2590 (((-3 (-663 |#5|) "failed") |#5|) 67 T ELT)) (-3683 (((-3 (-2 (|:| |var| |#2|) (|:| -3205 (-560))) "failed") |#5|) 57 T ELT)))
-(((-980 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1443 ((-663 |#2|) |#5|)) (-15 -1955 ((-3 |#2| "failed") |#5|)) (-15 -4422 ((-421 (-1201 |#5|)) |#5| |#2|)) (-15 -1427 (|#5| (-421 (-1201 |#5|)) |#2|)) (-15 -4422 ((-1201 |#5|) |#5| |#2| (-1201 |#5|))) (-15 -2590 ((-3 (-663 |#5|) "failed") |#5|)) (-15 -3479 ((-3 (-663 |#5|) "failed") |#5|)) (-15 -3683 ((-3 (-2 (|:| |var| |#2|) (|:| -3205 (-560))) "failed") |#5|)) (-15 -3436 ((-3 (-2 (|:| |val| |#5|) (|:| -3205 (-560))) "failed") |#5|))) (-815) (-871) (-1080) (-979 |#3| |#1| |#2|) (-13 (-376) (-10 -8 (-15 -1578 ($ |#4|)) (-15 -3757 (|#4| $)) (-15 -3771 (|#4| $))))) (T -980))
-((-3436 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3205 (-560)))) (-5 *1 (-980 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -1578 ($ *7)) (-15 -3757 (*7 $)) (-15 -3771 (*7 $))))))) (-3683 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3205 (-560)))) (-5 *1 (-980 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -1578 ($ *7)) (-15 -3757 (*7 $)) (-15 -3771 (*7 $))))))) (-3479 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-663 *3)) (-5 *1 (-980 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -1578 ($ *7)) (-15 -3757 (*7 $)) (-15 -3771 (*7 $))))))) (-2590 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-663 *3)) (-5 *1 (-980 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -1578 ($ *7)) (-15 -3757 (*7 $)) (-15 -3771 (*7 $))))))) (-4422 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1201 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -1578 ($ *7)) (-15 -3757 (*7 $)) (-15 -3771 (*7 $))))) (-4 *7 (-979 *6 *5 *4)) (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-1080)) (-5 *1 (-980 *5 *4 *6 *7 *3)))) (-1427 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-1201 *2))) (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-1080)) (-4 *2 (-13 (-376) (-10 -8 (-15 -1578 ($ *7)) (-15 -3757 (*7 $)) (-15 -3771 (*7 $))))) (-5 *1 (-980 *5 *4 *6 *7 *2)) (-4 *7 (-979 *6 *5 *4)))) (-4422 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-1080)) (-4 *7 (-979 *6 *5 *4)) (-5 *2 (-421 (-1201 *3))) (-5 *1 (-980 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -1578 ($ *7)) (-15 -3757 (*7 $)) (-15 -3771 (*7 $))))))) (-1955 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-1080)) (-4 *6 (-979 *5 *4 *2)) (-4 *2 (-871)) (-5 *1 (-980 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -1578 ($ *6)) (-15 -3757 (*6 $)) (-15 -3771 (*6 $))))))) (-1443 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-663 *5)) (-5 *1 (-980 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -1578 ($ *7)) (-15 -3757 (*7 $)) (-15 -3771 (*7 $))))))))
-(-10 -7 (-15 -1443 ((-663 |#2|) |#5|)) (-15 -1955 ((-3 |#2| "failed") |#5|)) (-15 -4422 ((-421 (-1201 |#5|)) |#5| |#2|)) (-15 -1427 (|#5| (-421 (-1201 |#5|)) |#2|)) (-15 -4422 ((-1201 |#5|) |#5| |#2| (-1201 |#5|))) (-15 -2590 ((-3 (-663 |#5|) "failed") |#5|)) (-15 -3479 ((-3 (-663 |#5|) "failed") |#5|)) (-15 -3683 ((-3 (-2 (|:| |var| |#2|) (|:| -3205 (-560))) "failed") |#5|)) (-15 -3436 ((-3 (-2 (|:| |val| |#5|) (|:| -3205 (-560))) "failed") |#5|)))
-((-3957 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT)))
-(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3957 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-815) (-871) (-1080) (-979 |#3| |#1| |#2|) (-13 (-1132) (-10 -8 (-15 -2567 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-793)))))) (T -981))
-((-3957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-871)) (-4 *8 (-1080)) (-4 *6 (-815)) (-4 *2 (-13 (-1132) (-10 -8 (-15 -2567 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-793)))))) (-5 *1 (-981 *6 *7 *8 *5 *2)) (-4 *5 (-979 *8 *6 *7)))))
-(-10 -7 (-15 -3957 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-3564 (((-2 (|:| -3205 (-793)) (|:| -2115 |#5|) (|:| |radicand| |#5|)) |#3| (-793)) 49 T ELT)) (-4134 (((-2 (|:| -3205 (-793)) (|:| -2115 |#5|) (|:| |radicand| |#5|)) (-421 (-560)) (-793)) 44 T ELT)) (-2636 (((-2 (|:| -3205 (-793)) (|:| -2115 |#4|) (|:| |radicand| (-663 |#4|))) |#4| (-793)) 65 T ELT)) (-3553 (((-2 (|:| -3205 (-793)) (|:| -2115 |#5|) (|:| |radicand| |#5|)) |#5| (-793)) 74 (|has| |#3| (-466)) ELT)))
-(((-982 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3564 ((-2 (|:| -3205 (-793)) (|:| -2115 |#5|) (|:| |radicand| |#5|)) |#3| (-793))) (-15 -4134 ((-2 (|:| -3205 (-793)) (|:| -2115 |#5|) (|:| |radicand| |#5|)) (-421 (-560)) (-793))) (IF (|has| |#3| (-466)) (-15 -3553 ((-2 (|:| -3205 (-793)) (|:| -2115 |#5|) (|:| |radicand| |#5|)) |#5| (-793))) |%noBranch|) (-15 -2636 ((-2 (|:| -3205 (-793)) (|:| -2115 |#4|) (|:| |radicand| (-663 |#4|))) |#4| (-793)))) (-815) (-871) (-571) (-979 |#3| |#1| |#2|) (-13 (-376) (-10 -8 (-15 -1578 ($ |#4|)) (-15 -3757 (|#4| $)) (-15 -3771 (|#4| $))))) (T -982))
-((-2636 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-571)) (-4 *3 (-979 *7 *5 *6)) (-5 *2 (-2 (|:| -3205 (-793)) (|:| -2115 *3) (|:| |radicand| (-663 *3)))) (-5 *1 (-982 *5 *6 *7 *3 *8)) (-5 *4 (-793)) (-4 *8 (-13 (-376) (-10 -8 (-15 -1578 ($ *3)) (-15 -3757 (*3 $)) (-15 -3771 (*3 $))))))) (-3553 (*1 *2 *3 *4) (-12 (-4 *7 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-571)) (-4 *8 (-979 *7 *5 *6)) (-5 *2 (-2 (|:| -3205 (-793)) (|:| -2115 *3) (|:| |radicand| *3))) (-5 *1 (-982 *5 *6 *7 *8 *3)) (-5 *4 (-793)) (-4 *3 (-13 (-376) (-10 -8 (-15 -1578 ($ *8)) (-15 -3757 (*8 $)) (-15 -3771 (*8 $))))))) (-4134 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-560))) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-571)) (-4 *8 (-979 *7 *5 *6)) (-5 *2 (-2 (|:| -3205 (-793)) (|:| -2115 *9) (|:| |radicand| *9))) (-5 *1 (-982 *5 *6 *7 *8 *9)) (-5 *4 (-793)) (-4 *9 (-13 (-376) (-10 -8 (-15 -1578 ($ *8)) (-15 -3757 (*8 $)) (-15 -3771 (*8 $))))))) (-3564 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-571)) (-4 *7 (-979 *3 *5 *6)) (-5 *2 (-2 (|:| -3205 (-793)) (|:| -2115 *8) (|:| |radicand| *8))) (-5 *1 (-982 *5 *6 *3 *7 *8)) (-5 *4 (-793)) (-4 *8 (-13 (-376) (-10 -8 (-15 -1578 ($ *7)) (-15 -3757 (*7 $)) (-15 -3771 (*7 $))))))))
-(-10 -7 (-15 -3564 ((-2 (|:| -3205 (-793)) (|:| -2115 |#5|) (|:| |radicand| |#5|)) |#3| (-793))) (-15 -4134 ((-2 (|:| -3205 (-793)) (|:| -2115 |#5|) (|:| |radicand| |#5|)) (-421 (-560)) (-793))) (IF (|has| |#3| (-466)) (-15 -3553 ((-2 (|:| -3205 (-793)) (|:| -2115 |#5|) (|:| |radicand| |#5|)) |#5| (-793))) |%noBranch|) (-15 -2636 ((-2 (|:| -3205 (-793)) (|:| -2115 |#4|) (|:| |radicand| (-663 |#4|))) |#4| (-793))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3711 (($ (-1151)) 8 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 15 T ELT) (((-1151) $) 12 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 11 T ELT)))
-(((-983) (-13 (-1132) (-632 (-1151)) (-10 -8 (-15 -3711 ($ (-1151)))))) (T -983))
-((-3711 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-983)))))
-(-13 (-1132) (-632 (-1151)) (-10 -8 (-15 -3711 ($ (-1151)))))
-((-3747 (((-1120 (-229)) $) 8 T ELT)) (-3732 (((-1120 (-229)) $) 9 T ELT)) (-4071 (((-663 (-663 (-972 (-229)))) $) 10 T ELT)) (-1578 (((-887) $) 6 T ELT)))
+((-4239 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-466)))) (-3900 (*1 *2 *1 *3) (-12 (-4 *1 (-979 *4 *5 *3)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-5 *2 (-793)))) (-3900 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *6)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 (-793))))) (-2920 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-979 *4 *5 *2)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *2 (-871)))) (-2920 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *6)) (-5 *3 (-663 (-793))) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)))) (-2947 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-979 *3 *4 *5)))) (-3981 (*1 *2 *1 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-5 *2 (-1201 *1)) (-4 *1 (-979 *4 *5 *3)))) (-3981 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-1201 *3)))) (-3835 (*1 *2 *1) (|partial| -12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-3765 (*1 *2 *1 *3) (-12 (-4 *1 (-979 *4 *5 *3)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-5 *2 (-793)))) (-3765 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *6)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 (-793))))) (-4415 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-5 *2 (-2 (|:| -2584 *1) (|:| -3276 *1))) (-4 *1 (-979 *4 *5 *3)))) (-4139 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-979 *4 *5 *2)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *2 (-871)))) (-4139 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *6)) (-5 *3 (-663 (-793))) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)))) (-4149 (*1 *1 *2 *3) (-12 (-5 *2 (-1201 *4)) (-4 *4 (-1080)) (-4 *1 (-979 *4 *5 *3)) (-4 *5 (-815)) (-4 *3 (-871)))) (-4149 (*1 *1 *2 *3) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-979 *4 *5 *3)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)))) (-3849 (*1 *2 *1) (|partial| -12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-979 *3 *4 *5)))) (-1669 (*1 *2 *1) (|partial| -12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-979 *3 *4 *5)))) (-3149 (*1 *2 *1) (|partial| -12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| |var| *5) (|:| -2030 (-793)))))) (-2250 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-793)))) (-2250 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *6)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-793)))) (-4162 (*1 *2 *1) (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *5)))) (-3048 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-979 *3 *4 *5)))) (-2096 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)) (-4 *3 (-175)))) (-2336 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)) (-4 *3 (-175)))) (-2264 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)) (-4 *3 (-466)))) (-4239 (*1 *1 *1 *2) (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)) (-4 *3 (-466)))) (-1621 (*1 *1 *1) (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-466)))) (-3898 (*1 *2 *1) (-12 (-4 *3 (-466)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-419 *1)) (-4 *1 (-979 *3 *4 *5)))))
+(-13 (-927 |t#3|) (-338 |t#1| |t#2|) (-321 $) (-528 |t#3| |t#1|) (-528 |t#3| $) (-1069 |t#3|) (-390 |t#1|) (-10 -8 (-15 -3900 ((-793) $ |t#3|)) (-15 -3900 ((-663 (-793)) $ (-663 |t#3|))) (-15 -2920 ($ $ |t#3| (-793))) (-15 -2920 ($ $ (-663 |t#3|) (-663 (-793)))) (-15 -2947 ((-663 $) $)) (-15 -3981 ((-1201 $) $ |t#3|)) (-15 -3981 ((-1201 |t#1|) $)) (-15 -3835 ((-3 |t#3| "failed") $)) (-15 -3765 ((-793) $ |t#3|)) (-15 -3765 ((-663 (-793)) $ (-663 |t#3|))) (-15 -4415 ((-2 (|:| -2584 $) (|:| -3276 $)) $ $ |t#3|)) (-15 -4139 ($ $ |t#3| (-793))) (-15 -4139 ($ $ (-663 |t#3|) (-663 (-793)))) (-15 -4149 ($ (-1201 |t#1|) |t#3|)) (-15 -4149 ($ (-1201 $) |t#3|)) (-15 -3849 ((-3 (-663 $) "failed") $)) (-15 -1669 ((-3 (-663 $) "failed") $)) (-15 -3149 ((-3 (-2 (|:| |var| |t#3|) (|:| -2030 (-793))) "failed") $)) (-15 -2250 ((-793) $)) (-15 -2250 ((-793) $ (-663 |t#3|))) (-15 -4162 ((-663 |t#3|) $)) (-15 -3048 ((-663 $) $)) (IF (|has| |t#1| (-633 (-549))) (IF (|has| |t#3| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-633 (-915 (-560)))) (IF (|has| |t#3| (-633 (-915 (-560)))) (-6 (-633 (-915 (-560)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-633 (-915 (-391)))) (IF (|has| |t#3| (-633 (-915 (-391)))) (-6 (-633 (-915 (-391)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-911 (-560))) (IF (|has| |t#3| (-911 (-560))) (-6 (-911 (-560))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-911 (-391))) (IF (|has| |t#3| (-911 (-391))) (-6 (-911 (-391))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-15 -2096 ($ $ $ |t#3|)) (-15 -2336 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-466)) (PROGN (-6 (-466)) (-15 -2264 ($ $ |t#3|)) (-15 -4239 ($ $)) (-15 -4239 ($ $ |t#3|)) (-15 -3898 ((-419 $) $)) (-15 -1621 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4506)) (-6 -4506) |%noBranch|) (IF (|has| |t#1| (-939)) (-6 (-939)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) -2196 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 |#3|) . T) ((-635 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-632 (-887)) . T) ((-175) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-633 (-549)) -12 (|has| |#1| (-633 (-549))) (|has| |#3| (-633 (-549)))) ((-633 (-915 (-391))) -12 (|has| |#1| (-633 (-915 (-391)))) (|has| |#3| (-633 (-915 (-391))))) ((-633 (-915 (-560))) -12 (|has| |#1| (-633 (-915 (-560)))) (|has| |#3| (-633 (-915 (-560))))) ((-302) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-321 $) . T) ((-338 |#1| |#2|) . T) ((-390 |#1|) . T) ((-426 |#1|) . T) ((-466) -2196 (|has| |#1| (-939)) (|has| |#1| (-466))) ((-528 |#3| |#1|) . T) ((-528 |#3| $) . T) ((-528 $ $) . T) ((-571) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-668 #0#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-38 (-421 (-560)))) ((-670 #1=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-660 #1#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #0#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-748) . T) ((-921 $ |#3|) . T) ((-927 |#3|) . T) ((-929 |#3|) . T) ((-911 (-391)) -12 (|has| |#1| (-911 (-391))) (|has| |#3| (-911 (-391)))) ((-911 (-560)) -12 (|has| |#1| (-911 (-560))) (|has| |#3| (-911 (-560)))) ((-939) |has| |#1| (-939)) ((-1069 (-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 |#1|) . T) ((-1069 |#3|) . T) ((-1082 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1082 |#1|) . T) ((-1082 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1087 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1087 |#1|) . T) ((-1087 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T) ((-1252) |has| |#1| (-939)))
+((-4162 (((-663 |#2|) |#5|) 40 T ELT)) (-3981 (((-1201 |#5|) |#5| |#2| (-1201 |#5|)) 23 T ELT) (((-421 (-1201 |#5|)) |#5| |#2|) 16 T ELT)) (-4149 ((|#5| (-421 (-1201 |#5|)) |#2|) 30 T ELT)) (-3835 (((-3 |#2| "failed") |#5|) 71 T ELT)) (-1669 (((-3 (-663 |#5|) "failed") |#5|) 65 T ELT)) (-2486 (((-3 (-2 (|:| |val| |#5|) (|:| -2030 (-560))) "failed") |#5|) 53 T ELT)) (-3849 (((-3 (-663 |#5|) "failed") |#5|) 67 T ELT)) (-3149 (((-3 (-2 (|:| |var| |#2|) (|:| -2030 (-560))) "failed") |#5|) 57 T ELT)))
+(((-980 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4162 ((-663 |#2|) |#5|)) (-15 -3835 ((-3 |#2| "failed") |#5|)) (-15 -3981 ((-421 (-1201 |#5|)) |#5| |#2|)) (-15 -4149 (|#5| (-421 (-1201 |#5|)) |#2|)) (-15 -3981 ((-1201 |#5|) |#5| |#2| (-1201 |#5|))) (-15 -3849 ((-3 (-663 |#5|) "failed") |#5|)) (-15 -1669 ((-3 (-663 |#5|) "failed") |#5|)) (-15 -3149 ((-3 (-2 (|:| |var| |#2|) (|:| -2030 (-560))) "failed") |#5|)) (-15 -2486 ((-3 (-2 (|:| |val| |#5|) (|:| -2030 (-560))) "failed") |#5|))) (-815) (-871) (-1080) (-979 |#3| |#1| |#2|) (-13 (-376) (-10 -8 (-15 -3913 ($ |#4|)) (-15 -2473 (|#4| $)) (-15 -2484 (|#4| $))))) (T -980))
+((-2486 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2030 (-560)))) (-5 *1 (-980 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -3913 ($ *7)) (-15 -2473 (*7 $)) (-15 -2484 (*7 $))))))) (-3149 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2030 (-560)))) (-5 *1 (-980 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -3913 ($ *7)) (-15 -2473 (*7 $)) (-15 -2484 (*7 $))))))) (-1669 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-663 *3)) (-5 *1 (-980 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -3913 ($ *7)) (-15 -2473 (*7 $)) (-15 -2484 (*7 $))))))) (-3849 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-663 *3)) (-5 *1 (-980 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -3913 ($ *7)) (-15 -2473 (*7 $)) (-15 -2484 (*7 $))))))) (-3981 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1201 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -3913 ($ *7)) (-15 -2473 (*7 $)) (-15 -2484 (*7 $))))) (-4 *7 (-979 *6 *5 *4)) (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-1080)) (-5 *1 (-980 *5 *4 *6 *7 *3)))) (-4149 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-1201 *2))) (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-1080)) (-4 *2 (-13 (-376) (-10 -8 (-15 -3913 ($ *7)) (-15 -2473 (*7 $)) (-15 -2484 (*7 $))))) (-5 *1 (-980 *5 *4 *6 *7 *2)) (-4 *7 (-979 *6 *5 *4)))) (-3981 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-1080)) (-4 *7 (-979 *6 *5 *4)) (-5 *2 (-421 (-1201 *3))) (-5 *1 (-980 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -3913 ($ *7)) (-15 -2473 (*7 $)) (-15 -2484 (*7 $))))))) (-3835 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-1080)) (-4 *6 (-979 *5 *4 *2)) (-4 *2 (-871)) (-5 *1 (-980 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -3913 ($ *6)) (-15 -2473 (*6 $)) (-15 -2484 (*6 $))))))) (-4162 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080)) (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-663 *5)) (-5 *1 (-980 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -3913 ($ *7)) (-15 -2473 (*7 $)) (-15 -2484 (*7 $))))))))
+(-10 -7 (-15 -4162 ((-663 |#2|) |#5|)) (-15 -3835 ((-3 |#2| "failed") |#5|)) (-15 -3981 ((-421 (-1201 |#5|)) |#5| |#2|)) (-15 -4149 (|#5| (-421 (-1201 |#5|)) |#2|)) (-15 -3981 ((-1201 |#5|) |#5| |#2| (-1201 |#5|))) (-15 -3849 ((-3 (-663 |#5|) "failed") |#5|)) (-15 -1669 ((-3 (-663 |#5|) "failed") |#5|)) (-15 -3149 ((-3 (-2 (|:| |var| |#2|) (|:| -2030 (-560))) "failed") |#5|)) (-15 -2486 ((-3 (-2 (|:| |val| |#5|) (|:| -2030 (-560))) "failed") |#5|)))
+((-2260 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT)))
+(((-981 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2260 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-815) (-871) (-1080) (-979 |#3| |#1| |#2|) (-13 (-1132) (-10 -8 (-15 -2429 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-793)))))) (T -981))
+((-2260 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-871)) (-4 *8 (-1080)) (-4 *6 (-815)) (-4 *2 (-13 (-1132) (-10 -8 (-15 -2429 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-793)))))) (-5 *1 (-981 *6 *7 *8 *5 *2)) (-4 *5 (-979 *8 *6 *7)))))
+(-10 -7 (-15 -2260 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-4461 (((-2 (|:| -2030 (-793)) (|:| -2625 |#5|) (|:| |radicand| |#5|)) |#3| (-793)) 49 T ELT)) (-1840 (((-2 (|:| -2030 (-793)) (|:| -2625 |#5|) (|:| |radicand| |#5|)) (-421 (-560)) (-793)) 44 T ELT)) (-3051 (((-2 (|:| -2030 (-793)) (|:| -2625 |#4|) (|:| |radicand| (-663 |#4|))) |#4| (-793)) 65 T ELT)) (-4353 (((-2 (|:| -2030 (-793)) (|:| -2625 |#5|) (|:| |radicand| |#5|)) |#5| (-793)) 74 (|has| |#3| (-466)) ELT)))
+(((-982 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4461 ((-2 (|:| -2030 (-793)) (|:| -2625 |#5|) (|:| |radicand| |#5|)) |#3| (-793))) (-15 -1840 ((-2 (|:| -2030 (-793)) (|:| -2625 |#5|) (|:| |radicand| |#5|)) (-421 (-560)) (-793))) (IF (|has| |#3| (-466)) (-15 -4353 ((-2 (|:| -2030 (-793)) (|:| -2625 |#5|) (|:| |radicand| |#5|)) |#5| (-793))) |%noBranch|) (-15 -3051 ((-2 (|:| -2030 (-793)) (|:| -2625 |#4|) (|:| |radicand| (-663 |#4|))) |#4| (-793)))) (-815) (-871) (-571) (-979 |#3| |#1| |#2|) (-13 (-376) (-10 -8 (-15 -3913 ($ |#4|)) (-15 -2473 (|#4| $)) (-15 -2484 (|#4| $))))) (T -982))
+((-3051 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-571)) (-4 *3 (-979 *7 *5 *6)) (-5 *2 (-2 (|:| -2030 (-793)) (|:| -2625 *3) (|:| |radicand| (-663 *3)))) (-5 *1 (-982 *5 *6 *7 *3 *8)) (-5 *4 (-793)) (-4 *8 (-13 (-376) (-10 -8 (-15 -3913 ($ *3)) (-15 -2473 (*3 $)) (-15 -2484 (*3 $))))))) (-4353 (*1 *2 *3 *4) (-12 (-4 *7 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-571)) (-4 *8 (-979 *7 *5 *6)) (-5 *2 (-2 (|:| -2030 (-793)) (|:| -2625 *3) (|:| |radicand| *3))) (-5 *1 (-982 *5 *6 *7 *8 *3)) (-5 *4 (-793)) (-4 *3 (-13 (-376) (-10 -8 (-15 -3913 ($ *8)) (-15 -2473 (*8 $)) (-15 -2484 (*8 $))))))) (-1840 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-560))) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-571)) (-4 *8 (-979 *7 *5 *6)) (-5 *2 (-2 (|:| -2030 (-793)) (|:| -2625 *9) (|:| |radicand| *9))) (-5 *1 (-982 *5 *6 *7 *8 *9)) (-5 *4 (-793)) (-4 *9 (-13 (-376) (-10 -8 (-15 -3913 ($ *8)) (-15 -2473 (*8 $)) (-15 -2484 (*8 $))))))) (-4461 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-571)) (-4 *7 (-979 *3 *5 *6)) (-5 *2 (-2 (|:| -2030 (-793)) (|:| -2625 *8) (|:| |radicand| *8))) (-5 *1 (-982 *5 *6 *3 *7 *8)) (-5 *4 (-793)) (-4 *8 (-13 (-376) (-10 -8 (-15 -3913 ($ *7)) (-15 -2473 (*7 $)) (-15 -2484 (*7 $))))))))
+(-10 -7 (-15 -4461 ((-2 (|:| -2030 (-793)) (|:| -2625 |#5|) (|:| |radicand| |#5|)) |#3| (-793))) (-15 -1840 ((-2 (|:| -2030 (-793)) (|:| -2625 |#5|) (|:| |radicand| |#5|)) (-421 (-560)) (-793))) (IF (|has| |#3| (-466)) (-15 -4353 ((-2 (|:| -2030 (-793)) (|:| -2625 |#5|) (|:| |radicand| |#5|)) |#5| (-793))) |%noBranch|) (-15 -3051 ((-2 (|:| -2030 (-793)) (|:| -2625 |#4|) (|:| |radicand| (-663 |#4|))) |#4| (-793))))
+((-2243 (((-114) $ $) NIL T ELT)) (-4480 (($ (-1151)) 8 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 15 T ELT) (((-1151) $) 12 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 11 T ELT)))
+(((-983) (-13 (-1132) (-632 (-1151)) (-10 -8 (-15 -4480 ($ (-1151)))))) (T -983))
+((-4480 (*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-983)))))
+(-13 (-1132) (-632 (-1151)) (-10 -8 (-15 -4480 ($ (-1151)))))
+((-3307 (((-1120 (-229)) $) 8 T ELT)) (-3295 (((-1120 (-229)) $) 9 T ELT)) (-2467 (((-663 (-663 (-972 (-229)))) $) 10 T ELT)) (-3913 (((-887) $) 6 T ELT)))
(((-984) (-142)) (T -984))
-((-4071 (*1 *2 *1) (-12 (-4 *1 (-984)) (-5 *2 (-663 (-663 (-972 (-229))))))) (-3732 (*1 *2 *1) (-12 (-4 *1 (-984)) (-5 *2 (-1120 (-229))))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-984)) (-5 *2 (-1120 (-229))))))
-(-13 (-632 (-887)) (-10 -8 (-15 -4071 ((-663 (-663 (-972 (-229)))) $)) (-15 -3732 ((-1120 (-229)) $)) (-15 -3747 ((-1120 (-229)) $))))
+((-2467 (*1 *2 *1) (-12 (-4 *1 (-984)) (-5 *2 (-663 (-663 (-972 (-229))))))) (-3295 (*1 *2 *1) (-12 (-4 *1 (-984)) (-5 *2 (-1120 (-229))))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-984)) (-5 *2 (-1120 (-229))))))
+(-13 (-632 (-887)) (-10 -8 (-15 -2467 ((-663 (-663 (-972 (-229)))) $)) (-15 -3295 ((-1120 (-229)) $)) (-15 -3307 ((-1120 (-229)) $))))
(((-632 (-887)) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 78 (|has| |#1| (-571)) ELT)) (-3244 (($ $) 79 (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 34 T ELT)) (-3330 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-1624 (($ $) 31 T ELT)) (-1990 (((-3 $ "failed") $) 42 T ELT)) (-2806 (($ $) NIL (|has| |#1| (-466)) ELT)) (-4342 (($ $ |#1| |#2| $) 62 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-3531 (((-793) $) 17 T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#1| |#2|) NIL T ELT)) (-3011 ((|#2| $) 24 T ELT)) (-4321 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1583 (($ $) 28 T ELT)) (-1597 ((|#1| $) 26 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1554 (((-114) $) 51 T ELT)) (-1566 ((|#1| $) NIL T ELT)) (-4369 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-133)) (|has| |#1| (-571))) ELT)) (-1528 (((-3 $ "failed") $ $) 91 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-571)) ELT)) (-3630 ((|#2| $) 22 T ELT)) (-2053 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) 46 T ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ |#1|) 41 T ELT) (($ (-421 (-560))) NIL (-2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-3409 (((-663 |#1|) $) NIL T ELT)) (-2305 ((|#1| $ |#2|) 37 T ELT)) (-1964 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-2930 (((-793)) 15 T CONST)) (-2392 (($ $ $ (-793)) 74 (|has| |#1| (-175)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) 84 (|has| |#1| (-571)) ELT)) (-2001 (($) 27 T CONST)) (-2011 (($) 12 T CONST)) (-2473 (((-114) $ $) 83 T ELT)) (-2594 (($ $ |#1|) 92 (|has| |#1| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) 69 T ELT) (($ $ (-793)) 67 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 66 T ELT) (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
-(((-985 |#1| |#2|) (-13 (-338 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-571)) (IF (|has| |#2| (-133)) (-15 -4369 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4506)) (-6 -4506) |%noBranch|))) (-1080) (-814)) (T -985))
-((-4369 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-985 *3 *2)) (-4 *2 (-133)) (-4 *3 (-571)) (-4 *3 (-1080)) (-4 *2 (-814)))))
-(-13 (-338 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-571)) (IF (|has| |#2| (-133)) (-15 -4369 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4506)) (-6 -4506) |%noBranch|)))
-((-3751 (((-3 (-711 |#1|) "failed") |#2| (-948)) 18 T ELT)))
-(((-986 |#1| |#2|) (-10 -7 (-15 -3751 ((-3 (-711 |#1|) "failed") |#2| (-948)))) (-571) (-680 |#1|)) (T -986))
-((-3751 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-948)) (-4 *5 (-571)) (-5 *2 (-711 *5)) (-5 *1 (-986 *5 *3)) (-4 *3 (-680 *5)))))
-(-10 -7 (-15 -3751 ((-3 (-711 |#1|) "failed") |#2| (-948))))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3839 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4040 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-1703 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| |#1| (-871))) ELT)) (-2286 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 ((|#1| $ (-560) |#1|) 20 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2238 (($) NIL T CONST)) (-4391 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) NIL T ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2375 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3779 ((|#1| $ (-560) |#1|) 19 (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-560)) 17 T ELT)) (-1722 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1132)) ELT)) (-2181 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4095 (($ (-793) |#1|) 16 T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) 11 (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3223 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2937 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3996 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) NIL T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3637 ((|#1| $) NIL (|has| (-560) (-871)) ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-3037 (($ $ |#1|) 21 (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) 13 T ELT)) (-3924 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) 18 T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-4413 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3640 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) 22 T ELT)) (-1407 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 15 T ELT)) (-3415 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1578 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2536 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2521 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-1553 (((-793) $) 8 (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 78 (|has| |#1| (-571)) ELT)) (-4366 (($ $) 79 (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 34 T ELT)) (-3649 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-3062 (($ $) 31 T ELT)) (-2873 (((-3 $ "failed") $) 42 T ELT)) (-4239 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3224 (($ $ |#1| |#2| $) 62 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-4127 (((-793) $) 17 T ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#1| |#2|) NIL T ELT)) (-3765 ((|#2| $) 24 T ELT)) (-3060 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3024 (($ $) 28 T ELT)) (-3037 ((|#1| $) 26 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3000 (((-114) $) 51 T ELT)) (-3011 ((|#1| $) NIL T ELT)) (-2183 (($ $ |#2| |#1| $) 90 (-12 (|has| |#2| (-133)) (|has| |#1| (-571))) ELT)) (-2233 (((-3 $ "failed") $ $) 91 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ |#1|) 85 (|has| |#1| (-571)) ELT)) (-3900 ((|#2| $) 22 T ELT)) (-2264 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) 46 T ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ |#1|) 41 T ELT) (($ (-421 (-560))) NIL (-2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-2247 (((-663 |#1|) $) NIL T ELT)) (-2920 ((|#1| $ |#2|) 37 T ELT)) (-3919 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-4191 (((-793)) 15 T CONST)) (-2548 (($ $ $ (-793)) 74 (|has| |#1| (-175)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) 84 (|has| |#1| (-571)) ELT)) (-1446 (($) 27 T CONST)) (-1456 (($) 12 T CONST)) (-2340 (((-114) $ $) 83 T ELT)) (-2453 (($ $ |#1|) 92 (|has| |#1| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) 69 T ELT) (($ $ (-793)) 67 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 66 T ELT) (($ $ |#1|) 64 T ELT) (($ |#1| $) 63 T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
+(((-985 |#1| |#2|) (-13 (-338 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-571)) (IF (|has| |#2| (-133)) (-15 -2183 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4506)) (-6 -4506) |%noBranch|))) (-1080) (-814)) (T -985))
+((-2183 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-985 *3 *2)) (-4 *2 (-133)) (-4 *3 (-571)) (-4 *3 (-1080)) (-4 *2 (-814)))))
+(-13 (-338 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-571)) (IF (|has| |#2| (-133)) (-15 -2183 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4506)) (-6 -4506) |%noBranch|)))
+((-2499 (((-3 (-711 |#1|) "failed") |#2| (-948)) 18 T ELT)))
+(((-986 |#1| |#2|) (-10 -7 (-15 -2499 ((-3 (-711 |#1|) "failed") |#2| (-948)))) (-571) (-680 |#1|)) (T -986))
+((-2499 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-948)) (-4 *5 (-571)) (-5 *2 (-711 *5)) (-5 *1 (-986 *5 *3)) (-4 *3 (-680 *5)))))
+(-10 -7 (-15 -2499 ((-3 (-711 |#1|) "failed") |#2| (-948))))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2033 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-2152 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-3152 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| |#1| (-871))) ELT)) (-1787 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 ((|#1| $ (-560) |#1|) 20 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3525 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) NIL T ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3033 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3338 ((|#1| $ (-560) |#1|) 19 (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-560)) 17 T ELT)) (-2359 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1132)) ELT)) (-3737 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4246 (($ (-793) |#1|) 16 T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) 11 (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-4167 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4263 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-2507 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) NIL T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-4334 ((|#1| $) NIL (|has| (-560) (-871)) ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2740 (($ $ |#1|) 21 (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) 13 T ELT)) (-1507 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) 18 T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-2579 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3993 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) 22 T ELT)) (-2400 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 15 T ELT)) (-1955 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3913 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2396 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2386 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2256 (((-793) $) 8 (|has| $ (-6 -4508)) ELT)))
(((-987 |#1|) (-19 |#1|) (-1247)) (T -987))
NIL
(-19 |#1|)
-((-1520 (((-987 |#2|) (-1 |#2| |#1| |#2|) (-987 |#1|) |#2|) 16 T ELT)) (-4129 ((|#2| (-1 |#2| |#1| |#2|) (-987 |#1|) |#2|) 18 T ELT)) (-3957 (((-987 |#2|) (-1 |#2| |#1|) (-987 |#1|)) 13 T ELT)))
-(((-988 |#1| |#2|) (-10 -7 (-15 -1520 ((-987 |#2|) (-1 |#2| |#1| |#2|) (-987 |#1|) |#2|)) (-15 -4129 (|#2| (-1 |#2| |#1| |#2|) (-987 |#1|) |#2|)) (-15 -3957 ((-987 |#2|) (-1 |#2| |#1|) (-987 |#1|)))) (-1247) (-1247)) (T -988))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-987 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-987 *6)) (-5 *1 (-988 *5 *6)))) (-4129 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-987 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-988 *5 *2)))) (-1520 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-987 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-5 *2 (-987 *5)) (-5 *1 (-988 *6 *5)))))
-(-10 -7 (-15 -1520 ((-987 |#2|) (-1 |#2| |#1| |#2|) (-987 |#1|) |#2|)) (-15 -4129 (|#2| (-1 |#2| |#1| |#2|) (-987 |#1|) |#2|)) (-15 -3957 ((-987 |#2|) (-1 |#2| |#1|) (-987 |#1|))))
-((-2811 (($ $ (-1123 $)) 7 T ELT) (($ $ (-1207)) 6 T ELT)))
+((-2928 (((-987 |#2|) (-1 |#2| |#1| |#2|) (-987 |#1|) |#2|) 16 T ELT)) (-1778 ((|#2| (-1 |#2| |#1| |#2|) (-987 |#1|) |#2|) 18 T ELT)) (-2260 (((-987 |#2|) (-1 |#2| |#1|) (-987 |#1|)) 13 T ELT)))
+(((-988 |#1| |#2|) (-10 -7 (-15 -2928 ((-987 |#2|) (-1 |#2| |#1| |#2|) (-987 |#1|) |#2|)) (-15 -1778 (|#2| (-1 |#2| |#1| |#2|) (-987 |#1|) |#2|)) (-15 -2260 ((-987 |#2|) (-1 |#2| |#1|) (-987 |#1|)))) (-1247) (-1247)) (T -988))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-987 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-987 *6)) (-5 *1 (-988 *5 *6)))) (-1778 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-987 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-988 *5 *2)))) (-2928 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-987 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-5 *2 (-987 *5)) (-5 *1 (-988 *6 *5)))))
+(-10 -7 (-15 -2928 ((-987 |#2|) (-1 |#2| |#1| |#2|) (-987 |#1|) |#2|)) (-15 -1778 (|#2| (-1 |#2| |#1| |#2|) (-987 |#1|) |#2|)) (-15 -2260 ((-987 |#2|) (-1 |#2| |#1|) (-987 |#1|))))
+((-4288 (($ $ (-1123 $)) 7 T ELT) (($ $ (-1207)) 6 T ELT)))
(((-989) (-142)) (T -989))
-((-2811 (*1 *1 *1 *2) (-12 (-5 *2 (-1123 *1)) (-4 *1 (-989)))) (-2811 (*1 *1 *1 *2) (-12 (-4 *1 (-989)) (-5 *2 (-1207)))))
-(-13 (-10 -8 (-15 -2811 ($ $ (-1207))) (-15 -2811 ($ $ (-1123 $)))))
-((-4336 (((-2 (|:| -2115 (-663 (-560))) (|:| |poly| (-663 (-1201 |#1|))) (|:| |prim| (-1201 |#1|))) (-663 (-975 |#1|)) (-663 (-1207)) (-1207)) 26 T ELT) (((-2 (|:| -2115 (-663 (-560))) (|:| |poly| (-663 (-1201 |#1|))) (|:| |prim| (-1201 |#1|))) (-663 (-975 |#1|)) (-663 (-1207))) 27 T ELT) (((-2 (|:| |coef1| (-560)) (|:| |coef2| (-560)) (|:| |prim| (-1201 |#1|))) (-975 |#1|) (-1207) (-975 |#1|) (-1207)) 49 T ELT)))
-(((-990 |#1|) (-10 -7 (-15 -4336 ((-2 (|:| |coef1| (-560)) (|:| |coef2| (-560)) (|:| |prim| (-1201 |#1|))) (-975 |#1|) (-1207) (-975 |#1|) (-1207))) (-15 -4336 ((-2 (|:| -2115 (-663 (-560))) (|:| |poly| (-663 (-1201 |#1|))) (|:| |prim| (-1201 |#1|))) (-663 (-975 |#1|)) (-663 (-1207)))) (-15 -4336 ((-2 (|:| -2115 (-663 (-560))) (|:| |poly| (-663 (-1201 |#1|))) (|:| |prim| (-1201 |#1|))) (-663 (-975 |#1|)) (-663 (-1207)) (-1207)))) (-13 (-376) (-149))) (T -990))
-((-4336 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-975 *6))) (-5 *4 (-663 (-1207))) (-5 *5 (-1207)) (-4 *6 (-13 (-376) (-149))) (-5 *2 (-2 (|:| -2115 (-663 (-560))) (|:| |poly| (-663 (-1201 *6))) (|:| |prim| (-1201 *6)))) (-5 *1 (-990 *6)))) (-4336 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-663 (-1207))) (-4 *5 (-13 (-376) (-149))) (-5 *2 (-2 (|:| -2115 (-663 (-560))) (|:| |poly| (-663 (-1201 *5))) (|:| |prim| (-1201 *5)))) (-5 *1 (-990 *5)))) (-4336 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-975 *5)) (-5 *4 (-1207)) (-4 *5 (-13 (-376) (-149))) (-5 *2 (-2 (|:| |coef1| (-560)) (|:| |coef2| (-560)) (|:| |prim| (-1201 *5)))) (-5 *1 (-990 *5)))))
-(-10 -7 (-15 -4336 ((-2 (|:| |coef1| (-560)) (|:| |coef2| (-560)) (|:| |prim| (-1201 |#1|))) (-975 |#1|) (-1207) (-975 |#1|) (-1207))) (-15 -4336 ((-2 (|:| -2115 (-663 (-560))) (|:| |poly| (-663 (-1201 |#1|))) (|:| |prim| (-1201 |#1|))) (-663 (-975 |#1|)) (-663 (-1207)))) (-15 -4336 ((-2 (|:| -2115 (-663 (-560))) (|:| |poly| (-663 (-1201 |#1|))) (|:| |prim| (-1201 |#1|))) (-663 (-975 |#1|)) (-663 (-1207)) (-1207))))
-((-2488 (((-663 |#1|) |#1| |#1|) 47 T ELT)) (-4330 (((-114) |#1|) 44 T ELT)) (-1881 ((|#1| |#1|) 79 T ELT)) (-1429 ((|#1| |#1|) 78 T ELT)))
-(((-991 |#1|) (-10 -7 (-15 -4330 ((-114) |#1|)) (-15 -1429 (|#1| |#1|)) (-15 -1881 (|#1| |#1|)) (-15 -2488 ((-663 |#1|) |#1| |#1|))) (-559)) (T -991))
-((-2488 (*1 *2 *3 *3) (-12 (-5 *2 (-663 *3)) (-5 *1 (-991 *3)) (-4 *3 (-559)))) (-1881 (*1 *2 *2) (-12 (-5 *1 (-991 *2)) (-4 *2 (-559)))) (-1429 (*1 *2 *2) (-12 (-5 *1 (-991 *2)) (-4 *2 (-559)))) (-4330 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-991 *3)) (-4 *3 (-559)))))
-(-10 -7 (-15 -4330 ((-114) |#1|)) (-15 -1429 (|#1| |#1|)) (-15 -1881 (|#1| |#1|)) (-15 -2488 ((-663 |#1|) |#1| |#1|)))
-((-2209 (((-1303) (-887)) 9 T ELT)))
-(((-992) (-10 -7 (-15 -2209 ((-1303) (-887))))) (T -992))
-((-2209 (*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1303)) (-5 *1 (-992)))))
-(-10 -7 (-15 -2209 ((-1303) (-887))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL (-2304 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT)) (-3168 (($ $ $) 65 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) ELT)) (-3068 (((-3 $ "failed") $ $) 52 (-2304 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT)) (-3241 (((-793)) 36 (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-2345 ((|#2| $) 22 T ELT)) (-3000 ((|#1| $) 21 T ELT)) (-2238 (($) NIL (-2304 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) CONST)) (-1990 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) ELT)) (-2310 (($) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-1581 (((-114) $) NIL (-2304 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) ELT)) (-3825 (($ $ $) NIL (-2304 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871)))) ELT)) (-2820 (($ $ $) NIL (-2304 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871)))) ELT)) (-4188 (($ |#1| |#2|) 20 T ELT)) (-4419 (((-948) $) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) 39 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) ELT)) (-3128 (($ (-948)) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4122 (($ $ $) NIL (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) ELT)) (-2013 (($ $ $) NIL (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) ELT)) (-1578 (((-887) $) 14 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 42 (-2304 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) CONST)) (-2011 (($) 25 (-2304 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) CONST)) (-2536 (((-114) $ $) NIL (-2304 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871)))) ELT)) (-2508 (((-114) $ $) NIL (-2304 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871)))) ELT)) (-2473 (((-114) $ $) 19 T ELT)) (-2521 (((-114) $ $) NIL (-2304 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871)))) ELT)) (-2495 (((-114) $ $) 69 (-2304 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871)))) ELT)) (-2594 (($ $ $) NIL (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) ELT)) (-2580 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-2567 (($ $ $) 45 (-2304 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT)) (** (($ $ (-560)) NIL (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) ELT) (($ $ (-793)) 32 (-2304 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) ELT) (($ $ (-948)) NIL (-2304 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) ELT)) (* (($ (-560) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-793) $) 48 (-2304 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT) (($ (-948) $) NIL (-2304 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT) (($ $ $) 28 (-2304 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) ELT)))
-(((-993 |#1| |#2|) (-13 (-1132) (-10 -8 (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-748)) (IF (|has| |#2| (-748)) (-6 (-748)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-133)) (IF (|has| |#2| (-133)) (-6 (-133)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-487)) (IF (|has| |#2| (-487)) (-6 (-487)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-815)) (IF (|has| |#2| (-815)) (-6 (-815)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-871)) (IF (|has| |#2| (-871)) (-6 (-871)) |%noBranch|) |%noBranch|) (-15 -4188 ($ |#1| |#2|)) (-15 -3000 (|#1| $)) (-15 -2345 (|#2| $)))) (-1132) (-1132)) (T -993))
-((-4188 (*1 *1 *2 *3) (-12 (-5 *1 (-993 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))) (-3000 (*1 *2 *1) (-12 (-4 *2 (-1132)) (-5 *1 (-993 *2 *3)) (-4 *3 (-1132)))) (-2345 (*1 *2 *1) (-12 (-4 *2 (-1132)) (-5 *1 (-993 *3 *2)) (-4 *3 (-1132)))))
-(-13 (-1132) (-10 -8 (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-748)) (IF (|has| |#2| (-748)) (-6 (-748)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-133)) (IF (|has| |#2| (-133)) (-6 (-133)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-487)) (IF (|has| |#2| (-487)) (-6 (-487)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-815)) (IF (|has| |#2| (-815)) (-6 (-815)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-871)) (IF (|has| |#2| (-871)) (-6 (-871)) |%noBranch|) |%noBranch|) (-15 -4188 ($ |#1| |#2|)) (-15 -3000 (|#1| $)) (-15 -2345 (|#2| $))))
-((-3853 (((-1134) $) 12 T ELT)) (-2502 (($ (-520) (-1134)) 14 T ELT)) (-3614 (((-520) $) 9 T ELT)) (-1578 (((-887) $) 24 T ELT)))
-(((-994) (-13 (-632 (-887)) (-10 -8 (-15 -3614 ((-520) $)) (-15 -3853 ((-1134) $)) (-15 -2502 ($ (-520) (-1134)))))) (T -994))
-((-3614 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-994)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-994)))) (-2502 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1134)) (-5 *1 (-994)))))
-(-13 (-632 (-887)) (-10 -8 (-15 -3614 ((-520) $)) (-15 -3853 ((-1134) $)) (-15 -2502 ($ (-520) (-1134)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1562 (($ $) NIL T ELT)) (-3841 (($) NIL T CONST)) (-1961 (($ $ $) 30 T ELT)) (-1937 (($ $) 24 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1997 (((-713 (-897 $ $)) $) 55 T ELT)) (-4236 (((-713 $) $) 45 T ELT)) (-1356 (((-713 (-897 $ $)) $) 56 T ELT)) (-3859 (((-713 (-897 $ $)) $) 57 T ELT)) (-2485 (((-713 |#1|) $) 36 T ELT)) (-2443 (((-713 (-897 $ $)) $) 54 T ELT)) (-3821 (($ $ $) 31 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2143 (($) NIL T CONST)) (-1662 (($ $ $) 32 T ELT)) (-4400 (($ $ $) 29 T ELT)) (-1910 (($ $ $) 27 T ELT)) (-1578 (((-887) $) 59 T ELT) (($ |#1|) 12 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1953 (($ $ $) 28 T ELT)) (-1616 (($ $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-1602 (($ $ $) NIL T ELT)))
-(((-995 |#1|) (-13 (-998) (-635 |#1|) (-10 -8 (-15 -2485 ((-713 |#1|) $)) (-15 -4236 ((-713 $) $)) (-15 -2443 ((-713 (-897 $ $)) $)) (-15 -1997 ((-713 (-897 $ $)) $)) (-15 -1356 ((-713 (-897 $ $)) $)) (-15 -3859 ((-713 (-897 $ $)) $)) (-15 -1910 ($ $ $)) (-15 -4400 ($ $ $)))) (-1132)) (T -995))
-((-2485 (*1 *2 *1) (-12 (-5 *2 (-713 *3)) (-5 *1 (-995 *3)) (-4 *3 (-1132)))) (-4236 (*1 *2 *1) (-12 (-5 *2 (-713 (-995 *3))) (-5 *1 (-995 *3)) (-4 *3 (-1132)))) (-2443 (*1 *2 *1) (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3)) (-4 *3 (-1132)))) (-1997 (*1 *2 *1) (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3)) (-4 *3 (-1132)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3)) (-4 *3 (-1132)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3)) (-4 *3 (-1132)))) (-1910 (*1 *1 *1 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1132)))) (-4400 (*1 *1 *1 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1132)))))
-(-13 (-998) (-635 |#1|) (-10 -8 (-15 -2485 ((-713 |#1|) $)) (-15 -4236 ((-713 $) $)) (-15 -2443 ((-713 (-897 $ $)) $)) (-15 -1997 ((-713 (-897 $ $)) $)) (-15 -1356 ((-713 (-897 $ $)) $)) (-15 -3859 ((-713 (-897 $ $)) $)) (-15 -1910 ($ $ $)) (-15 -4400 ($ $ $))))
-((-3922 (((-995 |#1|) (-995 |#1|)) 46 T ELT)) (-3063 (((-995 |#1|) (-995 |#1|)) 22 T ELT)) (-4167 (((-1128 |#1|) (-995 |#1|)) 41 T ELT)))
-(((-996 |#1|) (-13 (-1247) (-10 -7 (-15 -3063 ((-995 |#1|) (-995 |#1|))) (-15 -4167 ((-1128 |#1|) (-995 |#1|))) (-15 -3922 ((-995 |#1|) (-995 |#1|))))) (-1132)) (T -996))
-((-3063 (*1 *2 *2) (-12 (-5 *2 (-995 *3)) (-4 *3 (-1132)) (-5 *1 (-996 *3)))) (-4167 (*1 *2 *3) (-12 (-5 *3 (-995 *4)) (-4 *4 (-1132)) (-5 *2 (-1128 *4)) (-5 *1 (-996 *4)))) (-3922 (*1 *2 *2) (-12 (-5 *2 (-995 *3)) (-4 *3 (-1132)) (-5 *1 (-996 *3)))))
-(-13 (-1247) (-10 -7 (-15 -3063 ((-995 |#1|) (-995 |#1|))) (-15 -4167 ((-1128 |#1|) (-995 |#1|))) (-15 -3922 ((-995 |#1|) (-995 |#1|)))))
-((-3957 (((-995 |#2|) (-1 |#2| |#1|) (-995 |#1|)) 29 T ELT)))
-(((-997 |#1| |#2|) (-13 (-1247) (-10 -7 (-15 -3957 ((-995 |#2|) (-1 |#2| |#1|) (-995 |#1|))))) (-1132) (-1132)) (T -997))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-995 *5)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *2 (-995 *6)) (-5 *1 (-997 *5 *6)))))
-(-13 (-1247) (-10 -7 (-15 -3957 ((-995 |#2|) (-1 |#2| |#1|) (-995 |#1|)))))
-((-1538 (((-114) $ $) 19 T ELT)) (-1562 (($ $) 8 T ELT)) (-3841 (($) 17 T CONST)) (-1961 (($ $ $) 9 T ELT)) (-1937 (($ $) 11 T ELT)) (-1905 (((-1189) $) 23 T ELT)) (-3821 (($ $ $) 15 T ELT)) (-3855 (((-1151) $) 22 T ELT)) (-2143 (($) 16 T CONST)) (-1662 (($ $ $) 14 T ELT)) (-1578 (((-887) $) 21 T ELT)) (-2275 (((-114) $ $) 20 T ELT)) (-1953 (($ $ $) 10 T ELT)) (-1616 (($ $ $) 6 T ELT)) (-2473 (((-114) $ $) 18 T ELT)) (-1602 (($ $ $) 7 T ELT)))
+((-4288 (*1 *1 *1 *2) (-12 (-5 *2 (-1123 *1)) (-4 *1 (-989)))) (-4288 (*1 *1 *1 *2) (-12 (-4 *1 (-989)) (-5 *2 (-1207)))))
+(-13 (-10 -8 (-15 -4288 ($ $ (-1207))) (-15 -4288 ($ $ (-1123 $)))))
+((-3191 (((-2 (|:| -2625 (-663 (-560))) (|:| |poly| (-663 (-1201 |#1|))) (|:| |prim| (-1201 |#1|))) (-663 (-975 |#1|)) (-663 (-1207)) (-1207)) 26 T ELT) (((-2 (|:| -2625 (-663 (-560))) (|:| |poly| (-663 (-1201 |#1|))) (|:| |prim| (-1201 |#1|))) (-663 (-975 |#1|)) (-663 (-1207))) 27 T ELT) (((-2 (|:| |coef1| (-560)) (|:| |coef2| (-560)) (|:| |prim| (-1201 |#1|))) (-975 |#1|) (-1207) (-975 |#1|) (-1207)) 49 T ELT)))
+(((-990 |#1|) (-10 -7 (-15 -3191 ((-2 (|:| |coef1| (-560)) (|:| |coef2| (-560)) (|:| |prim| (-1201 |#1|))) (-975 |#1|) (-1207) (-975 |#1|) (-1207))) (-15 -3191 ((-2 (|:| -2625 (-663 (-560))) (|:| |poly| (-663 (-1201 |#1|))) (|:| |prim| (-1201 |#1|))) (-663 (-975 |#1|)) (-663 (-1207)))) (-15 -3191 ((-2 (|:| -2625 (-663 (-560))) (|:| |poly| (-663 (-1201 |#1|))) (|:| |prim| (-1201 |#1|))) (-663 (-975 |#1|)) (-663 (-1207)) (-1207)))) (-13 (-376) (-149))) (T -990))
+((-3191 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-975 *6))) (-5 *4 (-663 (-1207))) (-5 *5 (-1207)) (-4 *6 (-13 (-376) (-149))) (-5 *2 (-2 (|:| -2625 (-663 (-560))) (|:| |poly| (-663 (-1201 *6))) (|:| |prim| (-1201 *6)))) (-5 *1 (-990 *6)))) (-3191 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-663 (-1207))) (-4 *5 (-13 (-376) (-149))) (-5 *2 (-2 (|:| -2625 (-663 (-560))) (|:| |poly| (-663 (-1201 *5))) (|:| |prim| (-1201 *5)))) (-5 *1 (-990 *5)))) (-3191 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-975 *5)) (-5 *4 (-1207)) (-4 *5 (-13 (-376) (-149))) (-5 *2 (-2 (|:| |coef1| (-560)) (|:| |coef2| (-560)) (|:| |prim| (-1201 *5)))) (-5 *1 (-990 *5)))))
+(-10 -7 (-15 -3191 ((-2 (|:| |coef1| (-560)) (|:| |coef2| (-560)) (|:| |prim| (-1201 |#1|))) (-975 |#1|) (-1207) (-975 |#1|) (-1207))) (-15 -3191 ((-2 (|:| -2625 (-663 (-560))) (|:| |poly| (-663 (-1201 |#1|))) (|:| |prim| (-1201 |#1|))) (-663 (-975 |#1|)) (-663 (-1207)))) (-15 -3191 ((-2 (|:| -2625 (-663 (-560))) (|:| |poly| (-663 (-1201 |#1|))) (|:| |prim| (-1201 |#1|))) (-663 (-975 |#1|)) (-663 (-1207)) (-1207))))
+((-4173 (((-663 |#1|) |#1| |#1|) 47 T ELT)) (-3141 (((-114) |#1|) 44 T ELT)) (-4352 ((|#1| |#1|) 79 T ELT)) (-1555 ((|#1| |#1|) 78 T ELT)))
+(((-991 |#1|) (-10 -7 (-15 -3141 ((-114) |#1|)) (-15 -1555 (|#1| |#1|)) (-15 -4352 (|#1| |#1|)) (-15 -4173 ((-663 |#1|) |#1| |#1|))) (-559)) (T -991))
+((-4173 (*1 *2 *3 *3) (-12 (-5 *2 (-663 *3)) (-5 *1 (-991 *3)) (-4 *3 (-559)))) (-4352 (*1 *2 *2) (-12 (-5 *1 (-991 *2)) (-4 *2 (-559)))) (-1555 (*1 *2 *2) (-12 (-5 *1 (-991 *2)) (-4 *2 (-559)))) (-3141 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-991 *3)) (-4 *3 (-559)))))
+(-10 -7 (-15 -3141 ((-114) |#1|)) (-15 -1555 (|#1| |#1|)) (-15 -4352 (|#1| |#1|)) (-15 -4173 ((-663 |#1|) |#1| |#1|)))
+((-2190 (((-1303) (-887)) 9 T ELT)))
+(((-992) (-10 -7 (-15 -2190 ((-1303) (-887))))) (T -992))
+((-2190 (*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1303)) (-5 *1 (-992)))))
+(-10 -7 (-15 -2190 ((-1303) (-887))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL (-2196 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT)) (-1651 (($ $ $) 65 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) ELT)) (-3094 (((-3 $ "failed") $ $) 52 (-2196 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT)) (-2552 (((-793)) 36 (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3310 ((|#2| $) 22 T ELT)) (-3645 ((|#1| $) 21 T ELT)) (-3525 (($) NIL (-2196 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) CONST)) (-2873 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) ELT)) (-1812 (($) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-1918 (((-114) $) NIL (-2196 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) ELT)) (-2932 (($ $ $) NIL (-2196 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871)))) ELT)) (-4379 (($ $ $) NIL (-2196 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871)))) ELT)) (-4344 (($ |#1| |#2|) 20 T ELT)) (-2622 (((-948) $) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) 39 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) ELT)) (-1591 (($ (-948)) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1714 (($ $ $) NIL (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) ELT)) (-3117 (($ $ $) NIL (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) ELT)) (-3913 (((-887) $) 14 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 42 (-2196 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) CONST)) (-1456 (($) 25 (-2196 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) CONST)) (-2396 (((-114) $ $) NIL (-2196 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871)))) ELT)) (-2373 (((-114) $ $) NIL (-2196 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871)))) ELT)) (-2340 (((-114) $ $) 19 T ELT)) (-2386 (((-114) $ $) NIL (-2196 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871)))) ELT)) (-2362 (((-114) $ $) 69 (-2196 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-871)) (|has| |#2| (-871)))) ELT)) (-2453 (($ $ $) NIL (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) ELT)) (-2441 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-2429 (($ $ $) 45 (-2196 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT)) (** (($ $ (-560)) NIL (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) ELT) (($ $ (-793)) 32 (-2196 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) ELT) (($ $ (-948)) NIL (-2196 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) ELT)) (* (($ (-560) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-793) $) 48 (-2196 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT) (($ (-948) $) NIL (-2196 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT) (($ $ $) 28 (-2196 (-12 (|has| |#1| (-487)) (|has| |#2| (-487))) (-12 (|has| |#1| (-748)) (|has| |#2| (-748)))) ELT)))
+(((-993 |#1| |#2|) (-13 (-1132) (-10 -8 (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-748)) (IF (|has| |#2| (-748)) (-6 (-748)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-133)) (IF (|has| |#2| (-133)) (-6 (-133)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-487)) (IF (|has| |#2| (-487)) (-6 (-487)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-815)) (IF (|has| |#2| (-815)) (-6 (-815)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-871)) (IF (|has| |#2| (-871)) (-6 (-871)) |%noBranch|) |%noBranch|) (-15 -4344 ($ |#1| |#2|)) (-15 -3645 (|#1| $)) (-15 -3310 (|#2| $)))) (-1132) (-1132)) (T -993))
+((-4344 (*1 *1 *2 *3) (-12 (-5 *1 (-993 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))) (-3645 (*1 *2 *1) (-12 (-4 *2 (-1132)) (-5 *1 (-993 *2 *3)) (-4 *3 (-1132)))) (-3310 (*1 *2 *1) (-12 (-4 *2 (-1132)) (-5 *1 (-993 *3 *2)) (-4 *3 (-1132)))))
+(-13 (-1132) (-10 -8 (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-748)) (IF (|has| |#2| (-748)) (-6 (-748)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-133)) (IF (|has| |#2| (-133)) (-6 (-133)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-487)) (IF (|has| |#2| (-487)) (-6 (-487)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-815)) (IF (|has| |#2| (-815)) (-6 (-815)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-871)) (IF (|has| |#2| (-871)) (-6 (-871)) |%noBranch|) |%noBranch|) (-15 -4344 ($ |#1| |#2|)) (-15 -3645 (|#1| $)) (-15 -3310 (|#2| $))))
+((-1430 (((-1134) $) 12 T ELT)) (-4292 (($ (-520) (-1134)) 14 T ELT)) (-4389 (((-520) $) 9 T ELT)) (-3913 (((-887) $) 24 T ELT)))
+(((-994) (-13 (-632 (-887)) (-10 -8 (-15 -4389 ((-520) $)) (-15 -1430 ((-1134) $)) (-15 -4292 ($ (-520) (-1134)))))) (T -994))
+((-4389 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-994)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-994)))) (-4292 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1134)) (-5 *1 (-994)))))
+(-13 (-632 (-887)) (-10 -8 (-15 -4389 ((-520) $)) (-15 -1430 ((-1134) $)) (-15 -4292 ($ (-520) (-1134)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2269 (($ $) NIL T ELT)) (-3960 (($) NIL T CONST)) (-1415 (($ $ $) 30 T ELT)) (-1394 (($ $) 24 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2950 (((-713 (-897 $ $)) $) 55 T ELT)) (-3544 (((-713 $) $) 45 T ELT)) (-3709 (((-713 (-897 $ $)) $) 56 T ELT)) (-4134 (((-713 (-897 $ $)) $) 57 T ELT)) (-4151 (((-713 |#1|) $) 36 T ELT)) (-1801 (((-713 (-897 $ $)) $) 54 T ELT)) (-1858 (($ $ $) 31 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1964 (($) NIL T CONST)) (-2695 (($ $ $) 32 T ELT)) (-2450 (($ $ $) 29 T ELT)) (-3386 (($ $ $) 27 T ELT)) (-3913 (((-887) $) 59 T ELT) (($ |#1|) 12 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1404 (($ $ $) 28 T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2300 (($ $ $) NIL T ELT)))
+(((-995 |#1|) (-13 (-998) (-635 |#1|) (-10 -8 (-15 -4151 ((-713 |#1|) $)) (-15 -3544 ((-713 $) $)) (-15 -1801 ((-713 (-897 $ $)) $)) (-15 -2950 ((-713 (-897 $ $)) $)) (-15 -3709 ((-713 (-897 $ $)) $)) (-15 -4134 ((-713 (-897 $ $)) $)) (-15 -3386 ($ $ $)) (-15 -2450 ($ $ $)))) (-1132)) (T -995))
+((-4151 (*1 *2 *1) (-12 (-5 *2 (-713 *3)) (-5 *1 (-995 *3)) (-4 *3 (-1132)))) (-3544 (*1 *2 *1) (-12 (-5 *2 (-713 (-995 *3))) (-5 *1 (-995 *3)) (-4 *3 (-1132)))) (-1801 (*1 *2 *1) (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3)) (-4 *3 (-1132)))) (-2950 (*1 *2 *1) (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3)) (-4 *3 (-1132)))) (-3709 (*1 *2 *1) (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3)) (-4 *3 (-1132)))) (-4134 (*1 *2 *1) (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3)) (-4 *3 (-1132)))) (-3386 (*1 *1 *1 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1132)))) (-2450 (*1 *1 *1 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1132)))))
+(-13 (-998) (-635 |#1|) (-10 -8 (-15 -4151 ((-713 |#1|) $)) (-15 -3544 ((-713 $) $)) (-15 -1801 ((-713 (-897 $ $)) $)) (-15 -2950 ((-713 (-897 $ $)) $)) (-15 -3709 ((-713 (-897 $ $)) $)) (-15 -4134 ((-713 (-897 $ $)) $)) (-15 -3386 ($ $ $)) (-15 -2450 ($ $ $))))
+((-3456 (((-995 |#1|) (-995 |#1|)) 46 T ELT)) (-3039 (((-995 |#1|) (-995 |#1|)) 22 T ELT)) (-4142 (((-1128 |#1|) (-995 |#1|)) 41 T ELT)))
+(((-996 |#1|) (-13 (-1247) (-10 -7 (-15 -3039 ((-995 |#1|) (-995 |#1|))) (-15 -4142 ((-1128 |#1|) (-995 |#1|))) (-15 -3456 ((-995 |#1|) (-995 |#1|))))) (-1132)) (T -996))
+((-3039 (*1 *2 *2) (-12 (-5 *2 (-995 *3)) (-4 *3 (-1132)) (-5 *1 (-996 *3)))) (-4142 (*1 *2 *3) (-12 (-5 *3 (-995 *4)) (-4 *4 (-1132)) (-5 *2 (-1128 *4)) (-5 *1 (-996 *4)))) (-3456 (*1 *2 *2) (-12 (-5 *2 (-995 *3)) (-4 *3 (-1132)) (-5 *1 (-996 *3)))))
+(-13 (-1247) (-10 -7 (-15 -3039 ((-995 |#1|) (-995 |#1|))) (-15 -4142 ((-1128 |#1|) (-995 |#1|))) (-15 -3456 ((-995 |#1|) (-995 |#1|)))))
+((-2260 (((-995 |#2|) (-1 |#2| |#1|) (-995 |#1|)) 29 T ELT)))
+(((-997 |#1| |#2|) (-13 (-1247) (-10 -7 (-15 -2260 ((-995 |#2|) (-1 |#2| |#1|) (-995 |#1|))))) (-1132) (-1132)) (T -997))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-995 *5)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *2 (-995 *6)) (-5 *1 (-997 *5 *6)))))
+(-13 (-1247) (-10 -7 (-15 -2260 ((-995 |#2|) (-1 |#2| |#1|) (-995 |#1|)))))
+((-2243 (((-114) $ $) 19 T ELT)) (-2269 (($ $) 8 T ELT)) (-3960 (($) 17 T CONST)) (-1415 (($ $ $) 9 T ELT)) (-1394 (($ $) 11 T ELT)) (-3358 (((-1189) $) 23 T ELT)) (-1858 (($ $ $) 15 T ELT)) (-3376 (((-1151) $) 22 T ELT)) (-1964 (($) 16 T CONST)) (-2695 (($ $ $) 14 T ELT)) (-3913 (((-887) $) 21 T ELT)) (-3925 (((-114) $ $) 20 T ELT)) (-1404 (($ $ $) 10 T ELT)) (-2311 (($ $ $) 6 T ELT)) (-2340 (((-114) $ $) 18 T ELT)) (-2300 (($ $ $) 7 T ELT)))
(((-998) (-142)) (T -998))
-((-3841 (*1 *1) (-4 *1 (-998))) (-2143 (*1 *1) (-4 *1 (-998))) (-3821 (*1 *1 *1 *1) (-4 *1 (-998))) (-1662 (*1 *1 *1 *1) (-4 *1 (-998))))
-(-13 (-113) (-1132) (-10 -8 (-15 -3841 ($) -3081) (-15 -2143 ($) -3081) (-15 -3821 ($ $ $)) (-15 -1662 ($ $ $))))
+((-3960 (*1 *1) (-4 *1 (-998))) (-1964 (*1 *1) (-4 *1 (-998))) (-1858 (*1 *1 *1 *1) (-4 *1 (-998))) (-2695 (*1 *1 *1 *1) (-4 *1 (-998))))
+(-13 (-113) (-1132) (-10 -8 (-15 -3960 ($) -2650) (-15 -1964 ($) -2650) (-15 -1858 ($ $ $)) (-15 -2695 ($ $ $))))
(((-102) . T) ((-113) . T) ((-632 (-887)) . T) ((-684) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-2238 (($) 7 T CONST)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-1708 (($ $ $) 44 T ELT)) (-3223 (($ $ $) 45 T ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2820 ((|#1| $) 46 T ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-1576 ((|#1| $) 40 T ELT)) (-3629 (($ |#1| $) 41 T ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2615 ((|#1| $) 42 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-3376 (($ (-663 |#1|)) 43 T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-3525 (($) 7 T CONST)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-3204 (($ $ $) 44 T ELT)) (-4167 (($ $ $) 45 T ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4379 ((|#1| $) 46 T ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-1878 ((|#1| $) 40 T ELT)) (-3888 (($ |#1| $) 41 T ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2796 ((|#1| $) 42 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-3184 (($ (-663 |#1|)) 43 T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-999 |#1|) (-142) (-871)) (T -999))
-((-2820 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-871)))) (-3223 (*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-871)))) (-1708 (*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-871)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4508) (-15 -2820 (|t#1| $)) (-15 -3223 ($ $ $)) (-15 -1708 ($ $ $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
-((-3828 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2132 |#2|)) |#2| |#2|) 105 T ELT)) (-4182 ((|#2| |#2| |#2|) 103 T ELT)) (-4202 (((-2 (|:| |coef2| |#2|) (|:| -2132 |#2|)) |#2| |#2|) 107 T ELT)) (-4463 (((-2 (|:| |coef1| |#2|) (|:| -2132 |#2|)) |#2| |#2|) 109 T ELT)) (-3933 (((-2 (|:| |coef2| |#2|) (|:| -3164 |#1|)) |#2| |#2|) 131 (|has| |#1| (-466)) ELT)) (-3829 (((-2 (|:| |coef2| |#2|) (|:| -2788 |#1|)) |#2| |#2|) 56 T ELT)) (-2591 (((-2 (|:| |coef2| |#2|) (|:| -2788 |#1|)) |#2| |#2|) 80 T ELT)) (-4403 (((-2 (|:| |coef1| |#2|) (|:| -2788 |#1|)) |#2| |#2|) 82 T ELT)) (-1994 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-4226 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793)) 89 T ELT)) (-4274 (((-2 (|:| |coef2| |#2|) (|:| -2690 |#1|)) |#2|) 121 T ELT)) (-3945 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793)) 92 T ELT)) (-2067 (((-663 (-793)) |#2| |#2|) 102 T ELT)) (-2012 ((|#1| |#2| |#2|) 50 T ELT)) (-2006 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3164 |#1|)) |#2| |#2|) 129 (|has| |#1| (-466)) ELT)) (-3164 ((|#1| |#2| |#2|) 127 (|has| |#1| (-466)) ELT)) (-2466 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2788 |#1|)) |#2| |#2|) 54 T ELT)) (-2977 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2788 |#1|)) |#2| |#2|) 79 T ELT)) (-2788 ((|#1| |#2| |#2|) 76 T ELT)) (-4365 (((-2 (|:| -2115 |#1|) (|:| -1774 |#2|) (|:| -2341 |#2|)) |#2| |#2|) 41 T ELT)) (-2269 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-3181 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-4130 ((|#2| |#2| |#2|) 93 T ELT)) (-4155 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793)) 87 T ELT)) (-4110 ((|#2| |#2| |#2| (-793)) 85 T ELT)) (-2132 ((|#2| |#2| |#2|) 135 (|has| |#1| (-466)) ELT)) (-1528 (((-1297 |#2|) (-1297 |#2|) |#1|) 22 T ELT)) (-2205 (((-2 (|:| -1774 |#2|) (|:| -2341 |#2|)) |#2| |#2|) 46 T ELT)) (-2381 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2690 |#1|)) |#2|) 119 T ELT)) (-2690 ((|#1| |#2|) 116 T ELT)) (-3112 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793)) 91 T ELT)) (-1334 ((|#2| |#2| |#2| (-793)) 90 T ELT)) (-3295 (((-663 |#2|) |#2| |#2|) 99 T ELT)) (-1649 ((|#2| |#2| |#1| |#1| (-793)) 62 T ELT)) (-1916 ((|#1| |#1| |#1| (-793)) 61 T ELT)) (* (((-1297 |#2|) |#1| (-1297 |#2|)) 17 T ELT)))
-(((-1000 |#1| |#2|) (-10 -7 (-15 -2788 (|#1| |#2| |#2|)) (-15 -2977 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2788 |#1|)) |#2| |#2|)) (-15 -2591 ((-2 (|:| |coef2| |#2|) (|:| -2788 |#1|)) |#2| |#2|)) (-15 -4403 ((-2 (|:| |coef1| |#2|) (|:| -2788 |#1|)) |#2| |#2|)) (-15 -4110 (|#2| |#2| |#2| (-793))) (-15 -4155 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -4226 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -1334 (|#2| |#2| |#2| (-793))) (-15 -3112 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -3945 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -4130 (|#2| |#2| |#2|)) (-15 -3181 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1994 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4182 (|#2| |#2| |#2|)) (-15 -3828 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2132 |#2|)) |#2| |#2|)) (-15 -4202 ((-2 (|:| |coef2| |#2|) (|:| -2132 |#2|)) |#2| |#2|)) (-15 -4463 ((-2 (|:| |coef1| |#2|) (|:| -2132 |#2|)) |#2| |#2|)) (-15 -2690 (|#1| |#2|)) (-15 -2381 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2690 |#1|)) |#2|)) (-15 -4274 ((-2 (|:| |coef2| |#2|) (|:| -2690 |#1|)) |#2|)) (-15 -3295 ((-663 |#2|) |#2| |#2|)) (-15 -2067 ((-663 (-793)) |#2| |#2|)) (IF (|has| |#1| (-466)) (PROGN (-15 -3164 (|#1| |#2| |#2|)) (-15 -2006 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3164 |#1|)) |#2| |#2|)) (-15 -3933 ((-2 (|:| |coef2| |#2|) (|:| -3164 |#1|)) |#2| |#2|)) (-15 -2132 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1297 |#2|) |#1| (-1297 |#2|))) (-15 -1528 ((-1297 |#2|) (-1297 |#2|) |#1|)) (-15 -4365 ((-2 (|:| -2115 |#1|) (|:| -1774 |#2|) (|:| -2341 |#2|)) |#2| |#2|)) (-15 -2205 ((-2 (|:| -1774 |#2|) (|:| -2341 |#2|)) |#2| |#2|)) (-15 -1916 (|#1| |#1| |#1| (-793))) (-15 -1649 (|#2| |#2| |#1| |#1| (-793))) (-15 -2269 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2012 (|#1| |#2| |#2|)) (-15 -2466 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2788 |#1|)) |#2| |#2|)) (-15 -3829 ((-2 (|:| |coef2| |#2|) (|:| -2788 |#1|)) |#2| |#2|))) (-571) (-1273 |#1|)) (T -1000))
-((-3829 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2788 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-2466 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2788 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-2012 (*1 *2 *3 *3) (-12 (-4 *2 (-571)) (-5 *1 (-1000 *2 *3)) (-4 *3 (-1273 *2)))) (-2269 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-571)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1273 *3)))) (-1649 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-793)) (-4 *3 (-571)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1273 *3)))) (-1916 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *2 (-571)) (-5 *1 (-1000 *2 *4)) (-4 *4 (-1273 *2)))) (-2205 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| -1774 *3) (|:| -2341 *3))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-4365 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| -2115 *4) (|:| -1774 *3) (|:| -2341 *3))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-1528 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-571)) (-5 *1 (-1000 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-571)) (-5 *1 (-1000 *3 *4)))) (-2132 (*1 *2 *2 *2) (-12 (-4 *3 (-466)) (-4 *3 (-571)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1273 *3)))) (-3933 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3164 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-2006 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3164 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-3164 (*1 *2 *3 *3) (-12 (-4 *2 (-571)) (-4 *2 (-466)) (-5 *1 (-1000 *2 *3)) (-4 *3 (-1273 *2)))) (-2067 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-663 (-793))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-3295 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-663 *3)) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-4274 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2690 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-2381 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2690 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-2690 (*1 *2 *3) (-12 (-4 *2 (-571)) (-5 *1 (-1000 *2 *3)) (-4 *3 (-1273 *2)))) (-4463 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2132 *3))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-4202 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2132 *3))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-3828 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2132 *3))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-4182 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1273 *3)))) (-1994 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-3181 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-4130 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1273 *3)))) (-3945 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1000 *5 *3)) (-4 *3 (-1273 *5)))) (-3112 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1000 *5 *3)) (-4 *3 (-1273 *5)))) (-1334 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-571)) (-5 *1 (-1000 *4 *2)) (-4 *2 (-1273 *4)))) (-4226 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1000 *5 *3)) (-4 *3 (-1273 *5)))) (-4155 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1000 *5 *3)) (-4 *3 (-1273 *5)))) (-4110 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-571)) (-5 *1 (-1000 *4 *2)) (-4 *2 (-1273 *4)))) (-4403 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2788 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-2591 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2788 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-2977 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2788 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-2788 (*1 *2 *3 *3) (-12 (-4 *2 (-571)) (-5 *1 (-1000 *2 *3)) (-4 *3 (-1273 *2)))))
-(-10 -7 (-15 -2788 (|#1| |#2| |#2|)) (-15 -2977 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2788 |#1|)) |#2| |#2|)) (-15 -2591 ((-2 (|:| |coef2| |#2|) (|:| -2788 |#1|)) |#2| |#2|)) (-15 -4403 ((-2 (|:| |coef1| |#2|) (|:| -2788 |#1|)) |#2| |#2|)) (-15 -4110 (|#2| |#2| |#2| (-793))) (-15 -4155 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -4226 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -1334 (|#2| |#2| |#2| (-793))) (-15 -3112 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -3945 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -4130 (|#2| |#2| |#2|)) (-15 -3181 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -1994 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4182 (|#2| |#2| |#2|)) (-15 -3828 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2132 |#2|)) |#2| |#2|)) (-15 -4202 ((-2 (|:| |coef2| |#2|) (|:| -2132 |#2|)) |#2| |#2|)) (-15 -4463 ((-2 (|:| |coef1| |#2|) (|:| -2132 |#2|)) |#2| |#2|)) (-15 -2690 (|#1| |#2|)) (-15 -2381 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2690 |#1|)) |#2|)) (-15 -4274 ((-2 (|:| |coef2| |#2|) (|:| -2690 |#1|)) |#2|)) (-15 -3295 ((-663 |#2|) |#2| |#2|)) (-15 -2067 ((-663 (-793)) |#2| |#2|)) (IF (|has| |#1| (-466)) (PROGN (-15 -3164 (|#1| |#2| |#2|)) (-15 -2006 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3164 |#1|)) |#2| |#2|)) (-15 -3933 ((-2 (|:| |coef2| |#2|) (|:| -3164 |#1|)) |#2| |#2|)) (-15 -2132 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1297 |#2|) |#1| (-1297 |#2|))) (-15 -1528 ((-1297 |#2|) (-1297 |#2|) |#1|)) (-15 -4365 ((-2 (|:| -2115 |#1|) (|:| -1774 |#2|) (|:| -2341 |#2|)) |#2| |#2|)) (-15 -2205 ((-2 (|:| -1774 |#2|) (|:| -2341 |#2|)) |#2| |#2|)) (-15 -1916 (|#1| |#1| |#1| (-793))) (-15 -1649 (|#2| |#2| |#1| |#1| (-793))) (-15 -2269 (|#2| |#2| |#2| |#2| |#1|)) (-15 -2012 (|#1| |#2| |#2|)) (-15 -2466 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2788 |#1|)) |#2| |#2|)) (-15 -3829 ((-2 (|:| |coef2| |#2|) (|:| -2788 |#1|)) |#2| |#2|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-1660 (((-1248) $) 13 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4341 (((-1166) $) 10 T ELT)) (-1578 (((-887) $) 20 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-1001) (-13 (-1114) (-10 -8 (-15 -4341 ((-1166) $)) (-15 -1660 ((-1248) $))))) (T -1001))
-((-4341 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1001)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-1001)))))
-(-13 (-1114) (-10 -8 (-15 -4341 ((-1166) $)) (-15 -1660 ((-1248) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 40 T ELT)) (-3068 (((-3 $ "failed") $ $) 54 T ELT)) (-2238 (($) NIL T CONST)) (-2300 (((-663 (-897 (-948) (-948))) $) 67 T ELT)) (-2136 (((-948) $) 94 T ELT)) (-2181 (((-663 (-948)) $) 17 T ELT)) (-1714 (((-1185 $) (-793)) 39 T ELT)) (-2336 (($ (-663 (-948))) 16 T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4122 (($ $) 70 T ELT)) (-1578 (((-887) $) 90 T ELT) (((-663 (-948)) $) 11 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 8 T CONST)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 44 T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 42 T ELT)) (-2567 (($ $ $) 46 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) 49 T ELT)) (-1553 (((-793) $) 22 T ELT)))
-(((-1002) (-13 (-819) (-632 (-663 (-948))) (-10 -8 (-15 -2336 ($ (-663 (-948)))) (-15 -2181 ((-663 (-948)) $)) (-15 -1553 ((-793) $)) (-15 -1714 ((-1185 $) (-793))) (-15 -2300 ((-663 (-897 (-948) (-948))) $)) (-15 -2136 ((-948) $)) (-15 -4122 ($ $))))) (T -1002))
-((-2336 (*1 *1 *2) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1002)))) (-2181 (*1 *2 *1) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1002)))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1002)))) (-1714 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1185 (-1002))) (-5 *1 (-1002)))) (-2300 (*1 *2 *1) (-12 (-5 *2 (-663 (-897 (-948) (-948)))) (-5 *1 (-1002)))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-948)) (-5 *1 (-1002)))) (-4122 (*1 *1 *1) (-5 *1 (-1002))))
-(-13 (-819) (-632 (-663 (-948))) (-10 -8 (-15 -2336 ($ (-663 (-948)))) (-15 -2181 ((-663 (-948)) $)) (-15 -1553 ((-793) $)) (-15 -1714 ((-1185 $) (-793))) (-15 -2300 ((-663 (-897 (-948) (-948))) $)) (-15 -2136 ((-948) $)) (-15 -4122 ($ $))))
-((-2594 (($ $ |#2|) 31 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-421 (-560)) $) 27 T ELT) (($ $ (-421 (-560))) 29 T ELT)))
-(((-1003 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -2594 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|))) (-1004 |#2| |#3| |#4|) (-1080) (-814) (-871)) (T -1003))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -2594 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-1443 (((-663 |#3|) $) 86 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 63 (|has| |#1| (-571)) ELT)) (-3244 (($ $) 64 (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) 66 (|has| |#1| (-571)) ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1624 (($ $) 72 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-4386 (((-114) $) 85 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-1556 (((-114) $) 74 T ELT)) (-1417 (($ |#1| |#2|) 73 T ELT) (($ $ |#3| |#2|) 88 T ELT) (($ $ (-663 |#3|) (-663 |#2|)) 87 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-1583 (($ $) 77 T ELT)) (-1597 ((|#1| $) 78 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1528 (((-3 $ "failed") $ $) 62 (|has| |#1| (-571)) ELT)) (-3630 ((|#2| $) 76 T ELT)) (-3266 (($ $) 84 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ (-421 (-560))) 69 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 61 (|has| |#1| (-571)) ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT)) (-2305 ((|#1| $ |#2|) 71 T ELT)) (-1964 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 65 (|has| |#1| (-571)) ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-560)) $) 68 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 67 (|has| |#1| (-38 (-421 (-560)))) ELT)))
+((-4379 (*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-871)))) (-4167 (*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-871)))) (-3204 (*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-871)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4508) (-15 -4379 (|t#1| $)) (-15 -4167 ($ $ $)) (-15 -3204 ($ $ $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
+((-1934 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1938 |#2|)) |#2| |#2|) 105 T ELT)) (-4293 ((|#2| |#2| |#2|) 103 T ELT)) (-4463 (((-2 (|:| |coef2| |#2|) (|:| -1938 |#2|)) |#2| |#2|) 107 T ELT)) (-1742 (((-2 (|:| |coef1| |#2|) (|:| -1938 |#2|)) |#2| |#2|) 109 T ELT)) (-3550 (((-2 (|:| |coef2| |#2|) (|:| -1616 |#1|)) |#2| |#2|) 131 (|has| |#1| (-466)) ELT)) (-1947 (((-2 (|:| |coef2| |#2|) (|:| -2096 |#1|)) |#2| |#2|) 56 T ELT)) (-3863 (((-2 (|:| |coef2| |#2|) (|:| -2096 |#1|)) |#2| |#2|) 80 T ELT)) (-2482 (((-2 (|:| |coef1| |#2|) (|:| -2096 |#1|)) |#2| |#2|) 82 T ELT)) (-2912 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-1515 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793)) 89 T ELT)) (-3935 (((-2 (|:| |coef2| |#2|) (|:| -2336 |#1|)) |#2|) 121 T ELT)) (-3700 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793)) 92 T ELT)) (-2391 (((-663 (-793)) |#2| |#2|) 102 T ELT)) (-3107 ((|#1| |#2| |#2|) 50 T ELT)) (-3049 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1616 |#1|)) |#2| |#2|) 129 (|has| |#1| (-466)) ELT)) (-1616 ((|#1| |#2| |#2|) 127 (|has| |#1| (-466)) ELT)) (-2037 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2096 |#1|)) |#2| |#2|) 54 T ELT)) (-3395 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2096 |#1|)) |#2| |#2|) 79 T ELT)) (-2096 ((|#1| |#2| |#2|) 76 T ELT)) (-3390 (((-2 (|:| -2625 |#1|) (|:| -2584 |#2|) (|:| -3276 |#2|)) |#2| |#2|) 41 T ELT)) (-3868 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-1794 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-1790 ((|#2| |#2| |#2|) 93 T ELT)) (-2074 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793)) 87 T ELT)) (-1588 ((|#2| |#2| |#2| (-793)) 85 T ELT)) (-1938 ((|#2| |#2| |#2|) 135 (|has| |#1| (-466)) ELT)) (-2233 (((-1297 |#2|) (-1297 |#2|) |#1|) 22 T ELT)) (-4455 (((-2 (|:| -2584 |#2|) (|:| -3276 |#2|)) |#2| |#2|) 46 T ELT)) (-2431 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2336 |#1|)) |#2|) 119 T ELT)) (-2336 ((|#1| |#2|) 116 T ELT)) (-2305 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793)) 91 T ELT)) (-3489 ((|#2| |#2| |#2| (-793)) 90 T ELT)) (-3640 (((-663 |#2|) |#2| |#2|) 99 T ELT)) (-3840 ((|#2| |#2| |#1| |#1| (-793)) 62 T ELT)) (-3449 ((|#1| |#1| |#1| (-793)) 61 T ELT)) (* (((-1297 |#2|) |#1| (-1297 |#2|)) 17 T ELT)))
+(((-1000 |#1| |#2|) (-10 -7 (-15 -2096 (|#1| |#2| |#2|)) (-15 -3395 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2096 |#1|)) |#2| |#2|)) (-15 -3863 ((-2 (|:| |coef2| |#2|) (|:| -2096 |#1|)) |#2| |#2|)) (-15 -2482 ((-2 (|:| |coef1| |#2|) (|:| -2096 |#1|)) |#2| |#2|)) (-15 -1588 (|#2| |#2| |#2| (-793))) (-15 -2074 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -1515 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -3489 (|#2| |#2| |#2| (-793))) (-15 -2305 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -3700 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -1790 (|#2| |#2| |#2|)) (-15 -1794 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2912 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4293 (|#2| |#2| |#2|)) (-15 -1934 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1938 |#2|)) |#2| |#2|)) (-15 -4463 ((-2 (|:| |coef2| |#2|) (|:| -1938 |#2|)) |#2| |#2|)) (-15 -1742 ((-2 (|:| |coef1| |#2|) (|:| -1938 |#2|)) |#2| |#2|)) (-15 -2336 (|#1| |#2|)) (-15 -2431 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2336 |#1|)) |#2|)) (-15 -3935 ((-2 (|:| |coef2| |#2|) (|:| -2336 |#1|)) |#2|)) (-15 -3640 ((-663 |#2|) |#2| |#2|)) (-15 -2391 ((-663 (-793)) |#2| |#2|)) (IF (|has| |#1| (-466)) (PROGN (-15 -1616 (|#1| |#2| |#2|)) (-15 -3049 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1616 |#1|)) |#2| |#2|)) (-15 -3550 ((-2 (|:| |coef2| |#2|) (|:| -1616 |#1|)) |#2| |#2|)) (-15 -1938 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1297 |#2|) |#1| (-1297 |#2|))) (-15 -2233 ((-1297 |#2|) (-1297 |#2|) |#1|)) (-15 -3390 ((-2 (|:| -2625 |#1|) (|:| -2584 |#2|) (|:| -3276 |#2|)) |#2| |#2|)) (-15 -4455 ((-2 (|:| -2584 |#2|) (|:| -3276 |#2|)) |#2| |#2|)) (-15 -3449 (|#1| |#1| |#1| (-793))) (-15 -3840 (|#2| |#2| |#1| |#1| (-793))) (-15 -3868 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3107 (|#1| |#2| |#2|)) (-15 -2037 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2096 |#1|)) |#2| |#2|)) (-15 -1947 ((-2 (|:| |coef2| |#2|) (|:| -2096 |#1|)) |#2| |#2|))) (-571) (-1273 |#1|)) (T -1000))
+((-1947 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2096 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-2037 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2096 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-3107 (*1 *2 *3 *3) (-12 (-4 *2 (-571)) (-5 *1 (-1000 *2 *3)) (-4 *3 (-1273 *2)))) (-3868 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-571)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1273 *3)))) (-3840 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-793)) (-4 *3 (-571)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1273 *3)))) (-3449 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *2 (-571)) (-5 *1 (-1000 *2 *4)) (-4 *4 (-1273 *2)))) (-4455 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| -2584 *3) (|:| -3276 *3))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-3390 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| -2625 *4) (|:| -2584 *3) (|:| -3276 *3))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-2233 (*1 *2 *2 *3) (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-571)) (-5 *1 (-1000 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-571)) (-5 *1 (-1000 *3 *4)))) (-1938 (*1 *2 *2 *2) (-12 (-4 *3 (-466)) (-4 *3 (-571)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1273 *3)))) (-3550 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1616 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-3049 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1616 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-1616 (*1 *2 *3 *3) (-12 (-4 *2 (-571)) (-4 *2 (-466)) (-5 *1 (-1000 *2 *3)) (-4 *3 (-1273 *2)))) (-2391 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-663 (-793))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-3640 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-663 *3)) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-3935 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2336 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-2431 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2336 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-2336 (*1 *2 *3) (-12 (-4 *2 (-571)) (-5 *1 (-1000 *2 *3)) (-4 *3 (-1273 *2)))) (-1742 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1938 *3))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-4463 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1938 *3))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-1934 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1938 *3))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-4293 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1273 *3)))) (-2912 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-1794 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-1790 (*1 *2 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1273 *3)))) (-3700 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1000 *5 *3)) (-4 *3 (-1273 *5)))) (-2305 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1000 *5 *3)) (-4 *3 (-1273 *5)))) (-3489 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-571)) (-5 *1 (-1000 *4 *2)) (-4 *2 (-1273 *4)))) (-1515 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1000 *5 *3)) (-4 *3 (-1273 *5)))) (-2074 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-1000 *5 *3)) (-4 *3 (-1273 *5)))) (-1588 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-571)) (-5 *1 (-1000 *4 *2)) (-4 *2 (-1273 *4)))) (-2482 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2096 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-3863 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2096 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-3395 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2096 *4))) (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))) (-2096 (*1 *2 *3 *3) (-12 (-4 *2 (-571)) (-5 *1 (-1000 *2 *3)) (-4 *3 (-1273 *2)))))
+(-10 -7 (-15 -2096 (|#1| |#2| |#2|)) (-15 -3395 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2096 |#1|)) |#2| |#2|)) (-15 -3863 ((-2 (|:| |coef2| |#2|) (|:| -2096 |#1|)) |#2| |#2|)) (-15 -2482 ((-2 (|:| |coef1| |#2|) (|:| -2096 |#1|)) |#2| |#2|)) (-15 -1588 (|#2| |#2| |#2| (-793))) (-15 -2074 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -1515 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -3489 (|#2| |#2| |#2| (-793))) (-15 -2305 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -3700 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-793))) (-15 -1790 (|#2| |#2| |#2|)) (-15 -1794 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2912 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4293 (|#2| |#2| |#2|)) (-15 -1934 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1938 |#2|)) |#2| |#2|)) (-15 -4463 ((-2 (|:| |coef2| |#2|) (|:| -1938 |#2|)) |#2| |#2|)) (-15 -1742 ((-2 (|:| |coef1| |#2|) (|:| -1938 |#2|)) |#2| |#2|)) (-15 -2336 (|#1| |#2|)) (-15 -2431 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2336 |#1|)) |#2|)) (-15 -3935 ((-2 (|:| |coef2| |#2|) (|:| -2336 |#1|)) |#2|)) (-15 -3640 ((-663 |#2|) |#2| |#2|)) (-15 -2391 ((-663 (-793)) |#2| |#2|)) (IF (|has| |#1| (-466)) (PROGN (-15 -1616 (|#1| |#2| |#2|)) (-15 -3049 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -1616 |#1|)) |#2| |#2|)) (-15 -3550 ((-2 (|:| |coef2| |#2|) (|:| -1616 |#1|)) |#2| |#2|)) (-15 -1938 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1297 |#2|) |#1| (-1297 |#2|))) (-15 -2233 ((-1297 |#2|) (-1297 |#2|) |#1|)) (-15 -3390 ((-2 (|:| -2625 |#1|) (|:| -2584 |#2|) (|:| -3276 |#2|)) |#2| |#2|)) (-15 -4455 ((-2 (|:| -2584 |#2|) (|:| -3276 |#2|)) |#2| |#2|)) (-15 -3449 (|#1| |#1| |#1| (-793))) (-15 -3840 (|#2| |#2| |#1| |#1| (-793))) (-15 -3868 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3107 (|#1| |#2| |#2|)) (-15 -2037 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2096 |#1|)) |#2| |#2|)) (-15 -1947 ((-2 (|:| |coef2| |#2|) (|:| -2096 |#1|)) |#2| |#2|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3300 (((-1248) $) 13 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4465 (((-1166) $) 10 T ELT)) (-3913 (((-887) $) 20 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-1001) (-13 (-1114) (-10 -8 (-15 -4465 ((-1166) $)) (-15 -3300 ((-1248) $))))) (T -1001))
+((-4465 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1001)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-1001)))))
+(-13 (-1114) (-10 -8 (-15 -4465 ((-1166) $)) (-15 -3300 ((-1248) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 40 T ELT)) (-3094 (((-3 $ "failed") $ $) 54 T ELT)) (-3525 (($) NIL T CONST)) (-2879 (((-663 (-897 (-948) (-948))) $) 67 T ELT)) (-1843 (((-948) $) 94 T ELT)) (-3737 (((-663 (-948)) $) 17 T ELT)) (-2045 (((-1185 $) (-793)) 39 T ELT)) (-3227 (($ (-663 (-948))) 16 T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1714 (($ $) 70 T ELT)) (-3913 (((-887) $) 90 T ELT) (((-663 (-948)) $) 11 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 8 T CONST)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 44 T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 42 T ELT)) (-2429 (($ $ $) 46 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) 49 T ELT)) (-2256 (((-793) $) 22 T ELT)))
+(((-1002) (-13 (-819) (-632 (-663 (-948))) (-10 -8 (-15 -3227 ($ (-663 (-948)))) (-15 -3737 ((-663 (-948)) $)) (-15 -2256 ((-793) $)) (-15 -2045 ((-1185 $) (-793))) (-15 -2879 ((-663 (-897 (-948) (-948))) $)) (-15 -1843 ((-948) $)) (-15 -1714 ($ $))))) (T -1002))
+((-3227 (*1 *1 *2) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1002)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1002)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1002)))) (-2045 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1185 (-1002))) (-5 *1 (-1002)))) (-2879 (*1 *2 *1) (-12 (-5 *2 (-663 (-897 (-948) (-948)))) (-5 *1 (-1002)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-948)) (-5 *1 (-1002)))) (-1714 (*1 *1 *1) (-5 *1 (-1002))))
+(-13 (-819) (-632 (-663 (-948))) (-10 -8 (-15 -3227 ($ (-663 (-948)))) (-15 -3737 ((-663 (-948)) $)) (-15 -2256 ((-793) $)) (-15 -2045 ((-1185 $) (-793))) (-15 -2879 ((-663 (-897 (-948) (-948))) $)) (-15 -1843 ((-948) $)) (-15 -1714 ($ $))))
+((-2453 (($ $ |#2|) 31 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-421 (-560)) $) 27 T ELT) (($ $ (-421 (-560))) 29 T ELT)))
+(((-1003 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -2453 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|))) (-1004 |#2| |#3| |#4|) (-1080) (-814) (-871)) (T -1003))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-421 (-560)))) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 -2453 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 * (|#1| (-948) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-4162 (((-663 |#3|) $) 86 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 63 (|has| |#1| (-571)) ELT)) (-4366 (($ $) 64 (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) 66 (|has| |#1| (-571)) ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-3062 (($ $) 72 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-2328 (((-114) $) 85 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-1673 (((-114) $) 74 T ELT)) (-4139 (($ |#1| |#2|) 73 T ELT) (($ $ |#3| |#2|) 88 T ELT) (($ $ (-663 |#3|) (-663 |#2|)) 87 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3024 (($ $) 77 T ELT)) (-3037 ((|#1| $) 78 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2233 (((-3 $ "failed") $ $) 62 (|has| |#1| (-571)) ELT)) (-3900 ((|#2| $) 76 T ELT)) (-3329 (($ $) 84 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ (-421 (-560))) 69 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 61 (|has| |#1| (-571)) ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT)) (-2920 ((|#1| $ |#2|) 71 T ELT)) (-3919 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 65 (|has| |#1| (-571)) ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-560)) $) 68 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 67 (|has| |#1| (-38 (-421 (-560)))) ELT)))
(((-1004 |#1| |#2| |#3|) (-142) (-1080) (-814) (-871)) (T -1004))
-((-1597 (*1 *2 *1) (-12 (-4 *1 (-1004 *2 *3 *4)) (-4 *3 (-814)) (-4 *4 (-871)) (-4 *2 (-1080)))) (-1583 (*1 *1 *1) (-12 (-4 *1 (-1004 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-814)) (-4 *4 (-871)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *2 *4)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *2 (-814)))) (-1417 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-1004 *4 *3 *2)) (-4 *4 (-1080)) (-4 *3 (-814)) (-4 *2 (-871)))) (-1417 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *6)) (-5 *3 (-663 *5)) (-4 *1 (-1004 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-814)) (-4 *6 (-871)))) (-1443 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-814)) (-4 *5 (-871)) (-5 *2 (-663 *5)))) (-4386 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-814)) (-4 *5 (-871)) (-5 *2 (-114)))) (-3266 (*1 *1 *1) (-12 (-4 *1 (-1004 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-814)) (-4 *4 (-871)))))
-(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -1417 ($ $ |t#3| |t#2|)) (-15 -1417 ($ $ (-663 |t#3|) (-663 |t#2|))) (-15 -1583 ($ $)) (-15 -1597 (|t#1| $)) (-15 -3630 (|t#2| $)) (-15 -1443 ((-663 |t#3|) $)) (-15 -4386 ((-114) $)) (-15 -3266 ($ $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-571)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) |has| |#1| (-38 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) |has| |#1| (-571)) ((-632 (-887)) . T) ((-175) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-302) |has| |#1| (-571)) ((-571) |has| |#1| (-571)) ((-668 #0#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-38 (-421 (-560)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-571)) ((-739 #0#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-571)) ((-748) . T) ((-1082 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1082 |#1|) . T) ((-1082 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1087 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1087 |#1|) . T) ((-1087 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-3760 (((-1120 (-229)) $) 8 T ELT)) (-3747 (((-1120 (-229)) $) 9 T ELT)) (-3732 (((-1120 (-229)) $) 10 T ELT)) (-4071 (((-663 (-663 (-972 (-229)))) $) 11 T ELT)) (-1578 (((-887) $) 6 T ELT)))
+((-3037 (*1 *2 *1) (-12 (-4 *1 (-1004 *2 *3 *4)) (-4 *3 (-814)) (-4 *4 (-871)) (-4 *2 (-1080)))) (-3024 (*1 *1 *1) (-12 (-4 *1 (-1004 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-814)) (-4 *4 (-871)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *2 *4)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *2 (-814)))) (-4139 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-1004 *4 *3 *2)) (-4 *4 (-1080)) (-4 *3 (-814)) (-4 *2 (-871)))) (-4139 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 *6)) (-5 *3 (-663 *5)) (-4 *1 (-1004 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-814)) (-4 *6 (-871)))) (-4162 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-814)) (-4 *5 (-871)) (-5 *2 (-663 *5)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-1004 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-814)) (-4 *5 (-871)) (-5 *2 (-114)))) (-3329 (*1 *1 *1) (-12 (-4 *1 (-1004 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-814)) (-4 *4 (-871)))))
+(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -4139 ($ $ |t#3| |t#2|)) (-15 -4139 ($ $ (-663 |t#3|) (-663 |t#2|))) (-15 -3024 ($ $)) (-15 -3037 (|t#1| $)) (-15 -3900 (|t#2| $)) (-15 -4162 ((-663 |t#3|) $)) (-15 -2328 ((-114) $)) (-15 -3329 ($ $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-571)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) |has| |#1| (-38 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) |has| |#1| (-571)) ((-632 (-887)) . T) ((-175) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-302) |has| |#1| (-571)) ((-571) |has| |#1| (-571)) ((-668 #0#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-38 (-421 (-560)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-571)) ((-739 #0#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-571)) ((-748) . T) ((-1082 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1082 |#1|) . T) ((-1082 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1087 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1087 |#1|) . T) ((-1087 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
+((-3318 (((-1120 (-229)) $) 8 T ELT)) (-3307 (((-1120 (-229)) $) 9 T ELT)) (-3295 (((-1120 (-229)) $) 10 T ELT)) (-2467 (((-663 (-663 (-972 (-229)))) $) 11 T ELT)) (-3913 (((-887) $) 6 T ELT)))
(((-1005) (-142)) (T -1005))
-((-4071 (*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-663 (-663 (-972 (-229))))))) (-3732 (*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1120 (-229))))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1120 (-229))))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1120 (-229))))))
-(-13 (-632 (-887)) (-10 -8 (-15 -4071 ((-663 (-663 (-972 (-229)))) $)) (-15 -3732 ((-1120 (-229)) $)) (-15 -3747 ((-1120 (-229)) $)) (-15 -3760 ((-1120 (-229)) $))))
+((-2467 (*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-663 (-663 (-972 (-229))))))) (-3295 (*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1120 (-229))))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1120 (-229))))) (-3318 (*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1120 (-229))))))
+(-13 (-632 (-887)) (-10 -8 (-15 -2467 ((-663 (-663 (-972 (-229)))) $)) (-15 -3295 ((-1120 (-229)) $)) (-15 -3307 ((-1120 (-229)) $)) (-15 -3318 ((-1120 (-229)) $))))
(((-632 (-887)) . T))
-((-1443 (((-663 |#4|) $) 23 T ELT)) (-1466 (((-114) $) 55 T ELT)) (-3101 (((-114) $) 54 T ELT)) (-2286 (((-2 (|:| |under| $) (|:| -2016 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-4436 (((-114) $) 56 T ELT)) (-4246 (((-114) $ $) 62 T ELT)) (-1860 (((-114) $ $) 65 T ELT)) (-3745 (((-114) $) 60 T ELT)) (-4027 (((-663 |#5|) (-663 |#5|) $) 98 T ELT)) (-2528 (((-663 |#5|) (-663 |#5|) $) 95 T ELT)) (-2341 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-1918 (((-663 |#4|) $) 27 T ELT)) (-2724 (((-114) |#4| $) 34 T ELT)) (-2557 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-3752 (($ $ |#4|) 39 T ELT)) (-4288 (($ $ |#4|) 38 T ELT)) (-4397 (($ $ |#4|) 40 T ELT)) (-2473 (((-114) $ $) 46 T ELT)))
-(((-1006 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3101 ((-114) |#1|)) (-15 -4027 ((-663 |#5|) (-663 |#5|) |#1|)) (-15 -2528 ((-663 |#5|) (-663 |#5|) |#1|)) (-15 -2341 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2557 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4436 ((-114) |#1|)) (-15 -1860 ((-114) |#1| |#1|)) (-15 -4246 ((-114) |#1| |#1|)) (-15 -3745 ((-114) |#1|)) (-15 -1466 ((-114) |#1|)) (-15 -2286 ((-2 (|:| |under| |#1|) (|:| -2016 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3752 (|#1| |#1| |#4|)) (-15 -4397 (|#1| |#1| |#4|)) (-15 -4288 (|#1| |#1| |#4|)) (-15 -2724 ((-114) |#4| |#1|)) (-15 -1918 ((-663 |#4|) |#1|)) (-15 -1443 ((-663 |#4|) |#1|)) (-15 -2473 ((-114) |#1| |#1|))) (-1007 |#2| |#3| |#4| |#5|) (-1080) (-815) (-871) (-1096 |#2| |#3| |#4|)) (T -1006))
+((-4162 (((-663 |#4|) $) 23 T ELT)) (-1362 (((-114) $) 55 T ELT)) (-2179 (((-114) $) 54 T ELT)) (-1787 (((-2 (|:| |under| $) (|:| -3147 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-2733 (((-114) $) 56 T ELT)) (-3672 (((-114) $ $) 62 T ELT)) (-4148 (((-114) $ $) 65 T ELT)) (-2449 (((-114) $) 60 T ELT)) (-3277 (((-663 |#5|) (-663 |#5|) $) 98 T ELT)) (-4485 (((-663 |#5|) (-663 |#5|) $) 95 T ELT)) (-3276 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-3471 (((-663 |#4|) $) 27 T ELT)) (-2703 (((-114) |#4| $) 34 T ELT)) (-3531 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-2511 (($ $ |#4|) 39 T ELT)) (-4047 (($ $ |#4|) 38 T ELT)) (-2438 (($ $ |#4|) 40 T ELT)) (-2340 (((-114) $ $) 46 T ELT)))
+(((-1006 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2179 ((-114) |#1|)) (-15 -3277 ((-663 |#5|) (-663 |#5|) |#1|)) (-15 -4485 ((-663 |#5|) (-663 |#5|) |#1|)) (-15 -3276 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3531 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2733 ((-114) |#1|)) (-15 -4148 ((-114) |#1| |#1|)) (-15 -3672 ((-114) |#1| |#1|)) (-15 -2449 ((-114) |#1|)) (-15 -1362 ((-114) |#1|)) (-15 -1787 ((-2 (|:| |under| |#1|) (|:| -3147 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2511 (|#1| |#1| |#4|)) (-15 -2438 (|#1| |#1| |#4|)) (-15 -4047 (|#1| |#1| |#4|)) (-15 -2703 ((-114) |#4| |#1|)) (-15 -3471 ((-663 |#4|) |#1|)) (-15 -4162 ((-663 |#4|) |#1|)) (-15 -2340 ((-114) |#1| |#1|))) (-1007 |#2| |#3| |#4| |#5|) (-1080) (-815) (-871) (-1096 |#2| |#3| |#4|)) (T -1006))
NIL
-(-10 -8 (-15 -3101 ((-114) |#1|)) (-15 -4027 ((-663 |#5|) (-663 |#5|) |#1|)) (-15 -2528 ((-663 |#5|) (-663 |#5|) |#1|)) (-15 -2341 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2557 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -4436 ((-114) |#1|)) (-15 -1860 ((-114) |#1| |#1|)) (-15 -4246 ((-114) |#1| |#1|)) (-15 -3745 ((-114) |#1|)) (-15 -1466 ((-114) |#1|)) (-15 -2286 ((-2 (|:| |under| |#1|) (|:| -2016 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3752 (|#1| |#1| |#4|)) (-15 -4397 (|#1| |#1| |#4|)) (-15 -4288 (|#1| |#1| |#4|)) (-15 -2724 ((-114) |#4| |#1|)) (-15 -1918 ((-663 |#4|) |#1|)) (-15 -1443 ((-663 |#4|) |#1|)) (-15 -2473 ((-114) |#1| |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-1443 (((-663 |#3|) $) 34 T ELT)) (-1466 (((-114) $) 27 T ELT)) (-3101 (((-114) $) 18 (|has| |#1| (-571)) ELT)) (-2286 (((-2 (|:| |under| $) (|:| -2016 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-3363 (((-114) $ (-793)) 45 T ELT)) (-1982 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4508)) ELT)) (-2238 (($) 46 T CONST)) (-4436 (((-114) $) 23 (|has| |#1| (-571)) ELT)) (-4246 (((-114) $ $) 25 (|has| |#1| (-571)) ELT)) (-1860 (((-114) $ $) 24 (|has| |#1| (-571)) ELT)) (-3745 (((-114) $) 26 (|has| |#1| (-571)) ELT)) (-4027 (((-663 |#4|) (-663 |#4|) $) 19 (|has| |#1| (-571)) ELT)) (-2528 (((-663 |#4|) (-663 |#4|) $) 20 (|has| |#1| (-571)) ELT)) (-2539 (((-3 $ "failed") (-663 |#4|)) 37 T ELT)) (-3330 (($ (-663 |#4|)) 36 T ELT)) (-3606 (($ $) 69 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2375 (($ |#4| $) 68 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4508)) ELT)) (-2341 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-571)) ELT)) (-4129 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4508)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4508)) ELT)) (-2181 (((-663 |#4|) $) 53 (|has| $ (-6 -4508)) ELT)) (-4132 ((|#3| $) 35 T ELT)) (-4034 (((-114) $ (-793)) 44 T ELT)) (-2656 (((-663 |#4|) $) 54 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-1918 (((-663 |#3|) $) 33 T ELT)) (-2724 (((-114) |#3| $) 32 T ELT)) (-1805 (((-114) $ (-793)) 43 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-2557 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-571)) ELT)) (-3855 (((-1151) $) 11 T ELT)) (-3329 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-2787 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 |#4|) (-663 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-4124 (((-114) $ $) 39 T ELT)) (-1663 (((-114) $) 42 T ELT)) (-3986 (($) 41 T ELT)) (-3865 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) 40 T ELT)) (-1407 (((-549) $) 70 (|has| |#4| (-633 (-549))) ELT)) (-1592 (($ (-663 |#4|)) 61 T ELT)) (-3752 (($ $ |#3|) 29 T ELT)) (-4288 (($ $ |#3|) 31 T ELT)) (-4397 (($ $ |#3|) 30 T ELT)) (-1578 (((-887) $) 12 T ELT) (((-663 |#4|) $) 38 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-1728 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-1553 (((-793) $) 47 (|has| $ (-6 -4508)) ELT)))
+(-10 -8 (-15 -2179 ((-114) |#1|)) (-15 -3277 ((-663 |#5|) (-663 |#5|) |#1|)) (-15 -4485 ((-663 |#5|) (-663 |#5|) |#1|)) (-15 -3276 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3531 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -2733 ((-114) |#1|)) (-15 -4148 ((-114) |#1| |#1|)) (-15 -3672 ((-114) |#1| |#1|)) (-15 -2449 ((-114) |#1|)) (-15 -1362 ((-114) |#1|)) (-15 -1787 ((-2 (|:| |under| |#1|) (|:| -3147 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -2511 (|#1| |#1| |#4|)) (-15 -2438 (|#1| |#1| |#4|)) (-15 -4047 (|#1| |#1| |#4|)) (-15 -2703 ((-114) |#4| |#1|)) (-15 -3471 ((-663 |#4|) |#1|)) (-15 -4162 ((-663 |#4|) |#1|)) (-15 -2340 ((-114) |#1| |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-4162 (((-663 |#3|) $) 34 T ELT)) (-1362 (((-114) $) 27 T ELT)) (-2179 (((-114) $) 18 (|has| |#1| (-571)) ELT)) (-1787 (((-2 (|:| |under| $) (|:| -3147 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-3045 (((-114) $ (-793)) 45 T ELT)) (-3923 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4508)) ELT)) (-3525 (($) 46 T CONST)) (-2733 (((-114) $) 23 (|has| |#1| (-571)) ELT)) (-3672 (((-114) $ $) 25 (|has| |#1| (-571)) ELT)) (-4148 (((-114) $ $) 24 (|has| |#1| (-571)) ELT)) (-2449 (((-114) $) 26 (|has| |#1| (-571)) ELT)) (-3277 (((-663 |#4|) (-663 |#4|) $) 19 (|has| |#1| (-571)) ELT)) (-4485 (((-663 |#4|) (-663 |#4|) $) 20 (|has| |#1| (-571)) ELT)) (-3929 (((-3 $ "failed") (-663 |#4|)) 37 T ELT)) (-3649 (($ (-663 |#4|)) 36 T ELT)) (-3658 (($ $) 69 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3033 (($ |#4| $) 68 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4508)) ELT)) (-3276 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-571)) ELT)) (-1778 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4508)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4508)) ELT)) (-3737 (((-663 |#4|) $) 53 (|has| $ (-6 -4508)) ELT)) (-1816 ((|#3| $) 35 T ELT)) (-3332 (((-114) $ (-793)) 44 T ELT)) (-3243 (((-663 |#4|) $) 54 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3471 (((-663 |#3|) $) 33 T ELT)) (-2703 (((-114) |#3| $) 32 T ELT)) (-1634 (((-114) $ (-793)) 43 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3531 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-571)) ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2708 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-2086 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 |#4|) (-663 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-1736 (((-114) $ $) 39 T ELT)) (-2706 (((-114) $) 42 T ELT)) (-2832 (($) 41 T ELT)) (-3384 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) 40 T ELT)) (-2400 (((-549) $) 70 (|has| |#4| (-633 (-549))) ELT)) (-3924 (($ (-663 |#4|)) 61 T ELT)) (-2511 (($ $ |#3|) 29 T ELT)) (-4047 (($ $ |#3|) 31 T ELT)) (-2438 (($ $ |#3|) 30 T ELT)) (-3913 (((-887) $) 12 T ELT) (((-663 |#4|) $) 38 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2149 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2256 (((-793) $) 47 (|has| $ (-6 -4508)) ELT)))
(((-1007 |#1| |#2| |#3| |#4|) (-142) (-1080) (-815) (-871) (-1096 |t#1| |t#2| |t#3|)) (T -1007))
-((-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *1 (-1007 *3 *4 *5 *6)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *1 (-1007 *3 *4 *5 *6)))) (-4132 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-1096 *3 *4 *2)) (-4 *2 (-871)))) (-1443 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-663 *5)))) (-1918 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-663 *5)))) (-2724 (*1 *2 *3 *1) (-12 (-4 *1 (-1007 *4 *5 *3 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-4 *6 (-1096 *4 *5 *3)) (-5 *2 (-114)))) (-4288 (*1 *1 *1 *2) (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)) (-4 *5 (-1096 *3 *4 *2)))) (-4397 (*1 *1 *1 *2) (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)) (-4 *5 (-1096 *3 *4 *2)))) (-3752 (*1 *1 *1 *2) (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)) (-4 *5 (-1096 *3 *4 *2)))) (-2286 (*1 *2 *1 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-4 *6 (-1096 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2016 *1) (|:| |upper| *1))) (-4 *1 (-1007 *4 *5 *3 *6)))) (-1466 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114)))) (-3745 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-5 *2 (-114)))) (-4246 (*1 *2 *1 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-5 *2 (-114)))) (-1860 (*1 *2 *1 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-5 *2 (-114)))) (-4436 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-5 *2 (-114)))) (-2557 (*1 *2 *3 *1) (-12 (-4 *1 (-1007 *4 *5 *6 *3)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-4 *4 (-571)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-2341 (*1 *2 *3 *1) (-12 (-4 *1 (-1007 *4 *5 *6 *3)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-4 *4 (-571)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2528 (*1 *2 *2 *1) (-12 (-5 *2 (-663 *6)) (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)))) (-4027 (*1 *2 *2 *1) (-12 (-5 *2 (-663 *6)) (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-5 *2 (-114)))))
-(-13 (-1132) (-153 |t#4|) (-632 (-663 |t#4|)) (-10 -8 (-6 -4508) (-15 -2539 ((-3 $ "failed") (-663 |t#4|))) (-15 -3330 ($ (-663 |t#4|))) (-15 -4132 (|t#3| $)) (-15 -1443 ((-663 |t#3|) $)) (-15 -1918 ((-663 |t#3|) $)) (-15 -2724 ((-114) |t#3| $)) (-15 -4288 ($ $ |t#3|)) (-15 -4397 ($ $ |t#3|)) (-15 -3752 ($ $ |t#3|)) (-15 -2286 ((-2 (|:| |under| $) (|:| -2016 $) (|:| |upper| $)) $ |t#3|)) (-15 -1466 ((-114) $)) (IF (|has| |t#1| (-571)) (PROGN (-15 -3745 ((-114) $)) (-15 -4246 ((-114) $ $)) (-15 -1860 ((-114) $ $)) (-15 -4436 ((-114) $)) (-15 -2557 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2341 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2528 ((-663 |t#4|) (-663 |t#4|) $)) (-15 -4027 ((-663 |t#4|) (-663 |t#4|) $)) (-15 -3101 ((-114) $))) |%noBranch|)))
+((-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *1 (-1007 *3 *4 *5 *6)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *1 (-1007 *3 *4 *5 *6)))) (-1816 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-1096 *3 *4 *2)) (-4 *2 (-871)))) (-4162 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-663 *5)))) (-3471 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-663 *5)))) (-2703 (*1 *2 *3 *1) (-12 (-4 *1 (-1007 *4 *5 *3 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-4 *6 (-1096 *4 *5 *3)) (-5 *2 (-114)))) (-4047 (*1 *1 *1 *2) (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)) (-4 *5 (-1096 *3 *4 *2)))) (-2438 (*1 *1 *1 *2) (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)) (-4 *5 (-1096 *3 *4 *2)))) (-2511 (*1 *1 *1 *2) (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)) (-4 *5 (-1096 *3 *4 *2)))) (-1787 (*1 *2 *1 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-4 *6 (-1096 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3147 *1) (|:| |upper| *1))) (-4 *1 (-1007 *4 *5 *3 *6)))) (-1362 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114)))) (-2449 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-5 *2 (-114)))) (-3672 (*1 *2 *1 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-5 *2 (-114)))) (-4148 (*1 *2 *1 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-5 *2 (-114)))) (-2733 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-5 *2 (-114)))) (-3531 (*1 *2 *3 *1) (-12 (-4 *1 (-1007 *4 *5 *6 *3)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-4 *4 (-571)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3276 (*1 *2 *3 *1) (-12 (-4 *1 (-1007 *4 *5 *6 *3)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-4 *4 (-571)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-4485 (*1 *2 *2 *1) (-12 (-5 *2 (-663 *6)) (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)))) (-3277 (*1 *2 *2 *1) (-12 (-5 *2 (-663 *6)) (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)))) (-2179 (*1 *2 *1) (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-5 *2 (-114)))))
+(-13 (-1132) (-153 |t#4|) (-632 (-663 |t#4|)) (-10 -8 (-6 -4508) (-15 -3929 ((-3 $ "failed") (-663 |t#4|))) (-15 -3649 ($ (-663 |t#4|))) (-15 -1816 (|t#3| $)) (-15 -4162 ((-663 |t#3|) $)) (-15 -3471 ((-663 |t#3|) $)) (-15 -2703 ((-114) |t#3| $)) (-15 -4047 ($ $ |t#3|)) (-15 -2438 ($ $ |t#3|)) (-15 -2511 ($ $ |t#3|)) (-15 -1787 ((-2 (|:| |under| $) (|:| -3147 $) (|:| |upper| $)) $ |t#3|)) (-15 -1362 ((-114) $)) (IF (|has| |t#1| (-571)) (PROGN (-15 -2449 ((-114) $)) (-15 -3672 ((-114) $ $)) (-15 -4148 ((-114) $ $)) (-15 -2733 ((-114) $)) (-15 -3531 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3276 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4485 ((-663 |t#4|) (-663 |t#4|) $)) (-15 -3277 ((-663 |t#4|) (-663 |t#4|) $)) (-15 -2179 ((-114) $))) |%noBranch|)))
(((-34) . T) ((-102) . T) ((-632 (-663 |#4|)) . T) ((-632 (-887)) . T) ((-153 |#4|) . T) ((-633 (-549)) |has| |#4| (-633 (-549))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ((-503 |#4|) . T) ((-528 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ((-1132) . T) ((-1247) . T))
-((-2933 (((-663 |#4|) |#4| |#4|) 136 T ELT)) (-2248 (((-663 |#4|) (-663 |#4|) (-114)) 125 (|has| |#1| (-466)) ELT) (((-663 |#4|) (-663 |#4|)) 126 (|has| |#1| (-466)) ELT)) (-1829 (((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|)) 44 T ELT)) (-1989 (((-114) |#4|) 43 T ELT)) (-2662 (((-663 |#4|) |#4|) 121 (|has| |#1| (-466)) ELT)) (-3956 (((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-1 (-114) |#4|) (-663 |#4|)) 24 T ELT)) (-1351 (((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 (-1 (-114) |#4|)) (-663 |#4|)) 30 T ELT)) (-1914 (((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 (-1 (-114) |#4|)) (-663 |#4|)) 31 T ELT)) (-1858 (((-3 (-2 (|:| |bas| (-490 |#1| |#2| |#3| |#4|)) (|:| -2572 (-663 |#4|))) "failed") (-663 |#4|)) 90 T ELT)) (-3431 (((-663 |#4|) (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-1785 (((-663 |#4|) (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129 T ELT)) (-1409 (((-663 |#4|) (-663 |#4|)) 128 T ELT)) (-2092 (((-663 |#4|) (-663 |#4|) (-663 |#4|) (-114)) 59 T ELT) (((-663 |#4|) (-663 |#4|) (-663 |#4|)) 61 T ELT)) (-4259 ((|#4| |#4| (-663 |#4|)) 60 T ELT)) (-3610 (((-663 |#4|) (-663 |#4|) (-663 |#4|)) 132 (|has| |#1| (-466)) ELT)) (-2315 (((-663 |#4|) (-663 |#4|) (-663 |#4|)) 135 (|has| |#1| (-466)) ELT)) (-4388 (((-663 |#4|) (-663 |#4|) (-663 |#4|)) 134 (|has| |#1| (-466)) ELT)) (-1623 (((-663 |#4|) (-663 |#4|) (-663 |#4|) (-1 (-663 |#4|) (-663 |#4|))) 105 T ELT) (((-663 |#4|) (-663 |#4|) (-663 |#4|)) 107 T ELT) (((-663 |#4|) (-663 |#4|) |#4|) 140 T ELT) (((-663 |#4|) |#4| |#4|) 137 T ELT) (((-663 |#4|) (-663 |#4|)) 106 T ELT)) (-4115 (((-663 |#4|) (-663 |#4|) (-663 |#4|)) 118 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-3393 (((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|)) 52 T ELT)) (-2574 (((-114) (-663 |#4|)) 79 T ELT)) (-1359 (((-114) (-663 |#4|) (-663 (-663 |#4|))) 67 T ELT)) (-1498 (((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|)) 37 T ELT)) (-2812 (((-114) |#4|) 36 T ELT)) (-2509 (((-663 |#4|) (-663 |#4|)) 116 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-4104 (((-663 |#4|) (-663 |#4|)) 117 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-4456 (((-663 |#4|) (-663 |#4|)) 83 T ELT)) (-2366 (((-663 |#4|) (-663 |#4|)) 97 T ELT)) (-2608 (((-114) (-663 |#4|) (-663 |#4|)) 65 T ELT)) (-2351 (((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|)) 50 T ELT)) (-3358 (((-114) |#4|) 45 T ELT)))
-(((-1008 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1623 ((-663 |#4|) (-663 |#4|))) (-15 -1623 ((-663 |#4|) |#4| |#4|)) (-15 -1409 ((-663 |#4|) (-663 |#4|))) (-15 -2933 ((-663 |#4|) |#4| |#4|)) (-15 -1623 ((-663 |#4|) (-663 |#4|) |#4|)) (-15 -1623 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -1623 ((-663 |#4|) (-663 |#4|) (-663 |#4|) (-1 (-663 |#4|) (-663 |#4|)))) (-15 -2608 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -1359 ((-114) (-663 |#4|) (-663 (-663 |#4|)))) (-15 -2574 ((-114) (-663 |#4|))) (-15 -3956 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-1 (-114) |#4|) (-663 |#4|))) (-15 -1351 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 (-1 (-114) |#4|)) (-663 |#4|))) (-15 -1914 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 (-1 (-114) |#4|)) (-663 |#4|))) (-15 -3393 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -1989 ((-114) |#4|)) (-15 -1829 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -2812 ((-114) |#4|)) (-15 -1498 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -3358 ((-114) |#4|)) (-15 -2351 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -2092 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -2092 ((-663 |#4|) (-663 |#4|) (-663 |#4|) (-114))) (-15 -4259 (|#4| |#4| (-663 |#4|))) (-15 -4456 ((-663 |#4|) (-663 |#4|))) (-15 -1858 ((-3 (-2 (|:| |bas| (-490 |#1| |#2| |#3| |#4|)) (|:| -2572 (-663 |#4|))) "failed") (-663 |#4|))) (-15 -2366 ((-663 |#4|) (-663 |#4|))) (-15 -3431 ((-663 |#4|) (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1785 ((-663 |#4|) (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-466)) (PROGN (-15 -2662 ((-663 |#4|) |#4|)) (-15 -2248 ((-663 |#4|) (-663 |#4|))) (-15 -2248 ((-663 |#4|) (-663 |#4|) (-114))) (-15 -3610 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -4388 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -2315 ((-663 |#4|) (-663 |#4|) (-663 |#4|)))) |%noBranch|) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (PROGN (-15 -4104 ((-663 |#4|) (-663 |#4|))) (-15 -2509 ((-663 |#4|) (-663 |#4|))) (-15 -4115 ((-663 |#4|) (-663 |#4|) (-663 |#4|)))) |%noBranch|) |%noBranch|)) (-571) (-815) (-871) (-1096 |#1| |#2| |#3|)) (T -1008))
-((-4115 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-2509 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-4104 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-2315 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-4388 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-3610 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-2248 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-114)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *7)))) (-2248 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-2662 (*1 *2 *3) (-12 (-4 *4 (-466)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *3)) (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))) (-1785 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-663 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1008 *5 *6 *7 *8)))) (-3431 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-663 *9)) (-5 *3 (-1 (-114) *9)) (-5 *4 (-1 (-114) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1096 *6 *7 *8)) (-4 *6 (-571)) (-4 *7 (-815)) (-4 *8 (-871)) (-5 *1 (-1008 *6 *7 *8 *9)))) (-2366 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-1858 (*1 *2 *3) (|partial| -12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-490 *4 *5 *6 *7)) (|:| -2572 (-663 *7)))) (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-4456 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-4259 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-1096 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *2)))) (-2092 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-114)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *7)))) (-2092 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-2351 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7)))) (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-3358 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))) (-1498 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7)))) (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-2812 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))) (-1829 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7)))) (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-1989 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))) (-3393 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7)))) (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-1914 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-1 (-114) *8))) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-2 (|:| |goodPols| (-663 *8)) (|:| |badPols| (-663 *8)))) (-5 *1 (-1008 *5 *6 *7 *8)) (-5 *4 (-663 *8)))) (-1351 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-1 (-114) *8))) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-2 (|:| |goodPols| (-663 *8)) (|:| |badPols| (-663 *8)))) (-5 *1 (-1008 *5 *6 *7 *8)) (-5 *4 (-663 *8)))) (-3956 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-114) *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-2 (|:| |goodPols| (-663 *8)) (|:| |badPols| (-663 *8)))) (-5 *1 (-1008 *5 *6 *7 *8)) (-5 *4 (-663 *8)))) (-2574 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7)))) (-1359 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-663 *8))) (-5 *3 (-663 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-114)) (-5 *1 (-1008 *5 *6 *7 *8)))) (-2608 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7)))) (-1623 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-663 *7) (-663 *7))) (-5 *2 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *7)))) (-1623 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-1623 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1096 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *3)))) (-2933 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *3)) (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))) (-1409 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-1623 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *3)) (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))) (-1623 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1623 ((-663 |#4|) (-663 |#4|))) (-15 -1623 ((-663 |#4|) |#4| |#4|)) (-15 -1409 ((-663 |#4|) (-663 |#4|))) (-15 -2933 ((-663 |#4|) |#4| |#4|)) (-15 -1623 ((-663 |#4|) (-663 |#4|) |#4|)) (-15 -1623 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -1623 ((-663 |#4|) (-663 |#4|) (-663 |#4|) (-1 (-663 |#4|) (-663 |#4|)))) (-15 -2608 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -1359 ((-114) (-663 |#4|) (-663 (-663 |#4|)))) (-15 -2574 ((-114) (-663 |#4|))) (-15 -3956 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-1 (-114) |#4|) (-663 |#4|))) (-15 -1351 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 (-1 (-114) |#4|)) (-663 |#4|))) (-15 -1914 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 (-1 (-114) |#4|)) (-663 |#4|))) (-15 -3393 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -1989 ((-114) |#4|)) (-15 -1829 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -2812 ((-114) |#4|)) (-15 -1498 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -3358 ((-114) |#4|)) (-15 -2351 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -2092 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -2092 ((-663 |#4|) (-663 |#4|) (-663 |#4|) (-114))) (-15 -4259 (|#4| |#4| (-663 |#4|))) (-15 -4456 ((-663 |#4|) (-663 |#4|))) (-15 -1858 ((-3 (-2 (|:| |bas| (-490 |#1| |#2| |#3| |#4|)) (|:| -2572 (-663 |#4|))) "failed") (-663 |#4|))) (-15 -2366 ((-663 |#4|) (-663 |#4|))) (-15 -3431 ((-663 |#4|) (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1785 ((-663 |#4|) (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-466)) (PROGN (-15 -2662 ((-663 |#4|) |#4|)) (-15 -2248 ((-663 |#4|) (-663 |#4|))) (-15 -2248 ((-663 |#4|) (-663 |#4|) (-114))) (-15 -3610 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -4388 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -2315 ((-663 |#4|) (-663 |#4|) (-663 |#4|)))) |%noBranch|) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (PROGN (-15 -4104 ((-663 |#4|) (-663 |#4|))) (-15 -2509 ((-663 |#4|) (-663 |#4|))) (-15 -4115 ((-663 |#4|) (-663 |#4|) (-663 |#4|)))) |%noBranch|) |%noBranch|))
-((-2309 (((-2 (|:| R (-711 |#1|)) (|:| A (-711 |#1|)) (|:| |Ainv| (-711 |#1|))) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-4181 (((-663 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1297 |#1|)))) (-711 |#1|) (-1297 |#1|)) 46 T ELT)) (-2172 (((-711 |#1|) (-711 |#1|) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16 T ELT)))
-(((-1009 |#1|) (-10 -7 (-15 -2309 ((-2 (|:| R (-711 |#1|)) (|:| A (-711 |#1|)) (|:| |Ainv| (-711 |#1|))) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2172 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4181 ((-663 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1297 |#1|)))) (-711 |#1|) (-1297 |#1|)))) (-376)) (T -1009))
-((-4181 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-663 (-2 (|:| C (-711 *5)) (|:| |g| (-1297 *5))))) (-5 *1 (-1009 *5)) (-5 *3 (-711 *5)) (-5 *4 (-1297 *5)))) (-2172 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-711 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-5 *1 (-1009 *5)))) (-2309 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-376)) (-5 *2 (-2 (|:| R (-711 *6)) (|:| A (-711 *6)) (|:| |Ainv| (-711 *6)))) (-5 *1 (-1009 *6)) (-5 *3 (-711 *6)))))
-(-10 -7 (-15 -2309 ((-2 (|:| R (-711 |#1|)) (|:| A (-711 |#1|)) (|:| |Ainv| (-711 |#1|))) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -2172 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4181 ((-663 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1297 |#1|)))) (-711 |#1|) (-1297 |#1|))))
-((-3023 (((-419 |#4|) |#4|) 56 T ELT)))
-(((-1010 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3023 ((-419 |#4|) |#4|))) (-871) (-815) (-466) (-979 |#3| |#2| |#1|)) (T -1010))
-((-3023 (*1 *2 *3) (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-466)) (-5 *2 (-419 *3)) (-5 *1 (-1010 *4 *5 *6 *3)) (-4 *3 (-979 *6 *5 *4)))))
-(-10 -7 (-15 -3023 ((-419 |#4|) |#4|)))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3759 (($ (-793)) 115 (|has| |#1| (-23)) ELT)) (-3839 (((-1303) $ (-560) (-560)) 41 (|has| $ (-6 -4509)) ELT)) (-4040 (((-114) (-1 (-114) |#1| |#1|) $) 101 T ELT) (((-114) $) 95 (|has| |#1| (-871)) ELT)) (-1703 (($ (-1 (-114) |#1| |#1|) $) 92 (|has| $ (-6 -4509)) ELT) (($ $) 91 (-12 (|has| |#1| (-871)) (|has| $ (-6 -4509))) ELT)) (-2286 (($ (-1 (-114) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-871)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-1773 ((|#1| $ (-560) |#1|) 53 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) 60 (|has| $ (-6 -4509)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) 77 (|has| $ (-6 -4508)) ELT)) (-2238 (($) 7 T CONST)) (-4391 (($ $) 93 (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) 103 T ELT)) (-3606 (($ $) 80 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2375 (($ |#1| $) 79 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 76 (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4508)) ELT)) (-3779 ((|#1| $ (-560) |#1|) 54 (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-560)) 52 T ELT)) (-1722 (((-560) (-1 (-114) |#1|) $) 100 T ELT) (((-560) |#1| $) 99 (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) 98 (|has| |#1| (-1132)) ELT)) (-3743 (($ (-663 |#1|)) 121 T ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-1848 (((-711 |#1|) $ $) 108 (|has| |#1| (-1080)) ELT)) (-4095 (($ (-793) |#1|) 70 T ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-1762 (((-560) $) 44 (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) 85 (|has| |#1| (-871)) ELT)) (-3223 (($ (-1 (-114) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-871)) ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2937 (((-560) $) 45 (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) 86 (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-4216 ((|#1| $) 105 (-12 (|has| |#1| (-1080)) (|has| |#1| (-1033))) ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-4108 ((|#1| $) 106 (-12 (|has| |#1| (-1080)) (|has| |#1| (-1033))) ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3996 (($ |#1| $ (-560)) 62 T ELT) (($ $ $ (-560)) 61 T ELT)) (-3270 (((-663 (-560)) $) 47 T ELT)) (-3586 (((-114) (-560) $) 48 T ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-3637 ((|#1| $) 43 (|has| (-560) (-871)) ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 73 T ELT)) (-3037 (($ $ |#1|) 42 (|has| $ (-6 -4509)) ELT)) (-4372 (($ $ (-663 |#1|)) 119 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-2914 (((-114) |#1| $) 46 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) 49 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3924 ((|#1| $ (-560) |#1|) 51 T ELT) ((|#1| $ (-560)) 50 T ELT) (($ $ (-1264 (-560))) 71 T ELT)) (-3232 ((|#1| $ $) 109 (|has| |#1| (-1080)) ELT)) (-3669 (((-948) $) 120 T ELT)) (-4413 (($ $ (-560)) 64 T ELT) (($ $ (-1264 (-560))) 63 T ELT)) (-2046 (($ $ $) 107 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3640 (($ $ $ (-560)) 94 (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) 81 (|has| |#1| (-633 (-549))) ELT) (($ (-663 |#1|)) 122 T ELT)) (-1592 (($ (-663 |#1|)) 72 T ELT)) (-3415 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-663 $)) 66 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2536 (((-114) $ $) 87 (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) 89 (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2521 (((-114) $ $) 88 (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) 90 (|has| |#1| (-871)) ELT)) (-2580 (($ $) 114 (|has| |#1| (-21)) ELT) (($ $ $) 113 (|has| |#1| (-21)) ELT)) (-2567 (($ $ $) 116 (|has| |#1| (-25)) ELT)) (* (($ (-560) $) 112 (|has| |#1| (-21)) ELT) (($ |#1| $) 111 (|has| |#1| (-748)) ELT) (($ $ |#1|) 110 (|has| |#1| (-748)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-4221 (((-663 |#4|) |#4| |#4|) 136 T ELT)) (-3628 (((-663 |#4|) (-663 |#4|) (-114)) 125 (|has| |#1| (-466)) ELT) (((-663 |#4|) (-663 |#4|)) 126 (|has| |#1| (-466)) ELT)) (-1912 (((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|)) 44 T ELT)) (-2858 (((-114) |#4|) 43 T ELT)) (-3303 (((-663 |#4|) |#4|) 121 (|has| |#1| (-466)) ELT)) (-3821 (((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-1 (-114) |#4|) (-663 |#4|)) 24 T ELT)) (-3663 (((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 (-1 (-114) |#4|)) (-663 |#4|)) 30 T ELT)) (-3428 (((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 (-1 (-114) |#4|)) (-663 |#4|)) 31 T ELT)) (-4126 (((-3 (-2 (|:| |bas| (-490 |#1| |#2| |#3| |#4|)) (|:| -3172 (-663 |#4|))) "failed") (-663 |#4|)) 90 T ELT)) (-2443 (((-663 |#4|) (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-1452 (((-663 |#4|) (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129 T ELT)) (-2624 (((-663 |#4|) (-663 |#4|)) 128 T ELT)) (-1437 (((-663 |#4|) (-663 |#4|) (-663 |#4|) (-114)) 59 T ELT) (((-663 |#4|) (-663 |#4|) (-663 |#4|)) 61 T ELT)) (-3781 ((|#4| |#4| (-663 |#4|)) 60 T ELT)) (-3705 (((-663 |#4|) (-663 |#4|) (-663 |#4|)) 132 (|has| |#1| (-466)) ELT)) (-3031 (((-663 |#4|) (-663 |#4|) (-663 |#4|)) 135 (|has| |#1| (-466)) ELT)) (-2337 (((-663 |#4|) (-663 |#4|) (-663 |#4|)) 134 (|has| |#1| (-466)) ELT)) (-3547 (((-663 |#4|) (-663 |#4|) (-663 |#4|) (-1 (-663 |#4|) (-663 |#4|))) 105 T ELT) (((-663 |#4|) (-663 |#4|) (-663 |#4|)) 107 T ELT) (((-663 |#4|) (-663 |#4|) |#4|) 140 T ELT) (((-663 |#4|) |#4| |#4|) 137 T ELT) (((-663 |#4|) (-663 |#4|)) 106 T ELT)) (-1648 (((-663 |#4|) (-663 |#4|) (-663 |#4|)) 118 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-2109 (((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|)) 52 T ELT)) (-3704 (((-114) (-663 |#4|)) 79 T ELT)) (-3746 (((-114) (-663 |#4|) (-663 (-663 |#4|))) 67 T ELT)) (-2856 (((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|)) 37 T ELT)) (-4296 (((-114) |#4|) 36 T ELT)) (-4354 (((-663 |#4|) (-663 |#4|)) 116 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-1534 (((-663 |#4|) (-663 |#4|)) 117 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-1709 (((-663 |#4|) (-663 |#4|)) 83 T ELT)) (-2281 (((-663 |#4|) (-663 |#4|)) 97 T ELT)) (-4002 (((-114) (-663 |#4|) (-663 |#4|)) 65 T ELT)) (-2135 (((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|)) 50 T ELT)) (-2996 (((-114) |#4|) 45 T ELT)))
+(((-1008 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3547 ((-663 |#4|) (-663 |#4|))) (-15 -3547 ((-663 |#4|) |#4| |#4|)) (-15 -2624 ((-663 |#4|) (-663 |#4|))) (-15 -4221 ((-663 |#4|) |#4| |#4|)) (-15 -3547 ((-663 |#4|) (-663 |#4|) |#4|)) (-15 -3547 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -3547 ((-663 |#4|) (-663 |#4|) (-663 |#4|) (-1 (-663 |#4|) (-663 |#4|)))) (-15 -4002 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3746 ((-114) (-663 |#4|) (-663 (-663 |#4|)))) (-15 -3704 ((-114) (-663 |#4|))) (-15 -3821 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-1 (-114) |#4|) (-663 |#4|))) (-15 -3663 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 (-1 (-114) |#4|)) (-663 |#4|))) (-15 -3428 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 (-1 (-114) |#4|)) (-663 |#4|))) (-15 -2109 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -2858 ((-114) |#4|)) (-15 -1912 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -4296 ((-114) |#4|)) (-15 -2856 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -2996 ((-114) |#4|)) (-15 -2135 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -1437 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -1437 ((-663 |#4|) (-663 |#4|) (-663 |#4|) (-114))) (-15 -3781 (|#4| |#4| (-663 |#4|))) (-15 -1709 ((-663 |#4|) (-663 |#4|))) (-15 -4126 ((-3 (-2 (|:| |bas| (-490 |#1| |#2| |#3| |#4|)) (|:| -3172 (-663 |#4|))) "failed") (-663 |#4|))) (-15 -2281 ((-663 |#4|) (-663 |#4|))) (-15 -2443 ((-663 |#4|) (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1452 ((-663 |#4|) (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-466)) (PROGN (-15 -3303 ((-663 |#4|) |#4|)) (-15 -3628 ((-663 |#4|) (-663 |#4|))) (-15 -3628 ((-663 |#4|) (-663 |#4|) (-114))) (-15 -3705 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -2337 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -3031 ((-663 |#4|) (-663 |#4|) (-663 |#4|)))) |%noBranch|) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (PROGN (-15 -1534 ((-663 |#4|) (-663 |#4|))) (-15 -4354 ((-663 |#4|) (-663 |#4|))) (-15 -1648 ((-663 |#4|) (-663 |#4|) (-663 |#4|)))) |%noBranch|) |%noBranch|)) (-571) (-815) (-871) (-1096 |#1| |#2| |#3|)) (T -1008))
+((-1648 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-4354 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-1534 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-3031 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-2337 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-3705 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-3628 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-114)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *7)))) (-3628 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-3303 (*1 *2 *3) (-12 (-4 *4 (-466)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *3)) (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))) (-1452 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-663 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1008 *5 *6 *7 *8)))) (-2443 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-663 *9)) (-5 *3 (-1 (-114) *9)) (-5 *4 (-1 (-114) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1096 *6 *7 *8)) (-4 *6 (-571)) (-4 *7 (-815)) (-4 *8 (-871)) (-5 *1 (-1008 *6 *7 *8 *9)))) (-2281 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-4126 (*1 *2 *3) (|partial| -12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-490 *4 *5 *6 *7)) (|:| -3172 (-663 *7)))) (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-1709 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-3781 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-1096 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *2)))) (-1437 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-663 *7)) (-5 *3 (-114)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *7)))) (-1437 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-2135 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7)))) (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-2996 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))) (-2856 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7)))) (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-4296 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))) (-1912 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7)))) (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-2858 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))) (-2109 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7)))) (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-663 *7)))) (-3428 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-1 (-114) *8))) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-2 (|:| |goodPols| (-663 *8)) (|:| |badPols| (-663 *8)))) (-5 *1 (-1008 *5 *6 *7 *8)) (-5 *4 (-663 *8)))) (-3663 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-1 (-114) *8))) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-2 (|:| |goodPols| (-663 *8)) (|:| |badPols| (-663 *8)))) (-5 *1 (-1008 *5 *6 *7 *8)) (-5 *4 (-663 *8)))) (-3821 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-114) *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-2 (|:| |goodPols| (-663 *8)) (|:| |badPols| (-663 *8)))) (-5 *1 (-1008 *5 *6 *7 *8)) (-5 *4 (-663 *8)))) (-3704 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7)))) (-3746 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-663 *8))) (-5 *3 (-663 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-114)) (-5 *1 (-1008 *5 *6 *7 *8)))) (-4002 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7)))) (-3547 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-663 *7) (-663 *7))) (-5 *2 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *7)))) (-3547 (*1 *2 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-3547 (*1 *2 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1096 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *3)))) (-4221 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *3)) (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))) (-2624 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))) (-3547 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *3)) (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))) (-3547 (*1 *2 *2) (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3547 ((-663 |#4|) (-663 |#4|))) (-15 -3547 ((-663 |#4|) |#4| |#4|)) (-15 -2624 ((-663 |#4|) (-663 |#4|))) (-15 -4221 ((-663 |#4|) |#4| |#4|)) (-15 -3547 ((-663 |#4|) (-663 |#4|) |#4|)) (-15 -3547 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -3547 ((-663 |#4|) (-663 |#4|) (-663 |#4|) (-1 (-663 |#4|) (-663 |#4|)))) (-15 -4002 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3746 ((-114) (-663 |#4|) (-663 (-663 |#4|)))) (-15 -3704 ((-114) (-663 |#4|))) (-15 -3821 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-1 (-114) |#4|) (-663 |#4|))) (-15 -3663 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 (-1 (-114) |#4|)) (-663 |#4|))) (-15 -3428 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 (-1 (-114) |#4|)) (-663 |#4|))) (-15 -2109 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -2858 ((-114) |#4|)) (-15 -1912 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -4296 ((-114) |#4|)) (-15 -2856 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -2996 ((-114) |#4|)) (-15 -2135 ((-2 (|:| |goodPols| (-663 |#4|)) (|:| |badPols| (-663 |#4|))) (-663 |#4|))) (-15 -1437 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -1437 ((-663 |#4|) (-663 |#4|) (-663 |#4|) (-114))) (-15 -3781 (|#4| |#4| (-663 |#4|))) (-15 -1709 ((-663 |#4|) (-663 |#4|))) (-15 -4126 ((-3 (-2 (|:| |bas| (-490 |#1| |#2| |#3| |#4|)) (|:| -3172 (-663 |#4|))) "failed") (-663 |#4|))) (-15 -2281 ((-663 |#4|) (-663 |#4|))) (-15 -2443 ((-663 |#4|) (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1452 ((-663 |#4|) (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-466)) (PROGN (-15 -3303 ((-663 |#4|) |#4|)) (-15 -3628 ((-663 |#4|) (-663 |#4|))) (-15 -3628 ((-663 |#4|) (-663 |#4|) (-114))) (-15 -3705 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -2337 ((-663 |#4|) (-663 |#4|) (-663 |#4|))) (-15 -3031 ((-663 |#4|) (-663 |#4|) (-663 |#4|)))) |%noBranch|) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (PROGN (-15 -1534 ((-663 |#4|) (-663 |#4|))) (-15 -4354 ((-663 |#4|) (-663 |#4|))) (-15 -1648 ((-663 |#4|) (-663 |#4|) (-663 |#4|)))) |%noBranch|) |%noBranch|))
+((-2970 (((-2 (|:| R (-711 |#1|)) (|:| A (-711 |#1|)) (|:| |Ainv| (-711 |#1|))) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-4284 (((-663 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1297 |#1|)))) (-711 |#1|) (-1297 |#1|)) 46 T ELT)) (-4166 (((-711 |#1|) (-711 |#1|) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16 T ELT)))
+(((-1009 |#1|) (-10 -7 (-15 -2970 ((-2 (|:| R (-711 |#1|)) (|:| A (-711 |#1|)) (|:| |Ainv| (-711 |#1|))) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4166 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4284 ((-663 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1297 |#1|)))) (-711 |#1|) (-1297 |#1|)))) (-376)) (T -1009))
+((-4284 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-663 (-2 (|:| C (-711 *5)) (|:| |g| (-1297 *5))))) (-5 *1 (-1009 *5)) (-5 *3 (-711 *5)) (-5 *4 (-1297 *5)))) (-4166 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-711 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-5 *1 (-1009 *5)))) (-2970 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-376)) (-5 *2 (-2 (|:| R (-711 *6)) (|:| A (-711 *6)) (|:| |Ainv| (-711 *6)))) (-5 *1 (-1009 *6)) (-5 *3 (-711 *6)))))
+(-10 -7 (-15 -2970 ((-2 (|:| R (-711 |#1|)) (|:| A (-711 |#1|)) (|:| |Ainv| (-711 |#1|))) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4166 ((-711 |#1|) (-711 |#1|) (-711 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -4284 ((-663 (-2 (|:| C (-711 |#1|)) (|:| |g| (-1297 |#1|)))) (-711 |#1|) (-1297 |#1|))))
+((-3898 (((-419 |#4|) |#4|) 56 T ELT)))
+(((-1010 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3898 ((-419 |#4|) |#4|))) (-871) (-815) (-466) (-979 |#3| |#2| |#1|)) (T -1010))
+((-3898 (*1 *2 *3) (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-466)) (-5 *2 (-419 *3)) (-5 *1 (-1010 *4 *5 *6 *3)) (-4 *3 (-979 *6 *5 *4)))))
+(-10 -7 (-15 -3898 ((-419 |#4|) |#4|)))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3068 (($ (-793)) 115 (|has| |#1| (-23)) ELT)) (-2033 (((-1303) $ (-560) (-560)) 41 (|has| $ (-6 -4509)) ELT)) (-2152 (((-114) (-1 (-114) |#1| |#1|) $) 101 T ELT) (((-114) $) 95 (|has| |#1| (-871)) ELT)) (-3152 (($ (-1 (-114) |#1| |#1|) $) 92 (|has| $ (-6 -4509)) ELT) (($ $) 91 (-12 (|has| |#1| (-871)) (|has| $ (-6 -4509))) ELT)) (-1787 (($ (-1 (-114) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-871)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-4083 ((|#1| $ (-560) |#1|) 53 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) 60 (|has| $ (-6 -4509)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) 77 (|has| $ (-6 -4508)) ELT)) (-3525 (($) 7 T CONST)) (-2372 (($ $) 93 (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) 103 T ELT)) (-3658 (($ $) 80 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3033 (($ |#1| $) 79 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 76 (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4508)) ELT)) (-3338 ((|#1| $ (-560) |#1|) 54 (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-560)) 52 T ELT)) (-2359 (((-560) (-1 (-114) |#1|) $) 100 T ELT) (((-560) |#1| $) 99 (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) 98 (|has| |#1| (-1132)) ELT)) (-2843 (($ (-663 |#1|)) 121 T ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-1451 (((-711 |#1|) $ $) 108 (|has| |#1| (-1080)) ELT)) (-4246 (($ (-793) |#1|) 70 T ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-2483 (((-560) $) 44 (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) 85 (|has| |#1| (-871)) ELT)) (-4167 (($ (-1 (-114) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-871)) ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4263 (((-560) $) 45 (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) 86 (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-1422 ((|#1| $) 105 (-12 (|has| |#1| (-1080)) (|has| |#1| (-1033))) ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-2946 ((|#1| $) 106 (-12 (|has| |#1| (-1080)) (|has| |#1| (-1033))) ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-2507 (($ |#1| $ (-560)) 62 T ELT) (($ $ $ (-560)) 61 T ELT)) (-3372 (((-663 (-560)) $) 47 T ELT)) (-3439 (((-114) (-560) $) 48 T ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-4334 ((|#1| $) 43 (|has| (-560) (-871)) ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 73 T ELT)) (-2740 (($ $ |#1|) 42 (|has| $ (-6 -4509)) ELT)) (-2219 (($ $ (-663 |#1|)) 119 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-4019 (((-114) |#1| $) 46 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) 49 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1507 ((|#1| $ (-560) |#1|) 51 T ELT) ((|#1| $ (-560)) 50 T ELT) (($ $ (-1264 (-560))) 71 T ELT)) (-4258 ((|#1| $ $) 109 (|has| |#1| (-1080)) ELT)) (-3015 (((-948) $) 120 T ELT)) (-2579 (($ $ (-560)) 64 T ELT) (($ $ (-1264 (-560))) 63 T ELT)) (-2192 (($ $ $) 107 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3993 (($ $ $ (-560)) 94 (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) 81 (|has| |#1| (-633 (-549))) ELT) (($ (-663 |#1|)) 122 T ELT)) (-3924 (($ (-663 |#1|)) 72 T ELT)) (-1955 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-663 $)) 66 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2396 (((-114) $ $) 87 (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) 89 (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2386 (((-114) $ $) 88 (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) 90 (|has| |#1| (-871)) ELT)) (-2441 (($ $) 114 (|has| |#1| (-21)) ELT) (($ $ $) 113 (|has| |#1| (-21)) ELT)) (-2429 (($ $ $) 116 (|has| |#1| (-25)) ELT)) (* (($ (-560) $) 112 (|has| |#1| (-21)) ELT) (($ |#1| $) 111 (|has| |#1| (-748)) ELT) (($ $ |#1|) 110 (|has| |#1| (-748)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-1011 |#1|) (-142) (-1080)) (T -1011))
-((-3743 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1080)) (-4 *1 (-1011 *3)))) (-3669 (*1 *2 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1080)) (-5 *2 (-948)))) (-2046 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1080)))) (-4372 (*1 *1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *1 (-1011 *3)) (-4 *3 (-1080)))))
-(-13 (-1296 |t#1|) (-637 (-663 |t#1|)) (-10 -8 (-15 -3743 ($ (-663 |t#1|))) (-15 -3669 ((-948) $)) (-15 -2046 ($ $ $)) (-15 -4372 ($ $ (-663 |t#1|)))))
-(((-34) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-871)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-871)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-637 (-663 |#1|)) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #0=(-560) |#1|) . T) ((-298 (-1264 (-560)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-385 |#1|) . T) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-673 |#1|) . T) ((-19 |#1|) . T) ((-871) |has| |#1| (-871)) ((-874) |has| |#1| (-871)) ((-1132) -2304 (|has| |#1| (-1132)) (|has| |#1| (-871))) ((-1247) . T) ((-1296 |#1|) . T))
-((-3957 (((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|)) 17 T ELT)))
-(((-1012 |#1| |#2|) (-10 -7 (-15 -3957 ((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|)))) (-1080) (-1080)) (T -1012))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-972 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-5 *2 (-972 *6)) (-5 *1 (-1012 *5 *6)))))
-(-10 -7 (-15 -3957 ((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|))))
-((-1710 ((|#1| (-972 |#1|)) 14 T ELT)) (-1619 ((|#1| (-972 |#1|)) 13 T ELT)) (-2829 ((|#1| (-972 |#1|)) 12 T ELT)) (-2860 ((|#1| (-972 |#1|)) 16 T ELT)) (-3774 ((|#1| (-972 |#1|)) 24 T ELT)) (-3710 ((|#1| (-972 |#1|)) 15 T ELT)) (-3204 ((|#1| (-972 |#1|)) 17 T ELT)) (-1826 ((|#1| (-972 |#1|)) 23 T ELT)) (-2538 ((|#1| (-972 |#1|)) 22 T ELT)))
-(((-1013 |#1|) (-10 -7 (-15 -2829 (|#1| (-972 |#1|))) (-15 -1619 (|#1| (-972 |#1|))) (-15 -1710 (|#1| (-972 |#1|))) (-15 -3710 (|#1| (-972 |#1|))) (-15 -2860 (|#1| (-972 |#1|))) (-15 -3204 (|#1| (-972 |#1|))) (-15 -2538 (|#1| (-972 |#1|))) (-15 -1826 (|#1| (-972 |#1|))) (-15 -3774 (|#1| (-972 |#1|)))) (-1080)) (T -1013))
-((-3774 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-1826 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-2538 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-3204 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-2860 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-3710 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-1710 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-1619 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-2829 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))))
-(-10 -7 (-15 -2829 (|#1| (-972 |#1|))) (-15 -1619 (|#1| (-972 |#1|))) (-15 -1710 (|#1| (-972 |#1|))) (-15 -3710 (|#1| (-972 |#1|))) (-15 -2860 (|#1| (-972 |#1|))) (-15 -3204 (|#1| (-972 |#1|))) (-15 -2538 (|#1| (-972 |#1|))) (-15 -1826 (|#1| (-972 |#1|))) (-15 -3774 (|#1| (-972 |#1|))))
-((-1403 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-3133 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-3921 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-3480 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2356 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-2846 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-2327 (((-3 |#1| "failed") |#1| (-793)) 1 T ELT)) (-3693 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-4382 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-3138 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-2939 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-1551 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-2840 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-4020 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2614 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-1745 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-4168 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-3302 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2052 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-1962 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-1767 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-4195 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-4158 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-1500 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-3952 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-2981 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-3039 (((-3 |#1| "failed") |#1|) 11 T ELT)))
+((-2843 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1080)) (-4 *1 (-1011 *3)))) (-3015 (*1 *2 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1080)) (-5 *2 (-948)))) (-2192 (*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1080)))) (-2219 (*1 *1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *1 (-1011 *3)) (-4 *3 (-1080)))))
+(-13 (-1296 |t#1|) (-637 (-663 |t#1|)) (-10 -8 (-15 -2843 ($ (-663 |t#1|))) (-15 -3015 ((-948) $)) (-15 -2192 ($ $ $)) (-15 -2219 ($ $ (-663 |t#1|)))))
+(((-34) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-871)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-871)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-637 (-663 |#1|)) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #0=(-560) |#1|) . T) ((-298 (-1264 (-560)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-385 |#1|) . T) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-673 |#1|) . T) ((-19 |#1|) . T) ((-871) |has| |#1| (-871)) ((-874) |has| |#1| (-871)) ((-1132) -2196 (|has| |#1| (-1132)) (|has| |#1| (-871))) ((-1247) . T) ((-1296 |#1|) . T))
+((-2260 (((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|)) 17 T ELT)))
+(((-1012 |#1| |#2|) (-10 -7 (-15 -2260 ((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|)))) (-1080) (-1080)) (T -1012))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-972 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-5 *2 (-972 *6)) (-5 *1 (-1012 *5 *6)))))
+(-10 -7 (-15 -2260 ((-972 |#2|) (-1 |#2| |#1|) (-972 |#1|))))
+((-3225 ((|#1| (-972 |#1|)) 14 T ELT)) (-3512 ((|#1| (-972 |#1|)) 13 T ELT)) (-4469 ((|#1| (-972 |#1|)) 12 T ELT)) (-3537 ((|#1| (-972 |#1|)) 16 T ELT)) (-2672 ((|#1| (-972 |#1|)) 24 T ELT)) (-2164 ((|#1| (-972 |#1|)) 15 T ELT)) (-2021 ((|#1| (-972 |#1|)) 17 T ELT)) (-1874 ((|#1| (-972 |#1|)) 23 T ELT)) (-1421 ((|#1| (-972 |#1|)) 22 T ELT)))
+(((-1013 |#1|) (-10 -7 (-15 -4469 (|#1| (-972 |#1|))) (-15 -3512 (|#1| (-972 |#1|))) (-15 -3225 (|#1| (-972 |#1|))) (-15 -2164 (|#1| (-972 |#1|))) (-15 -3537 (|#1| (-972 |#1|))) (-15 -2021 (|#1| (-972 |#1|))) (-15 -1421 (|#1| (-972 |#1|))) (-15 -1874 (|#1| (-972 |#1|))) (-15 -2672 (|#1| (-972 |#1|)))) (-1080)) (T -1013))
+((-2672 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-1874 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-1421 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-2021 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-3537 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-2164 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-3225 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-3512 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))) (-4469 (*1 *2 *3) (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))))
+(-10 -7 (-15 -4469 (|#1| (-972 |#1|))) (-15 -3512 (|#1| (-972 |#1|))) (-15 -3225 (|#1| (-972 |#1|))) (-15 -2164 (|#1| (-972 |#1|))) (-15 -3537 (|#1| (-972 |#1|))) (-15 -2021 (|#1| (-972 |#1|))) (-15 -1421 (|#1| (-972 |#1|))) (-15 -1874 (|#1| (-972 |#1|))) (-15 -2672 (|#1| (-972 |#1|))))
+((-3590 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-2522 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-3447 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-1681 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-2177 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-3406 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-3144 (((-3 |#1| "failed") |#1| (-793)) 1 T ELT)) (-3251 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-2308 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-2580 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-4281 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-1639 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-1427 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-3207 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-2785 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-2329 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-4152 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-3711 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-2251 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-3897 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-2527 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-4407 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-2101 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-2922 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-3787 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-3437 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-2761 (((-3 |#1| "failed") |#1|) 11 T ELT)))
(((-1014 |#1|) (-142) (-1233)) (T -1014))
-((-4195 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-1962 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-1500 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-1745 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2981 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3302 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3138 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2356 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-1551 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-1403 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-4020 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3921 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-4158 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-1767 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3952 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-4168 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3039 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2052 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2939 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2846 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2840 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3133 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2614 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3480 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3693 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-4382 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2327 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-793)) (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
-(-13 (-10 -7 (-15 -2327 ((-3 |t#1| "failed") |t#1| (-793))) (-15 -4382 ((-3 |t#1| "failed") |t#1|)) (-15 -3693 ((-3 |t#1| "failed") |t#1|)) (-15 -3480 ((-3 |t#1| "failed") |t#1|)) (-15 -2614 ((-3 |t#1| "failed") |t#1|)) (-15 -3133 ((-3 |t#1| "failed") |t#1|)) (-15 -2840 ((-3 |t#1| "failed") |t#1|)) (-15 -2846 ((-3 |t#1| "failed") |t#1|)) (-15 -2939 ((-3 |t#1| "failed") |t#1|)) (-15 -2052 ((-3 |t#1| "failed") |t#1|)) (-15 -3039 ((-3 |t#1| "failed") |t#1|)) (-15 -4168 ((-3 |t#1| "failed") |t#1|)) (-15 -3952 ((-3 |t#1| "failed") |t#1|)) (-15 -1767 ((-3 |t#1| "failed") |t#1|)) (-15 -4158 ((-3 |t#1| "failed") |t#1|)) (-15 -3921 ((-3 |t#1| "failed") |t#1|)) (-15 -4020 ((-3 |t#1| "failed") |t#1|)) (-15 -1403 ((-3 |t#1| "failed") |t#1|)) (-15 -1551 ((-3 |t#1| "failed") |t#1|)) (-15 -2356 ((-3 |t#1| "failed") |t#1|)) (-15 -3138 ((-3 |t#1| "failed") |t#1|)) (-15 -3302 ((-3 |t#1| "failed") |t#1|)) (-15 -2981 ((-3 |t#1| "failed") |t#1|)) (-15 -1745 ((-3 |t#1| "failed") |t#1|)) (-15 -1500 ((-3 |t#1| "failed") |t#1|)) (-15 -1962 ((-3 |t#1| "failed") |t#1|)) (-15 -4195 ((-3 |t#1| "failed") |t#1|))))
-((-2699 ((|#4| |#4| (-663 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-2446 ((|#4| |#4| (-663 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-3957 ((|#4| (-1 |#4| (-975 |#1|)) |#4|) 31 T ELT)))
-(((-1015 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2446 (|#4| |#4| |#3|)) (-15 -2446 (|#4| |#4| (-663 |#3|))) (-15 -2699 (|#4| |#4| |#3|)) (-15 -2699 (|#4| |#4| (-663 |#3|))) (-15 -3957 (|#4| (-1 |#4| (-975 |#1|)) |#4|))) (-1080) (-815) (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $)) (-15 -2462 ((-3 $ "failed") (-1207))))) (-979 (-975 |#1|) |#2| |#3|)) (T -1015))
-((-3957 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-975 *4))) (-4 *4 (-1080)) (-4 *2 (-979 (-975 *4) *5 *6)) (-4 *5 (-815)) (-4 *6 (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $)) (-15 -2462 ((-3 $ "failed") (-1207)))))) (-5 *1 (-1015 *4 *5 *6 *2)))) (-2699 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *6)) (-4 *6 (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $)) (-15 -2462 ((-3 $ "failed") (-1207)))))) (-4 *4 (-1080)) (-4 *5 (-815)) (-5 *1 (-1015 *4 *5 *6 *2)) (-4 *2 (-979 (-975 *4) *5 *6)))) (-2699 (*1 *2 *2 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $)) (-15 -2462 ((-3 $ "failed") (-1207)))))) (-5 *1 (-1015 *4 *5 *3 *2)) (-4 *2 (-979 (-975 *4) *5 *3)))) (-2446 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *6)) (-4 *6 (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $)) (-15 -2462 ((-3 $ "failed") (-1207)))))) (-4 *4 (-1080)) (-4 *5 (-815)) (-5 *1 (-1015 *4 *5 *6 *2)) (-4 *2 (-979 (-975 *4) *5 *6)))) (-2446 (*1 *2 *2 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $)) (-15 -2462 ((-3 $ "failed") (-1207)))))) (-5 *1 (-1015 *4 *5 *3 *2)) (-4 *2 (-979 (-975 *4) *5 *3)))))
-(-10 -7 (-15 -2446 (|#4| |#4| |#3|)) (-15 -2446 (|#4| |#4| (-663 |#3|))) (-15 -2699 (|#4| |#4| |#3|)) (-15 -2699 (|#4| |#4| (-663 |#3|))) (-15 -3957 (|#4| (-1 |#4| (-975 |#1|)) |#4|)))
-((-4270 ((|#2| |#3|) 35 T ELT)) (-2215 (((-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|) 79 T ELT)) (-3932 (((-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) 100 T ELT)))
-(((-1016 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3932 ((-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))))) (-15 -2215 ((-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|)) (-15 -4270 (|#2| |#3|))) (-363) (-1273 |#1|) (-1273 |#2|) (-746 |#2| |#3|)) (T -1016))
-((-4270 (*1 *2 *3) (-12 (-4 *3 (-1273 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-1016 *4 *2 *3 *5)) (-4 *4 (-363)) (-4 *5 (-746 *2 *3)))) (-2215 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 *3)) (-5 *2 (-2 (|:| -1954 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-5 *1 (-1016 *4 *3 *5 *6)) (-4 *6 (-746 *3 *5)))) (-3932 (*1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -1954 (-711 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-711 *4)))) (-5 *1 (-1016 *3 *4 *5 *6)) (-4 *6 (-746 *4 *5)))))
-(-10 -7 (-15 -3932 ((-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))))) (-15 -2215 ((-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|)) (-15 -4270 (|#2| |#3|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-3587 (((-3 (-114) "failed") $) 71 T ELT)) (-3922 (($ $) 36 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-4452 (($ $ (-3 (-114) "failed")) 72 T ELT)) (-3936 (($ (-663 |#4|) |#4|) 25 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2842 (($ $) 69 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1663 (((-114) $) 70 T ELT)) (-3986 (($) 30 T ELT)) (-2451 ((|#4| $) 74 T ELT)) (-4484 (((-663 |#4|) $) 73 T ELT)) (-1578 (((-887) $) 68 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-1017 |#1| |#2| |#3| |#4|) (-13 (-1132) (-632 (-887)) (-10 -8 (-15 -3986 ($)) (-15 -3936 ($ (-663 |#4|) |#4|)) (-15 -3587 ((-3 (-114) "failed") $)) (-15 -4452 ($ $ (-3 (-114) "failed"))) (-15 -1663 ((-114) $)) (-15 -4484 ((-663 |#4|) $)) (-15 -2451 (|#4| $)) (-15 -2842 ($ $)) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (-15 -3922 ($ $)) |%noBranch|) |%noBranch|))) (-466) (-871) (-815) (-979 |#1| |#3| |#2|)) (T -1017))
-((-3986 (*1 *1) (-12 (-4 *2 (-466)) (-4 *3 (-871)) (-4 *4 (-815)) (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-979 *2 *4 *3)))) (-3936 (*1 *1 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-979 *4 *6 *5)) (-4 *4 (-466)) (-4 *5 (-871)) (-4 *6 (-815)) (-5 *1 (-1017 *4 *5 *6 *3)))) (-3587 (*1 *2 *1) (|partial| -12 (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)) (-5 *2 (-114)) (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-979 *3 *5 *4)))) (-4452 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-114) "failed")) (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)) (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-979 *3 *5 *4)))) (-1663 (*1 *2 *1) (-12 (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)) (-5 *2 (-114)) (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-979 *3 *5 *4)))) (-4484 (*1 *2 *1) (-12 (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)) (-5 *2 (-663 *6)) (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-979 *3 *5 *4)))) (-2451 (*1 *2 *1) (-12 (-4 *2 (-979 *3 *5 *4)) (-5 *1 (-1017 *3 *4 *5 *2)) (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)))) (-2842 (*1 *1 *1) (-12 (-4 *2 (-466)) (-4 *3 (-871)) (-4 *4 (-815)) (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-979 *2 *4 *3)))) (-3922 (*1 *1 *1) (-12 (-4 *2 (-149)) (-4 *2 (-319)) (-4 *2 (-466)) (-4 *3 (-871)) (-4 *4 (-815)) (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-979 *2 *4 *3)))))
-(-13 (-1132) (-632 (-887)) (-10 -8 (-15 -3986 ($)) (-15 -3936 ($ (-663 |#4|) |#4|)) (-15 -3587 ((-3 (-114) "failed") $)) (-15 -4452 ($ $ (-3 (-114) "failed"))) (-15 -1663 ((-114) $)) (-15 -4484 ((-663 |#4|) $)) (-15 -2451 (|#4| $)) (-15 -2842 ($ $)) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (-15 -3922 ($ $)) |%noBranch|) |%noBranch|)))
-((-4052 (((-1017 (-421 (-560)) (-888 |#1|) (-246 |#2| (-793)) (-255 |#1| (-421 (-560)))) (-1017 (-421 (-560)) (-888 |#1|) (-246 |#2| (-793)) (-255 |#1| (-421 (-560))))) 82 T ELT)))
-(((-1018 |#1| |#2|) (-10 -7 (-15 -4052 ((-1017 (-421 (-560)) (-888 |#1|) (-246 |#2| (-793)) (-255 |#1| (-421 (-560)))) (-1017 (-421 (-560)) (-888 |#1|) (-246 |#2| (-793)) (-255 |#1| (-421 (-560))))))) (-663 (-1207)) (-793)) (T -1018))
-((-4052 (*1 *2 *2) (-12 (-5 *2 (-1017 (-421 (-560)) (-888 *3) (-246 *4 (-793)) (-255 *3 (-421 (-560))))) (-14 *3 (-663 (-1207))) (-14 *4 (-793)) (-5 *1 (-1018 *3 *4)))))
-(-10 -7 (-15 -4052 ((-1017 (-421 (-560)) (-888 |#1|) (-246 |#2| (-793)) (-255 |#1| (-421 (-560)))) (-1017 (-421 (-560)) (-888 |#1|) (-246 |#2| (-793)) (-255 |#1| (-421 (-560)))))))
-((-3730 (((-114) |#5| |#5|) 44 T ELT)) (-3758 (((-114) |#5| |#5|) 59 T ELT)) (-3777 (((-114) |#5| (-663 |#5|)) 81 T ELT) (((-114) |#5| |#5|) 68 T ELT)) (-1895 (((-114) (-663 |#4|) (-663 |#4|)) 65 T ELT)) (-3631 (((-114) (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|)) (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) 70 T ELT)) (-2307 (((-1303)) 32 T ELT)) (-3655 (((-1303) (-1189) (-1189) (-1189)) 28 T ELT)) (-4295 (((-663 |#5|) (-663 |#5|)) 100 T ELT)) (-4444 (((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|)))) 92 T ELT)) (-1451 (((-663 (-2 (|:| -3192 (-663 |#4|)) (|:| -4297 |#5|) (|:| |ineq| (-663 |#4|)))) (-663 |#4|) (-663 |#5|) (-114) (-114)) 122 T ELT)) (-3064 (((-114) |#5| |#5|) 53 T ELT)) (-2339 (((-3 (-114) "failed") |#5| |#5|) 78 T ELT)) (-3210 (((-114) (-663 |#4|) (-663 |#4|)) 64 T ELT)) (-1686 (((-114) (-663 |#4|) (-663 |#4|)) 66 T ELT)) (-2925 (((-114) (-663 |#4|) (-663 |#4|)) 67 T ELT)) (-2272 (((-3 (-2 (|:| -3192 (-663 |#4|)) (|:| -4297 |#5|) (|:| |ineq| (-663 |#4|))) "failed") (-663 |#4|) |#5| (-663 |#4|) (-114) (-114) (-114) (-114) (-114)) 117 T ELT)) (-2189 (((-663 |#5|) (-663 |#5|)) 49 T ELT)))
-(((-1019 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3655 ((-1303) (-1189) (-1189) (-1189))) (-15 -2307 ((-1303))) (-15 -3730 ((-114) |#5| |#5|)) (-15 -2189 ((-663 |#5|) (-663 |#5|))) (-15 -3064 ((-114) |#5| |#5|)) (-15 -3758 ((-114) |#5| |#5|)) (-15 -1895 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3210 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -1686 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -2925 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -2339 ((-3 (-114) "failed") |#5| |#5|)) (-15 -3777 ((-114) |#5| |#5|)) (-15 -3777 ((-114) |#5| (-663 |#5|))) (-15 -4295 ((-663 |#5|) (-663 |#5|))) (-15 -3631 ((-114) (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|)) (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|)))) (-15 -4444 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) (-15 -1451 ((-663 (-2 (|:| -3192 (-663 |#4|)) (|:| -4297 |#5|) (|:| |ineq| (-663 |#4|)))) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -2272 ((-3 (-2 (|:| -3192 (-663 |#4|)) (|:| -4297 |#5|) (|:| |ineq| (-663 |#4|))) "failed") (-663 |#4|) |#5| (-663 |#4|) (-114) (-114) (-114) (-114) (-114)))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -1019))
-((-2272 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *9 (-1096 *6 *7 *8)) (-5 *2 (-2 (|:| -3192 (-663 *9)) (|:| -4297 *4) (|:| |ineq| (-663 *9)))) (-5 *1 (-1019 *6 *7 *8 *9 *4)) (-5 *3 (-663 *9)) (-4 *4 (-1102 *6 *7 *8 *9)))) (-1451 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-663 *10)) (-5 *5 (-114)) (-4 *10 (-1102 *6 *7 *8 *9)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *9 (-1096 *6 *7 *8)) (-5 *2 (-663 (-2 (|:| -3192 (-663 *9)) (|:| -4297 *10) (|:| |ineq| (-663 *9))))) (-5 *1 (-1019 *6 *7 *8 *9 *10)) (-5 *3 (-663 *9)))) (-4444 (*1 *2 *2) (-12 (-5 *2 (-663 (-2 (|:| |val| (-663 *6)) (|:| -4297 *7)))) (-4 *6 (-1096 *3 *4 *5)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-3631 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -4297 *8))) (-4 *7 (-1096 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1019 *4 *5 *6 *7 *8)))) (-4295 (*1 *2 *2) (-12 (-5 *2 (-663 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-3777 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *3)) (-4 *3 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1019 *5 *6 *7 *8 *3)))) (-3777 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-2339 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-2925 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-1686 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-3210 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-1895 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-3758 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-3064 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-2189 (*1 *2 *2) (-12 (-5 *2 (-663 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-3730 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-2307 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))) (-3655 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3655 ((-1303) (-1189) (-1189) (-1189))) (-15 -2307 ((-1303))) (-15 -3730 ((-114) |#5| |#5|)) (-15 -2189 ((-663 |#5|) (-663 |#5|))) (-15 -3064 ((-114) |#5| |#5|)) (-15 -3758 ((-114) |#5| |#5|)) (-15 -1895 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3210 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -1686 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -2925 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -2339 ((-3 (-114) "failed") |#5| |#5|)) (-15 -3777 ((-114) |#5| |#5|)) (-15 -3777 ((-114) |#5| (-663 |#5|))) (-15 -4295 ((-663 |#5|) (-663 |#5|))) (-15 -3631 ((-114) (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|)) (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|)))) (-15 -4444 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) (-15 -1451 ((-663 (-2 (|:| -3192 (-663 |#4|)) (|:| -4297 |#5|) (|:| |ineq| (-663 |#4|)))) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -2272 ((-3 (-2 (|:| -3192 (-663 |#4|)) (|:| -4297 |#5|) (|:| |ineq| (-663 |#4|))) "failed") (-663 |#4|) |#5| (-663 |#4|) (-114) (-114) (-114) (-114) (-114))))
-((-2462 (((-1207) $) 15 T ELT)) (-3853 (((-1189) $) 16 T ELT)) (-3439 (($ (-1207) (-1189)) 14 T ELT)) (-1578 (((-887) $) 13 T ELT)))
-(((-1020) (-13 (-632 (-887)) (-10 -8 (-15 -3439 ($ (-1207) (-1189))) (-15 -2462 ((-1207) $)) (-15 -3853 ((-1189) $))))) (T -1020))
-((-3439 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1189)) (-5 *1 (-1020)))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1020)))) (-3853 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1020)))))
-(-13 (-632 (-887)) (-10 -8 (-15 -3439 ($ (-1207) (-1189))) (-15 -2462 ((-1207) $)) (-15 -3853 ((-1189) $))))
-((-2539 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) 66 T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 (-560) "failed") $) 96 T ELT)) (-3330 ((|#2| $) NIL T ELT) (((-1207) $) 61 T ELT) (((-421 (-560)) $) NIL T ELT) (((-560) $) 93 T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL T ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) 115 T ELT) (((-711 |#2|) (-711 $)) 28 T ELT)) (-2310 (($) 99 T ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 76 T ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 85 T ELT)) (-1617 (($ $) 10 T ELT)) (-3009 (((-3 $ "failed") $) 20 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3161 (($) 16 T ELT)) (-2652 (($ $) 55 T ELT)) (-2894 (($ $ (-1 |#2| |#2|)) 36 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3056 (($ $) 12 T ELT)) (-1407 (((-915 (-560)) $) 71 T ELT) (((-915 (-391)) $) 80 T ELT) (((-549) $) 40 T ELT) (((-391) $) 44 T ELT) (((-229) $) 48 T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 91 T ELT) (($ |#2|) NIL T ELT) (($ (-1207)) 58 T ELT)) (-2930 (((-793)) 31 T ELT)) (-2495 (((-114) $ $) 51 T ELT)))
-(((-1021 |#1| |#2|) (-10 -8 (-15 -2495 ((-114) |#1| |#1|)) (-15 -2894 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1|)) (-15 -2894 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -2894 (|#1| |#1| (-1207) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1207)))) (-15 -2894 (|#1| |#1| (-1207))) (-15 -3161 (|#1|)) (-15 -3009 ((-3 |#1| "failed") |#1|)) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -3330 ((-560) |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 -1407 ((-229) |#1|)) (-15 -1407 ((-391) |#1|)) (-15 -1407 ((-549) |#1|)) (-15 -1578 (|#1| (-1207))) (-15 -2539 ((-3 (-1207) "failed") |#1|)) (-15 -3330 ((-1207) |#1|)) (-15 -2310 (|#1|)) (-15 -2652 (|#1| |#1|)) (-15 -3056 (|#1| |#1|)) (-15 -1617 (|#1| |#1|)) (-15 -2427 ((-913 (-391) |#1|) |#1| (-915 (-391)) (-913 (-391) |#1|))) (-15 -2427 ((-913 (-560) |#1|) |#1| (-915 (-560)) (-913 (-560) |#1|))) (-15 -1407 ((-915 (-391)) |#1|)) (-15 -1407 ((-915 (-560)) |#1|)) (-15 -3142 ((-711 |#2|) (-711 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 |#1|) (-1297 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -3142 ((-711 (-560)) (-711 |#1|))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -1578 (|#1| |#2|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -1578 (|#1| |#1|)) (-15 -2930 ((-793))) (-15 -1578 (|#1| (-560))) (-15 -1578 ((-887) |#1|))) (-1022 |#2|) (-571)) (T -1021))
-((-2930 (*1 *2) (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-1021 *3 *4)) (-4 *3 (-1022 *4)))))
-(-10 -8 (-15 -2495 ((-114) |#1| |#1|)) (-15 -2894 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1|)) (-15 -2894 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -2894 (|#1| |#1| (-1207) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1207)))) (-15 -2894 (|#1| |#1| (-1207))) (-15 -3161 (|#1|)) (-15 -3009 ((-3 |#1| "failed") |#1|)) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -3330 ((-560) |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 -1407 ((-229) |#1|)) (-15 -1407 ((-391) |#1|)) (-15 -1407 ((-549) |#1|)) (-15 -1578 (|#1| (-1207))) (-15 -2539 ((-3 (-1207) "failed") |#1|)) (-15 -3330 ((-1207) |#1|)) (-15 -2310 (|#1|)) (-15 -2652 (|#1| |#1|)) (-15 -3056 (|#1| |#1|)) (-15 -1617 (|#1| |#1|)) (-15 -2427 ((-913 (-391) |#1|) |#1| (-915 (-391)) (-913 (-391) |#1|))) (-15 -2427 ((-913 (-560) |#1|) |#1| (-915 (-560)) (-913 (-560) |#1|))) (-15 -1407 ((-915 (-391)) |#1|)) (-15 -1407 ((-915 (-560)) |#1|)) (-15 -3142 ((-711 |#2|) (-711 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 |#1|) (-1297 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -3142 ((-711 (-560)) (-711 |#1|))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -1578 (|#1| |#2|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -1578 (|#1| |#1|)) (-15 -2930 ((-793))) (-15 -1578 (|#1| (-560))) (-15 -1578 ((-887) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3941 ((|#1| $) 163 (|has| |#1| (-319)) ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-3244 (($ $) 46 T ELT)) (-4093 (((-114) $) 44 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) 154 (|has| |#1| (-939)) ELT)) (-1804 (($ $) 81 T ELT)) (-3023 (((-419 $) $) 80 T ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 157 (|has| |#1| (-939)) ELT)) (-1615 (((-114) $ $) 65 T ELT)) (-2138 (((-560) $) 144 (|has| |#1| (-842)) ELT)) (-2238 (($) 18 T CONST)) (-2539 (((-3 |#1| "failed") $) 193 T ELT) (((-3 (-1207) "failed") $) 152 (|has| |#1| (-1069 (-1207))) ELT) (((-3 (-421 (-560)) "failed") $) 135 (|has| |#1| (-1069 (-560))) ELT) (((-3 (-560) "failed") $) 133 (|has| |#1| (-1069 (-560))) ELT)) (-3330 ((|#1| $) 194 T ELT) (((-1207) $) 153 (|has| |#1| (-1069 (-1207))) ELT) (((-421 (-560)) $) 136 (|has| |#1| (-1069 (-560))) ELT) (((-560) $) 134 (|has| |#1| (-1069 (-560))) ELT)) (-1478 (($ $ $) 61 T ELT)) (-3142 (((-711 (-560)) (-711 $)) 178 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 177 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 176 T ELT) (((-711 |#1|) (-711 $)) 175 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-2310 (($) 161 (|has| |#1| (-559)) ELT)) (-1490 (($ $ $) 62 T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 57 T ELT)) (-4330 (((-114) $) 79 T ELT)) (-2928 (((-114) $) 146 (|has| |#1| (-842)) ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 170 (|has| |#1| (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 169 (|has| |#1| (-911 (-391))) ELT)) (-1581 (((-114) $) 35 T ELT)) (-1617 (($ $) 165 T ELT)) (-3757 ((|#1| $) 167 T ELT)) (-3009 (((-3 $ "failed") $) 132 (|has| |#1| (-1182)) ELT)) (-2960 (((-114) $) 145 (|has| |#1| (-842)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-3825 (($ $ $) 137 (|has| |#1| (-871)) ELT)) (-2820 (($ $ $) 138 (|has| |#1| (-871)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 185 T ELT)) (-2484 (((-711 (-560)) (-1297 $)) 180 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 179 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 174 T ELT) (((-711 |#1|) (-1297 $)) 173 T ELT)) (-2093 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-1544 (($ $) 78 T ELT)) (-3161 (($) 131 (|has| |#1| (-1182)) CONST)) (-3855 (((-1151) $) 11 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-2132 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-2652 (($ $) 162 (|has| |#1| (-319)) ELT)) (-2016 ((|#1| $) 159 (|has| |#1| (-559)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) 156 (|has| |#1| (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) 155 (|has| |#1| (-939)) ELT)) (-4457 (((-419 $) $) 82 T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-1528 (((-3 $ "failed") $ $) 48 T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-4187 (($ $ (-663 |#1|) (-663 |#1|)) 191 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 190 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 189 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) 188 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) 187 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) 186 (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-2901 (((-793) $) 64 T ELT)) (-3924 (($ $ |#1|) 192 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 63 T ELT)) (-2894 (($ $ (-1 |#1| |#1|)) 184 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 183 T ELT) (($ $) 130 (|has| |#1| (-239)) ELT) (($ $ (-793)) 128 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 126 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 124 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 123 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 122 (|has| |#1| (-929 (-1207))) ELT)) (-3056 (($ $) 164 T ELT)) (-3771 ((|#1| $) 166 T ELT)) (-1407 (((-915 (-560)) $) 172 (|has| |#1| (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) 171 (|has| |#1| (-633 (-915 (-391)))) ELT) (((-549) $) 149 (|has| |#1| (-633 (-549))) ELT) (((-391) $) 148 (|has| |#1| (-1051)) ELT) (((-229) $) 147 (|has| |#1| (-1051)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) 158 (-1953 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-560))) 74 T ELT) (($ |#1|) 197 T ELT) (($ (-1207)) 151 (|has| |#1| (-1069 (-1207))) ELT)) (-1964 (((-3 $ "failed") $) 150 (-2304 (|has| |#1| (-147)) (-1953 (|has| $ (-147)) (|has| |#1| (-939)))) ELT)) (-2930 (((-793)) 32 T CONST)) (-1494 ((|#1| $) 160 (|has| |#1| (-559)) ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 45 T ELT)) (-2282 (($ $) 143 (|has| |#1| (-842)) ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($ $ (-1 |#1| |#1|)) 182 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 181 T ELT) (($ $) 129 (|has| |#1| (-239)) ELT) (($ $ (-793)) 127 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 125 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 121 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 120 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 119 (|has| |#1| (-929 (-1207))) ELT)) (-2536 (((-114) $ $) 139 (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) 141 (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 140 (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) 142 (|has| |#1| (-871)) ELT)) (-2594 (($ $ $) 73 T ELT) (($ |#1| |#1|) 168 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 77 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 76 T ELT) (($ (-421 (-560)) $) 75 T ELT) (($ |#1| $) 196 T ELT) (($ $ |#1|) 195 T ELT)))
+((-4407 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3897 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2922 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2329 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3437 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3711 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2580 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2177 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-1639 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3590 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3207 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3447 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2101 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2527 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3787 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-4152 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2761 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2251 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-4281 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3406 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-1427 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2522 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2785 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-1681 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3251 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-2308 (*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))) (-3144 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-793)) (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(-13 (-10 -7 (-15 -3144 ((-3 |t#1| "failed") |t#1| (-793))) (-15 -2308 ((-3 |t#1| "failed") |t#1|)) (-15 -3251 ((-3 |t#1| "failed") |t#1|)) (-15 -1681 ((-3 |t#1| "failed") |t#1|)) (-15 -2785 ((-3 |t#1| "failed") |t#1|)) (-15 -2522 ((-3 |t#1| "failed") |t#1|)) (-15 -1427 ((-3 |t#1| "failed") |t#1|)) (-15 -3406 ((-3 |t#1| "failed") |t#1|)) (-15 -4281 ((-3 |t#1| "failed") |t#1|)) (-15 -2251 ((-3 |t#1| "failed") |t#1|)) (-15 -2761 ((-3 |t#1| "failed") |t#1|)) (-15 -4152 ((-3 |t#1| "failed") |t#1|)) (-15 -3787 ((-3 |t#1| "failed") |t#1|)) (-15 -2527 ((-3 |t#1| "failed") |t#1|)) (-15 -2101 ((-3 |t#1| "failed") |t#1|)) (-15 -3447 ((-3 |t#1| "failed") |t#1|)) (-15 -3207 ((-3 |t#1| "failed") |t#1|)) (-15 -3590 ((-3 |t#1| "failed") |t#1|)) (-15 -1639 ((-3 |t#1| "failed") |t#1|)) (-15 -2177 ((-3 |t#1| "failed") |t#1|)) (-15 -2580 ((-3 |t#1| "failed") |t#1|)) (-15 -3711 ((-3 |t#1| "failed") |t#1|)) (-15 -3437 ((-3 |t#1| "failed") |t#1|)) (-15 -2329 ((-3 |t#1| "failed") |t#1|)) (-15 -2922 ((-3 |t#1| "failed") |t#1|)) (-15 -3897 ((-3 |t#1| "failed") |t#1|)) (-15 -4407 ((-3 |t#1| "failed") |t#1|))))
+((-2437 ((|#4| |#4| (-663 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-1839 ((|#4| |#4| (-663 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-2260 ((|#4| (-1 |#4| (-975 |#1|)) |#4|) 31 T ELT)))
+(((-1015 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1839 (|#4| |#4| |#3|)) (-15 -1839 (|#4| |#4| (-663 |#3|))) (-15 -2437 (|#4| |#4| |#3|)) (-15 -2437 (|#4| |#4| (-663 |#3|))) (-15 -2260 (|#4| (-1 |#4| (-975 |#1|)) |#4|))) (-1080) (-815) (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $)) (-15 -2558 ((-3 $ "failed") (-1207))))) (-979 (-975 |#1|) |#2| |#3|)) (T -1015))
+((-2260 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-975 *4))) (-4 *4 (-1080)) (-4 *2 (-979 (-975 *4) *5 *6)) (-4 *5 (-815)) (-4 *6 (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $)) (-15 -2558 ((-3 $ "failed") (-1207)))))) (-5 *1 (-1015 *4 *5 *6 *2)))) (-2437 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *6)) (-4 *6 (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $)) (-15 -2558 ((-3 $ "failed") (-1207)))))) (-4 *4 (-1080)) (-4 *5 (-815)) (-5 *1 (-1015 *4 *5 *6 *2)) (-4 *2 (-979 (-975 *4) *5 *6)))) (-2437 (*1 *2 *2 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $)) (-15 -2558 ((-3 $ "failed") (-1207)))))) (-5 *1 (-1015 *4 *5 *3 *2)) (-4 *2 (-979 (-975 *4) *5 *3)))) (-1839 (*1 *2 *2 *3) (-12 (-5 *3 (-663 *6)) (-4 *6 (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $)) (-15 -2558 ((-3 $ "failed") (-1207)))))) (-4 *4 (-1080)) (-4 *5 (-815)) (-5 *1 (-1015 *4 *5 *6 *2)) (-4 *2 (-979 (-975 *4) *5 *6)))) (-1839 (*1 *2 *2 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $)) (-15 -2558 ((-3 $ "failed") (-1207)))))) (-5 *1 (-1015 *4 *5 *3 *2)) (-4 *2 (-979 (-975 *4) *5 *3)))))
+(-10 -7 (-15 -1839 (|#4| |#4| |#3|)) (-15 -1839 (|#4| |#4| (-663 |#3|))) (-15 -2437 (|#4| |#4| |#3|)) (-15 -2437 (|#4| |#4| (-663 |#3|))) (-15 -2260 (|#4| (-1 |#4| (-975 |#1|)) |#4|)))
+((-3889 ((|#2| |#3|) 35 T ELT)) (-1396 (((-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|) 79 T ELT)) (-3538 (((-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) 100 T ELT)))
+(((-1016 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3538 ((-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))))) (-15 -1396 ((-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|)) (-15 -3889 (|#2| |#3|))) (-363) (-1273 |#1|) (-1273 |#2|) (-746 |#2| |#3|)) (T -1016))
+((-3889 (*1 *2 *3) (-12 (-4 *3 (-1273 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-1016 *4 *2 *3 *5)) (-4 *4 (-363)) (-4 *5 (-746 *2 *3)))) (-1396 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 *3)) (-5 *2 (-2 (|:| -3822 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-5 *1 (-1016 *4 *3 *5 *6)) (-4 *6 (-746 *3 *5)))) (-3538 (*1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -3822 (-711 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-711 *4)))) (-5 *1 (-1016 *3 *4 *5 *6)) (-4 *6 (-746 *4 *5)))))
+(-10 -7 (-15 -3538 ((-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))))) (-15 -1396 ((-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|)) (-15 -3889 (|#2| |#3|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3451 (((-3 (-114) "failed") $) 71 T ELT)) (-3456 (($ $) 36 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-1678 (($ $ (-3 (-114) "failed")) 72 T ELT)) (-3589 (($ (-663 |#4|) |#4|) 25 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1450 (($ $) 69 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2706 (((-114) $) 70 T ELT)) (-2832 (($) 30 T ELT)) (-1901 ((|#4| $) 74 T ELT)) (-1935 (((-663 |#4|) $) 73 T ELT)) (-3913 (((-887) $) 68 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-1017 |#1| |#2| |#3| |#4|) (-13 (-1132) (-632 (-887)) (-10 -8 (-15 -2832 ($)) (-15 -3589 ($ (-663 |#4|) |#4|)) (-15 -3451 ((-3 (-114) "failed") $)) (-15 -1678 ($ $ (-3 (-114) "failed"))) (-15 -2706 ((-114) $)) (-15 -1935 ((-663 |#4|) $)) (-15 -1901 (|#4| $)) (-15 -1450 ($ $)) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (-15 -3456 ($ $)) |%noBranch|) |%noBranch|))) (-466) (-871) (-815) (-979 |#1| |#3| |#2|)) (T -1017))
+((-2832 (*1 *1) (-12 (-4 *2 (-466)) (-4 *3 (-871)) (-4 *4 (-815)) (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-979 *2 *4 *3)))) (-3589 (*1 *1 *2 *3) (-12 (-5 *2 (-663 *3)) (-4 *3 (-979 *4 *6 *5)) (-4 *4 (-466)) (-4 *5 (-871)) (-4 *6 (-815)) (-5 *1 (-1017 *4 *5 *6 *3)))) (-3451 (*1 *2 *1) (|partial| -12 (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)) (-5 *2 (-114)) (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-979 *3 *5 *4)))) (-1678 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-114) "failed")) (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)) (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-979 *3 *5 *4)))) (-2706 (*1 *2 *1) (-12 (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)) (-5 *2 (-114)) (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-979 *3 *5 *4)))) (-1935 (*1 *2 *1) (-12 (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)) (-5 *2 (-663 *6)) (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-979 *3 *5 *4)))) (-1901 (*1 *2 *1) (-12 (-4 *2 (-979 *3 *5 *4)) (-5 *1 (-1017 *3 *4 *5 *2)) (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)))) (-1450 (*1 *1 *1) (-12 (-4 *2 (-466)) (-4 *3 (-871)) (-4 *4 (-815)) (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-979 *2 *4 *3)))) (-3456 (*1 *1 *1) (-12 (-4 *2 (-149)) (-4 *2 (-319)) (-4 *2 (-466)) (-4 *3 (-871)) (-4 *4 (-815)) (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-979 *2 *4 *3)))))
+(-13 (-1132) (-632 (-887)) (-10 -8 (-15 -2832 ($)) (-15 -3589 ($ (-663 |#4|) |#4|)) (-15 -3451 ((-3 (-114) "failed") $)) (-15 -1678 ($ $ (-3 (-114) "failed"))) (-15 -2706 ((-114) $)) (-15 -1935 ((-663 |#4|) $)) (-15 -1901 (|#4| $)) (-15 -1450 ($ $)) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (-15 -3456 ($ $)) |%noBranch|) |%noBranch|)))
+((-2283 (((-1017 (-421 (-560)) (-888 |#1|) (-246 |#2| (-793)) (-255 |#1| (-421 (-560)))) (-1017 (-421 (-560)) (-888 |#1|) (-246 |#2| (-793)) (-255 |#1| (-421 (-560))))) 82 T ELT)))
+(((-1018 |#1| |#2|) (-10 -7 (-15 -2283 ((-1017 (-421 (-560)) (-888 |#1|) (-246 |#2| (-793)) (-255 |#1| (-421 (-560)))) (-1017 (-421 (-560)) (-888 |#1|) (-246 |#2| (-793)) (-255 |#1| (-421 (-560))))))) (-663 (-1207)) (-793)) (T -1018))
+((-2283 (*1 *2 *2) (-12 (-5 *2 (-1017 (-421 (-560)) (-888 *3) (-246 *4 (-793)) (-255 *3 (-421 (-560))))) (-14 *3 (-663 (-1207))) (-14 *4 (-793)) (-5 *1 (-1018 *3 *4)))))
+(-10 -7 (-15 -2283 ((-1017 (-421 (-560)) (-888 |#1|) (-246 |#2| (-793)) (-255 |#1| (-421 (-560)))) (-1017 (-421 (-560)) (-888 |#1|) (-246 |#2| (-793)) (-255 |#1| (-421 (-560)))))))
+((-2335 (((-114) |#5| |#5|) 44 T ELT)) (-2568 (((-114) |#5| |#5|) 59 T ELT)) (-2704 (((-114) |#5| (-663 |#5|)) 81 T ELT) (((-114) |#5| |#5|) 68 T ELT)) (-1338 (((-114) (-663 |#4|) (-663 |#4|)) 65 T ELT)) (-3910 (((-114) (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|)) (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) 70 T ELT)) (-2944 (((-1303)) 32 T ELT)) (-2849 (((-1303) (-1189) (-1189) (-1189)) 28 T ELT)) (-2806 (((-663 |#5|) (-663 |#5|)) 100 T ELT)) (-1583 (((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|)))) 92 T ELT)) (-1949 (((-663 (-2 (|:| -2439 (-663 |#4|)) (|:| -3859 |#5|) (|:| |ineq| (-663 |#4|)))) (-663 |#4|) (-663 |#5|) (-114) (-114)) 122 T ELT)) (-3050 (((-114) |#5| |#5|) 53 T ELT)) (-3255 (((-3 (-114) "failed") |#5| |#5|) 78 T ELT)) (-4016 (((-114) (-663 |#4|) (-663 |#4|)) 64 T ELT)) (-2956 (((-114) (-663 |#4|) (-663 |#4|)) 66 T ELT)) (-4138 (((-114) (-663 |#4|) (-663 |#4|)) 67 T ELT)) (-3894 (((-3 (-2 (|:| -2439 (-663 |#4|)) (|:| -3859 |#5|) (|:| |ineq| (-663 |#4|))) "failed") (-663 |#4|) |#5| (-663 |#4|) (-114) (-114) (-114) (-114) (-114)) 117 T ELT)) (-4326 (((-663 |#5|) (-663 |#5|)) 49 T ELT)))
+(((-1019 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2849 ((-1303) (-1189) (-1189) (-1189))) (-15 -2944 ((-1303))) (-15 -2335 ((-114) |#5| |#5|)) (-15 -4326 ((-663 |#5|) (-663 |#5|))) (-15 -3050 ((-114) |#5| |#5|)) (-15 -2568 ((-114) |#5| |#5|)) (-15 -1338 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -4016 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -2956 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -4138 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3255 ((-3 (-114) "failed") |#5| |#5|)) (-15 -2704 ((-114) |#5| |#5|)) (-15 -2704 ((-114) |#5| (-663 |#5|))) (-15 -2806 ((-663 |#5|) (-663 |#5|))) (-15 -3910 ((-114) (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|)) (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|)))) (-15 -1583 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) (-15 -1949 ((-663 (-2 (|:| -2439 (-663 |#4|)) (|:| -3859 |#5|) (|:| |ineq| (-663 |#4|)))) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -3894 ((-3 (-2 (|:| -2439 (-663 |#4|)) (|:| -3859 |#5|) (|:| |ineq| (-663 |#4|))) "failed") (-663 |#4|) |#5| (-663 |#4|) (-114) (-114) (-114) (-114) (-114)))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -1019))
+((-3894 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *9 (-1096 *6 *7 *8)) (-5 *2 (-2 (|:| -2439 (-663 *9)) (|:| -3859 *4) (|:| |ineq| (-663 *9)))) (-5 *1 (-1019 *6 *7 *8 *9 *4)) (-5 *3 (-663 *9)) (-4 *4 (-1102 *6 *7 *8 *9)))) (-1949 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-663 *10)) (-5 *5 (-114)) (-4 *10 (-1102 *6 *7 *8 *9)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *9 (-1096 *6 *7 *8)) (-5 *2 (-663 (-2 (|:| -2439 (-663 *9)) (|:| -3859 *10) (|:| |ineq| (-663 *9))))) (-5 *1 (-1019 *6 *7 *8 *9 *10)) (-5 *3 (-663 *9)))) (-1583 (*1 *2 *2) (-12 (-5 *2 (-663 (-2 (|:| |val| (-663 *6)) (|:| -3859 *7)))) (-4 *6 (-1096 *3 *4 *5)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-3910 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -3859 *8))) (-4 *7 (-1096 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1019 *4 *5 *6 *7 *8)))) (-2806 (*1 *2 *2) (-12 (-5 *2 (-663 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-2704 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *3)) (-4 *3 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1019 *5 *6 *7 *8 *3)))) (-2704 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-3255 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-4138 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-2956 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-4016 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-1338 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-2568 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-3050 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-4326 (*1 *2 *2) (-12 (-5 *2 (-663 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *1 (-1019 *3 *4 *5 *6 *7)))) (-2335 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-2944 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))) (-2849 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2849 ((-1303) (-1189) (-1189) (-1189))) (-15 -2944 ((-1303))) (-15 -2335 ((-114) |#5| |#5|)) (-15 -4326 ((-663 |#5|) (-663 |#5|))) (-15 -3050 ((-114) |#5| |#5|)) (-15 -2568 ((-114) |#5| |#5|)) (-15 -1338 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -4016 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -2956 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -4138 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3255 ((-3 (-114) "failed") |#5| |#5|)) (-15 -2704 ((-114) |#5| |#5|)) (-15 -2704 ((-114) |#5| (-663 |#5|))) (-15 -2806 ((-663 |#5|) (-663 |#5|))) (-15 -3910 ((-114) (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|)) (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|)))) (-15 -1583 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) (-15 -1949 ((-663 (-2 (|:| -2439 (-663 |#4|)) (|:| -3859 |#5|) (|:| |ineq| (-663 |#4|)))) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -3894 ((-3 (-2 (|:| -2439 (-663 |#4|)) (|:| -3859 |#5|) (|:| |ineq| (-663 |#4|))) "failed") (-663 |#4|) |#5| (-663 |#4|) (-114) (-114) (-114) (-114) (-114))))
+((-2558 (((-1207) $) 15 T ELT)) (-1430 (((-1189) $) 16 T ELT)) (-2793 (($ (-1207) (-1189)) 14 T ELT)) (-3913 (((-887) $) 13 T ELT)))
+(((-1020) (-13 (-632 (-887)) (-10 -8 (-15 -2793 ($ (-1207) (-1189))) (-15 -2558 ((-1207) $)) (-15 -1430 ((-1189) $))))) (T -1020))
+((-2793 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1189)) (-5 *1 (-1020)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1020)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1020)))))
+(-13 (-632 (-887)) (-10 -8 (-15 -2793 ($ (-1207) (-1189))) (-15 -2558 ((-1207) $)) (-15 -1430 ((-1189) $))))
+((-3929 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) 66 T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 (-560) "failed") $) 96 T ELT)) (-3649 ((|#2| $) NIL T ELT) (((-1207) $) 61 T ELT) (((-421 (-560)) $) NIL T ELT) (((-560) $) 93 T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL T ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) 115 T ELT) (((-711 |#2|) (-711 $)) 28 T ELT)) (-1812 (($) 99 T ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 76 T ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 85 T ELT)) (-3490 (($ $) 10 T ELT)) (-3738 (((-3 $ "failed") $) 20 T ELT)) (-2260 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3239 (($) 16 T ELT)) (-3211 (($ $) 55 T ELT)) (-3161 (($ $ (-1 |#2| |#2|)) 36 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2951 (($ $) 12 T ELT)) (-2400 (((-915 (-560)) $) 71 T ELT) (((-915 (-391)) $) 80 T ELT) (((-549) $) 40 T ELT) (((-391) $) 44 T ELT) (((-229) $) 48 T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 91 T ELT) (($ |#2|) NIL T ELT) (($ (-1207)) 58 T ELT)) (-4191 (((-793)) 31 T ELT)) (-2362 (((-114) $ $) 51 T ELT)))
+(((-1021 |#1| |#2|) (-10 -8 (-15 -2362 ((-114) |#1| |#1|)) (-15 -3161 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1|)) (-15 -3161 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -3161 (|#1| |#1| (-1207) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1207)))) (-15 -3161 (|#1| |#1| (-1207))) (-15 -3239 (|#1|)) (-15 -3738 ((-3 |#1| "failed") |#1|)) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -3649 ((-560) |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 -2400 ((-229) |#1|)) (-15 -2400 ((-391) |#1|)) (-15 -2400 ((-549) |#1|)) (-15 -3913 (|#1| (-1207))) (-15 -3929 ((-3 (-1207) "failed") |#1|)) (-15 -3649 ((-1207) |#1|)) (-15 -1812 (|#1|)) (-15 -3211 (|#1| |#1|)) (-15 -2951 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -1646 ((-913 (-391) |#1|) |#1| (-915 (-391)) (-913 (-391) |#1|))) (-15 -1646 ((-913 (-560) |#1|) |#1| (-915 (-560)) (-913 (-560) |#1|))) (-15 -2400 ((-915 (-391)) |#1|)) (-15 -2400 ((-915 (-560)) |#1|)) (-15 -2619 ((-711 |#2|) (-711 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 |#1|) (-1297 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -2619 ((-711 (-560)) (-711 |#1|))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2260 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3913 (|#1| |#2|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -3913 (|#1| |#1|)) (-15 -4191 ((-793))) (-15 -3913 (|#1| (-560))) (-15 -3913 ((-887) |#1|))) (-1022 |#2|) (-571)) (T -1021))
+((-4191 (*1 *2) (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-1021 *3 *4)) (-4 *3 (-1022 *4)))))
+(-10 -8 (-15 -2362 ((-114) |#1| |#1|)) (-15 -3161 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1|)) (-15 -3161 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -3161 (|#1| |#1| (-1207) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1207)))) (-15 -3161 (|#1| |#1| (-1207))) (-15 -3239 (|#1|)) (-15 -3738 ((-3 |#1| "failed") |#1|)) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -3649 ((-560) |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 -2400 ((-229) |#1|)) (-15 -2400 ((-391) |#1|)) (-15 -2400 ((-549) |#1|)) (-15 -3913 (|#1| (-1207))) (-15 -3929 ((-3 (-1207) "failed") |#1|)) (-15 -3649 ((-1207) |#1|)) (-15 -1812 (|#1|)) (-15 -3211 (|#1| |#1|)) (-15 -2951 (|#1| |#1|)) (-15 -3490 (|#1| |#1|)) (-15 -1646 ((-913 (-391) |#1|) |#1| (-915 (-391)) (-913 (-391) |#1|))) (-15 -1646 ((-913 (-560) |#1|) |#1| (-915 (-560)) (-913 (-560) |#1|))) (-15 -2400 ((-915 (-391)) |#1|)) (-15 -2400 ((-915 (-560)) |#1|)) (-15 -2619 ((-711 |#2|) (-711 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 |#1|) (-1297 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -2619 ((-711 (-560)) (-711 |#1|))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2260 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3913 (|#1| |#2|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -3913 (|#1| |#1|)) (-15 -4191 ((-793))) (-15 -3913 (|#1| (-560))) (-15 -3913 ((-887) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3655 ((|#1| $) 163 (|has| |#1| (-319)) ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-4366 (($ $) 46 T ELT)) (-2667 (((-114) $) 44 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) 154 (|has| |#1| (-939)) ELT)) (-1621 (($ $) 81 T ELT)) (-3898 (((-419 $) $) 80 T ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 157 (|has| |#1| (-939)) ELT)) (-3476 (((-114) $ $) 65 T ELT)) (-1869 (((-560) $) 144 (|has| |#1| (-842)) ELT)) (-3525 (($) 18 T CONST)) (-3929 (((-3 |#1| "failed") $) 193 T ELT) (((-3 (-1207) "failed") $) 152 (|has| |#1| (-1069 (-1207))) ELT) (((-3 (-421 (-560)) "failed") $) 135 (|has| |#1| (-1069 (-560))) ELT) (((-3 (-560) "failed") $) 133 (|has| |#1| (-1069 (-560))) ELT)) (-3649 ((|#1| $) 194 T ELT) (((-1207) $) 153 (|has| |#1| (-1069 (-1207))) ELT) (((-421 (-560)) $) 136 (|has| |#1| (-1069 (-560))) ELT) (((-560) $) 134 (|has| |#1| (-1069 (-560))) ELT)) (-2186 (($ $ $) 61 T ELT)) (-2619 (((-711 (-560)) (-711 $)) 178 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 177 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 176 T ELT) (((-711 |#1|) (-711 $)) 175 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1812 (($) 161 (|has| |#1| (-559)) ELT)) (-2197 (($ $ $) 62 T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 57 T ELT)) (-3141 (((-114) $) 79 T ELT)) (-4172 (((-114) $) 146 (|has| |#1| (-842)) ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 170 (|has| |#1| (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 169 (|has| |#1| (-911 (-391))) ELT)) (-1918 (((-114) $) 35 T ELT)) (-3490 (($ $) 165 T ELT)) (-2473 ((|#1| $) 167 T ELT)) (-3738 (((-3 $ "failed") $) 132 (|has| |#1| (-1182)) ELT)) (-4470 (((-114) $) 145 (|has| |#1| (-842)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-2932 (($ $ $) 137 (|has| |#1| (-871)) ELT)) (-4379 (($ $ $) 138 (|has| |#1| (-871)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 185 T ELT)) (-4140 (((-711 (-560)) (-1297 $)) 180 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 179 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 174 T ELT) (((-711 |#1|) (-1297 $)) 173 T ELT)) (-1861 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2986 (($ $) 78 T ELT)) (-3239 (($) 131 (|has| |#1| (-1182)) CONST)) (-3376 (((-1151) $) 11 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-1938 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-3211 (($ $) 162 (|has| |#1| (-319)) ELT)) (-3147 ((|#1| $) 159 (|has| |#1| (-559)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) 156 (|has| |#1| (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) 155 (|has| |#1| (-939)) ELT)) (-4012 (((-419 $) $) 82 T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-2233 (((-3 $ "failed") $ $) 48 T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-2371 (($ $ (-663 |#1|) (-663 |#1|)) 191 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 190 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 189 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) 188 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) 187 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) 186 (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-3989 (((-793) $) 64 T ELT)) (-1507 (($ $ |#1|) 192 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 63 T ELT)) (-3161 (($ $ (-1 |#1| |#1|)) 184 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 183 T ELT) (($ $) 130 (|has| |#1| (-239)) ELT) (($ $ (-793)) 128 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 126 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 124 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 123 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 122 (|has| |#1| (-929 (-1207))) ELT)) (-2951 (($ $) 164 T ELT)) (-2484 ((|#1| $) 166 T ELT)) (-2400 (((-915 (-560)) $) 172 (|has| |#1| (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) 171 (|has| |#1| (-633 (-915 (-391)))) ELT) (((-549) $) 149 (|has| |#1| (-633 (-549))) ELT) (((-391) $) 148 (|has| |#1| (-1051)) ELT) (((-229) $) 147 (|has| |#1| (-1051)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) 158 (-1404 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-560))) 74 T ELT) (($ |#1|) 197 T ELT) (($ (-1207)) 151 (|has| |#1| (-1069 (-1207))) ELT)) (-3919 (((-3 $ "failed") $) 150 (-2196 (|has| |#1| (-147)) (-1404 (|has| $ (-147)) (|has| |#1| (-939)))) ELT)) (-4191 (((-793)) 32 T CONST)) (-3622 ((|#1| $) 160 (|has| |#1| (-559)) ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 45 T ELT)) (-2719 (($ $) 143 (|has| |#1| (-842)) ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($ $ (-1 |#1| |#1|)) 182 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 181 T ELT) (($ $) 129 (|has| |#1| (-239)) ELT) (($ $ (-793)) 127 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 125 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 121 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 120 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 119 (|has| |#1| (-929 (-1207))) ELT)) (-2396 (((-114) $ $) 139 (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) 141 (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 140 (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) 142 (|has| |#1| (-871)) ELT)) (-2453 (($ $ $) 73 T ELT) (($ |#1| |#1|) 168 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 77 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 76 T ELT) (($ (-421 (-560)) $) 75 T ELT) (($ |#1| $) 196 T ELT) (($ $ |#1|) 195 T ELT)))
(((-1022 |#1|) (-142) (-571)) (T -1022))
-((-2594 (*1 *1 *2 *2) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)))) (-3757 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)))) (-1617 (*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)))) (-3056 (*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)) (-4 *2 (-319)))) (-2652 (*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)) (-4 *2 (-319)))) (-2310 (*1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-559)) (-4 *2 (-571)))) (-1494 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)) (-4 *2 (-559)))) (-2016 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)) (-4 *2 (-559)))))
-(-13 (-376) (-38 |t#1|) (-1069 |t#1|) (-351 |t#1|) (-234 |t#1|) (-390 |t#1|) (-909 |t#1|) (-414 |t#1|) (-10 -8 (-15 -2594 ($ |t#1| |t#1|)) (-15 -3757 (|t#1| $)) (-15 -3771 (|t#1| $)) (-15 -1617 ($ $)) (-15 -3056 ($ $)) (IF (|has| |t#1| (-1182)) (-6 (-1182)) |%noBranch|) (IF (|has| |t#1| (-1069 (-560))) (PROGN (-6 (-1069 (-560))) (-6 (-1069 (-421 (-560))))) |%noBranch|) (IF (|has| |t#1| (-871)) (-6 (-871)) |%noBranch|) (IF (|has| |t#1| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |t#1| (-1051)) (-6 (-1051)) |%noBranch|) (IF (|has| |t#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1069 (-1207))) (-6 (-1069 (-1207))) |%noBranch|) (IF (|has| |t#1| (-319)) (PROGN (-15 -3941 (|t#1| $)) (-15 -2652 ($ $))) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -2310 ($)) (-15 -1494 (|t#1| $)) (-15 -2016 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-939)) (-6 (-939)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) . T) ((-635 (-560)) . T) ((-635 #1=(-1207)) |has| |#1| (-1069 (-1207))) ((-635 |#1|) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-633 (-229)) |has| |#1| (-1051)) ((-633 (-391)) |has| |#1| (-1051)) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-633 (-915 (-391))) |has| |#1| (-633 (-915 (-391)))) ((-633 (-915 (-560))) |has| |#1| (-633 (-915 (-560)))) ((-236 $) -2304 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -2304 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) . T) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) . T) ((-319) . T) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-376) . T) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-414 |#1|) . T) ((-466) . T) ((-528 (-1207) |#1|) |has| |#1| (-528 (-1207) |#1|)) ((-528 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-571) . T) ((-668 #0#) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 #2=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-660 #2#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #0#) . T) ((-739 |#1|) . T) ((-739 $) . T) ((-748) . T) ((-813) |has| |#1| (-842)) ((-814) |has| |#1| (-842)) ((-816) |has| |#1| (-842)) ((-819) |has| |#1| (-842)) ((-842) |has| |#1| (-842)) ((-870) |has| |#1| (-842)) ((-871) -2304 (|has| |#1| (-871)) (|has| |#1| (-842))) ((-874) -2304 (|has| |#1| (-871)) (|has| |#1| (-842))) ((-921 $ #3=(-1207)) -2304 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-927 (-1207)) |has| |#1| (-927 (-1207))) ((-929 #3#) -2304 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-911 (-391)) |has| |#1| (-911 (-391))) ((-911 (-560)) |has| |#1| (-911 (-560))) ((-909 |#1|) . T) ((-939) |has| |#1| (-939)) ((-950) . T) ((-1051) |has| |#1| (-1051)) ((-1069 (-421 (-560))) |has| |#1| (-1069 (-560))) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 #1#) |has| |#1| (-1069 (-1207))) ((-1069 |#1|) . T) ((-1082 #0#) . T) ((-1082 |#1|) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 |#1|) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1182) |has| |#1| (-1182)) ((-1247) . T) ((-1252) . T))
-((-3957 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT)))
-(((-1023 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#4| (-1 |#2| |#1|) |#3|))) (-571) (-571) (-1022 |#1|) (-1022 |#2|)) (T -1023))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-571)) (-4 *6 (-571)) (-4 *2 (-1022 *6)) (-5 *1 (-1023 *5 *6 *4 *2)) (-4 *4 (-1022 *5)))))
-(-10 -7 (-15 -3957 (|#4| (-1 |#2| |#1|) |#3|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2679 (($ (-1173 |#1| |#2|)) 11 T ELT)) (-2589 (((-1173 |#1| |#2|) $) 12 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3924 ((|#2| $ (-246 |#1| |#2|)) 16 T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT)))
-(((-1024 |#1| |#2|) (-13 (-21) (-298 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -2679 ($ (-1173 |#1| |#2|))) (-15 -2589 ((-1173 |#1| |#2|) $)))) (-948) (-376)) (T -1024))
-((-2679 (*1 *1 *2) (-12 (-5 *2 (-1173 *3 *4)) (-14 *3 (-948)) (-4 *4 (-376)) (-5 *1 (-1024 *3 *4)))) (-2589 (*1 *2 *1) (-12 (-5 *2 (-1173 *3 *4)) (-5 *1 (-1024 *3 *4)) (-14 *3 (-948)) (-4 *4 (-376)))))
-(-13 (-21) (-298 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -2679 ($ (-1173 |#1| |#2|))) (-15 -2589 ((-1173 |#1| |#2|) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4341 (((-1166) $) 9 T ELT)) (-1578 (((-887) $) 15 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-1025) (-13 (-1114) (-10 -8 (-15 -4341 ((-1166) $))))) (T -1025))
-((-4341 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1025)))))
-(-13 (-1114) (-10 -8 (-15 -4341 ((-1166) $))))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-2238 (($) 7 T CONST)) (-2252 (($ $) 47 T ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-4108 (((-793) $) 46 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-1576 ((|#1| $) 40 T ELT)) (-3629 (($ |#1| $) 41 T ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-3319 ((|#1| $) 45 T ELT)) (-2615 ((|#1| $) 42 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-1332 ((|#1| |#1| $) 49 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-1919 ((|#1| $) 48 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-3376 (($ (-663 |#1|)) 43 T ELT)) (-3188 ((|#1| $) 44 T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-2453 (*1 *1 *2 *2) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)))) (-2473 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)))) (-2484 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)))) (-3490 (*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)))) (-2951 (*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)))) (-3655 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)) (-4 *2 (-319)))) (-3211 (*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)) (-4 *2 (-319)))) (-1812 (*1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-559)) (-4 *2 (-571)))) (-3622 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)) (-4 *2 (-559)))) (-3147 (*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)) (-4 *2 (-559)))))
+(-13 (-376) (-38 |t#1|) (-1069 |t#1|) (-351 |t#1|) (-234 |t#1|) (-390 |t#1|) (-909 |t#1|) (-414 |t#1|) (-10 -8 (-15 -2453 ($ |t#1| |t#1|)) (-15 -2473 (|t#1| $)) (-15 -2484 (|t#1| $)) (-15 -3490 ($ $)) (-15 -2951 ($ $)) (IF (|has| |t#1| (-1182)) (-6 (-1182)) |%noBranch|) (IF (|has| |t#1| (-1069 (-560))) (PROGN (-6 (-1069 (-560))) (-6 (-1069 (-421 (-560))))) |%noBranch|) (IF (|has| |t#1| (-871)) (-6 (-871)) |%noBranch|) (IF (|has| |t#1| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |t#1| (-1051)) (-6 (-1051)) |%noBranch|) (IF (|has| |t#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1069 (-1207))) (-6 (-1069 (-1207))) |%noBranch|) (IF (|has| |t#1| (-319)) (PROGN (-15 -3655 (|t#1| $)) (-15 -3211 ($ $))) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -1812 ($)) (-15 -3622 (|t#1| $)) (-15 -3147 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-939)) (-6 (-939)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) . T) ((-635 (-560)) . T) ((-635 #1=(-1207)) |has| |#1| (-1069 (-1207))) ((-635 |#1|) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-633 (-229)) |has| |#1| (-1051)) ((-633 (-391)) |has| |#1| (-1051)) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-633 (-915 (-391))) |has| |#1| (-633 (-915 (-391)))) ((-633 (-915 (-560))) |has| |#1| (-633 (-915 (-560)))) ((-236 $) -2196 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -2196 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) . T) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) . T) ((-319) . T) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-376) . T) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-414 |#1|) . T) ((-466) . T) ((-528 (-1207) |#1|) |has| |#1| (-528 (-1207) |#1|)) ((-528 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-571) . T) ((-668 #0#) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 #2=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-660 #2#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #0#) . T) ((-739 |#1|) . T) ((-739 $) . T) ((-748) . T) ((-813) |has| |#1| (-842)) ((-814) |has| |#1| (-842)) ((-816) |has| |#1| (-842)) ((-819) |has| |#1| (-842)) ((-842) |has| |#1| (-842)) ((-870) |has| |#1| (-842)) ((-871) -2196 (|has| |#1| (-871)) (|has| |#1| (-842))) ((-874) -2196 (|has| |#1| (-871)) (|has| |#1| (-842))) ((-921 $ #3=(-1207)) -2196 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-927 (-1207)) |has| |#1| (-927 (-1207))) ((-929 #3#) -2196 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-911 (-391)) |has| |#1| (-911 (-391))) ((-911 (-560)) |has| |#1| (-911 (-560))) ((-909 |#1|) . T) ((-939) |has| |#1| (-939)) ((-950) . T) ((-1051) |has| |#1| (-1051)) ((-1069 (-421 (-560))) |has| |#1| (-1069 (-560))) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 #1#) |has| |#1| (-1069 (-1207))) ((-1069 |#1|) . T) ((-1082 #0#) . T) ((-1082 |#1|) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 |#1|) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1182) |has| |#1| (-1182)) ((-1247) . T) ((-1252) . T))
+((-2260 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT)))
+(((-1023 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2260 (|#4| (-1 |#2| |#1|) |#3|))) (-571) (-571) (-1022 |#1|) (-1022 |#2|)) (T -1023))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-571)) (-4 *6 (-571)) (-4 *2 (-1022 *6)) (-5 *1 (-1023 *5 *6 *4 *2)) (-4 *4 (-1022 *5)))))
+(-10 -7 (-15 -2260 (|#4| (-1 |#2| |#1|) |#3|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2229 (($ (-1173 |#1| |#2|)) 11 T ELT)) (-3551 (((-1173 |#1| |#2|) $) 12 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1507 ((|#2| $ (-246 |#1| |#2|)) 16 T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT)))
+(((-1024 |#1| |#2|) (-13 (-21) (-298 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -2229 ($ (-1173 |#1| |#2|))) (-15 -3551 ((-1173 |#1| |#2|) $)))) (-948) (-376)) (T -1024))
+((-2229 (*1 *1 *2) (-12 (-5 *2 (-1173 *3 *4)) (-14 *3 (-948)) (-4 *4 (-376)) (-5 *1 (-1024 *3 *4)))) (-3551 (*1 *2 *1) (-12 (-5 *2 (-1173 *3 *4)) (-5 *1 (-1024 *3 *4)) (-14 *3 (-948)) (-4 *4 (-376)))))
+(-13 (-21) (-298 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -2229 ($ (-1173 |#1| |#2|))) (-15 -3551 ((-1173 |#1| |#2|) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4465 (((-1166) $) 9 T ELT)) (-3913 (((-887) $) 15 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-1025) (-13 (-1114) (-10 -8 (-15 -4465 ((-1166) $))))) (T -1025))
+((-4465 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1025)))))
+(-13 (-1114) (-10 -8 (-15 -4465 ((-1166) $))))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-3525 (($) 7 T CONST)) (-3675 (($ $) 47 T ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-2946 (((-793) $) 46 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-1878 ((|#1| $) 40 T ELT)) (-3888 (($ |#1| $) 41 T ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-3893 ((|#1| $) 45 T ELT)) (-2796 ((|#1| $) 42 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-3464 ((|#1| |#1| $) 49 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-3483 ((|#1| $) 48 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-3184 (($ (-663 |#1|)) 43 T ELT)) (-1855 ((|#1| $) 44 T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-1026 |#1|) (-142) (-1247)) (T -1026))
-((-1332 (*1 *2 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1247)))) (-1919 (*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1247)))) (-2252 (*1 *1 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1247)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1247)) (-5 *2 (-793)))) (-3319 (*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1247)))) (-3188 (*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1247)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4508) (-15 -1332 (|t#1| |t#1| $)) (-15 -1919 (|t#1| $)) (-15 -2252 ($ $)) (-15 -4108 ((-793) $)) (-15 -3319 (|t#1| $)) (-15 -3188 (|t#1| $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3330 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-4482 ((|#1| $) 12 T ELT)) (-3643 (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-559)) ELT)) (-3469 (((-114) $) NIL (|has| |#1| (-559)) ELT)) (-3197 (((-421 (-560)) $) NIL (|has| |#1| (-559)) ELT)) (-2318 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-2032 ((|#1| $) NIL T ELT)) (-3825 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2593 ((|#1| $) 15 T ELT)) (-3259 ((|#1| $) 14 T ELT)) (-3953 ((|#1| $) 13 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4187 (($ $ (-663 |#1|) (-663 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-3924 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-2894 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-1407 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-4122 (($ $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-421 (-560))) NIL (-2304 (|has| |#1| (-376)) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-1964 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2282 ((|#1| $) NIL (|has| |#1| (-1091)) ELT)) (-2001 (($) 8 T CONST)) (-2011 (($) 10 T CONST)) (-3305 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-2536 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-376)) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-376)) ELT)))
+((-3464 (*1 *2 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1247)))) (-3483 (*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1247)))) (-3675 (*1 *1 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1247)))) (-2946 (*1 *2 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1247)) (-5 *2 (-793)))) (-3893 (*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1247)))) (-1855 (*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1247)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4508) (-15 -3464 (|t#1| |t#1| $)) (-15 -3483 (|t#1| $)) (-15 -3675 ($ $)) (-15 -2946 ((-793) $)) (-15 -3893 (|t#1| $)) (-15 -1855 (|t#1| $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3649 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4034 ((|#1| $) 12 T ELT)) (-2743 (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-559)) ELT)) (-1574 (((-114) $) NIL (|has| |#1| (-559)) ELT)) (-1957 (((-421 (-560)) $) NIL (|has| |#1| (-559)) ELT)) (-3056 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-2084 ((|#1| $) NIL T ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3875 ((|#1| $) 15 T ELT)) (-1358 ((|#1| $) 14 T ELT)) (-3798 ((|#1| $) 13 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2371 (($ $ (-663 |#1|) (-663 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-1507 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3161 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-2400 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-1714 (($ $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-421 (-560))) NIL (-2196 (|has| |#1| (-376)) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-3919 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-2719 ((|#1| $) NIL (|has| |#1| (-1091)) ELT)) (-1446 (($) 8 T CONST)) (-1456 (($) 10 T CONST)) (-2111 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-2396 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-376)) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-376)) ELT)))
(((-1027 |#1|) (-1029 |#1|) (-175)) (T -1027))
NIL
(-1029 |#1|)
-((-2388 (((-114) $) 43 T ELT)) (-2539 (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 46 T ELT)) (-3330 (((-560) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3643 (((-3 (-421 (-560)) "failed") $) 78 T ELT)) (-3469 (((-114) $) 72 T ELT)) (-3197 (((-421 (-560)) $) 76 T ELT)) (-1581 (((-114) $) 42 T ELT)) (-2032 ((|#2| $) 22 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-1544 (($ $) 58 T ELT)) (-2894 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-1407 (((-549) $) 67 T ELT)) (-4122 (($ $) 17 T ELT)) (-1578 (((-887) $) 53 T ELT) (($ (-560)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-421 (-560))) NIL T ELT)) (-2930 (((-793)) 10 T ELT)) (-2282 ((|#2| $) 71 T ELT)) (-2473 (((-114) $ $) 26 T ELT)) (-2495 (((-114) $ $) 69 T ELT)) (-2580 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-2567 (($ $ $) 27 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT)))
-(((-1028 |#1| |#2|) (-10 -8 (-15 -1578 (|#1| (-421 (-560)))) (-15 -2894 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1|)) (-15 -2894 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -2894 (|#1| |#1| (-1207) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1207)))) (-15 -2894 (|#1| |#1| (-1207))) (-15 -2495 ((-114) |#1| |#1|)) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 * (|#1| |#1| (-421 (-560)))) (-15 -1544 (|#1| |#1|)) (-15 -1407 ((-549) |#1|)) (-15 -3643 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3197 ((-421 (-560)) |#1|)) (-15 -3469 ((-114) |#1|)) (-15 -2282 (|#2| |#1|)) (-15 -2032 (|#2| |#1|)) (-15 -4122 (|#1| |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3330 ((-560) |#1|)) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -1578 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2930 ((-793))) (-15 -1578 (|#1| (-560))) (-15 -1581 ((-114) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 -2388 ((-114) |#1|)) (-15 * (|#1| (-948) |#1|)) (-15 -2567 (|#1| |#1| |#1|)) (-15 -1578 ((-887) |#1|)) (-15 -2473 ((-114) |#1| |#1|))) (-1029 |#2|) (-175)) (T -1028))
-((-2930 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-1028 *3 *4)) (-4 *3 (-1029 *4)))))
-(-10 -8 (-15 -1578 (|#1| (-421 (-560)))) (-15 -2894 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1|)) (-15 -2894 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -2894 (|#1| |#1| (-1207) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1207)))) (-15 -2894 (|#1| |#1| (-1207))) (-15 -2495 ((-114) |#1| |#1|)) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 * (|#1| |#1| (-421 (-560)))) (-15 -1544 (|#1| |#1|)) (-15 -1407 ((-549) |#1|)) (-15 -3643 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3197 ((-421 (-560)) |#1|)) (-15 -3469 ((-114) |#1|)) (-15 -2282 (|#2| |#1|)) (-15 -2032 (|#2| |#1|)) (-15 -4122 (|#1| |#1|)) (-15 -3957 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3330 ((-560) |#1|)) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -1578 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2930 ((-793))) (-15 -1578 (|#1| (-560))) (-15 -1581 ((-114) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 -2388 ((-114) |#1|)) (-15 * (|#1| (-948) |#1|)) (-15 -2567 (|#1| |#1| |#1|)) (-15 -1578 ((-887) |#1|)) (-15 -2473 ((-114) |#1| |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-2539 (((-3 (-560) "failed") $) 135 (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) 133 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 130 T ELT)) (-3330 (((-560) $) 134 (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) 132 (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) 131 T ELT)) (-3142 (((-711 (-560)) (-711 $)) 115 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 114 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 113 T ELT) (((-711 |#1|) (-711 $)) 112 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-4482 ((|#1| $) 103 T ELT)) (-3643 (((-3 (-421 (-560)) "failed") $) 99 (|has| |#1| (-559)) ELT)) (-3469 (((-114) $) 101 (|has| |#1| (-559)) ELT)) (-3197 (((-421 (-560)) $) 100 (|has| |#1| (-559)) ELT)) (-2318 (($ |#1| |#1| |#1| |#1|) 104 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-2032 ((|#1| $) 105 T ELT)) (-3825 (($ $ $) 87 (|has| |#1| (-871)) ELT)) (-2820 (($ $ $) 88 (|has| |#1| (-871)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 118 T ELT)) (-2484 (((-711 (-560)) (-1297 $)) 117 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 116 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 111 T ELT) (((-711 |#1|) (-1297 $)) 110 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-1544 (($ $) 96 (|has| |#1| (-376)) ELT)) (-2593 ((|#1| $) 106 T ELT)) (-3259 ((|#1| $) 107 T ELT)) (-3953 ((|#1| $) 108 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-4187 (($ $ (-663 |#1|) (-663 |#1|)) 124 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 123 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 122 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) 121 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) 120 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) 119 (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-3924 (($ $ |#1|) 125 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-2894 (($ $ (-1 |#1| |#1|)) 129 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 128 T ELT) (($ $) 86 (|has| |#1| (-239)) ELT) (($ $ (-793)) 84 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 82 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 80 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 79 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 78 (|has| |#1| (-929 (-1207))) ELT)) (-1407 (((-549) $) 97 (|has| |#1| (-633 (-549))) ELT)) (-4122 (($ $) 109 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 44 T ELT) (($ (-421 (-560))) 74 (-2304 (|has| |#1| (-376)) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-1964 (((-3 $ "failed") $) 98 (|has| |#1| (-147)) ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2282 ((|#1| $) 102 (|has| |#1| (-1091)) ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($ $ (-1 |#1| |#1|)) 127 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 126 T ELT) (($ $) 85 (|has| |#1| (-239)) ELT) (($ $ (-793)) 83 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 81 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 77 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 76 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 75 (|has| |#1| (-929 (-1207))) ELT)) (-2536 (((-114) $ $) 89 (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) 91 (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 90 (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) 92 (|has| |#1| (-871)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 95 (|has| |#1| (-376)) ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT) (($ $ (-421 (-560))) 94 (|has| |#1| (-376)) ELT) (($ (-421 (-560)) $) 93 (|has| |#1| (-376)) ELT)))
+((-2505 (((-114) $) 43 T ELT)) (-3929 (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 |#2| "failed") $) 46 T ELT)) (-3649 (((-560) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-2743 (((-3 (-421 (-560)) "failed") $) 78 T ELT)) (-1574 (((-114) $) 72 T ELT)) (-1957 (((-421 (-560)) $) 76 T ELT)) (-1918 (((-114) $) 42 T ELT)) (-2084 ((|#2| $) 22 T ELT)) (-2260 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2986 (($ $) 58 T ELT)) (-3161 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2400 (((-549) $) 67 T ELT)) (-1714 (($ $) 17 T ELT)) (-3913 (((-887) $) 53 T ELT) (($ (-560)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-421 (-560))) NIL T ELT)) (-4191 (((-793)) 10 T ELT)) (-2719 ((|#2| $) 71 T ELT)) (-2340 (((-114) $ $) 26 T ELT)) (-2362 (((-114) $ $) 69 T ELT)) (-2441 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-2429 (($ $ $) 27 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT)))
+(((-1028 |#1| |#2|) (-10 -8 (-15 -3913 (|#1| (-421 (-560)))) (-15 -3161 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1|)) (-15 -3161 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -3161 (|#1| |#1| (-1207) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1207)))) (-15 -3161 (|#1| |#1| (-1207))) (-15 -2362 ((-114) |#1| |#1|)) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 * (|#1| |#1| (-421 (-560)))) (-15 -2986 (|#1| |#1|)) (-15 -2400 ((-549) |#1|)) (-15 -2743 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -1957 ((-421 (-560)) |#1|)) (-15 -1574 ((-114) |#1|)) (-15 -2719 (|#2| |#1|)) (-15 -2084 (|#2| |#1|)) (-15 -1714 (|#1| |#1|)) (-15 -2260 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3649 ((-560) |#1|)) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -3913 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4191 ((-793))) (-15 -3913 (|#1| (-560))) (-15 -1918 ((-114) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 -2505 ((-114) |#1|)) (-15 * (|#1| (-948) |#1|)) (-15 -2429 (|#1| |#1| |#1|)) (-15 -3913 ((-887) |#1|)) (-15 -2340 ((-114) |#1| |#1|))) (-1029 |#2|) (-175)) (T -1028))
+((-4191 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-1028 *3 *4)) (-4 *3 (-1029 *4)))))
+(-10 -8 (-15 -3913 (|#1| (-421 (-560)))) (-15 -3161 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1|)) (-15 -3161 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -3161 (|#1| |#1| (-1207) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1207)))) (-15 -3161 (|#1| |#1| (-1207))) (-15 -2362 ((-114) |#1| |#1|)) (-15 * (|#1| (-421 (-560)) |#1|)) (-15 * (|#1| |#1| (-421 (-560)))) (-15 -2986 (|#1| |#1|)) (-15 -2400 ((-549) |#1|)) (-15 -2743 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -1957 ((-421 (-560)) |#1|)) (-15 -1574 ((-114) |#1|)) (-15 -2719 (|#2| |#1|)) (-15 -2084 (|#2| |#1|)) (-15 -1714 (|#1| |#1|)) (-15 -2260 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3649 ((-560) |#1|)) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -3913 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4191 ((-793))) (-15 -3913 (|#1| (-560))) (-15 -1918 ((-114) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 * (|#1| (-793) |#1|)) (-15 -2505 ((-114) |#1|)) (-15 * (|#1| (-948) |#1|)) (-15 -2429 (|#1| |#1| |#1|)) (-15 -3913 ((-887) |#1|)) (-15 -2340 ((-114) |#1| |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-3929 (((-3 (-560) "failed") $) 135 (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) 133 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) 130 T ELT)) (-3649 (((-560) $) 134 (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) 132 (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) 131 T ELT)) (-2619 (((-711 (-560)) (-711 $)) 115 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 114 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 113 T ELT) (((-711 |#1|) (-711 $)) 112 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-4034 ((|#1| $) 103 T ELT)) (-2743 (((-3 (-421 (-560)) "failed") $) 99 (|has| |#1| (-559)) ELT)) (-1574 (((-114) $) 101 (|has| |#1| (-559)) ELT)) (-1957 (((-421 (-560)) $) 100 (|has| |#1| (-559)) ELT)) (-3056 (($ |#1| |#1| |#1| |#1|) 104 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-2084 ((|#1| $) 105 T ELT)) (-2932 (($ $ $) 87 (|has| |#1| (-871)) ELT)) (-4379 (($ $ $) 88 (|has| |#1| (-871)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 118 T ELT)) (-4140 (((-711 (-560)) (-1297 $)) 117 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 116 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 111 T ELT) (((-711 |#1|) (-1297 $)) 110 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2986 (($ $) 96 (|has| |#1| (-376)) ELT)) (-3875 ((|#1| $) 106 T ELT)) (-1358 ((|#1| $) 107 T ELT)) (-3798 ((|#1| $) 108 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2371 (($ $ (-663 |#1|) (-663 |#1|)) 124 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 123 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 122 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-305 |#1|))) 121 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) 120 (|has| |#1| (-528 (-1207) |#1|)) ELT) (($ $ (-1207) |#1|) 119 (|has| |#1| (-528 (-1207) |#1|)) ELT)) (-1507 (($ $ |#1|) 125 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3161 (($ $ (-1 |#1| |#1|)) 129 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 128 T ELT) (($ $) 86 (|has| |#1| (-239)) ELT) (($ $ (-793)) 84 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 82 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 80 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 79 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 78 (|has| |#1| (-929 (-1207))) ELT)) (-2400 (((-549) $) 97 (|has| |#1| (-633 (-549))) ELT)) (-1714 (($ $) 109 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 44 T ELT) (($ (-421 (-560))) 74 (-2196 (|has| |#1| (-376)) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-3919 (((-3 $ "failed") $) 98 (|has| |#1| (-147)) ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-2719 ((|#1| $) 102 (|has| |#1| (-1091)) ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($ $ (-1 |#1| |#1|)) 127 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 126 T ELT) (($ $) 85 (|has| |#1| (-239)) ELT) (($ $ (-793)) 83 (|has| |#1| (-239)) ELT) (($ $ (-1207)) 81 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 77 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 76 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 75 (|has| |#1| (-929 (-1207))) ELT)) (-2396 (((-114) $ $) 89 (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) 91 (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 90 (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) 92 (|has| |#1| (-871)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 95 (|has| |#1| (-376)) ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 46 T ELT) (($ |#1| $) 45 T ELT) (($ $ (-421 (-560))) 94 (|has| |#1| (-376)) ELT) (($ (-421 (-560)) $) 93 (|has| |#1| (-376)) ELT)))
(((-1029 |#1|) (-142) (-175)) (T -1029))
-((-4122 (*1 *1 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))) (-3953 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))) (-3259 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))) (-2593 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))) (-2032 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))) (-2318 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))) (-4482 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))) (-2282 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)) (-4 *2 (-1091)))) (-3469 (*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-114)))) (-3197 (*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-560))))) (-3643 (*1 *2 *1) (|partial| -12 (-4 *1 (-1029 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-560))))))
-(-13 (-38 |t#1|) (-426 |t#1|) (-234 |t#1|) (-351 |t#1|) (-390 |t#1|) (-10 -8 (-15 -4122 ($ $)) (-15 -3953 (|t#1| $)) (-15 -3259 (|t#1| $)) (-15 -2593 (|t#1| $)) (-15 -2032 (|t#1| $)) (-15 -2318 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4482 (|t#1| $)) (IF (|has| |t#1| (-302)) (-6 (-302)) |%noBranch|) (IF (|has| |t#1| (-871)) (-6 (-871)) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-250)) |%noBranch|) (IF (|has| |t#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1091)) (-15 -2282 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -3469 ((-114) $)) (-15 -3197 ((-421 (-560)) $)) (-15 -3643 ((-3 (-421 (-560)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) |has| |#1| (-376)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-376)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2304 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) -2304 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-376))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-632 (-887)) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-236 $) -2304 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -2304 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) |has| |#1| (-376)) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) -2304 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-426 |#1|) . T) ((-528 (-1207) |#1|) |has| |#1| (-528 (-1207) |#1|)) ((-528 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-668 #0#) |has| |#1| (-376)) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-376)) ((-670 #1=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-376)) ((-662 |#1|) . T) ((-660 #1#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #0#) |has| |#1| (-376)) ((-739 |#1|) . T) ((-748) . T) ((-871) |has| |#1| (-871)) ((-874) |has| |#1| (-871)) ((-921 $ #2=(-1207)) -2304 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-927 (-1207)) |has| |#1| (-927 (-1207))) ((-929 #2#) -2304 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-1069 (-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 |#1|) . T) ((-1082 #0#) |has| |#1| (-376)) ((-1082 |#1|) . T) ((-1082 $) -2304 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-1087 #0#) |has| |#1| (-376)) ((-1087 |#1|) . T) ((-1087 $) -2304 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-3957 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT)))
-(((-1030 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#3| (-1 |#4| |#2|) |#1|))) (-1029 |#2|) (-175) (-1029 |#4|) (-175)) (T -1030))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-1029 *6)) (-5 *1 (-1030 *4 *5 *2 *6)) (-4 *4 (-1029 *5)))))
-(-10 -7 (-15 -3957 (|#3| (-1 |#4| |#2|) |#1|)))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2252 (($ $) 23 T ELT)) (-2607 (($ (-663 |#1|)) 33 T ELT)) (-2181 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-4108 (((-793) $) 26 T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-1576 ((|#1| $) 28 T ELT)) (-3629 (($ |#1| $) 17 T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3319 ((|#1| $) 27 T ELT)) (-2615 ((|#1| $) 22 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1332 ((|#1| |#1| $) 16 T ELT)) (-1663 (((-114) $) 18 T ELT)) (-3986 (($) NIL T ELT)) (-1919 ((|#1| $) 21 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1799 (($ $) NIL T ELT)) (-1578 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3376 (($ (-663 |#1|)) NIL T ELT)) (-3188 ((|#1| $) 30 T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-1031 |#1|) (-13 (-1026 |#1|) (-10 -8 (-15 -2607 ($ (-663 |#1|))))) (-1132)) (T -1031))
-((-2607 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-1031 *3)))))
-(-13 (-1026 |#1|) (-10 -8 (-15 -2607 ($ (-663 |#1|)))))
-((-4471 (($ $) 12 T ELT)) (-2146 (($ $ (-560)) 13 T ELT)))
-(((-1032 |#1|) (-10 -8 (-15 -4471 (|#1| |#1|)) (-15 -2146 (|#1| |#1| (-560)))) (-1033)) (T -1032))
-NIL
-(-10 -8 (-15 -4471 (|#1| |#1|)) (-15 -2146 (|#1| |#1| (-560))))
-((-4471 (($ $) 6 T ELT)) (-2146 (($ $ (-560)) 7 T ELT)) (** (($ $ (-421 (-560))) 8 T ELT)))
+((-1714 (*1 *1 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))) (-1358 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))) (-3875 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))) (-2084 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))) (-3056 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))) (-4034 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))) (-2719 (*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)) (-4 *2 (-1091)))) (-1574 (*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-114)))) (-1957 (*1 *2 *1) (-12 (-4 *1 (-1029 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-560))))) (-2743 (*1 *2 *1) (|partial| -12 (-4 *1 (-1029 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-421 (-560))))))
+(-13 (-38 |t#1|) (-426 |t#1|) (-234 |t#1|) (-351 |t#1|) (-390 |t#1|) (-10 -8 (-15 -1714 ($ $)) (-15 -3798 (|t#1| $)) (-15 -1358 (|t#1| $)) (-15 -3875 (|t#1| $)) (-15 -2084 (|t#1| $)) (-15 -3056 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4034 (|t#1| $)) (IF (|has| |t#1| (-302)) (-6 (-302)) |%noBranch|) (IF (|has| |t#1| (-871)) (-6 (-871)) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-250)) |%noBranch|) (IF (|has| |t#1| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1091)) (-15 -2719 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-559)) (PROGN (-15 -1574 ((-114) $)) (-15 -1957 ((-421 (-560)) $)) (-15 -2743 ((-3 (-421 (-560)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) |has| |#1| (-376)) ((-38 |#1|) . T) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-376)) ((-111 |#1| |#1|) . T) ((-111 $ $) -2196 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) -2196 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-376))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-632 (-887)) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-236 $) -2196 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -2196 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) |has| |#1| (-376)) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) -2196 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-426 |#1|) . T) ((-528 (-1207) |#1|) |has| |#1| (-528 (-1207) |#1|)) ((-528 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-668 #0#) |has| |#1| (-376)) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-376)) ((-670 #1=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-376)) ((-662 |#1|) . T) ((-660 #1#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #0#) |has| |#1| (-376)) ((-739 |#1|) . T) ((-748) . T) ((-871) |has| |#1| (-871)) ((-874) |has| |#1| (-871)) ((-921 $ #2=(-1207)) -2196 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-927 (-1207)) |has| |#1| (-927 (-1207))) ((-929 #2#) -2196 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-1069 (-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 |#1|) . T) ((-1082 #0#) |has| |#1| (-376)) ((-1082 |#1|) . T) ((-1082 $) -2196 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-1087 #0#) |has| |#1| (-376)) ((-1087 |#1|) . T) ((-1087 $) -2196 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
+((-2260 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT)))
+(((-1030 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2260 (|#3| (-1 |#4| |#2|) |#1|))) (-1029 |#2|) (-175) (-1029 |#4|) (-175)) (T -1030))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-1029 *6)) (-5 *1 (-1030 *4 *5 *2 *6)) (-4 *4 (-1029 *5)))))
+(-10 -7 (-15 -2260 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3675 (($ $) 23 T ELT)) (-3994 (($ (-663 |#1|)) 33 T ELT)) (-3737 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-2946 (((-793) $) 26 T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-1878 ((|#1| $) 28 T ELT)) (-3888 (($ |#1| $) 17 T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3893 ((|#1| $) 27 T ELT)) (-2796 ((|#1| $) 22 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-3464 ((|#1| |#1| $) 16 T ELT)) (-2706 (((-114) $) 18 T ELT)) (-2832 (($) NIL T ELT)) (-3483 ((|#1| $) 21 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4107 (($ $) NIL T ELT)) (-3913 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3184 (($ (-663 |#1|)) NIL T ELT)) (-1855 ((|#1| $) 30 T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-1031 |#1|) (-13 (-1026 |#1|) (-10 -8 (-15 -3994 ($ (-663 |#1|))))) (-1132)) (T -1031))
+((-3994 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-1031 *3)))))
+(-13 (-1026 |#1|) (-10 -8 (-15 -3994 ($ (-663 |#1|)))))
+((-4021 (($ $) 12 T ELT)) (-1956 (($ $ (-560)) 13 T ELT)))
+(((-1032 |#1|) (-10 -8 (-15 -4021 (|#1| |#1|)) (-15 -1956 (|#1| |#1| (-560)))) (-1033)) (T -1032))
+NIL
+(-10 -8 (-15 -4021 (|#1| |#1|)) (-15 -1956 (|#1| |#1| (-560))))
+((-4021 (($ $) 6 T ELT)) (-1956 (($ $ (-560)) 7 T ELT)) (** (($ $ (-421 (-560))) 8 T ELT)))
(((-1033) (-142)) (T -1033))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-421 (-560))))) (-2146 (*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-560)))) (-4471 (*1 *1 *1) (-4 *1 (-1033))))
-(-13 (-10 -8 (-15 -4471 ($ $)) (-15 -2146 ($ $ (-560))) (-15 ** ($ $ (-421 (-560))))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-2856 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3244 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4093 (((-114) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1698 (((-711 (-421 |#2|)) (-1297 $)) NIL T ELT) (((-711 (-421 |#2|))) NIL T ELT)) (-3349 (((-421 |#2|) $) NIL T ELT)) (-2105 (((-1219 (-948) (-793)) (-560)) NIL (|has| (-421 |#2|) (-363)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3023 (((-419 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1615 (((-114) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3241 (((-793)) NIL (|has| (-421 |#2|) (-381)) ELT)) (-4309 (((-114)) NIL T ELT)) (-2819 (((-114) |#1|) 162 T ELT) (((-114) |#2|) 166 T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) NIL (|has| (-421 |#2|) (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| (-421 |#2|) (-1069 (-421 (-560)))) ELT) (((-3 (-421 |#2|) "failed") $) NIL T ELT)) (-3330 (((-560) $) NIL (|has| (-421 |#2|) (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| (-421 |#2|) (-1069 (-421 (-560)))) ELT) (((-421 |#2|) $) NIL T ELT)) (-4143 (($ (-1297 (-421 |#2|)) (-1297 $)) NIL T ELT) (($ (-1297 (-421 |#2|))) 79 T ELT) (($ (-1297 |#2|) |#2|) NIL T ELT)) (-4217 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-421 |#2|) (-363)) ELT)) (-1478 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4333 (((-711 (-421 |#2|)) $ (-1297 $)) NIL T ELT) (((-711 (-421 |#2|)) $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-421 |#2|))) (|:| |vec| (-1297 (-421 |#2|)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-421 |#2|)) (-711 $)) NIL T ELT)) (-3722 (((-1297 $) (-1297 $)) NIL T ELT)) (-4129 (($ |#3|) 73 T ELT) (((-3 $ "failed") (-421 |#3|)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1887 (((-663 (-663 |#1|))) NIL (|has| |#1| (-381)) ELT)) (-2659 (((-114) |#1| |#1|) NIL T ELT)) (-2326 (((-948)) NIL T ELT)) (-2310 (($) NIL (|has| (-421 |#2|) (-381)) ELT)) (-4120 (((-114)) NIL T ELT)) (-2952 (((-114) |#1|) 61 T ELT) (((-114) |#2|) 164 T ELT)) (-1490 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2806 (($ $) NIL T ELT)) (-4336 (($) NIL (|has| (-421 |#2|) (-363)) ELT)) (-3976 (((-114) $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-1696 (($ $ (-793)) NIL (|has| (-421 |#2|) (-363)) ELT) (($ $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-4330 (((-114) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3913 (((-948) $) NIL (|has| (-421 |#2|) (-363)) ELT) (((-854 (-948)) $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-1581 (((-114) $) NIL T ELT)) (-2325 (((-793)) NIL T ELT)) (-1772 (((-1297 $) (-1297 $)) NIL T ELT)) (-2032 (((-421 |#2|) $) NIL T ELT)) (-1493 (((-663 (-975 |#1|)) (-1207)) NIL (|has| |#1| (-376)) ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1787 ((|#3| $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4419 (((-948) $) NIL (|has| (-421 |#2|) (-381)) ELT)) (-4116 ((|#3| $) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-421 |#2|))) (|:| |vec| (-1297 (-421 |#2|)))) (-1297 $) $) NIL T ELT) (((-711 (-421 |#2|)) (-1297 $)) NIL T ELT)) (-2093 (($ (-663 $)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3912 (((-711 (-421 |#2|))) 57 T ELT)) (-4470 (((-711 (-421 |#2|))) 56 T ELT)) (-1544 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2921 (($ (-1297 |#2|) |#2|) 80 T ELT)) (-1589 (((-711 (-421 |#2|))) 55 T ELT)) (-2991 (((-711 (-421 |#2|))) 54 T ELT)) (-3701 (((-2 (|:| |num| (-711 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-2578 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-3090 (((-1297 $)) 51 T ELT)) (-3932 (((-1297 $)) 50 T ELT)) (-1499 (((-114) $) NIL T ELT)) (-2905 (((-114) $) NIL T ELT) (((-114) $ |#1|) NIL T ELT) (((-114) $ |#2|) NIL T ELT)) (-3161 (($) NIL (|has| (-421 |#2|) (-363)) CONST)) (-3128 (($ (-948)) NIL (|has| (-421 |#2|) (-381)) ELT)) (-2793 (((-3 |#2| "failed")) 70 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1685 (((-793)) NIL T ELT)) (-2748 (($) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2132 (($ (-663 $)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3666 (((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))) NIL (|has| (-421 |#2|) (-363)) ELT)) (-4457 (((-419 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-421 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1528 (((-3 $ "failed") $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2901 (((-793) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3924 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2870 (((-3 |#2| "failed")) 68 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2690 (((-421 |#2|) (-1297 $)) NIL T ELT) (((-421 |#2|)) 47 T ELT)) (-2364 (((-793) $) NIL (|has| (-421 |#2|) (-363)) ELT) (((-3 (-793) "failed") $ $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-2894 (($ $ (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2304 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2304 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-663 (-1207))) NIL (-2304 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-793)) NIL (-2304 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT) (($ $) NIL (-2304 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT)) (-3604 (((-711 (-421 |#2|)) (-1297 $) (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4394 ((|#3|) 58 T ELT)) (-2243 (($) NIL (|has| (-421 |#2|) (-363)) ELT)) (-2178 (((-1297 (-421 |#2|)) $ (-1297 $)) NIL T ELT) (((-711 (-421 |#2|)) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 (-421 |#2|)) $) 81 T ELT) (((-711 (-421 |#2|)) (-1297 $)) NIL T ELT)) (-1407 (((-1297 (-421 |#2|)) $) NIL T ELT) (($ (-1297 (-421 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| (-421 |#2|) (-363)) ELT)) (-4335 (((-1297 $) (-1297 $)) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 |#2|)) NIL T ELT) (($ (-421 (-560))) NIL (-2304 (|has| (-421 |#2|) (-1069 (-421 (-560)))) (|has| (-421 |#2|) (-376))) ELT) (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1964 (($ $) NIL (|has| (-421 |#2|) (-363)) ELT) (((-3 $ "failed") $) NIL (|has| (-421 |#2|) (-147)) ELT)) (-2630 ((|#3| $) NIL T ELT)) (-2930 (((-793)) NIL T CONST)) (-2297 (((-114)) 65 T ELT)) (-3882 (((-114) |#1|) 167 T ELT) (((-114) |#2|) 168 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1954 (((-1297 $)) NIL T ELT)) (-2948 (((-114) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3059 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-3861 (((-114)) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $ (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2304 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2304 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-663 (-1207))) NIL (-2304 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-793)) NIL (-2304 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT) (($ $) NIL (-2304 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| (-421 |#2|) (-376)) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 |#2|)) NIL T ELT) (($ (-421 |#2|) $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-421 (-560))) NIL (|has| (-421 |#2|) (-376)) ELT)))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-421 (-560))))) (-1956 (*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-560)))) (-4021 (*1 *1 *1) (-4 *1 (-1033))))
+(-13 (-10 -8 (-15 -4021 ($ $)) (-15 -1956 ($ $ (-560))) (-15 ** ($ $ (-421 (-560))))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3488 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4366 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2667 (((-114) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3100 (((-711 (-421 |#2|)) (-1297 $)) NIL T ELT) (((-711 (-421 |#2|))) NIL T ELT)) (-4113 (((-421 |#2|) $) NIL T ELT)) (-1548 (((-1219 (-948) (-793)) (-560)) NIL (|has| (-421 |#2|) (-363)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3898 (((-419 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3476 (((-114) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2552 (((-793)) NIL (|has| (-421 |#2|) (-381)) ELT)) (-2942 (((-114)) NIL T ELT)) (-4368 (((-114) |#1|) 162 T ELT) (((-114) |#2|) 166 T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) NIL (|has| (-421 |#2|) (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| (-421 |#2|) (-1069 (-421 (-560)))) ELT) (((-3 (-421 |#2|) "failed") $) NIL T ELT)) (-3649 (((-560) $) NIL (|has| (-421 |#2|) (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| (-421 |#2|) (-1069 (-421 (-560)))) ELT) (((-421 |#2|) $) NIL T ELT)) (-1953 (($ (-1297 (-421 |#2|)) (-1297 $)) NIL T ELT) (($ (-1297 (-421 |#2|))) 79 T ELT) (($ (-1297 |#2|) |#2|) NIL T ELT)) (-1433 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-421 |#2|) (-363)) ELT)) (-2186 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3160 (((-711 (-421 |#2|)) $ (-1297 $)) NIL T ELT) (((-711 (-421 |#2|)) $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-421 |#2|))) (|:| |vec| (-1297 (-421 |#2|)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-421 |#2|)) (-711 $)) NIL T ELT)) (-2265 (((-1297 $) (-1297 $)) NIL T ELT)) (-1778 (($ |#3|) 73 T ELT) (((-3 $ "failed") (-421 |#3|)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4412 (((-663 (-663 |#1|))) NIL (|has| |#1| (-381)) ELT)) (-3269 (((-114) |#1| |#1|) NIL T ELT)) (-1604 (((-948)) NIL T ELT)) (-1812 (($) NIL (|has| (-421 |#2|) (-381)) ELT)) (-1693 (((-114)) NIL T ELT)) (-4391 (((-114) |#1|) 61 T ELT) (((-114) |#2|) 164 T ELT)) (-2197 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4239 (($ $) NIL T ELT)) (-3191 (($) NIL (|has| (-421 |#2|) (-363)) ELT)) (-4017 (((-114) $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-3079 (($ $ (-793)) NIL (|has| (-421 |#2|) (-363)) ELT) (($ $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-3141 (((-114) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1460 (((-948) $) NIL (|has| (-421 |#2|) (-363)) ELT) (((-854 (-948)) $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-1918 (((-114) $) NIL T ELT)) (-3135 (((-793)) NIL T ELT)) (-2572 (((-1297 $) (-1297 $)) NIL T ELT)) (-2084 (((-421 |#2|) $) NIL T ELT)) (-3608 (((-663 (-975 |#1|)) (-1207)) NIL (|has| |#1| (-376)) ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1471 ((|#3| $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2622 (((-948) $) NIL (|has| (-421 |#2|) (-381)) ELT)) (-1767 ((|#3| $) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| (-421 |#2|) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-421 |#2|))) (|:| |vec| (-1297 (-421 |#2|)))) (-1297 $) $) NIL T ELT) (((-711 (-421 |#2|)) (-1297 $)) NIL T ELT)) (-1861 (($ (-663 $)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1449 (((-711 (-421 |#2|))) 57 T ELT)) (-1823 (((-711 (-421 |#2|))) 56 T ELT)) (-2986 (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-4086 (($ (-1297 |#2|) |#2|) 80 T ELT)) (-3273 (((-711 (-421 |#2|))) 55 T ELT)) (-3539 (((-711 (-421 |#2|))) 54 T ELT)) (-3322 (((-2 (|:| |num| (-711 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-3753 (((-2 (|:| |num| (-1297 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-2083 (((-1297 $)) 51 T ELT)) (-3538 (((-1297 $)) 50 T ELT)) (-2870 (((-114) $) NIL T ELT)) (-4030 (((-114) $) NIL T ELT) (((-114) $ |#1|) NIL T ELT) (((-114) $ |#2|) NIL T ELT)) (-3239 (($) NIL (|has| (-421 |#2|) (-363)) CONST)) (-1591 (($ (-948)) NIL (|has| (-421 |#2|) (-381)) ELT)) (-4094 (((-3 |#2| "failed")) 70 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2943 (((-793)) NIL T ELT)) (-3583 (($) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1938 (($ (-663 $)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2976 (((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))) NIL (|has| (-421 |#2|) (-363)) ELT)) (-4012 (((-419 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-421 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2233 (((-3 $ "failed") $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3989 (((-793) $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-1507 ((|#1| $ |#1| |#1|) NIL T ELT)) (-3667 (((-3 |#2| "failed")) 68 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2336 (((-421 |#2|) (-1297 $)) NIL T ELT) (((-421 |#2|)) 47 T ELT)) (-2258 (((-793) $) NIL (|has| (-421 |#2|) (-363)) ELT) (((-3 (-793) "failed") $ $) NIL (|has| (-421 |#2|) (-363)) ELT)) (-3161 (($ $ (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2196 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2196 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-663 (-1207))) NIL (-2196 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-793)) NIL (-2196 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT) (($ $) NIL (-2196 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT)) (-3634 (((-711 (-421 |#2|)) (-1297 $) (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2407 ((|#3|) 58 T ELT)) (-3569 (($) NIL (|has| (-421 |#2|) (-363)) ELT)) (-4226 (((-1297 (-421 |#2|)) $ (-1297 $)) NIL T ELT) (((-711 (-421 |#2|)) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 (-421 |#2|)) $) 81 T ELT) (((-711 (-421 |#2|)) (-1297 $)) NIL T ELT)) (-2400 (((-1297 (-421 |#2|)) $) NIL T ELT) (($ (-1297 (-421 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| (-421 |#2|) (-363)) ELT)) (-3182 (((-1297 $) (-1297 $)) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 |#2|)) NIL T ELT) (($ (-421 (-560))) NIL (-2196 (|has| (-421 |#2|) (-1069 (-421 (-560)))) (|has| (-421 |#2|) (-376))) ELT) (($ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-3919 (($ $) NIL (|has| (-421 |#2|) (-363)) ELT) (((-3 $ "failed") $) NIL (|has| (-421 |#2|) (-147)) ELT)) (-2978 ((|#3| $) NIL T ELT)) (-4191 (((-793)) NIL T CONST)) (-2842 (((-114)) 65 T ELT)) (-4327 (((-114) |#1|) 167 T ELT) (((-114) |#2|) 168 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3822 (((-1297 $)) NIL T ELT)) (-4361 (((-114) $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2987 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-4154 (((-114)) NIL T ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $ (-1 (-421 |#2|) (-421 |#2|))) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-1 (-421 |#2|) (-421 |#2|)) (-793)) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2196 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2196 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-663 (-1207))) NIL (-2196 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-927 (-1207)))) (-12 (|has| (-421 |#2|) (-376)) (|has| (-421 |#2|) (-929 (-1207))))) ELT) (($ $ (-793)) NIL (-2196 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT) (($ $) NIL (-2196 (-12 (|has| (-421 |#2|) (-240)) (|has| (-421 |#2|) (-376))) (-12 (|has| (-421 |#2|) (-239)) (|has| (-421 |#2|) (-376))) (|has| (-421 |#2|) (-363))) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ $) NIL (|has| (-421 |#2|) (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| (-421 |#2|) (-376)) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 |#2|)) NIL T ELT) (($ (-421 |#2|) $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| (-421 |#2|) (-376)) ELT) (($ $ (-421 (-560))) NIL (|has| (-421 |#2|) (-376)) ELT)))
(((-1034 |#1| |#2| |#3| |#4| |#5|) (-355 |#1| |#2| |#3|) (-1252) (-1273 |#1|) (-1273 (-421 |#2|)) (-421 |#2|) (-793)) (T -1034))
NIL
(-355 |#1| |#2| |#3|)
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3585 (((-663 (-560)) $) 73 T ELT)) (-4439 (($ (-663 (-560))) 81 T ELT)) (-3941 (((-560) $) 48 (|has| (-560) (-319)) ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2138 (((-560) $) NIL (|has| (-560) (-842)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) 60 T ELT) (((-3 (-1207) "failed") $) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-3 (-421 (-560)) "failed") $) 57 (|has| (-560) (-1069 (-560))) ELT) (((-3 (-560) "failed") $) 60 (|has| (-560) (-1069 (-560))) ELT)) (-3330 (((-560) $) NIL T ELT) (((-1207) $) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-421 (-560)) $) NIL (|has| (-560) (-1069 (-560))) ELT) (((-560) $) NIL (|has| (-560) (-1069 (-560))) ELT)) (-1478 (($ $ $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2310 (($) NIL (|has| (-560) (-559)) ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-3879 (((-663 (-560)) $) 79 T ELT)) (-2928 (((-114) $) NIL (|has| (-560) (-842)) ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (|has| (-560) (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (|has| (-560) (-911 (-391))) ELT)) (-1581 (((-114) $) NIL T ELT)) (-1617 (($ $) NIL T ELT)) (-3757 (((-560) $) 45 T ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| (-560) (-1182)) ELT)) (-2960 (((-114) $) NIL (|has| (-560) (-842)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3825 (($ $ $) NIL (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| (-560) (-871)) ELT)) (-3957 (($ (-1 (-560) (-560)) $) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL T ELT) (((-711 (-560)) (-1297 $)) NIL T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL T ELT)) (-3161 (($) NIL (|has| (-560) (-1182)) CONST)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-2652 (($ $) NIL (|has| (-560) (-319)) ELT) (((-421 (-560)) $) 50 T ELT)) (-3395 (((-1185 (-560)) $) 78 T ELT)) (-4478 (($ (-663 (-560)) (-663 (-560))) 82 T ELT)) (-2016 (((-560) $) 64 (|has| (-560) (-559)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-4187 (($ $ (-663 (-560)) (-663 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-560) (-560)) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-305 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-305 (-560)))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-1207)) (-663 (-560))) NIL (|has| (-560) (-528 (-1207) (-560))) ELT) (($ $ (-1207) (-560)) NIL (|has| (-560) (-528 (-1207) (-560))) ELT)) (-2901 (((-793) $) NIL T ELT)) (-3924 (($ $ (-560)) NIL (|has| (-560) (-298 (-560) (-560))) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2894 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $) 15 (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-3056 (($ $) NIL T ELT)) (-3771 (((-560) $) 47 T ELT)) (-2071 (((-663 (-560)) $) 80 T ELT)) (-1407 (((-915 (-560)) $) NIL (|has| (-560) (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) NIL (|has| (-560) (-633 (-915 (-391)))) ELT) (((-549) $) NIL (|has| (-560) (-633 (-549))) ELT) (((-391) $) NIL (|has| (-560) (-1051)) ELT) (((-229) $) NIL (|has| (-560) (-1051)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-560) (-939))) ELT)) (-1578 (((-887) $) 107 T ELT) (($ (-560)) 51 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 27 T ELT) (($ (-560)) 51 T ELT) (($ (-1207)) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-421 (-560)) $) 25 T ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| (-560) (-939))) (|has| (-560) (-147))) ELT)) (-2930 (((-793)) 13 T CONST)) (-1494 (((-560) $) 62 (|has| (-560) (-559)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2282 (($ $) NIL (|has| (-560) (-842)) ELT)) (-2001 (($) 14 T CONST)) (-2011 (($) 17 T CONST)) (-3305 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $) NIL (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-2536 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2473 (((-114) $ $) 21 T ELT)) (-2521 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2495 (((-114) $ $) 40 (|has| (-560) (-871)) ELT)) (-2594 (($ $ $) 36 T ELT) (($ (-560) (-560)) 38 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-2567 (($ $ $) 28 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ (-560) $) 32 T ELT) (($ $ (-560)) NIL T ELT)))
-(((-1035 |#1|) (-13 (-1022 (-560)) (-632 (-421 (-560))) (-10 -8 (-15 -2652 ((-421 (-560)) $)) (-15 -3585 ((-663 (-560)) $)) (-15 -3395 ((-1185 (-560)) $)) (-15 -3879 ((-663 (-560)) $)) (-15 -2071 ((-663 (-560)) $)) (-15 -4439 ($ (-663 (-560)))) (-15 -4478 ($ (-663 (-560)) (-663 (-560)))))) (-560)) (T -1035))
-((-2652 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))) (-3585 (*1 *2 *1) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-1185 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))) (-2071 (*1 *2 *1) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))) (-4439 (*1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))) (-4478 (*1 *1 *2 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))))
-(-13 (-1022 (-560)) (-632 (-421 (-560))) (-10 -8 (-15 -2652 ((-421 (-560)) $)) (-15 -3585 ((-663 (-560)) $)) (-15 -3395 ((-1185 (-560)) $)) (-15 -3879 ((-663 (-560)) $)) (-15 -2071 ((-663 (-560)) $)) (-15 -4439 ($ (-663 (-560)))) (-15 -4478 ($ (-663 (-560)) (-663 (-560))))))
-((-3110 (((-51) (-421 (-560)) (-560)) 9 T ELT)))
-(((-1036) (-10 -7 (-15 -3110 ((-51) (-421 (-560)) (-560))))) (T -1036))
-((-3110 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-560))) (-5 *4 (-560)) (-5 *2 (-51)) (-5 *1 (-1036)))))
-(-10 -7 (-15 -3110 ((-51) (-421 (-560)) (-560))))
-((-3241 (((-560)) 23 T ELT)) (-3193 (((-560)) 28 T ELT)) (-3347 (((-1303) (-560)) 26 T ELT)) (-1400 (((-560) (-560)) 29 T ELT) (((-560)) 22 T ELT)))
-(((-1037) (-10 -7 (-15 -1400 ((-560))) (-15 -3241 ((-560))) (-15 -1400 ((-560) (-560))) (-15 -3347 ((-1303) (-560))) (-15 -3193 ((-560))))) (T -1037))
-((-3193 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1037)))) (-3347 (*1 *2 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-1037)))) (-1400 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1037)))) (-3241 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1037)))) (-1400 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1037)))))
-(-10 -7 (-15 -1400 ((-560))) (-15 -3241 ((-560))) (-15 -1400 ((-560) (-560))) (-15 -3347 ((-1303) (-560))) (-15 -3193 ((-560))))
-((-1968 (((-419 |#1|) |#1|) 43 T ELT)) (-4457 (((-419 |#1|) |#1|) 41 T ELT)))
-(((-1038 |#1|) (-10 -7 (-15 -4457 ((-419 |#1|) |#1|)) (-15 -1968 ((-419 |#1|) |#1|))) (-1273 (-421 (-560)))) (T -1038))
-((-1968 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-1038 *3)) (-4 *3 (-1273 (-421 (-560)))))) (-4457 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-1038 *3)) (-4 *3 (-1273 (-421 (-560)))))))
-(-10 -7 (-15 -4457 ((-419 |#1|) |#1|)) (-15 -1968 ((-419 |#1|) |#1|)))
-((-3643 (((-3 (-421 (-560)) "failed") |#1|) 15 T ELT)) (-3469 (((-114) |#1|) 14 T ELT)) (-3197 (((-421 (-560)) |#1|) 10 T ELT)))
-(((-1039 |#1|) (-10 -7 (-15 -3197 ((-421 (-560)) |#1|)) (-15 -3469 ((-114) |#1|)) (-15 -3643 ((-3 (-421 (-560)) "failed") |#1|))) (-1069 (-421 (-560)))) (T -1039))
-((-3643 (*1 *2 *3) (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-1039 *3)) (-4 *3 (-1069 *2)))) (-3469 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-1039 *3)) (-4 *3 (-1069 (-421 (-560)))))) (-3197 (*1 *2 *3) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-1039 *3)) (-4 *3 (-1069 *2)))))
-(-10 -7 (-15 -3197 ((-421 (-560)) |#1|)) (-15 -3469 ((-114) |#1|)) (-15 -3643 ((-3 (-421 (-560)) "failed") |#1|)))
-((-1773 ((|#2| $ "value" |#2|) 12 T ELT)) (-3924 ((|#2| $ "value") 10 T ELT)) (-2997 (((-114) $ $) 18 T ELT)))
-(((-1040 |#1| |#2|) (-10 -8 (-15 -1773 (|#2| |#1| "value" |#2|)) (-15 -2997 ((-114) |#1| |#1|)) (-15 -3924 (|#2| |#1| "value"))) (-1041 |#2|) (-1247)) (T -1040))
-NIL
-(-10 -8 (-15 -1773 (|#2| |#1| "value" |#2|)) (-15 -2997 ((-114) |#1| |#1|)) (-15 -3924 (|#2| |#1| "value")))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3853 ((|#1| $) 49 T ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-2869 ((|#1| $ |#1|) 40 (|has| $ (-6 -4509)) ELT)) (-1773 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4509)) ELT)) (-2083 (($ $ (-663 $)) 42 (|has| $ (-6 -4509)) ELT)) (-2238 (($) 7 T CONST)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-3092 (((-663 $) $) 51 T ELT)) (-3398 (((-114) $ $) 43 (|has| |#1| (-1132)) ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-3596 (((-663 |#1|) $) 46 T ELT)) (-2409 (((-114) $) 50 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3924 ((|#1| $ "value") 48 T ELT)) (-1750 (((-560) $ $) 45 T ELT)) (-1978 (((-114) $) 47 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3955 (((-663 $) $) 52 T ELT)) (-2997 (((-114) $ $) 44 (|has| |#1| (-1132)) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3430 (((-663 (-560)) $) 73 T ELT)) (-2755 (($ (-663 (-560))) 81 T ELT)) (-3655 (((-560) $) 48 (|has| (-560) (-319)) ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-1869 (((-560) $) NIL (|has| (-560) (-842)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) 60 T ELT) (((-3 (-1207) "failed") $) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-3 (-421 (-560)) "failed") $) 57 (|has| (-560) (-1069 (-560))) ELT) (((-3 (-560) "failed") $) 60 (|has| (-560) (-1069 (-560))) ELT)) (-3649 (((-560) $) NIL T ELT) (((-1207) $) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-421 (-560)) $) NIL (|has| (-560) (-1069 (-560))) ELT) (((-560) $) NIL (|has| (-560) (-1069 (-560))) ELT)) (-2186 (($ $ $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1812 (($) NIL (|has| (-560) (-559)) ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-4297 (((-663 (-560)) $) 79 T ELT)) (-4172 (((-114) $) NIL (|has| (-560) (-842)) ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (|has| (-560) (-911 (-560))) ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (|has| (-560) (-911 (-391))) ELT)) (-1918 (((-114) $) NIL T ELT)) (-3490 (($ $) NIL T ELT)) (-2473 (((-560) $) 45 T ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| (-560) (-1182)) ELT)) (-4470 (((-114) $) NIL (|has| (-560) (-842)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2932 (($ $ $) NIL (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| (-560) (-871)) ELT)) (-2260 (($ (-1 (-560) (-560)) $) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| (-560) (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL T ELT) (((-711 (-560)) (-1297 $)) NIL T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL T ELT)) (-3239 (($) NIL (|has| (-560) (-1182)) CONST)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3211 (($ $) NIL (|has| (-560) (-319)) ELT) (((-421 (-560)) $) 50 T ELT)) (-2125 (((-1185 (-560)) $) 78 T ELT)) (-1873 (($ (-663 (-560)) (-663 (-560))) 82 T ELT)) (-3147 (((-560) $) 64 (|has| (-560) (-559)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (|has| (-560) (-939)) ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2371 (($ $ (-663 (-560)) (-663 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-560) (-560)) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-305 (-560))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-305 (-560)))) NIL (|has| (-560) (-321 (-560))) ELT) (($ $ (-663 (-1207)) (-663 (-560))) NIL (|has| (-560) (-528 (-1207) (-560))) ELT) (($ $ (-1207) (-560)) NIL (|has| (-560) (-528 (-1207) (-560))) ELT)) (-3989 (((-793) $) NIL T ELT)) (-1507 (($ $ (-560)) NIL (|has| (-560) (-298 (-560) (-560))) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3161 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $) 15 (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-2951 (($ $) NIL T ELT)) (-2484 (((-560) $) 47 T ELT)) (-2434 (((-663 (-560)) $) 80 T ELT)) (-2400 (((-915 (-560)) $) NIL (|has| (-560) (-633 (-915 (-560)))) ELT) (((-915 (-391)) $) NIL (|has| (-560) (-633 (-915 (-391)))) ELT) (((-549) $) NIL (|has| (-560) (-633 (-549))) ELT) (((-391) $) NIL (|has| (-560) (-1051)) ELT) (((-229) $) NIL (|has| (-560) (-1051)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-560) (-939))) ELT)) (-3913 (((-887) $) 107 T ELT) (($ (-560)) 51 T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 27 T ELT) (($ (-560)) 51 T ELT) (($ (-1207)) NIL (|has| (-560) (-1069 (-1207))) ELT) (((-421 (-560)) $) 25 T ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| (-560) (-939))) (|has| (-560) (-147))) ELT)) (-4191 (((-793)) 13 T CONST)) (-3622 (((-560) $) 62 (|has| (-560) (-559)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-2719 (($ $) NIL (|has| (-560) (-842)) ELT)) (-1446 (($) 14 T CONST)) (-1456 (($) 17 T CONST)) (-2111 (($ $ (-1 (-560) (-560))) NIL T ELT) (($ $ (-1 (-560) (-560)) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| (-560) (-929 (-1207))) ELT) (($ $) NIL (|has| (-560) (-239)) ELT) (($ $ (-793)) NIL (|has| (-560) (-239)) ELT)) (-2396 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2340 (((-114) $ $) 21 T ELT)) (-2386 (((-114) $ $) NIL (|has| (-560) (-871)) ELT)) (-2362 (((-114) $ $) 40 (|has| (-560) (-871)) ELT)) (-2453 (($ $ $) 36 T ELT) (($ (-560) (-560)) 38 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-2429 (($ $ $) 28 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ (-560) $) 32 T ELT) (($ $ (-560)) NIL T ELT)))
+(((-1035 |#1|) (-13 (-1022 (-560)) (-632 (-421 (-560))) (-10 -8 (-15 -3211 ((-421 (-560)) $)) (-15 -3430 ((-663 (-560)) $)) (-15 -2125 ((-1185 (-560)) $)) (-15 -4297 ((-663 (-560)) $)) (-15 -2434 ((-663 (-560)) $)) (-15 -2755 ($ (-663 (-560)))) (-15 -1873 ($ (-663 (-560)) (-663 (-560)))))) (-560)) (T -1035))
+((-3211 (*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))) (-3430 (*1 *2 *1) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-1185 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))) (-4297 (*1 *2 *1) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))) (-2434 (*1 *2 *1) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))) (-2755 (*1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))) (-1873 (*1 *1 *2 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))))
+(-13 (-1022 (-560)) (-632 (-421 (-560))) (-10 -8 (-15 -3211 ((-421 (-560)) $)) (-15 -3430 ((-663 (-560)) $)) (-15 -2125 ((-1185 (-560)) $)) (-15 -4297 ((-663 (-560)) $)) (-15 -2434 ((-663 (-560)) $)) (-15 -2755 ($ (-663 (-560)))) (-15 -1873 ($ (-663 (-560)) (-663 (-560))))))
+((-2286 (((-51) (-421 (-560)) (-560)) 9 T ELT)))
+(((-1036) (-10 -7 (-15 -2286 ((-51) (-421 (-560)) (-560))))) (T -1036))
+((-2286 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-560))) (-5 *4 (-560)) (-5 *2 (-51)) (-5 *1 (-1036)))))
+(-10 -7 (-15 -2286 ((-51) (-421 (-560)) (-560))))
+((-2552 (((-560)) 23 T ELT)) (-1905 (((-560)) 28 T ELT)) (-2881 (((-1303) (-560)) 26 T ELT)) (-3203 (((-560) (-560)) 29 T ELT) (((-560)) 22 T ELT)))
+(((-1037) (-10 -7 (-15 -3203 ((-560))) (-15 -2552 ((-560))) (-15 -3203 ((-560) (-560))) (-15 -2881 ((-1303) (-560))) (-15 -1905 ((-560))))) (T -1037))
+((-1905 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1037)))) (-2881 (*1 *2 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-1037)))) (-3203 (*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1037)))) (-2552 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1037)))) (-3203 (*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1037)))))
+(-10 -7 (-15 -3203 ((-560))) (-15 -2552 ((-560))) (-15 -3203 ((-560) (-560))) (-15 -2881 ((-1303) (-560))) (-15 -1905 ((-560))))
+((-2669 (((-419 |#1|) |#1|) 43 T ELT)) (-4012 (((-419 |#1|) |#1|) 41 T ELT)))
+(((-1038 |#1|) (-10 -7 (-15 -4012 ((-419 |#1|) |#1|)) (-15 -2669 ((-419 |#1|) |#1|))) (-1273 (-421 (-560)))) (T -1038))
+((-2669 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-1038 *3)) (-4 *3 (-1273 (-421 (-560)))))) (-4012 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-1038 *3)) (-4 *3 (-1273 (-421 (-560)))))))
+(-10 -7 (-15 -4012 ((-419 |#1|) |#1|)) (-15 -2669 ((-419 |#1|) |#1|)))
+((-2743 (((-3 (-421 (-560)) "failed") |#1|) 15 T ELT)) (-1574 (((-114) |#1|) 14 T ELT)) (-1957 (((-421 (-560)) |#1|) 10 T ELT)))
+(((-1039 |#1|) (-10 -7 (-15 -1957 ((-421 (-560)) |#1|)) (-15 -1574 ((-114) |#1|)) (-15 -2743 ((-3 (-421 (-560)) "failed") |#1|))) (-1069 (-421 (-560)))) (T -1039))
+((-2743 (*1 *2 *3) (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-1039 *3)) (-4 *3 (-1069 *2)))) (-1574 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-1039 *3)) (-4 *3 (-1069 (-421 (-560)))))) (-1957 (*1 *2 *3) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-1039 *3)) (-4 *3 (-1069 *2)))))
+(-10 -7 (-15 -1957 ((-421 (-560)) |#1|)) (-15 -1574 ((-114) |#1|)) (-15 -2743 ((-3 (-421 (-560)) "failed") |#1|)))
+((-4083 ((|#2| $ "value" |#2|) 12 T ELT)) (-1507 ((|#2| $ "value") 10 T ELT)) (-3606 (((-114) $ $) 18 T ELT)))
+(((-1040 |#1| |#2|) (-10 -8 (-15 -4083 (|#2| |#1| "value" |#2|)) (-15 -3606 ((-114) |#1| |#1|)) (-15 -1507 (|#2| |#1| "value"))) (-1041 |#2|) (-1247)) (T -1040))
+NIL
+(-10 -8 (-15 -4083 (|#2| |#1| "value" |#2|)) (-15 -3606 ((-114) |#1| |#1|)) (-15 -1507 (|#2| |#1| "value")))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1430 ((|#1| $) 49 T ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-3654 ((|#1| $ |#1|) 40 (|has| $ (-6 -4509)) ELT)) (-4083 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4509)) ELT)) (-2566 (($ $ (-663 $)) 42 (|has| $ (-6 -4509)) ELT)) (-3525 (($) 7 T CONST)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-2104 (((-663 $) $) 51 T ELT)) (-2150 (((-114) $ $) 43 (|has| |#1| (-1132)) ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-2656 (((-663 |#1|) $) 46 T ELT)) (-1485 (((-114) $) 50 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1507 ((|#1| $ "value") 48 T ELT)) (-2374 (((-560) $ $) 45 T ELT)) (-2752 (((-114) $) 47 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3809 (((-663 $) $) 52 T ELT)) (-3606 (((-114) $ $) 44 (|has| |#1| (-1132)) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-1041 |#1|) (-142) (-1247)) (T -1041))
-((-3955 (*1 *2 *1) (-12 (-4 *3 (-1247)) (-5 *2 (-663 *1)) (-4 *1 (-1041 *3)))) (-3092 (*1 *2 *1) (-12 (-4 *3 (-1247)) (-5 *2 (-663 *1)) (-4 *1 (-1041 *3)))) (-2409 (*1 *2 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))) (-3853 (*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-1247)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1041 *2)) (-4 *2 (-1247)))) (-1978 (*1 *2 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-5 *2 (-663 *3)))) (-1750 (*1 *2 *1 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-5 *2 (-560)))) (-2997 (*1 *2 *1 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-4 *3 (-1132)) (-5 *2 (-114)))) (-3398 (*1 *2 *1 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-4 *3 (-1132)) (-5 *2 (-114)))) (-2083 (*1 *1 *1 *2) (-12 (-5 *2 (-663 *1)) (|has| *1 (-6 -4509)) (-4 *1 (-1041 *3)) (-4 *3 (-1247)))) (-1773 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4509)) (-4 *1 (-1041 *2)) (-4 *2 (-1247)))) (-2869 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1041 *2)) (-4 *2 (-1247)))))
-(-13 (-503 |t#1|) (-10 -8 (-15 -3955 ((-663 $) $)) (-15 -3092 ((-663 $) $)) (-15 -2409 ((-114) $)) (-15 -3853 (|t#1| $)) (-15 -3924 (|t#1| $ "value")) (-15 -1978 ((-114) $)) (-15 -3596 ((-663 |t#1|) $)) (-15 -1750 ((-560) $ $)) (IF (|has| |t#1| (-1132)) (PROGN (-15 -2997 ((-114) $ $)) (-15 -3398 ((-114) $ $))) |%noBranch|) (IF (|has| $ (-6 -4509)) (PROGN (-15 -2083 ($ $ (-663 $))) (-15 -1773 (|t#1| $ "value" |t#1|)) (-15 -2869 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-34) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
-((-4471 (($ $) 9 T ELT) (($ $ (-948)) 49 T ELT) (($ (-421 (-560))) 13 T ELT) (($ (-560)) 15 T ELT)) (-3325 (((-3 $ "failed") (-1201 $) (-948) (-887)) 24 T ELT) (((-3 $ "failed") (-1201 $) (-948)) 32 T ELT)) (-2146 (($ $ (-560)) 58 T ELT)) (-2930 (((-793)) 18 T ELT)) (-3207 (((-663 $) (-1201 $)) NIL T ELT) (((-663 $) (-1201 (-421 (-560)))) 63 T ELT) (((-663 $) (-1201 (-560))) 68 T ELT) (((-663 $) (-975 $)) 72 T ELT) (((-663 $) (-975 (-421 (-560)))) 76 T ELT) (((-663 $) (-975 (-560))) 80 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT) (($ $ (-421 (-560))) 53 T ELT)))
-(((-1042 |#1|) (-10 -8 (-15 -4471 (|#1| (-560))) (-15 -4471 (|#1| (-421 (-560)))) (-15 -4471 (|#1| |#1| (-948))) (-15 -3207 ((-663 |#1|) (-975 (-560)))) (-15 -3207 ((-663 |#1|) (-975 (-421 (-560))))) (-15 -3207 ((-663 |#1|) (-975 |#1|))) (-15 -3207 ((-663 |#1|) (-1201 (-560)))) (-15 -3207 ((-663 |#1|) (-1201 (-421 (-560))))) (-15 -3207 ((-663 |#1|) (-1201 |#1|))) (-15 -3325 ((-3 |#1| "failed") (-1201 |#1|) (-948))) (-15 -3325 ((-3 |#1| "failed") (-1201 |#1|) (-948) (-887))) (-15 ** (|#1| |#1| (-421 (-560)))) (-15 -2146 (|#1| |#1| (-560))) (-15 -4471 (|#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -2930 ((-793))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-948)))) (-1043)) (T -1042))
-((-2930 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1042 *3)) (-4 *3 (-1043)))))
-(-10 -8 (-15 -4471 (|#1| (-560))) (-15 -4471 (|#1| (-421 (-560)))) (-15 -4471 (|#1| |#1| (-948))) (-15 -3207 ((-663 |#1|) (-975 (-560)))) (-15 -3207 ((-663 |#1|) (-975 (-421 (-560))))) (-15 -3207 ((-663 |#1|) (-975 |#1|))) (-15 -3207 ((-663 |#1|) (-1201 (-560)))) (-15 -3207 ((-663 |#1|) (-1201 (-421 (-560))))) (-15 -3207 ((-663 |#1|) (-1201 |#1|))) (-15 -3325 ((-3 |#1| "failed") (-1201 |#1|) (-948))) (-15 -3325 ((-3 |#1| "failed") (-1201 |#1|) (-948) (-887))) (-15 ** (|#1| |#1| (-421 (-560)))) (-15 -2146 (|#1| |#1| (-560))) (-15 -4471 (|#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -2930 ((-793))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-948))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 103 T ELT)) (-3244 (($ $) 104 T ELT)) (-4093 (((-114) $) 106 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-1804 (($ $) 123 T ELT)) (-3023 (((-419 $) $) 124 T ELT)) (-4471 (($ $) 87 T ELT) (($ $ (-948)) 73 T ELT) (($ (-421 (-560))) 72 T ELT) (($ (-560)) 71 T ELT)) (-1615 (((-114) $ $) 114 T ELT)) (-2138 (((-560) $) 140 T ELT)) (-2238 (($) 18 T CONST)) (-3325 (((-3 $ "failed") (-1201 $) (-948) (-887)) 81 T ELT) (((-3 $ "failed") (-1201 $) (-948)) 80 T ELT)) (-2539 (((-3 (-560) "failed") $) 100 (|has| (-421 (-560)) (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) 98 (|has| (-421 (-560)) (-1069 (-421 (-560)))) ELT) (((-3 (-421 (-560)) "failed") $) 95 T ELT)) (-3330 (((-560) $) 99 (|has| (-421 (-560)) (-1069 (-560))) ELT) (((-421 (-560)) $) 97 (|has| (-421 (-560)) (-1069 (-421 (-560)))) ELT) (((-421 (-560)) $) 96 T ELT)) (-3254 (($ $ (-887)) 70 T ELT)) (-3441 (($ $ (-887)) 69 T ELT)) (-1478 (($ $ $) 118 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1490 (($ $ $) 117 T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 112 T ELT)) (-4330 (((-114) $) 125 T ELT)) (-2928 (((-114) $) 138 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-2146 (($ $ (-560)) 86 T ELT)) (-2960 (((-114) $) 139 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 121 T ELT)) (-3825 (($ $ $) 132 T ELT)) (-2820 (($ $ $) 133 T ELT)) (-3665 (((-3 (-1201 $) "failed") $) 82 T ELT)) (-1938 (((-3 (-887) "failed") $) 84 T ELT)) (-3004 (((-3 (-1201 $) "failed") $) 83 T ELT)) (-2093 (($ (-663 $)) 110 T ELT) (($ $ $) 109 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-1544 (($ $) 126 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 111 T ELT)) (-2132 (($ (-663 $)) 108 T ELT) (($ $ $) 107 T ELT)) (-4457 (((-419 $) $) 122 T ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 119 T ELT)) (-1528 (((-3 $ "failed") $ $) 102 T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 113 T ELT)) (-2901 (((-793) $) 115 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 116 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ (-421 (-560))) 130 T ELT) (($ $) 101 T ELT) (($ (-421 (-560))) 94 T ELT) (($ (-560)) 93 T ELT) (($ (-421 (-560))) 90 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 105 T ELT)) (-2239 (((-421 (-560)) $ $) 68 T ELT)) (-3207 (((-663 $) (-1201 $)) 79 T ELT) (((-663 $) (-1201 (-421 (-560)))) 78 T ELT) (((-663 $) (-1201 (-560))) 77 T ELT) (((-663 $) (-975 $)) 76 T ELT) (((-663 $) (-975 (-421 (-560)))) 75 T ELT) (((-663 $) (-975 (-560))) 74 T ELT)) (-2282 (($ $) 141 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2536 (((-114) $ $) 134 T ELT)) (-2508 (((-114) $ $) 136 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 135 T ELT)) (-2495 (((-114) $ $) 137 T ELT)) (-2594 (($ $ $) 131 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 127 T ELT) (($ $ (-421 (-560))) 85 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ (-421 (-560)) $) 129 T ELT) (($ $ (-421 (-560))) 128 T ELT) (($ (-560) $) 92 T ELT) (($ $ (-560)) 91 T ELT) (($ (-421 (-560)) $) 89 T ELT) (($ $ (-421 (-560))) 88 T ELT)))
+((-3809 (*1 *2 *1) (-12 (-4 *3 (-1247)) (-5 *2 (-663 *1)) (-4 *1 (-1041 *3)))) (-2104 (*1 *2 *1) (-12 (-4 *3 (-1247)) (-5 *2 (-663 *1)) (-4 *1 (-1041 *3)))) (-1485 (*1 *2 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))) (-1430 (*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-1247)))) (-1507 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1041 *2)) (-4 *2 (-1247)))) (-2752 (*1 *2 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))) (-2656 (*1 *2 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-5 *2 (-663 *3)))) (-2374 (*1 *2 *1 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-5 *2 (-560)))) (-3606 (*1 *2 *1 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-4 *3 (-1132)) (-5 *2 (-114)))) (-2150 (*1 *2 *1 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-4 *3 (-1132)) (-5 *2 (-114)))) (-2566 (*1 *1 *1 *2) (-12 (-5 *2 (-663 *1)) (|has| *1 (-6 -4509)) (-4 *1 (-1041 *3)) (-4 *3 (-1247)))) (-4083 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4509)) (-4 *1 (-1041 *2)) (-4 *2 (-1247)))) (-3654 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1041 *2)) (-4 *2 (-1247)))))
+(-13 (-503 |t#1|) (-10 -8 (-15 -3809 ((-663 $) $)) (-15 -2104 ((-663 $) $)) (-15 -1485 ((-114) $)) (-15 -1430 (|t#1| $)) (-15 -1507 (|t#1| $ "value")) (-15 -2752 ((-114) $)) (-15 -2656 ((-663 |t#1|) $)) (-15 -2374 ((-560) $ $)) (IF (|has| |t#1| (-1132)) (PROGN (-15 -3606 ((-114) $ $)) (-15 -2150 ((-114) $ $))) |%noBranch|) (IF (|has| $ (-6 -4509)) (PROGN (-15 -2566 ($ $ (-663 $))) (-15 -4083 (|t#1| $ "value" |t#1|)) (-15 -3654 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-34) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
+((-4021 (($ $) 9 T ELT) (($ $ (-948)) 49 T ELT) (($ (-421 (-560))) 13 T ELT) (($ (-560)) 15 T ELT)) (-3946 (((-3 $ "failed") (-1201 $) (-948) (-887)) 24 T ELT) (((-3 $ "failed") (-1201 $) (-948)) 32 T ELT)) (-1956 (($ $ (-560)) 58 T ELT)) (-4191 (((-793)) 18 T ELT)) (-3987 (((-663 $) (-1201 $)) NIL T ELT) (((-663 $) (-1201 (-421 (-560)))) 63 T ELT) (((-663 $) (-1201 (-560))) 68 T ELT) (((-663 $) (-975 $)) 72 T ELT) (((-663 $) (-975 (-421 (-560)))) 76 T ELT) (((-663 $) (-975 (-560))) 80 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT) (($ $ (-421 (-560))) 53 T ELT)))
+(((-1042 |#1|) (-10 -8 (-15 -4021 (|#1| (-560))) (-15 -4021 (|#1| (-421 (-560)))) (-15 -4021 (|#1| |#1| (-948))) (-15 -3987 ((-663 |#1|) (-975 (-560)))) (-15 -3987 ((-663 |#1|) (-975 (-421 (-560))))) (-15 -3987 ((-663 |#1|) (-975 |#1|))) (-15 -3987 ((-663 |#1|) (-1201 (-560)))) (-15 -3987 ((-663 |#1|) (-1201 (-421 (-560))))) (-15 -3987 ((-663 |#1|) (-1201 |#1|))) (-15 -3946 ((-3 |#1| "failed") (-1201 |#1|) (-948))) (-15 -3946 ((-3 |#1| "failed") (-1201 |#1|) (-948) (-887))) (-15 ** (|#1| |#1| (-421 (-560)))) (-15 -1956 (|#1| |#1| (-560))) (-15 -4021 (|#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -4191 ((-793))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-948)))) (-1043)) (T -1042))
+((-4191 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1042 *3)) (-4 *3 (-1043)))))
+(-10 -8 (-15 -4021 (|#1| (-560))) (-15 -4021 (|#1| (-421 (-560)))) (-15 -4021 (|#1| |#1| (-948))) (-15 -3987 ((-663 |#1|) (-975 (-560)))) (-15 -3987 ((-663 |#1|) (-975 (-421 (-560))))) (-15 -3987 ((-663 |#1|) (-975 |#1|))) (-15 -3987 ((-663 |#1|) (-1201 (-560)))) (-15 -3987 ((-663 |#1|) (-1201 (-421 (-560))))) (-15 -3987 ((-663 |#1|) (-1201 |#1|))) (-15 -3946 ((-3 |#1| "failed") (-1201 |#1|) (-948))) (-15 -3946 ((-3 |#1| "failed") (-1201 |#1|) (-948) (-887))) (-15 ** (|#1| |#1| (-421 (-560)))) (-15 -1956 (|#1| |#1| (-560))) (-15 -4021 (|#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -4191 ((-793))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-948))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 103 T ELT)) (-4366 (($ $) 104 T ELT)) (-2667 (((-114) $) 106 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-1621 (($ $) 123 T ELT)) (-3898 (((-419 $) $) 124 T ELT)) (-4021 (($ $) 87 T ELT) (($ $ (-948)) 73 T ELT) (($ (-421 (-560))) 72 T ELT) (($ (-560)) 71 T ELT)) (-3476 (((-114) $ $) 114 T ELT)) (-1869 (((-560) $) 140 T ELT)) (-3525 (($) 18 T CONST)) (-3946 (((-3 $ "failed") (-1201 $) (-948) (-887)) 81 T ELT) (((-3 $ "failed") (-1201 $) (-948)) 80 T ELT)) (-3929 (((-3 (-560) "failed") $) 100 (|has| (-421 (-560)) (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) 98 (|has| (-421 (-560)) (-1069 (-421 (-560)))) ELT) (((-3 (-421 (-560)) "failed") $) 95 T ELT)) (-3649 (((-560) $) 99 (|has| (-421 (-560)) (-1069 (-560))) ELT) (((-421 (-560)) $) 97 (|has| (-421 (-560)) (-1069 (-421 (-560)))) ELT) (((-421 (-560)) $) 96 T ELT)) (-4456 (($ $ (-887)) 70 T ELT)) (-2529 (($ $ (-887)) 69 T ELT)) (-2186 (($ $ $) 118 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-2197 (($ $ $) 117 T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 112 T ELT)) (-3141 (((-114) $) 125 T ELT)) (-4172 (((-114) $) 138 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-1956 (($ $ (-560)) 86 T ELT)) (-4470 (((-114) $) 139 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 121 T ELT)) (-2932 (($ $ $) 132 T ELT)) (-4379 (($ $ $) 133 T ELT)) (-2965 (((-3 (-1201 $) "failed") $) 82 T ELT)) (-3668 (((-3 (-887) "failed") $) 84 T ELT)) (-3691 (((-3 (-1201 $) "failed") $) 83 T ELT)) (-1861 (($ (-663 $)) 110 T ELT) (($ $ $) 109 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2986 (($ $) 126 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 111 T ELT)) (-1938 (($ (-663 $)) 108 T ELT) (($ $ $) 107 T ELT)) (-4012 (((-419 $) $) 122 T ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 120 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 119 T ELT)) (-2233 (((-3 $ "failed") $ $) 102 T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 113 T ELT)) (-3989 (((-793) $) 115 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 116 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ (-421 (-560))) 130 T ELT) (($ $) 101 T ELT) (($ (-421 (-560))) 94 T ELT) (($ (-560)) 93 T ELT) (($ (-421 (-560))) 90 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 105 T ELT)) (-2905 (((-421 (-560)) $ $) 68 T ELT)) (-3987 (((-663 $) (-1201 $)) 79 T ELT) (((-663 $) (-1201 (-421 (-560)))) 78 T ELT) (((-663 $) (-1201 (-560))) 77 T ELT) (((-663 $) (-975 $)) 76 T ELT) (((-663 $) (-975 (-421 (-560)))) 75 T ELT) (((-663 $) (-975 (-560))) 74 T ELT)) (-2719 (($ $) 141 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2396 (((-114) $ $) 134 T ELT)) (-2373 (((-114) $ $) 136 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 135 T ELT)) (-2362 (((-114) $ $) 137 T ELT)) (-2453 (($ $ $) 131 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 127 T ELT) (($ $ (-421 (-560))) 85 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ (-421 (-560)) $) 129 T ELT) (($ $ (-421 (-560))) 128 T ELT) (($ (-560) $) 92 T ELT) (($ $ (-560)) 91 T ELT) (($ (-421 (-560)) $) 89 T ELT) (($ $ (-421 (-560))) 88 T ELT)))
(((-1043) (-142)) (T -1043))
-((-4471 (*1 *1 *1) (-4 *1 (-1043))) (-1938 (*1 *2 *1) (|partial| -12 (-4 *1 (-1043)) (-5 *2 (-887)))) (-3004 (*1 *2 *1) (|partial| -12 (-5 *2 (-1201 *1)) (-4 *1 (-1043)))) (-3665 (*1 *2 *1) (|partial| -12 (-5 *2 (-1201 *1)) (-4 *1 (-1043)))) (-3325 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1201 *1)) (-5 *3 (-948)) (-5 *4 (-887)) (-4 *1 (-1043)))) (-3325 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1201 *1)) (-5 *3 (-948)) (-4 *1 (-1043)))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-1201 *1)) (-4 *1 (-1043)) (-5 *2 (-663 *1)))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-1201 (-421 (-560)))) (-5 *2 (-663 *1)) (-4 *1 (-1043)))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-1201 (-560))) (-5 *2 (-663 *1)) (-4 *1 (-1043)))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-1043)) (-5 *2 (-663 *1)))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-975 (-421 (-560)))) (-5 *2 (-663 *1)) (-4 *1 (-1043)))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-975 (-560))) (-5 *2 (-663 *1)) (-4 *1 (-1043)))) (-4471 (*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-948)))) (-4471 (*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-4 *1 (-1043)))) (-4471 (*1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1043)))) (-3254 (*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-887)))) (-3441 (*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-887)))) (-2239 (*1 *2 *1 *1) (-12 (-4 *1 (-1043)) (-5 *2 (-421 (-560))))))
-(-13 (-149) (-870) (-175) (-376) (-426 (-421 (-560))) (-38 (-560)) (-38 (-421 (-560))) (-1033) (-10 -8 (-15 -1938 ((-3 (-887) "failed") $)) (-15 -3004 ((-3 (-1201 $) "failed") $)) (-15 -3665 ((-3 (-1201 $) "failed") $)) (-15 -3325 ((-3 $ "failed") (-1201 $) (-948) (-887))) (-15 -3325 ((-3 $ "failed") (-1201 $) (-948))) (-15 -3207 ((-663 $) (-1201 $))) (-15 -3207 ((-663 $) (-1201 (-421 (-560))))) (-15 -3207 ((-663 $) (-1201 (-560)))) (-15 -3207 ((-663 $) (-975 $))) (-15 -3207 ((-663 $) (-975 (-421 (-560))))) (-15 -3207 ((-663 $) (-975 (-560)))) (-15 -4471 ($ $ (-948))) (-15 -4471 ($ $)) (-15 -4471 ($ (-421 (-560)))) (-15 -4471 ($ (-560))) (-15 -3254 ($ $ (-887))) (-15 -3441 ($ $ (-887))) (-15 -2239 ((-421 (-560)) $ $))))
+((-4021 (*1 *1 *1) (-4 *1 (-1043))) (-3668 (*1 *2 *1) (|partial| -12 (-4 *1 (-1043)) (-5 *2 (-887)))) (-3691 (*1 *2 *1) (|partial| -12 (-5 *2 (-1201 *1)) (-4 *1 (-1043)))) (-2965 (*1 *2 *1) (|partial| -12 (-5 *2 (-1201 *1)) (-4 *1 (-1043)))) (-3946 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1201 *1)) (-5 *3 (-948)) (-5 *4 (-887)) (-4 *1 (-1043)))) (-3946 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1201 *1)) (-5 *3 (-948)) (-4 *1 (-1043)))) (-3987 (*1 *2 *3) (-12 (-5 *3 (-1201 *1)) (-4 *1 (-1043)) (-5 *2 (-663 *1)))) (-3987 (*1 *2 *3) (-12 (-5 *3 (-1201 (-421 (-560)))) (-5 *2 (-663 *1)) (-4 *1 (-1043)))) (-3987 (*1 *2 *3) (-12 (-5 *3 (-1201 (-560))) (-5 *2 (-663 *1)) (-4 *1 (-1043)))) (-3987 (*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-1043)) (-5 *2 (-663 *1)))) (-3987 (*1 *2 *3) (-12 (-5 *3 (-975 (-421 (-560)))) (-5 *2 (-663 *1)) (-4 *1 (-1043)))) (-3987 (*1 *2 *3) (-12 (-5 *3 (-975 (-560))) (-5 *2 (-663 *1)) (-4 *1 (-1043)))) (-4021 (*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-948)))) (-4021 (*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-4 *1 (-1043)))) (-4021 (*1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1043)))) (-4456 (*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-887)))) (-2529 (*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-887)))) (-2905 (*1 *2 *1 *1) (-12 (-4 *1 (-1043)) (-5 *2 (-421 (-560))))))
+(-13 (-149) (-870) (-175) (-376) (-426 (-421 (-560))) (-38 (-560)) (-38 (-421 (-560))) (-1033) (-10 -8 (-15 -3668 ((-3 (-887) "failed") $)) (-15 -3691 ((-3 (-1201 $) "failed") $)) (-15 -2965 ((-3 (-1201 $) "failed") $)) (-15 -3946 ((-3 $ "failed") (-1201 $) (-948) (-887))) (-15 -3946 ((-3 $ "failed") (-1201 $) (-948))) (-15 -3987 ((-663 $) (-1201 $))) (-15 -3987 ((-663 $) (-1201 (-421 (-560))))) (-15 -3987 ((-663 $) (-1201 (-560)))) (-15 -3987 ((-663 $) (-975 $))) (-15 -3987 ((-663 $) (-975 (-421 (-560))))) (-15 -3987 ((-663 $) (-975 (-560)))) (-15 -4021 ($ $ (-948))) (-15 -4021 ($ $)) (-15 -4021 ($ (-421 (-560)))) (-15 -4021 ($ (-560))) (-15 -4456 ($ $ (-887))) (-15 -2529 ($ $ (-887))) (-15 -2905 ((-421 (-560)) $ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) . T) ((-38 #1=(-560)) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 #1# #1#) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-635 #0#) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-426 (-421 (-560))) . T) ((-466) . T) ((-571) . T) ((-668 #0#) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 #1#) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 #1#) . T) ((-662 $) . T) ((-739 #0#) . T) ((-739 #1#) . T) ((-739 $) . T) ((-748) . T) ((-813) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-870) . T) ((-871) . T) ((-874) . T) ((-950) . T) ((-1033) . T) ((-1069 (-421 (-560))) . T) ((-1069 (-560)) |has| (-421 (-560)) (-1069 (-560))) ((-1082 #0#) . T) ((-1082 #1#) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 #1#) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T) ((-1252) . T))
-((-3708 (((-2 (|:| |ans| |#2|) (|:| -4210 |#2|) (|:| |sol?| (-114))) (-560) |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-663 |#2|)) (-1 (-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67 T ELT)))
-(((-1044 |#1| |#2|) (-10 -7 (-15 -3708 ((-2 (|:| |ans| |#2|) (|:| -4210 |#2|) (|:| |sol?| (-114))) (-560) |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-663 |#2|)) (-1 (-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-466) (-149) (-1069 (-560)) (-660 (-560))) (-13 (-1233) (-27) (-435 |#1|))) (T -1044))
-((-3708 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1207)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-663 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3887 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1233) (-27) (-435 *8))) (-4 *8 (-13 (-466) (-149) (-1069 *3) (-660 *3))) (-5 *3 (-560)) (-5 *2 (-2 (|:| |ans| *4) (|:| -4210 *4) (|:| |sol?| (-114)))) (-5 *1 (-1044 *8 *4)))))
-(-10 -7 (-15 -3708 ((-2 (|:| |ans| |#2|) (|:| -4210 |#2|) (|:| |sol?| (-114))) (-560) |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-663 |#2|)) (-1 (-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-1985 (((-3 (-663 |#2|) "failed") (-560) |#2| |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-663 |#2|)) (-1 (-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55 T ELT)))
-(((-1045 |#1| |#2|) (-10 -7 (-15 -1985 ((-3 (-663 |#2|) "failed") (-560) |#2| |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-663 |#2|)) (-1 (-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-466) (-149) (-1069 (-560)) (-660 (-560))) (-13 (-1233) (-27) (-435 |#1|))) (T -1045))
-((-1985 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1207)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-663 *4))) (-5 *7 (-1 (-3 (-2 (|:| -3887 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1233) (-27) (-435 *8))) (-4 *8 (-13 (-466) (-149) (-1069 *3) (-660 *3))) (-5 *3 (-560)) (-5 *2 (-663 *4)) (-5 *1 (-1045 *8 *4)))))
-(-10 -7 (-15 -1985 ((-3 (-663 |#2|) "failed") (-560) |#2| |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-663 |#2|)) (-1 (-3 (-2 (|:| -3887 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-3895 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-114)))) (|:| -3192 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-560)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-560) (-1 |#2| |#2|)) 38 T ELT)) (-3790 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |c| (-421 |#2|)) (|:| -3735 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|)) 69 T ELT)) (-2213 (((-2 (|:| |ans| (-421 |#2|)) (|:| |nosol| (-114))) (-421 |#2|) (-421 |#2|)) 74 T ELT)))
-(((-1046 |#1| |#2|) (-10 -7 (-15 -3790 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |c| (-421 |#2|)) (|:| -3735 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|))) (-15 -2213 ((-2 (|:| |ans| (-421 |#2|)) (|:| |nosol| (-114))) (-421 |#2|) (-421 |#2|))) (-15 -3895 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-114)))) (|:| -3192 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-560)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-560) (-1 |#2| |#2|)))) (-13 (-376) (-149) (-1069 (-560))) (-1273 |#1|)) (T -1046))
-((-3895 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1273 *6)) (-4 *6 (-13 (-376) (-149) (-1069 *4))) (-5 *4 (-560)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-114)))) (|:| -3192 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1046 *6 *3)))) (-2213 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-560)))) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| |ans| (-421 *5)) (|:| |nosol| (-114)))) (-5 *1 (-1046 *4 *5)) (-5 *3 (-421 *5)))) (-3790 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-421 *6)) (|:| |c| (-421 *6)) (|:| -3735 *6))) (-5 *1 (-1046 *5 *6)) (-5 *3 (-421 *6)))))
-(-10 -7 (-15 -3790 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |c| (-421 |#2|)) (|:| -3735 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|))) (-15 -2213 ((-2 (|:| |ans| (-421 |#2|)) (|:| |nosol| (-114))) (-421 |#2|) (-421 |#2|))) (-15 -3895 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-114)))) (|:| -3192 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-560)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-560) (-1 |#2| |#2|))))
-((-3352 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |h| |#2|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| -3735 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-2779 (((-3 (-663 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|)) 34 T ELT)))
-(((-1047 |#1| |#2|) (-10 -7 (-15 -3352 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |h| |#2|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| -3735 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|))) (-15 -2779 ((-3 (-663 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|)))) (-13 (-376) (-149) (-1069 (-560))) (-1273 |#1|)) (T -1047))
-((-2779 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1069 (-560)))) (-4 *5 (-1273 *4)) (-5 *2 (-663 (-421 *5))) (-5 *1 (-1047 *4 *5)) (-5 *3 (-421 *5)))) (-3352 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-421 *6)) (|:| |h| *6) (|:| |c1| (-421 *6)) (|:| |c2| (-421 *6)) (|:| -3735 *6))) (-5 *1 (-1047 *5 *6)) (-5 *3 (-421 *6)))))
-(-10 -7 (-15 -3352 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |h| |#2|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| -3735 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|))) (-15 -2779 ((-3 (-663 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|))))
-((-2547 (((-1 |#1|) (-663 (-2 (|:| -3853 |#1|) (|:| -4441 (-560))))) 34 T ELT)) (-2406 (((-1 |#1|) (-1128 |#1|)) 42 T ELT)) (-3146 (((-1 |#1|) (-1297 |#1|) (-1297 (-560)) (-560)) 31 T ELT)))
-(((-1048 |#1|) (-10 -7 (-15 -2406 ((-1 |#1|) (-1128 |#1|))) (-15 -2547 ((-1 |#1|) (-663 (-2 (|:| -3853 |#1|) (|:| -4441 (-560)))))) (-15 -3146 ((-1 |#1|) (-1297 |#1|) (-1297 (-560)) (-560)))) (-1132)) (T -1048))
-((-3146 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1297 *6)) (-5 *4 (-1297 (-560))) (-5 *5 (-560)) (-4 *6 (-1132)) (-5 *2 (-1 *6)) (-5 *1 (-1048 *6)))) (-2547 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -3853 *4) (|:| -4441 (-560))))) (-4 *4 (-1132)) (-5 *2 (-1 *4)) (-5 *1 (-1048 *4)))) (-2406 (*1 *2 *3) (-12 (-5 *3 (-1128 *4)) (-4 *4 (-1132)) (-5 *2 (-1 *4)) (-5 *1 (-1048 *4)))))
-(-10 -7 (-15 -2406 ((-1 |#1|) (-1128 |#1|))) (-15 -2547 ((-1 |#1|) (-663 (-2 (|:| -3853 |#1|) (|:| -4441 (-560)))))) (-15 -3146 ((-1 |#1|) (-1297 |#1|) (-1297 (-560)) (-560))))
-((-3913 (((-793) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT)))
-(((-1049 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3913 ((-793) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-376) (-1273 |#1|) (-1273 (-421 |#2|)) (-355 |#1| |#2| |#3|) (-13 (-381) (-376))) (T -1049))
-((-3913 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-346 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-376)) (-4 *7 (-1273 *6)) (-4 *4 (-1273 (-421 *7))) (-4 *8 (-355 *6 *7 *4)) (-4 *9 (-13 (-381) (-376))) (-5 *2 (-793)) (-5 *1 (-1049 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -3913 ((-793) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-4399 (((-1166) $) 9 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3625 (((-1166) $) 11 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-1050) (-13 (-1114) (-10 -8 (-15 -4399 ((-1166) $)) (-15 -3625 ((-1166) $))))) (T -1050))
-((-4399 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1050)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1050)))))
-(-13 (-1114) (-10 -8 (-15 -4399 ((-1166) $)) (-15 -3625 ((-1166) $))))
-((-1407 (((-229) $) 6 T ELT) (((-391) $) 9 T ELT)))
+((-2156 (((-2 (|:| |ans| |#2|) (|:| -4346 |#2|) (|:| |sol?| (-114))) (-560) |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-663 |#2|)) (-1 (-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 67 T ELT)))
+(((-1044 |#1| |#2|) (-10 -7 (-15 -2156 ((-2 (|:| |ans| |#2|) (|:| -4346 |#2|) (|:| |sol?| (-114))) (-560) |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-663 |#2|)) (-1 (-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-466) (-149) (-1069 (-560)) (-660 (-560))) (-13 (-1233) (-27) (-435 |#1|))) (T -1044))
+((-2156 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1207)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-663 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4378 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1233) (-27) (-435 *8))) (-4 *8 (-13 (-466) (-149) (-1069 *3) (-660 *3))) (-5 *3 (-560)) (-5 *2 (-2 (|:| |ans| *4) (|:| -4346 *4) (|:| |sol?| (-114)))) (-5 *1 (-1044 *8 *4)))))
+(-10 -7 (-15 -2156 ((-2 (|:| |ans| |#2|) (|:| -4346 |#2|) (|:| |sol?| (-114))) (-560) |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-663 |#2|)) (-1 (-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-2814 (((-3 (-663 |#2|) "failed") (-560) |#2| |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-663 |#2|)) (-1 (-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 55 T ELT)))
+(((-1045 |#1| |#2|) (-10 -7 (-15 -2814 ((-3 (-663 |#2|) "failed") (-560) |#2| |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-663 |#2|)) (-1 (-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-466) (-149) (-1069 (-560)) (-660 (-560))) (-13 (-1233) (-27) (-435 |#1|))) (T -1045))
+((-2814 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1207)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-663 *4))) (-5 *7 (-1 (-3 (-2 (|:| -4378 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1233) (-27) (-435 *8))) (-4 *8 (-13 (-466) (-149) (-1069 *3) (-660 *3))) (-5 *3 (-560)) (-5 *2 (-663 *4)) (-5 *1 (-1045 *8 *4)))))
+(-10 -7 (-15 -2814 ((-3 (-663 |#2|) "failed") (-560) |#2| |#2| |#2| (-1207) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-663 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-663 |#2|)) (-1 (-3 (-2 (|:| -4378 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-4447 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-114)))) (|:| -2439 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-560)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-560) (-1 |#2| |#2|)) 38 T ELT)) (-1570 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |c| (-421 |#2|)) (|:| -1347 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|)) 69 T ELT)) (-1379 (((-2 (|:| |ans| (-421 |#2|)) (|:| |nosol| (-114))) (-421 |#2|) (-421 |#2|)) 74 T ELT)))
+(((-1046 |#1| |#2|) (-10 -7 (-15 -1570 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |c| (-421 |#2|)) (|:| -1347 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|))) (-15 -1379 ((-2 (|:| |ans| (-421 |#2|)) (|:| |nosol| (-114))) (-421 |#2|) (-421 |#2|))) (-15 -4447 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-114)))) (|:| -2439 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-560)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-560) (-1 |#2| |#2|)))) (-13 (-376) (-149) (-1069 (-560))) (-1273 |#1|)) (T -1046))
+((-4447 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1273 *6)) (-4 *6 (-13 (-376) (-149) (-1069 *4))) (-5 *4 (-560)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-114)))) (|:| -2439 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1046 *6 *3)))) (-1379 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-560)))) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| |ans| (-421 *5)) (|:| |nosol| (-114)))) (-5 *1 (-1046 *4 *5)) (-5 *3 (-421 *5)))) (-1570 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-421 *6)) (|:| |c| (-421 *6)) (|:| -1347 *6))) (-5 *1 (-1046 *5 *6)) (-5 *3 (-421 *6)))))
+(-10 -7 (-15 -1570 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |c| (-421 |#2|)) (|:| -1347 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|))) (-15 -1379 ((-2 (|:| |ans| (-421 |#2|)) (|:| |nosol| (-114))) (-421 |#2|) (-421 |#2|))) (-15 -4447 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-114)))) (|:| -2439 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-560)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-560) (-1 |#2| |#2|))))
+((-2933 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |h| |#2|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| -1347 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-2015 (((-3 (-663 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|)) 34 T ELT)))
+(((-1047 |#1| |#2|) (-10 -7 (-15 -2933 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |h| |#2|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| -1347 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|))) (-15 -2015 ((-3 (-663 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|)))) (-13 (-376) (-149) (-1069 (-560))) (-1273 |#1|)) (T -1047))
+((-2015 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1069 (-560)))) (-4 *5 (-1273 *4)) (-5 *2 (-663 (-421 *5))) (-5 *1 (-1047 *4 *5)) (-5 *3 (-421 *5)))) (-2933 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-560)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-421 *6)) (|:| |h| *6) (|:| |c1| (-421 *6)) (|:| |c2| (-421 *6)) (|:| -1347 *6))) (-5 *1 (-1047 *5 *6)) (-5 *3 (-421 *6)))))
+(-10 -7 (-15 -2933 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-421 |#2|)) (|:| |h| |#2|) (|:| |c1| (-421 |#2|)) (|:| |c2| (-421 |#2|)) (|:| -1347 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|) (-1 |#2| |#2|))) (-15 -2015 ((-3 (-663 (-421 |#2|)) "failed") (-421 |#2|) (-421 |#2|) (-421 |#2|))))
+((-3420 (((-1 |#1|) (-663 (-2 (|:| -1430 |#1|) (|:| -2775 (-560))))) 34 T ELT)) (-1463 (((-1 |#1|) (-1128 |#1|)) 42 T ELT)) (-1448 (((-1 |#1|) (-1297 |#1|) (-1297 (-560)) (-560)) 31 T ELT)))
+(((-1048 |#1|) (-10 -7 (-15 -1463 ((-1 |#1|) (-1128 |#1|))) (-15 -3420 ((-1 |#1|) (-663 (-2 (|:| -1430 |#1|) (|:| -2775 (-560)))))) (-15 -1448 ((-1 |#1|) (-1297 |#1|) (-1297 (-560)) (-560)))) (-1132)) (T -1048))
+((-1448 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1297 *6)) (-5 *4 (-1297 (-560))) (-5 *5 (-560)) (-4 *6 (-1132)) (-5 *2 (-1 *6)) (-5 *1 (-1048 *6)))) (-3420 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -1430 *4) (|:| -2775 (-560))))) (-4 *4 (-1132)) (-5 *2 (-1 *4)) (-5 *1 (-1048 *4)))) (-1463 (*1 *2 *3) (-12 (-5 *3 (-1128 *4)) (-4 *4 (-1132)) (-5 *2 (-1 *4)) (-5 *1 (-1048 *4)))))
+(-10 -7 (-15 -1463 ((-1 |#1|) (-1128 |#1|))) (-15 -3420 ((-1 |#1|) (-663 (-2 (|:| -1430 |#1|) (|:| -2775 (-560)))))) (-15 -1448 ((-1 |#1|) (-1297 |#1|) (-1297 (-560)) (-560))))
+((-1460 (((-793) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT)))
+(((-1049 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1460 ((-793) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-376) (-1273 |#1|) (-1273 (-421 |#2|)) (-355 |#1| |#2| |#3|) (-13 (-381) (-376))) (T -1049))
+((-1460 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-346 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-376)) (-4 *7 (-1273 *6)) (-4 *4 (-1273 (-421 *7))) (-4 *8 (-355 *6 *7 *4)) (-4 *9 (-13 (-381) (-376))) (-5 *2 (-793)) (-5 *1 (-1049 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -1460 ((-793) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3963 (((-1166) $) 9 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-4400 (((-1166) $) 11 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-1050) (-13 (-1114) (-10 -8 (-15 -3963 ((-1166) $)) (-15 -4400 ((-1166) $))))) (T -1050))
+((-3963 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1050)))) (-4400 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1050)))))
+(-13 (-1114) (-10 -8 (-15 -3963 ((-1166) $)) (-15 -4400 ((-1166) $))))
+((-2400 (((-229) $) 6 T ELT) (((-391) $) 9 T ELT)))
(((-1051) (-142)) (T -1051))
NIL
(-13 (-633 (-229)) (-633 (-391)))
(((-633 (-229)) . T) ((-633 (-391)) . T))
-((-4075 (((-3 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) "failed") |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) 32 T ELT) (((-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) (-421 (-560))) 29 T ELT)) (-2463 (((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) (-421 (-560))) 34 T ELT) (((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1| (-421 (-560))) 30 T ELT) (((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) 33 T ELT) (((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1|) 28 T ELT)) (-2494 (((-663 (-421 (-560))) (-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))) 20 T ELT)) (-3174 (((-421 (-560)) (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) 17 T ELT)))
-(((-1052 |#1|) (-10 -7 (-15 -2463 ((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1|)) (-15 -2463 ((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))) (-15 -2463 ((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1| (-421 (-560)))) (-15 -2463 ((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) (-421 (-560)))) (-15 -4075 ((-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) (-421 (-560)))) (-15 -4075 ((-3 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) "failed") |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))) (-15 -3174 ((-421 (-560)) (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))) (-15 -2494 ((-663 (-421 (-560))) (-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))))) (-1273 (-560))) (T -1052))
-((-2494 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))) (-5 *2 (-663 (-421 (-560)))) (-5 *1 (-1052 *4)) (-4 *4 (-1273 (-560))))) (-3174 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) (-5 *2 (-421 (-560))) (-5 *1 (-1052 *4)) (-4 *4 (-1273 (-560))))) (-4075 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-560))))) (-4075 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) (-5 *4 (-421 (-560))) (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-560))))) (-2463 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-421 (-560))) (-5 *2 (-663 (-2 (|:| -4198 *5) (|:| -4210 *5)))) (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-560))) (-5 *4 (-2 (|:| -4198 *5) (|:| -4210 *5))))) (-2463 (*1 *2 *3 *4) (-12 (-5 *2 (-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))) (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-560))) (-5 *4 (-421 (-560))))) (-2463 (*1 *2 *3 *4) (-12 (-5 *2 (-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))) (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-560))) (-5 *4 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))))) (-2463 (*1 *2 *3) (-12 (-5 *2 (-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))) (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-560))))))
-(-10 -7 (-15 -2463 ((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1|)) (-15 -2463 ((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))) (-15 -2463 ((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1| (-421 (-560)))) (-15 -2463 ((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) (-421 (-560)))) (-15 -4075 ((-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) (-421 (-560)))) (-15 -4075 ((-3 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) "failed") |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))) (-15 -3174 ((-421 (-560)) (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))) (-15 -2494 ((-663 (-421 (-560))) (-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))))))
-((-4075 (((-3 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) "failed") |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) 35 T ELT) (((-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) (-421 (-560))) 32 T ELT)) (-2463 (((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) (-421 (-560))) 30 T ELT) (((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1| (-421 (-560))) 26 T ELT) (((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) 28 T ELT) (((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1|) 24 T ELT)))
-(((-1053 |#1|) (-10 -7 (-15 -2463 ((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1|)) (-15 -2463 ((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))) (-15 -2463 ((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1| (-421 (-560)))) (-15 -2463 ((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) (-421 (-560)))) (-15 -4075 ((-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) (-421 (-560)))) (-15 -4075 ((-3 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) "failed") |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))))) (-1273 (-421 (-560)))) (T -1053))
-((-4075 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) (-5 *1 (-1053 *3)) (-4 *3 (-1273 (-421 (-560)))))) (-4075 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) (-5 *4 (-421 (-560))) (-5 *1 (-1053 *3)) (-4 *3 (-1273 *4)))) (-2463 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-421 (-560))) (-5 *2 (-663 (-2 (|:| -4198 *5) (|:| -4210 *5)))) (-5 *1 (-1053 *3)) (-4 *3 (-1273 *5)) (-5 *4 (-2 (|:| -4198 *5) (|:| -4210 *5))))) (-2463 (*1 *2 *3 *4) (-12 (-5 *4 (-421 (-560))) (-5 *2 (-663 (-2 (|:| -4198 *4) (|:| -4210 *4)))) (-5 *1 (-1053 *3)) (-4 *3 (-1273 *4)))) (-2463 (*1 *2 *3 *4) (-12 (-5 *2 (-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))) (-5 *1 (-1053 *3)) (-4 *3 (-1273 (-421 (-560)))) (-5 *4 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))))) (-2463 (*1 *2 *3) (-12 (-5 *2 (-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))) (-5 *1 (-1053 *3)) (-4 *3 (-1273 (-421 (-560)))))))
-(-10 -7 (-15 -2463 ((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1|)) (-15 -2463 ((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))) (-15 -2463 ((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1| (-421 (-560)))) (-15 -2463 ((-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))) |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) (-421 (-560)))) (-15 -4075 ((-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) (-421 (-560)))) (-15 -4075 ((-3 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) "failed") |#1| (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))) (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))))
-((-1433 (((-663 (-391)) (-975 (-560)) (-391)) 28 T ELT) (((-663 (-391)) (-975 (-421 (-560))) (-391)) 27 T ELT)) (-2798 (((-663 (-663 (-391))) (-663 (-975 (-560))) (-663 (-1207)) (-391)) 37 T ELT)))
-(((-1054) (-10 -7 (-15 -1433 ((-663 (-391)) (-975 (-421 (-560))) (-391))) (-15 -1433 ((-663 (-391)) (-975 (-560)) (-391))) (-15 -2798 ((-663 (-663 (-391))) (-663 (-975 (-560))) (-663 (-1207)) (-391))))) (T -1054))
-((-2798 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-975 (-560)))) (-5 *4 (-663 (-1207))) (-5 *2 (-663 (-663 (-391)))) (-5 *1 (-1054)) (-5 *5 (-391)))) (-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-975 (-560))) (-5 *2 (-663 (-391))) (-5 *1 (-1054)) (-5 *4 (-391)))) (-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-975 (-421 (-560)))) (-5 *2 (-663 (-391))) (-5 *1 (-1054)) (-5 *4 (-391)))))
-(-10 -7 (-15 -1433 ((-663 (-391)) (-975 (-421 (-560))) (-391))) (-15 -1433 ((-663 (-391)) (-975 (-560)) (-391))) (-15 -2798 ((-663 (-663 (-391))) (-663 (-975 (-560))) (-663 (-1207)) (-391))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 75 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-4471 (($ $) NIL T ELT) (($ $ (-948)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-560)) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2138 (((-560) $) 70 T ELT)) (-2238 (($) NIL T CONST)) (-3325 (((-3 $ "failed") (-1201 $) (-948) (-887)) NIL T ELT) (((-3 $ "failed") (-1201 $) (-948)) 55 T ELT)) (-2539 (((-3 (-421 (-560)) "failed") $) NIL (|has| (-421 (-560)) (-1069 (-421 (-560)))) ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 |#1| "failed") $) 116 T ELT) (((-3 (-560) "failed") $) NIL (-2304 (|has| (-421 (-560)) (-1069 (-560))) (|has| |#1| (-1069 (-560)))) ELT)) (-3330 (((-421 (-560)) $) 17 (|has| (-421 (-560)) (-1069 (-421 (-560)))) ELT) (((-421 (-560)) $) 17 T ELT) ((|#1| $) 117 T ELT) (((-560) $) NIL (-2304 (|has| (-421 (-560)) (-1069 (-560))) (|has| |#1| (-1069 (-560)))) ELT)) (-3254 (($ $ (-887)) 47 T ELT)) (-3441 (($ $ (-887)) 48 T ELT)) (-1478 (($ $ $) NIL T ELT)) (-2609 (((-421 (-560)) $ $) 21 T ELT)) (-1990 (((-3 $ "failed") $) 88 T ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-2928 (((-114) $) 66 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-2146 (($ $ (-560)) NIL T ELT)) (-2960 (((-114) $) 69 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-3665 (((-3 (-1201 $) "failed") $) 83 T ELT)) (-1938 (((-3 (-887) "failed") $) 82 T ELT)) (-3004 (((-3 (-1201 $) "failed") $) 80 T ELT)) (-3371 (((-3 (-1092 $ (-1201 $)) "failed") $) 78 T ELT)) (-2093 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) 89 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-1578 (((-887) $) 87 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) 63 T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) 119 T ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2239 (((-421 (-560)) $ $) 27 T ELT)) (-3207 (((-663 $) (-1201 $)) 61 T ELT) (((-663 $) (-1201 (-421 (-560)))) NIL T ELT) (((-663 $) (-1201 (-560))) NIL T ELT) (((-663 $) (-975 $)) NIL T ELT) (((-663 $) (-975 (-421 (-560)))) NIL T ELT) (((-663 $) (-975 (-560))) NIL T ELT)) (-3489 (($ (-1092 $ (-1201 $)) (-887)) 46 T ELT)) (-2282 (($ $) 22 T ELT)) (-2001 (($) 32 T CONST)) (-2011 (($) 39 T CONST)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 76 T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 24 T ELT)) (-2594 (($ $ $) 37 T ELT)) (-2580 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-2567 (($ $ $) 112 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 98 T ELT) (($ $ $) 104 T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-560) $) 98 T ELT) (($ $ (-560)) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ |#1| $) 102 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-1055 |#1|) (-13 (-1043) (-426 |#1|) (-38 |#1|) (-10 -8 (-15 -3489 ($ (-1092 $ (-1201 $)) (-887))) (-15 -3371 ((-3 (-1092 $ (-1201 $)) "failed") $)) (-15 -2609 ((-421 (-560)) $ $)))) (-13 (-870) (-376) (-1051))) (T -1055))
-((-3489 (*1 *1 *2 *3) (-12 (-5 *2 (-1092 (-1055 *4) (-1201 (-1055 *4)))) (-5 *3 (-887)) (-5 *1 (-1055 *4)) (-4 *4 (-13 (-870) (-376) (-1051))))) (-3371 (*1 *2 *1) (|partial| -12 (-5 *2 (-1092 (-1055 *3) (-1201 (-1055 *3)))) (-5 *1 (-1055 *3)) (-4 *3 (-13 (-870) (-376) (-1051))))) (-2609 (*1 *2 *1 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-1055 *3)) (-4 *3 (-13 (-870) (-376) (-1051))))))
-(-13 (-1043) (-426 |#1|) (-38 |#1|) (-10 -8 (-15 -3489 ($ (-1092 $ (-1201 $)) (-887))) (-15 -3371 ((-3 (-1092 $ (-1201 $)) "failed") $)) (-15 -2609 ((-421 (-560)) $ $))))
-((-3313 (((-2 (|:| -3192 |#2|) (|:| -3967 (-663 |#1|))) |#2| (-663 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT)))
-(((-1056 |#1| |#2|) (-10 -7 (-15 -3313 (|#2| |#2| |#1|)) (-15 -3313 ((-2 (|:| -3192 |#2|) (|:| -3967 (-663 |#1|))) |#2| (-663 |#1|)))) (-376) (-680 |#1|)) (T -1056))
-((-3313 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| -3192 *3) (|:| -3967 (-663 *5)))) (-5 *1 (-1056 *5 *3)) (-5 *4 (-663 *5)) (-4 *3 (-680 *5)))) (-3313 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-1056 *3 *2)) (-4 *2 (-680 *3)))))
-(-10 -7 (-15 -3313 (|#2| |#2| |#1|)) (-15 -3313 ((-2 (|:| -3192 |#2|) (|:| -3967 (-663 |#1|))) |#2| (-663 |#1|))))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-3169 ((|#1| $ |#1|) 14 T ELT)) (-1773 ((|#1| $ |#1|) 12 T ELT)) (-1675 (($ |#1|) 10 T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3924 ((|#1| $) 11 T ELT)) (-1944 ((|#1| $) 13 T ELT)) (-1578 (((-887) $) 21 (|has| |#1| (-1132)) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2473 (((-114) $ $) 9 T ELT)))
-(((-1057 |#1|) (-13 (-1247) (-10 -8 (-15 -1675 ($ |#1|)) (-15 -3924 (|#1| $)) (-15 -1773 (|#1| $ |#1|)) (-15 -1944 (|#1| $)) (-15 -3169 (|#1| $ |#1|)) (-15 -2473 ((-114) $ $)) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|))) (-1247)) (T -1057))
-((-1675 (*1 *1 *2) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1247)))) (-3924 (*1 *2 *1) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1247)))) (-1773 (*1 *2 *1 *2) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1247)))) (-1944 (*1 *2 *1) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1247)))) (-3169 (*1 *2 *1 *2) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1247)))) (-2473 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1057 *3)) (-4 *3 (-1247)))))
-(-13 (-1247) (-10 -8 (-15 -1675 ($ |#1|)) (-15 -3924 (|#1| $)) (-15 -1773 (|#1| $ |#1|)) (-15 -1944 (|#1| $)) (-15 -3169 (|#1| $ |#1|)) (-15 -2473 ((-114) $ $)) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-3721 (((-663 (-2 (|:| -4332 $) (|:| -2109 (-663 |#4|)))) (-663 |#4|)) NIL T ELT)) (-3904 (((-663 $) (-663 |#4|)) 118 T ELT) (((-663 $) (-663 |#4|) (-114)) 119 T ELT) (((-663 $) (-663 |#4|) (-114) (-114)) 117 T ELT) (((-663 $) (-663 |#4|) (-114) (-114) (-114) (-114)) 120 T ELT)) (-1443 (((-663 |#3|) $) NIL T ELT)) (-1466 (((-114) $) NIL T ELT)) (-3101 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3036 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-1813 ((|#4| |#4| $) NIL T ELT)) (-1804 (((-663 (-2 (|:| |val| |#4|) (|:| -4297 $))) |#4| $) 112 T ELT)) (-2286 (((-2 (|:| |under| $) (|:| -2016 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1982 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#4| "failed") $ |#3|) 66 T ELT)) (-2238 (($) NIL T CONST)) (-4436 (((-114) $) 29 (|has| |#1| (-571)) ELT)) (-4246 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-1860 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3745 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-1477 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4027 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-2528 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-2539 (((-3 $ "failed") (-663 |#4|)) NIL T ELT)) (-3330 (($ (-663 |#4|)) NIL T ELT)) (-3649 (((-3 $ "failed") $) 45 T ELT)) (-2841 ((|#4| |#4| $) 69 T ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-2375 (($ |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2341 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-571)) ELT)) (-3989 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3093 ((|#4| |#4| $) NIL T ELT)) (-4129 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4508)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4508)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-1723 (((-2 (|:| -4332 (-663 |#4|)) (|:| -2109 (-663 |#4|))) $) NIL T ELT)) (-2330 (((-114) |#4| $) NIL T ELT)) (-2728 (((-114) |#4| $) NIL T ELT)) (-2420 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-2611 (((-2 (|:| |val| (-663 |#4|)) (|:| |towers| (-663 $))) (-663 |#4|) (-114) (-114)) 133 T ELT)) (-2181 (((-663 |#4|) $) 18 (|has| $ (-6 -4508)) ELT)) (-3544 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4132 ((|#3| $) 38 T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 |#4|) $) 19 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#4| $) 27 (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-3768 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-1918 (((-663 |#3|) $) NIL T ELT)) (-2724 (((-114) |#3| $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3482 (((-3 |#4| (-663 $)) |#4| |#4| $) NIL T ELT)) (-4130 (((-663 (-2 (|:| |val| |#4|) (|:| -4297 $))) |#4| |#4| $) 110 T ELT)) (-2398 (((-3 |#4| "failed") $) 42 T ELT)) (-3221 (((-663 $) |#4| $) 93 T ELT)) (-3979 (((-3 (-114) (-663 $)) |#4| $) NIL T ELT)) (-2411 (((-663 (-2 (|:| |val| (-114)) (|:| -4297 $))) |#4| $) 103 T ELT) (((-114) |#4| $) 64 T ELT)) (-1903 (((-663 $) |#4| $) 115 T ELT) (((-663 $) (-663 |#4|) $) NIL T ELT) (((-663 $) (-663 |#4|) (-663 $)) 116 T ELT) (((-663 $) |#4| (-663 $)) NIL T ELT)) (-1535 (((-663 $) (-663 |#4|) (-114) (-114) (-114)) 128 T ELT)) (-2534 (($ |#4| $) 82 T ELT) (($ (-663 |#4|) $) 83 T ELT) (((-663 $) |#4| $ (-114) (-114) (-114) (-114) (-114)) 79 T ELT)) (-1756 (((-663 |#4|) $) NIL T ELT)) (-3548 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3212 ((|#4| |#4| $) NIL T ELT)) (-2925 (((-114) $ $) NIL T ELT)) (-2557 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-1563 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3171 ((|#4| |#4| $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3637 (((-3 |#4| "failed") $) 40 T ELT)) (-3329 (((-3 |#4| "failed") (-1 (-114) |#4|) $) NIL T ELT)) (-1370 (((-3 $ "failed") $ |#4|) 59 T ELT)) (-4372 (($ $ |#4|) NIL T ELT) (((-663 $) |#4| $) 95 T ELT) (((-663 $) |#4| (-663 $)) NIL T ELT) (((-663 $) (-663 |#4|) $) NIL T ELT) (((-663 $) (-663 |#4|) (-663 $)) 89 T ELT)) (-2787 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 |#4|) (-663 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) 17 T ELT)) (-3986 (($) 14 T ELT)) (-3630 (((-793) $) NIL T ELT)) (-3865 (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) (((-793) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) NIL (|has| |#4| (-633 (-549))) ELT)) (-1592 (($ (-663 |#4|)) 22 T ELT)) (-3752 (($ $ |#3|) 52 T ELT)) (-4288 (($ $ |#3|) 54 T ELT)) (-2886 (($ $) NIL T ELT)) (-4397 (($ $ |#3|) NIL T ELT)) (-1578 (((-887) $) 35 T ELT) (((-663 |#4|) $) 46 T ELT)) (-1582 (((-793) $) NIL (|has| |#3| (-381)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1810 (((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4006 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) NIL T ELT)) (-2796 (((-663 $) |#4| $) 92 T ELT) (((-663 $) |#4| (-663 $)) NIL T ELT) (((-663 $) (-663 |#4|) $) NIL T ELT) (((-663 $) (-663 |#4|) (-663 $)) NIL T ELT)) (-1728 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3938 (((-663 |#3|) $) NIL T ELT)) (-4395 (((-114) |#4| $) NIL T ELT)) (-3602 (((-114) |#3| $) 65 T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-1058 |#1| |#2| |#3| |#4|) (-13 (-1102 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2534 ((-663 $) |#4| $ (-114) (-114) (-114) (-114) (-114))) (-15 -3904 ((-663 $) (-663 |#4|) (-114) (-114))) (-15 -3904 ((-663 $) (-663 |#4|) (-114) (-114) (-114) (-114))) (-15 -1535 ((-663 $) (-663 |#4|) (-114) (-114) (-114))) (-15 -2611 ((-2 (|:| |val| (-663 |#4|)) (|:| |towers| (-663 $))) (-663 |#4|) (-114) (-114))))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|)) (T -1058))
-((-2534 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 (-1058 *5 *6 *7 *3))) (-5 *1 (-1058 *5 *6 *7 *3)) (-4 *3 (-1096 *5 *6 *7)))) (-3904 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-3904 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-1535 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-2611 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-663 *8)) (|:| |towers| (-663 (-1058 *5 *6 *7 *8))))) (-5 *1 (-1058 *5 *6 *7 *8)) (-5 *3 (-663 *8)))))
-(-13 (-1102 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2534 ((-663 $) |#4| $ (-114) (-114) (-114) (-114) (-114))) (-15 -3904 ((-663 $) (-663 |#4|) (-114) (-114))) (-15 -3904 ((-663 $) (-663 |#4|) (-114) (-114) (-114) (-114))) (-15 -1535 ((-663 $) (-663 |#4|) (-114) (-114) (-114))) (-15 -2611 ((-2 (|:| |val| (-663 |#4|)) (|:| |towers| (-663 $))) (-663 |#4|) (-114) (-114)))))
-((-4215 (((-663 (-2 (|:| |radval| (-326 (-560))) (|:| |radmult| (-560)) (|:| |radvect| (-663 (-711 (-326 (-560))))))) (-711 (-421 (-975 (-560))))) 67 T ELT)) (-4272 (((-663 (-711 (-326 (-560)))) (-326 (-560)) (-711 (-421 (-975 (-560))))) 52 T ELT)) (-1837 (((-663 (-326 (-560))) (-711 (-421 (-975 (-560))))) 45 T ELT)) (-2775 (((-663 (-711 (-326 (-560)))) (-711 (-421 (-975 (-560))))) 85 T ELT)) (-2496 (((-711 (-326 (-560))) (-711 (-326 (-560)))) 38 T ELT)) (-3209 (((-663 (-711 (-326 (-560)))) (-663 (-711 (-326 (-560))))) 74 T ELT)) (-1610 (((-3 (-711 (-326 (-560))) "failed") (-711 (-421 (-975 (-560))))) 82 T ELT)))
-(((-1059) (-10 -7 (-15 -4215 ((-663 (-2 (|:| |radval| (-326 (-560))) (|:| |radmult| (-560)) (|:| |radvect| (-663 (-711 (-326 (-560))))))) (-711 (-421 (-975 (-560)))))) (-15 -4272 ((-663 (-711 (-326 (-560)))) (-326 (-560)) (-711 (-421 (-975 (-560)))))) (-15 -1837 ((-663 (-326 (-560))) (-711 (-421 (-975 (-560)))))) (-15 -1610 ((-3 (-711 (-326 (-560))) "failed") (-711 (-421 (-975 (-560)))))) (-15 -2496 ((-711 (-326 (-560))) (-711 (-326 (-560))))) (-15 -3209 ((-663 (-711 (-326 (-560)))) (-663 (-711 (-326 (-560)))))) (-15 -2775 ((-663 (-711 (-326 (-560)))) (-711 (-421 (-975 (-560)))))))) (T -1059))
-((-2775 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-975 (-560))))) (-5 *2 (-663 (-711 (-326 (-560))))) (-5 *1 (-1059)))) (-3209 (*1 *2 *2) (-12 (-5 *2 (-663 (-711 (-326 (-560))))) (-5 *1 (-1059)))) (-2496 (*1 *2 *2) (-12 (-5 *2 (-711 (-326 (-560)))) (-5 *1 (-1059)))) (-1610 (*1 *2 *3) (|partial| -12 (-5 *3 (-711 (-421 (-975 (-560))))) (-5 *2 (-711 (-326 (-560)))) (-5 *1 (-1059)))) (-1837 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-975 (-560))))) (-5 *2 (-663 (-326 (-560)))) (-5 *1 (-1059)))) (-4272 (*1 *2 *3 *4) (-12 (-5 *4 (-711 (-421 (-975 (-560))))) (-5 *2 (-663 (-711 (-326 (-560))))) (-5 *1 (-1059)) (-5 *3 (-326 (-560))))) (-4215 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-975 (-560))))) (-5 *2 (-663 (-2 (|:| |radval| (-326 (-560))) (|:| |radmult| (-560)) (|:| |radvect| (-663 (-711 (-326 (-560)))))))) (-5 *1 (-1059)))))
-(-10 -7 (-15 -4215 ((-663 (-2 (|:| |radval| (-326 (-560))) (|:| |radmult| (-560)) (|:| |radvect| (-663 (-711 (-326 (-560))))))) (-711 (-421 (-975 (-560)))))) (-15 -4272 ((-663 (-711 (-326 (-560)))) (-326 (-560)) (-711 (-421 (-975 (-560)))))) (-15 -1837 ((-663 (-326 (-560))) (-711 (-421 (-975 (-560)))))) (-15 -1610 ((-3 (-711 (-326 (-560))) "failed") (-711 (-421 (-975 (-560)))))) (-15 -2496 ((-711 (-326 (-560))) (-711 (-326 (-560))))) (-15 -3209 ((-663 (-711 (-326 (-560)))) (-663 (-711 (-326 (-560)))))) (-15 -2775 ((-663 (-711 (-326 (-560)))) (-711 (-421 (-975 (-560)))))))
-((-3156 (((-663 (-711 |#1|)) (-663 (-711 |#1|))) 70 T ELT) (((-711 |#1|) (-711 |#1|)) 69 T ELT) (((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-663 (-711 |#1|))) 68 T ELT) (((-711 |#1|) (-711 |#1|) (-711 |#1|)) 65 T ELT)) (-1979 (((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-948)) 63 T ELT) (((-711 |#1|) (-711 |#1|) (-948)) 62 T ELT)) (-3850 (((-663 (-711 (-560))) (-663 (-663 (-560)))) 81 T ELT) (((-663 (-711 (-560))) (-663 (-931 (-560))) (-560)) 80 T ELT) (((-711 (-560)) (-663 (-560))) 77 T ELT) (((-711 (-560)) (-931 (-560)) (-560)) 75 T ELT)) (-3476 (((-711 (-975 |#1|)) (-793)) 95 T ELT)) (-2383 (((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-948)) 49 (|has| |#1| (-6 (-4510 "*"))) ELT) (((-711 |#1|) (-711 |#1|) (-948)) 47 (|has| |#1| (-6 (-4510 "*"))) ELT)))
-(((-1060 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4510 "*"))) (-15 -2383 ((-711 |#1|) (-711 |#1|) (-948))) |%noBranch|) (IF (|has| |#1| (-6 (-4510 "*"))) (-15 -2383 ((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-948))) |%noBranch|) (-15 -3476 ((-711 (-975 |#1|)) (-793))) (-15 -1979 ((-711 |#1|) (-711 |#1|) (-948))) (-15 -1979 ((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-948))) (-15 -3156 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -3156 ((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -3156 ((-711 |#1|) (-711 |#1|))) (-15 -3156 ((-663 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -3850 ((-711 (-560)) (-931 (-560)) (-560))) (-15 -3850 ((-711 (-560)) (-663 (-560)))) (-15 -3850 ((-663 (-711 (-560))) (-663 (-931 (-560))) (-560))) (-15 -3850 ((-663 (-711 (-560))) (-663 (-663 (-560)))))) (-1080)) (T -1060))
-((-3850 (*1 *2 *3) (-12 (-5 *3 (-663 (-663 (-560)))) (-5 *2 (-663 (-711 (-560)))) (-5 *1 (-1060 *4)) (-4 *4 (-1080)))) (-3850 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-931 (-560)))) (-5 *4 (-560)) (-5 *2 (-663 (-711 *4))) (-5 *1 (-1060 *5)) (-4 *5 (-1080)))) (-3850 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-711 (-560))) (-5 *1 (-1060 *4)) (-4 *4 (-1080)))) (-3850 (*1 *2 *3 *4) (-12 (-5 *3 (-931 (-560))) (-5 *4 (-560)) (-5 *2 (-711 *4)) (-5 *1 (-1060 *5)) (-4 *5 (-1080)))) (-3156 (*1 *2 *2) (-12 (-5 *2 (-663 (-711 *3))) (-4 *3 (-1080)) (-5 *1 (-1060 *3)))) (-3156 (*1 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-1060 *3)))) (-3156 (*1 *2 *2 *2) (-12 (-5 *2 (-663 (-711 *3))) (-4 *3 (-1080)) (-5 *1 (-1060 *3)))) (-3156 (*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-1060 *3)))) (-1979 (*1 *2 *2 *3) (-12 (-5 *2 (-663 (-711 *4))) (-5 *3 (-948)) (-4 *4 (-1080)) (-5 *1 (-1060 *4)))) (-1979 (*1 *2 *2 *3) (-12 (-5 *2 (-711 *4)) (-5 *3 (-948)) (-4 *4 (-1080)) (-5 *1 (-1060 *4)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-711 (-975 *4))) (-5 *1 (-1060 *4)) (-4 *4 (-1080)))) (-2383 (*1 *2 *2 *3) (-12 (-5 *2 (-663 (-711 *4))) (-5 *3 (-948)) (|has| *4 (-6 (-4510 "*"))) (-4 *4 (-1080)) (-5 *1 (-1060 *4)))) (-2383 (*1 *2 *2 *3) (-12 (-5 *2 (-711 *4)) (-5 *3 (-948)) (|has| *4 (-6 (-4510 "*"))) (-4 *4 (-1080)) (-5 *1 (-1060 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4510 "*"))) (-15 -2383 ((-711 |#1|) (-711 |#1|) (-948))) |%noBranch|) (IF (|has| |#1| (-6 (-4510 "*"))) (-15 -2383 ((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-948))) |%noBranch|) (-15 -3476 ((-711 (-975 |#1|)) (-793))) (-15 -1979 ((-711 |#1|) (-711 |#1|) (-948))) (-15 -1979 ((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-948))) (-15 -3156 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -3156 ((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -3156 ((-711 |#1|) (-711 |#1|))) (-15 -3156 ((-663 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -3850 ((-711 (-560)) (-931 (-560)) (-560))) (-15 -3850 ((-711 (-560)) (-663 (-560)))) (-15 -3850 ((-663 (-711 (-560))) (-663 (-931 (-560))) (-560))) (-15 -3850 ((-663 (-711 (-560))) (-663 (-663 (-560))))))
-((-3042 (((-711 |#1|) (-663 (-711 |#1|)) (-1297 |#1|)) 70 (|has| |#1| (-319)) ELT)) (-1513 (((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-1297 (-1297 |#1|))) 110 (|has| |#1| (-376)) ELT) (((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-1297 |#1|)) 117 (|has| |#1| (-376)) ELT)) (-3267 (((-1297 |#1|) (-663 (-1297 |#1|)) (-560)) 135 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT)) (-1603 (((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-948)) 123 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-114)) 122 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|))) 121 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-114) (-560) (-560)) 120 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT)) (-3881 (((-114) (-663 (-711 |#1|))) 103 (|has| |#1| (-376)) ELT) (((-114) (-663 (-711 |#1|)) (-560)) 106 (|has| |#1| (-376)) ELT)) (-2686 (((-1297 (-1297 |#1|)) (-663 (-711 |#1|)) (-1297 |#1|)) 67 (|has| |#1| (-319)) ELT)) (-3467 (((-711 |#1|) (-663 (-711 |#1|)) (-711 |#1|)) 47 T ELT)) (-3262 (((-711 |#1|) (-1297 (-1297 |#1|))) 40 T ELT)) (-1904 (((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)) (-560)) 94 (|has| |#1| (-376)) ELT) (((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|))) 93 (|has| |#1| (-376)) ELT) (((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)) (-114) (-560)) 101 (|has| |#1| (-376)) ELT)))
-(((-1061 |#1|) (-10 -7 (-15 -3262 ((-711 |#1|) (-1297 (-1297 |#1|)))) (-15 -3467 ((-711 |#1|) (-663 (-711 |#1|)) (-711 |#1|))) (IF (|has| |#1| (-319)) (PROGN (-15 -2686 ((-1297 (-1297 |#1|)) (-663 (-711 |#1|)) (-1297 |#1|))) (-15 -3042 ((-711 |#1|) (-663 (-711 |#1|)) (-1297 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -1904 ((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)) (-114) (-560))) (-15 -1904 ((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -1904 ((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)) (-560))) (-15 -3881 ((-114) (-663 (-711 |#1|)) (-560))) (-15 -3881 ((-114) (-663 (-711 |#1|)))) (-15 -1513 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-1297 |#1|))) (-15 -1513 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-1297 (-1297 |#1|))))) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#1| (-376)) (PROGN (-15 -1603 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-114) (-560) (-560))) (-15 -1603 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)))) (-15 -1603 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-114))) (-15 -1603 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-948))) (-15 -3267 ((-1297 |#1|) (-663 (-1297 |#1|)) (-560)))) |%noBranch|) |%noBranch|)) (-1080)) (T -1061))
-((-3267 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-1297 *5))) (-5 *4 (-560)) (-5 *2 (-1297 *5)) (-5 *1 (-1061 *5)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1080)))) (-1603 (*1 *2 *3 *4) (-12 (-5 *4 (-948)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1080)) (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1061 *5)) (-5 *3 (-663 (-711 *5))))) (-1603 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1080)) (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1061 *5)) (-5 *3 (-663 (-711 *5))))) (-1603 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *4 (-381)) (-4 *4 (-1080)) (-5 *2 (-663 (-663 (-711 *4)))) (-5 *1 (-1061 *4)) (-5 *3 (-663 (-711 *4))))) (-1603 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-560)) (-4 *6 (-376)) (-4 *6 (-381)) (-4 *6 (-1080)) (-5 *2 (-663 (-663 (-711 *6)))) (-5 *1 (-1061 *6)) (-5 *3 (-663 (-711 *6))))) (-1513 (*1 *2 *3 *4) (-12 (-5 *4 (-1297 (-1297 *5))) (-4 *5 (-376)) (-4 *5 (-1080)) (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1061 *5)) (-5 *3 (-663 (-711 *5))))) (-1513 (*1 *2 *3 *4) (-12 (-5 *4 (-1297 *5)) (-4 *5 (-376)) (-4 *5 (-1080)) (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1061 *5)) (-5 *3 (-663 (-711 *5))))) (-3881 (*1 *2 *3) (-12 (-5 *3 (-663 (-711 *4))) (-4 *4 (-376)) (-4 *4 (-1080)) (-5 *2 (-114)) (-5 *1 (-1061 *4)))) (-3881 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-711 *5))) (-5 *4 (-560)) (-4 *5 (-376)) (-4 *5 (-1080)) (-5 *2 (-114)) (-5 *1 (-1061 *5)))) (-1904 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-663 (-711 *5))) (-5 *4 (-560)) (-5 *2 (-711 *5)) (-5 *1 (-1061 *5)) (-4 *5 (-376)) (-4 *5 (-1080)))) (-1904 (*1 *2 *3 *3) (-12 (-5 *3 (-663 (-711 *4))) (-5 *2 (-711 *4)) (-5 *1 (-1061 *4)) (-4 *4 (-376)) (-4 *4 (-1080)))) (-1904 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-663 (-711 *6))) (-5 *4 (-114)) (-5 *5 (-560)) (-5 *2 (-711 *6)) (-5 *1 (-1061 *6)) (-4 *6 (-376)) (-4 *6 (-1080)))) (-3042 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-711 *5))) (-5 *4 (-1297 *5)) (-4 *5 (-319)) (-4 *5 (-1080)) (-5 *2 (-711 *5)) (-5 *1 (-1061 *5)))) (-2686 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-711 *5))) (-4 *5 (-319)) (-4 *5 (-1080)) (-5 *2 (-1297 (-1297 *5))) (-5 *1 (-1061 *5)) (-5 *4 (-1297 *5)))) (-3467 (*1 *2 *3 *2) (-12 (-5 *3 (-663 (-711 *4))) (-5 *2 (-711 *4)) (-4 *4 (-1080)) (-5 *1 (-1061 *4)))) (-3262 (*1 *2 *3) (-12 (-5 *3 (-1297 (-1297 *4))) (-4 *4 (-1080)) (-5 *2 (-711 *4)) (-5 *1 (-1061 *4)))))
-(-10 -7 (-15 -3262 ((-711 |#1|) (-1297 (-1297 |#1|)))) (-15 -3467 ((-711 |#1|) (-663 (-711 |#1|)) (-711 |#1|))) (IF (|has| |#1| (-319)) (PROGN (-15 -2686 ((-1297 (-1297 |#1|)) (-663 (-711 |#1|)) (-1297 |#1|))) (-15 -3042 ((-711 |#1|) (-663 (-711 |#1|)) (-1297 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -1904 ((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)) (-114) (-560))) (-15 -1904 ((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -1904 ((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)) (-560))) (-15 -3881 ((-114) (-663 (-711 |#1|)) (-560))) (-15 -3881 ((-114) (-663 (-711 |#1|)))) (-15 -1513 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-1297 |#1|))) (-15 -1513 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-1297 (-1297 |#1|))))) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#1| (-376)) (PROGN (-15 -1603 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-114) (-560) (-560))) (-15 -1603 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)))) (-15 -1603 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-114))) (-15 -1603 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-948))) (-15 -3267 ((-1297 |#1|) (-663 (-1297 |#1|)) (-560)))) |%noBranch|) |%noBranch|))
-((-4289 ((|#1| (-948) |#1|) 18 T ELT)))
-(((-1062 |#1|) (-10 -7 (-15 -4289 (|#1| (-948) |#1|))) (-13 (-1132) (-10 -8 (-15 -2567 ($ $ $))))) (T -1062))
-((-4289 (*1 *2 *3 *2) (-12 (-5 *3 (-948)) (-5 *1 (-1062 *2)) (-4 *2 (-13 (-1132) (-10 -8 (-15 -2567 ($ $ $))))))))
-(-10 -7 (-15 -4289 (|#1| (-948) |#1|)))
-((-3911 ((|#1| |#1| (-948)) 18 T ELT)))
-(((-1063 |#1|) (-10 -7 (-15 -3911 (|#1| |#1| (-948)))) (-13 (-1132) (-10 -8 (-15 * ($ $ $))))) (T -1063))
-((-3911 (*1 *2 *2 *3) (-12 (-5 *3 (-948)) (-5 *1 (-1063 *2)) (-4 *2 (-13 (-1132) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -3911 (|#1| |#1| (-948))))
-((-1578 ((|#1| (-323)) 11 T ELT) (((-1303) |#1|) 9 T ELT)))
-(((-1064 |#1|) (-10 -7 (-15 -1578 ((-1303) |#1|)) (-15 -1578 (|#1| (-323)))) (-1247)) (T -1064))
-((-1578 (*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *1 (-1064 *2)) (-4 *2 (-1247)))) (-1578 (*1 *2 *3) (-12 (-5 *2 (-1303)) (-5 *1 (-1064 *3)) (-4 *3 (-1247)))))
-(-10 -7 (-15 -1578 ((-1303) |#1|)) (-15 -1578 (|#1| (-323))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-4129 (($ |#4|) 25 T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-4116 ((|#4| $) 27 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 46 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 26 T ELT)) (-2930 (((-793)) 43 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 21 T CONST)) (-2011 (($) 23 T CONST)) (-2473 (((-114) $ $) 40 T ELT)) (-2580 (($ $) 31 T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 29 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 36 T ELT) (($ $ $) 33 T ELT) (($ |#1| $) 38 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-1065 |#1| |#2| |#3| |#4| |#5|) (-13 (-175) (-38 |#1|) (-10 -8 (-15 -4129 ($ |#4|)) (-15 -1578 ($ |#4|)) (-15 -4116 (|#4| $)))) (-376) (-815) (-871) (-979 |#1| |#2| |#3|) (-663 |#4|)) (T -1065))
-((-4129 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1065 *3 *4 *5 *2 *6)) (-4 *2 (-979 *3 *4 *5)) (-14 *6 (-663 *2)))) (-1578 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1065 *3 *4 *5 *2 *6)) (-4 *2 (-979 *3 *4 *5)) (-14 *6 (-663 *2)))) (-4116 (*1 *2 *1) (-12 (-4 *2 (-979 *3 *4 *5)) (-5 *1 (-1065 *3 *4 *5 *2 *6)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-14 *6 (-663 *2)))))
-(-13 (-175) (-38 |#1|) (-10 -8 (-15 -4129 ($ |#4|)) (-15 -1578 ($ |#4|)) (-15 -4116 (|#4| $))))
-((-1538 (((-114) $ $) NIL (-2304 (|has| (-51) (-102)) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-102))) ELT)) (-4083 (($) NIL T ELT) (($ (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))) NIL T ELT)) (-3839 (((-1303) $ (-1207) (-1207)) NIL (|has| $ (-6 -4509)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-4140 (((-114) (-114)) 43 T ELT)) (-1573 (((-114) (-114)) 42 T ELT)) (-1773 (((-51) $ (-1207) (-51)) NIL T ELT)) (-3500 (($ (-1 (-114) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4255 (((-3 (-51) "failed") (-1207) $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1132))) ELT)) (-3390 (($ (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 (-51) "failed") (-1207) $) NIL T ELT)) (-2375 (($ (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 (((-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $ (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1132))) ELT) (((-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $ (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3779 (((-51) $ (-1207) (-51)) NIL (|has| $ (-6 -4509)) ELT)) (-3709 (((-51) $ (-1207)) NIL T ELT)) (-2181 (((-663 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-1207) $) NIL (|has| (-1207) (-871)) ELT)) (-2656 (((-663 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1132))) ELT) (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-51) (-1132))) ELT)) (-2937 (((-1207) $) NIL (|has| (-1207) (-871)) ELT)) (-3768 (($ (-1 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (-2304 (|has| (-51) (-1132)) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1132))) ELT)) (-2236 (((-663 (-1207)) $) 37 T ELT)) (-1445 (((-114) (-1207) $) NIL T ELT)) (-1576 (((-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) $) NIL T ELT)) (-3629 (($ (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) $) NIL T ELT)) (-3270 (((-663 (-1207)) $) NIL T ELT)) (-3586 (((-114) (-1207) $) NIL T ELT)) (-3855 (((-1151) $) NIL (-2304 (|has| (-51) (-1132)) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1132))) ELT)) (-3637 (((-51) $) NIL (|has| (-1207) (-871)) ELT)) (-3329 (((-3 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) "failed") (-1 (-114) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL T ELT)) (-3037 (($ $ (-51)) NIL (|has| $ (-6 -4509)) ELT)) (-2615 (((-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) $) NIL T ELT)) (-2787 (((-114) (-1 (-114) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))))) NIL (-12 (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-321 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1132))) ELT) (($ $ (-305 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))) NIL (-12 (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-321 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1132))) ELT) (($ $ (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) NIL (-12 (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-321 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1132))) ELT) (($ $ (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))) NIL (-12 (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-321 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1132))) ELT) (($ $ (-663 (-51)) (-663 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT) (($ $ (-305 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT) (($ $ (-663 (-305 (-51)))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-51) (-1132))) ELT)) (-3571 (((-663 (-51)) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 (((-51) $ (-1207)) 39 T ELT) (((-51) $ (-1207) (-51)) NIL T ELT)) (-3897 (($) NIL T ELT) (($ (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))) NIL T ELT)) (-3865 (((-793) (-1 (-114) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1132))) ELT) (((-793) (-51) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-51) (-1132))) ELT) (((-793) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) NIL (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-633 (-549))) ELT)) (-1592 (($ (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))) NIL T ELT)) (-1578 (((-887) $) 41 (-2304 (|has| (-51) (-632 (-887))) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-632 (-887)))) ELT)) (-2275 (((-114) $ $) NIL (-2304 (|has| (-51) (-102)) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-102))) ELT)) (-3376 (($ (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))) NIL T ELT)) (-1728 (((-114) (-1 (-114) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) NIL (-2304 (|has| (-51) (-102)) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-102))) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-1066) (-13 (-1224 (-1207) (-51)) (-10 -7 (-15 -4140 ((-114) (-114))) (-15 -1573 ((-114) (-114))) (-6 -4508)))) (T -1066))
-((-4140 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1066)))) (-1573 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1066)))))
-(-13 (-1224 (-1207) (-51)) (-10 -7 (-15 -4140 ((-114) (-114))) (-15 -1573 ((-114) (-114))) (-6 -4508)))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4341 (((-1166) $) 9 T ELT)) (-1578 (((-887) $) 15 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-1067) (-13 (-1114) (-10 -8 (-15 -4341 ((-1166) $))))) (T -1067))
-((-4341 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1067)))))
-(-13 (-1114) (-10 -8 (-15 -4341 ((-1166) $))))
-((-3330 ((|#2| $) 10 T ELT)))
-(((-1068 |#1| |#2|) (-10 -8 (-15 -3330 (|#2| |#1|))) (-1069 |#2|) (-1247)) (T -1068))
-NIL
-(-10 -8 (-15 -3330 (|#2| |#1|)))
-((-2539 (((-3 |#1| "failed") $) 9 T ELT)) (-3330 ((|#1| $) 8 T ELT)) (-1578 (($ |#1|) 6 T ELT)))
+((-2496 (((-3 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) "failed") |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) 32 T ELT) (((-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) (-421 (-560))) 29 T ELT)) (-2009 (((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) (-421 (-560))) 34 T ELT) (((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1| (-421 (-560))) 30 T ELT) (((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) 33 T ELT) (((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1|) 28 T ELT)) (-4223 (((-663 (-421 (-560))) (-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))) 20 T ELT)) (-1717 (((-421 (-560)) (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) 17 T ELT)))
+(((-1052 |#1|) (-10 -7 (-15 -2009 ((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1|)) (-15 -2009 ((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))) (-15 -2009 ((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1| (-421 (-560)))) (-15 -2009 ((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) (-421 (-560)))) (-15 -2496 ((-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) (-421 (-560)))) (-15 -2496 ((-3 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) "failed") |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))) (-15 -1717 ((-421 (-560)) (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))) (-15 -4223 ((-663 (-421 (-560))) (-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))))) (-1273 (-560))) (T -1052))
+((-4223 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))) (-5 *2 (-663 (-421 (-560)))) (-5 *1 (-1052 *4)) (-4 *4 (-1273 (-560))))) (-1717 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) (-5 *2 (-421 (-560))) (-5 *1 (-1052 *4)) (-4 *4 (-1273 (-560))))) (-2496 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-560))))) (-2496 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) (-5 *4 (-421 (-560))) (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-560))))) (-2009 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-421 (-560))) (-5 *2 (-663 (-2 (|:| -4335 *5) (|:| -4346 *5)))) (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-560))) (-5 *4 (-2 (|:| -4335 *5) (|:| -4346 *5))))) (-2009 (*1 *2 *3 *4) (-12 (-5 *2 (-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))) (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-560))) (-5 *4 (-421 (-560))))) (-2009 (*1 *2 *3 *4) (-12 (-5 *2 (-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))) (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-560))) (-5 *4 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))))) (-2009 (*1 *2 *3) (-12 (-5 *2 (-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))) (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-560))))))
+(-10 -7 (-15 -2009 ((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1|)) (-15 -2009 ((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))) (-15 -2009 ((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1| (-421 (-560)))) (-15 -2009 ((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) (-421 (-560)))) (-15 -2496 ((-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) (-421 (-560)))) (-15 -2496 ((-3 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) "failed") |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))) (-15 -1717 ((-421 (-560)) (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))) (-15 -4223 ((-663 (-421 (-560))) (-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))))))
+((-2496 (((-3 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) "failed") |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) 35 T ELT) (((-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) (-421 (-560))) 32 T ELT)) (-2009 (((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) (-421 (-560))) 30 T ELT) (((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1| (-421 (-560))) 26 T ELT) (((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) 28 T ELT) (((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1|) 24 T ELT)))
+(((-1053 |#1|) (-10 -7 (-15 -2009 ((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1|)) (-15 -2009 ((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))) (-15 -2009 ((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1| (-421 (-560)))) (-15 -2009 ((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) (-421 (-560)))) (-15 -2496 ((-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) (-421 (-560)))) (-15 -2496 ((-3 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) "failed") |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))))) (-1273 (-421 (-560)))) (T -1053))
+((-2496 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) (-5 *1 (-1053 *3)) (-4 *3 (-1273 (-421 (-560)))))) (-2496 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) (-5 *4 (-421 (-560))) (-5 *1 (-1053 *3)) (-4 *3 (-1273 *4)))) (-2009 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-421 (-560))) (-5 *2 (-663 (-2 (|:| -4335 *5) (|:| -4346 *5)))) (-5 *1 (-1053 *3)) (-4 *3 (-1273 *5)) (-5 *4 (-2 (|:| -4335 *5) (|:| -4346 *5))))) (-2009 (*1 *2 *3 *4) (-12 (-5 *4 (-421 (-560))) (-5 *2 (-663 (-2 (|:| -4335 *4) (|:| -4346 *4)))) (-5 *1 (-1053 *3)) (-4 *3 (-1273 *4)))) (-2009 (*1 *2 *3 *4) (-12 (-5 *2 (-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))) (-5 *1 (-1053 *3)) (-4 *3 (-1273 (-421 (-560)))) (-5 *4 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))))) (-2009 (*1 *2 *3) (-12 (-5 *2 (-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))) (-5 *1 (-1053 *3)) (-4 *3 (-1273 (-421 (-560)))))))
+(-10 -7 (-15 -2009 ((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1|)) (-15 -2009 ((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))) (-15 -2009 ((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1| (-421 (-560)))) (-15 -2009 ((-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))) |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) (-421 (-560)))) (-15 -2496 ((-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) (-421 (-560)))) (-15 -2496 ((-3 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) "failed") |#1| (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))) (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))))
+((-1652 (((-663 (-391)) (-975 (-560)) (-391)) 28 T ELT) (((-663 (-391)) (-975 (-421 (-560))) (-391)) 27 T ELT)) (-4159 (((-663 (-663 (-391))) (-663 (-975 (-560))) (-663 (-1207)) (-391)) 37 T ELT)))
+(((-1054) (-10 -7 (-15 -1652 ((-663 (-391)) (-975 (-421 (-560))) (-391))) (-15 -1652 ((-663 (-391)) (-975 (-560)) (-391))) (-15 -4159 ((-663 (-663 (-391))) (-663 (-975 (-560))) (-663 (-1207)) (-391))))) (T -1054))
+((-4159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-975 (-560)))) (-5 *4 (-663 (-1207))) (-5 *2 (-663 (-663 (-391)))) (-5 *1 (-1054)) (-5 *5 (-391)))) (-1652 (*1 *2 *3 *4) (-12 (-5 *3 (-975 (-560))) (-5 *2 (-663 (-391))) (-5 *1 (-1054)) (-5 *4 (-391)))) (-1652 (*1 *2 *3 *4) (-12 (-5 *3 (-975 (-421 (-560)))) (-5 *2 (-663 (-391))) (-5 *1 (-1054)) (-5 *4 (-391)))))
+(-10 -7 (-15 -1652 ((-663 (-391)) (-975 (-421 (-560))) (-391))) (-15 -1652 ((-663 (-391)) (-975 (-560)) (-391))) (-15 -4159 ((-663 (-663 (-391))) (-663 (-975 (-560))) (-663 (-1207)) (-391))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 75 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-4021 (($ $) NIL T ELT) (($ $ (-948)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-560)) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-1869 (((-560) $) 70 T ELT)) (-3525 (($) NIL T CONST)) (-3946 (((-3 $ "failed") (-1201 $) (-948) (-887)) NIL T ELT) (((-3 $ "failed") (-1201 $) (-948)) 55 T ELT)) (-3929 (((-3 (-421 (-560)) "failed") $) NIL (|has| (-421 (-560)) (-1069 (-421 (-560)))) ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 |#1| "failed") $) 116 T ELT) (((-3 (-560) "failed") $) NIL (-2196 (|has| (-421 (-560)) (-1069 (-560))) (|has| |#1| (-1069 (-560)))) ELT)) (-3649 (((-421 (-560)) $) 17 (|has| (-421 (-560)) (-1069 (-421 (-560)))) ELT) (((-421 (-560)) $) 17 T ELT) ((|#1| $) 117 T ELT) (((-560) $) NIL (-2196 (|has| (-421 (-560)) (-1069 (-560))) (|has| |#1| (-1069 (-560)))) ELT)) (-4456 (($ $ (-887)) 47 T ELT)) (-2529 (($ $ (-887)) 48 T ELT)) (-2186 (($ $ $) NIL T ELT)) (-2732 (((-421 (-560)) $ $) 21 T ELT)) (-2873 (((-3 $ "failed") $) 88 T ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-4172 (((-114) $) 66 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-1956 (($ $ (-560)) NIL T ELT)) (-4470 (((-114) $) 69 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-2965 (((-3 (-1201 $) "failed") $) 83 T ELT)) (-3668 (((-3 (-887) "failed") $) 82 T ELT)) (-3691 (((-3 (-1201 $) "failed") $) 80 T ELT)) (-3134 (((-3 (-1092 $ (-1201 $)) "failed") $) 78 T ELT)) (-1861 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) 89 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3913 (((-887) $) 87 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) 63 T ELT) (($ (-421 (-560))) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#1|) 119 T ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-2905 (((-421 (-560)) $ $) 27 T ELT)) (-3987 (((-663 $) (-1201 $)) 61 T ELT) (((-663 $) (-1201 (-421 (-560)))) NIL T ELT) (((-663 $) (-1201 (-560))) NIL T ELT) (((-663 $) (-975 $)) NIL T ELT) (((-663 $) (-975 (-421 (-560)))) NIL T ELT) (((-663 $) (-975 (-560))) NIL T ELT)) (-1754 (($ (-1092 $ (-1201 $)) (-887)) 46 T ELT)) (-2719 (($ $) 22 T ELT)) (-1446 (($) 32 T CONST)) (-1456 (($) 39 T CONST)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 76 T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 24 T ELT)) (-2453 (($ $ $) 37 T ELT)) (-2441 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-2429 (($ $ $) 112 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 98 T ELT) (($ $ $) 104 T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ (-560) $) 98 T ELT) (($ $ (-560)) NIL T ELT) (($ (-421 (-560)) $) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT) (($ |#1| $) 102 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-1055 |#1|) (-13 (-1043) (-426 |#1|) (-38 |#1|) (-10 -8 (-15 -1754 ($ (-1092 $ (-1201 $)) (-887))) (-15 -3134 ((-3 (-1092 $ (-1201 $)) "failed") $)) (-15 -2732 ((-421 (-560)) $ $)))) (-13 (-870) (-376) (-1051))) (T -1055))
+((-1754 (*1 *1 *2 *3) (-12 (-5 *2 (-1092 (-1055 *4) (-1201 (-1055 *4)))) (-5 *3 (-887)) (-5 *1 (-1055 *4)) (-4 *4 (-13 (-870) (-376) (-1051))))) (-3134 (*1 *2 *1) (|partial| -12 (-5 *2 (-1092 (-1055 *3) (-1201 (-1055 *3)))) (-5 *1 (-1055 *3)) (-4 *3 (-13 (-870) (-376) (-1051))))) (-2732 (*1 *2 *1 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-1055 *3)) (-4 *3 (-13 (-870) (-376) (-1051))))))
+(-13 (-1043) (-426 |#1|) (-38 |#1|) (-10 -8 (-15 -1754 ($ (-1092 $ (-1201 $)) (-887))) (-15 -3134 ((-3 (-1092 $ (-1201 $)) "failed") $)) (-15 -2732 ((-421 (-560)) $ $))))
+((-3831 (((-2 (|:| -2439 |#2|) (|:| -3494 (-663 |#1|))) |#2| (-663 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT)))
+(((-1056 |#1| |#2|) (-10 -7 (-15 -3831 (|#2| |#2| |#1|)) (-15 -3831 ((-2 (|:| -2439 |#2|) (|:| -3494 (-663 |#1|))) |#2| (-663 |#1|)))) (-376) (-680 |#1|)) (T -1056))
+((-3831 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| -2439 *3) (|:| -3494 (-663 *5)))) (-5 *1 (-1056 *5 *3)) (-5 *4 (-663 *5)) (-4 *3 (-680 *5)))) (-3831 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-1056 *3 *2)) (-4 *2 (-680 *3)))))
+(-10 -7 (-15 -3831 (|#2| |#2| |#1|)) (-15 -3831 ((-2 (|:| -2439 |#2|) (|:| -3494 (-663 |#1|))) |#2| (-663 |#1|))))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-1663 ((|#1| $ |#1|) 14 T ELT)) (-4083 ((|#1| $ |#1|) 12 T ELT)) (-2818 (($ |#1|) 10 T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-1507 ((|#1| $) 11 T ELT)) (-3727 ((|#1| $) 13 T ELT)) (-3913 (((-887) $) 21 (|has| |#1| (-1132)) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2340 (((-114) $ $) 9 T ELT)))
+(((-1057 |#1|) (-13 (-1247) (-10 -8 (-15 -2818 ($ |#1|)) (-15 -1507 (|#1| $)) (-15 -4083 (|#1| $ |#1|)) (-15 -3727 (|#1| $)) (-15 -1663 (|#1| $ |#1|)) (-15 -2340 ((-114) $ $)) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|))) (-1247)) (T -1057))
+((-2818 (*1 *1 *2) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1247)))) (-1507 (*1 *2 *1) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1247)))) (-4083 (*1 *2 *1 *2) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1247)))) (-3727 (*1 *2 *1) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1247)))) (-1663 (*1 *2 *1 *2) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1247)))) (-2340 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1057 *3)) (-4 *3 (-1247)))))
+(-13 (-1247) (-10 -8 (-15 -2818 ($ |#1|)) (-15 -1507 (|#1| $)) (-15 -4083 (|#1| $ |#1|)) (-15 -3727 (|#1| $)) (-15 -1663 (|#1| $ |#1|)) (-15 -2340 ((-114) $ $)) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2253 (((-663 (-2 (|:| -1924 $) (|:| -2888 (-663 |#4|)))) (-663 |#4|)) NIL T ELT)) (-1372 (((-663 $) (-663 |#4|)) 118 T ELT) (((-663 $) (-663 |#4|) (-114)) 119 T ELT) (((-663 $) (-663 |#4|) (-114) (-114)) 117 T ELT) (((-663 $) (-663 |#4|) (-114) (-114) (-114) (-114)) 120 T ELT)) (-4162 (((-663 |#3|) $) NIL T ELT)) (-1362 (((-114) $) NIL T ELT)) (-2179 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-2729 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-1722 ((|#4| |#4| $) NIL T ELT)) (-1621 (((-663 (-2 (|:| |val| |#4|) (|:| -3859 $))) |#4| $) 112 T ELT)) (-1787 (((-2 (|:| |under| $) (|:| -3147 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3923 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#4| "failed") $ |#3|) 66 T ELT)) (-3525 (($) NIL T CONST)) (-2733 (((-114) $) 29 (|has| |#1| (-571)) ELT)) (-3672 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4148 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2449 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4108 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3277 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-4485 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-3929 (((-3 $ "failed") (-663 |#4|)) NIL T ELT)) (-3649 (($ (-663 |#4|)) NIL T ELT)) (-4345 (((-3 $ "failed") $) 45 T ELT)) (-1440 ((|#4| |#4| $) 69 T ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-3033 (($ |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3276 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 85 (|has| |#1| (-571)) ELT)) (-2869 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-2113 ((|#4| |#4| $) NIL T ELT)) (-1778 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4508)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4508)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-2115 (((-2 (|:| -1924 (-663 |#4|)) (|:| -2888 (-663 |#4|))) $) NIL T ELT)) (-3175 (((-114) |#4| $) NIL T ELT)) (-1520 (((-114) |#4| $) NIL T ELT)) (-1575 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-2754 (((-2 (|:| |val| (-663 |#4|)) (|:| |towers| (-663 $))) (-663 |#4|) (-114) (-114)) 133 T ELT)) (-3737 (((-663 |#4|) $) 18 (|has| $ (-6 -4508)) ELT)) (-4264 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-1816 ((|#3| $) 38 T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-3243 (((-663 |#4|) $) 19 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#4| $) 27 (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-3324 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3471 (((-663 |#3|) $) NIL T ELT)) (-2703 (((-114) |#3| $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1702 (((-3 |#4| (-663 $)) |#4| |#4| $) NIL T ELT)) (-1790 (((-663 (-2 (|:| |val| |#4|) (|:| -3859 $))) |#4| |#4| $) 110 T ELT)) (-3057 (((-3 |#4| "failed") $) 42 T ELT)) (-4144 (((-663 $) |#4| $) 93 T ELT)) (-2769 (((-3 (-114) (-663 $)) |#4| $) NIL T ELT)) (-1503 (((-663 (-2 (|:| |val| (-114)) (|:| -3859 $))) |#4| $) 103 T ELT) (((-114) |#4| $) 64 T ELT)) (-3334 (((-663 $) |#4| $) 115 T ELT) (((-663 $) (-663 |#4|) $) NIL T ELT) (((-663 $) (-663 |#4|) (-663 $)) 116 T ELT) (((-663 $) |#4| (-663 $)) NIL T ELT)) (-1506 (((-663 $) (-663 |#4|) (-114) (-114) (-114)) 128 T ELT)) (-1392 (($ |#4| $) 82 T ELT) (($ (-663 |#4|) $) 83 T ELT) (((-663 $) |#4| $ (-114) (-114) (-114) (-114) (-114)) 79 T ELT)) (-2428 (((-663 |#4|) $) NIL T ELT)) (-4301 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4039 ((|#4| |#4| $) NIL T ELT)) (-4138 (((-114) $ $) NIL T ELT)) (-3531 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-1737 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-1686 ((|#4| |#4| $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4334 (((-3 |#4| "failed") $) 40 T ELT)) (-2708 (((-3 |#4| "failed") (-1 (-114) |#4|) $) NIL T ELT)) (-3867 (((-3 $ "failed") $ |#4|) 59 T ELT)) (-2219 (($ $ |#4|) NIL T ELT) (((-663 $) |#4| $) 95 T ELT) (((-663 $) |#4| (-663 $)) NIL T ELT) (((-663 $) (-663 |#4|) $) NIL T ELT) (((-663 $) (-663 |#4|) (-663 $)) 89 T ELT)) (-2086 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 |#4|) (-663 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) 17 T ELT)) (-2832 (($) 14 T ELT)) (-3900 (((-793) $) NIL T ELT)) (-3384 (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) (((-793) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) NIL (|has| |#4| (-633 (-549))) ELT)) (-3924 (($ (-663 |#4|)) 22 T ELT)) (-2511 (($ $ |#3|) 52 T ELT)) (-4047 (($ $ |#3|) 54 T ELT)) (-3833 (($ $) NIL T ELT)) (-2438 (($ $ |#3|) NIL T ELT)) (-3913 (((-887) $) 35 T ELT) (((-663 |#4|) $) 46 T ELT)) (-1930 (((-793) $) NIL (|has| |#3| (-381)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1690 (((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3058 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) NIL T ELT)) (-4135 (((-663 $) |#4| $) 92 T ELT) (((-663 $) |#4| (-663 $)) NIL T ELT) (((-663 $) (-663 |#4|) $) NIL T ELT) (((-663 $) (-663 |#4|) (-663 $)) NIL T ELT)) (-2149 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3616 (((-663 |#3|) $) NIL T ELT)) (-2416 (((-114) |#4| $) NIL T ELT)) (-3621 (((-114) |#3| $) 65 T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-1058 |#1| |#2| |#3| |#4|) (-13 (-1102 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1392 ((-663 $) |#4| $ (-114) (-114) (-114) (-114) (-114))) (-15 -1372 ((-663 $) (-663 |#4|) (-114) (-114))) (-15 -1372 ((-663 $) (-663 |#4|) (-114) (-114) (-114) (-114))) (-15 -1506 ((-663 $) (-663 |#4|) (-114) (-114) (-114))) (-15 -2754 ((-2 (|:| |val| (-663 |#4|)) (|:| |towers| (-663 $))) (-663 |#4|) (-114) (-114))))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|)) (T -1058))
+((-1392 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 (-1058 *5 *6 *7 *3))) (-5 *1 (-1058 *5 *6 *7 *3)) (-4 *3 (-1096 *5 *6 *7)))) (-1372 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-1372 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-1506 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8)))) (-2754 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-663 *8)) (|:| |towers| (-663 (-1058 *5 *6 *7 *8))))) (-5 *1 (-1058 *5 *6 *7 *8)) (-5 *3 (-663 *8)))))
+(-13 (-1102 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1392 ((-663 $) |#4| $ (-114) (-114) (-114) (-114) (-114))) (-15 -1372 ((-663 $) (-663 |#4|) (-114) (-114))) (-15 -1372 ((-663 $) (-663 |#4|) (-114) (-114) (-114) (-114))) (-15 -1506 ((-663 $) (-663 |#4|) (-114) (-114) (-114))) (-15 -2754 ((-2 (|:| |val| (-663 |#4|)) (|:| |towers| (-663 $))) (-663 |#4|) (-114) (-114)))))
+((-1414 (((-663 (-2 (|:| |radval| (-326 (-560))) (|:| |radmult| (-560)) (|:| |radvect| (-663 (-711 (-326 (-560))))))) (-711 (-421 (-975 (-560))))) 67 T ELT)) (-3911 (((-663 (-711 (-326 (-560)))) (-326 (-560)) (-711 (-421 (-975 (-560))))) 52 T ELT)) (-1995 (((-663 (-326 (-560))) (-711 (-421 (-975 (-560))))) 45 T ELT)) (-1973 (((-663 (-711 (-326 (-560)))) (-711 (-421 (-975 (-560))))) 85 T ELT)) (-4233 (((-711 (-326 (-560))) (-711 (-326 (-560)))) 38 T ELT)) (-4007 (((-663 (-711 (-326 (-560)))) (-663 (-711 (-326 (-560))))) 74 T ELT)) (-3432 (((-3 (-711 (-326 (-560))) "failed") (-711 (-421 (-975 (-560))))) 82 T ELT)))
+(((-1059) (-10 -7 (-15 -1414 ((-663 (-2 (|:| |radval| (-326 (-560))) (|:| |radmult| (-560)) (|:| |radvect| (-663 (-711 (-326 (-560))))))) (-711 (-421 (-975 (-560)))))) (-15 -3911 ((-663 (-711 (-326 (-560)))) (-326 (-560)) (-711 (-421 (-975 (-560)))))) (-15 -1995 ((-663 (-326 (-560))) (-711 (-421 (-975 (-560)))))) (-15 -3432 ((-3 (-711 (-326 (-560))) "failed") (-711 (-421 (-975 (-560)))))) (-15 -4233 ((-711 (-326 (-560))) (-711 (-326 (-560))))) (-15 -4007 ((-663 (-711 (-326 (-560)))) (-663 (-711 (-326 (-560)))))) (-15 -1973 ((-663 (-711 (-326 (-560)))) (-711 (-421 (-975 (-560)))))))) (T -1059))
+((-1973 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-975 (-560))))) (-5 *2 (-663 (-711 (-326 (-560))))) (-5 *1 (-1059)))) (-4007 (*1 *2 *2) (-12 (-5 *2 (-663 (-711 (-326 (-560))))) (-5 *1 (-1059)))) (-4233 (*1 *2 *2) (-12 (-5 *2 (-711 (-326 (-560)))) (-5 *1 (-1059)))) (-3432 (*1 *2 *3) (|partial| -12 (-5 *3 (-711 (-421 (-975 (-560))))) (-5 *2 (-711 (-326 (-560)))) (-5 *1 (-1059)))) (-1995 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-975 (-560))))) (-5 *2 (-663 (-326 (-560)))) (-5 *1 (-1059)))) (-3911 (*1 *2 *3 *4) (-12 (-5 *4 (-711 (-421 (-975 (-560))))) (-5 *2 (-663 (-711 (-326 (-560))))) (-5 *1 (-1059)) (-5 *3 (-326 (-560))))) (-1414 (*1 *2 *3) (-12 (-5 *3 (-711 (-421 (-975 (-560))))) (-5 *2 (-663 (-2 (|:| |radval| (-326 (-560))) (|:| |radmult| (-560)) (|:| |radvect| (-663 (-711 (-326 (-560)))))))) (-5 *1 (-1059)))))
+(-10 -7 (-15 -1414 ((-663 (-2 (|:| |radval| (-326 (-560))) (|:| |radmult| (-560)) (|:| |radvect| (-663 (-711 (-326 (-560))))))) (-711 (-421 (-975 (-560)))))) (-15 -3911 ((-663 (-711 (-326 (-560)))) (-326 (-560)) (-711 (-421 (-975 (-560)))))) (-15 -1995 ((-663 (-326 (-560))) (-711 (-421 (-975 (-560)))))) (-15 -3432 ((-3 (-711 (-326 (-560))) "failed") (-711 (-421 (-975 (-560)))))) (-15 -4233 ((-711 (-326 (-560))) (-711 (-326 (-560))))) (-15 -4007 ((-663 (-711 (-326 (-560)))) (-663 (-711 (-326 (-560)))))) (-15 -1973 ((-663 (-711 (-326 (-560)))) (-711 (-421 (-975 (-560)))))))
+((-1549 (((-663 (-711 |#1|)) (-663 (-711 |#1|))) 70 T ELT) (((-711 |#1|) (-711 |#1|)) 69 T ELT) (((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-663 (-711 |#1|))) 68 T ELT) (((-711 |#1|) (-711 |#1|) (-711 |#1|)) 65 T ELT)) (-2762 (((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-948)) 63 T ELT) (((-711 |#1|) (-711 |#1|) (-948)) 62 T ELT)) (-2105 (((-663 (-711 (-560))) (-663 (-663 (-560)))) 81 T ELT) (((-663 (-711 (-560))) (-663 (-931 (-560))) (-560)) 80 T ELT) (((-711 (-560)) (-663 (-560))) 77 T ELT) (((-711 (-560)) (-931 (-560)) (-560)) 75 T ELT)) (-1647 (((-711 (-975 |#1|)) (-793)) 95 T ELT)) (-2455 (((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-948)) 49 (|has| |#1| (-6 (-4510 "*"))) ELT) (((-711 |#1|) (-711 |#1|) (-948)) 47 (|has| |#1| (-6 (-4510 "*"))) ELT)))
+(((-1060 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4510 "*"))) (-15 -2455 ((-711 |#1|) (-711 |#1|) (-948))) |%noBranch|) (IF (|has| |#1| (-6 (-4510 "*"))) (-15 -2455 ((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-948))) |%noBranch|) (-15 -1647 ((-711 (-975 |#1|)) (-793))) (-15 -2762 ((-711 |#1|) (-711 |#1|) (-948))) (-15 -2762 ((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-948))) (-15 -1549 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -1549 ((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -1549 ((-711 |#1|) (-711 |#1|))) (-15 -1549 ((-663 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -2105 ((-711 (-560)) (-931 (-560)) (-560))) (-15 -2105 ((-711 (-560)) (-663 (-560)))) (-15 -2105 ((-663 (-711 (-560))) (-663 (-931 (-560))) (-560))) (-15 -2105 ((-663 (-711 (-560))) (-663 (-663 (-560)))))) (-1080)) (T -1060))
+((-2105 (*1 *2 *3) (-12 (-5 *3 (-663 (-663 (-560)))) (-5 *2 (-663 (-711 (-560)))) (-5 *1 (-1060 *4)) (-4 *4 (-1080)))) (-2105 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-931 (-560)))) (-5 *4 (-560)) (-5 *2 (-663 (-711 *4))) (-5 *1 (-1060 *5)) (-4 *5 (-1080)))) (-2105 (*1 *2 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-711 (-560))) (-5 *1 (-1060 *4)) (-4 *4 (-1080)))) (-2105 (*1 *2 *3 *4) (-12 (-5 *3 (-931 (-560))) (-5 *4 (-560)) (-5 *2 (-711 *4)) (-5 *1 (-1060 *5)) (-4 *5 (-1080)))) (-1549 (*1 *2 *2) (-12 (-5 *2 (-663 (-711 *3))) (-4 *3 (-1080)) (-5 *1 (-1060 *3)))) (-1549 (*1 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-1060 *3)))) (-1549 (*1 *2 *2 *2) (-12 (-5 *2 (-663 (-711 *3))) (-4 *3 (-1080)) (-5 *1 (-1060 *3)))) (-1549 (*1 *2 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-1060 *3)))) (-2762 (*1 *2 *2 *3) (-12 (-5 *2 (-663 (-711 *4))) (-5 *3 (-948)) (-4 *4 (-1080)) (-5 *1 (-1060 *4)))) (-2762 (*1 *2 *2 *3) (-12 (-5 *2 (-711 *4)) (-5 *3 (-948)) (-4 *4 (-1080)) (-5 *1 (-1060 *4)))) (-1647 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-711 (-975 *4))) (-5 *1 (-1060 *4)) (-4 *4 (-1080)))) (-2455 (*1 *2 *2 *3) (-12 (-5 *2 (-663 (-711 *4))) (-5 *3 (-948)) (|has| *4 (-6 (-4510 "*"))) (-4 *4 (-1080)) (-5 *1 (-1060 *4)))) (-2455 (*1 *2 *2 *3) (-12 (-5 *2 (-711 *4)) (-5 *3 (-948)) (|has| *4 (-6 (-4510 "*"))) (-4 *4 (-1080)) (-5 *1 (-1060 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4510 "*"))) (-15 -2455 ((-711 |#1|) (-711 |#1|) (-948))) |%noBranch|) (IF (|has| |#1| (-6 (-4510 "*"))) (-15 -2455 ((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-948))) |%noBranch|) (-15 -1647 ((-711 (-975 |#1|)) (-793))) (-15 -2762 ((-711 |#1|) (-711 |#1|) (-948))) (-15 -2762 ((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-948))) (-15 -1549 ((-711 |#1|) (-711 |#1|) (-711 |#1|))) (-15 -1549 ((-663 (-711 |#1|)) (-663 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -1549 ((-711 |#1|) (-711 |#1|))) (-15 -1549 ((-663 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -2105 ((-711 (-560)) (-931 (-560)) (-560))) (-15 -2105 ((-711 (-560)) (-663 (-560)))) (-15 -2105 ((-663 (-711 (-560))) (-663 (-931 (-560))) (-560))) (-15 -2105 ((-663 (-711 (-560))) (-663 (-663 (-560))))))
+((-2783 (((-711 |#1|) (-663 (-711 |#1|)) (-1297 |#1|)) 70 (|has| |#1| (-319)) ELT)) (-1626 (((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-1297 (-1297 |#1|))) 110 (|has| |#1| (-376)) ELT) (((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-1297 |#1|)) 117 (|has| |#1| (-376)) ELT)) (-3341 (((-1297 |#1|) (-663 (-1297 |#1|)) (-560)) 135 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT)) (-3380 (((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-948)) 123 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-114)) 122 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|))) 121 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-114) (-560) (-560)) 120 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT)) (-4316 (((-114) (-663 (-711 |#1|))) 103 (|has| |#1| (-376)) ELT) (((-114) (-663 (-711 |#1|)) (-560)) 106 (|has| |#1| (-376)) ELT)) (-2307 (((-1297 (-1297 |#1|)) (-663 (-711 |#1|)) (-1297 |#1|)) 67 (|has| |#1| (-319)) ELT)) (-1554 (((-711 |#1|) (-663 (-711 |#1|)) (-711 |#1|)) 47 T ELT)) (-1387 (((-711 |#1|) (-1297 (-1297 |#1|))) 40 T ELT)) (-3346 (((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)) (-560)) 94 (|has| |#1| (-376)) ELT) (((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|))) 93 (|has| |#1| (-376)) ELT) (((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)) (-114) (-560)) 101 (|has| |#1| (-376)) ELT)))
+(((-1061 |#1|) (-10 -7 (-15 -1387 ((-711 |#1|) (-1297 (-1297 |#1|)))) (-15 -1554 ((-711 |#1|) (-663 (-711 |#1|)) (-711 |#1|))) (IF (|has| |#1| (-319)) (PROGN (-15 -2307 ((-1297 (-1297 |#1|)) (-663 (-711 |#1|)) (-1297 |#1|))) (-15 -2783 ((-711 |#1|) (-663 (-711 |#1|)) (-1297 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -3346 ((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)) (-114) (-560))) (-15 -3346 ((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -3346 ((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)) (-560))) (-15 -4316 ((-114) (-663 (-711 |#1|)) (-560))) (-15 -4316 ((-114) (-663 (-711 |#1|)))) (-15 -1626 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-1297 |#1|))) (-15 -1626 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-1297 (-1297 |#1|))))) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#1| (-376)) (PROGN (-15 -3380 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-114) (-560) (-560))) (-15 -3380 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)))) (-15 -3380 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-114))) (-15 -3380 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-948))) (-15 -3341 ((-1297 |#1|) (-663 (-1297 |#1|)) (-560)))) |%noBranch|) |%noBranch|)) (-1080)) (T -1061))
+((-3341 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-1297 *5))) (-5 *4 (-560)) (-5 *2 (-1297 *5)) (-5 *1 (-1061 *5)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1080)))) (-3380 (*1 *2 *3 *4) (-12 (-5 *4 (-948)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1080)) (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1061 *5)) (-5 *3 (-663 (-711 *5))))) (-3380 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1080)) (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1061 *5)) (-5 *3 (-663 (-711 *5))))) (-3380 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *4 (-381)) (-4 *4 (-1080)) (-5 *2 (-663 (-663 (-711 *4)))) (-5 *1 (-1061 *4)) (-5 *3 (-663 (-711 *4))))) (-3380 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-560)) (-4 *6 (-376)) (-4 *6 (-381)) (-4 *6 (-1080)) (-5 *2 (-663 (-663 (-711 *6)))) (-5 *1 (-1061 *6)) (-5 *3 (-663 (-711 *6))))) (-1626 (*1 *2 *3 *4) (-12 (-5 *4 (-1297 (-1297 *5))) (-4 *5 (-376)) (-4 *5 (-1080)) (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1061 *5)) (-5 *3 (-663 (-711 *5))))) (-1626 (*1 *2 *3 *4) (-12 (-5 *4 (-1297 *5)) (-4 *5 (-376)) (-4 *5 (-1080)) (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1061 *5)) (-5 *3 (-663 (-711 *5))))) (-4316 (*1 *2 *3) (-12 (-5 *3 (-663 (-711 *4))) (-4 *4 (-376)) (-4 *4 (-1080)) (-5 *2 (-114)) (-5 *1 (-1061 *4)))) (-4316 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-711 *5))) (-5 *4 (-560)) (-4 *5 (-376)) (-4 *5 (-1080)) (-5 *2 (-114)) (-5 *1 (-1061 *5)))) (-3346 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-663 (-711 *5))) (-5 *4 (-560)) (-5 *2 (-711 *5)) (-5 *1 (-1061 *5)) (-4 *5 (-376)) (-4 *5 (-1080)))) (-3346 (*1 *2 *3 *3) (-12 (-5 *3 (-663 (-711 *4))) (-5 *2 (-711 *4)) (-5 *1 (-1061 *4)) (-4 *4 (-376)) (-4 *4 (-1080)))) (-3346 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-663 (-711 *6))) (-5 *4 (-114)) (-5 *5 (-560)) (-5 *2 (-711 *6)) (-5 *1 (-1061 *6)) (-4 *6 (-376)) (-4 *6 (-1080)))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-711 *5))) (-5 *4 (-1297 *5)) (-4 *5 (-319)) (-4 *5 (-1080)) (-5 *2 (-711 *5)) (-5 *1 (-1061 *5)))) (-2307 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-711 *5))) (-4 *5 (-319)) (-4 *5 (-1080)) (-5 *2 (-1297 (-1297 *5))) (-5 *1 (-1061 *5)) (-5 *4 (-1297 *5)))) (-1554 (*1 *2 *3 *2) (-12 (-5 *3 (-663 (-711 *4))) (-5 *2 (-711 *4)) (-4 *4 (-1080)) (-5 *1 (-1061 *4)))) (-1387 (*1 *2 *3) (-12 (-5 *3 (-1297 (-1297 *4))) (-4 *4 (-1080)) (-5 *2 (-711 *4)) (-5 *1 (-1061 *4)))))
+(-10 -7 (-15 -1387 ((-711 |#1|) (-1297 (-1297 |#1|)))) (-15 -1554 ((-711 |#1|) (-663 (-711 |#1|)) (-711 |#1|))) (IF (|has| |#1| (-319)) (PROGN (-15 -2307 ((-1297 (-1297 |#1|)) (-663 (-711 |#1|)) (-1297 |#1|))) (-15 -2783 ((-711 |#1|) (-663 (-711 |#1|)) (-1297 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -3346 ((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)) (-114) (-560))) (-15 -3346 ((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -3346 ((-711 |#1|) (-663 (-711 |#1|)) (-663 (-711 |#1|)) (-560))) (-15 -4316 ((-114) (-663 (-711 |#1|)) (-560))) (-15 -4316 ((-114) (-663 (-711 |#1|)))) (-15 -1626 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-1297 |#1|))) (-15 -1626 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-1297 (-1297 |#1|))))) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#1| (-376)) (PROGN (-15 -3380 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-114) (-560) (-560))) (-15 -3380 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)))) (-15 -3380 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-114))) (-15 -3380 ((-663 (-663 (-711 |#1|))) (-663 (-711 |#1|)) (-948))) (-15 -3341 ((-1297 |#1|) (-663 (-1297 |#1|)) (-560)))) |%noBranch|) |%noBranch|))
+((-1721 ((|#1| (-948) |#1|) 18 T ELT)))
+(((-1062 |#1|) (-10 -7 (-15 -1721 (|#1| (-948) |#1|))) (-13 (-1132) (-10 -8 (-15 -2429 ($ $ $))))) (T -1062))
+((-1721 (*1 *2 *3 *2) (-12 (-5 *3 (-948)) (-5 *1 (-1062 *2)) (-4 *2 (-13 (-1132) (-10 -8 (-15 -2429 ($ $ $))))))))
+(-10 -7 (-15 -1721 (|#1| (-948) |#1|)))
+((-1439 ((|#1| |#1| (-948)) 18 T ELT)))
+(((-1063 |#1|) (-10 -7 (-15 -1439 (|#1| |#1| (-948)))) (-13 (-1132) (-10 -8 (-15 * ($ $ $))))) (T -1063))
+((-1439 (*1 *2 *2 *3) (-12 (-5 *3 (-948)) (-5 *1 (-1063 *2)) (-4 *2 (-13 (-1132) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -1439 (|#1| |#1| (-948))))
+((-3913 ((|#1| (-323)) 11 T ELT) (((-1303) |#1|) 9 T ELT)))
+(((-1064 |#1|) (-10 -7 (-15 -3913 ((-1303) |#1|)) (-15 -3913 (|#1| (-323)))) (-1247)) (T -1064))
+((-3913 (*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *1 (-1064 *2)) (-4 *2 (-1247)))) (-3913 (*1 *2 *3) (-12 (-5 *2 (-1303)) (-5 *1 (-1064 *3)) (-4 *3 (-1247)))))
+(-10 -7 (-15 -3913 ((-1303) |#1|)) (-15 -3913 (|#1| (-323))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-1778 (($ |#4|) 25 T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-1767 ((|#4| $) 27 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 46 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 26 T ELT)) (-4191 (((-793)) 43 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 21 T CONST)) (-1456 (($) 23 T CONST)) (-2340 (((-114) $ $) 40 T ELT)) (-2441 (($ $) 31 T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 29 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 36 T ELT) (($ $ $) 33 T ELT) (($ |#1| $) 38 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-1065 |#1| |#2| |#3| |#4| |#5|) (-13 (-175) (-38 |#1|) (-10 -8 (-15 -1778 ($ |#4|)) (-15 -3913 ($ |#4|)) (-15 -1767 (|#4| $)))) (-376) (-815) (-871) (-979 |#1| |#2| |#3|) (-663 |#4|)) (T -1065))
+((-1778 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1065 *3 *4 *5 *2 *6)) (-4 *2 (-979 *3 *4 *5)) (-14 *6 (-663 *2)))) (-3913 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1065 *3 *4 *5 *2 *6)) (-4 *2 (-979 *3 *4 *5)) (-14 *6 (-663 *2)))) (-1767 (*1 *2 *1) (-12 (-4 *2 (-979 *3 *4 *5)) (-5 *1 (-1065 *3 *4 *5 *2 *6)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-14 *6 (-663 *2)))))
+(-13 (-175) (-38 |#1|) (-10 -8 (-15 -1778 ($ |#4|)) (-15 -3913 ($ |#4|)) (-15 -1767 (|#4| $))))
+((-2243 (((-114) $ $) NIL (-2196 (|has| (-51) (-102)) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-102))) ELT)) (-4236 (($) NIL T ELT) (($ (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))) NIL T ELT)) (-2033 (((-1303) $ (-1207) (-1207)) NIL (|has| $ (-6 -4509)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-1915 (((-114) (-114)) 43 T ELT)) (-1842 (((-114) (-114)) 42 T ELT)) (-4083 (((-51) $ (-1207) (-51)) NIL T ELT)) (-1864 (($ (-1 (-114) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3799 (((-3 (-51) "failed") (-1207) $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1132))) ELT)) (-2091 (($ (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 (-51) "failed") (-1207) $) NIL T ELT)) (-3033 (($ (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 (((-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $ (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1132))) ELT) (((-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $ (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3338 (((-51) $ (-1207) (-51)) NIL (|has| $ (-6 -4509)) ELT)) (-3274 (((-51) $ (-1207)) NIL T ELT)) (-3737 (((-663 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-1207) $) NIL (|has| (-1207) (-871)) ELT)) (-3243 (((-663 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1132))) ELT) (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-51) (-1132))) ELT)) (-4263 (((-1207) $) NIL (|has| (-1207) (-871)) ELT)) (-3324 (($ (-1 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (-2196 (|has| (-51) (-1132)) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1132))) ELT)) (-4325 (((-663 (-1207)) $) 37 T ELT)) (-4124 (((-114) (-1207) $) NIL T ELT)) (-1878 (((-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) $) NIL T ELT)) (-3888 (($ (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) $) NIL T ELT)) (-3372 (((-663 (-1207)) $) NIL T ELT)) (-3439 (((-114) (-1207) $) NIL T ELT)) (-3376 (((-1151) $) NIL (-2196 (|has| (-51) (-1132)) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1132))) ELT)) (-4334 (((-51) $) NIL (|has| (-1207) (-871)) ELT)) (-2708 (((-3 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) "failed") (-1 (-114) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL T ELT)) (-2740 (($ $ (-51)) NIL (|has| $ (-6 -4509)) ELT)) (-2796 (((-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) $) NIL T ELT)) (-2086 (((-114) (-1 (-114) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))))) NIL (-12 (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-321 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1132))) ELT) (($ $ (-305 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))) NIL (-12 (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-321 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1132))) ELT) (($ $ (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) NIL (-12 (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-321 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1132))) ELT) (($ $ (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))) NIL (-12 (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-321 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1132))) ELT) (($ $ (-663 (-51)) (-663 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT) (($ $ (-305 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT) (($ $ (-663 (-305 (-51)))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-51) (-1132))) ELT)) (-1383 (((-663 (-51)) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 (((-51) $ (-1207)) 39 T ELT) (((-51) $ (-1207) (-51)) NIL T ELT)) (-4468 (($) NIL T ELT) (($ (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))) NIL T ELT)) (-3384 (((-793) (-1 (-114) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1132))) ELT) (((-793) (-51) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-51) (-1132))) ELT) (((-793) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) NIL (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-633 (-549))) ELT)) (-3924 (($ (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))) NIL T ELT)) (-3913 (((-887) $) 41 (-2196 (|has| (-51) (-632 (-887))) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-632 (-887)))) ELT)) (-3925 (((-114) $ $) NIL (-2196 (|has| (-51) (-102)) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-102))) ELT)) (-3184 (($ (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))) NIL T ELT)) (-2149 (((-114) (-1 (-114) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) NIL (-2196 (|has| (-51) (-102)) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-102))) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-1066) (-13 (-1224 (-1207) (-51)) (-10 -7 (-15 -1915 ((-114) (-114))) (-15 -1842 ((-114) (-114))) (-6 -4508)))) (T -1066))
+((-1915 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1066)))) (-1842 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1066)))))
+(-13 (-1224 (-1207) (-51)) (-10 -7 (-15 -1915 ((-114) (-114))) (-15 -1842 ((-114) (-114))) (-6 -4508)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4465 (((-1166) $) 9 T ELT)) (-3913 (((-887) $) 15 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-1067) (-13 (-1114) (-10 -8 (-15 -4465 ((-1166) $))))) (T -1067))
+((-4465 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1067)))))
+(-13 (-1114) (-10 -8 (-15 -4465 ((-1166) $))))
+((-3649 ((|#2| $) 10 T ELT)))
+(((-1068 |#1| |#2|) (-10 -8 (-15 -3649 (|#2| |#1|))) (-1069 |#2|) (-1247)) (T -1068))
+NIL
+(-10 -8 (-15 -3649 (|#2| |#1|)))
+((-3929 (((-3 |#1| "failed") $) 9 T ELT)) (-3649 ((|#1| $) 8 T ELT)) (-3913 (($ |#1|) 6 T ELT)))
(((-1069 |#1|) (-142) (-1247)) (T -1069))
-((-2539 (*1 *2 *1) (|partial| -12 (-4 *1 (-1069 *2)) (-4 *2 (-1247)))) (-3330 (*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1247)))))
-(-13 (-635 |t#1|) (-10 -8 (-15 -2539 ((-3 |t#1| "failed") $)) (-15 -3330 (|t#1| $))))
+((-3929 (*1 *2 *1) (|partial| -12 (-4 *1 (-1069 *2)) (-4 *2 (-1247)))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1247)))))
+(-13 (-635 |t#1|) (-10 -8 (-15 -3929 ((-3 |t#1| "failed") $)) (-15 -3649 (|t#1| $))))
(((-635 |#1|) . T))
-((-1527 (((-663 (-663 (-305 (-421 (-975 |#2|))))) (-663 (-975 |#2|)) (-663 (-1207))) 38 T ELT)))
-(((-1070 |#1| |#2|) (-10 -7 (-15 -1527 ((-663 (-663 (-305 (-421 (-975 |#2|))))) (-663 (-975 |#2|)) (-663 (-1207))))) (-571) (-13 (-571) (-1069 |#1|))) (T -1070))
-((-1527 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-975 *6))) (-5 *4 (-663 (-1207))) (-4 *6 (-13 (-571) (-1069 *5))) (-4 *5 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-975 *6)))))) (-5 *1 (-1070 *5 *6)))))
-(-10 -7 (-15 -1527 ((-663 (-663 (-305 (-421 (-975 |#2|))))) (-663 (-975 |#2|)) (-663 (-1207)))))
-((-1443 (((-663 (-1207)) (-421 (-975 |#1|))) 17 T ELT)) (-4422 (((-421 (-1201 (-421 (-975 |#1|)))) (-421 (-975 |#1|)) (-1207)) 24 T ELT)) (-1427 (((-421 (-975 |#1|)) (-421 (-1201 (-421 (-975 |#1|)))) (-1207)) 26 T ELT)) (-1955 (((-3 (-1207) "failed") (-421 (-975 |#1|))) 20 T ELT)) (-4187 (((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-663 (-305 (-421 (-975 |#1|))))) 32 T ELT) (((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|)))) 33 T ELT) (((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-663 (-1207)) (-663 (-421 (-975 |#1|)))) 28 T ELT) (((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-1207) (-421 (-975 |#1|))) 29 T ELT)) (-1578 (((-421 (-975 |#1|)) |#1|) 11 T ELT)))
-(((-1071 |#1|) (-10 -7 (-15 -1443 ((-663 (-1207)) (-421 (-975 |#1|)))) (-15 -1955 ((-3 (-1207) "failed") (-421 (-975 |#1|)))) (-15 -4422 ((-421 (-1201 (-421 (-975 |#1|)))) (-421 (-975 |#1|)) (-1207))) (-15 -1427 ((-421 (-975 |#1|)) (-421 (-1201 (-421 (-975 |#1|)))) (-1207))) (-15 -4187 ((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-1207) (-421 (-975 |#1|)))) (-15 -4187 ((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-663 (-1207)) (-663 (-421 (-975 |#1|))))) (-15 -4187 ((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|))))) (-15 -4187 ((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-663 (-305 (-421 (-975 |#1|)))))) (-15 -1578 ((-421 (-975 |#1|)) |#1|))) (-571)) (T -1071))
-((-1578 (*1 *2 *3) (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-1071 *3)) (-4 *3 (-571)))) (-4187 (*1 *2 *2 *3) (-12 (-5 *3 (-663 (-305 (-421 (-975 *4))))) (-5 *2 (-421 (-975 *4))) (-4 *4 (-571)) (-5 *1 (-1071 *4)))) (-4187 (*1 *2 *2 *3) (-12 (-5 *3 (-305 (-421 (-975 *4)))) (-5 *2 (-421 (-975 *4))) (-4 *4 (-571)) (-5 *1 (-1071 *4)))) (-4187 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-663 (-1207))) (-5 *4 (-663 (-421 (-975 *5)))) (-5 *2 (-421 (-975 *5))) (-4 *5 (-571)) (-5 *1 (-1071 *5)))) (-4187 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-421 (-975 *4))) (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *1 (-1071 *4)))) (-1427 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-1201 (-421 (-975 *5))))) (-5 *4 (-1207)) (-5 *2 (-421 (-975 *5))) (-5 *1 (-1071 *5)) (-4 *5 (-571)))) (-4422 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-571)) (-5 *2 (-421 (-1201 (-421 (-975 *5))))) (-5 *1 (-1071 *5)) (-5 *3 (-421 (-975 *5))))) (-1955 (*1 *2 *3) (|partial| -12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571)) (-5 *2 (-1207)) (-5 *1 (-1071 *4)))) (-1443 (*1 *2 *3) (-12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571)) (-5 *2 (-663 (-1207))) (-5 *1 (-1071 *4)))))
-(-10 -7 (-15 -1443 ((-663 (-1207)) (-421 (-975 |#1|)))) (-15 -1955 ((-3 (-1207) "failed") (-421 (-975 |#1|)))) (-15 -4422 ((-421 (-1201 (-421 (-975 |#1|)))) (-421 (-975 |#1|)) (-1207))) (-15 -1427 ((-421 (-975 |#1|)) (-421 (-1201 (-421 (-975 |#1|)))) (-1207))) (-15 -4187 ((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-1207) (-421 (-975 |#1|)))) (-15 -4187 ((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-663 (-1207)) (-663 (-421 (-975 |#1|))))) (-15 -4187 ((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|))))) (-15 -4187 ((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-663 (-305 (-421 (-975 |#1|)))))) (-15 -1578 ((-421 (-975 |#1|)) |#1|)))
-((-2480 (((-391)) 17 T ELT)) (-2406 (((-1 (-391)) (-391) (-391)) 22 T ELT)) (-3735 (((-1 (-391)) (-793)) 48 T ELT)) (-2789 (((-391)) 37 T ELT)) (-2773 (((-1 (-391)) (-391) (-391)) 38 T ELT)) (-3333 (((-391)) 29 T ELT)) (-3442 (((-1 (-391)) (-391)) 30 T ELT)) (-1693 (((-391) (-793)) 43 T ELT)) (-4054 (((-1 (-391)) (-793)) 44 T ELT)) (-2284 (((-1 (-391)) (-793) (-793)) 47 T ELT)) (-4374 (((-1 (-391)) (-793) (-793)) 45 T ELT)))
-(((-1072) (-10 -7 (-15 -2480 ((-391))) (-15 -2789 ((-391))) (-15 -3333 ((-391))) (-15 -1693 ((-391) (-793))) (-15 -2406 ((-1 (-391)) (-391) (-391))) (-15 -2773 ((-1 (-391)) (-391) (-391))) (-15 -3442 ((-1 (-391)) (-391))) (-15 -4054 ((-1 (-391)) (-793))) (-15 -4374 ((-1 (-391)) (-793) (-793))) (-15 -2284 ((-1 (-391)) (-793) (-793))) (-15 -3735 ((-1 (-391)) (-793))))) (T -1072))
-((-3735 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1072)))) (-2284 (*1 *2 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1072)))) (-4374 (*1 *2 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1072)))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1072)))) (-3442 (*1 *2 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1072)) (-5 *3 (-391)))) (-2773 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1072)) (-5 *3 (-391)))) (-2406 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1072)) (-5 *3 (-391)))) (-1693 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-391)) (-5 *1 (-1072)))) (-3333 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1072)))) (-2789 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1072)))) (-2480 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1072)))))
-(-10 -7 (-15 -2480 ((-391))) (-15 -2789 ((-391))) (-15 -3333 ((-391))) (-15 -1693 ((-391) (-793))) (-15 -2406 ((-1 (-391)) (-391) (-391))) (-15 -2773 ((-1 (-391)) (-391) (-391))) (-15 -3442 ((-1 (-391)) (-391))) (-15 -4054 ((-1 (-391)) (-793))) (-15 -4374 ((-1 (-391)) (-793) (-793))) (-15 -2284 ((-1 (-391)) (-793) (-793))) (-15 -3735 ((-1 (-391)) (-793))))
-((-4457 (((-419 |#1|) |#1|) 33 T ELT)))
-(((-1073 |#1|) (-10 -7 (-15 -4457 ((-419 |#1|) |#1|))) (-1273 (-421 (-975 (-560))))) (T -1073))
-((-4457 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-1273 (-421 (-975 (-560))))))))
-(-10 -7 (-15 -4457 ((-419 |#1|) |#1|)))
-((-3057 (((-421 (-419 (-975 |#1|))) (-421 (-975 |#1|))) 14 T ELT)))
-(((-1074 |#1|) (-10 -7 (-15 -3057 ((-421 (-419 (-975 |#1|))) (-421 (-975 |#1|))))) (-319)) (T -1074))
-((-3057 (*1 *2 *3) (-12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-319)) (-5 *2 (-421 (-419 (-975 *4)))) (-5 *1 (-1074 *4)))))
-(-10 -7 (-15 -3057 ((-421 (-419 (-975 |#1|))) (-421 (-975 |#1|)))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-2238 (($) 18 T CONST)) (-1740 ((|#1| $) 23 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1569 ((|#1| $) 22 T ELT)) (-3969 ((|#1|) 20 T CONST)) (-1578 (((-887) $) 12 T ELT)) (-3695 ((|#1| $) 21 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT)))
+((-3356 (((-663 (-663 (-305 (-421 (-975 |#2|))))) (-663 (-975 |#2|)) (-663 (-1207))) 38 T ELT)))
+(((-1070 |#1| |#2|) (-10 -7 (-15 -3356 ((-663 (-663 (-305 (-421 (-975 |#2|))))) (-663 (-975 |#2|)) (-663 (-1207))))) (-571) (-13 (-571) (-1069 |#1|))) (T -1070))
+((-3356 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-975 *6))) (-5 *4 (-663 (-1207))) (-4 *6 (-13 (-571) (-1069 *5))) (-4 *5 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-975 *6)))))) (-5 *1 (-1070 *5 *6)))))
+(-10 -7 (-15 -3356 ((-663 (-663 (-305 (-421 (-975 |#2|))))) (-663 (-975 |#2|)) (-663 (-1207)))))
+((-4162 (((-663 (-1207)) (-421 (-975 |#1|))) 17 T ELT)) (-3981 (((-421 (-1201 (-421 (-975 |#1|)))) (-421 (-975 |#1|)) (-1207)) 24 T ELT)) (-4149 (((-421 (-975 |#1|)) (-421 (-1201 (-421 (-975 |#1|)))) (-1207)) 26 T ELT)) (-3835 (((-3 (-1207) "failed") (-421 (-975 |#1|))) 20 T ELT)) (-2371 (((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-663 (-305 (-421 (-975 |#1|))))) 32 T ELT) (((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|)))) 33 T ELT) (((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-663 (-1207)) (-663 (-421 (-975 |#1|)))) 28 T ELT) (((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-1207) (-421 (-975 |#1|))) 29 T ELT)) (-3913 (((-421 (-975 |#1|)) |#1|) 11 T ELT)))
+(((-1071 |#1|) (-10 -7 (-15 -4162 ((-663 (-1207)) (-421 (-975 |#1|)))) (-15 -3835 ((-3 (-1207) "failed") (-421 (-975 |#1|)))) (-15 -3981 ((-421 (-1201 (-421 (-975 |#1|)))) (-421 (-975 |#1|)) (-1207))) (-15 -4149 ((-421 (-975 |#1|)) (-421 (-1201 (-421 (-975 |#1|)))) (-1207))) (-15 -2371 ((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-1207) (-421 (-975 |#1|)))) (-15 -2371 ((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-663 (-1207)) (-663 (-421 (-975 |#1|))))) (-15 -2371 ((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|))))) (-15 -2371 ((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-663 (-305 (-421 (-975 |#1|)))))) (-15 -3913 ((-421 (-975 |#1|)) |#1|))) (-571)) (T -1071))
+((-3913 (*1 *2 *3) (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-1071 *3)) (-4 *3 (-571)))) (-2371 (*1 *2 *2 *3) (-12 (-5 *3 (-663 (-305 (-421 (-975 *4))))) (-5 *2 (-421 (-975 *4))) (-4 *4 (-571)) (-5 *1 (-1071 *4)))) (-2371 (*1 *2 *2 *3) (-12 (-5 *3 (-305 (-421 (-975 *4)))) (-5 *2 (-421 (-975 *4))) (-4 *4 (-571)) (-5 *1 (-1071 *4)))) (-2371 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-663 (-1207))) (-5 *4 (-663 (-421 (-975 *5)))) (-5 *2 (-421 (-975 *5))) (-4 *5 (-571)) (-5 *1 (-1071 *5)))) (-2371 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-421 (-975 *4))) (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *1 (-1071 *4)))) (-4149 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-1201 (-421 (-975 *5))))) (-5 *4 (-1207)) (-5 *2 (-421 (-975 *5))) (-5 *1 (-1071 *5)) (-4 *5 (-571)))) (-3981 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-571)) (-5 *2 (-421 (-1201 (-421 (-975 *5))))) (-5 *1 (-1071 *5)) (-5 *3 (-421 (-975 *5))))) (-3835 (*1 *2 *3) (|partial| -12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571)) (-5 *2 (-1207)) (-5 *1 (-1071 *4)))) (-4162 (*1 *2 *3) (-12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571)) (-5 *2 (-663 (-1207))) (-5 *1 (-1071 *4)))))
+(-10 -7 (-15 -4162 ((-663 (-1207)) (-421 (-975 |#1|)))) (-15 -3835 ((-3 (-1207) "failed") (-421 (-975 |#1|)))) (-15 -3981 ((-421 (-1201 (-421 (-975 |#1|)))) (-421 (-975 |#1|)) (-1207))) (-15 -4149 ((-421 (-975 |#1|)) (-421 (-1201 (-421 (-975 |#1|)))) (-1207))) (-15 -2371 ((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-1207) (-421 (-975 |#1|)))) (-15 -2371 ((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-663 (-1207)) (-663 (-421 (-975 |#1|))))) (-15 -2371 ((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-305 (-421 (-975 |#1|))))) (-15 -2371 ((-421 (-975 |#1|)) (-421 (-975 |#1|)) (-663 (-305 (-421 (-975 |#1|)))))) (-15 -3913 ((-421 (-975 |#1|)) |#1|)))
+((-4092 (((-391)) 17 T ELT)) (-1463 (((-1 (-391)) (-391) (-391)) 22 T ELT)) (-1347 (((-1 (-391)) (-793)) 48 T ELT)) (-2106 (((-391)) 37 T ELT)) (-3967 (((-1 (-391)) (-391) (-391)) 38 T ELT)) (-2727 (((-391)) 29 T ELT)) (-2539 (((-1 (-391)) (-391)) 30 T ELT)) (-3044 (((-391) (-793)) 43 T ELT)) (-2303 (((-1 (-391)) (-793)) 44 T ELT)) (-1683 (((-1 (-391)) (-793) (-793)) 47 T ELT)) (-2231 (((-1 (-391)) (-793) (-793)) 45 T ELT)))
+(((-1072) (-10 -7 (-15 -4092 ((-391))) (-15 -2106 ((-391))) (-15 -2727 ((-391))) (-15 -3044 ((-391) (-793))) (-15 -1463 ((-1 (-391)) (-391) (-391))) (-15 -3967 ((-1 (-391)) (-391) (-391))) (-15 -2539 ((-1 (-391)) (-391))) (-15 -2303 ((-1 (-391)) (-793))) (-15 -2231 ((-1 (-391)) (-793) (-793))) (-15 -1683 ((-1 (-391)) (-793) (-793))) (-15 -1347 ((-1 (-391)) (-793))))) (T -1072))
+((-1347 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1072)))) (-1683 (*1 *2 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1072)))) (-2231 (*1 *2 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1072)))) (-2303 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1072)))) (-2539 (*1 *2 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1072)) (-5 *3 (-391)))) (-3967 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1072)) (-5 *3 (-391)))) (-1463 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1072)) (-5 *3 (-391)))) (-3044 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-391)) (-5 *1 (-1072)))) (-2727 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1072)))) (-2106 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1072)))) (-4092 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1072)))))
+(-10 -7 (-15 -4092 ((-391))) (-15 -2106 ((-391))) (-15 -2727 ((-391))) (-15 -3044 ((-391) (-793))) (-15 -1463 ((-1 (-391)) (-391) (-391))) (-15 -3967 ((-1 (-391)) (-391) (-391))) (-15 -2539 ((-1 (-391)) (-391))) (-15 -2303 ((-1 (-391)) (-793))) (-15 -2231 ((-1 (-391)) (-793) (-793))) (-15 -1683 ((-1 (-391)) (-793) (-793))) (-15 -1347 ((-1 (-391)) (-793))))
+((-4012 (((-419 |#1|) |#1|) 33 T ELT)))
+(((-1073 |#1|) (-10 -7 (-15 -4012 ((-419 |#1|) |#1|))) (-1273 (-421 (-975 (-560))))) (T -1073))
+((-4012 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-1073 *3)) (-4 *3 (-1273 (-421 (-975 (-560))))))))
+(-10 -7 (-15 -4012 ((-419 |#1|) |#1|)))
+((-2964 (((-421 (-419 (-975 |#1|))) (-421 (-975 |#1|))) 14 T ELT)))
+(((-1074 |#1|) (-10 -7 (-15 -2964 ((-421 (-419 (-975 |#1|))) (-421 (-975 |#1|))))) (-319)) (T -1074))
+((-2964 (*1 *2 *3) (-12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-319)) (-5 *2 (-421 (-419 (-975 *4)))) (-5 *1 (-1074 *4)))))
+(-10 -7 (-15 -2964 ((-421 (-419 (-975 |#1|))) (-421 (-975 |#1|)))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3525 (($) 18 T CONST)) (-2279 ((|#1| $) 23 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-1792 ((|#1| $) 22 T ELT)) (-3948 ((|#1|) 20 T CONST)) (-3913 (((-887) $) 12 T ELT)) (-3260 ((|#1| $) 21 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT)))
(((-1075 |#1|) (-142) (-23)) (T -1075))
-((-1740 (*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23)))) (-1569 (*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23)))) (-3969 (*1 *2) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23)))))
-(-13 (-23) (-10 -8 (-15 -1740 (|t#1| $)) (-15 -1569 (|t#1| $)) (-15 -3695 (|t#1| $)) (-15 -3969 (|t#1|) -3081)))
+((-2279 (*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23)))) (-1792 (*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23)))) (-3948 (*1 *2) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23)))))
+(-13 (-23) (-10 -8 (-15 -2279 (|t#1| $)) (-15 -1792 (|t#1| $)) (-15 -3260 (|t#1| $)) (-15 -3948 (|t#1|) -2650)))
(((-23) . T) ((-25) . T) ((-102) . T) ((-632 (-887)) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-2481 (($) 25 T CONST)) (-2238 (($) 18 T CONST)) (-1740 ((|#1| $) 23 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1569 ((|#1| $) 22 T ELT)) (-3969 ((|#1|) 20 T CONST)) (-1578 (((-887) $) 12 T ELT)) (-3695 ((|#1| $) 21 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-4102 (($) 25 T CONST)) (-3525 (($) 18 T CONST)) (-2279 ((|#1| $) 23 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-1792 ((|#1| $) 22 T ELT)) (-3948 ((|#1|) 20 T CONST)) (-3913 (((-887) $) 12 T ELT)) (-3260 ((|#1| $) 21 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT)))
(((-1076 |#1|) (-142) (-23)) (T -1076))
-((-2481 (*1 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-23)))))
-(-13 (-1075 |t#1|) (-10 -8 (-15 -2481 ($) -3081)))
+((-4102 (*1 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-23)))))
+(-13 (-1075 |t#1|) (-10 -8 (-15 -4102 ($) -2650)))
(((-23) . T) ((-25) . T) ((-102) . T) ((-632 (-887)) . T) ((-1075 |#1|) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-3721 (((-663 (-2 (|:| -4332 $) (|:| -2109 (-663 (-802 |#1| (-888 |#2|)))))) (-663 (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-3904 (((-663 $) (-663 (-802 |#1| (-888 |#2|)))) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-888 |#2|))) (-114)) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-888 |#2|))) (-114) (-114)) NIL T ELT)) (-1443 (((-663 (-888 |#2|)) $) NIL T ELT)) (-1466 (((-114) $) NIL T ELT)) (-3101 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3036 (((-114) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-1813 (((-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-1804 (((-663 (-2 (|:| |val| (-802 |#1| (-888 |#2|))) (|:| -4297 $))) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-2286 (((-2 (|:| |under| $) (|:| -2016 $) (|:| |upper| $)) $ (-888 |#2|)) NIL T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1982 (($ (-1 (-114) (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 (-802 |#1| (-888 |#2|)) "failed") $ (-888 |#2|)) NIL T ELT)) (-2238 (($) NIL T CONST)) (-4436 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4246 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-1860 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3745 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-1477 (((-663 (-802 |#1| (-888 |#2|))) (-663 (-802 |#1| (-888 |#2|))) $ (-1 (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) (-1 (-114) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-4027 (((-663 (-802 |#1| (-888 |#2|))) (-663 (-802 |#1| (-888 |#2|))) $) NIL (|has| |#1| (-571)) ELT)) (-2528 (((-663 (-802 |#1| (-888 |#2|))) (-663 (-802 |#1| (-888 |#2|))) $) NIL (|has| |#1| (-571)) ELT)) (-2539 (((-3 $ "failed") (-663 (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-3330 (($ (-663 (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-3649 (((-3 $ "failed") $) NIL T ELT)) (-2841 (((-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-802 |#1| (-888 |#2|)) (-1132))) ELT)) (-2375 (($ (-802 |#1| (-888 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-802 |#1| (-888 |#2|)) (-1132))) ELT) (($ (-1 (-114) (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-2341 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-802 |#1| (-888 |#2|))) (|:| |den| |#1|)) (-802 |#1| (-888 |#2|)) $) NIL (|has| |#1| (-571)) ELT)) (-3989 (((-114) (-802 |#1| (-888 |#2|)) $ (-1 (-114) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-3093 (((-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-4129 (((-802 |#1| (-888 |#2|)) (-1 (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) $ (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-802 |#1| (-888 |#2|)) (-1132))) ELT) (((-802 |#1| (-888 |#2|)) (-1 (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) $ (-802 |#1| (-888 |#2|))) NIL (|has| $ (-6 -4508)) ELT) (((-802 |#1| (-888 |#2|)) (-1 (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $ (-1 (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) (-1 (-114) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-1723 (((-2 (|:| -4332 (-663 (-802 |#1| (-888 |#2|)))) (|:| -2109 (-663 (-802 |#1| (-888 |#2|))))) $) NIL T ELT)) (-2330 (((-114) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-2728 (((-114) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-2420 (((-114) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-2181 (((-663 (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3544 (((-114) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-4132 (((-888 |#2|) $) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-802 |#1| (-888 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-802 |#1| (-888 |#2|)) (-1132))) ELT)) (-3768 (($ (-1 (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) $) NIL T ELT)) (-1918 (((-663 (-888 |#2|)) $) NIL T ELT)) (-2724 (((-114) (-888 |#2|) $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3482 (((-3 (-802 |#1| (-888 |#2|)) (-663 $)) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-4130 (((-663 (-2 (|:| |val| (-802 |#1| (-888 |#2|))) (|:| -4297 $))) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-2398 (((-3 (-802 |#1| (-888 |#2|)) "failed") $) NIL T ELT)) (-3221 (((-663 $) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-3979 (((-3 (-114) (-663 $)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-2411 (((-663 (-2 (|:| |val| (-114)) (|:| -4297 $))) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-114) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-1903 (((-663 $) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-888 |#2|))) $) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-888 |#2|))) (-663 $)) NIL T ELT) (((-663 $) (-802 |#1| (-888 |#2|)) (-663 $)) NIL T ELT)) (-2534 (($ (-802 |#1| (-888 |#2|)) $) NIL T ELT) (($ (-663 (-802 |#1| (-888 |#2|))) $) NIL T ELT)) (-1756 (((-663 (-802 |#1| (-888 |#2|))) $) NIL T ELT)) (-3548 (((-114) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-3212 (((-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-2925 (((-114) $ $) NIL T ELT)) (-2557 (((-2 (|:| |num| (-802 |#1| (-888 |#2|))) (|:| |den| |#1|)) (-802 |#1| (-888 |#2|)) $) NIL (|has| |#1| (-571)) ELT)) (-1563 (((-114) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-3171 (((-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3637 (((-3 (-802 |#1| (-888 |#2|)) "failed") $) NIL T ELT)) (-3329 (((-3 (-802 |#1| (-888 |#2|)) "failed") (-1 (-114) (-802 |#1| (-888 |#2|))) $) NIL T ELT)) (-1370 (((-3 $ "failed") $ (-802 |#1| (-888 |#2|))) NIL T ELT)) (-4372 (($ $ (-802 |#1| (-888 |#2|))) NIL T ELT) (((-663 $) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-663 $) (-802 |#1| (-888 |#2|)) (-663 $)) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-888 |#2|))) $) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-888 |#2|))) (-663 $)) NIL T ELT)) (-2787 (((-114) (-1 (-114) (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-802 |#1| (-888 |#2|))) (-663 (-802 |#1| (-888 |#2|)))) NIL (-12 (|has| (-802 |#1| (-888 |#2|)) (-321 (-802 |#1| (-888 |#2|)))) (|has| (-802 |#1| (-888 |#2|)) (-1132))) ELT) (($ $ (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) NIL (-12 (|has| (-802 |#1| (-888 |#2|)) (-321 (-802 |#1| (-888 |#2|)))) (|has| (-802 |#1| (-888 |#2|)) (-1132))) ELT) (($ $ (-305 (-802 |#1| (-888 |#2|)))) NIL (-12 (|has| (-802 |#1| (-888 |#2|)) (-321 (-802 |#1| (-888 |#2|)))) (|has| (-802 |#1| (-888 |#2|)) (-1132))) ELT) (($ $ (-663 (-305 (-802 |#1| (-888 |#2|))))) NIL (-12 (|has| (-802 |#1| (-888 |#2|)) (-321 (-802 |#1| (-888 |#2|)))) (|has| (-802 |#1| (-888 |#2|)) (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3630 (((-793) $) NIL T ELT)) (-3865 (((-793) (-802 |#1| (-888 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-802 |#1| (-888 |#2|)) (-1132))) ELT) (((-793) (-1 (-114) (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) NIL (|has| (-802 |#1| (-888 |#2|)) (-633 (-549))) ELT)) (-1592 (($ (-663 (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-3752 (($ $ (-888 |#2|)) NIL T ELT)) (-4288 (($ $ (-888 |#2|)) NIL T ELT)) (-2886 (($ $) NIL T ELT)) (-4397 (($ $ (-888 |#2|)) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (((-663 (-802 |#1| (-888 |#2|))) $) NIL T ELT)) (-1582 (((-793) $) NIL (|has| (-888 |#2|) (-381)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1810 (((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 (-802 |#1| (-888 |#2|))))) "failed") (-663 (-802 |#1| (-888 |#2|))) (-1 (-114) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 (-802 |#1| (-888 |#2|))))) "failed") (-663 (-802 |#1| (-888 |#2|))) (-1 (-114) (-802 |#1| (-888 |#2|))) (-1 (-114) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-4006 (((-114) $ (-1 (-114) (-802 |#1| (-888 |#2|)) (-663 (-802 |#1| (-888 |#2|))))) NIL T ELT)) (-2796 (((-663 $) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-663 $) (-802 |#1| (-888 |#2|)) (-663 $)) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-888 |#2|))) $) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-888 |#2|))) (-663 $)) NIL T ELT)) (-1728 (((-114) (-1 (-114) (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3938 (((-663 (-888 |#2|)) $) NIL T ELT)) (-4395 (((-114) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-3602 (((-114) (-888 |#2|) $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-1077 |#1| |#2|) (-13 (-1102 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|))) (-10 -8 (-15 -3904 ((-663 $) (-663 (-802 |#1| (-888 |#2|))) (-114) (-114))))) (-466) (-663 (-1207))) (T -1077))
-((-3904 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-663 (-802 *5 (-888 *6)))) (-5 *4 (-114)) (-4 *5 (-466)) (-14 *6 (-663 (-1207))) (-5 *2 (-663 (-1077 *5 *6))) (-5 *1 (-1077 *5 *6)))))
-(-13 (-1102 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|))) (-10 -8 (-15 -3904 ((-663 $) (-663 (-802 |#1| (-888 |#2|))) (-114) (-114)))))
-((-2406 (((-1 (-560)) (-1120 (-560))) 32 T ELT)) (-2319 (((-560) (-560) (-560) (-560) (-560)) 29 T ELT)) (-1462 (((-1 (-560)) |RationalNumber|) NIL T ELT)) (-1654 (((-1 (-560)) |RationalNumber|) NIL T ELT)) (-3271 (((-1 (-560)) (-560) |RationalNumber|) NIL T ELT)))
-(((-1078) (-10 -7 (-15 -2406 ((-1 (-560)) (-1120 (-560)))) (-15 -3271 ((-1 (-560)) (-560) |RationalNumber|)) (-15 -1462 ((-1 (-560)) |RationalNumber|)) (-15 -1654 ((-1 (-560)) |RationalNumber|)) (-15 -2319 ((-560) (-560) (-560) (-560) (-560))))) (T -1078))
-((-2319 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1078)))) (-1654 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1078)))) (-1462 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1078)))) (-3271 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1078)) (-5 *3 (-560)))) (-2406 (*1 *2 *3) (-12 (-5 *3 (-1120 (-560))) (-5 *2 (-1 (-560))) (-5 *1 (-1078)))))
-(-10 -7 (-15 -2406 ((-1 (-560)) (-1120 (-560)))) (-15 -3271 ((-1 (-560)) (-560) |RationalNumber|)) (-15 -1462 ((-1 (-560)) |RationalNumber|)) (-15 -1654 ((-1 (-560)) |RationalNumber|)) (-15 -2319 ((-560) (-560) (-560) (-560) (-560))))
-((-1578 (((-887) $) NIL T ELT) (($ (-560)) 10 T ELT)))
-(((-1079 |#1|) (-10 -8 (-15 -1578 (|#1| (-560))) (-15 -1578 ((-887) |#1|))) (-1080)) (T -1079))
-NIL
-(-10 -8 (-15 -1578 (|#1| (-560))) (-15 -1578 ((-887) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2253 (((-663 (-2 (|:| -1924 $) (|:| -2888 (-663 (-802 |#1| (-888 |#2|)))))) (-663 (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-1372 (((-663 $) (-663 (-802 |#1| (-888 |#2|)))) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-888 |#2|))) (-114)) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-888 |#2|))) (-114) (-114)) NIL T ELT)) (-4162 (((-663 (-888 |#2|)) $) NIL T ELT)) (-1362 (((-114) $) NIL T ELT)) (-2179 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-2729 (((-114) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-1722 (((-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-1621 (((-663 (-2 (|:| |val| (-802 |#1| (-888 |#2|))) (|:| -3859 $))) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-1787 (((-2 (|:| |under| $) (|:| -3147 $) (|:| |upper| $)) $ (-888 |#2|)) NIL T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3923 (($ (-1 (-114) (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 (-802 |#1| (-888 |#2|)) "failed") $ (-888 |#2|)) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2733 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3672 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4148 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2449 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4108 (((-663 (-802 |#1| (-888 |#2|))) (-663 (-802 |#1| (-888 |#2|))) $ (-1 (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) (-1 (-114) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-3277 (((-663 (-802 |#1| (-888 |#2|))) (-663 (-802 |#1| (-888 |#2|))) $) NIL (|has| |#1| (-571)) ELT)) (-4485 (((-663 (-802 |#1| (-888 |#2|))) (-663 (-802 |#1| (-888 |#2|))) $) NIL (|has| |#1| (-571)) ELT)) (-3929 (((-3 $ "failed") (-663 (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-3649 (($ (-663 (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-4345 (((-3 $ "failed") $) NIL T ELT)) (-1440 (((-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-802 |#1| (-888 |#2|)) (-1132))) ELT)) (-3033 (($ (-802 |#1| (-888 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-802 |#1| (-888 |#2|)) (-1132))) ELT) (($ (-1 (-114) (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3276 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-802 |#1| (-888 |#2|))) (|:| |den| |#1|)) (-802 |#1| (-888 |#2|)) $) NIL (|has| |#1| (-571)) ELT)) (-2869 (((-114) (-802 |#1| (-888 |#2|)) $ (-1 (-114) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-2113 (((-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-1778 (((-802 |#1| (-888 |#2|)) (-1 (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) $ (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-802 |#1| (-888 |#2|)) (-1132))) ELT) (((-802 |#1| (-888 |#2|)) (-1 (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) $ (-802 |#1| (-888 |#2|))) NIL (|has| $ (-6 -4508)) ELT) (((-802 |#1| (-888 |#2|)) (-1 (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $ (-1 (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) (-1 (-114) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-2115 (((-2 (|:| -1924 (-663 (-802 |#1| (-888 |#2|)))) (|:| -2888 (-663 (-802 |#1| (-888 |#2|))))) $) NIL T ELT)) (-3175 (((-114) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-1520 (((-114) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-1575 (((-114) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-3737 (((-663 (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4264 (((-114) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-1816 (((-888 |#2|) $) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-3243 (((-663 (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-802 |#1| (-888 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-802 |#1| (-888 |#2|)) (-1132))) ELT)) (-3324 (($ (-1 (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) $) NIL T ELT)) (-3471 (((-663 (-888 |#2|)) $) NIL T ELT)) (-2703 (((-114) (-888 |#2|) $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1702 (((-3 (-802 |#1| (-888 |#2|)) (-663 $)) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-1790 (((-663 (-2 (|:| |val| (-802 |#1| (-888 |#2|))) (|:| -3859 $))) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-3057 (((-3 (-802 |#1| (-888 |#2|)) "failed") $) NIL T ELT)) (-4144 (((-663 $) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-2769 (((-3 (-114) (-663 $)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-1503 (((-663 (-2 (|:| |val| (-114)) (|:| -3859 $))) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-114) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-3334 (((-663 $) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-888 |#2|))) $) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-888 |#2|))) (-663 $)) NIL T ELT) (((-663 $) (-802 |#1| (-888 |#2|)) (-663 $)) NIL T ELT)) (-1392 (($ (-802 |#1| (-888 |#2|)) $) NIL T ELT) (($ (-663 (-802 |#1| (-888 |#2|))) $) NIL T ELT)) (-2428 (((-663 (-802 |#1| (-888 |#2|))) $) NIL T ELT)) (-4301 (((-114) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-4039 (((-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-4138 (((-114) $ $) NIL T ELT)) (-3531 (((-2 (|:| |num| (-802 |#1| (-888 |#2|))) (|:| |den| |#1|)) (-802 |#1| (-888 |#2|)) $) NIL (|has| |#1| (-571)) ELT)) (-1737 (((-114) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-1686 (((-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4334 (((-3 (-802 |#1| (-888 |#2|)) "failed") $) NIL T ELT)) (-2708 (((-3 (-802 |#1| (-888 |#2|)) "failed") (-1 (-114) (-802 |#1| (-888 |#2|))) $) NIL T ELT)) (-3867 (((-3 $ "failed") $ (-802 |#1| (-888 |#2|))) NIL T ELT)) (-2219 (($ $ (-802 |#1| (-888 |#2|))) NIL T ELT) (((-663 $) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-663 $) (-802 |#1| (-888 |#2|)) (-663 $)) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-888 |#2|))) $) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-888 |#2|))) (-663 $)) NIL T ELT)) (-2086 (((-114) (-1 (-114) (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-802 |#1| (-888 |#2|))) (-663 (-802 |#1| (-888 |#2|)))) NIL (-12 (|has| (-802 |#1| (-888 |#2|)) (-321 (-802 |#1| (-888 |#2|)))) (|has| (-802 |#1| (-888 |#2|)) (-1132))) ELT) (($ $ (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|))) NIL (-12 (|has| (-802 |#1| (-888 |#2|)) (-321 (-802 |#1| (-888 |#2|)))) (|has| (-802 |#1| (-888 |#2|)) (-1132))) ELT) (($ $ (-305 (-802 |#1| (-888 |#2|)))) NIL (-12 (|has| (-802 |#1| (-888 |#2|)) (-321 (-802 |#1| (-888 |#2|)))) (|has| (-802 |#1| (-888 |#2|)) (-1132))) ELT) (($ $ (-663 (-305 (-802 |#1| (-888 |#2|))))) NIL (-12 (|has| (-802 |#1| (-888 |#2|)) (-321 (-802 |#1| (-888 |#2|)))) (|has| (-802 |#1| (-888 |#2|)) (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-3900 (((-793) $) NIL T ELT)) (-3384 (((-793) (-802 |#1| (-888 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-802 |#1| (-888 |#2|)) (-1132))) ELT) (((-793) (-1 (-114) (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) NIL (|has| (-802 |#1| (-888 |#2|)) (-633 (-549))) ELT)) (-3924 (($ (-663 (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-2511 (($ $ (-888 |#2|)) NIL T ELT)) (-4047 (($ $ (-888 |#2|)) NIL T ELT)) (-3833 (($ $) NIL T ELT)) (-2438 (($ $ (-888 |#2|)) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (((-663 (-802 |#1| (-888 |#2|))) $) NIL T ELT)) (-1930 (((-793) $) NIL (|has| (-888 |#2|) (-381)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1690 (((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 (-802 |#1| (-888 |#2|))))) "failed") (-663 (-802 |#1| (-888 |#2|))) (-1 (-114) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 (-802 |#1| (-888 |#2|))))) "failed") (-663 (-802 |#1| (-888 |#2|))) (-1 (-114) (-802 |#1| (-888 |#2|))) (-1 (-114) (-802 |#1| (-888 |#2|)) (-802 |#1| (-888 |#2|)))) NIL T ELT)) (-3058 (((-114) $ (-1 (-114) (-802 |#1| (-888 |#2|)) (-663 (-802 |#1| (-888 |#2|))))) NIL T ELT)) (-4135 (((-663 $) (-802 |#1| (-888 |#2|)) $) NIL T ELT) (((-663 $) (-802 |#1| (-888 |#2|)) (-663 $)) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-888 |#2|))) $) NIL T ELT) (((-663 $) (-663 (-802 |#1| (-888 |#2|))) (-663 $)) NIL T ELT)) (-2149 (((-114) (-1 (-114) (-802 |#1| (-888 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3616 (((-663 (-888 |#2|)) $) NIL T ELT)) (-2416 (((-114) (-802 |#1| (-888 |#2|)) $) NIL T ELT)) (-3621 (((-114) (-888 |#2|) $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-1077 |#1| |#2|) (-13 (-1102 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|))) (-10 -8 (-15 -1372 ((-663 $) (-663 (-802 |#1| (-888 |#2|))) (-114) (-114))))) (-466) (-663 (-1207))) (T -1077))
+((-1372 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-663 (-802 *5 (-888 *6)))) (-5 *4 (-114)) (-4 *5 (-466)) (-14 *6 (-663 (-1207))) (-5 *2 (-663 (-1077 *5 *6))) (-5 *1 (-1077 *5 *6)))))
+(-13 (-1102 |#1| (-545 (-888 |#2|)) (-888 |#2|) (-802 |#1| (-888 |#2|))) (-10 -8 (-15 -1372 ((-663 $) (-663 (-802 |#1| (-888 |#2|))) (-114) (-114)))))
+((-1463 (((-1 (-560)) (-1120 (-560))) 32 T ELT)) (-3072 (((-560) (-560) (-560) (-560) (-560)) 29 T ELT)) (-4392 (((-1 (-560)) |RationalNumber|) NIL T ELT)) (-2613 (((-1 (-560)) |RationalNumber|) NIL T ELT)) (-3381 (((-1 (-560)) (-560) |RationalNumber|) NIL T ELT)))
+(((-1078) (-10 -7 (-15 -1463 ((-1 (-560)) (-1120 (-560)))) (-15 -3381 ((-1 (-560)) (-560) |RationalNumber|)) (-15 -4392 ((-1 (-560)) |RationalNumber|)) (-15 -2613 ((-1 (-560)) |RationalNumber|)) (-15 -3072 ((-560) (-560) (-560) (-560) (-560))))) (T -1078))
+((-3072 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1078)))) (-2613 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1078)))) (-4392 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1078)))) (-3381 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1078)) (-5 *3 (-560)))) (-1463 (*1 *2 *3) (-12 (-5 *3 (-1120 (-560))) (-5 *2 (-1 (-560))) (-5 *1 (-1078)))))
+(-10 -7 (-15 -1463 ((-1 (-560)) (-1120 (-560)))) (-15 -3381 ((-1 (-560)) (-560) |RationalNumber|)) (-15 -4392 ((-1 (-560)) |RationalNumber|)) (-15 -2613 ((-1 (-560)) |RationalNumber|)) (-15 -3072 ((-560) (-560) (-560) (-560) (-560))))
+((-3913 (((-887) $) NIL T ELT) (($ (-560)) 10 T ELT)))
+(((-1079 |#1|) (-10 -8 (-15 -3913 (|#1| (-560))) (-15 -3913 ((-887) |#1|))) (-1080)) (T -1079))
+NIL
+(-10 -8 (-15 -3913 (|#1| (-560))) (-15 -3913 ((-887) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
(((-1080) (-142)) (T -1080))
-((-2930 (*1 *2) (-12 (-4 *1 (-1080)) (-5 *2 (-793)))))
-(-13 (-1088) (-748) (-670 $) (-635 (-560)) (-10 -7 (-15 -2930 ((-793)) -3081) (-6 -4505)))
+((-4191 (*1 *2) (-12 (-4 *1 (-1080)) (-5 *2 (-793)))))
+(-13 (-1088) (-748) (-670 $) (-635 (-560)) (-10 -7 (-15 -4191 ((-793)) -2650) (-6 -4505)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-635 (-560)) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-748) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-3866 (((-421 (-975 |#2|)) (-663 |#2|) (-663 |#2|) (-793) (-793)) 54 T ELT)))
-(((-1081 |#1| |#2|) (-10 -7 (-15 -3866 ((-421 (-975 |#2|)) (-663 |#2|) (-663 |#2|) (-793) (-793)))) (-1207) (-376)) (T -1081))
-((-3866 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-663 *6)) (-5 *4 (-793)) (-4 *6 (-376)) (-5 *2 (-421 (-975 *6))) (-5 *1 (-1081 *5 *6)) (-14 *5 (-1207)))))
-(-10 -7 (-15 -3866 ((-421 (-975 |#2|)) (-663 |#2|) (-663 |#2|) (-793) (-793))))
-((-1538 (((-114) $ $) 7 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (* (($ $ |#1|) 14 T ELT)))
+((-4189 (((-421 (-975 |#2|)) (-663 |#2|) (-663 |#2|) (-793) (-793)) 54 T ELT)))
+(((-1081 |#1| |#2|) (-10 -7 (-15 -4189 ((-421 (-975 |#2|)) (-663 |#2|) (-663 |#2|) (-793) (-793)))) (-1207) (-376)) (T -1081))
+((-4189 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-663 *6)) (-5 *4 (-793)) (-4 *6 (-376)) (-5 *2 (-421 (-975 *6))) (-5 *1 (-1081 *5 *6)) (-14 *5 (-1207)))))
+(-10 -7 (-15 -4189 ((-421 (-975 |#2|)) (-663 |#2|) (-663 |#2|) (-793) (-793))))
+((-2243 (((-114) $ $) 7 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (* (($ $ |#1|) 14 T ELT)))
(((-1082 |#1|) (-142) (-1143)) (T -1082))
((* (*1 *1 *1 *2) (-12 (-4 *1 (-1082 *2)) (-4 *2 (-1143)))))
(-13 (-1132) (-10 -8 (-15 * ($ $ |t#1|))))
(((-102) . T) ((-632 (-887)) . T) ((-1132) . T) ((-1247) . T))
-((-4338 (((-114) $) 38 T ELT)) (-1673 (((-114) $) 17 T ELT)) (-3648 (((-793) $) 13 T ELT)) (-3658 (((-793) $) 14 T ELT)) (-3032 (((-114) $) 30 T ELT)) (-2441 (((-114) $) 40 T ELT)))
-(((-1083 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -3658 ((-793) |#1|)) (-15 -3648 ((-793) |#1|)) (-15 -2441 ((-114) |#1|)) (-15 -4338 ((-114) |#1|)) (-15 -3032 ((-114) |#1|)) (-15 -1673 ((-114) |#1|))) (-1084 |#2| |#3| |#4| |#5| |#6|) (-793) (-793) (-1080) (-245 |#3| |#4|) (-245 |#2| |#4|)) (T -1083))
+((-3202 (((-114) $) 38 T ELT)) (-2798 (((-114) $) 17 T ELT)) (-2777 (((-793) $) 13 T ELT)) (-2789 (((-793) $) 14 T ELT)) (-2691 (((-114) $) 30 T ELT)) (-1775 (((-114) $) 40 T ELT)))
+(((-1083 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -2789 ((-793) |#1|)) (-15 -2777 ((-793) |#1|)) (-15 -1775 ((-114) |#1|)) (-15 -3202 ((-114) |#1|)) (-15 -2691 ((-114) |#1|)) (-15 -2798 ((-114) |#1|))) (-1084 |#2| |#3| |#4| |#5| |#6|) (-793) (-793) (-1080) (-245 |#3| |#4|) (-245 |#2| |#4|)) (T -1083))
NIL
-(-10 -8 (-15 -3658 ((-793) |#1|)) (-15 -3648 ((-793) |#1|)) (-15 -2441 ((-114) |#1|)) (-15 -4338 ((-114) |#1|)) (-15 -3032 ((-114) |#1|)) (-15 -1673 ((-114) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4338 (((-114) $) 56 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-1673 (((-114) $) 58 T ELT)) (-3363 (((-114) $ (-793)) 66 T ELT)) (-2238 (($) 18 T CONST)) (-2677 (($ $) 39 (|has| |#3| (-319)) ELT)) (-3634 ((|#4| $ (-560)) 44 T ELT)) (-2326 (((-793) $) 38 (|has| |#3| (-571)) ELT)) (-3709 ((|#3| $ (-560) (-560)) 46 T ELT)) (-2181 (((-663 |#3|) $) 73 (|has| $ (-6 -4508)) ELT)) (-1401 (((-793) $) 37 (|has| |#3| (-571)) ELT)) (-2454 (((-663 |#5|) $) 36 (|has| |#3| (-571)) ELT)) (-3648 (((-793) $) 50 T ELT)) (-3658 (((-793) $) 49 T ELT)) (-4034 (((-114) $ (-793)) 65 T ELT)) (-2711 (((-560) $) 54 T ELT)) (-2369 (((-560) $) 52 T ELT)) (-2656 (((-663 |#3|) $) 74 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#3| $) 76 (-12 (|has| |#3| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1468 (((-560) $) 53 T ELT)) (-2632 (((-560) $) 51 T ELT)) (-2589 (($ (-663 (-663 |#3|))) 59 T ELT)) (-3768 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#3| |#3|) $) 68 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 42 T ELT)) (-2543 (((-663 (-663 |#3|)) $) 48 T ELT)) (-1805 (((-114) $ (-793)) 64 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1528 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-571)) ELT)) (-2787 (((-114) (-1 (-114) |#3|) $) 71 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 |#3|) (-663 |#3|)) 80 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ (-305 |#3|)) 78 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ (-663 (-305 |#3|))) 77 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT)) (-4124 (((-114) $ $) 60 T ELT)) (-1663 (((-114) $) 63 T ELT)) (-3986 (($) 62 T ELT)) (-3924 ((|#3| $ (-560) (-560)) 47 T ELT) ((|#3| $ (-560) (-560) |#3|) 45 T ELT)) (-3032 (((-114) $) 57 T ELT)) (-3865 (((-793) |#3| $) 75 (-12 (|has| |#3| (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) |#3|) $) 72 (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) 61 T ELT)) (-1644 ((|#5| $ (-560)) 43 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-1728 (((-114) (-1 (-114) |#3|) $) 70 (|has| $ (-6 -4508)) ELT)) (-2441 (((-114) $) 55 T ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ |#3|) 40 (|has| |#3| (-376)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#3| $) 27 T ELT) (($ $ |#3|) 31 T ELT)) (-1553 (((-793) $) 67 (|has| $ (-6 -4508)) ELT)))
+(-10 -8 (-15 -2789 ((-793) |#1|)) (-15 -2777 ((-793) |#1|)) (-15 -1775 ((-114) |#1|)) (-15 -3202 ((-114) |#1|)) (-15 -2691 ((-114) |#1|)) (-15 -2798 ((-114) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3202 (((-114) $) 56 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-2798 (((-114) $) 58 T ELT)) (-3045 (((-114) $ (-793)) 66 T ELT)) (-3525 (($) 18 T CONST)) (-2207 (($ $) 39 (|has| |#3| (-319)) ELT)) (-3942 ((|#4| $ (-560)) 44 T ELT)) (-1604 (((-793) $) 38 (|has| |#3| (-571)) ELT)) (-3274 ((|#3| $ (-560) (-560)) 46 T ELT)) (-3737 (((-663 |#3|) $) 73 (|has| $ (-6 -4508)) ELT)) (-3213 (((-793) $) 37 (|has| |#3| (-571)) ELT)) (-1927 (((-663 |#5|) $) 36 (|has| |#3| (-571)) ELT)) (-2777 (((-793) $) 50 T ELT)) (-2789 (((-793) $) 49 T ELT)) (-3332 (((-114) $ (-793)) 65 T ELT)) (-2567 (((-560) $) 54 T ELT)) (-2313 (((-560) $) 52 T ELT)) (-3243 (((-663 |#3|) $) 74 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#3| $) 76 (-12 (|has| |#3| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1475 (((-560) $) 53 T ELT)) (-3004 (((-560) $) 51 T ELT)) (-3551 (($ (-663 (-663 |#3|))) 59 T ELT)) (-3324 (($ (-1 |#3| |#3|) $) 69 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#3| |#3|) $) 68 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 42 T ELT)) (-3378 (((-663 (-663 |#3|)) $) 48 T ELT)) (-1634 (((-114) $ (-793)) 64 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2233 (((-3 $ "failed") $ |#3|) 41 (|has| |#3| (-571)) ELT)) (-2086 (((-114) (-1 (-114) |#3|) $) 71 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 |#3|) (-663 |#3|)) 80 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ |#3| |#3|) 79 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ (-305 |#3|)) 78 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ (-663 (-305 |#3|))) 77 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT)) (-1736 (((-114) $ $) 60 T ELT)) (-2706 (((-114) $) 63 T ELT)) (-2832 (($) 62 T ELT)) (-1507 ((|#3| $ (-560) (-560)) 47 T ELT) ((|#3| $ (-560) (-560) |#3|) 45 T ELT)) (-2691 (((-114) $) 57 T ELT)) (-3384 (((-793) |#3| $) 75 (-12 (|has| |#3| (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) |#3|) $) 72 (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) 61 T ELT)) (-3783 ((|#5| $ (-560)) 43 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2149 (((-114) (-1 (-114) |#3|) $) 70 (|has| $ (-6 -4508)) ELT)) (-1775 (((-114) $) 55 T ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ |#3|) 40 (|has| |#3| (-376)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#3| $) 27 T ELT) (($ $ |#3|) 31 T ELT)) (-2256 (((-793) $) 67 (|has| $ (-6 -4508)) ELT)))
(((-1084 |#1| |#2| |#3| |#4| |#5|) (-142) (-793) (-793) (-1080) (-245 |t#2| |t#3|) (-245 |t#1| |t#3|)) (T -1084))
-((-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 *5))) (-4 *5 (-1080)) (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-1673 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-3032 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-4338 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-2441 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-2711 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-560)))) (-1468 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-560)))) (-2369 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-560)))) (-2632 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-560)))) (-3648 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-793)))) (-3658 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-793)))) (-2543 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-663 (-663 *5))))) (-3924 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1084 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)) (-4 *2 (-1080)))) (-3709 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1084 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)) (-4 *2 (-1080)))) (-3924 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-1084 *4 *5 *2 *6 *7)) (-4 *2 (-1080)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)))) (-3634 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1084 *4 *5 *6 *2 *7)) (-4 *6 (-1080)) (-4 *7 (-245 *4 *6)) (-4 *2 (-245 *5 *6)))) (-1644 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1084 *4 *5 *6 *7 *2)) (-4 *6 (-1080)) (-4 *7 (-245 *5 *6)) (-4 *2 (-245 *4 *6)))) (-3957 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-1528 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1084 *3 *4 *2 *5 *6)) (-4 *2 (-1080)) (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-571)))) (-2594 (*1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2 *5 *6)) (-4 *2 (-1080)) (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-376)))) (-2677 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *2 *4)) (-4 *4 (-319)))) (-2326 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-571)) (-5 *2 (-793)))) (-1401 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-571)) (-5 *2 (-793)))) (-2454 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-571)) (-5 *2 (-663 *7)))))
-(-13 (-111 |t#3| |t#3|) (-503 |t#3|) (-10 -8 (-6 -4508) (IF (|has| |t#3| (-175)) (-6 (-739 |t#3|)) |%noBranch|) (-15 -2589 ($ (-663 (-663 |t#3|)))) (-15 -1673 ((-114) $)) (-15 -3032 ((-114) $)) (-15 -4338 ((-114) $)) (-15 -2441 ((-114) $)) (-15 -2711 ((-560) $)) (-15 -1468 ((-560) $)) (-15 -2369 ((-560) $)) (-15 -2632 ((-560) $)) (-15 -3648 ((-793) $)) (-15 -3658 ((-793) $)) (-15 -2543 ((-663 (-663 |t#3|)) $)) (-15 -3924 (|t#3| $ (-560) (-560))) (-15 -3709 (|t#3| $ (-560) (-560))) (-15 -3924 (|t#3| $ (-560) (-560) |t#3|)) (-15 -3634 (|t#4| $ (-560))) (-15 -1644 (|t#5| $ (-560))) (-15 -3957 ($ (-1 |t#3| |t#3|) $)) (-15 -3957 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-571)) (-15 -1528 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-376)) (-15 -2594 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-319)) (-15 -2677 ($ $)) |%noBranch|) (IF (|has| |t#3| (-571)) (PROGN (-15 -2326 ((-793) $)) (-15 -1401 ((-793) $)) (-15 -2454 ((-663 |t#5|) $))) |%noBranch|)))
+((-2260 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-3551 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 *5))) (-4 *5 (-1080)) (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-2798 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-2691 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-1775 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-2567 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-560)))) (-1475 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-560)))) (-2313 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-560)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-560)))) (-2777 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-793)))) (-2789 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-793)))) (-3378 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-663 (-663 *5))))) (-1507 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1084 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)) (-4 *2 (-1080)))) (-3274 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1084 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)) (-4 *2 (-1080)))) (-1507 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-560)) (-4 *1 (-1084 *4 *5 *2 *6 *7)) (-4 *2 (-1080)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)))) (-3942 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1084 *4 *5 *6 *2 *7)) (-4 *6 (-1080)) (-4 *7 (-245 *4 *6)) (-4 *2 (-245 *5 *6)))) (-3783 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1084 *4 *5 *6 *7 *2)) (-4 *6 (-1080)) (-4 *7 (-245 *5 *6)) (-4 *2 (-245 *4 *6)))) (-2260 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-2233 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1084 *3 *4 *2 *5 *6)) (-4 *2 (-1080)) (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-571)))) (-2453 (*1 *1 *1 *2) (-12 (-4 *1 (-1084 *3 *4 *2 *5 *6)) (-4 *2 (-1080)) (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-376)))) (-2207 (*1 *1 *1) (-12 (-4 *1 (-1084 *2 *3 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *2 *4)) (-4 *4 (-319)))) (-1604 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-571)) (-5 *2 (-793)))) (-3213 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-571)) (-5 *2 (-793)))) (-1927 (*1 *2 *1) (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-571)) (-5 *2 (-663 *7)))))
+(-13 (-111 |t#3| |t#3|) (-503 |t#3|) (-10 -8 (-6 -4508) (IF (|has| |t#3| (-175)) (-6 (-739 |t#3|)) |%noBranch|) (-15 -3551 ($ (-663 (-663 |t#3|)))) (-15 -2798 ((-114) $)) (-15 -2691 ((-114) $)) (-15 -3202 ((-114) $)) (-15 -1775 ((-114) $)) (-15 -2567 ((-560) $)) (-15 -1475 ((-560) $)) (-15 -2313 ((-560) $)) (-15 -3004 ((-560) $)) (-15 -2777 ((-793) $)) (-15 -2789 ((-793) $)) (-15 -3378 ((-663 (-663 |t#3|)) $)) (-15 -1507 (|t#3| $ (-560) (-560))) (-15 -3274 (|t#3| $ (-560) (-560))) (-15 -1507 (|t#3| $ (-560) (-560) |t#3|)) (-15 -3942 (|t#4| $ (-560))) (-15 -3783 (|t#5| $ (-560))) (-15 -2260 ($ (-1 |t#3| |t#3|) $)) (-15 -2260 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-571)) (-15 -2233 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-376)) (-15 -2453 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-319)) (-15 -2207 ($ $)) |%noBranch|) (IF (|has| |t#3| (-571)) (PROGN (-15 -1604 ((-793) $)) (-15 -3213 ((-793) $)) (-15 -1927 ((-663 |t#5|) $))) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-133) . T) ((-632 (-887)) . T) ((-321 |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ((-503 |#3|) . T) ((-528 |#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ((-668 (-560)) . T) ((-668 |#3|) . T) ((-670 |#3|) . T) ((-662 |#3|) |has| |#3| (-175)) ((-739 |#3|) |has| |#3| (-175)) ((-1082 |#3|) . T) ((-1087 |#3|) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-4338 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2677 (($ $) 47 (|has| |#3| (-319)) ELT)) (-3634 (((-246 |#2| |#3|) $ (-560)) 36 T ELT)) (-3670 (($ (-711 |#3|)) 45 T ELT)) (-2326 (((-793) $) 49 (|has| |#3| (-571)) ELT)) (-3709 ((|#3| $ (-560) (-560)) NIL T ELT)) (-2181 (((-663 |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1401 (((-793) $) 51 (|has| |#3| (-571)) ELT)) (-2454 (((-663 (-246 |#1| |#3|)) $) 55 (|has| |#3| (-571)) ELT)) (-3648 (((-793) $) NIL T ELT)) (-3658 (((-793) $) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2711 (((-560) $) NIL T ELT)) (-2369 (((-560) $) NIL T ELT)) (-2656 (((-663 |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#3| (-1132))) ELT)) (-1468 (((-560) $) NIL T ELT)) (-2632 (((-560) $) NIL T ELT)) (-2589 (($ (-663 (-663 |#3|))) 31 T ELT)) (-3768 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-2543 (((-663 (-663 |#3|)) $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1528 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-571)) ELT)) (-2787 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 |#3|) (-663 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ (-663 (-305 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#3| $ (-560) (-560)) NIL T ELT) ((|#3| $ (-560) (-560) |#3|) NIL T ELT)) (-3669 (((-136)) 59 (|has| |#3| (-376)) ELT)) (-3032 (((-114) $) NIL T ELT)) (-3865 (((-793) |#3| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#3| (-1132))) ELT) (((-793) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) 65 (|has| |#3| (-633 (-549))) ELT)) (-1644 (((-246 |#1| |#3|) $ (-560)) 40 T ELT)) (-1578 (((-887) $) 19 T ELT) (((-711 |#3|) $) 42 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1728 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2441 (((-114) $) NIL T ELT)) (-2001 (($) 16 T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-1085 |#1| |#2| |#3|) (-13 (-1084 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-632 (-711 |#3|)) (-10 -8 (IF (|has| |#3| (-376)) (-6 (-1305 |#3|)) |%noBranch|) (IF (|has| |#3| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (-15 -3670 ($ (-711 |#3|))))) (-793) (-793) (-1080)) (T -1085))
-((-3670 (*1 *1 *2) (-12 (-5 *2 (-711 *5)) (-4 *5 (-1080)) (-5 *1 (-1085 *3 *4 *5)) (-14 *3 (-793)) (-14 *4 (-793)))))
-(-13 (-1084 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-632 (-711 |#3|)) (-10 -8 (IF (|has| |#3| (-376)) (-6 (-1305 |#3|)) |%noBranch|) (IF (|has| |#3| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (-15 -3670 ($ (-711 |#3|)))))
-((-4129 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-3957 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT)))
-(((-1086 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3957 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4129 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-793) (-793) (-1080) (-245 |#2| |#3|) (-245 |#1| |#3|) (-1084 |#1| |#2| |#3| |#4| |#5|) (-1080) (-245 |#2| |#7|) (-245 |#1| |#7|) (-1084 |#1| |#2| |#7| |#8| |#9|)) (T -1086))
-((-4129 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1080)) (-4 *2 (-1080)) (-14 *5 (-793)) (-14 *6 (-793)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) (-4 *10 (-245 *6 *2)) (-4 *11 (-245 *5 *2)) (-5 *1 (-1086 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1084 *5 *6 *7 *8 *9)) (-4 *12 (-1084 *5 *6 *2 *10 *11)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1080)) (-4 *10 (-1080)) (-14 *5 (-793)) (-14 *6 (-793)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) (-4 *2 (-1084 *5 *6 *10 *11 *12)) (-5 *1 (-1086 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1084 *5 *6 *7 *8 *9)) (-4 *11 (-245 *6 *10)) (-4 *12 (-245 *5 *10)))))
-(-10 -7 (-15 -3957 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4129 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ |#1|) 27 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3202 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2798 (((-114) $) NIL T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2207 (($ $) 47 (|has| |#3| (-319)) ELT)) (-3942 (((-246 |#2| |#3|) $ (-560)) 36 T ELT)) (-3028 (($ (-711 |#3|)) 45 T ELT)) (-1604 (((-793) $) 49 (|has| |#3| (-571)) ELT)) (-3274 ((|#3| $ (-560) (-560)) NIL T ELT)) (-3737 (((-663 |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3213 (((-793) $) 51 (|has| |#3| (-571)) ELT)) (-1927 (((-663 (-246 |#1| |#3|)) $) 55 (|has| |#3| (-571)) ELT)) (-2777 (((-793) $) NIL T ELT)) (-2789 (((-793) $) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2567 (((-560) $) NIL T ELT)) (-2313 (((-560) $) NIL T ELT)) (-3243 (((-663 |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#3| (-1132))) ELT)) (-1475 (((-560) $) NIL T ELT)) (-3004 (((-560) $) NIL T ELT)) (-3551 (($ (-663 (-663 |#3|))) 31 T ELT)) (-3324 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-3378 (((-663 (-663 |#3|)) $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2233 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-571)) ELT)) (-2086 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 |#3|) (-663 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ (-663 (-305 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#3| $ (-560) (-560)) NIL T ELT) ((|#3| $ (-560) (-560) |#3|) NIL T ELT)) (-3015 (((-136)) 59 (|has| |#3| (-376)) ELT)) (-2691 (((-114) $) NIL T ELT)) (-3384 (((-793) |#3| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#3| (-1132))) ELT) (((-793) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) 65 (|has| |#3| (-633 (-549))) ELT)) (-3783 (((-246 |#1| |#3|) $ (-560)) 40 T ELT)) (-3913 (((-887) $) 19 T ELT) (((-711 |#3|) $) 42 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2149 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1775 (((-114) $) NIL T ELT)) (-1446 (($) 16 T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-1085 |#1| |#2| |#3|) (-13 (-1084 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-632 (-711 |#3|)) (-10 -8 (IF (|has| |#3| (-376)) (-6 (-1305 |#3|)) |%noBranch|) (IF (|has| |#3| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (-15 -3028 ($ (-711 |#3|))))) (-793) (-793) (-1080)) (T -1085))
+((-3028 (*1 *1 *2) (-12 (-5 *2 (-711 *5)) (-4 *5 (-1080)) (-5 *1 (-1085 *3 *4 *5)) (-14 *3 (-793)) (-14 *4 (-793)))))
+(-13 (-1084 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-632 (-711 |#3|)) (-10 -8 (IF (|has| |#3| (-376)) (-6 (-1305 |#3|)) |%noBranch|) (IF (|has| |#3| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|) (-15 -3028 ($ (-711 |#3|)))))
+((-1778 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-2260 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT)))
+(((-1086 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -2260 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1778 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-793) (-793) (-1080) (-245 |#2| |#3|) (-245 |#1| |#3|) (-1084 |#1| |#2| |#3| |#4| |#5|) (-1080) (-245 |#2| |#7|) (-245 |#1| |#7|) (-1084 |#1| |#2| |#7| |#8| |#9|)) (T -1086))
+((-1778 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1080)) (-4 *2 (-1080)) (-14 *5 (-793)) (-14 *6 (-793)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) (-4 *10 (-245 *6 *2)) (-4 *11 (-245 *5 *2)) (-5 *1 (-1086 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1084 *5 *6 *7 *8 *9)) (-4 *12 (-1084 *5 *6 *2 *10 *11)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1080)) (-4 *10 (-1080)) (-14 *5 (-793)) (-14 *6 (-793)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) (-4 *2 (-1084 *5 *6 *10 *11 *12)) (-5 *1 (-1086 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1084 *5 *6 *7 *8 *9)) (-4 *11 (-245 *6 *10)) (-4 *12 (-245 *5 *10)))))
+(-10 -7 (-15 -2260 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1778 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ |#1|) 27 T ELT)))
(((-1087 |#1|) (-142) (-1088)) (T -1087))
NIL
(-13 (-21) (-1082 |t#1|))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-1082 |#1|) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
(((-1088) (-142)) (T -1088))
NIL
(-13 (-21) (-1143))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2462 (((-1207) $) 11 T ELT)) (-4458 ((|#1| $) 12 T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3439 (($ (-1207) |#1|) 10 T ELT)) (-1578 (((-887) $) 22 (|has| |#1| (-1132)) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2473 (((-114) $ $) 17 (|has| |#1| (-1132)) ELT)))
-(((-1089 |#1| |#2|) (-13 (-1247) (-10 -8 (-15 -3439 ($ (-1207) |#1|)) (-15 -2462 ((-1207) $)) (-15 -4458 (|#1| $)) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|))) (-1125 |#2|) (-1247)) (T -1089))
-((-3439 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-4 *4 (-1247)) (-5 *1 (-1089 *3 *4)) (-4 *3 (-1125 *4)))) (-2462 (*1 *2 *1) (-12 (-4 *4 (-1247)) (-5 *2 (-1207)) (-5 *1 (-1089 *3 *4)) (-4 *3 (-1125 *4)))) (-4458 (*1 *2 *1) (-12 (-4 *2 (-1125 *3)) (-5 *1 (-1089 *2 *3)) (-4 *3 (-1247)))))
-(-13 (-1247) (-10 -8 (-15 -3439 ($ (-1207) |#1|)) (-15 -2462 ((-1207) $)) (-15 -4458 (|#1| $)) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|)))
-((-4267 (($ $) 17 T ELT)) (-1733 (($ $) 25 T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 55 T ELT)) (-2032 (($ $) 27 T ELT)) (-2652 (($ $) 12 T ELT)) (-2016 (($ $) 43 T ELT)) (-1407 (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (((-915 (-391)) $) 36 T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 31 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) 31 T ELT)) (-2930 (((-793)) 9 T ELT)) (-1494 (($ $) 45 T ELT)))
-(((-1090 |#1|) (-10 -8 (-15 -1733 (|#1| |#1|)) (-15 -4267 (|#1| |#1|)) (-15 -2652 (|#1| |#1|)) (-15 -2016 (|#1| |#1|)) (-15 -1494 (|#1| |#1|)) (-15 -2032 (|#1| |#1|)) (-15 -2427 ((-913 (-391) |#1|) |#1| (-915 (-391)) (-913 (-391) |#1|))) (-15 -1407 ((-915 (-391)) |#1|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -1578 (|#1| (-560))) (-15 -1407 ((-229) |#1|)) (-15 -1407 ((-391) |#1|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -1578 (|#1| |#1|)) (-15 -2930 ((-793))) (-15 -1578 (|#1| (-560))) (-15 -1578 ((-887) |#1|))) (-1091)) (T -1090))
-((-2930 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1090 *3)) (-4 *3 (-1091)))))
-(-10 -8 (-15 -1733 (|#1| |#1|)) (-15 -4267 (|#1| |#1|)) (-15 -2652 (|#1| |#1|)) (-15 -2016 (|#1| |#1|)) (-15 -1494 (|#1| |#1|)) (-15 -2032 (|#1| |#1|)) (-15 -2427 ((-913 (-391) |#1|) |#1| (-915 (-391)) (-913 (-391) |#1|))) (-15 -1407 ((-915 (-391)) |#1|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -1578 (|#1| (-560))) (-15 -1407 ((-229) |#1|)) (-15 -1407 ((-391) |#1|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -1578 (|#1| |#1|)) (-15 -2930 ((-793))) (-15 -1578 (|#1| (-560))) (-15 -1578 ((-887) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3941 (((-560) $) 98 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-3244 (($ $) 46 T ELT)) (-4093 (((-114) $) 44 T ELT)) (-4267 (($ $) 96 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-1804 (($ $) 81 T ELT)) (-3023 (((-419 $) $) 80 T ELT)) (-4471 (($ $) 106 T ELT)) (-1615 (((-114) $ $) 65 T ELT)) (-2138 (((-560) $) 123 T ELT)) (-2238 (($) 18 T CONST)) (-1733 (($ $) 95 T ELT)) (-2539 (((-3 (-560) "failed") $) 111 T ELT) (((-3 (-421 (-560)) "failed") $) 108 T ELT)) (-3330 (((-560) $) 112 T ELT) (((-421 (-560)) $) 109 T ELT)) (-1478 (($ $ $) 61 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1490 (($ $ $) 62 T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 57 T ELT)) (-4330 (((-114) $) 79 T ELT)) (-2928 (((-114) $) 121 T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 102 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-2146 (($ $ (-560)) 105 T ELT)) (-2032 (($ $) 101 T ELT)) (-2960 (((-114) $) 122 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-3825 (($ $ $) 115 T ELT)) (-2820 (($ $ $) 116 T ELT)) (-2093 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-1544 (($ $) 78 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-2132 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-2652 (($ $) 97 T ELT)) (-2016 (($ $) 99 T ELT)) (-4457 (((-419 $) $) 82 T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-1528 (((-3 $ "failed") $ $) 48 T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-2901 (((-793) $) 64 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 63 T ELT)) (-1407 (((-391) $) 114 T ELT) (((-229) $) 113 T ELT) (((-915 (-391)) $) 103 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-560))) 74 T ELT) (($ (-560)) 110 T ELT) (($ (-421 (-560))) 107 T ELT)) (-2930 (((-793)) 32 T CONST)) (-1494 (($ $) 100 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 45 T ELT)) (-2282 (($ $) 124 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2536 (((-114) $ $) 117 T ELT)) (-2508 (((-114) $ $) 119 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 118 T ELT)) (-2495 (((-114) $ $) 120 T ELT)) (-2594 (($ $ $) 73 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 77 T ELT) (($ $ (-421 (-560))) 104 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 76 T ELT) (($ (-421 (-560)) $) 75 T ELT)))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2558 (((-1207) $) 11 T ELT)) (-1886 ((|#1| $) 12 T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2793 (($ (-1207) |#1|) 10 T ELT)) (-3913 (((-887) $) 22 (|has| |#1| (-1132)) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2340 (((-114) $ $) 17 (|has| |#1| (-1132)) ELT)))
+(((-1089 |#1| |#2|) (-13 (-1247) (-10 -8 (-15 -2793 ($ (-1207) |#1|)) (-15 -2558 ((-1207) $)) (-15 -1886 (|#1| $)) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|))) (-1125 |#2|) (-1247)) (T -1089))
+((-2793 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-4 *4 (-1247)) (-5 *1 (-1089 *3 *4)) (-4 *3 (-1125 *4)))) (-2558 (*1 *2 *1) (-12 (-4 *4 (-1247)) (-5 *2 (-1207)) (-5 *1 (-1089 *3 *4)) (-4 *3 (-1125 *4)))) (-1886 (*1 *2 *1) (-12 (-4 *2 (-1125 *3)) (-5 *1 (-1089 *2 *3)) (-4 *3 (-1247)))))
+(-13 (-1247) (-10 -8 (-15 -2793 ($ (-1207) |#1|)) (-15 -2558 ((-1207) $)) (-15 -1886 (|#1| $)) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|)))
+((-3864 (($ $) 17 T ELT)) (-2198 (($ $) 25 T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 55 T ELT)) (-2084 (($ $) 27 T ELT)) (-3211 (($ $) 12 T ELT)) (-3147 (($ $) 43 T ELT)) (-2400 (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (((-915 (-391)) $) 36 T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) 31 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) 31 T ELT)) (-4191 (((-793)) 9 T ELT)) (-3622 (($ $) 45 T ELT)))
+(((-1090 |#1|) (-10 -8 (-15 -2198 (|#1| |#1|)) (-15 -3864 (|#1| |#1|)) (-15 -3211 (|#1| |#1|)) (-15 -3147 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -2084 (|#1| |#1|)) (-15 -1646 ((-913 (-391) |#1|) |#1| (-915 (-391)) (-913 (-391) |#1|))) (-15 -2400 ((-915 (-391)) |#1|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -3913 (|#1| (-560))) (-15 -2400 ((-229) |#1|)) (-15 -2400 ((-391) |#1|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -3913 (|#1| |#1|)) (-15 -4191 ((-793))) (-15 -3913 (|#1| (-560))) (-15 -3913 ((-887) |#1|))) (-1091)) (T -1090))
+((-4191 (*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1090 *3)) (-4 *3 (-1091)))))
+(-10 -8 (-15 -2198 (|#1| |#1|)) (-15 -3864 (|#1| |#1|)) (-15 -3211 (|#1| |#1|)) (-15 -3147 (|#1| |#1|)) (-15 -3622 (|#1| |#1|)) (-15 -2084 (|#1| |#1|)) (-15 -1646 ((-913 (-391) |#1|) |#1| (-915 (-391)) (-913 (-391) |#1|))) (-15 -2400 ((-915 (-391)) |#1|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -3913 (|#1| (-560))) (-15 -2400 ((-229) |#1|)) (-15 -2400 ((-391) |#1|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -3913 (|#1| |#1|)) (-15 -4191 ((-793))) (-15 -3913 (|#1| (-560))) (-15 -3913 ((-887) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3655 (((-560) $) 98 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-4366 (($ $) 46 T ELT)) (-2667 (((-114) $) 44 T ELT)) (-3864 (($ $) 96 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-1621 (($ $) 81 T ELT)) (-3898 (((-419 $) $) 80 T ELT)) (-4021 (($ $) 106 T ELT)) (-3476 (((-114) $ $) 65 T ELT)) (-1869 (((-560) $) 123 T ELT)) (-3525 (($) 18 T CONST)) (-2198 (($ $) 95 T ELT)) (-3929 (((-3 (-560) "failed") $) 111 T ELT) (((-3 (-421 (-560)) "failed") $) 108 T ELT)) (-3649 (((-560) $) 112 T ELT) (((-421 (-560)) $) 109 T ELT)) (-2186 (($ $ $) 61 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-2197 (($ $ $) 62 T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 57 T ELT)) (-3141 (((-114) $) 79 T ELT)) (-4172 (((-114) $) 121 T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 102 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-1956 (($ $ (-560)) 105 T ELT)) (-2084 (($ $) 101 T ELT)) (-4470 (((-114) $) 122 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-2932 (($ $ $) 115 T ELT)) (-4379 (($ $ $) 116 T ELT)) (-1861 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2986 (($ $) 78 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-1938 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-3211 (($ $) 97 T ELT)) (-3147 (($ $) 99 T ELT)) (-4012 (((-419 $) $) 82 T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-2233 (((-3 $ "failed") $ $) 48 T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-3989 (((-793) $) 64 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 63 T ELT)) (-2400 (((-391) $) 114 T ELT) (((-229) $) 113 T ELT) (((-915 (-391)) $) 103 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-560))) 74 T ELT) (($ (-560)) 110 T ELT) (($ (-421 (-560))) 107 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3622 (($ $) 100 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 45 T ELT)) (-2719 (($ $) 124 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2396 (((-114) $ $) 117 T ELT)) (-2373 (((-114) $ $) 119 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 118 T ELT)) (-2362 (((-114) $ $) 120 T ELT)) (-2453 (($ $ $) 73 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 77 T ELT) (($ $ (-421 (-560))) 104 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 76 T ELT) (($ (-421 (-560)) $) 75 T ELT)))
(((-1091) (-142)) (T -1091))
-((-2282 (*1 *1 *1) (-4 *1 (-1091))) (-2032 (*1 *1 *1) (-4 *1 (-1091))) (-1494 (*1 *1 *1) (-4 *1 (-1091))) (-2016 (*1 *1 *1) (-4 *1 (-1091))) (-3941 (*1 *2 *1) (-12 (-4 *1 (-1091)) (-5 *2 (-560)))) (-2652 (*1 *1 *1) (-4 *1 (-1091))) (-4267 (*1 *1 *1) (-4 *1 (-1091))) (-1733 (*1 *1 *1) (-4 *1 (-1091))))
-(-13 (-376) (-870) (-1051) (-1069 (-560)) (-1069 (-421 (-560))) (-1033) (-633 (-915 (-391))) (-911 (-391)) (-149) (-10 -8 (-15 -2032 ($ $)) (-15 -1494 ($ $)) (-15 -2016 ($ $)) (-15 -3941 ((-560) $)) (-15 -2652 ($ $)) (-15 -4267 ($ $)) (-15 -1733 ($ $)) (-15 -2282 ($ $))))
+((-2719 (*1 *1 *1) (-4 *1 (-1091))) (-2084 (*1 *1 *1) (-4 *1 (-1091))) (-3622 (*1 *1 *1) (-4 *1 (-1091))) (-3147 (*1 *1 *1) (-4 *1 (-1091))) (-3655 (*1 *2 *1) (-12 (-4 *1 (-1091)) (-5 *2 (-560)))) (-3211 (*1 *1 *1) (-4 *1 (-1091))) (-3864 (*1 *1 *1) (-4 *1 (-1091))) (-2198 (*1 *1 *1) (-4 *1 (-1091))))
+(-13 (-376) (-870) (-1051) (-1069 (-560)) (-1069 (-421 (-560))) (-1033) (-633 (-915 (-391))) (-911 (-391)) (-149) (-10 -8 (-15 -2084 ($ $)) (-15 -3622 ($ $)) (-15 -3147 ($ $)) (-15 -3655 ((-560) $)) (-15 -3211 ($ $)) (-15 -3864 ($ $)) (-15 -2198 ($ $)) (-15 -2719 ($ $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-635 #0#) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-633 (-229)) . T) ((-633 (-391)) . T) ((-633 (-915 (-391))) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-466) . T) ((-571) . T) ((-668 #0#) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 $) . T) ((-739 #0#) . T) ((-739 $) . T) ((-748) . T) ((-813) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-870) . T) ((-871) . T) ((-874) . T) ((-911 (-391)) . T) ((-950) . T) ((-1033) . T) ((-1051) . T) ((-1069 (-421 (-560))) . T) ((-1069 (-560)) . T) ((-1082 #0#) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T) ((-1252) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) |#2| $) 26 T ELT)) (-3241 ((|#1| $) 10 T ELT)) (-2138 (((-560) |#2| $) 116 T ELT)) (-3325 (((-3 $ "failed") |#2| (-948)) 75 T ELT)) (-4210 ((|#1| $) 31 T ELT)) (-2609 ((|#1| |#2| $ |#1|) 40 T ELT)) (-4075 (($ $) 28 T ELT)) (-1990 (((-3 |#2| "failed") |#2| $) 111 T ELT)) (-2928 (((-114) |#2| $) NIL T ELT)) (-2960 (((-114) |#2| $) NIL T ELT)) (-2223 (((-114) |#2| $) 27 T ELT)) (-3334 ((|#1| $) 117 T ELT)) (-4198 ((|#1| $) 30 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4394 ((|#2| $) 102 T ELT)) (-1578 (((-887) $) 92 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2239 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3207 (((-663 $) |#2|) 77 T ELT)) (-2473 (((-114) $ $) 97 T ELT)))
-(((-1092 |#1| |#2|) (-13 (-1099 |#1| |#2|) (-10 -8 (-15 -4198 (|#1| $)) (-15 -4210 (|#1| $)) (-15 -3241 (|#1| $)) (-15 -3334 (|#1| $)) (-15 -4075 ($ $)) (-15 -2223 ((-114) |#2| $)) (-15 -2609 (|#1| |#2| $ |#1|)))) (-13 (-870) (-376)) (-1273 |#1|)) (T -1092))
-((-2609 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) (-4 *3 (-1273 *2)))) (-4198 (*1 *2 *1) (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) (-4 *3 (-1273 *2)))) (-4210 (*1 *2 *1) (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) (-4 *3 (-1273 *2)))) (-3241 (*1 *2 *1) (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) (-4 *3 (-1273 *2)))) (-3334 (*1 *2 *1) (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) (-4 *3 (-1273 *2)))) (-4075 (*1 *1 *1) (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) (-4 *3 (-1273 *2)))) (-2223 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-870) (-376))) (-5 *2 (-114)) (-5 *1 (-1092 *4 *3)) (-4 *3 (-1273 *4)))))
-(-13 (-1099 |#1| |#2|) (-10 -8 (-15 -4198 (|#1| $)) (-15 -4210 (|#1| $)) (-15 -3241 (|#1| $)) (-15 -3334 (|#1| $)) (-15 -4075 ($ $)) (-15 -2223 ((-114) |#2| $)) (-15 -2609 (|#1| |#2| $ |#1|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-2791 (($ $ $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2970 (($ $ $ $) NIL T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-2138 (((-560) $) NIL T ELT)) (-2331 (($ $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-3335 (($ (-1207)) 10 T ELT) (($ (-560)) 7 T ELT)) (-2539 (((-3 (-560) "failed") $) NIL T ELT)) (-3330 (((-560) $) NIL T ELT)) (-1478 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-3643 (((-3 (-421 (-560)) "failed") $) NIL T ELT)) (-3469 (((-114) $) NIL T ELT)) (-3197 (((-421 (-560)) $) NIL T ELT)) (-2310 (($) NIL T ELT) (($ $) NIL T ELT)) (-1490 (($ $ $) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-1949 (($ $ $ $) NIL T ELT)) (-4322 (($ $ $) NIL T ELT)) (-2928 (((-114) $) NIL T ELT)) (-2708 (($ $ $) NIL T ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-3612 (((-114) $) NIL T ELT)) (-3009 (((-3 $ "failed") $) NIL T ELT)) (-2960 (((-114) $) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3651 (($ $ $ $) NIL T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-3890 (($ $) NIL T ELT)) (-4108 (($ $) NIL T ELT)) (-2484 (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL T ELT) (((-711 (-560)) (-1297 $)) NIL T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2818 (($ $ $) NIL T ELT)) (-3161 (($) NIL T CONST)) (-3728 (($ $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1559 (($ $) NIL T ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1737 (((-114) $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-2894 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3769 (($ $) NIL T ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-560) $) 16 T ELT) (((-549) $) NIL T ELT) (((-915 (-560)) $) NIL T ELT) (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (($ (-1207)) 9 T ELT)) (-1578 (((-887) $) 23 T ELT) (($ (-560)) 6 T ELT) (($ $) NIL T ELT) (($ (-560)) 6 T ELT)) (-2930 (((-793)) NIL T CONST)) (-3385 (((-114) $ $) NIL T ELT)) (-3271 (($ $ $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1792 (($) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-3260 (($ $ $ $) NIL T ELT)) (-2282 (($ $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) NIL T ELT)) (-2580 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-560) $) NIL T ELT)))
-(((-1093) (-13 (-559) (-637 (-1207)) (-10 -8 (-6 -4495) (-6 -4500) (-6 -4496) (-15 -3335 ($ (-1207))) (-15 -3335 ($ (-560)))))) (T -1093))
-((-3335 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1093)))) (-3335 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1093)))))
-(-13 (-559) (-637 (-1207)) (-10 -8 (-6 -4495) (-6 -4500) (-6 -4496) (-15 -3335 ($ (-1207))) (-15 -3335 ($ (-560)))))
-((-1538 (((-114) $ $) NIL (-2304 (|has| (-51) (-102)) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-102))) ELT)) (-4083 (($) NIL T ELT) (($ (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))) NIL T ELT)) (-3839 (((-1303) $ (-1207) (-1207)) NIL (|has| $ (-6 -4509)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1584 (($) 9 T ELT)) (-1773 (((-51) $ (-1207) (-51)) NIL T ELT)) (-3024 (($ $) 32 T ELT)) (-2643 (($ $) 30 T ELT)) (-1669 (($ $) 29 T ELT)) (-3508 (($ $) 31 T ELT)) (-4186 (($ $) 35 T ELT)) (-2878 (($ $) 36 T ELT)) (-2170 (($ $) 28 T ELT)) (-4242 (($ $) 33 T ELT)) (-3500 (($ (-1 (-114) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) 27 (|has| $ (-6 -4508)) ELT)) (-4255 (((-3 (-51) "failed") (-1207) $) 43 T ELT)) (-2238 (($) NIL T CONST)) (-3472 (($) 7 T ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1132))) ELT)) (-3390 (($ (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) $) 53 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 (-51) "failed") (-1207) $) NIL T ELT)) (-2375 (($ (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 (((-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $ (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1132))) ELT) (((-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $ (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3417 (((-3 (-1189) "failed") $ (-1189) (-560)) 72 T ELT)) (-3779 (((-51) $ (-1207) (-51)) NIL (|has| $ (-6 -4509)) ELT)) (-3709 (((-51) $ (-1207)) NIL T ELT)) (-2181 (((-663 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-1207) $) NIL (|has| (-1207) (-871)) ELT)) (-2656 (((-663 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) 38 (|has| $ (-6 -4508)) ELT) (((-663 (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1132))) ELT) (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-51) (-1132))) ELT)) (-2937 (((-1207) $) NIL (|has| (-1207) (-871)) ELT)) (-3768 (($ (-1 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (-2304 (|has| (-51) (-1132)) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1132))) ELT)) (-2236 (((-663 (-1207)) $) NIL T ELT)) (-1445 (((-114) (-1207) $) NIL T ELT)) (-1576 (((-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) $) NIL T ELT)) (-3629 (($ (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) $) 46 T ELT)) (-3270 (((-663 (-1207)) $) NIL T ELT)) (-3586 (((-114) (-1207) $) NIL T ELT)) (-3855 (((-1151) $) NIL (-2304 (|has| (-51) (-1132)) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1132))) ELT)) (-4015 (((-391) $ (-1207)) 52 T ELT)) (-3826 (((-663 (-1189)) $ (-1189)) 74 T ELT)) (-3637 (((-51) $) NIL (|has| (-1207) (-871)) ELT)) (-3329 (((-3 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) "failed") (-1 (-114) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL T ELT)) (-3037 (($ $ (-51)) NIL (|has| $ (-6 -4509)) ELT)) (-2615 (((-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) $) NIL T ELT)) (-2787 (((-114) (-1 (-114) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))))) NIL (-12 (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-321 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1132))) ELT) (($ $ (-305 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))) NIL (-12 (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-321 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1132))) ELT) (($ $ (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) NIL (-12 (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-321 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1132))) ELT) (($ $ (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))) NIL (-12 (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-321 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1132))) ELT) (($ $ (-663 (-51)) (-663 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT) (($ $ (-305 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT) (($ $ (-663 (-305 (-51)))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-51) (-1132))) ELT)) (-3571 (((-663 (-51)) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 (((-51) $ (-1207)) NIL T ELT) (((-51) $ (-1207) (-51)) NIL T ELT)) (-3897 (($) NIL T ELT) (($ (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))) NIL T ELT)) (-3582 (($ $ (-1207)) 54 T ELT)) (-3865 (((-793) (-1 (-114) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-1132))) ELT) (((-793) (-51) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-51) (-1132))) ELT) (((-793) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) NIL (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-633 (-549))) ELT)) (-1592 (($ (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))) 40 T ELT)) (-3415 (($ $ $) 41 T ELT)) (-1578 (((-887) $) NIL (-2304 (|has| (-51) (-632 (-887))) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-632 (-887)))) ELT)) (-2044 (($ $ (-1207) (-391)) 50 T ELT)) (-2096 (($ $ (-1207) (-391)) 51 T ELT)) (-2275 (((-114) $ $) NIL (-2304 (|has| (-51) (-102)) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-102))) ELT)) (-3376 (($ (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))))) NIL T ELT)) (-1728 (((-114) (-1 (-114) (-2 (|:| -2968 (-1207)) (|:| -2460 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) NIL (-2304 (|has| (-51) (-102)) (|has| (-2 (|:| -2968 (-1207)) (|:| -2460 (-51))) (-102))) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-1094) (-13 (-1224 (-1207) (-51)) (-10 -8 (-15 -3415 ($ $ $)) (-15 -3472 ($)) (-15 -2170 ($ $)) (-15 -1669 ($ $)) (-15 -2643 ($ $)) (-15 -3508 ($ $)) (-15 -4242 ($ $)) (-15 -3024 ($ $)) (-15 -4186 ($ $)) (-15 -2878 ($ $)) (-15 -2044 ($ $ (-1207) (-391))) (-15 -2096 ($ $ (-1207) (-391))) (-15 -4015 ((-391) $ (-1207))) (-15 -3826 ((-663 (-1189)) $ (-1189))) (-15 -3582 ($ $ (-1207))) (-15 -1584 ($)) (-15 -3417 ((-3 (-1189) "failed") $ (-1189) (-560))) (-6 -4508)))) (T -1094))
-((-3415 (*1 *1 *1 *1) (-5 *1 (-1094))) (-3472 (*1 *1) (-5 *1 (-1094))) (-2170 (*1 *1 *1) (-5 *1 (-1094))) (-1669 (*1 *1 *1) (-5 *1 (-1094))) (-2643 (*1 *1 *1) (-5 *1 (-1094))) (-3508 (*1 *1 *1) (-5 *1 (-1094))) (-4242 (*1 *1 *1) (-5 *1 (-1094))) (-3024 (*1 *1 *1) (-5 *1 (-1094))) (-4186 (*1 *1 *1) (-5 *1 (-1094))) (-2878 (*1 *1 *1) (-5 *1 (-1094))) (-2044 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-391)) (-5 *1 (-1094)))) (-2096 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-391)) (-5 *1 (-1094)))) (-4015 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-391)) (-5 *1 (-1094)))) (-3826 (*1 *2 *1 *3) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1094)) (-5 *3 (-1189)))) (-3582 (*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1094)))) (-1584 (*1 *1) (-5 *1 (-1094))) (-3417 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1189)) (-5 *3 (-560)) (-5 *1 (-1094)))))
-(-13 (-1224 (-1207) (-51)) (-10 -8 (-15 -3415 ($ $ $)) (-15 -3472 ($)) (-15 -2170 ($ $)) (-15 -1669 ($ $)) (-15 -2643 ($ $)) (-15 -3508 ($ $)) (-15 -4242 ($ $)) (-15 -3024 ($ $)) (-15 -4186 ($ $)) (-15 -2878 ($ $)) (-15 -2044 ($ $ (-1207) (-391))) (-15 -2096 ($ $ (-1207) (-391))) (-15 -4015 ((-391) $ (-1207))) (-15 -3826 ((-663 (-1189)) $ (-1189))) (-15 -3582 ($ $ (-1207))) (-15 -1584 ($)) (-15 -3417 ((-3 (-1189) "failed") $ (-1189) (-560))) (-6 -4508)))
-((-2270 (($ $) 46 T ELT)) (-3336 (((-114) $ $) 82 T ELT)) (-2539 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 (-560) "failed") $) NIL T ELT) (((-3 |#4| "failed") $) NIL T ELT) (((-3 $ "failed") (-975 (-421 (-560)))) 247 T ELT) (((-3 $ "failed") (-975 (-560))) 246 T ELT) (((-3 $ "failed") (-975 |#2|)) 249 T ELT)) (-3330 ((|#2| $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) (((-560) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-975 (-421 (-560)))) 235 T ELT) (($ (-975 (-560))) 231 T ELT) (($ (-975 |#2|)) 255 T ELT)) (-1624 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-3989 (((-114) $ $) 131 T ELT) (((-114) $ (-663 $)) 135 T ELT)) (-4070 (((-114) $) 60 T ELT)) (-4365 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 125 T ELT)) (-3070 (($ $) 160 T ELT)) (-3516 (($ $) 156 T ELT)) (-2663 (($ $) 155 T ELT)) (-3562 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-1393 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-3544 (((-114) $ $) 143 T ELT) (((-114) $ (-663 $)) 144 T ELT)) (-4132 ((|#4| $) 32 T ELT)) (-3230 (($ $ $) 128 T ELT)) (-4265 (((-114) $) 59 T ELT)) (-1605 (((-793) $) 35 T ELT)) (-4464 (($ $) 174 T ELT)) (-3671 (($ $) 171 T ELT)) (-4145 (((-663 $) $) 72 T ELT)) (-2271 (($ $) 62 T ELT)) (-1436 (($ $) 167 T ELT)) (-3111 (((-663 $) $) 69 T ELT)) (-3593 (($ $) 64 T ELT)) (-1597 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-2927 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4191 (-793))) $ $) 130 T ELT)) (-1577 (((-2 (|:| -2115 $) (|:| |gap| (-793)) (|:| -1774 $) (|:| -2341 $)) $ $) 126 T ELT) (((-2 (|:| -2115 $) (|:| |gap| (-793)) (|:| -1774 $) (|:| -2341 $)) $ $ |#4|) 127 T ELT)) (-3864 (((-2 (|:| -2115 $) (|:| |gap| (-793)) (|:| -2341 $)) $ $) 121 T ELT) (((-2 (|:| -2115 $) (|:| |gap| (-793)) (|:| -2341 $)) $ $ |#4|) 123 T ELT)) (-3071 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-2741 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-2235 (((-663 $) $) 54 T ELT)) (-3548 (((-114) $ $) 140 T ELT) (((-114) $ (-663 $)) 141 T ELT)) (-3212 (($ $ $) 116 T ELT)) (-3161 (($ $) 37 T ELT)) (-2925 (((-114) $ $) 80 T ELT)) (-1563 (((-114) $ $) 136 T ELT) (((-114) $ (-663 $)) 138 T ELT)) (-3171 (($ $ $) 112 T ELT)) (-4317 (($ $) 41 T ELT)) (-2132 ((|#2| |#2| $) 164 T ELT) (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3290 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-4379 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-2529 (($ $) 49 T ELT)) (-4081 (($ $) 55 T ELT)) (-1407 (((-915 (-391)) $) NIL T ELT) (((-915 (-560)) $) NIL T ELT) (((-549) $) NIL T ELT) (($ (-975 (-421 (-560)))) 237 T ELT) (($ (-975 (-560))) 233 T ELT) (($ (-975 |#2|)) 248 T ELT) (((-1189) $) 279 T ELT) (((-975 |#2|) $) 184 T ELT)) (-1578 (((-887) $) 29 T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-975 |#2|) $) 185 T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT)) (-1546 (((-3 (-114) "failed") $ $) 79 T ELT)))
-(((-1095 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1578 (|#1| |#1|)) (-15 -2132 (|#1| |#1| |#1|)) (-15 -2132 (|#1| (-663 |#1|))) (-15 -1578 (|#1| (-421 (-560)))) (-15 -1578 ((-975 |#2|) |#1|)) (-15 -1407 ((-975 |#2|) |#1|)) (-15 -1407 ((-1189) |#1|)) (-15 -4464 (|#1| |#1|)) (-15 -3671 (|#1| |#1|)) (-15 -1436 (|#1| |#1|)) (-15 -3070 (|#1| |#1|)) (-15 -2132 (|#2| |#2| |#1|)) (-15 -3290 (|#1| |#1| |#1|)) (-15 -4379 (|#1| |#1| |#1|)) (-15 -3290 (|#1| |#1| |#2|)) (-15 -4379 (|#1| |#1| |#2|)) (-15 -3516 (|#1| |#1|)) (-15 -2663 (|#1| |#1|)) (-15 -1407 (|#1| (-975 |#2|))) (-15 -3330 (|#1| (-975 |#2|))) (-15 -2539 ((-3 |#1| "failed") (-975 |#2|))) (-15 -1407 (|#1| (-975 (-560)))) (-15 -3330 (|#1| (-975 (-560)))) (-15 -2539 ((-3 |#1| "failed") (-975 (-560)))) (-15 -1407 (|#1| (-975 (-421 (-560))))) (-15 -3330 (|#1| (-975 (-421 (-560))))) (-15 -2539 ((-3 |#1| "failed") (-975 (-421 (-560))))) (-15 -3212 (|#1| |#1| |#1|)) (-15 -3171 (|#1| |#1| |#1|)) (-15 -2927 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4191 (-793))) |#1| |#1|)) (-15 -3230 (|#1| |#1| |#1|)) (-15 -4365 ((-2 (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1|)) (-15 -1577 ((-2 (|:| -2115 |#1|) (|:| |gap| (-793)) (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1| |#4|)) (-15 -1577 ((-2 (|:| -2115 |#1|) (|:| |gap| (-793)) (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1|)) (-15 -3864 ((-2 (|:| -2115 |#1|) (|:| |gap| (-793)) (|:| -2341 |#1|)) |#1| |#1| |#4|)) (-15 -3864 ((-2 (|:| -2115 |#1|) (|:| |gap| (-793)) (|:| -2341 |#1|)) |#1| |#1|)) (-15 -2741 (|#1| |#1| |#1| |#4|)) (-15 -3071 (|#1| |#1| |#1| |#4|)) (-15 -2741 (|#1| |#1| |#1|)) (-15 -3071 (|#1| |#1| |#1|)) (-15 -1393 (|#1| |#1| |#1| |#4|)) (-15 -3562 (|#1| |#1| |#1| |#4|)) (-15 -1393 (|#1| |#1| |#1|)) (-15 -3562 (|#1| |#1| |#1|)) (-15 -3544 ((-114) |#1| (-663 |#1|))) (-15 -3544 ((-114) |#1| |#1|)) (-15 -3548 ((-114) |#1| (-663 |#1|))) (-15 -3548 ((-114) |#1| |#1|)) (-15 -1563 ((-114) |#1| (-663 |#1|))) (-15 -1563 ((-114) |#1| |#1|)) (-15 -3989 ((-114) |#1| (-663 |#1|))) (-15 -3989 ((-114) |#1| |#1|)) (-15 -3336 ((-114) |#1| |#1|)) (-15 -2925 ((-114) |#1| |#1|)) (-15 -1546 ((-3 (-114) "failed") |#1| |#1|)) (-15 -4145 ((-663 |#1|) |#1|)) (-15 -3111 ((-663 |#1|) |#1|)) (-15 -3593 (|#1| |#1|)) (-15 -2271 (|#1| |#1|)) (-15 -4070 ((-114) |#1|)) (-15 -4265 ((-114) |#1|)) (-15 -1624 (|#1| |#1| |#4|)) (-15 -1597 (|#1| |#1| |#4|)) (-15 -4081 (|#1| |#1|)) (-15 -2235 ((-663 |#1|) |#1|)) (-15 -2529 (|#1| |#1|)) (-15 -2270 (|#1| |#1|)) (-15 -4317 (|#1| |#1|)) (-15 -3161 (|#1| |#1|)) (-15 -1605 ((-793) |#1|)) (-15 -4132 (|#4| |#1|)) (-15 -1407 ((-549) |#1|)) (-15 -1407 ((-915 (-560)) |#1|)) (-15 -1407 ((-915 (-391)) |#1|)) (-15 -1578 (|#1| |#4|)) (-15 -2539 ((-3 |#4| "failed") |#1|)) (-15 -3330 (|#4| |#1|)) (-15 -1597 (|#2| |#1|)) (-15 -1624 (|#1| |#1|)) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -3330 ((-560) |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -1578 (|#1| |#2|)) (-15 -1578 (|#1| (-560))) (-15 -1578 ((-887) |#1|))) (-1096 |#2| |#3| |#4|) (-1080) (-815) (-871)) (T -1095))
-NIL
-(-10 -8 (-15 -1578 (|#1| |#1|)) (-15 -2132 (|#1| |#1| |#1|)) (-15 -2132 (|#1| (-663 |#1|))) (-15 -1578 (|#1| (-421 (-560)))) (-15 -1578 ((-975 |#2|) |#1|)) (-15 -1407 ((-975 |#2|) |#1|)) (-15 -1407 ((-1189) |#1|)) (-15 -4464 (|#1| |#1|)) (-15 -3671 (|#1| |#1|)) (-15 -1436 (|#1| |#1|)) (-15 -3070 (|#1| |#1|)) (-15 -2132 (|#2| |#2| |#1|)) (-15 -3290 (|#1| |#1| |#1|)) (-15 -4379 (|#1| |#1| |#1|)) (-15 -3290 (|#1| |#1| |#2|)) (-15 -4379 (|#1| |#1| |#2|)) (-15 -3516 (|#1| |#1|)) (-15 -2663 (|#1| |#1|)) (-15 -1407 (|#1| (-975 |#2|))) (-15 -3330 (|#1| (-975 |#2|))) (-15 -2539 ((-3 |#1| "failed") (-975 |#2|))) (-15 -1407 (|#1| (-975 (-560)))) (-15 -3330 (|#1| (-975 (-560)))) (-15 -2539 ((-3 |#1| "failed") (-975 (-560)))) (-15 -1407 (|#1| (-975 (-421 (-560))))) (-15 -3330 (|#1| (-975 (-421 (-560))))) (-15 -2539 ((-3 |#1| "failed") (-975 (-421 (-560))))) (-15 -3212 (|#1| |#1| |#1|)) (-15 -3171 (|#1| |#1| |#1|)) (-15 -2927 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4191 (-793))) |#1| |#1|)) (-15 -3230 (|#1| |#1| |#1|)) (-15 -4365 ((-2 (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1|)) (-15 -1577 ((-2 (|:| -2115 |#1|) (|:| |gap| (-793)) (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1| |#4|)) (-15 -1577 ((-2 (|:| -2115 |#1|) (|:| |gap| (-793)) (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1|)) (-15 -3864 ((-2 (|:| -2115 |#1|) (|:| |gap| (-793)) (|:| -2341 |#1|)) |#1| |#1| |#4|)) (-15 -3864 ((-2 (|:| -2115 |#1|) (|:| |gap| (-793)) (|:| -2341 |#1|)) |#1| |#1|)) (-15 -2741 (|#1| |#1| |#1| |#4|)) (-15 -3071 (|#1| |#1| |#1| |#4|)) (-15 -2741 (|#1| |#1| |#1|)) (-15 -3071 (|#1| |#1| |#1|)) (-15 -1393 (|#1| |#1| |#1| |#4|)) (-15 -3562 (|#1| |#1| |#1| |#4|)) (-15 -1393 (|#1| |#1| |#1|)) (-15 -3562 (|#1| |#1| |#1|)) (-15 -3544 ((-114) |#1| (-663 |#1|))) (-15 -3544 ((-114) |#1| |#1|)) (-15 -3548 ((-114) |#1| (-663 |#1|))) (-15 -3548 ((-114) |#1| |#1|)) (-15 -1563 ((-114) |#1| (-663 |#1|))) (-15 -1563 ((-114) |#1| |#1|)) (-15 -3989 ((-114) |#1| (-663 |#1|))) (-15 -3989 ((-114) |#1| |#1|)) (-15 -3336 ((-114) |#1| |#1|)) (-15 -2925 ((-114) |#1| |#1|)) (-15 -1546 ((-3 (-114) "failed") |#1| |#1|)) (-15 -4145 ((-663 |#1|) |#1|)) (-15 -3111 ((-663 |#1|) |#1|)) (-15 -3593 (|#1| |#1|)) (-15 -2271 (|#1| |#1|)) (-15 -4070 ((-114) |#1|)) (-15 -4265 ((-114) |#1|)) (-15 -1624 (|#1| |#1| |#4|)) (-15 -1597 (|#1| |#1| |#4|)) (-15 -4081 (|#1| |#1|)) (-15 -2235 ((-663 |#1|) |#1|)) (-15 -2529 (|#1| |#1|)) (-15 -2270 (|#1| |#1|)) (-15 -4317 (|#1| |#1|)) (-15 -3161 (|#1| |#1|)) (-15 -1605 ((-793) |#1|)) (-15 -4132 (|#4| |#1|)) (-15 -1407 ((-549) |#1|)) (-15 -1407 ((-915 (-560)) |#1|)) (-15 -1407 ((-915 (-391)) |#1|)) (-15 -1578 (|#1| |#4|)) (-15 -2539 ((-3 |#4| "failed") |#1|)) (-15 -3330 (|#4| |#1|)) (-15 -1597 (|#2| |#1|)) (-15 -1624 (|#1| |#1|)) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -3330 ((-560) |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -1578 (|#1| |#2|)) (-15 -1578 (|#1| (-560))) (-15 -1578 ((-887) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-1443 (((-663 |#3|) $) 113 T ELT)) (-4422 (((-1201 $) $ |#3|) 128 T ELT) (((-1201 |#1|) $) 127 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 90 (|has| |#1| (-571)) ELT)) (-3244 (($ $) 91 (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) 93 (|has| |#1| (-571)) ELT)) (-3107 (((-793) $) 115 T ELT) (((-793) $ (-663 |#3|)) 114 T ELT)) (-2270 (($ $) 278 T ELT)) (-3336 (((-114) $ $) 264 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-4182 (($ $ $) 223 (|has| |#1| (-571)) ELT)) (-4440 (((-663 $) $ $) 218 (|has| |#1| (-571)) ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) 103 (|has| |#1| (-939)) ELT)) (-1804 (($ $) 101 (|has| |#1| (-466)) ELT)) (-3023 (((-419 $) $) 100 (|has| |#1| (-466)) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 106 (|has| |#1| (-939)) ELT)) (-2238 (($) 18 T CONST)) (-2539 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-421 (-560)) "failed") $) 168 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) 166 (|has| |#1| (-1069 (-560))) ELT) (((-3 |#3| "failed") $) 143 T ELT) (((-3 $ "failed") (-975 (-421 (-560)))) 238 (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1207)))) ELT) (((-3 $ "failed") (-975 (-560))) 235 (-2304 (-12 (-1937 (|has| |#1| (-38 (-421 (-560))))) (|has| |#1| (-38 (-560))) (|has| |#3| (-633 (-1207)))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1207))))) ELT) (((-3 $ "failed") (-975 |#1|)) 232 (-2304 (-12 (-1937 (|has| |#1| (-38 (-421 (-560))))) (-1937 (|has| |#1| (-38 (-560)))) (|has| |#3| (-633 (-1207)))) (-12 (-1937 (|has| |#1| (-559))) (-1937 (|has| |#1| (-38 (-421 (-560))))) (|has| |#1| (-38 (-560))) (|has| |#3| (-633 (-1207)))) (-12 (-1937 (|has| |#1| (-1022 (-560)))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1207))))) ELT)) (-3330 ((|#1| $) 170 T ELT) (((-421 (-560)) $) 169 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) 167 (|has| |#1| (-1069 (-560))) ELT) ((|#3| $) 144 T ELT) (($ (-975 (-421 (-560)))) 237 (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1207)))) ELT) (($ (-975 (-560))) 234 (-2304 (-12 (-1937 (|has| |#1| (-38 (-421 (-560))))) (|has| |#1| (-38 (-560))) (|has| |#3| (-633 (-1207)))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1207))))) ELT) (($ (-975 |#1|)) 231 (-2304 (-12 (-1937 (|has| |#1| (-38 (-421 (-560))))) (-1937 (|has| |#1| (-38 (-560)))) (|has| |#3| (-633 (-1207)))) (-12 (-1937 (|has| |#1| (-559))) (-1937 (|has| |#1| (-38 (-421 (-560))))) (|has| |#1| (-38 (-560))) (|has| |#3| (-633 (-1207)))) (-12 (-1937 (|has| |#1| (-1022 (-560)))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1207))))) ELT)) (-2788 (($ $ $ |#3|) 111 (|has| |#1| (-175)) ELT) (($ $ $) 219 (|has| |#1| (-571)) ELT)) (-1624 (($ $) 161 T ELT) (($ $ |#3|) 273 T ELT)) (-3142 (((-711 (-560)) (-711 $)) 139 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 138 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 137 T ELT) (((-711 |#1|) (-711 $)) 136 T ELT)) (-3989 (((-114) $ $) 263 T ELT) (((-114) $ (-663 $)) 262 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-4070 (((-114) $) 271 T ELT)) (-4365 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 243 T ELT)) (-3070 (($ $) 212 (|has| |#1| (-466)) ELT)) (-2806 (($ $) 183 (|has| |#1| (-466)) ELT) (($ $ |#3|) 108 (|has| |#1| (-466)) ELT)) (-1608 (((-663 $) $) 112 T ELT)) (-4330 (((-114) $) 99 (|has| |#1| (-939)) ELT)) (-3516 (($ $) 228 (|has| |#1| (-571)) ELT)) (-2663 (($ $) 229 (|has| |#1| (-571)) ELT)) (-3562 (($ $ $) 255 T ELT) (($ $ $ |#3|) 253 T ELT)) (-1393 (($ $ $) 254 T ELT) (($ $ $ |#3|) 252 T ELT)) (-4342 (($ $ |#1| |#2| $) 179 T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 87 (-12 (|has| |#3| (-911 (-391))) (|has| |#1| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 86 (-12 (|has| |#3| (-911 (-560))) (|has| |#1| (-911 (-560)))) ELT)) (-1581 (((-114) $) 35 T ELT)) (-3531 (((-793) $) 176 T ELT)) (-3544 (((-114) $ $) 257 T ELT) (((-114) $ (-663 $)) 256 T ELT)) (-1684 (($ $ $ $ $) 214 (|has| |#1| (-571)) ELT)) (-4132 ((|#3| $) 282 T ELT)) (-1427 (($ (-1201 |#1|) |#3|) 120 T ELT) (($ (-1201 $) |#3|) 119 T ELT)) (-3997 (((-663 $) $) 129 T ELT)) (-1556 (((-114) $) 159 T ELT)) (-1417 (($ |#1| |#2|) 160 T ELT) (($ $ |#3| (-793)) 122 T ELT) (($ $ (-663 |#3|) (-663 (-793))) 121 T ELT)) (-3230 (($ $ $) 242 T ELT)) (-3559 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $ |#3|) 123 T ELT)) (-4265 (((-114) $) 272 T ELT)) (-3011 ((|#2| $) 177 T ELT) (((-793) $ |#3|) 125 T ELT) (((-663 (-793)) $ (-663 |#3|)) 124 T ELT)) (-1605 (((-793) $) 281 T ELT)) (-4321 (($ (-1 |#2| |#2|) $) 178 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-1955 (((-3 |#3| "failed") $) 126 T ELT)) (-4464 (($ $) 209 (|has| |#1| (-466)) ELT)) (-3671 (($ $) 210 (|has| |#1| (-466)) ELT)) (-4145 (((-663 $) $) 267 T ELT)) (-2271 (($ $) 270 T ELT)) (-1436 (($ $) 211 (|has| |#1| (-466)) ELT)) (-3111 (((-663 $) $) 268 T ELT)) (-2484 (((-711 (-560)) (-1297 $)) 141 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 140 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 135 T ELT) (((-711 |#1|) (-1297 $)) 134 T ELT)) (-3593 (($ $) 269 T ELT)) (-1583 (($ $) 156 T ELT)) (-1597 ((|#1| $) 155 T ELT) (($ $ |#3|) 274 T ELT)) (-2093 (($ (-663 $)) 97 (|has| |#1| (-466)) ELT) (($ $ $) 96 (|has| |#1| (-466)) ELT)) (-2927 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4191 (-793))) $ $) 241 T ELT)) (-1577 (((-2 (|:| -2115 $) (|:| |gap| (-793)) (|:| -1774 $) (|:| -2341 $)) $ $) 245 T ELT) (((-2 (|:| -2115 $) (|:| |gap| (-793)) (|:| -1774 $) (|:| -2341 $)) $ $ |#3|) 244 T ELT)) (-3864 (((-2 (|:| -2115 $) (|:| |gap| (-793)) (|:| -2341 $)) $ $) 247 T ELT) (((-2 (|:| -2115 $) (|:| |gap| (-793)) (|:| -2341 $)) $ $ |#3|) 246 T ELT)) (-3071 (($ $ $) 251 T ELT) (($ $ $ |#3|) 249 T ELT)) (-2741 (($ $ $) 250 T ELT) (($ $ $ |#3|) 248 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-4130 (($ $ $) 217 (|has| |#1| (-571)) ELT)) (-2235 (((-663 $) $) 276 T ELT)) (-3479 (((-3 (-663 $) "failed") $) 117 T ELT)) (-2590 (((-3 (-663 $) "failed") $) 118 T ELT)) (-3683 (((-3 (-2 (|:| |var| |#3|) (|:| -3205 (-793))) "failed") $) 116 T ELT)) (-3548 (((-114) $ $) 259 T ELT) (((-114) $ (-663 $)) 258 T ELT)) (-3212 (($ $ $) 239 T ELT)) (-3161 (($ $) 280 T ELT)) (-2925 (((-114) $ $) 265 T ELT)) (-1563 (((-114) $ $) 261 T ELT) (((-114) $ (-663 $)) 260 T ELT)) (-3171 (($ $ $) 240 T ELT)) (-4317 (($ $) 279 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-4073 (((-2 (|:| -2132 $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-571)) ELT)) (-4086 (((-2 (|:| -2132 $) (|:| |coef1| $)) $ $) 221 (|has| |#1| (-571)) ELT)) (-1554 (((-114) $) 173 T ELT)) (-1566 ((|#1| $) 174 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 98 (|has| |#1| (-466)) ELT)) (-2132 ((|#1| |#1| $) 213 (|has| |#1| (-466)) ELT) (($ (-663 $)) 95 (|has| |#1| (-466)) ELT) (($ $ $) 94 (|has| |#1| (-466)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) 105 (|has| |#1| (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) 104 (|has| |#1| (-939)) ELT)) (-4457 (((-419 $) $) 102 (|has| |#1| (-939)) ELT)) (-4131 (((-2 (|:| -2132 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 222 (|has| |#1| (-571)) ELT)) (-1528 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-571)) ELT)) (-3290 (($ $ |#1|) 226 (|has| |#1| (-571)) ELT) (($ $ $) 224 (|has| |#1| (-571)) ELT)) (-4379 (($ $ |#1|) 227 (|has| |#1| (-571)) ELT) (($ $ $) 225 (|has| |#1| (-571)) ELT)) (-4187 (($ $ (-663 (-305 $))) 152 T ELT) (($ $ (-305 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-663 $) (-663 $)) 149 T ELT) (($ $ |#3| |#1|) 148 T ELT) (($ $ (-663 |#3|) (-663 |#1|)) 147 T ELT) (($ $ |#3| $) 146 T ELT) (($ $ (-663 |#3|) (-663 $)) 145 T ELT)) (-2690 (($ $ |#3|) 110 (|has| |#1| (-175)) ELT)) (-2894 (($ $ (-663 |#3|) (-663 (-793))) 44 T ELT) (($ $ |#3| (-793)) 43 T ELT) (($ $ (-663 |#3|)) 42 T ELT) (($ $ |#3|) 40 T ELT)) (-3630 ((|#2| $) 157 T ELT) (((-793) $ |#3|) 133 T ELT) (((-663 (-793)) $ (-663 |#3|)) 132 T ELT)) (-2529 (($ $) 277 T ELT)) (-4081 (($ $) 275 T ELT)) (-1407 (((-915 (-391)) $) 85 (-12 (|has| |#3| (-633 (-915 (-391)))) (|has| |#1| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) 84 (-12 (|has| |#3| (-633 (-915 (-560)))) (|has| |#1| (-633 (-915 (-560))))) ELT) (((-549) $) 83 (-12 (|has| |#3| (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT) (($ (-975 (-421 (-560)))) 236 (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1207)))) ELT) (($ (-975 (-560))) 233 (-2304 (-12 (-1937 (|has| |#1| (-38 (-421 (-560))))) (|has| |#1| (-38 (-560))) (|has| |#3| (-633 (-1207)))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1207))))) ELT) (($ (-975 |#1|)) 230 (|has| |#3| (-633 (-1207))) ELT) (((-1189) $) 208 (-12 (|has| |#1| (-1069 (-560))) (|has| |#3| (-633 (-1207)))) ELT) (((-975 |#1|) $) 207 (|has| |#3| (-633 (-1207))) ELT)) (-2053 ((|#1| $) 182 (|has| |#1| (-466)) ELT) (($ $ |#3|) 109 (|has| |#1| (-466)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) 107 (-1953 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 172 T ELT) (($ |#3|) 142 T ELT) (((-975 |#1|) $) 206 (|has| |#3| (-633 (-1207))) ELT) (($ (-421 (-560))) 81 (-2304 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ELT) (($ $) 88 (|has| |#1| (-571)) ELT)) (-3409 (((-663 |#1|) $) 175 T ELT)) (-2305 ((|#1| $ |#2|) 162 T ELT) (($ $ |#3| (-793)) 131 T ELT) (($ $ (-663 |#3|) (-663 (-793))) 130 T ELT)) (-1964 (((-3 $ "failed") $) 82 (-2304 (-1953 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-2930 (((-793)) 32 T CONST)) (-2392 (($ $ $ (-793)) 180 (|has| |#1| (-175)) ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 92 (|has| |#1| (-571)) ELT)) (-2001 (($) 19 T CONST)) (-1546 (((-3 (-114) "failed") $ $) 266 T ELT)) (-2011 (($) 34 T CONST)) (-4316 (($ $ $ $ (-793)) 215 (|has| |#1| (-571)) ELT)) (-2973 (($ $ $ (-793)) 216 (|has| |#1| (-571)) ELT)) (-3305 (($ $ (-663 |#3|) (-663 (-793))) 47 T ELT) (($ $ |#3| (-793)) 46 T ELT) (($ $ (-663 |#3|)) 45 T ELT) (($ $ |#3|) 41 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ |#1|) 163 (|has| |#1| (-376)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 165 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) 164 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) |#2| $) 26 T ELT)) (-2552 ((|#1| $) 10 T ELT)) (-1869 (((-560) |#2| $) 116 T ELT)) (-3946 (((-3 $ "failed") |#2| (-948)) 75 T ELT)) (-4346 ((|#1| $) 31 T ELT)) (-2732 ((|#1| |#2| $ |#1|) 40 T ELT)) (-2496 (($ $) 28 T ELT)) (-2873 (((-3 |#2| "failed") |#2| $) 111 T ELT)) (-4172 (((-114) |#2| $) NIL T ELT)) (-4470 (((-114) |#2| $) NIL T ELT)) (-3382 (((-114) |#2| $) 27 T ELT)) (-2737 ((|#1| $) 117 T ELT)) (-4335 ((|#1| $) 30 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2407 ((|#2| $) 102 T ELT)) (-3913 (((-887) $) 92 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2905 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3987 (((-663 $) |#2|) 77 T ELT)) (-2340 (((-114) $ $) 97 T ELT)))
+(((-1092 |#1| |#2|) (-13 (-1099 |#1| |#2|) (-10 -8 (-15 -4335 (|#1| $)) (-15 -4346 (|#1| $)) (-15 -2552 (|#1| $)) (-15 -2737 (|#1| $)) (-15 -2496 ($ $)) (-15 -3382 ((-114) |#2| $)) (-15 -2732 (|#1| |#2| $ |#1|)))) (-13 (-870) (-376)) (-1273 |#1|)) (T -1092))
+((-2732 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) (-4 *3 (-1273 *2)))) (-4335 (*1 *2 *1) (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) (-4 *3 (-1273 *2)))) (-4346 (*1 *2 *1) (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) (-4 *3 (-1273 *2)))) (-2552 (*1 *2 *1) (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) (-4 *3 (-1273 *2)))) (-2737 (*1 *2 *1) (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) (-4 *3 (-1273 *2)))) (-2496 (*1 *1 *1) (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3)) (-4 *3 (-1273 *2)))) (-3382 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-870) (-376))) (-5 *2 (-114)) (-5 *1 (-1092 *4 *3)) (-4 *3 (-1273 *4)))))
+(-13 (-1099 |#1| |#2|) (-10 -8 (-15 -4335 (|#1| $)) (-15 -4346 (|#1| $)) (-15 -2552 (|#1| $)) (-15 -2737 (|#1| $)) (-15 -2496 ($ $)) (-15 -3382 ((-114) |#2| $)) (-15 -2732 (|#1| |#2| $ |#1|))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-4071 (($ $ $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3321 (($ $ $ $) NIL T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-1869 (((-560) $) NIL T ELT)) (-1786 (($ $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2748 (($ (-1207)) 10 T ELT) (($ (-560)) 7 T ELT)) (-3929 (((-3 (-560) "failed") $) NIL T ELT)) (-3649 (((-560) $) NIL T ELT)) (-2186 (($ $ $) NIL T ELT)) (-2619 (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-711 (-560)) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-2743 (((-3 (-421 (-560)) "failed") $) NIL T ELT)) (-1574 (((-114) $) NIL T ELT)) (-1957 (((-421 (-560)) $) NIL T ELT)) (-1812 (($) NIL T ELT) (($ $) NIL T ELT)) (-2197 (($ $ $) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-3777 (($ $ $ $) NIL T ELT)) (-3078 (($ $ $) NIL T ELT)) (-4172 (((-114) $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-3729 (((-114) $) NIL T ELT)) (-3738 (((-3 $ "failed") $) NIL T ELT)) (-4470 (((-114) $) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2804 (($ $ $ $) NIL T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-3105 (($ $) NIL T ELT)) (-2946 (($ $) NIL T ELT)) (-4140 (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL T ELT) (((-711 (-560)) (-1297 $)) NIL T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-4359 (($ $ $) NIL T ELT)) (-3239 (($) NIL T CONST)) (-4079 (($ $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1704 (($ $) NIL T ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2244 (((-114) $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3161 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2776 (($ $) NIL T ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-560) $) 16 T ELT) (((-549) $) NIL T ELT) (((-915 (-560)) $) NIL T ELT) (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (($ (-1207)) 9 T ELT)) (-3913 (((-887) $) 23 T ELT) (($ (-560)) 6 T ELT) (($ $) NIL T ELT) (($ (-560)) 6 T ELT)) (-4191 (((-793)) NIL T CONST)) (-3275 (((-114) $ $) NIL T ELT)) (-3381 (($ $ $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2671 (($) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-1369 (($ $ $ $) NIL T ELT)) (-2719 (($ $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) NIL T ELT)) (-2441 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-560) $) NIL T ELT)))
+(((-1093) (-13 (-559) (-637 (-1207)) (-10 -8 (-6 -4495) (-6 -4500) (-6 -4496) (-15 -2748 ($ (-1207))) (-15 -2748 ($ (-560)))))) (T -1093))
+((-2748 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1093)))) (-2748 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1093)))))
+(-13 (-559) (-637 (-1207)) (-10 -8 (-6 -4495) (-6 -4500) (-6 -4496) (-15 -2748 ($ (-1207))) (-15 -2748 ($ (-560)))))
+((-2243 (((-114) $ $) NIL (-2196 (|has| (-51) (-102)) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-102))) ELT)) (-4236 (($) NIL T ELT) (($ (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))) NIL T ELT)) (-2033 (((-1303) $ (-1207) (-1207)) NIL (|has| $ (-6 -4509)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-1943 (($) 9 T ELT)) (-4083 (((-51) $ (-1207) (-51)) NIL T ELT)) (-3907 (($ $) 32 T ELT)) (-3120 (($ $) 30 T ELT)) (-2756 (($ $) 29 T ELT)) (-1940 (($ $) 31 T ELT)) (-4333 (($ $) 35 T ELT)) (-3750 (($ $) 36 T ELT)) (-4143 (($ $) 28 T ELT)) (-3623 (($ $) 33 T ELT)) (-1864 (($ (-1 (-114) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) 27 (|has| $ (-6 -4508)) ELT)) (-3799 (((-3 (-51) "failed") (-1207) $) 43 T ELT)) (-3525 (($) NIL T CONST)) (-1598 (($) 7 T ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1132))) ELT)) (-2091 (($ (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) $) 53 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 (-51) "failed") (-1207) $) NIL T ELT)) (-3033 (($ (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 (((-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $ (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1132))) ELT) (((-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $ (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT)) (-2322 (((-3 (-1189) "failed") $ (-1189) (-560)) 72 T ELT)) (-3338 (((-51) $ (-1207) (-51)) NIL (|has| $ (-6 -4509)) ELT)) (-3274 (((-51) $ (-1207)) NIL T ELT)) (-3737 (((-663 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-1207) $) NIL (|has| (-1207) (-871)) ELT)) (-3243 (((-663 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) 38 (|has| $ (-6 -4508)) ELT) (((-663 (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1132))) ELT) (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-51) (-1132))) ELT)) (-4263 (((-1207) $) NIL (|has| (-1207) (-871)) ELT)) (-3324 (($ (-1 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (-2196 (|has| (-51) (-1132)) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1132))) ELT)) (-4325 (((-663 (-1207)) $) NIL T ELT)) (-4124 (((-114) (-1207) $) NIL T ELT)) (-1878 (((-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) $) NIL T ELT)) (-3888 (($ (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) $) 46 T ELT)) (-3372 (((-663 (-1207)) $) NIL T ELT)) (-3439 (((-114) (-1207) $) NIL T ELT)) (-3376 (((-1151) $) NIL (-2196 (|has| (-51) (-1132)) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1132))) ELT)) (-3155 (((-391) $ (-1207)) 52 T ELT)) (-1909 (((-663 (-1189)) $ (-1189)) 74 T ELT)) (-4334 (((-51) $) NIL (|has| (-1207) (-871)) ELT)) (-2708 (((-3 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) "failed") (-1 (-114) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL T ELT)) (-2740 (($ $ (-51)) NIL (|has| $ (-6 -4509)) ELT)) (-2796 (((-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) $) NIL T ELT)) (-2086 (((-114) (-1 (-114) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))))) NIL (-12 (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-321 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1132))) ELT) (($ $ (-305 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))) NIL (-12 (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-321 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1132))) ELT) (($ $ (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) NIL (-12 (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-321 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1132))) ELT) (($ $ (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))) NIL (-12 (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-321 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1132))) ELT) (($ $ (-663 (-51)) (-663 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT) (($ $ (-305 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT) (($ $ (-663 (-305 (-51)))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-51) (-1132))) ELT)) (-1383 (((-663 (-51)) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 (((-51) $ (-1207)) NIL T ELT) (((-51) $ (-1207) (-51)) NIL T ELT)) (-4468 (($) NIL T ELT) (($ (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))) NIL T ELT)) (-3397 (($ $ (-1207)) 54 T ELT)) (-3384 (((-793) (-1 (-114) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-1132))) ELT) (((-793) (-51) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-51) (-1132))) ELT) (((-793) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) NIL (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-633 (-549))) ELT)) (-3924 (($ (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))) 40 T ELT)) (-1955 (($ $ $) 41 T ELT)) (-3913 (((-887) $) NIL (-2196 (|has| (-51) (-632 (-887))) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-632 (-887)))) ELT)) (-2180 (($ $ (-1207) (-391)) 50 T ELT)) (-1468 (($ $ (-1207) (-391)) 51 T ELT)) (-3925 (((-114) $ $) NIL (-2196 (|has| (-51) (-102)) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-102))) ELT)) (-3184 (($ (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))))) NIL T ELT)) (-2149 (((-114) (-1 (-114) (-2 (|:| -1438 (-1207)) (|:| -3067 (-51)))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) NIL (-2196 (|has| (-51) (-102)) (|has| (-2 (|:| -1438 (-1207)) (|:| -3067 (-51))) (-102))) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-1094) (-13 (-1224 (-1207) (-51)) (-10 -8 (-15 -1955 ($ $ $)) (-15 -1598 ($)) (-15 -4143 ($ $)) (-15 -2756 ($ $)) (-15 -3120 ($ $)) (-15 -1940 ($ $)) (-15 -3623 ($ $)) (-15 -3907 ($ $)) (-15 -4333 ($ $)) (-15 -3750 ($ $)) (-15 -2180 ($ $ (-1207) (-391))) (-15 -1468 ($ $ (-1207) (-391))) (-15 -3155 ((-391) $ (-1207))) (-15 -1909 ((-663 (-1189)) $ (-1189))) (-15 -3397 ($ $ (-1207))) (-15 -1943 ($)) (-15 -2322 ((-3 (-1189) "failed") $ (-1189) (-560))) (-6 -4508)))) (T -1094))
+((-1955 (*1 *1 *1 *1) (-5 *1 (-1094))) (-1598 (*1 *1) (-5 *1 (-1094))) (-4143 (*1 *1 *1) (-5 *1 (-1094))) (-2756 (*1 *1 *1) (-5 *1 (-1094))) (-3120 (*1 *1 *1) (-5 *1 (-1094))) (-1940 (*1 *1 *1) (-5 *1 (-1094))) (-3623 (*1 *1 *1) (-5 *1 (-1094))) (-3907 (*1 *1 *1) (-5 *1 (-1094))) (-4333 (*1 *1 *1) (-5 *1 (-1094))) (-3750 (*1 *1 *1) (-5 *1 (-1094))) (-2180 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-391)) (-5 *1 (-1094)))) (-1468 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-391)) (-5 *1 (-1094)))) (-3155 (*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-391)) (-5 *1 (-1094)))) (-1909 (*1 *2 *1 *3) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1094)) (-5 *3 (-1189)))) (-3397 (*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1094)))) (-1943 (*1 *1) (-5 *1 (-1094))) (-2322 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1189)) (-5 *3 (-560)) (-5 *1 (-1094)))))
+(-13 (-1224 (-1207) (-51)) (-10 -8 (-15 -1955 ($ $ $)) (-15 -1598 ($)) (-15 -4143 ($ $)) (-15 -2756 ($ $)) (-15 -3120 ($ $)) (-15 -1940 ($ $)) (-15 -3623 ($ $)) (-15 -3907 ($ $)) (-15 -4333 ($ $)) (-15 -3750 ($ $)) (-15 -2180 ($ $ (-1207) (-391))) (-15 -1468 ($ $ (-1207) (-391))) (-15 -3155 ((-391) $ (-1207))) (-15 -1909 ((-663 (-1189)) $ (-1189))) (-15 -3397 ($ $ (-1207))) (-15 -1943 ($)) (-15 -2322 ((-3 (-1189) "failed") $ (-1189) (-560))) (-6 -4508)))
+((-3990 (($ $) 46 T ELT)) (-2758 (((-114) $ $) 82 T ELT)) (-3929 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 (-560) "failed") $) NIL T ELT) (((-3 |#4| "failed") $) NIL T ELT) (((-3 $ "failed") (-975 (-421 (-560)))) 247 T ELT) (((-3 $ "failed") (-975 (-560))) 246 T ELT) (((-3 $ "failed") (-975 |#2|)) 249 T ELT)) (-3649 ((|#2| $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) (((-560) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-975 (-421 (-560)))) 235 T ELT) (($ (-975 (-560))) 231 T ELT) (($ (-975 |#2|)) 255 T ELT)) (-3062 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-2869 (((-114) $ $) 131 T ELT) (((-114) $ (-663 $)) 135 T ELT)) (-2456 (((-114) $) 60 T ELT)) (-3390 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 125 T ELT)) (-3118 (($ $) 160 T ELT)) (-2028 (($ $) 156 T ELT)) (-3315 (($ $) 155 T ELT)) (-4442 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-2927 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-4264 (((-114) $ $) 143 T ELT) (((-114) $ (-663 $)) 144 T ELT)) (-1816 ((|#4| $) 32 T ELT)) (-4238 (($ $ $) 128 T ELT)) (-3838 (((-114) $) 59 T ELT)) (-3402 (((-793) $) 35 T ELT)) (-1752 (($ $) 174 T ELT)) (-3041 (($ $) 171 T ELT)) (-1979 (((-663 $) $) 72 T ELT)) (-3881 (($ $) 62 T ELT)) (-1587 (($ $) 167 T ELT)) (-2295 (((-663 $) $) 69 T ELT)) (-3520 (($ $) 64 T ELT)) (-3037 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-4161 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4375 (-793))) $ $) 130 T ELT)) (-1893 (((-2 (|:| -2625 $) (|:| |gap| (-793)) (|:| -2584 $) (|:| -3276 $)) $ $) 126 T ELT) (((-2 (|:| -2625 $) (|:| |gap| (-793)) (|:| -2584 $) (|:| -3276 $)) $ $ |#4|) 127 T ELT)) (-4179 (((-2 (|:| -2625 $) (|:| |gap| (-793)) (|:| -3276 $)) $ $) 121 T ELT) (((-2 (|:| -2625 $) (|:| |gap| (-793)) (|:| -3276 $)) $ $ |#4|) 123 T ELT)) (-3128 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-1655 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3503 (((-663 $) $) 54 T ELT)) (-4301 (((-114) $ $) 140 T ELT) (((-114) $ (-663 $)) 141 T ELT)) (-4039 (($ $ $) 116 T ELT)) (-3239 (($ $) 37 T ELT)) (-4138 (((-114) $ $) 80 T ELT)) (-1737 (((-114) $ $) 136 T ELT) (((-114) $ (-663 $)) 138 T ELT)) (-1686 (($ $ $) 112 T ELT)) (-3016 (($ $) 41 T ELT)) (-1938 ((|#2| |#2| $) 164 T ELT) (($ (-663 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3573 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-2278 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-1340 (($ $) 49 T ELT)) (-2551 (($ $) 55 T ELT)) (-2400 (((-915 (-391)) $) NIL T ELT) (((-915 (-560)) $) NIL T ELT) (((-549) $) NIL T ELT) (($ (-975 (-421 (-560)))) 237 T ELT) (($ (-975 (-560))) 233 T ELT) (($ (-975 |#2|)) 248 T ELT) (((-1189) $) 279 T ELT) (((-975 |#2|) $) 184 T ELT)) (-3913 (((-887) $) 29 T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-975 |#2|) $) 185 T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT)) (-1590 (((-3 (-114) "failed") $ $) 79 T ELT)))
+(((-1095 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3913 (|#1| |#1|)) (-15 -1938 (|#1| |#1| |#1|)) (-15 -1938 (|#1| (-663 |#1|))) (-15 -3913 (|#1| (-421 (-560)))) (-15 -3913 ((-975 |#2|) |#1|)) (-15 -2400 ((-975 |#2|) |#1|)) (-15 -2400 ((-1189) |#1|)) (-15 -1752 (|#1| |#1|)) (-15 -3041 (|#1| |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -3118 (|#1| |#1|)) (-15 -1938 (|#2| |#2| |#1|)) (-15 -3573 (|#1| |#1| |#1|)) (-15 -2278 (|#1| |#1| |#1|)) (-15 -3573 (|#1| |#1| |#2|)) (-15 -2278 (|#1| |#1| |#2|)) (-15 -2028 (|#1| |#1|)) (-15 -3315 (|#1| |#1|)) (-15 -2400 (|#1| (-975 |#2|))) (-15 -3649 (|#1| (-975 |#2|))) (-15 -3929 ((-3 |#1| "failed") (-975 |#2|))) (-15 -2400 (|#1| (-975 (-560)))) (-15 -3649 (|#1| (-975 (-560)))) (-15 -3929 ((-3 |#1| "failed") (-975 (-560)))) (-15 -2400 (|#1| (-975 (-421 (-560))))) (-15 -3649 (|#1| (-975 (-421 (-560))))) (-15 -3929 ((-3 |#1| "failed") (-975 (-421 (-560))))) (-15 -4039 (|#1| |#1| |#1|)) (-15 -1686 (|#1| |#1| |#1|)) (-15 -4161 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4375 (-793))) |#1| |#1|)) (-15 -4238 (|#1| |#1| |#1|)) (-15 -3390 ((-2 (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1|)) (-15 -1893 ((-2 (|:| -2625 |#1|) (|:| |gap| (-793)) (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1| |#4|)) (-15 -1893 ((-2 (|:| -2625 |#1|) (|:| |gap| (-793)) (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1|)) (-15 -4179 ((-2 (|:| -2625 |#1|) (|:| |gap| (-793)) (|:| -3276 |#1|)) |#1| |#1| |#4|)) (-15 -4179 ((-2 (|:| -2625 |#1|) (|:| |gap| (-793)) (|:| -3276 |#1|)) |#1| |#1|)) (-15 -1655 (|#1| |#1| |#1| |#4|)) (-15 -3128 (|#1| |#1| |#1| |#4|)) (-15 -1655 (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1| |#1|)) (-15 -2927 (|#1| |#1| |#1| |#4|)) (-15 -4442 (|#1| |#1| |#1| |#4|)) (-15 -2927 (|#1| |#1| |#1|)) (-15 -4442 (|#1| |#1| |#1|)) (-15 -4264 ((-114) |#1| (-663 |#1|))) (-15 -4264 ((-114) |#1| |#1|)) (-15 -4301 ((-114) |#1| (-663 |#1|))) (-15 -4301 ((-114) |#1| |#1|)) (-15 -1737 ((-114) |#1| (-663 |#1|))) (-15 -1737 ((-114) |#1| |#1|)) (-15 -2869 ((-114) |#1| (-663 |#1|))) (-15 -2869 ((-114) |#1| |#1|)) (-15 -2758 ((-114) |#1| |#1|)) (-15 -4138 ((-114) |#1| |#1|)) (-15 -1590 ((-3 (-114) "failed") |#1| |#1|)) (-15 -1979 ((-663 |#1|) |#1|)) (-15 -2295 ((-663 |#1|) |#1|)) (-15 -3520 (|#1| |#1|)) (-15 -3881 (|#1| |#1|)) (-15 -2456 ((-114) |#1|)) (-15 -3838 ((-114) |#1|)) (-15 -3062 (|#1| |#1| |#4|)) (-15 -3037 (|#1| |#1| |#4|)) (-15 -2551 (|#1| |#1|)) (-15 -3503 ((-663 |#1|) |#1|)) (-15 -1340 (|#1| |#1|)) (-15 -3990 (|#1| |#1|)) (-15 -3016 (|#1| |#1|)) (-15 -3239 (|#1| |#1|)) (-15 -3402 ((-793) |#1|)) (-15 -1816 (|#4| |#1|)) (-15 -2400 ((-549) |#1|)) (-15 -2400 ((-915 (-560)) |#1|)) (-15 -2400 ((-915 (-391)) |#1|)) (-15 -3913 (|#1| |#4|)) (-15 -3929 ((-3 |#4| "failed") |#1|)) (-15 -3649 (|#4| |#1|)) (-15 -3037 (|#2| |#1|)) (-15 -3062 (|#1| |#1|)) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -3649 ((-560) |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3913 (|#1| |#2|)) (-15 -3913 (|#1| (-560))) (-15 -3913 ((-887) |#1|))) (-1096 |#2| |#3| |#4|) (-1080) (-815) (-871)) (T -1095))
+NIL
+(-10 -8 (-15 -3913 (|#1| |#1|)) (-15 -1938 (|#1| |#1| |#1|)) (-15 -1938 (|#1| (-663 |#1|))) (-15 -3913 (|#1| (-421 (-560)))) (-15 -3913 ((-975 |#2|) |#1|)) (-15 -2400 ((-975 |#2|) |#1|)) (-15 -2400 ((-1189) |#1|)) (-15 -1752 (|#1| |#1|)) (-15 -3041 (|#1| |#1|)) (-15 -1587 (|#1| |#1|)) (-15 -3118 (|#1| |#1|)) (-15 -1938 (|#2| |#2| |#1|)) (-15 -3573 (|#1| |#1| |#1|)) (-15 -2278 (|#1| |#1| |#1|)) (-15 -3573 (|#1| |#1| |#2|)) (-15 -2278 (|#1| |#1| |#2|)) (-15 -2028 (|#1| |#1|)) (-15 -3315 (|#1| |#1|)) (-15 -2400 (|#1| (-975 |#2|))) (-15 -3649 (|#1| (-975 |#2|))) (-15 -3929 ((-3 |#1| "failed") (-975 |#2|))) (-15 -2400 (|#1| (-975 (-560)))) (-15 -3649 (|#1| (-975 (-560)))) (-15 -3929 ((-3 |#1| "failed") (-975 (-560)))) (-15 -2400 (|#1| (-975 (-421 (-560))))) (-15 -3649 (|#1| (-975 (-421 (-560))))) (-15 -3929 ((-3 |#1| "failed") (-975 (-421 (-560))))) (-15 -4039 (|#1| |#1| |#1|)) (-15 -1686 (|#1| |#1| |#1|)) (-15 -4161 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4375 (-793))) |#1| |#1|)) (-15 -4238 (|#1| |#1| |#1|)) (-15 -3390 ((-2 (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1|)) (-15 -1893 ((-2 (|:| -2625 |#1|) (|:| |gap| (-793)) (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1| |#4|)) (-15 -1893 ((-2 (|:| -2625 |#1|) (|:| |gap| (-793)) (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1|)) (-15 -4179 ((-2 (|:| -2625 |#1|) (|:| |gap| (-793)) (|:| -3276 |#1|)) |#1| |#1| |#4|)) (-15 -4179 ((-2 (|:| -2625 |#1|) (|:| |gap| (-793)) (|:| -3276 |#1|)) |#1| |#1|)) (-15 -1655 (|#1| |#1| |#1| |#4|)) (-15 -3128 (|#1| |#1| |#1| |#4|)) (-15 -1655 (|#1| |#1| |#1|)) (-15 -3128 (|#1| |#1| |#1|)) (-15 -2927 (|#1| |#1| |#1| |#4|)) (-15 -4442 (|#1| |#1| |#1| |#4|)) (-15 -2927 (|#1| |#1| |#1|)) (-15 -4442 (|#1| |#1| |#1|)) (-15 -4264 ((-114) |#1| (-663 |#1|))) (-15 -4264 ((-114) |#1| |#1|)) (-15 -4301 ((-114) |#1| (-663 |#1|))) (-15 -4301 ((-114) |#1| |#1|)) (-15 -1737 ((-114) |#1| (-663 |#1|))) (-15 -1737 ((-114) |#1| |#1|)) (-15 -2869 ((-114) |#1| (-663 |#1|))) (-15 -2869 ((-114) |#1| |#1|)) (-15 -2758 ((-114) |#1| |#1|)) (-15 -4138 ((-114) |#1| |#1|)) (-15 -1590 ((-3 (-114) "failed") |#1| |#1|)) (-15 -1979 ((-663 |#1|) |#1|)) (-15 -2295 ((-663 |#1|) |#1|)) (-15 -3520 (|#1| |#1|)) (-15 -3881 (|#1| |#1|)) (-15 -2456 ((-114) |#1|)) (-15 -3838 ((-114) |#1|)) (-15 -3062 (|#1| |#1| |#4|)) (-15 -3037 (|#1| |#1| |#4|)) (-15 -2551 (|#1| |#1|)) (-15 -3503 ((-663 |#1|) |#1|)) (-15 -1340 (|#1| |#1|)) (-15 -3990 (|#1| |#1|)) (-15 -3016 (|#1| |#1|)) (-15 -3239 (|#1| |#1|)) (-15 -3402 ((-793) |#1|)) (-15 -1816 (|#4| |#1|)) (-15 -2400 ((-549) |#1|)) (-15 -2400 ((-915 (-560)) |#1|)) (-15 -2400 ((-915 (-391)) |#1|)) (-15 -3913 (|#1| |#4|)) (-15 -3929 ((-3 |#4| "failed") |#1|)) (-15 -3649 (|#4| |#1|)) (-15 -3037 (|#2| |#1|)) (-15 -3062 (|#1| |#1|)) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -3649 ((-560) |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3913 (|#1| |#2|)) (-15 -3913 (|#1| (-560))) (-15 -3913 ((-887) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-4162 (((-663 |#3|) $) 113 T ELT)) (-3981 (((-1201 $) $ |#3|) 128 T ELT) (((-1201 |#1|) $) 127 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 90 (|has| |#1| (-571)) ELT)) (-4366 (($ $) 91 (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) 93 (|has| |#1| (-571)) ELT)) (-2250 (((-793) $) 115 T ELT) (((-793) $ (-663 |#3|)) 114 T ELT)) (-3990 (($ $) 278 T ELT)) (-2758 (((-114) $ $) 264 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-4293 (($ $ $) 223 (|has| |#1| (-571)) ELT)) (-2765 (((-663 $) $ $) 218 (|has| |#1| (-571)) ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) 103 (|has| |#1| (-939)) ELT)) (-1621 (($ $) 101 (|has| |#1| (-466)) ELT)) (-3898 (((-419 $) $) 100 (|has| |#1| (-466)) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 106 (|has| |#1| (-939)) ELT)) (-3525 (($) 18 T CONST)) (-3929 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-421 (-560)) "failed") $) 168 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) 166 (|has| |#1| (-1069 (-560))) ELT) (((-3 |#3| "failed") $) 143 T ELT) (((-3 $ "failed") (-975 (-421 (-560)))) 238 (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1207)))) ELT) (((-3 $ "failed") (-975 (-560))) 235 (-2196 (-12 (-1394 (|has| |#1| (-38 (-421 (-560))))) (|has| |#1| (-38 (-560))) (|has| |#3| (-633 (-1207)))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1207))))) ELT) (((-3 $ "failed") (-975 |#1|)) 232 (-2196 (-12 (-1394 (|has| |#1| (-38 (-421 (-560))))) (-1394 (|has| |#1| (-38 (-560)))) (|has| |#3| (-633 (-1207)))) (-12 (-1394 (|has| |#1| (-559))) (-1394 (|has| |#1| (-38 (-421 (-560))))) (|has| |#1| (-38 (-560))) (|has| |#3| (-633 (-1207)))) (-12 (-1394 (|has| |#1| (-1022 (-560)))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1207))))) ELT)) (-3649 ((|#1| $) 170 T ELT) (((-421 (-560)) $) 169 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) 167 (|has| |#1| (-1069 (-560))) ELT) ((|#3| $) 144 T ELT) (($ (-975 (-421 (-560)))) 237 (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1207)))) ELT) (($ (-975 (-560))) 234 (-2196 (-12 (-1394 (|has| |#1| (-38 (-421 (-560))))) (|has| |#1| (-38 (-560))) (|has| |#3| (-633 (-1207)))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1207))))) ELT) (($ (-975 |#1|)) 231 (-2196 (-12 (-1394 (|has| |#1| (-38 (-421 (-560))))) (-1394 (|has| |#1| (-38 (-560)))) (|has| |#3| (-633 (-1207)))) (-12 (-1394 (|has| |#1| (-559))) (-1394 (|has| |#1| (-38 (-421 (-560))))) (|has| |#1| (-38 (-560))) (|has| |#3| (-633 (-1207)))) (-12 (-1394 (|has| |#1| (-1022 (-560)))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1207))))) ELT)) (-2096 (($ $ $ |#3|) 111 (|has| |#1| (-175)) ELT) (($ $ $) 219 (|has| |#1| (-571)) ELT)) (-3062 (($ $) 161 T ELT) (($ $ |#3|) 273 T ELT)) (-2619 (((-711 (-560)) (-711 $)) 139 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 138 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 137 T ELT) (((-711 |#1|) (-711 $)) 136 T ELT)) (-2869 (((-114) $ $) 263 T ELT) (((-114) $ (-663 $)) 262 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-2456 (((-114) $) 271 T ELT)) (-3390 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 243 T ELT)) (-3118 (($ $) 212 (|has| |#1| (-466)) ELT)) (-4239 (($ $) 183 (|has| |#1| (-466)) ELT) (($ $ |#3|) 108 (|has| |#1| (-466)) ELT)) (-3048 (((-663 $) $) 112 T ELT)) (-3141 (((-114) $) 99 (|has| |#1| (-939)) ELT)) (-2028 (($ $) 228 (|has| |#1| (-571)) ELT)) (-3315 (($ $) 229 (|has| |#1| (-571)) ELT)) (-4442 (($ $ $) 255 T ELT) (($ $ $ |#3|) 253 T ELT)) (-2927 (($ $ $) 254 T ELT) (($ $ $ |#3|) 252 T ELT)) (-3224 (($ $ |#1| |#2| $) 179 T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 87 (-12 (|has| |#3| (-911 (-391))) (|has| |#1| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 86 (-12 (|has| |#3| (-911 (-560))) (|has| |#1| (-911 (-560)))) ELT)) (-1918 (((-114) $) 35 T ELT)) (-4127 (((-793) $) 176 T ELT)) (-4264 (((-114) $ $) 257 T ELT) (((-114) $ (-663 $)) 256 T ELT)) (-2931 (($ $ $ $ $) 214 (|has| |#1| (-571)) ELT)) (-1816 ((|#3| $) 282 T ELT)) (-4149 (($ (-1201 |#1|) |#3|) 120 T ELT) (($ (-1201 $) |#3|) 119 T ELT)) (-2947 (((-663 $) $) 129 T ELT)) (-1673 (((-114) $) 159 T ELT)) (-4139 (($ |#1| |#2|) 160 T ELT) (($ $ |#3| (-793)) 122 T ELT) (($ $ (-663 |#3|) (-663 (-793))) 121 T ELT)) (-4238 (($ $ $) 242 T ELT)) (-4415 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $ |#3|) 123 T ELT)) (-3838 (((-114) $) 272 T ELT)) (-3765 ((|#2| $) 177 T ELT) (((-793) $ |#3|) 125 T ELT) (((-663 (-793)) $ (-663 |#3|)) 124 T ELT)) (-3402 (((-793) $) 281 T ELT)) (-3060 (($ (-1 |#2| |#2|) $) 178 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-3835 (((-3 |#3| "failed") $) 126 T ELT)) (-1752 (($ $) 209 (|has| |#1| (-466)) ELT)) (-3041 (($ $) 210 (|has| |#1| (-466)) ELT)) (-1979 (((-663 $) $) 267 T ELT)) (-3881 (($ $) 270 T ELT)) (-1587 (($ $) 211 (|has| |#1| (-466)) ELT)) (-2295 (((-663 $) $) 268 T ELT)) (-4140 (((-711 (-560)) (-1297 $)) 141 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 140 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 135 T ELT) (((-711 |#1|) (-1297 $)) 134 T ELT)) (-3520 (($ $) 269 T ELT)) (-3024 (($ $) 156 T ELT)) (-3037 ((|#1| $) 155 T ELT) (($ $ |#3|) 274 T ELT)) (-1861 (($ (-663 $)) 97 (|has| |#1| (-466)) ELT) (($ $ $) 96 (|has| |#1| (-466)) ELT)) (-4161 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4375 (-793))) $ $) 241 T ELT)) (-1893 (((-2 (|:| -2625 $) (|:| |gap| (-793)) (|:| -2584 $) (|:| -3276 $)) $ $) 245 T ELT) (((-2 (|:| -2625 $) (|:| |gap| (-793)) (|:| -2584 $) (|:| -3276 $)) $ $ |#3|) 244 T ELT)) (-4179 (((-2 (|:| -2625 $) (|:| |gap| (-793)) (|:| -3276 $)) $ $) 247 T ELT) (((-2 (|:| -2625 $) (|:| |gap| (-793)) (|:| -3276 $)) $ $ |#3|) 246 T ELT)) (-3128 (($ $ $) 251 T ELT) (($ $ $ |#3|) 249 T ELT)) (-1655 (($ $ $) 250 T ELT) (($ $ $ |#3|) 248 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-1790 (($ $ $) 217 (|has| |#1| (-571)) ELT)) (-3503 (((-663 $) $) 276 T ELT)) (-1669 (((-3 (-663 $) "failed") $) 117 T ELT)) (-3849 (((-3 (-663 $) "failed") $) 118 T ELT)) (-3149 (((-3 (-2 (|:| |var| |#3|) (|:| -2030 (-793))) "failed") $) 116 T ELT)) (-4301 (((-114) $ $) 259 T ELT) (((-114) $ (-663 $)) 258 T ELT)) (-4039 (($ $ $) 239 T ELT)) (-3239 (($ $) 280 T ELT)) (-4138 (((-114) $ $) 265 T ELT)) (-1737 (((-114) $ $) 261 T ELT) (((-114) $ (-663 $)) 260 T ELT)) (-1686 (($ $ $) 240 T ELT)) (-3016 (($ $) 279 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2487 (((-2 (|:| -1938 $) (|:| |coef2| $)) $ $) 220 (|has| |#1| (-571)) ELT)) (-2596 (((-2 (|:| -1938 $) (|:| |coef1| $)) $ $) 221 (|has| |#1| (-571)) ELT)) (-3000 (((-114) $) 173 T ELT)) (-3011 ((|#1| $) 174 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 98 (|has| |#1| (-466)) ELT)) (-1938 ((|#1| |#1| $) 213 (|has| |#1| (-466)) ELT) (($ (-663 $)) 95 (|has| |#1| (-466)) ELT) (($ $ $) 94 (|has| |#1| (-466)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) 105 (|has| |#1| (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) 104 (|has| |#1| (-939)) ELT)) (-4012 (((-419 $) $) 102 (|has| |#1| (-939)) ELT)) (-1802 (((-2 (|:| -1938 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 222 (|has| |#1| (-571)) ELT)) (-2233 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-571)) ELT)) (-3573 (($ $ |#1|) 226 (|has| |#1| (-571)) ELT) (($ $ $) 224 (|has| |#1| (-571)) ELT)) (-2278 (($ $ |#1|) 227 (|has| |#1| (-571)) ELT) (($ $ $) 225 (|has| |#1| (-571)) ELT)) (-2371 (($ $ (-663 (-305 $))) 152 T ELT) (($ $ (-305 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-663 $) (-663 $)) 149 T ELT) (($ $ |#3| |#1|) 148 T ELT) (($ $ (-663 |#3|) (-663 |#1|)) 147 T ELT) (($ $ |#3| $) 146 T ELT) (($ $ (-663 |#3|) (-663 $)) 145 T ELT)) (-2336 (($ $ |#3|) 110 (|has| |#1| (-175)) ELT)) (-3161 (($ $ (-663 |#3|) (-663 (-793))) 44 T ELT) (($ $ |#3| (-793)) 43 T ELT) (($ $ (-663 |#3|)) 42 T ELT) (($ $ |#3|) 40 T ELT)) (-3900 ((|#2| $) 157 T ELT) (((-793) $ |#3|) 133 T ELT) (((-663 (-793)) $ (-663 |#3|)) 132 T ELT)) (-1340 (($ $) 277 T ELT)) (-2551 (($ $) 275 T ELT)) (-2400 (((-915 (-391)) $) 85 (-12 (|has| |#3| (-633 (-915 (-391)))) (|has| |#1| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) 84 (-12 (|has| |#3| (-633 (-915 (-560)))) (|has| |#1| (-633 (-915 (-560))))) ELT) (((-549) $) 83 (-12 (|has| |#3| (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT) (($ (-975 (-421 (-560)))) 236 (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1207)))) ELT) (($ (-975 (-560))) 233 (-2196 (-12 (-1394 (|has| |#1| (-38 (-421 (-560))))) (|has| |#1| (-38 (-560))) (|has| |#3| (-633 (-1207)))) (-12 (|has| |#1| (-38 (-421 (-560)))) (|has| |#3| (-633 (-1207))))) ELT) (($ (-975 |#1|)) 230 (|has| |#3| (-633 (-1207))) ELT) (((-1189) $) 208 (-12 (|has| |#1| (-1069 (-560))) (|has| |#3| (-633 (-1207)))) ELT) (((-975 |#1|) $) 207 (|has| |#3| (-633 (-1207))) ELT)) (-2264 ((|#1| $) 182 (|has| |#1| (-466)) ELT) (($ $ |#3|) 109 (|has| |#1| (-466)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) 107 (-1404 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 172 T ELT) (($ |#3|) 142 T ELT) (((-975 |#1|) $) 206 (|has| |#3| (-633 (-1207))) ELT) (($ (-421 (-560))) 81 (-2196 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ELT) (($ $) 88 (|has| |#1| (-571)) ELT)) (-2247 (((-663 |#1|) $) 175 T ELT)) (-2920 ((|#1| $ |#2|) 162 T ELT) (($ $ |#3| (-793)) 131 T ELT) (($ $ (-663 |#3|) (-663 (-793))) 130 T ELT)) (-3919 (((-3 $ "failed") $) 82 (-2196 (-1404 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-4191 (((-793)) 32 T CONST)) (-2548 (($ $ $ (-793)) 180 (|has| |#1| (-175)) ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 92 (|has| |#1| (-571)) ELT)) (-1446 (($) 19 T CONST)) (-1590 (((-3 (-114) "failed") $ $) 266 T ELT)) (-1456 (($) 34 T CONST)) (-3005 (($ $ $ $ (-793)) 215 (|has| |#1| (-571)) ELT)) (-3357 (($ $ $ (-793)) 216 (|has| |#1| (-571)) ELT)) (-2111 (($ $ (-663 |#3|) (-663 (-793))) 47 T ELT) (($ $ |#3| (-793)) 46 T ELT) (($ $ (-663 |#3|)) 45 T ELT) (($ $ |#3|) 41 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ |#1|) 163 (|has| |#1| (-376)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 165 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) 164 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT)))
(((-1096 |#1| |#2| |#3|) (-142) (-1080) (-815) (-871)) (T -1096))
-((-4132 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-1605 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-793)))) (-3161 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-4317 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-2270 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-2529 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-2235 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-1096 *3 *4 *5)))) (-4081 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-1597 (*1 *1 *1 *2) (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-1624 (*1 *1 *1 *2) (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-4265 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)))) (-4070 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)))) (-2271 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-3593 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-3111 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-1096 *3 *4 *5)))) (-4145 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-1096 *3 *4 *5)))) (-1546 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)))) (-2925 (*1 *2 *1 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)))) (-3336 (*1 *2 *1 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)))) (-3989 (*1 *2 *1 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)))) (-3989 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)))) (-1563 (*1 *2 *1 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)))) (-1563 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)))) (-3548 (*1 *2 *1 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)))) (-3548 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)))) (-3544 (*1 *2 *1 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)))) (-3544 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)))) (-3562 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-1393 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-3562 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-1393 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-3071 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-2741 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-3071 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-2741 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-3864 (*1 *2 *1 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| -2115 *1) (|:| |gap| (-793)) (|:| -2341 *1))) (-4 *1 (-1096 *3 *4 *5)))) (-3864 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-5 *2 (-2 (|:| -2115 *1) (|:| |gap| (-793)) (|:| -2341 *1))) (-4 *1 (-1096 *4 *5 *3)))) (-1577 (*1 *2 *1 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| -2115 *1) (|:| |gap| (-793)) (|:| -1774 *1) (|:| -2341 *1))) (-4 *1 (-1096 *3 *4 *5)))) (-1577 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-5 *2 (-2 (|:| -2115 *1) (|:| |gap| (-793)) (|:| -1774 *1) (|:| -2341 *1))) (-4 *1 (-1096 *4 *5 *3)))) (-4365 (*1 *2 *1 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| -1774 *1) (|:| -2341 *1))) (-4 *1 (-1096 *3 *4 *5)))) (-3230 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-2927 (*1 *2 *1 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4191 (-793)))) (-4 *1 (-1096 *3 *4 *5)))) (-3171 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-3212 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-2539 (*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-421 (-560)))) (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-975 (-421 (-560)))) (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))) (-1407 (*1 *1 *2) (-12 (-5 *2 (-975 (-421 (-560)))) (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))) (-2539 (*1 *1 *2) (|partial| -2304 (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5)) (-12 (-1937 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))) (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5)) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))))) (-3330 (*1 *1 *2) (-2304 (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5)) (-12 (-1937 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))) (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5)) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))))) (-1407 (*1 *1 *2) (-2304 (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5)) (-12 (-1937 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))) (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5)) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))))) (-2539 (*1 *1 *2) (|partial| -2304 (-12 (-5 *2 (-975 *3)) (-12 (-1937 (-4 *3 (-38 (-421 (-560))))) (-1937 (-4 *3 (-38 (-560)))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871))) (-12 (-5 *2 (-975 *3)) (-12 (-1937 (-4 *3 (-559))) (-1937 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871))) (-12 (-5 *2 (-975 *3)) (-12 (-1937 (-4 *3 (-1022 (-560)))) (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871))))) (-3330 (*1 *1 *2) (-2304 (-12 (-5 *2 (-975 *3)) (-12 (-1937 (-4 *3 (-38 (-421 (-560))))) (-1937 (-4 *3 (-38 (-560)))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871))) (-12 (-5 *2 (-975 *3)) (-12 (-1937 (-4 *3 (-559))) (-1937 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871))) (-12 (-5 *2 (-975 *3)) (-12 (-1937 (-4 *3 (-1022 (-560)))) (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871))))) (-1407 (*1 *1 *2) (-12 (-5 *2 (-975 *3)) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *5 (-633 (-1207))) (-4 *4 (-815)) (-4 *5 (-871)))) (-2663 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-571)))) (-3516 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-571)))) (-4379 (*1 *1 *1 *2) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-571)))) (-3290 (*1 *1 *1 *2) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-571)))) (-4379 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-571)))) (-3290 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-571)))) (-4182 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-571)))) (-4131 (*1 *2 *1 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| -2132 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1096 *3 *4 *5)))) (-4086 (*1 *2 *1 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| -2132 *1) (|:| |coef1| *1))) (-4 *1 (-1096 *3 *4 *5)))) (-4073 (*1 *2 *1 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| -2132 *1) (|:| |coef2| *1))) (-4 *1 (-1096 *3 *4 *5)))) (-2788 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-571)))) (-4440 (*1 *2 *1 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-1096 *3 *4 *5)))) (-4130 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-571)))) (-2973 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *3 (-571)))) (-4316 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *3 (-571)))) (-1684 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-571)))) (-2132 (*1 *2 *2 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-466)))) (-3070 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-466)))) (-1436 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-466)))) (-3671 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-466)))) (-4464 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-466)))))
-(-13 (-979 |t#1| |t#2| |t#3|) (-10 -8 (-15 -4132 (|t#3| $)) (-15 -1605 ((-793) $)) (-15 -3161 ($ $)) (-15 -4317 ($ $)) (-15 -2270 ($ $)) (-15 -2529 ($ $)) (-15 -2235 ((-663 $) $)) (-15 -4081 ($ $)) (-15 -1597 ($ $ |t#3|)) (-15 -1624 ($ $ |t#3|)) (-15 -4265 ((-114) $)) (-15 -4070 ((-114) $)) (-15 -2271 ($ $)) (-15 -3593 ($ $)) (-15 -3111 ((-663 $) $)) (-15 -4145 ((-663 $) $)) (-15 -1546 ((-3 (-114) "failed") $ $)) (-15 -2925 ((-114) $ $)) (-15 -3336 ((-114) $ $)) (-15 -3989 ((-114) $ $)) (-15 -3989 ((-114) $ (-663 $))) (-15 -1563 ((-114) $ $)) (-15 -1563 ((-114) $ (-663 $))) (-15 -3548 ((-114) $ $)) (-15 -3548 ((-114) $ (-663 $))) (-15 -3544 ((-114) $ $)) (-15 -3544 ((-114) $ (-663 $))) (-15 -3562 ($ $ $)) (-15 -1393 ($ $ $)) (-15 -3562 ($ $ $ |t#3|)) (-15 -1393 ($ $ $ |t#3|)) (-15 -3071 ($ $ $)) (-15 -2741 ($ $ $)) (-15 -3071 ($ $ $ |t#3|)) (-15 -2741 ($ $ $ |t#3|)) (-15 -3864 ((-2 (|:| -2115 $) (|:| |gap| (-793)) (|:| -2341 $)) $ $)) (-15 -3864 ((-2 (|:| -2115 $) (|:| |gap| (-793)) (|:| -2341 $)) $ $ |t#3|)) (-15 -1577 ((-2 (|:| -2115 $) (|:| |gap| (-793)) (|:| -1774 $) (|:| -2341 $)) $ $)) (-15 -1577 ((-2 (|:| -2115 $) (|:| |gap| (-793)) (|:| -1774 $) (|:| -2341 $)) $ $ |t#3|)) (-15 -4365 ((-2 (|:| -1774 $) (|:| -2341 $)) $ $)) (-15 -3230 ($ $ $)) (-15 -2927 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4191 (-793))) $ $)) (-15 -3171 ($ $ $)) (-15 -3212 ($ $ $)) (IF (|has| |t#3| (-633 (-1207))) (PROGN (-6 (-632 (-975 |t#1|))) (-6 (-633 (-975 |t#1|))) (IF (|has| |t#1| (-38 (-421 (-560)))) (PROGN (-15 -2539 ((-3 $ "failed") (-975 (-421 (-560))))) (-15 -3330 ($ (-975 (-421 (-560))))) (-15 -1407 ($ (-975 (-421 (-560))))) (-15 -2539 ((-3 $ "failed") (-975 (-560)))) (-15 -3330 ($ (-975 (-560)))) (-15 -1407 ($ (-975 (-560)))) (IF (|has| |t#1| (-1022 (-560))) |%noBranch| (PROGN (-15 -2539 ((-3 $ "failed") (-975 |t#1|))) (-15 -3330 ($ (-975 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-560))) (IF (|has| |t#1| (-38 (-421 (-560)))) |%noBranch| (PROGN (-15 -2539 ((-3 $ "failed") (-975 (-560)))) (-15 -3330 ($ (-975 (-560)))) (-15 -1407 ($ (-975 (-560)))) (IF (|has| |t#1| (-559)) |%noBranch| (PROGN (-15 -2539 ((-3 $ "failed") (-975 |t#1|))) (-15 -3330 ($ (-975 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-560))) |%noBranch| (IF (|has| |t#1| (-38 (-421 (-560)))) |%noBranch| (PROGN (-15 -2539 ((-3 $ "failed") (-975 |t#1|))) (-15 -3330 ($ (-975 |t#1|)))))) (-15 -1407 ($ (-975 |t#1|))) (IF (|has| |t#1| (-1069 (-560))) (-6 (-633 (-1189))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-571)) (PROGN (-15 -2663 ($ $)) (-15 -3516 ($ $)) (-15 -4379 ($ $ |t#1|)) (-15 -3290 ($ $ |t#1|)) (-15 -4379 ($ $ $)) (-15 -3290 ($ $ $)) (-15 -4182 ($ $ $)) (-15 -4131 ((-2 (|:| -2132 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -4086 ((-2 (|:| -2132 $) (|:| |coef1| $)) $ $)) (-15 -4073 ((-2 (|:| -2132 $) (|:| |coef2| $)) $ $)) (-15 -2788 ($ $ $)) (-15 -4440 ((-663 $) $ $)) (-15 -4130 ($ $ $)) (-15 -2973 ($ $ $ (-793))) (-15 -4316 ($ $ $ $ (-793))) (-15 -1684 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-466)) (PROGN (-15 -2132 (|t#1| |t#1| $)) (-15 -3070 ($ $)) (-15 -1436 ($ $)) (-15 -3671 ($ $)) (-15 -4464 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) -2304 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 |#3|) . T) ((-635 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-632 (-887)) . T) ((-632 (-975 |#1|)) |has| |#3| (-633 (-1207))) ((-175) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-633 (-549)) -12 (|has| |#1| (-633 (-549))) (|has| |#3| (-633 (-549)))) ((-633 (-915 (-391))) -12 (|has| |#1| (-633 (-915 (-391)))) (|has| |#3| (-633 (-915 (-391))))) ((-633 (-915 (-560))) -12 (|has| |#1| (-633 (-915 (-560)))) (|has| |#3| (-633 (-915 (-560))))) ((-633 (-975 |#1|)) |has| |#3| (-633 (-1207))) ((-633 (-1189)) -12 (|has| |#1| (-1069 (-560))) (|has| |#3| (-633 (-1207)))) ((-302) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-321 $) . T) ((-338 |#1| |#2|) . T) ((-390 |#1|) . T) ((-426 |#1|) . T) ((-466) -2304 (|has| |#1| (-939)) (|has| |#1| (-466))) ((-528 |#3| |#1|) . T) ((-528 |#3| $) . T) ((-528 $ $) . T) ((-571) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-668 #0#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-38 (-421 (-560)))) ((-670 #1=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-660 #1#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #0#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-748) . T) ((-921 $ |#3|) . T) ((-927 |#3|) . T) ((-929 |#3|) . T) ((-911 (-391)) -12 (|has| |#1| (-911 (-391))) (|has| |#3| (-911 (-391)))) ((-911 (-560)) -12 (|has| |#1| (-911 (-560))) (|has| |#3| (-911 (-560)))) ((-979 |#1| |#2| |#3|) . T) ((-939) |has| |#1| (-939)) ((-1069 (-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 |#1|) . T) ((-1069 |#3|) . T) ((-1082 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1082 |#1|) . T) ((-1082 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1087 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1087 |#1|) . T) ((-1087 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T) ((-1252) |has| |#1| (-939)))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2475 (((-663 (-1166)) $) 18 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 27 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3625 (((-1166) $) 20 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-1097) (-13 (-1114) (-10 -8 (-15 -2475 ((-663 (-1166)) $)) (-15 -3625 ((-1166) $))))) (T -1097))
-((-2475 (*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-1097)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1097)))))
-(-13 (-1114) (-10 -8 (-15 -2475 ((-663 (-1166)) $)) (-15 -3625 ((-1166) $))))
-((-2388 (((-114) |#3| $) 15 T ELT)) (-3325 (((-3 $ "failed") |#3| (-948)) 29 T ELT)) (-1990 (((-3 |#3| "failed") |#3| $) 45 T ELT)) (-2928 (((-114) |#3| $) 19 T ELT)) (-2960 (((-114) |#3| $) 17 T ELT)))
-(((-1098 |#1| |#2| |#3|) (-10 -8 (-15 -3325 ((-3 |#1| "failed") |#3| (-948))) (-15 -1990 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2928 ((-114) |#3| |#1|)) (-15 -2960 ((-114) |#3| |#1|)) (-15 -2388 ((-114) |#3| |#1|))) (-1099 |#2| |#3|) (-13 (-870) (-376)) (-1273 |#2|)) (T -1098))
-NIL
-(-10 -8 (-15 -3325 ((-3 |#1| "failed") |#3| (-948))) (-15 -1990 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2928 ((-114) |#3| |#1|)) (-15 -2960 ((-114) |#3| |#1|)) (-15 -2388 ((-114) |#3| |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) |#2| $) 22 T ELT)) (-2138 (((-560) |#2| $) 23 T ELT)) (-3325 (((-3 $ "failed") |#2| (-948)) 16 T ELT)) (-2609 ((|#1| |#2| $ |#1|) 14 T ELT)) (-1990 (((-3 |#2| "failed") |#2| $) 19 T ELT)) (-2928 (((-114) |#2| $) 20 T ELT)) (-2960 (((-114) |#2| $) 21 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-4394 ((|#2| $) 18 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2239 ((|#1| |#2| $ |#1|) 15 T ELT)) (-3207 (((-663 $) |#2|) 17 T ELT)) (-2473 (((-114) $ $) 8 T ELT)))
+((-1816 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-3402 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-793)))) (-3239 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-3016 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-3990 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-1340 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-3503 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-1096 *3 *4 *5)))) (-2551 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-3037 (*1 *1 *1 *2) (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-3062 (*1 *1 *1 *2) (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-3838 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)))) (-2456 (*1 *2 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)))) (-3881 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-3520 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-2295 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-1096 *3 *4 *5)))) (-1979 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-1096 *3 *4 *5)))) (-1590 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)))) (-4138 (*1 *2 *1 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)))) (-2758 (*1 *2 *1 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)))) (-2869 (*1 *2 *1 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)))) (-2869 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)))) (-1737 (*1 *2 *1 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)))) (-1737 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)))) (-4301 (*1 *2 *1 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)))) (-4301 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)))) (-4264 (*1 *2 *1 *1) (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)))) (-4264 (*1 *2 *1 *3) (-12 (-5 *3 (-663 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)))) (-4442 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-2927 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-4442 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-2927 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-3128 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-1655 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-3128 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-1655 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *2 (-871)))) (-4179 (*1 *2 *1 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| -2625 *1) (|:| |gap| (-793)) (|:| -3276 *1))) (-4 *1 (-1096 *3 *4 *5)))) (-4179 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-5 *2 (-2 (|:| -2625 *1) (|:| |gap| (-793)) (|:| -3276 *1))) (-4 *1 (-1096 *4 *5 *3)))) (-1893 (*1 *2 *1 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| -2625 *1) (|:| |gap| (-793)) (|:| -2584 *1) (|:| -3276 *1))) (-4 *1 (-1096 *3 *4 *5)))) (-1893 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-5 *2 (-2 (|:| -2625 *1) (|:| |gap| (-793)) (|:| -2584 *1) (|:| -3276 *1))) (-4 *1 (-1096 *4 *5 *3)))) (-3390 (*1 *2 *1 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| -2584 *1) (|:| -3276 *1))) (-4 *1 (-1096 *3 *4 *5)))) (-4238 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-4161 (*1 *2 *1 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4375 (-793)))) (-4 *1 (-1096 *3 *4 *5)))) (-1686 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-4039 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)))) (-3929 (*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-421 (-560)))) (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))) (-3649 (*1 *1 *2) (-12 (-5 *2 (-975 (-421 (-560)))) (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))) (-2400 (*1 *1 *2) (-12 (-5 *2 (-975 (-421 (-560)))) (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))) (-3929 (*1 *1 *2) (|partial| -2196 (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5)) (-12 (-1394 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))) (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5)) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))))) (-3649 (*1 *1 *2) (-2196 (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5)) (-12 (-1394 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))) (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5)) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))))) (-2400 (*1 *1 *2) (-2196 (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5)) (-12 (-1394 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))) (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5)) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))))) (-3929 (*1 *1 *2) (|partial| -2196 (-12 (-5 *2 (-975 *3)) (-12 (-1394 (-4 *3 (-38 (-421 (-560))))) (-1394 (-4 *3 (-38 (-560)))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871))) (-12 (-5 *2 (-975 *3)) (-12 (-1394 (-4 *3 (-559))) (-1394 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871))) (-12 (-5 *2 (-975 *3)) (-12 (-1394 (-4 *3 (-1022 (-560)))) (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871))))) (-3649 (*1 *1 *2) (-2196 (-12 (-5 *2 (-975 *3)) (-12 (-1394 (-4 *3 (-38 (-421 (-560))))) (-1394 (-4 *3 (-38 (-560)))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871))) (-12 (-5 *2 (-975 *3)) (-12 (-1394 (-4 *3 (-559))) (-1394 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871))) (-12 (-5 *2 (-975 *3)) (-12 (-1394 (-4 *3 (-1022 (-560)))) (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207)))) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-871))))) (-2400 (*1 *1 *2) (-12 (-5 *2 (-975 *3)) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *5 (-633 (-1207))) (-4 *4 (-815)) (-4 *5 (-871)))) (-3315 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-571)))) (-2028 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-571)))) (-2278 (*1 *1 *1 *2) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-571)))) (-3573 (*1 *1 *1 *2) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-571)))) (-2278 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-571)))) (-3573 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-571)))) (-4293 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-571)))) (-1802 (*1 *2 *1 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| -1938 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1096 *3 *4 *5)))) (-2596 (*1 *2 *1 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| -1938 *1) (|:| |coef1| *1))) (-4 *1 (-1096 *3 *4 *5)))) (-2487 (*1 *2 *1 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-2 (|:| -1938 *1) (|:| |coef2| *1))) (-4 *1 (-1096 *3 *4 *5)))) (-2096 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-571)))) (-2765 (*1 *2 *1 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-1096 *3 *4 *5)))) (-1790 (*1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-571)))) (-3357 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *3 (-571)))) (-3005 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *3 (-571)))) (-2931 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-571)))) (-1938 (*1 *2 *2 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-466)))) (-3118 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-466)))) (-1587 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-466)))) (-3041 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-466)))) (-1752 (*1 *1 *1) (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-466)))))
+(-13 (-979 |t#1| |t#2| |t#3|) (-10 -8 (-15 -1816 (|t#3| $)) (-15 -3402 ((-793) $)) (-15 -3239 ($ $)) (-15 -3016 ($ $)) (-15 -3990 ($ $)) (-15 -1340 ($ $)) (-15 -3503 ((-663 $) $)) (-15 -2551 ($ $)) (-15 -3037 ($ $ |t#3|)) (-15 -3062 ($ $ |t#3|)) (-15 -3838 ((-114) $)) (-15 -2456 ((-114) $)) (-15 -3881 ($ $)) (-15 -3520 ($ $)) (-15 -2295 ((-663 $) $)) (-15 -1979 ((-663 $) $)) (-15 -1590 ((-3 (-114) "failed") $ $)) (-15 -4138 ((-114) $ $)) (-15 -2758 ((-114) $ $)) (-15 -2869 ((-114) $ $)) (-15 -2869 ((-114) $ (-663 $))) (-15 -1737 ((-114) $ $)) (-15 -1737 ((-114) $ (-663 $))) (-15 -4301 ((-114) $ $)) (-15 -4301 ((-114) $ (-663 $))) (-15 -4264 ((-114) $ $)) (-15 -4264 ((-114) $ (-663 $))) (-15 -4442 ($ $ $)) (-15 -2927 ($ $ $)) (-15 -4442 ($ $ $ |t#3|)) (-15 -2927 ($ $ $ |t#3|)) (-15 -3128 ($ $ $)) (-15 -1655 ($ $ $)) (-15 -3128 ($ $ $ |t#3|)) (-15 -1655 ($ $ $ |t#3|)) (-15 -4179 ((-2 (|:| -2625 $) (|:| |gap| (-793)) (|:| -3276 $)) $ $)) (-15 -4179 ((-2 (|:| -2625 $) (|:| |gap| (-793)) (|:| -3276 $)) $ $ |t#3|)) (-15 -1893 ((-2 (|:| -2625 $) (|:| |gap| (-793)) (|:| -2584 $) (|:| -3276 $)) $ $)) (-15 -1893 ((-2 (|:| -2625 $) (|:| |gap| (-793)) (|:| -2584 $) (|:| -3276 $)) $ $ |t#3|)) (-15 -3390 ((-2 (|:| -2584 $) (|:| -3276 $)) $ $)) (-15 -4238 ($ $ $)) (-15 -4161 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4375 (-793))) $ $)) (-15 -1686 ($ $ $)) (-15 -4039 ($ $ $)) (IF (|has| |t#3| (-633 (-1207))) (PROGN (-6 (-632 (-975 |t#1|))) (-6 (-633 (-975 |t#1|))) (IF (|has| |t#1| (-38 (-421 (-560)))) (PROGN (-15 -3929 ((-3 $ "failed") (-975 (-421 (-560))))) (-15 -3649 ($ (-975 (-421 (-560))))) (-15 -2400 ($ (-975 (-421 (-560))))) (-15 -3929 ((-3 $ "failed") (-975 (-560)))) (-15 -3649 ($ (-975 (-560)))) (-15 -2400 ($ (-975 (-560)))) (IF (|has| |t#1| (-1022 (-560))) |%noBranch| (PROGN (-15 -3929 ((-3 $ "failed") (-975 |t#1|))) (-15 -3649 ($ (-975 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-560))) (IF (|has| |t#1| (-38 (-421 (-560)))) |%noBranch| (PROGN (-15 -3929 ((-3 $ "failed") (-975 (-560)))) (-15 -3649 ($ (-975 (-560)))) (-15 -2400 ($ (-975 (-560)))) (IF (|has| |t#1| (-559)) |%noBranch| (PROGN (-15 -3929 ((-3 $ "failed") (-975 |t#1|))) (-15 -3649 ($ (-975 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-560))) |%noBranch| (IF (|has| |t#1| (-38 (-421 (-560)))) |%noBranch| (PROGN (-15 -3929 ((-3 $ "failed") (-975 |t#1|))) (-15 -3649 ($ (-975 |t#1|)))))) (-15 -2400 ($ (-975 |t#1|))) (IF (|has| |t#1| (-1069 (-560))) (-6 (-633 (-1189))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-571)) (PROGN (-15 -3315 ($ $)) (-15 -2028 ($ $)) (-15 -2278 ($ $ |t#1|)) (-15 -3573 ($ $ |t#1|)) (-15 -2278 ($ $ $)) (-15 -3573 ($ $ $)) (-15 -4293 ($ $ $)) (-15 -1802 ((-2 (|:| -1938 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2596 ((-2 (|:| -1938 $) (|:| |coef1| $)) $ $)) (-15 -2487 ((-2 (|:| -1938 $) (|:| |coef2| $)) $ $)) (-15 -2096 ($ $ $)) (-15 -2765 ((-663 $) $ $)) (-15 -1790 ($ $ $)) (-15 -3357 ($ $ $ (-793))) (-15 -3005 ($ $ $ $ (-793))) (-15 -2931 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-466)) (PROGN (-15 -1938 (|t#1| |t#1| $)) (-15 -3118 ($ $)) (-15 -1587 ($ $)) (-15 -3041 ($ $)) (-15 -1752 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) -2196 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 |#3|) . T) ((-635 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-632 (-887)) . T) ((-632 (-975 |#1|)) |has| |#3| (-633 (-1207))) ((-175) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-633 (-549)) -12 (|has| |#1| (-633 (-549))) (|has| |#3| (-633 (-549)))) ((-633 (-915 (-391))) -12 (|has| |#1| (-633 (-915 (-391)))) (|has| |#3| (-633 (-915 (-391))))) ((-633 (-915 (-560))) -12 (|has| |#1| (-633 (-915 (-560)))) (|has| |#3| (-633 (-915 (-560))))) ((-633 (-975 |#1|)) |has| |#3| (-633 (-1207))) ((-633 (-1189)) -12 (|has| |#1| (-1069 (-560))) (|has| |#3| (-633 (-1207)))) ((-302) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-321 $) . T) ((-338 |#1| |#2|) . T) ((-390 |#1|) . T) ((-426 |#1|) . T) ((-466) -2196 (|has| |#1| (-939)) (|has| |#1| (-466))) ((-528 |#3| |#1|) . T) ((-528 |#3| $) . T) ((-528 $ $) . T) ((-571) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-668 #0#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-38 (-421 (-560)))) ((-670 #1=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-660 #1#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #0#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466))) ((-748) . T) ((-921 $ |#3|) . T) ((-927 |#3|) . T) ((-929 |#3|) . T) ((-911 (-391)) -12 (|has| |#1| (-911 (-391))) (|has| |#3| (-911 (-391)))) ((-911 (-560)) -12 (|has| |#1| (-911 (-560))) (|has| |#3| (-911 (-560)))) ((-979 |#1| |#2| |#3|) . T) ((-939) |has| |#1| (-939)) ((-1069 (-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 |#1|) . T) ((-1069 |#3|) . T) ((-1082 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1082 |#1|) . T) ((-1082 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1087 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1087 |#1|) . T) ((-1087 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T) ((-1252) |has| |#1| (-939)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2570 (((-663 (-1166)) $) 18 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 27 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-4400 (((-1166) $) 20 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-1097) (-13 (-1114) (-10 -8 (-15 -2570 ((-663 (-1166)) $)) (-15 -4400 ((-1166) $))))) (T -1097))
+((-2570 (*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-1097)))) (-4400 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1097)))))
+(-13 (-1114) (-10 -8 (-15 -2570 ((-663 (-1166)) $)) (-15 -4400 ((-1166) $))))
+((-2505 (((-114) |#3| $) 15 T ELT)) (-3946 (((-3 $ "failed") |#3| (-948)) 29 T ELT)) (-2873 (((-3 |#3| "failed") |#3| $) 45 T ELT)) (-4172 (((-114) |#3| $) 19 T ELT)) (-4470 (((-114) |#3| $) 17 T ELT)))
+(((-1098 |#1| |#2| |#3|) (-10 -8 (-15 -3946 ((-3 |#1| "failed") |#3| (-948))) (-15 -2873 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4172 ((-114) |#3| |#1|)) (-15 -4470 ((-114) |#3| |#1|)) (-15 -2505 ((-114) |#3| |#1|))) (-1099 |#2| |#3|) (-13 (-870) (-376)) (-1273 |#2|)) (T -1098))
+NIL
+(-10 -8 (-15 -3946 ((-3 |#1| "failed") |#3| (-948))) (-15 -2873 ((-3 |#3| "failed") |#3| |#1|)) (-15 -4172 ((-114) |#3| |#1|)) (-15 -4470 ((-114) |#3| |#1|)) (-15 -2505 ((-114) |#3| |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) |#2| $) 22 T ELT)) (-1869 (((-560) |#2| $) 23 T ELT)) (-3946 (((-3 $ "failed") |#2| (-948)) 16 T ELT)) (-2732 ((|#1| |#2| $ |#1|) 14 T ELT)) (-2873 (((-3 |#2| "failed") |#2| $) 19 T ELT)) (-4172 (((-114) |#2| $) 20 T ELT)) (-4470 (((-114) |#2| $) 21 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2407 ((|#2| $) 18 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2905 ((|#1| |#2| $ |#1|) 15 T ELT)) (-3987 (((-663 $) |#2|) 17 T ELT)) (-2340 (((-114) $ $) 8 T ELT)))
(((-1099 |#1| |#2|) (-142) (-13 (-870) (-376)) (-1273 |t#1|)) (T -1099))
-((-2138 (*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376))) (-4 *3 (-1273 *4)) (-5 *2 (-560)))) (-2388 (*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376))) (-4 *3 (-1273 *4)) (-5 *2 (-114)))) (-2960 (*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376))) (-4 *3 (-1273 *4)) (-5 *2 (-114)))) (-2928 (*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376))) (-4 *3 (-1273 *4)) (-5 *2 (-114)))) (-1990 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1099 *3 *2)) (-4 *3 (-13 (-870) (-376))) (-4 *2 (-1273 *3)))) (-4394 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *2)) (-4 *3 (-13 (-870) (-376))) (-4 *2 (-1273 *3)))) (-3207 (*1 *2 *3) (-12 (-4 *4 (-13 (-870) (-376))) (-4 *3 (-1273 *4)) (-5 *2 (-663 *1)) (-4 *1 (-1099 *4 *3)))) (-3325 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-948)) (-4 *4 (-13 (-870) (-376))) (-4 *1 (-1099 *4 *2)) (-4 *2 (-1273 *4)))) (-2239 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1099 *2 *3)) (-4 *2 (-13 (-870) (-376))) (-4 *3 (-1273 *2)))) (-2609 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1099 *2 *3)) (-4 *2 (-13 (-870) (-376))) (-4 *3 (-1273 *2)))))
-(-13 (-1132) (-10 -8 (-15 -2138 ((-560) |t#2| $)) (-15 -2388 ((-114) |t#2| $)) (-15 -2960 ((-114) |t#2| $)) (-15 -2928 ((-114) |t#2| $)) (-15 -1990 ((-3 |t#2| "failed") |t#2| $)) (-15 -4394 (|t#2| $)) (-15 -3207 ((-663 $) |t#2|)) (-15 -3325 ((-3 $ "failed") |t#2| (-948))) (-15 -2239 (|t#1| |t#2| $ |t#1|)) (-15 -2609 (|t#1| |t#2| $ |t#1|))))
+((-1869 (*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376))) (-4 *3 (-1273 *4)) (-5 *2 (-560)))) (-2505 (*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376))) (-4 *3 (-1273 *4)) (-5 *2 (-114)))) (-4470 (*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376))) (-4 *3 (-1273 *4)) (-5 *2 (-114)))) (-4172 (*1 *2 *3 *1) (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376))) (-4 *3 (-1273 *4)) (-5 *2 (-114)))) (-2873 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1099 *3 *2)) (-4 *3 (-13 (-870) (-376))) (-4 *2 (-1273 *3)))) (-2407 (*1 *2 *1) (-12 (-4 *1 (-1099 *3 *2)) (-4 *3 (-13 (-870) (-376))) (-4 *2 (-1273 *3)))) (-3987 (*1 *2 *3) (-12 (-4 *4 (-13 (-870) (-376))) (-4 *3 (-1273 *4)) (-5 *2 (-663 *1)) (-4 *1 (-1099 *4 *3)))) (-3946 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-948)) (-4 *4 (-13 (-870) (-376))) (-4 *1 (-1099 *4 *2)) (-4 *2 (-1273 *4)))) (-2905 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1099 *2 *3)) (-4 *2 (-13 (-870) (-376))) (-4 *3 (-1273 *2)))) (-2732 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1099 *2 *3)) (-4 *2 (-13 (-870) (-376))) (-4 *3 (-1273 *2)))))
+(-13 (-1132) (-10 -8 (-15 -1869 ((-560) |t#2| $)) (-15 -2505 ((-114) |t#2| $)) (-15 -4470 ((-114) |t#2| $)) (-15 -4172 ((-114) |t#2| $)) (-15 -2873 ((-3 |t#2| "failed") |t#2| $)) (-15 -2407 (|t#2| $)) (-15 -3987 ((-663 $) |t#2|)) (-15 -3946 ((-3 $ "failed") |t#2| (-948))) (-15 -2905 (|t#1| |t#2| $ |t#1|)) (-15 -2732 (|t#1| |t#2| $ |t#1|))))
(((-102) . T) ((-632 (-887)) . T) ((-1132) . T) ((-1247) . T))
-((-1812 (((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-663 |#4|) (-663 |#5|) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) (-793)) 114 T ELT)) (-3369 (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5| (-793)) 63 T ELT)) (-3187 (((-1303) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-793)) 99 T ELT)) (-1422 (((-793) (-663 |#4|) (-663 |#5|)) 30 T ELT)) (-1798 (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5| (-793)) 65 T ELT) (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5| (-793) (-114)) 67 T ELT)) (-3448 (((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114) (-114) (-114) (-114)) 86 T ELT) (((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114)) 87 T ELT)) (-1407 (((-1189) (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) 92 T ELT)) (-2108 (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5| (-114)) 62 T ELT)) (-2357 (((-793) (-663 |#4|) (-663 |#5|)) 21 T ELT)))
-(((-1100 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2357 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -1422 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -2108 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5| (-114))) (-15 -3369 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5| (-793))) (-15 -3369 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5|)) (-15 -1798 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5| (-793) (-114))) (-15 -1798 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5| (-793))) (-15 -1798 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5|)) (-15 -3448 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -3448 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114) (-114) (-114) (-114))) (-15 -1812 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-663 |#4|) (-663 |#5|) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) (-793))) (-15 -1407 ((-1189) (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|)))) (-15 -3187 ((-1303) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-793)))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -1100))
-((-3187 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -4297 *9)))) (-5 *4 (-793)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-1303)) (-5 *1 (-1100 *5 *6 *7 *8 *9)))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -4297 *8))) (-4 *7 (-1096 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1189)) (-5 *1 (-1100 *4 *5 *6 *7 *8)))) (-1812 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-663 *11)) (|:| |todo| (-663 (-2 (|:| |val| *3) (|:| -4297 *11)))))) (-5 *6 (-793)) (-5 *2 (-663 (-2 (|:| |val| (-663 *10)) (|:| -4297 *11)))) (-5 *3 (-663 *10)) (-5 *4 (-663 *11)) (-4 *10 (-1096 *7 *8 *9)) (-4 *11 (-1102 *7 *8 *9 *10)) (-4 *7 (-466)) (-4 *8 (-815)) (-4 *9 (-871)) (-5 *1 (-1100 *7 *8 *9 *10 *11)))) (-3448 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1100 *5 *6 *7 *8 *9)))) (-3448 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1100 *5 *6 *7 *8 *9)))) (-1798 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4)))))) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1798 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *3 (-1096 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4)))))) (-5 *1 (-1100 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-1798 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-793)) (-5 *6 (-114)) (-4 *7 (-466)) (-4 *8 (-815)) (-4 *9 (-871)) (-4 *3 (-1096 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4)))))) (-5 *1 (-1100 *7 *8 *9 *3 *4)) (-4 *4 (-1102 *7 *8 *9 *3)))) (-3369 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4)))))) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3369 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *3 (-1096 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4)))))) (-5 *1 (-1100 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-2108 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *3 (-1096 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4)))))) (-5 *1 (-1100 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-1422 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *9)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-793)) (-5 *1 (-1100 *5 *6 *7 *8 *9)))) (-2357 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *9)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-793)) (-5 *1 (-1100 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2357 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -1422 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -2108 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5| (-114))) (-15 -3369 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5| (-793))) (-15 -3369 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5|)) (-15 -1798 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5| (-793) (-114))) (-15 -1798 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5| (-793))) (-15 -1798 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5|)) (-15 -3448 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -3448 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114) (-114) (-114) (-114))) (-15 -1812 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-663 |#4|) (-663 |#5|) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) (-793))) (-15 -1407 ((-1189) (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|)))) (-15 -3187 ((-1303) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-793))))
-((-2330 (((-114) |#5| $) 26 T ELT)) (-2728 (((-114) |#5| $) 29 T ELT)) (-2420 (((-114) |#5| $) 18 T ELT) (((-114) $) 52 T ELT)) (-1903 (((-663 $) |#5| $) NIL T ELT) (((-663 $) (-663 |#5|) $) 94 T ELT) (((-663 $) (-663 |#5|) (-663 $)) 92 T ELT) (((-663 $) |#5| (-663 $)) 95 T ELT)) (-4372 (($ $ |#5|) NIL T ELT) (((-663 $) |#5| $) NIL T ELT) (((-663 $) |#5| (-663 $)) 73 T ELT) (((-663 $) (-663 |#5|) $) 75 T ELT) (((-663 $) (-663 |#5|) (-663 $)) 77 T ELT)) (-2796 (((-663 $) |#5| $) NIL T ELT) (((-663 $) |#5| (-663 $)) 64 T ELT) (((-663 $) (-663 |#5|) $) 69 T ELT) (((-663 $) (-663 |#5|) (-663 $)) 71 T ELT)) (-4395 (((-114) |#5| $) 32 T ELT)))
-(((-1101 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4372 ((-663 |#1|) (-663 |#5|) (-663 |#1|))) (-15 -4372 ((-663 |#1|) (-663 |#5|) |#1|)) (-15 -4372 ((-663 |#1|) |#5| (-663 |#1|))) (-15 -4372 ((-663 |#1|) |#5| |#1|)) (-15 -2796 ((-663 |#1|) (-663 |#5|) (-663 |#1|))) (-15 -2796 ((-663 |#1|) (-663 |#5|) |#1|)) (-15 -2796 ((-663 |#1|) |#5| (-663 |#1|))) (-15 -2796 ((-663 |#1|) |#5| |#1|)) (-15 -1903 ((-663 |#1|) |#5| (-663 |#1|))) (-15 -1903 ((-663 |#1|) (-663 |#5|) (-663 |#1|))) (-15 -1903 ((-663 |#1|) (-663 |#5|) |#1|)) (-15 -1903 ((-663 |#1|) |#5| |#1|)) (-15 -2728 ((-114) |#5| |#1|)) (-15 -2420 ((-114) |#1|)) (-15 -4395 ((-114) |#5| |#1|)) (-15 -2330 ((-114) |#5| |#1|)) (-15 -2420 ((-114) |#5| |#1|)) (-15 -4372 (|#1| |#1| |#5|))) (-1102 |#2| |#3| |#4| |#5|) (-466) (-815) (-871) (-1096 |#2| |#3| |#4|)) (T -1101))
-NIL
-(-10 -8 (-15 -4372 ((-663 |#1|) (-663 |#5|) (-663 |#1|))) (-15 -4372 ((-663 |#1|) (-663 |#5|) |#1|)) (-15 -4372 ((-663 |#1|) |#5| (-663 |#1|))) (-15 -4372 ((-663 |#1|) |#5| |#1|)) (-15 -2796 ((-663 |#1|) (-663 |#5|) (-663 |#1|))) (-15 -2796 ((-663 |#1|) (-663 |#5|) |#1|)) (-15 -2796 ((-663 |#1|) |#5| (-663 |#1|))) (-15 -2796 ((-663 |#1|) |#5| |#1|)) (-15 -1903 ((-663 |#1|) |#5| (-663 |#1|))) (-15 -1903 ((-663 |#1|) (-663 |#5|) (-663 |#1|))) (-15 -1903 ((-663 |#1|) (-663 |#5|) |#1|)) (-15 -1903 ((-663 |#1|) |#5| |#1|)) (-15 -2728 ((-114) |#5| |#1|)) (-15 -2420 ((-114) |#1|)) (-15 -4395 ((-114) |#5| |#1|)) (-15 -2330 ((-114) |#5| |#1|)) (-15 -2420 ((-114) |#5| |#1|)) (-15 -4372 (|#1| |#1| |#5|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-3721 (((-663 (-2 (|:| -4332 $) (|:| -2109 (-663 |#4|)))) (-663 |#4|)) 86 T ELT)) (-3904 (((-663 $) (-663 |#4|)) 87 T ELT) (((-663 $) (-663 |#4|) (-114)) 112 T ELT)) (-1443 (((-663 |#3|) $) 34 T ELT)) (-1466 (((-114) $) 27 T ELT)) (-3101 (((-114) $) 18 (|has| |#1| (-571)) ELT)) (-3036 (((-114) |#4| $) 102 T ELT) (((-114) $) 98 T ELT)) (-1813 ((|#4| |#4| $) 93 T ELT)) (-1804 (((-663 (-2 (|:| |val| |#4|) (|:| -4297 $))) |#4| $) 127 T ELT)) (-2286 (((-2 (|:| |under| $) (|:| -2016 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-3363 (((-114) $ (-793)) 45 T ELT)) (-1982 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4508)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-2238 (($) 46 T CONST)) (-4436 (((-114) $) 23 (|has| |#1| (-571)) ELT)) (-4246 (((-114) $ $) 25 (|has| |#1| (-571)) ELT)) (-1860 (((-114) $ $) 24 (|has| |#1| (-571)) ELT)) (-3745 (((-114) $) 26 (|has| |#1| (-571)) ELT)) (-1477 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 94 T ELT)) (-4027 (((-663 |#4|) (-663 |#4|) $) 19 (|has| |#1| (-571)) ELT)) (-2528 (((-663 |#4|) (-663 |#4|) $) 20 (|has| |#1| (-571)) ELT)) (-2539 (((-3 $ "failed") (-663 |#4|)) 37 T ELT)) (-3330 (($ (-663 |#4|)) 36 T ELT)) (-3649 (((-3 $ "failed") $) 83 T ELT)) (-2841 ((|#4| |#4| $) 90 T ELT)) (-3606 (($ $) 69 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2375 (($ |#4| $) 68 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4508)) ELT)) (-2341 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-571)) ELT)) (-3989 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 103 T ELT)) (-3093 ((|#4| |#4| $) 88 T ELT)) (-4129 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4508)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4508)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 95 T ELT)) (-1723 (((-2 (|:| -4332 (-663 |#4|)) (|:| -2109 (-663 |#4|))) $) 106 T ELT)) (-2330 (((-114) |#4| $) 137 T ELT)) (-2728 (((-114) |#4| $) 134 T ELT)) (-2420 (((-114) |#4| $) 138 T ELT) (((-114) $) 135 T ELT)) (-2181 (((-663 |#4|) $) 53 (|has| $ (-6 -4508)) ELT)) (-3544 (((-114) |#4| $) 105 T ELT) (((-114) $) 104 T ELT)) (-4132 ((|#3| $) 35 T ELT)) (-4034 (((-114) $ (-793)) 44 T ELT)) (-2656 (((-663 |#4|) $) 54 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-1918 (((-663 |#3|) $) 33 T ELT)) (-2724 (((-114) |#3| $) 32 T ELT)) (-1805 (((-114) $ (-793)) 43 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3482 (((-3 |#4| (-663 $)) |#4| |#4| $) 129 T ELT)) (-4130 (((-663 (-2 (|:| |val| |#4|) (|:| -4297 $))) |#4| |#4| $) 128 T ELT)) (-2398 (((-3 |#4| "failed") $) 84 T ELT)) (-3221 (((-663 $) |#4| $) 130 T ELT)) (-3979 (((-3 (-114) (-663 $)) |#4| $) 133 T ELT)) (-2411 (((-663 (-2 (|:| |val| (-114)) (|:| -4297 $))) |#4| $) 132 T ELT) (((-114) |#4| $) 131 T ELT)) (-1903 (((-663 $) |#4| $) 126 T ELT) (((-663 $) (-663 |#4|) $) 125 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 124 T ELT) (((-663 $) |#4| (-663 $)) 123 T ELT)) (-2534 (($ |#4| $) 118 T ELT) (($ (-663 |#4|) $) 117 T ELT)) (-1756 (((-663 |#4|) $) 108 T ELT)) (-3548 (((-114) |#4| $) 100 T ELT) (((-114) $) 96 T ELT)) (-3212 ((|#4| |#4| $) 91 T ELT)) (-2925 (((-114) $ $) 111 T ELT)) (-2557 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-571)) ELT)) (-1563 (((-114) |#4| $) 101 T ELT) (((-114) $) 97 T ELT)) (-3171 ((|#4| |#4| $) 92 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-3637 (((-3 |#4| "failed") $) 85 T ELT)) (-3329 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-1370 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-4372 (($ $ |#4|) 78 T ELT) (((-663 $) |#4| $) 116 T ELT) (((-663 $) |#4| (-663 $)) 115 T ELT) (((-663 $) (-663 |#4|) $) 114 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 113 T ELT)) (-2787 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 |#4|) (-663 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-4124 (((-114) $ $) 39 T ELT)) (-1663 (((-114) $) 42 T ELT)) (-3986 (($) 41 T ELT)) (-3630 (((-793) $) 107 T ELT)) (-3865 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) 40 T ELT)) (-1407 (((-549) $) 70 (|has| |#4| (-633 (-549))) ELT)) (-1592 (($ (-663 |#4|)) 61 T ELT)) (-3752 (($ $ |#3|) 29 T ELT)) (-4288 (($ $ |#3|) 31 T ELT)) (-2886 (($ $) 89 T ELT)) (-4397 (($ $ |#3|) 30 T ELT)) (-1578 (((-887) $) 12 T ELT) (((-663 |#4|) $) 38 T ELT)) (-1582 (((-793) $) 77 (|has| |#3| (-381)) ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-1810 (((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 109 T ELT)) (-4006 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) 99 T ELT)) (-2796 (((-663 $) |#4| $) 122 T ELT) (((-663 $) |#4| (-663 $)) 121 T ELT) (((-663 $) (-663 |#4|) $) 120 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 119 T ELT)) (-1728 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4508)) ELT)) (-3938 (((-663 |#3|) $) 82 T ELT)) (-4395 (((-114) |#4| $) 136 T ELT)) (-3602 (((-114) |#3| $) 81 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-1553 (((-793) $) 47 (|has| $ (-6 -4508)) ELT)))
+((-1711 (((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-663 |#4|) (-663 |#5|) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) (-793)) 114 T ELT)) (-3113 (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5| (-793)) 63 T ELT)) (-2167 (((-1303) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-793)) 99 T ELT)) (-2851 (((-793) (-663 |#4|) (-663 |#5|)) 30 T ELT)) (-1563 (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5| (-793)) 65 T ELT) (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5| (-793) (-114)) 67 T ELT)) (-2595 (((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114) (-114) (-114) (-114)) 86 T ELT) (((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114)) 87 T ELT)) (-2400 (((-1189) (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) 92 T ELT)) (-1569 (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5| (-114)) 62 T ELT)) (-2188 (((-793) (-663 |#4|) (-663 |#5|)) 21 T ELT)))
+(((-1100 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2188 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -2851 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -1569 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5| (-114))) (-15 -3113 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5| (-793))) (-15 -3113 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5|)) (-15 -1563 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5| (-793) (-114))) (-15 -1563 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5| (-793))) (-15 -1563 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5|)) (-15 -2595 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -2595 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114) (-114) (-114) (-114))) (-15 -1711 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-663 |#4|) (-663 |#5|) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) (-793))) (-15 -2400 ((-1189) (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|)))) (-15 -2167 ((-1303) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-793)))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -1100))
+((-2167 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -3859 *9)))) (-5 *4 (-793)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-1303)) (-5 *1 (-1100 *5 *6 *7 *8 *9)))) (-2400 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -3859 *8))) (-4 *7 (-1096 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1189)) (-5 *1 (-1100 *4 *5 *6 *7 *8)))) (-1711 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-663 *11)) (|:| |todo| (-663 (-2 (|:| |val| *3) (|:| -3859 *11)))))) (-5 *6 (-793)) (-5 *2 (-663 (-2 (|:| |val| (-663 *10)) (|:| -3859 *11)))) (-5 *3 (-663 *10)) (-5 *4 (-663 *11)) (-4 *10 (-1096 *7 *8 *9)) (-4 *11 (-1102 *7 *8 *9 *10)) (-4 *7 (-466)) (-4 *8 (-815)) (-4 *9 (-871)) (-5 *1 (-1100 *7 *8 *9 *10 *11)))) (-2595 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1100 *5 *6 *7 *8 *9)))) (-2595 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1100 *5 *6 *7 *8 *9)))) (-1563 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4)))))) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1563 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *3 (-1096 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4)))))) (-5 *1 (-1100 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-1563 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-793)) (-5 *6 (-114)) (-4 *7 (-466)) (-4 *8 (-815)) (-4 *9 (-871)) (-4 *3 (-1096 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4)))))) (-5 *1 (-1100 *7 *8 *9 *3 *4)) (-4 *4 (-1102 *7 *8 *9 *3)))) (-3113 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4)))))) (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3113 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *3 (-1096 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4)))))) (-5 *1 (-1100 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-1569 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *3 (-1096 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4)))))) (-5 *1 (-1100 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-2851 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *9)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-793)) (-5 *1 (-1100 *5 *6 *7 *8 *9)))) (-2188 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *9)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-793)) (-5 *1 (-1100 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2188 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -2851 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -1569 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5| (-114))) (-15 -3113 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5| (-793))) (-15 -3113 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5|)) (-15 -1563 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5| (-793) (-114))) (-15 -1563 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5| (-793))) (-15 -1563 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5|)) (-15 -2595 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -2595 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114) (-114) (-114) (-114))) (-15 -1711 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-663 |#4|) (-663 |#5|) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) (-793))) (-15 -2400 ((-1189) (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|)))) (-15 -2167 ((-1303) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-793))))
+((-3175 (((-114) |#5| $) 26 T ELT)) (-1520 (((-114) |#5| $) 29 T ELT)) (-1575 (((-114) |#5| $) 18 T ELT) (((-114) $) 52 T ELT)) (-3334 (((-663 $) |#5| $) NIL T ELT) (((-663 $) (-663 |#5|) $) 94 T ELT) (((-663 $) (-663 |#5|) (-663 $)) 92 T ELT) (((-663 $) |#5| (-663 $)) 95 T ELT)) (-2219 (($ $ |#5|) NIL T ELT) (((-663 $) |#5| $) NIL T ELT) (((-663 $) |#5| (-663 $)) 73 T ELT) (((-663 $) (-663 |#5|) $) 75 T ELT) (((-663 $) (-663 |#5|) (-663 $)) 77 T ELT)) (-4135 (((-663 $) |#5| $) NIL T ELT) (((-663 $) |#5| (-663 $)) 64 T ELT) (((-663 $) (-663 |#5|) $) 69 T ELT) (((-663 $) (-663 |#5|) (-663 $)) 71 T ELT)) (-2416 (((-114) |#5| $) 32 T ELT)))
+(((-1101 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2219 ((-663 |#1|) (-663 |#5|) (-663 |#1|))) (-15 -2219 ((-663 |#1|) (-663 |#5|) |#1|)) (-15 -2219 ((-663 |#1|) |#5| (-663 |#1|))) (-15 -2219 ((-663 |#1|) |#5| |#1|)) (-15 -4135 ((-663 |#1|) (-663 |#5|) (-663 |#1|))) (-15 -4135 ((-663 |#1|) (-663 |#5|) |#1|)) (-15 -4135 ((-663 |#1|) |#5| (-663 |#1|))) (-15 -4135 ((-663 |#1|) |#5| |#1|)) (-15 -3334 ((-663 |#1|) |#5| (-663 |#1|))) (-15 -3334 ((-663 |#1|) (-663 |#5|) (-663 |#1|))) (-15 -3334 ((-663 |#1|) (-663 |#5|) |#1|)) (-15 -3334 ((-663 |#1|) |#5| |#1|)) (-15 -1520 ((-114) |#5| |#1|)) (-15 -1575 ((-114) |#1|)) (-15 -2416 ((-114) |#5| |#1|)) (-15 -3175 ((-114) |#5| |#1|)) (-15 -1575 ((-114) |#5| |#1|)) (-15 -2219 (|#1| |#1| |#5|))) (-1102 |#2| |#3| |#4| |#5|) (-466) (-815) (-871) (-1096 |#2| |#3| |#4|)) (T -1101))
+NIL
+(-10 -8 (-15 -2219 ((-663 |#1|) (-663 |#5|) (-663 |#1|))) (-15 -2219 ((-663 |#1|) (-663 |#5|) |#1|)) (-15 -2219 ((-663 |#1|) |#5| (-663 |#1|))) (-15 -2219 ((-663 |#1|) |#5| |#1|)) (-15 -4135 ((-663 |#1|) (-663 |#5|) (-663 |#1|))) (-15 -4135 ((-663 |#1|) (-663 |#5|) |#1|)) (-15 -4135 ((-663 |#1|) |#5| (-663 |#1|))) (-15 -4135 ((-663 |#1|) |#5| |#1|)) (-15 -3334 ((-663 |#1|) |#5| (-663 |#1|))) (-15 -3334 ((-663 |#1|) (-663 |#5|) (-663 |#1|))) (-15 -3334 ((-663 |#1|) (-663 |#5|) |#1|)) (-15 -3334 ((-663 |#1|) |#5| |#1|)) (-15 -1520 ((-114) |#5| |#1|)) (-15 -1575 ((-114) |#1|)) (-15 -2416 ((-114) |#5| |#1|)) (-15 -3175 ((-114) |#5| |#1|)) (-15 -1575 ((-114) |#5| |#1|)) (-15 -2219 (|#1| |#1| |#5|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2253 (((-663 (-2 (|:| -1924 $) (|:| -2888 (-663 |#4|)))) (-663 |#4|)) 86 T ELT)) (-1372 (((-663 $) (-663 |#4|)) 87 T ELT) (((-663 $) (-663 |#4|) (-114)) 112 T ELT)) (-4162 (((-663 |#3|) $) 34 T ELT)) (-1362 (((-114) $) 27 T ELT)) (-2179 (((-114) $) 18 (|has| |#1| (-571)) ELT)) (-2729 (((-114) |#4| $) 102 T ELT) (((-114) $) 98 T ELT)) (-1722 ((|#4| |#4| $) 93 T ELT)) (-1621 (((-663 (-2 (|:| |val| |#4|) (|:| -3859 $))) |#4| $) 127 T ELT)) (-1787 (((-2 (|:| |under| $) (|:| -3147 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-3045 (((-114) $ (-793)) 45 T ELT)) (-3923 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4508)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-3525 (($) 46 T CONST)) (-2733 (((-114) $) 23 (|has| |#1| (-571)) ELT)) (-3672 (((-114) $ $) 25 (|has| |#1| (-571)) ELT)) (-4148 (((-114) $ $) 24 (|has| |#1| (-571)) ELT)) (-2449 (((-114) $) 26 (|has| |#1| (-571)) ELT)) (-4108 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 94 T ELT)) (-3277 (((-663 |#4|) (-663 |#4|) $) 19 (|has| |#1| (-571)) ELT)) (-4485 (((-663 |#4|) (-663 |#4|) $) 20 (|has| |#1| (-571)) ELT)) (-3929 (((-3 $ "failed") (-663 |#4|)) 37 T ELT)) (-3649 (($ (-663 |#4|)) 36 T ELT)) (-4345 (((-3 $ "failed") $) 83 T ELT)) (-1440 ((|#4| |#4| $) 90 T ELT)) (-3658 (($ $) 69 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3033 (($ |#4| $) 68 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4508)) ELT)) (-3276 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-571)) ELT)) (-2869 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 103 T ELT)) (-2113 ((|#4| |#4| $) 88 T ELT)) (-1778 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4508)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4508)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 95 T ELT)) (-2115 (((-2 (|:| -1924 (-663 |#4|)) (|:| -2888 (-663 |#4|))) $) 106 T ELT)) (-3175 (((-114) |#4| $) 137 T ELT)) (-1520 (((-114) |#4| $) 134 T ELT)) (-1575 (((-114) |#4| $) 138 T ELT) (((-114) $) 135 T ELT)) (-3737 (((-663 |#4|) $) 53 (|has| $ (-6 -4508)) ELT)) (-4264 (((-114) |#4| $) 105 T ELT) (((-114) $) 104 T ELT)) (-1816 ((|#3| $) 35 T ELT)) (-3332 (((-114) $ (-793)) 44 T ELT)) (-3243 (((-663 |#4|) $) 54 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3471 (((-663 |#3|) $) 33 T ELT)) (-2703 (((-114) |#3| $) 32 T ELT)) (-1634 (((-114) $ (-793)) 43 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-1702 (((-3 |#4| (-663 $)) |#4| |#4| $) 129 T ELT)) (-1790 (((-663 (-2 (|:| |val| |#4|) (|:| -3859 $))) |#4| |#4| $) 128 T ELT)) (-3057 (((-3 |#4| "failed") $) 84 T ELT)) (-4144 (((-663 $) |#4| $) 130 T ELT)) (-2769 (((-3 (-114) (-663 $)) |#4| $) 133 T ELT)) (-1503 (((-663 (-2 (|:| |val| (-114)) (|:| -3859 $))) |#4| $) 132 T ELT) (((-114) |#4| $) 131 T ELT)) (-3334 (((-663 $) |#4| $) 126 T ELT) (((-663 $) (-663 |#4|) $) 125 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 124 T ELT) (((-663 $) |#4| (-663 $)) 123 T ELT)) (-1392 (($ |#4| $) 118 T ELT) (($ (-663 |#4|) $) 117 T ELT)) (-2428 (((-663 |#4|) $) 108 T ELT)) (-4301 (((-114) |#4| $) 100 T ELT) (((-114) $) 96 T ELT)) (-4039 ((|#4| |#4| $) 91 T ELT)) (-4138 (((-114) $ $) 111 T ELT)) (-3531 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-571)) ELT)) (-1737 (((-114) |#4| $) 101 T ELT) (((-114) $) 97 T ELT)) (-1686 ((|#4| |#4| $) 92 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4334 (((-3 |#4| "failed") $) 85 T ELT)) (-2708 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-3867 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-2219 (($ $ |#4|) 78 T ELT) (((-663 $) |#4| $) 116 T ELT) (((-663 $) |#4| (-663 $)) 115 T ELT) (((-663 $) (-663 |#4|) $) 114 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 113 T ELT)) (-2086 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 |#4|) (-663 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-1736 (((-114) $ $) 39 T ELT)) (-2706 (((-114) $) 42 T ELT)) (-2832 (($) 41 T ELT)) (-3900 (((-793) $) 107 T ELT)) (-3384 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) 40 T ELT)) (-2400 (((-549) $) 70 (|has| |#4| (-633 (-549))) ELT)) (-3924 (($ (-663 |#4|)) 61 T ELT)) (-2511 (($ $ |#3|) 29 T ELT)) (-4047 (($ $ |#3|) 31 T ELT)) (-3833 (($ $) 89 T ELT)) (-2438 (($ $ |#3|) 30 T ELT)) (-3913 (((-887) $) 12 T ELT) (((-663 |#4|) $) 38 T ELT)) (-1930 (((-793) $) 77 (|has| |#3| (-381)) ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1690 (((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 109 T ELT)) (-3058 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) 99 T ELT)) (-4135 (((-663 $) |#4| $) 122 T ELT) (((-663 $) |#4| (-663 $)) 121 T ELT) (((-663 $) (-663 |#4|) $) 120 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 119 T ELT)) (-2149 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4508)) ELT)) (-3616 (((-663 |#3|) $) 82 T ELT)) (-2416 (((-114) |#4| $) 136 T ELT)) (-3621 (((-114) |#3| $) 81 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2256 (((-793) $) 47 (|has| $ (-6 -4508)) ELT)))
(((-1102 |#1| |#2| |#3| |#4|) (-142) (-466) (-815) (-871) (-1096 |t#1| |t#2| |t#3|)) (T -1102))
-((-2420 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))) (-2330 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))) (-4395 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))) (-2420 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114)))) (-2728 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))) (-3979 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-3 (-114) (-663 *1))) (-4 *1 (-1102 *4 *5 *6 *3)))) (-2411 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -4297 *1)))) (-4 *1 (-1102 *4 *5 *6 *3)))) (-2411 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))) (-3221 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *3)))) (-3482 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-3 *3 (-663 *1))) (-4 *1 (-1102 *4 *5 *6 *3)))) (-4130 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *1)))) (-4 *1 (-1102 *4 *5 *6 *3)))) (-1804 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *1)))) (-4 *1 (-1102 *4 *5 *6 *3)))) (-1903 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *3)))) (-1903 (*1 *2 *3 *1) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *7)))) (-1903 (*1 *2 *3 *2) (-12 (-5 *2 (-663 *1)) (-5 *3 (-663 *7)) (-4 *1 (-1102 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)))) (-1903 (*1 *2 *3 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)))) (-2796 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *3)))) (-2796 (*1 *2 *3 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)))) (-2796 (*1 *2 *3 *1) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *7)))) (-2796 (*1 *2 *3 *2) (-12 (-5 *2 (-663 *1)) (-5 *3 (-663 *7)) (-4 *1 (-1102 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)))) (-2534 (*1 *1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-2534 (*1 *1 *2 *1) (-12 (-5 *2 (-663 *6)) (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)))) (-4372 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *3)))) (-4372 (*1 *2 *3 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)))) (-4372 (*1 *2 *3 *1) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *7)))) (-4372 (*1 *2 *3 *2) (-12 (-5 *2 (-663 *1)) (-5 *3 (-663 *7)) (-4 *1 (-1102 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)))) (-3904 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-1102 *5 *6 *7 *8)))))
-(-13 (-1242 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2420 ((-114) |t#4| $)) (-15 -2330 ((-114) |t#4| $)) (-15 -4395 ((-114) |t#4| $)) (-15 -2420 ((-114) $)) (-15 -2728 ((-114) |t#4| $)) (-15 -3979 ((-3 (-114) (-663 $)) |t#4| $)) (-15 -2411 ((-663 (-2 (|:| |val| (-114)) (|:| -4297 $))) |t#4| $)) (-15 -2411 ((-114) |t#4| $)) (-15 -3221 ((-663 $) |t#4| $)) (-15 -3482 ((-3 |t#4| (-663 $)) |t#4| |t#4| $)) (-15 -4130 ((-663 (-2 (|:| |val| |t#4|) (|:| -4297 $))) |t#4| |t#4| $)) (-15 -1804 ((-663 (-2 (|:| |val| |t#4|) (|:| -4297 $))) |t#4| $)) (-15 -1903 ((-663 $) |t#4| $)) (-15 -1903 ((-663 $) (-663 |t#4|) $)) (-15 -1903 ((-663 $) (-663 |t#4|) (-663 $))) (-15 -1903 ((-663 $) |t#4| (-663 $))) (-15 -2796 ((-663 $) |t#4| $)) (-15 -2796 ((-663 $) |t#4| (-663 $))) (-15 -2796 ((-663 $) (-663 |t#4|) $)) (-15 -2796 ((-663 $) (-663 |t#4|) (-663 $))) (-15 -2534 ($ |t#4| $)) (-15 -2534 ($ (-663 |t#4|) $)) (-15 -4372 ((-663 $) |t#4| $)) (-15 -4372 ((-663 $) |t#4| (-663 $))) (-15 -4372 ((-663 $) (-663 |t#4|) $)) (-15 -4372 ((-663 $) (-663 |t#4|) (-663 $))) (-15 -3904 ((-663 $) (-663 |t#4|) (-114)))))
+((-1575 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))) (-3175 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))) (-2416 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))) (-1575 (*1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114)))) (-1520 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))) (-2769 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-3 (-114) (-663 *1))) (-4 *1 (-1102 *4 *5 *6 *3)))) (-1503 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -3859 *1)))) (-4 *1 (-1102 *4 *5 *6 *3)))) (-1503 (*1 *2 *3 *1) (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))) (-4144 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *3)))) (-1702 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-3 *3 (-663 *1))) (-4 *1 (-1102 *4 *5 *6 *3)))) (-1790 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *1)))) (-4 *1 (-1102 *4 *5 *6 *3)))) (-1621 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *1)))) (-4 *1 (-1102 *4 *5 *6 *3)))) (-3334 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *3)))) (-3334 (*1 *2 *3 *1) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *7)))) (-3334 (*1 *2 *3 *2) (-12 (-5 *2 (-663 *1)) (-5 *3 (-663 *7)) (-4 *1 (-1102 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)))) (-3334 (*1 *2 *3 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)))) (-4135 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *3)))) (-4135 (*1 *2 *3 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)))) (-4135 (*1 *2 *3 *1) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *7)))) (-4135 (*1 *2 *3 *2) (-12 (-5 *2 (-663 *1)) (-5 *3 (-663 *7)) (-4 *1 (-1102 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)))) (-1392 (*1 *1 *2 *1) (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-1392 (*1 *1 *2 *1) (-12 (-5 *2 (-663 *6)) (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)))) (-2219 (*1 *2 *3 *1) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *3)))) (-2219 (*1 *2 *3 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)))) (-2219 (*1 *2 *3 *1) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *7)))) (-2219 (*1 *2 *3 *2) (-12 (-5 *2 (-663 *1)) (-5 *3 (-663 *7)) (-4 *1 (-1102 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)))) (-1372 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-1102 *5 *6 *7 *8)))))
+(-13 (-1242 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -1575 ((-114) |t#4| $)) (-15 -3175 ((-114) |t#4| $)) (-15 -2416 ((-114) |t#4| $)) (-15 -1575 ((-114) $)) (-15 -1520 ((-114) |t#4| $)) (-15 -2769 ((-3 (-114) (-663 $)) |t#4| $)) (-15 -1503 ((-663 (-2 (|:| |val| (-114)) (|:| -3859 $))) |t#4| $)) (-15 -1503 ((-114) |t#4| $)) (-15 -4144 ((-663 $) |t#4| $)) (-15 -1702 ((-3 |t#4| (-663 $)) |t#4| |t#4| $)) (-15 -1790 ((-663 (-2 (|:| |val| |t#4|) (|:| -3859 $))) |t#4| |t#4| $)) (-15 -1621 ((-663 (-2 (|:| |val| |t#4|) (|:| -3859 $))) |t#4| $)) (-15 -3334 ((-663 $) |t#4| $)) (-15 -3334 ((-663 $) (-663 |t#4|) $)) (-15 -3334 ((-663 $) (-663 |t#4|) (-663 $))) (-15 -3334 ((-663 $) |t#4| (-663 $))) (-15 -4135 ((-663 $) |t#4| $)) (-15 -4135 ((-663 $) |t#4| (-663 $))) (-15 -4135 ((-663 $) (-663 |t#4|) $)) (-15 -4135 ((-663 $) (-663 |t#4|) (-663 $))) (-15 -1392 ($ |t#4| $)) (-15 -1392 ($ (-663 |t#4|) $)) (-15 -2219 ((-663 $) |t#4| $)) (-15 -2219 ((-663 $) |t#4| (-663 $))) (-15 -2219 ((-663 $) (-663 |t#4|) $)) (-15 -2219 ((-663 $) (-663 |t#4|) (-663 $))) (-15 -1372 ((-663 $) (-663 |t#4|) (-114)))))
(((-34) . T) ((-102) . T) ((-632 (-663 |#4|)) . T) ((-632 (-887)) . T) ((-153 |#4|) . T) ((-633 (-549)) |has| |#4| (-633 (-549))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ((-503 |#4|) . T) ((-528 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ((-1007 |#1| |#2| |#3| |#4|) . T) ((-1132) . T) ((-1242 |#1| |#2| |#3| |#4|) . T) ((-1247) . T))
-((-3797 (((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#5|) 86 T ELT)) (-3657 (((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#4| |#5|) 127 T ELT)) (-4315 (((-663 |#5|) |#4| |#5|) 74 T ELT)) (-3033 (((-663 (-2 (|:| |val| (-114)) (|:| -4297 |#5|))) |#4| |#5|) 47 T ELT) (((-114) |#4| |#5|) 55 T ELT)) (-2429 (((-1303)) 36 T ELT)) (-2650 (((-1303)) 25 T ELT)) (-1803 (((-1303) (-1189) (-1189) (-1189)) 32 T ELT)) (-4389 (((-1303) (-1189) (-1189) (-1189)) 21 T ELT)) (-1835 (((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) |#4| |#4| |#5|) 107 T ELT)) (-4406 (((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) |#3| (-114)) 118 T ELT) (((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#4| |#5| (-114) (-114)) 52 T ELT)) (-1869 (((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#4| |#5|) 113 T ELT)))
-(((-1103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4389 ((-1303) (-1189) (-1189) (-1189))) (-15 -2650 ((-1303))) (-15 -1803 ((-1303) (-1189) (-1189) (-1189))) (-15 -2429 ((-1303))) (-15 -1835 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) |#4| |#4| |#5|)) (-15 -4406 ((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#4| |#5| (-114) (-114))) (-15 -4406 ((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) |#3| (-114))) (-15 -1869 ((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#4| |#5|)) (-15 -3657 ((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#4| |#5|)) (-15 -3033 ((-114) |#4| |#5|)) (-15 -3033 ((-663 (-2 (|:| |val| (-114)) (|:| -4297 |#5|))) |#4| |#5|)) (-15 -4315 ((-663 |#5|) |#4| |#5|)) (-15 -3797 ((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#5|))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -1103))
-((-3797 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *4)))) (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-4315 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 *4)) (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3033 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -4297 *4)))) (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3033 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3657 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *4)))) (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1869 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *4)))) (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-4406 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -4297 *9)))) (-5 *5 (-114)) (-4 *8 (-1096 *6 *7 *4)) (-4 *9 (-1102 *6 *7 *4 *8)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *4 (-871)) (-5 *2 (-663 (-2 (|:| |val| *8) (|:| -4297 *9)))) (-5 *1 (-1103 *6 *7 *4 *8 *9)))) (-4406 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *3 (-1096 *6 *7 *8)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *4)))) (-5 *1 (-1103 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-1835 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4)))) (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-2429 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))) (-1803 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1103 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-2650 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))) (-4389 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1103 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))))
-(-10 -7 (-15 -4389 ((-1303) (-1189) (-1189) (-1189))) (-15 -2650 ((-1303))) (-15 -1803 ((-1303) (-1189) (-1189) (-1189))) (-15 -2429 ((-1303))) (-15 -1835 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) |#4| |#4| |#5|)) (-15 -4406 ((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#4| |#5| (-114) (-114))) (-15 -4406 ((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) |#3| (-114))) (-15 -1869 ((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#4| |#5|)) (-15 -3657 ((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#4| |#5|)) (-15 -3033 ((-114) |#4| |#5|)) (-15 -3033 ((-663 (-2 (|:| |val| (-114)) (|:| -4297 |#5|))) |#4| |#5|)) (-15 -4315 ((-663 |#5|) |#4| |#5|)) (-15 -3797 ((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#5|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-1660 (((-1248) $) 13 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4341 (((-1166) $) 10 T ELT)) (-1578 (((-887) $) 20 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-1104) (-13 (-1114) (-10 -8 (-15 -4341 ((-1166) $)) (-15 -1660 ((-1248) $))))) (T -1104))
-((-4341 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1104)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-1104)))))
-(-13 (-1114) (-10 -8 (-15 -4341 ((-1166) $)) (-15 -1660 ((-1248) $))))
-((-3192 (((-114) $ $) 7 T ELT)))
-(((-1105) (-13 (-1247) (-10 -8 (-15 -3192 ((-114) $ $))))) (T -1105))
-((-3192 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1105)))))
-(-13 (-1247) (-10 -8 (-15 -3192 ((-114) $ $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1375 (($ $ (-663 (-1207)) (-1 (-114) (-663 |#3|))) 34 T ELT)) (-3362 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-663 (-1207))) 21 T ELT)) (-3401 ((|#3| $) 13 T ELT)) (-2539 (((-3 (-305 |#3|) "failed") $) 60 T ELT)) (-3330 (((-305 |#3|) $) NIL T ELT)) (-1867 (((-663 (-1207)) $) 16 T ELT)) (-2745 (((-915 |#1|) $) 11 T ELT)) (-3391 ((|#3| $) 12 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3924 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-948)) 41 T ELT)) (-1578 (((-887) $) 89 T ELT) (($ (-305 |#3|)) 22 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 38 T ELT)))
-(((-1106 |#1| |#2| |#3|) (-13 (-1132) (-298 |#3| |#3|) (-1069 (-305 |#3|)) (-10 -8 (-15 -3362 ($ |#3| |#3|)) (-15 -3362 ($ |#3| |#3| (-663 (-1207)))) (-15 -1375 ($ $ (-663 (-1207)) (-1 (-114) (-663 |#3|)))) (-15 -2745 ((-915 |#1|) $)) (-15 -3391 (|#3| $)) (-15 -3401 (|#3| $)) (-15 -3924 (|#3| $ |#3| (-948))) (-15 -1867 ((-663 (-1207)) $)))) (-1132) (-13 (-1080) (-911 |#1|) (-633 (-915 |#1|))) (-13 (-435 |#2|) (-911 |#1|) (-633 (-915 |#1|)))) (T -1106))
-((-3362 (*1 *1 *2 *2) (-12 (-4 *3 (-1132)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3)))) (-5 *1 (-1106 *3 *4 *2)) (-4 *2 (-13 (-435 *4) (-911 *3) (-633 (-915 *3)))))) (-3362 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-663 (-1207))) (-4 *4 (-1132)) (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4)))) (-5 *1 (-1106 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-911 *4) (-633 (-915 *4)))))) (-1375 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-1 (-114) (-663 *6))) (-4 *6 (-13 (-435 *5) (-911 *4) (-633 (-915 *4)))) (-4 *4 (-1132)) (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4)))) (-5 *1 (-1106 *4 *5 *6)))) (-2745 (*1 *2 *1) (-12 (-4 *3 (-1132)) (-4 *4 (-13 (-1080) (-911 *3) (-633 *2))) (-5 *2 (-915 *3)) (-5 *1 (-1106 *3 *4 *5)) (-4 *5 (-13 (-435 *4) (-911 *3) (-633 *2))))) (-3391 (*1 *2 *1) (-12 (-4 *3 (-1132)) (-4 *2 (-13 (-435 *4) (-911 *3) (-633 (-915 *3)))) (-5 *1 (-1106 *3 *4 *2)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3)))))) (-3401 (*1 *2 *1) (-12 (-4 *3 (-1132)) (-4 *2 (-13 (-435 *4) (-911 *3) (-633 (-915 *3)))) (-5 *1 (-1106 *3 *4 *2)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3)))))) (-3924 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-948)) (-4 *4 (-1132)) (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4)))) (-5 *1 (-1106 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-911 *4) (-633 (-915 *4)))))) (-1867 (*1 *2 *1) (-12 (-4 *3 (-1132)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3)))) (-5 *2 (-663 (-1207))) (-5 *1 (-1106 *3 *4 *5)) (-4 *5 (-13 (-435 *4) (-911 *3) (-633 (-915 *3)))))))
-(-13 (-1132) (-298 |#3| |#3|) (-1069 (-305 |#3|)) (-10 -8 (-15 -3362 ($ |#3| |#3|)) (-15 -3362 ($ |#3| |#3| (-663 (-1207)))) (-15 -1375 ($ $ (-663 (-1207)) (-1 (-114) (-663 |#3|)))) (-15 -2745 ((-915 |#1|) $)) (-15 -3391 (|#3| $)) (-15 -3401 (|#3| $)) (-15 -3924 (|#3| $ |#3| (-948))) (-15 -1867 ((-663 (-1207)) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3614 (((-1207) $) 8 T ELT)) (-1905 (((-1189) $) 17 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 11 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 14 T ELT)))
-(((-1107 |#1|) (-13 (-1132) (-10 -8 (-15 -3614 ((-1207) $)))) (-1207)) (T -1107))
-((-3614 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1107 *3)) (-14 *3 *2))))
-(-13 (-1132) (-10 -8 (-15 -3614 ((-1207) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1345 (($ (-663 (-1106 |#1| |#2| |#3|))) 14 T ELT)) (-2852 (((-663 (-1106 |#1| |#2| |#3|)) $) 21 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3924 ((|#3| $ |#3|) 24 T ELT) ((|#3| $ |#3| (-948)) 27 T ELT)) (-1578 (((-887) $) 17 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 20 T ELT)))
-(((-1108 |#1| |#2| |#3|) (-13 (-1132) (-298 |#3| |#3|) (-10 -8 (-15 -1345 ($ (-663 (-1106 |#1| |#2| |#3|)))) (-15 -2852 ((-663 (-1106 |#1| |#2| |#3|)) $)) (-15 -3924 (|#3| $ |#3| (-948))))) (-1132) (-13 (-1080) (-911 |#1|) (-633 (-915 |#1|))) (-13 (-435 |#2|) (-911 |#1|) (-633 (-915 |#1|)))) (T -1108))
-((-1345 (*1 *1 *2) (-12 (-5 *2 (-663 (-1106 *3 *4 *5))) (-4 *3 (-1132)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3)))) (-4 *5 (-13 (-435 *4) (-911 *3) (-633 (-915 *3)))) (-5 *1 (-1108 *3 *4 *5)))) (-2852 (*1 *2 *1) (-12 (-4 *3 (-1132)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3)))) (-5 *2 (-663 (-1106 *3 *4 *5))) (-5 *1 (-1108 *3 *4 *5)) (-4 *5 (-13 (-435 *4) (-911 *3) (-633 (-915 *3)))))) (-3924 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-948)) (-4 *4 (-1132)) (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4)))) (-5 *1 (-1108 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-911 *4) (-633 (-915 *4)))))))
-(-13 (-1132) (-298 |#3| |#3|) (-10 -8 (-15 -1345 ($ (-663 (-1106 |#1| |#2| |#3|)))) (-15 -2852 ((-663 (-1106 |#1| |#2| |#3|)) $)) (-15 -3924 (|#3| $ |#3| (-948)))))
-((-4258 (((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114) (-114)) 88 T ELT) (((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-663 (-975 |#1|))) 92 T ELT) (((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114)) 90 T ELT)))
-(((-1109 |#1| |#2|) (-10 -7 (-15 -4258 ((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114))) (-15 -4258 ((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-663 (-975 |#1|)))) (-15 -4258 ((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114) (-114)))) (-13 (-319) (-149)) (-663 (-1207))) (T -1109))
-((-4258 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-2 (|:| -4410 (-1201 *5)) (|:| -2178 (-663 (-975 *5)))))) (-5 *1 (-1109 *5 *6)) (-5 *3 (-663 (-975 *5))) (-14 *6 (-663 (-1207))))) (-4258 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-5 *2 (-663 (-2 (|:| -4410 (-1201 *4)) (|:| -2178 (-663 (-975 *4)))))) (-5 *1 (-1109 *4 *5)) (-5 *3 (-663 (-975 *4))) (-14 *5 (-663 (-1207))))) (-4258 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-2 (|:| -4410 (-1201 *5)) (|:| -2178 (-663 (-975 *5)))))) (-5 *1 (-1109 *5 *6)) (-5 *3 (-663 (-975 *5))) (-14 *6 (-663 (-1207))))))
-(-10 -7 (-15 -4258 ((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114))) (-15 -4258 ((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-663 (-975 |#1|)))) (-15 -4258 ((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114) (-114))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 136 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-376)) ELT)) (-3244 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-1698 (((-711 |#1|) (-1297 $)) NIL T ELT) (((-711 |#1|)) 121 T ELT)) (-3349 ((|#1| $) 125 T ELT)) (-2105 (((-1219 (-948) (-793)) (-560)) NIL (|has| |#1| (-363)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-1615 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3241 (((-793)) 43 (|has| |#1| (-381)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3330 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-4143 (($ (-1297 |#1|) (-1297 $)) NIL T ELT) (($ (-1297 |#1|)) 46 T ELT)) (-4217 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)) ELT)) (-1478 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4333 (((-711 |#1|) $ (-1297 $)) NIL T ELT) (((-711 |#1|) $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 113 T ELT) (((-711 |#1|) (-711 $)) 108 T ELT)) (-4129 (($ |#2|) 65 T ELT) (((-3 $ "failed") (-421 |#2|)) NIL (|has| |#1| (-376)) ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2326 (((-948)) 84 T ELT)) (-2310 (($) 47 (|has| |#1| (-381)) ELT)) (-1490 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4336 (($) NIL (|has| |#1| (-363)) ELT)) (-3976 (((-114) $) NIL (|has| |#1| (-363)) ELT)) (-1696 (($ $ (-793)) NIL (|has| |#1| (-363)) ELT) (($ $) NIL (|has| |#1| (-363)) ELT)) (-4330 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3913 (((-948) $) NIL (|has| |#1| (-363)) ELT) (((-854 (-948)) $) NIL (|has| |#1| (-363)) ELT)) (-1581 (((-114) $) NIL T ELT)) (-2032 ((|#1| $) NIL T ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| |#1| (-363)) ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1787 ((|#2| $) 91 (|has| |#1| (-376)) ELT)) (-4419 (((-948) $) 145 (|has| |#1| (-381)) ELT)) (-4116 ((|#2| $) 62 T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3161 (($) NIL (|has| |#1| (-363)) CONST)) (-3128 (($ (-948)) 135 (|has| |#1| (-381)) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2748 (($) 127 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3666 (((-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))) NIL (|has| |#1| (-363)) ELT)) (-4457 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-1528 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-2901 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2690 ((|#1| (-1297 $)) NIL T ELT) ((|#1|) 117 T ELT)) (-2364 (((-793) $) NIL (|has| |#1| (-363)) ELT) (((-3 (-793) "failed") $ $) NIL (|has| |#1| (-363)) ELT)) (-2894 (($ $ (-793)) NIL (-2304 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) NIL (-2304 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL (|has| |#1| (-376)) ELT)) (-3604 (((-711 |#1|) (-1297 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT)) (-4394 ((|#2|) 81 T ELT)) (-2243 (($) NIL (|has| |#1| (-363)) ELT)) (-2178 (((-1297 |#1|) $ (-1297 $)) 96 T ELT) (((-711 |#1|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#1|) $) 75 T ELT) (((-711 |#1|) (-1297 $)) 92 T ELT)) (-1407 (((-1297 |#1|) $) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| |#1| (-363)) ELT)) (-1578 (((-887) $) 61 T ELT) (($ (-560)) 56 T ELT) (($ |#1|) 58 T ELT) (($ $) NIL (|has| |#1| (-376)) ELT) (($ (-421 (-560))) NIL (-2304 (|has| |#1| (-376)) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-1964 (($ $) NIL (|has| |#1| (-363)) ELT) (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-2630 ((|#2| $) 89 T ELT)) (-2930 (((-793)) 83 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-1954 (((-1297 $)) 88 T ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-2001 (($) 32 T CONST)) (-2011 (($) 19 T CONST)) (-3305 (($ $ (-793)) NIL (-2304 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) NIL (-2304 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL (|has| |#1| (-376)) ELT)) (-2473 (((-114) $ $) 67 T ELT)) (-2594 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $) 71 T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 69 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 54 T ELT) (($ $ $) 73 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 51 T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-376)) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-376)) ELT)))
+((-1631 (((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#5|) 86 T ELT)) (-2874 (((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#4| |#5|) 127 T ELT)) (-2991 (((-663 |#5|) |#4| |#5|) 74 T ELT)) (-2702 (((-663 (-2 (|:| |val| (-114)) (|:| -3859 |#5|))) |#4| |#5|) 47 T ELT) (((-114) |#4| |#5|) 55 T ELT)) (-1670 (((-1303)) 36 T ELT)) (-3190 (((-1303)) 25 T ELT)) (-1609 (((-1303) (-1189) (-1189) (-1189)) 32 T ELT)) (-2349 (((-1303) (-1189) (-1189) (-1189)) 21 T ELT)) (-1976 (((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) |#4| |#4| |#5|) 107 T ELT)) (-2513 (((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) |#3| (-114)) 118 T ELT) (((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#4| |#5| (-114) (-114)) 52 T ELT)) (-4230 (((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#4| |#5|) 113 T ELT)))
+(((-1103 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2349 ((-1303) (-1189) (-1189) (-1189))) (-15 -3190 ((-1303))) (-15 -1609 ((-1303) (-1189) (-1189) (-1189))) (-15 -1670 ((-1303))) (-15 -1976 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) |#4| |#4| |#5|)) (-15 -2513 ((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#4| |#5| (-114) (-114))) (-15 -2513 ((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) |#3| (-114))) (-15 -4230 ((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#4| |#5|)) (-15 -2874 ((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#4| |#5|)) (-15 -2702 ((-114) |#4| |#5|)) (-15 -2702 ((-663 (-2 (|:| |val| (-114)) (|:| -3859 |#5|))) |#4| |#5|)) (-15 -2991 ((-663 |#5|) |#4| |#5|)) (-15 -1631 ((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#5|))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -1103))
+((-1631 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *4)))) (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-2991 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 *4)) (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-2702 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -3859 *4)))) (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-2702 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-2874 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *4)))) (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-4230 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *4)))) (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-2513 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -3859 *9)))) (-5 *5 (-114)) (-4 *8 (-1096 *6 *7 *4)) (-4 *9 (-1102 *6 *7 *4 *8)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *4 (-871)) (-5 *2 (-663 (-2 (|:| |val| *8) (|:| -3859 *9)))) (-5 *1 (-1103 *6 *7 *4 *8 *9)))) (-2513 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *3 (-1096 *6 *7 *8)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *4)))) (-5 *1 (-1103 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-1976 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4)))) (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1670 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))) (-1609 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1103 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-3190 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))) (-2349 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1103 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2349 ((-1303) (-1189) (-1189) (-1189))) (-15 -3190 ((-1303))) (-15 -1609 ((-1303) (-1189) (-1189) (-1189))) (-15 -1670 ((-1303))) (-15 -1976 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) |#4| |#4| |#5|)) (-15 -2513 ((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#4| |#5| (-114) (-114))) (-15 -2513 ((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) |#3| (-114))) (-15 -4230 ((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#4| |#5|)) (-15 -2874 ((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#4| |#5|)) (-15 -2702 ((-114) |#4| |#5|)) (-15 -2702 ((-663 (-2 (|:| |val| (-114)) (|:| -3859 |#5|))) |#4| |#5|)) (-15 -2991 ((-663 |#5|) |#4| |#5|)) (-15 -1631 ((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#5|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3300 (((-1248) $) 13 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4465 (((-1166) $) 10 T ELT)) (-3913 (((-887) $) 20 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-1104) (-13 (-1114) (-10 -8 (-15 -4465 ((-1166) $)) (-15 -3300 ((-1248) $))))) (T -1104))
+((-4465 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1104)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-1104)))))
+(-13 (-1114) (-10 -8 (-15 -4465 ((-1166) $)) (-15 -3300 ((-1248) $))))
+((-2439 (((-114) $ $) 7 T ELT)))
+(((-1105) (-13 (-1247) (-10 -8 (-15 -2439 ((-114) $ $))))) (T -1105))
+((-2439 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1105)))))
+(-13 (-1247) (-10 -8 (-15 -2439 ((-114) $ $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2141 (($ $ (-663 (-1207)) (-1 (-114) (-663 |#3|))) 34 T ELT)) (-3164 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-663 (-1207))) 21 T ELT)) (-4133 ((|#3| $) 13 T ELT)) (-3929 (((-3 (-305 |#3|) "failed") $) 60 T ELT)) (-3649 (((-305 |#3|) $) NIL T ELT)) (-4212 (((-663 (-1207)) $) 16 T ELT)) (-1860 (((-915 |#1|) $) 11 T ELT)) (-4121 ((|#3| $) 12 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1507 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-948)) 41 T ELT)) (-3913 (((-887) $) 89 T ELT) (($ (-305 |#3|)) 22 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 38 T ELT)))
+(((-1106 |#1| |#2| |#3|) (-13 (-1132) (-298 |#3| |#3|) (-1069 (-305 |#3|)) (-10 -8 (-15 -3164 ($ |#3| |#3|)) (-15 -3164 ($ |#3| |#3| (-663 (-1207)))) (-15 -2141 ($ $ (-663 (-1207)) (-1 (-114) (-663 |#3|)))) (-15 -1860 ((-915 |#1|) $)) (-15 -4121 (|#3| $)) (-15 -4133 (|#3| $)) (-15 -1507 (|#3| $ |#3| (-948))) (-15 -4212 ((-663 (-1207)) $)))) (-1132) (-13 (-1080) (-911 |#1|) (-633 (-915 |#1|))) (-13 (-435 |#2|) (-911 |#1|) (-633 (-915 |#1|)))) (T -1106))
+((-3164 (*1 *1 *2 *2) (-12 (-4 *3 (-1132)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3)))) (-5 *1 (-1106 *3 *4 *2)) (-4 *2 (-13 (-435 *4) (-911 *3) (-633 (-915 *3)))))) (-3164 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-663 (-1207))) (-4 *4 (-1132)) (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4)))) (-5 *1 (-1106 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-911 *4) (-633 (-915 *4)))))) (-2141 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-1 (-114) (-663 *6))) (-4 *6 (-13 (-435 *5) (-911 *4) (-633 (-915 *4)))) (-4 *4 (-1132)) (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4)))) (-5 *1 (-1106 *4 *5 *6)))) (-1860 (*1 *2 *1) (-12 (-4 *3 (-1132)) (-4 *4 (-13 (-1080) (-911 *3) (-633 *2))) (-5 *2 (-915 *3)) (-5 *1 (-1106 *3 *4 *5)) (-4 *5 (-13 (-435 *4) (-911 *3) (-633 *2))))) (-4121 (*1 *2 *1) (-12 (-4 *3 (-1132)) (-4 *2 (-13 (-435 *4) (-911 *3) (-633 (-915 *3)))) (-5 *1 (-1106 *3 *4 *2)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3)))))) (-4133 (*1 *2 *1) (-12 (-4 *3 (-1132)) (-4 *2 (-13 (-435 *4) (-911 *3) (-633 (-915 *3)))) (-5 *1 (-1106 *3 *4 *2)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3)))))) (-1507 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-948)) (-4 *4 (-1132)) (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4)))) (-5 *1 (-1106 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-911 *4) (-633 (-915 *4)))))) (-4212 (*1 *2 *1) (-12 (-4 *3 (-1132)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3)))) (-5 *2 (-663 (-1207))) (-5 *1 (-1106 *3 *4 *5)) (-4 *5 (-13 (-435 *4) (-911 *3) (-633 (-915 *3)))))))
+(-13 (-1132) (-298 |#3| |#3|) (-1069 (-305 |#3|)) (-10 -8 (-15 -3164 ($ |#3| |#3|)) (-15 -3164 ($ |#3| |#3| (-663 (-1207)))) (-15 -2141 ($ $ (-663 (-1207)) (-1 (-114) (-663 |#3|)))) (-15 -1860 ((-915 |#1|) $)) (-15 -4121 (|#3| $)) (-15 -4133 (|#3| $)) (-15 -1507 (|#3| $ |#3| (-948))) (-15 -4212 ((-663 (-1207)) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-4389 (((-1207) $) 8 T ELT)) (-3358 (((-1189) $) 17 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 11 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 14 T ELT)))
+(((-1107 |#1|) (-13 (-1132) (-10 -8 (-15 -4389 ((-1207) $)))) (-1207)) (T -1107))
+((-4389 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1107 *3)) (-14 *3 *2))))
+(-13 (-1132) (-10 -8 (-15 -4389 ((-1207) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2114 (($ (-663 (-1106 |#1| |#2| |#3|))) 14 T ELT)) (-2764 (((-663 (-1106 |#1| |#2| |#3|)) $) 21 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1507 ((|#3| $ |#3|) 24 T ELT) ((|#3| $ |#3| (-948)) 27 T ELT)) (-3913 (((-887) $) 17 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 20 T ELT)))
+(((-1108 |#1| |#2| |#3|) (-13 (-1132) (-298 |#3| |#3|) (-10 -8 (-15 -2114 ($ (-663 (-1106 |#1| |#2| |#3|)))) (-15 -2764 ((-663 (-1106 |#1| |#2| |#3|)) $)) (-15 -1507 (|#3| $ |#3| (-948))))) (-1132) (-13 (-1080) (-911 |#1|) (-633 (-915 |#1|))) (-13 (-435 |#2|) (-911 |#1|) (-633 (-915 |#1|)))) (T -1108))
+((-2114 (*1 *1 *2) (-12 (-5 *2 (-663 (-1106 *3 *4 *5))) (-4 *3 (-1132)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3)))) (-4 *5 (-13 (-435 *4) (-911 *3) (-633 (-915 *3)))) (-5 *1 (-1108 *3 *4 *5)))) (-2764 (*1 *2 *1) (-12 (-4 *3 (-1132)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3)))) (-5 *2 (-663 (-1106 *3 *4 *5))) (-5 *1 (-1108 *3 *4 *5)) (-4 *5 (-13 (-435 *4) (-911 *3) (-633 (-915 *3)))))) (-1507 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-948)) (-4 *4 (-1132)) (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4)))) (-5 *1 (-1108 *4 *5 *2)) (-4 *2 (-13 (-435 *5) (-911 *4) (-633 (-915 *4)))))))
+(-13 (-1132) (-298 |#3| |#3|) (-10 -8 (-15 -2114 ($ (-663 (-1106 |#1| |#2| |#3|)))) (-15 -2764 ((-663 (-1106 |#1| |#2| |#3|)) $)) (-15 -1507 (|#3| $ |#3| (-948)))))
+((-3769 (((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114) (-114)) 88 T ELT) (((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-663 (-975 |#1|))) 92 T ELT) (((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114)) 90 T ELT)))
+(((-1109 |#1| |#2|) (-10 -7 (-15 -3769 ((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114))) (-15 -3769 ((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-663 (-975 |#1|)))) (-15 -3769 ((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114) (-114)))) (-13 (-319) (-149)) (-663 (-1207))) (T -1109))
+((-3769 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-2 (|:| -2557 (-1201 *5)) (|:| -4226 (-663 (-975 *5)))))) (-5 *1 (-1109 *5 *6)) (-5 *3 (-663 (-975 *5))) (-14 *6 (-663 (-1207))))) (-3769 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-5 *2 (-663 (-2 (|:| -2557 (-1201 *4)) (|:| -4226 (-663 (-975 *4)))))) (-5 *1 (-1109 *4 *5)) (-5 *3 (-663 (-975 *4))) (-14 *5 (-663 (-1207))))) (-3769 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-2 (|:| -2557 (-1201 *5)) (|:| -4226 (-663 (-975 *5)))))) (-5 *1 (-1109 *5 *6)) (-5 *3 (-663 (-975 *5))) (-14 *6 (-663 (-1207))))))
+(-10 -7 (-15 -3769 ((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114))) (-15 -3769 ((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-663 (-975 |#1|)))) (-15 -3769 ((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114) (-114))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 136 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-376)) ELT)) (-4366 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3100 (((-711 |#1|) (-1297 $)) NIL T ELT) (((-711 |#1|)) 121 T ELT)) (-4113 ((|#1| $) 125 T ELT)) (-1548 (((-1219 (-948) (-793)) (-560)) NIL (|has| |#1| (-363)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-3476 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-2552 (((-793)) 43 (|has| |#1| (-381)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3649 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-1953 (($ (-1297 |#1|) (-1297 $)) NIL T ELT) (($ (-1297 |#1|)) 46 T ELT)) (-1433 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)) ELT)) (-2186 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3160 (((-711 |#1|) $ (-1297 $)) NIL T ELT) (((-711 |#1|) $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 113 T ELT) (((-711 |#1|) (-711 $)) 108 T ELT)) (-1778 (($ |#2|) 65 T ELT) (((-3 $ "failed") (-421 |#2|)) NIL (|has| |#1| (-376)) ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1604 (((-948)) 84 T ELT)) (-1812 (($) 47 (|has| |#1| (-381)) ELT)) (-2197 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-3191 (($) NIL (|has| |#1| (-363)) ELT)) (-4017 (((-114) $) NIL (|has| |#1| (-363)) ELT)) (-3079 (($ $ (-793)) NIL (|has| |#1| (-363)) ELT) (($ $) NIL (|has| |#1| (-363)) ELT)) (-3141 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-1460 (((-948) $) NIL (|has| |#1| (-363)) ELT) (((-854 (-948)) $) NIL (|has| |#1| (-363)) ELT)) (-1918 (((-114) $) NIL T ELT)) (-2084 ((|#1| $) NIL T ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| |#1| (-363)) ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1471 ((|#2| $) 91 (|has| |#1| (-376)) ELT)) (-2622 (((-948) $) 145 (|has| |#1| (-381)) ELT)) (-1767 ((|#2| $) 62 T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3239 (($) NIL (|has| |#1| (-363)) CONST)) (-1591 (($ (-948)) 135 (|has| |#1| (-381)) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3583 (($) 127 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2976 (((-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))) NIL (|has| |#1| (-363)) ELT)) (-4012 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2233 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-3989 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2336 ((|#1| (-1297 $)) NIL T ELT) ((|#1|) 117 T ELT)) (-2258 (((-793) $) NIL (|has| |#1| (-363)) ELT) (((-3 (-793) "failed") $ $) NIL (|has| |#1| (-363)) ELT)) (-3161 (($ $ (-793)) NIL (-2196 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) NIL (-2196 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL (|has| |#1| (-376)) ELT)) (-3634 (((-711 |#1|) (-1297 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT)) (-2407 ((|#2|) 81 T ELT)) (-3569 (($) NIL (|has| |#1| (-363)) ELT)) (-4226 (((-1297 |#1|) $ (-1297 $)) 96 T ELT) (((-711 |#1|) (-1297 $) (-1297 $)) NIL T ELT) (((-1297 |#1|) $) 75 T ELT) (((-711 |#1|) (-1297 $)) 92 T ELT)) (-2400 (((-1297 |#1|) $) NIL T ELT) (($ (-1297 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (|has| |#1| (-363)) ELT)) (-3913 (((-887) $) 61 T ELT) (($ (-560)) 56 T ELT) (($ |#1|) 58 T ELT) (($ $) NIL (|has| |#1| (-376)) ELT) (($ (-421 (-560))) NIL (-2196 (|has| |#1| (-376)) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-363)) ELT) (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-2978 ((|#2| $) 89 T ELT)) (-4191 (((-793)) 83 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-3822 (((-1297 $)) 88 T ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-1446 (($) 32 T CONST)) (-1456 (($) 19 T CONST)) (-2111 (($ $ (-793)) NIL (-2196 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) NIL (-2196 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-929 (-1207)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL (|has| |#1| (-376)) ELT)) (-2340 (((-114) $ $) 67 T ELT)) (-2453 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $) 71 T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 69 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 54 T ELT) (($ $ $) 73 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 51 T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-376)) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-376)) ELT)))
(((-1110 |#1| |#2| |#3|) (-746 |#1| |#2|) (-175) (-1273 |#1|) |#2|) (T -1110))
NIL
(-746 |#1| |#2|)
-((-4457 (((-419 |#3|) |#3|) 18 T ELT)))
-(((-1111 |#1| |#2| |#3|) (-10 -7 (-15 -4457 ((-419 |#3|) |#3|))) (-1273 (-421 (-560))) (-13 (-376) (-149) (-746 (-421 (-560)) |#1|)) (-1273 |#2|)) (T -1111))
-((-4457 (*1 *2 *3) (-12 (-4 *4 (-1273 (-421 (-560)))) (-4 *5 (-13 (-376) (-149) (-746 (-421 (-560)) *4))) (-5 *2 (-419 *3)) (-5 *1 (-1111 *4 *5 *3)) (-4 *3 (-1273 *5)))))
-(-10 -7 (-15 -4457 ((-419 |#3|) |#3|)))
-((-4457 (((-419 |#3|) |#3|) 19 T ELT)))
-(((-1112 |#1| |#2| |#3|) (-10 -7 (-15 -4457 ((-419 |#3|) |#3|))) (-1273 (-421 (-975 (-560)))) (-13 (-376) (-149) (-746 (-421 (-975 (-560))) |#1|)) (-1273 |#2|)) (T -1112))
-((-4457 (*1 *2 *3) (-12 (-4 *4 (-1273 (-421 (-975 (-560))))) (-4 *5 (-13 (-376) (-149) (-746 (-421 (-975 (-560))) *4))) (-5 *2 (-419 *3)) (-5 *1 (-1112 *4 *5 *3)) (-4 *3 (-1273 *5)))))
-(-10 -7 (-15 -4457 ((-419 |#3|) |#3|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-3825 (($ $ $) 16 T ELT)) (-2820 (($ $ $) 17 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3272 (($) 6 T ELT)) (-1407 (((-1207) $) 20 T ELT)) (-1578 (((-887) $) 13 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 15 T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 9 T ELT)))
-(((-1113) (-13 (-871) (-633 (-1207)) (-10 -8 (-15 -3272 ($))))) (T -1113))
-((-3272 (*1 *1) (-5 *1 (-1113))))
-(-13 (-871) (-633 (-1207)) (-10 -8 (-15 -3272 ($))))
-((-1538 (((-114) $ $) 7 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-1212)) 17 T ELT) (((-1212) $) 16 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2473 (((-114) $ $) 8 T ELT)))
+((-4012 (((-419 |#3|) |#3|) 18 T ELT)))
+(((-1111 |#1| |#2| |#3|) (-10 -7 (-15 -4012 ((-419 |#3|) |#3|))) (-1273 (-421 (-560))) (-13 (-376) (-149) (-746 (-421 (-560)) |#1|)) (-1273 |#2|)) (T -1111))
+((-4012 (*1 *2 *3) (-12 (-4 *4 (-1273 (-421 (-560)))) (-4 *5 (-13 (-376) (-149) (-746 (-421 (-560)) *4))) (-5 *2 (-419 *3)) (-5 *1 (-1111 *4 *5 *3)) (-4 *3 (-1273 *5)))))
+(-10 -7 (-15 -4012 ((-419 |#3|) |#3|)))
+((-4012 (((-419 |#3|) |#3|) 19 T ELT)))
+(((-1112 |#1| |#2| |#3|) (-10 -7 (-15 -4012 ((-419 |#3|) |#3|))) (-1273 (-421 (-975 (-560)))) (-13 (-376) (-149) (-746 (-421 (-975 (-560))) |#1|)) (-1273 |#2|)) (T -1112))
+((-4012 (*1 *2 *3) (-12 (-4 *4 (-1273 (-421 (-975 (-560))))) (-4 *5 (-13 (-376) (-149) (-746 (-421 (-975 (-560))) *4))) (-5 *2 (-419 *3)) (-5 *1 (-1112 *4 *5 *3)) (-4 *3 (-1273 *5)))))
+(-10 -7 (-15 -4012 ((-419 |#3|) |#3|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2932 (($ $ $) 16 T ELT)) (-4379 (($ $ $) 17 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3393 (($) 6 T ELT)) (-2400 (((-1207) $) 20 T ELT)) (-3913 (((-887) $) 13 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 15 T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 9 T ELT)))
+(((-1113) (-13 (-871) (-633 (-1207)) (-10 -8 (-15 -3393 ($))))) (T -1113))
+((-3393 (*1 *1) (-5 *1 (-1113))))
+(-13 (-871) (-633 (-1207)) (-10 -8 (-15 -3393 ($))))
+((-2243 (((-114) $ $) 7 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-1212)) 17 T ELT) (((-1212) $) 16 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2340 (((-114) $ $) 8 T ELT)))
(((-1114) (-142)) (T -1114))
NIL
(-13 (-93))
(((-93) . T) ((-102) . T) ((-635 #0=(-1212)) . T) ((-632 (-887)) . T) ((-632 #0#) . T) ((-504 #0#) . T) ((-1132) . T) ((-1247) . T))
-((-3017 ((|#1| |#1| (-1 (-560) |#1| |#1|)) 42 T ELT) ((|#1| |#1| (-1 (-114) |#1|)) 33 T ELT)) (-2769 (((-1303)) 21 T ELT)) (-4100 (((-663 |#1|)) 13 T ELT)))
-(((-1115 |#1|) (-10 -7 (-15 -2769 ((-1303))) (-15 -4100 ((-663 |#1|))) (-15 -3017 (|#1| |#1| (-1 (-114) |#1|))) (-15 -3017 (|#1| |#1| (-1 (-560) |#1| |#1|)))) (-134)) (T -1115))
-((-3017 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-560) *2 *2)) (-4 *2 (-134)) (-5 *1 (-1115 *2)))) (-3017 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *2)) (-4 *2 (-134)) (-5 *1 (-1115 *2)))) (-4100 (*1 *2) (-12 (-5 *2 (-663 *3)) (-5 *1 (-1115 *3)) (-4 *3 (-134)))) (-2769 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1115 *3)) (-4 *3 (-134)))))
-(-10 -7 (-15 -2769 ((-1303))) (-15 -4100 ((-663 |#1|))) (-15 -3017 (|#1| |#1| (-1 (-114) |#1|))) (-15 -3017 (|#1| |#1| (-1 (-560) |#1| |#1|))))
-((-3263 (($ (-109) $) 20 T ELT)) (-2526 (((-713 (-109)) (-520) $) 19 T ELT)) (-3986 (($) 7 T ELT)) (-2795 (($) 21 T ELT)) (-1689 (($) 22 T ELT)) (-2281 (((-663 (-178)) $) 10 T ELT)) (-1578 (((-887) $) 25 T ELT)))
-(((-1116) (-13 (-632 (-887)) (-10 -8 (-15 -3986 ($)) (-15 -2281 ((-663 (-178)) $)) (-15 -2526 ((-713 (-109)) (-520) $)) (-15 -3263 ($ (-109) $)) (-15 -2795 ($)) (-15 -1689 ($))))) (T -1116))
-((-3986 (*1 *1) (-5 *1 (-1116))) (-2281 (*1 *2 *1) (-12 (-5 *2 (-663 (-178))) (-5 *1 (-1116)))) (-2526 (*1 *2 *3 *1) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-109))) (-5 *1 (-1116)))) (-3263 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1116)))) (-2795 (*1 *1) (-5 *1 (-1116))) (-1689 (*1 *1) (-5 *1 (-1116))))
-(-13 (-632 (-887)) (-10 -8 (-15 -3986 ($)) (-15 -2281 ((-663 (-178)) $)) (-15 -2526 ((-713 (-109)) (-520) $)) (-15 -3263 ($ (-109) $)) (-15 -2795 ($)) (-15 -1689 ($))))
-((-2545 (((-1297 (-711 |#1|)) (-663 (-711 |#1|))) 45 T ELT) (((-1297 (-711 (-975 |#1|))) (-663 (-1207)) (-711 (-975 |#1|))) 75 T ELT) (((-1297 (-711 (-421 (-975 |#1|)))) (-663 (-1207)) (-711 (-421 (-975 |#1|)))) 92 T ELT)) (-2178 (((-1297 |#1|) (-711 |#1|) (-663 (-711 |#1|))) 39 T ELT)))
-(((-1117 |#1|) (-10 -7 (-15 -2545 ((-1297 (-711 (-421 (-975 |#1|)))) (-663 (-1207)) (-711 (-421 (-975 |#1|))))) (-15 -2545 ((-1297 (-711 (-975 |#1|))) (-663 (-1207)) (-711 (-975 |#1|)))) (-15 -2545 ((-1297 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -2178 ((-1297 |#1|) (-711 |#1|) (-663 (-711 |#1|))))) (-376)) (T -1117))
-((-2178 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-711 *5))) (-5 *3 (-711 *5)) (-4 *5 (-376)) (-5 *2 (-1297 *5)) (-5 *1 (-1117 *5)))) (-2545 (*1 *2 *3) (-12 (-5 *3 (-663 (-711 *4))) (-4 *4 (-376)) (-5 *2 (-1297 (-711 *4))) (-5 *1 (-1117 *4)))) (-2545 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-1207))) (-4 *5 (-376)) (-5 *2 (-1297 (-711 (-975 *5)))) (-5 *1 (-1117 *5)) (-5 *4 (-711 (-975 *5))))) (-2545 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-1207))) (-4 *5 (-376)) (-5 *2 (-1297 (-711 (-421 (-975 *5))))) (-5 *1 (-1117 *5)) (-5 *4 (-711 (-421 (-975 *5)))))))
-(-10 -7 (-15 -2545 ((-1297 (-711 (-421 (-975 |#1|)))) (-663 (-1207)) (-711 (-421 (-975 |#1|))))) (-15 -2545 ((-1297 (-711 (-975 |#1|))) (-663 (-1207)) (-711 (-975 |#1|)))) (-15 -2545 ((-1297 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -2178 ((-1297 |#1|) (-711 |#1|) (-663 (-711 |#1|)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3066 (((-663 (-793)) $) NIL T ELT) (((-663 (-793)) $ (-1207)) NIL T ELT)) (-4441 (((-793) $) NIL T ELT) (((-793) $ (-1207)) NIL T ELT)) (-1443 (((-663 (-1119 (-1207))) $) NIL T ELT)) (-4422 (((-1201 $) $ (-1119 (-1207))) NIL T ELT) (((-1201 |#1|) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3107 (((-793) $) NIL T ELT) (((-793) $ (-663 (-1119 (-1207)))) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1804 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-2972 (($ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-1119 (-1207)) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL T ELT) (((-3 (-1156 |#1| (-1207)) "failed") $) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-1119 (-1207)) $) NIL T ELT) (((-1207) $) NIL T ELT) (((-1156 |#1| (-1207)) $) NIL T ELT)) (-2788 (($ $ $ (-1119 (-1207))) NIL (|has| |#1| (-175)) ELT)) (-1624 (($ $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2806 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1119 (-1207))) NIL (|has| |#1| (-466)) ELT)) (-1608 (((-663 $) $) NIL T ELT)) (-4330 (((-114) $) NIL (|has| |#1| (-939)) ELT)) (-4342 (($ $ |#1| (-545 (-1119 (-1207))) $) NIL T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1119 (-1207)) (-911 (-391))) (|has| |#1| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-1119 (-1207)) (-911 (-560))) (|has| |#1| (-911 (-560)))) ELT)) (-3913 (((-793) $ (-1207)) NIL T ELT) (((-793) $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-3531 (((-793) $) NIL T ELT)) (-1427 (($ (-1201 |#1|) (-1119 (-1207))) NIL T ELT) (($ (-1201 $) (-1119 (-1207))) NIL T ELT)) (-3997 (((-663 $) $) NIL T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-545 (-1119 (-1207)))) NIL T ELT) (($ $ (-1119 (-1207)) (-793)) NIL T ELT) (($ $ (-663 (-1119 (-1207))) (-663 (-793))) NIL T ELT)) (-3559 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $ (-1119 (-1207))) NIL T ELT)) (-3011 (((-545 (-1119 (-1207))) $) NIL T ELT) (((-793) $ (-1119 (-1207))) NIL T ELT) (((-663 (-793)) $ (-663 (-1119 (-1207)))) NIL T ELT)) (-4321 (($ (-1 (-545 (-1119 (-1207))) (-545 (-1119 (-1207)))) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2966 (((-1 $ (-793)) (-1207)) NIL T ELT) (((-1 $ (-793)) $) NIL (|has| |#1| (-240)) ELT)) (-1955 (((-3 (-1119 (-1207)) "failed") $) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-4427 (((-1119 (-1207)) $) NIL T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2367 (((-114) $) NIL T ELT)) (-3479 (((-3 (-663 $) "failed") $) NIL T ELT)) (-2590 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3683 (((-3 (-2 (|:| |var| (-1119 (-1207))) (|:| -3205 (-793))) "failed") $) NIL T ELT)) (-3991 (($ $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1554 (((-114) $) NIL T ELT)) (-1566 ((|#1| $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-466)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-4457 (((-419 $) $) NIL (|has| |#1| (-939)) ELT)) (-1528 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-4187 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-1119 (-1207)) |#1|) NIL T ELT) (($ $ (-663 (-1119 (-1207))) (-663 |#1|)) NIL T ELT) (($ $ (-1119 (-1207)) $) NIL T ELT) (($ $ (-663 (-1119 (-1207))) (-663 $)) NIL T ELT) (($ $ (-1207) $) NIL (|has| |#1| (-240)) ELT) (($ $ (-663 (-1207)) (-663 $)) NIL (|has| |#1| (-240)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-2690 (($ $ (-1119 (-1207))) NIL (|has| |#1| (-175)) ELT)) (-2894 (($ $ (-663 (-1119 (-1207))) (-663 (-793))) NIL T ELT) (($ $ (-1119 (-1207)) (-793)) NIL T ELT) (($ $ (-663 (-1119 (-1207)))) NIL T ELT) (($ $ (-1119 (-1207))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-3141 (((-663 (-1207)) $) NIL T ELT)) (-3630 (((-545 (-1119 (-1207))) $) NIL T ELT) (((-793) $ (-1119 (-1207))) NIL T ELT) (((-663 (-793)) $ (-663 (-1119 (-1207)))) NIL T ELT) (((-793) $ (-1207)) NIL T ELT)) (-1407 (((-915 (-391)) $) NIL (-12 (|has| (-1119 (-1207)) (-633 (-915 (-391)))) (|has| |#1| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-1119 (-1207)) (-633 (-915 (-560)))) (|has| |#1| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-1119 (-1207)) (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-2053 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1119 (-1207))) NIL (|has| |#1| (-466)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1119 (-1207))) NIL T ELT) (($ (-1207)) NIL T ELT) (($ (-1156 |#1| (-1207))) NIL T ELT) (($ (-421 (-560))) NIL (-2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-3409 (((-663 |#1|) $) NIL T ELT)) (-2305 ((|#1| $ (-545 (-1119 (-1207)))) NIL T ELT) (($ $ (-1119 (-1207)) (-793)) NIL T ELT) (($ $ (-663 (-1119 (-1207))) (-663 (-793))) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-2930 (((-793)) NIL T CONST)) (-2392 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $ (-663 (-1119 (-1207))) (-663 (-793))) NIL T ELT) (($ $ (-1119 (-1207)) (-793)) NIL T ELT) (($ $ (-663 (-1119 (-1207)))) NIL T ELT) (($ $ (-1119 (-1207))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+((-3823 ((|#1| |#1| (-1 (-560) |#1| |#1|)) 42 T ELT) ((|#1| |#1| (-1 (-114) |#1|)) 33 T ELT)) (-3400 (((-1303)) 21 T ELT)) (-2357 (((-663 |#1|)) 13 T ELT)))
+(((-1115 |#1|) (-10 -7 (-15 -3400 ((-1303))) (-15 -2357 ((-663 |#1|))) (-15 -3823 (|#1| |#1| (-1 (-114) |#1|))) (-15 -3823 (|#1| |#1| (-1 (-560) |#1| |#1|)))) (-134)) (T -1115))
+((-3823 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-560) *2 *2)) (-4 *2 (-134)) (-5 *1 (-1115 *2)))) (-3823 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *2)) (-4 *2 (-134)) (-5 *1 (-1115 *2)))) (-2357 (*1 *2) (-12 (-5 *2 (-663 *3)) (-5 *1 (-1115 *3)) (-4 *3 (-134)))) (-3400 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1115 *3)) (-4 *3 (-134)))))
+(-10 -7 (-15 -3400 ((-1303))) (-15 -2357 ((-663 |#1|))) (-15 -3823 (|#1| |#1| (-1 (-114) |#1|))) (-15 -3823 (|#1| |#1| (-1 (-560) |#1| |#1|))))
+((-1395 (($ (-109) $) 20 T ELT)) (-4462 (((-713 (-109)) (-520) $) 19 T ELT)) (-2832 (($) 7 T ELT)) (-4123 (($) 21 T ELT)) (-2994 (($) 22 T ELT)) (-2709 (((-663 (-178)) $) 10 T ELT)) (-3913 (((-887) $) 25 T ELT)))
+(((-1116) (-13 (-632 (-887)) (-10 -8 (-15 -2832 ($)) (-15 -2709 ((-663 (-178)) $)) (-15 -4462 ((-713 (-109)) (-520) $)) (-15 -1395 ($ (-109) $)) (-15 -4123 ($)) (-15 -2994 ($))))) (T -1116))
+((-2832 (*1 *1) (-5 *1 (-1116))) (-2709 (*1 *2 *1) (-12 (-5 *2 (-663 (-178))) (-5 *1 (-1116)))) (-4462 (*1 *2 *3 *1) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-109))) (-5 *1 (-1116)))) (-1395 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1116)))) (-4123 (*1 *1) (-5 *1 (-1116))) (-2994 (*1 *1) (-5 *1 (-1116))))
+(-13 (-632 (-887)) (-10 -8 (-15 -2832 ($)) (-15 -2709 ((-663 (-178)) $)) (-15 -4462 ((-713 (-109)) (-520) $)) (-15 -1395 ($ (-109) $)) (-15 -4123 ($)) (-15 -2994 ($))))
+((-3398 (((-1297 (-711 |#1|)) (-663 (-711 |#1|))) 45 T ELT) (((-1297 (-711 (-975 |#1|))) (-663 (-1207)) (-711 (-975 |#1|))) 75 T ELT) (((-1297 (-711 (-421 (-975 |#1|)))) (-663 (-1207)) (-711 (-421 (-975 |#1|)))) 92 T ELT)) (-4226 (((-1297 |#1|) (-711 |#1|) (-663 (-711 |#1|))) 39 T ELT)))
+(((-1117 |#1|) (-10 -7 (-15 -3398 ((-1297 (-711 (-421 (-975 |#1|)))) (-663 (-1207)) (-711 (-421 (-975 |#1|))))) (-15 -3398 ((-1297 (-711 (-975 |#1|))) (-663 (-1207)) (-711 (-975 |#1|)))) (-15 -3398 ((-1297 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -4226 ((-1297 |#1|) (-711 |#1|) (-663 (-711 |#1|))))) (-376)) (T -1117))
+((-4226 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-711 *5))) (-5 *3 (-711 *5)) (-4 *5 (-376)) (-5 *2 (-1297 *5)) (-5 *1 (-1117 *5)))) (-3398 (*1 *2 *3) (-12 (-5 *3 (-663 (-711 *4))) (-4 *4 (-376)) (-5 *2 (-1297 (-711 *4))) (-5 *1 (-1117 *4)))) (-3398 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-1207))) (-4 *5 (-376)) (-5 *2 (-1297 (-711 (-975 *5)))) (-5 *1 (-1117 *5)) (-5 *4 (-711 (-975 *5))))) (-3398 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-1207))) (-4 *5 (-376)) (-5 *2 (-1297 (-711 (-421 (-975 *5))))) (-5 *1 (-1117 *5)) (-5 *4 (-711 (-421 (-975 *5)))))))
+(-10 -7 (-15 -3398 ((-1297 (-711 (-421 (-975 |#1|)))) (-663 (-1207)) (-711 (-421 (-975 |#1|))))) (-15 -3398 ((-1297 (-711 (-975 |#1|))) (-663 (-1207)) (-711 (-975 |#1|)))) (-15 -3398 ((-1297 (-711 |#1|)) (-663 (-711 |#1|)))) (-15 -4226 ((-1297 |#1|) (-711 |#1|) (-663 (-711 |#1|)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3074 (((-663 (-793)) $) NIL T ELT) (((-663 (-793)) $ (-1207)) NIL T ELT)) (-2775 (((-793) $) NIL T ELT) (((-793) $ (-1207)) NIL T ELT)) (-4162 (((-663 (-1119 (-1207))) $) NIL T ELT)) (-3981 (((-1201 $) $ (-1119 (-1207))) NIL T ELT) (((-1201 |#1|) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-2250 (((-793) $) NIL T ELT) (((-793) $ (-663 (-1119 (-1207)))) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1621 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-3345 (($ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-1119 (-1207)) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL T ELT) (((-3 (-1156 |#1| (-1207)) "failed") $) NIL T ELT)) (-3649 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-1119 (-1207)) $) NIL T ELT) (((-1207) $) NIL T ELT) (((-1156 |#1| (-1207)) $) NIL T ELT)) (-2096 (($ $ $ (-1119 (-1207))) NIL (|has| |#1| (-175)) ELT)) (-3062 (($ $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4239 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1119 (-1207))) NIL (|has| |#1| (-466)) ELT)) (-3048 (((-663 $) $) NIL T ELT)) (-3141 (((-114) $) NIL (|has| |#1| (-939)) ELT)) (-3224 (($ $ |#1| (-545 (-1119 (-1207))) $) NIL T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1119 (-1207)) (-911 (-391))) (|has| |#1| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-1119 (-1207)) (-911 (-560))) (|has| |#1| (-911 (-560)))) ELT)) (-1460 (((-793) $ (-1207)) NIL T ELT) (((-793) $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-4127 (((-793) $) NIL T ELT)) (-4149 (($ (-1201 |#1|) (-1119 (-1207))) NIL T ELT) (($ (-1201 $) (-1119 (-1207))) NIL T ELT)) (-2947 (((-663 $) $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-545 (-1119 (-1207)))) NIL T ELT) (($ $ (-1119 (-1207)) (-793)) NIL T ELT) (($ $ (-663 (-1119 (-1207))) (-663 (-793))) NIL T ELT)) (-4415 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $ (-1119 (-1207))) NIL T ELT)) (-3765 (((-545 (-1119 (-1207))) $) NIL T ELT) (((-793) $ (-1119 (-1207))) NIL T ELT) (((-663 (-793)) $ (-663 (-1119 (-1207)))) NIL T ELT)) (-3060 (($ (-1 (-545 (-1119 (-1207))) (-545 (-1119 (-1207)))) $) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3288 (((-1 $ (-793)) (-1207)) NIL T ELT) (((-1 $ (-793)) $) NIL (|has| |#1| (-240)) ELT)) (-3835 (((-3 (-1119 (-1207)) "failed") $) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-1726 (((-1119 (-1207)) $) NIL T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2291 (((-114) $) NIL T ELT)) (-1669 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3849 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3149 (((-3 (-2 (|:| |var| (-1119 (-1207))) (|:| -2030 (-793))) "failed") $) NIL T ELT)) (-2689 (($ $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3000 (((-114) $) NIL T ELT)) (-3011 ((|#1| $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-466)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-4012 (((-419 $) $) NIL (|has| |#1| (-939)) ELT)) (-2233 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-2371 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-1119 (-1207)) |#1|) NIL T ELT) (($ $ (-663 (-1119 (-1207))) (-663 |#1|)) NIL T ELT) (($ $ (-1119 (-1207)) $) NIL T ELT) (($ $ (-663 (-1119 (-1207))) (-663 $)) NIL T ELT) (($ $ (-1207) $) NIL (|has| |#1| (-240)) ELT) (($ $ (-663 (-1207)) (-663 $)) NIL (|has| |#1| (-240)) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-663 (-1207)) (-663 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-2336 (($ $ (-1119 (-1207))) NIL (|has| |#1| (-175)) ELT)) (-3161 (($ $ (-663 (-1119 (-1207))) (-663 (-793))) NIL T ELT) (($ $ (-1119 (-1207)) (-793)) NIL T ELT) (($ $ (-663 (-1119 (-1207)))) NIL T ELT) (($ $ (-1119 (-1207))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-2606 (((-663 (-1207)) $) NIL T ELT)) (-3900 (((-545 (-1119 (-1207))) $) NIL T ELT) (((-793) $ (-1119 (-1207))) NIL T ELT) (((-663 (-793)) $ (-663 (-1119 (-1207)))) NIL T ELT) (((-793) $ (-1207)) NIL T ELT)) (-2400 (((-915 (-391)) $) NIL (-12 (|has| (-1119 (-1207)) (-633 (-915 (-391)))) (|has| |#1| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-1119 (-1207)) (-633 (-915 (-560)))) (|has| |#1| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-1119 (-1207)) (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-2264 ((|#1| $) NIL (|has| |#1| (-466)) ELT) (($ $ (-1119 (-1207))) NIL (|has| |#1| (-466)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1119 (-1207))) NIL T ELT) (($ (-1207)) NIL T ELT) (($ (-1156 |#1| (-1207))) NIL T ELT) (($ (-421 (-560))) NIL (-2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-2247 (((-663 |#1|) $) NIL T ELT)) (-2920 ((|#1| $ (-545 (-1119 (-1207)))) NIL T ELT) (($ $ (-1119 (-1207)) (-793)) NIL T ELT) (($ $ (-663 (-1119 (-1207))) (-663 (-793))) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-4191 (((-793)) NIL T CONST)) (-2548 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $ (-663 (-1119 (-1207))) (-663 (-793))) NIL T ELT) (($ $ (-1119 (-1207)) (-793)) NIL T ELT) (($ $ (-663 (-1119 (-1207)))) NIL T ELT) (($ $ (-1119 (-1207))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-793)) NIL (|has| |#1| (-239)) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
(((-1118 |#1|) (-13 (-262 |#1| (-1207) (-1119 (-1207)) (-545 (-1119 (-1207)))) (-1069 (-1156 |#1| (-1207)))) (-1080)) (T -1118))
NIL
(-13 (-262 |#1| (-1207) (-1119 (-1207)) (-545 (-1119 (-1207)))) (-1069 (-1156 |#1| (-1207))))
-((-1538 (((-114) $ $) NIL T ELT)) (-4441 (((-793) $) NIL T ELT)) (-2462 ((|#1| $) 10 T ELT)) (-2539 (((-3 |#1| "failed") $) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT)) (-3913 (((-793) $) 11 T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-2966 (($ |#1| (-793)) 9 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2894 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-3305 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 16 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2775 (((-793) $) NIL T ELT)) (-2558 ((|#1| $) 10 T ELT)) (-3929 (((-3 |#1| "failed") $) NIL T ELT)) (-3649 ((|#1| $) NIL T ELT)) (-1460 (((-793) $) 11 T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-3288 (($ |#1| (-793)) 9 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3161 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2111 (($ $ (-793)) NIL T ELT) (($ $) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 16 T ELT)))
(((-1119 |#1|) (-277 |#1|) (-871)) (T -1119))
NIL
(-277 |#1|)
-((-1538 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-4458 (($ |#1| |#1|) 16 T ELT)) (-3957 (((-663 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-870)) ELT)) (-3257 ((|#1| $) 12 T ELT)) (-4311 ((|#1| $) 11 T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-1755 (((-560) $) 15 T ELT)) (-3229 ((|#1| $) 14 T ELT)) (-1768 ((|#1| $) 13 T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-1945 (((-663 |#1|) $) 44 (|has| |#1| (-870)) ELT) (((-663 |#1|) (-663 $)) 43 (|has| |#1| (-870)) ELT)) (-1407 (($ |#1|) 29 T ELT)) (-1578 (((-887) $) 28 (|has| |#1| (-1132)) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-1524 (($ |#1| |#1|) 10 T ELT)) (-2227 (($ $ (-560)) 17 T ELT)) (-2473 (((-114) $ $) 22 (|has| |#1| (-1132)) ELT)))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-1886 (($ |#1| |#1|) 16 T ELT)) (-2260 (((-663 |#1|) (-1 |#1| |#1|) $) 46 (|has| |#1| (-870)) ELT)) (-1333 ((|#1| $) 12 T ELT)) (-3760 ((|#1| $) 11 T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3695 (((-560) $) 15 T ELT)) (-4227 ((|#1| $) 14 T ELT)) (-3707 ((|#1| $) 13 T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3890 (((-663 |#1|) $) 44 (|has| |#1| (-870)) ELT) (((-663 |#1|) (-663 $)) 43 (|has| |#1| (-870)) ELT)) (-2400 (($ |#1|) 29 T ELT)) (-3913 (((-887) $) 28 (|has| |#1| (-1132)) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2224 (($ |#1| |#1|) 10 T ELT)) (-2127 (($ $ (-560)) 17 T ELT)) (-2340 (((-114) $ $) 22 (|has| |#1| (-1132)) ELT)))
(((-1120 |#1|) (-13 (-1125 |#1|) (-10 -7 (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|) (IF (|has| |#1| (-870)) (-6 (-1126 |#1| (-663 |#1|))) |%noBranch|))) (-1247)) (T -1120))
NIL
(-13 (-1125 |#1|) (-10 -7 (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|) (IF (|has| |#1| (-870)) (-6 (-1126 |#1| (-663 |#1|))) |%noBranch|)))
-((-3957 (((-663 |#2|) (-1 |#2| |#1|) (-1120 |#1|)) 29 (|has| |#1| (-870)) ELT) (((-1120 |#2|) (-1 |#2| |#1|) (-1120 |#1|)) 14 T ELT)))
-(((-1121 |#1| |#2|) (-10 -7 (-15 -3957 ((-1120 |#2|) (-1 |#2| |#1|) (-1120 |#1|))) (IF (|has| |#1| (-870)) (-15 -3957 ((-663 |#2|) (-1 |#2| |#1|) (-1120 |#1|))) |%noBranch|)) (-1247) (-1247)) (T -1121))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1120 *5)) (-4 *5 (-870)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-663 *6)) (-5 *1 (-1121 *5 *6)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1120 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1120 *6)) (-5 *1 (-1121 *5 *6)))))
-(-10 -7 (-15 -3957 ((-1120 |#2|) (-1 |#2| |#1|) (-1120 |#1|))) (IF (|has| |#1| (-870)) (-15 -3957 ((-663 |#2|) (-1 |#2| |#1|) (-1120 |#1|))) |%noBranch|))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 16 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3909 (((-663 (-1166)) $) 10 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-1122) (-13 (-1114) (-10 -8 (-15 -3909 ((-663 (-1166)) $))))) (T -1122))
-((-3909 (*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-1122)))))
-(-13 (-1114) (-10 -8 (-15 -3909 ((-663 (-1166)) $))))
-((-1538 (((-114) $ $) NIL (|has| (-1120 |#1|) (-1132)) ELT)) (-2462 (((-1207) $) NIL T ELT)) (-4458 (((-1120 |#1|) $) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| (-1120 |#1|) (-1132)) ELT)) (-3855 (((-1151) $) NIL (|has| (-1120 |#1|) (-1132)) ELT)) (-3439 (($ (-1207) (-1120 |#1|)) NIL T ELT)) (-1578 (((-887) $) NIL (|has| (-1120 |#1|) (-1132)) ELT)) (-2275 (((-114) $ $) NIL (|has| (-1120 |#1|) (-1132)) ELT)) (-2473 (((-114) $ $) NIL (|has| (-1120 |#1|) (-1132)) ELT)))
-(((-1123 |#1|) (-13 (-1247) (-10 -8 (-15 -3439 ($ (-1207) (-1120 |#1|))) (-15 -2462 ((-1207) $)) (-15 -4458 ((-1120 |#1|) $)) (IF (|has| (-1120 |#1|) (-1132)) (-6 (-1132)) |%noBranch|))) (-1247)) (T -1123))
-((-3439 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1120 *4)) (-4 *4 (-1247)) (-5 *1 (-1123 *4)))) (-2462 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1123 *3)) (-4 *3 (-1247)))) (-4458 (*1 *2 *1) (-12 (-5 *2 (-1120 *3)) (-5 *1 (-1123 *3)) (-4 *3 (-1247)))))
-(-13 (-1247) (-10 -8 (-15 -3439 ($ (-1207) (-1120 |#1|))) (-15 -2462 ((-1207) $)) (-15 -4458 ((-1120 |#1|) $)) (IF (|has| (-1120 |#1|) (-1132)) (-6 (-1132)) |%noBranch|)))
-((-3957 (((-1123 |#2|) (-1 |#2| |#1|) (-1123 |#1|)) 19 T ELT)))
-(((-1124 |#1| |#2|) (-10 -7 (-15 -3957 ((-1123 |#2|) (-1 |#2| |#1|) (-1123 |#1|)))) (-1247) (-1247)) (T -1124))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1123 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1123 *6)) (-5 *1 (-1124 *5 *6)))))
-(-10 -7 (-15 -3957 ((-1123 |#2|) (-1 |#2| |#1|) (-1123 |#1|))))
-((-4458 (($ |#1| |#1|) 8 T ELT)) (-3257 ((|#1| $) 11 T ELT)) (-4311 ((|#1| $) 13 T ELT)) (-1755 (((-560) $) 9 T ELT)) (-3229 ((|#1| $) 10 T ELT)) (-1768 ((|#1| $) 12 T ELT)) (-1407 (($ |#1|) 6 T ELT)) (-1524 (($ |#1| |#1|) 15 T ELT)) (-2227 (($ $ (-560)) 14 T ELT)))
+((-2260 (((-663 |#2|) (-1 |#2| |#1|) (-1120 |#1|)) 29 (|has| |#1| (-870)) ELT) (((-1120 |#2|) (-1 |#2| |#1|) (-1120 |#1|)) 14 T ELT)))
+(((-1121 |#1| |#2|) (-10 -7 (-15 -2260 ((-1120 |#2|) (-1 |#2| |#1|) (-1120 |#1|))) (IF (|has| |#1| (-870)) (-15 -2260 ((-663 |#2|) (-1 |#2| |#1|) (-1120 |#1|))) |%noBranch|)) (-1247) (-1247)) (T -1121))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1120 *5)) (-4 *5 (-870)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-663 *6)) (-5 *1 (-1121 *5 *6)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1120 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1120 *6)) (-5 *1 (-1121 *5 *6)))))
+(-10 -7 (-15 -2260 ((-1120 |#2|) (-1 |#2| |#1|) (-1120 |#1|))) (IF (|has| |#1| (-870)) (-15 -2260 ((-663 |#2|) (-1 |#2| |#1|) (-1120 |#1|))) |%noBranch|))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 16 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-1417 (((-663 (-1166)) $) 10 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-1122) (-13 (-1114) (-10 -8 (-15 -1417 ((-663 (-1166)) $))))) (T -1122))
+((-1417 (*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-1122)))))
+(-13 (-1114) (-10 -8 (-15 -1417 ((-663 (-1166)) $))))
+((-2243 (((-114) $ $) NIL (|has| (-1120 |#1|) (-1132)) ELT)) (-2558 (((-1207) $) NIL T ELT)) (-1886 (((-1120 |#1|) $) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| (-1120 |#1|) (-1132)) ELT)) (-3376 (((-1151) $) NIL (|has| (-1120 |#1|) (-1132)) ELT)) (-2793 (($ (-1207) (-1120 |#1|)) NIL T ELT)) (-3913 (((-887) $) NIL (|has| (-1120 |#1|) (-1132)) ELT)) (-3925 (((-114) $ $) NIL (|has| (-1120 |#1|) (-1132)) ELT)) (-2340 (((-114) $ $) NIL (|has| (-1120 |#1|) (-1132)) ELT)))
+(((-1123 |#1|) (-13 (-1247) (-10 -8 (-15 -2793 ($ (-1207) (-1120 |#1|))) (-15 -2558 ((-1207) $)) (-15 -1886 ((-1120 |#1|) $)) (IF (|has| (-1120 |#1|) (-1132)) (-6 (-1132)) |%noBranch|))) (-1247)) (T -1123))
+((-2793 (*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1120 *4)) (-4 *4 (-1247)) (-5 *1 (-1123 *4)))) (-2558 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1123 *3)) (-4 *3 (-1247)))) (-1886 (*1 *2 *1) (-12 (-5 *2 (-1120 *3)) (-5 *1 (-1123 *3)) (-4 *3 (-1247)))))
+(-13 (-1247) (-10 -8 (-15 -2793 ($ (-1207) (-1120 |#1|))) (-15 -2558 ((-1207) $)) (-15 -1886 ((-1120 |#1|) $)) (IF (|has| (-1120 |#1|) (-1132)) (-6 (-1132)) |%noBranch|)))
+((-2260 (((-1123 |#2|) (-1 |#2| |#1|) (-1123 |#1|)) 19 T ELT)))
+(((-1124 |#1| |#2|) (-10 -7 (-15 -2260 ((-1123 |#2|) (-1 |#2| |#1|) (-1123 |#1|)))) (-1247) (-1247)) (T -1124))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1123 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1123 *6)) (-5 *1 (-1124 *5 *6)))))
+(-10 -7 (-15 -2260 ((-1123 |#2|) (-1 |#2| |#1|) (-1123 |#1|))))
+((-1886 (($ |#1| |#1|) 8 T ELT)) (-1333 ((|#1| $) 11 T ELT)) (-3760 ((|#1| $) 13 T ELT)) (-3695 (((-560) $) 9 T ELT)) (-4227 ((|#1| $) 10 T ELT)) (-3707 ((|#1| $) 12 T ELT)) (-2400 (($ |#1|) 6 T ELT)) (-2224 (($ |#1| |#1|) 15 T ELT)) (-2127 (($ $ (-560)) 14 T ELT)))
(((-1125 |#1|) (-142) (-1247)) (T -1125))
-((-1524 (*1 *1 *2 *2) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247)))) (-2227 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1125 *3)) (-4 *3 (-1247)))) (-4311 (*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247)))) (-1768 (*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247)))) (-3229 (*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247)))) (-1755 (*1 *2 *1) (-12 (-4 *1 (-1125 *3)) (-4 *3 (-1247)) (-5 *2 (-560)))) (-4458 (*1 *1 *2 *2) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247)))))
-(-13 (-637 |t#1|) (-10 -8 (-15 -1524 ($ |t#1| |t#1|)) (-15 -2227 ($ $ (-560))) (-15 -4311 (|t#1| $)) (-15 -1768 (|t#1| $)) (-15 -3257 (|t#1| $)) (-15 -3229 (|t#1| $)) (-15 -1755 ((-560) $)) (-15 -4458 ($ |t#1| |t#1|))))
+((-2224 (*1 *1 *2 *2) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247)))) (-2127 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1125 *3)) (-4 *3 (-1247)))) (-3760 (*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247)))) (-3707 (*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247)))) (-1333 (*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247)))) (-4227 (*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247)))) (-3695 (*1 *2 *1) (-12 (-4 *1 (-1125 *3)) (-4 *3 (-1247)) (-5 *2 (-560)))) (-1886 (*1 *1 *2 *2) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247)))))
+(-13 (-637 |t#1|) (-10 -8 (-15 -2224 ($ |t#1| |t#1|)) (-15 -2127 ($ $ (-560))) (-15 -3760 (|t#1| $)) (-15 -3707 (|t#1| $)) (-15 -1333 (|t#1| $)) (-15 -4227 (|t#1| $)) (-15 -3695 ((-560) $)) (-15 -1886 ($ |t#1| |t#1|))))
(((-637 |#1|) . T))
-((-4458 (($ |#1| |#1|) 8 T ELT)) (-3957 ((|#2| (-1 |#1| |#1|) $) 16 T ELT)) (-3257 ((|#1| $) 11 T ELT)) (-4311 ((|#1| $) 13 T ELT)) (-1755 (((-560) $) 9 T ELT)) (-3229 ((|#1| $) 10 T ELT)) (-1768 ((|#1| $) 12 T ELT)) (-1945 ((|#2| (-663 $)) 18 T ELT) ((|#2| $) 17 T ELT)) (-1407 (($ |#1|) 6 T ELT)) (-1524 (($ |#1| |#1|) 15 T ELT)) (-2227 (($ $ (-560)) 14 T ELT)))
+((-1886 (($ |#1| |#1|) 8 T ELT)) (-2260 ((|#2| (-1 |#1| |#1|) $) 16 T ELT)) (-1333 ((|#1| $) 11 T ELT)) (-3760 ((|#1| $) 13 T ELT)) (-3695 (((-560) $) 9 T ELT)) (-4227 ((|#1| $) 10 T ELT)) (-3707 ((|#1| $) 12 T ELT)) (-3890 ((|#2| (-663 $)) 18 T ELT) ((|#2| $) 17 T ELT)) (-2400 (($ |#1|) 6 T ELT)) (-2224 (($ |#1| |#1|) 15 T ELT)) (-2127 (($ $ (-560)) 14 T ELT)))
(((-1126 |#1| |#2|) (-142) (-870) (-1180 |t#1|)) (T -1126))
-((-1945 (*1 *2 *3) (-12 (-5 *3 (-663 *1)) (-4 *1 (-1126 *4 *2)) (-4 *4 (-870)) (-4 *2 (-1180 *4)))) (-1945 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1180 *3)))) (-3957 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1126 *4 *2)) (-4 *4 (-870)) (-4 *2 (-1180 *4)))))
-(-13 (-1125 |t#1|) (-10 -8 (-15 -1945 (|t#2| (-663 $))) (-15 -1945 (|t#2| $)) (-15 -3957 (|t#2| (-1 |t#1| |t#1|) $))))
+((-3890 (*1 *2 *3) (-12 (-5 *3 (-663 *1)) (-4 *1 (-1126 *4 *2)) (-4 *4 (-870)) (-4 *2 (-1180 *4)))) (-3890 (*1 *2 *1) (-12 (-4 *1 (-1126 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1180 *3)))) (-2260 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1126 *4 *2)) (-4 *4 (-870)) (-4 *2 (-1180 *4)))))
+(-13 (-1125 |t#1|) (-10 -8 (-15 -3890 (|t#2| (-663 $))) (-15 -3890 (|t#2| $)) (-15 -2260 (|t#2| (-1 |t#1| |t#1|) $))))
(((-637 |#1|) . T) ((-1125 |#1|) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2398 (((-1166) $) 12 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 18 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3625 (((-663 (-1166)) $) 10 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-1127) (-13 (-1114) (-10 -8 (-15 -3625 ((-663 (-1166)) $)) (-15 -2398 ((-1166) $))))) (T -1127))
-((-3625 (*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-1127)))) (-2398 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1127)))))
-(-13 (-1114) (-10 -8 (-15 -3625 ((-663 (-1166)) $)) (-15 -2398 ((-1166) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-4208 (($) NIL (|has| |#1| (-381)) ELT)) (-4028 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 83 T ELT)) (-1830 (($ $ $) 81 T ELT)) (-3963 (((-114) $ $) 82 T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-3241 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-1850 (($ (-663 |#1|)) NIL T ELT) (($) 13 T ELT)) (-3500 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2238 (($) NIL T CONST)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3390 (($ |#1| $) 74 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2375 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4508)) ELT)) (-2310 (($) NIL (|has| |#1| (-381)) ELT)) (-2181 (((-663 |#1|) $) 19 (|has| $ (-6 -4508)) ELT)) (-2250 (((-114) $ $) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-3825 ((|#1| $) 55 (|has| |#1| (-871)) ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 73 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2820 ((|#1| $) 53 (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-4419 (((-948) $) NIL (|has| |#1| (-381)) ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1903 (($ $ $) 79 T ELT)) (-1576 ((|#1| $) 25 T ELT)) (-3629 (($ |#1| $) 69 T ELT)) (-3128 (($ (-948)) NIL (|has| |#1| (-381)) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 31 T ELT)) (-2615 ((|#1| $) 27 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) 21 T ELT)) (-3986 (($) 11 T ELT)) (-3733 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-3897 (($) NIL T ELT) (($ (-663 |#1|)) NIL T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1799 (($ $) 16 T ELT)) (-1407 (((-549) $) 50 (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 62 T ELT)) (-3139 (($ $) NIL (|has| |#1| (-381)) ELT)) (-1578 (((-887) $) NIL T ELT)) (-3078 (((-793) $) NIL T ELT)) (-1364 (($ (-663 |#1|)) NIL T ELT) (($) 12 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-3376 (($ (-663 |#1|)) NIL T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 52 T ELT)) (-1553 (((-793) $) 10 (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3057 (((-1166) $) 12 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 18 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-4400 (((-663 (-1166)) $) 10 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-1127) (-13 (-1114) (-10 -8 (-15 -4400 ((-663 (-1166)) $)) (-15 -3057 ((-1166) $))))) (T -1127))
+((-4400 (*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-1127)))) (-3057 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1127)))))
+(-13 (-1114) (-10 -8 (-15 -4400 ((-663 (-1166)) $)) (-15 -3057 ((-1166) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-1366 (($) NIL (|has| |#1| (-381)) ELT)) (-3574 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 83 T ELT)) (-1925 (($ $ $) 81 T ELT)) (-3895 (((-114) $ $) 82 T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-2552 (((-793)) NIL (|has| |#1| (-381)) ELT)) (-2512 (($ (-663 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1864 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3525 (($) NIL T CONST)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2091 (($ |#1| $) 74 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3033 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4508)) ELT)) (-1812 (($) NIL (|has| |#1| (-381)) ELT)) (-3737 (((-663 |#1|) $) 19 (|has| $ (-6 -4508)) ELT)) (-3653 (((-114) $ $) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2932 ((|#1| $) 55 (|has| |#1| (-871)) ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 73 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4379 ((|#1| $) 53 (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2622 (((-948) $) NIL (|has| |#1| (-381)) ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3334 (($ $ $) 79 T ELT)) (-1878 ((|#1| $) 25 T ELT)) (-3888 (($ |#1| $) 69 T ELT)) (-1591 (($ (-948)) NIL (|has| |#1| (-381)) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 31 T ELT)) (-2796 ((|#1| $) 27 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) 21 T ELT)) (-2832 (($) 11 T ELT)) (-2358 (($ $ |#1|) NIL T ELT) (($ $ $) 80 T ELT)) (-4468 (($) NIL T ELT) (($ (-663 |#1|)) NIL T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4107 (($ $) 16 T ELT)) (-2400 (((-549) $) 50 (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 62 T ELT)) (-2589 (($ $) NIL (|has| |#1| (-381)) ELT)) (-3913 (((-887) $) NIL T ELT)) (-3199 (((-793) $) NIL T ELT)) (-4074 (($ (-663 |#1|)) NIL T ELT) (($) 12 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3184 (($ (-663 |#1|)) NIL T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 52 T ELT)) (-2256 (((-793) $) 10 (|has| $ (-6 -4508)) ELT)))
(((-1128 |#1|) (-440 |#1|) (-1132)) (T -1128))
NIL
(-440 |#1|)
-((-4028 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-1830 (($ $ $) 10 T ELT)) (-3733 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT)))
-(((-1129 |#1| |#2|) (-10 -8 (-15 -4028 (|#1| |#2| |#1|)) (-15 -4028 (|#1| |#1| |#2|)) (-15 -4028 (|#1| |#1| |#1|)) (-15 -1830 (|#1| |#1| |#1|)) (-15 -3733 (|#1| |#1| |#2|)) (-15 -3733 (|#1| |#1| |#1|))) (-1130 |#2|) (-1132)) (T -1129))
+((-3574 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-1925 (($ $ $) 10 T ELT)) (-2358 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT)))
+(((-1129 |#1| |#2|) (-10 -8 (-15 -3574 (|#1| |#2| |#1|)) (-15 -3574 (|#1| |#1| |#2|)) (-15 -3574 (|#1| |#1| |#1|)) (-15 -1925 (|#1| |#1| |#1|)) (-15 -2358 (|#1| |#1| |#2|)) (-15 -2358 (|#1| |#1| |#1|))) (-1130 |#2|) (-1132)) (T -1129))
NIL
-(-10 -8 (-15 -4028 (|#1| |#2| |#1|)) (-15 -4028 (|#1| |#1| |#2|)) (-15 -4028 (|#1| |#1| |#1|)) (-15 -1830 (|#1| |#1| |#1|)) (-15 -3733 (|#1| |#1| |#2|)) (-15 -3733 (|#1| |#1| |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-4028 (($ $ $) 19 T ELT) (($ $ |#1|) 18 T ELT) (($ |#1| $) 17 T ELT)) (-1830 (($ $ $) 21 T ELT)) (-3963 (((-114) $ $) 20 T ELT)) (-3363 (((-114) $ (-793)) 36 T ELT)) (-1850 (($) 26 T ELT) (($ (-663 |#1|)) 25 T ELT)) (-1982 (($ (-1 (-114) |#1|) $) 57 (|has| $ (-6 -4508)) ELT)) (-2238 (($) 37 T CONST)) (-3606 (($ $) 60 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2375 (($ |#1| $) 59 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 56 (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4508)) ELT)) (-2181 (((-663 |#1|) $) 44 (|has| $ (-6 -4508)) ELT)) (-2250 (((-114) $ $) 29 T ELT)) (-4034 (((-114) $ (-793)) 35 T ELT)) (-2656 (((-663 |#1|) $) 45 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 47 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-1805 (((-114) $ (-793)) 34 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-1903 (($ $ $) 24 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 53 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 42 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 |#1|) (-663 |#1|)) 51 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 49 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 (-305 |#1|))) 48 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 30 T ELT)) (-1663 (((-114) $) 33 T ELT)) (-3986 (($) 32 T ELT)) (-3733 (($ $ $) 23 T ELT) (($ $ |#1|) 22 T ELT)) (-3865 (((-793) |#1| $) 46 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) |#1|) $) 43 (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) 31 T ELT)) (-1407 (((-549) $) 61 (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 52 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-1364 (($) 28 T ELT) (($ (-663 |#1|)) 27 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 41 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-1553 (((-793) $) 38 (|has| $ (-6 -4508)) ELT)))
+(-10 -8 (-15 -3574 (|#1| |#2| |#1|)) (-15 -3574 (|#1| |#1| |#2|)) (-15 -3574 (|#1| |#1| |#1|)) (-15 -1925 (|#1| |#1| |#1|)) (-15 -2358 (|#1| |#1| |#2|)) (-15 -2358 (|#1| |#1| |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-3574 (($ $ $) 19 T ELT) (($ $ |#1|) 18 T ELT) (($ |#1| $) 17 T ELT)) (-1925 (($ $ $) 21 T ELT)) (-3895 (((-114) $ $) 20 T ELT)) (-3045 (((-114) $ (-793)) 36 T ELT)) (-2512 (($) 26 T ELT) (($ (-663 |#1|)) 25 T ELT)) (-3923 (($ (-1 (-114) |#1|) $) 57 (|has| $ (-6 -4508)) ELT)) (-3525 (($) 37 T CONST)) (-3658 (($ $) 60 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3033 (($ |#1| $) 59 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 56 (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4508)) ELT)) (-3737 (((-663 |#1|) $) 44 (|has| $ (-6 -4508)) ELT)) (-3653 (((-114) $ $) 29 T ELT)) (-3332 (((-114) $ (-793)) 35 T ELT)) (-3243 (((-663 |#1|) $) 45 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 47 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-1634 (((-114) $ (-793)) 34 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3334 (($ $ $) 24 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 53 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 42 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 |#1|) (-663 |#1|)) 51 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 49 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 (-305 |#1|))) 48 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 30 T ELT)) (-2706 (((-114) $) 33 T ELT)) (-2832 (($) 32 T ELT)) (-2358 (($ $ $) 23 T ELT) (($ $ |#1|) 22 T ELT)) (-3384 (((-793) |#1| $) 46 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) |#1|) $) 43 (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) 31 T ELT)) (-2400 (((-549) $) 61 (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 52 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-4074 (($) 28 T ELT) (($ (-663 |#1|)) 27 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 41 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2256 (((-793) $) 38 (|has| $ (-6 -4508)) ELT)))
(((-1130 |#1|) (-142) (-1132)) (T -1130))
-((-2250 (*1 *2 *1 *1) (-12 (-4 *1 (-1130 *3)) (-4 *3 (-1132)) (-5 *2 (-114)))) (-1364 (*1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))) (-1364 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-4 *1 (-1130 *3)))) (-1850 (*1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))) (-1850 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-4 *1 (-1130 *3)))) (-1903 (*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))) (-3733 (*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))) (-3733 (*1 *1 *1 *2) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))) (-1830 (*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))) (-3963 (*1 *2 *1 *1) (-12 (-4 *1 (-1130 *3)) (-4 *3 (-1132)) (-5 *2 (-114)))) (-4028 (*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))) (-4028 (*1 *1 *1 *2) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))) (-4028 (*1 *1 *2 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))))
-(-13 (-1132) (-153 |t#1|) (-10 -8 (-6 -4498) (-15 -2250 ((-114) $ $)) (-15 -1364 ($)) (-15 -1364 ($ (-663 |t#1|))) (-15 -1850 ($)) (-15 -1850 ($ (-663 |t#1|))) (-15 -1903 ($ $ $)) (-15 -3733 ($ $ $)) (-15 -3733 ($ $ |t#1|)) (-15 -1830 ($ $ $)) (-15 -3963 ((-114) $ $)) (-15 -4028 ($ $ $)) (-15 -4028 ($ $ |t#1|)) (-15 -4028 ($ |t#1| $))))
+((-3653 (*1 *2 *1 *1) (-12 (-4 *1 (-1130 *3)) (-4 *3 (-1132)) (-5 *2 (-114)))) (-4074 (*1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))) (-4074 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-4 *1 (-1130 *3)))) (-2512 (*1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))) (-2512 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-4 *1 (-1130 *3)))) (-3334 (*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))) (-2358 (*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))) (-2358 (*1 *1 *1 *2) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))) (-1925 (*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))) (-3895 (*1 *2 *1 *1) (-12 (-4 *1 (-1130 *3)) (-4 *3 (-1132)) (-5 *2 (-114)))) (-3574 (*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))) (-3574 (*1 *1 *1 *2) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))) (-3574 (*1 *1 *2 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))))
+(-13 (-1132) (-153 |t#1|) (-10 -8 (-6 -4498) (-15 -3653 ((-114) $ $)) (-15 -4074 ($)) (-15 -4074 ($ (-663 |t#1|))) (-15 -2512 ($)) (-15 -2512 ($ (-663 |t#1|))) (-15 -3334 ($ $ $)) (-15 -2358 ($ $ $)) (-15 -2358 ($ $ |t#1|)) (-15 -1925 ($ $ $)) (-15 -3895 ((-114) $ $)) (-15 -3574 ($ $ $)) (-15 -3574 ($ $ |t#1|)) (-15 -3574 ($ |t#1| $))))
(((-34) . T) ((-102) . T) ((-632 (-887)) . T) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) . T) ((-1247) . T))
-((-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 8 T ELT)))
-(((-1131 |#1|) (-10 -8 (-15 -1905 ((-1189) |#1|)) (-15 -3855 ((-1151) |#1|))) (-1132)) (T -1131))
+((-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 8 T ELT)))
+(((-1131 |#1|) (-10 -8 (-15 -3358 ((-1189) |#1|)) (-15 -3376 ((-1151) |#1|))) (-1132)) (T -1131))
NIL
-(-10 -8 (-15 -1905 ((-1189) |#1|)) (-15 -3855 ((-1151) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2473 (((-114) $ $) 8 T ELT)))
+(-10 -8 (-15 -3358 ((-1189) |#1|)) (-15 -3376 ((-1151) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2340 (((-114) $ $) 8 T ELT)))
(((-1132) (-142)) (T -1132))
-((-3855 (*1 *2 *1) (-12 (-4 *1 (-1132)) (-5 *2 (-1151)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-1132)) (-5 *2 (-1189)))))
-(-13 (-102) (-632 (-887)) (-10 -8 (-15 -3855 ((-1151) $)) (-15 -1905 ((-1189) $))))
+((-3376 (*1 *2 *1) (-12 (-4 *1 (-1132)) (-5 *2 (-1151)))) (-3358 (*1 *2 *1) (-12 (-4 *1 (-1132)) (-5 *2 (-1189)))))
+(-13 (-102) (-632 (-887)) (-10 -8 (-15 -3376 ((-1151) $)) (-15 -3358 ((-1189) $))))
(((-102) . T) ((-632 (-887)) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-3241 (((-793)) 36 T ELT)) (-2000 (($ (-663 (-948))) 70 T ELT)) (-3083 (((-3 $ "failed") $ (-948) (-948)) 81 T ELT)) (-2310 (($) 40 T ELT)) (-2321 (((-114) (-948) $) 42 T ELT)) (-4419 (((-948) $) 64 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3128 (($ (-948)) 39 T ELT)) (-4008 (((-3 $ "failed") $ (-948)) 77 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1406 (((-1297 $)) 47 T ELT)) (-2668 (((-663 (-948)) $) 27 T ELT)) (-1765 (((-793) $ (-948) (-948)) 78 T ELT)) (-1578 (((-887) $) 32 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 24 T ELT)))
-(((-1133 |#1| |#2|) (-13 (-381) (-10 -8 (-15 -4008 ((-3 $ "failed") $ (-948))) (-15 -3083 ((-3 $ "failed") $ (-948) (-948))) (-15 -2668 ((-663 (-948)) $)) (-15 -2000 ($ (-663 (-948)))) (-15 -1406 ((-1297 $))) (-15 -2321 ((-114) (-948) $)) (-15 -1765 ((-793) $ (-948) (-948))))) (-948) (-948)) (T -1133))
-((-4008 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-948)) (-5 *1 (-1133 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3083 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-948)) (-5 *1 (-1133 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2668 (*1 *2 *1) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1133 *3 *4)) (-14 *3 (-948)) (-14 *4 (-948)))) (-2000 (*1 *1 *2) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1133 *3 *4)) (-14 *3 (-948)) (-14 *4 (-948)))) (-1406 (*1 *2) (-12 (-5 *2 (-1297 (-1133 *3 *4))) (-5 *1 (-1133 *3 *4)) (-14 *3 (-948)) (-14 *4 (-948)))) (-2321 (*1 *2 *3 *1) (-12 (-5 *3 (-948)) (-5 *2 (-114)) (-5 *1 (-1133 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1765 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-948)) (-5 *2 (-793)) (-5 *1 (-1133 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-381) (-10 -8 (-15 -4008 ((-3 $ "failed") $ (-948))) (-15 -3083 ((-3 $ "failed") $ (-948) (-948))) (-15 -2668 ((-663 (-948)) $)) (-15 -2000 ($ (-663 (-948)))) (-15 -1406 ((-1297 $))) (-15 -2321 ((-114) (-948) $)) (-15 -1765 ((-793) $ (-948) (-948)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2691 (((-114) $) NIL T ELT)) (-4327 (((-1207) $) NIL T ELT)) (-2037 (((-114) $) NIL T ELT)) (-1620 (((-1189) $) NIL T ELT)) (-2637 (((-114) $) NIL T ELT)) (-3388 (((-114) $) NIL T ELT)) (-1992 (((-114) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2729 (((-114) $) NIL T ELT)) (-4353 (((-560) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3301 (((-114) $) NIL T ELT)) (-2917 (((-229) $) NIL T ELT)) (-2413 (((-887) $) NIL T ELT)) (-3192 (((-114) $ $) NIL T ELT)) (-3924 (($ $ (-560)) NIL T ELT) (($ $ (-663 (-560))) NIL T ELT)) (-1374 (((-663 $) $) NIL T ELT)) (-1407 (($ (-1189)) NIL T ELT) (($ (-1207)) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-229)) NIL T ELT) (($ (-887)) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-4380 (($ $) NIL T ELT)) (-4356 (($ $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-4412 (((-114) $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-1553 (((-560) $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2552 (((-793)) 36 T ELT)) (-2988 (($ (-663 (-948))) 70 T ELT)) (-3241 (((-3 $ "failed") $ (-948) (-948)) 81 T ELT)) (-1812 (($) 40 T ELT)) (-3091 (((-114) (-948) $) 42 T ELT)) (-2622 (((-948) $) 64 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1591 (($ (-948)) 39 T ELT)) (-3082 (((-3 $ "failed") $ (-948)) 77 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3297 (((-1297 $)) 47 T ELT)) (-2132 (((-663 (-948)) $) 27 T ELT)) (-3327 (((-793) $ (-948) (-948)) 78 T ELT)) (-3913 (((-887) $) 32 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 24 T ELT)))
+(((-1133 |#1| |#2|) (-13 (-381) (-10 -8 (-15 -3082 ((-3 $ "failed") $ (-948))) (-15 -3241 ((-3 $ "failed") $ (-948) (-948))) (-15 -2132 ((-663 (-948)) $)) (-15 -2988 ($ (-663 (-948)))) (-15 -3297 ((-1297 $))) (-15 -3091 ((-114) (-948) $)) (-15 -3327 ((-793) $ (-948) (-948))))) (-948) (-948)) (T -1133))
+((-3082 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-948)) (-5 *1 (-1133 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3241 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-948)) (-5 *1 (-1133 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2132 (*1 *2 *1) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1133 *3 *4)) (-14 *3 (-948)) (-14 *4 (-948)))) (-2988 (*1 *1 *2) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1133 *3 *4)) (-14 *3 (-948)) (-14 *4 (-948)))) (-3297 (*1 *2) (-12 (-5 *2 (-1297 (-1133 *3 *4))) (-5 *1 (-1133 *3 *4)) (-14 *3 (-948)) (-14 *4 (-948)))) (-3091 (*1 *2 *3 *1) (-12 (-5 *3 (-948)) (-5 *2 (-114)) (-5 *1 (-1133 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3327 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-948)) (-5 *2 (-793)) (-5 *1 (-1133 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-381) (-10 -8 (-15 -3082 ((-3 $ "failed") $ (-948))) (-15 -3241 ((-3 $ "failed") $ (-948) (-948))) (-15 -2132 ((-663 (-948)) $)) (-15 -2988 ($ (-663 (-948)))) (-15 -3297 ((-1297 $))) (-15 -3091 ((-114) (-948) $)) (-15 -3327 ((-793) $ (-948) (-948)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2347 (((-114) $) NIL T ELT)) (-4454 (((-1207) $) NIL T ELT)) (-2120 (((-114) $) NIL T ELT)) (-2903 (((-1189) $) NIL T ELT)) (-3066 (((-114) $) NIL T ELT)) (-3298 (((-114) $) NIL T ELT)) (-2884 (((-114) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1528 (((-114) $) NIL T ELT)) (-4477 (((-560) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3698 (((-114) $) NIL T ELT)) (-2523 (((-229) $) NIL T ELT)) (-2514 (((-887) $) NIL T ELT)) (-2439 (((-114) $ $) NIL T ELT)) (-1507 (($ $ (-560)) NIL T ELT) (($ $ (-663 (-560))) NIL T ELT)) (-4090 (((-663 $) $) NIL T ELT)) (-2400 (($ (-1189)) NIL T ELT) (($ (-1207)) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-229)) NIL T ELT) (($ (-887)) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-2289 (($ $) NIL T ELT)) (-3325 (($ $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2569 (((-114) $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2256 (((-560) $) NIL T ELT)))
(((-1134) (-1135 (-1189) (-1207) (-560) (-229) (-887))) (T -1134))
NIL
(-1135 (-1189) (-1207) (-560) (-229) (-887))
-((-1538 (((-114) $ $) 7 T ELT)) (-2691 (((-114) $) 33 T ELT)) (-4327 ((|#2| $) 28 T ELT)) (-2037 (((-114) $) 34 T ELT)) (-1620 ((|#1| $) 29 T ELT)) (-2637 (((-114) $) 36 T ELT)) (-3388 (((-114) $) 38 T ELT)) (-1992 (((-114) $) 35 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-2729 (((-114) $) 32 T ELT)) (-4353 ((|#3| $) 27 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-3301 (((-114) $) 31 T ELT)) (-2917 ((|#4| $) 26 T ELT)) (-2413 ((|#5| $) 25 T ELT)) (-3192 (((-114) $ $) 39 T ELT)) (-3924 (($ $ (-560)) 41 T ELT) (($ $ (-663 (-560))) 40 T ELT)) (-1374 (((-663 $) $) 30 T ELT)) (-1407 (($ |#1|) 47 T ELT) (($ |#2|) 46 T ELT) (($ |#3|) 45 T ELT) (($ |#4|) 44 T ELT) (($ |#5|) 43 T ELT) (($ (-663 $)) 42 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-4380 (($ $) 23 T ELT)) (-4356 (($ $) 24 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-4412 (((-114) $) 37 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-1553 (((-560) $) 22 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2347 (((-114) $) 33 T ELT)) (-4454 ((|#2| $) 28 T ELT)) (-2120 (((-114) $) 34 T ELT)) (-2903 ((|#1| $) 29 T ELT)) (-3066 (((-114) $) 36 T ELT)) (-3298 (((-114) $) 38 T ELT)) (-2884 (((-114) $) 35 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-1528 (((-114) $) 32 T ELT)) (-4477 ((|#3| $) 27 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3698 (((-114) $) 31 T ELT)) (-2523 ((|#4| $) 26 T ELT)) (-2514 ((|#5| $) 25 T ELT)) (-2439 (((-114) $ $) 39 T ELT)) (-1507 (($ $ (-560)) 41 T ELT) (($ $ (-663 (-560))) 40 T ELT)) (-4090 (((-663 $) $) 30 T ELT)) (-2400 (($ |#1|) 47 T ELT) (($ |#2|) 46 T ELT) (($ |#3|) 45 T ELT) (($ |#4|) 44 T ELT) (($ |#5|) 43 T ELT) (($ (-663 $)) 42 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-2289 (($ $) 23 T ELT)) (-3325 (($ $) 24 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2569 (((-114) $) 37 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2256 (((-560) $) 22 T ELT)))
(((-1135 |#1| |#2| |#3| |#4| |#5|) (-142) (-1132) (-1132) (-1132) (-1132) (-1132)) (T -1135))
-((-3192 (*1 *2 *1 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))) (-3388 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))) (-4412 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))) (-2637 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))) (-1992 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))) (-2037 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))) (-2691 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))) (-2729 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))) (-3301 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))) (-1374 (*1 *2 *1) (-12 (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-663 *1)) (-4 *1 (-1135 *3 *4 *5 *6 *7)))) (-1620 (*1 *2 *1) (-12 (-4 *1 (-1135 *2 *3 *4 *5 *6)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-1132)))) (-4327 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *2 *4 *5 *6)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-1132)))) (-4353 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *2 *5 *6)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-1132)))) (-2917 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *2 *6)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-1132)))) (-2413 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *6 *2)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-1132)))) (-4356 (*1 *1 *1) (-12 (-4 *1 (-1135 *2 *3 *4 *5 *6)) (-4 *2 (-1132)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)))) (-4380 (*1 *1 *1) (-12 (-4 *1 (-1135 *2 *3 *4 *5 *6)) (-4 *2 (-1132)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)))) (-1553 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-560)))))
-(-13 (-1132) (-637 |t#1|) (-637 |t#2|) (-637 |t#3|) (-637 |t#4|) (-637 |t#4|) (-637 |t#5|) (-637 (-663 $)) (-298 (-560) $) (-298 (-663 (-560)) $) (-10 -8 (-15 -3192 ((-114) $ $)) (-15 -3388 ((-114) $)) (-15 -4412 ((-114) $)) (-15 -2637 ((-114) $)) (-15 -1992 ((-114) $)) (-15 -2037 ((-114) $)) (-15 -2691 ((-114) $)) (-15 -2729 ((-114) $)) (-15 -3301 ((-114) $)) (-15 -1374 ((-663 $) $)) (-15 -1620 (|t#1| $)) (-15 -4327 (|t#2| $)) (-15 -4353 (|t#3| $)) (-15 -2917 (|t#4| $)) (-15 -2413 (|t#5| $)) (-15 -4356 ($ $)) (-15 -4380 ($ $)) (-15 -1553 ((-560) $))))
+((-2439 (*1 *2 *1 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))) (-2569 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))) (-3066 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))) (-2884 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))) (-2120 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))) (-2347 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))) (-1528 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))) (-3698 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))) (-4090 (*1 *2 *1) (-12 (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-663 *1)) (-4 *1 (-1135 *3 *4 *5 *6 *7)))) (-2903 (*1 *2 *1) (-12 (-4 *1 (-1135 *2 *3 *4 *5 *6)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-1132)))) (-4454 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *2 *4 *5 *6)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-1132)))) (-4477 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *2 *5 *6)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-1132)))) (-2523 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *2 *6)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-1132)))) (-2514 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *6 *2)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-1132)))) (-3325 (*1 *1 *1) (-12 (-4 *1 (-1135 *2 *3 *4 *5 *6)) (-4 *2 (-1132)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)))) (-2289 (*1 *1 *1) (-12 (-4 *1 (-1135 *2 *3 *4 *5 *6)) (-4 *2 (-1132)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)))) (-2256 (*1 *2 *1) (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-560)))))
+(-13 (-1132) (-637 |t#1|) (-637 |t#2|) (-637 |t#3|) (-637 |t#4|) (-637 |t#4|) (-637 |t#5|) (-637 (-663 $)) (-298 (-560) $) (-298 (-663 (-560)) $) (-10 -8 (-15 -2439 ((-114) $ $)) (-15 -3298 ((-114) $)) (-15 -2569 ((-114) $)) (-15 -3066 ((-114) $)) (-15 -2884 ((-114) $)) (-15 -2120 ((-114) $)) (-15 -2347 ((-114) $)) (-15 -1528 ((-114) $)) (-15 -3698 ((-114) $)) (-15 -4090 ((-663 $) $)) (-15 -2903 (|t#1| $)) (-15 -4454 (|t#2| $)) (-15 -4477 (|t#3| $)) (-15 -2523 (|t#4| $)) (-15 -2514 (|t#5| $)) (-15 -3325 ($ $)) (-15 -2289 ($ $)) (-15 -2256 ((-560) $))))
(((-102) . T) ((-632 (-887)) . T) ((-637 (-663 $)) . T) ((-637 |#1|) . T) ((-637 |#2|) . T) ((-637 |#3|) . T) ((-637 |#4|) . T) ((-637 |#5|) . T) ((-298 (-560) $) . T) ((-298 (-663 (-560)) $) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2691 (((-114) $) 45 T ELT)) (-4327 ((|#2| $) 48 T ELT)) (-2037 (((-114) $) 20 T ELT)) (-1620 ((|#1| $) 21 T ELT)) (-2637 (((-114) $) 42 T ELT)) (-3388 (((-114) $) 14 T ELT)) (-1992 (((-114) $) 44 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2729 (((-114) $) 46 T ELT)) (-4353 ((|#3| $) 50 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3301 (((-114) $) 47 T ELT)) (-2917 ((|#4| $) 49 T ELT)) (-2413 ((|#5| $) 51 T ELT)) (-3192 (((-114) $ $) 41 T ELT)) (-3924 (($ $ (-560)) 62 T ELT) (($ $ (-663 (-560))) 64 T ELT)) (-1374 (((-663 $) $) 27 T ELT)) (-1407 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-663 $)) 52 T ELT)) (-1578 (((-887) $) 28 T ELT)) (-4380 (($ $) 26 T ELT)) (-4356 (($ $) 58 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-4412 (((-114) $) 23 T ELT)) (-2473 (((-114) $ $) 40 T ELT)) (-1553 (((-560) $) 60 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2347 (((-114) $) 45 T ELT)) (-4454 ((|#2| $) 48 T ELT)) (-2120 (((-114) $) 20 T ELT)) (-2903 ((|#1| $) 21 T ELT)) (-3066 (((-114) $) 42 T ELT)) (-3298 (((-114) $) 14 T ELT)) (-2884 (((-114) $) 44 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1528 (((-114) $) 46 T ELT)) (-4477 ((|#3| $) 50 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3698 (((-114) $) 47 T ELT)) (-2523 ((|#4| $) 49 T ELT)) (-2514 ((|#5| $) 51 T ELT)) (-2439 (((-114) $ $) 41 T ELT)) (-1507 (($ $ (-560)) 62 T ELT) (($ $ (-663 (-560))) 64 T ELT)) (-4090 (((-663 $) $) 27 T ELT)) (-2400 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-663 $)) 52 T ELT)) (-3913 (((-887) $) 28 T ELT)) (-2289 (($ $) 26 T ELT)) (-3325 (($ $) 58 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2569 (((-114) $) 23 T ELT)) (-2340 (((-114) $ $) 40 T ELT)) (-2256 (((-560) $) 60 T ELT)))
(((-1136 |#1| |#2| |#3| |#4| |#5|) (-1135 |#1| |#2| |#3| |#4| |#5|) (-1132) (-1132) (-1132) (-1132) (-1132)) (T -1136))
NIL
(-1135 |#1| |#2| |#3| |#4| |#5|)
-((-2759 (((-1303) $) 22 T ELT)) (-2261 (($ (-1207) (-448) |#2|) 11 T ELT)) (-1578 (((-887) $) 16 T ELT)))
-(((-1137 |#1| |#2|) (-13 (-410) (-10 -8 (-15 -2261 ($ (-1207) (-448) |#2|)))) (-1132) (-435 |#1|)) (T -1137))
-((-2261 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-448)) (-4 *5 (-1132)) (-5 *1 (-1137 *5 *4)) (-4 *4 (-435 *5)))))
-(-13 (-410) (-10 -8 (-15 -2261 ($ (-1207) (-448) |#2|))))
-((-3730 (((-114) |#5| |#5|) 44 T ELT)) (-3758 (((-114) |#5| |#5|) 59 T ELT)) (-3777 (((-114) |#5| (-663 |#5|)) 82 T ELT) (((-114) |#5| |#5|) 68 T ELT)) (-1895 (((-114) (-663 |#4|) (-663 |#4|)) 65 T ELT)) (-3631 (((-114) (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|)) (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) 70 T ELT)) (-2307 (((-1303)) 32 T ELT)) (-3655 (((-1303) (-1189) (-1189) (-1189)) 28 T ELT)) (-4295 (((-663 |#5|) (-663 |#5|)) 101 T ELT)) (-4444 (((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|)))) 93 T ELT)) (-1451 (((-663 (-2 (|:| -3192 (-663 |#4|)) (|:| -4297 |#5|) (|:| |ineq| (-663 |#4|)))) (-663 |#4|) (-663 |#5|) (-114) (-114)) 123 T ELT)) (-3064 (((-114) |#5| |#5|) 53 T ELT)) (-2339 (((-3 (-114) "failed") |#5| |#5|) 78 T ELT)) (-3210 (((-114) (-663 |#4|) (-663 |#4|)) 64 T ELT)) (-1686 (((-114) (-663 |#4|) (-663 |#4|)) 66 T ELT)) (-2925 (((-114) (-663 |#4|) (-663 |#4|)) 67 T ELT)) (-2272 (((-3 (-2 (|:| -3192 (-663 |#4|)) (|:| -4297 |#5|) (|:| |ineq| (-663 |#4|))) "failed") (-663 |#4|) |#5| (-663 |#4|) (-114) (-114) (-114) (-114) (-114)) 118 T ELT)) (-2189 (((-663 |#5|) (-663 |#5|)) 49 T ELT)))
-(((-1138 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3655 ((-1303) (-1189) (-1189) (-1189))) (-15 -2307 ((-1303))) (-15 -3730 ((-114) |#5| |#5|)) (-15 -2189 ((-663 |#5|) (-663 |#5|))) (-15 -3064 ((-114) |#5| |#5|)) (-15 -3758 ((-114) |#5| |#5|)) (-15 -1895 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3210 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -1686 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -2925 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -2339 ((-3 (-114) "failed") |#5| |#5|)) (-15 -3777 ((-114) |#5| |#5|)) (-15 -3777 ((-114) |#5| (-663 |#5|))) (-15 -4295 ((-663 |#5|) (-663 |#5|))) (-15 -3631 ((-114) (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|)) (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|)))) (-15 -4444 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) (-15 -1451 ((-663 (-2 (|:| -3192 (-663 |#4|)) (|:| -4297 |#5|) (|:| |ineq| (-663 |#4|)))) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -2272 ((-3 (-2 (|:| -3192 (-663 |#4|)) (|:| -4297 |#5|) (|:| |ineq| (-663 |#4|))) "failed") (-663 |#4|) |#5| (-663 |#4|) (-114) (-114) (-114) (-114) (-114)))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -1138))
-((-2272 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *9 (-1096 *6 *7 *8)) (-5 *2 (-2 (|:| -3192 (-663 *9)) (|:| -4297 *4) (|:| |ineq| (-663 *9)))) (-5 *1 (-1138 *6 *7 *8 *9 *4)) (-5 *3 (-663 *9)) (-4 *4 (-1102 *6 *7 *8 *9)))) (-1451 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-663 *10)) (-5 *5 (-114)) (-4 *10 (-1102 *6 *7 *8 *9)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *9 (-1096 *6 *7 *8)) (-5 *2 (-663 (-2 (|:| -3192 (-663 *9)) (|:| -4297 *10) (|:| |ineq| (-663 *9))))) (-5 *1 (-1138 *6 *7 *8 *9 *10)) (-5 *3 (-663 *9)))) (-4444 (*1 *2 *2) (-12 (-5 *2 (-663 (-2 (|:| |val| (-663 *6)) (|:| -4297 *7)))) (-4 *6 (-1096 *3 *4 *5)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1138 *3 *4 *5 *6 *7)))) (-3631 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -4297 *8))) (-4 *7 (-1096 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1138 *4 *5 *6 *7 *8)))) (-4295 (*1 *2 *2) (-12 (-5 *2 (-663 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *1 (-1138 *3 *4 *5 *6 *7)))) (-3777 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *3)) (-4 *3 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1138 *5 *6 *7 *8 *3)))) (-3777 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-2339 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-2925 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-1686 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-3210 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-1895 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-3758 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-3064 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-2189 (*1 *2 *2) (-12 (-5 *2 (-663 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *1 (-1138 *3 *4 *5 *6 *7)))) (-3730 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-2307 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1138 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))) (-3655 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3655 ((-1303) (-1189) (-1189) (-1189))) (-15 -2307 ((-1303))) (-15 -3730 ((-114) |#5| |#5|)) (-15 -2189 ((-663 |#5|) (-663 |#5|))) (-15 -3064 ((-114) |#5| |#5|)) (-15 -3758 ((-114) |#5| |#5|)) (-15 -1895 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3210 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -1686 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -2925 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -2339 ((-3 (-114) "failed") |#5| |#5|)) (-15 -3777 ((-114) |#5| |#5|)) (-15 -3777 ((-114) |#5| (-663 |#5|))) (-15 -4295 ((-663 |#5|) (-663 |#5|))) (-15 -3631 ((-114) (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|)) (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|)))) (-15 -4444 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) (-15 -1451 ((-663 (-2 (|:| -3192 (-663 |#4|)) (|:| -4297 |#5|) (|:| |ineq| (-663 |#4|)))) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -2272 ((-3 (-2 (|:| -3192 (-663 |#4|)) (|:| -4297 |#5|) (|:| |ineq| (-663 |#4|))) "failed") (-663 |#4|) |#5| (-663 |#4|) (-114) (-114) (-114) (-114) (-114))))
-((-4001 (((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#5|) 108 T ELT)) (-2830 (((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) |#4| |#4| |#5|) 80 T ELT)) (-4314 (((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#4| |#5|) 102 T ELT)) (-2761 (((-663 |#5|) |#4| |#5|) 124 T ELT)) (-4291 (((-663 |#5|) |#4| |#5|) 131 T ELT)) (-3917 (((-663 |#5|) |#4| |#5|) 132 T ELT)) (-2540 (((-663 (-2 (|:| |val| (-114)) (|:| -4297 |#5|))) |#4| |#5|) 109 T ELT)) (-1741 (((-663 (-2 (|:| |val| (-114)) (|:| -4297 |#5|))) |#4| |#5|) 130 T ELT)) (-1430 (((-663 (-2 (|:| |val| (-114)) (|:| -4297 |#5|))) |#4| |#5|) 47 T ELT) (((-114) |#4| |#5|) 55 T ELT)) (-2653 (((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) |#3| (-114)) 92 T ELT) (((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#4| |#5| (-114) (-114)) 52 T ELT)) (-3786 (((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#4| |#5|) 87 T ELT)) (-2429 (((-1303)) 36 T ELT)) (-2650 (((-1303)) 25 T ELT)) (-1803 (((-1303) (-1189) (-1189) (-1189)) 32 T ELT)) (-4389 (((-1303) (-1189) (-1189) (-1189)) 21 T ELT)))
-(((-1139 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4389 ((-1303) (-1189) (-1189) (-1189))) (-15 -2650 ((-1303))) (-15 -1803 ((-1303) (-1189) (-1189) (-1189))) (-15 -2429 ((-1303))) (-15 -2830 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) |#4| |#4| |#5|)) (-15 -2653 ((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#4| |#5| (-114) (-114))) (-15 -2653 ((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) |#3| (-114))) (-15 -3786 ((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#4| |#5|)) (-15 -4314 ((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#4| |#5|)) (-15 -1430 ((-114) |#4| |#5|)) (-15 -2540 ((-663 (-2 (|:| |val| (-114)) (|:| -4297 |#5|))) |#4| |#5|)) (-15 -2761 ((-663 |#5|) |#4| |#5|)) (-15 -1741 ((-663 (-2 (|:| |val| (-114)) (|:| -4297 |#5|))) |#4| |#5|)) (-15 -4291 ((-663 |#5|) |#4| |#5|)) (-15 -1430 ((-663 (-2 (|:| |val| (-114)) (|:| -4297 |#5|))) |#4| |#5|)) (-15 -3917 ((-663 |#5|) |#4| |#5|)) (-15 -4001 ((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#5|))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -1139))
-((-4001 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *4)))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3917 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 *4)) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1430 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -4297 *4)))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-4291 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 *4)) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1741 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -4297 *4)))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-2761 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 *4)) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-2540 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -4297 *4)))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1430 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-4314 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *4)))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3786 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *4)))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-2653 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -4297 *9)))) (-5 *5 (-114)) (-4 *8 (-1096 *6 *7 *4)) (-4 *9 (-1102 *6 *7 *4 *8)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *4 (-871)) (-5 *2 (-663 (-2 (|:| |val| *8) (|:| -4297 *9)))) (-5 *1 (-1139 *6 *7 *4 *8 *9)))) (-2653 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *3 (-1096 *6 *7 *8)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *4)))) (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-2830 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4)))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-2429 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1139 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))) (-1803 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1139 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-2650 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1139 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))) (-4389 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1139 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))))
-(-10 -7 (-15 -4389 ((-1303) (-1189) (-1189) (-1189))) (-15 -2650 ((-1303))) (-15 -1803 ((-1303) (-1189) (-1189) (-1189))) (-15 -2429 ((-1303))) (-15 -2830 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) |#4| |#4| |#5|)) (-15 -2653 ((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#4| |#5| (-114) (-114))) (-15 -2653 ((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) |#3| (-114))) (-15 -3786 ((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#4| |#5|)) (-15 -4314 ((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#4| |#5|)) (-15 -1430 ((-114) |#4| |#5|)) (-15 -2540 ((-663 (-2 (|:| |val| (-114)) (|:| -4297 |#5|))) |#4| |#5|)) (-15 -2761 ((-663 |#5|) |#4| |#5|)) (-15 -1741 ((-663 (-2 (|:| |val| (-114)) (|:| -4297 |#5|))) |#4| |#5|)) (-15 -4291 ((-663 |#5|) |#4| |#5|)) (-15 -1430 ((-663 (-2 (|:| |val| (-114)) (|:| -4297 |#5|))) |#4| |#5|)) (-15 -3917 ((-663 |#5|) |#4| |#5|)) (-15 -4001 ((-663 (-2 (|:| |val| |#4|) (|:| -4297 |#5|))) |#4| |#5|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-3721 (((-663 (-2 (|:| -4332 $) (|:| -2109 (-663 |#4|)))) (-663 |#4|)) 86 T ELT)) (-3904 (((-663 $) (-663 |#4|)) 87 T ELT) (((-663 $) (-663 |#4|) (-114)) 112 T ELT)) (-1443 (((-663 |#3|) $) 34 T ELT)) (-1466 (((-114) $) 27 T ELT)) (-3101 (((-114) $) 18 (|has| |#1| (-571)) ELT)) (-3036 (((-114) |#4| $) 102 T ELT) (((-114) $) 98 T ELT)) (-1813 ((|#4| |#4| $) 93 T ELT)) (-1804 (((-663 (-2 (|:| |val| |#4|) (|:| -4297 $))) |#4| $) 127 T ELT)) (-2286 (((-2 (|:| |under| $) (|:| -2016 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-3363 (((-114) $ (-793)) 45 T ELT)) (-1982 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4508)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-2238 (($) 46 T CONST)) (-4436 (((-114) $) 23 (|has| |#1| (-571)) ELT)) (-4246 (((-114) $ $) 25 (|has| |#1| (-571)) ELT)) (-1860 (((-114) $ $) 24 (|has| |#1| (-571)) ELT)) (-3745 (((-114) $) 26 (|has| |#1| (-571)) ELT)) (-1477 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 94 T ELT)) (-4027 (((-663 |#4|) (-663 |#4|) $) 19 (|has| |#1| (-571)) ELT)) (-2528 (((-663 |#4|) (-663 |#4|) $) 20 (|has| |#1| (-571)) ELT)) (-2539 (((-3 $ "failed") (-663 |#4|)) 37 T ELT)) (-3330 (($ (-663 |#4|)) 36 T ELT)) (-3649 (((-3 $ "failed") $) 83 T ELT)) (-2841 ((|#4| |#4| $) 90 T ELT)) (-3606 (($ $) 69 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2375 (($ |#4| $) 68 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4508)) ELT)) (-2341 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-571)) ELT)) (-3989 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 103 T ELT)) (-3093 ((|#4| |#4| $) 88 T ELT)) (-4129 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4508)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4508)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 95 T ELT)) (-1723 (((-2 (|:| -4332 (-663 |#4|)) (|:| -2109 (-663 |#4|))) $) 106 T ELT)) (-2330 (((-114) |#4| $) 137 T ELT)) (-2728 (((-114) |#4| $) 134 T ELT)) (-2420 (((-114) |#4| $) 138 T ELT) (((-114) $) 135 T ELT)) (-2181 (((-663 |#4|) $) 53 (|has| $ (-6 -4508)) ELT)) (-3544 (((-114) |#4| $) 105 T ELT) (((-114) $) 104 T ELT)) (-4132 ((|#3| $) 35 T ELT)) (-4034 (((-114) $ (-793)) 44 T ELT)) (-2656 (((-663 |#4|) $) 54 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-1918 (((-663 |#3|) $) 33 T ELT)) (-2724 (((-114) |#3| $) 32 T ELT)) (-1805 (((-114) $ (-793)) 43 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3482 (((-3 |#4| (-663 $)) |#4| |#4| $) 129 T ELT)) (-4130 (((-663 (-2 (|:| |val| |#4|) (|:| -4297 $))) |#4| |#4| $) 128 T ELT)) (-2398 (((-3 |#4| "failed") $) 84 T ELT)) (-3221 (((-663 $) |#4| $) 130 T ELT)) (-3979 (((-3 (-114) (-663 $)) |#4| $) 133 T ELT)) (-2411 (((-663 (-2 (|:| |val| (-114)) (|:| -4297 $))) |#4| $) 132 T ELT) (((-114) |#4| $) 131 T ELT)) (-1903 (((-663 $) |#4| $) 126 T ELT) (((-663 $) (-663 |#4|) $) 125 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 124 T ELT) (((-663 $) |#4| (-663 $)) 123 T ELT)) (-2534 (($ |#4| $) 118 T ELT) (($ (-663 |#4|) $) 117 T ELT)) (-1756 (((-663 |#4|) $) 108 T ELT)) (-3548 (((-114) |#4| $) 100 T ELT) (((-114) $) 96 T ELT)) (-3212 ((|#4| |#4| $) 91 T ELT)) (-2925 (((-114) $ $) 111 T ELT)) (-2557 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-571)) ELT)) (-1563 (((-114) |#4| $) 101 T ELT) (((-114) $) 97 T ELT)) (-3171 ((|#4| |#4| $) 92 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-3637 (((-3 |#4| "failed") $) 85 T ELT)) (-3329 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-1370 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-4372 (($ $ |#4|) 78 T ELT) (((-663 $) |#4| $) 116 T ELT) (((-663 $) |#4| (-663 $)) 115 T ELT) (((-663 $) (-663 |#4|) $) 114 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 113 T ELT)) (-2787 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 |#4|) (-663 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-4124 (((-114) $ $) 39 T ELT)) (-1663 (((-114) $) 42 T ELT)) (-3986 (($) 41 T ELT)) (-3630 (((-793) $) 107 T ELT)) (-3865 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) 40 T ELT)) (-1407 (((-549) $) 70 (|has| |#4| (-633 (-549))) ELT)) (-1592 (($ (-663 |#4|)) 61 T ELT)) (-3752 (($ $ |#3|) 29 T ELT)) (-4288 (($ $ |#3|) 31 T ELT)) (-2886 (($ $) 89 T ELT)) (-4397 (($ $ |#3|) 30 T ELT)) (-1578 (((-887) $) 12 T ELT) (((-663 |#4|) $) 38 T ELT)) (-1582 (((-793) $) 77 (|has| |#3| (-381)) ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-1810 (((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 109 T ELT)) (-4006 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) 99 T ELT)) (-2796 (((-663 $) |#4| $) 122 T ELT) (((-663 $) |#4| (-663 $)) 121 T ELT) (((-663 $) (-663 |#4|) $) 120 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 119 T ELT)) (-1728 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4508)) ELT)) (-3938 (((-663 |#3|) $) 82 T ELT)) (-4395 (((-114) |#4| $) 136 T ELT)) (-3602 (((-114) |#3| $) 81 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-1553 (((-793) $) 47 (|has| $ (-6 -4508)) ELT)))
+((-3043 (((-1303) $) 22 T ELT)) (-1813 (($ (-1207) (-448) |#2|) 11 T ELT)) (-3913 (((-887) $) 16 T ELT)))
+(((-1137 |#1| |#2|) (-13 (-410) (-10 -8 (-15 -1813 ($ (-1207) (-448) |#2|)))) (-1132) (-435 |#1|)) (T -1137))
+((-1813 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1207)) (-5 *3 (-448)) (-4 *5 (-1132)) (-5 *1 (-1137 *5 *4)) (-4 *4 (-435 *5)))))
+(-13 (-410) (-10 -8 (-15 -1813 ($ (-1207) (-448) |#2|))))
+((-2335 (((-114) |#5| |#5|) 44 T ELT)) (-2568 (((-114) |#5| |#5|) 59 T ELT)) (-2704 (((-114) |#5| (-663 |#5|)) 82 T ELT) (((-114) |#5| |#5|) 68 T ELT)) (-1338 (((-114) (-663 |#4|) (-663 |#4|)) 65 T ELT)) (-3910 (((-114) (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|)) (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) 70 T ELT)) (-2944 (((-1303)) 32 T ELT)) (-2849 (((-1303) (-1189) (-1189) (-1189)) 28 T ELT)) (-2806 (((-663 |#5|) (-663 |#5|)) 101 T ELT)) (-1583 (((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|)))) 93 T ELT)) (-1949 (((-663 (-2 (|:| -2439 (-663 |#4|)) (|:| -3859 |#5|) (|:| |ineq| (-663 |#4|)))) (-663 |#4|) (-663 |#5|) (-114) (-114)) 123 T ELT)) (-3050 (((-114) |#5| |#5|) 53 T ELT)) (-3255 (((-3 (-114) "failed") |#5| |#5|) 78 T ELT)) (-4016 (((-114) (-663 |#4|) (-663 |#4|)) 64 T ELT)) (-2956 (((-114) (-663 |#4|) (-663 |#4|)) 66 T ELT)) (-4138 (((-114) (-663 |#4|) (-663 |#4|)) 67 T ELT)) (-3894 (((-3 (-2 (|:| -2439 (-663 |#4|)) (|:| -3859 |#5|) (|:| |ineq| (-663 |#4|))) "failed") (-663 |#4|) |#5| (-663 |#4|) (-114) (-114) (-114) (-114) (-114)) 118 T ELT)) (-4326 (((-663 |#5|) (-663 |#5|)) 49 T ELT)))
+(((-1138 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2849 ((-1303) (-1189) (-1189) (-1189))) (-15 -2944 ((-1303))) (-15 -2335 ((-114) |#5| |#5|)) (-15 -4326 ((-663 |#5|) (-663 |#5|))) (-15 -3050 ((-114) |#5| |#5|)) (-15 -2568 ((-114) |#5| |#5|)) (-15 -1338 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -4016 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -2956 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -4138 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3255 ((-3 (-114) "failed") |#5| |#5|)) (-15 -2704 ((-114) |#5| |#5|)) (-15 -2704 ((-114) |#5| (-663 |#5|))) (-15 -2806 ((-663 |#5|) (-663 |#5|))) (-15 -3910 ((-114) (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|)) (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|)))) (-15 -1583 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) (-15 -1949 ((-663 (-2 (|:| -2439 (-663 |#4|)) (|:| -3859 |#5|) (|:| |ineq| (-663 |#4|)))) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -3894 ((-3 (-2 (|:| -2439 (-663 |#4|)) (|:| -3859 |#5|) (|:| |ineq| (-663 |#4|))) "failed") (-663 |#4|) |#5| (-663 |#4|) (-114) (-114) (-114) (-114) (-114)))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -1138))
+((-3894 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *9 (-1096 *6 *7 *8)) (-5 *2 (-2 (|:| -2439 (-663 *9)) (|:| -3859 *4) (|:| |ineq| (-663 *9)))) (-5 *1 (-1138 *6 *7 *8 *9 *4)) (-5 *3 (-663 *9)) (-4 *4 (-1102 *6 *7 *8 *9)))) (-1949 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-663 *10)) (-5 *5 (-114)) (-4 *10 (-1102 *6 *7 *8 *9)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *9 (-1096 *6 *7 *8)) (-5 *2 (-663 (-2 (|:| -2439 (-663 *9)) (|:| -3859 *10) (|:| |ineq| (-663 *9))))) (-5 *1 (-1138 *6 *7 *8 *9 *10)) (-5 *3 (-663 *9)))) (-1583 (*1 *2 *2) (-12 (-5 *2 (-663 (-2 (|:| |val| (-663 *6)) (|:| -3859 *7)))) (-4 *6 (-1096 *3 *4 *5)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1138 *3 *4 *5 *6 *7)))) (-3910 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -3859 *8))) (-4 *7 (-1096 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1138 *4 *5 *6 *7 *8)))) (-2806 (*1 *2 *2) (-12 (-5 *2 (-663 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *1 (-1138 *3 *4 *5 *6 *7)))) (-2704 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *3)) (-4 *3 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1138 *5 *6 *7 *8 *3)))) (-2704 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-3255 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-4138 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-2956 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-4016 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-1338 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-2568 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-3050 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-4326 (*1 *2 *2) (-12 (-5 *2 (-663 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *1 (-1138 *3 *4 *5 *6 *7)))) (-2335 (*1 *2 *3 *3) (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))) (-2944 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1138 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))) (-2849 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2849 ((-1303) (-1189) (-1189) (-1189))) (-15 -2944 ((-1303))) (-15 -2335 ((-114) |#5| |#5|)) (-15 -4326 ((-663 |#5|) (-663 |#5|))) (-15 -3050 ((-114) |#5| |#5|)) (-15 -2568 ((-114) |#5| |#5|)) (-15 -1338 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -4016 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -2956 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -4138 ((-114) (-663 |#4|) (-663 |#4|))) (-15 -3255 ((-3 (-114) "failed") |#5| |#5|)) (-15 -2704 ((-114) |#5| |#5|)) (-15 -2704 ((-114) |#5| (-663 |#5|))) (-15 -2806 ((-663 |#5|) (-663 |#5|))) (-15 -3910 ((-114) (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|)) (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|)))) (-15 -1583 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) (-15 -1949 ((-663 (-2 (|:| -2439 (-663 |#4|)) (|:| -3859 |#5|) (|:| |ineq| (-663 |#4|)))) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -3894 ((-3 (-2 (|:| -2439 (-663 |#4|)) (|:| -3859 |#5|) (|:| |ineq| (-663 |#4|))) "failed") (-663 |#4|) |#5| (-663 |#4|) (-114) (-114) (-114) (-114) (-114))))
+((-2997 (((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#5|) 108 T ELT)) (-4481 (((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) |#4| |#4| |#5|) 80 T ELT)) (-2980 (((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#4| |#5|) 102 T ELT)) (-1822 (((-663 |#5|) |#4| |#5|) 124 T ELT)) (-4055 (((-663 |#5|) |#4| |#5|) 131 T ELT)) (-3416 (((-663 |#5|) |#4| |#5|) 132 T ELT)) (-1432 (((-663 (-2 (|:| |val| (-114)) (|:| -3859 |#5|))) |#4| |#5|) 109 T ELT)) (-2290 (((-663 (-2 (|:| |val| (-114)) (|:| -3859 |#5|))) |#4| |#5|) 130 T ELT)) (-1565 (((-663 (-2 (|:| |val| (-114)) (|:| -3859 |#5|))) |#4| |#5|) 47 T ELT) (((-114) |#4| |#5|) 55 T ELT)) (-3223 (((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) |#3| (-114)) 92 T ELT) (((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#4| |#5| (-114) (-114)) 52 T ELT)) (-1541 (((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#4| |#5|) 87 T ELT)) (-1670 (((-1303)) 36 T ELT)) (-3190 (((-1303)) 25 T ELT)) (-1609 (((-1303) (-1189) (-1189) (-1189)) 32 T ELT)) (-2349 (((-1303) (-1189) (-1189) (-1189)) 21 T ELT)))
+(((-1139 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2349 ((-1303) (-1189) (-1189) (-1189))) (-15 -3190 ((-1303))) (-15 -1609 ((-1303) (-1189) (-1189) (-1189))) (-15 -1670 ((-1303))) (-15 -4481 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) |#4| |#4| |#5|)) (-15 -3223 ((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#4| |#5| (-114) (-114))) (-15 -3223 ((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) |#3| (-114))) (-15 -1541 ((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#4| |#5|)) (-15 -2980 ((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#4| |#5|)) (-15 -1565 ((-114) |#4| |#5|)) (-15 -1432 ((-663 (-2 (|:| |val| (-114)) (|:| -3859 |#5|))) |#4| |#5|)) (-15 -1822 ((-663 |#5|) |#4| |#5|)) (-15 -2290 ((-663 (-2 (|:| |val| (-114)) (|:| -3859 |#5|))) |#4| |#5|)) (-15 -4055 ((-663 |#5|) |#4| |#5|)) (-15 -1565 ((-663 (-2 (|:| |val| (-114)) (|:| -3859 |#5|))) |#4| |#5|)) (-15 -3416 ((-663 |#5|) |#4| |#5|)) (-15 -2997 ((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#5|))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1102 |#1| |#2| |#3| |#4|)) (T -1139))
+((-2997 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *4)))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3416 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 *4)) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1565 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -3859 *4)))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-4055 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 *4)) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-2290 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -3859 *4)))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1822 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 *4)) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1432 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -3859 *4)))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1565 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-2980 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *4)))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1541 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *4)))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-3223 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -3859 *9)))) (-5 *5 (-114)) (-4 *8 (-1096 *6 *7 *4)) (-4 *9 (-1102 *6 *7 *4 *8)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *4 (-871)) (-5 *2 (-663 (-2 (|:| |val| *8) (|:| -3859 *9)))) (-5 *1 (-1139 *6 *7 *4 *8 *9)))) (-3223 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *3 (-1096 *6 *7 *8)) (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *4)))) (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3)))) (-4481 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4)))) (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))) (-1670 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1139 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))) (-1609 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1139 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))) (-3190 (*1 *2) (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303)) (-5 *1 (-1139 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))) (-2349 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303)) (-5 *1 (-1139 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))))
+(-10 -7 (-15 -2349 ((-1303) (-1189) (-1189) (-1189))) (-15 -3190 ((-1303))) (-15 -1609 ((-1303) (-1189) (-1189) (-1189))) (-15 -1670 ((-1303))) (-15 -4481 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) |#4| |#4| |#5|)) (-15 -3223 ((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#4| |#5| (-114) (-114))) (-15 -3223 ((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) |#3| (-114))) (-15 -1541 ((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#4| |#5|)) (-15 -2980 ((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#4| |#5|)) (-15 -1565 ((-114) |#4| |#5|)) (-15 -1432 ((-663 (-2 (|:| |val| (-114)) (|:| -3859 |#5|))) |#4| |#5|)) (-15 -1822 ((-663 |#5|) |#4| |#5|)) (-15 -2290 ((-663 (-2 (|:| |val| (-114)) (|:| -3859 |#5|))) |#4| |#5|)) (-15 -4055 ((-663 |#5|) |#4| |#5|)) (-15 -1565 ((-663 (-2 (|:| |val| (-114)) (|:| -3859 |#5|))) |#4| |#5|)) (-15 -3416 ((-663 |#5|) |#4| |#5|)) (-15 -2997 ((-663 (-2 (|:| |val| |#4|) (|:| -3859 |#5|))) |#4| |#5|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2253 (((-663 (-2 (|:| -1924 $) (|:| -2888 (-663 |#4|)))) (-663 |#4|)) 86 T ELT)) (-1372 (((-663 $) (-663 |#4|)) 87 T ELT) (((-663 $) (-663 |#4|) (-114)) 112 T ELT)) (-4162 (((-663 |#3|) $) 34 T ELT)) (-1362 (((-114) $) 27 T ELT)) (-2179 (((-114) $) 18 (|has| |#1| (-571)) ELT)) (-2729 (((-114) |#4| $) 102 T ELT) (((-114) $) 98 T ELT)) (-1722 ((|#4| |#4| $) 93 T ELT)) (-1621 (((-663 (-2 (|:| |val| |#4|) (|:| -3859 $))) |#4| $) 127 T ELT)) (-1787 (((-2 (|:| |under| $) (|:| -3147 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-3045 (((-114) $ (-793)) 45 T ELT)) (-3923 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4508)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-3525 (($) 46 T CONST)) (-2733 (((-114) $) 23 (|has| |#1| (-571)) ELT)) (-3672 (((-114) $ $) 25 (|has| |#1| (-571)) ELT)) (-4148 (((-114) $ $) 24 (|has| |#1| (-571)) ELT)) (-2449 (((-114) $) 26 (|has| |#1| (-571)) ELT)) (-4108 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 94 T ELT)) (-3277 (((-663 |#4|) (-663 |#4|) $) 19 (|has| |#1| (-571)) ELT)) (-4485 (((-663 |#4|) (-663 |#4|) $) 20 (|has| |#1| (-571)) ELT)) (-3929 (((-3 $ "failed") (-663 |#4|)) 37 T ELT)) (-3649 (($ (-663 |#4|)) 36 T ELT)) (-4345 (((-3 $ "failed") $) 83 T ELT)) (-1440 ((|#4| |#4| $) 90 T ELT)) (-3658 (($ $) 69 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3033 (($ |#4| $) 68 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4508)) ELT)) (-3276 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-571)) ELT)) (-2869 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 103 T ELT)) (-2113 ((|#4| |#4| $) 88 T ELT)) (-1778 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4508)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4508)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 95 T ELT)) (-2115 (((-2 (|:| -1924 (-663 |#4|)) (|:| -2888 (-663 |#4|))) $) 106 T ELT)) (-3175 (((-114) |#4| $) 137 T ELT)) (-1520 (((-114) |#4| $) 134 T ELT)) (-1575 (((-114) |#4| $) 138 T ELT) (((-114) $) 135 T ELT)) (-3737 (((-663 |#4|) $) 53 (|has| $ (-6 -4508)) ELT)) (-4264 (((-114) |#4| $) 105 T ELT) (((-114) $) 104 T ELT)) (-1816 ((|#3| $) 35 T ELT)) (-3332 (((-114) $ (-793)) 44 T ELT)) (-3243 (((-663 |#4|) $) 54 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3471 (((-663 |#3|) $) 33 T ELT)) (-2703 (((-114) |#3| $) 32 T ELT)) (-1634 (((-114) $ (-793)) 43 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-1702 (((-3 |#4| (-663 $)) |#4| |#4| $) 129 T ELT)) (-1790 (((-663 (-2 (|:| |val| |#4|) (|:| -3859 $))) |#4| |#4| $) 128 T ELT)) (-3057 (((-3 |#4| "failed") $) 84 T ELT)) (-4144 (((-663 $) |#4| $) 130 T ELT)) (-2769 (((-3 (-114) (-663 $)) |#4| $) 133 T ELT)) (-1503 (((-663 (-2 (|:| |val| (-114)) (|:| -3859 $))) |#4| $) 132 T ELT) (((-114) |#4| $) 131 T ELT)) (-3334 (((-663 $) |#4| $) 126 T ELT) (((-663 $) (-663 |#4|) $) 125 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 124 T ELT) (((-663 $) |#4| (-663 $)) 123 T ELT)) (-1392 (($ |#4| $) 118 T ELT) (($ (-663 |#4|) $) 117 T ELT)) (-2428 (((-663 |#4|) $) 108 T ELT)) (-4301 (((-114) |#4| $) 100 T ELT) (((-114) $) 96 T ELT)) (-4039 ((|#4| |#4| $) 91 T ELT)) (-4138 (((-114) $ $) 111 T ELT)) (-3531 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-571)) ELT)) (-1737 (((-114) |#4| $) 101 T ELT) (((-114) $) 97 T ELT)) (-1686 ((|#4| |#4| $) 92 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4334 (((-3 |#4| "failed") $) 85 T ELT)) (-2708 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-3867 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-2219 (($ $ |#4|) 78 T ELT) (((-663 $) |#4| $) 116 T ELT) (((-663 $) |#4| (-663 $)) 115 T ELT) (((-663 $) (-663 |#4|) $) 114 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 113 T ELT)) (-2086 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 |#4|) (-663 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-1736 (((-114) $ $) 39 T ELT)) (-2706 (((-114) $) 42 T ELT)) (-2832 (($) 41 T ELT)) (-3900 (((-793) $) 107 T ELT)) (-3384 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) 40 T ELT)) (-2400 (((-549) $) 70 (|has| |#4| (-633 (-549))) ELT)) (-3924 (($ (-663 |#4|)) 61 T ELT)) (-2511 (($ $ |#3|) 29 T ELT)) (-4047 (($ $ |#3|) 31 T ELT)) (-3833 (($ $) 89 T ELT)) (-2438 (($ $ |#3|) 30 T ELT)) (-3913 (((-887) $) 12 T ELT) (((-663 |#4|) $) 38 T ELT)) (-1930 (((-793) $) 77 (|has| |#3| (-381)) ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1690 (((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 109 T ELT)) (-3058 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) 99 T ELT)) (-4135 (((-663 $) |#4| $) 122 T ELT) (((-663 $) |#4| (-663 $)) 121 T ELT) (((-663 $) (-663 |#4|) $) 120 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 119 T ELT)) (-2149 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4508)) ELT)) (-3616 (((-663 |#3|) $) 82 T ELT)) (-2416 (((-114) |#4| $) 136 T ELT)) (-3621 (((-114) |#3| $) 81 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2256 (((-793) $) 47 (|has| $ (-6 -4508)) ELT)))
(((-1140 |#1| |#2| |#3| |#4|) (-142) (-466) (-815) (-871) (-1096 |t#1| |t#2| |t#3|)) (T -1140))
NIL
(-13 (-1102 |t#1| |t#2| |t#3| |t#4|))
(((-34) . T) ((-102) . T) ((-632 (-663 |#4|)) . T) ((-632 (-887)) . T) ((-153 |#4|) . T) ((-633 (-549)) |has| |#4| (-633 (-549))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ((-503 |#4|) . T) ((-528 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ((-1007 |#1| |#2| |#3| |#4|) . T) ((-1102 |#1| |#2| |#3| |#4|) . T) ((-1132) . T) ((-1242 |#1| |#2| |#3| |#4|) . T) ((-1247) . T))
-((-2633 (((-663 (-560)) (-560) (-560) (-560)) 38 T ELT)) (-3250 (((-663 (-560)) (-560) (-560) (-560)) 28 T ELT)) (-3741 (((-663 (-560)) (-560) (-560) (-560)) 33 T ELT)) (-1793 (((-560) (-560) (-560)) 21 T ELT)) (-3275 (((-1297 (-560)) (-663 (-560)) (-1297 (-560)) (-560)) 77 T ELT) (((-1297 (-560)) (-1297 (-560)) (-1297 (-560)) (-560)) 72 T ELT)) (-4018 (((-663 (-560)) (-663 (-948)) (-663 (-560)) (-114)) 54 T ELT)) (-3633 (((-711 (-560)) (-663 (-560)) (-663 (-560)) (-711 (-560))) 76 T ELT)) (-2624 (((-711 (-560)) (-663 (-948)) (-663 (-560))) 59 T ELT)) (-3699 (((-663 (-711 (-560))) (-663 (-948))) 65 T ELT)) (-4241 (((-663 (-560)) (-663 (-560)) (-663 (-560)) (-711 (-560))) 80 T ELT)) (-3453 (((-711 (-560)) (-663 (-560)) (-663 (-560)) (-663 (-560))) 90 T ELT)))
-(((-1141) (-10 -7 (-15 -3453 ((-711 (-560)) (-663 (-560)) (-663 (-560)) (-663 (-560)))) (-15 -4241 ((-663 (-560)) (-663 (-560)) (-663 (-560)) (-711 (-560)))) (-15 -3699 ((-663 (-711 (-560))) (-663 (-948)))) (-15 -2624 ((-711 (-560)) (-663 (-948)) (-663 (-560)))) (-15 -3633 ((-711 (-560)) (-663 (-560)) (-663 (-560)) (-711 (-560)))) (-15 -4018 ((-663 (-560)) (-663 (-948)) (-663 (-560)) (-114))) (-15 -3275 ((-1297 (-560)) (-1297 (-560)) (-1297 (-560)) (-560))) (-15 -3275 ((-1297 (-560)) (-663 (-560)) (-1297 (-560)) (-560))) (-15 -1793 ((-560) (-560) (-560))) (-15 -3741 ((-663 (-560)) (-560) (-560) (-560))) (-15 -3250 ((-663 (-560)) (-560) (-560) (-560))) (-15 -2633 ((-663 (-560)) (-560) (-560) (-560))))) (T -1141))
-((-2633 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1141)) (-5 *3 (-560)))) (-3250 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1141)) (-5 *3 (-560)))) (-3741 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1141)) (-5 *3 (-560)))) (-1793 (*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1141)))) (-3275 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1297 (-560))) (-5 *3 (-663 (-560))) (-5 *4 (-560)) (-5 *1 (-1141)))) (-3275 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1297 (-560))) (-5 *3 (-560)) (-5 *1 (-1141)))) (-4018 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-663 (-560))) (-5 *3 (-663 (-948))) (-5 *4 (-114)) (-5 *1 (-1141)))) (-3633 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-711 (-560))) (-5 *3 (-663 (-560))) (-5 *1 (-1141)))) (-2624 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-948))) (-5 *4 (-663 (-560))) (-5 *2 (-711 (-560))) (-5 *1 (-1141)))) (-3699 (*1 *2 *3) (-12 (-5 *3 (-663 (-948))) (-5 *2 (-663 (-711 (-560)))) (-5 *1 (-1141)))) (-4241 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-663 (-560))) (-5 *3 (-711 (-560))) (-5 *1 (-1141)))) (-3453 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-711 (-560))) (-5 *1 (-1141)))))
-(-10 -7 (-15 -3453 ((-711 (-560)) (-663 (-560)) (-663 (-560)) (-663 (-560)))) (-15 -4241 ((-663 (-560)) (-663 (-560)) (-663 (-560)) (-711 (-560)))) (-15 -3699 ((-663 (-711 (-560))) (-663 (-948)))) (-15 -2624 ((-711 (-560)) (-663 (-948)) (-663 (-560)))) (-15 -3633 ((-711 (-560)) (-663 (-560)) (-663 (-560)) (-711 (-560)))) (-15 -4018 ((-663 (-560)) (-663 (-948)) (-663 (-560)) (-114))) (-15 -3275 ((-1297 (-560)) (-1297 (-560)) (-1297 (-560)) (-560))) (-15 -3275 ((-1297 (-560)) (-663 (-560)) (-1297 (-560)) (-560))) (-15 -1793 ((-560) (-560) (-560))) (-15 -3741 ((-663 (-560)) (-560) (-560) (-560))) (-15 -3250 ((-663 (-560)) (-560) (-560) (-560))) (-15 -2633 ((-663 (-560)) (-560) (-560) (-560))))
+((-3014 (((-663 (-560)) (-560) (-560) (-560)) 38 T ELT)) (-4427 (((-663 (-560)) (-560) (-560) (-560)) 28 T ELT)) (-2415 (((-663 (-560)) (-560) (-560) (-560)) 33 T ELT)) (-1512 (((-560) (-560) (-560)) 21 T ELT)) (-3413 (((-1297 (-560)) (-663 (-560)) (-1297 (-560)) (-560)) 77 T ELT) (((-1297 (-560)) (-1297 (-560)) (-1297 (-560)) (-560)) 72 T ELT)) (-3186 (((-663 (-560)) (-663 (-948)) (-663 (-560)) (-114)) 54 T ELT)) (-3934 (((-711 (-560)) (-663 (-560)) (-663 (-560)) (-711 (-560))) 76 T ELT)) (-2899 (((-711 (-560)) (-663 (-948)) (-663 (-560))) 59 T ELT)) (-3304 (((-663 (-711 (-560))) (-663 (-948))) 65 T ELT)) (-3609 (((-663 (-560)) (-663 (-560)) (-663 (-560)) (-711 (-560))) 80 T ELT)) (-2649 (((-711 (-560)) (-663 (-560)) (-663 (-560)) (-663 (-560))) 90 T ELT)))
+(((-1141) (-10 -7 (-15 -2649 ((-711 (-560)) (-663 (-560)) (-663 (-560)) (-663 (-560)))) (-15 -3609 ((-663 (-560)) (-663 (-560)) (-663 (-560)) (-711 (-560)))) (-15 -3304 ((-663 (-711 (-560))) (-663 (-948)))) (-15 -2899 ((-711 (-560)) (-663 (-948)) (-663 (-560)))) (-15 -3934 ((-711 (-560)) (-663 (-560)) (-663 (-560)) (-711 (-560)))) (-15 -3186 ((-663 (-560)) (-663 (-948)) (-663 (-560)) (-114))) (-15 -3413 ((-1297 (-560)) (-1297 (-560)) (-1297 (-560)) (-560))) (-15 -3413 ((-1297 (-560)) (-663 (-560)) (-1297 (-560)) (-560))) (-15 -1512 ((-560) (-560) (-560))) (-15 -2415 ((-663 (-560)) (-560) (-560) (-560))) (-15 -4427 ((-663 (-560)) (-560) (-560) (-560))) (-15 -3014 ((-663 (-560)) (-560) (-560) (-560))))) (T -1141))
+((-3014 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1141)) (-5 *3 (-560)))) (-4427 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1141)) (-5 *3 (-560)))) (-2415 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1141)) (-5 *3 (-560)))) (-1512 (*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1141)))) (-3413 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1297 (-560))) (-5 *3 (-663 (-560))) (-5 *4 (-560)) (-5 *1 (-1141)))) (-3413 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1297 (-560))) (-5 *3 (-560)) (-5 *1 (-1141)))) (-3186 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-663 (-560))) (-5 *3 (-663 (-948))) (-5 *4 (-114)) (-5 *1 (-1141)))) (-3934 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-711 (-560))) (-5 *3 (-663 (-560))) (-5 *1 (-1141)))) (-2899 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-948))) (-5 *4 (-663 (-560))) (-5 *2 (-711 (-560))) (-5 *1 (-1141)))) (-3304 (*1 *2 *3) (-12 (-5 *3 (-663 (-948))) (-5 *2 (-663 (-711 (-560)))) (-5 *1 (-1141)))) (-3609 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-663 (-560))) (-5 *3 (-711 (-560))) (-5 *1 (-1141)))) (-2649 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-663 (-560))) (-5 *2 (-711 (-560))) (-5 *1 (-1141)))))
+(-10 -7 (-15 -2649 ((-711 (-560)) (-663 (-560)) (-663 (-560)) (-663 (-560)))) (-15 -3609 ((-663 (-560)) (-663 (-560)) (-663 (-560)) (-711 (-560)))) (-15 -3304 ((-663 (-711 (-560))) (-663 (-948)))) (-15 -2899 ((-711 (-560)) (-663 (-948)) (-663 (-560)))) (-15 -3934 ((-711 (-560)) (-663 (-560)) (-663 (-560)) (-711 (-560)))) (-15 -3186 ((-663 (-560)) (-663 (-948)) (-663 (-560)) (-114))) (-15 -3413 ((-1297 (-560)) (-1297 (-560)) (-1297 (-560)) (-560))) (-15 -3413 ((-1297 (-560)) (-663 (-560)) (-1297 (-560)) (-560))) (-15 -1512 ((-560) (-560) (-560))) (-15 -2415 ((-663 (-560)) (-560) (-560) (-560))) (-15 -4427 ((-663 (-560)) (-560) (-560) (-560))) (-15 -3014 ((-663 (-560)) (-560) (-560) (-560))))
((** (($ $ (-948)) 10 T ELT)))
(((-1142 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-948)))) (-1143)) (T -1142))
NIL
(-10 -8 (-15 ** (|#1| |#1| (-948))))
-((-1538 (((-114) $ $) 7 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (** (($ $ (-948)) 14 T ELT)) (* (($ $ $) 15 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (** (($ $ (-948)) 14 T ELT)) (* (($ $ $) 15 T ELT)))
(((-1143) (-142)) (T -1143))
((* (*1 *1 *1 *1) (-4 *1 (-1143))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1143)) (-5 *2 (-948)))))
(-13 (-1132) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-948)))))
(((-102) . T) ((-632 (-887)) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL (|has| |#3| (-102)) ELT)) (-2388 (((-114) $) NIL (|has| |#3| (-23)) ELT)) (-1521 (($ (-948)) NIL (|has| |#3| (-1080)) ELT)) (-3839 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-3168 (($ $ $) NIL (|has| |#3| (-815)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL (|has| |#3| (-133)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-3241 (((-793)) NIL (|has| |#3| (-381)) ELT)) (-1773 ((|#3| $ (-560) |#3|) NIL (|has| $ (-6 -4509)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) NIL (-12 (|has| |#3| (-1069 (-560))) (|has| |#3| (-1132))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (-12 (|has| |#3| (-1069 (-421 (-560)))) (|has| |#3| (-1132))) ELT) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1132)) ELT)) (-3330 (((-560) $) NIL (-12 (|has| |#3| (-1069 (-560))) (|has| |#3| (-1132))) ELT) (((-421 (-560)) $) NIL (-12 (|has| |#3| (-1069 (-421 (-560)))) (|has| |#3| (-1132))) ELT) ((|#3| $) NIL (|has| |#3| (-1132)) ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1080))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1080))) ELT) (((-2 (|:| -3822 (-711 |#3|)) (|:| |vec| (-1297 |#3|))) (-711 $) (-1297 $)) NIL (|has| |#3| (-1080)) ELT) (((-711 |#3|) (-711 $)) NIL (|has| |#3| (-1080)) ELT)) (-1990 (((-3 $ "failed") $) NIL (|has| |#3| (-1080)) ELT)) (-2310 (($) NIL (|has| |#3| (-381)) ELT)) (-3779 ((|#3| $ (-560) |#3|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#3| $ (-560)) 12 T ELT)) (-2181 (((-663 |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1581 (((-114) $) NIL (|has| |#3| (-1080)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL (|has| |#3| (-871)) ELT)) (-2656 (((-663 |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#3| (-1132))) ELT)) (-2937 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#3| (-871)) ELT)) (-3768 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-4419 (((-948) $) NIL (|has| |#3| (-381)) ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1080))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1080))) ELT) (((-2 (|:| -3822 (-711 |#3|)) (|:| |vec| (-1297 |#3|))) (-1297 $) $) NIL (|has| |#3| (-1080)) ELT) (((-711 |#3|) (-1297 $)) NIL (|has| |#3| (-1080)) ELT)) (-1905 (((-1189) $) NIL (|has| |#3| (-1132)) ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) NIL T ELT)) (-3128 (($ (-948)) NIL (|has| |#3| (-381)) ELT)) (-3855 (((-1151) $) NIL (|has| |#3| (-1132)) ELT)) (-3637 ((|#3| $) NIL (|has| (-560) (-871)) ELT)) (-3037 (($ $ |#3|) NIL (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ (-663 |#3|) (-663 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#3| (-1132))) ELT)) (-3571 (((-663 |#3|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#3| $ (-560) |#3|) NIL T ELT) ((|#3| $ (-560)) NIL T ELT)) (-3232 ((|#3| $ $) NIL (|has| |#3| (-1080)) ELT)) (-1343 (($ (-1297 |#3|)) NIL T ELT)) (-3669 (((-136)) NIL (|has| |#3| (-376)) ELT)) (-2894 (($ $ (-793)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1080))) ELT) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1080))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-1 |#3| |#3|) (-793)) NIL (|has| |#3| (-1080)) ELT)) (-3865 (((-793) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#3| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#3| (-1132))) ELT)) (-1799 (($ $) NIL T ELT)) (-1578 (((-1297 |#3|) $) NIL T ELT) (($ (-560)) NIL (-2304 (-12 (|has| |#3| (-1069 (-560))) (|has| |#3| (-1132))) (|has| |#3| (-1080))) ELT) (($ (-421 (-560))) NIL (-12 (|has| |#3| (-1069 (-421 (-560)))) (|has| |#3| (-1132))) ELT) (($ |#3|) NIL (|has| |#3| (-1132)) ELT) (((-887) $) NIL (|has| |#3| (-632 (-887))) ELT)) (-2930 (((-793)) NIL (|has| |#3| (-1080)) CONST)) (-2275 (((-114) $ $) NIL (|has| |#3| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2001 (($) NIL (|has| |#3| (-23)) CONST)) (-2011 (($) NIL (|has| |#3| (-1080)) CONST)) (-3305 (($ $ (-793)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1080))) ELT) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1080))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-1 |#3| |#3|) (-793)) NIL (|has| |#3| (-1080)) ELT)) (-2536 (((-114) $ $) NIL (|has| |#3| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#3| (-871)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#3| (-102)) ELT)) (-2521 (((-114) $ $) NIL (|has| |#3| (-871)) ELT)) (-2495 (((-114) $ $) 24 (|has| |#3| (-871)) ELT)) (-2594 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-2580 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-2567 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-793)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-948)) NIL (|has| |#3| (-1080)) ELT)) (* (($ $ $) NIL (|has| |#3| (-1080)) ELT) (($ $ |#3|) NIL (|has| |#3| (-748)) ELT) (($ |#3| $) NIL (|has| |#3| (-748)) ELT) (($ (-560) $) NIL (|has| |#3| (-21)) ELT) (($ (-793) $) NIL (|has| |#3| (-23)) ELT) (($ (-948) $) NIL (|has| |#3| (-25)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL (|has| |#3| (-102)) ELT)) (-2505 (((-114) $) NIL (|has| |#3| (-23)) ELT)) (-3101 (($ (-948)) NIL (|has| |#3| (-1080)) ELT)) (-2033 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-1651 (($ $ $) NIL (|has| |#3| (-815)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL (|has| |#3| (-133)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-2552 (((-793)) NIL (|has| |#3| (-381)) ELT)) (-4083 ((|#3| $ (-560) |#3|) NIL (|has| $ (-6 -4509)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) NIL (-12 (|has| |#3| (-1069 (-560))) (|has| |#3| (-1132))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (-12 (|has| |#3| (-1069 (-421 (-560)))) (|has| |#3| (-1132))) ELT) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1132)) ELT)) (-3649 (((-560) $) NIL (-12 (|has| |#3| (-1069 (-560))) (|has| |#3| (-1132))) ELT) (((-421 (-560)) $) NIL (-12 (|has| |#3| (-1069 (-421 (-560)))) (|has| |#3| (-1132))) ELT) ((|#3| $) NIL (|has| |#3| (-1132)) ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1080))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1080))) ELT) (((-2 (|:| -1871 (-711 |#3|)) (|:| |vec| (-1297 |#3|))) (-711 $) (-1297 $)) NIL (|has| |#3| (-1080)) ELT) (((-711 |#3|) (-711 $)) NIL (|has| |#3| (-1080)) ELT)) (-2873 (((-3 $ "failed") $) NIL (|has| |#3| (-1080)) ELT)) (-1812 (($) NIL (|has| |#3| (-381)) ELT)) (-3338 ((|#3| $ (-560) |#3|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#3| $ (-560)) 12 T ELT)) (-3737 (((-663 |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1918 (((-114) $) NIL (|has| |#3| (-1080)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL (|has| |#3| (-871)) ELT)) (-3243 (((-663 |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#3| (-1132))) ELT)) (-4263 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#3| (-871)) ELT)) (-3324 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2622 (((-948) $) NIL (|has| |#3| (-381)) ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1080))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (-12 (|has| |#3| (-660 (-560))) (|has| |#3| (-1080))) ELT) (((-2 (|:| -1871 (-711 |#3|)) (|:| |vec| (-1297 |#3|))) (-1297 $) $) NIL (|has| |#3| (-1080)) ELT) (((-711 |#3|) (-1297 $)) NIL (|has| |#3| (-1080)) ELT)) (-3358 (((-1189) $) NIL (|has| |#3| (-1132)) ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) NIL T ELT)) (-1591 (($ (-948)) NIL (|has| |#3| (-381)) ELT)) (-3376 (((-1151) $) NIL (|has| |#3| (-1132)) ELT)) (-4334 ((|#3| $) NIL (|has| (-560) (-871)) ELT)) (-2740 (($ $ |#3|) NIL (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT) (($ $ (-663 |#3|) (-663 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#3| (-1132))) ELT)) (-1383 (((-663 |#3|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#3| $ (-560) |#3|) NIL T ELT) ((|#3| $ (-560)) NIL T ELT)) (-4258 ((|#3| $ $) NIL (|has| |#3| (-1080)) ELT)) (-4050 (($ (-1297 |#3|)) NIL T ELT)) (-3015 (((-136)) NIL (|has| |#3| (-376)) ELT)) (-3161 (($ $ (-793)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1080))) ELT) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1080))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-1 |#3| |#3|) (-793)) NIL (|has| |#3| (-1080)) ELT)) (-3384 (((-793) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#3| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#3| (-1132))) ELT)) (-4107 (($ $) NIL T ELT)) (-3913 (((-1297 |#3|) $) NIL T ELT) (($ (-560)) NIL (-2196 (-12 (|has| |#3| (-1069 (-560))) (|has| |#3| (-1132))) (|has| |#3| (-1080))) ELT) (($ (-421 (-560))) NIL (-12 (|has| |#3| (-1069 (-421 (-560)))) (|has| |#3| (-1132))) ELT) (($ |#3|) NIL (|has| |#3| (-1132)) ELT) (((-887) $) NIL (|has| |#3| (-632 (-887))) ELT)) (-4191 (((-793)) NIL (|has| |#3| (-1080)) CONST)) (-3925 (((-114) $ $) NIL (|has| |#3| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1446 (($) NIL (|has| |#3| (-23)) CONST)) (-1456 (($) NIL (|has| |#3| (-1080)) CONST)) (-2111 (($ $ (-793)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1080))) ELT) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1080))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-1207)) NIL (-12 (|has| |#3| (-929 (-1207))) (|has| |#3| (-1080))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-1 |#3| |#3|) (-793)) NIL (|has| |#3| (-1080)) ELT)) (-2396 (((-114) $ $) NIL (|has| |#3| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#3| (-871)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#3| (-102)) ELT)) (-2386 (((-114) $ $) NIL (|has| |#3| (-871)) ELT)) (-2362 (((-114) $ $) 24 (|has| |#3| (-871)) ELT)) (-2453 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-2441 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-2429 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-793)) NIL (|has| |#3| (-1080)) ELT) (($ $ (-948)) NIL (|has| |#3| (-1080)) ELT)) (* (($ $ $) NIL (|has| |#3| (-1080)) ELT) (($ $ |#3|) NIL (|has| |#3| (-748)) ELT) (($ |#3| $) NIL (|has| |#3| (-748)) ELT) (($ (-560) $) NIL (|has| |#3| (-21)) ELT) (($ (-793) $) NIL (|has| |#3| (-23)) ELT) (($ (-948) $) NIL (|has| |#3| (-25)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
(((-1144 |#1| |#2| |#3|) (-245 |#1| |#3|) (-793) (-793) (-815)) (T -1144))
NIL
(-245 |#1| |#3|)
-((-2569 (((-663 (-1266 |#2| |#1|)) (-1266 |#2| |#1|) (-1266 |#2| |#1|)) 50 T ELT)) (-2260 (((-560) (-1266 |#2| |#1|)) 94 (|has| |#1| (-466)) ELT)) (-3558 (((-560) (-1266 |#2| |#1|)) 76 T ELT)) (-2289 (((-663 (-1266 |#2| |#1|)) (-1266 |#2| |#1|) (-1266 |#2| |#1|)) 58 T ELT)) (-3129 (((-560) (-1266 |#2| |#1|) (-1266 |#2| |#1|)) 93 (|has| |#1| (-466)) ELT)) (-2497 (((-663 |#1|) (-1266 |#2| |#1|) (-1266 |#2| |#1|)) 61 T ELT)) (-3373 (((-560) (-1266 |#2| |#1|) (-1266 |#2| |#1|)) 75 T ELT)))
-(((-1145 |#1| |#2|) (-10 -7 (-15 -2569 ((-663 (-1266 |#2| |#1|)) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -2289 ((-663 (-1266 |#2| |#1|)) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -2497 ((-663 |#1|) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -3373 ((-560) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -3558 ((-560) (-1266 |#2| |#1|))) (IF (|has| |#1| (-466)) (PROGN (-15 -3129 ((-560) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -2260 ((-560) (-1266 |#2| |#1|)))) |%noBranch|)) (-842) (-1207)) (T -1145))
-((-2260 (*1 *2 *3) (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-466)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-560)) (-5 *1 (-1145 *4 *5)))) (-3129 (*1 *2 *3 *3) (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-466)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-560)) (-5 *1 (-1145 *4 *5)))) (-3558 (*1 *2 *3) (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-560)) (-5 *1 (-1145 *4 *5)))) (-3373 (*1 *2 *3 *3) (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-560)) (-5 *1 (-1145 *4 *5)))) (-2497 (*1 *2 *3 *3) (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-663 *4)) (-5 *1 (-1145 *4 *5)))) (-2289 (*1 *2 *3 *3) (-12 (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-663 (-1266 *5 *4))) (-5 *1 (-1145 *4 *5)) (-5 *3 (-1266 *5 *4)))) (-2569 (*1 *2 *3 *3) (-12 (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-663 (-1266 *5 *4))) (-5 *1 (-1145 *4 *5)) (-5 *3 (-1266 *5 *4)))))
-(-10 -7 (-15 -2569 ((-663 (-1266 |#2| |#1|)) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -2289 ((-663 (-1266 |#2| |#1|)) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -2497 ((-663 |#1|) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -3373 ((-560) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -3558 ((-560) (-1266 |#2| |#1|))) (IF (|has| |#1| (-466)) (PROGN (-15 -3129 ((-560) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -2260 ((-560) (-1266 |#2| |#1|)))) |%noBranch|))
-((-1538 (((-114) $ $) NIL T ELT)) (-1660 (((-1212) $) 12 T ELT)) (-1613 (((-663 (-1212)) $) 14 T ELT)) (-3736 (($ (-663 (-1212)) (-1212)) 10 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 29 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 17 T ELT)))
-(((-1146) (-13 (-1132) (-10 -8 (-15 -3736 ($ (-663 (-1212)) (-1212))) (-15 -1660 ((-1212) $)) (-15 -1613 ((-663 (-1212)) $))))) (T -1146))
-((-3736 (*1 *1 *2 *3) (-12 (-5 *2 (-663 (-1212))) (-5 *3 (-1212)) (-5 *1 (-1146)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-1146)))) (-1613 (*1 *2 *1) (-12 (-5 *2 (-663 (-1212))) (-5 *1 (-1146)))))
-(-13 (-1132) (-10 -8 (-15 -3736 ($ (-663 (-1212)) (-1212))) (-15 -1660 ((-1212) $)) (-15 -1613 ((-663 (-1212)) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2949 (($ (-520) (-1146)) 13 T ELT)) (-3736 (((-1146) $) 19 T ELT)) (-3614 (((-520) $) 16 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 26 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-1147) (-13 (-1114) (-10 -8 (-15 -2949 ($ (-520) (-1146))) (-15 -3614 ((-520) $)) (-15 -3736 ((-1146) $))))) (T -1147))
-((-2949 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1146)) (-5 *1 (-1147)))) (-3614 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1147)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1147)))))
-(-13 (-1114) (-10 -8 (-15 -2949 ($ (-520) (-1146))) (-15 -3614 ((-520) $)) (-15 -3736 ((-1146) $))))
-((-2138 (((-3 (-560) "failed") |#2| (-1207) |#2| (-1189)) 19 T ELT) (((-3 (-560) "failed") |#2| (-1207) (-864 |#2|)) 17 T ELT) (((-3 (-560) "failed") |#2|) 60 T ELT)))
-(((-1148 |#1| |#2|) (-10 -7 (-15 -2138 ((-3 (-560) "failed") |#2|)) (-15 -2138 ((-3 (-560) "failed") |#2| (-1207) (-864 |#2|))) (-15 -2138 ((-3 (-560) "failed") |#2| (-1207) |#2| (-1189)))) (-13 (-571) (-1069 (-560)) (-660 (-560)) (-466)) (-13 (-27) (-1233) (-435 |#1|))) (T -1148))
-((-2138 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-1189)) (-4 *6 (-13 (-571) (-1069 *2) (-660 *2) (-466))) (-5 *2 (-560)) (-5 *1 (-1148 *6 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *6))))) (-2138 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-864 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-571) (-1069 *2) (-660 *2) (-466))) (-5 *2 (-560)) (-5 *1 (-1148 *6 *3)))) (-2138 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-571) (-1069 *2) (-660 *2) (-466))) (-5 *2 (-560)) (-5 *1 (-1148 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4))))))
-(-10 -7 (-15 -2138 ((-3 (-560) "failed") |#2|)) (-15 -2138 ((-3 (-560) "failed") |#2| (-1207) (-864 |#2|))) (-15 -2138 ((-3 (-560) "failed") |#2| (-1207) |#2| (-1189))))
-((-2138 (((-3 (-560) "failed") (-421 (-975 |#1|)) (-1207) (-421 (-975 |#1|)) (-1189)) 38 T ELT) (((-3 (-560) "failed") (-421 (-975 |#1|)) (-1207) (-864 (-421 (-975 |#1|)))) 33 T ELT) (((-3 (-560) "failed") (-421 (-975 |#1|))) 14 T ELT)))
-(((-1149 |#1|) (-10 -7 (-15 -2138 ((-3 (-560) "failed") (-421 (-975 |#1|)))) (-15 -2138 ((-3 (-560) "failed") (-421 (-975 |#1|)) (-1207) (-864 (-421 (-975 |#1|))))) (-15 -2138 ((-3 (-560) "failed") (-421 (-975 |#1|)) (-1207) (-421 (-975 |#1|)) (-1189)))) (-466)) (T -1149))
-((-2138 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-421 (-975 *6))) (-5 *4 (-1207)) (-5 *5 (-1189)) (-4 *6 (-466)) (-5 *2 (-560)) (-5 *1 (-1149 *6)))) (-2138 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-864 (-421 (-975 *6)))) (-5 *3 (-421 (-975 *6))) (-4 *6 (-466)) (-5 *2 (-560)) (-5 *1 (-1149 *6)))) (-2138 (*1 *2 *3) (|partial| -12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-466)) (-5 *2 (-560)) (-5 *1 (-1149 *4)))))
-(-10 -7 (-15 -2138 ((-3 (-560) "failed") (-421 (-975 |#1|)))) (-15 -2138 ((-3 (-560) "failed") (-421 (-975 |#1|)) (-1207) (-864 (-421 (-975 |#1|))))) (-15 -2138 ((-3 (-560) "failed") (-421 (-975 |#1|)) (-1207) (-421 (-975 |#1|)) (-1189))))
-((-3922 (((-326 (-560)) (-48)) 12 T ELT)))
-(((-1150) (-10 -7 (-15 -3922 ((-326 (-560)) (-48))))) (T -1150))
-((-3922 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-560))) (-5 *1 (-1150)))))
-(-10 -7 (-15 -3922 ((-326 (-560)) (-48))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1562 (($ $) 42 T ELT)) (-2388 (((-114) $) 70 T ELT)) (-1977 (($ $ $) 51 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 96 T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-2791 (($ $ $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2970 (($ $ $ $) 80 T ELT)) (-1804 (($ $) NIL T ELT)) (-3023 (((-419 $) $) NIL T ELT)) (-1615 (((-114) $ $) NIL T ELT)) (-3241 (((-793)) 81 T ELT)) (-2138 (((-560) $) NIL T ELT)) (-2331 (($ $ $) 77 T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) NIL T ELT)) (-3330 (((-560) $) NIL T ELT)) (-1478 (($ $ $) 64 T ELT)) (-3142 (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 90 T ELT) (((-711 (-560)) (-711 $)) 30 T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-3643 (((-3 (-421 (-560)) "failed") $) NIL T ELT)) (-3469 (((-114) $) NIL T ELT)) (-3197 (((-421 (-560)) $) NIL T ELT)) (-2310 (($) 93 T ELT) (($ $) 94 T ELT)) (-1490 (($ $ $) 63 T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL T ELT)) (-4330 (((-114) $) NIL T ELT)) (-1949 (($ $ $ $) NIL T ELT)) (-4322 (($ $ $) 91 T ELT)) (-2928 (((-114) $) NIL T ELT)) (-2708 (($ $ $) NIL T ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL T ELT)) (-1961 (($ $ $) 50 T ELT)) (-1581 (((-114) $) 71 T ELT)) (-3612 (((-114) $) 69 T ELT)) (-1937 (($ $) 43 T ELT)) (-3009 (((-3 $ "failed") $) NIL T ELT)) (-2960 (((-114) $) 8 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-3651 (($ $ $ $) 78 T ELT)) (-3825 (($ $ $) 73 T ELT) (($) 40 T CONST)) (-2820 (($ $ $) 72 T ELT) (($) 39 T CONST)) (-3890 (($ $) NIL T ELT)) (-4419 (((-948) $) 86 T ELT)) (-4108 (($ $) 76 T ELT)) (-2484 (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL T ELT) (((-711 (-560)) (-1297 $)) NIL T ELT)) (-2093 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2818 (($ $ $) NIL T ELT)) (-3161 (($) NIL T CONST)) (-3128 (($ (-948)) 85 T ELT)) (-3728 (($ $) 56 T ELT)) (-3855 (((-1151) $) 75 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-2132 (($ $ $) 67 T ELT) (($ (-663 $)) NIL T ELT)) (-1559 (($ $) NIL T ELT)) (-4457 (((-419 $) $) NIL T ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-1737 (((-114) $) NIL T ELT)) (-2901 (((-793) $) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 66 T ELT)) (-2894 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3769 (($ $) 57 T ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-560) $) 15 T ELT) (((-549) $) NIL T ELT) (((-915 (-560)) $) NIL T ELT) (((-391) $) NIL T ELT) (((-229) $) NIL T ELT)) (-1578 (((-887) $) 33 T ELT) (($ (-560)) 92 T ELT) (($ $) NIL T ELT) (($ (-560)) 92 T ELT)) (-2930 (((-793)) NIL T CONST)) (-3385 (((-114) $ $) NIL T ELT)) (-3271 (($ $ $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1792 (($) 38 T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-1953 (($ $ $) 48 T ELT)) (-3260 (($ $ $ $) 79 T ELT)) (-2282 (($ $) 68 T ELT)) (-1616 (($ $ $) 45 T ELT)) (-2001 (($) 36 T CONST)) (-3798 (($ $ $) 49 T ELT)) (-2011 (($) 37 T CONST)) (-2735 (((-1189) $) 24 T ELT) (((-1189) $ (-114)) 25 T ELT) (((-1303) (-845) $) 26 T ELT) (((-1303) (-845) $ (-114)) 27 T ELT)) (-3808 (($ $) 46 T ELT)) (-3305 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3784 (($ $ $) 47 T ELT)) (-2536 (((-114) $ $) 55 T ELT)) (-2508 (((-114) $ $) 53 T ELT)) (-2473 (((-114) $ $) 41 T ELT)) (-2521 (((-114) $ $) 54 T ELT)) (-2495 (((-114) $ $) 52 T ELT)) (-1602 (($ $ $) 44 T ELT)) (-2580 (($ $) 14 T ELT) (($ $ $) 59 T ELT)) (-2567 (($ $ $) 58 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 62 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 35 T ELT) (($ $ $) 60 T ELT) (($ (-560) $) 35 T ELT)))
-(((-1151) (-13 (-559) (-866) (-113) (-684) (-843) (-10 -8 (-6 -4495) (-6 -4500) (-6 -4496) (-15 -1977 ($ $ $)) (-15 -3808 ($ $)) (-15 -3784 ($ $ $)) (-15 -3798 ($ $ $))))) (T -1151))
-((-1977 (*1 *1 *1 *1) (-5 *1 (-1151))) (-3808 (*1 *1 *1) (-5 *1 (-1151))) (-3784 (*1 *1 *1 *1) (-5 *1 (-1151))) (-3798 (*1 *1 *1 *1) (-5 *1 (-1151))))
-(-13 (-559) (-866) (-113) (-684) (-843) (-10 -8 (-6 -4495) (-6 -4500) (-6 -4496) (-15 -1977 ($ $ $)) (-15 -3808 ($ $)) (-15 -3784 ($ $ $)) (-15 -3798 ($ $ $))))
+((-3670 (((-663 (-1266 |#2| |#1|)) (-1266 |#2| |#1|) (-1266 |#2| |#1|)) 50 T ELT)) (-3773 (((-560) (-1266 |#2| |#1|)) 94 (|has| |#1| (-466)) ELT)) (-4406 (((-560) (-1266 |#2| |#1|)) 76 T ELT)) (-2767 (((-663 (-1266 |#2| |#1|)) (-1266 |#2| |#1|) (-1266 |#2| |#1|)) 58 T ELT)) (-2479 (((-560) (-1266 |#2| |#1|) (-1266 |#2| |#1|)) 93 (|has| |#1| (-466)) ELT)) (-4244 (((-663 |#1|) (-1266 |#2| |#1|) (-1266 |#2| |#1|)) 61 T ELT)) (-3153 (((-560) (-1266 |#2| |#1|) (-1266 |#2| |#1|)) 75 T ELT)))
+(((-1145 |#1| |#2|) (-10 -7 (-15 -3670 ((-663 (-1266 |#2| |#1|)) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -2767 ((-663 (-1266 |#2| |#1|)) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -4244 ((-663 |#1|) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -3153 ((-560) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -4406 ((-560) (-1266 |#2| |#1|))) (IF (|has| |#1| (-466)) (PROGN (-15 -2479 ((-560) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -3773 ((-560) (-1266 |#2| |#1|)))) |%noBranch|)) (-842) (-1207)) (T -1145))
+((-3773 (*1 *2 *3) (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-466)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-560)) (-5 *1 (-1145 *4 *5)))) (-2479 (*1 *2 *3 *3) (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-466)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-560)) (-5 *1 (-1145 *4 *5)))) (-4406 (*1 *2 *3) (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-560)) (-5 *1 (-1145 *4 *5)))) (-3153 (*1 *2 *3 *3) (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-560)) (-5 *1 (-1145 *4 *5)))) (-4244 (*1 *2 *3 *3) (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-663 *4)) (-5 *1 (-1145 *4 *5)))) (-2767 (*1 *2 *3 *3) (-12 (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-663 (-1266 *5 *4))) (-5 *1 (-1145 *4 *5)) (-5 *3 (-1266 *5 *4)))) (-3670 (*1 *2 *3 *3) (-12 (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-663 (-1266 *5 *4))) (-5 *1 (-1145 *4 *5)) (-5 *3 (-1266 *5 *4)))))
+(-10 -7 (-15 -3670 ((-663 (-1266 |#2| |#1|)) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -2767 ((-663 (-1266 |#2| |#1|)) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -4244 ((-663 |#1|) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -3153 ((-560) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -4406 ((-560) (-1266 |#2| |#1|))) (IF (|has| |#1| (-466)) (PROGN (-15 -2479 ((-560) (-1266 |#2| |#1|) (-1266 |#2| |#1|))) (-15 -3773 ((-560) (-1266 |#2| |#1|)))) |%noBranch|))
+((-2243 (((-114) $ $) NIL T ELT)) (-3300 (((-1212) $) 12 T ELT)) (-3266 (((-663 (-1212)) $) 14 T ELT)) (-3216 (($ (-663 (-1212)) (-1212)) 10 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 29 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 17 T ELT)))
+(((-1146) (-13 (-1132) (-10 -8 (-15 -3216 ($ (-663 (-1212)) (-1212))) (-15 -3300 ((-1212) $)) (-15 -3266 ((-663 (-1212)) $))))) (T -1146))
+((-3216 (*1 *1 *2 *3) (-12 (-5 *2 (-663 (-1212))) (-5 *3 (-1212)) (-5 *1 (-1146)))) (-3300 (*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-1146)))) (-3266 (*1 *2 *1) (-12 (-5 *2 (-663 (-1212))) (-5 *1 (-1146)))))
+(-13 (-1132) (-10 -8 (-15 -3216 ($ (-663 (-1212)) (-1212))) (-15 -3300 ((-1212) $)) (-15 -3266 ((-663 (-1212)) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-4371 (($ (-520) (-1146)) 13 T ELT)) (-3216 (((-1146) $) 19 T ELT)) (-4389 (((-520) $) 16 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 26 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-1147) (-13 (-1114) (-10 -8 (-15 -4371 ($ (-520) (-1146))) (-15 -4389 ((-520) $)) (-15 -3216 ((-1146) $))))) (T -1147))
+((-4371 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1146)) (-5 *1 (-1147)))) (-4389 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1147)))) (-3216 (*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1147)))))
+(-13 (-1114) (-10 -8 (-15 -4371 ($ (-520) (-1146))) (-15 -4389 ((-520) $)) (-15 -3216 ((-1146) $))))
+((-1869 (((-3 (-560) "failed") |#2| (-1207) |#2| (-1189)) 19 T ELT) (((-3 (-560) "failed") |#2| (-1207) (-864 |#2|)) 17 T ELT) (((-3 (-560) "failed") |#2|) 60 T ELT)))
+(((-1148 |#1| |#2|) (-10 -7 (-15 -1869 ((-3 (-560) "failed") |#2|)) (-15 -1869 ((-3 (-560) "failed") |#2| (-1207) (-864 |#2|))) (-15 -1869 ((-3 (-560) "failed") |#2| (-1207) |#2| (-1189)))) (-13 (-571) (-1069 (-560)) (-660 (-560)) (-466)) (-13 (-27) (-1233) (-435 |#1|))) (T -1148))
+((-1869 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-1189)) (-4 *6 (-13 (-571) (-1069 *2) (-660 *2) (-466))) (-5 *2 (-560)) (-5 *1 (-1148 *6 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *6))))) (-1869 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-864 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *6))) (-4 *6 (-13 (-571) (-1069 *2) (-660 *2) (-466))) (-5 *2 (-560)) (-5 *1 (-1148 *6 *3)))) (-1869 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-571) (-1069 *2) (-660 *2) (-466))) (-5 *2 (-560)) (-5 *1 (-1148 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4))))))
+(-10 -7 (-15 -1869 ((-3 (-560) "failed") |#2|)) (-15 -1869 ((-3 (-560) "failed") |#2| (-1207) (-864 |#2|))) (-15 -1869 ((-3 (-560) "failed") |#2| (-1207) |#2| (-1189))))
+((-1869 (((-3 (-560) "failed") (-421 (-975 |#1|)) (-1207) (-421 (-975 |#1|)) (-1189)) 38 T ELT) (((-3 (-560) "failed") (-421 (-975 |#1|)) (-1207) (-864 (-421 (-975 |#1|)))) 33 T ELT) (((-3 (-560) "failed") (-421 (-975 |#1|))) 14 T ELT)))
+(((-1149 |#1|) (-10 -7 (-15 -1869 ((-3 (-560) "failed") (-421 (-975 |#1|)))) (-15 -1869 ((-3 (-560) "failed") (-421 (-975 |#1|)) (-1207) (-864 (-421 (-975 |#1|))))) (-15 -1869 ((-3 (-560) "failed") (-421 (-975 |#1|)) (-1207) (-421 (-975 |#1|)) (-1189)))) (-466)) (T -1149))
+((-1869 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-421 (-975 *6))) (-5 *4 (-1207)) (-5 *5 (-1189)) (-4 *6 (-466)) (-5 *2 (-560)) (-5 *1 (-1149 *6)))) (-1869 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-864 (-421 (-975 *6)))) (-5 *3 (-421 (-975 *6))) (-4 *6 (-466)) (-5 *2 (-560)) (-5 *1 (-1149 *6)))) (-1869 (*1 *2 *3) (|partial| -12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-466)) (-5 *2 (-560)) (-5 *1 (-1149 *4)))))
+(-10 -7 (-15 -1869 ((-3 (-560) "failed") (-421 (-975 |#1|)))) (-15 -1869 ((-3 (-560) "failed") (-421 (-975 |#1|)) (-1207) (-864 (-421 (-975 |#1|))))) (-15 -1869 ((-3 (-560) "failed") (-421 (-975 |#1|)) (-1207) (-421 (-975 |#1|)) (-1189))))
+((-3456 (((-326 (-560)) (-48)) 12 T ELT)))
+(((-1150) (-10 -7 (-15 -3456 ((-326 (-560)) (-48))))) (T -1150))
+((-3456 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-560))) (-5 *1 (-1150)))))
+(-10 -7 (-15 -3456 ((-326 (-560)) (-48))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2269 (($ $) 42 T ELT)) (-2505 (((-114) $) 70 T ELT)) (-1423 (($ $ $) 51 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 96 T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-4071 (($ $ $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3321 (($ $ $ $) 80 T ELT)) (-1621 (($ $) NIL T ELT)) (-3898 (((-419 $) $) NIL T ELT)) (-3476 (((-114) $ $) NIL T ELT)) (-2552 (((-793)) 81 T ELT)) (-1869 (((-560) $) NIL T ELT)) (-1786 (($ $ $) 77 T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) NIL T ELT)) (-3649 (((-560) $) NIL T ELT)) (-2186 (($ $ $) 64 T ELT)) (-2619 (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 90 T ELT) (((-711 (-560)) (-711 $)) 30 T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-2743 (((-3 (-421 (-560)) "failed") $) NIL T ELT)) (-1574 (((-114) $) NIL T ELT)) (-1957 (((-421 (-560)) $) NIL T ELT)) (-1812 (($) 93 T ELT) (($ $) 94 T ELT)) (-2197 (($ $ $) 63 T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL T ELT)) (-3141 (((-114) $) NIL T ELT)) (-3777 (($ $ $ $) NIL T ELT)) (-3078 (($ $ $) 91 T ELT)) (-4172 (((-114) $) NIL T ELT)) (-2534 (($ $ $) NIL T ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL T ELT)) (-1415 (($ $ $) 50 T ELT)) (-1918 (((-114) $) 71 T ELT)) (-3729 (((-114) $) 69 T ELT)) (-1394 (($ $) 43 T ELT)) (-3738 (((-3 $ "failed") $) NIL T ELT)) (-4470 (((-114) $) 8 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2804 (($ $ $ $) 78 T ELT)) (-2932 (($ $ $) 73 T ELT) (($) 40 T CONST)) (-4379 (($ $ $) 72 T ELT) (($) 39 T CONST)) (-3105 (($ $) NIL T ELT)) (-2622 (((-948) $) 86 T ELT)) (-2946 (($ $) 76 T ELT)) (-4140 (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL T ELT) (((-711 (-560)) (-1297 $)) NIL T ELT)) (-1861 (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-4359 (($ $ $) NIL T ELT)) (-3239 (($) NIL T CONST)) (-1591 (($ (-948)) 85 T ELT)) (-4079 (($ $) 56 T ELT)) (-3376 (((-1151) $) 75 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL T ELT)) (-1938 (($ $ $) 67 T ELT) (($ (-663 $)) NIL T ELT)) (-1704 (($ $) NIL T ELT)) (-4012 (((-419 $) $) NIL T ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL T ELT)) (-2244 (((-114) $) NIL T ELT)) (-3989 (((-793) $) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 66 T ELT)) (-3161 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2776 (($ $) 57 T ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-560) $) 15 T ELT) (((-549) $) NIL T ELT) (((-915 (-560)) $) NIL T ELT) (((-391) $) NIL T ELT) (((-229) $) NIL T ELT)) (-3913 (((-887) $) 33 T ELT) (($ (-560)) 92 T ELT) (($ $) NIL T ELT) (($ (-560)) 92 T ELT)) (-4191 (((-793)) NIL T CONST)) (-3275 (((-114) $ $) NIL T ELT)) (-3381 (($ $ $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2671 (($) 38 T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-1404 (($ $ $) 48 T ELT)) (-1369 (($ $ $ $) 79 T ELT)) (-2719 (($ $) 68 T ELT)) (-2311 (($ $ $) 45 T ELT)) (-1446 (($) 36 T CONST)) (-3099 (($ $ $) 49 T ELT)) (-1456 (($) 37 T CONST)) (-1581 (((-1189) $) 24 T ELT) (((-1189) $ (-114)) 25 T ELT) (((-1303) (-845) $) 26 T ELT) (((-1303) (-845) $ (-114)) 27 T ELT)) (-3111 (($ $) 46 T ELT)) (-2111 (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3088 (($ $ $) 47 T ELT)) (-2396 (((-114) $ $) 55 T ELT)) (-2373 (((-114) $ $) 53 T ELT)) (-2340 (((-114) $ $) 41 T ELT)) (-2386 (((-114) $ $) 54 T ELT)) (-2362 (((-114) $ $) 52 T ELT)) (-2300 (($ $ $) 44 T ELT)) (-2441 (($ $) 14 T ELT) (($ $ $) 59 T ELT)) (-2429 (($ $ $) 58 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 62 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 35 T ELT) (($ $ $) 60 T ELT) (($ (-560) $) 35 T ELT)))
+(((-1151) (-13 (-559) (-866) (-113) (-684) (-843) (-10 -8 (-6 -4495) (-6 -4500) (-6 -4496) (-15 -1423 ($ $ $)) (-15 -3111 ($ $)) (-15 -3088 ($ $ $)) (-15 -3099 ($ $ $))))) (T -1151))
+((-1423 (*1 *1 *1 *1) (-5 *1 (-1151))) (-3111 (*1 *1 *1) (-5 *1 (-1151))) (-3088 (*1 *1 *1 *1) (-5 *1 (-1151))) (-3099 (*1 *1 *1 *1) (-5 *1 (-1151))))
+(-13 (-559) (-866) (-113) (-684) (-843) (-10 -8 (-6 -4495) (-6 -4500) (-6 -4496) (-15 -1423 ($ $ $)) (-15 -3111 ($ $)) (-15 -3088 ($ $ $)) (-15 -3099 ($ $ $))))
((|Integer|) (SMINTP |#1|))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2572 ((|#1| $) 45 T ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-2238 (($) 7 T CONST)) (-2822 ((|#1| |#1| $) 47 T ELT)) (-2353 ((|#1| $) 46 T ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-1576 ((|#1| $) 40 T ELT)) (-3629 (($ |#1| $) 41 T ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2615 ((|#1| $) 42 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3470 (((-793) $) 44 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-3376 (($ (-663 |#1|)) 43 T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3172 ((|#1| $) 45 T ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-3525 (($) 7 T CONST)) (-4401 ((|#1| |#1| $) 47 T ELT)) (-2151 ((|#1| $) 46 T ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-1878 ((|#1| $) 40 T ELT)) (-3888 (($ |#1| $) 41 T ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-2796 ((|#1| $) 42 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-3063 (((-793) $) 44 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-3184 (($ (-663 |#1|)) 43 T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-1152 |#1|) (-142) (-1247)) (T -1152))
-((-2822 (*1 *2 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1247)))) (-2353 (*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1247)))) (-2572 (*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1247)))) (-3470 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1247)) (-5 *2 (-793)))))
-(-13 (-107 |t#1|) (-10 -8 (-6 -4508) (-15 -2822 (|t#1| |t#1| $)) (-15 -2353 (|t#1| $)) (-15 -2572 (|t#1| $)) (-15 -3470 ((-793) $))))
-(((-34) . T) ((-107 |#1|) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
-((-3349 ((|#3| $) 87 T ELT)) (-2539 (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 |#3| "failed") $) 50 T ELT)) (-3330 (((-560) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL T ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-2 (|:| -3822 (-711 |#3|)) (|:| |vec| (-1297 |#3|))) (-711 $) (-1297 $)) 84 T ELT) (((-711 |#3|) (-711 $)) 76 T ELT)) (-2894 (($ $ (-1 |#3| |#3|) (-793)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT)) (-3195 ((|#3| $) 89 T ELT)) (-2716 ((|#4| $) 43 T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 24 T ELT) (($ $ (-560)) 95 T ELT)))
-(((-1153 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2894 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -2894 (|#1| |#1| (-1207) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1207)))) (-15 -2894 (|#1| |#1| (-1207))) (-15 -2894 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -3195 (|#3| |#1|)) (-15 -3349 (|#3| |#1|)) (-15 -2716 (|#4| |#1|)) (-15 -3142 ((-711 |#3|) (-711 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 |#3|)) (|:| |vec| (-1297 |#3|))) (-711 |#1|) (-1297 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -3142 ((-711 (-560)) (-711 |#1|))) (-15 -1578 (|#1| |#3|)) (-15 -2539 ((-3 |#3| "failed") |#1|)) (-15 -3330 (|#3| |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -3330 ((-560) |#1|)) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -2894 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2894 (|#1| |#1| (-1 |#3| |#3|) (-793))) (-15 -1578 (|#1| (-560))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-948))) (-15 -1578 ((-887) |#1|))) (-1154 |#2| |#3| |#4| |#5|) (-793) (-1080) (-245 |#2| |#3|) (-245 |#2| |#3|)) (T -1153))
-NIL
-(-10 -8 (-15 -2894 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -2894 (|#1| |#1| (-1207) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1207)))) (-15 -2894 (|#1| |#1| (-1207))) (-15 -2894 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -3195 (|#3| |#1|)) (-15 -3349 (|#3| |#1|)) (-15 -2716 (|#4| |#1|)) (-15 -3142 ((-711 |#3|) (-711 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 |#3|)) (|:| |vec| (-1297 |#3|))) (-711 |#1|) (-1297 |#1|))) (-15 -3142 ((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -3142 ((-711 (-560)) (-711 |#1|))) (-15 -1578 (|#1| |#3|)) (-15 -2539 ((-3 |#3| "failed") |#1|)) (-15 -3330 (|#3| |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -3330 ((-560) |#1|)) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -2894 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2894 (|#1| |#1| (-1 |#3| |#3|) (-793))) (-15 -1578 (|#1| (-560))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-948))) (-15 -1578 ((-887) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3349 ((|#2| $) 80 T ELT)) (-4338 (((-114) $) 124 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-1673 (((-114) $) 122 T ELT)) (-3363 (((-114) $ (-793)) 114 T ELT)) (-2733 (($ |#2|) 83 T ELT)) (-2238 (($) 18 T CONST)) (-2677 (($ $) 141 (|has| |#2| (-319)) ELT)) (-3634 ((|#3| $ (-560)) 136 T ELT)) (-2539 (((-3 (-560) "failed") $) 99 (|has| |#2| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) 96 (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-3 |#2| "failed") $) 93 T ELT)) (-3330 (((-560) $) 98 (|has| |#2| (-1069 (-560))) ELT) (((-421 (-560)) $) 95 (|has| |#2| (-1069 (-421 (-560)))) ELT) ((|#2| $) 94 T ELT)) (-3142 (((-711 (-560)) (-711 $)) 89 (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 88 (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) 87 T ELT) (((-711 |#2|) (-711 $)) 86 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-2326 (((-793) $) 142 (|has| |#2| (-571)) ELT)) (-3709 ((|#2| $ (-560) (-560)) 134 T ELT)) (-2181 (((-663 |#2|) $) 107 (|has| $ (-6 -4508)) ELT)) (-1581 (((-114) $) 35 T ELT)) (-1401 (((-793) $) 143 (|has| |#2| (-571)) ELT)) (-2454 (((-663 |#4|) $) 144 (|has| |#2| (-571)) ELT)) (-3648 (((-793) $) 130 T ELT)) (-3658 (((-793) $) 131 T ELT)) (-4034 (((-114) $ (-793)) 115 T ELT)) (-3535 ((|#2| $) 75 (|has| |#2| (-6 (-4510 "*"))) ELT)) (-2711 (((-560) $) 126 T ELT)) (-2369 (((-560) $) 128 T ELT)) (-2656 (((-663 |#2|) $) 106 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#2| $) 104 (-12 (|has| |#2| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1468 (((-560) $) 127 T ELT)) (-2632 (((-560) $) 129 T ELT)) (-2589 (($ (-663 (-663 |#2|))) 121 T ELT)) (-3768 (($ (-1 |#2| |#2|) $) 111 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#2| |#2| |#2|) $ $) 138 T ELT) (($ (-1 |#2| |#2|) $) 112 T ELT)) (-2543 (((-663 (-663 |#2|)) $) 132 T ELT)) (-1805 (((-114) $ (-793)) 116 T ELT)) (-2484 (((-711 (-560)) (-1297 $)) 91 (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 90 (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) 85 T ELT) (((-711 |#2|) (-1297 $)) 84 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-2141 (((-3 $ "failed") $) 74 (|has| |#2| (-376)) ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1528 (((-3 $ "failed") $ |#2|) 139 (|has| |#2| (-571)) ELT)) (-2787 (((-114) (-1 (-114) |#2|) $) 109 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#2|))) 103 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) 102 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) 101 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) 100 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-4124 (((-114) $ $) 120 T ELT)) (-1663 (((-114) $) 117 T ELT)) (-3986 (($) 118 T ELT)) (-3924 ((|#2| $ (-560) (-560) |#2|) 135 T ELT) ((|#2| $ (-560) (-560)) 133 T ELT)) (-2894 (($ $ (-1 |#2| |#2|) (-793)) 57 T ELT) (($ $ (-1 |#2| |#2|)) 56 T ELT) (($ $) 47 (|has| |#2| (-239)) ELT) (($ $ (-793)) 45 (|has| |#2| (-239)) ELT) (($ $ (-1207)) 55 (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 53 (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 52 (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 51 (|has| |#2| (-929 (-1207))) ELT)) (-3195 ((|#2| $) 79 T ELT)) (-3323 (($ (-663 |#2|)) 82 T ELT)) (-3032 (((-114) $) 123 T ELT)) (-2716 ((|#3| $) 81 T ELT)) (-4227 ((|#2| $) 76 (|has| |#2| (-6 (-4510 "*"))) ELT)) (-3865 (((-793) (-1 (-114) |#2|) $) 108 (|has| $ (-6 -4508)) ELT) (((-793) |#2| $) 105 (-12 (|has| |#2| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 119 T ELT)) (-1644 ((|#4| $ (-560)) 137 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ (-421 (-560))) 97 (|has| |#2| (-1069 (-421 (-560)))) ELT) (($ |#2|) 92 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-1728 (((-114) (-1 (-114) |#2|) $) 110 (|has| $ (-6 -4508)) ELT)) (-2441 (((-114) $) 125 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($ $ (-1 |#2| |#2|) (-793)) 59 T ELT) (($ $ (-1 |#2| |#2|)) 58 T ELT) (($ $) 46 (|has| |#2| (-239)) ELT) (($ $ (-793)) 44 (|has| |#2| (-239)) ELT) (($ $ (-1207)) 54 (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 50 (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 49 (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 48 (|has| |#2| (-929 (-1207))) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ |#2|) 140 (|has| |#2| (-376)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 73 (|has| |#2| (-376)) ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#2|) 146 T ELT) (($ |#2| $) 145 T ELT) ((|#4| $ |#4|) 78 T ELT) ((|#3| |#3| $) 77 T ELT)) (-1553 (((-793) $) 113 (|has| $ (-6 -4508)) ELT)))
+((-4401 (*1 *2 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1247)))) (-2151 (*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1247)))) (-3172 (*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1247)))) (-3063 (*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1247)) (-5 *2 (-793)))))
+(-13 (-107 |t#1|) (-10 -8 (-6 -4508) (-15 -4401 (|t#1| |t#1| $)) (-15 -2151 (|t#1| $)) (-15 -3172 (|t#1| $)) (-15 -3063 ((-793) $))))
+(((-34) . T) ((-107 |#1|) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
+((-4113 ((|#3| $) 87 T ELT)) (-3929 (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 |#3| "failed") $) 50 T ELT)) (-3649 (((-560) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL T ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL T ELT) (((-2 (|:| -1871 (-711 |#3|)) (|:| |vec| (-1297 |#3|))) (-711 $) (-1297 $)) 84 T ELT) (((-711 |#3|) (-711 $)) 76 T ELT)) (-3161 (($ $ (-1 |#3| |#3|) (-793)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT)) (-1931 ((|#3| $) 89 T ELT)) (-2621 ((|#4| $) 43 T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 24 T ELT) (($ $ (-560)) 95 T ELT)))
+(((-1153 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3161 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -3161 (|#1| |#1| (-1207) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1207)))) (-15 -3161 (|#1| |#1| (-1207))) (-15 -3161 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -1931 (|#3| |#1|)) (-15 -4113 (|#3| |#1|)) (-15 -2621 (|#4| |#1|)) (-15 -2619 ((-711 |#3|) (-711 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 |#3|)) (|:| |vec| (-1297 |#3|))) (-711 |#1|) (-1297 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -2619 ((-711 (-560)) (-711 |#1|))) (-15 -3913 (|#1| |#3|)) (-15 -3929 ((-3 |#3| "failed") |#1|)) (-15 -3649 (|#3| |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -3649 ((-560) |#1|)) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -3161 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3161 (|#1| |#1| (-1 |#3| |#3|) (-793))) (-15 -3913 (|#1| (-560))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-948))) (-15 -3913 ((-887) |#1|))) (-1154 |#2| |#3| |#4| |#5|) (-793) (-1080) (-245 |#2| |#3|) (-245 |#2| |#3|)) (T -1153))
+NIL
+(-10 -8 (-15 -3161 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -3161 (|#1| |#1| (-1207) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1207)))) (-15 -3161 (|#1| |#1| (-1207))) (-15 -3161 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1|)) (-15 ** (|#1| |#1| (-560))) (-15 -1931 (|#3| |#1|)) (-15 -4113 (|#3| |#1|)) (-15 -2621 (|#4| |#1|)) (-15 -2619 ((-711 |#3|) (-711 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 |#3|)) (|:| |vec| (-1297 |#3|))) (-711 |#1|) (-1297 |#1|))) (-15 -2619 ((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 |#1|) (-1297 |#1|))) (-15 -2619 ((-711 (-560)) (-711 |#1|))) (-15 -3913 (|#1| |#3|)) (-15 -3929 ((-3 |#3| "failed") |#1|)) (-15 -3649 (|#3| |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -3649 ((-560) |#1|)) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -3161 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3161 (|#1| |#1| (-1 |#3| |#3|) (-793))) (-15 -3913 (|#1| (-560))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-948))) (-15 -3913 ((-887) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-4113 ((|#2| $) 80 T ELT)) (-3202 (((-114) $) 124 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-2798 (((-114) $) 122 T ELT)) (-3045 (((-114) $ (-793)) 114 T ELT)) (-1571 (($ |#2|) 83 T ELT)) (-3525 (($) 18 T CONST)) (-2207 (($ $) 141 (|has| |#2| (-319)) ELT)) (-3942 ((|#3| $ (-560)) 136 T ELT)) (-3929 (((-3 (-560) "failed") $) 99 (|has| |#2| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) 96 (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-3 |#2| "failed") $) 93 T ELT)) (-3649 (((-560) $) 98 (|has| |#2| (-1069 (-560))) ELT) (((-421 (-560)) $) 95 (|has| |#2| (-1069 (-421 (-560)))) ELT) ((|#2| $) 94 T ELT)) (-2619 (((-711 (-560)) (-711 $)) 89 (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 88 (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) 87 T ELT) (((-711 |#2|) (-711 $)) 86 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1604 (((-793) $) 142 (|has| |#2| (-571)) ELT)) (-3274 ((|#2| $ (-560) (-560)) 134 T ELT)) (-3737 (((-663 |#2|) $) 107 (|has| $ (-6 -4508)) ELT)) (-1918 (((-114) $) 35 T ELT)) (-3213 (((-793) $) 143 (|has| |#2| (-571)) ELT)) (-1927 (((-663 |#4|) $) 144 (|has| |#2| (-571)) ELT)) (-2777 (((-793) $) 130 T ELT)) (-2789 (((-793) $) 131 T ELT)) (-3332 (((-114) $ (-793)) 115 T ELT)) (-4174 ((|#2| $) 75 (|has| |#2| (-6 (-4510 "*"))) ELT)) (-2567 (((-560) $) 126 T ELT)) (-2313 (((-560) $) 128 T ELT)) (-3243 (((-663 |#2|) $) 106 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#2| $) 104 (-12 (|has| |#2| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1475 (((-560) $) 127 T ELT)) (-3004 (((-560) $) 129 T ELT)) (-3551 (($ (-663 (-663 |#2|))) 121 T ELT)) (-3324 (($ (-1 |#2| |#2|) $) 111 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#2| |#2| |#2|) $ $) 138 T ELT) (($ (-1 |#2| |#2|) $) 112 T ELT)) (-3378 (((-663 (-663 |#2|)) $) 132 T ELT)) (-1634 (((-114) $ (-793)) 116 T ELT)) (-4140 (((-711 (-560)) (-1297 $)) 91 (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 90 (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) 85 T ELT) (((-711 |#2|) (-1297 $)) 84 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-1906 (((-3 $ "failed") $) 74 (|has| |#2| (-376)) ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2233 (((-3 $ "failed") $ |#2|) 139 (|has| |#2| (-571)) ELT)) (-2086 (((-114) (-1 (-114) |#2|) $) 109 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#2|))) 103 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) 102 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) 101 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) 100 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-1736 (((-114) $ $) 120 T ELT)) (-2706 (((-114) $) 117 T ELT)) (-2832 (($) 118 T ELT)) (-1507 ((|#2| $ (-560) (-560) |#2|) 135 T ELT) ((|#2| $ (-560) (-560)) 133 T ELT)) (-3161 (($ $ (-1 |#2| |#2|) (-793)) 57 T ELT) (($ $ (-1 |#2| |#2|)) 56 T ELT) (($ $) 47 (|has| |#2| (-239)) ELT) (($ $ (-793)) 45 (|has| |#2| (-239)) ELT) (($ $ (-1207)) 55 (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 53 (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 52 (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 51 (|has| |#2| (-929 (-1207))) ELT)) (-1931 ((|#2| $) 79 T ELT)) (-3926 (($ (-663 |#2|)) 82 T ELT)) (-2691 (((-114) $) 123 T ELT)) (-2621 ((|#3| $) 81 T ELT)) (-3441 ((|#2| $) 76 (|has| |#2| (-6 (-4510 "*"))) ELT)) (-3384 (((-793) (-1 (-114) |#2|) $) 108 (|has| $ (-6 -4508)) ELT) (((-793) |#2| $) 105 (-12 (|has| |#2| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 119 T ELT)) (-3783 ((|#4| $ (-560)) 137 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ (-421 (-560))) 97 (|has| |#2| (-1069 (-421 (-560)))) ELT) (($ |#2|) 92 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-2149 (((-114) (-1 (-114) |#2|) $) 110 (|has| $ (-6 -4508)) ELT)) (-1775 (((-114) $) 125 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($ $ (-1 |#2| |#2|) (-793)) 59 T ELT) (($ $ (-1 |#2| |#2|)) 58 T ELT) (($ $) 46 (|has| |#2| (-239)) ELT) (($ $ (-793)) 44 (|has| |#2| (-239)) ELT) (($ $ (-1207)) 54 (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 50 (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 49 (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 48 (|has| |#2| (-929 (-1207))) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ |#2|) 140 (|has| |#2| (-376)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 73 (|has| |#2| (-376)) ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#2|) 146 T ELT) (($ |#2| $) 145 T ELT) ((|#4| $ |#4|) 78 T ELT) ((|#3| |#3| $) 77 T ELT)) (-2256 (((-793) $) 113 (|has| $ (-6 -4508)) ELT)))
(((-1154 |#1| |#2| |#3| |#4|) (-142) (-793) (-1080) (-245 |t#1| |t#2|) (-245 |t#1| |t#2|)) (T -1154))
-((-2733 (*1 *1 *2) (-12 (-4 *2 (-1080)) (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)))) (-3323 (*1 *1 *2) (-12 (-5 *2 (-663 *4)) (-4 *4 (-1080)) (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4)))) (-2716 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *2 *5)) (-4 *4 (-1080)) (-4 *5 (-245 *3 *4)) (-4 *2 (-245 *3 *4)))) (-3349 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (-4 *2 (-1080)))) (-3195 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (-4 *2 (-1080)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *4 (-1080)) (-4 *5 (-245 *3 *4)) (-4 *2 (-245 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *2 *5)) (-4 *4 (-1080)) (-4 *2 (-245 *3 *4)) (-4 *5 (-245 *3 *4)))) (-4227 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (|has| *2 (-6 (-4510 "*"))) (-4 *2 (-1080)))) (-3535 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (|has| *2 (-6 (-4510 "*"))) (-4 *2 (-1080)))) (-2141 (*1 *1 *1) (|partial| -12 (-4 *1 (-1154 *2 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-245 *2 *3)) (-4 *5 (-245 *2 *3)) (-4 *3 (-376)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4)) (-4 *4 (-376)))))
-(-13 (-234 |t#2|) (-111 |t#2| |t#2|) (-1084 |t#1| |t#1| |t#2| |t#3| |t#4|) (-426 |t#2|) (-390 |t#2|) (-10 -8 (IF (|has| |t#2| (-175)) (-6 (-739 |t#2|)) |%noBranch|) (-15 -2733 ($ |t#2|)) (-15 -3323 ($ (-663 |t#2|))) (-15 -2716 (|t#3| $)) (-15 -3349 (|t#2| $)) (-15 -3195 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4510 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -4227 (|t#2| $)) (-15 -3535 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-376)) (PROGN (-15 -2141 ((-3 $ "failed") $)) (-15 ** ($ $ (-560)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4510 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-635 #0=(-421 (-560))) |has| |#2| (-1069 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#2|) . T) ((-632 (-887)) . T) ((-236 $) -2304 (|has| |#2| (-239)) (|has| |#2| (-240))) ((-234 |#2|) . T) ((-240) |has| |#2| (-240)) ((-239) -2304 (|has| |#2| (-239)) (|has| |#2| (-240))) ((-274 |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((-390 |#2|) . T) ((-426 |#2|) . T) ((-503 |#2|) . T) ((-528 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((-668 (-560)) . T) ((-668 |#2|) . T) ((-668 $) . T) ((-670 #1=(-560)) |has| |#2| (-660 (-560))) ((-670 |#2|) . T) ((-670 $) . T) ((-662 |#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-6 (-4510 "*")))) ((-660 #1#) |has| |#2| (-660 (-560))) ((-660 |#2|) . T) ((-739 |#2|) -2304 (|has| |#2| (-175)) (|has| |#2| (-6 (-4510 "*")))) ((-748) . T) ((-921 $ #2=(-1207)) -2304 (|has| |#2| (-929 (-1207))) (|has| |#2| (-927 (-1207)))) ((-927 (-1207)) |has| |#2| (-927 (-1207))) ((-929 #2#) -2304 (|has| |#2| (-929 (-1207))) (|has| |#2| (-927 (-1207)))) ((-1084 |#1| |#1| |#2| |#3| |#4|) . T) ((-1069 #0#) |has| |#2| (-1069 (-421 (-560)))) ((-1069 (-560)) |has| |#2| (-1069 (-560))) ((-1069 |#2|) . T) ((-1082 |#2|) . T) ((-1087 |#2|) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-3052 ((|#4| |#4|) 81 T ELT)) (-1627 ((|#4| |#4|) 76 T ELT)) (-2941 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1954 (-663 |#3|))) |#4| |#3|) 91 T ELT)) (-3308 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3574 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT)))
-(((-1155 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1627 (|#4| |#4|)) (-15 -3574 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3052 (|#4| |#4|)) (-15 -3308 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2941 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1954 (-663 |#3|))) |#4| |#3|))) (-319) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|)) (T -1155))
-((-2941 (*1 *2 *3 *4) (-12 (-4 *5 (-319)) (-4 *6 (-385 *5)) (-4 *4 (-385 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1954 (-663 *4)))) (-5 *1 (-1155 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))) (-3308 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1155 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3052 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1155 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-3574 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1155 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-1627 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1155 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))))
-(-10 -7 (-15 -1627 (|#4| |#4|)) (-15 -3574 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3052 (|#4| |#4|)) (-15 -3308 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -2941 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -1954 (-663 |#3|))) |#4| |#3|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 18 T ELT)) (-1443 (((-663 |#2|) $) 174 T ELT)) (-4422 (((-1201 $) $ |#2|) 60 T ELT) (((-1201 |#1|) $) 49 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 116 (|has| |#1| (-571)) ELT)) (-3244 (($ $) 118 (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) 120 (|has| |#1| (-571)) ELT)) (-3107 (((-793) $) NIL T ELT) (((-793) $ (-663 |#2|)) 213 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1804 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) 167 T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-3330 ((|#1| $) 165 T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) ((|#2| $) NIL T ELT)) (-2788 (($ $ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-1624 (($ $) 217 T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) 90 T ELT)) (-2806 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ |#2|) NIL (|has| |#1| (-466)) ELT)) (-1608 (((-663 $) $) NIL T ELT)) (-4330 (((-114) $) NIL (|has| |#1| (-939)) ELT)) (-4342 (($ $ |#1| (-545 |#2|) $) NIL T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| |#1| (-911 (-391))) (|has| |#2| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| |#1| (-911 (-560))) (|has| |#2| (-911 (-560)))) ELT)) (-1581 (((-114) $) 20 T ELT)) (-3531 (((-793) $) 30 T ELT)) (-1427 (($ (-1201 |#1|) |#2|) 54 T ELT) (($ (-1201 $) |#2|) 71 T ELT)) (-3997 (((-663 $) $) NIL T ELT)) (-1556 (((-114) $) 38 T ELT)) (-1417 (($ |#1| (-545 |#2|)) 78 T ELT) (($ $ |#2| (-793)) 58 T ELT) (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT)) (-3559 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $ |#2|) NIL T ELT)) (-3011 (((-545 |#2|) $) 205 T ELT) (((-793) $ |#2|) 206 T ELT) (((-663 (-793)) $ (-663 |#2|)) 207 T ELT)) (-4321 (($ (-1 (-545 |#2|) (-545 |#2|)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-1955 (((-3 |#2| "failed") $) 177 T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-1583 (($ $) 216 T ELT)) (-1597 ((|#1| $) 43 T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3479 (((-3 (-663 $) "failed") $) NIL T ELT)) (-2590 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3683 (((-3 (-2 (|:| |var| |#2|) (|:| -3205 (-793))) "failed") $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1554 (((-114) $) 39 T ELT)) (-1566 ((|#1| $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 148 (|has| |#1| (-466)) ELT)) (-2132 (($ (-663 $)) 153 (|has| |#1| (-466)) ELT) (($ $ $) 138 (|has| |#1| (-466)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-4457 (((-419 $) $) NIL (|has| |#1| (-939)) ELT)) (-1528 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 126 (|has| |#1| (-571)) ELT)) (-4187 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-663 |#2|) (-663 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-663 |#2|) (-663 $)) 194 T ELT)) (-2690 (($ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-2894 (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|)) NIL T ELT) (($ $ |#2|) 215 T ELT)) (-3630 (((-545 |#2|) $) 201 T ELT) (((-793) $ |#2|) 196 T ELT) (((-663 (-793)) $ (-663 |#2|)) 199 T ELT)) (-1407 (((-915 (-391)) $) NIL (-12 (|has| |#1| (-633 (-915 (-391)))) (|has| |#2| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| |#1| (-633 (-915 (-560)))) (|has| |#2| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| |#1| (-633 (-549))) (|has| |#2| (-633 (-549)))) ELT)) (-2053 ((|#1| $) 134 (|has| |#1| (-466)) ELT) (($ $ |#2|) 137 (|has| |#1| (-466)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-1578 (((-887) $) 159 T ELT) (($ (-560)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ (-421 (-560))) NIL (-2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-3409 (((-663 |#1|) $) 162 T ELT)) (-2305 ((|#1| $ (-545 |#2|)) 80 T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-2930 (((-793)) 87 T CONST)) (-2392 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) 123 (|has| |#1| (-571)) ELT)) (-2001 (($) 12 T CONST)) (-2011 (($) 14 T CONST)) (-3305 (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2473 (((-114) $ $) 106 T ELT)) (-2594 (($ $ |#1|) 132 (|has| |#1| (-376)) ELT)) (-2580 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-2567 (($ $ $) 55 T ELT)) (** (($ $ (-948)) 110 T ELT) (($ $ (-793)) 109 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT)))
+((-1571 (*1 *1 *2) (-12 (-4 *2 (-1080)) (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)))) (-3926 (*1 *1 *2) (-12 (-5 *2 (-663 *4)) (-4 *4 (-1080)) (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4)))) (-2621 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *2 *5)) (-4 *4 (-1080)) (-4 *5 (-245 *3 *4)) (-4 *2 (-245 *3 *4)))) (-4113 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (-4 *2 (-1080)))) (-1931 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (-4 *2 (-1080)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1154 *3 *4 *5 *2)) (-4 *4 (-1080)) (-4 *5 (-245 *3 *4)) (-4 *2 (-245 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1154 *3 *4 *2 *5)) (-4 *4 (-1080)) (-4 *2 (-245 *3 *4)) (-4 *5 (-245 *3 *4)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (|has| *2 (-6 (-4510 "*"))) (-4 *2 (-1080)))) (-4174 (*1 *2 *1) (-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (|has| *2 (-6 (-4510 "*"))) (-4 *2 (-1080)))) (-1906 (*1 *1 *1) (|partial| -12 (-4 *1 (-1154 *2 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-245 *2 *3)) (-4 *5 (-245 *2 *3)) (-4 *3 (-376)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1154 *3 *4 *5 *6)) (-4 *4 (-1080)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4)) (-4 *4 (-376)))))
+(-13 (-234 |t#2|) (-111 |t#2| |t#2|) (-1084 |t#1| |t#1| |t#2| |t#3| |t#4|) (-426 |t#2|) (-390 |t#2|) (-10 -8 (IF (|has| |t#2| (-175)) (-6 (-739 |t#2|)) |%noBranch|) (-15 -1571 ($ |t#2|)) (-15 -3926 ($ (-663 |t#2|))) (-15 -2621 (|t#3| $)) (-15 -4113 (|t#2| $)) (-15 -1931 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4510 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3441 (|t#2| $)) (-15 -4174 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-376)) (PROGN (-15 -1906 ((-3 $ "failed") $)) (-15 ** ($ $ (-560)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4510 "*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-635 #0=(-421 (-560))) |has| |#2| (-1069 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#2|) . T) ((-632 (-887)) . T) ((-236 $) -2196 (|has| |#2| (-239)) (|has| |#2| (-240))) ((-234 |#2|) . T) ((-240) |has| |#2| (-240)) ((-239) -2196 (|has| |#2| (-239)) (|has| |#2| (-240))) ((-274 |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((-390 |#2|) . T) ((-426 |#2|) . T) ((-503 |#2|) . T) ((-528 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((-668 (-560)) . T) ((-668 |#2|) . T) ((-668 $) . T) ((-670 #1=(-560)) |has| |#2| (-660 (-560))) ((-670 |#2|) . T) ((-670 $) . T) ((-662 |#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-6 (-4510 "*")))) ((-660 #1#) |has| |#2| (-660 (-560))) ((-660 |#2|) . T) ((-739 |#2|) -2196 (|has| |#2| (-175)) (|has| |#2| (-6 (-4510 "*")))) ((-748) . T) ((-921 $ #2=(-1207)) -2196 (|has| |#2| (-929 (-1207))) (|has| |#2| (-927 (-1207)))) ((-927 (-1207)) |has| |#2| (-927 (-1207))) ((-929 #2#) -2196 (|has| |#2| (-929 (-1207))) (|has| |#2| (-927 (-1207)))) ((-1084 |#1| |#1| |#2| |#3| |#4|) . T) ((-1069 #0#) |has| |#2| (-1069 (-421 (-560)))) ((-1069 (-560)) |has| |#2| (-1069 (-560))) ((-1069 |#2|) . T) ((-1082 |#2|) . T) ((-1087 |#2|) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
+((-2897 ((|#4| |#4|) 81 T ELT)) (-3585 ((|#4| |#4|) 76 T ELT)) (-4299 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3822 (-663 |#3|))) |#4| |#3|) 91 T ELT)) (-3774 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-1413 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT)))
+(((-1155 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3585 (|#4| |#4|)) (-15 -1413 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2897 (|#4| |#4|)) (-15 -3774 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4299 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3822 (-663 |#3|))) |#4| |#3|))) (-319) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|)) (T -1155))
+((-4299 (*1 *2 *3 *4) (-12 (-4 *5 (-319)) (-4 *6 (-385 *5)) (-4 *4 (-385 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3822 (-663 *4)))) (-5 *1 (-1155 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))) (-3774 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1155 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-2897 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1155 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-1413 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1155 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))) (-3585 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1155 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))))
+(-10 -7 (-15 -3585 (|#4| |#4|)) (-15 -1413 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2897 (|#4| |#4|)) (-15 -3774 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -4299 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3822 (-663 |#3|))) |#4| |#3|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 18 T ELT)) (-4162 (((-663 |#2|) $) 174 T ELT)) (-3981 (((-1201 $) $ |#2|) 60 T ELT) (((-1201 |#1|) $) 49 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 116 (|has| |#1| (-571)) ELT)) (-4366 (($ $) 118 (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) 120 (|has| |#1| (-571)) ELT)) (-2250 (((-793) $) NIL T ELT) (((-793) $ (-663 |#2|)) 213 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-1621 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) 167 T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-3649 ((|#1| $) 165 T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) ((|#2| $) NIL T ELT)) (-2096 (($ $ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-3062 (($ $) 217 T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) 90 T ELT)) (-4239 (($ $) NIL (|has| |#1| (-466)) ELT) (($ $ |#2|) NIL (|has| |#1| (-466)) ELT)) (-3048 (((-663 $) $) NIL T ELT)) (-3141 (((-114) $) NIL (|has| |#1| (-939)) ELT)) (-3224 (($ $ |#1| (-545 |#2|) $) NIL T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| |#1| (-911 (-391))) (|has| |#2| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| |#1| (-911 (-560))) (|has| |#2| (-911 (-560)))) ELT)) (-1918 (((-114) $) 20 T ELT)) (-4127 (((-793) $) 30 T ELT)) (-4149 (($ (-1201 |#1|) |#2|) 54 T ELT) (($ (-1201 $) |#2|) 71 T ELT)) (-2947 (((-663 $) $) NIL T ELT)) (-1673 (((-114) $) 38 T ELT)) (-4139 (($ |#1| (-545 |#2|)) 78 T ELT) (($ $ |#2| (-793)) 58 T ELT) (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT)) (-4415 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $ |#2|) NIL T ELT)) (-3765 (((-545 |#2|) $) 205 T ELT) (((-793) $ |#2|) 206 T ELT) (((-663 (-793)) $ (-663 |#2|)) 207 T ELT)) (-3060 (($ (-1 (-545 |#2|) (-545 |#2|)) $) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3835 (((-3 |#2| "failed") $) 177 T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-3024 (($ $) 216 T ELT)) (-3037 ((|#1| $) 43 T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1669 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3849 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3149 (((-3 (-2 (|:| |var| |#2|) (|:| -2030 (-793))) "failed") $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3000 (((-114) $) 39 T ELT)) (-3011 ((|#1| $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 148 (|has| |#1| (-466)) ELT)) (-1938 (($ (-663 $)) 153 (|has| |#1| (-466)) ELT) (($ $ $) 138 (|has| |#1| (-466)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#1| (-939)) ELT)) (-4012 (((-419 $) $) NIL (|has| |#1| (-939)) ELT)) (-2233 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 126 (|has| |#1| (-571)) ELT)) (-2371 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-663 |#2|) (-663 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-663 |#2|) (-663 $)) 194 T ELT)) (-2336 (($ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-3161 (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|)) NIL T ELT) (($ $ |#2|) 215 T ELT)) (-3900 (((-545 |#2|) $) 201 T ELT) (((-793) $ |#2|) 196 T ELT) (((-663 (-793)) $ (-663 |#2|)) 199 T ELT)) (-2400 (((-915 (-391)) $) NIL (-12 (|has| |#1| (-633 (-915 (-391)))) (|has| |#2| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| |#1| (-633 (-915 (-560)))) (|has| |#2| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| |#1| (-633 (-549))) (|has| |#2| (-633 (-549)))) ELT)) (-2264 ((|#1| $) 134 (|has| |#1| (-466)) ELT) (($ $ |#2|) 137 (|has| |#1| (-466)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-3913 (((-887) $) 159 T ELT) (($ (-560)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ (-421 (-560))) NIL (-2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-2247 (((-663 |#1|) $) 162 T ELT)) (-2920 ((|#1| $ (-545 |#2|)) 80 T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-4191 (((-793)) 87 T CONST)) (-2548 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) 123 (|has| |#1| (-571)) ELT)) (-1446 (($) 12 T CONST)) (-1456 (($) 14 T CONST)) (-2111 (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2340 (((-114) $ $) 106 T ELT)) (-2453 (($ $ |#1|) 132 (|has| |#1| (-376)) ELT)) (-2441 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-2429 (($ $ $) 55 T ELT)) (** (($ $ (-948)) 110 T ELT) (($ $ (-793)) 109 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT)))
(((-1156 |#1| |#2|) (-979 |#1| (-545 |#2|) |#2|) (-1080) (-871)) (T -1156))
NIL
(-979 |#1| (-545 |#2|) |#2|)
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1443 (((-663 |#2|) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4337 (($ $) 152 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3455 (($ $) 128 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-4471 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4313 (($ $) 148 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3430 (($ $) 124 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4363 (($ $) 156 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3477 (($ $) 132 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2238 (($) NIL T CONST)) (-1624 (($ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-3739 (((-975 |#1|) $ (-793)) NIL T ELT) (((-975 |#1|) $ (-793) (-793)) NIL T ELT)) (-4386 (((-114) $) NIL T ELT)) (-3796 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3913 (((-793) $ |#2|) NIL T ELT) (((-793) $ |#2| (-793)) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-2146 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ $ (-663 |#2|) (-663 (-545 |#2|))) NIL T ELT) (($ $ |#2| (-545 |#2|)) NIL T ELT) (($ |#1| (-545 |#2|)) NIL T ELT) (($ $ |#2| (-793)) 63 T ELT) (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2192 (($ $) 122 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2518 (($ $ |#2|) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2313 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4372 (($ $ (-793)) 16 T ELT)) (-1528 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-3251 (($ $) 120 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4187 (($ $ |#2| $) 106 T ELT) (($ $ (-663 |#2|) (-663 $)) 99 T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT)) (-2894 (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|)) NIL T ELT) (($ $ |#2|) 109 T ELT)) (-3630 (((-545 |#2|) $) NIL T ELT)) (-1692 (((-1 (-1185 |#3|) |#3|) (-663 |#2|) (-663 (-1185 |#3|))) 87 T ELT)) (-4373 (($ $) 158 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3488 (($ $) 134 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4352 (($ $) 154 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3466 (($ $) 130 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4325 (($ $) 150 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3443 (($ $) 126 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3266 (($ $) 18 T ELT)) (-1578 (((-887) $) 198 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-175)) ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-2305 ((|#1| $ (-545 |#2|)) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT) ((|#3| $ (-793)) 43 T ELT)) (-1964 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-4411 (($ $) 164 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4263 (($ $) 140 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4387 (($ $) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3499 (($ $) 136 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4438 (($ $) 168 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4287 (($ $) 144 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3837 (($ $) 170 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4302 (($ $) 146 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4423 (($ $) 166 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4275 (($ $) 142 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4398 (($ $) 162 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4252 (($ $) 138 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2001 (($) 52 T CONST)) (-2011 (($) 62 T CONST)) (-3305 (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#1|) 200 (|has| |#1| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 66 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 112 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-421 (-560))) 117 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) 115 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT)))
-(((-1157 |#1| |#2| |#3|) (-13 (-762 |#1| |#2|) (-10 -8 (-15 -2305 (|#3| $ (-793))) (-15 -1578 ($ |#2|)) (-15 -1578 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1692 ((-1 (-1185 |#3|) |#3|) (-663 |#2|) (-663 (-1185 |#3|)))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -2518 ($ $ |#2| |#1|)) (-15 -2313 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1080) (-871) (-979 |#1| (-545 |#2|) |#2|)) (T -1157))
-((-2305 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *2 (-979 *4 (-545 *5) *5)) (-5 *1 (-1157 *4 *5 *2)) (-4 *4 (-1080)) (-4 *5 (-871)))) (-1578 (*1 *1 *2) (-12 (-4 *3 (-1080)) (-4 *2 (-871)) (-5 *1 (-1157 *3 *2 *4)) (-4 *4 (-979 *3 (-545 *2) *2)))) (-1578 (*1 *1 *2) (-12 (-4 *3 (-1080)) (-4 *4 (-871)) (-5 *1 (-1157 *3 *4 *2)) (-4 *2 (-979 *3 (-545 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-871)) (-5 *1 (-1157 *3 *4 *2)) (-4 *2 (-979 *3 (-545 *4) *4)))) (-1692 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 (-1185 *7))) (-4 *6 (-871)) (-4 *7 (-979 *5 (-545 *6) *6)) (-4 *5 (-1080)) (-5 *2 (-1 (-1185 *7) *7)) (-5 *1 (-1157 *5 *6 *7)))) (-2518 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-4 *2 (-871)) (-5 *1 (-1157 *3 *2 *4)) (-4 *4 (-979 *3 (-545 *2) *2)))) (-2313 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1157 *4 *3 *5))) (-4 *4 (-38 (-421 (-560)))) (-4 *4 (-1080)) (-4 *3 (-871)) (-5 *1 (-1157 *4 *3 *5)) (-4 *5 (-979 *4 (-545 *3) *3)))))
-(-13 (-762 |#1| |#2|) (-10 -8 (-15 -2305 (|#3| $ (-793))) (-15 -1578 ($ |#2|)) (-15 -1578 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -1692 ((-1 (-1185 |#3|) |#3|) (-663 |#2|) (-663 (-1185 |#3|)))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -2518 ($ $ |#2| |#1|)) (-15 -2313 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-3721 (((-663 (-2 (|:| -4332 $) (|:| -2109 (-663 |#4|)))) (-663 |#4|)) 86 T ELT)) (-3904 (((-663 $) (-663 |#4|)) 87 T ELT) (((-663 $) (-663 |#4|) (-114)) 112 T ELT)) (-1443 (((-663 |#3|) $) 34 T ELT)) (-1466 (((-114) $) 27 T ELT)) (-3101 (((-114) $) 18 (|has| |#1| (-571)) ELT)) (-3036 (((-114) |#4| $) 102 T ELT) (((-114) $) 98 T ELT)) (-1813 ((|#4| |#4| $) 93 T ELT)) (-1804 (((-663 (-2 (|:| |val| |#4|) (|:| -4297 $))) |#4| $) 127 T ELT)) (-2286 (((-2 (|:| |under| $) (|:| -2016 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-3363 (((-114) $ (-793)) 45 T ELT)) (-1982 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4508)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-2238 (($) 46 T CONST)) (-4436 (((-114) $) 23 (|has| |#1| (-571)) ELT)) (-4246 (((-114) $ $) 25 (|has| |#1| (-571)) ELT)) (-1860 (((-114) $ $) 24 (|has| |#1| (-571)) ELT)) (-3745 (((-114) $) 26 (|has| |#1| (-571)) ELT)) (-1477 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 94 T ELT)) (-4027 (((-663 |#4|) (-663 |#4|) $) 19 (|has| |#1| (-571)) ELT)) (-2528 (((-663 |#4|) (-663 |#4|) $) 20 (|has| |#1| (-571)) ELT)) (-2539 (((-3 $ "failed") (-663 |#4|)) 37 T ELT)) (-3330 (($ (-663 |#4|)) 36 T ELT)) (-3649 (((-3 $ "failed") $) 83 T ELT)) (-2841 ((|#4| |#4| $) 90 T ELT)) (-3606 (($ $) 69 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2375 (($ |#4| $) 68 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4508)) ELT)) (-2341 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-571)) ELT)) (-3989 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 103 T ELT)) (-3093 ((|#4| |#4| $) 88 T ELT)) (-4129 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4508)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4508)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 95 T ELT)) (-1723 (((-2 (|:| -4332 (-663 |#4|)) (|:| -2109 (-663 |#4|))) $) 106 T ELT)) (-2330 (((-114) |#4| $) 137 T ELT)) (-2728 (((-114) |#4| $) 134 T ELT)) (-2420 (((-114) |#4| $) 138 T ELT) (((-114) $) 135 T ELT)) (-2181 (((-663 |#4|) $) 53 (|has| $ (-6 -4508)) ELT)) (-3544 (((-114) |#4| $) 105 T ELT) (((-114) $) 104 T ELT)) (-4132 ((|#3| $) 35 T ELT)) (-4034 (((-114) $ (-793)) 44 T ELT)) (-2656 (((-663 |#4|) $) 54 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-1918 (((-663 |#3|) $) 33 T ELT)) (-2724 (((-114) |#3| $) 32 T ELT)) (-1805 (((-114) $ (-793)) 43 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3482 (((-3 |#4| (-663 $)) |#4| |#4| $) 129 T ELT)) (-4130 (((-663 (-2 (|:| |val| |#4|) (|:| -4297 $))) |#4| |#4| $) 128 T ELT)) (-2398 (((-3 |#4| "failed") $) 84 T ELT)) (-3221 (((-663 $) |#4| $) 130 T ELT)) (-3979 (((-3 (-114) (-663 $)) |#4| $) 133 T ELT)) (-2411 (((-663 (-2 (|:| |val| (-114)) (|:| -4297 $))) |#4| $) 132 T ELT) (((-114) |#4| $) 131 T ELT)) (-1903 (((-663 $) |#4| $) 126 T ELT) (((-663 $) (-663 |#4|) $) 125 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 124 T ELT) (((-663 $) |#4| (-663 $)) 123 T ELT)) (-2534 (($ |#4| $) 118 T ELT) (($ (-663 |#4|) $) 117 T ELT)) (-1756 (((-663 |#4|) $) 108 T ELT)) (-3548 (((-114) |#4| $) 100 T ELT) (((-114) $) 96 T ELT)) (-3212 ((|#4| |#4| $) 91 T ELT)) (-2925 (((-114) $ $) 111 T ELT)) (-2557 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-571)) ELT)) (-1563 (((-114) |#4| $) 101 T ELT) (((-114) $) 97 T ELT)) (-3171 ((|#4| |#4| $) 92 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-3637 (((-3 |#4| "failed") $) 85 T ELT)) (-3329 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-1370 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-4372 (($ $ |#4|) 78 T ELT) (((-663 $) |#4| $) 116 T ELT) (((-663 $) |#4| (-663 $)) 115 T ELT) (((-663 $) (-663 |#4|) $) 114 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 113 T ELT)) (-2787 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 |#4|) (-663 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-4124 (((-114) $ $) 39 T ELT)) (-1663 (((-114) $) 42 T ELT)) (-3986 (($) 41 T ELT)) (-3630 (((-793) $) 107 T ELT)) (-3865 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) 40 T ELT)) (-1407 (((-549) $) 70 (|has| |#4| (-633 (-549))) ELT)) (-1592 (($ (-663 |#4|)) 61 T ELT)) (-3752 (($ $ |#3|) 29 T ELT)) (-4288 (($ $ |#3|) 31 T ELT)) (-2886 (($ $) 89 T ELT)) (-4397 (($ $ |#3|) 30 T ELT)) (-1578 (((-887) $) 12 T ELT) (((-663 |#4|) $) 38 T ELT)) (-1582 (((-793) $) 77 (|has| |#3| (-381)) ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-1810 (((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 109 T ELT)) (-4006 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) 99 T ELT)) (-2796 (((-663 $) |#4| $) 122 T ELT) (((-663 $) |#4| (-663 $)) 121 T ELT) (((-663 $) (-663 |#4|) $) 120 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 119 T ELT)) (-1728 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4508)) ELT)) (-3938 (((-663 |#3|) $) 82 T ELT)) (-4395 (((-114) |#4| $) 136 T ELT)) (-3602 (((-114) |#3| $) 81 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-1553 (((-793) $) 47 (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-4162 (((-663 |#2|) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-1982 (($ $) 152 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1832 (($ $) 128 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-4021 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1958 (($ $) 148 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1806 (($ $) 124 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2003 (($ $) 156 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1856 (($ $) 132 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3525 (($) NIL T CONST)) (-3062 (($ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4153 (((-975 |#1|) $ (-793)) NIL T ELT) (((-975 |#1|) $ (-793) (-793)) NIL T ELT)) (-2328 (((-114) $) NIL T ELT)) (-2503 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1460 (((-793) $ |#2|) NIL T ELT) (((-793) $ |#2| (-793)) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-1956 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ $ (-663 |#2|) (-663 (-545 |#2|))) NIL T ELT) (($ $ |#2| (-545 |#2|)) NIL T ELT) (($ |#1| (-545 |#2|)) NIL T ELT) (($ $ |#2| (-793)) 63 T ELT) (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2831 (($ $) 122 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-4424 (($ $ |#2|) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3008 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2219 (($ $ (-793)) 16 T ELT)) (-2233 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-2515 (($ $) 120 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2371 (($ $ |#2| $) 106 T ELT) (($ $ (-663 |#2|) (-663 $)) 99 T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT)) (-3161 (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|)) NIL T ELT) (($ $ |#2|) 109 T ELT)) (-3900 (((-545 |#2|) $) NIL T ELT)) (-3032 (((-1 (-1185 |#3|) |#3|) (-663 |#2|) (-663 (-1185 |#3|))) 87 T ELT)) (-2013 (($ $) 158 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1870 (($ $) 134 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1992 (($ $) 154 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1844 (($ $) 130 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1972 (($ $) 150 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1820 (($ $) 126 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3329 (($ $) 18 T ELT)) (-3913 (((-887) $) 198 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-175)) ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-2920 ((|#1| $ (-545 |#2|)) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT) ((|#3| $ (-793)) 43 T ELT)) (-3919 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-2042 (($ $) 164 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1907 (($ $) 140 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2022 (($ $) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1882 (($ $) 136 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2059 (($ $) 168 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1932 (($ $) 144 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3392 (($ $) 170 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1945 (($ $) 146 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2050 (($ $) 166 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1920 (($ $) 142 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2032 (($ $) 162 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1895 (($ $) 138 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1446 (($) 52 T CONST)) (-1456 (($) 62 T CONST)) (-2111 (($ $ (-663 |#2|) (-663 (-793))) NIL T ELT) (($ $ |#2| (-793)) NIL T ELT) (($ $ (-663 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#1|) 200 (|has| |#1| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 66 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 112 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-421 (-560))) 117 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) 115 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT)))
+(((-1157 |#1| |#2| |#3|) (-13 (-762 |#1| |#2|) (-10 -8 (-15 -2920 (|#3| $ (-793))) (-15 -3913 ($ |#2|)) (-15 -3913 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3032 ((-1 (-1185 |#3|) |#3|) (-663 |#2|) (-663 (-1185 |#3|)))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -4424 ($ $ |#2| |#1|)) (-15 -3008 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1080) (-871) (-979 |#1| (-545 |#2|) |#2|)) (T -1157))
+((-2920 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *2 (-979 *4 (-545 *5) *5)) (-5 *1 (-1157 *4 *5 *2)) (-4 *4 (-1080)) (-4 *5 (-871)))) (-3913 (*1 *1 *2) (-12 (-4 *3 (-1080)) (-4 *2 (-871)) (-5 *1 (-1157 *3 *2 *4)) (-4 *4 (-979 *3 (-545 *2) *2)))) (-3913 (*1 *1 *2) (-12 (-4 *3 (-1080)) (-4 *4 (-871)) (-5 *1 (-1157 *3 *4 *2)) (-4 *2 (-979 *3 (-545 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1080)) (-4 *4 (-871)) (-5 *1 (-1157 *3 *4 *2)) (-4 *2 (-979 *3 (-545 *4) *4)))) (-3032 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 (-1185 *7))) (-4 *6 (-871)) (-4 *7 (-979 *5 (-545 *6) *6)) (-4 *5 (-1080)) (-5 *2 (-1 (-1185 *7) *7)) (-5 *1 (-1157 *5 *6 *7)))) (-4424 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-4 *2 (-871)) (-5 *1 (-1157 *3 *2 *4)) (-4 *4 (-979 *3 (-545 *2) *2)))) (-3008 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1157 *4 *3 *5))) (-4 *4 (-38 (-421 (-560)))) (-4 *4 (-1080)) (-4 *3 (-871)) (-5 *1 (-1157 *4 *3 *5)) (-4 *5 (-979 *4 (-545 *3) *3)))))
+(-13 (-762 |#1| |#2|) (-10 -8 (-15 -2920 (|#3| $ (-793))) (-15 -3913 ($ |#2|)) (-15 -3913 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3032 ((-1 (-1185 |#3|) |#3|) (-663 |#2|) (-663 (-1185 |#3|)))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -4424 ($ $ |#2| |#1|)) (-15 -3008 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2253 (((-663 (-2 (|:| -1924 $) (|:| -2888 (-663 |#4|)))) (-663 |#4|)) 86 T ELT)) (-1372 (((-663 $) (-663 |#4|)) 87 T ELT) (((-663 $) (-663 |#4|) (-114)) 112 T ELT)) (-4162 (((-663 |#3|) $) 34 T ELT)) (-1362 (((-114) $) 27 T ELT)) (-2179 (((-114) $) 18 (|has| |#1| (-571)) ELT)) (-2729 (((-114) |#4| $) 102 T ELT) (((-114) $) 98 T ELT)) (-1722 ((|#4| |#4| $) 93 T ELT)) (-1621 (((-663 (-2 (|:| |val| |#4|) (|:| -3859 $))) |#4| $) 127 T ELT)) (-1787 (((-2 (|:| |under| $) (|:| -3147 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-3045 (((-114) $ (-793)) 45 T ELT)) (-3923 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4508)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-3525 (($) 46 T CONST)) (-2733 (((-114) $) 23 (|has| |#1| (-571)) ELT)) (-3672 (((-114) $ $) 25 (|has| |#1| (-571)) ELT)) (-4148 (((-114) $ $) 24 (|has| |#1| (-571)) ELT)) (-2449 (((-114) $) 26 (|has| |#1| (-571)) ELT)) (-4108 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 94 T ELT)) (-3277 (((-663 |#4|) (-663 |#4|) $) 19 (|has| |#1| (-571)) ELT)) (-4485 (((-663 |#4|) (-663 |#4|) $) 20 (|has| |#1| (-571)) ELT)) (-3929 (((-3 $ "failed") (-663 |#4|)) 37 T ELT)) (-3649 (($ (-663 |#4|)) 36 T ELT)) (-4345 (((-3 $ "failed") $) 83 T ELT)) (-1440 ((|#4| |#4| $) 90 T ELT)) (-3658 (($ $) 69 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3033 (($ |#4| $) 68 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4508)) ELT)) (-3276 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-571)) ELT)) (-2869 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 103 T ELT)) (-2113 ((|#4| |#4| $) 88 T ELT)) (-1778 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4508)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4508)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 95 T ELT)) (-2115 (((-2 (|:| -1924 (-663 |#4|)) (|:| -2888 (-663 |#4|))) $) 106 T ELT)) (-3175 (((-114) |#4| $) 137 T ELT)) (-1520 (((-114) |#4| $) 134 T ELT)) (-1575 (((-114) |#4| $) 138 T ELT) (((-114) $) 135 T ELT)) (-3737 (((-663 |#4|) $) 53 (|has| $ (-6 -4508)) ELT)) (-4264 (((-114) |#4| $) 105 T ELT) (((-114) $) 104 T ELT)) (-1816 ((|#3| $) 35 T ELT)) (-3332 (((-114) $ (-793)) 44 T ELT)) (-3243 (((-663 |#4|) $) 54 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3471 (((-663 |#3|) $) 33 T ELT)) (-2703 (((-114) |#3| $) 32 T ELT)) (-1634 (((-114) $ (-793)) 43 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-1702 (((-3 |#4| (-663 $)) |#4| |#4| $) 129 T ELT)) (-1790 (((-663 (-2 (|:| |val| |#4|) (|:| -3859 $))) |#4| |#4| $) 128 T ELT)) (-3057 (((-3 |#4| "failed") $) 84 T ELT)) (-4144 (((-663 $) |#4| $) 130 T ELT)) (-2769 (((-3 (-114) (-663 $)) |#4| $) 133 T ELT)) (-1503 (((-663 (-2 (|:| |val| (-114)) (|:| -3859 $))) |#4| $) 132 T ELT) (((-114) |#4| $) 131 T ELT)) (-3334 (((-663 $) |#4| $) 126 T ELT) (((-663 $) (-663 |#4|) $) 125 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 124 T ELT) (((-663 $) |#4| (-663 $)) 123 T ELT)) (-1392 (($ |#4| $) 118 T ELT) (($ (-663 |#4|) $) 117 T ELT)) (-2428 (((-663 |#4|) $) 108 T ELT)) (-4301 (((-114) |#4| $) 100 T ELT) (((-114) $) 96 T ELT)) (-4039 ((|#4| |#4| $) 91 T ELT)) (-4138 (((-114) $ $) 111 T ELT)) (-3531 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-571)) ELT)) (-1737 (((-114) |#4| $) 101 T ELT) (((-114) $) 97 T ELT)) (-1686 ((|#4| |#4| $) 92 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4334 (((-3 |#4| "failed") $) 85 T ELT)) (-2708 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-3867 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-2219 (($ $ |#4|) 78 T ELT) (((-663 $) |#4| $) 116 T ELT) (((-663 $) |#4| (-663 $)) 115 T ELT) (((-663 $) (-663 |#4|) $) 114 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 113 T ELT)) (-2086 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 |#4|) (-663 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-1736 (((-114) $ $) 39 T ELT)) (-2706 (((-114) $) 42 T ELT)) (-2832 (($) 41 T ELT)) (-3900 (((-793) $) 107 T ELT)) (-3384 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) 40 T ELT)) (-2400 (((-549) $) 70 (|has| |#4| (-633 (-549))) ELT)) (-3924 (($ (-663 |#4|)) 61 T ELT)) (-2511 (($ $ |#3|) 29 T ELT)) (-4047 (($ $ |#3|) 31 T ELT)) (-3833 (($ $) 89 T ELT)) (-2438 (($ $ |#3|) 30 T ELT)) (-3913 (((-887) $) 12 T ELT) (((-663 |#4|) $) 38 T ELT)) (-1930 (((-793) $) 77 (|has| |#3| (-381)) ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1690 (((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 109 T ELT)) (-3058 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) 99 T ELT)) (-4135 (((-663 $) |#4| $) 122 T ELT) (((-663 $) |#4| (-663 $)) 121 T ELT) (((-663 $) (-663 |#4|) $) 120 T ELT) (((-663 $) (-663 |#4|) (-663 $)) 119 T ELT)) (-2149 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4508)) ELT)) (-3616 (((-663 |#3|) $) 82 T ELT)) (-2416 (((-114) |#4| $) 136 T ELT)) (-3621 (((-114) |#3| $) 81 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2256 (((-793) $) 47 (|has| $ (-6 -4508)) ELT)))
(((-1158 |#1| |#2| |#3| |#4|) (-142) (-466) (-815) (-871) (-1096 |t#1| |t#2| |t#3|)) (T -1158))
NIL
(-13 (-1140 |t#1| |t#2| |t#3| |t#4|) (-806 |t#1| |t#2| |t#3| |t#4|))
(((-34) . T) ((-102) . T) ((-632 (-663 |#4|)) . T) ((-632 (-887)) . T) ((-153 |#4|) . T) ((-633 (-549)) |has| |#4| (-633 (-549))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ((-503 |#4|) . T) ((-528 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ((-806 |#1| |#2| |#3| |#4|) . T) ((-1007 |#1| |#2| |#3| |#4|) . T) ((-1102 |#1| |#2| |#3| |#4|) . T) ((-1132) . T) ((-1140 |#1| |#2| |#3| |#4|) . T) ((-1242 |#1| |#2| |#3| |#4|) . T) ((-1247) . T))
-((-1433 (((-663 |#2|) |#1|) 15 T ELT)) (-2503 (((-663 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-663 |#2|) |#1|) 61 T ELT)) (-3843 (((-663 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-663 |#2|) |#1|) 59 T ELT)) (-2123 ((|#2| |#1|) 54 T ELT)) (-2254 (((-2 (|:| |solns| (-663 |#2|)) (|:| |maps| (-663 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3715 (((-663 |#2|) |#2| |#2|) 42 T ELT) (((-663 |#2|) |#1|) 58 T ELT)) (-2506 (((-663 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-663 |#2|) |#1|) 60 T ELT)) (-1932 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-2802 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3002 ((|#2| |#2| |#2|) 50 T ELT)) (-1342 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT)))
-(((-1159 |#1| |#2|) (-10 -7 (-15 -1433 ((-663 |#2|) |#1|)) (-15 -2123 (|#2| |#1|)) (-15 -2254 ((-2 (|:| |solns| (-663 |#2|)) (|:| |maps| (-663 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3715 ((-663 |#2|) |#1|)) (-15 -3843 ((-663 |#2|) |#1|)) (-15 -2506 ((-663 |#2|) |#1|)) (-15 -2503 ((-663 |#2|) |#1|)) (-15 -3715 ((-663 |#2|) |#2| |#2|)) (-15 -3843 ((-663 |#2|) |#2| |#2| |#2|)) (-15 -2506 ((-663 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2503 ((-663 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3002 (|#2| |#2| |#2|)) (-15 -2802 (|#2| |#2| |#2| |#2|)) (-15 -1342 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1932 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1273 |#2|) (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (T -1159))
-((-1932 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1273 *2)))) (-1342 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1273 *2)))) (-2802 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1273 *2)))) (-3002 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1273 *2)))) (-2503 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1273 *3)))) (-2506 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1273 *3)))) (-3843 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1273 *3)))) (-3715 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1273 *3)))) (-2503 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1273 *4)))) (-2506 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1273 *4)))) (-3843 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1273 *4)))) (-3715 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1273 *4)))) (-2254 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-2 (|:| |solns| (-663 *5)) (|:| |maps| (-663 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1159 *3 *5)) (-4 *3 (-1273 *5)))) (-2123 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1273 *2)))) (-1433 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1273 *4)))))
-(-10 -7 (-15 -1433 ((-663 |#2|) |#1|)) (-15 -2123 (|#2| |#1|)) (-15 -2254 ((-2 (|:| |solns| (-663 |#2|)) (|:| |maps| (-663 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3715 ((-663 |#2|) |#1|)) (-15 -3843 ((-663 |#2|) |#1|)) (-15 -2506 ((-663 |#2|) |#1|)) (-15 -2503 ((-663 |#2|) |#1|)) (-15 -3715 ((-663 |#2|) |#2| |#2|)) (-15 -3843 ((-663 |#2|) |#2| |#2| |#2|)) (-15 -2506 ((-663 |#2|) |#2| |#2| |#2| |#2|)) (-15 -2503 ((-663 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3002 (|#2| |#2| |#2|)) (-15 -2802 (|#2| |#2| |#2| |#2|)) (-15 -1342 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1932 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-1877 (((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-421 (-975 |#1|))))) 118 T ELT) (((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-421 (-975 |#1|)))) (-663 (-1207))) 117 T ELT) (((-663 (-663 (-305 (-326 |#1|)))) (-663 (-421 (-975 |#1|)))) 115 T ELT) (((-663 (-663 (-305 (-326 |#1|)))) (-663 (-421 (-975 |#1|))) (-663 (-1207))) 113 T ELT) (((-663 (-305 (-326 |#1|))) (-305 (-421 (-975 |#1|)))) 97 T ELT) (((-663 (-305 (-326 |#1|))) (-305 (-421 (-975 |#1|))) (-1207)) 98 T ELT) (((-663 (-305 (-326 |#1|))) (-421 (-975 |#1|))) 92 T ELT) (((-663 (-305 (-326 |#1|))) (-421 (-975 |#1|)) (-1207)) 82 T ELT)) (-3644 (((-663 (-663 (-326 |#1|))) (-663 (-421 (-975 |#1|))) (-663 (-1207))) 111 T ELT) (((-663 (-326 |#1|)) (-421 (-975 |#1|)) (-1207)) 54 T ELT)) (-3577 (((-1196 (-663 (-326 |#1|)) (-663 (-305 (-326 |#1|)))) (-421 (-975 |#1|)) (-1207)) 122 T ELT) (((-1196 (-663 (-326 |#1|)) (-663 (-305 (-326 |#1|)))) (-305 (-421 (-975 |#1|))) (-1207)) 121 T ELT)))
-(((-1160 |#1|) (-10 -7 (-15 -1877 ((-663 (-305 (-326 |#1|))) (-421 (-975 |#1|)) (-1207))) (-15 -1877 ((-663 (-305 (-326 |#1|))) (-421 (-975 |#1|)))) (-15 -1877 ((-663 (-305 (-326 |#1|))) (-305 (-421 (-975 |#1|))) (-1207))) (-15 -1877 ((-663 (-305 (-326 |#1|))) (-305 (-421 (-975 |#1|))))) (-15 -1877 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-421 (-975 |#1|))) (-663 (-1207)))) (-15 -1877 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-421 (-975 |#1|))))) (-15 -1877 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-421 (-975 |#1|)))) (-663 (-1207)))) (-15 -1877 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-421 (-975 |#1|)))))) (-15 -3644 ((-663 (-326 |#1|)) (-421 (-975 |#1|)) (-1207))) (-15 -3644 ((-663 (-663 (-326 |#1|))) (-663 (-421 (-975 |#1|))) (-663 (-1207)))) (-15 -3577 ((-1196 (-663 (-326 |#1|)) (-663 (-305 (-326 |#1|)))) (-305 (-421 (-975 |#1|))) (-1207))) (-15 -3577 ((-1196 (-663 (-326 |#1|)) (-663 (-305 (-326 |#1|)))) (-421 (-975 |#1|)) (-1207)))) (-13 (-319) (-149))) (T -1160))
-((-3577 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-1196 (-663 (-326 *5)) (-663 (-305 (-326 *5))))) (-5 *1 (-1160 *5)))) (-3577 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-421 (-975 *5)))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-1196 (-663 (-326 *5)) (-663 (-305 (-326 *5))))) (-5 *1 (-1160 *5)))) (-3644 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-421 (-975 *5)))) (-5 *4 (-663 (-1207))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-326 *5)))) (-5 *1 (-1160 *5)))) (-3644 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-326 *5))) (-5 *1 (-1160 *5)))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-663 (-305 (-421 (-975 *4))))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *4))))) (-5 *1 (-1160 *4)))) (-1877 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-305 (-421 (-975 *5))))) (-5 *4 (-663 (-1207))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *5))))) (-5 *1 (-1160 *5)))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-663 (-421 (-975 *4)))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *4))))) (-5 *1 (-1160 *4)))) (-1877 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-421 (-975 *5)))) (-5 *4 (-663 (-1207))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *5))))) (-5 *1 (-1160 *5)))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-305 (-421 (-975 *4)))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-663 (-305 (-326 *4)))) (-5 *1 (-1160 *4)))) (-1877 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-421 (-975 *5)))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-305 (-326 *5)))) (-5 *1 (-1160 *5)))) (-1877 (*1 *2 *3) (-12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-663 (-305 (-326 *4)))) (-5 *1 (-1160 *4)))) (-1877 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-305 (-326 *5)))) (-5 *1 (-1160 *5)))))
-(-10 -7 (-15 -1877 ((-663 (-305 (-326 |#1|))) (-421 (-975 |#1|)) (-1207))) (-15 -1877 ((-663 (-305 (-326 |#1|))) (-421 (-975 |#1|)))) (-15 -1877 ((-663 (-305 (-326 |#1|))) (-305 (-421 (-975 |#1|))) (-1207))) (-15 -1877 ((-663 (-305 (-326 |#1|))) (-305 (-421 (-975 |#1|))))) (-15 -1877 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-421 (-975 |#1|))) (-663 (-1207)))) (-15 -1877 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-421 (-975 |#1|))))) (-15 -1877 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-421 (-975 |#1|)))) (-663 (-1207)))) (-15 -1877 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-421 (-975 |#1|)))))) (-15 -3644 ((-663 (-326 |#1|)) (-421 (-975 |#1|)) (-1207))) (-15 -3644 ((-663 (-663 (-326 |#1|))) (-663 (-421 (-975 |#1|))) (-663 (-1207)))) (-15 -3577 ((-1196 (-663 (-326 |#1|)) (-663 (-305 (-326 |#1|)))) (-305 (-421 (-975 |#1|))) (-1207))) (-15 -3577 ((-1196 (-663 (-326 |#1|)) (-663 (-305 (-326 |#1|)))) (-421 (-975 |#1|)) (-1207))))
-((-4487 (((-421 (-1201 (-326 |#1|))) (-1297 (-326 |#1|)) (-421 (-1201 (-326 |#1|))) (-560)) 36 T ELT)) (-1965 (((-421 (-1201 (-326 |#1|))) (-421 (-1201 (-326 |#1|))) (-421 (-1201 (-326 |#1|))) (-421 (-1201 (-326 |#1|)))) 48 T ELT)))
-(((-1161 |#1|) (-10 -7 (-15 -1965 ((-421 (-1201 (-326 |#1|))) (-421 (-1201 (-326 |#1|))) (-421 (-1201 (-326 |#1|))) (-421 (-1201 (-326 |#1|))))) (-15 -4487 ((-421 (-1201 (-326 |#1|))) (-1297 (-326 |#1|)) (-421 (-1201 (-326 |#1|))) (-560)))) (-571)) (T -1161))
-((-4487 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-421 (-1201 (-326 *5)))) (-5 *3 (-1297 (-326 *5))) (-5 *4 (-560)) (-4 *5 (-571)) (-5 *1 (-1161 *5)))) (-1965 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-421 (-1201 (-326 *3)))) (-4 *3 (-571)) (-5 *1 (-1161 *3)))))
-(-10 -7 (-15 -1965 ((-421 (-1201 (-326 |#1|))) (-421 (-1201 (-326 |#1|))) (-421 (-1201 (-326 |#1|))) (-421 (-1201 (-326 |#1|))))) (-15 -4487 ((-421 (-1201 (-326 |#1|))) (-1297 (-326 |#1|)) (-421 (-1201 (-326 |#1|))) (-560))))
-((-1433 (((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-326 |#1|))) (-663 (-1207))) 244 T ELT) (((-663 (-305 (-326 |#1|))) (-326 |#1|) (-1207)) 23 T ELT) (((-663 (-305 (-326 |#1|))) (-305 (-326 |#1|)) (-1207)) 29 T ELT) (((-663 (-305 (-326 |#1|))) (-305 (-326 |#1|))) 28 T ELT) (((-663 (-305 (-326 |#1|))) (-326 |#1|)) 24 T ELT)))
-(((-1162 |#1|) (-10 -7 (-15 -1433 ((-663 (-305 (-326 |#1|))) (-326 |#1|))) (-15 -1433 ((-663 (-305 (-326 |#1|))) (-305 (-326 |#1|)))) (-15 -1433 ((-663 (-305 (-326 |#1|))) (-305 (-326 |#1|)) (-1207))) (-15 -1433 ((-663 (-305 (-326 |#1|))) (-326 |#1|) (-1207))) (-15 -1433 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-326 |#1|))) (-663 (-1207))))) (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (T -1162))
-((-1433 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-1207))) (-4 *5 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *5))))) (-5 *1 (-1162 *5)) (-5 *3 (-663 (-305 (-326 *5)))))) (-1433 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-663 (-305 (-326 *5)))) (-5 *1 (-1162 *5)) (-5 *3 (-326 *5)))) (-1433 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-663 (-305 (-326 *5)))) (-5 *1 (-1162 *5)) (-5 *3 (-305 (-326 *5))))) (-1433 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-663 (-305 (-326 *4)))) (-5 *1 (-1162 *4)) (-5 *3 (-305 (-326 *4))))) (-1433 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-663 (-305 (-326 *4)))) (-5 *1 (-1162 *4)) (-5 *3 (-326 *4)))))
-(-10 -7 (-15 -1433 ((-663 (-305 (-326 |#1|))) (-326 |#1|))) (-15 -1433 ((-663 (-305 (-326 |#1|))) (-305 (-326 |#1|)))) (-15 -1433 ((-663 (-305 (-326 |#1|))) (-305 (-326 |#1|)) (-1207))) (-15 -1433 ((-663 (-305 (-326 |#1|))) (-326 |#1|) (-1207))) (-15 -1433 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-326 |#1|))) (-663 (-1207)))))
-((-3999 ((|#2| |#2|) 28 (|has| |#1| (-871)) ELT) ((|#2| |#2| (-1 (-114) |#1| |#1|)) 25 T ELT)) (-2224 ((|#2| |#2|) 27 (|has| |#1| (-871)) ELT) ((|#2| |#2| (-1 (-114) |#1| |#1|)) 22 T ELT)))
-(((-1163 |#1| |#2|) (-10 -7 (-15 -2224 (|#2| |#2| (-1 (-114) |#1| |#1|))) (-15 -3999 (|#2| |#2| (-1 (-114) |#1| |#1|))) (IF (|has| |#1| (-871)) (PROGN (-15 -2224 (|#2| |#2|)) (-15 -3999 (|#2| |#2|))) |%noBranch|)) (-1247) (-13 (-618 (-560) |#1|) (-10 -7 (-6 -4508) (-6 -4509)))) (T -1163))
-((-3999 (*1 *2 *2) (-12 (-4 *3 (-871)) (-4 *3 (-1247)) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-618 (-560) *3) (-10 -7 (-6 -4508) (-6 -4509)))))) (-2224 (*1 *2 *2) (-12 (-4 *3 (-871)) (-4 *3 (-1247)) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-618 (-560) *3) (-10 -7 (-6 -4508) (-6 -4509)))))) (-3999 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-1163 *4 *2)) (-4 *2 (-13 (-618 (-560) *4) (-10 -7 (-6 -4508) (-6 -4509)))))) (-2224 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-1163 *4 *2)) (-4 *2 (-13 (-618 (-560) *4) (-10 -7 (-6 -4508) (-6 -4509)))))))
-(-10 -7 (-15 -2224 (|#2| |#2| (-1 (-114) |#1| |#1|))) (-15 -3999 (|#2| |#2| (-1 (-114) |#1| |#1|))) (IF (|has| |#1| (-871)) (PROGN (-15 -2224 (|#2| |#2|)) (-15 -3999 (|#2| |#2|))) |%noBranch|))
-((-1538 (((-114) $ $) NIL T ELT)) (-2570 (((-1195 3 |#1|) $) 141 T ELT)) (-2474 (((-114) $) 101 T ELT)) (-2641 (($ $ (-663 (-972 |#1|))) 44 T ELT) (($ $ (-663 (-663 |#1|))) 104 T ELT) (($ (-663 (-972 |#1|))) 103 T ELT) (((-663 (-972 |#1|)) $) 102 T ELT)) (-2527 (((-114) $) 72 T ELT)) (-3743 (($ $ (-972 |#1|)) 76 T ELT) (($ $ (-663 |#1|)) 81 T ELT) (($ $ (-793)) 83 T ELT) (($ (-972 |#1|)) 77 T ELT) (((-972 |#1|) $) 75 T ELT)) (-1778 (((-2 (|:| -2317 (-793)) (|:| |curves| (-793)) (|:| |polygons| (-793)) (|:| |constructs| (-793))) $) 139 T ELT)) (-3450 (((-793) $) 53 T ELT)) (-2325 (((-793) $) 52 T ELT)) (-2203 (($ $ (-793) (-972 |#1|)) 67 T ELT)) (-3607 (((-114) $) 111 T ELT)) (-2992 (($ $ (-663 (-663 (-972 |#1|))) (-663 (-174)) (-174)) 118 T ELT) (($ $ (-663 (-663 (-663 |#1|))) (-663 (-174)) (-174)) 120 T ELT) (($ $ (-663 (-663 (-972 |#1|))) (-114) (-114)) 115 T ELT) (($ $ (-663 (-663 (-663 |#1|))) (-114) (-114)) 127 T ELT) (($ (-663 (-663 (-972 |#1|)))) 116 T ELT) (($ (-663 (-663 (-972 |#1|))) (-114) (-114)) 117 T ELT) (((-663 (-663 (-972 |#1|))) $) 114 T ELT)) (-3223 (($ (-663 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-4390 (((-663 (-174)) $) 133 T ELT)) (-3029 (((-663 (-972 |#1|)) $) 130 T ELT)) (-2197 (((-663 (-663 (-174))) $) 132 T ELT)) (-2532 (((-663 (-663 (-663 (-972 |#1|)))) $) NIL T ELT)) (-1671 (((-663 (-663 (-663 (-793)))) $) 131 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1558 (((-793) $ (-663 (-972 |#1|))) 65 T ELT)) (-2575 (((-114) $) 84 T ELT)) (-2934 (($ $ (-663 (-972 |#1|))) 86 T ELT) (($ $ (-663 (-663 |#1|))) 92 T ELT) (($ (-663 (-972 |#1|))) 87 T ELT) (((-663 (-972 |#1|)) $) 85 T ELT)) (-2374 (($) 48 T ELT) (($ (-1195 3 |#1|)) 49 T ELT)) (-1799 (($ $) 63 T ELT)) (-2872 (((-663 $) $) 62 T ELT)) (-1974 (($ (-663 $)) 59 T ELT)) (-2133 (((-663 $) $) 61 T ELT)) (-1578 (((-887) $) 146 T ELT)) (-2737 (((-114) $) 94 T ELT)) (-2164 (($ $ (-663 (-972 |#1|))) 96 T ELT) (($ $ (-663 (-663 |#1|))) 99 T ELT) (($ (-663 (-972 |#1|))) 97 T ELT) (((-663 (-972 |#1|)) $) 95 T ELT)) (-2617 (($ $) 140 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-1652 (((-663 |#2|) |#1|) 15 T ELT)) (-4300 (((-663 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-663 |#2|) |#1|) 61 T ELT)) (-2061 (((-663 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-663 |#2|) |#1|) 59 T ELT)) (-1706 ((|#2| |#1|) 54 T ELT)) (-3699 (((-2 (|:| |solns| (-663 |#2|)) (|:| |maps| (-663 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-4129 (((-663 |#2|) |#2| |#2|) 42 T ELT) (((-663 |#2|) |#1|) 58 T ELT)) (-4332 (((-663 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-663 |#2|) |#1|) 60 T ELT)) (-3619 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-4199 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3669 ((|#2| |#2| |#2|) 50 T ELT)) (-3571 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT)))
+(((-1159 |#1| |#2|) (-10 -7 (-15 -1652 ((-663 |#2|) |#1|)) (-15 -1706 (|#2| |#1|)) (-15 -3699 ((-2 (|:| |solns| (-663 |#2|)) (|:| |maps| (-663 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4129 ((-663 |#2|) |#1|)) (-15 -2061 ((-663 |#2|) |#1|)) (-15 -4332 ((-663 |#2|) |#1|)) (-15 -4300 ((-663 |#2|) |#1|)) (-15 -4129 ((-663 |#2|) |#2| |#2|)) (-15 -2061 ((-663 |#2|) |#2| |#2| |#2|)) (-15 -4332 ((-663 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4300 ((-663 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3669 (|#2| |#2| |#2|)) (-15 -4199 (|#2| |#2| |#2| |#2|)) (-15 -3571 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3619 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1273 |#2|) (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (T -1159))
+((-3619 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1273 *2)))) (-3571 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1273 *2)))) (-4199 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1273 *2)))) (-3669 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1273 *2)))) (-4300 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1273 *3)))) (-4332 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1273 *3)))) (-2061 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1273 *3)))) (-4129 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1273 *3)))) (-4300 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1273 *4)))) (-4332 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1273 *4)))) (-2061 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1273 *4)))) (-4129 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1273 *4)))) (-3699 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-2 (|:| |solns| (-663 *5)) (|:| |maps| (-663 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1159 *3 *5)) (-4 *3 (-1273 *5)))) (-1706 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *1 (-1159 *3 *2)) (-4 *3 (-1273 *2)))) (-1652 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560))))))) (-5 *2 (-663 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1273 *4)))))
+(-10 -7 (-15 -1652 ((-663 |#2|) |#1|)) (-15 -1706 (|#2| |#1|)) (-15 -3699 ((-2 (|:| |solns| (-663 |#2|)) (|:| |maps| (-663 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -4129 ((-663 |#2|) |#1|)) (-15 -2061 ((-663 |#2|) |#1|)) (-15 -4332 ((-663 |#2|) |#1|)) (-15 -4300 ((-663 |#2|) |#1|)) (-15 -4129 ((-663 |#2|) |#2| |#2|)) (-15 -2061 ((-663 |#2|) |#2| |#2| |#2|)) (-15 -4332 ((-663 |#2|) |#2| |#2| |#2| |#2|)) (-15 -4300 ((-663 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3669 (|#2| |#2| |#2|)) (-15 -4199 (|#2| |#2| |#2| |#2|)) (-15 -3571 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3619 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-4307 (((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-421 (-975 |#1|))))) 118 T ELT) (((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-421 (-975 |#1|)))) (-663 (-1207))) 117 T ELT) (((-663 (-663 (-305 (-326 |#1|)))) (-663 (-421 (-975 |#1|)))) 115 T ELT) (((-663 (-663 (-305 (-326 |#1|)))) (-663 (-421 (-975 |#1|))) (-663 (-1207))) 113 T ELT) (((-663 (-305 (-326 |#1|))) (-305 (-421 (-975 |#1|)))) 97 T ELT) (((-663 (-305 (-326 |#1|))) (-305 (-421 (-975 |#1|))) (-1207)) 98 T ELT) (((-663 (-305 (-326 |#1|))) (-421 (-975 |#1|))) 92 T ELT) (((-663 (-305 (-326 |#1|))) (-421 (-975 |#1|)) (-1207)) 82 T ELT)) (-2753 (((-663 (-663 (-326 |#1|))) (-663 (-421 (-975 |#1|))) (-663 (-1207))) 111 T ELT) (((-663 (-326 |#1|)) (-421 (-975 |#1|)) (-1207)) 54 T ELT)) (-1443 (((-1196 (-663 (-326 |#1|)) (-663 (-305 (-326 |#1|)))) (-421 (-975 |#1|)) (-1207)) 122 T ELT) (((-1196 (-663 (-326 |#1|)) (-663 (-305 (-326 |#1|)))) (-305 (-421 (-975 |#1|))) (-1207)) 121 T ELT)))
+(((-1160 |#1|) (-10 -7 (-15 -4307 ((-663 (-305 (-326 |#1|))) (-421 (-975 |#1|)) (-1207))) (-15 -4307 ((-663 (-305 (-326 |#1|))) (-421 (-975 |#1|)))) (-15 -4307 ((-663 (-305 (-326 |#1|))) (-305 (-421 (-975 |#1|))) (-1207))) (-15 -4307 ((-663 (-305 (-326 |#1|))) (-305 (-421 (-975 |#1|))))) (-15 -4307 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-421 (-975 |#1|))) (-663 (-1207)))) (-15 -4307 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-421 (-975 |#1|))))) (-15 -4307 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-421 (-975 |#1|)))) (-663 (-1207)))) (-15 -4307 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-421 (-975 |#1|)))))) (-15 -2753 ((-663 (-326 |#1|)) (-421 (-975 |#1|)) (-1207))) (-15 -2753 ((-663 (-663 (-326 |#1|))) (-663 (-421 (-975 |#1|))) (-663 (-1207)))) (-15 -1443 ((-1196 (-663 (-326 |#1|)) (-663 (-305 (-326 |#1|)))) (-305 (-421 (-975 |#1|))) (-1207))) (-15 -1443 ((-1196 (-663 (-326 |#1|)) (-663 (-305 (-326 |#1|)))) (-421 (-975 |#1|)) (-1207)))) (-13 (-319) (-149))) (T -1160))
+((-1443 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-1196 (-663 (-326 *5)) (-663 (-305 (-326 *5))))) (-5 *1 (-1160 *5)))) (-1443 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-421 (-975 *5)))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-1196 (-663 (-326 *5)) (-663 (-305 (-326 *5))))) (-5 *1 (-1160 *5)))) (-2753 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-421 (-975 *5)))) (-5 *4 (-663 (-1207))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-326 *5)))) (-5 *1 (-1160 *5)))) (-2753 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-326 *5))) (-5 *1 (-1160 *5)))) (-4307 (*1 *2 *3) (-12 (-5 *3 (-663 (-305 (-421 (-975 *4))))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *4))))) (-5 *1 (-1160 *4)))) (-4307 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-305 (-421 (-975 *5))))) (-5 *4 (-663 (-1207))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *5))))) (-5 *1 (-1160 *5)))) (-4307 (*1 *2 *3) (-12 (-5 *3 (-663 (-421 (-975 *4)))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *4))))) (-5 *1 (-1160 *4)))) (-4307 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-421 (-975 *5)))) (-5 *4 (-663 (-1207))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *5))))) (-5 *1 (-1160 *5)))) (-4307 (*1 *2 *3) (-12 (-5 *3 (-305 (-421 (-975 *4)))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-663 (-305 (-326 *4)))) (-5 *1 (-1160 *4)))) (-4307 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-421 (-975 *5)))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-305 (-326 *5)))) (-5 *1 (-1160 *5)))) (-4307 (*1 *2 *3) (-12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-663 (-305 (-326 *4)))) (-5 *1 (-1160 *4)))) (-4307 (*1 *2 *3 *4) (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-305 (-326 *5)))) (-5 *1 (-1160 *5)))))
+(-10 -7 (-15 -4307 ((-663 (-305 (-326 |#1|))) (-421 (-975 |#1|)) (-1207))) (-15 -4307 ((-663 (-305 (-326 |#1|))) (-421 (-975 |#1|)))) (-15 -4307 ((-663 (-305 (-326 |#1|))) (-305 (-421 (-975 |#1|))) (-1207))) (-15 -4307 ((-663 (-305 (-326 |#1|))) (-305 (-421 (-975 |#1|))))) (-15 -4307 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-421 (-975 |#1|))) (-663 (-1207)))) (-15 -4307 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-421 (-975 |#1|))))) (-15 -4307 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-421 (-975 |#1|)))) (-663 (-1207)))) (-15 -4307 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-421 (-975 |#1|)))))) (-15 -2753 ((-663 (-326 |#1|)) (-421 (-975 |#1|)) (-1207))) (-15 -2753 ((-663 (-663 (-326 |#1|))) (-663 (-421 (-975 |#1|))) (-663 (-1207)))) (-15 -1443 ((-1196 (-663 (-326 |#1|)) (-663 (-305 (-326 |#1|)))) (-305 (-421 (-975 |#1|))) (-1207))) (-15 -1443 ((-1196 (-663 (-326 |#1|)) (-663 (-305 (-326 |#1|)))) (-421 (-975 |#1|)) (-1207))))
+((-1975 (((-421 (-1201 (-326 |#1|))) (-1297 (-326 |#1|)) (-421 (-1201 (-326 |#1|))) (-560)) 36 T ELT)) (-3932 (((-421 (-1201 (-326 |#1|))) (-421 (-1201 (-326 |#1|))) (-421 (-1201 (-326 |#1|))) (-421 (-1201 (-326 |#1|)))) 48 T ELT)))
+(((-1161 |#1|) (-10 -7 (-15 -3932 ((-421 (-1201 (-326 |#1|))) (-421 (-1201 (-326 |#1|))) (-421 (-1201 (-326 |#1|))) (-421 (-1201 (-326 |#1|))))) (-15 -1975 ((-421 (-1201 (-326 |#1|))) (-1297 (-326 |#1|)) (-421 (-1201 (-326 |#1|))) (-560)))) (-571)) (T -1161))
+((-1975 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-421 (-1201 (-326 *5)))) (-5 *3 (-1297 (-326 *5))) (-5 *4 (-560)) (-4 *5 (-571)) (-5 *1 (-1161 *5)))) (-3932 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-421 (-1201 (-326 *3)))) (-4 *3 (-571)) (-5 *1 (-1161 *3)))))
+(-10 -7 (-15 -3932 ((-421 (-1201 (-326 |#1|))) (-421 (-1201 (-326 |#1|))) (-421 (-1201 (-326 |#1|))) (-421 (-1201 (-326 |#1|))))) (-15 -1975 ((-421 (-1201 (-326 |#1|))) (-1297 (-326 |#1|)) (-421 (-1201 (-326 |#1|))) (-560))))
+((-1652 (((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-326 |#1|))) (-663 (-1207))) 244 T ELT) (((-663 (-305 (-326 |#1|))) (-326 |#1|) (-1207)) 23 T ELT) (((-663 (-305 (-326 |#1|))) (-305 (-326 |#1|)) (-1207)) 29 T ELT) (((-663 (-305 (-326 |#1|))) (-305 (-326 |#1|))) 28 T ELT) (((-663 (-305 (-326 |#1|))) (-326 |#1|)) 24 T ELT)))
+(((-1162 |#1|) (-10 -7 (-15 -1652 ((-663 (-305 (-326 |#1|))) (-326 |#1|))) (-15 -1652 ((-663 (-305 (-326 |#1|))) (-305 (-326 |#1|)))) (-15 -1652 ((-663 (-305 (-326 |#1|))) (-305 (-326 |#1|)) (-1207))) (-15 -1652 ((-663 (-305 (-326 |#1|))) (-326 |#1|) (-1207))) (-15 -1652 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-326 |#1|))) (-663 (-1207))))) (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (T -1162))
+((-1652 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-1207))) (-4 *5 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *5))))) (-5 *1 (-1162 *5)) (-5 *3 (-663 (-305 (-326 *5)))))) (-1652 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-663 (-305 (-326 *5)))) (-5 *1 (-1162 *5)) (-5 *3 (-326 *5)))) (-1652 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-663 (-305 (-326 *5)))) (-5 *1 (-1162 *5)) (-5 *3 (-305 (-326 *5))))) (-1652 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-663 (-305 (-326 *4)))) (-5 *1 (-1162 *4)) (-5 *3 (-305 (-326 *4))))) (-1652 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149))) (-5 *2 (-663 (-305 (-326 *4)))) (-5 *1 (-1162 *4)) (-5 *3 (-326 *4)))))
+(-10 -7 (-15 -1652 ((-663 (-305 (-326 |#1|))) (-326 |#1|))) (-15 -1652 ((-663 (-305 (-326 |#1|))) (-305 (-326 |#1|)))) (-15 -1652 ((-663 (-305 (-326 |#1|))) (-305 (-326 |#1|)) (-1207))) (-15 -1652 ((-663 (-305 (-326 |#1|))) (-326 |#1|) (-1207))) (-15 -1652 ((-663 (-663 (-305 (-326 |#1|)))) (-663 (-305 (-326 |#1|))) (-663 (-1207)))))
+((-2972 ((|#2| |#2|) 28 (|has| |#1| (-871)) ELT) ((|#2| |#2| (-1 (-114) |#1| |#1|)) 25 T ELT)) (-3394 ((|#2| |#2|) 27 (|has| |#1| (-871)) ELT) ((|#2| |#2| (-1 (-114) |#1| |#1|)) 22 T ELT)))
+(((-1163 |#1| |#2|) (-10 -7 (-15 -3394 (|#2| |#2| (-1 (-114) |#1| |#1|))) (-15 -2972 (|#2| |#2| (-1 (-114) |#1| |#1|))) (IF (|has| |#1| (-871)) (PROGN (-15 -3394 (|#2| |#2|)) (-15 -2972 (|#2| |#2|))) |%noBranch|)) (-1247) (-13 (-618 (-560) |#1|) (-10 -7 (-6 -4508) (-6 -4509)))) (T -1163))
+((-2972 (*1 *2 *2) (-12 (-4 *3 (-871)) (-4 *3 (-1247)) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-618 (-560) *3) (-10 -7 (-6 -4508) (-6 -4509)))))) (-3394 (*1 *2 *2) (-12 (-4 *3 (-871)) (-4 *3 (-1247)) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-618 (-560) *3) (-10 -7 (-6 -4508) (-6 -4509)))))) (-2972 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-1163 *4 *2)) (-4 *2 (-13 (-618 (-560) *4) (-10 -7 (-6 -4508) (-6 -4509)))))) (-3394 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-1163 *4 *2)) (-4 *2 (-13 (-618 (-560) *4) (-10 -7 (-6 -4508) (-6 -4509)))))))
+(-10 -7 (-15 -3394 (|#2| |#2| (-1 (-114) |#1| |#1|))) (-15 -2972 (|#2| |#2| (-1 (-114) |#1| |#1|))) (IF (|has| |#1| (-871)) (PROGN (-15 -3394 (|#2| |#2|)) (-15 -2972 (|#2| |#2|))) |%noBranch|))
+((-2243 (((-114) $ $) NIL T ELT)) (-3682 (((-1195 3 |#1|) $) 141 T ELT)) (-4036 (((-114) $) 101 T ELT)) (-3097 (($ $ (-663 (-972 |#1|))) 44 T ELT) (($ $ (-663 (-663 |#1|))) 104 T ELT) (($ (-663 (-972 |#1|))) 103 T ELT) (((-663 (-972 |#1|)) $) 102 T ELT)) (-4473 (((-114) $) 72 T ELT)) (-2843 (($ $ (-972 |#1|)) 76 T ELT) (($ $ (-663 |#1|)) 81 T ELT) (($ $ (-793)) 83 T ELT) (($ (-972 |#1|)) 77 T ELT) (((-972 |#1|) $) 75 T ELT)) (-2659 (((-2 (|:| -3046 (-793)) (|:| |curves| (-793)) (|:| |polygons| (-793)) (|:| |constructs| (-793))) $) 139 T ELT)) (-2616 (((-793) $) 53 T ELT)) (-3135 (((-793) $) 52 T ELT)) (-4445 (($ $ (-793) (-972 |#1|)) 67 T ELT)) (-3671 (((-114) $) 111 T ELT)) (-3553 (($ $ (-663 (-663 (-972 |#1|))) (-663 (-174)) (-174)) 118 T ELT) (($ $ (-663 (-663 (-663 |#1|))) (-663 (-174)) (-174)) 120 T ELT) (($ $ (-663 (-663 (-972 |#1|))) (-114) (-114)) 115 T ELT) (($ $ (-663 (-663 (-663 |#1|))) (-114) (-114)) 127 T ELT) (($ (-663 (-663 (-972 |#1|)))) 116 T ELT) (($ (-663 (-663 (-972 |#1|))) (-114) (-114)) 117 T ELT) (((-663 (-663 (-972 |#1|))) $) 114 T ELT)) (-4167 (($ (-663 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-2360 (((-663 (-174)) $) 133 T ELT)) (-2550 (((-663 (-972 |#1|)) $) 130 T ELT)) (-4398 (((-663 (-663 (-174))) $) 132 T ELT)) (-1376 (((-663 (-663 (-663 (-972 |#1|)))) $) NIL T ELT)) (-2778 (((-663 (-663 (-663 (-793)))) $) 131 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1694 (((-793) $ (-663 (-972 |#1|))) 65 T ELT)) (-3717 (((-114) $) 84 T ELT)) (-4231 (($ $ (-663 (-972 |#1|))) 86 T ELT) (($ $ (-663 (-663 |#1|))) 92 T ELT) (($ (-663 (-972 |#1|))) 87 T ELT) (((-663 (-972 |#1|)) $) 85 T ELT)) (-2364 (($) 48 T ELT) (($ (-1195 3 |#1|)) 49 T ELT)) (-4107 (($ $) 63 T ELT)) (-3689 (((-663 $) $) 62 T ELT)) (-2730 (($ (-663 $)) 59 T ELT)) (-1805 (((-663 $) $) 61 T ELT)) (-3913 (((-887) $) 146 T ELT)) (-1606 (((-114) $) 94 T ELT)) (-4068 (($ $ (-663 (-972 |#1|))) 96 T ELT) (($ $ (-663 (-663 |#1|))) 99 T ELT) (($ (-663 (-972 |#1|))) 97 T ELT) (((-663 (-972 |#1|)) $) 95 T ELT)) (-2816 (($ $) 140 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-1164 |#1|) (-1165 |#1|) (-1080)) (T -1164))
NIL
(-1165 |#1|)
-((-1538 (((-114) $ $) 7 T ELT)) (-2570 (((-1195 3 |#1|) $) 14 T ELT)) (-2474 (((-114) $) 30 T ELT)) (-2641 (($ $ (-663 (-972 |#1|))) 34 T ELT) (($ $ (-663 (-663 |#1|))) 33 T ELT) (($ (-663 (-972 |#1|))) 32 T ELT) (((-663 (-972 |#1|)) $) 31 T ELT)) (-2527 (((-114) $) 45 T ELT)) (-3743 (($ $ (-972 |#1|)) 50 T ELT) (($ $ (-663 |#1|)) 49 T ELT) (($ $ (-793)) 48 T ELT) (($ (-972 |#1|)) 47 T ELT) (((-972 |#1|) $) 46 T ELT)) (-1778 (((-2 (|:| -2317 (-793)) (|:| |curves| (-793)) (|:| |polygons| (-793)) (|:| |constructs| (-793))) $) 16 T ELT)) (-3450 (((-793) $) 59 T ELT)) (-2325 (((-793) $) 60 T ELT)) (-2203 (($ $ (-793) (-972 |#1|)) 51 T ELT)) (-3607 (((-114) $) 22 T ELT)) (-2992 (($ $ (-663 (-663 (-972 |#1|))) (-663 (-174)) (-174)) 29 T ELT) (($ $ (-663 (-663 (-663 |#1|))) (-663 (-174)) (-174)) 28 T ELT) (($ $ (-663 (-663 (-972 |#1|))) (-114) (-114)) 27 T ELT) (($ $ (-663 (-663 (-663 |#1|))) (-114) (-114)) 26 T ELT) (($ (-663 (-663 (-972 |#1|)))) 25 T ELT) (($ (-663 (-663 (-972 |#1|))) (-114) (-114)) 24 T ELT) (((-663 (-663 (-972 |#1|))) $) 23 T ELT)) (-3223 (($ (-663 $)) 58 T ELT) (($ $ $) 57 T ELT)) (-4390 (((-663 (-174)) $) 17 T ELT)) (-3029 (((-663 (-972 |#1|)) $) 21 T ELT)) (-2197 (((-663 (-663 (-174))) $) 18 T ELT)) (-2532 (((-663 (-663 (-663 (-972 |#1|)))) $) 19 T ELT)) (-1671 (((-663 (-663 (-663 (-793)))) $) 20 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1558 (((-793) $ (-663 (-972 |#1|))) 52 T ELT)) (-2575 (((-114) $) 40 T ELT)) (-2934 (($ $ (-663 (-972 |#1|))) 44 T ELT) (($ $ (-663 (-663 |#1|))) 43 T ELT) (($ (-663 (-972 |#1|))) 42 T ELT) (((-663 (-972 |#1|)) $) 41 T ELT)) (-2374 (($) 62 T ELT) (($ (-1195 3 |#1|)) 61 T ELT)) (-1799 (($ $) 53 T ELT)) (-2872 (((-663 $) $) 54 T ELT)) (-1974 (($ (-663 $)) 56 T ELT)) (-2133 (((-663 $) $) 55 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2737 (((-114) $) 35 T ELT)) (-2164 (($ $ (-663 (-972 |#1|))) 39 T ELT) (($ $ (-663 (-663 |#1|))) 38 T ELT) (($ (-663 (-972 |#1|))) 37 T ELT) (((-663 (-972 |#1|)) $) 36 T ELT)) (-2617 (($ $) 15 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2473 (((-114) $ $) 8 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-3682 (((-1195 3 |#1|) $) 14 T ELT)) (-4036 (((-114) $) 30 T ELT)) (-3097 (($ $ (-663 (-972 |#1|))) 34 T ELT) (($ $ (-663 (-663 |#1|))) 33 T ELT) (($ (-663 (-972 |#1|))) 32 T ELT) (((-663 (-972 |#1|)) $) 31 T ELT)) (-4473 (((-114) $) 45 T ELT)) (-2843 (($ $ (-972 |#1|)) 50 T ELT) (($ $ (-663 |#1|)) 49 T ELT) (($ $ (-793)) 48 T ELT) (($ (-972 |#1|)) 47 T ELT) (((-972 |#1|) $) 46 T ELT)) (-2659 (((-2 (|:| -3046 (-793)) (|:| |curves| (-793)) (|:| |polygons| (-793)) (|:| |constructs| (-793))) $) 16 T ELT)) (-2616 (((-793) $) 59 T ELT)) (-3135 (((-793) $) 60 T ELT)) (-4445 (($ $ (-793) (-972 |#1|)) 51 T ELT)) (-3671 (((-114) $) 22 T ELT)) (-3553 (($ $ (-663 (-663 (-972 |#1|))) (-663 (-174)) (-174)) 29 T ELT) (($ $ (-663 (-663 (-663 |#1|))) (-663 (-174)) (-174)) 28 T ELT) (($ $ (-663 (-663 (-972 |#1|))) (-114) (-114)) 27 T ELT) (($ $ (-663 (-663 (-663 |#1|))) (-114) (-114)) 26 T ELT) (($ (-663 (-663 (-972 |#1|)))) 25 T ELT) (($ (-663 (-663 (-972 |#1|))) (-114) (-114)) 24 T ELT) (((-663 (-663 (-972 |#1|))) $) 23 T ELT)) (-4167 (($ (-663 $)) 58 T ELT) (($ $ $) 57 T ELT)) (-2360 (((-663 (-174)) $) 17 T ELT)) (-2550 (((-663 (-972 |#1|)) $) 21 T ELT)) (-4398 (((-663 (-663 (-174))) $) 18 T ELT)) (-1376 (((-663 (-663 (-663 (-972 |#1|)))) $) 19 T ELT)) (-2778 (((-663 (-663 (-663 (-793)))) $) 20 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-1694 (((-793) $ (-663 (-972 |#1|))) 52 T ELT)) (-3717 (((-114) $) 40 T ELT)) (-4231 (($ $ (-663 (-972 |#1|))) 44 T ELT) (($ $ (-663 (-663 |#1|))) 43 T ELT) (($ (-663 (-972 |#1|))) 42 T ELT) (((-663 (-972 |#1|)) $) 41 T ELT)) (-2364 (($) 62 T ELT) (($ (-1195 3 |#1|)) 61 T ELT)) (-4107 (($ $) 53 T ELT)) (-3689 (((-663 $) $) 54 T ELT)) (-2730 (($ (-663 $)) 56 T ELT)) (-1805 (((-663 $) $) 55 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-1606 (((-114) $) 35 T ELT)) (-4068 (($ $ (-663 (-972 |#1|))) 39 T ELT) (($ $ (-663 (-663 |#1|))) 38 T ELT) (($ (-663 (-972 |#1|))) 37 T ELT) (((-663 (-972 |#1|)) $) 36 T ELT)) (-2816 (($ $) 15 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2340 (((-114) $ $) 8 T ELT)))
(((-1165 |#1|) (-142) (-1080)) (T -1165))
-((-1578 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-887)))) (-2374 (*1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080)))) (-2374 (*1 *1 *2) (-12 (-5 *2 (-1195 3 *3)) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) (-2325 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))) (-3450 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))) (-3223 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-3223 (*1 *1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080)))) (-1974 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-2133 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-5 *2 (-663 *1)) (-4 *1 (-1165 *3)))) (-2872 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-5 *2 (-663 *1)) (-4 *1 (-1165 *3)))) (-1799 (*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080)))) (-1558 (*1 *2 *1 *3) (-12 (-5 *3 (-663 (-972 *4))) (-4 *1 (-1165 *4)) (-4 *4 (-1080)) (-5 *2 (-793)))) (-2203 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-972 *4)) (-4 *1 (-1165 *4)) (-4 *4 (-1080)))) (-3743 (*1 *1 *1 *2) (-12 (-5 *2 (-972 *3)) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-3743 (*1 *1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-3743 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-3743 (*1 *1 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) (-3743 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-972 *3)))) (-2527 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-114)))) (-2934 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-972 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-2934 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-2934 (*1 *1 *2) (-12 (-5 *2 (-663 (-972 *3))) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) (-2934 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-972 *3))))) (-2575 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-114)))) (-2164 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-972 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-2164 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-2164 (*1 *1 *2) (-12 (-5 *2 (-663 (-972 *3))) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) (-2164 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-972 *3))))) (-2737 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-114)))) (-2641 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-972 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-2641 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-2641 (*1 *1 *2) (-12 (-5 *2 (-663 (-972 *3))) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) (-2641 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-972 *3))))) (-2474 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-114)))) (-2992 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-663 (-663 (-972 *5)))) (-5 *3 (-663 (-174))) (-5 *4 (-174)) (-4 *1 (-1165 *5)) (-4 *5 (-1080)))) (-2992 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-663 (-663 (-663 *5)))) (-5 *3 (-663 (-174))) (-5 *4 (-174)) (-4 *1 (-1165 *5)) (-4 *5 (-1080)))) (-2992 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-663 (-663 (-972 *4)))) (-5 *3 (-114)) (-4 *1 (-1165 *4)) (-4 *4 (-1080)))) (-2992 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-663 (-663 (-663 *4)))) (-5 *3 (-114)) (-4 *1 (-1165 *4)) (-4 *4 (-1080)))) (-2992 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-972 *3)))) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) (-2992 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-663 (-663 (-972 *4)))) (-5 *3 (-114)) (-4 *4 (-1080)) (-4 *1 (-1165 *4)))) (-2992 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-663 (-972 *3)))))) (-3607 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-114)))) (-3029 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-972 *3))))) (-1671 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-663 (-663 (-793))))))) (-2532 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-663 (-663 (-972 *3))))))) (-2197 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-663 (-174)))))) (-4390 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-174))))) (-1778 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| -2317 (-793)) (|:| |curves| (-793)) (|:| |polygons| (-793)) (|:| |constructs| (-793)))))) (-2617 (*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080)))) (-2570 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-1195 3 *3)))))
-(-13 (-1132) (-10 -8 (-15 -2374 ($)) (-15 -2374 ($ (-1195 3 |t#1|))) (-15 -2325 ((-793) $)) (-15 -3450 ((-793) $)) (-15 -3223 ($ (-663 $))) (-15 -3223 ($ $ $)) (-15 -1974 ($ (-663 $))) (-15 -2133 ((-663 $) $)) (-15 -2872 ((-663 $) $)) (-15 -1799 ($ $)) (-15 -1558 ((-793) $ (-663 (-972 |t#1|)))) (-15 -2203 ($ $ (-793) (-972 |t#1|))) (-15 -3743 ($ $ (-972 |t#1|))) (-15 -3743 ($ $ (-663 |t#1|))) (-15 -3743 ($ $ (-793))) (-15 -3743 ($ (-972 |t#1|))) (-15 -3743 ((-972 |t#1|) $)) (-15 -2527 ((-114) $)) (-15 -2934 ($ $ (-663 (-972 |t#1|)))) (-15 -2934 ($ $ (-663 (-663 |t#1|)))) (-15 -2934 ($ (-663 (-972 |t#1|)))) (-15 -2934 ((-663 (-972 |t#1|)) $)) (-15 -2575 ((-114) $)) (-15 -2164 ($ $ (-663 (-972 |t#1|)))) (-15 -2164 ($ $ (-663 (-663 |t#1|)))) (-15 -2164 ($ (-663 (-972 |t#1|)))) (-15 -2164 ((-663 (-972 |t#1|)) $)) (-15 -2737 ((-114) $)) (-15 -2641 ($ $ (-663 (-972 |t#1|)))) (-15 -2641 ($ $ (-663 (-663 |t#1|)))) (-15 -2641 ($ (-663 (-972 |t#1|)))) (-15 -2641 ((-663 (-972 |t#1|)) $)) (-15 -2474 ((-114) $)) (-15 -2992 ($ $ (-663 (-663 (-972 |t#1|))) (-663 (-174)) (-174))) (-15 -2992 ($ $ (-663 (-663 (-663 |t#1|))) (-663 (-174)) (-174))) (-15 -2992 ($ $ (-663 (-663 (-972 |t#1|))) (-114) (-114))) (-15 -2992 ($ $ (-663 (-663 (-663 |t#1|))) (-114) (-114))) (-15 -2992 ($ (-663 (-663 (-972 |t#1|))))) (-15 -2992 ($ (-663 (-663 (-972 |t#1|))) (-114) (-114))) (-15 -2992 ((-663 (-663 (-972 |t#1|))) $)) (-15 -3607 ((-114) $)) (-15 -3029 ((-663 (-972 |t#1|)) $)) (-15 -1671 ((-663 (-663 (-663 (-793)))) $)) (-15 -2532 ((-663 (-663 (-663 (-972 |t#1|)))) $)) (-15 -2197 ((-663 (-663 (-174))) $)) (-15 -4390 ((-663 (-174)) $)) (-15 -1778 ((-2 (|:| -2317 (-793)) (|:| |curves| (-793)) (|:| |polygons| (-793)) (|:| |constructs| (-793))) $)) (-15 -2617 ($ $)) (-15 -2570 ((-1195 3 |t#1|) $)) (-15 -1578 ((-887) $))))
+((-3913 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-887)))) (-2364 (*1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080)))) (-2364 (*1 *1 *2) (-12 (-5 *2 (-1195 3 *3)) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) (-3135 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))) (-2616 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))) (-4167 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-4167 (*1 *1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080)))) (-2730 (*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-1805 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-5 *2 (-663 *1)) (-4 *1 (-1165 *3)))) (-3689 (*1 *2 *1) (-12 (-4 *3 (-1080)) (-5 *2 (-663 *1)) (-4 *1 (-1165 *3)))) (-4107 (*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080)))) (-1694 (*1 *2 *1 *3) (-12 (-5 *3 (-663 (-972 *4))) (-4 *1 (-1165 *4)) (-4 *4 (-1080)) (-5 *2 (-793)))) (-4445 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-972 *4)) (-4 *1 (-1165 *4)) (-4 *4 (-1080)))) (-2843 (*1 *1 *1 *2) (-12 (-5 *2 (-972 *3)) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-2843 (*1 *1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-2843 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-2843 (*1 *1 *2) (-12 (-5 *2 (-972 *3)) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) (-2843 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-972 *3)))) (-4473 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-114)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-972 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-4231 (*1 *1 *2) (-12 (-5 *2 (-663 (-972 *3))) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-972 *3))))) (-3717 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-114)))) (-4068 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-972 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-4068 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-4068 (*1 *1 *2) (-12 (-5 *2 (-663 (-972 *3))) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) (-4068 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-972 *3))))) (-1606 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-114)))) (-3097 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-972 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-3097 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))) (-3097 (*1 *1 *2) (-12 (-5 *2 (-663 (-972 *3))) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) (-3097 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-972 *3))))) (-4036 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-114)))) (-3553 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-663 (-663 (-972 *5)))) (-5 *3 (-663 (-174))) (-5 *4 (-174)) (-4 *1 (-1165 *5)) (-4 *5 (-1080)))) (-3553 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-663 (-663 (-663 *5)))) (-5 *3 (-663 (-174))) (-5 *4 (-174)) (-4 *1 (-1165 *5)) (-4 *5 (-1080)))) (-3553 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-663 (-663 (-972 *4)))) (-5 *3 (-114)) (-4 *1 (-1165 *4)) (-4 *4 (-1080)))) (-3553 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-663 (-663 (-663 *4)))) (-5 *3 (-114)) (-4 *1 (-1165 *4)) (-4 *4 (-1080)))) (-3553 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-972 *3)))) (-4 *3 (-1080)) (-4 *1 (-1165 *3)))) (-3553 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-663 (-663 (-972 *4)))) (-5 *3 (-114)) (-4 *4 (-1080)) (-4 *1 (-1165 *4)))) (-3553 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-663 (-972 *3)))))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-114)))) (-2550 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-972 *3))))) (-2778 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-663 (-663 (-793))))))) (-1376 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-663 (-663 (-972 *3))))))) (-4398 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-663 (-174)))))) (-2360 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-174))))) (-2659 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| -3046 (-793)) (|:| |curves| (-793)) (|:| |polygons| (-793)) (|:| |constructs| (-793)))))) (-2816 (*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-1195 3 *3)))))
+(-13 (-1132) (-10 -8 (-15 -2364 ($)) (-15 -2364 ($ (-1195 3 |t#1|))) (-15 -3135 ((-793) $)) (-15 -2616 ((-793) $)) (-15 -4167 ($ (-663 $))) (-15 -4167 ($ $ $)) (-15 -2730 ($ (-663 $))) (-15 -1805 ((-663 $) $)) (-15 -3689 ((-663 $) $)) (-15 -4107 ($ $)) (-15 -1694 ((-793) $ (-663 (-972 |t#1|)))) (-15 -4445 ($ $ (-793) (-972 |t#1|))) (-15 -2843 ($ $ (-972 |t#1|))) (-15 -2843 ($ $ (-663 |t#1|))) (-15 -2843 ($ $ (-793))) (-15 -2843 ($ (-972 |t#1|))) (-15 -2843 ((-972 |t#1|) $)) (-15 -4473 ((-114) $)) (-15 -4231 ($ $ (-663 (-972 |t#1|)))) (-15 -4231 ($ $ (-663 (-663 |t#1|)))) (-15 -4231 ($ (-663 (-972 |t#1|)))) (-15 -4231 ((-663 (-972 |t#1|)) $)) (-15 -3717 ((-114) $)) (-15 -4068 ($ $ (-663 (-972 |t#1|)))) (-15 -4068 ($ $ (-663 (-663 |t#1|)))) (-15 -4068 ($ (-663 (-972 |t#1|)))) (-15 -4068 ((-663 (-972 |t#1|)) $)) (-15 -1606 ((-114) $)) (-15 -3097 ($ $ (-663 (-972 |t#1|)))) (-15 -3097 ($ $ (-663 (-663 |t#1|)))) (-15 -3097 ($ (-663 (-972 |t#1|)))) (-15 -3097 ((-663 (-972 |t#1|)) $)) (-15 -4036 ((-114) $)) (-15 -3553 ($ $ (-663 (-663 (-972 |t#1|))) (-663 (-174)) (-174))) (-15 -3553 ($ $ (-663 (-663 (-663 |t#1|))) (-663 (-174)) (-174))) (-15 -3553 ($ $ (-663 (-663 (-972 |t#1|))) (-114) (-114))) (-15 -3553 ($ $ (-663 (-663 (-663 |t#1|))) (-114) (-114))) (-15 -3553 ($ (-663 (-663 (-972 |t#1|))))) (-15 -3553 ($ (-663 (-663 (-972 |t#1|))) (-114) (-114))) (-15 -3553 ((-663 (-663 (-972 |t#1|))) $)) (-15 -3671 ((-114) $)) (-15 -2550 ((-663 (-972 |t#1|)) $)) (-15 -2778 ((-663 (-663 (-663 (-793)))) $)) (-15 -1376 ((-663 (-663 (-663 (-972 |t#1|)))) $)) (-15 -4398 ((-663 (-663 (-174))) $)) (-15 -2360 ((-663 (-174)) $)) (-15 -2659 ((-2 (|:| -3046 (-793)) (|:| |curves| (-793)) (|:| |polygons| (-793)) (|:| |constructs| (-793))) $)) (-15 -2816 ($ $)) (-15 -3682 ((-1195 3 |t#1|) $)) (-15 -3913 ((-887) $))))
(((-102) . T) ((-632 (-887)) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 184 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) 7 T ELT)) (-1991 (((-114) $ (|[\|\|]| (-538))) 19 T ELT) (((-114) $ (|[\|\|]| (-222))) 23 T ELT) (((-114) $ (|[\|\|]| (-698))) 27 T ELT) (((-114) $ (|[\|\|]| (-1308))) 31 T ELT) (((-114) $ (|[\|\|]| (-140))) 35 T ELT) (((-114) $ (|[\|\|]| (-619))) 39 T ELT) (((-114) $ (|[\|\|]| (-135))) 43 T ELT) (((-114) $ (|[\|\|]| (-1147))) 47 T ELT) (((-114) $ (|[\|\|]| (-96))) 51 T ELT) (((-114) $ (|[\|\|]| (-703))) 55 T ELT) (((-114) $ (|[\|\|]| (-531))) 59 T ELT) (((-114) $ (|[\|\|]| (-1097))) 63 T ELT) (((-114) $ (|[\|\|]| (-1309))) 67 T ELT) (((-114) $ (|[\|\|]| (-539))) 71 T ELT) (((-114) $ (|[\|\|]| (-1183))) 75 T ELT) (((-114) $ (|[\|\|]| (-156))) 79 T ELT) (((-114) $ (|[\|\|]| (-693))) 83 T ELT) (((-114) $ (|[\|\|]| (-324))) 87 T ELT) (((-114) $ (|[\|\|]| (-1067))) 91 T ELT) (((-114) $ (|[\|\|]| (-183))) 95 T ELT) (((-114) $ (|[\|\|]| (-1001))) 99 T ELT) (((-114) $ (|[\|\|]| (-1104))) 103 T ELT) (((-114) $ (|[\|\|]| (-1122))) 107 T ELT) (((-114) $ (|[\|\|]| (-1127))) 111 T ELT) (((-114) $ (|[\|\|]| (-645))) 115 T ELT) (((-114) $ (|[\|\|]| (-1197))) 119 T ELT) (((-114) $ (|[\|\|]| (-158))) 123 T ELT) (((-114) $ (|[\|\|]| (-139))) 127 T ELT) (((-114) $ (|[\|\|]| (-492))) 131 T ELT) (((-114) $ (|[\|\|]| (-606))) 135 T ELT) (((-114) $ (|[\|\|]| (-520))) 139 T ELT) (((-114) $ (|[\|\|]| (-1189))) 143 T ELT) (((-114) $ (|[\|\|]| (-560))) 147 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1856 (((-538) $) 20 T ELT) (((-222) $) 24 T ELT) (((-698) $) 28 T ELT) (((-1308) $) 32 T ELT) (((-140) $) 36 T ELT) (((-619) $) 40 T ELT) (((-135) $) 44 T ELT) (((-1147) $) 48 T ELT) (((-96) $) 52 T ELT) (((-703) $) 56 T ELT) (((-531) $) 60 T ELT) (((-1097) $) 64 T ELT) (((-1309) $) 68 T ELT) (((-539) $) 72 T ELT) (((-1183) $) 76 T ELT) (((-156) $) 80 T ELT) (((-693) $) 84 T ELT) (((-324) $) 88 T ELT) (((-1067) $) 92 T ELT) (((-183) $) 96 T ELT) (((-1001) $) 100 T ELT) (((-1104) $) 104 T ELT) (((-1122) $) 108 T ELT) (((-1127) $) 112 T ELT) (((-645) $) 116 T ELT) (((-1197) $) 120 T ELT) (((-158) $) 124 T ELT) (((-139) $) 128 T ELT) (((-492) $) 132 T ELT) (((-606) $) 136 T ELT) (((-520) $) 140 T ELT) (((-1189) $) 144 T ELT) (((-560) $) 148 T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 184 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) 7 T ELT)) (-1436 (((-114) $ (|[\|\|]| (-538))) 19 T ELT) (((-114) $ (|[\|\|]| (-222))) 23 T ELT) (((-114) $ (|[\|\|]| (-698))) 27 T ELT) (((-114) $ (|[\|\|]| (-1308))) 31 T ELT) (((-114) $ (|[\|\|]| (-140))) 35 T ELT) (((-114) $ (|[\|\|]| (-619))) 39 T ELT) (((-114) $ (|[\|\|]| (-135))) 43 T ELT) (((-114) $ (|[\|\|]| (-1147))) 47 T ELT) (((-114) $ (|[\|\|]| (-96))) 51 T ELT) (((-114) $ (|[\|\|]| (-703))) 55 T ELT) (((-114) $ (|[\|\|]| (-531))) 59 T ELT) (((-114) $ (|[\|\|]| (-1097))) 63 T ELT) (((-114) $ (|[\|\|]| (-1309))) 67 T ELT) (((-114) $ (|[\|\|]| (-539))) 71 T ELT) (((-114) $ (|[\|\|]| (-1183))) 75 T ELT) (((-114) $ (|[\|\|]| (-156))) 79 T ELT) (((-114) $ (|[\|\|]| (-693))) 83 T ELT) (((-114) $ (|[\|\|]| (-324))) 87 T ELT) (((-114) $ (|[\|\|]| (-1067))) 91 T ELT) (((-114) $ (|[\|\|]| (-183))) 95 T ELT) (((-114) $ (|[\|\|]| (-1001))) 99 T ELT) (((-114) $ (|[\|\|]| (-1104))) 103 T ELT) (((-114) $ (|[\|\|]| (-1122))) 107 T ELT) (((-114) $ (|[\|\|]| (-1127))) 111 T ELT) (((-114) $ (|[\|\|]| (-645))) 115 T ELT) (((-114) $ (|[\|\|]| (-1197))) 119 T ELT) (((-114) $ (|[\|\|]| (-158))) 123 T ELT) (((-114) $ (|[\|\|]| (-139))) 127 T ELT) (((-114) $ (|[\|\|]| (-492))) 131 T ELT) (((-114) $ (|[\|\|]| (-606))) 135 T ELT) (((-114) $ (|[\|\|]| (-520))) 139 T ELT) (((-114) $ (|[\|\|]| (-1189))) 143 T ELT) (((-114) $ (|[\|\|]| (-560))) 147 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4168 (((-538) $) 20 T ELT) (((-222) $) 24 T ELT) (((-698) $) 28 T ELT) (((-1308) $) 32 T ELT) (((-140) $) 36 T ELT) (((-619) $) 40 T ELT) (((-135) $) 44 T ELT) (((-1147) $) 48 T ELT) (((-96) $) 52 T ELT) (((-703) $) 56 T ELT) (((-531) $) 60 T ELT) (((-1097) $) 64 T ELT) (((-1309) $) 68 T ELT) (((-539) $) 72 T ELT) (((-1183) $) 76 T ELT) (((-156) $) 80 T ELT) (((-693) $) 84 T ELT) (((-324) $) 88 T ELT) (((-1067) $) 92 T ELT) (((-183) $) 96 T ELT) (((-1001) $) 100 T ELT) (((-1104) $) 104 T ELT) (((-1122) $) 108 T ELT) (((-1127) $) 112 T ELT) (((-645) $) 116 T ELT) (((-1197) $) 120 T ELT) (((-158) $) 124 T ELT) (((-139) $) 128 T ELT) (((-492) $) 132 T ELT) (((-606) $) 136 T ELT) (((-520) $) 140 T ELT) (((-1189) $) 144 T ELT) (((-560) $) 148 T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-1166) (-1168)) (T -1166))
NIL
(-1168)
-((-3013 (((-663 (-1212)) (-1189)) 9 T ELT)))
-(((-1167) (-10 -7 (-15 -3013 ((-663 (-1212)) (-1189))))) (T -1167))
-((-3013 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-663 (-1212))) (-5 *1 (-1167)))))
-(-10 -7 (-15 -3013 ((-663 (-1212)) (-1189))))
-((-1538 (((-114) $ $) 7 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-1212)) 17 T ELT) (((-1212) $) 16 T ELT)) (-1991 (((-114) $ (|[\|\|]| (-538))) 85 T ELT) (((-114) $ (|[\|\|]| (-222))) 83 T ELT) (((-114) $ (|[\|\|]| (-698))) 81 T ELT) (((-114) $ (|[\|\|]| (-1308))) 79 T ELT) (((-114) $ (|[\|\|]| (-140))) 77 T ELT) (((-114) $ (|[\|\|]| (-619))) 75 T ELT) (((-114) $ (|[\|\|]| (-135))) 73 T ELT) (((-114) $ (|[\|\|]| (-1147))) 71 T ELT) (((-114) $ (|[\|\|]| (-96))) 69 T ELT) (((-114) $ (|[\|\|]| (-703))) 67 T ELT) (((-114) $ (|[\|\|]| (-531))) 65 T ELT) (((-114) $ (|[\|\|]| (-1097))) 63 T ELT) (((-114) $ (|[\|\|]| (-1309))) 61 T ELT) (((-114) $ (|[\|\|]| (-539))) 59 T ELT) (((-114) $ (|[\|\|]| (-1183))) 57 T ELT) (((-114) $ (|[\|\|]| (-156))) 55 T ELT) (((-114) $ (|[\|\|]| (-693))) 53 T ELT) (((-114) $ (|[\|\|]| (-324))) 51 T ELT) (((-114) $ (|[\|\|]| (-1067))) 49 T ELT) (((-114) $ (|[\|\|]| (-183))) 47 T ELT) (((-114) $ (|[\|\|]| (-1001))) 45 T ELT) (((-114) $ (|[\|\|]| (-1104))) 43 T ELT) (((-114) $ (|[\|\|]| (-1122))) 41 T ELT) (((-114) $ (|[\|\|]| (-1127))) 39 T ELT) (((-114) $ (|[\|\|]| (-645))) 37 T ELT) (((-114) $ (|[\|\|]| (-1197))) 35 T ELT) (((-114) $ (|[\|\|]| (-158))) 33 T ELT) (((-114) $ (|[\|\|]| (-139))) 31 T ELT) (((-114) $ (|[\|\|]| (-492))) 29 T ELT) (((-114) $ (|[\|\|]| (-606))) 27 T ELT) (((-114) $ (|[\|\|]| (-520))) 25 T ELT) (((-114) $ (|[\|\|]| (-1189))) 23 T ELT) (((-114) $ (|[\|\|]| (-560))) 21 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-1856 (((-538) $) 84 T ELT) (((-222) $) 82 T ELT) (((-698) $) 80 T ELT) (((-1308) $) 78 T ELT) (((-140) $) 76 T ELT) (((-619) $) 74 T ELT) (((-135) $) 72 T ELT) (((-1147) $) 70 T ELT) (((-96) $) 68 T ELT) (((-703) $) 66 T ELT) (((-531) $) 64 T ELT) (((-1097) $) 62 T ELT) (((-1309) $) 60 T ELT) (((-539) $) 58 T ELT) (((-1183) $) 56 T ELT) (((-156) $) 54 T ELT) (((-693) $) 52 T ELT) (((-324) $) 50 T ELT) (((-1067) $) 48 T ELT) (((-183) $) 46 T ELT) (((-1001) $) 44 T ELT) (((-1104) $) 42 T ELT) (((-1122) $) 40 T ELT) (((-1127) $) 38 T ELT) (((-645) $) 36 T ELT) (((-1197) $) 34 T ELT) (((-158) $) 32 T ELT) (((-139) $) 30 T ELT) (((-492) $) 28 T ELT) (((-606) $) 26 T ELT) (((-520) $) 24 T ELT) (((-1189) $) 22 T ELT) (((-560) $) 20 T ELT)) (-2473 (((-114) $ $) 8 T ELT)))
+((-1479 (((-663 (-1212)) (-1189)) 9 T ELT)))
+(((-1167) (-10 -7 (-15 -1479 ((-663 (-1212)) (-1189))))) (T -1167))
+((-1479 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-663 (-1212))) (-5 *1 (-1167)))))
+(-10 -7 (-15 -1479 ((-663 (-1212)) (-1189))))
+((-2243 (((-114) $ $) 7 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-1212)) 17 T ELT) (((-1212) $) 16 T ELT)) (-1436 (((-114) $ (|[\|\|]| (-538))) 85 T ELT) (((-114) $ (|[\|\|]| (-222))) 83 T ELT) (((-114) $ (|[\|\|]| (-698))) 81 T ELT) (((-114) $ (|[\|\|]| (-1308))) 79 T ELT) (((-114) $ (|[\|\|]| (-140))) 77 T ELT) (((-114) $ (|[\|\|]| (-619))) 75 T ELT) (((-114) $ (|[\|\|]| (-135))) 73 T ELT) (((-114) $ (|[\|\|]| (-1147))) 71 T ELT) (((-114) $ (|[\|\|]| (-96))) 69 T ELT) (((-114) $ (|[\|\|]| (-703))) 67 T ELT) (((-114) $ (|[\|\|]| (-531))) 65 T ELT) (((-114) $ (|[\|\|]| (-1097))) 63 T ELT) (((-114) $ (|[\|\|]| (-1309))) 61 T ELT) (((-114) $ (|[\|\|]| (-539))) 59 T ELT) (((-114) $ (|[\|\|]| (-1183))) 57 T ELT) (((-114) $ (|[\|\|]| (-156))) 55 T ELT) (((-114) $ (|[\|\|]| (-693))) 53 T ELT) (((-114) $ (|[\|\|]| (-324))) 51 T ELT) (((-114) $ (|[\|\|]| (-1067))) 49 T ELT) (((-114) $ (|[\|\|]| (-183))) 47 T ELT) (((-114) $ (|[\|\|]| (-1001))) 45 T ELT) (((-114) $ (|[\|\|]| (-1104))) 43 T ELT) (((-114) $ (|[\|\|]| (-1122))) 41 T ELT) (((-114) $ (|[\|\|]| (-1127))) 39 T ELT) (((-114) $ (|[\|\|]| (-645))) 37 T ELT) (((-114) $ (|[\|\|]| (-1197))) 35 T ELT) (((-114) $ (|[\|\|]| (-158))) 33 T ELT) (((-114) $ (|[\|\|]| (-139))) 31 T ELT) (((-114) $ (|[\|\|]| (-492))) 29 T ELT) (((-114) $ (|[\|\|]| (-606))) 27 T ELT) (((-114) $ (|[\|\|]| (-520))) 25 T ELT) (((-114) $ (|[\|\|]| (-1189))) 23 T ELT) (((-114) $ (|[\|\|]| (-560))) 21 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-4168 (((-538) $) 84 T ELT) (((-222) $) 82 T ELT) (((-698) $) 80 T ELT) (((-1308) $) 78 T ELT) (((-140) $) 76 T ELT) (((-619) $) 74 T ELT) (((-135) $) 72 T ELT) (((-1147) $) 70 T ELT) (((-96) $) 68 T ELT) (((-703) $) 66 T ELT) (((-531) $) 64 T ELT) (((-1097) $) 62 T ELT) (((-1309) $) 60 T ELT) (((-539) $) 58 T ELT) (((-1183) $) 56 T ELT) (((-156) $) 54 T ELT) (((-693) $) 52 T ELT) (((-324) $) 50 T ELT) (((-1067) $) 48 T ELT) (((-183) $) 46 T ELT) (((-1001) $) 44 T ELT) (((-1104) $) 42 T ELT) (((-1122) $) 40 T ELT) (((-1127) $) 38 T ELT) (((-645) $) 36 T ELT) (((-1197) $) 34 T ELT) (((-158) $) 32 T ELT) (((-139) $) 30 T ELT) (((-492) $) 28 T ELT) (((-606) $) 26 T ELT) (((-520) $) 24 T ELT) (((-1189) $) 22 T ELT) (((-560) $) 20 T ELT)) (-2340 (((-114) $ $) 8 T ELT)))
(((-1168) (-142)) (T -1168))
-((-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-538)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-222))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-222)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-698))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-698)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1308))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1308)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-140))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-140)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-619))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-619)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-135)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1147))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1147)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-96)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-703))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-703)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-531))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-531)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1097))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1097)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1309))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1309)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-539))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-539)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1183))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1183)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-156)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-693)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-324))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-324)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1067)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-183))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-183)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1001))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1001)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1104))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1104)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1122))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1122)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1127))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1127)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-645))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-645)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1197))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1197)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-158))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-158)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-139)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-492))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-492)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-606))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-606)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-520)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1189)))) (-1991 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-560))) (-5 *2 (-114)))) (-1856 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-560)))))
-(-13 (-1114) (-1293) (-10 -8 (-15 -1991 ((-114) $ (|[\|\|]| (-538)))) (-15 -1856 ((-538) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-222)))) (-15 -1856 ((-222) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-698)))) (-15 -1856 ((-698) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-1308)))) (-15 -1856 ((-1308) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-140)))) (-15 -1856 ((-140) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-619)))) (-15 -1856 ((-619) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-135)))) (-15 -1856 ((-135) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-1147)))) (-15 -1856 ((-1147) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-96)))) (-15 -1856 ((-96) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-703)))) (-15 -1856 ((-703) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-531)))) (-15 -1856 ((-531) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-1097)))) (-15 -1856 ((-1097) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-1309)))) (-15 -1856 ((-1309) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-539)))) (-15 -1856 ((-539) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-1183)))) (-15 -1856 ((-1183) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-156)))) (-15 -1856 ((-156) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-693)))) (-15 -1856 ((-693) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-324)))) (-15 -1856 ((-324) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-1067)))) (-15 -1856 ((-1067) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-183)))) (-15 -1856 ((-183) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-1001)))) (-15 -1856 ((-1001) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-1104)))) (-15 -1856 ((-1104) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-1122)))) (-15 -1856 ((-1122) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-1127)))) (-15 -1856 ((-1127) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-645)))) (-15 -1856 ((-645) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-1197)))) (-15 -1856 ((-1197) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-158)))) (-15 -1856 ((-158) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-139)))) (-15 -1856 ((-139) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-492)))) (-15 -1856 ((-492) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-606)))) (-15 -1856 ((-606) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-520)))) (-15 -1856 ((-520) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-1189)))) (-15 -1856 ((-1189) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-560)))) (-15 -1856 ((-560) $))))
+((-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-538)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-222))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-222)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-698))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-698)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1308))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1308)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-140))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-140)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-619))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-619)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-135)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1147))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1147)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-96)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-703))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-703)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-531))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-531)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1097))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1097)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1309))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1309)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-539))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-539)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1183))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1183)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-156)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-693)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-324))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-324)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1067)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-183))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-183)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1001))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1001)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1104))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1104)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1122))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1122)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1127))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1127)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-645))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-645)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1197))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1197)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-158))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-158)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-139)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-492))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-492)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-606))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-606)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-520)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1189)))) (-1436 (*1 *2 *1 *3) (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-560))) (-5 *2 (-114)))) (-4168 (*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-560)))))
+(-13 (-1114) (-1293) (-10 -8 (-15 -1436 ((-114) $ (|[\|\|]| (-538)))) (-15 -4168 ((-538) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-222)))) (-15 -4168 ((-222) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-698)))) (-15 -4168 ((-698) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-1308)))) (-15 -4168 ((-1308) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-140)))) (-15 -4168 ((-140) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-619)))) (-15 -4168 ((-619) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-135)))) (-15 -4168 ((-135) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-1147)))) (-15 -4168 ((-1147) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-96)))) (-15 -4168 ((-96) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-703)))) (-15 -4168 ((-703) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-531)))) (-15 -4168 ((-531) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-1097)))) (-15 -4168 ((-1097) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-1309)))) (-15 -4168 ((-1309) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-539)))) (-15 -4168 ((-539) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-1183)))) (-15 -4168 ((-1183) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-156)))) (-15 -4168 ((-156) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-693)))) (-15 -4168 ((-693) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-324)))) (-15 -4168 ((-324) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-1067)))) (-15 -4168 ((-1067) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-183)))) (-15 -4168 ((-183) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-1001)))) (-15 -4168 ((-1001) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-1104)))) (-15 -4168 ((-1104) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-1122)))) (-15 -4168 ((-1122) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-1127)))) (-15 -4168 ((-1127) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-645)))) (-15 -4168 ((-645) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-1197)))) (-15 -4168 ((-1197) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-158)))) (-15 -4168 ((-158) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-139)))) (-15 -4168 ((-139) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-492)))) (-15 -4168 ((-492) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-606)))) (-15 -4168 ((-606) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-520)))) (-15 -4168 ((-520) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-1189)))) (-15 -4168 ((-1189) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-560)))) (-15 -4168 ((-560) $))))
(((-93) . T) ((-102) . T) ((-635 #0=(-1212)) . T) ((-632 (-887)) . T) ((-632 #0#) . T) ((-504 #0#) . T) ((-1132) . T) ((-1114) . T) ((-1247) . T) ((-1293) . T))
-((-2507 (((-1303) (-663 (-887))) 22 T ELT) (((-1303) (-887)) 21 T ELT)) (-4286 (((-1303) (-663 (-887))) 20 T ELT) (((-1303) (-887)) 19 T ELT)) (-2759 (((-1303) (-663 (-887))) 18 T ELT) (((-1303) (-887)) 10 T ELT) (((-1303) (-1189) (-887)) 16 T ELT)))
-(((-1169) (-10 -7 (-15 -2759 ((-1303) (-1189) (-887))) (-15 -2759 ((-1303) (-887))) (-15 -4286 ((-1303) (-887))) (-15 -2507 ((-1303) (-887))) (-15 -2759 ((-1303) (-663 (-887)))) (-15 -4286 ((-1303) (-663 (-887)))) (-15 -2507 ((-1303) (-663 (-887)))))) (T -1169))
-((-2507 (*1 *2 *3) (-12 (-5 *3 (-663 (-887))) (-5 *2 (-1303)) (-5 *1 (-1169)))) (-4286 (*1 *2 *3) (-12 (-5 *3 (-663 (-887))) (-5 *2 (-1303)) (-5 *1 (-1169)))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-663 (-887))) (-5 *2 (-1303)) (-5 *1 (-1169)))) (-2507 (*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1303)) (-5 *1 (-1169)))) (-4286 (*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1303)) (-5 *1 (-1169)))) (-2759 (*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1303)) (-5 *1 (-1169)))) (-2759 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-887)) (-5 *2 (-1303)) (-5 *1 (-1169)))))
-(-10 -7 (-15 -2759 ((-1303) (-1189) (-887))) (-15 -2759 ((-1303) (-887))) (-15 -4286 ((-1303) (-887))) (-15 -2507 ((-1303) (-887))) (-15 -2759 ((-1303) (-663 (-887)))) (-15 -4286 ((-1303) (-663 (-887)))) (-15 -2507 ((-1303) (-663 (-887)))))
-((-1995 (($ $ $) 10 T ELT)) (-3397 (($ $) 9 T ELT)) (-3366 (($ $ $) 13 T ELT)) (-3067 (($ $ $) 15 T ELT)) (-2483 (($ $ $) 12 T ELT)) (-4308 (($ $ $) 14 T ELT)) (-2018 (($ $) 17 T ELT)) (-3621 (($ $) 16 T ELT)) (-2282 (($ $) 6 T ELT)) (-1491 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-4374 (($ $ $) 8 T ELT)))
+((-4343 (((-1303) (-663 (-887))) 22 T ELT) (((-1303) (-887)) 21 T ELT)) (-4037 (((-1303) (-663 (-887))) 20 T ELT) (((-1303) (-887)) 19 T ELT)) (-3043 (((-1303) (-663 (-887))) 18 T ELT) (((-1303) (-887)) 10 T ELT) (((-1303) (-1189) (-887)) 16 T ELT)))
+(((-1169) (-10 -7 (-15 -3043 ((-1303) (-1189) (-887))) (-15 -3043 ((-1303) (-887))) (-15 -4037 ((-1303) (-887))) (-15 -4343 ((-1303) (-887))) (-15 -3043 ((-1303) (-663 (-887)))) (-15 -4037 ((-1303) (-663 (-887)))) (-15 -4343 ((-1303) (-663 (-887)))))) (T -1169))
+((-4343 (*1 *2 *3) (-12 (-5 *3 (-663 (-887))) (-5 *2 (-1303)) (-5 *1 (-1169)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-663 (-887))) (-5 *2 (-1303)) (-5 *1 (-1169)))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-663 (-887))) (-5 *2 (-1303)) (-5 *1 (-1169)))) (-4343 (*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1303)) (-5 *1 (-1169)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1303)) (-5 *1 (-1169)))) (-3043 (*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1303)) (-5 *1 (-1169)))) (-3043 (*1 *2 *3 *4) (-12 (-5 *3 (-1189)) (-5 *4 (-887)) (-5 *2 (-1303)) (-5 *1 (-1169)))))
+(-10 -7 (-15 -3043 ((-1303) (-1189) (-887))) (-15 -3043 ((-1303) (-887))) (-15 -4037 ((-1303) (-887))) (-15 -4343 ((-1303) (-887))) (-15 -3043 ((-1303) (-663 (-887)))) (-15 -4037 ((-1303) (-663 (-887)))) (-15 -4343 ((-1303) (-663 (-887)))))
+((-2924 (($ $ $) 10 T ELT)) (-2144 (($ $) 9 T ELT)) (-3081 (($ $ $) 13 T ELT)) (-3083 (($ $ $) 15 T ELT)) (-4128 (($ $ $) 12 T ELT)) (-2929 (($ $ $) 14 T ELT)) (-3168 (($ $) 17 T ELT)) (-3813 (($ $) 16 T ELT)) (-2719 (($ $) 6 T ELT)) (-2658 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-2231 (($ $ $) 8 T ELT)))
(((-1170) (-142)) (T -1170))
-((-2018 (*1 *1 *1) (-4 *1 (-1170))) (-3621 (*1 *1 *1) (-4 *1 (-1170))) (-3067 (*1 *1 *1 *1) (-4 *1 (-1170))) (-4308 (*1 *1 *1 *1) (-4 *1 (-1170))) (-3366 (*1 *1 *1 *1) (-4 *1 (-1170))) (-2483 (*1 *1 *1 *1) (-4 *1 (-1170))) (-1491 (*1 *1 *1 *1) (-4 *1 (-1170))) (-1995 (*1 *1 *1 *1) (-4 *1 (-1170))) (-3397 (*1 *1 *1) (-4 *1 (-1170))) (-4374 (*1 *1 *1 *1) (-4 *1 (-1170))) (-1491 (*1 *1 *1) (-4 *1 (-1170))) (-2282 (*1 *1 *1) (-4 *1 (-1170))))
-(-13 (-10 -8 (-15 -2282 ($ $)) (-15 -1491 ($ $)) (-15 -4374 ($ $ $)) (-15 -3397 ($ $)) (-15 -1995 ($ $ $)) (-15 -1491 ($ $ $)) (-15 -2483 ($ $ $)) (-15 -3366 ($ $ $)) (-15 -4308 ($ $ $)) (-15 -3067 ($ $ $)) (-15 -3621 ($ $)) (-15 -2018 ($ $))))
-((-1538 (((-114) $ $) 44 T ELT)) (-3853 ((|#1| $) 17 T ELT)) (-2395 (((-114) $ $ (-1 (-114) |#2| |#2|)) 39 T ELT)) (-3587 (((-114) $) 19 T ELT)) (-4033 (($ $ |#1|) 30 T ELT)) (-2880 (($ $ (-114)) 32 T ELT)) (-3162 (($ $) 33 T ELT)) (-1360 (($ $ |#2|) 31 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2161 (((-114) $ $ (-1 (-114) |#1| |#1|) (-1 (-114) |#2| |#2|)) 38 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1663 (((-114) $) 16 T ELT)) (-3986 (($) 13 T ELT)) (-1799 (($ $) 29 T ELT)) (-1592 (($ |#1| |#2| (-114)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -4297 |#2|))) 23 T ELT) (((-663 $) (-663 (-2 (|:| |val| |#1|) (|:| -4297 |#2|)))) 26 T ELT) (((-663 $) |#1| (-663 |#2|)) 28 T ELT)) (-3674 ((|#2| $) 18 T ELT)) (-1578 (((-887) $) 53 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 42 T ELT)))
-(((-1171 |#1| |#2|) (-13 (-1132) (-10 -8 (-15 -3986 ($)) (-15 -1663 ((-114) $)) (-15 -3853 (|#1| $)) (-15 -3674 (|#2| $)) (-15 -3587 ((-114) $)) (-15 -1592 ($ |#1| |#2| (-114))) (-15 -1592 ($ |#1| |#2|)) (-15 -1592 ($ (-2 (|:| |val| |#1|) (|:| -4297 |#2|)))) (-15 -1592 ((-663 $) (-663 (-2 (|:| |val| |#1|) (|:| -4297 |#2|))))) (-15 -1592 ((-663 $) |#1| (-663 |#2|))) (-15 -1799 ($ $)) (-15 -4033 ($ $ |#1|)) (-15 -1360 ($ $ |#2|)) (-15 -2880 ($ $ (-114))) (-15 -3162 ($ $)) (-15 -2161 ((-114) $ $ (-1 (-114) |#1| |#1|) (-1 (-114) |#2| |#2|))) (-15 -2395 ((-114) $ $ (-1 (-114) |#2| |#2|))))) (-13 (-1132) (-34)) (-13 (-1132) (-34))) (T -1171))
-((-3986 (*1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34))) (-4 *3 (-13 (-1132) (-34))))) (-1663 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34))))) (-3853 (*1 *2 *1) (-12 (-4 *2 (-13 (-1132) (-34))) (-5 *1 (-1171 *2 *3)) (-4 *3 (-13 (-1132) (-34))))) (-3674 (*1 *2 *1) (-12 (-4 *2 (-13 (-1132) (-34))) (-5 *1 (-1171 *3 *2)) (-4 *3 (-13 (-1132) (-34))))) (-3587 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34))))) (-1592 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34))) (-4 *3 (-13 (-1132) (-34))))) (-1592 (*1 *1 *2 *3) (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34))) (-4 *3 (-13 (-1132) (-34))))) (-1592 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4297 *4))) (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34))) (-5 *1 (-1171 *3 *4)))) (-1592 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| |val| *4) (|:| -4297 *5)))) (-4 *4 (-13 (-1132) (-34))) (-4 *5 (-13 (-1132) (-34))) (-5 *2 (-663 (-1171 *4 *5))) (-5 *1 (-1171 *4 *5)))) (-1592 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *5)) (-4 *5 (-13 (-1132) (-34))) (-5 *2 (-663 (-1171 *3 *5))) (-5 *1 (-1171 *3 *5)) (-4 *3 (-13 (-1132) (-34))))) (-1799 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34))) (-4 *3 (-13 (-1132) (-34))))) (-4033 (*1 *1 *1 *2) (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34))) (-4 *3 (-13 (-1132) (-34))))) (-1360 (*1 *1 *1 *2) (-12 (-5 *1 (-1171 *3 *2)) (-4 *3 (-13 (-1132) (-34))) (-4 *2 (-13 (-1132) (-34))))) (-2880 (*1 *1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34))))) (-3162 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34))) (-4 *3 (-13 (-1132) (-34))))) (-2161 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-114) *5 *5)) (-5 *4 (-1 (-114) *6 *6)) (-4 *5 (-13 (-1132) (-34))) (-4 *6 (-13 (-1132) (-34))) (-5 *2 (-114)) (-5 *1 (-1171 *5 *6)))) (-2395 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-114) *5 *5)) (-4 *5 (-13 (-1132) (-34))) (-5 *2 (-114)) (-5 *1 (-1171 *4 *5)) (-4 *4 (-13 (-1132) (-34))))))
-(-13 (-1132) (-10 -8 (-15 -3986 ($)) (-15 -1663 ((-114) $)) (-15 -3853 (|#1| $)) (-15 -3674 (|#2| $)) (-15 -3587 ((-114) $)) (-15 -1592 ($ |#1| |#2| (-114))) (-15 -1592 ($ |#1| |#2|)) (-15 -1592 ($ (-2 (|:| |val| |#1|) (|:| -4297 |#2|)))) (-15 -1592 ((-663 $) (-663 (-2 (|:| |val| |#1|) (|:| -4297 |#2|))))) (-15 -1592 ((-663 $) |#1| (-663 |#2|))) (-15 -1799 ($ $)) (-15 -4033 ($ $ |#1|)) (-15 -1360 ($ $ |#2|)) (-15 -2880 ($ $ (-114))) (-15 -3162 ($ $)) (-15 -2161 ((-114) $ $ (-1 (-114) |#1| |#1|) (-1 (-114) |#2| |#2|))) (-15 -2395 ((-114) $ $ (-1 (-114) |#2| |#2|)))))
-((-1538 (((-114) $ $) NIL (|has| (-1171 |#1| |#2|) (-102)) ELT)) (-3853 (((-1171 |#1| |#2|) $) 27 T ELT)) (-1368 (($ $) 91 T ELT)) (-3446 (((-114) (-1171 |#1| |#2|) $ (-1 (-114) |#2| |#2|)) 100 T ELT)) (-2765 (($ $ $ (-663 (-1171 |#1| |#2|))) 108 T ELT) (($ $ $ (-663 (-1171 |#1| |#2|)) (-1 (-114) |#2| |#2|)) 109 T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-2869 (((-1171 |#1| |#2|) $ (-1171 |#1| |#2|)) 46 (|has| $ (-6 -4509)) ELT)) (-1773 (((-1171 |#1| |#2|) $ "value" (-1171 |#1| |#2|)) NIL (|has| $ (-6 -4509)) ELT)) (-2083 (($ $ (-663 $)) 44 (|has| $ (-6 -4509)) ELT)) (-2238 (($) NIL T CONST)) (-4247 (((-663 (-2 (|:| |val| |#1|) (|:| -4297 |#2|))) $) 95 T ELT)) (-3390 (($ (-1171 |#1| |#2|) $) 42 T ELT)) (-2375 (($ (-1171 |#1| |#2|) $) 34 T ELT)) (-2181 (((-663 (-1171 |#1| |#2|)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3092 (((-663 $) $) 54 T ELT)) (-1539 (((-114) (-1171 |#1| |#2|) $) 97 T ELT)) (-3398 (((-114) $ $) NIL (|has| (-1171 |#1| |#2|) (-1132)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 (-1171 |#1| |#2|)) $) 58 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-1171 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-1171 |#1| |#2|) (-1132))) ELT)) (-3768 (($ (-1 (-1171 |#1| |#2|) (-1171 |#1| |#2|)) $) 50 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-1171 |#1| |#2|) (-1171 |#1| |#2|)) $) 49 T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-3596 (((-663 (-1171 |#1| |#2|)) $) 56 T ELT)) (-2409 (((-114) $) 45 T ELT)) (-1905 (((-1189) $) NIL (|has| (-1171 |#1| |#2|) (-1132)) ELT)) (-3855 (((-1151) $) NIL (|has| (-1171 |#1| |#2|) (-1132)) ELT)) (-3896 (((-3 $ "failed") $) 89 T ELT)) (-2787 (((-114) (-1 (-114) (-1171 |#1| |#2|)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 (-1171 |#1| |#2|)))) NIL (-12 (|has| (-1171 |#1| |#2|) (-321 (-1171 |#1| |#2|))) (|has| (-1171 |#1| |#2|) (-1132))) ELT) (($ $ (-305 (-1171 |#1| |#2|))) NIL (-12 (|has| (-1171 |#1| |#2|) (-321 (-1171 |#1| |#2|))) (|has| (-1171 |#1| |#2|) (-1132))) ELT) (($ $ (-1171 |#1| |#2|) (-1171 |#1| |#2|)) NIL (-12 (|has| (-1171 |#1| |#2|) (-321 (-1171 |#1| |#2|))) (|has| (-1171 |#1| |#2|) (-1132))) ELT) (($ $ (-663 (-1171 |#1| |#2|)) (-663 (-1171 |#1| |#2|))) NIL (-12 (|has| (-1171 |#1| |#2|) (-321 (-1171 |#1| |#2|))) (|has| (-1171 |#1| |#2|) (-1132))) ELT)) (-4124 (((-114) $ $) 53 T ELT)) (-1663 (((-114) $) 24 T ELT)) (-3986 (($) 26 T ELT)) (-3924 (((-1171 |#1| |#2|) $ "value") NIL T ELT)) (-1750 (((-560) $ $) NIL T ELT)) (-1978 (((-114) $) 47 T ELT)) (-3865 (((-793) (-1 (-114) (-1171 |#1| |#2|)) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-1171 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-1171 |#1| |#2|) (-1132))) ELT)) (-1799 (($ $) 52 T ELT)) (-1592 (($ (-1171 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-663 $)) 13 T ELT) (($ |#1| |#2| (-663 (-1171 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-663 |#2|)) 18 T ELT)) (-4459 (((-663 |#2|) $) 96 T ELT)) (-1578 (((-887) $) 87 (|has| (-1171 |#1| |#2|) (-632 (-887))) ELT)) (-3955 (((-663 $) $) 31 T ELT)) (-2997 (((-114) $ $) NIL (|has| (-1171 |#1| |#2|) (-1132)) ELT)) (-2275 (((-114) $ $) NIL (|has| (-1171 |#1| |#2|) (-102)) ELT)) (-1728 (((-114) (-1 (-114) (-1171 |#1| |#2|)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 70 (|has| (-1171 |#1| |#2|) (-102)) ELT)) (-1553 (((-793) $) 64 (|has| $ (-6 -4508)) ELT)))
-(((-1172 |#1| |#2|) (-13 (-1041 (-1171 |#1| |#2|)) (-10 -8 (-6 -4509) (-6 -4508) (-15 -3896 ((-3 $ "failed") $)) (-15 -1368 ($ $)) (-15 -1592 ($ (-1171 |#1| |#2|))) (-15 -1592 ($ |#1| |#2| (-663 $))) (-15 -1592 ($ |#1| |#2| (-663 (-1171 |#1| |#2|)))) (-15 -1592 ($ |#1| |#2| |#1| (-663 |#2|))) (-15 -4459 ((-663 |#2|) $)) (-15 -4247 ((-663 (-2 (|:| |val| |#1|) (|:| -4297 |#2|))) $)) (-15 -1539 ((-114) (-1171 |#1| |#2|) $)) (-15 -3446 ((-114) (-1171 |#1| |#2|) $ (-1 (-114) |#2| |#2|))) (-15 -2375 ($ (-1171 |#1| |#2|) $)) (-15 -3390 ($ (-1171 |#1| |#2|) $)) (-15 -2765 ($ $ $ (-663 (-1171 |#1| |#2|)))) (-15 -2765 ($ $ $ (-663 (-1171 |#1| |#2|)) (-1 (-114) |#2| |#2|))))) (-13 (-1132) (-34)) (-13 (-1132) (-34))) (T -1172))
-((-3896 (*1 *1 *1) (|partial| -12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1132) (-34))) (-4 *3 (-13 (-1132) (-34))))) (-1368 (*1 *1 *1) (-12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1132) (-34))) (-4 *3 (-13 (-1132) (-34))))) (-1592 (*1 *1 *2) (-12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34))) (-5 *1 (-1172 *3 *4)))) (-1592 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-663 (-1172 *2 *3))) (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1132) (-34))) (-4 *3 (-13 (-1132) (-34))))) (-1592 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-663 (-1171 *2 *3))) (-4 *2 (-13 (-1132) (-34))) (-4 *3 (-13 (-1132) (-34))) (-5 *1 (-1172 *2 *3)))) (-1592 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-663 *3)) (-4 *3 (-13 (-1132) (-34))) (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1132) (-34))))) (-4459 (*1 *2 *1) (-12 (-5 *2 (-663 *4)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34))))) (-4247 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *4)))) (-5 *1 (-1172 *3 *4)) (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34))))) (-1539 (*1 *2 *3 *1) (-12 (-5 *3 (-1171 *4 *5)) (-4 *4 (-13 (-1132) (-34))) (-4 *5 (-13 (-1132) (-34))) (-5 *2 (-114)) (-5 *1 (-1172 *4 *5)))) (-3446 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1171 *5 *6)) (-5 *4 (-1 (-114) *6 *6)) (-4 *5 (-13 (-1132) (-34))) (-4 *6 (-13 (-1132) (-34))) (-5 *2 (-114)) (-5 *1 (-1172 *5 *6)))) (-2375 (*1 *1 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34))) (-5 *1 (-1172 *3 *4)))) (-3390 (*1 *1 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34))) (-5 *1 (-1172 *3 *4)))) (-2765 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-663 (-1171 *3 *4))) (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34))) (-5 *1 (-1172 *3 *4)))) (-2765 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-1171 *4 *5))) (-5 *3 (-1 (-114) *5 *5)) (-4 *4 (-13 (-1132) (-34))) (-4 *5 (-13 (-1132) (-34))) (-5 *1 (-1172 *4 *5)))))
-(-13 (-1041 (-1171 |#1| |#2|)) (-10 -8 (-6 -4509) (-6 -4508) (-15 -3896 ((-3 $ "failed") $)) (-15 -1368 ($ $)) (-15 -1592 ($ (-1171 |#1| |#2|))) (-15 -1592 ($ |#1| |#2| (-663 $))) (-15 -1592 ($ |#1| |#2| (-663 (-1171 |#1| |#2|)))) (-15 -1592 ($ |#1| |#2| |#1| (-663 |#2|))) (-15 -4459 ((-663 |#2|) $)) (-15 -4247 ((-663 (-2 (|:| |val| |#1|) (|:| -4297 |#2|))) $)) (-15 -1539 ((-114) (-1171 |#1| |#2|) $)) (-15 -3446 ((-114) (-1171 |#1| |#2|) $ (-1 (-114) |#2| |#2|))) (-15 -2375 ($ (-1171 |#1| |#2|) $)) (-15 -3390 ($ (-1171 |#1| |#2|) $)) (-15 -2765 ($ $ $ (-663 (-1171 |#1| |#2|)))) (-15 -2765 ($ $ $ (-663 (-1171 |#1| |#2|)) (-1 (-114) |#2| |#2|)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-2629 (($ $) NIL T ELT)) (-3349 ((|#2| $) NIL T ELT)) (-4338 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1852 (($ (-711 |#2|)) 56 T ELT)) (-1673 (((-114) $) NIL T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-2733 (($ |#2|) 14 T ELT)) (-2238 (($) NIL T CONST)) (-2677 (($ $) 69 (|has| |#2| (-319)) ELT)) (-3634 (((-246 |#1| |#2|) $ (-560)) 42 T ELT)) (-2539 (((-3 (-560) "failed") $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-3330 (((-560) $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) ((|#2| $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) 83 T ELT)) (-2326 (((-793) $) 71 (|has| |#2| (-571)) ELT)) (-3709 ((|#2| $ (-560) (-560)) NIL T ELT)) (-2181 (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1581 (((-114) $) NIL T ELT)) (-1401 (((-793) $) 73 (|has| |#2| (-571)) ELT)) (-2454 (((-663 (-246 |#1| |#2|)) $) 77 (|has| |#2| (-571)) ELT)) (-3648 (((-793) $) NIL T ELT)) (-4095 (($ |#2|) 25 T ELT)) (-3658 (((-793) $) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-3535 ((|#2| $) 67 (|has| |#2| (-6 (-4510 "*"))) ELT)) (-2711 (((-560) $) NIL T ELT)) (-2369 (((-560) $) NIL T ELT)) (-2656 (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-1468 (((-560) $) NIL T ELT)) (-2632 (((-560) $) NIL T ELT)) (-2589 (($ (-663 (-663 |#2|))) 37 T ELT)) (-3768 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2543 (((-663 (-663 |#2|)) $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-711 |#2|) (-1297 $)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2141 (((-3 $ "failed") $) 80 (|has| |#2| (-376)) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1528 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT)) (-2787 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#2| $ (-560) (-560) |#2|) NIL T ELT) ((|#2| $ (-560) (-560)) NIL T ELT)) (-2894 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-3195 ((|#2| $) NIL T ELT)) (-3323 (($ (-663 |#2|)) 50 T ELT)) (-3032 (((-114) $) NIL T ELT)) (-2716 (((-246 |#1| |#2|) $) NIL T ELT)) (-4227 ((|#2| $) 65 (|has| |#2| (-6 (-4510 "*"))) ELT)) (-3865 (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) 89 (|has| |#2| (-633 (-549))) ELT)) (-1644 (((-246 |#1| |#2|) $ (-560)) 44 T ELT)) (-1578 (((-887) $) 47 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (($ |#2|) NIL T ELT) (((-711 |#2|) $) 52 T ELT)) (-2930 (((-793)) 23 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-1728 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2441 (((-114) $) NIL T ELT)) (-2001 (($) 16 T CONST)) (-2011 (($) 21 T CONST)) (-3305 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 63 T ELT) (($ $ (-560)) 82 (|has| |#2| (-376)) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) 59 T ELT) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) 61 T ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-1173 |#1| |#2|) (-13 (-1154 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-632 (-711 |#2|)) (-10 -8 (-15 -4095 ($ |#2|)) (-15 -2629 ($ $)) (-15 -1852 ($ (-711 |#2|))) (IF (|has| |#2| (-6 (-4510 "*"))) (-6 -4497) |%noBranch|) (IF (|has| |#2| (-6 (-4510 "*"))) (IF (|has| |#2| (-6 -4505)) (-6 -4505) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|))) (-793) (-1080)) (T -1173))
-((-4095 (*1 *1 *2) (-12 (-5 *1 (-1173 *3 *2)) (-14 *3 (-793)) (-4 *2 (-1080)))) (-2629 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-793)) (-4 *3 (-1080)))) (-1852 (*1 *1 *2) (-12 (-5 *2 (-711 *4)) (-4 *4 (-1080)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-793)))))
-(-13 (-1154 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-632 (-711 |#2|)) (-10 -8 (-15 -4095 ($ |#2|)) (-15 -2629 ($ $)) (-15 -1852 ($ (-711 |#2|))) (IF (|has| |#2| (-6 (-4510 "*"))) (-6 -4497) |%noBranch|) (IF (|has| |#2| (-6 (-4510 "*"))) (IF (|has| |#2| (-6 -4505)) (-6 -4505) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|)))
-((-2552 (($ $) 19 T ELT)) (-1532 (($ $ (-146)) 10 T ELT) (($ $ (-143)) 14 T ELT)) (-3815 (((-114) $ $) 24 T ELT)) (-3247 (($ $) 17 T ELT)) (-3924 (((-146) $ (-560) (-146)) NIL T ELT) (((-146) $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT) (($ $ $) 31 T ELT)) (-1578 (($ (-146)) 29 T ELT) (((-887) $) NIL T ELT)))
-(((-1174 |#1|) (-10 -8 (-15 -1578 ((-887) |#1|)) (-15 -3924 (|#1| |#1| |#1|)) (-15 -1532 (|#1| |#1| (-143))) (-15 -1532 (|#1| |#1| (-146))) (-15 -1578 (|#1| (-146))) (-15 -3815 ((-114) |#1| |#1|)) (-15 -2552 (|#1| |#1|)) (-15 -3247 (|#1| |#1|)) (-15 -3924 (|#1| |#1| (-1264 (-560)))) (-15 -3924 ((-146) |#1| (-560))) (-15 -3924 ((-146) |#1| (-560) (-146)))) (-1175)) (T -1174))
-NIL
-(-10 -8 (-15 -1578 ((-887) |#1|)) (-15 -3924 (|#1| |#1| |#1|)) (-15 -1532 (|#1| |#1| (-143))) (-15 -1532 (|#1| |#1| (-146))) (-15 -1578 (|#1| (-146))) (-15 -3815 ((-114) |#1| |#1|)) (-15 -2552 (|#1| |#1|)) (-15 -3247 (|#1| |#1|)) (-15 -3924 (|#1| |#1| (-1264 (-560)))) (-15 -3924 ((-146) |#1| (-560))) (-15 -3924 ((-146) |#1| (-560) (-146))))
-((-1538 (((-114) $ $) 20 (|has| (-146) (-102)) ELT)) (-2987 (($ $) 123 T ELT)) (-2552 (($ $) 124 T ELT)) (-1532 (($ $ (-146)) 111 T ELT) (($ $ (-143)) 110 T ELT)) (-3839 (((-1303) $ (-560) (-560)) 41 (|has| $ (-6 -4509)) ELT)) (-3794 (((-114) $ $) 121 T ELT)) (-3770 (((-114) $ $ (-560)) 120 T ELT)) (-1513 (((-663 $) $ (-146)) 113 T ELT) (((-663 $) $ (-143)) 112 T ELT)) (-4040 (((-114) (-1 (-114) (-146) (-146)) $) 101 T ELT) (((-114) $) 95 (|has| (-146) (-871)) ELT)) (-1703 (($ (-1 (-114) (-146) (-146)) $) 92 (|has| $ (-6 -4509)) ELT) (($ $) 91 (-12 (|has| (-146) (-871)) (|has| $ (-6 -4509))) ELT)) (-2286 (($ (-1 (-114) (-146) (-146)) $) 102 T ELT) (($ $) 96 (|has| (-146) (-871)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-1773 (((-146) $ (-560) (-146)) 53 (|has| $ (-6 -4509)) ELT) (((-146) $ (-1264 (-560)) (-146)) 60 (|has| $ (-6 -4509)) ELT)) (-1982 (($ (-1 (-114) (-146)) $) 77 (|has| $ (-6 -4508)) ELT)) (-2238 (($) 7 T CONST)) (-3486 (($ $ (-146)) 107 T ELT) (($ $ (-143)) 106 T ELT)) (-4391 (($ $) 93 (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) 103 T ELT)) (-4200 (($ $ (-1264 (-560)) $) 117 T ELT)) (-3606 (($ $) 80 (-12 (|has| (-146) (-1132)) (|has| $ (-6 -4508))) ELT)) (-2375 (($ (-146) $) 79 (-12 (|has| (-146) (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) (-146)) $) 76 (|has| $ (-6 -4508)) ELT)) (-4129 (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) 78 (-12 (|has| (-146) (-1132)) (|has| $ (-6 -4508))) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) 75 (|has| $ (-6 -4508)) ELT) (((-146) (-1 (-146) (-146) (-146)) $) 74 (|has| $ (-6 -4508)) ELT)) (-3779 (((-146) $ (-560) (-146)) 54 (|has| $ (-6 -4509)) ELT)) (-3709 (((-146) $ (-560)) 52 T ELT)) (-3815 (((-114) $ $) 122 T ELT)) (-1722 (((-560) (-1 (-114) (-146)) $) 100 T ELT) (((-560) (-146) $) 99 (|has| (-146) (-1132)) ELT) (((-560) (-146) $ (-560)) 98 (|has| (-146) (-1132)) ELT) (((-560) $ $ (-560)) 116 T ELT) (((-560) (-143) $ (-560)) 115 T ELT)) (-2181 (((-663 (-146)) $) 31 (|has| $ (-6 -4508)) ELT)) (-4095 (($ (-793) (-146)) 70 T ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-1762 (((-560) $) 44 (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) 85 (|has| (-146) (-871)) ELT)) (-3223 (($ (-1 (-114) (-146) (-146)) $ $) 104 T ELT) (($ $ $) 97 (|has| (-146) (-871)) ELT)) (-2656 (((-663 (-146)) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-146) $) 28 (-12 (|has| (-146) (-1132)) (|has| $ (-6 -4508))) ELT)) (-2937 (((-560) $) 45 (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) 86 (|has| (-146) (-871)) ELT)) (-1862 (((-114) $ $ (-146)) 118 T ELT)) (-4473 (((-793) $ $ (-146)) 119 T ELT)) (-3768 (($ (-1 (-146) (-146)) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-146) (-146)) $) 36 T ELT) (($ (-1 (-146) (-146) (-146)) $ $) 65 T ELT)) (-1917 (($ $) 125 T ELT)) (-3247 (($ $) 126 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-3497 (($ $ (-146)) 109 T ELT) (($ $ (-143)) 108 T ELT)) (-1905 (((-1189) $) 23 (|has| (-146) (-1132)) ELT)) (-3996 (($ (-146) $ (-560)) 62 T ELT) (($ $ $ (-560)) 61 T ELT)) (-3270 (((-663 (-560)) $) 47 T ELT)) (-3586 (((-114) (-560) $) 48 T ELT)) (-3855 (((-1151) $) 22 (|has| (-146) (-1132)) ELT)) (-3637 (((-146) $) 43 (|has| (-560) (-871)) ELT)) (-3329 (((-3 (-146) "failed") (-1 (-114) (-146)) $) 73 T ELT)) (-3037 (($ $ (-146)) 42 (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) (-146)) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 (-146)))) 27 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-305 (-146))) 26 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-146) (-146)) 25 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-663 (-146)) (-663 (-146))) 24 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-2914 (((-114) (-146) $) 46 (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-3571 (((-663 (-146)) $) 49 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3924 (((-146) $ (-560) (-146)) 51 T ELT) (((-146) $ (-560)) 50 T ELT) (($ $ (-1264 (-560))) 71 T ELT) (($ $ $) 105 T ELT)) (-4413 (($ $ (-560)) 64 T ELT) (($ $ (-1264 (-560))) 63 T ELT)) (-3865 (((-793) (-1 (-114) (-146)) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) (-146) $) 29 (-12 (|has| (-146) (-1132)) (|has| $ (-6 -4508))) ELT)) (-3640 (($ $ $ (-560)) 94 (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) 81 (|has| (-146) (-633 (-549))) ELT)) (-1592 (($ (-663 (-146))) 72 T ELT)) (-3415 (($ $ (-146)) 69 T ELT) (($ (-146) $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-663 $)) 66 T ELT)) (-1578 (($ (-146)) 114 T ELT) (((-887) $) 18 (|has| (-146) (-632 (-887))) ELT)) (-2275 (((-114) $ $) 21 (|has| (-146) (-102)) ELT)) (-1728 (((-114) (-1 (-114) (-146)) $) 34 (|has| $ (-6 -4508)) ELT)) (-2536 (((-114) $ $) 87 (|has| (-146) (-871)) ELT)) (-2508 (((-114) $ $) 89 (|has| (-146) (-871)) ELT)) (-2473 (((-114) $ $) 19 (|has| (-146) (-102)) ELT)) (-2521 (((-114) $ $) 88 (|has| (-146) (-871)) ELT)) (-2495 (((-114) $ $) 90 (|has| (-146) (-871)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-3168 (*1 *1 *1) (-4 *1 (-1170))) (-3813 (*1 *1 *1) (-4 *1 (-1170))) (-3083 (*1 *1 *1 *1) (-4 *1 (-1170))) (-2929 (*1 *1 *1 *1) (-4 *1 (-1170))) (-3081 (*1 *1 *1 *1) (-4 *1 (-1170))) (-4128 (*1 *1 *1 *1) (-4 *1 (-1170))) (-2658 (*1 *1 *1 *1) (-4 *1 (-1170))) (-2924 (*1 *1 *1 *1) (-4 *1 (-1170))) (-2144 (*1 *1 *1) (-4 *1 (-1170))) (-2231 (*1 *1 *1 *1) (-4 *1 (-1170))) (-2658 (*1 *1 *1) (-4 *1 (-1170))) (-2719 (*1 *1 *1) (-4 *1 (-1170))))
+(-13 (-10 -8 (-15 -2719 ($ $)) (-15 -2658 ($ $)) (-15 -2231 ($ $ $)) (-15 -2144 ($ $)) (-15 -2924 ($ $ $)) (-15 -2658 ($ $ $)) (-15 -4128 ($ $ $)) (-15 -3081 ($ $ $)) (-15 -2929 ($ $ $)) (-15 -3083 ($ $ $)) (-15 -3813 ($ $)) (-15 -3168 ($ $))))
+((-2243 (((-114) $ $) 44 T ELT)) (-1430 ((|#1| $) 17 T ELT)) (-2586 (((-114) $ $ (-1 (-114) |#2| |#2|)) 39 T ELT)) (-3451 (((-114) $) 19 T ELT)) (-3319 (($ $ |#1|) 30 T ELT)) (-3776 (($ $ (-114)) 32 T ELT)) (-1592 (($ $) 33 T ELT)) (-3759 (($ $ |#2|) 31 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-4038 (((-114) $ $ (-1 (-114) |#1| |#1|) (-1 (-114) |#2| |#2|)) 38 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2706 (((-114) $) 16 T ELT)) (-2832 (($) 13 T ELT)) (-4107 (($ $) 29 T ELT)) (-3924 (($ |#1| |#2| (-114)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -3859 |#2|))) 23 T ELT) (((-663 $) (-663 (-2 (|:| |val| |#1|) (|:| -3859 |#2|)))) 26 T ELT) (((-663 $) |#1| (-663 |#2|)) 28 T ELT)) (-2367 ((|#2| $) 18 T ELT)) (-3913 (((-887) $) 53 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 42 T ELT)))
+(((-1171 |#1| |#2|) (-13 (-1132) (-10 -8 (-15 -2832 ($)) (-15 -2706 ((-114) $)) (-15 -1430 (|#1| $)) (-15 -2367 (|#2| $)) (-15 -3451 ((-114) $)) (-15 -3924 ($ |#1| |#2| (-114))) (-15 -3924 ($ |#1| |#2|)) (-15 -3924 ($ (-2 (|:| |val| |#1|) (|:| -3859 |#2|)))) (-15 -3924 ((-663 $) (-663 (-2 (|:| |val| |#1|) (|:| -3859 |#2|))))) (-15 -3924 ((-663 $) |#1| (-663 |#2|))) (-15 -4107 ($ $)) (-15 -3319 ($ $ |#1|)) (-15 -3759 ($ $ |#2|)) (-15 -3776 ($ $ (-114))) (-15 -1592 ($ $)) (-15 -4038 ((-114) $ $ (-1 (-114) |#1| |#1|) (-1 (-114) |#2| |#2|))) (-15 -2586 ((-114) $ $ (-1 (-114) |#2| |#2|))))) (-13 (-1132) (-34)) (-13 (-1132) (-34))) (T -1171))
+((-2832 (*1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34))) (-4 *3 (-13 (-1132) (-34))))) (-2706 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34))))) (-1430 (*1 *2 *1) (-12 (-4 *2 (-13 (-1132) (-34))) (-5 *1 (-1171 *2 *3)) (-4 *3 (-13 (-1132) (-34))))) (-2367 (*1 *2 *1) (-12 (-4 *2 (-13 (-1132) (-34))) (-5 *1 (-1171 *3 *2)) (-4 *3 (-13 (-1132) (-34))))) (-3451 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34))))) (-3924 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34))) (-4 *3 (-13 (-1132) (-34))))) (-3924 (*1 *1 *2 *3) (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34))) (-4 *3 (-13 (-1132) (-34))))) (-3924 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3859 *4))) (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34))) (-5 *1 (-1171 *3 *4)))) (-3924 (*1 *2 *3) (-12 (-5 *3 (-663 (-2 (|:| |val| *4) (|:| -3859 *5)))) (-4 *4 (-13 (-1132) (-34))) (-4 *5 (-13 (-1132) (-34))) (-5 *2 (-663 (-1171 *4 *5))) (-5 *1 (-1171 *4 *5)))) (-3924 (*1 *2 *3 *4) (-12 (-5 *4 (-663 *5)) (-4 *5 (-13 (-1132) (-34))) (-5 *2 (-663 (-1171 *3 *5))) (-5 *1 (-1171 *3 *5)) (-4 *3 (-13 (-1132) (-34))))) (-4107 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34))) (-4 *3 (-13 (-1132) (-34))))) (-3319 (*1 *1 *1 *2) (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34))) (-4 *3 (-13 (-1132) (-34))))) (-3759 (*1 *1 *1 *2) (-12 (-5 *1 (-1171 *3 *2)) (-4 *3 (-13 (-1132) (-34))) (-4 *2 (-13 (-1132) (-34))))) (-3776 (*1 *1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34))))) (-1592 (*1 *1 *1) (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34))) (-4 *3 (-13 (-1132) (-34))))) (-4038 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-114) *5 *5)) (-5 *4 (-1 (-114) *6 *6)) (-4 *5 (-13 (-1132) (-34))) (-4 *6 (-13 (-1132) (-34))) (-5 *2 (-114)) (-5 *1 (-1171 *5 *6)))) (-2586 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-114) *5 *5)) (-4 *5 (-13 (-1132) (-34))) (-5 *2 (-114)) (-5 *1 (-1171 *4 *5)) (-4 *4 (-13 (-1132) (-34))))))
+(-13 (-1132) (-10 -8 (-15 -2832 ($)) (-15 -2706 ((-114) $)) (-15 -1430 (|#1| $)) (-15 -2367 (|#2| $)) (-15 -3451 ((-114) $)) (-15 -3924 ($ |#1| |#2| (-114))) (-15 -3924 ($ |#1| |#2|)) (-15 -3924 ($ (-2 (|:| |val| |#1|) (|:| -3859 |#2|)))) (-15 -3924 ((-663 $) (-663 (-2 (|:| |val| |#1|) (|:| -3859 |#2|))))) (-15 -3924 ((-663 $) |#1| (-663 |#2|))) (-15 -4107 ($ $)) (-15 -3319 ($ $ |#1|)) (-15 -3759 ($ $ |#2|)) (-15 -3776 ($ $ (-114))) (-15 -1592 ($ $)) (-15 -4038 ((-114) $ $ (-1 (-114) |#1| |#1|) (-1 (-114) |#2| |#2|))) (-15 -2586 ((-114) $ $ (-1 (-114) |#2| |#2|)))))
+((-2243 (((-114) $ $) NIL (|has| (-1171 |#1| |#2|) (-102)) ELT)) (-1430 (((-1171 |#1| |#2|) $) 27 T ELT)) (-3841 (($ $) 91 T ELT)) (-2574 (((-114) (-1171 |#1| |#2|) $ (-1 (-114) |#2| |#2|)) 100 T ELT)) (-1872 (($ $ $ (-663 (-1171 |#1| |#2|))) 108 T ELT) (($ $ $ (-663 (-1171 |#1| |#2|)) (-1 (-114) |#2| |#2|)) 109 T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3654 (((-1171 |#1| |#2|) $ (-1171 |#1| |#2|)) 46 (|has| $ (-6 -4509)) ELT)) (-4083 (((-1171 |#1| |#2|) $ "value" (-1171 |#1| |#2|)) NIL (|has| $ (-6 -4509)) ELT)) (-2566 (($ $ (-663 $)) 44 (|has| $ (-6 -4509)) ELT)) (-3525 (($) NIL T CONST)) (-2381 (((-663 (-2 (|:| |val| |#1|) (|:| -3859 |#2|))) $) 95 T ELT)) (-2091 (($ (-1171 |#1| |#2|) $) 42 T ELT)) (-3033 (($ (-1171 |#1| |#2|) $) 34 T ELT)) (-3737 (((-663 (-1171 |#1| |#2|)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2104 (((-663 $) $) 54 T ELT)) (-1525 (((-114) (-1171 |#1| |#2|) $) 97 T ELT)) (-2150 (((-114) $ $) NIL (|has| (-1171 |#1| |#2|) (-1132)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-3243 (((-663 (-1171 |#1| |#2|)) $) 58 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-1171 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-1171 |#1| |#2|) (-1132))) ELT)) (-3324 (($ (-1 (-1171 |#1| |#2|) (-1171 |#1| |#2|)) $) 50 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-1171 |#1| |#2|) (-1171 |#1| |#2|)) $) 49 T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 (-1171 |#1| |#2|)) $) 56 T ELT)) (-1485 (((-114) $) 45 T ELT)) (-3358 (((-1189) $) NIL (|has| (-1171 |#1| |#2|) (-1132)) ELT)) (-3376 (((-1151) $) NIL (|has| (-1171 |#1| |#2|) (-1132)) ELT)) (-4458 (((-3 $ "failed") $) 89 T ELT)) (-2086 (((-114) (-1 (-114) (-1171 |#1| |#2|)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 (-1171 |#1| |#2|)))) NIL (-12 (|has| (-1171 |#1| |#2|) (-321 (-1171 |#1| |#2|))) (|has| (-1171 |#1| |#2|) (-1132))) ELT) (($ $ (-305 (-1171 |#1| |#2|))) NIL (-12 (|has| (-1171 |#1| |#2|) (-321 (-1171 |#1| |#2|))) (|has| (-1171 |#1| |#2|) (-1132))) ELT) (($ $ (-1171 |#1| |#2|) (-1171 |#1| |#2|)) NIL (-12 (|has| (-1171 |#1| |#2|) (-321 (-1171 |#1| |#2|))) (|has| (-1171 |#1| |#2|) (-1132))) ELT) (($ $ (-663 (-1171 |#1| |#2|)) (-663 (-1171 |#1| |#2|))) NIL (-12 (|has| (-1171 |#1| |#2|) (-321 (-1171 |#1| |#2|))) (|has| (-1171 |#1| |#2|) (-1132))) ELT)) (-1736 (((-114) $ $) 53 T ELT)) (-2706 (((-114) $) 24 T ELT)) (-2832 (($) 26 T ELT)) (-1507 (((-1171 |#1| |#2|) $ "value") NIL T ELT)) (-2374 (((-560) $ $) NIL T ELT)) (-2752 (((-114) $) 47 T ELT)) (-3384 (((-793) (-1 (-114) (-1171 |#1| |#2|)) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-1171 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-1171 |#1| |#2|) (-1132))) ELT)) (-4107 (($ $) 52 T ELT)) (-3924 (($ (-1171 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-663 $)) 13 T ELT) (($ |#1| |#2| (-663 (-1171 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-663 |#2|)) 18 T ELT)) (-2696 (((-663 |#2|) $) 96 T ELT)) (-3913 (((-887) $) 87 (|has| (-1171 |#1| |#2|) (-632 (-887))) ELT)) (-3809 (((-663 $) $) 31 T ELT)) (-3606 (((-114) $ $) NIL (|has| (-1171 |#1| |#2|) (-1132)) ELT)) (-3925 (((-114) $ $) NIL (|has| (-1171 |#1| |#2|) (-102)) ELT)) (-2149 (((-114) (-1 (-114) (-1171 |#1| |#2|)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 70 (|has| (-1171 |#1| |#2|) (-102)) ELT)) (-2256 (((-793) $) 64 (|has| $ (-6 -4508)) ELT)))
+(((-1172 |#1| |#2|) (-13 (-1041 (-1171 |#1| |#2|)) (-10 -8 (-6 -4509) (-6 -4508) (-15 -4458 ((-3 $ "failed") $)) (-15 -3841 ($ $)) (-15 -3924 ($ (-1171 |#1| |#2|))) (-15 -3924 ($ |#1| |#2| (-663 $))) (-15 -3924 ($ |#1| |#2| (-663 (-1171 |#1| |#2|)))) (-15 -3924 ($ |#1| |#2| |#1| (-663 |#2|))) (-15 -2696 ((-663 |#2|) $)) (-15 -2381 ((-663 (-2 (|:| |val| |#1|) (|:| -3859 |#2|))) $)) (-15 -1525 ((-114) (-1171 |#1| |#2|) $)) (-15 -2574 ((-114) (-1171 |#1| |#2|) $ (-1 (-114) |#2| |#2|))) (-15 -3033 ($ (-1171 |#1| |#2|) $)) (-15 -2091 ($ (-1171 |#1| |#2|) $)) (-15 -1872 ($ $ $ (-663 (-1171 |#1| |#2|)))) (-15 -1872 ($ $ $ (-663 (-1171 |#1| |#2|)) (-1 (-114) |#2| |#2|))))) (-13 (-1132) (-34)) (-13 (-1132) (-34))) (T -1172))
+((-4458 (*1 *1 *1) (|partial| -12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1132) (-34))) (-4 *3 (-13 (-1132) (-34))))) (-3841 (*1 *1 *1) (-12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1132) (-34))) (-4 *3 (-13 (-1132) (-34))))) (-3924 (*1 *1 *2) (-12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34))) (-5 *1 (-1172 *3 *4)))) (-3924 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-663 (-1172 *2 *3))) (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1132) (-34))) (-4 *3 (-13 (-1132) (-34))))) (-3924 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-663 (-1171 *2 *3))) (-4 *2 (-13 (-1132) (-34))) (-4 *3 (-13 (-1132) (-34))) (-5 *1 (-1172 *2 *3)))) (-3924 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-663 *3)) (-4 *3 (-13 (-1132) (-34))) (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1132) (-34))))) (-2696 (*1 *2 *1) (-12 (-5 *2 (-663 *4)) (-5 *1 (-1172 *3 *4)) (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34))))) (-2381 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *4)))) (-5 *1 (-1172 *3 *4)) (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34))))) (-1525 (*1 *2 *3 *1) (-12 (-5 *3 (-1171 *4 *5)) (-4 *4 (-13 (-1132) (-34))) (-4 *5 (-13 (-1132) (-34))) (-5 *2 (-114)) (-5 *1 (-1172 *4 *5)))) (-2574 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1171 *5 *6)) (-5 *4 (-1 (-114) *6 *6)) (-4 *5 (-13 (-1132) (-34))) (-4 *6 (-13 (-1132) (-34))) (-5 *2 (-114)) (-5 *1 (-1172 *5 *6)))) (-3033 (*1 *1 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34))) (-5 *1 (-1172 *3 *4)))) (-2091 (*1 *1 *2 *1) (-12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34))) (-5 *1 (-1172 *3 *4)))) (-1872 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-663 (-1171 *3 *4))) (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34))) (-5 *1 (-1172 *3 *4)))) (-1872 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-1171 *4 *5))) (-5 *3 (-1 (-114) *5 *5)) (-4 *4 (-13 (-1132) (-34))) (-4 *5 (-13 (-1132) (-34))) (-5 *1 (-1172 *4 *5)))))
+(-13 (-1041 (-1171 |#1| |#2|)) (-10 -8 (-6 -4509) (-6 -4508) (-15 -4458 ((-3 $ "failed") $)) (-15 -3841 ($ $)) (-15 -3924 ($ (-1171 |#1| |#2|))) (-15 -3924 ($ |#1| |#2| (-663 $))) (-15 -3924 ($ |#1| |#2| (-663 (-1171 |#1| |#2|)))) (-15 -3924 ($ |#1| |#2| |#1| (-663 |#2|))) (-15 -2696 ((-663 |#2|) $)) (-15 -2381 ((-663 (-2 (|:| |val| |#1|) (|:| -3859 |#2|))) $)) (-15 -1525 ((-114) (-1171 |#1| |#2|) $)) (-15 -2574 ((-114) (-1171 |#1| |#2|) $ (-1 (-114) |#2| |#2|))) (-15 -3033 ($ (-1171 |#1| |#2|) $)) (-15 -2091 ($ (-1171 |#1| |#2|) $)) (-15 -1872 ($ $ $ (-663 (-1171 |#1| |#2|)))) (-15 -1872 ($ $ $ (-663 (-1171 |#1| |#2|)) (-1 (-114) |#2| |#2|)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-2966 (($ $) NIL T ELT)) (-4113 ((|#2| $) NIL T ELT)) (-3202 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-4062 (($ (-711 |#2|)) 56 T ELT)) (-2798 (((-114) $) NIL T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-1571 (($ |#2|) 14 T ELT)) (-3525 (($) NIL T CONST)) (-2207 (($ $) 69 (|has| |#2| (-319)) ELT)) (-3942 (((-246 |#1| |#2|) $ (-560)) 42 T ELT)) (-3929 (((-3 (-560) "failed") $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-3 |#2| "failed") $) NIL T ELT)) (-3649 (((-560) $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) ((|#2| $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) 83 T ELT)) (-1604 (((-793) $) 71 (|has| |#2| (-571)) ELT)) (-3274 ((|#2| $ (-560) (-560)) NIL T ELT)) (-3737 (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1918 (((-114) $) NIL T ELT)) (-3213 (((-793) $) 73 (|has| |#2| (-571)) ELT)) (-1927 (((-663 (-246 |#1| |#2|)) $) 77 (|has| |#2| (-571)) ELT)) (-2777 (((-793) $) NIL T ELT)) (-4246 (($ |#2|) 25 T ELT)) (-2789 (((-793) $) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-4174 ((|#2| $) 67 (|has| |#2| (-6 (-4510 "*"))) ELT)) (-2567 (((-560) $) NIL T ELT)) (-2313 (((-560) $) NIL T ELT)) (-3243 (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-1475 (((-560) $) NIL T ELT)) (-3004 (((-560) $) NIL T ELT)) (-3551 (($ (-663 (-663 |#2|))) 37 T ELT)) (-3324 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3378 (((-663 (-663 |#2|)) $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-711 |#2|) (-1297 $)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1906 (((-3 $ "failed") $) 80 (|has| |#2| (-376)) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2233 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT)) (-2086 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#2| $ (-560) (-560) |#2|) NIL T ELT) ((|#2| $ (-560) (-560)) NIL T ELT)) (-3161 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-1931 ((|#2| $) NIL T ELT)) (-3926 (($ (-663 |#2|)) 50 T ELT)) (-2691 (((-114) $) NIL T ELT)) (-2621 (((-246 |#1| |#2|) $) NIL T ELT)) (-3441 ((|#2| $) 65 (|has| |#2| (-6 (-4510 "*"))) ELT)) (-3384 (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) 89 (|has| |#2| (-633 (-549))) ELT)) (-3783 (((-246 |#1| |#2|) $ (-560)) 44 T ELT)) (-3913 (((-887) $) 47 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (($ |#2|) NIL T ELT) (((-711 |#2|) $) 52 T ELT)) (-4191 (((-793)) 23 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-2149 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1775 (((-114) $) NIL T ELT)) (-1446 (($) 16 T CONST)) (-1456 (($) 21 T CONST)) (-2111 (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-793)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 63 T ELT) (($ $ (-560)) 82 (|has| |#2| (-376)) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) 59 T ELT) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) 61 T ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-1173 |#1| |#2|) (-13 (-1154 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-632 (-711 |#2|)) (-10 -8 (-15 -4246 ($ |#2|)) (-15 -2966 ($ $)) (-15 -4062 ($ (-711 |#2|))) (IF (|has| |#2| (-6 (-4510 "*"))) (-6 -4497) |%noBranch|) (IF (|has| |#2| (-6 (-4510 "*"))) (IF (|has| |#2| (-6 -4505)) (-6 -4505) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|))) (-793) (-1080)) (T -1173))
+((-4246 (*1 *1 *2) (-12 (-5 *1 (-1173 *3 *2)) (-14 *3 (-793)) (-4 *2 (-1080)))) (-2966 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-793)) (-4 *3 (-1080)))) (-4062 (*1 *1 *2) (-12 (-5 *2 (-711 *4)) (-4 *4 (-1080)) (-5 *1 (-1173 *3 *4)) (-14 *3 (-793)))))
+(-13 (-1154 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-632 (-711 |#2|)) (-10 -8 (-15 -4246 ($ |#2|)) (-15 -2966 ($ $)) (-15 -4062 ($ (-711 |#2|))) (IF (|has| |#2| (-6 (-4510 "*"))) (-6 -4497) |%noBranch|) (IF (|has| |#2| (-6 (-4510 "*"))) (IF (|has| |#2| (-6 -4505)) (-6 -4505) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-633 (-549))) (-6 (-633 (-549))) |%noBranch|)))
+((-3473 (($ $) 19 T ELT)) (-2460 (($ $ (-146)) 10 T ELT) (($ $ (-143)) 14 T ELT)) (-3021 (((-114) $ $) 24 T ELT)) (-4399 (($ $) 17 T ELT)) (-1507 (((-146) $ (-560) (-146)) NIL T ELT) (((-146) $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT) (($ $ $) 31 T ELT)) (-3913 (($ (-146)) 29 T ELT) (((-887) $) NIL T ELT)))
+(((-1174 |#1|) (-10 -8 (-15 -3913 ((-887) |#1|)) (-15 -1507 (|#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| (-143))) (-15 -2460 (|#1| |#1| (-146))) (-15 -3913 (|#1| (-146))) (-15 -3021 ((-114) |#1| |#1|)) (-15 -3473 (|#1| |#1|)) (-15 -4399 (|#1| |#1|)) (-15 -1507 (|#1| |#1| (-1264 (-560)))) (-15 -1507 ((-146) |#1| (-560))) (-15 -1507 ((-146) |#1| (-560) (-146)))) (-1175)) (T -1174))
+NIL
+(-10 -8 (-15 -3913 ((-887) |#1|)) (-15 -1507 (|#1| |#1| |#1|)) (-15 -2460 (|#1| |#1| (-143))) (-15 -2460 (|#1| |#1| (-146))) (-15 -3913 (|#1| (-146))) (-15 -3021 ((-114) |#1| |#1|)) (-15 -3473 (|#1| |#1|)) (-15 -4399 (|#1| |#1|)) (-15 -1507 (|#1| |#1| (-1264 (-560)))) (-15 -1507 ((-146) |#1| (-560))) (-15 -1507 ((-146) |#1| (-560) (-146))))
+((-2243 (((-114) $ $) 20 (|has| (-146) (-102)) ELT)) (-3507 (($ $) 123 T ELT)) (-3473 (($ $) 124 T ELT)) (-2460 (($ $ (-146)) 111 T ELT) (($ $ (-143)) 110 T ELT)) (-2033 (((-1303) $ (-560) (-560)) 41 (|has| $ (-6 -4509)) ELT)) (-2998 (((-114) $ $) 121 T ELT)) (-2973 (((-114) $ $ (-560)) 120 T ELT)) (-1626 (((-663 $) $ (-146)) 113 T ELT) (((-663 $) $ (-143)) 112 T ELT)) (-2152 (((-114) (-1 (-114) (-146) (-146)) $) 101 T ELT) (((-114) $) 95 (|has| (-146) (-871)) ELT)) (-3152 (($ (-1 (-114) (-146) (-146)) $) 92 (|has| $ (-6 -4509)) ELT) (($ $) 91 (-12 (|has| (-146) (-871)) (|has| $ (-6 -4509))) ELT)) (-1787 (($ (-1 (-114) (-146) (-146)) $) 102 T ELT) (($ $) 96 (|has| (-146) (-871)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-4083 (((-146) $ (-560) (-146)) 53 (|has| $ (-6 -4509)) ELT) (((-146) $ (-1264 (-560)) (-146)) 60 (|has| $ (-6 -4509)) ELT)) (-3923 (($ (-1 (-114) (-146)) $) 77 (|has| $ (-6 -4508)) ELT)) (-3525 (($) 7 T CONST)) (-4204 (($ $ (-146)) 107 T ELT) (($ $ (-143)) 106 T ELT)) (-2372 (($ $) 93 (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) 103 T ELT)) (-4443 (($ $ (-1264 (-560)) $) 117 T ELT)) (-3658 (($ $) 80 (-12 (|has| (-146) (-1132)) (|has| $ (-6 -4508))) ELT)) (-3033 (($ (-146) $) 79 (-12 (|has| (-146) (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) (-146)) $) 76 (|has| $ (-6 -4508)) ELT)) (-1778 (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) 78 (-12 (|has| (-146) (-1132)) (|has| $ (-6 -4508))) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) 75 (|has| $ (-6 -4508)) ELT) (((-146) (-1 (-146) (-146) (-146)) $) 74 (|has| $ (-6 -4508)) ELT)) (-3338 (((-146) $ (-560) (-146)) 54 (|has| $ (-6 -4509)) ELT)) (-3274 (((-146) $ (-560)) 52 T ELT)) (-3021 (((-114) $ $) 122 T ELT)) (-2359 (((-560) (-1 (-114) (-146)) $) 100 T ELT) (((-560) (-146) $) 99 (|has| (-146) (-1132)) ELT) (((-560) (-146) $ (-560)) 98 (|has| (-146) (-1132)) ELT) (((-560) $ $ (-560)) 116 T ELT) (((-560) (-143) $ (-560)) 115 T ELT)) (-3737 (((-663 (-146)) $) 31 (|has| $ (-6 -4508)) ELT)) (-4246 (($ (-793) (-146)) 70 T ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-2483 (((-560) $) 44 (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) 85 (|has| (-146) (-871)) ELT)) (-4167 (($ (-1 (-114) (-146) (-146)) $ $) 104 T ELT) (($ $ $) 97 (|has| (-146) (-871)) ELT)) (-3243 (((-663 (-146)) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-146) $) 28 (-12 (|has| (-146) (-1132)) (|has| $ (-6 -4508))) ELT)) (-4263 (((-560) $) 45 (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) 86 (|has| (-146) (-871)) ELT)) (-3484 (((-114) $ $ (-146)) 118 T ELT)) (-2707 (((-793) $ $ (-146)) 119 T ELT)) (-3324 (($ (-1 (-146) (-146)) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-146) (-146)) $) 36 T ELT) (($ (-1 (-146) (-146) (-146)) $ $) 65 T ELT)) (-3458 (($ $) 125 T ELT)) (-4399 (($ $) 126 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-4214 (($ $ (-146)) 109 T ELT) (($ $ (-143)) 108 T ELT)) (-3358 (((-1189) $) 23 (|has| (-146) (-1132)) ELT)) (-2507 (($ (-146) $ (-560)) 62 T ELT) (($ $ $ (-560)) 61 T ELT)) (-3372 (((-663 (-560)) $) 47 T ELT)) (-3439 (((-114) (-560) $) 48 T ELT)) (-3376 (((-1151) $) 22 (|has| (-146) (-1132)) ELT)) (-4334 (((-146) $) 43 (|has| (-560) (-871)) ELT)) (-2708 (((-3 (-146) "failed") (-1 (-114) (-146)) $) 73 T ELT)) (-2740 (($ $ (-146)) 42 (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) (-146)) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 (-146)))) 27 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-305 (-146))) 26 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-146) (-146)) 25 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-663 (-146)) (-663 (-146))) 24 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-4019 (((-114) (-146) $) 46 (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-1383 (((-663 (-146)) $) 49 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1507 (((-146) $ (-560) (-146)) 51 T ELT) (((-146) $ (-560)) 50 T ELT) (($ $ (-1264 (-560))) 71 T ELT) (($ $ $) 105 T ELT)) (-2579 (($ $ (-560)) 64 T ELT) (($ $ (-1264 (-560))) 63 T ELT)) (-3384 (((-793) (-1 (-114) (-146)) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) (-146) $) 29 (-12 (|has| (-146) (-1132)) (|has| $ (-6 -4508))) ELT)) (-3993 (($ $ $ (-560)) 94 (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) 81 (|has| (-146) (-633 (-549))) ELT)) (-3924 (($ (-663 (-146))) 72 T ELT)) (-1955 (($ $ (-146)) 69 T ELT) (($ (-146) $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-663 $)) 66 T ELT)) (-3913 (($ (-146)) 114 T ELT) (((-887) $) 18 (|has| (-146) (-632 (-887))) ELT)) (-3925 (((-114) $ $) 21 (|has| (-146) (-102)) ELT)) (-2149 (((-114) (-1 (-114) (-146)) $) 34 (|has| $ (-6 -4508)) ELT)) (-2396 (((-114) $ $) 87 (|has| (-146) (-871)) ELT)) (-2373 (((-114) $ $) 89 (|has| (-146) (-871)) ELT)) (-2340 (((-114) $ $) 19 (|has| (-146) (-102)) ELT)) (-2386 (((-114) $ $) 88 (|has| (-146) (-871)) ELT)) (-2362 (((-114) $ $) 90 (|has| (-146) (-871)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-1175) (-142)) (T -1175))
-((-3247 (*1 *1 *1) (-4 *1 (-1175))) (-1917 (*1 *1 *1) (-4 *1 (-1175))) (-2552 (*1 *1 *1) (-4 *1 (-1175))) (-2987 (*1 *1 *1) (-4 *1 (-1175))) (-3815 (*1 *2 *1 *1) (-12 (-4 *1 (-1175)) (-5 *2 (-114)))) (-3794 (*1 *2 *1 *1) (-12 (-4 *1 (-1175)) (-5 *2 (-114)))) (-3770 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1175)) (-5 *3 (-560)) (-5 *2 (-114)))) (-4473 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1175)) (-5 *3 (-146)) (-5 *2 (-793)))) (-1862 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1175)) (-5 *3 (-146)) (-5 *2 (-114)))) (-4200 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1175)) (-5 *2 (-1264 (-560))))) (-1722 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-560)))) (-1722 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-560)) (-5 *3 (-143)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-146)) (-4 *1 (-1175)))) (-1513 (*1 *2 *1 *3) (-12 (-5 *3 (-146)) (-5 *2 (-663 *1)) (-4 *1 (-1175)))) (-1513 (*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-663 *1)) (-4 *1 (-1175)))) (-1532 (*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-146)))) (-1532 (*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-143)))) (-3497 (*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-146)))) (-3497 (*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-143)))) (-3486 (*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-146)))) (-3486 (*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-143)))) (-3924 (*1 *1 *1 *1) (-4 *1 (-1175))))
-(-13 (-19 (-146)) (-10 -8 (-15 -3247 ($ $)) (-15 -1917 ($ $)) (-15 -2552 ($ $)) (-15 -2987 ($ $)) (-15 -3815 ((-114) $ $)) (-15 -3794 ((-114) $ $)) (-15 -3770 ((-114) $ $ (-560))) (-15 -4473 ((-793) $ $ (-146))) (-15 -1862 ((-114) $ $ (-146))) (-15 -4200 ($ $ (-1264 (-560)) $)) (-15 -1722 ((-560) $ $ (-560))) (-15 -1722 ((-560) (-143) $ (-560))) (-15 -1578 ($ (-146))) (-15 -1513 ((-663 $) $ (-146))) (-15 -1513 ((-663 $) $ (-143))) (-15 -1532 ($ $ (-146))) (-15 -1532 ($ $ (-143))) (-15 -3497 ($ $ (-146))) (-15 -3497 ($ $ (-143))) (-15 -3486 ($ $ (-146))) (-15 -3486 ($ $ (-143))) (-15 -3924 ($ $ $))))
-(((-34) . T) ((-102) -2304 (|has| (-146) (-1132)) (|has| (-146) (-871)) (|has| (-146) (-102))) ((-632 (-887)) -2304 (|has| (-146) (-1132)) (|has| (-146) (-871)) (|has| (-146) (-632 (-887)))) ((-153 #0=(-146)) . T) ((-633 (-549)) |has| (-146) (-633 (-549))) ((-298 #1=(-560) #0#) . T) ((-298 (-1264 (-560)) $) . T) ((-300 #1# #0#) . T) ((-321 #0#) -12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ((-385 #0#) . T) ((-503 #0#) . T) ((-618 #1# #0#) . T) ((-528 #0# #0#) -12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ((-673 #0#) . T) ((-19 #0#) . T) ((-871) |has| (-146) (-871)) ((-874) |has| (-146) (-871)) ((-1132) -2304 (|has| (-146) (-1132)) (|has| (-146) (-871))) ((-1247) . T))
-((-1812 (((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-663 |#4|) (-663 |#5|) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) (-793)) 112 T ELT)) (-3369 (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5| (-793)) 61 T ELT)) (-3187 (((-1303) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-793)) 97 T ELT)) (-1422 (((-793) (-663 |#4|) (-663 |#5|)) 30 T ELT)) (-1798 (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5| (-793)) 63 T ELT) (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5| (-793) (-114)) 65 T ELT)) (-3448 (((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114) (-114) (-114) (-114)) 84 T ELT) (((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114)) 85 T ELT)) (-1407 (((-1189) (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) 90 T ELT)) (-2108 (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5|) 60 T ELT)) (-2357 (((-793) (-663 |#4|) (-663 |#5|)) 21 T ELT)))
-(((-1176 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2357 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -1422 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -2108 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5|)) (-15 -3369 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5| (-793))) (-15 -3369 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5|)) (-15 -1798 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5| (-793) (-114))) (-15 -1798 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5| (-793))) (-15 -1798 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5|)) (-15 -3448 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -3448 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114) (-114) (-114) (-114))) (-15 -1812 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-663 |#4|) (-663 |#5|) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) (-793))) (-15 -1407 ((-1189) (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|)))) (-15 -3187 ((-1303) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-793)))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3| |#4|)) (T -1176))
-((-3187 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -4297 *9)))) (-5 *4 (-793)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-1303)) (-5 *1 (-1176 *5 *6 *7 *8 *9)))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -4297 *8))) (-4 *7 (-1096 *4 *5 *6)) (-4 *8 (-1140 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1189)) (-5 *1 (-1176 *4 *5 *6 *7 *8)))) (-1812 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-663 *11)) (|:| |todo| (-663 (-2 (|:| |val| *3) (|:| -4297 *11)))))) (-5 *6 (-793)) (-5 *2 (-663 (-2 (|:| |val| (-663 *10)) (|:| -4297 *11)))) (-5 *3 (-663 *10)) (-5 *4 (-663 *11)) (-4 *10 (-1096 *7 *8 *9)) (-4 *11 (-1140 *7 *8 *9 *10)) (-4 *7 (-466)) (-4 *8 (-815)) (-4 *9 (-871)) (-5 *1 (-1176 *7 *8 *9 *10 *11)))) (-3448 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1176 *5 *6 *7 *8 *9)))) (-3448 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1176 *5 *6 *7 *8 *9)))) (-1798 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4)))))) (-5 *1 (-1176 *5 *6 *7 *3 *4)) (-4 *4 (-1140 *5 *6 *7 *3)))) (-1798 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *3 (-1096 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4)))))) (-5 *1 (-1176 *6 *7 *8 *3 *4)) (-4 *4 (-1140 *6 *7 *8 *3)))) (-1798 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-793)) (-5 *6 (-114)) (-4 *7 (-466)) (-4 *8 (-815)) (-4 *9 (-871)) (-4 *3 (-1096 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4)))))) (-5 *1 (-1176 *7 *8 *9 *3 *4)) (-4 *4 (-1140 *7 *8 *9 *3)))) (-3369 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4)))))) (-5 *1 (-1176 *5 *6 *7 *3 *4)) (-4 *4 (-1140 *5 *6 *7 *3)))) (-3369 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *3 (-1096 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4)))))) (-5 *1 (-1176 *6 *7 *8 *3 *4)) (-4 *4 (-1140 *6 *7 *8 *3)))) (-2108 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4)))))) (-5 *1 (-1176 *5 *6 *7 *3 *4)) (-4 *4 (-1140 *5 *6 *7 *3)))) (-1422 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *9)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-793)) (-5 *1 (-1176 *5 *6 *7 *8 *9)))) (-2357 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *9)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-793)) (-5 *1 (-1176 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -2357 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -1422 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -2108 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5|)) (-15 -3369 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5| (-793))) (-15 -3369 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5|)) (-15 -1798 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5| (-793) (-114))) (-15 -1798 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5| (-793))) (-15 -1798 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) |#4| |#5|)) (-15 -3448 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -3448 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114) (-114) (-114) (-114))) (-15 -1812 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-663 |#4|) (-663 |#5|) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))))) (-793))) (-15 -1407 ((-1189) (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|)))) (-15 -3187 ((-1303) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -4297 |#5|))) (-793))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3721 (((-663 (-2 (|:| -4332 $) (|:| -2109 (-663 |#4|)))) (-663 |#4|)) NIL T ELT)) (-3904 (((-663 $) (-663 |#4|)) 124 T ELT) (((-663 $) (-663 |#4|) (-114)) 125 T ELT) (((-663 $) (-663 |#4|) (-114) (-114)) 123 T ELT) (((-663 $) (-663 |#4|) (-114) (-114) (-114) (-114)) 126 T ELT)) (-1443 (((-663 |#3|) $) NIL T ELT)) (-1466 (((-114) $) NIL T ELT)) (-3101 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3036 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-1813 ((|#4| |#4| $) NIL T ELT)) (-1804 (((-663 (-2 (|:| |val| |#4|) (|:| -4297 $))) |#4| $) 97 T ELT)) (-2286 (((-2 (|:| |under| $) (|:| -2016 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1982 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#4| "failed") $ |#3|) 75 T ELT)) (-2238 (($) NIL T CONST)) (-4436 (((-114) $) 29 (|has| |#1| (-571)) ELT)) (-4246 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-1860 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3745 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-1477 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4027 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-2528 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-2539 (((-3 $ "failed") (-663 |#4|)) NIL T ELT)) (-3330 (($ (-663 |#4|)) NIL T ELT)) (-3649 (((-3 $ "failed") $) 45 T ELT)) (-2841 ((|#4| |#4| $) 78 T ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-2375 (($ |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2341 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-571)) ELT)) (-3989 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3093 ((|#4| |#4| $) NIL T ELT)) (-4129 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4508)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4508)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-1723 (((-2 (|:| -4332 (-663 |#4|)) (|:| -2109 (-663 |#4|))) $) NIL T ELT)) (-2330 (((-114) |#4| $) NIL T ELT)) (-2728 (((-114) |#4| $) NIL T ELT)) (-2420 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-2611 (((-2 (|:| |val| (-663 |#4|)) (|:| |towers| (-663 $))) (-663 |#4|) (-114) (-114)) 139 T ELT)) (-2181 (((-663 |#4|) $) 18 (|has| $ (-6 -4508)) ELT)) (-3544 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4132 ((|#3| $) 38 T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 |#4|) $) 19 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#4| $) 27 (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-3768 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-1918 (((-663 |#3|) $) NIL T ELT)) (-2724 (((-114) |#3| $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3482 (((-3 |#4| (-663 $)) |#4| |#4| $) NIL T ELT)) (-4130 (((-663 (-2 (|:| |val| |#4|) (|:| -4297 $))) |#4| |#4| $) 117 T ELT)) (-2398 (((-3 |#4| "failed") $) 42 T ELT)) (-3221 (((-663 $) |#4| $) 102 T ELT)) (-3979 (((-3 (-114) (-663 $)) |#4| $) NIL T ELT)) (-2411 (((-663 (-2 (|:| |val| (-114)) (|:| -4297 $))) |#4| $) 112 T ELT) (((-114) |#4| $) 65 T ELT)) (-1903 (((-663 $) |#4| $) 121 T ELT) (((-663 $) (-663 |#4|) $) NIL T ELT) (((-663 $) (-663 |#4|) (-663 $)) 122 T ELT) (((-663 $) |#4| (-663 $)) NIL T ELT)) (-1535 (((-663 $) (-663 |#4|) (-114) (-114) (-114)) 134 T ELT)) (-2534 (($ |#4| $) 88 T ELT) (($ (-663 |#4|) $) 89 T ELT) (((-663 $) |#4| $ (-114) (-114) (-114) (-114) (-114)) 87 T ELT)) (-1756 (((-663 |#4|) $) NIL T ELT)) (-3548 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3212 ((|#4| |#4| $) NIL T ELT)) (-2925 (((-114) $ $) NIL T ELT)) (-2557 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-1563 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3171 ((|#4| |#4| $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3637 (((-3 |#4| "failed") $) 40 T ELT)) (-3329 (((-3 |#4| "failed") (-1 (-114) |#4|) $) NIL T ELT)) (-1370 (((-3 $ "failed") $ |#4|) 59 T ELT)) (-4372 (($ $ |#4|) NIL T ELT) (((-663 $) |#4| $) 104 T ELT) (((-663 $) |#4| (-663 $)) NIL T ELT) (((-663 $) (-663 |#4|) $) NIL T ELT) (((-663 $) (-663 |#4|) (-663 $)) 99 T ELT)) (-2787 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 |#4|) (-663 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) 17 T ELT)) (-3986 (($) 14 T ELT)) (-3630 (((-793) $) NIL T ELT)) (-3865 (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) (((-793) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) NIL (|has| |#4| (-633 (-549))) ELT)) (-1592 (($ (-663 |#4|)) 22 T ELT)) (-3752 (($ $ |#3|) 52 T ELT)) (-4288 (($ $ |#3|) 54 T ELT)) (-2886 (($ $) NIL T ELT)) (-4397 (($ $ |#3|) NIL T ELT)) (-1578 (((-887) $) 35 T ELT) (((-663 |#4|) $) 46 T ELT)) (-1582 (((-793) $) NIL (|has| |#3| (-381)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1810 (((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4006 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) NIL T ELT)) (-2796 (((-663 $) |#4| $) 66 T ELT) (((-663 $) |#4| (-663 $)) NIL T ELT) (((-663 $) (-663 |#4|) $) NIL T ELT) (((-663 $) (-663 |#4|) (-663 $)) NIL T ELT)) (-1728 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3938 (((-663 |#3|) $) NIL T ELT)) (-4395 (((-114) |#4| $) NIL T ELT)) (-3602 (((-114) |#3| $) 74 T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-1177 |#1| |#2| |#3| |#4|) (-13 (-1140 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2534 ((-663 $) |#4| $ (-114) (-114) (-114) (-114) (-114))) (-15 -3904 ((-663 $) (-663 |#4|) (-114) (-114))) (-15 -3904 ((-663 $) (-663 |#4|) (-114) (-114) (-114) (-114))) (-15 -1535 ((-663 $) (-663 |#4|) (-114) (-114) (-114))) (-15 -2611 ((-2 (|:| |val| (-663 |#4|)) (|:| |towers| (-663 $))) (-663 |#4|) (-114) (-114))))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|)) (T -1177))
-((-2534 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 (-1177 *5 *6 *7 *3))) (-5 *1 (-1177 *5 *6 *7 *3)) (-4 *3 (-1096 *5 *6 *7)))) (-3904 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 (-1177 *5 *6 *7 *8))) (-5 *1 (-1177 *5 *6 *7 *8)))) (-3904 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 (-1177 *5 *6 *7 *8))) (-5 *1 (-1177 *5 *6 *7 *8)))) (-1535 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 (-1177 *5 *6 *7 *8))) (-5 *1 (-1177 *5 *6 *7 *8)))) (-2611 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-663 *8)) (|:| |towers| (-663 (-1177 *5 *6 *7 *8))))) (-5 *1 (-1177 *5 *6 *7 *8)) (-5 *3 (-663 *8)))))
-(-13 (-1140 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2534 ((-663 $) |#4| $ (-114) (-114) (-114) (-114) (-114))) (-15 -3904 ((-663 $) (-663 |#4|) (-114) (-114))) (-15 -3904 ((-663 $) (-663 |#4|) (-114) (-114) (-114) (-114))) (-15 -1535 ((-663 $) (-663 |#4|) (-114) (-114) (-114))) (-15 -2611 ((-2 (|:| |val| (-663 |#4|)) (|:| |towers| (-663 $))) (-663 |#4|) (-114) (-114)))))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2572 ((|#1| $) 37 T ELT)) (-4269 (($ (-663 |#1|)) 45 T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2822 ((|#1| |#1| $) 40 T ELT)) (-2353 ((|#1| $) 35 T ELT)) (-2181 (((-663 |#1|) $) 18 (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-1576 ((|#1| $) 38 T ELT)) (-3629 (($ |#1| $) 41 T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2615 ((|#1| $) 36 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) 32 T ELT)) (-3986 (($) 43 T ELT)) (-3470 (((-793) $) 30 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1799 (($ $) 27 T ELT)) (-1578 (((-887) $) 14 (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3376 (($ (-663 |#1|)) NIL T ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 17 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 31 (|has| $ (-6 -4508)) ELT)))
-(((-1178 |#1|) (-13 (-1152 |#1|) (-10 -8 (-15 -4269 ($ (-663 |#1|))))) (-1247)) (T -1178))
-((-4269 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-1178 *3)))))
-(-13 (-1152 |#1|) (-10 -8 (-15 -4269 ($ (-663 |#1|)))))
-((-1773 ((|#2| $ "value" |#2|) NIL T ELT) ((|#2| $ "first" |#2|) NIL T ELT) (($ $ "rest" $) NIL T ELT) ((|#2| $ "last" |#2|) NIL T ELT) ((|#2| $ (-1264 (-560)) |#2|) 53 T ELT) ((|#2| $ (-560) |#2|) 50 T ELT)) (-2267 (((-114) $) 12 T ELT)) (-3768 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-3637 ((|#2| $) NIL T ELT) (($ $ (-793)) 17 T ELT)) (-3037 (($ $ |#2|) 49 T ELT)) (-3875 (((-114) $) 11 T ELT)) (-3924 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#2| $ "last") NIL T ELT) (($ $ (-1264 (-560))) 36 T ELT) ((|#2| $ (-560)) 26 T ELT) ((|#2| $ (-560) |#2|) NIL T ELT)) (-4354 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-3415 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-663 $)) 45 T ELT) (($ $ |#2|) NIL T ELT)))
-(((-1179 |#1| |#2|) (-10 -8 (-15 -2267 ((-114) |#1|)) (-15 -3875 ((-114) |#1|)) (-15 -1773 (|#2| |#1| (-560) |#2|)) (-15 -3924 (|#2| |#1| (-560) |#2|)) (-15 -3924 (|#2| |#1| (-560))) (-15 -3037 (|#1| |#1| |#2|)) (-15 -3924 (|#1| |#1| (-1264 (-560)))) (-15 -3415 (|#1| |#1| |#2|)) (-15 -3415 (|#1| (-663 |#1|))) (-15 -1773 (|#2| |#1| (-1264 (-560)) |#2|)) (-15 -1773 (|#2| |#1| "last" |#2|)) (-15 -1773 (|#1| |#1| "rest" |#1|)) (-15 -1773 (|#2| |#1| "first" |#2|)) (-15 -4354 (|#1| |#1| |#2|)) (-15 -4354 (|#1| |#1| |#1|)) (-15 -3924 (|#2| |#1| "last")) (-15 -3924 (|#1| |#1| "rest")) (-15 -3637 (|#1| |#1| (-793))) (-15 -3924 (|#2| |#1| "first")) (-15 -3637 (|#2| |#1|)) (-15 -3415 (|#1| |#2| |#1|)) (-15 -3415 (|#1| |#1| |#1|)) (-15 -1773 (|#2| |#1| "value" |#2|)) (-15 -3924 (|#2| |#1| "value")) (-15 -3768 (|#1| (-1 |#2| |#2|) |#1|))) (-1180 |#2|) (-1247)) (T -1179))
-NIL
-(-10 -8 (-15 -2267 ((-114) |#1|)) (-15 -3875 ((-114) |#1|)) (-15 -1773 (|#2| |#1| (-560) |#2|)) (-15 -3924 (|#2| |#1| (-560) |#2|)) (-15 -3924 (|#2| |#1| (-560))) (-15 -3037 (|#1| |#1| |#2|)) (-15 -3924 (|#1| |#1| (-1264 (-560)))) (-15 -3415 (|#1| |#1| |#2|)) (-15 -3415 (|#1| (-663 |#1|))) (-15 -1773 (|#2| |#1| (-1264 (-560)) |#2|)) (-15 -1773 (|#2| |#1| "last" |#2|)) (-15 -1773 (|#1| |#1| "rest" |#1|)) (-15 -1773 (|#2| |#1| "first" |#2|)) (-15 -4354 (|#1| |#1| |#2|)) (-15 -4354 (|#1| |#1| |#1|)) (-15 -3924 (|#2| |#1| "last")) (-15 -3924 (|#1| |#1| "rest")) (-15 -3637 (|#1| |#1| (-793))) (-15 -3924 (|#2| |#1| "first")) (-15 -3637 (|#2| |#1|)) (-15 -3415 (|#1| |#2| |#1|)) (-15 -3415 (|#1| |#1| |#1|)) (-15 -1773 (|#2| |#1| "value" |#2|)) (-15 -3924 (|#2| |#1| "value")) (-15 -3768 (|#1| (-1 |#2| |#2|) |#1|)))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3853 ((|#1| $) 49 T ELT)) (-3273 ((|#1| $) 66 T ELT)) (-2270 (($ $) 68 T ELT)) (-3839 (((-1303) $ (-560) (-560)) 99 (|has| $ (-6 -4509)) ELT)) (-2194 (($ $ (-560)) 53 (|has| $ (-6 -4509)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-2869 ((|#1| $ |#1|) 40 (|has| $ (-6 -4509)) ELT)) (-2102 (($ $ $) 57 (|has| $ (-6 -4509)) ELT)) (-4319 ((|#1| $ |#1|) 55 (|has| $ (-6 -4509)) ELT)) (-3132 ((|#1| $ |#1|) 59 (|has| $ (-6 -4509)) ELT)) (-1773 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4509)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4509)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4509)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) 119 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-560) |#1|) 88 (|has| $ (-6 -4509)) ELT)) (-2083 (($ $ (-663 $)) 42 (|has| $ (-6 -4509)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) 104 (|has| $ (-6 -4508)) ELT)) (-3264 ((|#1| $) 67 T ELT)) (-2238 (($) 7 T CONST)) (-3649 (($ $) 74 T ELT) (($ $ (-793)) 72 T ELT)) (-3606 (($ $) 101 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2375 (($ (-1 (-114) |#1|) $) 105 (|has| $ (-6 -4508)) ELT) (($ |#1| $) 102 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3779 ((|#1| $ (-560) |#1|) 87 (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-560)) 89 T ELT)) (-2267 (((-114) $) 85 T ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-3092 (((-663 $) $) 51 T ELT)) (-3398 (((-114) $ $) 43 (|has| |#1| (-1132)) ELT)) (-4095 (($ (-793) |#1|) 111 T ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-1762 (((-560) $) 97 (|has| (-560) (-871)) ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2937 (((-560) $) 96 (|has| (-560) (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 114 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-3596 (((-663 |#1|) $) 46 T ELT)) (-2409 (((-114) $) 50 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-2398 ((|#1| $) 71 T ELT) (($ $ (-793)) 69 T ELT)) (-3996 (($ $ $ (-560)) 118 T ELT) (($ |#1| $ (-560)) 117 T ELT)) (-3270 (((-663 (-560)) $) 94 T ELT)) (-3586 (((-114) (-560) $) 93 T ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-3637 ((|#1| $) 77 T ELT) (($ $ (-793)) 75 T ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 108 T ELT)) (-3037 (($ $ |#1|) 98 (|has| $ (-6 -4509)) ELT)) (-3875 (((-114) $) 86 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-2914 (((-114) |#1| $) 95 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) 92 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3924 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT) (($ $ (-1264 (-560))) 110 T ELT) ((|#1| $ (-560)) 91 T ELT) ((|#1| $ (-560) |#1|) 90 T ELT)) (-1750 (((-560) $ $) 45 T ELT)) (-4413 (($ $ (-1264 (-560))) 116 T ELT) (($ $ (-560)) 115 T ELT)) (-1978 (((-114) $) 47 T ELT)) (-1763 (($ $) 63 T ELT)) (-1915 (($ $) 60 (|has| $ (-6 -4509)) ELT)) (-1502 (((-793) $) 64 T ELT)) (-3458 (($ $) 65 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) 100 (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 109 T ELT)) (-4354 (($ $ $) 62 (|has| $ (-6 -4509)) ELT) (($ $ |#1|) 61 (|has| $ (-6 -4509)) ELT)) (-3415 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT) (($ (-663 $)) 113 T ELT) (($ $ |#1|) 112 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3955 (((-663 $) $) 52 T ELT)) (-2997 (((-114) $ $) 44 (|has| |#1| (-1132)) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-4399 (*1 *1 *1) (-4 *1 (-1175))) (-3458 (*1 *1 *1) (-4 *1 (-1175))) (-3473 (*1 *1 *1) (-4 *1 (-1175))) (-3507 (*1 *1 *1) (-4 *1 (-1175))) (-3021 (*1 *2 *1 *1) (-12 (-4 *1 (-1175)) (-5 *2 (-114)))) (-2998 (*1 *2 *1 *1) (-12 (-4 *1 (-1175)) (-5 *2 (-114)))) (-2973 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1175)) (-5 *3 (-560)) (-5 *2 (-114)))) (-2707 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1175)) (-5 *3 (-146)) (-5 *2 (-793)))) (-3484 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1175)) (-5 *3 (-146)) (-5 *2 (-114)))) (-4443 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1175)) (-5 *2 (-1264 (-560))))) (-2359 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-560)))) (-2359 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-560)) (-5 *3 (-143)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-146)) (-4 *1 (-1175)))) (-1626 (*1 *2 *1 *3) (-12 (-5 *3 (-146)) (-5 *2 (-663 *1)) (-4 *1 (-1175)))) (-1626 (*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-663 *1)) (-4 *1 (-1175)))) (-2460 (*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-146)))) (-2460 (*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-143)))) (-4214 (*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-146)))) (-4214 (*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-143)))) (-4204 (*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-146)))) (-4204 (*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-143)))) (-1507 (*1 *1 *1 *1) (-4 *1 (-1175))))
+(-13 (-19 (-146)) (-10 -8 (-15 -4399 ($ $)) (-15 -3458 ($ $)) (-15 -3473 ($ $)) (-15 -3507 ($ $)) (-15 -3021 ((-114) $ $)) (-15 -2998 ((-114) $ $)) (-15 -2973 ((-114) $ $ (-560))) (-15 -2707 ((-793) $ $ (-146))) (-15 -3484 ((-114) $ $ (-146))) (-15 -4443 ($ $ (-1264 (-560)) $)) (-15 -2359 ((-560) $ $ (-560))) (-15 -2359 ((-560) (-143) $ (-560))) (-15 -3913 ($ (-146))) (-15 -1626 ((-663 $) $ (-146))) (-15 -1626 ((-663 $) $ (-143))) (-15 -2460 ($ $ (-146))) (-15 -2460 ($ $ (-143))) (-15 -4214 ($ $ (-146))) (-15 -4214 ($ $ (-143))) (-15 -4204 ($ $ (-146))) (-15 -4204 ($ $ (-143))) (-15 -1507 ($ $ $))))
+(((-34) . T) ((-102) -2196 (|has| (-146) (-1132)) (|has| (-146) (-871)) (|has| (-146) (-102))) ((-632 (-887)) -2196 (|has| (-146) (-1132)) (|has| (-146) (-871)) (|has| (-146) (-632 (-887)))) ((-153 #0=(-146)) . T) ((-633 (-549)) |has| (-146) (-633 (-549))) ((-298 #1=(-560) #0#) . T) ((-298 (-1264 (-560)) $) . T) ((-300 #1# #0#) . T) ((-321 #0#) -12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ((-385 #0#) . T) ((-503 #0#) . T) ((-618 #1# #0#) . T) ((-528 #0# #0#) -12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ((-673 #0#) . T) ((-19 #0#) . T) ((-871) |has| (-146) (-871)) ((-874) |has| (-146) (-871)) ((-1132) -2196 (|has| (-146) (-1132)) (|has| (-146) (-871))) ((-1247) . T))
+((-1711 (((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-663 |#4|) (-663 |#5|) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) (-793)) 112 T ELT)) (-3113 (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5| (-793)) 61 T ELT)) (-2167 (((-1303) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-793)) 97 T ELT)) (-2851 (((-793) (-663 |#4|) (-663 |#5|)) 30 T ELT)) (-1563 (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5| (-793)) 63 T ELT) (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5| (-793) (-114)) 65 T ELT)) (-2595 (((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114) (-114) (-114) (-114)) 84 T ELT) (((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114)) 85 T ELT)) (-2400 (((-1189) (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) 90 T ELT)) (-1569 (((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5|) 60 T ELT)) (-2188 (((-793) (-663 |#4|) (-663 |#5|)) 21 T ELT)))
+(((-1176 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2188 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -2851 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -1569 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5|)) (-15 -3113 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5| (-793))) (-15 -3113 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5|)) (-15 -1563 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5| (-793) (-114))) (-15 -1563 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5| (-793))) (-15 -1563 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5|)) (-15 -2595 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -2595 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114) (-114) (-114) (-114))) (-15 -1711 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-663 |#4|) (-663 |#5|) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) (-793))) (-15 -2400 ((-1189) (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|)))) (-15 -2167 ((-1303) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-793)))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|) (-1140 |#1| |#2| |#3| |#4|)) (T -1176))
+((-2167 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -3859 *9)))) (-5 *4 (-793)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-1303)) (-5 *1 (-1176 *5 *6 *7 *8 *9)))) (-2400 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -3859 *8))) (-4 *7 (-1096 *4 *5 *6)) (-4 *8 (-1140 *4 *5 *6 *7)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1189)) (-5 *1 (-1176 *4 *5 *6 *7 *8)))) (-1711 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-663 *11)) (|:| |todo| (-663 (-2 (|:| |val| *3) (|:| -3859 *11)))))) (-5 *6 (-793)) (-5 *2 (-663 (-2 (|:| |val| (-663 *10)) (|:| -3859 *11)))) (-5 *3 (-663 *10)) (-5 *4 (-663 *11)) (-4 *10 (-1096 *7 *8 *9)) (-4 *11 (-1140 *7 *8 *9 *10)) (-4 *7 (-466)) (-4 *8 (-815)) (-4 *9 (-871)) (-5 *1 (-1176 *7 *8 *9 *10 *11)))) (-2595 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1176 *5 *6 *7 *8 *9)))) (-2595 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1176 *5 *6 *7 *8 *9)))) (-1563 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4)))))) (-5 *1 (-1176 *5 *6 *7 *3 *4)) (-4 *4 (-1140 *5 *6 *7 *3)))) (-1563 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *3 (-1096 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4)))))) (-5 *1 (-1176 *6 *7 *8 *3 *4)) (-4 *4 (-1140 *6 *7 *8 *3)))) (-1563 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-793)) (-5 *6 (-114)) (-4 *7 (-466)) (-4 *8 (-815)) (-4 *9 (-871)) (-4 *3 (-1096 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4)))))) (-5 *1 (-1176 *7 *8 *9 *3 *4)) (-4 *4 (-1140 *7 *8 *9 *3)))) (-3113 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4)))))) (-5 *1 (-1176 *5 *6 *7 *3 *4)) (-4 *4 (-1140 *5 *6 *7 *3)))) (-3113 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *3 (-1096 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4)))))) (-5 *1 (-1176 *6 *7 *8 *3 *4)) (-4 *4 (-1140 *6 *7 *8 *3)))) (-1569 (*1 *2 *3 *4) (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-663 *4)) (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4)))))) (-5 *1 (-1176 *5 *6 *7 *3 *4)) (-4 *4 (-1140 *5 *6 *7 *3)))) (-2851 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *9)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-793)) (-5 *1 (-1176 *5 *6 *7 *8 *9)))) (-2188 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *9)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-793)) (-5 *1 (-1176 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2188 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -2851 ((-793) (-663 |#4|) (-663 |#5|))) (-15 -1569 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5|)) (-15 -3113 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5| (-793))) (-15 -3113 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5|)) (-15 -1563 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5| (-793) (-114))) (-15 -1563 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5| (-793))) (-15 -1563 ((-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) |#4| |#5|)) (-15 -2595 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114))) (-15 -2595 ((-663 |#5|) (-663 |#4|) (-663 |#5|) (-114) (-114) (-114) (-114) (-114))) (-15 -1711 ((-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-663 |#4|) (-663 |#5|) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-2 (|:| |done| (-663 |#5|)) (|:| |todo| (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))))) (-793))) (-15 -2400 ((-1189) (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|)))) (-15 -2167 ((-1303) (-663 (-2 (|:| |val| (-663 |#4|)) (|:| -3859 |#5|))) (-793))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2253 (((-663 (-2 (|:| -1924 $) (|:| -2888 (-663 |#4|)))) (-663 |#4|)) NIL T ELT)) (-1372 (((-663 $) (-663 |#4|)) 124 T ELT) (((-663 $) (-663 |#4|) (-114)) 125 T ELT) (((-663 $) (-663 |#4|) (-114) (-114)) 123 T ELT) (((-663 $) (-663 |#4|) (-114) (-114) (-114) (-114)) 126 T ELT)) (-4162 (((-663 |#3|) $) NIL T ELT)) (-1362 (((-114) $) NIL T ELT)) (-2179 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-2729 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-1722 ((|#4| |#4| $) NIL T ELT)) (-1621 (((-663 (-2 (|:| |val| |#4|) (|:| -3859 $))) |#4| $) 97 T ELT)) (-1787 (((-2 (|:| |under| $) (|:| -3147 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3923 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#4| "failed") $ |#3|) 75 T ELT)) (-3525 (($) NIL T CONST)) (-2733 (((-114) $) 29 (|has| |#1| (-571)) ELT)) (-3672 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4148 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2449 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4108 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3277 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-4485 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-3929 (((-3 $ "failed") (-663 |#4|)) NIL T ELT)) (-3649 (($ (-663 |#4|)) NIL T ELT)) (-4345 (((-3 $ "failed") $) 45 T ELT)) (-1440 ((|#4| |#4| $) 78 T ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-3033 (($ |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3276 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 91 (|has| |#1| (-571)) ELT)) (-2869 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-2113 ((|#4| |#4| $) NIL T ELT)) (-1778 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4508)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4508)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-2115 (((-2 (|:| -1924 (-663 |#4|)) (|:| -2888 (-663 |#4|))) $) NIL T ELT)) (-3175 (((-114) |#4| $) NIL T ELT)) (-1520 (((-114) |#4| $) NIL T ELT)) (-1575 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-2754 (((-2 (|:| |val| (-663 |#4|)) (|:| |towers| (-663 $))) (-663 |#4|) (-114) (-114)) 139 T ELT)) (-3737 (((-663 |#4|) $) 18 (|has| $ (-6 -4508)) ELT)) (-4264 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-1816 ((|#3| $) 38 T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-3243 (((-663 |#4|) $) 19 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#4| $) 27 (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-3324 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3471 (((-663 |#3|) $) NIL T ELT)) (-2703 (((-114) |#3| $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1702 (((-3 |#4| (-663 $)) |#4| |#4| $) NIL T ELT)) (-1790 (((-663 (-2 (|:| |val| |#4|) (|:| -3859 $))) |#4| |#4| $) 117 T ELT)) (-3057 (((-3 |#4| "failed") $) 42 T ELT)) (-4144 (((-663 $) |#4| $) 102 T ELT)) (-2769 (((-3 (-114) (-663 $)) |#4| $) NIL T ELT)) (-1503 (((-663 (-2 (|:| |val| (-114)) (|:| -3859 $))) |#4| $) 112 T ELT) (((-114) |#4| $) 65 T ELT)) (-3334 (((-663 $) |#4| $) 121 T ELT) (((-663 $) (-663 |#4|) $) NIL T ELT) (((-663 $) (-663 |#4|) (-663 $)) 122 T ELT) (((-663 $) |#4| (-663 $)) NIL T ELT)) (-1506 (((-663 $) (-663 |#4|) (-114) (-114) (-114)) 134 T ELT)) (-1392 (($ |#4| $) 88 T ELT) (($ (-663 |#4|) $) 89 T ELT) (((-663 $) |#4| $ (-114) (-114) (-114) (-114) (-114)) 87 T ELT)) (-2428 (((-663 |#4|) $) NIL T ELT)) (-4301 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4039 ((|#4| |#4| $) NIL T ELT)) (-4138 (((-114) $ $) NIL T ELT)) (-3531 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-1737 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-1686 ((|#4| |#4| $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4334 (((-3 |#4| "failed") $) 40 T ELT)) (-2708 (((-3 |#4| "failed") (-1 (-114) |#4|) $) NIL T ELT)) (-3867 (((-3 $ "failed") $ |#4|) 59 T ELT)) (-2219 (($ $ |#4|) NIL T ELT) (((-663 $) |#4| $) 104 T ELT) (((-663 $) |#4| (-663 $)) NIL T ELT) (((-663 $) (-663 |#4|) $) NIL T ELT) (((-663 $) (-663 |#4|) (-663 $)) 99 T ELT)) (-2086 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 |#4|) (-663 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) 17 T ELT)) (-2832 (($) 14 T ELT)) (-3900 (((-793) $) NIL T ELT)) (-3384 (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) (((-793) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) NIL (|has| |#4| (-633 (-549))) ELT)) (-3924 (($ (-663 |#4|)) 22 T ELT)) (-2511 (($ $ |#3|) 52 T ELT)) (-4047 (($ $ |#3|) 54 T ELT)) (-3833 (($ $) NIL T ELT)) (-2438 (($ $ |#3|) NIL T ELT)) (-3913 (((-887) $) 35 T ELT) (((-663 |#4|) $) 46 T ELT)) (-1930 (((-793) $) NIL (|has| |#3| (-381)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1690 (((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3058 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) NIL T ELT)) (-4135 (((-663 $) |#4| $) 66 T ELT) (((-663 $) |#4| (-663 $)) NIL T ELT) (((-663 $) (-663 |#4|) $) NIL T ELT) (((-663 $) (-663 |#4|) (-663 $)) NIL T ELT)) (-2149 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3616 (((-663 |#3|) $) NIL T ELT)) (-2416 (((-114) |#4| $) NIL T ELT)) (-3621 (((-114) |#3| $) 74 T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-1177 |#1| |#2| |#3| |#4|) (-13 (-1140 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1392 ((-663 $) |#4| $ (-114) (-114) (-114) (-114) (-114))) (-15 -1372 ((-663 $) (-663 |#4|) (-114) (-114))) (-15 -1372 ((-663 $) (-663 |#4|) (-114) (-114) (-114) (-114))) (-15 -1506 ((-663 $) (-663 |#4|) (-114) (-114) (-114))) (-15 -2754 ((-2 (|:| |val| (-663 |#4|)) (|:| |towers| (-663 $))) (-663 |#4|) (-114) (-114))))) (-466) (-815) (-871) (-1096 |#1| |#2| |#3|)) (T -1177))
+((-1392 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 (-1177 *5 *6 *7 *3))) (-5 *1 (-1177 *5 *6 *7 *3)) (-4 *3 (-1096 *5 *6 *7)))) (-1372 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 (-1177 *5 *6 *7 *8))) (-5 *1 (-1177 *5 *6 *7 *8)))) (-1372 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 (-1177 *5 *6 *7 *8))) (-5 *1 (-1177 *5 *6 *7 *8)))) (-1506 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 (-1177 *5 *6 *7 *8))) (-5 *1 (-1177 *5 *6 *7 *8)))) (-2754 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-663 *8)) (|:| |towers| (-663 (-1177 *5 *6 *7 *8))))) (-5 *1 (-1177 *5 *6 *7 *8)) (-5 *3 (-663 *8)))))
+(-13 (-1140 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1392 ((-663 $) |#4| $ (-114) (-114) (-114) (-114) (-114))) (-15 -1372 ((-663 $) (-663 |#4|) (-114) (-114))) (-15 -1372 ((-663 $) (-663 |#4|) (-114) (-114) (-114) (-114))) (-15 -1506 ((-663 $) (-663 |#4|) (-114) (-114) (-114))) (-15 -2754 ((-2 (|:| |val| (-663 |#4|)) (|:| |towers| (-663 $))) (-663 |#4|) (-114) (-114)))))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3172 ((|#1| $) 37 T ELT)) (-4265 (($ (-663 |#1|)) 45 T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3525 (($) NIL T CONST)) (-4401 ((|#1| |#1| $) 40 T ELT)) (-2151 ((|#1| $) 35 T ELT)) (-3737 (((-663 |#1|) $) 18 (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-1878 ((|#1| $) 38 T ELT)) (-3888 (($ |#1| $) 41 T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2796 ((|#1| $) 36 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) 32 T ELT)) (-2832 (($) 43 T ELT)) (-3063 (((-793) $) 30 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4107 (($ $) 27 T ELT)) (-3913 (((-887) $) 14 (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3184 (($ (-663 |#1|)) NIL T ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 17 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 31 (|has| $ (-6 -4508)) ELT)))
+(((-1178 |#1|) (-13 (-1152 |#1|) (-10 -8 (-15 -4265 ($ (-663 |#1|))))) (-1247)) (T -1178))
+((-4265 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-1178 *3)))))
+(-13 (-1152 |#1|) (-10 -8 (-15 -4265 ($ (-663 |#1|)))))
+((-4083 ((|#2| $ "value" |#2|) NIL T ELT) ((|#2| $ "first" |#2|) NIL T ELT) (($ $ "rest" $) NIL T ELT) ((|#2| $ "last" |#2|) NIL T ELT) ((|#2| $ (-1264 (-560)) |#2|) 53 T ELT) ((|#2| $ (-560) |#2|) 50 T ELT)) (-3843 (((-114) $) 12 T ELT)) (-3324 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-4334 ((|#2| $) NIL T ELT) (($ $ (-793)) 17 T ELT)) (-2740 (($ $ |#2|) 49 T ELT)) (-4270 (((-114) $) 11 T ELT)) (-1507 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#2| $ "last") NIL T ELT) (($ $ (-1264 (-560))) 36 T ELT) ((|#2| $ (-560)) 26 T ELT) ((|#2| $ (-560) |#2|) NIL T ELT)) (-3305 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-1955 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-663 $)) 45 T ELT) (($ $ |#2|) NIL T ELT)))
+(((-1179 |#1| |#2|) (-10 -8 (-15 -3843 ((-114) |#1|)) (-15 -4270 ((-114) |#1|)) (-15 -4083 (|#2| |#1| (-560) |#2|)) (-15 -1507 (|#2| |#1| (-560) |#2|)) (-15 -1507 (|#2| |#1| (-560))) (-15 -2740 (|#1| |#1| |#2|)) (-15 -1507 (|#1| |#1| (-1264 (-560)))) (-15 -1955 (|#1| |#1| |#2|)) (-15 -1955 (|#1| (-663 |#1|))) (-15 -4083 (|#2| |#1| (-1264 (-560)) |#2|)) (-15 -4083 (|#2| |#1| "last" |#2|)) (-15 -4083 (|#1| |#1| "rest" |#1|)) (-15 -4083 (|#2| |#1| "first" |#2|)) (-15 -3305 (|#1| |#1| |#2|)) (-15 -3305 (|#1| |#1| |#1|)) (-15 -1507 (|#2| |#1| "last")) (-15 -1507 (|#1| |#1| "rest")) (-15 -4334 (|#1| |#1| (-793))) (-15 -1507 (|#2| |#1| "first")) (-15 -4334 (|#2| |#1|)) (-15 -1955 (|#1| |#2| |#1|)) (-15 -1955 (|#1| |#1| |#1|)) (-15 -4083 (|#2| |#1| "value" |#2|)) (-15 -1507 (|#2| |#1| "value")) (-15 -3324 (|#1| (-1 |#2| |#2|) |#1|))) (-1180 |#2|) (-1247)) (T -1179))
+NIL
+(-10 -8 (-15 -3843 ((-114) |#1|)) (-15 -4270 ((-114) |#1|)) (-15 -4083 (|#2| |#1| (-560) |#2|)) (-15 -1507 (|#2| |#1| (-560) |#2|)) (-15 -1507 (|#2| |#1| (-560))) (-15 -2740 (|#1| |#1| |#2|)) (-15 -1507 (|#1| |#1| (-1264 (-560)))) (-15 -1955 (|#1| |#1| |#2|)) (-15 -1955 (|#1| (-663 |#1|))) (-15 -4083 (|#2| |#1| (-1264 (-560)) |#2|)) (-15 -4083 (|#2| |#1| "last" |#2|)) (-15 -4083 (|#1| |#1| "rest" |#1|)) (-15 -4083 (|#2| |#1| "first" |#2|)) (-15 -3305 (|#1| |#1| |#2|)) (-15 -3305 (|#1| |#1| |#1|)) (-15 -1507 (|#2| |#1| "last")) (-15 -1507 (|#1| |#1| "rest")) (-15 -4334 (|#1| |#1| (-793))) (-15 -1507 (|#2| |#1| "first")) (-15 -4334 (|#2| |#1|)) (-15 -1955 (|#1| |#2| |#1|)) (-15 -1955 (|#1| |#1| |#1|)) (-15 -4083 (|#2| |#1| "value" |#2|)) (-15 -1507 (|#2| |#1| "value")) (-15 -3324 (|#1| (-1 |#2| |#2|) |#1|)))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1430 ((|#1| $) 49 T ELT)) (-3853 ((|#1| $) 66 T ELT)) (-3990 (($ $) 68 T ELT)) (-2033 (((-1303) $ (-560) (-560)) 99 (|has| $ (-6 -4509)) ELT)) (-4367 (($ $ (-560)) 53 (|has| $ (-6 -4509)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-3654 ((|#1| $ |#1|) 40 (|has| $ (-6 -4509)) ELT)) (-1518 (($ $ $) 57 (|has| $ (-6 -4509)) ELT)) (-3042 ((|#1| $ |#1|) 55 (|has| $ (-6 -4509)) ELT)) (-2509 ((|#1| $ |#1|) 59 (|has| $ (-6 -4509)) ELT)) (-4083 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4509)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4509)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4509)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) 119 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-560) |#1|) 88 (|has| $ (-6 -4509)) ELT)) (-2566 (($ $ (-663 $)) 42 (|has| $ (-6 -4509)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) 104 (|has| $ (-6 -4508)) ELT)) (-3839 ((|#1| $) 67 T ELT)) (-3525 (($) 7 T CONST)) (-4345 (($ $) 74 T ELT) (($ $ (-793)) 72 T ELT)) (-3658 (($ $) 101 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3033 (($ (-1 (-114) |#1|) $) 105 (|has| $ (-6 -4508)) ELT) (($ |#1| $) 102 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $) 107 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 106 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 103 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3338 ((|#1| $ (-560) |#1|) 87 (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-560)) 89 T ELT)) (-3843 (((-114) $) 85 T ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-2104 (((-663 $) $) 51 T ELT)) (-2150 (((-114) $ $) 43 (|has| |#1| (-1132)) ELT)) (-4246 (($ (-793) |#1|) 111 T ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-2483 (((-560) $) 97 (|has| (-560) (-871)) ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4263 (((-560) $) 96 (|has| (-560) (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 114 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-2656 (((-663 |#1|) $) 46 T ELT)) (-1485 (((-114) $) 50 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3057 ((|#1| $) 71 T ELT) (($ $ (-793)) 69 T ELT)) (-2507 (($ $ $ (-560)) 118 T ELT) (($ |#1| $ (-560)) 117 T ELT)) (-3372 (((-663 (-560)) $) 94 T ELT)) (-3439 (((-114) (-560) $) 93 T ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-4334 ((|#1| $) 77 T ELT) (($ $ (-793)) 75 T ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 108 T ELT)) (-2740 (($ $ |#1|) 98 (|has| $ (-6 -4509)) ELT)) (-4270 (((-114) $) 86 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-4019 (((-114) |#1| $) 95 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) 92 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1507 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT) (($ $ (-1264 (-560))) 110 T ELT) ((|#1| $ (-560)) 91 T ELT) ((|#1| $ (-560) |#1|) 90 T ELT)) (-2374 (((-560) $ $) 45 T ELT)) (-2579 (($ $ (-1264 (-560))) 116 T ELT) (($ $ (-560)) 115 T ELT)) (-2752 (((-114) $) 47 T ELT)) (-2493 (($ $) 63 T ELT)) (-3438 (($ $) 60 (|has| $ (-6 -4509)) ELT)) (-3010 (((-793) $) 64 T ELT)) (-1474 (($ $) 65 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) 100 (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 109 T ELT)) (-3305 (($ $ $) 62 (|has| $ (-6 -4509)) ELT) (($ $ |#1|) 61 (|has| $ (-6 -4509)) ELT)) (-1955 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT) (($ (-663 $)) 113 T ELT) (($ $ |#1|) 112 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3809 (((-663 $) $) 52 T ELT)) (-3606 (((-114) $ $) 44 (|has| |#1| (-1132)) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-1180 |#1|) (-142) (-1247)) (T -1180))
-((-3875 (*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))) (-2267 (*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))))
-(-13 (-1286 |t#1|) (-673 |t#1|) (-10 -8 (-15 -3875 ((-114) $)) (-15 -2267 ((-114) $))))
-(((-34) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #0=(-560) |#1|) . T) ((-298 (-1264 (-560)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-673 |#1|) . T) ((-1041 |#1|) . T) ((-1132) |has| |#1| (-1132)) ((-1247) . T) ((-1286 |#1|) . T))
-((-1538 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4083 (($) NIL T ELT) (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-3839 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 ((|#2| $ |#1| |#2|) NIL T ELT)) (-3500 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4255 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT)) (-3390 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2375 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3779 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#2| $ |#1|) NIL T ELT)) (-2181 (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-2656 (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-2937 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-2236 (((-663 |#1|) $) NIL T ELT)) (-1445 (((-114) |#1| $) NIL T ELT)) (-1576 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-3629 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-3270 (((-663 |#1|) $) NIL T ELT)) (-3586 (((-114) |#1| $) NIL T ELT)) (-3855 (((-1151) $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-3637 ((|#2| $) NIL (|has| |#1| (-871)) ELT)) (-3329 (((-3 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) "failed") (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL T ELT)) (-3037 (($ $ |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-2615 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-2787 (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-3571 (((-663 |#2|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-3897 (($) NIL T ELT) (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-3865 (((-793) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT) (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-633 (-549))) ELT)) (-1592 (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-1578 (((-887) $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-632 (-887))) (|has| |#2| (-632 (-887)))) ELT)) (-2275 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3376 (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-1728 (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+((-4270 (*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))) (-3843 (*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))))
+(-13 (-1286 |t#1|) (-673 |t#1|) (-10 -8 (-15 -4270 ((-114) $)) (-15 -3843 ((-114) $))))
+(((-34) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #0=(-560) |#1|) . T) ((-298 (-1264 (-560)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-673 |#1|) . T) ((-1041 |#1|) . T) ((-1132) |has| |#1| (-1132)) ((-1247) . T) ((-1286 |#1|) . T))
+((-2243 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4236 (($) NIL T ELT) (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-2033 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1864 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3799 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT)) (-2091 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-3033 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3338 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#2| $ |#1|) NIL T ELT)) (-3737 (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3243 (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-4263 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-4325 (((-663 |#1|) $) NIL T ELT)) (-4124 (((-114) |#1| $) NIL T ELT)) (-1878 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-3888 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-3372 (((-663 |#1|) $) NIL T ELT)) (-3439 (((-114) |#1| $) NIL T ELT)) (-3376 (((-1151) $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-4334 ((|#2| $) NIL (|has| |#1| (-871)) ELT)) (-2708 (((-3 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) "failed") (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL T ELT)) (-2740 (($ $ |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-2796 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-2086 (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-1383 (((-663 |#2|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-4468 (($) NIL T ELT) (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-3384 (((-793) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT) (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-633 (-549))) ELT)) (-3924 (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-3913 (((-887) $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-632 (-887))) (|has| |#2| (-632 (-887)))) ELT)) (-3925 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3184 (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-2149 (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
(((-1181 |#1| |#2| |#3|) (-1224 |#1| |#2|) (-1132) (-1132) |#2|) (T -1181))
NIL
(-1224 |#1| |#2|)
-((-1538 (((-114) $ $) 7 T ELT)) (-3009 (((-3 $ "failed") $) 14 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3161 (($) 15 T CONST)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2473 (((-114) $ $) 8 T ELT)))
+((-2243 (((-114) $ $) 7 T ELT)) (-3738 (((-3 $ "failed") $) 14 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3239 (($) 15 T CONST)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2340 (((-114) $ $) 8 T ELT)))
(((-1182) (-142)) (T -1182))
-((-3161 (*1 *1) (-4 *1 (-1182))) (-3009 (*1 *1 *1) (|partial| -4 *1 (-1182))))
-(-13 (-1132) (-10 -8 (-15 -3161 ($) -3081) (-15 -3009 ((-3 $ "failed") $))))
+((-3239 (*1 *1) (-4 *1 (-1182))) (-3738 (*1 *1 *1) (|partial| -4 *1 (-1182))))
+(-13 (-1132) (-10 -8 (-15 -3239 ($) -2650) (-15 -3738 ((-3 $ "failed") $))))
(((-102) . T) ((-632 (-887)) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-1404 (((-713 (-1166)) $) 27 T ELT)) (-2875 (((-1166) $) 15 T ELT)) (-4038 (((-1166) $) 17 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3190 (((-520) $) 13 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 37 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-1183) (-13 (-1114) (-10 -8 (-15 -3190 ((-520) $)) (-15 -4038 ((-1166) $)) (-15 -1404 ((-713 (-1166)) $)) (-15 -2875 ((-1166) $))))) (T -1183))
-((-3190 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1183)))) (-4038 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1183)))) (-1404 (*1 *2 *1) (-12 (-5 *2 (-713 (-1166))) (-5 *1 (-1183)))) (-2875 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1183)))))
-(-13 (-1114) (-10 -8 (-15 -3190 ((-520) $)) (-15 -4038 ((-1166) $)) (-15 -1404 ((-713 (-1166)) $)) (-15 -2875 ((-1166) $))))
-((-1795 (((-1185 |#1|) (-1185 |#1|)) 17 T ELT)) (-1735 (((-1185 |#1|) (-1185 |#1|)) 13 T ELT)) (-2434 (((-1185 |#1|) (-1185 |#1|) (-560) (-560)) 20 T ELT)) (-4359 (((-1185 |#1|) (-1185 |#1|)) 15 T ELT)))
-(((-1184 |#1|) (-10 -7 (-15 -1735 ((-1185 |#1|) (-1185 |#1|))) (-15 -4359 ((-1185 |#1|) (-1185 |#1|))) (-15 -1795 ((-1185 |#1|) (-1185 |#1|))) (-15 -2434 ((-1185 |#1|) (-1185 |#1|) (-560) (-560)))) (-13 (-571) (-149))) (T -1184))
-((-2434 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1185 *4)) (-5 *3 (-560)) (-4 *4 (-13 (-571) (-149))) (-5 *1 (-1184 *4)))) (-1795 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-13 (-571) (-149))) (-5 *1 (-1184 *3)))) (-4359 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-13 (-571) (-149))) (-5 *1 (-1184 *3)))) (-1735 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-13 (-571) (-149))) (-5 *1 (-1184 *3)))))
-(-10 -7 (-15 -1735 ((-1185 |#1|) (-1185 |#1|))) (-15 -4359 ((-1185 |#1|) (-1185 |#1|))) (-15 -1795 ((-1185 |#1|) (-1185 |#1|))) (-15 -2434 ((-1185 |#1|) (-1185 |#1|) (-560) (-560))))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3853 ((|#1| $) NIL T ELT)) (-3273 ((|#1| $) NIL T ELT)) (-2270 (($ $) 67 T ELT)) (-3839 (((-1303) $ (-560) (-560)) 99 (|has| $ (-6 -4509)) ELT)) (-2194 (($ $ (-560)) 128 (|has| $ (-6 -4509)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-3964 (((-887) $) 56 (|has| |#1| (-1132)) ELT)) (-3217 (((-114)) 55 (|has| |#1| (-1132)) ELT)) (-2869 ((|#1| $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2102 (($ $ $) 115 (|has| $ (-6 -4509)) ELT) (($ $ (-560) $) 141 T ELT)) (-4319 ((|#1| $ |#1|) 125 (|has| $ (-6 -4509)) ELT)) (-3132 ((|#1| $ |#1|) 120 (|has| $ (-6 -4509)) ELT)) (-1773 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4509)) ELT) (($ $ "rest" $) 124 (|has| $ (-6 -4509)) ELT) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) 112 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-560) |#1|) 77 (|has| $ (-6 -4509)) ELT)) (-2083 (($ $ (-663 $)) NIL (|has| $ (-6 -4509)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) 80 T ELT)) (-3264 ((|#1| $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-3568 (($ $) 14 T ELT)) (-3649 (($ $) 40 T ELT) (($ $ (-793)) 111 T ELT)) (-3993 (((-114) (-663 |#1|) $) 134 (|has| |#1| (-1132)) ELT)) (-4488 (($ (-663 |#1|)) 130 T ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2375 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) 79 T ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3779 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-560)) NIL T ELT)) (-2267 (((-114) $) NIL T ELT)) (-2181 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2592 (((-1303) (-560) $) 140 (|has| |#1| (-1132)) ELT)) (-2727 (((-793) $) 137 T ELT)) (-3092 (((-663 $) $) NIL T ELT)) (-3398 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-4095 (($ (-793) |#1|) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2937 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 85 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 89 T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-3596 (((-663 |#1|) $) NIL T ELT)) (-2409 (((-114) $) NIL T ELT)) (-2501 (($ $) 113 T ELT)) (-3987 (((-114) $) 13 T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-2398 ((|#1| $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-3996 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) 96 T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-1906 (($ (-1 |#1|)) 143 T ELT) (($ (-1 |#1| |#1|) |#1|) 144 T ELT)) (-3117 ((|#1| $) 10 T ELT)) (-3637 ((|#1| $) 39 T ELT) (($ $ (-793)) 65 T ELT)) (-3231 (((-2 (|:| |cycle?| (-114)) (|:| -2513 (-793)) (|:| |period| (-793))) (-793) $) 34 T ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-1957 (($ (-1 (-114) |#1|) $) 145 T ELT)) (-1967 (($ (-1 (-114) |#1|) $) 146 T ELT)) (-3037 (($ $ |#1|) 90 (|has| $ (-6 -4509)) ELT)) (-4372 (($ $ (-560)) 45 T ELT)) (-3875 (((-114) $) 94 T ELT)) (-1606 (((-114) $) 12 T ELT)) (-3910 (((-114) $) 136 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 30 T ELT)) (-2914 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) NIL T ELT)) (-1663 (((-114) $) 20 T ELT)) (-3986 (($) 60 T ELT)) (-3924 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT) ((|#1| $ (-560)) 75 T ELT) ((|#1| $ (-560) |#1|) NIL T ELT)) (-1750 (((-560) $ $) 64 T ELT)) (-4413 (($ $ (-1264 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-2625 (($ (-1 $)) 63 T ELT)) (-1978 (((-114) $) 91 T ELT)) (-1763 (($ $) 92 T ELT)) (-1915 (($ $) 116 (|has| $ (-6 -4509)) ELT)) (-1502 (((-793) $) NIL T ELT)) (-3458 (($ $) NIL T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1799 (($ $) 59 T ELT)) (-1407 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 73 T ELT)) (-1547 (($ |#1| $) 114 T ELT)) (-4354 (($ $ $) 118 (|has| $ (-6 -4509)) ELT) (($ $ |#1|) 119 (|has| $ (-6 -4509)) ELT)) (-3415 (($ $ $) 101 T ELT) (($ |#1| $) 61 T ELT) (($ (-663 $)) 106 T ELT) (($ $ |#1|) 100 T ELT)) (-3266 (($ $) 66 T ELT)) (-1578 (($ (-663 |#1|)) 129 T ELT) (((-887) $) 57 (|has| |#1| (-632 (-887))) ELT)) (-3955 (((-663 $) $) NIL T ELT)) (-2997 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 132 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-1185 |#1|) (-13 (-696 |#1|) (-635 (-663 |#1|)) (-10 -8 (-6 -4509) (-15 -4488 ($ (-663 |#1|))) (IF (|has| |#1| (-1132)) (-15 -3993 ((-114) (-663 |#1|) $)) |%noBranch|) (-15 -3231 ((-2 (|:| |cycle?| (-114)) (|:| -2513 (-793)) (|:| |period| (-793))) (-793) $)) (-15 -2625 ($ (-1 $))) (-15 -1547 ($ |#1| $)) (IF (|has| |#1| (-1132)) (PROGN (-15 -2592 ((-1303) (-560) $)) (-15 -3964 ((-887) $)) (-15 -3217 ((-114)))) |%noBranch|) (-15 -2102 ($ $ (-560) $)) (-15 -1906 ($ (-1 |#1|))) (-15 -1906 ($ (-1 |#1| |#1|) |#1|)) (-15 -1957 ($ (-1 (-114) |#1|) $)) (-15 -1967 ($ (-1 (-114) |#1|) $)))) (-1247)) (T -1185))
-((-4488 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))) (-3993 (*1 *2 *3 *1) (-12 (-5 *3 (-663 *4)) (-4 *4 (-1132)) (-4 *4 (-1247)) (-5 *2 (-114)) (-5 *1 (-1185 *4)))) (-3231 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-114)) (|:| -2513 (-793)) (|:| |period| (-793)))) (-5 *1 (-1185 *4)) (-4 *4 (-1247)) (-5 *3 (-793)))) (-2625 (*1 *1 *2) (-12 (-5 *2 (-1 (-1185 *3))) (-5 *1 (-1185 *3)) (-4 *3 (-1247)))) (-1547 (*1 *1 *2 *1) (-12 (-5 *1 (-1185 *2)) (-4 *2 (-1247)))) (-2592 (*1 *2 *3 *1) (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-1185 *4)) (-4 *4 (-1132)) (-4 *4 (-1247)))) (-3964 (*1 *2 *1) (-12 (-5 *2 (-887)) (-5 *1 (-1185 *3)) (-4 *3 (-1132)) (-4 *3 (-1247)))) (-3217 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1185 *3)) (-4 *3 (-1132)) (-4 *3 (-1247)))) (-2102 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1185 *3)) (-4 *3 (-1247)))) (-1906 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))) (-1906 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))) (-1957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))) (-1967 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))))
-(-13 (-696 |#1|) (-635 (-663 |#1|)) (-10 -8 (-6 -4509) (-15 -4488 ($ (-663 |#1|))) (IF (|has| |#1| (-1132)) (-15 -3993 ((-114) (-663 |#1|) $)) |%noBranch|) (-15 -3231 ((-2 (|:| |cycle?| (-114)) (|:| -2513 (-793)) (|:| |period| (-793))) (-793) $)) (-15 -2625 ($ (-1 $))) (-15 -1547 ($ |#1| $)) (IF (|has| |#1| (-1132)) (PROGN (-15 -2592 ((-1303) (-560) $)) (-15 -3964 ((-887) $)) (-15 -3217 ((-114)))) |%noBranch|) (-15 -2102 ($ $ (-560) $)) (-15 -1906 ($ (-1 |#1|))) (-15 -1906 ($ (-1 |#1| |#1|) |#1|)) (-15 -1957 ($ (-1 (-114) |#1|) $)) (-15 -1967 ($ (-1 (-114) |#1|) $))))
-((-3415 (((-1185 |#1|) (-1185 (-1185 |#1|))) 15 T ELT)))
-(((-1186 |#1|) (-10 -7 (-15 -3415 ((-1185 |#1|) (-1185 (-1185 |#1|))))) (-1247)) (T -1186))
-((-3415 (*1 *2 *3) (-12 (-5 *3 (-1185 (-1185 *4))) (-5 *2 (-1185 *4)) (-5 *1 (-1186 *4)) (-4 *4 (-1247)))))
-(-10 -7 (-15 -3415 ((-1185 |#1|) (-1185 (-1185 |#1|)))))
-((-1520 (((-1185 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1185 |#1|)) 25 T ELT)) (-4129 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1185 |#1|)) 26 T ELT)) (-3957 (((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|)) 16 T ELT)))
-(((-1187 |#1| |#2|) (-10 -7 (-15 -3957 ((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|))) (-15 -1520 ((-1185 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1185 |#1|))) (-15 -4129 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1185 |#1|)))) (-1247) (-1247)) (T -1187))
-((-4129 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1185 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-1187 *5 *2)))) (-1520 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1185 *6)) (-4 *6 (-1247)) (-4 *3 (-1247)) (-5 *2 (-1185 *3)) (-5 *1 (-1187 *6 *3)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1185 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1185 *6)) (-5 *1 (-1187 *5 *6)))))
-(-10 -7 (-15 -3957 ((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|))) (-15 -1520 ((-1185 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1185 |#1|))) (-15 -4129 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1185 |#1|))))
-((-3957 (((-1185 |#3|) (-1 |#3| |#1| |#2|) (-1185 |#1|) (-1185 |#2|)) 21 T ELT)))
-(((-1188 |#1| |#2| |#3|) (-10 -7 (-15 -3957 ((-1185 |#3|) (-1 |#3| |#1| |#2|) (-1185 |#1|) (-1185 |#2|)))) (-1247) (-1247) (-1247)) (T -1188))
-((-3957 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1185 *6)) (-5 *5 (-1185 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1185 *8)) (-5 *1 (-1188 *6 *7 *8)))))
-(-10 -7 (-15 -3957 ((-1185 |#3|) (-1 |#3| |#1| |#2|) (-1185 |#1|) (-1185 |#2|))))
-((-1538 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-2987 (($ $) NIL T ELT)) (-2552 (($ $) NIL T ELT)) (-1532 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-3839 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-3794 (((-114) $ $) NIL T ELT)) (-3770 (((-114) $ $ (-560)) NIL T ELT)) (-1620 (($ (-560)) 8 T ELT) (($ (-229)) 10 T ELT)) (-1513 (((-663 $) $ (-146)) NIL T ELT) (((-663 $) $ (-143)) NIL T ELT)) (-4040 (((-114) (-1 (-114) (-146) (-146)) $) NIL T ELT) (((-114) $) NIL (|has| (-146) (-871)) ELT)) (-1703 (($ (-1 (-114) (-146) (-146)) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| (-146) (-871))) ELT)) (-2286 (($ (-1 (-114) (-146) (-146)) $) NIL T ELT) (($ $) NIL (|has| (-146) (-871)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 (((-146) $ (-560) (-146)) NIL (|has| $ (-6 -4509)) ELT) (((-146) $ (-1264 (-560)) (-146)) NIL (|has| $ (-6 -4509)) ELT)) (-1982 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2238 (($) NIL T CONST)) (-3486 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-4391 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) NIL T ELT)) (-4200 (($ $ (-1264 (-560)) $) NIL T ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-2375 (($ (-146) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT) (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) NIL (|has| $ (-6 -4508)) ELT) (((-146) (-1 (-146) (-146) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3779 (((-146) $ (-560) (-146)) NIL (|has| $ (-6 -4509)) ELT)) (-3709 (((-146) $ (-560)) NIL T ELT)) (-3815 (((-114) $ $) NIL T ELT)) (-1722 (((-560) (-1 (-114) (-146)) $) NIL T ELT) (((-560) (-146) $) NIL (|has| (-146) (-1132)) ELT) (((-560) (-146) $ (-560)) NIL (|has| (-146) (-1132)) ELT) (((-560) $ $ (-560)) NIL T ELT) (((-560) (-143) $ (-560)) NIL T ELT)) (-2181 (((-663 (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4095 (($ (-793) (-146)) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL (|has| (-146) (-871)) ELT)) (-3223 (($ (-1 (-114) (-146) (-146)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-146) (-871)) ELT)) (-2656 (((-663 (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-2937 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| (-146) (-871)) ELT)) (-1862 (((-114) $ $ (-146)) NIL T ELT)) (-4473 (((-793) $ $ (-146)) NIL T ELT)) (-3768 (($ (-1 (-146) (-146)) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-146) (-146)) $) NIL T ELT) (($ (-1 (-146) (-146) (-146)) $ $) NIL T ELT)) (-1917 (($ $) NIL T ELT)) (-3247 (($ $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-3497 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-1905 (((-1189) $) NIL (|has| (-146) (-1132)) ELT)) (-3996 (($ (-146) $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) NIL T ELT)) (-3855 (((-1151) $) NIL (|has| (-146) (-1132)) ELT)) (-3637 (((-146) $) NIL (|has| (-560) (-871)) ELT)) (-3329 (((-3 (-146) "failed") (-1 (-114) (-146)) $) NIL T ELT)) (-3037 (($ $ (-146)) NIL (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 (-146)))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-305 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-146) (-146)) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-663 (-146)) (-663 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-3571 (((-663 (-146)) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 (((-146) $ (-560) (-146)) NIL T ELT) (((-146) $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT) (($ $ $) NIL T ELT)) (-4413 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-3865 (((-793) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-146) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-3640 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) NIL (|has| (-146) (-633 (-549))) ELT)) (-1592 (($ (-663 (-146))) NIL T ELT)) (-3415 (($ $ (-146)) NIL T ELT) (($ (-146) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1578 (($ (-146)) NIL T ELT) (((-887) $) NIL (|has| (-146) (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-1728 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2735 (((-1189) $) 21 T ELT) (((-1189) $ (-114)) 23 T ELT) (((-1303) (-845) $) 24 T ELT) (((-1303) (-845) $ (-114)) 25 T ELT)) (-2536 (((-114) $ $) NIL (|has| (-146) (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| (-146) (-871)) ELT)) (-2473 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-2521 (((-114) $ $) NIL (|has| (-146) (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| (-146) (-871)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-1189) (-13 (-1175) (-843) (-10 -8 (-15 -1620 ($ (-560))) (-15 -1620 ($ (-229)))))) (T -1189))
-((-1620 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1189)))) (-1620 (*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1189)))))
-(-13 (-1175) (-843) (-10 -8 (-15 -1620 ($ (-560))) (-15 -1620 ($ (-229)))))
-((-1538 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-4083 (($) NIL T ELT) (($ (-663 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))) NIL T ELT)) (-3839 (((-1303) $ (-1189) (-1189)) NIL (|has| $ (-6 -4509)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 ((|#1| $ (-1189) |#1|) NIL T ELT)) (-3500 (($ (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4255 (((-3 |#1| "failed") (-1189) $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1132))) ELT)) (-3390 (($ (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#1| "failed") (-1189) $) NIL T ELT)) (-2375 (($ (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 (((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $ (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1132))) ELT) (((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $ (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3779 ((|#1| $ (-1189) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-1189)) NIL T ELT)) (-2181 (((-663 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-1189) $) NIL (|has| (-1189) (-871)) ELT)) (-2656 (((-663 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1132))) ELT) (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2937 (((-1189) $) NIL (|has| (-1189) (-871)) ELT)) (-3768 (($ (-1 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (-2304 (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1132)) (|has| |#1| (-1132))) ELT)) (-2236 (((-663 (-1189)) $) NIL T ELT)) (-1445 (((-114) (-1189) $) NIL T ELT)) (-1576 (((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) $) NIL T ELT)) (-3629 (($ (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) $) NIL T ELT)) (-3270 (((-663 (-1189)) $) NIL T ELT)) (-3586 (((-114) (-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL (-2304 (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1132)) (|has| |#1| (-1132))) ELT)) (-3637 ((|#1| $) NIL (|has| (-1189) (-871)) ELT)) (-3329 (((-3 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) "failed") (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL T ELT)) (-3037 (($ $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2615 (((-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) $) NIL T ELT)) (-2787 (((-114) (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))))) NIL (-12 (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-321 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))) NIL (-12 (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-321 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1132))) ELT) (($ $ (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) NIL (-12 (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-321 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1132))) ELT) (($ $ (-663 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) (-663 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))) NIL (-12 (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-321 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#1| $ (-1189)) NIL T ELT) ((|#1| $ (-1189) |#1|) NIL T ELT)) (-3897 (($) NIL T ELT) (($ (-663 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))) NIL T ELT)) (-3865 (((-793) (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-1132))) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) NIL (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-633 (-549))) ELT)) (-1592 (($ (-663 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))) NIL T ELT)) (-1578 (((-887) $) NIL (-2304 (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-632 (-887))) (|has| |#1| (-632 (-887)))) ELT)) (-2275 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-3376 (($ (-663 (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)))) NIL T ELT)) (-1728 (((-114) (-1 (-114) (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 (-1189)) (|:| -2460 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3603 (((-713 (-1166)) $) 27 T ELT)) (-3579 (((-1166) $) 15 T ELT)) (-3373 (((-1166) $) 17 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1881 (((-520) $) 13 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 37 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-1183) (-13 (-1114) (-10 -8 (-15 -1881 ((-520) $)) (-15 -3373 ((-1166) $)) (-15 -3603 ((-713 (-1166)) $)) (-15 -3579 ((-1166) $))))) (T -1183))
+((-1881 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1183)))) (-3373 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1183)))) (-3603 (*1 *2 *1) (-12 (-5 *2 (-713 (-1166))) (-5 *1 (-1183)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1183)))))
+(-13 (-1114) (-10 -8 (-15 -1881 ((-520) $)) (-15 -3373 ((-1166) $)) (-15 -3603 ((-713 (-1166)) $)) (-15 -3579 ((-1166) $))))
+((-1530 (((-1185 |#1|) (-1185 |#1|)) 17 T ELT)) (-2222 (((-1185 |#1|) (-1185 |#1|)) 13 T ELT)) (-1713 (((-1185 |#1|) (-1185 |#1|) (-560) (-560)) 20 T ELT)) (-3349 (((-1185 |#1|) (-1185 |#1|)) 15 T ELT)))
+(((-1184 |#1|) (-10 -7 (-15 -2222 ((-1185 |#1|) (-1185 |#1|))) (-15 -3349 ((-1185 |#1|) (-1185 |#1|))) (-15 -1530 ((-1185 |#1|) (-1185 |#1|))) (-15 -1713 ((-1185 |#1|) (-1185 |#1|) (-560) (-560)))) (-13 (-571) (-149))) (T -1184))
+((-1713 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1185 *4)) (-5 *3 (-560)) (-4 *4 (-13 (-571) (-149))) (-5 *1 (-1184 *4)))) (-1530 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-13 (-571) (-149))) (-5 *1 (-1184 *3)))) (-3349 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-13 (-571) (-149))) (-5 *1 (-1184 *3)))) (-2222 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-13 (-571) (-149))) (-5 *1 (-1184 *3)))))
+(-10 -7 (-15 -2222 ((-1185 |#1|) (-1185 |#1|))) (-15 -3349 ((-1185 |#1|) (-1185 |#1|))) (-15 -1530 ((-1185 |#1|) (-1185 |#1|))) (-15 -1713 ((-1185 |#1|) (-1185 |#1|) (-560) (-560))))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1430 ((|#1| $) NIL T ELT)) (-3853 ((|#1| $) NIL T ELT)) (-3990 (($ $) 67 T ELT)) (-2033 (((-1303) $ (-560) (-560)) 99 (|has| $ (-6 -4509)) ELT)) (-4367 (($ $ (-560)) 128 (|has| $ (-6 -4509)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3906 (((-887) $) 56 (|has| |#1| (-1132)) ELT)) (-4096 (((-114)) 55 (|has| |#1| (-1132)) ELT)) (-3654 ((|#1| $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-1518 (($ $ $) 115 (|has| $ (-6 -4509)) ELT) (($ $ (-560) $) 141 T ELT)) (-3042 ((|#1| $ |#1|) 125 (|has| $ (-6 -4509)) ELT)) (-2509 ((|#1| $ |#1|) 120 (|has| $ (-6 -4509)) ELT)) (-4083 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ "first" |#1|) 122 (|has| $ (-6 -4509)) ELT) (($ $ "rest" $) 124 (|has| $ (-6 -4509)) ELT) ((|#1| $ "last" |#1|) 127 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) 112 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-560) |#1|) 77 (|has| $ (-6 -4509)) ELT)) (-2566 (($ $ (-663 $)) NIL (|has| $ (-6 -4509)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) 80 T ELT)) (-3839 ((|#1| $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-1352 (($ $) 14 T ELT)) (-4345 (($ $) 40 T ELT) (($ $ (-793)) 111 T ELT)) (-2908 (((-114) (-663 |#1|) $) 134 (|has| |#1| (-1132)) ELT)) (-1985 (($ (-663 |#1|)) 130 T ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3033 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) 79 T ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3338 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-560)) NIL T ELT)) (-3843 (((-114) $) NIL T ELT)) (-3737 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2016 (((-1303) (-560) $) 140 (|has| |#1| (-1132)) ELT)) (-1511 (((-793) $) 137 T ELT)) (-2104 (((-663 $) $) NIL T ELT)) (-2150 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-4246 (($ (-793) |#1|) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4263 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 95 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 85 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 89 T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 |#1|) $) NIL T ELT)) (-1485 (((-114) $) NIL T ELT)) (-4282 (($ $) 113 T ELT)) (-2844 (((-114) $) 13 T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3057 ((|#1| $) NIL T ELT) (($ $ (-793)) NIL T ELT)) (-2507 (($ $ $ (-560)) NIL T ELT) (($ |#1| $ (-560)) NIL T ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) 96 T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3852 (($ (-1 |#1|)) 143 T ELT) (($ (-1 |#1| |#1|) |#1|) 144 T ELT)) (-2356 ((|#1| $) 10 T ELT)) (-4334 ((|#1| $) 39 T ELT) (($ $ (-793)) 65 T ELT)) (-4248 (((-2 (|:| |cycle?| (-114)) (|:| -1903 (-793)) (|:| |period| (-793))) (-793) $) 34 T ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-3902 (($ (-1 (-114) |#1|) $) 145 T ELT)) (-3912 (($ (-1 (-114) |#1|) $) 146 T ELT)) (-2740 (($ $ |#1|) 90 (|has| $ (-6 -4509)) ELT)) (-2219 (($ $ (-560)) 45 T ELT)) (-4270 (((-114) $) 94 T ELT)) (-3412 (((-114) $) 12 T ELT)) (-1426 (((-114) $) 136 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 30 T ELT)) (-4019 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) NIL T ELT)) (-2706 (((-114) $) 20 T ELT)) (-2832 (($) 60 T ELT)) (-1507 ((|#1| $ "value") NIL T ELT) ((|#1| $ "first") NIL T ELT) (($ $ "rest") NIL T ELT) ((|#1| $ "last") NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT) ((|#1| $ (-560)) 75 T ELT) ((|#1| $ (-560) |#1|) NIL T ELT)) (-2374 (((-560) $ $) 64 T ELT)) (-2579 (($ $ (-1264 (-560))) NIL T ELT) (($ $ (-560)) NIL T ELT)) (-2914 (($ (-1 $)) 63 T ELT)) (-2752 (((-114) $) 91 T ELT)) (-2493 (($ $) 92 T ELT)) (-3438 (($ $) 116 (|has| $ (-6 -4509)) ELT)) (-3010 (((-793) $) NIL T ELT)) (-1474 (($ $) NIL T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4107 (($ $) 59 T ELT)) (-2400 (((-549) $) NIL (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 73 T ELT)) (-3219 (($ |#1| $) 114 T ELT)) (-3305 (($ $ $) 118 (|has| $ (-6 -4509)) ELT) (($ $ |#1|) 119 (|has| $ (-6 -4509)) ELT)) (-1955 (($ $ $) 101 T ELT) (($ |#1| $) 61 T ELT) (($ (-663 $)) 106 T ELT) (($ $ |#1|) 100 T ELT)) (-3329 (($ $) 66 T ELT)) (-3913 (($ (-663 |#1|)) 129 T ELT) (((-887) $) 57 (|has| |#1| (-632 (-887))) ELT)) (-3809 (((-663 $) $) NIL T ELT)) (-3606 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 132 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-1185 |#1|) (-13 (-696 |#1|) (-635 (-663 |#1|)) (-10 -8 (-6 -4509) (-15 -1985 ($ (-663 |#1|))) (IF (|has| |#1| (-1132)) (-15 -2908 ((-114) (-663 |#1|) $)) |%noBranch|) (-15 -4248 ((-2 (|:| |cycle?| (-114)) (|:| -1903 (-793)) (|:| |period| (-793))) (-793) $)) (-15 -2914 ($ (-1 $))) (-15 -3219 ($ |#1| $)) (IF (|has| |#1| (-1132)) (PROGN (-15 -2016 ((-1303) (-560) $)) (-15 -3906 ((-887) $)) (-15 -4096 ((-114)))) |%noBranch|) (-15 -1518 ($ $ (-560) $)) (-15 -3852 ($ (-1 |#1|))) (-15 -3852 ($ (-1 |#1| |#1|) |#1|)) (-15 -3902 ($ (-1 (-114) |#1|) $)) (-15 -3912 ($ (-1 (-114) |#1|) $)))) (-1247)) (T -1185))
+((-1985 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))) (-2908 (*1 *2 *3 *1) (-12 (-5 *3 (-663 *4)) (-4 *4 (-1132)) (-4 *4 (-1247)) (-5 *2 (-114)) (-5 *1 (-1185 *4)))) (-4248 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-114)) (|:| -1903 (-793)) (|:| |period| (-793)))) (-5 *1 (-1185 *4)) (-4 *4 (-1247)) (-5 *3 (-793)))) (-2914 (*1 *1 *2) (-12 (-5 *2 (-1 (-1185 *3))) (-5 *1 (-1185 *3)) (-4 *3 (-1247)))) (-3219 (*1 *1 *2 *1) (-12 (-5 *1 (-1185 *2)) (-4 *2 (-1247)))) (-2016 (*1 *2 *3 *1) (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-1185 *4)) (-4 *4 (-1132)) (-4 *4 (-1247)))) (-3906 (*1 *2 *1) (-12 (-5 *2 (-887)) (-5 *1 (-1185 *3)) (-4 *3 (-1132)) (-4 *3 (-1247)))) (-4096 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1185 *3)) (-4 *3 (-1132)) (-4 *3 (-1247)))) (-1518 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1185 *3)) (-4 *3 (-1247)))) (-3852 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))) (-3852 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))) (-3902 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))) (-3912 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))))
+(-13 (-696 |#1|) (-635 (-663 |#1|)) (-10 -8 (-6 -4509) (-15 -1985 ($ (-663 |#1|))) (IF (|has| |#1| (-1132)) (-15 -2908 ((-114) (-663 |#1|) $)) |%noBranch|) (-15 -4248 ((-2 (|:| |cycle?| (-114)) (|:| -1903 (-793)) (|:| |period| (-793))) (-793) $)) (-15 -2914 ($ (-1 $))) (-15 -3219 ($ |#1| $)) (IF (|has| |#1| (-1132)) (PROGN (-15 -2016 ((-1303) (-560) $)) (-15 -3906 ((-887) $)) (-15 -4096 ((-114)))) |%noBranch|) (-15 -1518 ($ $ (-560) $)) (-15 -3852 ($ (-1 |#1|))) (-15 -3852 ($ (-1 |#1| |#1|) |#1|)) (-15 -3902 ($ (-1 (-114) |#1|) $)) (-15 -3912 ($ (-1 (-114) |#1|) $))))
+((-1955 (((-1185 |#1|) (-1185 (-1185 |#1|))) 15 T ELT)))
+(((-1186 |#1|) (-10 -7 (-15 -1955 ((-1185 |#1|) (-1185 (-1185 |#1|))))) (-1247)) (T -1186))
+((-1955 (*1 *2 *3) (-12 (-5 *3 (-1185 (-1185 *4))) (-5 *2 (-1185 *4)) (-5 *1 (-1186 *4)) (-4 *4 (-1247)))))
+(-10 -7 (-15 -1955 ((-1185 |#1|) (-1185 (-1185 |#1|)))))
+((-2928 (((-1185 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1185 |#1|)) 25 T ELT)) (-1778 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1185 |#1|)) 26 T ELT)) (-2260 (((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|)) 16 T ELT)))
+(((-1187 |#1| |#2|) (-10 -7 (-15 -2260 ((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|))) (-15 -2928 ((-1185 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1185 |#1|))) (-15 -1778 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1185 |#1|)))) (-1247) (-1247)) (T -1187))
+((-1778 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1185 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-1187 *5 *2)))) (-2928 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1185 *6)) (-4 *6 (-1247)) (-4 *3 (-1247)) (-5 *2 (-1185 *3)) (-5 *1 (-1187 *6 *3)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1185 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1185 *6)) (-5 *1 (-1187 *5 *6)))))
+(-10 -7 (-15 -2260 ((-1185 |#2|) (-1 |#2| |#1|) (-1185 |#1|))) (-15 -2928 ((-1185 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1185 |#1|))) (-15 -1778 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1185 |#1|))))
+((-2260 (((-1185 |#3|) (-1 |#3| |#1| |#2|) (-1185 |#1|) (-1185 |#2|)) 21 T ELT)))
+(((-1188 |#1| |#2| |#3|) (-10 -7 (-15 -2260 ((-1185 |#3|) (-1 |#3| |#1| |#2|) (-1185 |#1|) (-1185 |#2|)))) (-1247) (-1247) (-1247)) (T -1188))
+((-2260 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1185 *6)) (-5 *5 (-1185 *7)) (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1185 *8)) (-5 *1 (-1188 *6 *7 *8)))))
+(-10 -7 (-15 -2260 ((-1185 |#3|) (-1 |#3| |#1| |#2|) (-1185 |#1|) (-1185 |#2|))))
+((-2243 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-3507 (($ $) NIL T ELT)) (-3473 (($ $) NIL T ELT)) (-2460 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-2033 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-2998 (((-114) $ $) NIL T ELT)) (-2973 (((-114) $ $ (-560)) NIL T ELT)) (-2903 (($ (-560)) 8 T ELT) (($ (-229)) 10 T ELT)) (-1626 (((-663 $) $ (-146)) NIL T ELT) (((-663 $) $ (-143)) NIL T ELT)) (-2152 (((-114) (-1 (-114) (-146) (-146)) $) NIL T ELT) (((-114) $) NIL (|has| (-146) (-871)) ELT)) (-3152 (($ (-1 (-114) (-146) (-146)) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| (-146) (-871))) ELT)) (-1787 (($ (-1 (-114) (-146) (-146)) $) NIL T ELT) (($ $) NIL (|has| (-146) (-871)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 (((-146) $ (-560) (-146)) NIL (|has| $ (-6 -4509)) ELT) (((-146) $ (-1264 (-560)) (-146)) NIL (|has| $ (-6 -4509)) ELT)) (-3923 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3525 (($) NIL T CONST)) (-4204 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-2372 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) NIL T ELT)) (-4443 (($ $ (-1264 (-560)) $) NIL T ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-3033 (($ (-146) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT) (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) NIL (|has| $ (-6 -4508)) ELT) (((-146) (-1 (-146) (-146) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3338 (((-146) $ (-560) (-146)) NIL (|has| $ (-6 -4509)) ELT)) (-3274 (((-146) $ (-560)) NIL T ELT)) (-3021 (((-114) $ $) NIL T ELT)) (-2359 (((-560) (-1 (-114) (-146)) $) NIL T ELT) (((-560) (-146) $) NIL (|has| (-146) (-1132)) ELT) (((-560) (-146) $ (-560)) NIL (|has| (-146) (-1132)) ELT) (((-560) $ $ (-560)) NIL T ELT) (((-560) (-143) $ (-560)) NIL T ELT)) (-3737 (((-663 (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-4246 (($ (-793) (-146)) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL (|has| (-146) (-871)) ELT)) (-4167 (($ (-1 (-114) (-146) (-146)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-146) (-871)) ELT)) (-3243 (((-663 (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-4263 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| (-146) (-871)) ELT)) (-3484 (((-114) $ $ (-146)) NIL T ELT)) (-2707 (((-793) $ $ (-146)) NIL T ELT)) (-3324 (($ (-1 (-146) (-146)) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-146) (-146)) $) NIL T ELT) (($ (-1 (-146) (-146) (-146)) $ $) NIL T ELT)) (-3458 (($ $) NIL T ELT)) (-4399 (($ $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-4214 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-3358 (((-1189) $) NIL (|has| (-146) (-1132)) ELT)) (-2507 (($ (-146) $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) NIL T ELT)) (-3376 (((-1151) $) NIL (|has| (-146) (-1132)) ELT)) (-4334 (((-146) $) NIL (|has| (-560) (-871)) ELT)) (-2708 (((-3 (-146) "failed") (-1 (-114) (-146)) $) NIL T ELT)) (-2740 (($ $ (-146)) NIL (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 (-146)))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-305 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-146) (-146)) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT) (($ $ (-663 (-146)) (-663 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-1383 (((-663 (-146)) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 (((-146) $ (-560) (-146)) NIL T ELT) (((-146) $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT) (($ $ $) NIL T ELT)) (-2579 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-3384 (((-793) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-146) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-146) (-1132))) ELT)) (-3993 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) NIL (|has| (-146) (-633 (-549))) ELT)) (-3924 (($ (-663 (-146))) NIL T ELT)) (-1955 (($ $ (-146)) NIL T ELT) (($ (-146) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3913 (($ (-146)) NIL T ELT) (((-887) $) NIL (|has| (-146) (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-2149 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4508)) ELT)) (-1581 (((-1189) $) 21 T ELT) (((-1189) $ (-114)) 23 T ELT) (((-1303) (-845) $) 24 T ELT) (((-1303) (-845) $ (-114)) 25 T ELT)) (-2396 (((-114) $ $) NIL (|has| (-146) (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| (-146) (-871)) ELT)) (-2340 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-2386 (((-114) $ $) NIL (|has| (-146) (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| (-146) (-871)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-1189) (-13 (-1175) (-843) (-10 -8 (-15 -2903 ($ (-560))) (-15 -2903 ($ (-229)))))) (T -1189))
+((-2903 (*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1189)))) (-2903 (*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1189)))))
+(-13 (-1175) (-843) (-10 -8 (-15 -2903 ($ (-560))) (-15 -2903 ($ (-229)))))
+((-2243 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-4236 (($) NIL T ELT) (($ (-663 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))) NIL T ELT)) (-2033 (((-1303) $ (-1189) (-1189)) NIL (|has| $ (-6 -4509)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 ((|#1| $ (-1189) |#1|) NIL T ELT)) (-1864 (($ (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3799 (((-3 |#1| "failed") (-1189) $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1132))) ELT)) (-2091 (($ (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#1| "failed") (-1189) $) NIL T ELT)) (-3033 (($ (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 (((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $ (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1132))) ELT) (((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $ (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3338 ((|#1| $ (-1189) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-1189)) NIL T ELT)) (-3737 (((-663 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-1189) $) NIL (|has| (-1189) (-871)) ELT)) (-3243 (((-663 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1132))) ELT) (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4263 (((-1189) $) NIL (|has| (-1189) (-871)) ELT)) (-3324 (($ (-1 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (-2196 (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1132)) (|has| |#1| (-1132))) ELT)) (-4325 (((-663 (-1189)) $) NIL T ELT)) (-4124 (((-114) (-1189) $) NIL T ELT)) (-1878 (((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) $) NIL T ELT)) (-3888 (($ (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) $) NIL T ELT)) (-3372 (((-663 (-1189)) $) NIL T ELT)) (-3439 (((-114) (-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL (-2196 (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1132)) (|has| |#1| (-1132))) ELT)) (-4334 ((|#1| $) NIL (|has| (-1189) (-871)) ELT)) (-2708 (((-3 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) "failed") (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL T ELT)) (-2740 (($ $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2796 (((-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) $) NIL T ELT)) (-2086 (((-114) (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))))) NIL (-12 (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-321 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))) NIL (-12 (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-321 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1132))) ELT) (($ $ (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) NIL (-12 (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-321 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1132))) ELT) (($ $ (-663 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) (-663 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))) NIL (-12 (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-321 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#1| $ (-1189)) NIL T ELT) ((|#1| $ (-1189) |#1|) NIL T ELT)) (-4468 (($) NIL T ELT) (($ (-663 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))) NIL T ELT)) (-3384 (((-793) (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-1132))) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) NIL (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-633 (-549))) ELT)) (-3924 (($ (-663 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))) NIL T ELT)) (-3913 (((-887) $) NIL (-2196 (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-632 (-887))) (|has| |#1| (-632 (-887)))) ELT)) (-3925 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-3184 (($ (-663 (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)))) NIL T ELT)) (-2149 (((-114) (-1 (-114) (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 (-1189)) (|:| -3067 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
(((-1190 |#1|) (-13 (-1224 (-1189) |#1|) (-10 -7 (-6 -4508))) (-1132)) (T -1190))
NIL
(-13 (-1224 (-1189) |#1|) (-10 -7 (-6 -4508)))
-((-4350 (((-1185 |#1|) (-1185 |#1|)) 83 T ELT)) (-1990 (((-3 (-1185 |#1|) "failed") (-1185 |#1|)) 39 T ELT)) (-3331 (((-1185 |#1|) (-421 (-560)) (-1185 |#1|)) 133 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4191 (((-1185 |#1|) |#1| (-1185 |#1|)) 139 (|has| |#1| (-376)) ELT)) (-2760 (((-1185 |#1|) (-1185 |#1|)) 97 T ELT)) (-2174 (((-1185 (-560)) (-560)) 63 T ELT)) (-1479 (((-1185 |#1|) (-1185 (-1185 |#1|))) 116 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3511 (((-1185 |#1|) (-560) (-560) (-1185 |#1|)) 102 T ELT)) (-1471 (((-1185 |#1|) |#1| (-560)) 51 T ELT)) (-3170 (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 66 T ELT)) (-4303 (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 136 (|has| |#1| (-376)) ELT)) (-2147 (((-1185 |#1|) |#1| (-1 (-1185 |#1|))) 115 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2850 (((-1185 |#1|) (-1 |#1| (-560)) |#1| (-1 (-1185 |#1|))) 137 (|has| |#1| (-376)) ELT)) (-3015 (((-1185 |#1|) (-1185 |#1|)) 96 T ELT)) (-3337 (((-1185 |#1|) (-1185 |#1|)) 82 T ELT)) (-4199 (((-1185 |#1|) (-560) (-560) (-1185 |#1|)) 103 T ELT)) (-2518 (((-1185 |#1|) |#1| (-1185 |#1|)) 112 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1552 (((-1185 (-560)) (-560)) 62 T ELT)) (-4339 (((-1185 |#1|) |#1|) 65 T ELT)) (-3860 (((-1185 |#1|) (-1185 |#1|) (-560) (-560)) 99 T ELT)) (-1646 (((-1185 |#1|) (-1 |#1| (-560)) (-1185 |#1|)) 72 T ELT)) (-1528 (((-3 (-1185 |#1|) "failed") (-1185 |#1|) (-1185 |#1|)) 37 T ELT)) (-3299 (((-1185 |#1|) (-1185 |#1|)) 98 T ELT)) (-4187 (((-1185 |#1|) (-1185 |#1|) |#1|) 77 T ELT)) (-2122 (((-1185 |#1|) (-1185 |#1|)) 68 T ELT)) (-2003 (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 78 T ELT)) (-1578 (((-1185 |#1|) |#1|) 73 T ELT)) (-3353 (((-1185 |#1|) (-1185 (-1185 |#1|))) 88 T ELT)) (-2594 (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 38 T ELT)) (-2580 (((-1185 |#1|) (-1185 |#1|)) 21 T ELT) (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 23 T ELT)) (-2567 (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 17 T ELT)) (* (((-1185 |#1|) (-1185 |#1|) |#1|) 29 T ELT) (((-1185 |#1|) |#1| (-1185 |#1|)) 26 T ELT) (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 27 T ELT)))
-(((-1191 |#1|) (-10 -7 (-15 -2567 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2580 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2580 ((-1185 |#1|) (-1185 |#1|))) (-15 * ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 * ((-1185 |#1|) |#1| (-1185 |#1|))) (-15 * ((-1185 |#1|) (-1185 |#1|) |#1|)) (-15 -1528 ((-3 (-1185 |#1|) "failed") (-1185 |#1|) (-1185 |#1|))) (-15 -2594 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -1990 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -1471 ((-1185 |#1|) |#1| (-560))) (-15 -1552 ((-1185 (-560)) (-560))) (-15 -2174 ((-1185 (-560)) (-560))) (-15 -4339 ((-1185 |#1|) |#1|)) (-15 -3170 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2122 ((-1185 |#1|) (-1185 |#1|))) (-15 -1646 ((-1185 |#1|) (-1 |#1| (-560)) (-1185 |#1|))) (-15 -1578 ((-1185 |#1|) |#1|)) (-15 -4187 ((-1185 |#1|) (-1185 |#1|) |#1|)) (-15 -2003 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -3337 ((-1185 |#1|) (-1185 |#1|))) (-15 -4350 ((-1185 |#1|) (-1185 |#1|))) (-15 -3353 ((-1185 |#1|) (-1185 (-1185 |#1|)))) (-15 -3015 ((-1185 |#1|) (-1185 |#1|))) (-15 -2760 ((-1185 |#1|) (-1185 |#1|))) (-15 -3299 ((-1185 |#1|) (-1185 |#1|))) (-15 -3860 ((-1185 |#1|) (-1185 |#1|) (-560) (-560))) (-15 -3511 ((-1185 |#1|) (-560) (-560) (-1185 |#1|))) (-15 -4199 ((-1185 |#1|) (-560) (-560) (-1185 |#1|))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -2518 ((-1185 |#1|) |#1| (-1185 |#1|))) (-15 -2147 ((-1185 |#1|) |#1| (-1 (-1185 |#1|)))) (-15 -1479 ((-1185 |#1|) (-1185 (-1185 |#1|)))) (-15 -3331 ((-1185 |#1|) (-421 (-560)) (-1185 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -4303 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2850 ((-1185 |#1|) (-1 |#1| (-560)) |#1| (-1 (-1185 |#1|)))) (-15 -4191 ((-1185 |#1|) |#1| (-1185 |#1|)))) |%noBranch|)) (-1080)) (T -1191))
-((-4191 (*1 *2 *3 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-376)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2850 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-560))) (-5 *5 (-1 (-1185 *4))) (-4 *4 (-376)) (-4 *4 (-1080)) (-5 *2 (-1185 *4)) (-5 *1 (-1191 *4)))) (-4303 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-376)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-3331 (*1 *2 *3 *2) (-12 (-5 *2 (-1185 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1080)) (-5 *3 (-421 (-560))) (-5 *1 (-1191 *4)))) (-1479 (*1 *2 *3) (-12 (-5 *3 (-1185 (-1185 *4))) (-5 *2 (-1185 *4)) (-5 *1 (-1191 *4)) (-4 *4 (-38 (-421 (-560)))) (-4 *4 (-1080)))) (-2147 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1185 *3))) (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)))) (-2518 (*1 *2 *3 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-4199 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1185 *4)) (-5 *3 (-560)) (-4 *4 (-1080)) (-5 *1 (-1191 *4)))) (-3511 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1185 *4)) (-5 *3 (-560)) (-4 *4 (-1080)) (-5 *1 (-1191 *4)))) (-3860 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1185 *4)) (-5 *3 (-560)) (-4 *4 (-1080)) (-5 *1 (-1191 *4)))) (-3299 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2760 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-3015 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-1185 (-1185 *4))) (-5 *2 (-1185 *4)) (-5 *1 (-1191 *4)) (-4 *4 (-1080)))) (-4350 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-3337 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2003 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-4187 (*1 *2 *2 *3) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-1578 (*1 *2 *3) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1080)))) (-1646 (*1 *2 *3 *2) (-12 (-5 *2 (-1185 *4)) (-5 *3 (-1 *4 (-560))) (-4 *4 (-1080)) (-5 *1 (-1191 *4)))) (-2122 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-3170 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-4339 (*1 *2 *3) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1080)))) (-2174 (*1 *2 *3) (-12 (-5 *2 (-1185 (-560))) (-5 *1 (-1191 *4)) (-4 *4 (-1080)) (-5 *3 (-560)))) (-1552 (*1 *2 *3) (-12 (-5 *2 (-1185 (-560))) (-5 *1 (-1191 *4)) (-4 *4 (-1080)) (-5 *3 (-560)))) (-1471 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1080)))) (-1990 (*1 *2 *2) (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2594 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-1528 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2580 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2580 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2567 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))))
-(-10 -7 (-15 -2567 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2580 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2580 ((-1185 |#1|) (-1185 |#1|))) (-15 * ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 * ((-1185 |#1|) |#1| (-1185 |#1|))) (-15 * ((-1185 |#1|) (-1185 |#1|) |#1|)) (-15 -1528 ((-3 (-1185 |#1|) "failed") (-1185 |#1|) (-1185 |#1|))) (-15 -2594 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -1990 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -1471 ((-1185 |#1|) |#1| (-560))) (-15 -1552 ((-1185 (-560)) (-560))) (-15 -2174 ((-1185 (-560)) (-560))) (-15 -4339 ((-1185 |#1|) |#1|)) (-15 -3170 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2122 ((-1185 |#1|) (-1185 |#1|))) (-15 -1646 ((-1185 |#1|) (-1 |#1| (-560)) (-1185 |#1|))) (-15 -1578 ((-1185 |#1|) |#1|)) (-15 -4187 ((-1185 |#1|) (-1185 |#1|) |#1|)) (-15 -2003 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -3337 ((-1185 |#1|) (-1185 |#1|))) (-15 -4350 ((-1185 |#1|) (-1185 |#1|))) (-15 -3353 ((-1185 |#1|) (-1185 (-1185 |#1|)))) (-15 -3015 ((-1185 |#1|) (-1185 |#1|))) (-15 -2760 ((-1185 |#1|) (-1185 |#1|))) (-15 -3299 ((-1185 |#1|) (-1185 |#1|))) (-15 -3860 ((-1185 |#1|) (-1185 |#1|) (-560) (-560))) (-15 -3511 ((-1185 |#1|) (-560) (-560) (-1185 |#1|))) (-15 -4199 ((-1185 |#1|) (-560) (-560) (-1185 |#1|))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -2518 ((-1185 |#1|) |#1| (-1185 |#1|))) (-15 -2147 ((-1185 |#1|) |#1| (-1 (-1185 |#1|)))) (-15 -1479 ((-1185 |#1|) (-1185 (-1185 |#1|)))) (-15 -3331 ((-1185 |#1|) (-421 (-560)) (-1185 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -4303 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2850 ((-1185 |#1|) (-1 |#1| (-560)) |#1| (-1 (-1185 |#1|)))) (-15 -4191 ((-1185 |#1|) |#1| (-1185 |#1|)))) |%noBranch|))
-((-4337 (((-1185 |#1|) (-1185 |#1|)) 102 T ELT)) (-3455 (((-1185 |#1|) (-1185 |#1|)) 61 T ELT)) (-1596 (((-2 (|:| -4313 (-1185 |#1|)) (|:| -4325 (-1185 |#1|))) (-1185 |#1|)) 98 T ELT)) (-4313 (((-1185 |#1|) (-1185 |#1|)) 99 T ELT)) (-2710 (((-2 (|:| -3430 (-1185 |#1|)) (|:| -3443 (-1185 |#1|))) (-1185 |#1|)) 54 T ELT)) (-3430 (((-1185 |#1|) (-1185 |#1|)) 55 T ELT)) (-4363 (((-1185 |#1|) (-1185 |#1|)) 104 T ELT)) (-3477 (((-1185 |#1|) (-1185 |#1|)) 68 T ELT)) (-2192 (((-1185 |#1|) (-1185 |#1|)) 40 T ELT)) (-3251 (((-1185 |#1|) (-1185 |#1|)) 37 T ELT)) (-4373 (((-1185 |#1|) (-1185 |#1|)) 105 T ELT)) (-3488 (((-1185 |#1|) (-1185 |#1|)) 69 T ELT)) (-4352 (((-1185 |#1|) (-1185 |#1|)) 103 T ELT)) (-3466 (((-1185 |#1|) (-1185 |#1|)) 64 T ELT)) (-4325 (((-1185 |#1|) (-1185 |#1|)) 100 T ELT)) (-3443 (((-1185 |#1|) (-1185 |#1|)) 56 T ELT)) (-4411 (((-1185 |#1|) (-1185 |#1|)) 113 T ELT)) (-4263 (((-1185 |#1|) (-1185 |#1|)) 88 T ELT)) (-4387 (((-1185 |#1|) (-1185 |#1|)) 107 T ELT)) (-3499 (((-1185 |#1|) (-1185 |#1|)) 84 T ELT)) (-4438 (((-1185 |#1|) (-1185 |#1|)) 117 T ELT)) (-4287 (((-1185 |#1|) (-1185 |#1|)) 92 T ELT)) (-3837 (((-1185 |#1|) (-1185 |#1|)) 119 T ELT)) (-4302 (((-1185 |#1|) (-1185 |#1|)) 94 T ELT)) (-4423 (((-1185 |#1|) (-1185 |#1|)) 115 T ELT)) (-4275 (((-1185 |#1|) (-1185 |#1|)) 90 T ELT)) (-4398 (((-1185 |#1|) (-1185 |#1|)) 109 T ELT)) (-4252 (((-1185 |#1|) (-1185 |#1|)) 86 T ELT)) (** (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 41 T ELT)))
-(((-1192 |#1|) (-10 -7 (-15 -3251 ((-1185 |#1|) (-1185 |#1|))) (-15 -2192 ((-1185 |#1|) (-1185 |#1|))) (-15 ** ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2710 ((-2 (|:| -3430 (-1185 |#1|)) (|:| -3443 (-1185 |#1|))) (-1185 |#1|))) (-15 -3430 ((-1185 |#1|) (-1185 |#1|))) (-15 -3443 ((-1185 |#1|) (-1185 |#1|))) (-15 -3455 ((-1185 |#1|) (-1185 |#1|))) (-15 -3466 ((-1185 |#1|) (-1185 |#1|))) (-15 -3477 ((-1185 |#1|) (-1185 |#1|))) (-15 -3488 ((-1185 |#1|) (-1185 |#1|))) (-15 -3499 ((-1185 |#1|) (-1185 |#1|))) (-15 -4252 ((-1185 |#1|) (-1185 |#1|))) (-15 -4263 ((-1185 |#1|) (-1185 |#1|))) (-15 -4275 ((-1185 |#1|) (-1185 |#1|))) (-15 -4287 ((-1185 |#1|) (-1185 |#1|))) (-15 -4302 ((-1185 |#1|) (-1185 |#1|))) (-15 -1596 ((-2 (|:| -4313 (-1185 |#1|)) (|:| -4325 (-1185 |#1|))) (-1185 |#1|))) (-15 -4313 ((-1185 |#1|) (-1185 |#1|))) (-15 -4325 ((-1185 |#1|) (-1185 |#1|))) (-15 -4337 ((-1185 |#1|) (-1185 |#1|))) (-15 -4352 ((-1185 |#1|) (-1185 |#1|))) (-15 -4363 ((-1185 |#1|) (-1185 |#1|))) (-15 -4373 ((-1185 |#1|) (-1185 |#1|))) (-15 -4387 ((-1185 |#1|) (-1185 |#1|))) (-15 -4398 ((-1185 |#1|) (-1185 |#1|))) (-15 -4411 ((-1185 |#1|) (-1185 |#1|))) (-15 -4423 ((-1185 |#1|) (-1185 |#1|))) (-15 -4438 ((-1185 |#1|) (-1185 |#1|))) (-15 -3837 ((-1185 |#1|) (-1185 |#1|)))) (-38 (-421 (-560)))) (T -1192))
-((-3837 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-4438 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-4423 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-4411 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-4398 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-4387 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-4373 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-4363 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-4352 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-4337 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-4325 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-4313 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-1596 (*1 *2 *3) (-12 (-4 *4 (-38 (-421 (-560)))) (-5 *2 (-2 (|:| -4313 (-1185 *4)) (|:| -4325 (-1185 *4)))) (-5 *1 (-1192 *4)) (-5 *3 (-1185 *4)))) (-4302 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-4287 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-4275 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-4263 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-4252 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-3477 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-3455 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-3443 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-3430 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-2710 (*1 *2 *3) (-12 (-4 *4 (-38 (-421 (-560)))) (-5 *2 (-2 (|:| -3430 (-1185 *4)) (|:| -3443 (-1185 *4)))) (-5 *1 (-1192 *4)) (-5 *3 (-1185 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-2192 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-3251 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))))
-(-10 -7 (-15 -3251 ((-1185 |#1|) (-1185 |#1|))) (-15 -2192 ((-1185 |#1|) (-1185 |#1|))) (-15 ** ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2710 ((-2 (|:| -3430 (-1185 |#1|)) (|:| -3443 (-1185 |#1|))) (-1185 |#1|))) (-15 -3430 ((-1185 |#1|) (-1185 |#1|))) (-15 -3443 ((-1185 |#1|) (-1185 |#1|))) (-15 -3455 ((-1185 |#1|) (-1185 |#1|))) (-15 -3466 ((-1185 |#1|) (-1185 |#1|))) (-15 -3477 ((-1185 |#1|) (-1185 |#1|))) (-15 -3488 ((-1185 |#1|) (-1185 |#1|))) (-15 -3499 ((-1185 |#1|) (-1185 |#1|))) (-15 -4252 ((-1185 |#1|) (-1185 |#1|))) (-15 -4263 ((-1185 |#1|) (-1185 |#1|))) (-15 -4275 ((-1185 |#1|) (-1185 |#1|))) (-15 -4287 ((-1185 |#1|) (-1185 |#1|))) (-15 -4302 ((-1185 |#1|) (-1185 |#1|))) (-15 -1596 ((-2 (|:| -4313 (-1185 |#1|)) (|:| -4325 (-1185 |#1|))) (-1185 |#1|))) (-15 -4313 ((-1185 |#1|) (-1185 |#1|))) (-15 -4325 ((-1185 |#1|) (-1185 |#1|))) (-15 -4337 ((-1185 |#1|) (-1185 |#1|))) (-15 -4352 ((-1185 |#1|) (-1185 |#1|))) (-15 -4363 ((-1185 |#1|) (-1185 |#1|))) (-15 -4373 ((-1185 |#1|) (-1185 |#1|))) (-15 -4387 ((-1185 |#1|) (-1185 |#1|))) (-15 -4398 ((-1185 |#1|) (-1185 |#1|))) (-15 -4411 ((-1185 |#1|) (-1185 |#1|))) (-15 -4423 ((-1185 |#1|) (-1185 |#1|))) (-15 -4438 ((-1185 |#1|) (-1185 |#1|))) (-15 -3837 ((-1185 |#1|) (-1185 |#1|))))
-((-4337 (((-1185 |#1|) (-1185 |#1|)) 60 T ELT)) (-3455 (((-1185 |#1|) (-1185 |#1|)) 42 T ELT)) (-4313 (((-1185 |#1|) (-1185 |#1|)) 56 T ELT)) (-3430 (((-1185 |#1|) (-1185 |#1|)) 38 T ELT)) (-4363 (((-1185 |#1|) (-1185 |#1|)) 63 T ELT)) (-3477 (((-1185 |#1|) (-1185 |#1|)) 45 T ELT)) (-2192 (((-1185 |#1|) (-1185 |#1|)) 34 T ELT)) (-3251 (((-1185 |#1|) (-1185 |#1|)) 29 T ELT)) (-4373 (((-1185 |#1|) (-1185 |#1|)) 64 T ELT)) (-3488 (((-1185 |#1|) (-1185 |#1|)) 46 T ELT)) (-4352 (((-1185 |#1|) (-1185 |#1|)) 61 T ELT)) (-3466 (((-1185 |#1|) (-1185 |#1|)) 43 T ELT)) (-4325 (((-1185 |#1|) (-1185 |#1|)) 58 T ELT)) (-3443 (((-1185 |#1|) (-1185 |#1|)) 40 T ELT)) (-4411 (((-1185 |#1|) (-1185 |#1|)) 68 T ELT)) (-4263 (((-1185 |#1|) (-1185 |#1|)) 50 T ELT)) (-4387 (((-1185 |#1|) (-1185 |#1|)) 66 T ELT)) (-3499 (((-1185 |#1|) (-1185 |#1|)) 48 T ELT)) (-4438 (((-1185 |#1|) (-1185 |#1|)) 71 T ELT)) (-4287 (((-1185 |#1|) (-1185 |#1|)) 53 T ELT)) (-3837 (((-1185 |#1|) (-1185 |#1|)) 72 T ELT)) (-4302 (((-1185 |#1|) (-1185 |#1|)) 54 T ELT)) (-4423 (((-1185 |#1|) (-1185 |#1|)) 70 T ELT)) (-4275 (((-1185 |#1|) (-1185 |#1|)) 52 T ELT)) (-4398 (((-1185 |#1|) (-1185 |#1|)) 69 T ELT)) (-4252 (((-1185 |#1|) (-1185 |#1|)) 51 T ELT)) (** (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 36 T ELT)))
-(((-1193 |#1|) (-10 -7 (-15 -3251 ((-1185 |#1|) (-1185 |#1|))) (-15 -2192 ((-1185 |#1|) (-1185 |#1|))) (-15 ** ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -3430 ((-1185 |#1|) (-1185 |#1|))) (-15 -3443 ((-1185 |#1|) (-1185 |#1|))) (-15 -3455 ((-1185 |#1|) (-1185 |#1|))) (-15 -3466 ((-1185 |#1|) (-1185 |#1|))) (-15 -3477 ((-1185 |#1|) (-1185 |#1|))) (-15 -3488 ((-1185 |#1|) (-1185 |#1|))) (-15 -3499 ((-1185 |#1|) (-1185 |#1|))) (-15 -4252 ((-1185 |#1|) (-1185 |#1|))) (-15 -4263 ((-1185 |#1|) (-1185 |#1|))) (-15 -4275 ((-1185 |#1|) (-1185 |#1|))) (-15 -4287 ((-1185 |#1|) (-1185 |#1|))) (-15 -4302 ((-1185 |#1|) (-1185 |#1|))) (-15 -4313 ((-1185 |#1|) (-1185 |#1|))) (-15 -4325 ((-1185 |#1|) (-1185 |#1|))) (-15 -4337 ((-1185 |#1|) (-1185 |#1|))) (-15 -4352 ((-1185 |#1|) (-1185 |#1|))) (-15 -4363 ((-1185 |#1|) (-1185 |#1|))) (-15 -4373 ((-1185 |#1|) (-1185 |#1|))) (-15 -4387 ((-1185 |#1|) (-1185 |#1|))) (-15 -4398 ((-1185 |#1|) (-1185 |#1|))) (-15 -4411 ((-1185 |#1|) (-1185 |#1|))) (-15 -4423 ((-1185 |#1|) (-1185 |#1|))) (-15 -4438 ((-1185 |#1|) (-1185 |#1|))) (-15 -3837 ((-1185 |#1|) (-1185 |#1|)))) (-38 (-421 (-560)))) (T -1193))
-((-3837 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-4438 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-4423 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-4411 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-4398 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-4387 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-4373 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-4363 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-4352 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-4337 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-4325 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-4313 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-4302 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-4287 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-4275 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-4263 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-4252 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-3499 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-3488 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-3477 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-3466 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-3455 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-3443 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-3430 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-2192 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-3251 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))))
-(-10 -7 (-15 -3251 ((-1185 |#1|) (-1185 |#1|))) (-15 -2192 ((-1185 |#1|) (-1185 |#1|))) (-15 ** ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -3430 ((-1185 |#1|) (-1185 |#1|))) (-15 -3443 ((-1185 |#1|) (-1185 |#1|))) (-15 -3455 ((-1185 |#1|) (-1185 |#1|))) (-15 -3466 ((-1185 |#1|) (-1185 |#1|))) (-15 -3477 ((-1185 |#1|) (-1185 |#1|))) (-15 -3488 ((-1185 |#1|) (-1185 |#1|))) (-15 -3499 ((-1185 |#1|) (-1185 |#1|))) (-15 -4252 ((-1185 |#1|) (-1185 |#1|))) (-15 -4263 ((-1185 |#1|) (-1185 |#1|))) (-15 -4275 ((-1185 |#1|) (-1185 |#1|))) (-15 -4287 ((-1185 |#1|) (-1185 |#1|))) (-15 -4302 ((-1185 |#1|) (-1185 |#1|))) (-15 -4313 ((-1185 |#1|) (-1185 |#1|))) (-15 -4325 ((-1185 |#1|) (-1185 |#1|))) (-15 -4337 ((-1185 |#1|) (-1185 |#1|))) (-15 -4352 ((-1185 |#1|) (-1185 |#1|))) (-15 -4363 ((-1185 |#1|) (-1185 |#1|))) (-15 -4373 ((-1185 |#1|) (-1185 |#1|))) (-15 -4387 ((-1185 |#1|) (-1185 |#1|))) (-15 -4398 ((-1185 |#1|) (-1185 |#1|))) (-15 -4411 ((-1185 |#1|) (-1185 |#1|))) (-15 -4423 ((-1185 |#1|) (-1185 |#1|))) (-15 -4438 ((-1185 |#1|) (-1185 |#1|))) (-15 -3837 ((-1185 |#1|) (-1185 |#1|))))
-((-3104 (((-987 |#2|) |#2| |#2|) 50 T ELT)) (-2806 ((|#2| |#2| |#1|) 19 (|has| |#1| (-319)) ELT)))
-(((-1194 |#1| |#2|) (-10 -7 (-15 -3104 ((-987 |#2|) |#2| |#2|)) (IF (|has| |#1| (-319)) (-15 -2806 (|#2| |#2| |#1|)) |%noBranch|)) (-571) (-1273 |#1|)) (T -1194))
-((-2806 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-4 *3 (-571)) (-5 *1 (-1194 *3 *2)) (-4 *2 (-1273 *3)))) (-3104 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-987 *3)) (-5 *1 (-1194 *4 *3)) (-4 *3 (-1273 *4)))))
-(-10 -7 (-15 -3104 ((-987 |#2|) |#2| |#2|)) (IF (|has| |#1| (-319)) (-15 -2806 (|#2| |#2| |#1|)) |%noBranch|))
-((-1538 (((-114) $ $) NIL T ELT)) (-4212 (($ $ (-663 (-793))) 79 T ELT)) (-2570 (($) 33 T ELT)) (-4079 (($ $) 51 T ELT)) (-2498 (((-663 $) $) 60 T ELT)) (-1674 (((-114) $) 19 T ELT)) (-3354 (((-663 (-972 |#2|)) $) 86 T ELT)) (-2754 (($ $) 80 T ELT)) (-4203 (((-793) $) 47 T ELT)) (-4095 (($) 32 T ELT)) (-2604 (($ $ (-663 (-793)) (-972 |#2|)) 72 T ELT) (($ $ (-663 (-793)) (-793)) 73 T ELT) (($ $ (-793) (-972 |#2|)) 75 T ELT)) (-3223 (($ $ $) 57 T ELT) (($ (-663 $)) 59 T ELT)) (-3501 (((-793) $) 87 T ELT)) (-2409 (((-114) $) 15 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3679 (((-114) $) 22 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4276 (((-174) $) 85 T ELT)) (-1702 (((-972 |#2|) $) 81 T ELT)) (-1779 (((-793) $) 82 T ELT)) (-3550 (((-114) $) 84 T ELT)) (-1431 (($ $ (-663 (-793)) (-174)) 78 T ELT)) (-4378 (($ $) 52 T ELT)) (-1578 (((-887) $) 99 T ELT)) (-3149 (($ $ (-663 (-793)) (-114)) 77 T ELT)) (-3955 (((-663 $) $) 11 T ELT)) (-1625 (($ $ (-793)) 46 T ELT)) (-1758 (($ $) 43 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-3405 (($ $ $ (-972 |#2|) (-793)) 68 T ELT)) (-2936 (($ $ (-972 |#2|)) 67 T ELT)) (-3923 (($ $ (-663 (-793)) (-972 |#2|)) 66 T ELT) (($ $ (-663 (-793)) (-793)) 70 T ELT) (((-793) $ (-972 |#2|)) 71 T ELT)) (-2473 (((-114) $ $) 92 T ELT)))
-(((-1195 |#1| |#2|) (-13 (-1132) (-10 -8 (-15 -2409 ((-114) $)) (-15 -1674 ((-114) $)) (-15 -3679 ((-114) $)) (-15 -4095 ($)) (-15 -2570 ($)) (-15 -1758 ($ $)) (-15 -1625 ($ $ (-793))) (-15 -3955 ((-663 $) $)) (-15 -4203 ((-793) $)) (-15 -4079 ($ $)) (-15 -4378 ($ $)) (-15 -3223 ($ $ $)) (-15 -3223 ($ (-663 $))) (-15 -2498 ((-663 $) $)) (-15 -3923 ($ $ (-663 (-793)) (-972 |#2|))) (-15 -2936 ($ $ (-972 |#2|))) (-15 -3405 ($ $ $ (-972 |#2|) (-793))) (-15 -2604 ($ $ (-663 (-793)) (-972 |#2|))) (-15 -3923 ($ $ (-663 (-793)) (-793))) (-15 -2604 ($ $ (-663 (-793)) (-793))) (-15 -3923 ((-793) $ (-972 |#2|))) (-15 -2604 ($ $ (-793) (-972 |#2|))) (-15 -3149 ($ $ (-663 (-793)) (-114))) (-15 -1431 ($ $ (-663 (-793)) (-174))) (-15 -4212 ($ $ (-663 (-793)))) (-15 -1702 ((-972 |#2|) $)) (-15 -1779 ((-793) $)) (-15 -3550 ((-114) $)) (-15 -4276 ((-174) $)) (-15 -3501 ((-793) $)) (-15 -2754 ($ $)) (-15 -3354 ((-663 (-972 |#2|)) $)))) (-948) (-1080)) (T -1195))
-((-2409 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-1674 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-4095 (*1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))) (-2570 (*1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))) (-1758 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))) (-1625 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-663 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-4203 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-4079 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))) (-4378 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))) (-3223 (*1 *1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))) (-3223 (*1 *1 *2) (-12 (-5 *2 (-663 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-2498 (*1 *2 *1) (-12 (-5 *2 (-663 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-3923 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-793))) (-5 *3 (-972 *5)) (-4 *5 (-1080)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-948)))) (-2936 (*1 *1 *1 *2) (-12 (-5 *2 (-972 *4)) (-4 *4 (-1080)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)))) (-3405 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-972 *5)) (-5 *3 (-793)) (-4 *5 (-1080)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-948)))) (-2604 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-793))) (-5 *3 (-972 *5)) (-4 *5 (-1080)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-948)))) (-3923 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-793))) (-5 *3 (-793)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-948)) (-4 *5 (-1080)))) (-2604 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-793))) (-5 *3 (-793)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-948)) (-4 *5 (-1080)))) (-3923 (*1 *2 *1 *3) (-12 (-5 *3 (-972 *5)) (-4 *5 (-1080)) (-5 *2 (-793)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-948)))) (-2604 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-972 *5)) (-4 *5 (-1080)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-948)))) (-3149 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-793))) (-5 *3 (-114)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-948)) (-4 *5 (-1080)))) (-1431 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-793))) (-5 *3 (-174)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-948)) (-4 *5 (-1080)))) (-4212 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-793))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-1702 (*1 *2 *1) (-12 (-5 *2 (-972 *4)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-1779 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-4276 (*1 *2 *1) (-12 (-5 *2 (-174)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-3501 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-2754 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))) (-3354 (*1 *2 *1) (-12 (-5 *2 (-663 (-972 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))))
-(-13 (-1132) (-10 -8 (-15 -2409 ((-114) $)) (-15 -1674 ((-114) $)) (-15 -3679 ((-114) $)) (-15 -4095 ($)) (-15 -2570 ($)) (-15 -1758 ($ $)) (-15 -1625 ($ $ (-793))) (-15 -3955 ((-663 $) $)) (-15 -4203 ((-793) $)) (-15 -4079 ($ $)) (-15 -4378 ($ $)) (-15 -3223 ($ $ $)) (-15 -3223 ($ (-663 $))) (-15 -2498 ((-663 $) $)) (-15 -3923 ($ $ (-663 (-793)) (-972 |#2|))) (-15 -2936 ($ $ (-972 |#2|))) (-15 -3405 ($ $ $ (-972 |#2|) (-793))) (-15 -2604 ($ $ (-663 (-793)) (-972 |#2|))) (-15 -3923 ($ $ (-663 (-793)) (-793))) (-15 -2604 ($ $ (-663 (-793)) (-793))) (-15 -3923 ((-793) $ (-972 |#2|))) (-15 -2604 ($ $ (-793) (-972 |#2|))) (-15 -3149 ($ $ (-663 (-793)) (-114))) (-15 -1431 ($ $ (-663 (-793)) (-174))) (-15 -4212 ($ $ (-663 (-793)))) (-15 -1702 ((-972 |#2|) $)) (-15 -1779 ((-793) $)) (-15 -3550 ((-114) $)) (-15 -4276 ((-174) $)) (-15 -3501 ((-793) $)) (-15 -2754 ($ $)) (-15 -3354 ((-663 (-972 |#2|)) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3401 ((|#2| $) 11 T ELT)) (-3391 ((|#1| $) 10 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1592 (($ |#1| |#2|) 9 T ELT)) (-1578 (((-887) $) 16 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-1196 |#1| |#2|) (-13 (-1132) (-10 -8 (-15 -1592 ($ |#1| |#2|)) (-15 -3391 (|#1| $)) (-15 -3401 (|#2| $)))) (-1132) (-1132)) (T -1196))
-((-1592 (*1 *1 *2 *3) (-12 (-5 *1 (-1196 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))) (-3391 (*1 *2 *1) (-12 (-4 *2 (-1132)) (-5 *1 (-1196 *2 *3)) (-4 *3 (-1132)))) (-3401 (*1 *2 *1) (-12 (-4 *2 (-1132)) (-5 *1 (-1196 *3 *2)) (-4 *3 (-1132)))))
-(-13 (-1132) (-10 -8 (-15 -1592 ($ |#1| |#2|)) (-15 -3391 (|#1| $)) (-15 -3401 (|#2| $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1940 (((-1166) $) 9 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 15 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-1197) (-13 (-1114) (-10 -8 (-15 -1940 ((-1166) $))))) (T -1197))
-((-1940 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1197)))))
-(-13 (-1114) (-10 -8 (-15 -1940 ((-1166) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3941 (((-1205 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-1443 (((-663 (-1113)) $) NIL T ELT)) (-2462 (((-1207) $) 11 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-3244 (($ $) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-4093 (((-114) $) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-4267 (($ $ (-560)) NIL T ELT) (($ $ (-560) (-560)) 75 T ELT)) (-1425 (((-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) NIL T ELT)) (-2397 (((-1205 |#1| |#2| |#3|) $) 42 T ELT)) (-1378 (((-3 (-1205 |#1| |#2| |#3|) "failed") $) 32 T ELT)) (-1496 (((-1205 |#1| |#2| |#3|) $) 33 T ELT)) (-4337 (($ $) 116 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3455 (($ $) 92 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) ELT)) (-1804 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-4471 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) ELT)) (-1615 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4313 (($ $) 112 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3430 (($ $) 88 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2138 (((-560) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-3781 (($ (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) NIL T ELT)) (-4363 (($ $) 120 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3477 (($ $) 96 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-1205 |#1| |#2| |#3|) "failed") $) 34 T ELT) (((-3 (-1207) "failed") $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-1207))) (|has| |#1| (-376))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-3 (-560) "failed") $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-560))) (|has| |#1| (-376))) ELT)) (-3330 (((-1205 |#1| |#2| |#3|) $) 140 T ELT) (((-1207) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-1207))) (|has| |#1| (-376))) ELT) (((-421 (-560)) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-560) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-560))) (|has| |#1| (-376))) ELT)) (-3298 (($ $) 37 T ELT) (($ (-560) $) 38 T ELT)) (-1478 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1624 (($ $) NIL T ELT)) (-3142 (((-711 (-1205 |#1| |#2| |#3|)) (-711 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -3822 (-711 (-1205 |#1| |#2| |#3|))) (|:| |vec| (-1297 (-1205 |#1| |#2| |#3|)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT) (((-711 (-560)) (-711 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT)) (-1990 (((-3 $ "failed") $) 54 T ELT)) (-2229 (((-421 (-975 |#1|)) $ (-560)) 74 (|has| |#1| (-571)) ELT) (((-421 (-975 |#1|)) $ (-560) (-560)) 76 (|has| |#1| (-571)) ELT)) (-2310 (($) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-1490 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4330 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-2928 (((-114) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-4386 (((-114) $) 28 T ELT)) (-3796 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-911 (-391))) (|has| |#1| (-376))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-911 (-560))) (|has| |#1| (-376))) ELT)) (-3913 (((-560) $) NIL T ELT) (((-560) $ (-560)) 26 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-1617 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3757 (((-1205 |#1| |#2| |#3|) $) 44 (|has| |#1| (-376)) ELT)) (-2146 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3009 (((-3 $ "failed") $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1182)) (|has| |#1| (-376))) ELT)) (-2960 (((-114) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-3022 (($ $ (-948)) NIL T ELT)) (-1540 (($ (-1 |#1| (-560)) $) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-560)) 19 T ELT) (($ $ (-1113) (-560)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-560))) NIL T ELT)) (-3825 (($ $ $) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2820 (($ $ $) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-376)) ELT)) (-2192 (($ $) 81 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2484 (((-711 (-1205 |#1| |#2| |#3|)) (-1297 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -3822 (-711 (-1205 |#1| |#2| |#3|))) (|:| |vec| (-1297 (-1205 |#1| |#2| |#3|)))) (-1297 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT) (((-711 (-560)) (-1297 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1507 (($ (-560) (-1205 |#1| |#2| |#3|)) 36 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2518 (($ $) 79 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| |#1| (-15 -2518 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -1443 ((-663 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-989)) (|has| |#1| (-1233)))) ELT) (($ $ (-1294 |#2|)) 80 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3161 (($) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1182)) (|has| |#1| (-376))) CONST)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2652 (($ $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-2016 (((-1205 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) ELT)) (-4457 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4372 (($ $ (-560)) 158 T ELT)) (-1528 (((-3 $ "failed") $ $) 55 (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-3251 (($ $) 82 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4187 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-560)))) ELT) (($ $ (-1207) (-1205 |#1| |#2| |#3|)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-528 (-1207) (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1207)) (-663 (-1205 |#1| |#2| |#3|))) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-528 (-1207) (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-305 (-1205 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-321 (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-305 (-1205 |#1| |#2| |#3|))) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-321 (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-321 (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1205 |#1| |#2| |#3|)) (-663 (-1205 |#1| |#2| |#3|))) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-321 (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-2901 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-3924 ((|#1| $ (-560)) NIL T ELT) (($ $ $) 61 (|has| (-560) (-1143)) ELT) (($ $ (-1205 |#1| |#2| |#3|)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-298 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2894 (($ $ (-1 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|)) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1294 |#2|)) 57 T ELT) (($ $) 56 (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207))) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT)) (-3056 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3771 (((-1205 |#1| |#2| |#3|) $) 46 (|has| |#1| (-376)) ELT)) (-3630 (((-560) $) 43 T ELT)) (-4373 (($ $) 122 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3488 (($ $) 98 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4352 (($ $) 118 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3466 (($ $) 94 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4325 (($ $) 114 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3443 (($ $) 90 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1407 (((-549) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-633 (-549))) (|has| |#1| (-376))) ELT) (((-391) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1051)) (|has| |#1| (-376))) ELT) (((-229) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1051)) (|has| |#1| (-376))) ELT) (((-915 (-391)) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-633 (-915 (-391)))) (|has| |#1| (-376))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-633 (-915 (-560)))) (|has| |#1| (-376))) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) ELT)) (-3266 (($ $) NIL T ELT)) (-1578 (((-887) $) 162 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1205 |#1| |#2| |#3|)) 30 T ELT) (($ (-1294 |#2|)) 25 T ELT) (($ (-1207)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-1207))) (|has| |#1| (-376))) ELT) (($ $) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT) (($ (-421 (-560))) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-560))) (|has| |#1| (-376))) (|has| |#1| (-38 (-421 (-560))))) ELT)) (-2305 ((|#1| $ (-560)) 77 T ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-147)) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-2930 (((-793)) NIL T CONST)) (-3355 ((|#1| $) 12 T ELT)) (-1494 (((-1205 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-4411 (($ $) 128 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4263 (($ $) 104 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2948 (((-114) $ $) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-4387 (($ $) 124 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3499 (($ $) 100 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4438 (($ $) 132 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4287 (($ $) 108 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2239 ((|#1| $ (-560)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -1578 (|#1| (-1207))))) ELT)) (-3837 (($ $) 134 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4302 (($ $) 110 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4423 (($ $) 130 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4275 (($ $) 106 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4398 (($ $) 126 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4252 (($ $) 102 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2282 (($ $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-2001 (($) 21 T CONST)) (-2011 (($) 16 T CONST)) (-3305 (($ $ (-1 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|)) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1294 |#2|)) NIL T ELT) (($ $) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207))) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT)) (-2536 (((-114) $ $) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2508 (((-114) $ $) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2495 (((-114) $ $) NIL (-2304 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 49 (|has| |#1| (-376)) ELT) (($ (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|)) 50 (|has| |#1| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 23 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 60 T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 137 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1205 |#1| |#2| |#3|)) 48 (|has| |#1| (-376)) ELT) (($ (-1205 |#1| |#2| |#3|) $) 47 (|has| |#1| (-376)) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
-(((-1198 |#1| |#2| |#3|) (-13 (-1261 |#1| (-1205 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -1578 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -2518 ($ $ (-1294 |#2|))) |%noBranch|))) (-1080) (-1207) |#1|) (T -1198))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1198 *3 *4 *5)) (-4 *3 (-1080)) (-14 *5 *3))) (-2518 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1198 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3))))
-(-13 (-1261 |#1| (-1205 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -1578 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -2518 ($ $ (-1294 |#2|))) |%noBranch|)))
-((-4061 ((|#2| |#2| (-1123 |#2|)) 26 T ELT) ((|#2| |#2| (-1207)) 28 T ELT)))
-(((-1199 |#1| |#2|) (-10 -7 (-15 -4061 (|#2| |#2| (-1207))) (-15 -4061 (|#2| |#2| (-1123 |#2|)))) (-13 (-571) (-1069 (-560)) (-660 (-560))) (-13 (-435 |#1|) (-162) (-27) (-1233))) (T -1199))
-((-4061 (*1 *2 *2 *3) (-12 (-5 *3 (-1123 *2)) (-4 *2 (-13 (-435 *4) (-162) (-27) (-1233))) (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-1199 *4 *2)))) (-4061 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-1199 *4 *2)) (-4 *2 (-13 (-435 *4) (-162) (-27) (-1233))))))
-(-10 -7 (-15 -4061 (|#2| |#2| (-1207))) (-15 -4061 (|#2| |#2| (-1123 |#2|))))
-((-4061 (((-3 (-421 (-975 |#1|)) (-326 |#1|)) (-421 (-975 |#1|)) (-1123 (-421 (-975 |#1|)))) 31 T ELT) (((-421 (-975 |#1|)) (-975 |#1|) (-1123 (-975 |#1|))) 44 T ELT) (((-3 (-421 (-975 |#1|)) (-326 |#1|)) (-421 (-975 |#1|)) (-1207)) 33 T ELT) (((-421 (-975 |#1|)) (-975 |#1|) (-1207)) 36 T ELT)))
-(((-1200 |#1|) (-10 -7 (-15 -4061 ((-421 (-975 |#1|)) (-975 |#1|) (-1207))) (-15 -4061 ((-3 (-421 (-975 |#1|)) (-326 |#1|)) (-421 (-975 |#1|)) (-1207))) (-15 -4061 ((-421 (-975 |#1|)) (-975 |#1|) (-1123 (-975 |#1|)))) (-15 -4061 ((-3 (-421 (-975 |#1|)) (-326 |#1|)) (-421 (-975 |#1|)) (-1123 (-421 (-975 |#1|)))))) (-13 (-571) (-1069 (-560)))) (T -1200))
-((-4061 (*1 *2 *3 *4) (-12 (-5 *4 (-1123 (-421 (-975 *5)))) (-5 *3 (-421 (-975 *5))) (-4 *5 (-13 (-571) (-1069 (-560)))) (-5 *2 (-3 *3 (-326 *5))) (-5 *1 (-1200 *5)))) (-4061 (*1 *2 *3 *4) (-12 (-5 *4 (-1123 (-975 *5))) (-5 *3 (-975 *5)) (-4 *5 (-13 (-571) (-1069 (-560)))) (-5 *2 (-421 *3)) (-5 *1 (-1200 *5)))) (-4061 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-571) (-1069 (-560)))) (-5 *2 (-3 (-421 (-975 *5)) (-326 *5))) (-5 *1 (-1200 *5)) (-5 *3 (-421 (-975 *5))))) (-4061 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-571) (-1069 (-560)))) (-5 *2 (-421 (-975 *5))) (-5 *1 (-1200 *5)) (-5 *3 (-975 *5)))))
-(-10 -7 (-15 -4061 ((-421 (-975 |#1|)) (-975 |#1|) (-1207))) (-15 -4061 ((-3 (-421 (-975 |#1|)) (-326 |#1|)) (-421 (-975 |#1|)) (-1207))) (-15 -4061 ((-421 (-975 |#1|)) (-975 |#1|) (-1123 (-975 |#1|)))) (-15 -4061 ((-3 (-421 (-975 |#1|)) (-326 |#1|)) (-421 (-975 |#1|)) (-1123 (-421 (-975 |#1|))))))
-((-1538 (((-114) $ $) 171 T ELT)) (-2388 (((-114) $) 43 T ELT)) (-4468 (((-1297 |#1|) $ (-793)) NIL T ELT)) (-1443 (((-663 (-1113)) $) NIL T ELT)) (-1667 (($ (-1201 |#1|)) NIL T ELT)) (-4422 (((-1201 $) $ (-1113)) 82 T ELT) (((-1201 |#1|) $) 71 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-3244 (($ $) 164 (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3107 (((-793) $) NIL T ELT) (((-793) $ (-663 (-1113))) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-4182 (($ $ $) 158 (|has| |#1| (-571)) ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) 95 (|has| |#1| (-939)) ELT)) (-1804 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 115 (|has| |#1| (-939)) ELT)) (-1615 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3491 (($ $ (-793)) 61 T ELT)) (-3802 (($ $ (-793)) 63 T ELT)) (-2498 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-466)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-1113) "failed") $) NIL T ELT)) (-3330 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-1113) $) NIL T ELT)) (-2788 (($ $ $ (-1113)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) 160 (|has| |#1| (-175)) ELT)) (-1478 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1624 (($ $) 80 T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1490 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2186 (($ $ $) 131 T ELT)) (-2853 (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-4365 (((-2 (|:| -2115 |#1|) (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-2806 (($ $) 165 (|has| |#1| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#1| (-466)) ELT)) (-1608 (((-663 $) $) NIL T ELT)) (-4330 (((-114) $) NIL (|has| |#1| (-939)) ELT)) (-4342 (($ $ |#1| (-793) $) 69 T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1113) (-911 (-391))) (|has| |#1| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-1113) (-911 (-560))) (|has| |#1| (-911 (-560)))) ELT)) (-2983 (((-887) $ (-887)) 148 T ELT)) (-3913 (((-793) $ $) NIL (|has| |#1| (-571)) ELT)) (-1581 (((-114) $) 48 T ELT)) (-3531 (((-793) $) NIL T ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| |#1| (-1182)) ELT)) (-1427 (($ (-1201 |#1|) (-1113)) 73 T ELT) (($ (-1201 $) (-1113)) 89 T ELT)) (-3022 (($ $ (-793)) 51 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-3997 (((-663 $) $) NIL T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-793)) 87 T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT)) (-3559 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $ (-1113)) NIL T ELT) (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 153 T ELT)) (-3011 (((-793) $) NIL T ELT) (((-793) $ (-1113)) NIL T ELT) (((-663 (-793)) $ (-663 (-1113))) NIL T ELT)) (-4321 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4381 (((-1201 |#1|) $) NIL T ELT)) (-1955 (((-3 (-1113) "failed") $) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#1| $) 76 T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-4000 (((-2 (|:| -1774 $) (|:| -2341 $)) $ (-793)) 60 T ELT)) (-3479 (((-3 (-663 $) "failed") $) NIL T ELT)) (-2590 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3683 (((-3 (-2 (|:| |var| (-1113)) (|:| -3205 (-793))) "failed") $) NIL T ELT)) (-2518 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3161 (($) NIL (|has| |#1| (-1182)) CONST)) (-3855 (((-1151) $) NIL T ELT)) (-1554 (((-114) $) 50 T ELT)) (-1566 ((|#1| $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 103 (|has| |#1| (-466)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) 167 (|has| |#1| (-466)) ELT)) (-4369 (($ $ (-793) |#1| $) 123 T ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) 101 (|has| |#1| (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) 100 (|has| |#1| (-939)) ELT)) (-4457 (((-419 $) $) 108 (|has| |#1| (-939)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-1528 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 124 (|has| |#1| (-571)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-4187 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-1113) |#1|) NIL T ELT) (($ $ (-663 (-1113)) (-663 |#1|)) NIL T ELT) (($ $ (-1113) $) NIL T ELT) (($ $ (-663 (-1113)) (-663 $)) NIL T ELT)) (-2901 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-3924 ((|#1| $ |#1|) 150 T ELT) (($ $ $) 151 T ELT) (((-421 $) (-421 $) (-421 $)) NIL (|has| |#1| (-571)) ELT) ((|#1| (-421 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-421 $) $ (-421 $)) NIL (|has| |#1| (-571)) ELT)) (-1676 (((-3 $ "failed") $ (-793)) 54 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 172 (|has| |#1| (-376)) ELT)) (-2690 (($ $ (-1113)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) 156 (|has| |#1| (-175)) ELT)) (-2894 (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-3630 (((-793) $) 78 T ELT) (((-793) $ (-1113)) NIL T ELT) (((-663 (-793)) $ (-663 (-1113))) NIL T ELT)) (-1407 (((-915 (-391)) $) NIL (-12 (|has| (-1113) (-633 (-915 (-391)))) (|has| |#1| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-1113) (-633 (-915 (-560)))) (|has| |#1| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-1113) (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-2053 ((|#1| $) 162 (|has| |#1| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#1| (-466)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-1974 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT) (((-3 (-421 $) "failed") (-421 $) $) NIL (|has| |#1| (-571)) ELT)) (-1578 (((-887) $) 149 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) 77 T ELT) (($ (-1113)) NIL T ELT) (($ (-421 (-560))) NIL (-2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-3409 (((-663 |#1|) $) NIL T ELT)) (-2305 ((|#1| $ (-793)) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-2930 (((-793)) NIL T CONST)) (-2392 (($ $ $ (-793)) 41 (|has| |#1| (-175)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2001 (($) 17 T CONST)) (-2011 (($) 19 T CONST)) (-3305 (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-2473 (((-114) $ $) 120 T ELT)) (-2594 (($ $ |#1|) 173 (|has| |#1| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 90 T ELT)) (** (($ $ (-948)) 14 T ELT) (($ $ (-793)) 12 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 129 T ELT) (($ $ |#1|) NIL T ELT)))
-(((-1201 |#1|) (-13 (-1273 |#1|) (-10 -8 (-15 -2983 ((-887) $ (-887))) (-15 -4369 ($ $ (-793) |#1| $)))) (-1080)) (T -1201))
-((-2983 (*1 *2 *1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1201 *3)) (-4 *3 (-1080)))) (-4369 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1201 *3)) (-4 *3 (-1080)))))
-(-13 (-1273 |#1|) (-10 -8 (-15 -2983 ((-887) $ (-887))) (-15 -4369 ($ $ (-793) |#1| $))))
-((-3957 (((-1201 |#2|) (-1 |#2| |#1|) (-1201 |#1|)) 13 T ELT)))
-(((-1202 |#1| |#2|) (-10 -7 (-15 -3957 ((-1201 |#2|) (-1 |#2| |#1|) (-1201 |#1|)))) (-1080) (-1080)) (T -1202))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1201 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-5 *2 (-1201 *6)) (-5 *1 (-1202 *5 *6)))))
-(-10 -7 (-15 -3957 ((-1201 |#2|) (-1 |#2| |#1|) (-1201 |#1|))))
-((-3023 (((-419 (-1201 (-421 |#4|))) (-1201 (-421 |#4|))) 51 T ELT)) (-4457 (((-419 (-1201 (-421 |#4|))) (-1201 (-421 |#4|))) 52 T ELT)))
-(((-1203 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4457 ((-419 (-1201 (-421 |#4|))) (-1201 (-421 |#4|)))) (-15 -3023 ((-419 (-1201 (-421 |#4|))) (-1201 (-421 |#4|))))) (-815) (-871) (-466) (-979 |#3| |#1| |#2|)) (T -1203))
-((-3023 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-466)) (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-419 (-1201 (-421 *7)))) (-5 *1 (-1203 *4 *5 *6 *7)) (-5 *3 (-1201 (-421 *7))))) (-4457 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-466)) (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-419 (-1201 (-421 *7)))) (-5 *1 (-1203 *4 *5 *6 *7)) (-5 *3 (-1201 (-421 *7))))))
-(-10 -7 (-15 -4457 ((-419 (-1201 (-421 |#4|))) (-1201 (-421 |#4|)))) (-15 -3023 ((-419 (-1201 (-421 |#4|))) (-1201 (-421 |#4|)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1443 (((-663 (-1113)) $) NIL T ELT)) (-2462 (((-1207) $) 11 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4267 (($ $ (-421 (-560))) NIL T ELT) (($ $ (-421 (-560)) (-421 (-560))) NIL T ELT)) (-1425 (((-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|))) $) NIL T ELT)) (-4337 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3455 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-4471 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1615 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4313 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3430 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3781 (($ (-793) (-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|)))) NIL T ELT)) (-4363 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-1198 |#1| |#2| |#3|) "failed") $) 33 T ELT) (((-3 (-1205 |#1| |#2| |#3|) "failed") $) 36 T ELT)) (-3330 (((-1198 |#1| |#2| |#3|) $) NIL T ELT) (((-1205 |#1| |#2| |#3|) $) NIL T ELT)) (-1478 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1624 (($ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2464 (((-421 (-560)) $) 59 T ELT)) (-1490 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1519 (($ (-421 (-560)) (-1198 |#1| |#2| |#3|)) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4330 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-4386 (((-114) $) NIL T ELT)) (-3796 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3913 (((-421 (-560)) $) NIL T ELT) (((-421 (-560)) $ (-421 (-560))) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-2146 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3022 (($ $ (-948)) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-421 (-560))) 20 T ELT) (($ $ (-1113) (-421 (-560))) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-421 (-560)))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2192 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3154 (((-1198 |#1| |#2| |#3|) $) 41 T ELT)) (-2328 (((-3 (-1198 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-1507 (((-1198 |#1| |#2| |#3|) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2518 (($ $) 39 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| |#1| (-15 -2518 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -1443 ((-663 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-989)) (|has| |#1| (-1233)))) ELT) (($ $ (-1294 |#2|)) 40 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4457 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4372 (($ $ (-421 (-560))) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-3251 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4187 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) ELT)) (-2901 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-3924 ((|#1| $ (-421 (-560))) NIL T ELT) (($ $ $) NIL (|has| (-421 (-560)) (-1143)) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2894 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-1294 |#2|)) 38 T ELT)) (-3630 (((-421 (-560)) $) NIL T ELT)) (-4373 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4352 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3466 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4325 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3443 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3266 (($ $) NIL T ELT)) (-1578 (((-887) $) 62 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1198 |#1| |#2| |#3|)) 30 T ELT) (($ (-1205 |#1| |#2| |#3|)) 31 T ELT) (($ (-1294 |#2|)) 26 T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-2305 ((|#1| $ (-421 (-560))) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-2930 (((-793)) NIL T CONST)) (-3355 ((|#1| $) 12 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-4411 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4263 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4387 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4438 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4287 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2239 ((|#1| $ (-421 (-560))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) (|has| |#1| (-15 -1578 (|#1| (-1207))))) ELT)) (-3837 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4302 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4423 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4275 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4398 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4252 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2001 (($) 22 T CONST)) (-2011 (($) 16 T CONST)) (-3305 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-1294 |#2|)) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 24 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
-(((-1204 |#1| |#2| |#3|) (-13 (-1282 |#1| (-1198 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-1069 (-1205 |#1| |#2| |#3|)) (-635 (-1294 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -2518 ($ $ (-1294 |#2|))) |%noBranch|))) (-1080) (-1207) |#1|) (T -1204))
-((-2518 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1204 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3))))
-(-13 (-1282 |#1| (-1198 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-1069 (-1205 |#1| |#2| |#3|)) (-635 (-1294 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -2518 ($ $ (-1294 |#2|))) |%noBranch|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 129 T ELT)) (-1443 (((-663 (-1113)) $) NIL T ELT)) (-2462 (((-1207) $) 119 T ELT)) (-3218 (((-1266 |#2| |#1|) $ (-793)) 69 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4267 (($ $ (-793)) 85 T ELT) (($ $ (-793) (-793)) 82 T ELT)) (-1425 (((-1185 (-2 (|:| |k| (-793)) (|:| |c| |#1|))) $) 105 T ELT)) (-4337 (($ $) 173 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3455 (($ $) 149 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-4471 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4313 (($ $) 169 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3430 (($ $) 145 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3781 (($ (-1185 (-2 (|:| |k| (-793)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1185 |#1|)) 113 T ELT)) (-4363 (($ $) 177 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3477 (($ $) 153 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2238 (($) NIL T CONST)) (-1624 (($ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) 25 T ELT)) (-3703 (($ $) 28 T ELT)) (-3739 (((-975 |#1|) $ (-793)) 81 T ELT) (((-975 |#1|) $ (-793) (-793)) 83 T ELT)) (-4386 (((-114) $) 124 T ELT)) (-3796 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3913 (((-793) $) 126 T ELT) (((-793) $ (-793)) 128 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-2146 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3022 (($ $ (-948)) NIL T ELT)) (-1540 (($ (-1 |#1| (-560)) $) NIL T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-793)) 13 T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2192 (($ $) 135 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2518 (($ $) 133 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| |#1| (-15 -2518 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -1443 ((-663 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-989)) (|has| |#1| (-1233)))) ELT) (($ $ (-1294 |#2|)) 134 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4372 (($ $ (-793)) 15 T ELT)) (-1528 (((-3 $ "failed") $ $) 26 (|has| |#1| (-571)) ELT)) (-3251 (($ $) 137 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4187 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-793)))) ELT)) (-3924 ((|#1| $ (-793)) 122 T ELT) (($ $ $) 132 (|has| (-793) (-1143)) ELT)) (-2894 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-1294 |#2|)) 31 T ELT)) (-3630 (((-793) $) NIL T ELT)) (-4373 (($ $) 179 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3488 (($ $) 155 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4352 (($ $) 175 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3466 (($ $) 151 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4325 (($ $) 171 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3443 (($ $) 147 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3266 (($ $) NIL T ELT)) (-1578 (((-887) $) 206 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ |#1|) 130 (|has| |#1| (-175)) ELT) (($ (-1266 |#2| |#1|)) 55 T ELT) (($ (-1294 |#2|)) 36 T ELT)) (-3409 (((-1185 |#1|) $) 101 T ELT)) (-2305 ((|#1| $ (-793)) 121 T ELT)) (-1964 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-2930 (((-793)) NIL T CONST)) (-3355 ((|#1| $) 58 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-4411 (($ $) 185 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4263 (($ $) 161 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4387 (($ $) 181 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3499 (($ $) 157 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4438 (($ $) 189 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4287 (($ $) 165 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2239 ((|#1| $ (-793)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-793)))) (|has| |#1| (-15 -1578 (|#1| (-1207))))) ELT)) (-3837 (($ $) 191 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4302 (($ $) 167 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4423 (($ $) 187 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4275 (($ $) 163 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4398 (($ $) 183 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4252 (($ $) 159 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2001 (($) 17 T CONST)) (-2011 (($) 20 T CONST)) (-3305 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-1294 |#2|)) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-2567 (($ $ $) 35 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-376)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 141 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
-(((-1205 |#1| |#2| |#3|) (-13 (-1290 |#1|) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -1578 ($ (-1266 |#2| |#1|))) (-15 -3218 ((-1266 |#2| |#1|) $ (-793))) (-15 -1578 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -2518 ($ $ (-1294 |#2|))) |%noBranch|))) (-1080) (-1207) |#1|) (T -1205))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1266 *4 *3)) (-4 *3 (-1080)) (-14 *4 (-1207)) (-14 *5 *3) (-5 *1 (-1205 *3 *4 *5)))) (-3218 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1266 *5 *4)) (-5 *1 (-1205 *4 *5 *6)) (-4 *4 (-1080)) (-14 *5 (-1207)) (-14 *6 *4))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1205 *3 *4 *5)) (-4 *3 (-1080)) (-14 *5 *3))) (-2518 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1205 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3))))
-(-13 (-1290 |#1|) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -1578 ($ (-1266 |#2| |#1|))) (-15 -3218 ((-1266 |#2| |#1|) $ (-793))) (-15 -1578 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -2518 ($ $ (-1294 |#2|))) |%noBranch|)))
-((-1578 (((-887) $) 33 T ELT) (($ (-1207)) 35 T ELT)) (-2304 (($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 46 T ELT)) (-2292 (($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 39 T ELT) (($ $) 40 T ELT)) (-1790 (($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 41 T ELT)) (-1777 (($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 43 T ELT)) (-1760 (($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 42 T ELT)) (-1748 (($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 44 T ELT)) (-1537 (($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 47 T ELT)) (-12 (($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 45 T ELT)))
-(((-1206) (-13 (-632 (-887)) (-10 -8 (-15 -1578 ($ (-1207))) (-15 -1790 ($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -1760 ($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -1777 ($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -1748 ($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -2304 ($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -1537 ($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -2292 ($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -2292 ($ $))))) (T -1206))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1206)))) (-1790 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-1760 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-1777 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-1748 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-2304 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-1537 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-2292 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-2292 (*1 *1 *1) (-5 *1 (-1206))))
-(-13 (-632 (-887)) (-10 -8 (-15 -1578 ($ (-1207))) (-15 -1790 ($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -1760 ($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -1777 ($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -1748 ($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -2304 ($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -1537 ($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -2292 ($ (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -2292 ($ $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1474 (($ $ (-663 (-887))) 62 T ELT)) (-1568 (($ $ (-663 (-887))) 60 T ELT)) (-1620 (((-1189) $) 101 T ELT)) (-4213 (((-2 (|:| -2600 (-663 (-887))) (|:| -3168 (-663 (-887))) (|:| |presup| (-663 (-887))) (|:| -4114 (-663 (-887))) (|:| |args| (-663 (-887)))) $) 108 T ELT)) (-4003 (((-114) $) 23 T ELT)) (-2399 (($ $ (-663 (-663 (-887)))) 59 T ELT) (($ $ (-2 (|:| -2600 (-663 (-887))) (|:| -3168 (-663 (-887))) (|:| |presup| (-663 (-887))) (|:| -4114 (-663 (-887))) (|:| |args| (-663 (-887))))) 99 T ELT)) (-2238 (($) 163 T CONST)) (-3521 (((-1303)) 135 T ELT)) (-2427 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 69 T ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 76 T ELT)) (-4095 (($) 122 T ELT) (($ $) 131 T ELT)) (-3614 (($ $) 100 T ELT)) (-3825 (($ $ $) NIL T ELT)) (-2820 (($ $ $) NIL T ELT)) (-2045 (((-663 $) $) 136 T ELT)) (-1905 (((-1189) $) 114 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3924 (($ $ (-663 (-887))) 61 T ELT)) (-1407 (((-549) $) 48 T ELT) (((-1207) $) 49 T ELT) (((-915 (-560)) $) 80 T ELT) (((-915 (-391)) $) 78 T ELT)) (-1578 (((-887) $) 55 T ELT) (($ (-1189)) 50 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2559 (($ $ (-663 (-887))) 63 T ELT)) (-2735 (((-1189) $) 34 T ELT) (((-1189) $ (-114)) 35 T ELT) (((-1303) (-845) $) 36 T ELT) (((-1303) (-845) $ (-114)) 37 T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 51 T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) 52 T ELT)))
-(((-1207) (-13 (-871) (-633 (-549)) (-843) (-633 (-1207)) (-635 (-1189)) (-633 (-915 (-560))) (-633 (-915 (-391))) (-911 (-560)) (-911 (-391)) (-10 -8 (-15 -4095 ($)) (-15 -4095 ($ $)) (-15 -3521 ((-1303))) (-15 -3614 ($ $)) (-15 -4003 ((-114) $)) (-15 -4213 ((-2 (|:| -2600 (-663 (-887))) (|:| -3168 (-663 (-887))) (|:| |presup| (-663 (-887))) (|:| -4114 (-663 (-887))) (|:| |args| (-663 (-887)))) $)) (-15 -2399 ($ $ (-663 (-663 (-887))))) (-15 -2399 ($ $ (-2 (|:| -2600 (-663 (-887))) (|:| -3168 (-663 (-887))) (|:| |presup| (-663 (-887))) (|:| -4114 (-663 (-887))) (|:| |args| (-663 (-887)))))) (-15 -1568 ($ $ (-663 (-887)))) (-15 -1474 ($ $ (-663 (-887)))) (-15 -2559 ($ $ (-663 (-887)))) (-15 -3924 ($ $ (-663 (-887)))) (-15 -1620 ((-1189) $)) (-15 -2045 ((-663 $) $)) (-15 -2238 ($) -3081)))) (T -1207))
-((-4095 (*1 *1) (-5 *1 (-1207))) (-4095 (*1 *1 *1) (-5 *1 (-1207))) (-3521 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1207)))) (-3614 (*1 *1 *1) (-5 *1 (-1207))) (-4003 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1207)))) (-4213 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2600 (-663 (-887))) (|:| -3168 (-663 (-887))) (|:| |presup| (-663 (-887))) (|:| -4114 (-663 (-887))) (|:| |args| (-663 (-887))))) (-5 *1 (-1207)))) (-2399 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-663 (-887)))) (-5 *1 (-1207)))) (-2399 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2600 (-663 (-887))) (|:| -3168 (-663 (-887))) (|:| |presup| (-663 (-887))) (|:| -4114 (-663 (-887))) (|:| |args| (-663 (-887))))) (-5 *1 (-1207)))) (-1568 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-1207)))) (-1474 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-1207)))) (-2559 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-1207)))) (-3924 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-1207)))) (-1620 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1207)))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-1207)))) (-2238 (*1 *1) (-5 *1 (-1207))))
-(-13 (-871) (-633 (-549)) (-843) (-633 (-1207)) (-635 (-1189)) (-633 (-915 (-560))) (-633 (-915 (-391))) (-911 (-560)) (-911 (-391)) (-10 -8 (-15 -4095 ($)) (-15 -4095 ($ $)) (-15 -3521 ((-1303))) (-15 -3614 ($ $)) (-15 -4003 ((-114) $)) (-15 -4213 ((-2 (|:| -2600 (-663 (-887))) (|:| -3168 (-663 (-887))) (|:| |presup| (-663 (-887))) (|:| -4114 (-663 (-887))) (|:| |args| (-663 (-887)))) $)) (-15 -2399 ($ $ (-663 (-663 (-887))))) (-15 -2399 ($ $ (-2 (|:| -2600 (-663 (-887))) (|:| -3168 (-663 (-887))) (|:| |presup| (-663 (-887))) (|:| -4114 (-663 (-887))) (|:| |args| (-663 (-887)))))) (-15 -1568 ($ $ (-663 (-887)))) (-15 -1474 ($ $ (-663 (-887)))) (-15 -2559 ($ $ (-663 (-887)))) (-15 -3924 ($ $ (-663 (-887)))) (-15 -1620 ((-1189) $)) (-15 -2045 ((-663 $) $)) (-15 -2238 ($) -3081)))
-((-4160 (((-1297 |#1|) |#1| (-948)) 18 T ELT) (((-1297 |#1|) (-663 |#1|)) 25 T ELT)))
-(((-1208 |#1|) (-10 -7 (-15 -4160 ((-1297 |#1|) (-663 |#1|))) (-15 -4160 ((-1297 |#1|) |#1| (-948)))) (-1080)) (T -1208))
-((-4160 (*1 *2 *3 *4) (-12 (-5 *4 (-948)) (-5 *2 (-1297 *3)) (-5 *1 (-1208 *3)) (-4 *3 (-1080)))) (-4160 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-1080)) (-5 *2 (-1297 *4)) (-5 *1 (-1208 *4)))))
-(-10 -7 (-15 -4160 ((-1297 |#1|) (-663 |#1|))) (-15 -4160 ((-1297 |#1|) |#1| (-948))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3330 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-1624 (($ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2806 (($ $) NIL (|has| |#1| (-466)) ELT)) (-4342 (($ $ |#1| (-1002) $) NIL T ELT)) (-1581 (((-114) $) 17 T ELT)) (-3531 (((-793) $) NIL T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-1002)) NIL T ELT)) (-3011 (((-1002) $) NIL T ELT)) (-4321 (($ (-1 (-1002) (-1002)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1554 (((-114) $) NIL T ELT)) (-1566 ((|#1| $) NIL T ELT)) (-4369 (($ $ (-1002) |#1| $) NIL (-12 (|has| (-1002) (-133)) (|has| |#1| (-571))) ELT)) (-1528 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-3630 (((-1002) $) NIL T ELT)) (-2053 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ |#1|) NIL T ELT) (($ (-421 (-560))) NIL (-2304 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-3409 (((-663 |#1|) $) NIL T ELT)) (-2305 ((|#1| $ (-1002)) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-2930 (((-793)) NIL T CONST)) (-2392 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2001 (($) 10 T CONST)) (-2011 (($) NIL T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 21 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 22 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 16 T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
-(((-1209 |#1|) (-13 (-338 |#1| (-1002)) (-10 -8 (IF (|has| |#1| (-571)) (IF (|has| (-1002) (-133)) (-15 -4369 ($ $ (-1002) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4506)) (-6 -4506) |%noBranch|))) (-1080)) (T -1209))
-((-4369 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-1002)) (-4 *2 (-133)) (-5 *1 (-1209 *3)) (-4 *3 (-571)) (-4 *3 (-1080)))))
-(-13 (-338 |#1| (-1002)) (-10 -8 (IF (|has| |#1| (-571)) (IF (|has| (-1002) (-133)) (-15 -4369 ($ $ (-1002) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4506)) (-6 -4506) |%noBranch|)))
-((-2049 (((-1211) (-1207) $) 25 T ELT)) (-2688 (($) 29 T ELT)) (-2176 (((-3 (|:| |fst| (-448)) (|:| -3280 "void")) (-1207) $) 22 T ELT)) (-4392 (((-1303) (-1207) (-3 (|:| |fst| (-448)) (|:| -3280 "void")) $) 41 T ELT) (((-1303) (-1207) (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) 42 T ELT) (((-1303) (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) 43 T ELT)) (-3310 (((-1303) (-1207)) 58 T ELT)) (-3356 (((-1303) (-1207) $) 55 T ELT) (((-1303) (-1207)) 56 T ELT) (((-1303)) 57 T ELT)) (-2821 (((-1303) (-1207)) 37 T ELT)) (-1638 (((-1207)) 36 T ELT)) (-3986 (($) 34 T ELT)) (-4375 (((-450) (-1207) (-450) (-1207) $) 45 T ELT) (((-450) (-663 (-1207)) (-450) (-1207) $) 49 T ELT) (((-450) (-1207) (-450)) 46 T ELT) (((-450) (-1207) (-450) (-1207)) 50 T ELT)) (-2541 (((-1207)) 35 T ELT)) (-1578 (((-887) $) 28 T ELT)) (-3903 (((-1303)) 30 T ELT) (((-1303) (-1207)) 33 T ELT)) (-2114 (((-663 (-1207)) (-1207) $) 24 T ELT)) (-2689 (((-1303) (-1207) (-663 (-1207)) $) 38 T ELT) (((-1303) (-1207) (-663 (-1207))) 39 T ELT) (((-1303) (-663 (-1207))) 40 T ELT)))
-(((-1210) (-13 (-632 (-887)) (-10 -8 (-15 -2688 ($)) (-15 -3903 ((-1303))) (-15 -3903 ((-1303) (-1207))) (-15 -4375 ((-450) (-1207) (-450) (-1207) $)) (-15 -4375 ((-450) (-663 (-1207)) (-450) (-1207) $)) (-15 -4375 ((-450) (-1207) (-450))) (-15 -4375 ((-450) (-1207) (-450) (-1207))) (-15 -2821 ((-1303) (-1207))) (-15 -2541 ((-1207))) (-15 -1638 ((-1207))) (-15 -2689 ((-1303) (-1207) (-663 (-1207)) $)) (-15 -2689 ((-1303) (-1207) (-663 (-1207)))) (-15 -2689 ((-1303) (-663 (-1207)))) (-15 -4392 ((-1303) (-1207) (-3 (|:| |fst| (-448)) (|:| -3280 "void")) $)) (-15 -4392 ((-1303) (-1207) (-3 (|:| |fst| (-448)) (|:| -3280 "void")))) (-15 -4392 ((-1303) (-3 (|:| |fst| (-448)) (|:| -3280 "void")))) (-15 -3356 ((-1303) (-1207) $)) (-15 -3356 ((-1303) (-1207))) (-15 -3356 ((-1303))) (-15 -3310 ((-1303) (-1207))) (-15 -3986 ($)) (-15 -2176 ((-3 (|:| |fst| (-448)) (|:| -3280 "void")) (-1207) $)) (-15 -2114 ((-663 (-1207)) (-1207) $)) (-15 -2049 ((-1211) (-1207) $))))) (T -1210))
-((-2688 (*1 *1) (-5 *1 (-1210))) (-3903 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1210)))) (-3903 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-4375 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-450)) (-5 *3 (-1207)) (-5 *1 (-1210)))) (-4375 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-450)) (-5 *3 (-663 (-1207))) (-5 *4 (-1207)) (-5 *1 (-1210)))) (-4375 (*1 *2 *3 *2) (-12 (-5 *2 (-450)) (-5 *3 (-1207)) (-5 *1 (-1210)))) (-4375 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-1207)) (-5 *1 (-1210)))) (-2821 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-2541 (*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1210)))) (-1638 (*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1210)))) (-2689 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-663 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-2689 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-2689 (*1 *2 *3) (-12 (-5 *3 (-663 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-4392 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1207)) (-5 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-4392 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-4392 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-3356 (*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-3356 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1210)))) (-3310 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-3986 (*1 *1) (-5 *1 (-1210))) (-2176 (*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-5 *1 (-1210)))) (-2114 (*1 *2 *3 *1) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-1210)) (-5 *3 (-1207)))) (-2049 (*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-1211)) (-5 *1 (-1210)))))
-(-13 (-632 (-887)) (-10 -8 (-15 -2688 ($)) (-15 -3903 ((-1303))) (-15 -3903 ((-1303) (-1207))) (-15 -4375 ((-450) (-1207) (-450) (-1207) $)) (-15 -4375 ((-450) (-663 (-1207)) (-450) (-1207) $)) (-15 -4375 ((-450) (-1207) (-450))) (-15 -4375 ((-450) (-1207) (-450) (-1207))) (-15 -2821 ((-1303) (-1207))) (-15 -2541 ((-1207))) (-15 -1638 ((-1207))) (-15 -2689 ((-1303) (-1207) (-663 (-1207)) $)) (-15 -2689 ((-1303) (-1207) (-663 (-1207)))) (-15 -2689 ((-1303) (-663 (-1207)))) (-15 -4392 ((-1303) (-1207) (-3 (|:| |fst| (-448)) (|:| -3280 "void")) $)) (-15 -4392 ((-1303) (-1207) (-3 (|:| |fst| (-448)) (|:| -3280 "void")))) (-15 -4392 ((-1303) (-3 (|:| |fst| (-448)) (|:| -3280 "void")))) (-15 -3356 ((-1303) (-1207) $)) (-15 -3356 ((-1303) (-1207))) (-15 -3356 ((-1303))) (-15 -3310 ((-1303) (-1207))) (-15 -3986 ($)) (-15 -2176 ((-3 (|:| |fst| (-448)) (|:| -3280 "void")) (-1207) $)) (-15 -2114 ((-663 (-1207)) (-1207) $)) (-15 -2049 ((-1211) (-1207) $))))
-((-2913 (((-663 (-663 (-3 (|:| -3614 (-1207)) (|:| -3909 (-663 (-3 (|:| S (-1207)) (|:| P (-975 (-560))))))))) $) 66 T ELT)) (-3886 (((-663 (-3 (|:| -3614 (-1207)) (|:| -3909 (-663 (-3 (|:| S (-1207)) (|:| P (-975 (-560)))))))) (-448) $) 47 T ELT)) (-2718 (($ (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 (-450))))) 17 T ELT)) (-3310 (((-1303) $) 73 T ELT)) (-1769 (((-663 (-1207)) $) 22 T ELT)) (-1472 (((-1134) $) 60 T ELT)) (-4023 (((-450) (-1207) $) 27 T ELT)) (-2262 (((-663 (-1207)) $) 30 T ELT)) (-3986 (($) 19 T ELT)) (-4375 (((-450) (-663 (-1207)) (-450) $) 25 T ELT) (((-450) (-1207) (-450) $) 24 T ELT)) (-1578 (((-887) $) 9 T ELT) (((-1219 (-1207) (-450)) $) 13 T ELT)))
-(((-1211) (-13 (-632 (-887)) (-10 -8 (-15 -1578 ((-1219 (-1207) (-450)) $)) (-15 -3986 ($)) (-15 -4375 ((-450) (-663 (-1207)) (-450) $)) (-15 -4375 ((-450) (-1207) (-450) $)) (-15 -4023 ((-450) (-1207) $)) (-15 -1769 ((-663 (-1207)) $)) (-15 -3886 ((-663 (-3 (|:| -3614 (-1207)) (|:| -3909 (-663 (-3 (|:| S (-1207)) (|:| P (-975 (-560)))))))) (-448) $)) (-15 -2262 ((-663 (-1207)) $)) (-15 -2913 ((-663 (-663 (-3 (|:| -3614 (-1207)) (|:| -3909 (-663 (-3 (|:| S (-1207)) (|:| P (-975 (-560))))))))) $)) (-15 -1472 ((-1134) $)) (-15 -3310 ((-1303) $)) (-15 -2718 ($ (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 (-450))))))))) (T -1211))
-((-1578 (*1 *2 *1) (-12 (-5 *2 (-1219 (-1207) (-450))) (-5 *1 (-1211)))) (-3986 (*1 *1) (-5 *1 (-1211))) (-4375 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-450)) (-5 *3 (-663 (-1207))) (-5 *1 (-1211)))) (-4375 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-450)) (-5 *3 (-1207)) (-5 *1 (-1211)))) (-4023 (*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-450)) (-5 *1 (-1211)))) (-1769 (*1 *2 *1) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-1211)))) (-3886 (*1 *2 *3 *1) (-12 (-5 *3 (-448)) (-5 *2 (-663 (-3 (|:| -3614 (-1207)) (|:| -3909 (-663 (-3 (|:| S (-1207)) (|:| P (-975 (-560))))))))) (-5 *1 (-1211)))) (-2262 (*1 *2 *1) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-1211)))) (-2913 (*1 *2 *1) (-12 (-5 *2 (-663 (-663 (-3 (|:| -3614 (-1207)) (|:| -3909 (-663 (-3 (|:| S (-1207)) (|:| P (-975 (-560)))))))))) (-5 *1 (-1211)))) (-1472 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1211)))) (-3310 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1211)))) (-2718 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 (-450))))) (-5 *1 (-1211)))))
-(-13 (-632 (-887)) (-10 -8 (-15 -1578 ((-1219 (-1207) (-450)) $)) (-15 -3986 ($)) (-15 -4375 ((-450) (-663 (-1207)) (-450) $)) (-15 -4375 ((-450) (-1207) (-450) $)) (-15 -4023 ((-450) (-1207) $)) (-15 -1769 ((-663 (-1207)) $)) (-15 -3886 ((-663 (-3 (|:| -3614 (-1207)) (|:| -3909 (-663 (-3 (|:| S (-1207)) (|:| P (-975 (-560)))))))) (-448) $)) (-15 -2262 ((-663 (-1207)) $)) (-15 -2913 ((-663 (-663 (-3 (|:| -3614 (-1207)) (|:| -3909 (-663 (-3 (|:| S (-1207)) (|:| P (-975 (-560))))))))) $)) (-15 -1472 ((-1134) $)) (-15 -3310 ((-1303) $)) (-15 -2718 ($ (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 (-450))))))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2539 (((-3 (-560) "failed") $) 29 T ELT) (((-3 (-229) "failed") $) 35 T ELT) (((-3 (-520) "failed") $) 43 T ELT) (((-3 (-1189) "failed") $) 47 T ELT)) (-3330 (((-560) $) 30 T ELT) (((-229) $) 36 T ELT) (((-520) $) 40 T ELT) (((-1189) $) 48 T ELT)) (-1453 (((-114) $) 53 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4455 (((-3 (-560) (-229) (-520) (-1189) $) $) 55 T ELT)) (-3914 (((-663 $) $) 57 T ELT)) (-1407 (((-1134) $) 24 T ELT) (($ (-1134)) 25 T ELT)) (-2421 (((-114) $) 56 T ELT)) (-1578 (((-887) $) 23 T ELT) (($ (-560)) 26 T ELT) (($ (-229)) 32 T ELT) (($ (-520)) 38 T ELT) (($ (-1189)) 44 T ELT) (((-549) $) 59 T ELT) (((-560) $) 31 T ELT) (((-229) $) 37 T ELT) (((-520) $) 41 T ELT) (((-1189) $) 49 T ELT)) (-1991 (((-114) $ (|[\|\|]| (-560))) 10 T ELT) (((-114) $ (|[\|\|]| (-229))) 13 T ELT) (((-114) $ (|[\|\|]| (-520))) 19 T ELT) (((-114) $ (|[\|\|]| (-1189))) 16 T ELT)) (-3234 (($ (-520) (-663 $)) 51 T ELT) (($ $ (-663 $)) 52 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1856 (((-560) $) 27 T ELT) (((-229) $) 33 T ELT) (((-520) $) 39 T ELT) (((-1189) $) 45 T ELT)) (-2473 (((-114) $ $) 7 T ELT)))
-(((-1212) (-13 (-1293) (-1132) (-1069 (-560)) (-1069 (-229)) (-1069 (-520)) (-1069 (-1189)) (-632 (-549)) (-10 -8 (-15 -1407 ((-1134) $)) (-15 -1407 ($ (-1134))) (-15 -1578 ((-560) $)) (-15 -1856 ((-560) $)) (-15 -1578 ((-229) $)) (-15 -1856 ((-229) $)) (-15 -1578 ((-520) $)) (-15 -1856 ((-520) $)) (-15 -1578 ((-1189) $)) (-15 -1856 ((-1189) $)) (-15 -3234 ($ (-520) (-663 $))) (-15 -3234 ($ $ (-663 $))) (-15 -1453 ((-114) $)) (-15 -4455 ((-3 (-560) (-229) (-520) (-1189) $) $)) (-15 -3914 ((-663 $) $)) (-15 -2421 ((-114) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-560)))) (-15 -1991 ((-114) $ (|[\|\|]| (-229)))) (-15 -1991 ((-114) $ (|[\|\|]| (-520)))) (-15 -1991 ((-114) $ (|[\|\|]| (-1189))))))) (T -1212))
-((-1407 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1212)))) (-1407 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1212)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1212)))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1212)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1212)))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1212)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1212)))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1212)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1212)))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1212)))) (-3234 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-663 (-1212))) (-5 *1 (-1212)))) (-3234 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-1212))) (-5 *1 (-1212)))) (-1453 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1212)))) (-4455 (*1 *2 *1) (-12 (-5 *2 (-3 (-560) (-229) (-520) (-1189) (-1212))) (-5 *1 (-1212)))) (-3914 (*1 *2 *1) (-12 (-5 *2 (-663 (-1212))) (-5 *1 (-1212)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1212)))) (-1991 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-560))) (-5 *2 (-114)) (-5 *1 (-1212)))) (-1991 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-229))) (-5 *2 (-114)) (-5 *1 (-1212)))) (-1991 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-114)) (-5 *1 (-1212)))) (-1991 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-114)) (-5 *1 (-1212)))))
-(-13 (-1293) (-1132) (-1069 (-560)) (-1069 (-229)) (-1069 (-520)) (-1069 (-1189)) (-632 (-549)) (-10 -8 (-15 -1407 ((-1134) $)) (-15 -1407 ($ (-1134))) (-15 -1578 ((-560) $)) (-15 -1856 ((-560) $)) (-15 -1578 ((-229) $)) (-15 -1856 ((-229) $)) (-15 -1578 ((-520) $)) (-15 -1856 ((-520) $)) (-15 -1578 ((-1189) $)) (-15 -1856 ((-1189) $)) (-15 -3234 ($ (-520) (-663 $))) (-15 -3234 ($ $ (-663 $))) (-15 -1453 ((-114) $)) (-15 -4455 ((-3 (-560) (-229) (-520) (-1189) $) $)) (-15 -3914 ((-663 $) $)) (-15 -2421 ((-114) $)) (-15 -1991 ((-114) $ (|[\|\|]| (-560)))) (-15 -1991 ((-114) $ (|[\|\|]| (-229)))) (-15 -1991 ((-114) $ (|[\|\|]| (-520)))) (-15 -1991 ((-114) $ (|[\|\|]| (-1189))))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3241 (((-793)) 22 T ELT)) (-2238 (($) 12 T CONST)) (-2310 (($) 26 T ELT)) (-3825 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2820 (($ $ $) NIL T ELT) (($) 20 T CONST)) (-4419 (((-948) $) 24 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3128 (($ (-948)) 23 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) NIL T ELT)))
-(((-1213 |#1|) (-13 (-866) (-10 -8 (-15 -2238 ($) -3081))) (-948)) (T -1213))
-((-2238 (*1 *1) (-12 (-5 *1 (-1213 *2)) (-14 *2 (-948)))))
-(-13 (-866) (-10 -8 (-15 -2238 ($) -3081)))
+((-3281 (((-1185 |#1|) (-1185 |#1|)) 83 T ELT)) (-2873 (((-3 (-1185 |#1|) "failed") (-1185 |#1|)) 39 T ELT)) (-2720 (((-1185 |#1|) (-421 (-560)) (-1185 |#1|)) 133 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4375 (((-1185 |#1|) |#1| (-1185 |#1|)) 139 (|has| |#1| (-376)) ELT)) (-1808 (((-1185 |#1|) (-1185 |#1|)) 97 T ELT)) (-4187 (((-1185 (-560)) (-560)) 63 T ELT)) (-1853 (((-1185 |#1|) (-1185 (-1185 |#1|))) 116 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1978 (((-1185 |#1|) (-560) (-560) (-1185 |#1|)) 102 T ELT)) (-1405 (((-1185 |#1|) |#1| (-560)) 51 T ELT)) (-1674 (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 66 T ELT)) (-2862 (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 136 (|has| |#1| (-376)) ELT)) (-1970 (((-1185 |#1|) |#1| (-1 (-1185 |#1|))) 115 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3436 (((-1185 |#1|) (-1 |#1| (-560)) |#1| (-1 (-1185 |#1|))) 137 (|has| |#1| (-376)) ELT)) (-3801 (((-1185 |#1|) (-1185 |#1|)) 96 T ELT)) (-2768 (((-1185 |#1|) (-1185 |#1|)) 82 T ELT)) (-4434 (((-1185 |#1|) (-560) (-560) (-1185 |#1|)) 103 T ELT)) (-4424 (((-1185 |#1|) |#1| (-1185 |#1|)) 112 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1650 (((-1185 (-560)) (-560)) 62 T ELT)) (-2660 (((-1185 |#1|) |#1|) 65 T ELT)) (-4146 (((-1185 |#1|) (-1185 |#1|) (-560) (-560)) 99 T ELT)) (-3806 (((-1185 |#1|) (-1 |#1| (-560)) (-1185 |#1|)) 72 T ELT)) (-2233 (((-3 (-1185 |#1|) "failed") (-1185 |#1|) (-1185 |#1|)) 37 T ELT)) (-3676 (((-1185 |#1|) (-1185 |#1|)) 98 T ELT)) (-2371 (((-1185 |#1|) (-1185 |#1|) |#1|) 77 T ELT)) (-1696 (((-1185 |#1|) (-1185 |#1|)) 68 T ELT)) (-3013 (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 78 T ELT)) (-3913 (((-1185 |#1|) |#1|) 73 T ELT)) (-2945 (((-1185 |#1|) (-1185 (-1185 |#1|))) 88 T ELT)) (-2453 (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 38 T ELT)) (-2441 (((-1185 |#1|) (-1185 |#1|)) 21 T ELT) (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 23 T ELT)) (-2429 (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 17 T ELT)) (* (((-1185 |#1|) (-1185 |#1|) |#1|) 29 T ELT) (((-1185 |#1|) |#1| (-1185 |#1|)) 26 T ELT) (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 27 T ELT)))
+(((-1191 |#1|) (-10 -7 (-15 -2429 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2441 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2441 ((-1185 |#1|) (-1185 |#1|))) (-15 * ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 * ((-1185 |#1|) |#1| (-1185 |#1|))) (-15 * ((-1185 |#1|) (-1185 |#1|) |#1|)) (-15 -2233 ((-3 (-1185 |#1|) "failed") (-1185 |#1|) (-1185 |#1|))) (-15 -2453 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2873 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -1405 ((-1185 |#1|) |#1| (-560))) (-15 -1650 ((-1185 (-560)) (-560))) (-15 -4187 ((-1185 (-560)) (-560))) (-15 -2660 ((-1185 |#1|) |#1|)) (-15 -1674 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -1696 ((-1185 |#1|) (-1185 |#1|))) (-15 -3806 ((-1185 |#1|) (-1 |#1| (-560)) (-1185 |#1|))) (-15 -3913 ((-1185 |#1|) |#1|)) (-15 -2371 ((-1185 |#1|) (-1185 |#1|) |#1|)) (-15 -3013 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2768 ((-1185 |#1|) (-1185 |#1|))) (-15 -3281 ((-1185 |#1|) (-1185 |#1|))) (-15 -2945 ((-1185 |#1|) (-1185 (-1185 |#1|)))) (-15 -3801 ((-1185 |#1|) (-1185 |#1|))) (-15 -1808 ((-1185 |#1|) (-1185 |#1|))) (-15 -3676 ((-1185 |#1|) (-1185 |#1|))) (-15 -4146 ((-1185 |#1|) (-1185 |#1|) (-560) (-560))) (-15 -1978 ((-1185 |#1|) (-560) (-560) (-1185 |#1|))) (-15 -4434 ((-1185 |#1|) (-560) (-560) (-1185 |#1|))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -4424 ((-1185 |#1|) |#1| (-1185 |#1|))) (-15 -1970 ((-1185 |#1|) |#1| (-1 (-1185 |#1|)))) (-15 -1853 ((-1185 |#1|) (-1185 (-1185 |#1|)))) (-15 -2720 ((-1185 |#1|) (-421 (-560)) (-1185 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -2862 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -3436 ((-1185 |#1|) (-1 |#1| (-560)) |#1| (-1 (-1185 |#1|)))) (-15 -4375 ((-1185 |#1|) |#1| (-1185 |#1|)))) |%noBranch|)) (-1080)) (T -1191))
+((-4375 (*1 *2 *3 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-376)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-3436 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-560))) (-5 *5 (-1 (-1185 *4))) (-4 *4 (-376)) (-4 *4 (-1080)) (-5 *2 (-1185 *4)) (-5 *1 (-1191 *4)))) (-2862 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-376)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2720 (*1 *2 *3 *2) (-12 (-5 *2 (-1185 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1080)) (-5 *3 (-421 (-560))) (-5 *1 (-1191 *4)))) (-1853 (*1 *2 *3) (-12 (-5 *3 (-1185 (-1185 *4))) (-5 *2 (-1185 *4)) (-5 *1 (-1191 *4)) (-4 *4 (-38 (-421 (-560)))) (-4 *4 (-1080)))) (-1970 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1185 *3))) (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)))) (-4424 (*1 *2 *3 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-4434 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1185 *4)) (-5 *3 (-560)) (-4 *4 (-1080)) (-5 *1 (-1191 *4)))) (-1978 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1185 *4)) (-5 *3 (-560)) (-4 *4 (-1080)) (-5 *1 (-1191 *4)))) (-4146 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1185 *4)) (-5 *3 (-560)) (-4 *4 (-1080)) (-5 *1 (-1191 *4)))) (-3676 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-1808 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-3801 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2945 (*1 *2 *3) (-12 (-5 *3 (-1185 (-1185 *4))) (-5 *2 (-1185 *4)) (-5 *1 (-1191 *4)) (-4 *4 (-1080)))) (-3281 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2768 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-3013 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2371 (*1 *2 *2 *3) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-3913 (*1 *2 *3) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1080)))) (-3806 (*1 *2 *3 *2) (-12 (-5 *2 (-1185 *4)) (-5 *3 (-1 *4 (-560))) (-4 *4 (-1080)) (-5 *1 (-1191 *4)))) (-1696 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-1674 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2660 (*1 *2 *3) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1080)))) (-4187 (*1 *2 *3) (-12 (-5 *2 (-1185 (-560))) (-5 *1 (-1191 *4)) (-4 *4 (-1080)) (-5 *3 (-560)))) (-1650 (*1 *2 *3) (-12 (-5 *2 (-1185 (-560))) (-5 *1 (-1191 *4)) (-4 *4 (-1080)) (-5 *3 (-560)))) (-1405 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1080)))) (-2873 (*1 *2 *2) (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2453 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2233 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2441 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2441 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))) (-2429 (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))))
+(-10 -7 (-15 -2429 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2441 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2441 ((-1185 |#1|) (-1185 |#1|))) (-15 * ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 * ((-1185 |#1|) |#1| (-1185 |#1|))) (-15 * ((-1185 |#1|) (-1185 |#1|) |#1|)) (-15 -2233 ((-3 (-1185 |#1|) "failed") (-1185 |#1|) (-1185 |#1|))) (-15 -2453 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2873 ((-3 (-1185 |#1|) "failed") (-1185 |#1|))) (-15 -1405 ((-1185 |#1|) |#1| (-560))) (-15 -1650 ((-1185 (-560)) (-560))) (-15 -4187 ((-1185 (-560)) (-560))) (-15 -2660 ((-1185 |#1|) |#1|)) (-15 -1674 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -1696 ((-1185 |#1|) (-1185 |#1|))) (-15 -3806 ((-1185 |#1|) (-1 |#1| (-560)) (-1185 |#1|))) (-15 -3913 ((-1185 |#1|) |#1|)) (-15 -2371 ((-1185 |#1|) (-1185 |#1|) |#1|)) (-15 -3013 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2768 ((-1185 |#1|) (-1185 |#1|))) (-15 -3281 ((-1185 |#1|) (-1185 |#1|))) (-15 -2945 ((-1185 |#1|) (-1185 (-1185 |#1|)))) (-15 -3801 ((-1185 |#1|) (-1185 |#1|))) (-15 -1808 ((-1185 |#1|) (-1185 |#1|))) (-15 -3676 ((-1185 |#1|) (-1185 |#1|))) (-15 -4146 ((-1185 |#1|) (-1185 |#1|) (-560) (-560))) (-15 -1978 ((-1185 |#1|) (-560) (-560) (-1185 |#1|))) (-15 -4434 ((-1185 |#1|) (-560) (-560) (-1185 |#1|))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -4424 ((-1185 |#1|) |#1| (-1185 |#1|))) (-15 -1970 ((-1185 |#1|) |#1| (-1 (-1185 |#1|)))) (-15 -1853 ((-1185 |#1|) (-1185 (-1185 |#1|)))) (-15 -2720 ((-1185 |#1|) (-421 (-560)) (-1185 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -2862 ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -3436 ((-1185 |#1|) (-1 |#1| (-560)) |#1| (-1 (-1185 |#1|)))) (-15 -4375 ((-1185 |#1|) |#1| (-1185 |#1|)))) |%noBranch|))
+((-1982 (((-1185 |#1|) (-1185 |#1|)) 102 T ELT)) (-1832 (((-1185 |#1|) (-1185 |#1|)) 61 T ELT)) (-3326 (((-2 (|:| -1958 (-1185 |#1|)) (|:| -1972 (-1185 |#1|))) (-1185 |#1|)) 98 T ELT)) (-1958 (((-1185 |#1|) (-1185 |#1|)) 99 T ELT)) (-2556 (((-2 (|:| -1806 (-1185 |#1|)) (|:| -1820 (-1185 |#1|))) (-1185 |#1|)) 54 T ELT)) (-1806 (((-1185 |#1|) (-1185 |#1|)) 55 T ELT)) (-2003 (((-1185 |#1|) (-1185 |#1|)) 104 T ELT)) (-1856 (((-1185 |#1|) (-1185 |#1|)) 68 T ELT)) (-2831 (((-1185 |#1|) (-1185 |#1|)) 40 T ELT)) (-2515 (((-1185 |#1|) (-1185 |#1|)) 37 T ELT)) (-2013 (((-1185 |#1|) (-1185 |#1|)) 105 T ELT)) (-1870 (((-1185 |#1|) (-1185 |#1|)) 69 T ELT)) (-1992 (((-1185 |#1|) (-1185 |#1|)) 103 T ELT)) (-1844 (((-1185 |#1|) (-1185 |#1|)) 64 T ELT)) (-1972 (((-1185 |#1|) (-1185 |#1|)) 100 T ELT)) (-1820 (((-1185 |#1|) (-1185 |#1|)) 56 T ELT)) (-2042 (((-1185 |#1|) (-1185 |#1|)) 113 T ELT)) (-1907 (((-1185 |#1|) (-1185 |#1|)) 88 T ELT)) (-2022 (((-1185 |#1|) (-1185 |#1|)) 107 T ELT)) (-1882 (((-1185 |#1|) (-1185 |#1|)) 84 T ELT)) (-2059 (((-1185 |#1|) (-1185 |#1|)) 117 T ELT)) (-1932 (((-1185 |#1|) (-1185 |#1|)) 92 T ELT)) (-3392 (((-1185 |#1|) (-1185 |#1|)) 119 T ELT)) (-1945 (((-1185 |#1|) (-1185 |#1|)) 94 T ELT)) (-2050 (((-1185 |#1|) (-1185 |#1|)) 115 T ELT)) (-1920 (((-1185 |#1|) (-1185 |#1|)) 90 T ELT)) (-2032 (((-1185 |#1|) (-1185 |#1|)) 109 T ELT)) (-1895 (((-1185 |#1|) (-1185 |#1|)) 86 T ELT)) (** (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 41 T ELT)))
+(((-1192 |#1|) (-10 -7 (-15 -2515 ((-1185 |#1|) (-1185 |#1|))) (-15 -2831 ((-1185 |#1|) (-1185 |#1|))) (-15 ** ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2556 ((-2 (|:| -1806 (-1185 |#1|)) (|:| -1820 (-1185 |#1|))) (-1185 |#1|))) (-15 -1806 ((-1185 |#1|) (-1185 |#1|))) (-15 -1820 ((-1185 |#1|) (-1185 |#1|))) (-15 -1832 ((-1185 |#1|) (-1185 |#1|))) (-15 -1844 ((-1185 |#1|) (-1185 |#1|))) (-15 -1856 ((-1185 |#1|) (-1185 |#1|))) (-15 -1870 ((-1185 |#1|) (-1185 |#1|))) (-15 -1882 ((-1185 |#1|) (-1185 |#1|))) (-15 -1895 ((-1185 |#1|) (-1185 |#1|))) (-15 -1907 ((-1185 |#1|) (-1185 |#1|))) (-15 -1920 ((-1185 |#1|) (-1185 |#1|))) (-15 -1932 ((-1185 |#1|) (-1185 |#1|))) (-15 -1945 ((-1185 |#1|) (-1185 |#1|))) (-15 -3326 ((-2 (|:| -1958 (-1185 |#1|)) (|:| -1972 (-1185 |#1|))) (-1185 |#1|))) (-15 -1958 ((-1185 |#1|) (-1185 |#1|))) (-15 -1972 ((-1185 |#1|) (-1185 |#1|))) (-15 -1982 ((-1185 |#1|) (-1185 |#1|))) (-15 -1992 ((-1185 |#1|) (-1185 |#1|))) (-15 -2003 ((-1185 |#1|) (-1185 |#1|))) (-15 -2013 ((-1185 |#1|) (-1185 |#1|))) (-15 -2022 ((-1185 |#1|) (-1185 |#1|))) (-15 -2032 ((-1185 |#1|) (-1185 |#1|))) (-15 -2042 ((-1185 |#1|) (-1185 |#1|))) (-15 -2050 ((-1185 |#1|) (-1185 |#1|))) (-15 -2059 ((-1185 |#1|) (-1185 |#1|))) (-15 -3392 ((-1185 |#1|) (-1185 |#1|)))) (-38 (-421 (-560)))) (T -1192))
+((-3392 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-2059 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-2050 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-2042 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-2032 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-2022 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-2013 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-2003 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-1992 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-1982 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-1972 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-1958 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-3326 (*1 *2 *3) (-12 (-4 *4 (-38 (-421 (-560)))) (-5 *2 (-2 (|:| -1958 (-1185 *4)) (|:| -1972 (-1185 *4)))) (-5 *1 (-1192 *4)) (-5 *3 (-1185 *4)))) (-1945 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-1932 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-1920 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-1907 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-1895 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-1882 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-1870 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-1856 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-1844 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-1832 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-1820 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-1806 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-2556 (*1 *2 *3) (-12 (-4 *4 (-38 (-421 (-560)))) (-5 *2 (-2 (|:| -1806 (-1185 *4)) (|:| -1820 (-1185 *4)))) (-5 *1 (-1192 *4)) (-5 *3 (-1185 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-2831 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))) (-2515 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1192 *3)))))
+(-10 -7 (-15 -2515 ((-1185 |#1|) (-1185 |#1|))) (-15 -2831 ((-1185 |#1|) (-1185 |#1|))) (-15 ** ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -2556 ((-2 (|:| -1806 (-1185 |#1|)) (|:| -1820 (-1185 |#1|))) (-1185 |#1|))) (-15 -1806 ((-1185 |#1|) (-1185 |#1|))) (-15 -1820 ((-1185 |#1|) (-1185 |#1|))) (-15 -1832 ((-1185 |#1|) (-1185 |#1|))) (-15 -1844 ((-1185 |#1|) (-1185 |#1|))) (-15 -1856 ((-1185 |#1|) (-1185 |#1|))) (-15 -1870 ((-1185 |#1|) (-1185 |#1|))) (-15 -1882 ((-1185 |#1|) (-1185 |#1|))) (-15 -1895 ((-1185 |#1|) (-1185 |#1|))) (-15 -1907 ((-1185 |#1|) (-1185 |#1|))) (-15 -1920 ((-1185 |#1|) (-1185 |#1|))) (-15 -1932 ((-1185 |#1|) (-1185 |#1|))) (-15 -1945 ((-1185 |#1|) (-1185 |#1|))) (-15 -3326 ((-2 (|:| -1958 (-1185 |#1|)) (|:| -1972 (-1185 |#1|))) (-1185 |#1|))) (-15 -1958 ((-1185 |#1|) (-1185 |#1|))) (-15 -1972 ((-1185 |#1|) (-1185 |#1|))) (-15 -1982 ((-1185 |#1|) (-1185 |#1|))) (-15 -1992 ((-1185 |#1|) (-1185 |#1|))) (-15 -2003 ((-1185 |#1|) (-1185 |#1|))) (-15 -2013 ((-1185 |#1|) (-1185 |#1|))) (-15 -2022 ((-1185 |#1|) (-1185 |#1|))) (-15 -2032 ((-1185 |#1|) (-1185 |#1|))) (-15 -2042 ((-1185 |#1|) (-1185 |#1|))) (-15 -2050 ((-1185 |#1|) (-1185 |#1|))) (-15 -2059 ((-1185 |#1|) (-1185 |#1|))) (-15 -3392 ((-1185 |#1|) (-1185 |#1|))))
+((-1982 (((-1185 |#1|) (-1185 |#1|)) 60 T ELT)) (-1832 (((-1185 |#1|) (-1185 |#1|)) 42 T ELT)) (-1958 (((-1185 |#1|) (-1185 |#1|)) 56 T ELT)) (-1806 (((-1185 |#1|) (-1185 |#1|)) 38 T ELT)) (-2003 (((-1185 |#1|) (-1185 |#1|)) 63 T ELT)) (-1856 (((-1185 |#1|) (-1185 |#1|)) 45 T ELT)) (-2831 (((-1185 |#1|) (-1185 |#1|)) 34 T ELT)) (-2515 (((-1185 |#1|) (-1185 |#1|)) 29 T ELT)) (-2013 (((-1185 |#1|) (-1185 |#1|)) 64 T ELT)) (-1870 (((-1185 |#1|) (-1185 |#1|)) 46 T ELT)) (-1992 (((-1185 |#1|) (-1185 |#1|)) 61 T ELT)) (-1844 (((-1185 |#1|) (-1185 |#1|)) 43 T ELT)) (-1972 (((-1185 |#1|) (-1185 |#1|)) 58 T ELT)) (-1820 (((-1185 |#1|) (-1185 |#1|)) 40 T ELT)) (-2042 (((-1185 |#1|) (-1185 |#1|)) 68 T ELT)) (-1907 (((-1185 |#1|) (-1185 |#1|)) 50 T ELT)) (-2022 (((-1185 |#1|) (-1185 |#1|)) 66 T ELT)) (-1882 (((-1185 |#1|) (-1185 |#1|)) 48 T ELT)) (-2059 (((-1185 |#1|) (-1185 |#1|)) 71 T ELT)) (-1932 (((-1185 |#1|) (-1185 |#1|)) 53 T ELT)) (-3392 (((-1185 |#1|) (-1185 |#1|)) 72 T ELT)) (-1945 (((-1185 |#1|) (-1185 |#1|)) 54 T ELT)) (-2050 (((-1185 |#1|) (-1185 |#1|)) 70 T ELT)) (-1920 (((-1185 |#1|) (-1185 |#1|)) 52 T ELT)) (-2032 (((-1185 |#1|) (-1185 |#1|)) 69 T ELT)) (-1895 (((-1185 |#1|) (-1185 |#1|)) 51 T ELT)) (** (((-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) 36 T ELT)))
+(((-1193 |#1|) (-10 -7 (-15 -2515 ((-1185 |#1|) (-1185 |#1|))) (-15 -2831 ((-1185 |#1|) (-1185 |#1|))) (-15 ** ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -1806 ((-1185 |#1|) (-1185 |#1|))) (-15 -1820 ((-1185 |#1|) (-1185 |#1|))) (-15 -1832 ((-1185 |#1|) (-1185 |#1|))) (-15 -1844 ((-1185 |#1|) (-1185 |#1|))) (-15 -1856 ((-1185 |#1|) (-1185 |#1|))) (-15 -1870 ((-1185 |#1|) (-1185 |#1|))) (-15 -1882 ((-1185 |#1|) (-1185 |#1|))) (-15 -1895 ((-1185 |#1|) (-1185 |#1|))) (-15 -1907 ((-1185 |#1|) (-1185 |#1|))) (-15 -1920 ((-1185 |#1|) (-1185 |#1|))) (-15 -1932 ((-1185 |#1|) (-1185 |#1|))) (-15 -1945 ((-1185 |#1|) (-1185 |#1|))) (-15 -1958 ((-1185 |#1|) (-1185 |#1|))) (-15 -1972 ((-1185 |#1|) (-1185 |#1|))) (-15 -1982 ((-1185 |#1|) (-1185 |#1|))) (-15 -1992 ((-1185 |#1|) (-1185 |#1|))) (-15 -2003 ((-1185 |#1|) (-1185 |#1|))) (-15 -2013 ((-1185 |#1|) (-1185 |#1|))) (-15 -2022 ((-1185 |#1|) (-1185 |#1|))) (-15 -2032 ((-1185 |#1|) (-1185 |#1|))) (-15 -2042 ((-1185 |#1|) (-1185 |#1|))) (-15 -2050 ((-1185 |#1|) (-1185 |#1|))) (-15 -2059 ((-1185 |#1|) (-1185 |#1|))) (-15 -3392 ((-1185 |#1|) (-1185 |#1|)))) (-38 (-421 (-560)))) (T -1193))
+((-3392 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-2059 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-2050 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-2042 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-2032 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-2022 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-2013 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-2003 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-1992 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-1982 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-1972 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-1958 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-1945 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-1932 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-1920 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-1907 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-1895 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-1882 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-1870 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-1856 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-1844 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-1832 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-1820 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-1806 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-2831 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))) (-2515 (*1 *2 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1193 *3)))))
+(-10 -7 (-15 -2515 ((-1185 |#1|) (-1185 |#1|))) (-15 -2831 ((-1185 |#1|) (-1185 |#1|))) (-15 ** ((-1185 |#1|) (-1185 |#1|) (-1185 |#1|))) (-15 -1806 ((-1185 |#1|) (-1185 |#1|))) (-15 -1820 ((-1185 |#1|) (-1185 |#1|))) (-15 -1832 ((-1185 |#1|) (-1185 |#1|))) (-15 -1844 ((-1185 |#1|) (-1185 |#1|))) (-15 -1856 ((-1185 |#1|) (-1185 |#1|))) (-15 -1870 ((-1185 |#1|) (-1185 |#1|))) (-15 -1882 ((-1185 |#1|) (-1185 |#1|))) (-15 -1895 ((-1185 |#1|) (-1185 |#1|))) (-15 -1907 ((-1185 |#1|) (-1185 |#1|))) (-15 -1920 ((-1185 |#1|) (-1185 |#1|))) (-15 -1932 ((-1185 |#1|) (-1185 |#1|))) (-15 -1945 ((-1185 |#1|) (-1185 |#1|))) (-15 -1958 ((-1185 |#1|) (-1185 |#1|))) (-15 -1972 ((-1185 |#1|) (-1185 |#1|))) (-15 -1982 ((-1185 |#1|) (-1185 |#1|))) (-15 -1992 ((-1185 |#1|) (-1185 |#1|))) (-15 -2003 ((-1185 |#1|) (-1185 |#1|))) (-15 -2013 ((-1185 |#1|) (-1185 |#1|))) (-15 -2022 ((-1185 |#1|) (-1185 |#1|))) (-15 -2032 ((-1185 |#1|) (-1185 |#1|))) (-15 -2042 ((-1185 |#1|) (-1185 |#1|))) (-15 -2050 ((-1185 |#1|) (-1185 |#1|))) (-15 -2059 ((-1185 |#1|) (-1185 |#1|))) (-15 -3392 ((-1185 |#1|) (-1185 |#1|))))
+((-2216 (((-987 |#2|) |#2| |#2|) 50 T ELT)) (-4239 ((|#2| |#2| |#1|) 19 (|has| |#1| (-319)) ELT)))
+(((-1194 |#1| |#2|) (-10 -7 (-15 -2216 ((-987 |#2|) |#2| |#2|)) (IF (|has| |#1| (-319)) (-15 -4239 (|#2| |#2| |#1|)) |%noBranch|)) (-571) (-1273 |#1|)) (T -1194))
+((-4239 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-4 *3 (-571)) (-5 *1 (-1194 *3 *2)) (-4 *2 (-1273 *3)))) (-2216 (*1 *2 *3 *3) (-12 (-4 *4 (-571)) (-5 *2 (-987 *3)) (-5 *1 (-1194 *4 *3)) (-4 *3 (-1273 *4)))))
+(-10 -7 (-15 -2216 ((-987 |#2|) |#2| |#2|)) (IF (|has| |#1| (-319)) (-15 -4239 (|#2| |#2| |#1|)) |%noBranch|))
+((-2243 (((-114) $ $) NIL T ELT)) (-1393 (($ $ (-663 (-793))) 79 T ELT)) (-3682 (($) 33 T ELT)) (-2530 (($ $) 51 T ELT)) (-4254 (((-663 $) $) 60 T ELT)) (-2809 (((-114) $) 19 T ELT)) (-2957 (((-663 (-972 |#2|)) $) 86 T ELT)) (-1751 (($ $) 80 T ELT)) (-4474 (((-793) $) 47 T ELT)) (-4246 (($) 32 T ELT)) (-3975 (($ $ (-663 (-793)) (-972 |#2|)) 72 T ELT) (($ $ (-663 (-793)) (-793)) 73 T ELT) (($ $ (-793) (-972 |#2|)) 75 T ELT)) (-4167 (($ $ $) 57 T ELT) (($ (-663 $)) 59 T ELT)) (-1921 (((-793) $) 87 T ELT)) (-1485 (((-114) $) 15 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3109 (((-114) $) 22 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3943 (((-174) $) 85 T ELT)) (-3142 (((-972 |#2|) $) 81 T ELT)) (-1390 (((-793) $) 82 T ELT)) (-4319 (((-114) $) 84 T ELT)) (-1576 (($ $ (-663 (-793)) (-174)) 78 T ELT)) (-2267 (($ $) 52 T ELT)) (-3913 (((-887) $) 99 T ELT)) (-1477 (($ $ (-663 (-793)) (-114)) 77 T ELT)) (-3809 (((-663 $) $) 11 T ELT)) (-3558 (($ $ (-793)) 46 T ELT)) (-2452 (($ $) 43 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2200 (($ $ $ (-972 |#2|) (-793)) 68 T ELT)) (-4252 (($ $ (-972 |#2|)) 67 T ELT)) (-3467 (($ $ (-663 (-793)) (-972 |#2|)) 66 T ELT) (($ $ (-663 (-793)) (-793)) 70 T ELT) (((-793) $ (-972 |#2|)) 71 T ELT)) (-2340 (((-114) $ $) 92 T ELT)))
+(((-1195 |#1| |#2|) (-13 (-1132) (-10 -8 (-15 -1485 ((-114) $)) (-15 -2809 ((-114) $)) (-15 -3109 ((-114) $)) (-15 -4246 ($)) (-15 -3682 ($)) (-15 -2452 ($ $)) (-15 -3558 ($ $ (-793))) (-15 -3809 ((-663 $) $)) (-15 -4474 ((-793) $)) (-15 -2530 ($ $)) (-15 -2267 ($ $)) (-15 -4167 ($ $ $)) (-15 -4167 ($ (-663 $))) (-15 -4254 ((-663 $) $)) (-15 -3467 ($ $ (-663 (-793)) (-972 |#2|))) (-15 -4252 ($ $ (-972 |#2|))) (-15 -2200 ($ $ $ (-972 |#2|) (-793))) (-15 -3975 ($ $ (-663 (-793)) (-972 |#2|))) (-15 -3467 ($ $ (-663 (-793)) (-793))) (-15 -3975 ($ $ (-663 (-793)) (-793))) (-15 -3467 ((-793) $ (-972 |#2|))) (-15 -3975 ($ $ (-793) (-972 |#2|))) (-15 -1477 ($ $ (-663 (-793)) (-114))) (-15 -1576 ($ $ (-663 (-793)) (-174))) (-15 -1393 ($ $ (-663 (-793)))) (-15 -3142 ((-972 |#2|) $)) (-15 -1390 ((-793) $)) (-15 -4319 ((-114) $)) (-15 -3943 ((-174) $)) (-15 -1921 ((-793) $)) (-15 -1751 ($ $)) (-15 -2957 ((-663 (-972 |#2|)) $)))) (-948) (-1080)) (T -1195))
+((-1485 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-2809 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-3109 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-4246 (*1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))) (-3682 (*1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))) (-2452 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))) (-3558 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-3809 (*1 *2 *1) (-12 (-5 *2 (-663 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-4474 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-2530 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))) (-2267 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))) (-4167 (*1 *1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))) (-4167 (*1 *1 *2) (-12 (-5 *2 (-663 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-4254 (*1 *2 *1) (-12 (-5 *2 (-663 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-3467 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-793))) (-5 *3 (-972 *5)) (-4 *5 (-1080)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-948)))) (-4252 (*1 *1 *1 *2) (-12 (-5 *2 (-972 *4)) (-4 *4 (-1080)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)))) (-2200 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-972 *5)) (-5 *3 (-793)) (-4 *5 (-1080)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-948)))) (-3975 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-793))) (-5 *3 (-972 *5)) (-4 *5 (-1080)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-948)))) (-3467 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-793))) (-5 *3 (-793)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-948)) (-4 *5 (-1080)))) (-3975 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-793))) (-5 *3 (-793)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-948)) (-4 *5 (-1080)))) (-3467 (*1 *2 *1 *3) (-12 (-5 *3 (-972 *5)) (-4 *5 (-1080)) (-5 *2 (-793)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-948)))) (-3975 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-972 *5)) (-4 *5 (-1080)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-948)))) (-1477 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-793))) (-5 *3 (-114)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-948)) (-4 *5 (-1080)))) (-1576 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-663 (-793))) (-5 *3 (-174)) (-5 *1 (-1195 *4 *5)) (-14 *4 (-948)) (-4 *5 (-1080)))) (-1393 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-793))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-3142 (*1 *2 *1) (-12 (-5 *2 (-972 *4)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-1390 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-4319 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-174)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-1921 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))) (-1751 (*1 *1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))) (-2957 (*1 *2 *1) (-12 (-5 *2 (-663 (-972 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948)) (-4 *4 (-1080)))))
+(-13 (-1132) (-10 -8 (-15 -1485 ((-114) $)) (-15 -2809 ((-114) $)) (-15 -3109 ((-114) $)) (-15 -4246 ($)) (-15 -3682 ($)) (-15 -2452 ($ $)) (-15 -3558 ($ $ (-793))) (-15 -3809 ((-663 $) $)) (-15 -4474 ((-793) $)) (-15 -2530 ($ $)) (-15 -2267 ($ $)) (-15 -4167 ($ $ $)) (-15 -4167 ($ (-663 $))) (-15 -4254 ((-663 $) $)) (-15 -3467 ($ $ (-663 (-793)) (-972 |#2|))) (-15 -4252 ($ $ (-972 |#2|))) (-15 -2200 ($ $ $ (-972 |#2|) (-793))) (-15 -3975 ($ $ (-663 (-793)) (-972 |#2|))) (-15 -3467 ($ $ (-663 (-793)) (-793))) (-15 -3975 ($ $ (-663 (-793)) (-793))) (-15 -3467 ((-793) $ (-972 |#2|))) (-15 -3975 ($ $ (-793) (-972 |#2|))) (-15 -1477 ($ $ (-663 (-793)) (-114))) (-15 -1576 ($ $ (-663 (-793)) (-174))) (-15 -1393 ($ $ (-663 (-793)))) (-15 -3142 ((-972 |#2|) $)) (-15 -1390 ((-793) $)) (-15 -4319 ((-114) $)) (-15 -3943 ((-174) $)) (-15 -1921 ((-793) $)) (-15 -1751 ($ $)) (-15 -2957 ((-663 (-972 |#2|)) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-4133 ((|#2| $) 11 T ELT)) (-4121 ((|#1| $) 10 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3924 (($ |#1| |#2|) 9 T ELT)) (-3913 (((-887) $) 16 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-1196 |#1| |#2|) (-13 (-1132) (-10 -8 (-15 -3924 ($ |#1| |#2|)) (-15 -4121 (|#1| $)) (-15 -4133 (|#2| $)))) (-1132) (-1132)) (T -1196))
+((-3924 (*1 *1 *2 *3) (-12 (-5 *1 (-1196 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))) (-4121 (*1 *2 *1) (-12 (-4 *2 (-1132)) (-5 *1 (-1196 *2 *3)) (-4 *3 (-1132)))) (-4133 (*1 *2 *1) (-12 (-4 *2 (-1132)) (-5 *1 (-1196 *3 *2)) (-4 *3 (-1132)))))
+(-13 (-1132) (-10 -8 (-15 -3924 ($ |#1| |#2|)) (-15 -4121 (|#1| $)) (-15 -4133 (|#2| $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-1442 (((-1166) $) 9 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 15 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-1197) (-13 (-1114) (-10 -8 (-15 -1442 ((-1166) $))))) (T -1197))
+((-1442 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1197)))))
+(-13 (-1114) (-10 -8 (-15 -1442 ((-1166) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3655 (((-1205 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-4162 (((-663 (-1113)) $) NIL T ELT)) (-2558 (((-1207) $) 11 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-4366 (($ $) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-2667 (((-114) $) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-3864 (($ $ (-560)) NIL T ELT) (($ $ (-560) (-560)) 75 T ELT)) (-1465 (((-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) NIL T ELT)) (-2604 (((-1205 |#1| |#2| |#3|) $) 42 T ELT)) (-4004 (((-3 (-1205 |#1| |#2| |#3|) "failed") $) 32 T ELT)) (-2936 (((-1205 |#1| |#2| |#3|) $) 33 T ELT)) (-1982 (($ $) 116 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1832 (($ $) 92 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) ELT)) (-1621 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-4021 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) ELT)) (-3476 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-1958 (($ $) 112 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1806 (($ $) 88 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1869 (((-560) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-2882 (($ (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) NIL T ELT)) (-2003 (($ $) 120 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1856 (($ $) 96 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-1205 |#1| |#2| |#3|) "failed") $) 34 T ELT) (((-3 (-1207) "failed") $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-1207))) (|has| |#1| (-376))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-3 (-560) "failed") $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-560))) (|has| |#1| (-376))) ELT)) (-3649 (((-1205 |#1| |#2| |#3|) $) 140 T ELT) (((-1207) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-1207))) (|has| |#1| (-376))) ELT) (((-421 (-560)) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-560) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-560))) (|has| |#1| (-376))) ELT)) (-3665 (($ $) 37 T ELT) (($ (-560) $) 38 T ELT)) (-2186 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3062 (($ $) NIL T ELT)) (-2619 (((-711 (-1205 |#1| |#2| |#3|)) (-711 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1871 (-711 (-1205 |#1| |#2| |#3|))) (|:| |vec| (-1297 (-1205 |#1| |#2| |#3|)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT) (((-711 (-560)) (-711 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT)) (-2873 (((-3 $ "failed") $) 54 T ELT)) (-3434 (((-421 (-975 |#1|)) $ (-560)) 74 (|has| |#1| (-571)) ELT) (((-421 (-975 |#1|)) $ (-560) (-560)) 76 (|has| |#1| (-571)) ELT)) (-1812 (($) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-2197 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-3141 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-4172 (((-114) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-2328 (((-114) $) 28 T ELT)) (-2503 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-911 (-391))) (|has| |#1| (-376))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-911 (-560))) (|has| |#1| (-376))) ELT)) (-1460 (((-560) $) NIL T ELT) (((-560) $ (-560)) 26 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-3490 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2473 (((-1205 |#1| |#2| |#3|) $) 44 (|has| |#1| (-376)) ELT)) (-1956 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3738 (((-3 $ "failed") $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1182)) (|has| |#1| (-376))) ELT)) (-4470 (((-114) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-3886 (($ $ (-948)) NIL T ELT)) (-1537 (($ (-1 |#1| (-560)) $) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-560)) 19 T ELT) (($ $ (-1113) (-560)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-560))) NIL T ELT)) (-2932 (($ $ $) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-4379 (($ $ $) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-376)) ELT)) (-2831 (($ $) 81 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4140 (((-711 (-1205 |#1| |#2| |#3|)) (-1297 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1871 (-711 (-1205 |#1| |#2| |#3|))) (|:| |vec| (-1297 (-1205 |#1| |#2| |#3|)))) (-1297 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT) (((-711 (-560)) (-1297 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2949 (($ (-560) (-1205 |#1| |#2| |#3|)) 36 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4424 (($ $) 79 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| |#1| (-15 -4424 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -4162 ((-663 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-989)) (|has| |#1| (-1233)))) ELT) (($ $ (-1294 |#2|)) 80 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3239 (($) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1182)) (|has| |#1| (-376))) CONST)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3211 (($ $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3147 (((-1205 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) ELT)) (-4012 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2219 (($ $ (-560)) 158 T ELT)) (-2233 (((-3 $ "failed") $ $) 55 (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-2515 (($ $) 82 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2371 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-560)))) ELT) (($ $ (-1207) (-1205 |#1| |#2| |#3|)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-528 (-1207) (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1207)) (-663 (-1205 |#1| |#2| |#3|))) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-528 (-1207) (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-305 (-1205 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-321 (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-305 (-1205 |#1| |#2| |#3|))) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-321 (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-321 (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1205 |#1| |#2| |#3|)) (-663 (-1205 |#1| |#2| |#3|))) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-321 (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-3989 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-1507 ((|#1| $ (-560)) NIL T ELT) (($ $ $) 61 (|has| (-560) (-1143)) ELT) (($ $ (-1205 |#1| |#2| |#3|)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-298 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3161 (($ $ (-1 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|)) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1294 |#2|)) 57 T ELT) (($ $) 56 (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207))) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT)) (-2951 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2484 (((-1205 |#1| |#2| |#3|) $) 46 (|has| |#1| (-376)) ELT)) (-3900 (((-560) $) 43 T ELT)) (-2013 (($ $) 122 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1870 (($ $) 98 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1992 (($ $) 118 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1844 (($ $) 94 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1972 (($ $) 114 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1820 (($ $) 90 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2400 (((-549) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-633 (-549))) (|has| |#1| (-376))) ELT) (((-391) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1051)) (|has| |#1| (-376))) ELT) (((-229) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1051)) (|has| |#1| (-376))) ELT) (((-915 (-391)) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-633 (-915 (-391)))) (|has| |#1| (-376))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-633 (-915 (-560)))) (|has| |#1| (-376))) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) ELT)) (-3329 (($ $) NIL T ELT)) (-3913 (((-887) $) 162 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1205 |#1| |#2| |#3|)) 30 T ELT) (($ (-1294 |#2|)) 25 T ELT) (($ (-1207)) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-1207))) (|has| |#1| (-376))) ELT) (($ $) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT) (($ (-421 (-560))) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-1069 (-560))) (|has| |#1| (-376))) (|has| |#1| (-38 (-421 (-560))))) ELT)) (-2920 ((|#1| $ (-560)) 77 T ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-147)) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-4191 (((-793)) NIL T CONST)) (-1351 ((|#1| $) 12 T ELT)) (-3622 (((-1205 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2042 (($ $) 128 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1907 (($ $) 104 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4361 (((-114) $ $) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-2022 (($ $) 124 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1882 (($ $) 100 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2059 (($ $) 132 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1932 (($ $) 108 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2905 ((|#1| $ (-560)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -3913 (|#1| (-1207))))) ELT)) (-3392 (($ $) 134 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1945 (($ $) 110 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2050 (($ $) 130 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1920 (($ $) 106 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2032 (($ $) 126 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1895 (($ $) 102 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2719 (($ $) NIL (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-1446 (($) 21 T CONST)) (-1456 (($) 16 T CONST)) (-2111 (($ $ (-1 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|)) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1294 |#2|)) NIL T ELT) (($ $) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207))) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT)) (-2396 (((-114) $ $) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2373 (((-114) $ $) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2362 (((-114) $ $) NIL (-2196 (-12 (|has| (-1205 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1205 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 49 (|has| |#1| (-376)) ELT) (($ (-1205 |#1| |#2| |#3|) (-1205 |#1| |#2| |#3|)) 50 (|has| |#1| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 23 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 60 T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 137 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1205 |#1| |#2| |#3|)) 48 (|has| |#1| (-376)) ELT) (($ (-1205 |#1| |#2| |#3|) $) 47 (|has| |#1| (-376)) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
+(((-1198 |#1| |#2| |#3|) (-13 (-1261 |#1| (-1205 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -3913 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4424 ($ $ (-1294 |#2|))) |%noBranch|))) (-1080) (-1207) |#1|) (T -1198))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1198 *3 *4 *5)) (-4 *3 (-1080)) (-14 *5 *3))) (-4424 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1198 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3))))
+(-13 (-1261 |#1| (-1205 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -3913 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4424 ($ $ (-1294 |#2|))) |%noBranch|)))
+((-2961 ((|#2| |#2| (-1123 |#2|)) 26 T ELT) ((|#2| |#2| (-1207)) 28 T ELT)))
+(((-1199 |#1| |#2|) (-10 -7 (-15 -2961 (|#2| |#2| (-1207))) (-15 -2961 (|#2| |#2| (-1123 |#2|)))) (-13 (-571) (-1069 (-560)) (-660 (-560))) (-13 (-435 |#1|) (-162) (-27) (-1233))) (T -1199))
+((-2961 (*1 *2 *2 *3) (-12 (-5 *3 (-1123 *2)) (-4 *2 (-13 (-435 *4) (-162) (-27) (-1233))) (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-1199 *4 *2)))) (-2961 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-1199 *4 *2)) (-4 *2 (-13 (-435 *4) (-162) (-27) (-1233))))))
+(-10 -7 (-15 -2961 (|#2| |#2| (-1207))) (-15 -2961 (|#2| |#2| (-1123 |#2|))))
+((-2961 (((-3 (-421 (-975 |#1|)) (-326 |#1|)) (-421 (-975 |#1|)) (-1123 (-421 (-975 |#1|)))) 31 T ELT) (((-421 (-975 |#1|)) (-975 |#1|) (-1123 (-975 |#1|))) 44 T ELT) (((-3 (-421 (-975 |#1|)) (-326 |#1|)) (-421 (-975 |#1|)) (-1207)) 33 T ELT) (((-421 (-975 |#1|)) (-975 |#1|) (-1207)) 36 T ELT)))
+(((-1200 |#1|) (-10 -7 (-15 -2961 ((-421 (-975 |#1|)) (-975 |#1|) (-1207))) (-15 -2961 ((-3 (-421 (-975 |#1|)) (-326 |#1|)) (-421 (-975 |#1|)) (-1207))) (-15 -2961 ((-421 (-975 |#1|)) (-975 |#1|) (-1123 (-975 |#1|)))) (-15 -2961 ((-3 (-421 (-975 |#1|)) (-326 |#1|)) (-421 (-975 |#1|)) (-1123 (-421 (-975 |#1|)))))) (-13 (-571) (-1069 (-560)))) (T -1200))
+((-2961 (*1 *2 *3 *4) (-12 (-5 *4 (-1123 (-421 (-975 *5)))) (-5 *3 (-421 (-975 *5))) (-4 *5 (-13 (-571) (-1069 (-560)))) (-5 *2 (-3 *3 (-326 *5))) (-5 *1 (-1200 *5)))) (-2961 (*1 *2 *3 *4) (-12 (-5 *4 (-1123 (-975 *5))) (-5 *3 (-975 *5)) (-4 *5 (-13 (-571) (-1069 (-560)))) (-5 *2 (-421 *3)) (-5 *1 (-1200 *5)))) (-2961 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-571) (-1069 (-560)))) (-5 *2 (-3 (-421 (-975 *5)) (-326 *5))) (-5 *1 (-1200 *5)) (-5 *3 (-421 (-975 *5))))) (-2961 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-571) (-1069 (-560)))) (-5 *2 (-421 (-975 *5))) (-5 *1 (-1200 *5)) (-5 *3 (-975 *5)))))
+(-10 -7 (-15 -2961 ((-421 (-975 |#1|)) (-975 |#1|) (-1207))) (-15 -2961 ((-3 (-421 (-975 |#1|)) (-326 |#1|)) (-421 (-975 |#1|)) (-1207))) (-15 -2961 ((-421 (-975 |#1|)) (-975 |#1|) (-1123 (-975 |#1|)))) (-15 -2961 ((-3 (-421 (-975 |#1|)) (-326 |#1|)) (-421 (-975 |#1|)) (-1123 (-421 (-975 |#1|))))))
+((-2243 (((-114) $ $) 171 T ELT)) (-2505 (((-114) $) 43 T ELT)) (-1797 (((-1297 |#1|) $ (-793)) NIL T ELT)) (-4162 (((-663 (-1113)) $) NIL T ELT)) (-2746 (($ (-1201 |#1|)) NIL T ELT)) (-3981 (((-1201 $) $ (-1113)) 82 T ELT) (((-1201 |#1|) $) 71 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-4366 (($ $) 164 (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-2250 (((-793) $) NIL T ELT) (((-793) $ (-663 (-1113))) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-4293 (($ $ $) 158 (|has| |#1| (-571)) ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) 95 (|has| |#1| (-939)) ELT)) (-1621 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#1| (-466)) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 115 (|has| |#1| (-939)) ELT)) (-3476 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-1776 (($ $ (-793)) 61 T ELT)) (-1677 (($ $ (-793)) 63 T ELT)) (-4254 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-466)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#1| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-1113) "failed") $) NIL T ELT)) (-3649 ((|#1| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-1113) $) NIL T ELT)) (-2096 (($ $ $ (-1113)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) 160 (|has| |#1| (-175)) ELT)) (-2186 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3062 (($ $) 80 T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#1|) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-2197 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4295 (($ $ $) 131 T ELT)) (-3457 (($ $ $) NIL (|has| |#1| (-571)) ELT)) (-3390 (((-2 (|:| -2625 |#1|) (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-571)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4239 (($ $) 165 (|has| |#1| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#1| (-466)) ELT)) (-3048 (((-663 $) $) NIL T ELT)) (-3141 (((-114) $) NIL (|has| |#1| (-939)) ELT)) (-3224 (($ $ |#1| (-793) $) 69 T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1113) (-911 (-391))) (|has| |#1| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-1113) (-911 (-560))) (|has| |#1| (-911 (-560)))) ELT)) (-3459 (((-887) $ (-887)) 148 T ELT)) (-1460 (((-793) $ $) NIL (|has| |#1| (-571)) ELT)) (-1918 (((-114) $) 48 T ELT)) (-4127 (((-793) $) NIL T ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| |#1| (-1182)) ELT)) (-4149 (($ (-1201 |#1|) (-1113)) 73 T ELT) (($ (-1201 $) (-1113)) 89 T ELT)) (-3886 (($ $ (-793)) 51 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-2947 (((-663 $) $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-793)) 87 T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT)) (-4415 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $ (-1113)) NIL T ELT) (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 153 T ELT)) (-3765 (((-793) $) NIL T ELT) (((-793) $ (-1113)) NIL T ELT) (((-663 (-793)) $ (-663 (-1113))) NIL T ELT)) (-3060 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2298 (((-1201 |#1|) $) NIL T ELT)) (-3835 (((-3 (-1113) "failed") $) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) NIL T ELT) (((-711 |#1|) (-1297 $)) NIL T ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#1| $) 76 T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) NIL (|has| |#1| (-466)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2985 (((-2 (|:| -2584 $) (|:| -3276 $)) $ (-793)) 60 T ELT)) (-1669 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3849 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3149 (((-3 (-2 (|:| |var| (-1113)) (|:| -2030 (-793))) "failed") $) NIL T ELT)) (-4424 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3239 (($) NIL (|has| |#1| (-1182)) CONST)) (-3376 (((-1151) $) NIL T ELT)) (-3000 (((-114) $) 50 T ELT)) (-3011 ((|#1| $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 103 (|has| |#1| (-466)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#1| (-466)) ELT) (($ $ $) 167 (|has| |#1| (-466)) ELT)) (-2183 (($ $ (-793) |#1| $) 123 T ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) 101 (|has| |#1| (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) 100 (|has| |#1| (-939)) ELT)) (-4012 (((-419 $) $) 108 (|has| |#1| (-939)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2233 (((-3 $ "failed") $ |#1|) 163 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 124 (|has| |#1| (-571)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-2371 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-1113) |#1|) NIL T ELT) (($ $ (-663 (-1113)) (-663 |#1|)) NIL T ELT) (($ $ (-1113) $) NIL T ELT) (($ $ (-663 (-1113)) (-663 $)) NIL T ELT)) (-3989 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-1507 ((|#1| $ |#1|) 150 T ELT) (($ $ $) 151 T ELT) (((-421 $) (-421 $) (-421 $)) NIL (|has| |#1| (-571)) ELT) ((|#1| (-421 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-421 $) $ (-421 $)) NIL (|has| |#1| (-571)) ELT)) (-2829 (((-3 $ "failed") $ (-793)) 54 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 172 (|has| |#1| (-376)) ELT)) (-2336 (($ $ (-1113)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) 156 (|has| |#1| (-175)) ELT)) (-3161 (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-3900 (((-793) $) 78 T ELT) (((-793) $ (-1113)) NIL T ELT) (((-663 (-793)) $ (-663 (-1113))) NIL T ELT)) (-2400 (((-915 (-391)) $) NIL (-12 (|has| (-1113) (-633 (-915 (-391)))) (|has| |#1| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-1113) (-633 (-915 (-560)))) (|has| |#1| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-1113) (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-2264 ((|#1| $) 162 (|has| |#1| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#1| (-466)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-2730 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT) (((-3 (-421 $) "failed") (-421 $) $) NIL (|has| |#1| (-571)) ELT)) (-3913 (((-887) $) 149 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) 77 T ELT) (($ (-1113)) NIL T ELT) (($ (-421 (-560))) NIL (-2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-2247 (((-663 |#1|) $) NIL T ELT)) (-2920 ((|#1| $ (-793)) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-4191 (((-793)) NIL T CONST)) (-2548 (($ $ $ (-793)) 41 (|has| |#1| (-175)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-1446 (($) 17 T CONST)) (-1456 (($) 19 T CONST)) (-2111 (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#1| (-929 (-1207))) ELT)) (-2340 (((-114) $ $) 120 T ELT)) (-2453 (($ $ |#1|) 173 (|has| |#1| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 90 T ELT)) (** (($ $ (-948)) 14 T ELT) (($ $ (-793)) 12 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 129 T ELT) (($ $ |#1|) NIL T ELT)))
+(((-1201 |#1|) (-13 (-1273 |#1|) (-10 -8 (-15 -3459 ((-887) $ (-887))) (-15 -2183 ($ $ (-793) |#1| $)))) (-1080)) (T -1201))
+((-3459 (*1 *2 *1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1201 *3)) (-4 *3 (-1080)))) (-2183 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1201 *3)) (-4 *3 (-1080)))))
+(-13 (-1273 |#1|) (-10 -8 (-15 -3459 ((-887) $ (-887))) (-15 -2183 ($ $ (-793) |#1| $))))
+((-2260 (((-1201 |#2|) (-1 |#2| |#1|) (-1201 |#1|)) 13 T ELT)))
+(((-1202 |#1| |#2|) (-10 -7 (-15 -2260 ((-1201 |#2|) (-1 |#2| |#1|) (-1201 |#1|)))) (-1080) (-1080)) (T -1202))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1201 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-5 *2 (-1201 *6)) (-5 *1 (-1202 *5 *6)))))
+(-10 -7 (-15 -2260 ((-1201 |#2|) (-1 |#2| |#1|) (-1201 |#1|))))
+((-3898 (((-419 (-1201 (-421 |#4|))) (-1201 (-421 |#4|))) 51 T ELT)) (-4012 (((-419 (-1201 (-421 |#4|))) (-1201 (-421 |#4|))) 52 T ELT)))
+(((-1203 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4012 ((-419 (-1201 (-421 |#4|))) (-1201 (-421 |#4|)))) (-15 -3898 ((-419 (-1201 (-421 |#4|))) (-1201 (-421 |#4|))))) (-815) (-871) (-466) (-979 |#3| |#1| |#2|)) (T -1203))
+((-3898 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-466)) (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-419 (-1201 (-421 *7)))) (-5 *1 (-1203 *4 *5 *6 *7)) (-5 *3 (-1201 (-421 *7))))) (-4012 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-466)) (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-419 (-1201 (-421 *7)))) (-5 *1 (-1203 *4 *5 *6 *7)) (-5 *3 (-1201 (-421 *7))))))
+(-10 -7 (-15 -4012 ((-419 (-1201 (-421 |#4|))) (-1201 (-421 |#4|)))) (-15 -3898 ((-419 (-1201 (-421 |#4|))) (-1201 (-421 |#4|)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-4162 (((-663 (-1113)) $) NIL T ELT)) (-2558 (((-1207) $) 11 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3864 (($ $ (-421 (-560))) NIL T ELT) (($ $ (-421 (-560)) (-421 (-560))) NIL T ELT)) (-1465 (((-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|))) $) NIL T ELT)) (-1982 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1832 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-4021 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3476 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-1958 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1806 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2882 (($ (-793) (-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|)))) NIL T ELT)) (-2003 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1856 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-1198 |#1| |#2| |#3|) "failed") $) 33 T ELT) (((-3 (-1205 |#1| |#2| |#3|) "failed") $) 36 T ELT)) (-3649 (((-1198 |#1| |#2| |#3|) $) NIL T ELT) (((-1205 |#1| |#2| |#3|) $) NIL T ELT)) (-2186 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3062 (($ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-2018 (((-421 (-560)) $) 59 T ELT)) (-2197 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2962 (($ (-421 (-560)) (-1198 |#1| |#2| |#3|)) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-3141 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-2328 (((-114) $) NIL T ELT)) (-2503 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1460 (((-421 (-560)) $) NIL T ELT) (((-421 (-560)) $ (-421 (-560))) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-1956 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3886 (($ $ (-948)) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-421 (-560))) 20 T ELT) (($ $ (-1113) (-421 (-560))) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-421 (-560)))) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2831 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1527 (((-1198 |#1| |#2| |#3|) $) 41 T ELT)) (-3154 (((-3 (-1198 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-2949 (((-1198 |#1| |#2| |#3|) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4424 (($ $) 39 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| |#1| (-15 -4424 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -4162 ((-663 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-989)) (|has| |#1| (-1233)))) ELT) (($ $ (-1294 |#2|)) 40 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4012 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2219 (($ $ (-421 (-560))) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-2515 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2371 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) ELT)) (-3989 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-1507 ((|#1| $ (-421 (-560))) NIL T ELT) (($ $ $) NIL (|has| (-421 (-560)) (-1143)) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3161 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-1294 |#2|)) 38 T ELT)) (-3900 (((-421 (-560)) $) NIL T ELT)) (-2013 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1870 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1992 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1844 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1972 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1820 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3329 (($ $) NIL T ELT)) (-3913 (((-887) $) 62 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1198 |#1| |#2| |#3|)) 30 T ELT) (($ (-1205 |#1| |#2| |#3|)) 31 T ELT) (($ (-1294 |#2|)) 26 T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-2920 ((|#1| $ (-421 (-560))) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-4191 (((-793)) NIL T CONST)) (-1351 ((|#1| $) 12 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2042 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1907 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2022 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1882 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2059 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1932 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2905 ((|#1| $ (-421 (-560))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) (|has| |#1| (-15 -3913 (|#1| (-1207))))) ELT)) (-3392 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1945 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2050 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1920 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2032 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1895 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1446 (($) 22 T CONST)) (-1456 (($) 16 T CONST)) (-2111 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-1294 |#2|)) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 24 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
+(((-1204 |#1| |#2| |#3|) (-13 (-1282 |#1| (-1198 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-1069 (-1205 |#1| |#2| |#3|)) (-635 (-1294 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4424 ($ $ (-1294 |#2|))) |%noBranch|))) (-1080) (-1207) |#1|) (T -1204))
+((-4424 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1204 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3))))
+(-13 (-1282 |#1| (-1198 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-1069 (-1205 |#1| |#2| |#3|)) (-635 (-1294 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4424 ($ $ (-1294 |#2|))) |%noBranch|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 129 T ELT)) (-4162 (((-663 (-1113)) $) NIL T ELT)) (-2558 (((-1207) $) 119 T ELT)) (-4106 (((-1266 |#2| |#1|) $ (-793)) 69 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3864 (($ $ (-793)) 85 T ELT) (($ $ (-793) (-793)) 82 T ELT)) (-1465 (((-1185 (-2 (|:| |k| (-793)) (|:| |c| |#1|))) $) 105 T ELT)) (-1982 (($ $) 173 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1832 (($ $) 149 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-4021 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1958 (($ $) 169 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1806 (($ $) 145 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2882 (($ (-1185 (-2 (|:| |k| (-793)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1185 |#1|)) 113 T ELT)) (-2003 (($ $) 177 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1856 (($ $) 153 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3525 (($) NIL T CONST)) (-3062 (($ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) 25 T ELT)) (-3348 (($ $) 28 T ELT)) (-4153 (((-975 |#1|) $ (-793)) 81 T ELT) (((-975 |#1|) $ (-793) (-793)) 83 T ELT)) (-2328 (((-114) $) 124 T ELT)) (-2503 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1460 (((-793) $) 126 T ELT) (((-793) $ (-793)) 128 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-1956 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3886 (($ $ (-948)) NIL T ELT)) (-1537 (($ (-1 |#1| (-560)) $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-793)) 13 T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2831 (($ $) 135 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-4424 (($ $) 133 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| |#1| (-15 -4424 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -4162 ((-663 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-989)) (|has| |#1| (-1233)))) ELT) (($ $ (-1294 |#2|)) 134 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2219 (($ $ (-793)) 15 T ELT)) (-2233 (((-3 $ "failed") $ $) 26 (|has| |#1| (-571)) ELT)) (-2515 (($ $) 137 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2371 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-793)))) ELT)) (-1507 ((|#1| $ (-793)) 122 T ELT) (($ $ $) 132 (|has| (-793) (-1143)) ELT)) (-3161 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-1294 |#2|)) 31 T ELT)) (-3900 (((-793) $) NIL T ELT)) (-2013 (($ $) 179 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1870 (($ $) 155 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1992 (($ $) 175 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1844 (($ $) 151 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1972 (($ $) 171 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1820 (($ $) 147 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3329 (($ $) NIL T ELT)) (-3913 (((-887) $) 206 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ |#1|) 130 (|has| |#1| (-175)) ELT) (($ (-1266 |#2| |#1|)) 55 T ELT) (($ (-1294 |#2|)) 36 T ELT)) (-2247 (((-1185 |#1|) $) 101 T ELT)) (-2920 ((|#1| $ (-793)) 121 T ELT)) (-3919 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-4191 (((-793)) NIL T CONST)) (-1351 ((|#1| $) 58 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2042 (($ $) 185 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1907 (($ $) 161 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2022 (($ $) 181 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1882 (($ $) 157 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2059 (($ $) 189 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1932 (($ $) 165 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2905 ((|#1| $ (-793)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-793)))) (|has| |#1| (-15 -3913 (|#1| (-1207))))) ELT)) (-3392 (($ $) 191 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1945 (($ $) 167 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2050 (($ $) 187 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1920 (($ $) 163 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2032 (($ $) 183 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1895 (($ $) 159 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1446 (($) 17 T CONST)) (-1456 (($) 20 T CONST)) (-2111 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-1294 |#2|)) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-2429 (($ $ $) 35 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-376)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 141 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
+(((-1205 |#1| |#2| |#3|) (-13 (-1290 |#1|) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -3913 ($ (-1266 |#2| |#1|))) (-15 -4106 ((-1266 |#2| |#1|) $ (-793))) (-15 -3913 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4424 ($ $ (-1294 |#2|))) |%noBranch|))) (-1080) (-1207) |#1|) (T -1205))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1266 *4 *3)) (-4 *3 (-1080)) (-14 *4 (-1207)) (-14 *5 *3) (-5 *1 (-1205 *3 *4 *5)))) (-4106 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1266 *5 *4)) (-5 *1 (-1205 *4 *5 *6)) (-4 *4 (-1080)) (-14 *5 (-1207)) (-14 *6 *4))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1205 *3 *4 *5)) (-4 *3 (-1080)) (-14 *5 *3))) (-4424 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1205 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3))))
+(-13 (-1290 |#1|) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -3913 ($ (-1266 |#2| |#1|))) (-15 -4106 ((-1266 |#2| |#1|) $ (-793))) (-15 -3913 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4424 ($ $ (-1294 |#2|))) |%noBranch|)))
+((-3913 (((-887) $) 33 T ELT) (($ (-1207)) 35 T ELT)) (-2196 (($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 46 T ELT)) (-2184 (($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 39 T ELT) (($ $) 40 T ELT)) (-4182 (($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 41 T ELT)) (-4114 (($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 43 T ELT)) (-4089 (($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 42 T ELT)) (-4063 (($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 44 T ELT)) (-1491 (($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 47 T ELT)) (-12 (($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 45 T ELT)))
+(((-1206) (-13 (-632 (-887)) (-10 -8 (-15 -3913 ($ (-1207))) (-15 -4182 ($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4089 ($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4114 ($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4063 ($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -2196 ($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -1491 ($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -2184 ($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -2184 ($ $))))) (T -1206))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1206)))) (-4182 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-4089 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-4114 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-4063 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-2196 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-1491 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-2184 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206)))) (-5 *1 (-1206)))) (-2184 (*1 *1 *1) (-5 *1 (-1206))))
+(-13 (-632 (-887)) (-10 -8 (-15 -3913 ($ (-1207))) (-15 -4182 ($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4089 ($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4114 ($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -4063 ($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -2196 ($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -1491 ($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -2184 ($ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -2184 ($ $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3638 (($ $ (-663 (-887))) 62 T ELT)) (-1779 (($ $ (-663 (-887))) 60 T ELT)) (-2903 (((-1189) $) 101 T ELT)) (-2958 (((-2 (|:| -3941 (-663 (-887))) (|:| -1651 (-663 (-887))) (|:| |presup| (-663 (-887))) (|:| -1637 (-663 (-887))) (|:| |args| (-663 (-887)))) $) 108 T ELT)) (-3022 (((-114) $) 23 T ELT)) (-1965 (($ $ (-663 (-663 (-887)))) 59 T ELT) (($ $ (-2 (|:| -3941 (-663 (-887))) (|:| -1651 (-663 (-887))) (|:| |presup| (-663 (-887))) (|:| -1637 (-663 (-887))) (|:| |args| (-663 (-887))))) 99 T ELT)) (-3525 (($) 163 T CONST)) (-2073 (((-1303)) 135 T ELT)) (-1646 (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 69 T ELT) (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 76 T ELT)) (-4246 (($) 122 T ELT) (($ $) 131 T ELT)) (-4389 (($ $) 100 T ELT)) (-2932 (($ $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-2560 (((-663 $) $) 136 T ELT)) (-3358 (((-1189) $) 114 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1507 (($ $ (-663 (-887))) 61 T ELT)) (-2400 (((-549) $) 48 T ELT) (((-1207) $) 49 T ELT) (((-915 (-560)) $) 80 T ELT) (((-915 (-391)) $) 78 T ELT)) (-3913 (((-887) $) 55 T ELT) (($ (-1189)) 50 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3554 (($ $ (-663 (-887))) 63 T ELT)) (-1581 (((-1189) $) 34 T ELT) (((-1189) $ (-114)) 35 T ELT) (((-1303) (-845) $) 36 T ELT) (((-1303) (-845) $ (-114)) 37 T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 51 T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) 52 T ELT)))
+(((-1207) (-13 (-871) (-633 (-549)) (-843) (-633 (-1207)) (-635 (-1189)) (-633 (-915 (-560))) (-633 (-915 (-391))) (-911 (-560)) (-911 (-391)) (-10 -8 (-15 -4246 ($)) (-15 -4246 ($ $)) (-15 -2073 ((-1303))) (-15 -4389 ($ $)) (-15 -3022 ((-114) $)) (-15 -2958 ((-2 (|:| -3941 (-663 (-887))) (|:| -1651 (-663 (-887))) (|:| |presup| (-663 (-887))) (|:| -1637 (-663 (-887))) (|:| |args| (-663 (-887)))) $)) (-15 -1965 ($ $ (-663 (-663 (-887))))) (-15 -1965 ($ $ (-2 (|:| -3941 (-663 (-887))) (|:| -1651 (-663 (-887))) (|:| |presup| (-663 (-887))) (|:| -1637 (-663 (-887))) (|:| |args| (-663 (-887)))))) (-15 -1779 ($ $ (-663 (-887)))) (-15 -3638 ($ $ (-663 (-887)))) (-15 -3554 ($ $ (-663 (-887)))) (-15 -1507 ($ $ (-663 (-887)))) (-15 -2903 ((-1189) $)) (-15 -2560 ((-663 $) $)) (-15 -3525 ($) -2650)))) (T -1207))
+((-4246 (*1 *1) (-5 *1 (-1207))) (-4246 (*1 *1 *1) (-5 *1 (-1207))) (-2073 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1207)))) (-4389 (*1 *1 *1) (-5 *1 (-1207))) (-3022 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1207)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3941 (-663 (-887))) (|:| -1651 (-663 (-887))) (|:| |presup| (-663 (-887))) (|:| -1637 (-663 (-887))) (|:| |args| (-663 (-887))))) (-5 *1 (-1207)))) (-1965 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-663 (-887)))) (-5 *1 (-1207)))) (-1965 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3941 (-663 (-887))) (|:| -1651 (-663 (-887))) (|:| |presup| (-663 (-887))) (|:| -1637 (-663 (-887))) (|:| |args| (-663 (-887))))) (-5 *1 (-1207)))) (-1779 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-1207)))) (-3638 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-1207)))) (-3554 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-1207)))) (-1507 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-1207)))) (-2903 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1207)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-1207)))) (-3525 (*1 *1) (-5 *1 (-1207))))
+(-13 (-871) (-633 (-549)) (-843) (-633 (-1207)) (-635 (-1189)) (-633 (-915 (-560))) (-633 (-915 (-391))) (-911 (-560)) (-911 (-391)) (-10 -8 (-15 -4246 ($)) (-15 -4246 ($ $)) (-15 -2073 ((-1303))) (-15 -4389 ($ $)) (-15 -3022 ((-114) $)) (-15 -2958 ((-2 (|:| -3941 (-663 (-887))) (|:| -1651 (-663 (-887))) (|:| |presup| (-663 (-887))) (|:| -1637 (-663 (-887))) (|:| |args| (-663 (-887)))) $)) (-15 -1965 ($ $ (-663 (-663 (-887))))) (-15 -1965 ($ $ (-2 (|:| -3941 (-663 (-887))) (|:| -1651 (-663 (-887))) (|:| |presup| (-663 (-887))) (|:| -1637 (-663 (-887))) (|:| |args| (-663 (-887)))))) (-15 -1779 ($ $ (-663 (-887)))) (-15 -3638 ($ $ (-663 (-887)))) (-15 -3554 ($ $ (-663 (-887)))) (-15 -1507 ($ $ (-663 (-887)))) (-15 -2903 ((-1189) $)) (-15 -2560 ((-663 $) $)) (-15 -3525 ($) -2650)))
+((-2118 (((-1297 |#1|) |#1| (-948)) 18 T ELT) (((-1297 |#1|) (-663 |#1|)) 25 T ELT)))
+(((-1208 |#1|) (-10 -7 (-15 -2118 ((-1297 |#1|) (-663 |#1|))) (-15 -2118 ((-1297 |#1|) |#1| (-948)))) (-1080)) (T -1208))
+((-2118 (*1 *2 *3 *4) (-12 (-5 *4 (-948)) (-5 *2 (-1297 *3)) (-5 *1 (-1208 *3)) (-4 *3 (-1080)))) (-2118 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-1080)) (-5 *2 (-1297 *4)) (-5 *1 (-1208 *4)))))
+(-10 -7 (-15 -2118 ((-1297 |#1|) (-663 |#1|))) (-15 -2118 ((-1297 |#1|) |#1| (-948))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 |#1| "failed") $) NIL T ELT)) (-3649 (((-560) $) NIL (|has| |#1| (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| |#1| (-1069 (-421 (-560)))) ELT) ((|#1| $) NIL T ELT)) (-3062 (($ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4239 (($ $) NIL (|has| |#1| (-466)) ELT)) (-3224 (($ $ |#1| (-1002) $) NIL T ELT)) (-1918 (((-114) $) 17 T ELT)) (-4127 (((-793) $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-1002)) NIL T ELT)) (-3765 (((-1002) $) NIL T ELT)) (-3060 (($ (-1 (-1002) (-1002)) $) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3000 (((-114) $) NIL T ELT)) (-3011 ((|#1| $) NIL T ELT)) (-2183 (($ $ (-1002) |#1| $) NIL (-12 (|has| (-1002) (-133)) (|has| |#1| (-571))) ELT)) (-2233 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-571)) ELT)) (-3900 (((-1002) $) NIL T ELT)) (-2264 ((|#1| $) NIL (|has| |#1| (-466)) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ |#1|) NIL T ELT) (($ (-421 (-560))) NIL (-2196 (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-1069 (-421 (-560))))) ELT)) (-2247 (((-663 |#1|) $) NIL T ELT)) (-2920 ((|#1| $ (-1002)) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-4191 (((-793)) NIL T CONST)) (-2548 (($ $ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-1446 (($) 10 T CONST)) (-1456 (($) NIL T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 21 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 22 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 16 T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
+(((-1209 |#1|) (-13 (-338 |#1| (-1002)) (-10 -8 (IF (|has| |#1| (-571)) (IF (|has| (-1002) (-133)) (-15 -2183 ($ $ (-1002) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4506)) (-6 -4506) |%noBranch|))) (-1080)) (T -1209))
+((-2183 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-1002)) (-4 *2 (-133)) (-5 *1 (-1209 *3)) (-4 *3 (-571)) (-4 *3 (-1080)))))
+(-13 (-338 |#1| (-1002)) (-10 -8 (IF (|has| |#1| (-571)) (IF (|has| (-1002) (-133)) (-15 -2183 ($ $ (-1002) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4506)) (-6 -4506) |%noBranch|)))
+((-2227 (((-1211) (-1207) $) 25 T ELT)) (-2318 (($) 29 T ELT)) (-4207 (((-3 (|:| |fst| (-448)) (|:| -3231 "void")) (-1207) $) 22 T ELT)) (-2384 (((-1303) (-1207) (-3 (|:| |fst| (-448)) (|:| -3231 "void")) $) 41 T ELT) (((-1303) (-1207) (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) 42 T ELT) (((-1303) (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) 43 T ELT)) (-3795 (((-1303) (-1207)) 58 T ELT)) (-2971 (((-1303) (-1207) $) 55 T ELT) (((-1303) (-1207)) 56 T ELT) (((-1303)) 57 T ELT)) (-4390 (((-1303) (-1207)) 37 T ELT)) (-3721 (((-1207)) 36 T ELT)) (-2832 (($) 34 T ELT)) (-1798 (((-450) (-1207) (-450) (-1207) $) 45 T ELT) (((-450) (-663 (-1207)) (-450) (-1207) $) 49 T ELT) (((-450) (-1207) (-450)) 46 T ELT) (((-450) (-1207) (-450) (-1207)) 50 T ELT)) (-1444 (((-1207)) 35 T ELT)) (-3913 (((-887) $) 28 T ELT)) (-1360 (((-1303)) 30 T ELT) (((-1303) (-1207)) 33 T ELT)) (-1629 (((-663 (-1207)) (-1207) $) 24 T ELT)) (-2327 (((-1303) (-1207) (-663 (-1207)) $) 38 T ELT) (((-1303) (-1207) (-663 (-1207))) 39 T ELT) (((-1303) (-663 (-1207))) 40 T ELT)))
+(((-1210) (-13 (-632 (-887)) (-10 -8 (-15 -2318 ($)) (-15 -1360 ((-1303))) (-15 -1360 ((-1303) (-1207))) (-15 -1798 ((-450) (-1207) (-450) (-1207) $)) (-15 -1798 ((-450) (-663 (-1207)) (-450) (-1207) $)) (-15 -1798 ((-450) (-1207) (-450))) (-15 -1798 ((-450) (-1207) (-450) (-1207))) (-15 -4390 ((-1303) (-1207))) (-15 -1444 ((-1207))) (-15 -3721 ((-1207))) (-15 -2327 ((-1303) (-1207) (-663 (-1207)) $)) (-15 -2327 ((-1303) (-1207) (-663 (-1207)))) (-15 -2327 ((-1303) (-663 (-1207)))) (-15 -2384 ((-1303) (-1207) (-3 (|:| |fst| (-448)) (|:| -3231 "void")) $)) (-15 -2384 ((-1303) (-1207) (-3 (|:| |fst| (-448)) (|:| -3231 "void")))) (-15 -2384 ((-1303) (-3 (|:| |fst| (-448)) (|:| -3231 "void")))) (-15 -2971 ((-1303) (-1207) $)) (-15 -2971 ((-1303) (-1207))) (-15 -2971 ((-1303))) (-15 -3795 ((-1303) (-1207))) (-15 -2832 ($)) (-15 -4207 ((-3 (|:| |fst| (-448)) (|:| -3231 "void")) (-1207) $)) (-15 -1629 ((-663 (-1207)) (-1207) $)) (-15 -2227 ((-1211) (-1207) $))))) (T -1210))
+((-2318 (*1 *1) (-5 *1 (-1210))) (-1360 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1210)))) (-1360 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-1798 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-450)) (-5 *3 (-1207)) (-5 *1 (-1210)))) (-1798 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-450)) (-5 *3 (-663 (-1207))) (-5 *4 (-1207)) (-5 *1 (-1210)))) (-1798 (*1 *2 *3 *2) (-12 (-5 *2 (-450)) (-5 *3 (-1207)) (-5 *1 (-1210)))) (-1798 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-450)) (-5 *3 (-1207)) (-5 *1 (-1210)))) (-4390 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-1444 (*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1210)))) (-3721 (*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1210)))) (-2327 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-663 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-2327 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-2327 (*1 *2 *3) (-12 (-5 *3 (-663 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-2384 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1207)) (-5 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-2384 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-5 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-2384 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-2971 (*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-2971 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-2971 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1210)))) (-3795 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))) (-2832 (*1 *1) (-5 *1 (-1210))) (-4207 (*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-5 *1 (-1210)))) (-1629 (*1 *2 *3 *1) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-1210)) (-5 *3 (-1207)))) (-2227 (*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-1211)) (-5 *1 (-1210)))))
+(-13 (-632 (-887)) (-10 -8 (-15 -2318 ($)) (-15 -1360 ((-1303))) (-15 -1360 ((-1303) (-1207))) (-15 -1798 ((-450) (-1207) (-450) (-1207) $)) (-15 -1798 ((-450) (-663 (-1207)) (-450) (-1207) $)) (-15 -1798 ((-450) (-1207) (-450))) (-15 -1798 ((-450) (-1207) (-450) (-1207))) (-15 -4390 ((-1303) (-1207))) (-15 -1444 ((-1207))) (-15 -3721 ((-1207))) (-15 -2327 ((-1303) (-1207) (-663 (-1207)) $)) (-15 -2327 ((-1303) (-1207) (-663 (-1207)))) (-15 -2327 ((-1303) (-663 (-1207)))) (-15 -2384 ((-1303) (-1207) (-3 (|:| |fst| (-448)) (|:| -3231 "void")) $)) (-15 -2384 ((-1303) (-1207) (-3 (|:| |fst| (-448)) (|:| -3231 "void")))) (-15 -2384 ((-1303) (-3 (|:| |fst| (-448)) (|:| -3231 "void")))) (-15 -2971 ((-1303) (-1207) $)) (-15 -2971 ((-1303) (-1207))) (-15 -2971 ((-1303))) (-15 -3795 ((-1303) (-1207))) (-15 -2832 ($)) (-15 -4207 ((-3 (|:| |fst| (-448)) (|:| -3231 "void")) (-1207) $)) (-15 -1629 ((-663 (-1207)) (-1207) $)) (-15 -2227 ((-1211) (-1207) $))))
+((-4011 (((-663 (-663 (-3 (|:| -4389 (-1207)) (|:| -1417 (-663 (-3 (|:| S (-1207)) (|:| P (-975 (-560))))))))) $) 66 T ELT)) (-4369 (((-663 (-3 (|:| -4389 (-1207)) (|:| -1417 (-663 (-3 (|:| S (-1207)) (|:| P (-975 (-560)))))))) (-448) $) 47 T ELT)) (-2993 (($ (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 (-450))))) 17 T ELT)) (-3795 (((-1303) $) 73 T ELT)) (-2537 (((-663 (-1207)) $) 22 T ELT)) (-3612 (((-1134) $) 60 T ELT)) (-3238 (((-450) (-1207) $) 27 T ELT)) (-3785 (((-663 (-1207)) $) 30 T ELT)) (-2832 (($) 19 T ELT)) (-1798 (((-450) (-663 (-1207)) (-450) $) 25 T ELT) (((-450) (-1207) (-450) $) 24 T ELT)) (-3913 (((-887) $) 9 T ELT) (((-1219 (-1207) (-450)) $) 13 T ELT)))
+(((-1211) (-13 (-632 (-887)) (-10 -8 (-15 -3913 ((-1219 (-1207) (-450)) $)) (-15 -2832 ($)) (-15 -1798 ((-450) (-663 (-1207)) (-450) $)) (-15 -1798 ((-450) (-1207) (-450) $)) (-15 -3238 ((-450) (-1207) $)) (-15 -2537 ((-663 (-1207)) $)) (-15 -4369 ((-663 (-3 (|:| -4389 (-1207)) (|:| -1417 (-663 (-3 (|:| S (-1207)) (|:| P (-975 (-560)))))))) (-448) $)) (-15 -3785 ((-663 (-1207)) $)) (-15 -4011 ((-663 (-663 (-3 (|:| -4389 (-1207)) (|:| -1417 (-663 (-3 (|:| S (-1207)) (|:| P (-975 (-560))))))))) $)) (-15 -3612 ((-1134) $)) (-15 -3795 ((-1303) $)) (-15 -2993 ($ (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 (-450))))))))) (T -1211))
+((-3913 (*1 *2 *1) (-12 (-5 *2 (-1219 (-1207) (-450))) (-5 *1 (-1211)))) (-2832 (*1 *1) (-5 *1 (-1211))) (-1798 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-450)) (-5 *3 (-663 (-1207))) (-5 *1 (-1211)))) (-1798 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-450)) (-5 *3 (-1207)) (-5 *1 (-1211)))) (-3238 (*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-450)) (-5 *1 (-1211)))) (-2537 (*1 *2 *1) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-1211)))) (-4369 (*1 *2 *3 *1) (-12 (-5 *3 (-448)) (-5 *2 (-663 (-3 (|:| -4389 (-1207)) (|:| -1417 (-663 (-3 (|:| S (-1207)) (|:| P (-975 (-560))))))))) (-5 *1 (-1211)))) (-3785 (*1 *2 *1) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-1211)))) (-4011 (*1 *2 *1) (-12 (-5 *2 (-663 (-663 (-3 (|:| -4389 (-1207)) (|:| -1417 (-663 (-3 (|:| S (-1207)) (|:| P (-975 (-560)))))))))) (-5 *1 (-1211)))) (-3612 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1211)))) (-3795 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1211)))) (-2993 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 (-450))))) (-5 *1 (-1211)))))
+(-13 (-632 (-887)) (-10 -8 (-15 -3913 ((-1219 (-1207) (-450)) $)) (-15 -2832 ($)) (-15 -1798 ((-450) (-663 (-1207)) (-450) $)) (-15 -1798 ((-450) (-1207) (-450) $)) (-15 -3238 ((-450) (-1207) $)) (-15 -2537 ((-663 (-1207)) $)) (-15 -4369 ((-663 (-3 (|:| -4389 (-1207)) (|:| -1417 (-663 (-3 (|:| S (-1207)) (|:| P (-975 (-560)))))))) (-448) $)) (-15 -3785 ((-663 (-1207)) $)) (-15 -4011 ((-663 (-663 (-3 (|:| -4389 (-1207)) (|:| -1417 (-663 (-3 (|:| S (-1207)) (|:| P (-975 (-560))))))))) $)) (-15 -3612 ((-1134) $)) (-15 -3795 ((-1303) $)) (-15 -2993 ($ (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 (-450))))))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3929 (((-3 (-560) "failed") $) 29 T ELT) (((-3 (-229) "failed") $) 35 T ELT) (((-3 (-520) "failed") $) 43 T ELT) (((-3 (-1189) "failed") $) 47 T ELT)) (-3649 (((-560) $) 30 T ELT) (((-229) $) 36 T ELT) (((-520) $) 40 T ELT) (((-1189) $) 48 T ELT)) (-2234 (((-114) $) 53 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1699 (((-3 (-560) (-229) (-520) (-1189) $) $) 55 T ELT)) (-1470 (((-663 $) $) 57 T ELT)) (-2400 (((-1134) $) 24 T ELT) (($ (-1134)) 25 T ELT)) (-1586 (((-114) $) 56 T ELT)) (-3913 (((-887) $) 23 T ELT) (($ (-560)) 26 T ELT) (($ (-229)) 32 T ELT) (($ (-520)) 38 T ELT) (($ (-1189)) 44 T ELT) (((-549) $) 59 T ELT) (((-560) $) 31 T ELT) (((-229) $) 37 T ELT) (((-520) $) 41 T ELT) (((-1189) $) 49 T ELT)) (-1436 (((-114) $ (|[\|\|]| (-560))) 10 T ELT) (((-114) $ (|[\|\|]| (-229))) 13 T ELT) (((-114) $ (|[\|\|]| (-520))) 19 T ELT) (((-114) $ (|[\|\|]| (-1189))) 16 T ELT)) (-4277 (($ (-520) (-663 $)) 51 T ELT) (($ $ (-663 $)) 52 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4168 (((-560) $) 27 T ELT) (((-229) $) 33 T ELT) (((-520) $) 39 T ELT) (((-1189) $) 45 T ELT)) (-2340 (((-114) $ $) 7 T ELT)))
+(((-1212) (-13 (-1293) (-1132) (-1069 (-560)) (-1069 (-229)) (-1069 (-520)) (-1069 (-1189)) (-632 (-549)) (-10 -8 (-15 -2400 ((-1134) $)) (-15 -2400 ($ (-1134))) (-15 -3913 ((-560) $)) (-15 -4168 ((-560) $)) (-15 -3913 ((-229) $)) (-15 -4168 ((-229) $)) (-15 -3913 ((-520) $)) (-15 -4168 ((-520) $)) (-15 -3913 ((-1189) $)) (-15 -4168 ((-1189) $)) (-15 -4277 ($ (-520) (-663 $))) (-15 -4277 ($ $ (-663 $))) (-15 -2234 ((-114) $)) (-15 -1699 ((-3 (-560) (-229) (-520) (-1189) $) $)) (-15 -1470 ((-663 $) $)) (-15 -1586 ((-114) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-560)))) (-15 -1436 ((-114) $ (|[\|\|]| (-229)))) (-15 -1436 ((-114) $ (|[\|\|]| (-520)))) (-15 -1436 ((-114) $ (|[\|\|]| (-1189))))))) (T -1212))
+((-2400 (*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1212)))) (-2400 (*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1212)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1212)))) (-4168 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1212)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1212)))) (-4168 (*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1212)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1212)))) (-4168 (*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1212)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1212)))) (-4168 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1212)))) (-4277 (*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-663 (-1212))) (-5 *1 (-1212)))) (-4277 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-1212))) (-5 *1 (-1212)))) (-2234 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1212)))) (-1699 (*1 *2 *1) (-12 (-5 *2 (-3 (-560) (-229) (-520) (-1189) (-1212))) (-5 *1 (-1212)))) (-1470 (*1 *2 *1) (-12 (-5 *2 (-663 (-1212))) (-5 *1 (-1212)))) (-1586 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1212)))) (-1436 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-560))) (-5 *2 (-114)) (-5 *1 (-1212)))) (-1436 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-229))) (-5 *2 (-114)) (-5 *1 (-1212)))) (-1436 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-114)) (-5 *1 (-1212)))) (-1436 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-114)) (-5 *1 (-1212)))))
+(-13 (-1293) (-1132) (-1069 (-560)) (-1069 (-229)) (-1069 (-520)) (-1069 (-1189)) (-632 (-549)) (-10 -8 (-15 -2400 ((-1134) $)) (-15 -2400 ($ (-1134))) (-15 -3913 ((-560) $)) (-15 -4168 ((-560) $)) (-15 -3913 ((-229) $)) (-15 -4168 ((-229) $)) (-15 -3913 ((-520) $)) (-15 -4168 ((-520) $)) (-15 -3913 ((-1189) $)) (-15 -4168 ((-1189) $)) (-15 -4277 ($ (-520) (-663 $))) (-15 -4277 ($ $ (-663 $))) (-15 -2234 ((-114) $)) (-15 -1699 ((-3 (-560) (-229) (-520) (-1189) $) $)) (-15 -1470 ((-663 $) $)) (-15 -1586 ((-114) $)) (-15 -1436 ((-114) $ (|[\|\|]| (-560)))) (-15 -1436 ((-114) $ (|[\|\|]| (-229)))) (-15 -1436 ((-114) $ (|[\|\|]| (-520)))) (-15 -1436 ((-114) $ (|[\|\|]| (-1189))))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2552 (((-793)) 22 T ELT)) (-3525 (($) 12 T CONST)) (-1812 (($) 26 T ELT)) (-2932 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-4379 (($ $ $) NIL T ELT) (($) 20 T CONST)) (-2622 (((-948) $) 24 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1591 (($ (-948)) 23 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) NIL T ELT)))
+(((-1213 |#1|) (-13 (-866) (-10 -8 (-15 -3525 ($) -2650))) (-948)) (T -1213))
+((-3525 (*1 *1) (-12 (-5 *1 (-1213 *2)) (-14 *2 (-948)))))
+(-13 (-866) (-10 -8 (-15 -3525 ($) -2650)))
((|Integer|) (|%not| (|%ilt| @1 (INTEGER-LENGTH |#1|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1562 (($ $) 25 T ELT)) (-3241 (((-793)) NIL T ELT)) (-2238 (($) 19 T CONST)) (-2310 (($) NIL T ELT)) (-3825 (($ $ $) NIL T ELT) (($) 12 T CONST)) (-2820 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-4419 (((-948) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3128 (($ (-948)) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-1421 (($ $ $) 21 T ELT)) (-1410 (($ $ $) 20 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1616 (($ $ $) 23 T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) NIL T ELT)) (-1602 (($ $ $) 22 T ELT)))
-(((-1214 |#1|) (-13 (-866) (-684) (-10 -8 (-15 -1410 ($ $ $)) (-15 -1421 ($ $ $)) (-15 -2238 ($) -3081))) (-948)) (T -1214))
-((-1410 (*1 *1 *1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-948)))) (-1421 (*1 *1 *1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-948)))) (-2238 (*1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-948)))))
-(-13 (-866) (-684) (-10 -8 (-15 -1410 ($ $ $)) (-15 -1421 ($ $ $)) (-15 -2238 ($) -3081)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2269 (($ $) 25 T ELT)) (-2552 (((-793)) NIL T ELT)) (-3525 (($) 19 T CONST)) (-1812 (($) NIL T ELT)) (-2932 (($ $ $) NIL T ELT) (($) 12 T CONST)) (-4379 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-2622 (((-948) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1591 (($ (-948)) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-4098 (($ $ $) 21 T ELT)) (-4085 (($ $ $) 20 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2311 (($ $ $) 23 T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) NIL T ELT)) (-2300 (($ $ $) 22 T ELT)))
+(((-1214 |#1|) (-13 (-866) (-684) (-10 -8 (-15 -4085 ($ $ $)) (-15 -4098 ($ $ $)) (-15 -3525 ($) -2650))) (-948)) (T -1214))
+((-4085 (*1 *1 *1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-948)))) (-4098 (*1 *1 *1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-948)))) (-3525 (*1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-948)))))
+(-13 (-866) (-684) (-10 -8 (-15 -4085 ($ $ $)) (-15 -4098 ($ $ $)) (-15 -3525 ($) -2650)))
((|NonNegativeInteger|) (|%not| (|%ilt| @1 (INTEGER-LENGTH |#1|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 9 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 7 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 9 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 7 T ELT)))
(((-1215) (-1132)) (T -1215))
NIL
(-1132)
-((-2522 (((-663 (-663 (-975 |#1|))) (-663 (-421 (-975 |#1|))) (-663 (-1207))) 69 T ELT)) (-1433 (((-663 (-305 (-421 (-975 |#1|)))) (-305 (-421 (-975 |#1|)))) 80 T ELT) (((-663 (-305 (-421 (-975 |#1|)))) (-421 (-975 |#1|))) 76 T ELT) (((-663 (-305 (-421 (-975 |#1|)))) (-305 (-421 (-975 |#1|))) (-1207)) 81 T ELT) (((-663 (-305 (-421 (-975 |#1|)))) (-421 (-975 |#1|)) (-1207)) 75 T ELT) (((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-305 (-421 (-975 |#1|))))) 106 T ELT) (((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-421 (-975 |#1|)))) 105 T ELT) (((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-305 (-421 (-975 |#1|)))) (-663 (-1207))) 107 T ELT) (((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-421 (-975 |#1|))) (-663 (-1207))) 104 T ELT)))
-(((-1216 |#1|) (-10 -7 (-15 -1433 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-421 (-975 |#1|))) (-663 (-1207)))) (-15 -1433 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-305 (-421 (-975 |#1|)))) (-663 (-1207)))) (-15 -1433 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-421 (-975 |#1|))))) (-15 -1433 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-305 (-421 (-975 |#1|)))))) (-15 -1433 ((-663 (-305 (-421 (-975 |#1|)))) (-421 (-975 |#1|)) (-1207))) (-15 -1433 ((-663 (-305 (-421 (-975 |#1|)))) (-305 (-421 (-975 |#1|))) (-1207))) (-15 -1433 ((-663 (-305 (-421 (-975 |#1|)))) (-421 (-975 |#1|)))) (-15 -1433 ((-663 (-305 (-421 (-975 |#1|)))) (-305 (-421 (-975 |#1|))))) (-15 -2522 ((-663 (-663 (-975 |#1|))) (-663 (-421 (-975 |#1|))) (-663 (-1207))))) (-571)) (T -1216))
-((-2522 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-421 (-975 *5)))) (-5 *4 (-663 (-1207))) (-4 *5 (-571)) (-5 *2 (-663 (-663 (-975 *5)))) (-5 *1 (-1216 *5)))) (-1433 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-663 (-305 (-421 (-975 *4))))) (-5 *1 (-1216 *4)) (-5 *3 (-305 (-421 (-975 *4)))))) (-1433 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-663 (-305 (-421 (-975 *4))))) (-5 *1 (-1216 *4)) (-5 *3 (-421 (-975 *4))))) (-1433 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-571)) (-5 *2 (-663 (-305 (-421 (-975 *5))))) (-5 *1 (-1216 *5)) (-5 *3 (-305 (-421 (-975 *5)))))) (-1433 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-571)) (-5 *2 (-663 (-305 (-421 (-975 *5))))) (-5 *1 (-1216 *5)) (-5 *3 (-421 (-975 *5))))) (-1433 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-975 *4)))))) (-5 *1 (-1216 *4)) (-5 *3 (-663 (-305 (-421 (-975 *4))))))) (-1433 (*1 *2 *3) (-12 (-5 *3 (-663 (-421 (-975 *4)))) (-4 *4 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-975 *4)))))) (-5 *1 (-1216 *4)))) (-1433 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-1207))) (-4 *5 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-975 *5)))))) (-5 *1 (-1216 *5)) (-5 *3 (-663 (-305 (-421 (-975 *5))))))) (-1433 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-421 (-975 *5)))) (-5 *4 (-663 (-1207))) (-4 *5 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-975 *5)))))) (-5 *1 (-1216 *5)))))
-(-10 -7 (-15 -1433 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-421 (-975 |#1|))) (-663 (-1207)))) (-15 -1433 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-305 (-421 (-975 |#1|)))) (-663 (-1207)))) (-15 -1433 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-421 (-975 |#1|))))) (-15 -1433 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-305 (-421 (-975 |#1|)))))) (-15 -1433 ((-663 (-305 (-421 (-975 |#1|)))) (-421 (-975 |#1|)) (-1207))) (-15 -1433 ((-663 (-305 (-421 (-975 |#1|)))) (-305 (-421 (-975 |#1|))) (-1207))) (-15 -1433 ((-663 (-305 (-421 (-975 |#1|)))) (-421 (-975 |#1|)))) (-15 -1433 ((-663 (-305 (-421 (-975 |#1|)))) (-305 (-421 (-975 |#1|))))) (-15 -2522 ((-663 (-663 (-975 |#1|))) (-663 (-421 (-975 |#1|))) (-663 (-1207)))))
-((-2967 (((-1189)) 7 T ELT)) (-3891 (((-1189)) 11 T CONST)) (-2453 (((-1303) (-1189)) 13 T ELT)) (-1545 (((-1189)) 8 T CONST)) (-3144 (((-132)) 10 T CONST)))
-(((-1217) (-13 (-1247) (-10 -7 (-15 -2967 ((-1189))) (-15 -1545 ((-1189)) -3081) (-15 -3144 ((-132)) -3081) (-15 -3891 ((-1189)) -3081) (-15 -2453 ((-1303) (-1189)))))) (T -1217))
-((-2967 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217)))) (-1545 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217)))) (-3144 (*1 *2) (-12 (-5 *2 (-132)) (-5 *1 (-1217)))) (-3891 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217)))) (-2453 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1217)))))
-(-13 (-1247) (-10 -7 (-15 -2967 ((-1189))) (-15 -1545 ((-1189)) -3081) (-15 -3144 ((-132)) -3081) (-15 -3891 ((-1189)) -3081) (-15 -2453 ((-1303) (-1189)))))
-((-3460 (((-663 (-663 |#1|)) (-663 (-663 |#1|)) (-663 (-663 (-663 |#1|)))) 56 T ELT)) (-1842 (((-663 (-663 (-663 |#1|))) (-663 (-663 |#1|))) 38 T ELT)) (-2333 (((-1220 (-663 |#1|)) (-663 |#1|)) 49 T ELT)) (-1963 (((-663 (-663 |#1|)) (-663 |#1|)) 45 T ELT)) (-2951 (((-2 (|:| |f1| (-663 |#1|)) (|:| |f2| (-663 (-663 (-663 |#1|)))) (|:| |f3| (-663 (-663 |#1|))) (|:| |f4| (-663 (-663 (-663 |#1|))))) (-663 (-663 (-663 |#1|)))) 53 T ELT)) (-2648 (((-2 (|:| |f1| (-663 |#1|)) (|:| |f2| (-663 (-663 (-663 |#1|)))) (|:| |f3| (-663 (-663 |#1|))) (|:| |f4| (-663 (-663 (-663 |#1|))))) (-663 |#1|) (-663 (-663 (-663 |#1|))) (-663 (-663 |#1|)) (-663 (-663 (-663 |#1|))) (-663 (-663 (-663 |#1|))) (-663 (-663 (-663 |#1|)))) 52 T ELT)) (-2755 (((-663 (-663 |#1|)) (-663 (-663 |#1|))) 43 T ELT)) (-2141 (((-663 |#1|) (-663 |#1|)) 46 T ELT)) (-1828 (((-663 (-663 (-663 |#1|))) (-663 |#1|) (-663 (-663 (-663 |#1|)))) 32 T ELT)) (-3306 (((-663 (-663 (-663 |#1|))) (-1 (-114) |#1| |#1|) (-663 |#1|) (-663 (-663 (-663 |#1|)))) 29 T ELT)) (-3115 (((-2 (|:| |fs| (-114)) (|:| |sd| (-663 |#1|)) (|:| |td| (-663 (-663 |#1|)))) (-1 (-114) |#1| |#1|) (-663 |#1|) (-663 (-663 |#1|))) 24 T ELT)) (-3635 (((-663 (-663 |#1|)) (-663 (-663 (-663 |#1|)))) 58 T ELT)) (-2837 (((-663 (-663 |#1|)) (-1220 (-663 |#1|))) 60 T ELT)))
-(((-1218 |#1|) (-10 -7 (-15 -3115 ((-2 (|:| |fs| (-114)) (|:| |sd| (-663 |#1|)) (|:| |td| (-663 (-663 |#1|)))) (-1 (-114) |#1| |#1|) (-663 |#1|) (-663 (-663 |#1|)))) (-15 -3306 ((-663 (-663 (-663 |#1|))) (-1 (-114) |#1| |#1|) (-663 |#1|) (-663 (-663 (-663 |#1|))))) (-15 -1828 ((-663 (-663 (-663 |#1|))) (-663 |#1|) (-663 (-663 (-663 |#1|))))) (-15 -3460 ((-663 (-663 |#1|)) (-663 (-663 |#1|)) (-663 (-663 (-663 |#1|))))) (-15 -3635 ((-663 (-663 |#1|)) (-663 (-663 (-663 |#1|))))) (-15 -2837 ((-663 (-663 |#1|)) (-1220 (-663 |#1|)))) (-15 -1842 ((-663 (-663 (-663 |#1|))) (-663 (-663 |#1|)))) (-15 -2333 ((-1220 (-663 |#1|)) (-663 |#1|))) (-15 -2755 ((-663 (-663 |#1|)) (-663 (-663 |#1|)))) (-15 -1963 ((-663 (-663 |#1|)) (-663 |#1|))) (-15 -2141 ((-663 |#1|) (-663 |#1|))) (-15 -2648 ((-2 (|:| |f1| (-663 |#1|)) (|:| |f2| (-663 (-663 (-663 |#1|)))) (|:| |f3| (-663 (-663 |#1|))) (|:| |f4| (-663 (-663 (-663 |#1|))))) (-663 |#1|) (-663 (-663 (-663 |#1|))) (-663 (-663 |#1|)) (-663 (-663 (-663 |#1|))) (-663 (-663 (-663 |#1|))) (-663 (-663 (-663 |#1|))))) (-15 -2951 ((-2 (|:| |f1| (-663 |#1|)) (|:| |f2| (-663 (-663 (-663 |#1|)))) (|:| |f3| (-663 (-663 |#1|))) (|:| |f4| (-663 (-663 (-663 |#1|))))) (-663 (-663 (-663 |#1|)))))) (-871)) (T -1218))
-((-2951 (*1 *2 *3) (-12 (-4 *4 (-871)) (-5 *2 (-2 (|:| |f1| (-663 *4)) (|:| |f2| (-663 (-663 (-663 *4)))) (|:| |f3| (-663 (-663 *4))) (|:| |f4| (-663 (-663 (-663 *4)))))) (-5 *1 (-1218 *4)) (-5 *3 (-663 (-663 (-663 *4)))))) (-2648 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-871)) (-5 *3 (-663 *6)) (-5 *5 (-663 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-663 *5)) (|:| |f3| *5) (|:| |f4| (-663 *5)))) (-5 *1 (-1218 *6)) (-5 *4 (-663 *5)))) (-2141 (*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-1218 *3)))) (-1963 (*1 *2 *3) (-12 (-4 *4 (-871)) (-5 *2 (-663 (-663 *4))) (-5 *1 (-1218 *4)) (-5 *3 (-663 *4)))) (-2755 (*1 *2 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-871)) (-5 *1 (-1218 *3)))) (-2333 (*1 *2 *3) (-12 (-4 *4 (-871)) (-5 *2 (-1220 (-663 *4))) (-5 *1 (-1218 *4)) (-5 *3 (-663 *4)))) (-1842 (*1 *2 *3) (-12 (-4 *4 (-871)) (-5 *2 (-663 (-663 (-663 *4)))) (-5 *1 (-1218 *4)) (-5 *3 (-663 (-663 *4))))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-1220 (-663 *4))) (-4 *4 (-871)) (-5 *2 (-663 (-663 *4))) (-5 *1 (-1218 *4)))) (-3635 (*1 *2 *3) (-12 (-5 *3 (-663 (-663 (-663 *4)))) (-5 *2 (-663 (-663 *4))) (-5 *1 (-1218 *4)) (-4 *4 (-871)))) (-3460 (*1 *2 *2 *3) (-12 (-5 *3 (-663 (-663 (-663 *4)))) (-5 *2 (-663 (-663 *4))) (-4 *4 (-871)) (-5 *1 (-1218 *4)))) (-1828 (*1 *2 *3 *2) (-12 (-5 *2 (-663 (-663 (-663 *4)))) (-5 *3 (-663 *4)) (-4 *4 (-871)) (-5 *1 (-1218 *4)))) (-3306 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-663 (-663 (-663 *5)))) (-5 *3 (-1 (-114) *5 *5)) (-5 *4 (-663 *5)) (-4 *5 (-871)) (-5 *1 (-1218 *5)))) (-3115 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-114) *6 *6)) (-4 *6 (-871)) (-5 *4 (-663 *6)) (-5 *2 (-2 (|:| |fs| (-114)) (|:| |sd| *4) (|:| |td| (-663 *4)))) (-5 *1 (-1218 *6)) (-5 *5 (-663 *4)))))
-(-10 -7 (-15 -3115 ((-2 (|:| |fs| (-114)) (|:| |sd| (-663 |#1|)) (|:| |td| (-663 (-663 |#1|)))) (-1 (-114) |#1| |#1|) (-663 |#1|) (-663 (-663 |#1|)))) (-15 -3306 ((-663 (-663 (-663 |#1|))) (-1 (-114) |#1| |#1|) (-663 |#1|) (-663 (-663 (-663 |#1|))))) (-15 -1828 ((-663 (-663 (-663 |#1|))) (-663 |#1|) (-663 (-663 (-663 |#1|))))) (-15 -3460 ((-663 (-663 |#1|)) (-663 (-663 |#1|)) (-663 (-663 (-663 |#1|))))) (-15 -3635 ((-663 (-663 |#1|)) (-663 (-663 (-663 |#1|))))) (-15 -2837 ((-663 (-663 |#1|)) (-1220 (-663 |#1|)))) (-15 -1842 ((-663 (-663 (-663 |#1|))) (-663 (-663 |#1|)))) (-15 -2333 ((-1220 (-663 |#1|)) (-663 |#1|))) (-15 -2755 ((-663 (-663 |#1|)) (-663 (-663 |#1|)))) (-15 -1963 ((-663 (-663 |#1|)) (-663 |#1|))) (-15 -2141 ((-663 |#1|) (-663 |#1|))) (-15 -2648 ((-2 (|:| |f1| (-663 |#1|)) (|:| |f2| (-663 (-663 (-663 |#1|)))) (|:| |f3| (-663 (-663 |#1|))) (|:| |f4| (-663 (-663 (-663 |#1|))))) (-663 |#1|) (-663 (-663 (-663 |#1|))) (-663 (-663 |#1|)) (-663 (-663 (-663 |#1|))) (-663 (-663 (-663 |#1|))) (-663 (-663 (-663 |#1|))))) (-15 -2951 ((-2 (|:| |f1| (-663 |#1|)) (|:| |f2| (-663 (-663 (-663 |#1|)))) (|:| |f3| (-663 (-663 |#1|))) (|:| |f4| (-663 (-663 (-663 |#1|))))) (-663 (-663 (-663 |#1|))))))
-((-1538 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4083 (($) NIL T ELT) (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-3839 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 ((|#2| $ |#1| |#2|) NIL T ELT)) (-3500 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4255 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT)) (-3390 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-2375 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3779 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#2| $ |#1|) NIL T ELT)) (-2181 (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-2656 (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-2937 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-2236 (((-663 |#1|) $) NIL T ELT)) (-1445 (((-114) |#1| $) NIL T ELT)) (-1576 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-3629 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-3270 (((-663 |#1|) $) NIL T ELT)) (-3586 (((-114) |#1| $) NIL T ELT)) (-3855 (((-1151) $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-3637 ((|#2| $) NIL (|has| |#1| (-871)) ELT)) (-3329 (((-3 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) "failed") (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL T ELT)) (-3037 (($ $ |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-2615 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL T ELT)) (-2787 (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-3571 (((-663 |#2|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-3897 (($) NIL T ELT) (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-3865 (((-793) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT) (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) NIL (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-633 (-549))) ELT)) (-1592 (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-1578 (((-887) $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-632 (-887))) (|has| |#2| (-632 (-887)))) ELT)) (-2275 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3376 (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) NIL T ELT)) (-1728 (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) NIL (-2304 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+((-4451 (((-663 (-663 (-975 |#1|))) (-663 (-421 (-975 |#1|))) (-663 (-1207))) 69 T ELT)) (-1652 (((-663 (-305 (-421 (-975 |#1|)))) (-305 (-421 (-975 |#1|)))) 80 T ELT) (((-663 (-305 (-421 (-975 |#1|)))) (-421 (-975 |#1|))) 76 T ELT) (((-663 (-305 (-421 (-975 |#1|)))) (-305 (-421 (-975 |#1|))) (-1207)) 81 T ELT) (((-663 (-305 (-421 (-975 |#1|)))) (-421 (-975 |#1|)) (-1207)) 75 T ELT) (((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-305 (-421 (-975 |#1|))))) 106 T ELT) (((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-421 (-975 |#1|)))) 105 T ELT) (((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-305 (-421 (-975 |#1|)))) (-663 (-1207))) 107 T ELT) (((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-421 (-975 |#1|))) (-663 (-1207))) 104 T ELT)))
+(((-1216 |#1|) (-10 -7 (-15 -1652 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-421 (-975 |#1|))) (-663 (-1207)))) (-15 -1652 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-305 (-421 (-975 |#1|)))) (-663 (-1207)))) (-15 -1652 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-421 (-975 |#1|))))) (-15 -1652 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-305 (-421 (-975 |#1|)))))) (-15 -1652 ((-663 (-305 (-421 (-975 |#1|)))) (-421 (-975 |#1|)) (-1207))) (-15 -1652 ((-663 (-305 (-421 (-975 |#1|)))) (-305 (-421 (-975 |#1|))) (-1207))) (-15 -1652 ((-663 (-305 (-421 (-975 |#1|)))) (-421 (-975 |#1|)))) (-15 -1652 ((-663 (-305 (-421 (-975 |#1|)))) (-305 (-421 (-975 |#1|))))) (-15 -4451 ((-663 (-663 (-975 |#1|))) (-663 (-421 (-975 |#1|))) (-663 (-1207))))) (-571)) (T -1216))
+((-4451 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-421 (-975 *5)))) (-5 *4 (-663 (-1207))) (-4 *5 (-571)) (-5 *2 (-663 (-663 (-975 *5)))) (-5 *1 (-1216 *5)))) (-1652 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-663 (-305 (-421 (-975 *4))))) (-5 *1 (-1216 *4)) (-5 *3 (-305 (-421 (-975 *4)))))) (-1652 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-663 (-305 (-421 (-975 *4))))) (-5 *1 (-1216 *4)) (-5 *3 (-421 (-975 *4))))) (-1652 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-571)) (-5 *2 (-663 (-305 (-421 (-975 *5))))) (-5 *1 (-1216 *5)) (-5 *3 (-305 (-421 (-975 *5)))))) (-1652 (*1 *2 *3 *4) (-12 (-5 *4 (-1207)) (-4 *5 (-571)) (-5 *2 (-663 (-305 (-421 (-975 *5))))) (-5 *1 (-1216 *5)) (-5 *3 (-421 (-975 *5))))) (-1652 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-975 *4)))))) (-5 *1 (-1216 *4)) (-5 *3 (-663 (-305 (-421 (-975 *4))))))) (-1652 (*1 *2 *3) (-12 (-5 *3 (-663 (-421 (-975 *4)))) (-4 *4 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-975 *4)))))) (-5 *1 (-1216 *4)))) (-1652 (*1 *2 *3 *4) (-12 (-5 *4 (-663 (-1207))) (-4 *5 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-975 *5)))))) (-5 *1 (-1216 *5)) (-5 *3 (-663 (-305 (-421 (-975 *5))))))) (-1652 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-421 (-975 *5)))) (-5 *4 (-663 (-1207))) (-4 *5 (-571)) (-5 *2 (-663 (-663 (-305 (-421 (-975 *5)))))) (-5 *1 (-1216 *5)))))
+(-10 -7 (-15 -1652 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-421 (-975 |#1|))) (-663 (-1207)))) (-15 -1652 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-305 (-421 (-975 |#1|)))) (-663 (-1207)))) (-15 -1652 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-421 (-975 |#1|))))) (-15 -1652 ((-663 (-663 (-305 (-421 (-975 |#1|))))) (-663 (-305 (-421 (-975 |#1|)))))) (-15 -1652 ((-663 (-305 (-421 (-975 |#1|)))) (-421 (-975 |#1|)) (-1207))) (-15 -1652 ((-663 (-305 (-421 (-975 |#1|)))) (-305 (-421 (-975 |#1|))) (-1207))) (-15 -1652 ((-663 (-305 (-421 (-975 |#1|)))) (-421 (-975 |#1|)))) (-15 -1652 ((-663 (-305 (-421 (-975 |#1|)))) (-305 (-421 (-975 |#1|))))) (-15 -4451 ((-663 (-663 (-975 |#1|))) (-663 (-421 (-975 |#1|))) (-663 (-1207)))))
+((-3302 (((-1189)) 7 T ELT)) (-4411 (((-1189)) 11 T CONST)) (-2039 (((-1303) (-1189)) 13 T ELT)) (-1578 (((-1189)) 8 T CONST)) (-1425 (((-132)) 10 T CONST)))
+(((-1217) (-13 (-1247) (-10 -7 (-15 -3302 ((-1189))) (-15 -1578 ((-1189)) -2650) (-15 -1425 ((-132)) -2650) (-15 -4411 ((-1189)) -2650) (-15 -2039 ((-1303) (-1189)))))) (T -1217))
+((-3302 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217)))) (-1578 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217)))) (-1425 (*1 *2) (-12 (-5 *2 (-132)) (-5 *1 (-1217)))) (-4411 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217)))) (-2039 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1217)))))
+(-13 (-1247) (-10 -7 (-15 -3302 ((-1189))) (-15 -1578 ((-1189)) -2650) (-15 -1425 ((-132)) -2650) (-15 -4411 ((-1189)) -2650) (-15 -2039 ((-1303) (-1189)))))
+((-1494 (((-663 (-663 |#1|)) (-663 (-663 |#1|)) (-663 (-663 (-663 |#1|)))) 56 T ELT)) (-3980 (((-663 (-663 (-663 |#1|))) (-663 (-663 |#1|))) 38 T ELT)) (-3195 (((-1220 (-663 |#1|)) (-663 |#1|)) 49 T ELT)) (-3908 (((-663 (-663 |#1|)) (-663 |#1|)) 45 T ELT)) (-3722 (((-2 (|:| |f1| (-663 |#1|)) (|:| |f2| (-663 (-663 (-663 |#1|)))) (|:| |f3| (-663 (-663 |#1|))) (|:| |f4| (-663 (-663 (-663 |#1|))))) (-663 (-663 (-663 |#1|)))) 53 T ELT)) (-3170 (((-2 (|:| |f1| (-663 |#1|)) (|:| |f2| (-663 (-663 (-663 |#1|)))) (|:| |f3| (-663 (-663 |#1|))) (|:| |f4| (-663 (-663 (-663 |#1|))))) (-663 |#1|) (-663 (-663 (-663 |#1|))) (-663 (-663 |#1|)) (-663 (-663 (-663 |#1|))) (-663 (-663 (-663 |#1|))) (-663 (-663 (-663 |#1|)))) 52 T ELT)) (-1761 (((-663 (-663 |#1|)) (-663 (-663 |#1|))) 43 T ELT)) (-1906 (((-663 |#1|) (-663 |#1|)) 46 T ELT)) (-1899 (((-663 (-663 (-663 |#1|))) (-663 |#1|) (-663 (-663 (-663 |#1|)))) 32 T ELT)) (-3748 (((-663 (-663 (-663 |#1|))) (-1 (-114) |#1| |#1|) (-663 |#1|) (-663 (-663 (-663 |#1|)))) 29 T ELT)) (-2334 (((-2 (|:| |fs| (-114)) (|:| |sd| (-663 |#1|)) (|:| |td| (-663 (-663 |#1|)))) (-1 (-114) |#1| |#1|) (-663 |#1|) (-663 (-663 |#1|))) 24 T ELT)) (-3954 (((-663 (-663 |#1|)) (-663 (-663 (-663 |#1|)))) 58 T ELT)) (-1398 (((-663 (-663 |#1|)) (-1220 (-663 |#1|))) 60 T ELT)))
+(((-1218 |#1|) (-10 -7 (-15 -2334 ((-2 (|:| |fs| (-114)) (|:| |sd| (-663 |#1|)) (|:| |td| (-663 (-663 |#1|)))) (-1 (-114) |#1| |#1|) (-663 |#1|) (-663 (-663 |#1|)))) (-15 -3748 ((-663 (-663 (-663 |#1|))) (-1 (-114) |#1| |#1|) (-663 |#1|) (-663 (-663 (-663 |#1|))))) (-15 -1899 ((-663 (-663 (-663 |#1|))) (-663 |#1|) (-663 (-663 (-663 |#1|))))) (-15 -1494 ((-663 (-663 |#1|)) (-663 (-663 |#1|)) (-663 (-663 (-663 |#1|))))) (-15 -3954 ((-663 (-663 |#1|)) (-663 (-663 (-663 |#1|))))) (-15 -1398 ((-663 (-663 |#1|)) (-1220 (-663 |#1|)))) (-15 -3980 ((-663 (-663 (-663 |#1|))) (-663 (-663 |#1|)))) (-15 -3195 ((-1220 (-663 |#1|)) (-663 |#1|))) (-15 -1761 ((-663 (-663 |#1|)) (-663 (-663 |#1|)))) (-15 -3908 ((-663 (-663 |#1|)) (-663 |#1|))) (-15 -1906 ((-663 |#1|) (-663 |#1|))) (-15 -3170 ((-2 (|:| |f1| (-663 |#1|)) (|:| |f2| (-663 (-663 (-663 |#1|)))) (|:| |f3| (-663 (-663 |#1|))) (|:| |f4| (-663 (-663 (-663 |#1|))))) (-663 |#1|) (-663 (-663 (-663 |#1|))) (-663 (-663 |#1|)) (-663 (-663 (-663 |#1|))) (-663 (-663 (-663 |#1|))) (-663 (-663 (-663 |#1|))))) (-15 -3722 ((-2 (|:| |f1| (-663 |#1|)) (|:| |f2| (-663 (-663 (-663 |#1|)))) (|:| |f3| (-663 (-663 |#1|))) (|:| |f4| (-663 (-663 (-663 |#1|))))) (-663 (-663 (-663 |#1|)))))) (-871)) (T -1218))
+((-3722 (*1 *2 *3) (-12 (-4 *4 (-871)) (-5 *2 (-2 (|:| |f1| (-663 *4)) (|:| |f2| (-663 (-663 (-663 *4)))) (|:| |f3| (-663 (-663 *4))) (|:| |f4| (-663 (-663 (-663 *4)))))) (-5 *1 (-1218 *4)) (-5 *3 (-663 (-663 (-663 *4)))))) (-3170 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-871)) (-5 *3 (-663 *6)) (-5 *5 (-663 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-663 *5)) (|:| |f3| *5) (|:| |f4| (-663 *5)))) (-5 *1 (-1218 *6)) (-5 *4 (-663 *5)))) (-1906 (*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-1218 *3)))) (-3908 (*1 *2 *3) (-12 (-4 *4 (-871)) (-5 *2 (-663 (-663 *4))) (-5 *1 (-1218 *4)) (-5 *3 (-663 *4)))) (-1761 (*1 *2 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-871)) (-5 *1 (-1218 *3)))) (-3195 (*1 *2 *3) (-12 (-4 *4 (-871)) (-5 *2 (-1220 (-663 *4))) (-5 *1 (-1218 *4)) (-5 *3 (-663 *4)))) (-3980 (*1 *2 *3) (-12 (-4 *4 (-871)) (-5 *2 (-663 (-663 (-663 *4)))) (-5 *1 (-1218 *4)) (-5 *3 (-663 (-663 *4))))) (-1398 (*1 *2 *3) (-12 (-5 *3 (-1220 (-663 *4))) (-4 *4 (-871)) (-5 *2 (-663 (-663 *4))) (-5 *1 (-1218 *4)))) (-3954 (*1 *2 *3) (-12 (-5 *3 (-663 (-663 (-663 *4)))) (-5 *2 (-663 (-663 *4))) (-5 *1 (-1218 *4)) (-4 *4 (-871)))) (-1494 (*1 *2 *2 *3) (-12 (-5 *3 (-663 (-663 (-663 *4)))) (-5 *2 (-663 (-663 *4))) (-4 *4 (-871)) (-5 *1 (-1218 *4)))) (-1899 (*1 *2 *3 *2) (-12 (-5 *2 (-663 (-663 (-663 *4)))) (-5 *3 (-663 *4)) (-4 *4 (-871)) (-5 *1 (-1218 *4)))) (-3748 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-663 (-663 (-663 *5)))) (-5 *3 (-1 (-114) *5 *5)) (-5 *4 (-663 *5)) (-4 *5 (-871)) (-5 *1 (-1218 *5)))) (-2334 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-114) *6 *6)) (-4 *6 (-871)) (-5 *4 (-663 *6)) (-5 *2 (-2 (|:| |fs| (-114)) (|:| |sd| *4) (|:| |td| (-663 *4)))) (-5 *1 (-1218 *6)) (-5 *5 (-663 *4)))))
+(-10 -7 (-15 -2334 ((-2 (|:| |fs| (-114)) (|:| |sd| (-663 |#1|)) (|:| |td| (-663 (-663 |#1|)))) (-1 (-114) |#1| |#1|) (-663 |#1|) (-663 (-663 |#1|)))) (-15 -3748 ((-663 (-663 (-663 |#1|))) (-1 (-114) |#1| |#1|) (-663 |#1|) (-663 (-663 (-663 |#1|))))) (-15 -1899 ((-663 (-663 (-663 |#1|))) (-663 |#1|) (-663 (-663 (-663 |#1|))))) (-15 -1494 ((-663 (-663 |#1|)) (-663 (-663 |#1|)) (-663 (-663 (-663 |#1|))))) (-15 -3954 ((-663 (-663 |#1|)) (-663 (-663 (-663 |#1|))))) (-15 -1398 ((-663 (-663 |#1|)) (-1220 (-663 |#1|)))) (-15 -3980 ((-663 (-663 (-663 |#1|))) (-663 (-663 |#1|)))) (-15 -3195 ((-1220 (-663 |#1|)) (-663 |#1|))) (-15 -1761 ((-663 (-663 |#1|)) (-663 (-663 |#1|)))) (-15 -3908 ((-663 (-663 |#1|)) (-663 |#1|))) (-15 -1906 ((-663 |#1|) (-663 |#1|))) (-15 -3170 ((-2 (|:| |f1| (-663 |#1|)) (|:| |f2| (-663 (-663 (-663 |#1|)))) (|:| |f3| (-663 (-663 |#1|))) (|:| |f4| (-663 (-663 (-663 |#1|))))) (-663 |#1|) (-663 (-663 (-663 |#1|))) (-663 (-663 |#1|)) (-663 (-663 (-663 |#1|))) (-663 (-663 (-663 |#1|))) (-663 (-663 (-663 |#1|))))) (-15 -3722 ((-2 (|:| |f1| (-663 |#1|)) (|:| |f2| (-663 (-663 (-663 |#1|)))) (|:| |f3| (-663 (-663 |#1|))) (|:| |f4| (-663 (-663 (-663 |#1|))))) (-663 (-663 (-663 |#1|))))))
+((-2243 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4236 (($) NIL T ELT) (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-2033 (((-1303) $ |#1| |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1864 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3799 (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT)) (-2091 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#2| "failed") |#1| $) NIL T ELT)) (-3033 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (|has| $ (-6 -4508)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT)) (-3338 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#2| $ |#1|) NIL T ELT)) (-3737 (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3243 (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-4263 ((|#1| $) NIL (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4509)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-4325 (((-663 |#1|) $) NIL T ELT)) (-4124 (((-114) |#1| $) NIL T ELT)) (-1878 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-3888 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-3372 (((-663 |#1|) $) NIL T ELT)) (-3439 (((-114) |#1| $) NIL T ELT)) (-3376 (((-1151) $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| |#2| (-1132))) ELT)) (-4334 ((|#2| $) NIL (|has| |#1| (-871)) ELT)) (-2708 (((-3 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) "failed") (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL T ELT)) (-2740 (($ $ |#2|) NIL (|has| $ (-6 -4509)) ELT)) (-2796 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL T ELT)) (-2086 (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-1383 (((-663 |#2|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-4468 (($) NIL T ELT) (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-3384 (((-793) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) NIL (-12 (|has| $ (-6 -4508)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (((-793) |#2| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT) (((-793) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) NIL (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-633 (-549))) ELT)) (-3924 (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-3913 (((-887) $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-632 (-887))) (|has| |#2| (-632 (-887)))) ELT)) (-3925 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3184 (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) NIL T ELT)) (-2149 (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) NIL (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) NIL (-2196 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
(((-1219 |#1| |#2|) (-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4508))) (-1132) (-1132)) (T -1219))
NIL
(-13 (-1224 |#1| |#2|) (-10 -7 (-6 -4508)))
-((-1388 (($ (-663 (-663 |#1|))) 10 T ELT)) (-2543 (((-663 (-663 |#1|)) $) 11 T ELT)) (-1578 (((-887) $) 33 T ELT)))
-(((-1220 |#1|) (-10 -8 (-15 -1388 ($ (-663 (-663 |#1|)))) (-15 -2543 ((-663 (-663 |#1|)) $)) (-15 -1578 ((-887) $))) (-1132)) (T -1220))
-((-1578 (*1 *2 *1) (-12 (-5 *2 (-887)) (-5 *1 (-1220 *3)) (-4 *3 (-1132)))) (-2543 (*1 *2 *1) (-12 (-5 *2 (-663 (-663 *3))) (-5 *1 (-1220 *3)) (-4 *3 (-1132)))) (-1388 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1132)) (-5 *1 (-1220 *3)))))
-(-10 -8 (-15 -1388 ($ (-663 (-663 |#1|)))) (-15 -2543 ((-663 (-663 |#1|)) $)) (-15 -1578 ((-887) $)))
-((-1538 (((-114) $ $) NIL T ELT)) (-4399 (($ |#1| (-55)) 10 T ELT)) (-3614 ((|#1| $) 12 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2784 (((-114) $ |#1|) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-3617 (((-55) $) 14 T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-1221 |#1|) (-13 (-858 |#1|) (-10 -8 (-15 -4399 ($ |#1| (-55))))) (-1132)) (T -1221))
-((-4399 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1221 *2)) (-4 *2 (-1132)))))
-(-13 (-858 |#1|) (-10 -8 (-15 -4399 ($ |#1| (-55)))))
-((-2183 ((|#1| (-663 |#1|)) 46 T ELT)) (-3761 ((|#1| |#1| (-560)) 24 T ELT)) (-2090 (((-1201 |#1|) |#1| (-948)) 20 T ELT)))
-(((-1222 |#1|) (-10 -7 (-15 -2183 (|#1| (-663 |#1|))) (-15 -2090 ((-1201 |#1|) |#1| (-948))) (-15 -3761 (|#1| |#1| (-560)))) (-376)) (T -1222))
-((-3761 (*1 *2 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-1222 *2)) (-4 *2 (-376)))) (-2090 (*1 *2 *3 *4) (-12 (-5 *4 (-948)) (-5 *2 (-1201 *3)) (-5 *1 (-1222 *3)) (-4 *3 (-376)))) (-2183 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-5 *1 (-1222 *2)) (-4 *2 (-376)))))
-(-10 -7 (-15 -2183 (|#1| (-663 |#1|))) (-15 -2090 ((-1201 |#1|) |#1| (-948))) (-15 -3761 (|#1| |#1| (-560))))
-((-4083 (($) 10 T ELT) (($ (-663 (-2 (|:| -2968 |#2|) (|:| -2460 |#3|)))) 14 T ELT)) (-3390 (($ (-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) $) 67 T ELT) (($ (-1 (-114) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) $) NIL T ELT) (((-3 |#3| "failed") |#2| $) NIL T ELT)) (-2181 (((-663 (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) $) 39 T ELT) (((-663 |#3|) $) 41 T ELT)) (-3768 (($ (-1 (-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-3957 (($ (-1 (-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-1576 (((-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) $) 60 T ELT)) (-3629 (($ (-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) $) 16 T ELT)) (-3270 (((-663 |#2|) $) 19 T ELT)) (-3586 (((-114) |#2| $) 65 T ELT)) (-3329 (((-3 (-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) "failed") (-1 (-114) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) $) 64 T ELT)) (-2615 (((-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) $) 69 T ELT)) (-2787 (((-114) (-1 (-114) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) $) NIL T ELT) (((-114) (-1 (-114) |#3|) $) 73 T ELT)) (-3571 (((-663 |#3|) $) 43 T ELT)) (-3924 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-3865 (((-793) (-1 (-114) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) $) NIL T ELT) (((-793) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) $) NIL T ELT) (((-793) |#3| $) NIL T ELT) (((-793) (-1 (-114) |#3|) $) 79 T ELT)) (-1578 (((-887) $) 27 T ELT)) (-1728 (((-114) (-1 (-114) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) $) NIL T ELT) (((-114) (-1 (-114) |#3|) $) 71 T ELT)) (-2473 (((-114) $ $) 51 T ELT)))
-(((-1223 |#1| |#2| |#3|) (-10 -8 (-15 -2473 ((-114) |#1| |#1|)) (-15 -1578 ((-887) |#1|)) (-15 -3957 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4083 (|#1| (-663 (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))))) (-15 -4083 (|#1|)) (-15 -3957 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3768 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1728 ((-114) (-1 (-114) |#3|) |#1|)) (-15 -2787 ((-114) (-1 (-114) |#3|) |#1|)) (-15 -3865 ((-793) (-1 (-114) |#3|) |#1|)) (-15 -2181 ((-663 |#3|) |#1|)) (-15 -3865 ((-793) |#3| |#1|)) (-15 -3924 (|#3| |#1| |#2| |#3|)) (-15 -3924 (|#3| |#1| |#2|)) (-15 -3571 ((-663 |#3|) |#1|)) (-15 -3586 ((-114) |#2| |#1|)) (-15 -3270 ((-663 |#2|) |#1|)) (-15 -3390 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3390 (|#1| (-1 (-114) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) |#1|)) (-15 -3390 (|#1| (-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) |#1|)) (-15 -3329 ((-3 (-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) "failed") (-1 (-114) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) |#1|)) (-15 -1576 ((-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) |#1|)) (-15 -3629 (|#1| (-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) |#1|)) (-15 -2615 ((-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) |#1|)) (-15 -3865 ((-793) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) |#1|)) (-15 -2181 ((-663 (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) |#1|)) (-15 -3865 ((-793) (-1 (-114) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) |#1|)) (-15 -2787 ((-114) (-1 (-114) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) |#1|)) (-15 -1728 ((-114) (-1 (-114) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) |#1|)) (-15 -3768 (|#1| (-1 (-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) |#1|)) (-15 -3957 (|#1| (-1 (-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) |#1|))) (-1224 |#2| |#3|) (-1132) (-1132)) (T -1223))
-NIL
-(-10 -8 (-15 -2473 ((-114) |#1| |#1|)) (-15 -1578 ((-887) |#1|)) (-15 -3957 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4083 (|#1| (-663 (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))))) (-15 -4083 (|#1|)) (-15 -3957 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3768 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1728 ((-114) (-1 (-114) |#3|) |#1|)) (-15 -2787 ((-114) (-1 (-114) |#3|) |#1|)) (-15 -3865 ((-793) (-1 (-114) |#3|) |#1|)) (-15 -2181 ((-663 |#3|) |#1|)) (-15 -3865 ((-793) |#3| |#1|)) (-15 -3924 (|#3| |#1| |#2| |#3|)) (-15 -3924 (|#3| |#1| |#2|)) (-15 -3571 ((-663 |#3|) |#1|)) (-15 -3586 ((-114) |#2| |#1|)) (-15 -3270 ((-663 |#2|) |#1|)) (-15 -3390 ((-3 |#3| "failed") |#2| |#1|)) (-15 -3390 (|#1| (-1 (-114) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) |#1|)) (-15 -3390 (|#1| (-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) |#1|)) (-15 -3329 ((-3 (-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) "failed") (-1 (-114) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) |#1|)) (-15 -1576 ((-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) |#1|)) (-15 -3629 (|#1| (-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) |#1|)) (-15 -2615 ((-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) |#1|)) (-15 -3865 ((-793) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) |#1|)) (-15 -2181 ((-663 (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) |#1|)) (-15 -3865 ((-793) (-1 (-114) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) |#1|)) (-15 -2787 ((-114) (-1 (-114) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) |#1|)) (-15 -1728 ((-114) (-1 (-114) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) |#1|)) (-15 -3768 (|#1| (-1 (-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) |#1|)) (-15 -3957 (|#1| (-1 (-2 (|:| -2968 |#2|) (|:| -2460 |#3|)) (-2 (|:| -2968 |#2|) (|:| -2460 |#3|))) |#1|)))
-((-1538 (((-114) $ $) 20 (-2304 (|has| |#2| (-102)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102))) ELT)) (-4083 (($) 73 T ELT) (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) 72 T ELT)) (-3839 (((-1303) $ |#1| |#1|) 100 (|has| $ (-6 -4509)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-1773 ((|#2| $ |#1| |#2|) 74 T ELT)) (-3500 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 46 (|has| $ (-6 -4508)) ELT)) (-1982 (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 56 (|has| $ (-6 -4508)) ELT)) (-4255 (((-3 |#2| "failed") |#1| $) 62 T ELT)) (-2238 (($) 7 T CONST)) (-3606 (($ $) 59 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT)) (-3390 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 48 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 47 (|has| $ (-6 -4508)) ELT) (((-3 |#2| "failed") |#1| $) 63 T ELT)) (-2375 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 58 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 55 (|has| $ (-6 -4508)) ELT)) (-4129 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 57 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 54 (|has| $ (-6 -4508)) ELT) (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 53 (|has| $ (-6 -4508)) ELT)) (-3779 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4509)) ELT)) (-3709 ((|#2| $ |#1|) 89 T ELT)) (-2181 (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 31 (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) 80 (|has| $ (-6 -4508)) ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-1762 ((|#1| $) 97 (|has| |#1| (-871)) ELT)) (-2656 (((-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 30 (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) 81 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 28 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (((-114) |#2| $) 83 (-12 (|has| |#2| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2937 ((|#1| $) 96 (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 35 (|has| $ (-6 -4509)) ELT) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 36 T ELT) (($ (-1 |#2| |#2|) $) 75 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 71 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-1905 (((-1189) $) 23 (-2304 (|has| |#2| (-1132)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT)) (-2236 (((-663 |#1|) $) 64 T ELT)) (-1445 (((-114) |#1| $) 65 T ELT)) (-1576 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 40 T ELT)) (-3629 (($ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 41 T ELT)) (-3270 (((-663 |#1|) $) 94 T ELT)) (-3586 (((-114) |#1| $) 93 T ELT)) (-3855 (((-1151) $) 22 (-2304 (|has| |#2| (-1132)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT)) (-3637 ((|#2| $) 98 (|has| |#1| (-871)) ELT)) (-3329 (((-3 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) "failed") (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 52 T ELT)) (-3037 (($ $ |#2|) 99 (|has| $ (-6 -4509)) ELT)) (-2615 (((-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 42 T ELT)) (-2787 (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 33 (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) 78 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))))) 27 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) 26 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) 25 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) 24 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) 87 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) 85 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 (-305 |#2|))) 84 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-2914 (((-114) |#2| $) 95 (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-3571 (((-663 |#2|) $) 92 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3924 ((|#2| $ |#1|) 91 T ELT) ((|#2| $ |#1| |#2|) 90 T ELT)) (-3897 (($) 50 T ELT) (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) 49 T ELT)) (-3865 (((-793) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) $) 29 (-12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) |#2| $) 82 (-12 (|has| |#2| (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) |#2|) $) 79 (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) 60 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-633 (-549))) ELT)) (-1592 (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) 51 T ELT)) (-1578 (((-887) $) 18 (-2304 (|has| |#2| (-632 (-887))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-632 (-887)))) ELT)) (-2275 (((-114) $ $) 21 (-2304 (|has| |#2| (-102)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102))) ELT)) (-3376 (($ (-663 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) 43 T ELT)) (-1728 (((-114) (-1 (-114) (-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) $) 34 (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) 77 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (-2304 (|has| |#2| (-102)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102))) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-2981 (($ (-663 (-663 |#1|))) 10 T ELT)) (-3378 (((-663 (-663 |#1|)) $) 11 T ELT)) (-3913 (((-887) $) 33 T ELT)))
+(((-1220 |#1|) (-10 -8 (-15 -2981 ($ (-663 (-663 |#1|)))) (-15 -3378 ((-663 (-663 |#1|)) $)) (-15 -3913 ((-887) $))) (-1132)) (T -1220))
+((-3913 (*1 *2 *1) (-12 (-5 *2 (-887)) (-5 *1 (-1220 *3)) (-4 *3 (-1132)))) (-3378 (*1 *2 *1) (-12 (-5 *2 (-663 (-663 *3))) (-5 *1 (-1220 *3)) (-4 *3 (-1132)))) (-2981 (*1 *1 *2) (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1132)) (-5 *1 (-1220 *3)))))
+(-10 -8 (-15 -2981 ($ (-663 (-663 |#1|)))) (-15 -3378 ((-663 (-663 |#1|)) $)) (-15 -3913 ((-887) $)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3963 (($ |#1| (-55)) 10 T ELT)) (-4389 ((|#1| $) 12 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2060 (((-114) $ |#1|) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-3780 (((-55) $) 14 T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-1221 |#1|) (-13 (-858 |#1|) (-10 -8 (-15 -3963 ($ |#1| (-55))))) (-1132)) (T -1221))
+((-3963 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1221 *2)) (-4 *2 (-1132)))))
+(-13 (-858 |#1|) (-10 -8 (-15 -3963 ($ |#1| (-55)))))
+((-4268 ((|#1| (-663 |#1|)) 46 T ELT)) (-2582 ((|#1| |#1| (-560)) 24 T ELT)) (-2632 (((-1201 |#1|) |#1| (-948)) 20 T ELT)))
+(((-1222 |#1|) (-10 -7 (-15 -4268 (|#1| (-663 |#1|))) (-15 -2632 ((-1201 |#1|) |#1| (-948))) (-15 -2582 (|#1| |#1| (-560)))) (-376)) (T -1222))
+((-2582 (*1 *2 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-1222 *2)) (-4 *2 (-376)))) (-2632 (*1 *2 *3 *4) (-12 (-5 *4 (-948)) (-5 *2 (-1201 *3)) (-5 *1 (-1222 *3)) (-4 *3 (-376)))) (-4268 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-5 *1 (-1222 *2)) (-4 *2 (-376)))))
+(-10 -7 (-15 -4268 (|#1| (-663 |#1|))) (-15 -2632 ((-1201 |#1|) |#1| (-948))) (-15 -2582 (|#1| |#1| (-560))))
+((-4236 (($) 10 T ELT) (($ (-663 (-2 (|:| -1438 |#2|) (|:| -3067 |#3|)))) 14 T ELT)) (-2091 (($ (-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) $) 67 T ELT) (($ (-1 (-114) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) $) NIL T ELT) (((-3 |#3| "failed") |#2| $) NIL T ELT)) (-3737 (((-663 (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) $) 39 T ELT) (((-663 |#3|) $) 41 T ELT)) (-3324 (($ (-1 (-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-2260 (($ (-1 (-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-1878 (((-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) $) 60 T ELT)) (-3888 (($ (-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) $) 16 T ELT)) (-3372 (((-663 |#2|) $) 19 T ELT)) (-3439 (((-114) |#2| $) 65 T ELT)) (-2708 (((-3 (-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) "failed") (-1 (-114) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) $) 64 T ELT)) (-2796 (((-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) $) 69 T ELT)) (-2086 (((-114) (-1 (-114) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) $) NIL T ELT) (((-114) (-1 (-114) |#3|) $) 73 T ELT)) (-1383 (((-663 |#3|) $) 43 T ELT)) (-1507 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-3384 (((-793) (-1 (-114) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) $) NIL T ELT) (((-793) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) $) NIL T ELT) (((-793) |#3| $) NIL T ELT) (((-793) (-1 (-114) |#3|) $) 79 T ELT)) (-3913 (((-887) $) 27 T ELT)) (-2149 (((-114) (-1 (-114) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) $) NIL T ELT) (((-114) (-1 (-114) |#3|) $) 71 T ELT)) (-2340 (((-114) $ $) 51 T ELT)))
+(((-1223 |#1| |#2| |#3|) (-10 -8 (-15 -2340 ((-114) |#1| |#1|)) (-15 -3913 ((-887) |#1|)) (-15 -2260 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4236 (|#1| (-663 (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))))) (-15 -4236 (|#1|)) (-15 -2260 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3324 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2149 ((-114) (-1 (-114) |#3|) |#1|)) (-15 -2086 ((-114) (-1 (-114) |#3|) |#1|)) (-15 -3384 ((-793) (-1 (-114) |#3|) |#1|)) (-15 -3737 ((-663 |#3|) |#1|)) (-15 -3384 ((-793) |#3| |#1|)) (-15 -1507 (|#3| |#1| |#2| |#3|)) (-15 -1507 (|#3| |#1| |#2|)) (-15 -1383 ((-663 |#3|) |#1|)) (-15 -3439 ((-114) |#2| |#1|)) (-15 -3372 ((-663 |#2|) |#1|)) (-15 -2091 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2091 (|#1| (-1 (-114) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) |#1|)) (-15 -2091 (|#1| (-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) |#1|)) (-15 -2708 ((-3 (-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) "failed") (-1 (-114) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) |#1|)) (-15 -1878 ((-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) |#1|)) (-15 -3888 (|#1| (-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) |#1|)) (-15 -2796 ((-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) |#1|)) (-15 -3384 ((-793) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) |#1|)) (-15 -3737 ((-663 (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) |#1|)) (-15 -3384 ((-793) (-1 (-114) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) |#1|)) (-15 -2086 ((-114) (-1 (-114) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) |#1|)) (-15 -2149 ((-114) (-1 (-114) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) |#1|)) (-15 -3324 (|#1| (-1 (-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) |#1|)) (-15 -2260 (|#1| (-1 (-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) |#1|))) (-1224 |#2| |#3|) (-1132) (-1132)) (T -1223))
+NIL
+(-10 -8 (-15 -2340 ((-114) |#1| |#1|)) (-15 -3913 ((-887) |#1|)) (-15 -2260 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4236 (|#1| (-663 (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))))) (-15 -4236 (|#1|)) (-15 -2260 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3324 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2149 ((-114) (-1 (-114) |#3|) |#1|)) (-15 -2086 ((-114) (-1 (-114) |#3|) |#1|)) (-15 -3384 ((-793) (-1 (-114) |#3|) |#1|)) (-15 -3737 ((-663 |#3|) |#1|)) (-15 -3384 ((-793) |#3| |#1|)) (-15 -1507 (|#3| |#1| |#2| |#3|)) (-15 -1507 (|#3| |#1| |#2|)) (-15 -1383 ((-663 |#3|) |#1|)) (-15 -3439 ((-114) |#2| |#1|)) (-15 -3372 ((-663 |#2|) |#1|)) (-15 -2091 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2091 (|#1| (-1 (-114) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) |#1|)) (-15 -2091 (|#1| (-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) |#1|)) (-15 -2708 ((-3 (-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) "failed") (-1 (-114) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) |#1|)) (-15 -1878 ((-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) |#1|)) (-15 -3888 (|#1| (-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) |#1|)) (-15 -2796 ((-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) |#1|)) (-15 -3384 ((-793) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) |#1|)) (-15 -3737 ((-663 (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) |#1|)) (-15 -3384 ((-793) (-1 (-114) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) |#1|)) (-15 -2086 ((-114) (-1 (-114) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) |#1|)) (-15 -2149 ((-114) (-1 (-114) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) |#1|)) (-15 -3324 (|#1| (-1 (-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) |#1|)) (-15 -2260 (|#1| (-1 (-2 (|:| -1438 |#2|) (|:| -3067 |#3|)) (-2 (|:| -1438 |#2|) (|:| -3067 |#3|))) |#1|)))
+((-2243 (((-114) $ $) 20 (-2196 (|has| |#2| (-102)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102))) ELT)) (-4236 (($) 73 T ELT) (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) 72 T ELT)) (-2033 (((-1303) $ |#1| |#1|) 100 (|has| $ (-6 -4509)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-4083 ((|#2| $ |#1| |#2|) 74 T ELT)) (-1864 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 46 (|has| $ (-6 -4508)) ELT)) (-3923 (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 56 (|has| $ (-6 -4508)) ELT)) (-3799 (((-3 |#2| "failed") |#1| $) 62 T ELT)) (-3525 (($) 7 T CONST)) (-3658 (($ $) 59 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT)) (-2091 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 48 (|has| $ (-6 -4508)) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 47 (|has| $ (-6 -4508)) ELT) (((-3 |#2| "failed") |#1| $) 63 T ELT)) (-3033 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 58 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 55 (|has| $ (-6 -4508)) ELT)) (-1778 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 57 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 54 (|has| $ (-6 -4508)) ELT) (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 53 (|has| $ (-6 -4508)) ELT)) (-3338 ((|#2| $ |#1| |#2|) 88 (|has| $ (-6 -4509)) ELT)) (-3274 ((|#2| $ |#1|) 89 T ELT)) (-3737 (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 31 (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) 80 (|has| $ (-6 -4508)) ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-2483 ((|#1| $) 97 (|has| |#1| (-871)) ELT)) (-3243 (((-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 30 (|has| $ (-6 -4508)) ELT) (((-663 |#2|) $) 81 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 28 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (((-114) |#2| $) 83 (-12 (|has| |#2| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4263 ((|#1| $) 96 (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 35 (|has| $ (-6 -4509)) ELT) (($ (-1 |#2| |#2|) $) 76 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 36 T ELT) (($ (-1 |#2| |#2|) $) 75 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 71 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-3358 (((-1189) $) 23 (-2196 (|has| |#2| (-1132)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT)) (-4325 (((-663 |#1|) $) 64 T ELT)) (-4124 (((-114) |#1| $) 65 T ELT)) (-1878 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 40 T ELT)) (-3888 (($ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 41 T ELT)) (-3372 (((-663 |#1|) $) 94 T ELT)) (-3439 (((-114) |#1| $) 93 T ELT)) (-3376 (((-1151) $) 22 (-2196 (|has| |#2| (-1132)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT)) (-4334 ((|#2| $) 98 (|has| |#1| (-871)) ELT)) (-2708 (((-3 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) "failed") (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 52 T ELT)) (-2740 (($ $ |#2|) 99 (|has| $ (-6 -4509)) ELT)) (-2796 (((-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 42 T ELT)) (-2086 (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 33 (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) 78 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))))) 27 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-305 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) 26 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) 25 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) 24 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) 87 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ |#2| |#2|) 86 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-305 |#2|)) 85 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT) (($ $ (-663 (-305 |#2|))) 84 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-4019 (((-114) |#2| $) 95 (-12 (|has| $ (-6 -4508)) (|has| |#2| (-1132))) ELT)) (-1383 (((-663 |#2|) $) 92 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1507 ((|#2| $ |#1|) 91 T ELT) ((|#2| $ |#1| |#2|) 90 T ELT)) (-4468 (($) 50 T ELT) (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) 49 T ELT)) (-3384 (((-793) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) $) 29 (-12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) |#2| $) 82 (-12 (|has| |#2| (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) |#2|) $) 79 (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) 60 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-633 (-549))) ELT)) (-3924 (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) 51 T ELT)) (-3913 (((-887) $) 18 (-2196 (|has| |#2| (-632 (-887))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-632 (-887)))) ELT)) (-3925 (((-114) $ $) 21 (-2196 (|has| |#2| (-102)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102))) ELT)) (-3184 (($ (-663 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) 43 T ELT)) (-2149 (((-114) (-1 (-114) (-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) $) 34 (|has| $ (-6 -4508)) ELT) (((-114) (-1 (-114) |#2|) $) 77 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (-2196 (|has| |#2| (-102)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102))) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-1224 |#1| |#2|) (-142) (-1132) (-1132)) (T -1224))
-((-1773 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132)))) (-4083 (*1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))) (-4083 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| -2968 *3) (|:| -2460 *4)))) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *1 (-1224 *3 *4)))) (-3957 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))))
-(-13 (-629 |t#1| |t#2|) (-618 |t#1| |t#2|) (-10 -8 (-15 -1773 (|t#2| $ |t#1| |t#2|)) (-15 -4083 ($)) (-15 -4083 ($ (-663 (-2 (|:| -2968 |t#1|) (|:| -2460 |t#2|))))) (-15 -3957 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-34) . T) ((-107 #0=(-2 (|:| -2968 |#1|) (|:| -2460 |#2|))) . T) ((-102) -2304 (|has| |#2| (-1132)) (|has| |#2| (-102)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-102))) ((-632 (-887)) -2304 (|has| |#2| (-1132)) (|has| |#2| (-632 (-887))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-632 (-887)))) ((-153 #0#) . T) ((-633 (-549)) |has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-633 (-549))) ((-233 #0#) . T) ((-242 #0#) . T) ((-298 |#1| |#2|) . T) ((-300 |#1| |#2|) . T) ((-321 #0#) -12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((-503 #0#) . T) ((-503 |#2|) . T) ((-618 |#1| |#2|) . T) ((-528 #0# #0#) -12 (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-321 (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)))) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ((-528 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((-629 |#1| |#2|) . T) ((-1132) -2304 (|has| |#2| (-1132)) (|has| (-2 (|:| -2968 |#1|) (|:| -2460 |#2|)) (-1132))) ((-1247) . T))
-((-1973 (((-114)) 29 T ELT)) (-1843 (((-1303) (-1189)) 31 T ELT)) (-4421 (((-114)) 41 T ELT)) (-1911 (((-1303)) 39 T ELT)) (-3659 (((-1303) (-1189) (-1189)) 30 T ELT)) (-2472 (((-114)) 42 T ELT)) (-3629 (((-1303) |#1| |#2|) 53 T ELT)) (-2551 (((-1303)) 26 T ELT)) (-1574 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-1384 (((-1303)) 40 T ELT)))
-(((-1225 |#1| |#2|) (-10 -7 (-15 -2551 ((-1303))) (-15 -3659 ((-1303) (-1189) (-1189))) (-15 -1843 ((-1303) (-1189))) (-15 -1911 ((-1303))) (-15 -1384 ((-1303))) (-15 -1973 ((-114))) (-15 -4421 ((-114))) (-15 -2472 ((-114))) (-15 -1574 ((-3 |#2| "failed") |#1|)) (-15 -3629 ((-1303) |#1| |#2|))) (-1132) (-1132)) (T -1225))
-((-3629 (*1 *2 *3 *4) (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))) (-1574 (*1 *2 *3) (|partial| -12 (-4 *2 (-1132)) (-5 *1 (-1225 *3 *2)) (-4 *3 (-1132)))) (-2472 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))) (-4421 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))) (-1973 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))) (-1384 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))) (-1911 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))) (-1843 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1225 *4 *5)) (-4 *4 (-1132)) (-4 *5 (-1132)))) (-3659 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1225 *4 *5)) (-4 *4 (-1132)) (-4 *5 (-1132)))) (-2551 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))))
-(-10 -7 (-15 -2551 ((-1303))) (-15 -3659 ((-1303) (-1189) (-1189))) (-15 -1843 ((-1303) (-1189))) (-15 -1911 ((-1303))) (-15 -1384 ((-1303))) (-15 -1973 ((-114))) (-15 -4421 ((-114))) (-15 -2472 ((-114))) (-15 -1574 ((-3 |#2| "failed") |#1|)) (-15 -3629 ((-1303) |#1| |#2|)))
-((-3831 (((-1189) (-1189)) 22 T ELT)) (-3220 (((-51) (-1189)) 25 T ELT)))
-(((-1226) (-10 -7 (-15 -3220 ((-51) (-1189))) (-15 -3831 ((-1189) (-1189))))) (T -1226))
-((-3831 (*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1226)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-51)) (-5 *1 (-1226)))))
-(-10 -7 (-15 -3220 ((-51) (-1189))) (-15 -3831 ((-1189) (-1189))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2437 (((-663 (-1189)) $) 39 T ELT)) (-4175 (((-663 (-1189)) $ (-663 (-1189))) 42 T ELT)) (-3368 (((-663 (-1189)) $ (-663 (-1189))) 41 T ELT)) (-3213 (((-663 (-1189)) $ (-663 (-1189))) 43 T ELT)) (-3215 (((-663 (-1189)) $) 38 T ELT)) (-4095 (($) 28 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4030 (((-663 (-1189)) $) 40 T ELT)) (-4358 (((-1303) $ (-560)) 35 T ELT) (((-1303) $) 36 T ELT)) (-1407 (($ (-887) (-560)) 33 T ELT) (($ (-887) (-560) (-887)) NIL T ELT)) (-1578 (((-887) $) 49 T ELT) (($ (-887)) 32 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-1227) (-13 (-1132) (-635 (-887)) (-10 -8 (-15 -1407 ($ (-887) (-560))) (-15 -1407 ($ (-887) (-560) (-887))) (-15 -4358 ((-1303) $ (-560))) (-15 -4358 ((-1303) $)) (-15 -4030 ((-663 (-1189)) $)) (-15 -2437 ((-663 (-1189)) $)) (-15 -4095 ($)) (-15 -3215 ((-663 (-1189)) $)) (-15 -3213 ((-663 (-1189)) $ (-663 (-1189)))) (-15 -4175 ((-663 (-1189)) $ (-663 (-1189)))) (-15 -3368 ((-663 (-1189)) $ (-663 (-1189))))))) (T -1227))
-((-1407 (*1 *1 *2 *3) (-12 (-5 *2 (-887)) (-5 *3 (-560)) (-5 *1 (-1227)))) (-1407 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-887)) (-5 *3 (-560)) (-5 *1 (-1227)))) (-4358 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-1227)))) (-4358 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1227)))) (-4030 (*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))) (-2437 (*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))) (-4095 (*1 *1) (-5 *1 (-1227))) (-3215 (*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))) (-3213 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))) (-4175 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))) (-3368 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))))
-(-13 (-1132) (-635 (-887)) (-10 -8 (-15 -1407 ($ (-887) (-560))) (-15 -1407 ($ (-887) (-560) (-887))) (-15 -4358 ((-1303) $ (-560))) (-15 -4358 ((-1303) $)) (-15 -4030 ((-663 (-1189)) $)) (-15 -2437 ((-663 (-1189)) $)) (-15 -4095 ($)) (-15 -3215 ((-663 (-1189)) $)) (-15 -3213 ((-663 (-1189)) $ (-663 (-1189)))) (-15 -4175 ((-663 (-1189)) $ (-663 (-1189)))) (-15 -3368 ((-663 (-1189)) $ (-663 (-1189))))))
-((-1578 (((-1227) |#1|) 11 T ELT)))
-(((-1228 |#1|) (-10 -7 (-15 -1578 ((-1227) |#1|))) (-1132)) (T -1228))
-((-1578 (*1 *2 *3) (-12 (-5 *2 (-1227)) (-5 *1 (-1228 *3)) (-4 *3 (-1132)))))
-(-10 -7 (-15 -1578 ((-1227) |#1|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2669 (((-1189) $ (-1189)) 17 T ELT) (((-1189) $) 16 T ELT)) (-2746 (((-1189) $ (-1189)) 15 T ELT)) (-2177 (($ $ (-1189)) NIL T ELT)) (-4376 (((-3 (-1189) "failed") $) 11 T ELT)) (-2054 (((-1189) $) 8 T ELT)) (-2226 (((-3 (-1189) "failed") $) 12 T ELT)) (-3944 (((-1189) $) 9 T ELT)) (-2109 (($ (-402)) NIL T ELT) (($ (-402) (-1189)) NIL T ELT)) (-3614 (((-402) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2348 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2859 (((-114) $) 21 T ELT)) (-1578 (((-887) $) NIL T ELT)) (-4474 (($ $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-1229) (-13 (-378 (-402) (-1189)) (-10 -8 (-15 -2669 ((-1189) $ (-1189))) (-15 -2669 ((-1189) $)) (-15 -2054 ((-1189) $)) (-15 -4376 ((-3 (-1189) "failed") $)) (-15 -2226 ((-3 (-1189) "failed") $)) (-15 -2859 ((-114) $))))) (T -1229))
-((-2669 (*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1229)))) (-2669 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1229)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1229)))) (-4376 (*1 *2 *1) (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-1229)))) (-2226 (*1 *2 *1) (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-1229)))) (-2859 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1229)))))
-(-13 (-378 (-402) (-1189)) (-10 -8 (-15 -2669 ((-1189) $ (-1189))) (-15 -2669 ((-1189) $)) (-15 -2054 ((-1189) $)) (-15 -4376 ((-3 (-1189) "failed") $)) (-15 -2226 ((-3 (-1189) "failed") $)) (-15 -2859 ((-114) $))))
-((-2138 (((-3 (-560) "failed") |#1|) 19 T ELT)) (-2009 (((-3 (-560) "failed") |#1|) 14 T ELT)) (-3935 (((-560) (-1189)) 33 T ELT)))
-(((-1230 |#1|) (-10 -7 (-15 -2138 ((-3 (-560) "failed") |#1|)) (-15 -2009 ((-3 (-560) "failed") |#1|)) (-15 -3935 ((-560) (-1189)))) (-1080)) (T -1230))
-((-3935 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-560)) (-5 *1 (-1230 *4)) (-4 *4 (-1080)))) (-2009 (*1 *2 *3) (|partial| -12 (-5 *2 (-560)) (-5 *1 (-1230 *3)) (-4 *3 (-1080)))) (-2138 (*1 *2 *3) (|partial| -12 (-5 *2 (-560)) (-5 *1 (-1230 *3)) (-4 *3 (-1080)))))
-(-10 -7 (-15 -2138 ((-3 (-560) "failed") |#1|)) (-15 -2009 ((-3 (-560) "failed") |#1|)) (-15 -3935 ((-560) (-1189))))
-((-3871 (((-1164 (-229))) 9 T ELT)))
-(((-1231) (-10 -7 (-15 -3871 ((-1164 (-229)))))) (T -1231))
-((-3871 (*1 *2) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-1231)))))
-(-10 -7 (-15 -3871 ((-1164 (-229)))))
-((-3796 (($) 12 T ELT)) (-4411 (($ $) 36 T ELT)) (-4387 (($ $) 34 T ELT)) (-3499 (($ $) 26 T ELT)) (-4438 (($ $) 18 T ELT)) (-3837 (($ $) 16 T ELT)) (-4423 (($ $) 20 T ELT)) (-4275 (($ $) 31 T ELT)) (-4398 (($ $) 35 T ELT)) (-4252 (($ $) 30 T ELT)))
-(((-1232 |#1|) (-10 -8 (-15 -3796 (|#1|)) (-15 -4411 (|#1| |#1|)) (-15 -4387 (|#1| |#1|)) (-15 -4438 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -4423 (|#1| |#1|)) (-15 -4398 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -4275 (|#1| |#1|)) (-15 -4252 (|#1| |#1|))) (-1233)) (T -1232))
-NIL
-(-10 -8 (-15 -3796 (|#1|)) (-15 -4411 (|#1| |#1|)) (-15 -4387 (|#1| |#1|)) (-15 -4438 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -4423 (|#1| |#1|)) (-15 -4398 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -4275 (|#1| |#1|)) (-15 -4252 (|#1| |#1|)))
-((-4337 (($ $) 26 T ELT)) (-3455 (($ $) 11 T ELT)) (-4313 (($ $) 27 T ELT)) (-3430 (($ $) 10 T ELT)) (-4363 (($ $) 28 T ELT)) (-3477 (($ $) 9 T ELT)) (-3796 (($) 16 T ELT)) (-2192 (($ $) 19 T ELT)) (-3251 (($ $) 18 T ELT)) (-4373 (($ $) 29 T ELT)) (-3488 (($ $) 8 T ELT)) (-4352 (($ $) 30 T ELT)) (-3466 (($ $) 7 T ELT)) (-4325 (($ $) 31 T ELT)) (-3443 (($ $) 6 T ELT)) (-4411 (($ $) 20 T ELT)) (-4263 (($ $) 32 T ELT)) (-4387 (($ $) 21 T ELT)) (-3499 (($ $) 33 T ELT)) (-4438 (($ $) 22 T ELT)) (-4287 (($ $) 34 T ELT)) (-3837 (($ $) 23 T ELT)) (-4302 (($ $) 35 T ELT)) (-4423 (($ $) 24 T ELT)) (-4275 (($ $) 36 T ELT)) (-4398 (($ $) 25 T ELT)) (-4252 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT)))
+((-4083 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132)))) (-4236 (*1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))) (-4236 (*1 *1 *2) (-12 (-5 *2 (-663 (-2 (|:| -1438 *3) (|:| -3067 *4)))) (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *1 (-1224 *3 *4)))) (-2260 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))))
+(-13 (-629 |t#1| |t#2|) (-618 |t#1| |t#2|) (-10 -8 (-15 -4083 (|t#2| $ |t#1| |t#2|)) (-15 -4236 ($)) (-15 -4236 ($ (-663 (-2 (|:| -1438 |t#1|) (|:| -3067 |t#2|))))) (-15 -2260 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-34) . T) ((-107 #0=(-2 (|:| -1438 |#1|) (|:| -3067 |#2|))) . T) ((-102) -2196 (|has| |#2| (-1132)) (|has| |#2| (-102)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-102))) ((-632 (-887)) -2196 (|has| |#2| (-1132)) (|has| |#2| (-632 (-887))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-632 (-887)))) ((-153 #0#) . T) ((-633 (-549)) |has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-633 (-549))) ((-233 #0#) . T) ((-242 #0#) . T) ((-298 |#1| |#2|) . T) ((-300 |#1| |#2|) . T) ((-321 #0#) -12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((-503 #0#) . T) ((-503 |#2|) . T) ((-618 |#1| |#2|) . T) ((-528 #0# #0#) -12 (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-321 (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)))) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ((-528 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1132))) ((-629 |#1| |#2|) . T) ((-1132) -2196 (|has| |#2| (-1132)) (|has| (-2 (|:| -1438 |#1|) (|:| -3067 |#2|)) (-1132))) ((-1247) . T))
+((-2723 (((-114)) 29 T ELT)) (-3992 (((-1303) (-1189)) 31 T ELT)) (-2635 (((-114)) 41 T ELT)) (-3396 (((-1303)) 39 T ELT)) (-2887 (((-1303) (-1189) (-1189)) 30 T ELT)) (-4023 (((-114)) 42 T ELT)) (-3888 (((-1303) |#1| |#2|) 53 T ELT)) (-3461 (((-1303)) 26 T ELT)) (-1854 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-2662 (((-1303)) 40 T ELT)))
+(((-1225 |#1| |#2|) (-10 -7 (-15 -3461 ((-1303))) (-15 -2887 ((-1303) (-1189) (-1189))) (-15 -3992 ((-1303) (-1189))) (-15 -3396 ((-1303))) (-15 -2662 ((-1303))) (-15 -2723 ((-114))) (-15 -2635 ((-114))) (-15 -4023 ((-114))) (-15 -1854 ((-3 |#2| "failed") |#1|)) (-15 -3888 ((-1303) |#1| |#2|))) (-1132) (-1132)) (T -1225))
+((-3888 (*1 *2 *3 *4) (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))) (-1854 (*1 *2 *3) (|partial| -12 (-4 *2 (-1132)) (-5 *1 (-1225 *3 *2)) (-4 *3 (-1132)))) (-4023 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))) (-2635 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))) (-2723 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))) (-2662 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))) (-3396 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))) (-3992 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1225 *4 *5)) (-4 *4 (-1132)) (-4 *5 (-1132)))) (-2887 (*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1225 *4 *5)) (-4 *4 (-1132)) (-4 *5 (-1132)))) (-3461 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132)))))
+(-10 -7 (-15 -3461 ((-1303))) (-15 -2887 ((-1303) (-1189) (-1189))) (-15 -3992 ((-1303) (-1189))) (-15 -3396 ((-1303))) (-15 -2662 ((-1303))) (-15 -2723 ((-114))) (-15 -2635 ((-114))) (-15 -4023 ((-114))) (-15 -1854 ((-3 |#2| "failed") |#1|)) (-15 -3888 ((-1303) |#1| |#2|)))
+((-1974 (((-1189) (-1189)) 22 T ELT)) (-4132 (((-51) (-1189)) 25 T ELT)))
+(((-1226) (-10 -7 (-15 -4132 ((-51) (-1189))) (-15 -1974 ((-1189) (-1189))))) (T -1226))
+((-1974 (*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1226)))) (-4132 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-51)) (-5 *1 (-1226)))))
+(-10 -7 (-15 -4132 ((-51) (-1189))) (-15 -1974 ((-1189) (-1189))))
+((-2243 (((-114) $ $) NIL T ELT)) (-1996 (((-663 (-1189)) $) 39 T ELT)) (-4224 (((-663 (-1189)) $ (-663 (-1189))) 42 T ELT)) (-3103 (((-663 (-1189)) $ (-663 (-1189))) 41 T ELT)) (-4048 (((-663 (-1189)) $ (-663 (-1189))) 43 T ELT)) (-4069 (((-663 (-1189)) $) 38 T ELT)) (-4246 (($) 28 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3299 (((-663 (-1189)) $) 40 T ELT)) (-3884 (((-1303) $ (-560)) 35 T ELT) (((-1303) $) 36 T ELT)) (-2400 (($ (-887) (-560)) 33 T ELT) (($ (-887) (-560) (-887)) NIL T ELT)) (-3913 (((-887) $) 49 T ELT) (($ (-887)) 32 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-1227) (-13 (-1132) (-635 (-887)) (-10 -8 (-15 -2400 ($ (-887) (-560))) (-15 -2400 ($ (-887) (-560) (-887))) (-15 -3884 ((-1303) $ (-560))) (-15 -3884 ((-1303) $)) (-15 -3299 ((-663 (-1189)) $)) (-15 -1996 ((-663 (-1189)) $)) (-15 -4246 ($)) (-15 -4069 ((-663 (-1189)) $)) (-15 -4048 ((-663 (-1189)) $ (-663 (-1189)))) (-15 -4224 ((-663 (-1189)) $ (-663 (-1189)))) (-15 -3103 ((-663 (-1189)) $ (-663 (-1189))))))) (T -1227))
+((-2400 (*1 *1 *2 *3) (-12 (-5 *2 (-887)) (-5 *3 (-560)) (-5 *1 (-1227)))) (-2400 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-887)) (-5 *3 (-560)) (-5 *1 (-1227)))) (-3884 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-1227)))) (-3884 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1227)))) (-3299 (*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))) (-4246 (*1 *1) (-5 *1 (-1227))) (-4069 (*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))) (-4048 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))) (-4224 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))) (-3103 (*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))))
+(-13 (-1132) (-635 (-887)) (-10 -8 (-15 -2400 ($ (-887) (-560))) (-15 -2400 ($ (-887) (-560) (-887))) (-15 -3884 ((-1303) $ (-560))) (-15 -3884 ((-1303) $)) (-15 -3299 ((-663 (-1189)) $)) (-15 -1996 ((-663 (-1189)) $)) (-15 -4246 ($)) (-15 -4069 ((-663 (-1189)) $)) (-15 -4048 ((-663 (-1189)) $ (-663 (-1189)))) (-15 -4224 ((-663 (-1189)) $ (-663 (-1189)))) (-15 -3103 ((-663 (-1189)) $ (-663 (-1189))))))
+((-3913 (((-1227) |#1|) 11 T ELT)))
+(((-1228 |#1|) (-10 -7 (-15 -3913 ((-1227) |#1|))) (-1132)) (T -1228))
+((-3913 (*1 *2 *3) (-12 (-5 *2 (-1227)) (-5 *1 (-1228 *3)) (-4 *3 (-1132)))))
+(-10 -7 (-15 -3913 ((-1227) |#1|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2140 (((-1189) $ (-1189)) 17 T ELT) (((-1189) $) 16 T ELT)) (-1687 (((-1189) $ (-1189)) 15 T ELT)) (-4216 (($ $ (-1189)) NIL T ELT)) (-2242 (((-3 (-1189) "failed") $) 11 T ELT)) (-2275 (((-1189) $) 8 T ELT)) (-3414 (((-3 (-1189) "failed") $) 12 T ELT)) (-3688 (((-1189) $) 9 T ELT)) (-2888 (($ (-402)) NIL T ELT) (($ (-402) (-1189)) NIL T ELT)) (-4389 (((-402) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2108 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3527 (((-114) $) 21 T ELT)) (-3913 (((-887) $) NIL T ELT)) (-1835 (($ $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-1229) (-13 (-378 (-402) (-1189)) (-10 -8 (-15 -2140 ((-1189) $ (-1189))) (-15 -2140 ((-1189) $)) (-15 -2275 ((-1189) $)) (-15 -2242 ((-3 (-1189) "failed") $)) (-15 -3414 ((-3 (-1189) "failed") $)) (-15 -3527 ((-114) $))))) (T -1229))
+((-2140 (*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1229)))) (-2140 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1229)))) (-2275 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1229)))) (-2242 (*1 *2 *1) (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-1229)))) (-3414 (*1 *2 *1) (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-1229)))) (-3527 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1229)))))
+(-13 (-378 (-402) (-1189)) (-10 -8 (-15 -2140 ((-1189) $ (-1189))) (-15 -2140 ((-1189) $)) (-15 -2275 ((-1189) $)) (-15 -2242 ((-3 (-1189) "failed") $)) (-15 -3414 ((-3 (-1189) "failed") $)) (-15 -3527 ((-114) $))))
+((-1869 (((-3 (-560) "failed") |#1|) 19 T ELT)) (-3084 (((-3 (-560) "failed") |#1|) 14 T ELT)) (-3575 (((-560) (-1189)) 33 T ELT)))
+(((-1230 |#1|) (-10 -7 (-15 -1869 ((-3 (-560) "failed") |#1|)) (-15 -3084 ((-3 (-560) "failed") |#1|)) (-15 -3575 ((-560) (-1189)))) (-1080)) (T -1230))
+((-3575 (*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-560)) (-5 *1 (-1230 *4)) (-4 *4 (-1080)))) (-3084 (*1 *2 *3) (|partial| -12 (-5 *2 (-560)) (-5 *1 (-1230 *3)) (-4 *3 (-1080)))) (-1869 (*1 *2 *3) (|partial| -12 (-5 *2 (-560)) (-5 *1 (-1230 *3)) (-4 *3 (-1080)))))
+(-10 -7 (-15 -1869 ((-3 (-560) "failed") |#1|)) (-15 -3084 ((-3 (-560) "failed") |#1|)) (-15 -3575 ((-560) (-1189))))
+((-4240 (((-1164 (-229))) 9 T ELT)))
+(((-1231) (-10 -7 (-15 -4240 ((-1164 (-229)))))) (T -1231))
+((-4240 (*1 *2) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-1231)))))
+(-10 -7 (-15 -4240 ((-1164 (-229)))))
+((-2503 (($) 12 T ELT)) (-2042 (($ $) 36 T ELT)) (-2022 (($ $) 34 T ELT)) (-1882 (($ $) 26 T ELT)) (-2059 (($ $) 18 T ELT)) (-3392 (($ $) 16 T ELT)) (-2050 (($ $) 20 T ELT)) (-1920 (($ $) 31 T ELT)) (-2032 (($ $) 35 T ELT)) (-1895 (($ $) 30 T ELT)))
+(((-1232 |#1|) (-10 -8 (-15 -2503 (|#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2022 (|#1| |#1|)) (-15 -2059 (|#1| |#1|)) (-15 -3392 (|#1| |#1|)) (-15 -2050 (|#1| |#1|)) (-15 -2032 (|#1| |#1|)) (-15 -1882 (|#1| |#1|)) (-15 -1920 (|#1| |#1|)) (-15 -1895 (|#1| |#1|))) (-1233)) (T -1232))
+NIL
+(-10 -8 (-15 -2503 (|#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2022 (|#1| |#1|)) (-15 -2059 (|#1| |#1|)) (-15 -3392 (|#1| |#1|)) (-15 -2050 (|#1| |#1|)) (-15 -2032 (|#1| |#1|)) (-15 -1882 (|#1| |#1|)) (-15 -1920 (|#1| |#1|)) (-15 -1895 (|#1| |#1|)))
+((-1982 (($ $) 26 T ELT)) (-1832 (($ $) 11 T ELT)) (-1958 (($ $) 27 T ELT)) (-1806 (($ $) 10 T ELT)) (-2003 (($ $) 28 T ELT)) (-1856 (($ $) 9 T ELT)) (-2503 (($) 16 T ELT)) (-2831 (($ $) 19 T ELT)) (-2515 (($ $) 18 T ELT)) (-2013 (($ $) 29 T ELT)) (-1870 (($ $) 8 T ELT)) (-1992 (($ $) 30 T ELT)) (-1844 (($ $) 7 T ELT)) (-1972 (($ $) 31 T ELT)) (-1820 (($ $) 6 T ELT)) (-2042 (($ $) 20 T ELT)) (-1907 (($ $) 32 T ELT)) (-2022 (($ $) 21 T ELT)) (-1882 (($ $) 33 T ELT)) (-2059 (($ $) 22 T ELT)) (-1932 (($ $) 34 T ELT)) (-3392 (($ $) 23 T ELT)) (-1945 (($ $) 35 T ELT)) (-2050 (($ $) 24 T ELT)) (-1920 (($ $) 36 T ELT)) (-2032 (($ $) 25 T ELT)) (-1895 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT)))
(((-1233) (-142)) (T -1233))
-((-3796 (*1 *1) (-4 *1 (-1233))))
-(-13 (-1236) (-95) (-507) (-35) (-296) (-10 -8 (-15 -3796 ($))))
+((-2503 (*1 *1) (-4 *1 (-1233))))
+(-13 (-1236) (-95) (-507) (-35) (-296) (-10 -8 (-15 -2503 ($))))
(((-35) . T) ((-95) . T) ((-296) . T) ((-507) . T) ((-1236) . T))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3853 ((|#1| $) 19 T ELT)) (-2525 (($ |#1| (-663 $)) 28 T ELT) (($ (-663 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3363 (((-114) $ (-793)) 72 T ELT)) (-2869 ((|#1| $ |#1|) 14 (|has| $ (-6 -4509)) ELT)) (-1773 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2083 (($ $ (-663 $)) 13 (|has| $ (-6 -4509)) ELT)) (-2238 (($) NIL T CONST)) (-2181 (((-663 |#1|) $) 77 (|has| $ (-6 -4508)) ELT)) (-3092 (((-663 $) $) 64 T ELT)) (-3398 (((-114) $ $) 50 (|has| |#1| (-1132)) ELT)) (-4034 (((-114) $ (-793)) 62 T ELT)) (-2656 (((-663 |#1|) $) 78 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 76 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-1805 (((-114) $ (-793)) 60 T ELT)) (-3596 (((-663 |#1|) $) 55 T ELT)) (-2409 (((-114) $) 53 T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 74 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 107 T ELT)) (-1663 (((-114) $) 9 T ELT)) (-3986 (($) 10 T ELT)) (-3924 ((|#1| $ "value") NIL T ELT)) (-1750 (((-560) $ $) 48 T ELT)) (-3597 (((-663 $) $) 89 T ELT)) (-3749 (((-114) $ $) 110 T ELT)) (-4068 (((-663 $) $) 105 T ELT)) (-2781 (($ $) 106 T ELT)) (-1978 (((-114) $) 84 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 25 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 17 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1799 (($ $) 88 T ELT)) (-1578 (((-887) $) 91 (|has| |#1| (-632 (-887))) ELT)) (-3955 (((-663 $) $) 12 T ELT)) (-2997 (((-114) $ $) 39 (|has| |#1| (-1132)) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 73 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 37 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 58 (|has| $ (-6 -4508)) ELT)))
-(((-1234 |#1|) (-13 (-1041 |#1|) (-10 -8 (-6 -4508) (-6 -4509) (-15 -2525 ($ |#1| (-663 $))) (-15 -2525 ($ (-663 |#1|))) (-15 -2525 ($ |#1|)) (-15 -1978 ((-114) $)) (-15 -2781 ($ $)) (-15 -4068 ((-663 $) $)) (-15 -3749 ((-114) $ $)) (-15 -3597 ((-663 $) $)))) (-1132)) (T -1234))
-((-1978 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1234 *3)) (-4 *3 (-1132)))) (-2525 (*1 *1 *2 *3) (-12 (-5 *3 (-663 (-1234 *2))) (-5 *1 (-1234 *2)) (-4 *2 (-1132)))) (-2525 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-1234 *3)))) (-2525 (*1 *1 *2) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-1132)))) (-2781 (*1 *1 *1) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-1132)))) (-4068 (*1 *2 *1) (-12 (-5 *2 (-663 (-1234 *3))) (-5 *1 (-1234 *3)) (-4 *3 (-1132)))) (-3749 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1234 *3)) (-4 *3 (-1132)))) (-3597 (*1 *2 *1) (-12 (-5 *2 (-663 (-1234 *3))) (-5 *1 (-1234 *3)) (-4 *3 (-1132)))))
-(-13 (-1041 |#1|) (-10 -8 (-6 -4508) (-6 -4509) (-15 -2525 ($ |#1| (-663 $))) (-15 -2525 ($ (-663 |#1|))) (-15 -2525 ($ |#1|)) (-15 -1978 ((-114) $)) (-15 -2781 ($ $)) (-15 -4068 ((-663 $) $)) (-15 -3749 ((-114) $ $)) (-15 -3597 ((-663 $) $))))
-((-3455 (($ $) 15 T ELT)) (-3477 (($ $) 12 T ELT)) (-3488 (($ $) 10 T ELT)) (-3466 (($ $) 17 T ELT)))
-(((-1235 |#1|) (-10 -8 (-15 -3466 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3455 (|#1| |#1|))) (-1236)) (T -1235))
-NIL
-(-10 -8 (-15 -3466 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3455 (|#1| |#1|)))
-((-3455 (($ $) 11 T ELT)) (-3430 (($ $) 10 T ELT)) (-3477 (($ $) 9 T ELT)) (-3488 (($ $) 8 T ELT)) (-3466 (($ $) 7 T ELT)) (-3443 (($ $) 6 T ELT)))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1430 ((|#1| $) 19 T ELT)) (-4027 (($ |#1| (-663 $)) 28 T ELT) (($ (-663 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3045 (((-114) $ (-793)) 72 T ELT)) (-3654 ((|#1| $ |#1|) 14 (|has| $ (-6 -4509)) ELT)) (-4083 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2566 (($ $ (-663 $)) 13 (|has| $ (-6 -4509)) ELT)) (-3525 (($) NIL T CONST)) (-3737 (((-663 |#1|) $) 77 (|has| $ (-6 -4508)) ELT)) (-2104 (((-663 $) $) 64 T ELT)) (-2150 (((-114) $ $) 50 (|has| |#1| (-1132)) ELT)) (-3332 (((-114) $ (-793)) 62 T ELT)) (-3243 (((-663 |#1|) $) 78 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 76 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-1634 (((-114) $ (-793)) 60 T ELT)) (-2656 (((-663 |#1|) $) 55 T ELT)) (-1485 (((-114) $) 53 T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 74 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 107 T ELT)) (-2706 (((-114) $) 9 T ELT)) (-2832 (($) 10 T ELT)) (-1507 ((|#1| $ "value") NIL T ELT)) (-2374 (((-560) $ $) 48 T ELT)) (-3555 (((-663 $) $) 89 T ELT)) (-2481 (((-114) $ $) 110 T ELT)) (-2432 (((-663 $) $) 105 T ELT)) (-2034 (($ $) 106 T ELT)) (-2752 (((-114) $) 84 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 25 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 17 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4107 (($ $) 88 T ELT)) (-3913 (((-887) $) 91 (|has| |#1| (-632 (-887))) ELT)) (-3809 (((-663 $) $) 12 T ELT)) (-3606 (((-114) $ $) 39 (|has| |#1| (-1132)) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 73 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 37 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 58 (|has| $ (-6 -4508)) ELT)))
+(((-1234 |#1|) (-13 (-1041 |#1|) (-10 -8 (-6 -4508) (-6 -4509) (-15 -4027 ($ |#1| (-663 $))) (-15 -4027 ($ (-663 |#1|))) (-15 -4027 ($ |#1|)) (-15 -2752 ((-114) $)) (-15 -2034 ($ $)) (-15 -2432 ((-663 $) $)) (-15 -2481 ((-114) $ $)) (-15 -3555 ((-663 $) $)))) (-1132)) (T -1234))
+((-2752 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1234 *3)) (-4 *3 (-1132)))) (-4027 (*1 *1 *2 *3) (-12 (-5 *3 (-663 (-1234 *2))) (-5 *1 (-1234 *2)) (-4 *2 (-1132)))) (-4027 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-1234 *3)))) (-4027 (*1 *1 *2) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-1132)))) (-2034 (*1 *1 *1) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-1132)))) (-2432 (*1 *2 *1) (-12 (-5 *2 (-663 (-1234 *3))) (-5 *1 (-1234 *3)) (-4 *3 (-1132)))) (-2481 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1234 *3)) (-4 *3 (-1132)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-663 (-1234 *3))) (-5 *1 (-1234 *3)) (-4 *3 (-1132)))))
+(-13 (-1041 |#1|) (-10 -8 (-6 -4508) (-6 -4509) (-15 -4027 ($ |#1| (-663 $))) (-15 -4027 ($ (-663 |#1|))) (-15 -4027 ($ |#1|)) (-15 -2752 ((-114) $)) (-15 -2034 ($ $)) (-15 -2432 ((-663 $) $)) (-15 -2481 ((-114) $ $)) (-15 -3555 ((-663 $) $))))
+((-1832 (($ $) 15 T ELT)) (-1856 (($ $) 12 T ELT)) (-1870 (($ $) 10 T ELT)) (-1844 (($ $) 17 T ELT)))
+(((-1235 |#1|) (-10 -8 (-15 -1844 (|#1| |#1|)) (-15 -1870 (|#1| |#1|)) (-15 -1856 (|#1| |#1|)) (-15 -1832 (|#1| |#1|))) (-1236)) (T -1235))
+NIL
+(-10 -8 (-15 -1844 (|#1| |#1|)) (-15 -1870 (|#1| |#1|)) (-15 -1856 (|#1| |#1|)) (-15 -1832 (|#1| |#1|)))
+((-1832 (($ $) 11 T ELT)) (-1806 (($ $) 10 T ELT)) (-1856 (($ $) 9 T ELT)) (-1870 (($ $) 8 T ELT)) (-1844 (($ $) 7 T ELT)) (-1820 (($ $) 6 T ELT)))
(((-1236) (-142)) (T -1236))
-((-3455 (*1 *1 *1) (-4 *1 (-1236))) (-3430 (*1 *1 *1) (-4 *1 (-1236))) (-3477 (*1 *1 *1) (-4 *1 (-1236))) (-3488 (*1 *1 *1) (-4 *1 (-1236))) (-3466 (*1 *1 *1) (-4 *1 (-1236))) (-3443 (*1 *1 *1) (-4 *1 (-1236))))
-(-13 (-10 -8 (-15 -3443 ($ $)) (-15 -3466 ($ $)) (-15 -3488 ($ $)) (-15 -3477 ($ $)) (-15 -3430 ($ $)) (-15 -3455 ($ $))))
-((-3360 ((|#2| |#2|) 98 T ELT)) (-2873 (((-114) |#2|) 29 T ELT)) (-4482 ((|#2| |#2|) 33 T ELT)) (-1335 ((|#2| |#2|) 35 T ELT)) (-2705 ((|#2| |#2| (-1207)) 92 T ELT) ((|#2| |#2|) 93 T ELT)) (-2628 (((-171 |#2|) |#2|) 31 T ELT)) (-1598 ((|#2| |#2| (-1207)) 94 T ELT) ((|#2| |#2|) 95 T ELT)))
-(((-1237 |#1| |#2|) (-10 -7 (-15 -2705 (|#2| |#2|)) (-15 -2705 (|#2| |#2| (-1207))) (-15 -1598 (|#2| |#2|)) (-15 -1598 (|#2| |#2| (-1207))) (-15 -3360 (|#2| |#2|)) (-15 -4482 (|#2| |#2|)) (-15 -1335 (|#2| |#2|)) (-15 -2873 ((-114) |#2|)) (-15 -2628 ((-171 |#2|) |#2|))) (-13 (-466) (-1069 (-560)) (-660 (-560))) (-13 (-27) (-1233) (-435 |#1|))) (T -1237))
-((-2628 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-171 *3)) (-5 *1 (-1237 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4))))) (-2873 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-114)) (-5 *1 (-1237 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4))))) (-1335 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3))))) (-4482 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3))))) (-3360 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3))))) (-1598 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-1237 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))))) (-1598 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3))))) (-2705 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-1237 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))))) (-2705 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3))))))
-(-10 -7 (-15 -2705 (|#2| |#2|)) (-15 -2705 (|#2| |#2| (-1207))) (-15 -1598 (|#2| |#2|)) (-15 -1598 (|#2| |#2| (-1207))) (-15 -3360 (|#2| |#2|)) (-15 -4482 (|#2| |#2|)) (-15 -1335 (|#2| |#2|)) (-15 -2873 ((-114) |#2|)) (-15 -2628 ((-171 |#2|) |#2|)))
-((-3785 ((|#4| |#4| |#1|) 31 T ELT)) (-2117 ((|#4| |#4| |#1|) 32 T ELT)))
-(((-1238 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3785 (|#4| |#4| |#1|)) (-15 -2117 (|#4| |#4| |#1|))) (-571) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|)) (T -1238))
-((-2117 (*1 *2 *2 *3) (-12 (-4 *3 (-571)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1238 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-3785 (*1 *2 *2 *3) (-12 (-4 *3 (-571)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1238 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))))
-(-10 -7 (-15 -3785 (|#4| |#4| |#1|)) (-15 -2117 (|#4| |#4| |#1|)))
-((-1609 ((|#2| |#2|) 148 T ELT)) (-2961 ((|#2| |#2|) 145 T ELT)) (-1946 ((|#2| |#2|) 136 T ELT)) (-4049 ((|#2| |#2|) 133 T ELT)) (-3465 ((|#2| |#2|) 141 T ELT)) (-3292 ((|#2| |#2|) 129 T ELT)) (-4318 ((|#2| |#2|) 44 T ELT)) (-3545 ((|#2| |#2|) 105 T ELT)) (-3922 ((|#2| |#2|) 88 T ELT)) (-1719 ((|#2| |#2|) 143 T ELT)) (-4245 ((|#2| |#2|) 131 T ELT)) (-2293 ((|#2| |#2|) 153 T ELT)) (-1529 ((|#2| |#2|) 151 T ELT)) (-4222 ((|#2| |#2|) 152 T ELT)) (-3074 ((|#2| |#2|) 150 T ELT)) (-1348 ((|#2| |#2|) 163 T ELT)) (-4190 ((|#2| |#2|) 30 (-12 (|has| |#2| (-633 (-915 |#1|))) (|has| |#2| (-911 |#1|)) (|has| |#1| (-633 (-915 |#1|))) (|has| |#1| (-911 |#1|))) ELT)) (-3343 ((|#2| |#2|) 89 T ELT)) (-1695 ((|#2| |#2|) 154 T ELT)) (-1945 ((|#2| |#2|) 155 T ELT)) (-1853 ((|#2| |#2|) 142 T ELT)) (-3581 ((|#2| |#2|) 130 T ELT)) (-2808 ((|#2| |#2|) 149 T ELT)) (-3095 ((|#2| |#2|) 147 T ELT)) (-2990 ((|#2| |#2|) 137 T ELT)) (-1987 ((|#2| |#2|) 135 T ELT)) (-2763 ((|#2| |#2|) 139 T ELT)) (-2964 ((|#2| |#2|) 127 T ELT)))
-(((-1239 |#1| |#2|) (-10 -7 (-15 -1945 (|#2| |#2|)) (-15 -3922 (|#2| |#2|)) (-15 -1348 (|#2| |#2|)) (-15 -3545 (|#2| |#2|)) (-15 -4318 (|#2| |#2|)) (-15 -3343 (|#2| |#2|)) (-15 -1695 (|#2| |#2|)) (-15 -2964 (|#2| |#2|)) (-15 -2763 (|#2| |#2|)) (-15 -2990 (|#2| |#2|)) (-15 -2808 (|#2| |#2|)) (-15 -3581 (|#2| |#2|)) (-15 -1853 (|#2| |#2|)) (-15 -4245 (|#2| |#2|)) (-15 -1719 (|#2| |#2|)) (-15 -3292 (|#2| |#2|)) (-15 -3465 (|#2| |#2|)) (-15 -1946 (|#2| |#2|)) (-15 -1609 (|#2| |#2|)) (-15 -4049 (|#2| |#2|)) (-15 -2961 (|#2| |#2|)) (-15 -1987 (|#2| |#2|)) (-15 -3095 (|#2| |#2|)) (-15 -3074 (|#2| |#2|)) (-15 -1529 (|#2| |#2|)) (-15 -4222 (|#2| |#2|)) (-15 -2293 (|#2| |#2|)) (IF (|has| |#1| (-911 |#1|)) (IF (|has| |#1| (-633 (-915 |#1|))) (IF (|has| |#2| (-633 (-915 |#1|))) (IF (|has| |#2| (-911 |#1|)) (-15 -4190 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-466) (-13 (-435 |#1|) (-1233))) (T -1239))
-((-4190 (*1 *2 *2) (-12 (-4 *3 (-633 (-915 *3))) (-4 *3 (-911 *3)) (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-633 (-915 *3))) (-4 *2 (-911 *3)) (-4 *2 (-13 (-435 *3) (-1233))))) (-2293 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-4222 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-1529 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-3074 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-3095 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-1987 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-2961 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-4049 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-1609 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-1946 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-3465 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-3292 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-1719 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-4245 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-1853 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-3581 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-2808 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-2990 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-2763 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-2964 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-1695 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-3343 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-4318 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-3545 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-1348 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-3922 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-1945 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))))
-(-10 -7 (-15 -1945 (|#2| |#2|)) (-15 -3922 (|#2| |#2|)) (-15 -1348 (|#2| |#2|)) (-15 -3545 (|#2| |#2|)) (-15 -4318 (|#2| |#2|)) (-15 -3343 (|#2| |#2|)) (-15 -1695 (|#2| |#2|)) (-15 -2964 (|#2| |#2|)) (-15 -2763 (|#2| |#2|)) (-15 -2990 (|#2| |#2|)) (-15 -2808 (|#2| |#2|)) (-15 -3581 (|#2| |#2|)) (-15 -1853 (|#2| |#2|)) (-15 -4245 (|#2| |#2|)) (-15 -1719 (|#2| |#2|)) (-15 -3292 (|#2| |#2|)) (-15 -3465 (|#2| |#2|)) (-15 -1946 (|#2| |#2|)) (-15 -1609 (|#2| |#2|)) (-15 -4049 (|#2| |#2|)) (-15 -2961 (|#2| |#2|)) (-15 -1987 (|#2| |#2|)) (-15 -3095 (|#2| |#2|)) (-15 -3074 (|#2| |#2|)) (-15 -1529 (|#2| |#2|)) (-15 -4222 (|#2| |#2|)) (-15 -2293 (|#2| |#2|)) (IF (|has| |#1| (-911 |#1|)) (IF (|has| |#1| (-633 (-915 |#1|))) (IF (|has| |#2| (-633 (-915 |#1|))) (IF (|has| |#2| (-911 |#1|)) (-15 -4190 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1443 (((-663 (-1207)) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4337 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3455 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-4471 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4313 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3430 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4363 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2238 (($) NIL T CONST)) (-1624 (($ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-3739 (((-975 |#1|) $ (-793)) 17 T ELT) (((-975 |#1|) $ (-793) (-793)) NIL T ELT)) (-4386 (((-114) $) NIL T ELT)) (-3796 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3913 (((-793) $ (-1207)) NIL T ELT) (((-793) $ (-1207) (-793)) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-2146 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ $ (-663 (-1207)) (-663 (-545 (-1207)))) NIL T ELT) (($ $ (-1207) (-545 (-1207))) NIL T ELT) (($ |#1| (-545 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2192 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2518 (($ $ (-1207)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-2313 (($ (-1 $) (-1207) |#1|) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4372 (($ $ (-793)) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-3251 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4187 (($ $ (-1207) $) NIL T ELT) (($ $ (-663 (-1207)) (-663 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT)) (-2894 (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT)) (-3630 (((-545 (-1207)) $) NIL T ELT)) (-4373 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4352 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3466 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4325 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3443 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3266 (($ $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-1207)) NIL T ELT) (($ (-975 |#1|)) NIL T ELT)) (-2305 ((|#1| $ (-545 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (((-975 |#1|) $ (-793)) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-4411 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4263 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4387 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4438 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4287 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3837 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4302 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4423 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4275 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4398 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4252 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-3305 (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
-(((-1240 |#1|) (-13 (-762 |#1| (-1207)) (-10 -8 (-15 -2305 ((-975 |#1|) $ (-793))) (-15 -1578 ($ (-1207))) (-15 -1578 ($ (-975 |#1|))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -2518 ($ $ (-1207) |#1|)) (-15 -2313 ($ (-1 $) (-1207) |#1|))) |%noBranch|))) (-1080)) (T -1240))
-((-2305 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-975 *4)) (-5 *1 (-1240 *4)) (-4 *4 (-1080)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1240 *3)) (-4 *3 (-1080)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-975 *3)) (-4 *3 (-1080)) (-5 *1 (-1240 *3)))) (-2518 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *1 (-1240 *3)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)))) (-2313 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1240 *4))) (-5 *3 (-1207)) (-5 *1 (-1240 *4)) (-4 *4 (-38 (-421 (-560)))) (-4 *4 (-1080)))))
-(-13 (-762 |#1| (-1207)) (-10 -8 (-15 -2305 ((-975 |#1|) $ (-793))) (-15 -1578 ($ (-1207))) (-15 -1578 ($ (-975 |#1|))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -2518 ($ $ (-1207) |#1|)) (-15 -2313 ($ (-1 $) (-1207) |#1|))) |%noBranch|)))
-((-3036 (((-114) |#5| $) 68 T ELT) (((-114) $) 110 T ELT)) (-1813 ((|#5| |#5| $) 83 T ELT)) (-1982 (($ (-1 (-114) |#5|) $) NIL T ELT) (((-3 |#5| "failed") $ |#4|) 127 T ELT)) (-1477 (((-663 |#5|) (-663 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|)) 81 T ELT)) (-2539 (((-3 $ "failed") (-663 |#5|)) 135 T ELT)) (-3649 (((-3 $ "failed") $) 120 T ELT)) (-2841 ((|#5| |#5| $) 102 T ELT)) (-3989 (((-114) |#5| $ (-1 (-114) |#5| |#5|)) 36 T ELT)) (-3093 ((|#5| |#5| $) 106 T ELT)) (-4129 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|)) 77 T ELT)) (-1723 (((-2 (|:| -4332 (-663 |#5|)) (|:| -2109 (-663 |#5|))) $) 63 T ELT)) (-3544 (((-114) |#5| $) 66 T ELT) (((-114) $) 111 T ELT)) (-4132 ((|#4| $) 116 T ELT)) (-2398 (((-3 |#5| "failed") $) 118 T ELT)) (-1756 (((-663 |#5|) $) 55 T ELT)) (-3548 (((-114) |#5| $) 75 T ELT) (((-114) $) 115 T ELT)) (-3212 ((|#5| |#5| $) 89 T ELT)) (-2925 (((-114) $ $) 29 T ELT)) (-1563 (((-114) |#5| $) 71 T ELT) (((-114) $) 113 T ELT)) (-3171 ((|#5| |#5| $) 86 T ELT)) (-3637 (((-3 |#5| "failed") $) 117 T ELT)) (-4372 (($ $ |#5|) 136 T ELT)) (-3630 (((-793) $) 60 T ELT)) (-1592 (($ (-663 |#5|)) 133 T ELT)) (-3752 (($ $ |#4|) 131 T ELT)) (-4288 (($ $ |#4|) 129 T ELT)) (-2886 (($ $) 128 T ELT)) (-1578 (((-887) $) NIL T ELT) (((-663 |#5|) $) 121 T ELT)) (-1582 (((-793) $) 140 T ELT)) (-1810 (((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 |#5|))) "failed") (-663 |#5|) (-1 (-114) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 |#5|))) "failed") (-663 |#5|) (-1 (-114) |#5|) (-1 (-114) |#5| |#5|)) 51 T ELT)) (-4006 (((-114) $ (-1 (-114) |#5| (-663 |#5|))) 108 T ELT)) (-3938 (((-663 |#4|) $) 123 T ELT)) (-3602 (((-114) |#4| $) 126 T ELT)) (-2473 (((-114) $ $) 20 T ELT)))
-(((-1241 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1582 ((-793) |#1|)) (-15 -4372 (|#1| |#1| |#5|)) (-15 -1982 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3602 ((-114) |#4| |#1|)) (-15 -3938 ((-663 |#4|) |#1|)) (-15 -3649 ((-3 |#1| "failed") |#1|)) (-15 -2398 ((-3 |#5| "failed") |#1|)) (-15 -3637 ((-3 |#5| "failed") |#1|)) (-15 -3093 (|#5| |#5| |#1|)) (-15 -2886 (|#1| |#1|)) (-15 -2841 (|#5| |#5| |#1|)) (-15 -3212 (|#5| |#5| |#1|)) (-15 -3171 (|#5| |#5| |#1|)) (-15 -1813 (|#5| |#5| |#1|)) (-15 -1477 ((-663 |#5|) (-663 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|))) (-15 -4129 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|))) (-15 -3548 ((-114) |#1|)) (-15 -1563 ((-114) |#1|)) (-15 -3036 ((-114) |#1|)) (-15 -4006 ((-114) |#1| (-1 (-114) |#5| (-663 |#5|)))) (-15 -3548 ((-114) |#5| |#1|)) (-15 -1563 ((-114) |#5| |#1|)) (-15 -3036 ((-114) |#5| |#1|)) (-15 -3989 ((-114) |#5| |#1| (-1 (-114) |#5| |#5|))) (-15 -3544 ((-114) |#1|)) (-15 -3544 ((-114) |#5| |#1|)) (-15 -1723 ((-2 (|:| -4332 (-663 |#5|)) (|:| -2109 (-663 |#5|))) |#1|)) (-15 -3630 ((-793) |#1|)) (-15 -1756 ((-663 |#5|) |#1|)) (-15 -1810 ((-3 (-2 (|:| |bas| |#1|) (|:| -2572 (-663 |#5|))) "failed") (-663 |#5|) (-1 (-114) |#5|) (-1 (-114) |#5| |#5|))) (-15 -1810 ((-3 (-2 (|:| |bas| |#1|) (|:| -2572 (-663 |#5|))) "failed") (-663 |#5|) (-1 (-114) |#5| |#5|))) (-15 -2925 ((-114) |#1| |#1|)) (-15 -3752 (|#1| |#1| |#4|)) (-15 -4288 (|#1| |#1| |#4|)) (-15 -4132 (|#4| |#1|)) (-15 -2539 ((-3 |#1| "failed") (-663 |#5|))) (-15 -1578 ((-663 |#5|) |#1|)) (-15 -1592 (|#1| (-663 |#5|))) (-15 -4129 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4129 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1982 (|#1| (-1 (-114) |#5|) |#1|)) (-15 -4129 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1578 ((-887) |#1|)) (-15 -2473 ((-114) |#1| |#1|))) (-1242 |#2| |#3| |#4| |#5|) (-571) (-815) (-871) (-1096 |#2| |#3| |#4|)) (T -1241))
-NIL
-(-10 -8 (-15 -1582 ((-793) |#1|)) (-15 -4372 (|#1| |#1| |#5|)) (-15 -1982 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3602 ((-114) |#4| |#1|)) (-15 -3938 ((-663 |#4|) |#1|)) (-15 -3649 ((-3 |#1| "failed") |#1|)) (-15 -2398 ((-3 |#5| "failed") |#1|)) (-15 -3637 ((-3 |#5| "failed") |#1|)) (-15 -3093 (|#5| |#5| |#1|)) (-15 -2886 (|#1| |#1|)) (-15 -2841 (|#5| |#5| |#1|)) (-15 -3212 (|#5| |#5| |#1|)) (-15 -3171 (|#5| |#5| |#1|)) (-15 -1813 (|#5| |#5| |#1|)) (-15 -1477 ((-663 |#5|) (-663 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|))) (-15 -4129 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|))) (-15 -3548 ((-114) |#1|)) (-15 -1563 ((-114) |#1|)) (-15 -3036 ((-114) |#1|)) (-15 -4006 ((-114) |#1| (-1 (-114) |#5| (-663 |#5|)))) (-15 -3548 ((-114) |#5| |#1|)) (-15 -1563 ((-114) |#5| |#1|)) (-15 -3036 ((-114) |#5| |#1|)) (-15 -3989 ((-114) |#5| |#1| (-1 (-114) |#5| |#5|))) (-15 -3544 ((-114) |#1|)) (-15 -3544 ((-114) |#5| |#1|)) (-15 -1723 ((-2 (|:| -4332 (-663 |#5|)) (|:| -2109 (-663 |#5|))) |#1|)) (-15 -3630 ((-793) |#1|)) (-15 -1756 ((-663 |#5|) |#1|)) (-15 -1810 ((-3 (-2 (|:| |bas| |#1|) (|:| -2572 (-663 |#5|))) "failed") (-663 |#5|) (-1 (-114) |#5|) (-1 (-114) |#5| |#5|))) (-15 -1810 ((-3 (-2 (|:| |bas| |#1|) (|:| -2572 (-663 |#5|))) "failed") (-663 |#5|) (-1 (-114) |#5| |#5|))) (-15 -2925 ((-114) |#1| |#1|)) (-15 -3752 (|#1| |#1| |#4|)) (-15 -4288 (|#1| |#1| |#4|)) (-15 -4132 (|#4| |#1|)) (-15 -2539 ((-3 |#1| "failed") (-663 |#5|))) (-15 -1578 ((-663 |#5|) |#1|)) (-15 -1592 (|#1| (-663 |#5|))) (-15 -4129 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4129 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -1982 (|#1| (-1 (-114) |#5|) |#1|)) (-15 -4129 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -1578 ((-887) |#1|)) (-15 -2473 ((-114) |#1| |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-3721 (((-663 (-2 (|:| -4332 $) (|:| -2109 (-663 |#4|)))) (-663 |#4|)) 86 T ELT)) (-3904 (((-663 $) (-663 |#4|)) 87 T ELT)) (-1443 (((-663 |#3|) $) 34 T ELT)) (-1466 (((-114) $) 27 T ELT)) (-3101 (((-114) $) 18 (|has| |#1| (-571)) ELT)) (-3036 (((-114) |#4| $) 102 T ELT) (((-114) $) 98 T ELT)) (-1813 ((|#4| |#4| $) 93 T ELT)) (-2286 (((-2 (|:| |under| $) (|:| -2016 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-3363 (((-114) $ (-793)) 45 T ELT)) (-1982 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4508)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-2238 (($) 46 T CONST)) (-4436 (((-114) $) 23 (|has| |#1| (-571)) ELT)) (-4246 (((-114) $ $) 25 (|has| |#1| (-571)) ELT)) (-1860 (((-114) $ $) 24 (|has| |#1| (-571)) ELT)) (-3745 (((-114) $) 26 (|has| |#1| (-571)) ELT)) (-1477 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 94 T ELT)) (-4027 (((-663 |#4|) (-663 |#4|) $) 19 (|has| |#1| (-571)) ELT)) (-2528 (((-663 |#4|) (-663 |#4|) $) 20 (|has| |#1| (-571)) ELT)) (-2539 (((-3 $ "failed") (-663 |#4|)) 37 T ELT)) (-3330 (($ (-663 |#4|)) 36 T ELT)) (-3649 (((-3 $ "failed") $) 83 T ELT)) (-2841 ((|#4| |#4| $) 90 T ELT)) (-3606 (($ $) 69 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2375 (($ |#4| $) 68 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4508)) ELT)) (-2341 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-571)) ELT)) (-3989 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 103 T ELT)) (-3093 ((|#4| |#4| $) 88 T ELT)) (-4129 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4508)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4508)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 95 T ELT)) (-1723 (((-2 (|:| -4332 (-663 |#4|)) (|:| -2109 (-663 |#4|))) $) 106 T ELT)) (-2181 (((-663 |#4|) $) 53 (|has| $ (-6 -4508)) ELT)) (-3544 (((-114) |#4| $) 105 T ELT) (((-114) $) 104 T ELT)) (-4132 ((|#3| $) 35 T ELT)) (-4034 (((-114) $ (-793)) 44 T ELT)) (-2656 (((-663 |#4|) $) 54 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-1918 (((-663 |#3|) $) 33 T ELT)) (-2724 (((-114) |#3| $) 32 T ELT)) (-1805 (((-114) $ (-793)) 43 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-2398 (((-3 |#4| "failed") $) 84 T ELT)) (-1756 (((-663 |#4|) $) 108 T ELT)) (-3548 (((-114) |#4| $) 100 T ELT) (((-114) $) 96 T ELT)) (-3212 ((|#4| |#4| $) 91 T ELT)) (-2925 (((-114) $ $) 111 T ELT)) (-2557 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-571)) ELT)) (-1563 (((-114) |#4| $) 101 T ELT) (((-114) $) 97 T ELT)) (-3171 ((|#4| |#4| $) 92 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-3637 (((-3 |#4| "failed") $) 85 T ELT)) (-3329 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-1370 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-4372 (($ $ |#4|) 78 T ELT)) (-2787 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 |#4|) (-663 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-4124 (((-114) $ $) 39 T ELT)) (-1663 (((-114) $) 42 T ELT)) (-3986 (($) 41 T ELT)) (-3630 (((-793) $) 107 T ELT)) (-3865 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) 40 T ELT)) (-1407 (((-549) $) 70 (|has| |#4| (-633 (-549))) ELT)) (-1592 (($ (-663 |#4|)) 61 T ELT)) (-3752 (($ $ |#3|) 29 T ELT)) (-4288 (($ $ |#3|) 31 T ELT)) (-2886 (($ $) 89 T ELT)) (-4397 (($ $ |#3|) 30 T ELT)) (-1578 (((-887) $) 12 T ELT) (((-663 |#4|) $) 38 T ELT)) (-1582 (((-793) $) 77 (|has| |#3| (-381)) ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-1810 (((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 109 T ELT)) (-4006 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) 99 T ELT)) (-1728 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4508)) ELT)) (-3938 (((-663 |#3|) $) 82 T ELT)) (-3602 (((-114) |#3| $) 81 T ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-1553 (((-793) $) 47 (|has| $ (-6 -4508)) ELT)))
+((-1832 (*1 *1 *1) (-4 *1 (-1236))) (-1806 (*1 *1 *1) (-4 *1 (-1236))) (-1856 (*1 *1 *1) (-4 *1 (-1236))) (-1870 (*1 *1 *1) (-4 *1 (-1236))) (-1844 (*1 *1 *1) (-4 *1 (-1236))) (-1820 (*1 *1 *1) (-4 *1 (-1236))))
+(-13 (-10 -8 (-15 -1820 ($ $)) (-15 -1844 ($ $)) (-15 -1870 ($ $)) (-15 -1856 ($ $)) (-15 -1806 ($ $)) (-15 -1832 ($ $))))
+((-3020 ((|#2| |#2|) 98 T ELT)) (-3701 (((-114) |#2|) 29 T ELT)) (-4034 ((|#2| |#2|) 33 T ELT)) (-4044 ((|#2| |#2|) 35 T ELT)) (-2500 ((|#2| |#2| (-1207)) 92 T ELT) ((|#2| |#2|) 93 T ELT)) (-2953 (((-171 |#2|) |#2|) 31 T ELT)) (-3339 ((|#2| |#2| (-1207)) 94 T ELT) ((|#2| |#2|) 95 T ELT)))
+(((-1237 |#1| |#2|) (-10 -7 (-15 -2500 (|#2| |#2|)) (-15 -2500 (|#2| |#2| (-1207))) (-15 -3339 (|#2| |#2|)) (-15 -3339 (|#2| |#2| (-1207))) (-15 -3020 (|#2| |#2|)) (-15 -4034 (|#2| |#2|)) (-15 -4044 (|#2| |#2|)) (-15 -3701 ((-114) |#2|)) (-15 -2953 ((-171 |#2|) |#2|))) (-13 (-466) (-1069 (-560)) (-660 (-560))) (-13 (-27) (-1233) (-435 |#1|))) (T -1237))
+((-2953 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-171 *3)) (-5 *1 (-1237 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4))))) (-3701 (*1 *2 *3) (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-114)) (-5 *1 (-1237 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4))))) (-4044 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3))))) (-4034 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3))))) (-3020 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3))))) (-3339 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-1237 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))))) (-3339 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3))))) (-2500 (*1 *2 *2 *3) (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-1237 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))))) (-2500 (*1 *2 *2) (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3))))))
+(-10 -7 (-15 -2500 (|#2| |#2|)) (-15 -2500 (|#2| |#2| (-1207))) (-15 -3339 (|#2| |#2|)) (-15 -3339 (|#2| |#2| (-1207))) (-15 -3020 (|#2| |#2|)) (-15 -4034 (|#2| |#2|)) (-15 -4044 (|#2| |#2|)) (-15 -3701 ((-114) |#2|)) (-15 -2953 ((-171 |#2|) |#2|)))
+((-1529 ((|#4| |#4| |#1|) 31 T ELT)) (-1653 ((|#4| |#4| |#1|) 32 T ELT)))
+(((-1238 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1529 (|#4| |#4| |#1|)) (-15 -1653 (|#4| |#4| |#1|))) (-571) (-385 |#1|) (-385 |#1|) (-708 |#1| |#2| |#3|)) (T -1238))
+((-1653 (*1 *2 *2 *3) (-12 (-4 *3 (-571)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1238 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))) (-1529 (*1 *2 *2 *3) (-12 (-4 *3 (-571)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1238 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))))
+(-10 -7 (-15 -1529 (|#4| |#4| |#1|)) (-15 -1653 (|#4| |#4| |#1|)))
+((-3422 ((|#2| |#2|) 148 T ELT)) (-4483 ((|#2| |#2|) 145 T ELT)) (-3739 ((|#2| |#2|) 136 T ELT)) (-2248 ((|#2| |#2|) 133 T ELT)) (-1544 ((|#2| |#2|) 141 T ELT)) (-3600 ((|#2| |#2|) 129 T ELT)) (-3029 ((|#2| |#2|) 44 T ELT)) (-4274 ((|#2| |#2|) 105 T ELT)) (-3456 ((|#2| |#2|) 88 T ELT)) (-2089 ((|#2| |#2|) 143 T ELT)) (-3660 ((|#2| |#2|) 131 T ELT)) (-2800 ((|#2| |#2|) 153 T ELT)) (-2424 ((|#2| |#2|) 151 T ELT)) (-1486 ((|#2| |#2|) 152 T ELT)) (-3157 ((|#2| |#2|) 150 T ELT)) (-3626 ((|#2| |#2|) 163 T ELT)) (-4365 ((|#2| |#2|) 30 (-12 (|has| |#2| (-633 (-915 |#1|))) (|has| |#2| (-911 |#1|)) (|has| |#1| (-633 (-915 |#1|))) (|has| |#1| (-911 |#1|))) ELT)) (-2830 ((|#2| |#2|) 89 T ELT)) (-3070 ((|#2| |#2|) 154 T ELT)) (-3890 ((|#2| |#2|) 155 T ELT)) (-4073 ((|#2| |#2|) 142 T ELT)) (-3388 ((|#2| |#2|) 130 T ELT)) (-4260 ((|#2| |#2|) 149 T ELT)) (-2130 ((|#2| |#2|) 147 T ELT)) (-3529 ((|#2| |#2|) 137 T ELT)) (-2834 ((|#2| |#2|) 135 T ELT)) (-1846 ((|#2| |#2|) 139 T ELT)) (-1363 ((|#2| |#2|) 127 T ELT)))
+(((-1239 |#1| |#2|) (-10 -7 (-15 -3890 (|#2| |#2|)) (-15 -3456 (|#2| |#2|)) (-15 -3626 (|#2| |#2|)) (-15 -4274 (|#2| |#2|)) (-15 -3029 (|#2| |#2|)) (-15 -2830 (|#2| |#2|)) (-15 -3070 (|#2| |#2|)) (-15 -1363 (|#2| |#2|)) (-15 -1846 (|#2| |#2|)) (-15 -3529 (|#2| |#2|)) (-15 -4260 (|#2| |#2|)) (-15 -3388 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -2089 (|#2| |#2|)) (-15 -3600 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -3739 (|#2| |#2|)) (-15 -3422 (|#2| |#2|)) (-15 -2248 (|#2| |#2|)) (-15 -4483 (|#2| |#2|)) (-15 -2834 (|#2| |#2|)) (-15 -2130 (|#2| |#2|)) (-15 -3157 (|#2| |#2|)) (-15 -2424 (|#2| |#2|)) (-15 -1486 (|#2| |#2|)) (-15 -2800 (|#2| |#2|)) (IF (|has| |#1| (-911 |#1|)) (IF (|has| |#1| (-633 (-915 |#1|))) (IF (|has| |#2| (-633 (-915 |#1|))) (IF (|has| |#2| (-911 |#1|)) (-15 -4365 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-466) (-13 (-435 |#1|) (-1233))) (T -1239))
+((-4365 (*1 *2 *2) (-12 (-4 *3 (-633 (-915 *3))) (-4 *3 (-911 *3)) (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-633 (-915 *3))) (-4 *2 (-911 *3)) (-4 *2 (-13 (-435 *3) (-1233))))) (-2800 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-1486 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-2424 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-3157 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-2130 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-2834 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-4483 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-2248 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-3422 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-3739 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-1544 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-3600 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-2089 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-3660 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-3388 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-4260 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-3529 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-1846 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-1363 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-3070 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-2830 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-3029 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-4274 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-3626 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-3456 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))) (-3890 (*1 *2 *2) (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2)) (-4 *2 (-13 (-435 *3) (-1233))))))
+(-10 -7 (-15 -3890 (|#2| |#2|)) (-15 -3456 (|#2| |#2|)) (-15 -3626 (|#2| |#2|)) (-15 -4274 (|#2| |#2|)) (-15 -3029 (|#2| |#2|)) (-15 -2830 (|#2| |#2|)) (-15 -3070 (|#2| |#2|)) (-15 -1363 (|#2| |#2|)) (-15 -1846 (|#2| |#2|)) (-15 -3529 (|#2| |#2|)) (-15 -4260 (|#2| |#2|)) (-15 -3388 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -3660 (|#2| |#2|)) (-15 -2089 (|#2| |#2|)) (-15 -3600 (|#2| |#2|)) (-15 -1544 (|#2| |#2|)) (-15 -3739 (|#2| |#2|)) (-15 -3422 (|#2| |#2|)) (-15 -2248 (|#2| |#2|)) (-15 -4483 (|#2| |#2|)) (-15 -2834 (|#2| |#2|)) (-15 -2130 (|#2| |#2|)) (-15 -3157 (|#2| |#2|)) (-15 -2424 (|#2| |#2|)) (-15 -1486 (|#2| |#2|)) (-15 -2800 (|#2| |#2|)) (IF (|has| |#1| (-911 |#1|)) (IF (|has| |#1| (-633 (-915 |#1|))) (IF (|has| |#2| (-633 (-915 |#1|))) (IF (|has| |#2| (-911 |#1|)) (-15 -4365 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-4162 (((-663 (-1207)) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-1982 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1832 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-4021 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1958 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1806 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2003 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1856 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3525 (($) NIL T CONST)) (-3062 (($ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-4153 (((-975 |#1|) $ (-793)) 17 T ELT) (((-975 |#1|) $ (-793) (-793)) NIL T ELT)) (-2328 (((-114) $) NIL T ELT)) (-2503 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1460 (((-793) $ (-1207)) NIL T ELT) (((-793) $ (-1207) (-793)) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-1956 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ $ (-663 (-1207)) (-663 (-545 (-1207)))) NIL T ELT) (($ $ (-1207) (-545 (-1207))) NIL T ELT) (($ |#1| (-545 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2831 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-4424 (($ $ (-1207)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207) |#1|) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3008 (($ (-1 $) (-1207) |#1|) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2219 (($ $ (-793)) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-2515 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2371 (($ $ (-1207) $) NIL T ELT) (($ $ (-663 (-1207)) (-663 $)) NIL T ELT) (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT)) (-3161 (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT)) (-3900 (((-545 (-1207)) $) NIL T ELT)) (-2013 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1870 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1992 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1844 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1972 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1820 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3329 (($ $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-1207)) NIL T ELT) (($ (-975 |#1|)) NIL T ELT)) (-2920 ((|#1| $ (-545 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (((-975 |#1|) $ (-793)) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-2042 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1907 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2022 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1882 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2059 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1932 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3392 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1945 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2050 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1920 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2032 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1895 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2111 (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207)) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT)))
+(((-1240 |#1|) (-13 (-762 |#1| (-1207)) (-10 -8 (-15 -2920 ((-975 |#1|) $ (-793))) (-15 -3913 ($ (-1207))) (-15 -3913 ($ (-975 |#1|))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -4424 ($ $ (-1207) |#1|)) (-15 -3008 ($ (-1 $) (-1207) |#1|))) |%noBranch|))) (-1080)) (T -1240))
+((-2920 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-975 *4)) (-5 *1 (-1240 *4)) (-4 *4 (-1080)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1240 *3)) (-4 *3 (-1080)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-975 *3)) (-4 *3 (-1080)) (-5 *1 (-1240 *3)))) (-4424 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *1 (-1240 *3)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)))) (-3008 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1240 *4))) (-5 *3 (-1207)) (-5 *1 (-1240 *4)) (-4 *4 (-38 (-421 (-560)))) (-4 *4 (-1080)))))
+(-13 (-762 |#1| (-1207)) (-10 -8 (-15 -2920 ((-975 |#1|) $ (-793))) (-15 -3913 ($ (-1207))) (-15 -3913 ($ (-975 |#1|))) (IF (|has| |#1| (-38 (-421 (-560)))) (PROGN (-15 -4424 ($ $ (-1207) |#1|)) (-15 -3008 ($ (-1 $) (-1207) |#1|))) |%noBranch|)))
+((-2729 (((-114) |#5| $) 68 T ELT) (((-114) $) 110 T ELT)) (-1722 ((|#5| |#5| $) 83 T ELT)) (-3923 (($ (-1 (-114) |#5|) $) NIL T ELT) (((-3 |#5| "failed") $ |#4|) 127 T ELT)) (-4108 (((-663 |#5|) (-663 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|)) 81 T ELT)) (-3929 (((-3 $ "failed") (-663 |#5|)) 135 T ELT)) (-4345 (((-3 $ "failed") $) 120 T ELT)) (-1440 ((|#5| |#5| $) 102 T ELT)) (-2869 (((-114) |#5| $ (-1 (-114) |#5| |#5|)) 36 T ELT)) (-2113 ((|#5| |#5| $) 106 T ELT)) (-1778 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|)) 77 T ELT)) (-2115 (((-2 (|:| -1924 (-663 |#5|)) (|:| -2888 (-663 |#5|))) $) 63 T ELT)) (-4264 (((-114) |#5| $) 66 T ELT) (((-114) $) 111 T ELT)) (-1816 ((|#4| $) 116 T ELT)) (-3057 (((-3 |#5| "failed") $) 118 T ELT)) (-2428 (((-663 |#5|) $) 55 T ELT)) (-4301 (((-114) |#5| $) 75 T ELT) (((-114) $) 115 T ELT)) (-4039 ((|#5| |#5| $) 89 T ELT)) (-4138 (((-114) $ $) 29 T ELT)) (-1737 (((-114) |#5| $) 71 T ELT) (((-114) $) 113 T ELT)) (-1686 ((|#5| |#5| $) 86 T ELT)) (-4334 (((-3 |#5| "failed") $) 117 T ELT)) (-2219 (($ $ |#5|) 136 T ELT)) (-3900 (((-793) $) 60 T ELT)) (-3924 (($ (-663 |#5|)) 133 T ELT)) (-2511 (($ $ |#4|) 131 T ELT)) (-4047 (($ $ |#4|) 129 T ELT)) (-3833 (($ $) 128 T ELT)) (-3913 (((-887) $) NIL T ELT) (((-663 |#5|) $) 121 T ELT)) (-1930 (((-793) $) 140 T ELT)) (-1690 (((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 |#5|))) "failed") (-663 |#5|) (-1 (-114) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 |#5|))) "failed") (-663 |#5|) (-1 (-114) |#5|) (-1 (-114) |#5| |#5|)) 51 T ELT)) (-3058 (((-114) $ (-1 (-114) |#5| (-663 |#5|))) 108 T ELT)) (-3616 (((-663 |#4|) $) 123 T ELT)) (-3621 (((-114) |#4| $) 126 T ELT)) (-2340 (((-114) $ $) 20 T ELT)))
+(((-1241 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1930 ((-793) |#1|)) (-15 -2219 (|#1| |#1| |#5|)) (-15 -3923 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3621 ((-114) |#4| |#1|)) (-15 -3616 ((-663 |#4|) |#1|)) (-15 -4345 ((-3 |#1| "failed") |#1|)) (-15 -3057 ((-3 |#5| "failed") |#1|)) (-15 -4334 ((-3 |#5| "failed") |#1|)) (-15 -2113 (|#5| |#5| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -1440 (|#5| |#5| |#1|)) (-15 -4039 (|#5| |#5| |#1|)) (-15 -1686 (|#5| |#5| |#1|)) (-15 -1722 (|#5| |#5| |#1|)) (-15 -4108 ((-663 |#5|) (-663 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|))) (-15 -1778 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|))) (-15 -4301 ((-114) |#1|)) (-15 -1737 ((-114) |#1|)) (-15 -2729 ((-114) |#1|)) (-15 -3058 ((-114) |#1| (-1 (-114) |#5| (-663 |#5|)))) (-15 -4301 ((-114) |#5| |#1|)) (-15 -1737 ((-114) |#5| |#1|)) (-15 -2729 ((-114) |#5| |#1|)) (-15 -2869 ((-114) |#5| |#1| (-1 (-114) |#5| |#5|))) (-15 -4264 ((-114) |#1|)) (-15 -4264 ((-114) |#5| |#1|)) (-15 -2115 ((-2 (|:| -1924 (-663 |#5|)) (|:| -2888 (-663 |#5|))) |#1|)) (-15 -3900 ((-793) |#1|)) (-15 -2428 ((-663 |#5|) |#1|)) (-15 -1690 ((-3 (-2 (|:| |bas| |#1|) (|:| -3172 (-663 |#5|))) "failed") (-663 |#5|) (-1 (-114) |#5|) (-1 (-114) |#5| |#5|))) (-15 -1690 ((-3 (-2 (|:| |bas| |#1|) (|:| -3172 (-663 |#5|))) "failed") (-663 |#5|) (-1 (-114) |#5| |#5|))) (-15 -4138 ((-114) |#1| |#1|)) (-15 -2511 (|#1| |#1| |#4|)) (-15 -4047 (|#1| |#1| |#4|)) (-15 -1816 (|#4| |#1|)) (-15 -3929 ((-3 |#1| "failed") (-663 |#5|))) (-15 -3913 ((-663 |#5|) |#1|)) (-15 -3924 (|#1| (-663 |#5|))) (-15 -1778 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1778 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3923 (|#1| (-1 (-114) |#5|) |#1|)) (-15 -1778 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3913 ((-887) |#1|)) (-15 -2340 ((-114) |#1| |#1|))) (-1242 |#2| |#3| |#4| |#5|) (-571) (-815) (-871) (-1096 |#2| |#3| |#4|)) (T -1241))
+NIL
+(-10 -8 (-15 -1930 ((-793) |#1|)) (-15 -2219 (|#1| |#1| |#5|)) (-15 -3923 ((-3 |#5| "failed") |#1| |#4|)) (-15 -3621 ((-114) |#4| |#1|)) (-15 -3616 ((-663 |#4|) |#1|)) (-15 -4345 ((-3 |#1| "failed") |#1|)) (-15 -3057 ((-3 |#5| "failed") |#1|)) (-15 -4334 ((-3 |#5| "failed") |#1|)) (-15 -2113 (|#5| |#5| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -1440 (|#5| |#5| |#1|)) (-15 -4039 (|#5| |#5| |#1|)) (-15 -1686 (|#5| |#5| |#1|)) (-15 -1722 (|#5| |#5| |#1|)) (-15 -4108 ((-663 |#5|) (-663 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|))) (-15 -1778 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|))) (-15 -4301 ((-114) |#1|)) (-15 -1737 ((-114) |#1|)) (-15 -2729 ((-114) |#1|)) (-15 -3058 ((-114) |#1| (-1 (-114) |#5| (-663 |#5|)))) (-15 -4301 ((-114) |#5| |#1|)) (-15 -1737 ((-114) |#5| |#1|)) (-15 -2729 ((-114) |#5| |#1|)) (-15 -2869 ((-114) |#5| |#1| (-1 (-114) |#5| |#5|))) (-15 -4264 ((-114) |#1|)) (-15 -4264 ((-114) |#5| |#1|)) (-15 -2115 ((-2 (|:| -1924 (-663 |#5|)) (|:| -2888 (-663 |#5|))) |#1|)) (-15 -3900 ((-793) |#1|)) (-15 -2428 ((-663 |#5|) |#1|)) (-15 -1690 ((-3 (-2 (|:| |bas| |#1|) (|:| -3172 (-663 |#5|))) "failed") (-663 |#5|) (-1 (-114) |#5|) (-1 (-114) |#5| |#5|))) (-15 -1690 ((-3 (-2 (|:| |bas| |#1|) (|:| -3172 (-663 |#5|))) "failed") (-663 |#5|) (-1 (-114) |#5| |#5|))) (-15 -4138 ((-114) |#1| |#1|)) (-15 -2511 (|#1| |#1| |#4|)) (-15 -4047 (|#1| |#1| |#4|)) (-15 -1816 (|#4| |#1|)) (-15 -3929 ((-3 |#1| "failed") (-663 |#5|))) (-15 -3913 ((-663 |#5|) |#1|)) (-15 -3924 (|#1| (-663 |#5|))) (-15 -1778 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1778 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -3923 (|#1| (-1 (-114) |#5|) |#1|)) (-15 -1778 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -3913 ((-887) |#1|)) (-15 -2340 ((-114) |#1| |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2253 (((-663 (-2 (|:| -1924 $) (|:| -2888 (-663 |#4|)))) (-663 |#4|)) 86 T ELT)) (-1372 (((-663 $) (-663 |#4|)) 87 T ELT)) (-4162 (((-663 |#3|) $) 34 T ELT)) (-1362 (((-114) $) 27 T ELT)) (-2179 (((-114) $) 18 (|has| |#1| (-571)) ELT)) (-2729 (((-114) |#4| $) 102 T ELT) (((-114) $) 98 T ELT)) (-1722 ((|#4| |#4| $) 93 T ELT)) (-1787 (((-2 (|:| |under| $) (|:| -3147 $) (|:| |upper| $)) $ |#3|) 28 T ELT)) (-3045 (((-114) $ (-793)) 45 T ELT)) (-3923 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4508)) ELT) (((-3 |#4| "failed") $ |#3|) 80 T ELT)) (-3525 (($) 46 T CONST)) (-2733 (((-114) $) 23 (|has| |#1| (-571)) ELT)) (-3672 (((-114) $ $) 25 (|has| |#1| (-571)) ELT)) (-4148 (((-114) $ $) 24 (|has| |#1| (-571)) ELT)) (-2449 (((-114) $) 26 (|has| |#1| (-571)) ELT)) (-4108 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 94 T ELT)) (-3277 (((-663 |#4|) (-663 |#4|) $) 19 (|has| |#1| (-571)) ELT)) (-4485 (((-663 |#4|) (-663 |#4|) $) 20 (|has| |#1| (-571)) ELT)) (-3929 (((-3 $ "failed") (-663 |#4|)) 37 T ELT)) (-3649 (($ (-663 |#4|)) 36 T ELT)) (-4345 (((-3 $ "failed") $) 83 T ELT)) (-1440 ((|#4| |#4| $) 90 T ELT)) (-3658 (($ $) 69 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3033 (($ |#4| $) 68 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4508)) ELT)) (-3276 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-571)) ELT)) (-2869 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 103 T ELT)) (-2113 ((|#4| |#4| $) 88 T ELT)) (-1778 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4508)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4508)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 95 T ELT)) (-2115 (((-2 (|:| -1924 (-663 |#4|)) (|:| -2888 (-663 |#4|))) $) 106 T ELT)) (-3737 (((-663 |#4|) $) 53 (|has| $ (-6 -4508)) ELT)) (-4264 (((-114) |#4| $) 105 T ELT) (((-114) $) 104 T ELT)) (-1816 ((|#3| $) 35 T ELT)) (-3332 (((-114) $ (-793)) 44 T ELT)) (-3243 (((-663 |#4|) $) 54 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3471 (((-663 |#3|) $) 33 T ELT)) (-2703 (((-114) |#3| $) 32 T ELT)) (-1634 (((-114) $ (-793)) 43 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3057 (((-3 |#4| "failed") $) 84 T ELT)) (-2428 (((-663 |#4|) $) 108 T ELT)) (-4301 (((-114) |#4| $) 100 T ELT) (((-114) $) 96 T ELT)) (-4039 ((|#4| |#4| $) 91 T ELT)) (-4138 (((-114) $ $) 111 T ELT)) (-3531 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 22 (|has| |#1| (-571)) ELT)) (-1737 (((-114) |#4| $) 101 T ELT) (((-114) $) 97 T ELT)) (-1686 ((|#4| |#4| $) 92 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4334 (((-3 |#4| "failed") $) 85 T ELT)) (-2708 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-3867 (((-3 $ "failed") $ |#4|) 79 T ELT)) (-2219 (($ $ |#4|) 78 T ELT)) (-2086 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 |#4|) (-663 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-1736 (((-114) $ $) 39 T ELT)) (-2706 (((-114) $) 42 T ELT)) (-2832 (($) 41 T ELT)) (-3900 (((-793) $) 107 T ELT)) (-3384 (((-793) |#4| $) 55 (-12 (|has| |#4| (-1132)) (|has| $ (-6 -4508))) ELT) (((-793) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) 40 T ELT)) (-2400 (((-549) $) 70 (|has| |#4| (-633 (-549))) ELT)) (-3924 (($ (-663 |#4|)) 61 T ELT)) (-2511 (($ $ |#3|) 29 T ELT)) (-4047 (($ $ |#3|) 31 T ELT)) (-3833 (($ $) 89 T ELT)) (-2438 (($ $ |#3|) 30 T ELT)) (-3913 (((-887) $) 12 T ELT) (((-663 |#4|) $) 38 T ELT)) (-1930 (((-793) $) 77 (|has| |#3| (-381)) ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1690 (((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4| |#4|)) 110 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 109 T ELT)) (-3058 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) 99 T ELT)) (-2149 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4508)) ELT)) (-3616 (((-663 |#3|) $) 82 T ELT)) (-3621 (((-114) |#3| $) 81 T ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2256 (((-793) $) 47 (|has| $ (-6 -4508)) ELT)))
(((-1242 |#1| |#2| |#3| |#4|) (-142) (-571) (-815) (-871) (-1096 |t#1| |t#2| |t#3|)) (T -1242))
-((-2925 (*1 *2 *1 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114)))) (-1810 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-114) *8 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2572 (-663 *8)))) (-5 *3 (-663 *8)) (-4 *1 (-1242 *5 *6 *7 *8)))) (-1810 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-114) *9)) (-5 *5 (-1 (-114) *9 *9)) (-4 *9 (-1096 *6 *7 *8)) (-4 *6 (-571)) (-4 *7 (-815)) (-4 *8 (-871)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2572 (-663 *9)))) (-5 *3 (-663 *9)) (-4 *1 (-1242 *6 *7 *8 *9)))) (-1756 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-663 *6)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-793)))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-2 (|:| -4332 (-663 *6)) (|:| -2109 (-663 *6)))))) (-3544 (*1 *2 *3 *1) (-12 (-4 *1 (-1242 *4 *5 *6 *3)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))) (-3544 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114)))) (-3989 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *1 (-1242 *5 *6 *7 *3)) (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-114)))) (-3036 (*1 *2 *3 *1) (-12 (-4 *1 (-1242 *4 *5 *6 *3)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))) (-1563 (*1 *2 *3 *1) (-12 (-4 *1 (-1242 *4 *5 *6 *3)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))) (-3548 (*1 *2 *3 *1) (-12 (-4 *1 (-1242 *4 *5 *6 *3)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))) (-4006 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-114) *7 (-663 *7))) (-4 *1 (-1242 *4 *5 *6 *7)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)))) (-3036 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114)))) (-1563 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114)))) (-3548 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114)))) (-4129 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-114) *2 *2)) (-4 *1 (-1242 *5 *6 *7 *2)) (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *2 (-1096 *5 *6 *7)))) (-1477 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-663 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-114) *8 *8)) (-4 *1 (-1242 *5 *6 *7 *8)) (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)))) (-1813 (*1 *2 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-3171 (*1 *2 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-3212 (*1 *2 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-2841 (*1 *2 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-2886 (*1 *1 *1) (-12 (-4 *1 (-1242 *2 *3 *4 *5)) (-4 *2 (-571)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-1096 *2 *3 *4)))) (-3093 (*1 *2 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-3904 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-1242 *4 *5 *6 *7)))) (-3721 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-663 (-2 (|:| -4332 *1) (|:| -2109 (-663 *7))))) (-5 *3 (-663 *7)) (-4 *1 (-1242 *4 *5 *6 *7)))) (-3637 (*1 *2 *1) (|partial| -12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-2398 (*1 *2 *1) (|partial| -12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-3649 (*1 *1 *1) (|partial| -12 (-4 *1 (-1242 *2 *3 *4 *5)) (-4 *2 (-571)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-1096 *2 *3 *4)))) (-3938 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-663 *5)))) (-3602 (*1 *2 *3 *1) (-12 (-4 *1 (-1242 *4 *5 *3 *6)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *3 (-871)) (-4 *6 (-1096 *4 *5 *3)) (-5 *2 (-114)))) (-1982 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1242 *4 *5 *3 *2)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *3 (-871)) (-4 *2 (-1096 *4 *5 *3)))) (-1370 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-4372 (*1 *1 *1 *2) (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-1582 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *5 (-381)) (-5 *2 (-793)))))
-(-13 (-1007 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4508) (-6 -4509) (-15 -2925 ((-114) $ $)) (-15 -1810 ((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 |t#4|))) "failed") (-663 |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -1810 ((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 |t#4|))) "failed") (-663 |t#4|) (-1 (-114) |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -1756 ((-663 |t#4|) $)) (-15 -3630 ((-793) $)) (-15 -1723 ((-2 (|:| -4332 (-663 |t#4|)) (|:| -2109 (-663 |t#4|))) $)) (-15 -3544 ((-114) |t#4| $)) (-15 -3544 ((-114) $)) (-15 -3989 ((-114) |t#4| $ (-1 (-114) |t#4| |t#4|))) (-15 -3036 ((-114) |t#4| $)) (-15 -1563 ((-114) |t#4| $)) (-15 -3548 ((-114) |t#4| $)) (-15 -4006 ((-114) $ (-1 (-114) |t#4| (-663 |t#4|)))) (-15 -3036 ((-114) $)) (-15 -1563 ((-114) $)) (-15 -3548 ((-114) $)) (-15 -4129 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -1477 ((-663 |t#4|) (-663 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -1813 (|t#4| |t#4| $)) (-15 -3171 (|t#4| |t#4| $)) (-15 -3212 (|t#4| |t#4| $)) (-15 -2841 (|t#4| |t#4| $)) (-15 -2886 ($ $)) (-15 -3093 (|t#4| |t#4| $)) (-15 -3904 ((-663 $) (-663 |t#4|))) (-15 -3721 ((-663 (-2 (|:| -4332 $) (|:| -2109 (-663 |t#4|)))) (-663 |t#4|))) (-15 -3637 ((-3 |t#4| "failed") $)) (-15 -2398 ((-3 |t#4| "failed") $)) (-15 -3649 ((-3 $ "failed") $)) (-15 -3938 ((-663 |t#3|) $)) (-15 -3602 ((-114) |t#3| $)) (-15 -1982 ((-3 |t#4| "failed") $ |t#3|)) (-15 -1370 ((-3 $ "failed") $ |t#4|)) (-15 -4372 ($ $ |t#4|)) (IF (|has| |t#3| (-381)) (-15 -1582 ((-793) $)) |%noBranch|)))
+((-4138 (*1 *2 *1 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114)))) (-1690 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-114) *8 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3172 (-663 *8)))) (-5 *3 (-663 *8)) (-4 *1 (-1242 *5 *6 *7 *8)))) (-1690 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-114) *9)) (-5 *5 (-1 (-114) *9 *9)) (-4 *9 (-1096 *6 *7 *8)) (-4 *6 (-571)) (-4 *7 (-815)) (-4 *8 (-871)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3172 (-663 *9)))) (-5 *3 (-663 *9)) (-4 *1 (-1242 *6 *7 *8 *9)))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-663 *6)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-793)))) (-2115 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-2 (|:| -1924 (-663 *6)) (|:| -2888 (-663 *6)))))) (-4264 (*1 *2 *3 *1) (-12 (-4 *1 (-1242 *4 *5 *6 *3)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))) (-4264 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114)))) (-2869 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *1 (-1242 *5 *6 *7 *3)) (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-114)))) (-2729 (*1 *2 *3 *1) (-12 (-4 *1 (-1242 *4 *5 *6 *3)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))) (-1737 (*1 *2 *3 *1) (-12 (-4 *1 (-1242 *4 *5 *6 *3)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))) (-4301 (*1 *2 *3 *1) (-12 (-4 *1 (-1242 *4 *5 *6 *3)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))) (-3058 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-114) *7 (-663 *7))) (-4 *1 (-1242 *4 *5 *6 *7)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)))) (-2729 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114)))) (-1737 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114)))) (-4301 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114)))) (-1778 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-114) *2 *2)) (-4 *1 (-1242 *5 *6 *7 *2)) (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *2 (-1096 *5 *6 *7)))) (-4108 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-663 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-114) *8 *8)) (-4 *1 (-1242 *5 *6 *7 *8)) (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)))) (-1722 (*1 *2 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-1686 (*1 *2 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-4039 (*1 *2 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-1440 (*1 *2 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-3833 (*1 *1 *1) (-12 (-4 *1 (-1242 *2 *3 *4 *5)) (-4 *2 (-571)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-1096 *2 *3 *4)))) (-2113 (*1 *2 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-1372 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *1)) (-4 *1 (-1242 *4 *5 *6 *7)))) (-2253 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-663 (-2 (|:| -1924 *1) (|:| -2888 (-663 *7))))) (-5 *3 (-663 *7)) (-4 *1 (-1242 *4 *5 *6 *7)))) (-4334 (*1 *2 *1) (|partial| -12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-3057 (*1 *2 *1) (|partial| -12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-4345 (*1 *1 *1) (|partial| -12 (-4 *1 (-1242 *2 *3 *4 *5)) (-4 *2 (-571)) (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-1096 *2 *3 *4)))) (-3616 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-663 *5)))) (-3621 (*1 *2 *3 *1) (-12 (-4 *1 (-1242 *4 *5 *3 *6)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *3 (-871)) (-4 *6 (-1096 *4 *5 *3)) (-5 *2 (-114)))) (-3923 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1242 *4 *5 *3 *2)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *3 (-871)) (-4 *2 (-1096 *4 *5 *3)))) (-3867 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-2219 (*1 *1 *1 *2) (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))) (-1930 (*1 *2 *1) (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *5 (-381)) (-5 *2 (-793)))))
+(-13 (-1007 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4508) (-6 -4509) (-15 -4138 ((-114) $ $)) (-15 -1690 ((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 |t#4|))) "failed") (-663 |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -1690 ((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 |t#4|))) "failed") (-663 |t#4|) (-1 (-114) |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -2428 ((-663 |t#4|) $)) (-15 -3900 ((-793) $)) (-15 -2115 ((-2 (|:| -1924 (-663 |t#4|)) (|:| -2888 (-663 |t#4|))) $)) (-15 -4264 ((-114) |t#4| $)) (-15 -4264 ((-114) $)) (-15 -2869 ((-114) |t#4| $ (-1 (-114) |t#4| |t#4|))) (-15 -2729 ((-114) |t#4| $)) (-15 -1737 ((-114) |t#4| $)) (-15 -4301 ((-114) |t#4| $)) (-15 -3058 ((-114) $ (-1 (-114) |t#4| (-663 |t#4|)))) (-15 -2729 ((-114) $)) (-15 -1737 ((-114) $)) (-15 -4301 ((-114) $)) (-15 -1778 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -4108 ((-663 |t#4|) (-663 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -1722 (|t#4| |t#4| $)) (-15 -1686 (|t#4| |t#4| $)) (-15 -4039 (|t#4| |t#4| $)) (-15 -1440 (|t#4| |t#4| $)) (-15 -3833 ($ $)) (-15 -2113 (|t#4| |t#4| $)) (-15 -1372 ((-663 $) (-663 |t#4|))) (-15 -2253 ((-663 (-2 (|:| -1924 $) (|:| -2888 (-663 |t#4|)))) (-663 |t#4|))) (-15 -4334 ((-3 |t#4| "failed") $)) (-15 -3057 ((-3 |t#4| "failed") $)) (-15 -4345 ((-3 $ "failed") $)) (-15 -3616 ((-663 |t#3|) $)) (-15 -3621 ((-114) |t#3| $)) (-15 -3923 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3867 ((-3 $ "failed") $ |t#4|)) (-15 -2219 ($ $ |t#4|)) (IF (|has| |t#3| (-381)) (-15 -1930 ((-793) $)) |%noBranch|)))
(((-34) . T) ((-102) . T) ((-632 (-663 |#4|)) . T) ((-632 (-887)) . T) ((-153 |#4|) . T) ((-633 (-549)) |has| |#4| (-633 (-549))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ((-503 |#4|) . T) ((-528 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ((-1007 |#1| |#2| |#3| |#4|) . T) ((-1132) . T) ((-1247) . T))
-((-1821 (($ |#1| (-663 (-663 (-972 (-229)))) (-114)) 19 T ELT)) (-2007 (((-114) $ (-114)) 18 T ELT)) (-3704 (((-114) $) 17 T ELT)) (-3113 (((-663 (-663 (-972 (-229)))) $) 13 T ELT)) (-3734 ((|#1| $) 8 T ELT)) (-3809 (((-114) $) 15 T ELT)))
-(((-1243 |#1|) (-10 -8 (-15 -3734 (|#1| $)) (-15 -3113 ((-663 (-663 (-972 (-229)))) $)) (-15 -3809 ((-114) $)) (-15 -3704 ((-114) $)) (-15 -2007 ((-114) $ (-114))) (-15 -1821 ($ |#1| (-663 (-663 (-972 (-229)))) (-114)))) (-1005)) (T -1243))
-((-1821 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *4 (-114)) (-5 *1 (-1243 *2)) (-4 *2 (-1005)))) (-2007 (*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1243 *3)) (-4 *3 (-1005)))) (-3704 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1243 *3)) (-4 *3 (-1005)))) (-3809 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1243 *3)) (-4 *3 (-1005)))) (-3113 (*1 *2 *1) (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *1 (-1243 *3)) (-4 *3 (-1005)))) (-3734 (*1 *2 *1) (-12 (-5 *1 (-1243 *2)) (-4 *2 (-1005)))))
-(-10 -8 (-15 -3734 (|#1| $)) (-15 -3113 ((-663 (-663 (-972 (-229)))) $)) (-15 -3809 ((-114) $)) (-15 -3704 ((-114) $)) (-15 -2007 ((-114) $ (-114))) (-15 -1821 ($ |#1| (-663 (-663 (-972 (-229)))) (-114))))
-((-1521 (((-972 (-229)) (-972 (-229))) 31 T ELT)) (-3743 (((-972 (-229)) (-229) (-229) (-229) (-229)) 10 T ELT)) (-3317 (((-663 (-972 (-229))) (-972 (-229)) (-972 (-229)) (-972 (-229)) (-229) (-663 (-663 (-229)))) 56 T ELT)) (-3232 (((-229) (-972 (-229)) (-972 (-229))) 27 T ELT)) (-2046 (((-972 (-229)) (-972 (-229)) (-972 (-229))) 28 T ELT)) (-3650 (((-663 (-663 (-229))) (-560)) 44 T ELT)) (-2580 (((-972 (-229)) (-972 (-229)) (-972 (-229))) 26 T ELT)) (-2567 (((-972 (-229)) (-972 (-229)) (-972 (-229))) 24 T ELT)) (* (((-972 (-229)) (-229) (-972 (-229))) 22 T ELT)))
-(((-1244) (-10 -7 (-15 -3743 ((-972 (-229)) (-229) (-229) (-229) (-229))) (-15 * ((-972 (-229)) (-229) (-972 (-229)))) (-15 -2567 ((-972 (-229)) (-972 (-229)) (-972 (-229)))) (-15 -2580 ((-972 (-229)) (-972 (-229)) (-972 (-229)))) (-15 -3232 ((-229) (-972 (-229)) (-972 (-229)))) (-15 -2046 ((-972 (-229)) (-972 (-229)) (-972 (-229)))) (-15 -1521 ((-972 (-229)) (-972 (-229)))) (-15 -3650 ((-663 (-663 (-229))) (-560))) (-15 -3317 ((-663 (-972 (-229))) (-972 (-229)) (-972 (-229)) (-972 (-229)) (-229) (-663 (-663 (-229))))))) (T -1244))
-((-3317 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-663 (-663 (-229)))) (-5 *4 (-229)) (-5 *2 (-663 (-972 *4))) (-5 *1 (-1244)) (-5 *3 (-972 *4)))) (-3650 (*1 *2 *3) (-12 (-5 *3 (-560)) (-5 *2 (-663 (-663 (-229)))) (-5 *1 (-1244)))) (-1521 (*1 *2 *2) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)))) (-2046 (*1 *2 *2 *2) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)))) (-3232 (*1 *2 *3 *3) (-12 (-5 *3 (-972 (-229))) (-5 *2 (-229)) (-5 *1 (-1244)))) (-2580 (*1 *2 *2 *2) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)))) (-2567 (*1 *2 *2 *2) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-972 (-229))) (-5 *3 (-229)) (-5 *1 (-1244)))) (-3743 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)) (-5 *3 (-229)))))
-(-10 -7 (-15 -3743 ((-972 (-229)) (-229) (-229) (-229) (-229))) (-15 * ((-972 (-229)) (-229) (-972 (-229)))) (-15 -2567 ((-972 (-229)) (-972 (-229)) (-972 (-229)))) (-15 -2580 ((-972 (-229)) (-972 (-229)) (-972 (-229)))) (-15 -3232 ((-229) (-972 (-229)) (-972 (-229)))) (-15 -2046 ((-972 (-229)) (-972 (-229)) (-972 (-229)))) (-15 -1521 ((-972 (-229)) (-972 (-229)))) (-15 -3650 ((-663 (-663 (-229))) (-560))) (-15 -3317 ((-663 (-972 (-229))) (-972 (-229)) (-972 (-229)) (-972 (-229)) (-229) (-663 (-663 (-229))))))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-1982 ((|#1| $ (-793)) 18 T ELT)) (-4108 (((-793) $) 13 T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-1578 (((-987 |#1|) $) 12 T ELT) (($ (-987 |#1|)) 11 T ELT) (((-887) $) 29 (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2473 (((-114) $ $) 22 (|has| |#1| (-1132)) ELT)))
-(((-1245 |#1|) (-13 (-504 (-987 |#1|)) (-10 -8 (-15 -1982 (|#1| $ (-793))) (-15 -4108 ((-793) $)) (IF (|has| |#1| (-632 (-887))) (-6 (-632 (-887))) |%noBranch|) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|))) (-1247)) (T -1245))
-((-1982 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-1245 *2)) (-4 *2 (-1247)))) (-4108 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1245 *3)) (-4 *3 (-1247)))))
-(-13 (-504 (-987 |#1|)) (-10 -8 (-15 -1982 (|#1| $ (-793))) (-15 -4108 ((-793) $)) (IF (|has| |#1| (-632 (-887))) (-6 (-632 (-887))) |%noBranch|) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|)))
-((-3718 (((-419 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|)) (-560)) 94 T ELT)) (-3434 (((-419 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|))) 86 T ELT)) (-2667 (((-419 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|))) 70 T ELT)))
-(((-1246 |#1|) (-10 -7 (-15 -3434 ((-419 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|)))) (-15 -2667 ((-419 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|)))) (-15 -3718 ((-419 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|)) (-560)))) (-363)) (T -1246))
-((-3718 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *5 (-363)) (-5 *2 (-419 (-1201 (-1201 *5)))) (-5 *1 (-1246 *5)) (-5 *3 (-1201 (-1201 *5))))) (-2667 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-419 (-1201 (-1201 *4)))) (-5 *1 (-1246 *4)) (-5 *3 (-1201 (-1201 *4))))) (-3434 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-419 (-1201 (-1201 *4)))) (-5 *1 (-1246 *4)) (-5 *3 (-1201 (-1201 *4))))))
-(-10 -7 (-15 -3434 ((-419 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|)))) (-15 -2667 ((-419 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|)))) (-15 -3718 ((-419 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|)) (-560))))
+((-1811 (($ |#1| (-663 (-663 (-972 (-229)))) (-114)) 19 T ELT)) (-3064 (((-114) $ (-114)) 18 T ELT)) (-2121 (((-114) $) 17 T ELT)) (-2316 (((-663 (-663 (-972 (-229)))) $) 13 T ELT)) (-2370 ((|#1| $) 8 T ELT)) (-1731 (((-114) $) 15 T ELT)))
+(((-1243 |#1|) (-10 -8 (-15 -2370 (|#1| $)) (-15 -2316 ((-663 (-663 (-972 (-229)))) $)) (-15 -1731 ((-114) $)) (-15 -2121 ((-114) $)) (-15 -3064 ((-114) $ (-114))) (-15 -1811 ($ |#1| (-663 (-663 (-972 (-229)))) (-114)))) (-1005)) (T -1243))
+((-1811 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *4 (-114)) (-5 *1 (-1243 *2)) (-4 *2 (-1005)))) (-3064 (*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1243 *3)) (-4 *3 (-1005)))) (-2121 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1243 *3)) (-4 *3 (-1005)))) (-1731 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1243 *3)) (-4 *3 (-1005)))) (-2316 (*1 *2 *1) (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *1 (-1243 *3)) (-4 *3 (-1005)))) (-2370 (*1 *2 *1) (-12 (-5 *1 (-1243 *2)) (-4 *2 (-1005)))))
+(-10 -8 (-15 -2370 (|#1| $)) (-15 -2316 ((-663 (-663 (-972 (-229)))) $)) (-15 -1731 ((-114) $)) (-15 -2121 ((-114) $)) (-15 -3064 ((-114) $ (-114))) (-15 -1811 ($ |#1| (-663 (-663 (-972 (-229)))) (-114))))
+((-3101 (((-972 (-229)) (-972 (-229))) 31 T ELT)) (-2843 (((-972 (-229)) (-229) (-229) (-229) (-229)) 10 T ELT)) (-3869 (((-663 (-972 (-229))) (-972 (-229)) (-972 (-229)) (-972 (-229)) (-229) (-663 (-663 (-229)))) 56 T ELT)) (-4258 (((-229) (-972 (-229)) (-972 (-229))) 27 T ELT)) (-2192 (((-972 (-229)) (-972 (-229)) (-972 (-229))) 28 T ELT)) (-2797 (((-663 (-663 (-229))) (-560)) 44 T ELT)) (-2441 (((-972 (-229)) (-972 (-229)) (-972 (-229))) 26 T ELT)) (-2429 (((-972 (-229)) (-972 (-229)) (-972 (-229))) 24 T ELT)) (* (((-972 (-229)) (-229) (-972 (-229))) 22 T ELT)))
+(((-1244) (-10 -7 (-15 -2843 ((-972 (-229)) (-229) (-229) (-229) (-229))) (-15 * ((-972 (-229)) (-229) (-972 (-229)))) (-15 -2429 ((-972 (-229)) (-972 (-229)) (-972 (-229)))) (-15 -2441 ((-972 (-229)) (-972 (-229)) (-972 (-229)))) (-15 -4258 ((-229) (-972 (-229)) (-972 (-229)))) (-15 -2192 ((-972 (-229)) (-972 (-229)) (-972 (-229)))) (-15 -3101 ((-972 (-229)) (-972 (-229)))) (-15 -2797 ((-663 (-663 (-229))) (-560))) (-15 -3869 ((-663 (-972 (-229))) (-972 (-229)) (-972 (-229)) (-972 (-229)) (-229) (-663 (-663 (-229))))))) (T -1244))
+((-3869 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-663 (-663 (-229)))) (-5 *4 (-229)) (-5 *2 (-663 (-972 *4))) (-5 *1 (-1244)) (-5 *3 (-972 *4)))) (-2797 (*1 *2 *3) (-12 (-5 *3 (-560)) (-5 *2 (-663 (-663 (-229)))) (-5 *1 (-1244)))) (-3101 (*1 *2 *2) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)))) (-2192 (*1 *2 *2 *2) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)))) (-4258 (*1 *2 *3 *3) (-12 (-5 *3 (-972 (-229))) (-5 *2 (-229)) (-5 *1 (-1244)))) (-2441 (*1 *2 *2 *2) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)))) (-2429 (*1 *2 *2 *2) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-972 (-229))) (-5 *3 (-229)) (-5 *1 (-1244)))) (-2843 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)) (-5 *3 (-229)))))
+(-10 -7 (-15 -2843 ((-972 (-229)) (-229) (-229) (-229) (-229))) (-15 * ((-972 (-229)) (-229) (-972 (-229)))) (-15 -2429 ((-972 (-229)) (-972 (-229)) (-972 (-229)))) (-15 -2441 ((-972 (-229)) (-972 (-229)) (-972 (-229)))) (-15 -4258 ((-229) (-972 (-229)) (-972 (-229)))) (-15 -2192 ((-972 (-229)) (-972 (-229)) (-972 (-229)))) (-15 -3101 ((-972 (-229)) (-972 (-229)))) (-15 -2797 ((-663 (-663 (-229))) (-560))) (-15 -3869 ((-663 (-972 (-229))) (-972 (-229)) (-972 (-229)) (-972 (-229)) (-229) (-663 (-663 (-229))))))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-3923 ((|#1| $ (-793)) 18 T ELT)) (-2946 (((-793) $) 13 T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3913 (((-987 |#1|) $) 12 T ELT) (($ (-987 |#1|)) 11 T ELT) (((-887) $) 29 (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2340 (((-114) $ $) 22 (|has| |#1| (-1132)) ELT)))
+(((-1245 |#1|) (-13 (-504 (-987 |#1|)) (-10 -8 (-15 -3923 (|#1| $ (-793))) (-15 -2946 ((-793) $)) (IF (|has| |#1| (-632 (-887))) (-6 (-632 (-887))) |%noBranch|) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|))) (-1247)) (T -1245))
+((-3923 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-1245 *2)) (-4 *2 (-1247)))) (-2946 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1245 *3)) (-4 *3 (-1247)))))
+(-13 (-504 (-987 |#1|)) (-10 -8 (-15 -3923 (|#1| $ (-793))) (-15 -2946 ((-793) $)) (IF (|has| |#1| (-632 (-887))) (-6 (-632 (-887))) |%noBranch|) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|)))
+((-2218 (((-419 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|)) (-560)) 94 T ELT)) (-2476 (((-419 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|))) 86 T ELT)) (-2122 (((-419 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|))) 70 T ELT)))
+(((-1246 |#1|) (-10 -7 (-15 -2476 ((-419 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|)))) (-15 -2122 ((-419 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|)))) (-15 -2218 ((-419 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|)) (-560)))) (-363)) (T -1246))
+((-2218 (*1 *2 *3 *4) (-12 (-5 *4 (-560)) (-4 *5 (-363)) (-5 *2 (-419 (-1201 (-1201 *5)))) (-5 *1 (-1246 *5)) (-5 *3 (-1201 (-1201 *5))))) (-2122 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-419 (-1201 (-1201 *4)))) (-5 *1 (-1246 *4)) (-5 *3 (-1201 (-1201 *4))))) (-2476 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-419 (-1201 (-1201 *4)))) (-5 *1 (-1246 *4)) (-5 *3 (-1201 (-1201 *4))))))
+(-10 -7 (-15 -2476 ((-419 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|)))) (-15 -2122 ((-419 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|)))) (-15 -2218 ((-419 (-1201 (-1201 |#1|))) (-1201 (-1201 |#1|)) (-560))))
NIL
(((-1247) (-142)) (T -1247))
NIL
-(-13 (-10 -7 (-6 -2201)))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 9 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
+(-13 (-10 -7 (-6 -2866)))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 9 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
(((-1248) (-1114)) (T -1248))
NIL
(-1114)
-((-2142 (((-114)) 18 T ELT)) (-2439 (((-1303) (-663 |#1|) (-663 |#1|)) 22 T ELT) (((-1303) (-663 |#1|)) 23 T ELT)) (-4034 (((-114) |#1| |#1|) 37 (|has| |#1| (-871)) ELT)) (-1805 (((-114) |#1| |#1| (-1 (-114) |#1| |#1|)) 29 T ELT) (((-3 (-114) "failed") |#1| |#1|) 27 T ELT)) (-3725 ((|#1| (-663 |#1|)) 38 (|has| |#1| (-871)) ELT) ((|#1| (-663 |#1|) (-1 (-114) |#1| |#1|)) 32 T ELT)) (-2938 (((-2 (|:| -3257 (-663 |#1|)) (|:| -3229 (-663 |#1|)))) 20 T ELT)))
-(((-1249 |#1|) (-10 -7 (-15 -2439 ((-1303) (-663 |#1|))) (-15 -2439 ((-1303) (-663 |#1|) (-663 |#1|))) (-15 -2938 ((-2 (|:| -3257 (-663 |#1|)) (|:| -3229 (-663 |#1|))))) (-15 -1805 ((-3 (-114) "failed") |#1| |#1|)) (-15 -1805 ((-114) |#1| |#1| (-1 (-114) |#1| |#1|))) (-15 -3725 (|#1| (-663 |#1|) (-1 (-114) |#1| |#1|))) (-15 -2142 ((-114))) (IF (|has| |#1| (-871)) (PROGN (-15 -3725 (|#1| (-663 |#1|))) (-15 -4034 ((-114) |#1| |#1|))) |%noBranch|)) (-1132)) (T -1249))
-((-4034 (*1 *2 *3 *3) (-12 (-5 *2 (-114)) (-5 *1 (-1249 *3)) (-4 *3 (-871)) (-4 *3 (-1132)))) (-3725 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-1132)) (-4 *2 (-871)) (-5 *1 (-1249 *2)))) (-2142 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1249 *3)) (-4 *3 (-1132)))) (-3725 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *2)) (-5 *4 (-1 (-114) *2 *2)) (-5 *1 (-1249 *2)) (-4 *2 (-1132)))) (-1805 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *3 (-1132)) (-5 *2 (-114)) (-5 *1 (-1249 *3)))) (-1805 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-114)) (-5 *1 (-1249 *3)) (-4 *3 (-1132)))) (-2938 (*1 *2) (-12 (-5 *2 (-2 (|:| -3257 (-663 *3)) (|:| -3229 (-663 *3)))) (-5 *1 (-1249 *3)) (-4 *3 (-1132)))) (-2439 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-1132)) (-5 *2 (-1303)) (-5 *1 (-1249 *4)))) (-2439 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-1132)) (-5 *2 (-1303)) (-5 *1 (-1249 *4)))))
-(-10 -7 (-15 -2439 ((-1303) (-663 |#1|))) (-15 -2439 ((-1303) (-663 |#1|) (-663 |#1|))) (-15 -2938 ((-2 (|:| -3257 (-663 |#1|)) (|:| -3229 (-663 |#1|))))) (-15 -1805 ((-3 (-114) "failed") |#1| |#1|)) (-15 -1805 ((-114) |#1| |#1| (-1 (-114) |#1| |#1|))) (-15 -3725 (|#1| (-663 |#1|) (-1 (-114) |#1| |#1|))) (-15 -2142 ((-114))) (IF (|has| |#1| (-871)) (PROGN (-15 -3725 (|#1| (-663 |#1|))) (-15 -4034 ((-114) |#1| |#1|))) |%noBranch|))
-((-3672 (((-1303) (-663 (-1207)) (-663 (-1207))) 14 T ELT) (((-1303) (-663 (-1207))) 12 T ELT)) (-1930 (((-1303)) 16 T ELT)) (-3361 (((-2 (|:| -3229 (-663 (-1207))) (|:| -3257 (-663 (-1207))))) 20 T ELT)))
-(((-1250) (-10 -7 (-15 -3672 ((-1303) (-663 (-1207)))) (-15 -3672 ((-1303) (-663 (-1207)) (-663 (-1207)))) (-15 -3361 ((-2 (|:| -3229 (-663 (-1207))) (|:| -3257 (-663 (-1207)))))) (-15 -1930 ((-1303))))) (T -1250))
-((-1930 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1250)))) (-3361 (*1 *2) (-12 (-5 *2 (-2 (|:| -3229 (-663 (-1207))) (|:| -3257 (-663 (-1207))))) (-5 *1 (-1250)))) (-3672 (*1 *2 *3 *3) (-12 (-5 *3 (-663 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1250)))) (-3672 (*1 *2 *3) (-12 (-5 *3 (-663 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1250)))))
-(-10 -7 (-15 -3672 ((-1303) (-663 (-1207)))) (-15 -3672 ((-1303) (-663 (-1207)) (-663 (-1207)))) (-15 -3361 ((-2 (|:| -3229 (-663 (-1207))) (|:| -3257 (-663 (-1207)))))) (-15 -1930 ((-1303))))
-((-1804 (($ $) 17 T ELT)) (-4330 (((-114) $) 28 T ELT)))
-(((-1251 |#1|) (-10 -8 (-15 -1804 (|#1| |#1|)) (-15 -4330 ((-114) |#1|))) (-1252)) (T -1251))
-NIL
-(-10 -8 (-15 -1804 (|#1| |#1|)) (-15 -4330 ((-114) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-3244 (($ $) 46 T ELT)) (-4093 (((-114) $) 44 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-1804 (($ $) 57 T ELT)) (-3023 (((-419 $) $) 58 T ELT)) (-2238 (($) 18 T CONST)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-4330 (((-114) $) 59 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-2093 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-2132 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-4457 (((-419 $) $) 56 T ELT)) (-1528 (((-3 $ "failed") $ $) 48 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 45 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
+((-1919 (((-114)) 18 T ELT)) (-1755 (((-1303) (-663 |#1|) (-663 |#1|)) 22 T ELT) (((-1303) (-663 |#1|)) 23 T ELT)) (-3332 (((-114) |#1| |#1|) 37 (|has| |#1| (-871)) ELT)) (-1634 (((-114) |#1| |#1| (-1 (-114) |#1| |#1|)) 29 T ELT) (((-3 (-114) "failed") |#1| |#1|) 27 T ELT)) (-2297 ((|#1| (-663 |#1|)) 38 (|has| |#1| (-871)) ELT) ((|#1| (-663 |#1|) (-1 (-114) |#1| |#1|)) 32 T ELT)) (-4271 (((-2 (|:| -1333 (-663 |#1|)) (|:| -4227 (-663 |#1|)))) 20 T ELT)))
+(((-1249 |#1|) (-10 -7 (-15 -1755 ((-1303) (-663 |#1|))) (-15 -1755 ((-1303) (-663 |#1|) (-663 |#1|))) (-15 -4271 ((-2 (|:| -1333 (-663 |#1|)) (|:| -4227 (-663 |#1|))))) (-15 -1634 ((-3 (-114) "failed") |#1| |#1|)) (-15 -1634 ((-114) |#1| |#1| (-1 (-114) |#1| |#1|))) (-15 -2297 (|#1| (-663 |#1|) (-1 (-114) |#1| |#1|))) (-15 -1919 ((-114))) (IF (|has| |#1| (-871)) (PROGN (-15 -2297 (|#1| (-663 |#1|))) (-15 -3332 ((-114) |#1| |#1|))) |%noBranch|)) (-1132)) (T -1249))
+((-3332 (*1 *2 *3 *3) (-12 (-5 *2 (-114)) (-5 *1 (-1249 *3)) (-4 *3 (-871)) (-4 *3 (-1132)))) (-2297 (*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-4 *2 (-1132)) (-4 *2 (-871)) (-5 *1 (-1249 *2)))) (-1919 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1249 *3)) (-4 *3 (-1132)))) (-2297 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *2)) (-5 *4 (-1 (-114) *2 *2)) (-5 *1 (-1249 *2)) (-4 *2 (-1132)))) (-1634 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *3 (-1132)) (-5 *2 (-114)) (-5 *1 (-1249 *3)))) (-1634 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-114)) (-5 *1 (-1249 *3)) (-4 *3 (-1132)))) (-4271 (*1 *2) (-12 (-5 *2 (-2 (|:| -1333 (-663 *3)) (|:| -4227 (-663 *3)))) (-5 *1 (-1249 *3)) (-4 *3 (-1132)))) (-1755 (*1 *2 *3 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-1132)) (-5 *2 (-1303)) (-5 *1 (-1249 *4)))) (-1755 (*1 *2 *3) (-12 (-5 *3 (-663 *4)) (-4 *4 (-1132)) (-5 *2 (-1303)) (-5 *1 (-1249 *4)))))
+(-10 -7 (-15 -1755 ((-1303) (-663 |#1|))) (-15 -1755 ((-1303) (-663 |#1|) (-663 |#1|))) (-15 -4271 ((-2 (|:| -1333 (-663 |#1|)) (|:| -4227 (-663 |#1|))))) (-15 -1634 ((-3 (-114) "failed") |#1| |#1|)) (-15 -1634 ((-114) |#1| |#1| (-1 (-114) |#1| |#1|))) (-15 -2297 (|#1| (-663 |#1|) (-1 (-114) |#1| |#1|))) (-15 -1919 ((-114))) (IF (|has| |#1| (-871)) (PROGN (-15 -2297 (|#1| (-663 |#1|))) (-15 -3332 ((-114) |#1| |#1|))) |%noBranch|))
+((-3052 (((-1303) (-663 (-1207)) (-663 (-1207))) 14 T ELT) (((-1303) (-663 (-1207))) 12 T ELT)) (-3593 (((-1303)) 16 T ELT)) (-3034 (((-2 (|:| -4227 (-663 (-1207))) (|:| -1333 (-663 (-1207))))) 20 T ELT)))
+(((-1250) (-10 -7 (-15 -3052 ((-1303) (-663 (-1207)))) (-15 -3052 ((-1303) (-663 (-1207)) (-663 (-1207)))) (-15 -3034 ((-2 (|:| -4227 (-663 (-1207))) (|:| -1333 (-663 (-1207)))))) (-15 -3593 ((-1303))))) (T -1250))
+((-3593 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1250)))) (-3034 (*1 *2) (-12 (-5 *2 (-2 (|:| -4227 (-663 (-1207))) (|:| -1333 (-663 (-1207))))) (-5 *1 (-1250)))) (-3052 (*1 *2 *3 *3) (-12 (-5 *3 (-663 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1250)))) (-3052 (*1 *2 *3) (-12 (-5 *3 (-663 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1250)))))
+(-10 -7 (-15 -3052 ((-1303) (-663 (-1207)))) (-15 -3052 ((-1303) (-663 (-1207)) (-663 (-1207)))) (-15 -3034 ((-2 (|:| -4227 (-663 (-1207))) (|:| -1333 (-663 (-1207)))))) (-15 -3593 ((-1303))))
+((-1621 (($ $) 17 T ELT)) (-3141 (((-114) $) 28 T ELT)))
+(((-1251 |#1|) (-10 -8 (-15 -1621 (|#1| |#1|)) (-15 -3141 ((-114) |#1|))) (-1252)) (T -1251))
+NIL
+(-10 -8 (-15 -1621 (|#1| |#1|)) (-15 -3141 ((-114) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-4366 (($ $) 46 T ELT)) (-2667 (((-114) $) 44 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-1621 (($ $) 57 T ELT)) (-3898 (((-419 $) $) 58 T ELT)) (-3525 (($) 18 T CONST)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-3141 (((-114) $) 59 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-1861 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-1938 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-4012 (((-419 $) $) 56 T ELT)) (-2233 (((-3 $ "failed") $ $) 48 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 45 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT)))
(((-1252) (-142)) (T -1252))
-((-4330 (*1 *2 *1) (-12 (-4 *1 (-1252)) (-5 *2 (-114)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1252)))) (-1804 (*1 *1 *1) (-4 *1 (-1252))) (-4457 (*1 *2 *1) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1252)))))
-(-13 (-466) (-10 -8 (-15 -4330 ((-114) $)) (-15 -3023 ((-419 $) $)) (-15 -1804 ($ $)) (-15 -4457 ((-419 $) $))))
+((-3141 (*1 *2 *1) (-12 (-4 *1 (-1252)) (-5 *2 (-114)))) (-3898 (*1 *2 *1) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1252)))) (-1621 (*1 *1 *1) (-4 *1 (-1252))) (-4012 (*1 *2 *1) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1252)))))
+(-13 (-466) (-10 -8 (-15 -3141 ((-114) $)) (-15 -3898 ((-419 $) $)) (-15 -1621 ($ $)) (-15 -4012 ((-419 $) $))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-302) . T) ((-466) . T) ((-571) . T) ((-668 (-560)) . T) ((-668 $) . T) ((-670 $) . T) ((-662 $) . T) ((-739 $) . T) ((-748) . T) ((-1082 $) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-1562 (($ $) NIL T ELT)) (-3241 (((-793)) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2310 (($) NIL T ELT)) (-3825 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2820 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4419 (((-948) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3128 (($ (-948)) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-1421 (($ $ $) NIL T ELT)) (-1410 (($ $ $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1616 (($ $ $) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) NIL T ELT)) (-1602 (($ $ $) NIL T ELT)))
-(((-1253) (-13 (-866) (-684) (-10 -8 (-15 -1410 ($ $ $)) (-15 -1421 ($ $ $)) (-15 -2238 ($) -3081)))) (T -1253))
-((-1410 (*1 *1 *1 *1) (-5 *1 (-1253))) (-1421 (*1 *1 *1 *1) (-5 *1 (-1253))) (-2238 (*1 *1) (-5 *1 (-1253))))
-(-13 (-866) (-684) (-10 -8 (-15 -1410 ($ $ $)) (-15 -1421 ($ $ $)) (-15 -2238 ($) -3081)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2269 (($ $) NIL T ELT)) (-2552 (((-793)) NIL T ELT)) (-3525 (($) NIL T CONST)) (-1812 (($) NIL T ELT)) (-2932 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4379 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2622 (((-948) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1591 (($ (-948)) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-4098 (($ $ $) NIL T ELT)) (-4085 (($ $ $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) NIL T ELT)) (-2300 (($ $ $) NIL T ELT)))
+(((-1253) (-13 (-866) (-684) (-10 -8 (-15 -4085 ($ $ $)) (-15 -4098 ($ $ $)) (-15 -3525 ($) -2650)))) (T -1253))
+((-4085 (*1 *1 *1 *1) (-5 *1 (-1253))) (-4098 (*1 *1 *1 *1) (-5 *1 (-1253))) (-3525 (*1 *1) (-5 *1 (-1253))))
+(-13 (-866) (-684) (-10 -8 (-15 -4085 ($ $ $)) (-15 -4098 ($ $ $)) (-15 -3525 ($) -2650)))
((|NonNegativeInteger|) (|%not| (|%ilt| 16 (INTEGER-LENGTH |#1|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1562 (($ $) NIL T ELT)) (-3241 (((-793)) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2310 (($) NIL T ELT)) (-3825 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2820 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4419 (((-948) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3128 (($ (-948)) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-1421 (($ $ $) NIL T ELT)) (-1410 (($ $ $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1616 (($ $ $) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) NIL T ELT)) (-1602 (($ $ $) NIL T ELT)))
-(((-1254) (-13 (-866) (-684) (-10 -8 (-15 -1410 ($ $ $)) (-15 -1421 ($ $ $)) (-15 -2238 ($) -3081)))) (T -1254))
-((-1410 (*1 *1 *1 *1) (-5 *1 (-1254))) (-1421 (*1 *1 *1 *1) (-5 *1 (-1254))) (-2238 (*1 *1) (-5 *1 (-1254))))
-(-13 (-866) (-684) (-10 -8 (-15 -1410 ($ $ $)) (-15 -1421 ($ $ $)) (-15 -2238 ($) -3081)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2269 (($ $) NIL T ELT)) (-2552 (((-793)) NIL T ELT)) (-3525 (($) NIL T CONST)) (-1812 (($) NIL T ELT)) (-2932 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4379 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2622 (((-948) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1591 (($ (-948)) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-4098 (($ $ $) NIL T ELT)) (-4085 (($ $ $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) NIL T ELT)) (-2300 (($ $ $) NIL T ELT)))
+(((-1254) (-13 (-866) (-684) (-10 -8 (-15 -4085 ($ $ $)) (-15 -4098 ($ $ $)) (-15 -3525 ($) -2650)))) (T -1254))
+((-4085 (*1 *1 *1 *1) (-5 *1 (-1254))) (-4098 (*1 *1 *1 *1) (-5 *1 (-1254))) (-3525 (*1 *1) (-5 *1 (-1254))))
+(-13 (-866) (-684) (-10 -8 (-15 -4085 ($ $ $)) (-15 -4098 ($ $ $)) (-15 -3525 ($) -2650)))
((|NonNegativeInteger|) (|%not| (|%ilt| 32 (INTEGER-LENGTH |#1|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1562 (($ $) NIL T ELT)) (-3241 (((-793)) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2310 (($) NIL T ELT)) (-3825 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2820 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4419 (((-948) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3128 (($ (-948)) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-1421 (($ $ $) NIL T ELT)) (-1410 (($ $ $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1616 (($ $ $) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) NIL T ELT)) (-1602 (($ $ $) NIL T ELT)))
-(((-1255) (-13 (-866) (-684) (-10 -8 (-15 -1410 ($ $ $)) (-15 -1421 ($ $ $)) (-15 -2238 ($) -3081)))) (T -1255))
-((-1410 (*1 *1 *1 *1) (-5 *1 (-1255))) (-1421 (*1 *1 *1 *1) (-5 *1 (-1255))) (-2238 (*1 *1) (-5 *1 (-1255))))
-(-13 (-866) (-684) (-10 -8 (-15 -1410 ($ $ $)) (-15 -1421 ($ $ $)) (-15 -2238 ($) -3081)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2269 (($ $) NIL T ELT)) (-2552 (((-793)) NIL T ELT)) (-3525 (($) NIL T CONST)) (-1812 (($) NIL T ELT)) (-2932 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4379 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2622 (((-948) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1591 (($ (-948)) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-4098 (($ $ $) NIL T ELT)) (-4085 (($ $ $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) NIL T ELT)) (-2300 (($ $ $) NIL T ELT)))
+(((-1255) (-13 (-866) (-684) (-10 -8 (-15 -4085 ($ $ $)) (-15 -4098 ($ $ $)) (-15 -3525 ($) -2650)))) (T -1255))
+((-4085 (*1 *1 *1 *1) (-5 *1 (-1255))) (-4098 (*1 *1 *1 *1) (-5 *1 (-1255))) (-3525 (*1 *1) (-5 *1 (-1255))))
+(-13 (-866) (-684) (-10 -8 (-15 -4085 ($ $ $)) (-15 -4098 ($ $ $)) (-15 -3525 ($) -2650)))
((|NonNegativeInteger|) (|%not| (|%ilt| 64 (INTEGER-LENGTH |#1|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1562 (($ $) NIL T ELT)) (-3241 (((-793)) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2310 (($) NIL T ELT)) (-3825 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2820 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4419 (((-948) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3128 (($ (-948)) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT)) (-1421 (($ $ $) NIL T ELT)) (-1410 (($ $ $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1616 (($ $ $) NIL T ELT)) (-2536 (((-114) $ $) NIL T ELT)) (-2508 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL T ELT)) (-2495 (((-114) $ $) NIL T ELT)) (-1602 (($ $ $) NIL T ELT)))
-(((-1256) (-13 (-866) (-684) (-10 -8 (-15 -1410 ($ $ $)) (-15 -1421 ($ $ $)) (-15 -2238 ($) -3081)))) (T -1256))
-((-1410 (*1 *1 *1 *1) (-5 *1 (-1256))) (-1421 (*1 *1 *1 *1) (-5 *1 (-1256))) (-2238 (*1 *1) (-5 *1 (-1256))))
-(-13 (-866) (-684) (-10 -8 (-15 -1410 ($ $ $)) (-15 -1421 ($ $ $)) (-15 -2238 ($) -3081)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2269 (($ $) NIL T ELT)) (-2552 (((-793)) NIL T ELT)) (-3525 (($) NIL T CONST)) (-1812 (($) NIL T ELT)) (-2932 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-4379 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2622 (((-948) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1591 (($ (-948)) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT)) (-4098 (($ $ $) NIL T ELT)) (-4085 (($ $ $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2311 (($ $ $) NIL T ELT)) (-2396 (((-114) $ $) NIL T ELT)) (-2373 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL T ELT)) (-2362 (((-114) $ $) NIL T ELT)) (-2300 (($ $ $) NIL T ELT)))
+(((-1256) (-13 (-866) (-684) (-10 -8 (-15 -4085 ($ $ $)) (-15 -4098 ($ $ $)) (-15 -3525 ($) -2650)))) (T -1256))
+((-4085 (*1 *1 *1 *1) (-5 *1 (-1256))) (-4098 (*1 *1 *1 *1) (-5 *1 (-1256))) (-3525 (*1 *1) (-5 *1 (-1256))))
+(-13 (-866) (-684) (-10 -8 (-15 -4085 ($ $ $)) (-15 -4098 ($ $ $)) (-15 -3525 ($) -2650)))
((|NonNegativeInteger|) (|%not| (|%ilt| 8 (INTEGER-LENGTH |#1|))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3941 (((-1287 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-1443 (((-663 (-1113)) $) NIL T ELT)) (-2462 (((-1207) $) 10 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-3244 (($ $) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-4093 (((-114) $) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-4267 (($ $ (-560)) NIL T ELT) (($ $ (-560) (-560)) NIL T ELT)) (-1425 (((-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) NIL T ELT)) (-2397 (((-1287 |#1| |#2| |#3|) $) NIL T ELT)) (-1378 (((-3 (-1287 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-1496 (((-1287 |#1| |#2| |#3|) $) NIL T ELT)) (-4337 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3455 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) ELT)) (-1804 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-4471 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) ELT)) (-1615 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4313 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3430 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2138 (((-560) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-3781 (($ (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) NIL T ELT)) (-4363 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-1287 |#1| |#2| |#3|) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1069 (-1207))) (|has| |#1| (-376))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-3 (-560) "failed") $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1069 (-560))) (|has| |#1| (-376))) ELT)) (-3330 (((-1287 |#1| |#2| |#3|) $) NIL T ELT) (((-1207) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1069 (-1207))) (|has| |#1| (-376))) ELT) (((-421 (-560)) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-560) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1069 (-560))) (|has| |#1| (-376))) ELT)) (-3298 (($ $) NIL T ELT) (($ (-560) $) NIL T ELT)) (-1478 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1624 (($ $) NIL T ELT)) (-3142 (((-711 (-1287 |#1| |#2| |#3|)) (-711 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -3822 (-711 (-1287 |#1| |#2| |#3|))) (|:| |vec| (-1297 (-1287 |#1| |#2| |#3|)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT) (((-711 (-560)) (-711 $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2229 (((-421 (-975 |#1|)) $ (-560)) NIL (|has| |#1| (-571)) ELT) (((-421 (-975 |#1|)) $ (-560) (-560)) NIL (|has| |#1| (-571)) ELT)) (-2310 (($) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-1490 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4330 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-2928 (((-114) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-4386 (((-114) $) NIL T ELT)) (-3796 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-911 (-391))) (|has| |#1| (-376))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-911 (-560))) (|has| |#1| (-376))) ELT)) (-3913 (((-560) $) NIL T ELT) (((-560) $ (-560)) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-1617 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3757 (((-1287 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT)) (-2146 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3009 (((-3 $ "failed") $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1182)) (|has| |#1| (-376))) ELT)) (-2960 (((-114) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-3022 (($ $ (-948)) NIL T ELT)) (-1540 (($ (-1 |#1| (-560)) $) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-560)) 18 T ELT) (($ $ (-1113) (-560)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-560))) NIL T ELT)) (-3825 (($ $ $) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2820 (($ $ $) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-376)) ELT)) (-2192 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2484 (((-711 (-1287 |#1| |#2| |#3|)) (-1297 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -3822 (-711 (-1287 |#1| |#2| |#3|))) (|:| |vec| (-1297 (-1287 |#1| |#2| |#3|)))) (-1297 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT) (((-711 (-560)) (-1297 $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1507 (($ (-560) (-1287 |#1| |#2| |#3|)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2518 (($ $) 27 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| |#1| (-15 -2518 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -1443 ((-663 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-989)) (|has| |#1| (-1233)))) ELT) (($ $ (-1294 |#2|)) 28 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3161 (($) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1182)) (|has| |#1| (-376))) CONST)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2652 (($ $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-2016 (((-1287 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) ELT)) (-4457 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4372 (($ $ (-560)) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-3251 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4187 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-560)))) ELT) (($ $ (-1207) (-1287 |#1| |#2| |#3|)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-528 (-1207) (-1287 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1207)) (-663 (-1287 |#1| |#2| |#3|))) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-528 (-1207) (-1287 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-305 (-1287 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-321 (-1287 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-305 (-1287 |#1| |#2| |#3|))) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-321 (-1287 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-321 (-1287 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1287 |#1| |#2| |#3|)) (-663 (-1287 |#1| |#2| |#3|))) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-321 (-1287 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-2901 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-3924 ((|#1| $ (-560)) NIL T ELT) (($ $ $) NIL (|has| (-560) (-1143)) ELT) (($ $ (-1287 |#1| |#2| |#3|)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-298 (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2894 (($ $ (-1 (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|)) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1294 |#2|)) 26 T ELT) (($ $) 25 (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207))) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT)) (-3056 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3771 (((-1287 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT)) (-3630 (((-560) $) NIL T ELT)) (-4373 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4352 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3466 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4325 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3443 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1407 (((-549) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-633 (-549))) (|has| |#1| (-376))) ELT) (((-391) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1051)) (|has| |#1| (-376))) ELT) (((-229) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1051)) (|has| |#1| (-376))) ELT) (((-915 (-391)) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-633 (-915 (-391)))) (|has| |#1| (-376))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-633 (-915 (-560)))) (|has| |#1| (-376))) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) ELT)) (-3266 (($ $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1287 |#1| |#2| |#3|)) NIL T ELT) (($ (-1294 |#2|)) 24 T ELT) (($ (-1207)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1069 (-1207))) (|has| |#1| (-376))) ELT) (($ $) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT) (($ (-421 (-560))) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-1069 (-560))) (|has| |#1| (-376))) (|has| |#1| (-38 (-421 (-560))))) ELT)) (-2305 ((|#1| $ (-560)) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-147)) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-2930 (((-793)) NIL T CONST)) (-3355 ((|#1| $) 11 T ELT)) (-1494 (((-1287 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-4411 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4263 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2948 (((-114) $ $) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-4387 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4438 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4287 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2239 ((|#1| $ (-560)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -1578 (|#1| (-1207))))) ELT)) (-3837 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4302 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4423 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4275 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4398 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4252 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2282 (($ $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-2001 (($) 20 T CONST)) (-2011 (($) 15 T CONST)) (-3305 (($ $ (-1 (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|)) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1294 |#2|)) NIL T ELT) (($ $) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207))) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT)) (-2536 (((-114) $ $) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2508 (((-114) $ $) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2521 (((-114) $ $) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2495 (((-114) $ $) NIL (-2304 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT) (($ (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|)) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 22 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1287 |#1| |#2| |#3|)) NIL (|has| |#1| (-376)) ELT) (($ (-1287 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
-(((-1257 |#1| |#2| |#3|) (-13 (-1261 |#1| (-1287 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -1578 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -2518 ($ $ (-1294 |#2|))) |%noBranch|))) (-1080) (-1207) |#1|) (T -1257))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1257 *3 *4 *5)) (-4 *3 (-1080)) (-14 *5 *3))) (-2518 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1257 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3))))
-(-13 (-1261 |#1| (-1287 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -1578 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -2518 ($ $ (-1294 |#2|))) |%noBranch|)))
-((-3957 (((-1257 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1257 |#1| |#3| |#5|)) 23 T ELT)))
-(((-1258 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3957 ((-1257 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1257 |#1| |#3| |#5|)))) (-1080) (-1080) (-1207) (-1207) |#1| |#2|) (T -1258))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1257 *5 *7 *9)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-14 *7 (-1207)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1257 *6 *8 *10)) (-5 *1 (-1258 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1207)))))
-(-10 -7 (-15 -3957 ((-1257 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1257 |#1| |#3| |#5|))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-1443 (((-663 (-1113)) $) 86 T ELT)) (-2462 (((-1207) $) 118 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 63 (|has| |#1| (-571)) ELT)) (-3244 (($ $) 64 (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) 66 (|has| |#1| (-571)) ELT)) (-4267 (($ $ (-560)) 113 T ELT) (($ $ (-560) (-560)) 112 T ELT)) (-1425 (((-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 119 T ELT)) (-4337 (($ $) 150 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3455 (($ $) 133 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-1804 (($ $) 177 (|has| |#1| (-376)) ELT)) (-3023 (((-419 $) $) 178 (|has| |#1| (-376)) ELT)) (-4471 (($ $) 132 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1615 (((-114) $ $) 168 (|has| |#1| (-376)) ELT)) (-4313 (($ $) 149 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3430 (($ $) 134 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3781 (($ (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 188 T ELT)) (-4363 (($ $) 148 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3477 (($ $) 135 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2238 (($) 18 T CONST)) (-1478 (($ $ $) 172 (|has| |#1| (-376)) ELT)) (-1624 (($ $) 72 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-2229 (((-421 (-975 |#1|)) $ (-560)) 186 (|has| |#1| (-571)) ELT) (((-421 (-975 |#1|)) $ (-560) (-560)) 185 (|has| |#1| (-571)) ELT)) (-1490 (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 166 (|has| |#1| (-376)) ELT)) (-4330 (((-114) $) 179 (|has| |#1| (-376)) ELT)) (-4386 (((-114) $) 85 T ELT)) (-3796 (($) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3913 (((-560) $) 115 T ELT) (((-560) $ (-560)) 114 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-2146 (($ $ (-560)) 131 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3022 (($ $ (-948)) 116 T ELT)) (-1540 (($ (-1 |#1| (-560)) $) 187 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 175 (|has| |#1| (-376)) ELT)) (-1556 (((-114) $) 74 T ELT)) (-1417 (($ |#1| (-560)) 73 T ELT) (($ $ (-1113) (-560)) 88 T ELT) (($ $ (-663 (-1113)) (-663 (-560))) 87 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2192 (($ $) 157 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1583 (($ $) 77 T ELT)) (-1597 ((|#1| $) 78 T ELT)) (-2093 (($ (-663 $)) 164 (|has| |#1| (-376)) ELT) (($ $ $) 163 (|has| |#1| (-376)) ELT)) (-1905 (((-1189) $) 10 T ELT)) (-1544 (($ $) 180 (|has| |#1| (-376)) ELT)) (-2518 (($ $) 184 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) 183 (-2304 (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-989)) (|has| |#1| (-1233)) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-15 -1443 ((-663 (-1207)) |#1|))) (|has| |#1| (-15 -2518 (|#1| |#1| (-1207)))) (|has| |#1| (-38 (-421 (-560)))))) ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 165 (|has| |#1| (-376)) ELT)) (-2132 (($ (-663 $)) 162 (|has| |#1| (-376)) ELT) (($ $ $) 161 (|has| |#1| (-376)) ELT)) (-4457 (((-419 $) $) 176 (|has| |#1| (-376)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 173 (|has| |#1| (-376)) ELT)) (-4372 (($ $ (-560)) 110 T ELT)) (-1528 (((-3 $ "failed") $ $) 62 (|has| |#1| (-571)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 167 (|has| |#1| (-376)) ELT)) (-3251 (($ $) 158 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4187 (((-1185 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) ELT)) (-2901 (((-793) $) 169 (|has| |#1| (-376)) ELT)) (-3924 ((|#1| $ (-560)) 120 T ELT) (($ $ $) 96 (|has| (-560) (-1143)) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 170 (|has| |#1| (-376)) ELT)) (-2894 (($ $ (-1207)) 108 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-663 (-1207))) 106 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1207) (-793)) 105 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 104 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT) (($ $ (-793)) 98 (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT)) (-3630 (((-560) $) 76 T ELT)) (-4373 (($ $) 147 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3488 (($ $) 136 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4352 (($ $) 146 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3466 (($ $) 137 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4325 (($ $) 145 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3443 (($ $) 138 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3266 (($ $) 84 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT) (($ (-421 (-560))) 69 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 61 (|has| |#1| (-571)) ELT)) (-2305 ((|#1| $ (-560)) 71 T ELT)) (-1964 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-2930 (((-793)) 32 T CONST)) (-3355 ((|#1| $) 117 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-4411 (($ $) 156 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4263 (($ $) 144 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2948 (((-114) $ $) 65 (|has| |#1| (-571)) ELT)) (-4387 (($ $) 155 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3499 (($ $) 143 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4438 (($ $) 154 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4287 (($ $) 142 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2239 ((|#1| $ (-560)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -1578 (|#1| (-1207))))) ELT)) (-3837 (($ $) 153 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4302 (($ $) 141 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4423 (($ $) 152 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4275 (($ $) 140 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4398 (($ $) 151 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4252 (($ $) 139 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($ $ (-1207)) 107 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-663 (-1207))) 103 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1207) (-793)) 102 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 101 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT) (($ $ (-793)) 97 (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT) (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 181 (|has| |#1| (-376)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 130 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-560)) $) 68 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 67 (|has| |#1| (-38 (-421 (-560)))) ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3655 (((-1287 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-4162 (((-663 (-1113)) $) NIL T ELT)) (-2558 (((-1207) $) 10 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-4366 (($ $) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-2667 (((-114) $) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-3864 (($ $ (-560)) NIL T ELT) (($ $ (-560) (-560)) NIL T ELT)) (-1465 (((-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) NIL T ELT)) (-2604 (((-1287 |#1| |#2| |#3|) $) NIL T ELT)) (-4004 (((-3 (-1287 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-2936 (((-1287 |#1| |#2| |#3|) $) NIL T ELT)) (-1982 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1832 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) ELT)) (-1621 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-4021 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) ELT)) (-3476 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-1958 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1806 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1869 (((-560) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-2882 (($ (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) NIL T ELT)) (-2003 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1856 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-1287 |#1| |#2| |#3|) "failed") $) NIL T ELT) (((-3 (-1207) "failed") $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1069 (-1207))) (|has| |#1| (-376))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-3 (-560) "failed") $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1069 (-560))) (|has| |#1| (-376))) ELT)) (-3649 (((-1287 |#1| |#2| |#3|) $) NIL T ELT) (((-1207) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1069 (-1207))) (|has| |#1| (-376))) ELT) (((-421 (-560)) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-560) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1069 (-560))) (|has| |#1| (-376))) ELT)) (-3665 (($ $) NIL T ELT) (($ (-560) $) NIL T ELT)) (-2186 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3062 (($ $) NIL T ELT)) (-2619 (((-711 (-1287 |#1| |#2| |#3|)) (-711 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1871 (-711 (-1287 |#1| |#2| |#3|))) (|:| |vec| (-1297 (-1287 |#1| |#2| |#3|)))) (-711 $) (-1297 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT) (((-711 (-560)) (-711 $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-3434 (((-421 (-975 |#1|)) $ (-560)) NIL (|has| |#1| (-571)) ELT) (((-421 (-975 |#1|)) $ (-560) (-560)) NIL (|has| |#1| (-571)) ELT)) (-1812 (($) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-2197 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-3141 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-4172 (((-114) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-2328 (((-114) $) NIL T ELT)) (-2503 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-911 (-391))) (|has| |#1| (-376))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-911 (-560))) (|has| |#1| (-376))) ELT)) (-1460 (((-560) $) NIL T ELT) (((-560) $ (-560)) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-3490 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2473 (((-1287 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT)) (-1956 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3738 (((-3 $ "failed") $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1182)) (|has| |#1| (-376))) ELT)) (-4470 (((-114) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-3886 (($ $ (-948)) NIL T ELT)) (-1537 (($ (-1 |#1| (-560)) $) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-560)) 18 T ELT) (($ $ (-1113) (-560)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-560))) NIL T ELT)) (-2932 (($ $ $) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-4379 (($ $ $) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-376)) ELT)) (-2831 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4140 (((-711 (-1287 |#1| |#2| |#3|)) (-1297 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1871 (-711 (-1287 |#1| |#2| |#3|))) (|:| |vec| (-1297 (-1287 |#1| |#2| |#3|)))) (-1297 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT) (((-711 (-560)) (-1297 $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-660 (-560))) (|has| |#1| (-376))) ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2949 (($ (-560) (-1287 |#1| |#2| |#3|)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4424 (($ $) 27 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| |#1| (-15 -4424 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -4162 ((-663 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-989)) (|has| |#1| (-1233)))) ELT) (($ $ (-1294 |#2|)) 28 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3239 (($) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1182)) (|has| |#1| (-376))) CONST)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3211 (($ $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3147 (((-1287 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) ELT)) (-4012 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2219 (($ $ (-560)) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-2515 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2371 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-560)))) ELT) (($ $ (-1207) (-1287 |#1| |#2| |#3|)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-528 (-1207) (-1287 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1207)) (-663 (-1287 |#1| |#2| |#3|))) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-528 (-1207) (-1287 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-305 (-1287 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-321 (-1287 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-305 (-1287 |#1| |#2| |#3|))) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-321 (-1287 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-321 (-1287 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1287 |#1| |#2| |#3|)) (-663 (-1287 |#1| |#2| |#3|))) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-321 (-1287 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-3989 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-1507 ((|#1| $ (-560)) NIL T ELT) (($ $ $) NIL (|has| (-560) (-1143)) ELT) (($ $ (-1287 |#1| |#2| |#3|)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-298 (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3161 (($ $ (-1 (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|)) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1294 |#2|)) 26 T ELT) (($ $) 25 (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207))) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT)) (-2951 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2484 (((-1287 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT)) (-3900 (((-560) $) NIL T ELT)) (-2013 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1870 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1992 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1844 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1972 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1820 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2400 (((-549) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-633 (-549))) (|has| |#1| (-376))) ELT) (((-391) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1051)) (|has| |#1| (-376))) ELT) (((-229) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1051)) (|has| |#1| (-376))) ELT) (((-915 (-391)) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-633 (-915 (-391)))) (|has| |#1| (-376))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-633 (-915 (-560)))) (|has| |#1| (-376))) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) ELT)) (-3329 (($ $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1287 |#1| |#2| |#3|)) NIL T ELT) (($ (-1294 |#2|)) 24 T ELT) (($ (-1207)) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-1069 (-1207))) (|has| |#1| (-376))) ELT) (($ $) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT) (($ (-421 (-560))) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-1069 (-560))) (|has| |#1| (-376))) (|has| |#1| (-38 (-421 (-560))))) ELT)) (-2920 ((|#1| $ (-560)) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-147)) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-4191 (((-793)) NIL T CONST)) (-1351 ((|#1| $) 11 T ELT)) (-3622 (((-1287 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-559)) (|has| |#1| (-376))) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2042 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1907 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4361 (((-114) $ $) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-939)) (|has| |#1| (-376))) (|has| |#1| (-571))) ELT)) (-2022 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1882 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2059 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1932 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2905 ((|#1| $ (-560)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -3913 (|#1| (-1207))))) ELT)) (-3392 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1945 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2050 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1920 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2032 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1895 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2719 (($ $) NIL (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-1446 (($) 20 T CONST)) (-1456 (($) 15 T CONST)) (-2111 (($ $ (-1 (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|)) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1294 |#2|)) NIL T ELT) (($ $) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207))) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-927 (-1207))) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT)) (-2396 (((-114) $ $) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2373 (((-114) $ $) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2386 (((-114) $ $) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2362 (((-114) $ $) NIL (-2196 (-12 (|has| (-1287 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1287 |#1| |#2| |#3|) (-871)) (|has| |#1| (-376)))) ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT) (($ (-1287 |#1| |#2| |#3|) (-1287 |#1| |#2| |#3|)) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 22 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1287 |#1| |#2| |#3|)) NIL (|has| |#1| (-376)) ELT) (($ (-1287 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
+(((-1257 |#1| |#2| |#3|) (-13 (-1261 |#1| (-1287 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -3913 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4424 ($ $ (-1294 |#2|))) |%noBranch|))) (-1080) (-1207) |#1|) (T -1257))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1257 *3 *4 *5)) (-4 *3 (-1080)) (-14 *5 *3))) (-4424 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1257 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3))))
+(-13 (-1261 |#1| (-1287 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -3913 ($ (-1294 |#2|))) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4424 ($ $ (-1294 |#2|))) |%noBranch|)))
+((-2260 (((-1257 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1257 |#1| |#3| |#5|)) 23 T ELT)))
+(((-1258 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2260 ((-1257 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1257 |#1| |#3| |#5|)))) (-1080) (-1080) (-1207) (-1207) |#1| |#2|) (T -1258))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1257 *5 *7 *9)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-14 *7 (-1207)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1257 *6 *8 *10)) (-5 *1 (-1258 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1207)))))
+(-10 -7 (-15 -2260 ((-1257 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1257 |#1| |#3| |#5|))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-4162 (((-663 (-1113)) $) 86 T ELT)) (-2558 (((-1207) $) 118 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 63 (|has| |#1| (-571)) ELT)) (-4366 (($ $) 64 (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) 66 (|has| |#1| (-571)) ELT)) (-3864 (($ $ (-560)) 113 T ELT) (($ $ (-560) (-560)) 112 T ELT)) (-1465 (((-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 119 T ELT)) (-1982 (($ $) 150 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1832 (($ $) 133 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-1621 (($ $) 177 (|has| |#1| (-376)) ELT)) (-3898 (((-419 $) $) 178 (|has| |#1| (-376)) ELT)) (-4021 (($ $) 132 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3476 (((-114) $ $) 168 (|has| |#1| (-376)) ELT)) (-1958 (($ $) 149 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1806 (($ $) 134 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2882 (($ (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 188 T ELT)) (-2003 (($ $) 148 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1856 (($ $) 135 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3525 (($) 18 T CONST)) (-2186 (($ $ $) 172 (|has| |#1| (-376)) ELT)) (-3062 (($ $) 72 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-3434 (((-421 (-975 |#1|)) $ (-560)) 186 (|has| |#1| (-571)) ELT) (((-421 (-975 |#1|)) $ (-560) (-560)) 185 (|has| |#1| (-571)) ELT)) (-2197 (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 166 (|has| |#1| (-376)) ELT)) (-3141 (((-114) $) 179 (|has| |#1| (-376)) ELT)) (-2328 (((-114) $) 85 T ELT)) (-2503 (($) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1460 (((-560) $) 115 T ELT) (((-560) $ (-560)) 114 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-1956 (($ $ (-560)) 131 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3886 (($ $ (-948)) 116 T ELT)) (-1537 (($ (-1 |#1| (-560)) $) 187 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 175 (|has| |#1| (-376)) ELT)) (-1673 (((-114) $) 74 T ELT)) (-4139 (($ |#1| (-560)) 73 T ELT) (($ $ (-1113) (-560)) 88 T ELT) (($ $ (-663 (-1113)) (-663 (-560))) 87 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2831 (($ $) 157 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3024 (($ $) 77 T ELT)) (-3037 ((|#1| $) 78 T ELT)) (-1861 (($ (-663 $)) 164 (|has| |#1| (-376)) ELT) (($ $ $) 163 (|has| |#1| (-376)) ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2986 (($ $) 180 (|has| |#1| (-376)) ELT)) (-4424 (($ $) 184 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) 183 (-2196 (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-989)) (|has| |#1| (-1233)) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-15 -4162 ((-663 (-1207)) |#1|))) (|has| |#1| (-15 -4424 (|#1| |#1| (-1207)))) (|has| |#1| (-38 (-421 (-560)))))) ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 165 (|has| |#1| (-376)) ELT)) (-1938 (($ (-663 $)) 162 (|has| |#1| (-376)) ELT) (($ $ $) 161 (|has| |#1| (-376)) ELT)) (-4012 (((-419 $) $) 176 (|has| |#1| (-376)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 173 (|has| |#1| (-376)) ELT)) (-2219 (($ $ (-560)) 110 T ELT)) (-2233 (((-3 $ "failed") $ $) 62 (|has| |#1| (-571)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 167 (|has| |#1| (-376)) ELT)) (-2515 (($ $) 158 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2371 (((-1185 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) ELT)) (-3989 (((-793) $) 169 (|has| |#1| (-376)) ELT)) (-1507 ((|#1| $ (-560)) 120 T ELT) (($ $ $) 96 (|has| (-560) (-1143)) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 170 (|has| |#1| (-376)) ELT)) (-3161 (($ $ (-1207)) 108 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-663 (-1207))) 106 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1207) (-793)) 105 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 104 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT) (($ $ (-793)) 98 (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT)) (-3900 (((-560) $) 76 T ELT)) (-2013 (($ $) 147 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1870 (($ $) 136 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1992 (($ $) 146 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1844 (($ $) 137 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1972 (($ $) 145 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1820 (($ $) 138 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3329 (($ $) 84 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT) (($ (-421 (-560))) 69 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 61 (|has| |#1| (-571)) ELT)) (-2920 ((|#1| $ (-560)) 71 T ELT)) (-3919 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-4191 (((-793)) 32 T CONST)) (-1351 ((|#1| $) 117 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2042 (($ $) 156 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1907 (($ $) 144 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4361 (((-114) $ $) 65 (|has| |#1| (-571)) ELT)) (-2022 (($ $) 155 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1882 (($ $) 143 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2059 (($ $) 154 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1932 (($ $) 142 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2905 ((|#1| $ (-560)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -3913 (|#1| (-1207))))) ELT)) (-3392 (($ $) 153 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1945 (($ $) 141 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2050 (($ $) 152 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1920 (($ $) 140 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2032 (($ $) 151 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1895 (($ $) 139 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($ $ (-1207)) 107 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-663 (-1207))) 103 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1207) (-793)) 102 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 101 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT) (($ $ (-793)) 97 (|has| |#1| (-15 * (|#1| (-560) |#1|))) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT) (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 181 (|has| |#1| (-376)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 130 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-560)) $) 68 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 67 (|has| |#1| (-38 (-421 (-560)))) ELT)))
(((-1259 |#1|) (-142) (-1080)) (T -1259))
-((-3781 (*1 *1 *2) (-12 (-5 *2 (-1185 (-2 (|:| |k| (-560)) (|:| |c| *3)))) (-4 *3 (-1080)) (-4 *1 (-1259 *3)))) (-1540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-560))) (-4 *1 (-1259 *3)) (-4 *3 (-1080)))) (-2229 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1259 *4)) (-4 *4 (-1080)) (-4 *4 (-571)) (-5 *2 (-421 (-975 *4))))) (-2229 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1259 *4)) (-4 *4 (-1080)) (-4 *4 (-571)) (-5 *2 (-421 (-975 *4))))) (-2518 (*1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-560)))))) (-2518 (*1 *1 *1 *2) (-2304 (-12 (-5 *2 (-1207)) (-4 *1 (-1259 *3)) (-4 *3 (-1080)) (-12 (-4 *3 (-29 (-560))) (-4 *3 (-989)) (-4 *3 (-1233)) (-4 *3 (-38 (-421 (-560)))))) (-12 (-5 *2 (-1207)) (-4 *1 (-1259 *3)) (-4 *3 (-1080)) (-12 (|has| *3 (-15 -1443 ((-663 *2) *3))) (|has| *3 (-15 -2518 (*3 *3 *2))) (-4 *3 (-38 (-421 (-560)))))))))
-(-13 (-1276 |t#1| (-560)) (-10 -8 (-15 -3781 ($ (-1185 (-2 (|:| |k| (-560)) (|:| |c| |t#1|))))) (-15 -1540 ($ (-1 |t#1| (-560)) $)) (IF (|has| |t#1| (-571)) (PROGN (-15 -2229 ((-421 (-975 |t#1|)) $ (-560))) (-15 -2229 ((-421 (-975 |t#1|)) $ (-560) (-560)))) |%noBranch|) (IF (|has| |t#1| (-38 (-421 (-560)))) (PROGN (-15 -2518 ($ $)) (IF (|has| |t#1| (-15 -2518 (|t#1| |t#1| (-1207)))) (IF (|has| |t#1| (-15 -1443 ((-663 (-1207)) |t#1|))) (-15 -2518 ($ $ (-1207))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1233)) (IF (|has| |t#1| (-989)) (IF (|has| |t#1| (-29 (-560))) (-15 -2518 ($ $ (-1207))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1033)) (-6 (-1233))) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-560)) . T) ((-25) . T) ((-38 #1=(-421 (-560))) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-421 (-560)))) ((-95) |has| |#1| (-38 (-421 (-560)))) ((-102) . T) ((-111 #1# #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-632 (-887)) . T) ((-175) -2304 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-560) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-560) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-560) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-421 (-560)))) ((-298 #0# |#1|) . T) ((-298 $ $) |has| (-560) (-1143)) ((-302) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-466) |has| |#1| (-376)) ((-507) |has| |#1| (-38 (-421 (-560)))) ((-571) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-668 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-739 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-748) . T) ((-921 $ #2=(-1207)) -12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) ((-927 #2#) -12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) ((-929 #2#) -12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) ((-1004 |#1| #0# (-1113)) . T) ((-950) |has| |#1| (-376)) ((-1033) |has| |#1| (-38 (-421 (-560)))) ((-1082 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1082 |#1|) . T) ((-1082 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1087 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1087 |#1|) . T) ((-1087 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1233) |has| |#1| (-38 (-421 (-560)))) ((-1236) |has| |#1| (-38 (-421 (-560)))) ((-1247) . T) ((-1252) |has| |#1| (-376)) ((-1276 |#1| #0#) . T))
-((-2388 (((-114) $) 12 T ELT)) (-2539 (((-3 |#3| "failed") $) 17 T ELT) (((-3 (-1207) "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 (-560) "failed") $) NIL T ELT)) (-3330 ((|#3| $) 14 T ELT) (((-1207) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) (((-560) $) NIL T ELT)))
-(((-1260 |#1| |#2| |#3|) (-10 -8 (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -3330 ((-560) |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 -2539 ((-3 (-1207) "failed") |#1|)) (-15 -3330 ((-1207) |#1|)) (-15 -2539 ((-3 |#3| "failed") |#1|)) (-15 -3330 (|#3| |#1|)) (-15 -2388 ((-114) |#1|))) (-1261 |#2| |#3|) (-1080) (-1290 |#2|)) (T -1260))
-NIL
-(-10 -8 (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -3330 ((-560) |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 -2539 ((-3 (-1207) "failed") |#1|)) (-15 -3330 ((-1207) |#1|)) (-15 -2539 ((-3 |#3| "failed") |#1|)) (-15 -3330 (|#3| |#1|)) (-15 -2388 ((-114) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3941 ((|#2| $) 251 (-1953 (|has| |#2| (-319)) (|has| |#1| (-376))) ELT)) (-1443 (((-663 (-1113)) $) 86 T ELT)) (-2462 (((-1207) $) 118 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 63 (|has| |#1| (-571)) ELT)) (-3244 (($ $) 64 (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) 66 (|has| |#1| (-571)) ELT)) (-4267 (($ $ (-560)) 113 T ELT) (($ $ (-560) (-560)) 112 T ELT)) (-1425 (((-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 119 T ELT)) (-2397 ((|#2| $) 287 T ELT)) (-1378 (((-3 |#2| "failed") $) 283 T ELT)) (-1496 ((|#2| $) 284 T ELT)) (-4337 (($ $) 150 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3455 (($ $) 133 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) 260 (-1953 (|has| |#2| (-939)) (|has| |#1| (-376))) ELT)) (-1804 (($ $) 177 (|has| |#1| (-376)) ELT)) (-3023 (((-419 $) $) 178 (|has| |#1| (-376)) ELT)) (-4471 (($ $) 132 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 257 (-1953 (|has| |#2| (-939)) (|has| |#1| (-376))) ELT)) (-1615 (((-114) $ $) 168 (|has| |#1| (-376)) ELT)) (-4313 (($ $) 149 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3430 (($ $) 134 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2138 (((-560) $) 269 (-1953 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-3781 (($ (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 188 T ELT)) (-4363 (($ $) 148 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3477 (($ $) 135 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2238 (($) 18 T CONST)) (-2539 (((-3 |#2| "failed") $) 290 T ELT) (((-3 (-560) "failed") $) 280 (-1953 (|has| |#2| (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-3 (-421 (-560)) "failed") $) 278 (-1953 (|has| |#2| (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-3 (-1207) "failed") $) 262 (-1953 (|has| |#2| (-1069 (-1207))) (|has| |#1| (-376))) ELT)) (-3330 ((|#2| $) 291 T ELT) (((-560) $) 279 (-1953 (|has| |#2| (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-421 (-560)) $) 277 (-1953 (|has| |#2| (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-1207) $) 261 (-1953 (|has| |#2| (-1069 (-1207))) (|has| |#1| (-376))) ELT)) (-3298 (($ $) 286 T ELT) (($ (-560) $) 285 T ELT)) (-1478 (($ $ $) 172 (|has| |#1| (-376)) ELT)) (-1624 (($ $) 72 T ELT)) (-3142 (((-711 |#2|) (-711 $)) 239 (|has| |#1| (-376)) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) 238 (|has| |#1| (-376)) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 237 (-1953 (|has| |#2| (-660 (-560))) (|has| |#1| (-376))) ELT) (((-711 (-560)) (-711 $)) 236 (-1953 (|has| |#2| (-660 (-560))) (|has| |#1| (-376))) ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-2229 (((-421 (-975 |#1|)) $ (-560)) 186 (|has| |#1| (-571)) ELT) (((-421 (-975 |#1|)) $ (-560) (-560)) 185 (|has| |#1| (-571)) ELT)) (-2310 (($) 253 (-1953 (|has| |#2| (-559)) (|has| |#1| (-376))) ELT)) (-1490 (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 166 (|has| |#1| (-376)) ELT)) (-4330 (((-114) $) 179 (|has| |#1| (-376)) ELT)) (-2928 (((-114) $) 267 (-1953 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-4386 (((-114) $) 85 T ELT)) (-3796 (($) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 245 (-1953 (|has| |#2| (-911 (-391))) (|has| |#1| (-376))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 244 (-1953 (|has| |#2| (-911 (-560))) (|has| |#1| (-376))) ELT)) (-3913 (((-560) $) 115 T ELT) (((-560) $ (-560)) 114 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-1617 (($ $) 249 (|has| |#1| (-376)) ELT)) (-3757 ((|#2| $) 247 (|has| |#1| (-376)) ELT)) (-2146 (($ $ (-560)) 131 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3009 (((-3 $ "failed") $) 281 (-1953 (|has| |#2| (-1182)) (|has| |#1| (-376))) ELT)) (-2960 (((-114) $) 268 (-1953 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-3022 (($ $ (-948)) 116 T ELT)) (-1540 (($ (-1 |#1| (-560)) $) 187 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 175 (|has| |#1| (-376)) ELT)) (-1556 (((-114) $) 74 T ELT)) (-1417 (($ |#1| (-560)) 73 T ELT) (($ $ (-1113) (-560)) 88 T ELT) (($ $ (-663 (-1113)) (-663 (-560))) 87 T ELT)) (-3825 (($ $ $) 276 (-1953 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2820 (($ $ $) 275 (-1953 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 75 T ELT) (($ (-1 |#2| |#2|) $) 229 (|has| |#1| (-376)) ELT)) (-2192 (($ $) 157 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2484 (((-711 |#2|) (-1297 $)) 241 (|has| |#1| (-376)) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) 240 (|has| |#1| (-376)) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 235 (-1953 (|has| |#2| (-660 (-560))) (|has| |#1| (-376))) ELT) (((-711 (-560)) (-1297 $)) 234 (-1953 (|has| |#2| (-660 (-560))) (|has| |#1| (-376))) ELT)) (-1583 (($ $) 77 T ELT)) (-1597 ((|#1| $) 78 T ELT)) (-2093 (($ (-663 $)) 164 (|has| |#1| (-376)) ELT) (($ $ $) 163 (|has| |#1| (-376)) ELT)) (-1507 (($ (-560) |#2|) 288 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-1544 (($ $) 180 (|has| |#1| (-376)) ELT)) (-2518 (($ $) 184 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) 183 (-2304 (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-989)) (|has| |#1| (-1233)) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-15 -1443 ((-663 (-1207)) |#1|))) (|has| |#1| (-15 -2518 (|#1| |#1| (-1207)))) (|has| |#1| (-38 (-421 (-560)))))) ELT)) (-3161 (($) 282 (-1953 (|has| |#2| (-1182)) (|has| |#1| (-376))) CONST)) (-3855 (((-1151) $) 11 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 165 (|has| |#1| (-376)) ELT)) (-2132 (($ (-663 $)) 162 (|has| |#1| (-376)) ELT) (($ $ $) 161 (|has| |#1| (-376)) ELT)) (-2652 (($ $) 252 (-1953 (|has| |#2| (-319)) (|has| |#1| (-376))) ELT)) (-2016 ((|#2| $) 255 (-1953 (|has| |#2| (-559)) (|has| |#1| (-376))) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) 258 (-1953 (|has| |#2| (-939)) (|has| |#1| (-376))) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) 259 (-1953 (|has| |#2| (-939)) (|has| |#1| (-376))) ELT)) (-4457 (((-419 $) $) 176 (|has| |#1| (-376)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 173 (|has| |#1| (-376)) ELT)) (-4372 (($ $ (-560)) 110 T ELT)) (-1528 (((-3 $ "failed") $ $) 62 (|has| |#1| (-571)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 167 (|has| |#1| (-376)) ELT)) (-3251 (($ $) 158 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4187 (((-1185 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) ELT) (($ $ (-1207) |#2|) 228 (-1953 (|has| |#2| (-528 (-1207) |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1207)) (-663 |#2|)) 227 (-1953 (|has| |#2| (-528 (-1207) |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-663 (-305 |#2|))) 226 (-1953 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-305 |#2|)) 225 (-1953 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ |#2| |#2|) 224 (-1953 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) 223 (-1953 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT)) (-2901 (((-793) $) 169 (|has| |#1| (-376)) ELT)) (-3924 ((|#1| $ (-560)) 120 T ELT) (($ $ $) 96 (|has| (-560) (-1143)) ELT) (($ $ |#2|) 222 (-1953 (|has| |#2| (-298 |#2| |#2|)) (|has| |#1| (-376))) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 170 (|has| |#1| (-376)) ELT)) (-2894 (($ $ (-1 |#2| |#2|) (-793)) 231 (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) 230 (|has| |#1| (-376)) ELT) (($ $) 100 (-2304 (-1953 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) 98 (-2304 (-1953 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1207)) 108 (-2304 (-1953 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-663 (-1207))) 106 (-2304 (-1953 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-1207) (-793)) 105 (-2304 (-1953 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 104 (-2304 (-1953 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT)) (-3056 (($ $) 250 (|has| |#1| (-376)) ELT)) (-3771 ((|#2| $) 248 (|has| |#1| (-376)) ELT)) (-3630 (((-560) $) 76 T ELT)) (-4373 (($ $) 147 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3488 (($ $) 136 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4352 (($ $) 146 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3466 (($ $) 137 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4325 (($ $) 145 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3443 (($ $) 138 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1407 (((-229) $) 266 (-1953 (|has| |#2| (-1051)) (|has| |#1| (-376))) ELT) (((-391) $) 265 (-1953 (|has| |#2| (-1051)) (|has| |#1| (-376))) ELT) (((-549) $) 264 (-1953 (|has| |#2| (-633 (-549))) (|has| |#1| (-376))) ELT) (((-915 (-391)) $) 243 (-1953 (|has| |#2| (-633 (-915 (-391)))) (|has| |#1| (-376))) ELT) (((-915 (-560)) $) 242 (-1953 (|has| |#2| (-633 (-915 (-560)))) (|has| |#1| (-376))) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) 256 (-1953 (-1953 (|has| $ (-147)) (|has| |#2| (-939))) (|has| |#1| (-376))) ELT)) (-3266 (($ $) 84 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT) (($ |#2|) 289 T ELT) (($ (-1207)) 263 (-1953 (|has| |#2| (-1069 (-1207))) (|has| |#1| (-376))) ELT) (($ (-421 (-560))) 69 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 61 (|has| |#1| (-571)) ELT)) (-2305 ((|#1| $ (-560)) 71 T ELT)) (-1964 (((-3 $ "failed") $) 60 (-2304 (-1953 (-2304 (|has| |#2| (-147)) (-1953 (|has| $ (-147)) (|has| |#2| (-939)))) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-2930 (((-793)) 32 T CONST)) (-3355 ((|#1| $) 117 T ELT)) (-1494 ((|#2| $) 254 (-1953 (|has| |#2| (-559)) (|has| |#1| (-376))) ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-4411 (($ $) 156 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4263 (($ $) 144 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2948 (((-114) $ $) 65 (|has| |#1| (-571)) ELT)) (-4387 (($ $) 155 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3499 (($ $) 143 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4438 (($ $) 154 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4287 (($ $) 142 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2239 ((|#1| $ (-560)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -1578 (|#1| (-1207))))) ELT)) (-3837 (($ $) 153 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4302 (($ $) 141 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4423 (($ $) 152 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4275 (($ $) 140 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4398 (($ $) 151 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4252 (($ $) 139 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2282 (($ $) 270 (-1953 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($ $ (-1 |#2| |#2|) (-793)) 233 (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) 232 (|has| |#1| (-376)) ELT) (($ $) 99 (-2304 (-1953 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) 97 (-2304 (-1953 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1207)) 107 (-2304 (-1953 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-663 (-1207))) 103 (-2304 (-1953 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-1207) (-793)) 102 (-2304 (-1953 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 101 (-2304 (-1953 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT)) (-2536 (((-114) $ $) 274 (-1953 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2508 (((-114) $ $) 272 (-1953 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2521 (((-114) $ $) 273 (-1953 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2495 (((-114) $ $) 271 (-1953 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2594 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT) (($ $ $) 182 (|has| |#1| (-376)) ELT) (($ |#2| |#2|) 246 (|has| |#1| (-376)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 181 (|has| |#1| (-376)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 130 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ $ |#2|) 221 (|has| |#1| (-376)) ELT) (($ |#2| $) 220 (|has| |#1| (-376)) ELT) (($ (-421 (-560)) $) 68 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 67 (|has| |#1| (-38 (-421 (-560)))) ELT)))
+((-2882 (*1 *1 *2) (-12 (-5 *2 (-1185 (-2 (|:| |k| (-560)) (|:| |c| *3)))) (-4 *3 (-1080)) (-4 *1 (-1259 *3)))) (-1537 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-560))) (-4 *1 (-1259 *3)) (-4 *3 (-1080)))) (-3434 (*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1259 *4)) (-4 *4 (-1080)) (-4 *4 (-571)) (-5 *2 (-421 (-975 *4))))) (-3434 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-4 *1 (-1259 *4)) (-4 *4 (-1080)) (-4 *4 (-571)) (-5 *2 (-421 (-975 *4))))) (-4424 (*1 *1 *1) (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-560)))))) (-4424 (*1 *1 *1 *2) (-2196 (-12 (-5 *2 (-1207)) (-4 *1 (-1259 *3)) (-4 *3 (-1080)) (-12 (-4 *3 (-29 (-560))) (-4 *3 (-989)) (-4 *3 (-1233)) (-4 *3 (-38 (-421 (-560)))))) (-12 (-5 *2 (-1207)) (-4 *1 (-1259 *3)) (-4 *3 (-1080)) (-12 (|has| *3 (-15 -4162 ((-663 *2) *3))) (|has| *3 (-15 -4424 (*3 *3 *2))) (-4 *3 (-38 (-421 (-560)))))))))
+(-13 (-1276 |t#1| (-560)) (-10 -8 (-15 -2882 ($ (-1185 (-2 (|:| |k| (-560)) (|:| |c| |t#1|))))) (-15 -1537 ($ (-1 |t#1| (-560)) $)) (IF (|has| |t#1| (-571)) (PROGN (-15 -3434 ((-421 (-975 |t#1|)) $ (-560))) (-15 -3434 ((-421 (-975 |t#1|)) $ (-560) (-560)))) |%noBranch|) (IF (|has| |t#1| (-38 (-421 (-560)))) (PROGN (-15 -4424 ($ $)) (IF (|has| |t#1| (-15 -4424 (|t#1| |t#1| (-1207)))) (IF (|has| |t#1| (-15 -4162 ((-663 (-1207)) |t#1|))) (-15 -4424 ($ $ (-1207))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1233)) (IF (|has| |t#1| (-989)) (IF (|has| |t#1| (-29 (-560))) (-15 -4424 ($ $ (-1207))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1033)) (-6 (-1233))) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-560)) . T) ((-25) . T) ((-38 #1=(-421 (-560))) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-421 (-560)))) ((-95) |has| |#1| (-38 (-421 (-560)))) ((-102) . T) ((-111 #1# #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-632 (-887)) . T) ((-175) -2196 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-560) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-560) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-560) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-421 (-560)))) ((-298 #0# |#1|) . T) ((-298 $ $) |has| (-560) (-1143)) ((-302) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-466) |has| |#1| (-376)) ((-507) |has| |#1| (-38 (-421 (-560)))) ((-571) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-668 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-739 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-748) . T) ((-921 $ #2=(-1207)) -12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) ((-927 #2#) -12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) ((-929 #2#) -12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207)))) ((-1004 |#1| #0# (-1113)) . T) ((-950) |has| |#1| (-376)) ((-1033) |has| |#1| (-38 (-421 (-560)))) ((-1082 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1082 |#1|) . T) ((-1082 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1087 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1087 |#1|) . T) ((-1087 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1233) |has| |#1| (-38 (-421 (-560)))) ((-1236) |has| |#1| (-38 (-421 (-560)))) ((-1247) . T) ((-1252) |has| |#1| (-376)) ((-1276 |#1| #0#) . T))
+((-2505 (((-114) $) 12 T ELT)) (-3929 (((-3 |#3| "failed") $) 17 T ELT) (((-3 (-1207) "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 (-560) "failed") $) NIL T ELT)) (-3649 ((|#3| $) 14 T ELT) (((-1207) $) NIL T ELT) (((-421 (-560)) $) NIL T ELT) (((-560) $) NIL T ELT)))
+(((-1260 |#1| |#2| |#3|) (-10 -8 (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -3649 ((-560) |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 -3929 ((-3 (-1207) "failed") |#1|)) (-15 -3649 ((-1207) |#1|)) (-15 -3929 ((-3 |#3| "failed") |#1|)) (-15 -3649 (|#3| |#1|)) (-15 -2505 ((-114) |#1|))) (-1261 |#2| |#3|) (-1080) (-1290 |#2|)) (T -1260))
+NIL
+(-10 -8 (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -3649 ((-560) |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 -3929 ((-3 (-1207) "failed") |#1|)) (-15 -3649 ((-1207) |#1|)) (-15 -3929 ((-3 |#3| "failed") |#1|)) (-15 -3649 (|#3| |#1|)) (-15 -2505 ((-114) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3655 ((|#2| $) 251 (-1404 (|has| |#2| (-319)) (|has| |#1| (-376))) ELT)) (-4162 (((-663 (-1113)) $) 86 T ELT)) (-2558 (((-1207) $) 118 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 63 (|has| |#1| (-571)) ELT)) (-4366 (($ $) 64 (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) 66 (|has| |#1| (-571)) ELT)) (-3864 (($ $ (-560)) 113 T ELT) (($ $ (-560) (-560)) 112 T ELT)) (-1465 (((-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 119 T ELT)) (-2604 ((|#2| $) 287 T ELT)) (-4004 (((-3 |#2| "failed") $) 283 T ELT)) (-2936 ((|#2| $) 284 T ELT)) (-1982 (($ $) 150 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1832 (($ $) 133 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) 260 (-1404 (|has| |#2| (-939)) (|has| |#1| (-376))) ELT)) (-1621 (($ $) 177 (|has| |#1| (-376)) ELT)) (-3898 (((-419 $) $) 178 (|has| |#1| (-376)) ELT)) (-4021 (($ $) 132 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 257 (-1404 (|has| |#2| (-939)) (|has| |#1| (-376))) ELT)) (-3476 (((-114) $ $) 168 (|has| |#1| (-376)) ELT)) (-1958 (($ $) 149 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1806 (($ $) 134 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1869 (((-560) $) 269 (-1404 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-2882 (($ (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 188 T ELT)) (-2003 (($ $) 148 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1856 (($ $) 135 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3525 (($) 18 T CONST)) (-3929 (((-3 |#2| "failed") $) 290 T ELT) (((-3 (-560) "failed") $) 280 (-1404 (|has| |#2| (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-3 (-421 (-560)) "failed") $) 278 (-1404 (|has| |#2| (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-3 (-1207) "failed") $) 262 (-1404 (|has| |#2| (-1069 (-1207))) (|has| |#1| (-376))) ELT)) (-3649 ((|#2| $) 291 T ELT) (((-560) $) 279 (-1404 (|has| |#2| (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-421 (-560)) $) 277 (-1404 (|has| |#2| (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-1207) $) 261 (-1404 (|has| |#2| (-1069 (-1207))) (|has| |#1| (-376))) ELT)) (-3665 (($ $) 286 T ELT) (($ (-560) $) 285 T ELT)) (-2186 (($ $ $) 172 (|has| |#1| (-376)) ELT)) (-3062 (($ $) 72 T ELT)) (-2619 (((-711 |#2|) (-711 $)) 239 (|has| |#1| (-376)) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) 238 (|has| |#1| (-376)) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 237 (-1404 (|has| |#2| (-660 (-560))) (|has| |#1| (-376))) ELT) (((-711 (-560)) (-711 $)) 236 (-1404 (|has| |#2| (-660 (-560))) (|has| |#1| (-376))) ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-3434 (((-421 (-975 |#1|)) $ (-560)) 186 (|has| |#1| (-571)) ELT) (((-421 (-975 |#1|)) $ (-560) (-560)) 185 (|has| |#1| (-571)) ELT)) (-1812 (($) 253 (-1404 (|has| |#2| (-559)) (|has| |#1| (-376))) ELT)) (-2197 (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 166 (|has| |#1| (-376)) ELT)) (-3141 (((-114) $) 179 (|has| |#1| (-376)) ELT)) (-4172 (((-114) $) 267 (-1404 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-2328 (((-114) $) 85 T ELT)) (-2503 (($) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 245 (-1404 (|has| |#2| (-911 (-391))) (|has| |#1| (-376))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 244 (-1404 (|has| |#2| (-911 (-560))) (|has| |#1| (-376))) ELT)) (-1460 (((-560) $) 115 T ELT) (((-560) $ (-560)) 114 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3490 (($ $) 249 (|has| |#1| (-376)) ELT)) (-2473 ((|#2| $) 247 (|has| |#1| (-376)) ELT)) (-1956 (($ $ (-560)) 131 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3738 (((-3 $ "failed") $) 281 (-1404 (|has| |#2| (-1182)) (|has| |#1| (-376))) ELT)) (-4470 (((-114) $) 268 (-1404 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-3886 (($ $ (-948)) 116 T ELT)) (-1537 (($ (-1 |#1| (-560)) $) 187 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 175 (|has| |#1| (-376)) ELT)) (-1673 (((-114) $) 74 T ELT)) (-4139 (($ |#1| (-560)) 73 T ELT) (($ $ (-1113) (-560)) 88 T ELT) (($ $ (-663 (-1113)) (-663 (-560))) 87 T ELT)) (-2932 (($ $ $) 276 (-1404 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-4379 (($ $ $) 275 (-1404 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 75 T ELT) (($ (-1 |#2| |#2|) $) 229 (|has| |#1| (-376)) ELT)) (-2831 (($ $) 157 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4140 (((-711 |#2|) (-1297 $)) 241 (|has| |#1| (-376)) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) 240 (|has| |#1| (-376)) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 235 (-1404 (|has| |#2| (-660 (-560))) (|has| |#1| (-376))) ELT) (((-711 (-560)) (-1297 $)) 234 (-1404 (|has| |#2| (-660 (-560))) (|has| |#1| (-376))) ELT)) (-3024 (($ $) 77 T ELT)) (-3037 ((|#1| $) 78 T ELT)) (-1861 (($ (-663 $)) 164 (|has| |#1| (-376)) ELT) (($ $ $) 163 (|has| |#1| (-376)) ELT)) (-2949 (($ (-560) |#2|) 288 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2986 (($ $) 180 (|has| |#1| (-376)) ELT)) (-4424 (($ $) 184 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) 183 (-2196 (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-989)) (|has| |#1| (-1233)) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-15 -4162 ((-663 (-1207)) |#1|))) (|has| |#1| (-15 -4424 (|#1| |#1| (-1207)))) (|has| |#1| (-38 (-421 (-560)))))) ELT)) (-3239 (($) 282 (-1404 (|has| |#2| (-1182)) (|has| |#1| (-376))) CONST)) (-3376 (((-1151) $) 11 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 165 (|has| |#1| (-376)) ELT)) (-1938 (($ (-663 $)) 162 (|has| |#1| (-376)) ELT) (($ $ $) 161 (|has| |#1| (-376)) ELT)) (-3211 (($ $) 252 (-1404 (|has| |#2| (-319)) (|has| |#1| (-376))) ELT)) (-3147 ((|#2| $) 255 (-1404 (|has| |#2| (-559)) (|has| |#1| (-376))) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) 258 (-1404 (|has| |#2| (-939)) (|has| |#1| (-376))) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) 259 (-1404 (|has| |#2| (-939)) (|has| |#1| (-376))) ELT)) (-4012 (((-419 $) $) 176 (|has| |#1| (-376)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 173 (|has| |#1| (-376)) ELT)) (-2219 (($ $ (-560)) 110 T ELT)) (-2233 (((-3 $ "failed") $ $) 62 (|has| |#1| (-571)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 167 (|has| |#1| (-376)) ELT)) (-2515 (($ $) 158 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2371 (((-1185 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) ELT) (($ $ (-1207) |#2|) 228 (-1404 (|has| |#2| (-528 (-1207) |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1207)) (-663 |#2|)) 227 (-1404 (|has| |#2| (-528 (-1207) |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-663 (-305 |#2|))) 226 (-1404 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-305 |#2|)) 225 (-1404 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ |#2| |#2|) 224 (-1404 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) 223 (-1404 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT)) (-3989 (((-793) $) 169 (|has| |#1| (-376)) ELT)) (-1507 ((|#1| $ (-560)) 120 T ELT) (($ $ $) 96 (|has| (-560) (-1143)) ELT) (($ $ |#2|) 222 (-1404 (|has| |#2| (-298 |#2| |#2|)) (|has| |#1| (-376))) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 170 (|has| |#1| (-376)) ELT)) (-3161 (($ $ (-1 |#2| |#2|) (-793)) 231 (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) 230 (|has| |#1| (-376)) ELT) (($ $) 100 (-2196 (-1404 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) 98 (-2196 (-1404 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1207)) 108 (-2196 (-1404 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-663 (-1207))) 106 (-2196 (-1404 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-1207) (-793)) 105 (-2196 (-1404 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 104 (-2196 (-1404 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT)) (-2951 (($ $) 250 (|has| |#1| (-376)) ELT)) (-2484 ((|#2| $) 248 (|has| |#1| (-376)) ELT)) (-3900 (((-560) $) 76 T ELT)) (-2013 (($ $) 147 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1870 (($ $) 136 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1992 (($ $) 146 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1844 (($ $) 137 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1972 (($ $) 145 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1820 (($ $) 138 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2400 (((-229) $) 266 (-1404 (|has| |#2| (-1051)) (|has| |#1| (-376))) ELT) (((-391) $) 265 (-1404 (|has| |#2| (-1051)) (|has| |#1| (-376))) ELT) (((-549) $) 264 (-1404 (|has| |#2| (-633 (-549))) (|has| |#1| (-376))) ELT) (((-915 (-391)) $) 243 (-1404 (|has| |#2| (-633 (-915 (-391)))) (|has| |#1| (-376))) ELT) (((-915 (-560)) $) 242 (-1404 (|has| |#2| (-633 (-915 (-560)))) (|has| |#1| (-376))) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) 256 (-1404 (-1404 (|has| $ (-147)) (|has| |#2| (-939))) (|has| |#1| (-376))) ELT)) (-3329 (($ $) 84 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT) (($ |#2|) 289 T ELT) (($ (-1207)) 263 (-1404 (|has| |#2| (-1069 (-1207))) (|has| |#1| (-376))) ELT) (($ (-421 (-560))) 69 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 61 (|has| |#1| (-571)) ELT)) (-2920 ((|#1| $ (-560)) 71 T ELT)) (-3919 (((-3 $ "failed") $) 60 (-2196 (-1404 (-2196 (|has| |#2| (-147)) (-1404 (|has| $ (-147)) (|has| |#2| (-939)))) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-4191 (((-793)) 32 T CONST)) (-1351 ((|#1| $) 117 T ELT)) (-3622 ((|#2| $) 254 (-1404 (|has| |#2| (-559)) (|has| |#1| (-376))) ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2042 (($ $) 156 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1907 (($ $) 144 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4361 (((-114) $ $) 65 (|has| |#1| (-571)) ELT)) (-2022 (($ $) 155 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1882 (($ $) 143 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2059 (($ $) 154 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1932 (($ $) 142 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2905 ((|#1| $ (-560)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -3913 (|#1| (-1207))))) ELT)) (-3392 (($ $) 153 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1945 (($ $) 141 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2050 (($ $) 152 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1920 (($ $) 140 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2032 (($ $) 151 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1895 (($ $) 139 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2719 (($ $) 270 (-1404 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($ $ (-1 |#2| |#2|) (-793)) 233 (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) 232 (|has| |#1| (-376)) ELT) (($ $) 99 (-2196 (-1404 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) 97 (-2196 (-1404 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1207)) 107 (-2196 (-1404 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-663 (-1207))) 103 (-2196 (-1404 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-1207) (-793)) 102 (-2196 (-1404 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 101 (-2196 (-1404 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-560) |#1|))))) ELT)) (-2396 (((-114) $ $) 274 (-1404 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2373 (((-114) $ $) 272 (-1404 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2386 (((-114) $ $) 273 (-1404 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2362 (((-114) $ $) 271 (-1404 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2453 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT) (($ $ $) 182 (|has| |#1| (-376)) ELT) (($ |#2| |#2|) 246 (|has| |#1| (-376)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 181 (|has| |#1| (-376)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 130 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ $ |#2|) 221 (|has| |#1| (-376)) ELT) (($ |#2| $) 220 (|has| |#1| (-376)) ELT) (($ (-421 (-560)) $) 68 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 67 (|has| |#1| (-38 (-421 (-560)))) ELT)))
(((-1261 |#1| |#2|) (-142) (-1080) (-1290 |t#1|)) (T -1261))
-((-3630 (*1 *2 *1) (-12 (-4 *1 (-1261 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1290 *3)) (-5 *2 (-560)))) (-1507 (*1 *1 *2 *3) (-12 (-5 *2 (-560)) (-4 *4 (-1080)) (-4 *1 (-1261 *4 *3)) (-4 *3 (-1290 *4)))) (-2397 (*1 *2 *1) (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1290 *3)))) (-3298 (*1 *1 *1) (-12 (-4 *1 (-1261 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-1290 *2)))) (-3298 (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-4 *1 (-1261 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1290 *3)))) (-1496 (*1 *2 *1) (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1290 *3)))) (-1378 (*1 *2 *1) (|partial| -12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1290 *3)))))
-(-13 (-1259 |t#1|) (-1069 |t#2|) (-635 |t#2|) (-10 -8 (-15 -1507 ($ (-560) |t#2|)) (-15 -3630 ((-560) $)) (-15 -2397 (|t#2| $)) (-15 -3298 ($ $)) (-15 -3298 ($ (-560) $)) (-15 -1496 (|t#2| $)) (-15 -1378 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-376)) (-6 (-1022 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-560)) . T) ((-25) . T) ((-38 #1=(-421 (-560))) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 |#2|) |has| |#1| (-376)) ((-38 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-421 (-560)))) ((-95) |has| |#1| (-38 (-421 (-560)))) ((-102) . T) ((-111 #1# #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-376)) ((-111 $ $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) -2304 (-12 (|has| |#1| (-376)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-149) -2304 (-12 (|has| |#1| (-376)) (|has| |#2| (-149))) (|has| |#1| (-149))) ((-635 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 #2=(-1207)) -12 (|has| |#1| (-376)) (|has| |#2| (-1069 (-1207)))) ((-635 |#1|) |has| |#1| (-175)) ((-635 |#2|) . T) ((-635 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-632 (-887)) . T) ((-175) -2304 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-633 (-229)) -12 (|has| |#1| (-376)) (|has| |#2| (-1051))) ((-633 (-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-1051))) ((-633 (-549)) -12 (|has| |#1| (-376)) (|has| |#2| (-633 (-549)))) ((-633 (-915 (-391))) -12 (|has| |#1| (-376)) (|has| |#2| (-633 (-915 (-391))))) ((-633 (-915 (-560))) -12 (|has| |#1| (-376)) (|has| |#2| (-633 (-915 (-560))))) ((-236 $) -2304 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ((-234 |#2|) |has| |#1| (-376)) ((-240) -2304 (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ((-239) -2304 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ((-274 |#2|) |has| |#1| (-376)) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-421 (-560)))) ((-298 #0# |#1|) . T) ((-298 |#2| $) -12 (|has| |#1| (-376)) (|has| |#2| (-298 |#2| |#2|))) ((-298 $ $) |has| (-560) (-1143)) ((-302) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-321 |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ((-376) |has| |#1| (-376)) ((-351 |#2|) |has| |#1| (-376)) ((-390 |#2|) |has| |#1| (-376)) ((-414 |#2|) |has| |#1| (-376)) ((-466) |has| |#1| (-376)) ((-507) |has| |#1| (-38 (-421 (-560)))) ((-528 (-1207) |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-528 (-1207) |#2|))) ((-528 |#2| |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ((-571) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-668 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 |#2|) |has| |#1| (-376)) ((-668 $) . T) ((-670 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-670 #3=(-560)) -12 (|has| |#1| (-376)) (|has| |#2| (-660 (-560)))) ((-670 |#1|) . T) ((-670 |#2|) |has| |#1| (-376)) ((-670 $) . T) ((-662 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-662 |#1|) |has| |#1| (-175)) ((-662 |#2|) |has| |#1| (-376)) ((-662 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-660 #3#) -12 (|has| |#1| (-376)) (|has| |#2| (-660 (-560)))) ((-660 |#2|) |has| |#1| (-376)) ((-739 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-739 |#1|) |has| |#1| (-175)) ((-739 |#2|) |has| |#1| (-376)) ((-739 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-748) . T) ((-813) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-814) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-816) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-819) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-842) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-870) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-871) -2304 (-12 (|has| |#1| (-376)) (|has| |#2| (-871))) (-12 (|has| |#1| (-376)) (|has| |#2| (-842)))) ((-874) -2304 (-12 (|has| |#1| (-376)) (|has| |#2| (-871))) (-12 (|has| |#1| (-376)) (|has| |#2| (-842)))) ((-921 $ #4=(-1207)) -2304 (-12 (|has| |#1| (-376)) (|has| |#2| (-929 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-927 (-1207)))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ((-927 (-1207)) -2304 (-12 (|has| |#1| (-376)) (|has| |#2| (-927 (-1207)))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ((-929 #4#) -2304 (-12 (|has| |#1| (-376)) (|has| |#2| (-929 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-927 (-1207)))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ((-911 (-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-911 (-391)))) ((-911 (-560)) -12 (|has| |#1| (-376)) (|has| |#2| (-911 (-560)))) ((-909 |#2|) |has| |#1| (-376)) ((-939) -12 (|has| |#1| (-376)) (|has| |#2| (-939))) ((-1004 |#1| #0# (-1113)) . T) ((-950) |has| |#1| (-376)) ((-1022 |#2|) |has| |#1| (-376)) ((-1033) |has| |#1| (-38 (-421 (-560)))) ((-1051) -12 (|has| |#1| (-376)) (|has| |#2| (-1051))) ((-1069 (-421 (-560))) -12 (|has| |#1| (-376)) (|has| |#2| (-1069 (-560)))) ((-1069 (-560)) -12 (|has| |#1| (-376)) (|has| |#2| (-1069 (-560)))) ((-1069 #2#) -12 (|has| |#1| (-376)) (|has| |#2| (-1069 (-1207)))) ((-1069 |#2|) . T) ((-1082 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1082 |#1|) . T) ((-1082 |#2|) |has| |#1| (-376)) ((-1082 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1087 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1087 |#1|) . T) ((-1087 |#2|) |has| |#1| (-376)) ((-1087 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1182) -12 (|has| |#1| (-376)) (|has| |#2| (-1182))) ((-1233) |has| |#1| (-38 (-421 (-560)))) ((-1236) |has| |#1| (-38 (-421 (-560)))) ((-1247) . T) ((-1252) |has| |#1| (-376)) ((-1259 |#1|) . T) ((-1276 |#1| #0#) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 81 T ELT)) (-3941 ((|#2| $) NIL (-12 (|has| |#2| (-319)) (|has| |#1| (-376))) ELT)) (-1443 (((-663 (-1113)) $) NIL T ELT)) (-2462 (((-1207) $) 100 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4267 (($ $ (-560)) 109 T ELT) (($ $ (-560) (-560)) 111 T ELT)) (-1425 (((-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 51 T ELT)) (-2397 ((|#2| $) 11 T ELT)) (-1378 (((-3 |#2| "failed") $) 35 T ELT)) (-1496 ((|#2| $) 36 T ELT)) (-4337 (($ $) 206 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3455 (($ $) 182 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#2| (-939)) (|has| |#1| (-376))) ELT)) (-1804 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-4471 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#2| (-939)) (|has| |#1| (-376))) ELT)) (-1615 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4313 (($ $) 202 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3430 (($ $) 178 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2138 (((-560) $) NIL (-12 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-3781 (($ (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 59 T ELT)) (-4363 (($ $) 210 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3477 (($ $) 186 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#2| "failed") $) 157 T ELT) (((-3 (-560) "failed") $) NIL (-12 (|has| |#2| (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (-12 (|has| |#2| (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-3 (-1207) "failed") $) NIL (-12 (|has| |#2| (-1069 (-1207))) (|has| |#1| (-376))) ELT)) (-3330 ((|#2| $) 156 T ELT) (((-560) $) NIL (-12 (|has| |#2| (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-421 (-560)) $) NIL (-12 (|has| |#2| (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-1207) $) NIL (-12 (|has| |#2| (-1069 (-1207))) (|has| |#1| (-376))) ELT)) (-3298 (($ $) 65 T ELT) (($ (-560) $) 28 T ELT)) (-1478 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1624 (($ $) NIL T ELT)) (-3142 (((-711 |#2|) (-711 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#1| (-376))) ELT) (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#1| (-376))) ELT)) (-1990 (((-3 $ "failed") $) 88 T ELT)) (-2229 (((-421 (-975 |#1|)) $ (-560)) 124 (|has| |#1| (-571)) ELT) (((-421 (-975 |#1|)) $ (-560) (-560)) 126 (|has| |#1| (-571)) ELT)) (-2310 (($) NIL (-12 (|has| |#2| (-559)) (|has| |#1| (-376))) ELT)) (-1490 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4330 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-2928 (((-114) $) NIL (-12 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-4386 (((-114) $) 74 T ELT)) (-3796 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| |#2| (-911 (-391))) (|has| |#1| (-376))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| |#2| (-911 (-560))) (|has| |#1| (-376))) ELT)) (-3913 (((-560) $) 105 T ELT) (((-560) $ (-560)) 107 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-1617 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3757 ((|#2| $) 165 (|has| |#1| (-376)) ELT)) (-2146 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3009 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1182)) (|has| |#1| (-376))) ELT)) (-2960 (((-114) $) NIL (-12 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-3022 (($ $ (-948)) 148 T ELT)) (-1540 (($ (-1 |#1| (-560)) $) 144 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-560)) 20 T ELT) (($ $ (-1113) (-560)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-560))) NIL T ELT)) (-3825 (($ $ $) NIL (-12 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2820 (($ $ $) NIL (-12 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 141 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-376)) ELT)) (-2192 (($ $) 176 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2484 (((-711 |#2|) (-1297 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#1| (-376))) ELT) (((-711 (-560)) (-1297 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#1| (-376))) ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1507 (($ (-560) |#2|) 10 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) 159 (|has| |#1| (-376)) ELT)) (-2518 (($ $) 228 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) 233 (-2304 (-12 (|has| |#1| (-15 -2518 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -1443 ((-663 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-989)) (|has| |#1| (-1233)))) ELT)) (-3161 (($) NIL (-12 (|has| |#2| (-1182)) (|has| |#1| (-376))) CONST)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2652 (($ $) NIL (-12 (|has| |#2| (-319)) (|has| |#1| (-376))) ELT)) (-2016 ((|#2| $) NIL (-12 (|has| |#2| (-559)) (|has| |#1| (-376))) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#2| (-939)) (|has| |#1| (-376))) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#2| (-939)) (|has| |#1| (-376))) ELT)) (-4457 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4372 (($ $ (-560)) 138 T ELT)) (-1528 (((-3 $ "failed") $ $) 128 (|has| |#1| (-571)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-3251 (($ $) 174 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4187 (((-1185 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) ELT) (($ $ (-1207) |#2|) NIL (-12 (|has| |#2| (-528 (-1207) |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1207)) (-663 |#2|)) NIL (-12 (|has| |#2| (-528 (-1207) |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT)) (-2901 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-3924 ((|#1| $ (-560)) 103 T ELT) (($ $ $) 90 (|has| (-560) (-1143)) ELT) (($ $ |#2|) NIL (-12 (|has| |#2| (-298 |#2| |#2|)) (|has| |#1| (-376))) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2894 (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-376)) ELT) (($ $) 149 (-2304 (-12 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) NIL (-2304 (-12 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1207)) 153 (-2304 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207))) NIL (-2304 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2304 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2304 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT)) (-3056 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3771 ((|#2| $) 166 (|has| |#1| (-376)) ELT)) (-3630 (((-560) $) 12 T ELT)) (-4373 (($ $) 212 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3488 (($ $) 188 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4352 (($ $) 208 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3466 (($ $) 184 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4325 (($ $) 204 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3443 (($ $) 180 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1407 (((-229) $) NIL (-12 (|has| |#2| (-1051)) (|has| |#1| (-376))) ELT) (((-391) $) NIL (-12 (|has| |#2| (-1051)) (|has| |#1| (-376))) ELT) (((-549) $) NIL (-12 (|has| |#2| (-633 (-549))) (|has| |#1| (-376))) ELT) (((-915 (-391)) $) NIL (-12 (|has| |#2| (-633 (-915 (-391)))) (|has| |#1| (-376))) ELT) (((-915 (-560)) $) NIL (-12 (|has| |#2| (-633 (-915 (-560)))) (|has| |#1| (-376))) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-939)) (|has| |#1| (-376))) ELT)) (-3266 (($ $) 136 T ELT)) (-1578 (((-887) $) 266 T ELT) (($ (-560)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-175)) ELT) (($ |#2|) 21 T ELT) (($ (-1207)) NIL (-12 (|has| |#2| (-1069 (-1207))) (|has| |#1| (-376))) ELT) (($ (-421 (-560))) 169 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-2305 ((|#1| $ (-560)) 85 T ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| |#2| (-939)) (|has| |#1| (-376))) (-12 (|has| |#2| (-147)) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-2930 (((-793)) 155 T CONST)) (-3355 ((|#1| $) 102 T ELT)) (-1494 ((|#2| $) NIL (-12 (|has| |#2| (-559)) (|has| |#1| (-376))) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-4411 (($ $) 218 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4263 (($ $) 194 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4387 (($ $) 214 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3499 (($ $) 190 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4438 (($ $) 222 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4287 (($ $) 198 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2239 ((|#1| $ (-560)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -1578 (|#1| (-1207))))) ELT)) (-3837 (($ $) 224 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4302 (($ $) 200 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4423 (($ $) 220 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4275 (($ $) 196 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4398 (($ $) 216 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4252 (($ $) 192 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2282 (($ $) NIL (-12 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-2001 (($) 13 T CONST)) (-2011 (($) 18 T CONST)) (-3305 (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-376)) ELT) (($ $) NIL (-2304 (-12 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) NIL (-2304 (-12 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207))) NIL (-2304 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2304 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2304 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT)) (-2536 (((-114) $ $) NIL (-12 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2508 (((-114) $ $) NIL (-12 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2473 (((-114) $ $) 72 T ELT)) (-2521 (((-114) $ $) NIL (-12 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2495 (((-114) $ $) NIL (-12 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 163 (|has| |#1| (-376)) ELT) (($ |#2| |#2|) 164 (|has| |#1| (-376)) ELT)) (-2580 (($ $) 227 T ELT) (($ $ $) 78 T ELT)) (-2567 (($ $ $) 76 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 84 T ELT) (($ $ (-560)) 160 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 172 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 79 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 152 T ELT) (($ $ |#2|) 162 (|has| |#1| (-376)) ELT) (($ |#2| $) 161 (|has| |#1| (-376)) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
+((-3900 (*1 *2 *1) (-12 (-4 *1 (-1261 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1290 *3)) (-5 *2 (-560)))) (-2949 (*1 *1 *2 *3) (-12 (-5 *2 (-560)) (-4 *4 (-1080)) (-4 *1 (-1261 *4 *3)) (-4 *3 (-1290 *4)))) (-2604 (*1 *2 *1) (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1290 *3)))) (-3665 (*1 *1 *1) (-12 (-4 *1 (-1261 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-1290 *2)))) (-3665 (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-4 *1 (-1261 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1290 *3)))) (-2936 (*1 *2 *1) (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1290 *3)))) (-4004 (*1 *2 *1) (|partial| -12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1290 *3)))))
+(-13 (-1259 |t#1|) (-1069 |t#2|) (-635 |t#2|) (-10 -8 (-15 -2949 ($ (-560) |t#2|)) (-15 -3900 ((-560) $)) (-15 -2604 (|t#2| $)) (-15 -3665 ($ $)) (-15 -3665 ($ (-560) $)) (-15 -2936 (|t#2| $)) (-15 -4004 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-376)) (-6 (-1022 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-560)) . T) ((-25) . T) ((-38 #1=(-421 (-560))) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 |#2|) |has| |#1| (-376)) ((-38 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-421 (-560)))) ((-95) |has| |#1| (-38 (-421 (-560)))) ((-102) . T) ((-111 #1# #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-376)) ((-111 $ $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) -2196 (-12 (|has| |#1| (-376)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-149) -2196 (-12 (|has| |#1| (-376)) (|has| |#2| (-149))) (|has| |#1| (-149))) ((-635 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 #2=(-1207)) -12 (|has| |#1| (-376)) (|has| |#2| (-1069 (-1207)))) ((-635 |#1|) |has| |#1| (-175)) ((-635 |#2|) . T) ((-635 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-632 (-887)) . T) ((-175) -2196 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-633 (-229)) -12 (|has| |#1| (-376)) (|has| |#2| (-1051))) ((-633 (-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-1051))) ((-633 (-549)) -12 (|has| |#1| (-376)) (|has| |#2| (-633 (-549)))) ((-633 (-915 (-391))) -12 (|has| |#1| (-376)) (|has| |#2| (-633 (-915 (-391))))) ((-633 (-915 (-560))) -12 (|has| |#1| (-376)) (|has| |#2| (-633 (-915 (-560))))) ((-236 $) -2196 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ((-234 |#2|) |has| |#1| (-376)) ((-240) -2196 (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ((-239) -2196 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ((-274 |#2|) |has| |#1| (-376)) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-421 (-560)))) ((-298 #0# |#1|) . T) ((-298 |#2| $) -12 (|has| |#1| (-376)) (|has| |#2| (-298 |#2| |#2|))) ((-298 $ $) |has| (-560) (-1143)) ((-302) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-321 |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ((-376) |has| |#1| (-376)) ((-351 |#2|) |has| |#1| (-376)) ((-390 |#2|) |has| |#1| (-376)) ((-414 |#2|) |has| |#1| (-376)) ((-466) |has| |#1| (-376)) ((-507) |has| |#1| (-38 (-421 (-560)))) ((-528 (-1207) |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-528 (-1207) |#2|))) ((-528 |#2| |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ((-571) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-668 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 |#2|) |has| |#1| (-376)) ((-668 $) . T) ((-670 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-670 #3=(-560)) -12 (|has| |#1| (-376)) (|has| |#2| (-660 (-560)))) ((-670 |#1|) . T) ((-670 |#2|) |has| |#1| (-376)) ((-670 $) . T) ((-662 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-662 |#1|) |has| |#1| (-175)) ((-662 |#2|) |has| |#1| (-376)) ((-662 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-660 #3#) -12 (|has| |#1| (-376)) (|has| |#2| (-660 (-560)))) ((-660 |#2|) |has| |#1| (-376)) ((-739 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-739 |#1|) |has| |#1| (-175)) ((-739 |#2|) |has| |#1| (-376)) ((-739 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-748) . T) ((-813) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-814) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-816) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-819) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-842) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-870) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-871) -2196 (-12 (|has| |#1| (-376)) (|has| |#2| (-871))) (-12 (|has| |#1| (-376)) (|has| |#2| (-842)))) ((-874) -2196 (-12 (|has| |#1| (-376)) (|has| |#2| (-871))) (-12 (|has| |#1| (-376)) (|has| |#2| (-842)))) ((-921 $ #4=(-1207)) -2196 (-12 (|has| |#1| (-376)) (|has| |#2| (-929 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-927 (-1207)))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ((-927 (-1207)) -2196 (-12 (|has| |#1| (-376)) (|has| |#2| (-927 (-1207)))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ((-929 #4#) -2196 (-12 (|has| |#1| (-376)) (|has| |#2| (-929 (-1207)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-927 (-1207)))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ((-911 (-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-911 (-391)))) ((-911 (-560)) -12 (|has| |#1| (-376)) (|has| |#2| (-911 (-560)))) ((-909 |#2|) |has| |#1| (-376)) ((-939) -12 (|has| |#1| (-376)) (|has| |#2| (-939))) ((-1004 |#1| #0# (-1113)) . T) ((-950) |has| |#1| (-376)) ((-1022 |#2|) |has| |#1| (-376)) ((-1033) |has| |#1| (-38 (-421 (-560)))) ((-1051) -12 (|has| |#1| (-376)) (|has| |#2| (-1051))) ((-1069 (-421 (-560))) -12 (|has| |#1| (-376)) (|has| |#2| (-1069 (-560)))) ((-1069 (-560)) -12 (|has| |#1| (-376)) (|has| |#2| (-1069 (-560)))) ((-1069 #2#) -12 (|has| |#1| (-376)) (|has| |#2| (-1069 (-1207)))) ((-1069 |#2|) . T) ((-1082 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1082 |#1|) . T) ((-1082 |#2|) |has| |#1| (-376)) ((-1082 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1087 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1087 |#1|) . T) ((-1087 |#2|) |has| |#1| (-376)) ((-1087 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1182) -12 (|has| |#1| (-376)) (|has| |#2| (-1182))) ((-1233) |has| |#1| (-38 (-421 (-560)))) ((-1236) |has| |#1| (-38 (-421 (-560)))) ((-1247) . T) ((-1252) |has| |#1| (-376)) ((-1259 |#1|) . T) ((-1276 |#1| #0#) . T))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 81 T ELT)) (-3655 ((|#2| $) NIL (-12 (|has| |#2| (-319)) (|has| |#1| (-376))) ELT)) (-4162 (((-663 (-1113)) $) NIL T ELT)) (-2558 (((-1207) $) 100 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3864 (($ $ (-560)) 109 T ELT) (($ $ (-560) (-560)) 111 T ELT)) (-1465 (((-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|))) $) 51 T ELT)) (-2604 ((|#2| $) 11 T ELT)) (-4004 (((-3 |#2| "failed") $) 35 T ELT)) (-2936 ((|#2| $) 36 T ELT)) (-1982 (($ $) 206 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1832 (($ $) 182 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#2| (-939)) (|has| |#1| (-376))) ELT)) (-1621 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-4021 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#2| (-939)) (|has| |#1| (-376))) ELT)) (-3476 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-1958 (($ $) 202 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1806 (($ $) 178 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1869 (((-560) $) NIL (-12 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-2882 (($ (-1185 (-2 (|:| |k| (-560)) (|:| |c| |#1|)))) 59 T ELT)) (-2003 (($ $) 210 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1856 (($ $) 186 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#2| "failed") $) 157 T ELT) (((-3 (-560) "failed") $) NIL (-12 (|has| |#2| (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (-12 (|has| |#2| (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-3 (-1207) "failed") $) NIL (-12 (|has| |#2| (-1069 (-1207))) (|has| |#1| (-376))) ELT)) (-3649 ((|#2| $) 156 T ELT) (((-560) $) NIL (-12 (|has| |#2| (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-421 (-560)) $) NIL (-12 (|has| |#2| (-1069 (-560))) (|has| |#1| (-376))) ELT) (((-1207) $) NIL (-12 (|has| |#2| (-1069 (-1207))) (|has| |#1| (-376))) ELT)) (-3665 (($ $) 65 T ELT) (($ (-560) $) 28 T ELT)) (-2186 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3062 (($ $) NIL T ELT)) (-2619 (((-711 |#2|) (-711 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#1| (-376))) ELT) (((-711 (-560)) (-711 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#1| (-376))) ELT)) (-2873 (((-3 $ "failed") $) 88 T ELT)) (-3434 (((-421 (-975 |#1|)) $ (-560)) 124 (|has| |#1| (-571)) ELT) (((-421 (-975 |#1|)) $ (-560) (-560)) 126 (|has| |#1| (-571)) ELT)) (-1812 (($) NIL (-12 (|has| |#2| (-559)) (|has| |#1| (-376))) ELT)) (-2197 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-3141 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-4172 (((-114) $) NIL (-12 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-2328 (((-114) $) 74 T ELT)) (-2503 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| |#2| (-911 (-391))) (|has| |#1| (-376))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| |#2| (-911 (-560))) (|has| |#1| (-376))) ELT)) (-1460 (((-560) $) 105 T ELT) (((-560) $ (-560)) 107 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-3490 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2473 ((|#2| $) 165 (|has| |#1| (-376)) ELT)) (-1956 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3738 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1182)) (|has| |#1| (-376))) ELT)) (-4470 (((-114) $) NIL (-12 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-3886 (($ $ (-948)) 148 T ELT)) (-1537 (($ (-1 |#1| (-560)) $) 144 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-560)) 20 T ELT) (($ $ (-1113) (-560)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-560))) NIL T ELT)) (-2932 (($ $ $) NIL (-12 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-4379 (($ $ $) NIL (-12 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 141 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-376)) ELT)) (-2831 (($ $) 176 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4140 (((-711 |#2|) (-1297 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#1| (-376))) ELT) (((-711 (-560)) (-1297 $)) NIL (-12 (|has| |#2| (-660 (-560))) (|has| |#1| (-376))) ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2949 (($ (-560) |#2|) 10 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) 159 (|has| |#1| (-376)) ELT)) (-4424 (($ $) 228 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) 233 (-2196 (-12 (|has| |#1| (-15 -4424 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -4162 ((-663 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-989)) (|has| |#1| (-1233)))) ELT)) (-3239 (($) NIL (-12 (|has| |#2| (-1182)) (|has| |#1| (-376))) CONST)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3211 (($ $) NIL (-12 (|has| |#2| (-319)) (|has| |#1| (-376))) ELT)) (-3147 ((|#2| $) NIL (-12 (|has| |#2| (-559)) (|has| |#1| (-376))) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#2| (-939)) (|has| |#1| (-376))) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (-12 (|has| |#2| (-939)) (|has| |#1| (-376))) ELT)) (-4012 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2219 (($ $ (-560)) 138 T ELT)) (-2233 (((-3 $ "failed") $ $) 128 (|has| |#1| (-571)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-2515 (($ $) 174 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2371 (((-1185 |#1|) $ |#1|) 97 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) ELT) (($ $ (-1207) |#2|) NIL (-12 (|has| |#2| (-528 (-1207) |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-663 (-1207)) (-663 |#2|)) NIL (-12 (|has| |#2| (-528 (-1207) |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-663 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-663 |#2|) (-663 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT)) (-3989 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-1507 ((|#1| $ (-560)) 103 T ELT) (($ $ $) 90 (|has| (-560) (-1143)) ELT) (($ $ |#2|) NIL (-12 (|has| |#2| (-298 |#2| |#2|)) (|has| |#1| (-376))) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3161 (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-376)) ELT) (($ $) 149 (-2196 (-12 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) NIL (-2196 (-12 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1207)) 153 (-2196 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207))) NIL (-2196 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2196 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2196 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT)) (-2951 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2484 ((|#2| $) 166 (|has| |#1| (-376)) ELT)) (-3900 (((-560) $) 12 T ELT)) (-2013 (($ $) 212 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1870 (($ $) 188 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1992 (($ $) 208 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1844 (($ $) 184 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1972 (($ $) 204 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1820 (($ $) 180 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2400 (((-229) $) NIL (-12 (|has| |#2| (-1051)) (|has| |#1| (-376))) ELT) (((-391) $) NIL (-12 (|has| |#2| (-1051)) (|has| |#1| (-376))) ELT) (((-549) $) NIL (-12 (|has| |#2| (-633 (-549))) (|has| |#1| (-376))) ELT) (((-915 (-391)) $) NIL (-12 (|has| |#2| (-633 (-915 (-391)))) (|has| |#1| (-376))) ELT) (((-915 (-560)) $) NIL (-12 (|has| |#2| (-633 (-915 (-560)))) (|has| |#1| (-376))) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-939)) (|has| |#1| (-376))) ELT)) (-3329 (($ $) 136 T ELT)) (-3913 (((-887) $) 266 T ELT) (($ (-560)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-175)) ELT) (($ |#2|) 21 T ELT) (($ (-1207)) NIL (-12 (|has| |#2| (-1069 (-1207))) (|has| |#1| (-376))) ELT) (($ (-421 (-560))) 169 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-2920 ((|#1| $ (-560)) 85 T ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| |#2| (-939)) (|has| |#1| (-376))) (-12 (|has| |#2| (-147)) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-4191 (((-793)) 155 T CONST)) (-1351 ((|#1| $) 102 T ELT)) (-3622 ((|#2| $) NIL (-12 (|has| |#2| (-559)) (|has| |#1| (-376))) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2042 (($ $) 218 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1907 (($ $) 194 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2022 (($ $) 214 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1882 (($ $) 190 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2059 (($ $) 222 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1932 (($ $) 198 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2905 ((|#1| $ (-560)) 134 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-560)))) (|has| |#1| (-15 -3913 (|#1| (-1207))))) ELT)) (-3392 (($ $) 224 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1945 (($ $) 200 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2050 (($ $) 220 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1920 (($ $) 196 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2032 (($ $) 216 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1895 (($ $) 192 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2719 (($ $) NIL (-12 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-1446 (($) 13 T CONST)) (-1456 (($) 18 T CONST)) (-2111 (($ $ (-1 |#2| |#2|) (-793)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-376)) ELT) (($ $) NIL (-2196 (-12 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-793)) NIL (-2196 (-12 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-560) |#1|)))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207))) NIL (-2196 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-1207) (-793)) NIL (-2196 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-2196 (-12 (|has| |#2| (-929 (-1207))) (|has| |#1| (-376))) (-12 (|has| |#1| (-15 * (|#1| (-560) |#1|))) (|has| |#1| (-927 (-1207))))) ELT)) (-2396 (((-114) $ $) NIL (-12 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2373 (((-114) $ $) NIL (-12 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2340 (((-114) $ $) 72 T ELT)) (-2386 (((-114) $ $) NIL (-12 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2362 (((-114) $ $) NIL (-12 (|has| |#2| (-871)) (|has| |#1| (-376))) ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 163 (|has| |#1| (-376)) ELT) (($ |#2| |#2|) 164 (|has| |#1| (-376)) ELT)) (-2441 (($ $) 227 T ELT) (($ $ $) 78 T ELT)) (-2429 (($ $ $) 76 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 84 T ELT) (($ $ (-560)) 160 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 172 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 79 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 152 T ELT) (($ $ |#2|) 162 (|has| |#1| (-376)) ELT) (($ |#2| $) 161 (|has| |#1| (-376)) ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
(((-1262 |#1| |#2|) (-1261 |#1| |#2|) (-1080) (-1290 |#1|)) (T -1262))
NIL
(-1261 |#1| |#2|)
-((-3226 (((-2 (|:| |contp| (-560)) (|:| -3764 (-663 (-2 (|:| |irr| |#1|) (|:| -2929 (-560)))))) |#1| (-114)) 13 T ELT)) (-1968 (((-419 |#1|) |#1|) 26 T ELT)) (-4457 (((-419 |#1|) |#1|) 24 T ELT)))
-(((-1263 |#1|) (-10 -7 (-15 -4457 ((-419 |#1|) |#1|)) (-15 -1968 ((-419 |#1|) |#1|)) (-15 -3226 ((-2 (|:| |contp| (-560)) (|:| -3764 (-663 (-2 (|:| |irr| |#1|) (|:| -2929 (-560)))))) |#1| (-114)))) (-1273 (-560))) (T -1263))
-((-3226 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *2 (-2 (|:| |contp| (-560)) (|:| -3764 (-663 (-2 (|:| |irr| *3) (|:| -2929 (-560))))))) (-5 *1 (-1263 *3)) (-4 *3 (-1273 (-560))))) (-1968 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-1263 *3)) (-4 *3 (-1273 (-560))))) (-4457 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-1263 *3)) (-4 *3 (-1273 (-560))))))
-(-10 -7 (-15 -4457 ((-419 |#1|) |#1|)) (-15 -1968 ((-419 |#1|) |#1|)) (-15 -3226 ((-2 (|:| |contp| (-560)) (|:| -3764 (-663 (-2 (|:| |irr| |#1|) (|:| -2929 (-560)))))) |#1| (-114))))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-4458 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-3957 (((-1185 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-870)) ELT)) (-3257 ((|#1| $) 15 T ELT)) (-4311 ((|#1| $) 12 T ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-1755 (((-560) $) 19 T ELT)) (-3229 ((|#1| $) 18 T ELT)) (-1768 ((|#1| $) 13 T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-2876 (((-114) $) 17 T ELT)) (-1945 (((-1185 |#1|) $) 41 (|has| |#1| (-870)) ELT) (((-1185 |#1|) (-663 $)) 40 (|has| |#1| (-870)) ELT)) (-1407 (($ |#1|) 26 T ELT)) (-1578 (($ (-1120 |#1|)) 25 T ELT) (((-887) $) 37 (|has| |#1| (-1132)) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-1524 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-2227 (($ $ (-560)) 14 T ELT)) (-2473 (((-114) $ $) 30 (|has| |#1| (-1132)) ELT)))
-(((-1264 |#1|) (-13 (-1125 |#1|) (-10 -8 (-15 -1524 ($ |#1|)) (-15 -4458 ($ |#1|)) (-15 -1578 ($ (-1120 |#1|))) (-15 -2876 ((-114) $)) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|) (IF (|has| |#1| (-870)) (-6 (-1126 |#1| (-1185 |#1|))) |%noBranch|))) (-1247)) (T -1264))
-((-1524 (*1 *1 *2) (-12 (-5 *1 (-1264 *2)) (-4 *2 (-1247)))) (-4458 (*1 *1 *2) (-12 (-5 *1 (-1264 *2)) (-4 *2 (-1247)))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-1120 *3)) (-4 *3 (-1247)) (-5 *1 (-1264 *3)))) (-2876 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1264 *3)) (-4 *3 (-1247)))))
-(-13 (-1125 |#1|) (-10 -8 (-15 -1524 ($ |#1|)) (-15 -4458 ($ |#1|)) (-15 -1578 ($ (-1120 |#1|))) (-15 -2876 ((-114) $)) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|) (IF (|has| |#1| (-870)) (-6 (-1126 |#1| (-1185 |#1|))) |%noBranch|)))
-((-3957 (((-1185 |#2|) (-1 |#2| |#1|) (-1264 |#1|)) 23 (|has| |#1| (-870)) ELT) (((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|)) 17 T ELT)))
-(((-1265 |#1| |#2|) (-10 -7 (-15 -3957 ((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) (IF (|has| |#1| (-870)) (-15 -3957 ((-1185 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) |%noBranch|)) (-1247) (-1247)) (T -1265))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-870)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1185 *6)) (-5 *1 (-1265 *5 *6)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1264 *6)) (-5 *1 (-1265 *5 *6)))))
-(-10 -7 (-15 -3957 ((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) (IF (|has| |#1| (-870)) (-15 -3957 ((-1185 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) |%noBranch|))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-4468 (((-1297 |#2|) $ (-793)) NIL T ELT)) (-1443 (((-663 (-1113)) $) NIL T ELT)) (-1667 (($ (-1201 |#2|)) NIL T ELT)) (-4422 (((-1201 $) $ (-1113)) NIL T ELT) (((-1201 |#2|) $) NIL T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#2| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#2| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#2| (-571)) ELT)) (-3107 (((-793) $) NIL T ELT) (((-793) $ (-663 (-1113))) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-4182 (($ $ $) NIL (|has| |#2| (-571)) ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-1804 (($ $) NIL (|has| |#2| (-466)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#2| (-466)) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-1615 (((-114) $ $) NIL (|has| |#2| (-376)) ELT)) (-3491 (($ $ (-793)) NIL T ELT)) (-3802 (($ $ (-793)) NIL T ELT)) (-2498 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-466)) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-3 (-1113) "failed") $) NIL T ELT)) (-3330 ((|#2| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-1113) $) NIL T ELT)) (-2788 (($ $ $ (-1113)) NIL (|has| |#2| (-175)) ELT) ((|#2| $ $) NIL (|has| |#2| (-175)) ELT)) (-1478 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-1624 (($ $) NIL T ELT)) (-3142 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1490 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2186 (($ $ $) NIL T ELT)) (-2853 (($ $ $) NIL (|has| |#2| (-571)) ELT)) (-4365 (((-2 (|:| -2115 |#2|) (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#2| (-571)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL (|has| |#2| (-376)) ELT)) (-2806 (($ $) NIL (|has| |#2| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#2| (-466)) ELT)) (-1608 (((-663 $) $) NIL T ELT)) (-4330 (((-114) $) NIL (|has| |#2| (-939)) ELT)) (-4342 (($ $ |#2| (-793) $) NIL T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1113) (-911 (-391))) (|has| |#2| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-1113) (-911 (-560))) (|has| |#2| (-911 (-560)))) ELT)) (-3913 (((-793) $ $) NIL (|has| |#2| (-571)) ELT)) (-1581 (((-114) $) NIL T ELT)) (-3531 (((-793) $) NIL T ELT)) (-3009 (((-3 $ "failed") $) NIL (|has| |#2| (-1182)) ELT)) (-1427 (($ (-1201 |#2|) (-1113)) NIL T ELT) (($ (-1201 $) (-1113)) NIL T ELT)) (-3022 (($ $ (-793)) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#2| (-376)) ELT)) (-3997 (((-663 $) $) NIL T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#2| (-793)) 18 T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT)) (-3559 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $ (-1113)) NIL T ELT) (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL T ELT)) (-3011 (((-793) $) NIL T ELT) (((-793) $ (-1113)) NIL T ELT) (((-663 (-793)) $ (-663 (-1113))) NIL T ELT)) (-4321 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4381 (((-1201 |#2|) $) NIL T ELT)) (-1955 (((-3 (-1113) "failed") $) NIL T ELT)) (-2484 (((-711 (-560)) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-711 |#2|) (-1297 $)) NIL T ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#2| $) NIL T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-1905 (((-1189) $) NIL T ELT)) (-4000 (((-2 (|:| -1774 $) (|:| -2341 $)) $ (-793)) NIL T ELT)) (-3479 (((-3 (-663 $) "failed") $) NIL T ELT)) (-2590 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3683 (((-3 (-2 (|:| |var| (-1113)) (|:| -3205 (-793))) "failed") $) NIL T ELT)) (-2518 (($ $) NIL (|has| |#2| (-38 (-421 (-560)))) ELT)) (-3161 (($) NIL (|has| |#2| (-1182)) CONST)) (-3855 (((-1151) $) NIL T ELT)) (-1554 (((-114) $) NIL T ELT)) (-1566 ((|#2| $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#2| (-466)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-4369 (($ $ (-793) |#2| $) NIL T ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-4457 (((-419 $) $) NIL (|has| |#2| (-939)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-1528 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-571)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#2| (-376)) ELT)) (-4187 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-1113) |#2|) NIL T ELT) (($ $ (-663 (-1113)) (-663 |#2|)) NIL T ELT) (($ $ (-1113) $) NIL T ELT) (($ $ (-663 (-1113)) (-663 $)) NIL T ELT)) (-2901 (((-793) $) NIL (|has| |#2| (-376)) ELT)) (-3924 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-421 $) (-421 $) (-421 $)) NIL (|has| |#2| (-571)) ELT) ((|#2| (-421 $) |#2|) NIL (|has| |#2| (-376)) ELT) (((-421 $) $ (-421 $)) NIL (|has| |#2| (-571)) ELT)) (-1676 (((-3 $ "failed") $ (-793)) NIL T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-2690 (($ $ (-1113)) NIL (|has| |#2| (-175)) ELT) ((|#2| $) NIL (|has| |#2| (-175)) ELT)) (-2894 (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-3630 (((-793) $) NIL T ELT) (((-793) $ (-1113)) NIL T ELT) (((-663 (-793)) $ (-663 (-1113))) NIL T ELT)) (-1407 (((-915 (-391)) $) NIL (-12 (|has| (-1113) (-633 (-915 (-391)))) (|has| |#2| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-1113) (-633 (-915 (-560)))) (|has| |#2| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-1113) (-633 (-549))) (|has| |#2| (-633 (-549)))) ELT)) (-2053 ((|#2| $) NIL (|has| |#2| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#2| (-466)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-939))) ELT)) (-1974 (((-3 $ "failed") $ $) NIL (|has| |#2| (-571)) ELT) (((-3 (-421 $) "failed") (-421 $) $) NIL (|has| |#2| (-571)) ELT)) (-1578 (((-887) $) 13 T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1113)) NIL T ELT) (($ (-1294 |#1|)) 20 T ELT) (($ (-421 (-560))) NIL (-2304 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#2| (-571)) ELT)) (-3409 (((-663 |#2|) $) NIL T ELT)) (-2305 ((|#2| $ (-793)) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL (-2304 (-12 (|has| $ (-147)) (|has| |#2| (-939))) (|has| |#2| (-147))) ELT)) (-2930 (((-793)) NIL T CONST)) (-2392 (($ $ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL (|has| |#2| (-571)) ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) 14 T CONST)) (-3305 (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
-(((-1266 |#1| |#2|) (-13 (-1273 |#2|) (-635 (-1294 |#1|)) (-10 -8 (-15 -4369 ($ $ (-793) |#2| $)))) (-1207) (-1080)) (T -1266))
-((-4369 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1266 *4 *3)) (-14 *4 (-1207)) (-4 *3 (-1080)))))
-(-13 (-1273 |#2|) (-635 (-1294 |#1|)) (-10 -8 (-15 -4369 ($ $ (-793) |#2| $))))
-((-3957 (((-1266 |#3| |#4|) (-1 |#4| |#2|) (-1266 |#1| |#2|)) 15 T ELT)))
-(((-1267 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 ((-1266 |#3| |#4|) (-1 |#4| |#2|) (-1266 |#1| |#2|)))) (-1207) (-1080) (-1207) (-1080)) (T -1267))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1266 *5 *6)) (-14 *5 (-1207)) (-4 *6 (-1080)) (-4 *8 (-1080)) (-5 *2 (-1266 *7 *8)) (-5 *1 (-1267 *5 *6 *7 *8)) (-14 *7 (-1207)))))
-(-10 -7 (-15 -3957 ((-1266 |#3| |#4|) (-1 |#4| |#2|) (-1266 |#1| |#2|))))
-((-1386 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-2323 ((|#1| |#3|) 13 T ELT)) (-3590 ((|#3| |#3|) 19 T ELT)))
-(((-1268 |#1| |#2| |#3|) (-10 -7 (-15 -2323 (|#1| |#3|)) (-15 -3590 (|#3| |#3|)) (-15 -1386 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-571) (-1022 |#1|) (-1273 |#2|)) (T -1268))
-((-1386 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-1022 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1268 *4 *5 *3)) (-4 *3 (-1273 *5)))) (-3590 (*1 *2 *2) (-12 (-4 *3 (-571)) (-4 *4 (-1022 *3)) (-5 *1 (-1268 *3 *4 *2)) (-4 *2 (-1273 *4)))) (-2323 (*1 *2 *3) (-12 (-4 *4 (-1022 *2)) (-4 *2 (-571)) (-5 *1 (-1268 *2 *4 *3)) (-4 *3 (-1273 *4)))))
-(-10 -7 (-15 -2323 (|#1| |#3|)) (-15 -3590 (|#3| |#3|)) (-15 -1386 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-1875 (((-3 |#2| "failed") |#2| (-793) |#1|) 35 T ELT)) (-3977 (((-3 |#2| "failed") |#2| (-793)) 36 T ELT)) (-2162 (((-3 (-2 (|:| -4198 |#2|) (|:| -4210 |#2|)) "failed") |#2|) 50 T ELT)) (-4209 (((-663 |#2|) |#2|) 52 T ELT)) (-1530 (((-3 |#2| "failed") |#2| |#2|) 46 T ELT)))
-(((-1269 |#1| |#2|) (-10 -7 (-15 -3977 ((-3 |#2| "failed") |#2| (-793))) (-15 -1875 ((-3 |#2| "failed") |#2| (-793) |#1|)) (-15 -1530 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2162 ((-3 (-2 (|:| -4198 |#2|) (|:| -4210 |#2|)) "failed") |#2|)) (-15 -4209 ((-663 |#2|) |#2|))) (-13 (-571) (-149)) (-1273 |#1|)) (T -1269))
-((-4209 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-149))) (-5 *2 (-663 *3)) (-5 *1 (-1269 *4 *3)) (-4 *3 (-1273 *4)))) (-2162 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-571) (-149))) (-5 *2 (-2 (|:| -4198 *3) (|:| -4210 *3))) (-5 *1 (-1269 *4 *3)) (-4 *3 (-1273 *4)))) (-1530 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-1269 *3 *2)) (-4 *2 (-1273 *3)))) (-1875 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-793)) (-4 *4 (-13 (-571) (-149))) (-5 *1 (-1269 *4 *2)) (-4 *2 (-1273 *4)))) (-3977 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-793)) (-4 *4 (-13 (-571) (-149))) (-5 *1 (-1269 *4 *2)) (-4 *2 (-1273 *4)))))
-(-10 -7 (-15 -3977 ((-3 |#2| "failed") |#2| (-793))) (-15 -1875 ((-3 |#2| "failed") |#2| (-793) |#1|)) (-15 -1530 ((-3 |#2| "failed") |#2| |#2|)) (-15 -2162 ((-3 (-2 (|:| -4198 |#2|) (|:| -4210 |#2|)) "failed") |#2|)) (-15 -4209 ((-663 |#2|) |#2|)))
-((-2804 (((-3 (-2 (|:| -1774 |#2|) (|:| -2341 |#2|)) "failed") |#2| |#2|) 30 T ELT)))
-(((-1270 |#1| |#2|) (-10 -7 (-15 -2804 ((-3 (-2 (|:| -1774 |#2|) (|:| -2341 |#2|)) "failed") |#2| |#2|))) (-571) (-1273 |#1|)) (T -1270))
-((-2804 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-571)) (-5 *2 (-2 (|:| -1774 *3) (|:| -2341 *3))) (-5 *1 (-1270 *4 *3)) (-4 *3 (-1273 *4)))))
-(-10 -7 (-15 -2804 ((-3 (-2 (|:| -1774 |#2|) (|:| -2341 |#2|)) "failed") |#2| |#2|)))
-((-4042 ((|#2| |#2| |#2|) 22 T ELT)) (-3731 ((|#2| |#2| |#2|) 36 T ELT)) (-3978 ((|#2| |#2| |#2| (-793) (-793)) 44 T ELT)))
-(((-1271 |#1| |#2|) (-10 -7 (-15 -4042 (|#2| |#2| |#2|)) (-15 -3731 (|#2| |#2| |#2|)) (-15 -3978 (|#2| |#2| |#2| (-793) (-793)))) (-1080) (-1273 |#1|)) (T -1271))
-((-3978 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-793)) (-4 *4 (-1080)) (-5 *1 (-1271 *4 *2)) (-4 *2 (-1273 *4)))) (-3731 (*1 *2 *2 *2) (-12 (-4 *3 (-1080)) (-5 *1 (-1271 *3 *2)) (-4 *2 (-1273 *3)))) (-4042 (*1 *2 *2 *2) (-12 (-4 *3 (-1080)) (-5 *1 (-1271 *3 *2)) (-4 *2 (-1273 *3)))))
-(-10 -7 (-15 -4042 (|#2| |#2| |#2|)) (-15 -3731 (|#2| |#2| |#2|)) (-15 -3978 (|#2| |#2| |#2| (-793) (-793))))
-((-4468 (((-1297 |#2|) $ (-793)) 129 T ELT)) (-1443 (((-663 (-1113)) $) 16 T ELT)) (-1667 (($ (-1201 |#2|)) 80 T ELT)) (-3107 (((-793) $) NIL T ELT) (((-793) $ (-663 (-1113))) 21 T ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) 204 T ELT)) (-1804 (($ $) 194 T ELT)) (-3023 (((-419 $) $) 192 T ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 95 T ELT)) (-3491 (($ $ (-793)) 84 T ELT)) (-3802 (($ $ (-793)) 86 T ELT)) (-2498 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145 T ELT)) (-2539 (((-3 |#2| "failed") $) 132 T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-1113) "failed") $) NIL T ELT)) (-3330 ((|#2| $) 130 T ELT) (((-421 (-560)) $) NIL T ELT) (((-560) $) NIL T ELT) (((-1113) $) NIL T ELT)) (-2853 (($ $ $) 170 T ELT)) (-4365 (((-2 (|:| -2115 |#2|) (|:| -1774 $) (|:| -2341 $)) $ $) 172 T ELT)) (-3913 (((-793) $ $) 189 T ELT)) (-3009 (((-3 $ "failed") $) 138 T ELT)) (-1417 (($ |#2| (-793)) NIL T ELT) (($ $ (-1113) (-793)) 59 T ELT) (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT)) (-3011 (((-793) $) NIL T ELT) (((-793) $ (-1113)) 54 T ELT) (((-663 (-793)) $ (-663 (-1113))) 55 T ELT)) (-4381 (((-1201 |#2|) $) 72 T ELT)) (-1955 (((-3 (-1113) "failed") $) 52 T ELT)) (-4000 (((-2 (|:| -1774 $) (|:| -2341 $)) $ (-793)) 83 T ELT)) (-2518 (($ $) 219 T ELT)) (-3161 (($) 134 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 201 T ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) 101 T ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) 99 T ELT)) (-4457 (((-419 $) $) 120 T ELT)) (-4187 (($ $ (-663 (-305 $))) 51 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-1113) |#2|) 39 T ELT) (($ $ (-663 (-1113)) (-663 |#2|)) 36 T ELT) (($ $ (-1113) $) 32 T ELT) (($ $ (-663 (-1113)) (-663 $)) 30 T ELT)) (-2901 (((-793) $) 207 T ELT)) (-3924 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-421 $) (-421 $) (-421 $)) 164 T ELT) ((|#2| (-421 $) |#2|) 206 T ELT) (((-421 $) $ (-421 $)) 188 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 212 T ELT)) (-2894 (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113))) NIL T ELT) (($ $ (-1113)) 157 T ELT) (($ $) 155 T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 154 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 149 T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT)) (-3630 (((-793) $) NIL T ELT) (((-793) $ (-1113)) 17 T ELT) (((-663 (-793)) $ (-663 (-1113))) 23 T ELT)) (-2053 ((|#2| $) NIL T ELT) (($ $ (-1113)) 140 T ELT)) (-1974 (((-3 $ "failed") $ $) 180 T ELT) (((-3 (-421 $) "failed") (-421 $) $) 176 T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1113)) 64 T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT)))
-(((-1272 |#1| |#2|) (-10 -8 (-15 -1578 (|#1| |#1|)) (-15 -1882 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|))) (-15 -2894 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -2894 (|#1| |#1| (-1207) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1207)))) (-15 -2894 (|#1| |#1| (-1207))) (-15 -3023 ((-419 |#1|) |#1|)) (-15 -1804 (|#1| |#1|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -3161 (|#1|)) (-15 -3009 ((-3 |#1| "failed") |#1|)) (-15 -3924 ((-421 |#1|) |#1| (-421 |#1|))) (-15 -2901 ((-793) |#1|)) (-15 -2205 ((-2 (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1|)) (-15 -2518 (|#1| |#1|)) (-15 -3924 (|#2| (-421 |#1|) |#2|)) (-15 -2498 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4365 ((-2 (|:| -2115 |#2|) (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1|)) (-15 -2853 (|#1| |#1| |#1|)) (-15 -1974 ((-3 (-421 |#1|) "failed") (-421 |#1|) |#1|)) (-15 -1974 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3913 ((-793) |#1| |#1|)) (-15 -3924 ((-421 |#1|) (-421 |#1|) (-421 |#1|))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3802 (|#1| |#1| (-793))) (-15 -3491 (|#1| |#1| (-793))) (-15 -4000 ((-2 (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| (-793))) (-15 -1667 (|#1| (-1201 |#2|))) (-15 -4381 ((-1201 |#2|) |#1|)) (-15 -4468 ((-1297 |#2|) |#1| (-793))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2894 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1|)) (-15 -3924 (|#1| |#1| |#1|)) (-15 -3924 (|#2| |#1| |#2|)) (-15 -4457 ((-419 |#1|) |#1|)) (-15 -2704 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -1960 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -1941 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -3713 ((-3 (-663 (-1201 |#1|)) "failed") (-663 (-1201 |#1|)) (-1201 |#1|))) (-15 -2053 (|#1| |#1| (-1113))) (-15 -1443 ((-663 (-1113)) |#1|)) (-15 -3107 ((-793) |#1| (-663 (-1113)))) (-15 -3107 ((-793) |#1|)) (-15 -1417 (|#1| |#1| (-663 (-1113)) (-663 (-793)))) (-15 -1417 (|#1| |#1| (-1113) (-793))) (-15 -3011 ((-663 (-793)) |#1| (-663 (-1113)))) (-15 -3011 ((-793) |#1| (-1113))) (-15 -1955 ((-3 (-1113) "failed") |#1|)) (-15 -3630 ((-663 (-793)) |#1| (-663 (-1113)))) (-15 -3630 ((-793) |#1| (-1113))) (-15 -1578 (|#1| (-1113))) (-15 -2539 ((-3 (-1113) "failed") |#1|)) (-15 -3330 ((-1113) |#1|)) (-15 -4187 (|#1| |#1| (-663 (-1113)) (-663 |#1|))) (-15 -4187 (|#1| |#1| (-1113) |#1|)) (-15 -4187 (|#1| |#1| (-663 (-1113)) (-663 |#2|))) (-15 -4187 (|#1| |#1| (-1113) |#2|)) (-15 -4187 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -4187 (|#1| |#1| |#1| |#1|)) (-15 -4187 (|#1| |#1| (-305 |#1|))) (-15 -4187 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -3630 ((-793) |#1|)) (-15 -1417 (|#1| |#2| (-793))) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -3330 ((-560) |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -1578 (|#1| |#2|)) (-15 -3011 ((-793) |#1|)) (-15 -2053 (|#2| |#1|)) (-15 -2894 (|#1| |#1| (-1113))) (-15 -2894 (|#1| |#1| (-663 (-1113)))) (-15 -2894 (|#1| |#1| (-1113) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1113)) (-663 (-793)))) (-15 -1578 (|#1| (-560))) (-15 -1578 ((-887) |#1|))) (-1273 |#2|) (-1080)) (T -1272))
-NIL
-(-10 -8 (-15 -1578 (|#1| |#1|)) (-15 -1882 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|))) (-15 -2894 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -2894 (|#1| |#1| (-1207) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1207)))) (-15 -2894 (|#1| |#1| (-1207))) (-15 -3023 ((-419 |#1|) |#1|)) (-15 -1804 (|#1| |#1|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -3161 (|#1|)) (-15 -3009 ((-3 |#1| "failed") |#1|)) (-15 -3924 ((-421 |#1|) |#1| (-421 |#1|))) (-15 -2901 ((-793) |#1|)) (-15 -2205 ((-2 (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1|)) (-15 -2518 (|#1| |#1|)) (-15 -3924 (|#2| (-421 |#1|) |#2|)) (-15 -2498 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4365 ((-2 (|:| -2115 |#2|) (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| |#1|)) (-15 -2853 (|#1| |#1| |#1|)) (-15 -1974 ((-3 (-421 |#1|) "failed") (-421 |#1|) |#1|)) (-15 -1974 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3913 ((-793) |#1| |#1|)) (-15 -3924 ((-421 |#1|) (-421 |#1|) (-421 |#1|))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3802 (|#1| |#1| (-793))) (-15 -3491 (|#1| |#1| (-793))) (-15 -4000 ((-2 (|:| -1774 |#1|) (|:| -2341 |#1|)) |#1| (-793))) (-15 -1667 (|#1| (-1201 |#2|))) (-15 -4381 ((-1201 |#2|) |#1|)) (-15 -4468 ((-1297 |#2|) |#1| (-793))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -2894 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2894 (|#1| |#1| (-793))) (-15 -2894 (|#1| |#1|)) (-15 -3924 (|#1| |#1| |#1|)) (-15 -3924 (|#2| |#1| |#2|)) (-15 -4457 ((-419 |#1|) |#1|)) (-15 -2704 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -1960 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -1941 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -3713 ((-3 (-663 (-1201 |#1|)) "failed") (-663 (-1201 |#1|)) (-1201 |#1|))) (-15 -2053 (|#1| |#1| (-1113))) (-15 -1443 ((-663 (-1113)) |#1|)) (-15 -3107 ((-793) |#1| (-663 (-1113)))) (-15 -3107 ((-793) |#1|)) (-15 -1417 (|#1| |#1| (-663 (-1113)) (-663 (-793)))) (-15 -1417 (|#1| |#1| (-1113) (-793))) (-15 -3011 ((-663 (-793)) |#1| (-663 (-1113)))) (-15 -3011 ((-793) |#1| (-1113))) (-15 -1955 ((-3 (-1113) "failed") |#1|)) (-15 -3630 ((-663 (-793)) |#1| (-663 (-1113)))) (-15 -3630 ((-793) |#1| (-1113))) (-15 -1578 (|#1| (-1113))) (-15 -2539 ((-3 (-1113) "failed") |#1|)) (-15 -3330 ((-1113) |#1|)) (-15 -4187 (|#1| |#1| (-663 (-1113)) (-663 |#1|))) (-15 -4187 (|#1| |#1| (-1113) |#1|)) (-15 -4187 (|#1| |#1| (-663 (-1113)) (-663 |#2|))) (-15 -4187 (|#1| |#1| (-1113) |#2|)) (-15 -4187 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -4187 (|#1| |#1| |#1| |#1|)) (-15 -4187 (|#1| |#1| (-305 |#1|))) (-15 -4187 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -3630 ((-793) |#1|)) (-15 -1417 (|#1| |#2| (-793))) (-15 -2539 ((-3 (-560) "failed") |#1|)) (-15 -3330 ((-560) |#1|)) (-15 -2539 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3330 ((-421 (-560)) |#1|)) (-15 -3330 (|#2| |#1|)) (-15 -2539 ((-3 |#2| "failed") |#1|)) (-15 -1578 (|#1| |#2|)) (-15 -3011 ((-793) |#1|)) (-15 -2053 (|#2| |#1|)) (-15 -2894 (|#1| |#1| (-1113))) (-15 -2894 (|#1| |#1| (-663 (-1113)))) (-15 -2894 (|#1| |#1| (-1113) (-793))) (-15 -2894 (|#1| |#1| (-663 (-1113)) (-663 (-793)))) (-15 -1578 (|#1| (-560))) (-15 -1578 ((-887) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4468 (((-1297 |#1|) $ (-793)) 256 T ELT)) (-1443 (((-663 (-1113)) $) 113 T ELT)) (-1667 (($ (-1201 |#1|)) 254 T ELT)) (-4422 (((-1201 $) $ (-1113)) 128 T ELT) (((-1201 |#1|) $) 127 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 90 (|has| |#1| (-571)) ELT)) (-3244 (($ $) 91 (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) 93 (|has| |#1| (-571)) ELT)) (-3107 (((-793) $) 115 T ELT) (((-793) $ (-663 (-1113))) 114 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-4182 (($ $ $) 241 (|has| |#1| (-571)) ELT)) (-2704 (((-419 (-1201 $)) (-1201 $)) 103 (|has| |#1| (-939)) ELT)) (-1804 (($ $) 101 (|has| |#1| (-466)) ELT)) (-3023 (((-419 $) $) 100 (|has| |#1| (-466)) ELT)) (-3713 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 106 (|has| |#1| (-939)) ELT)) (-1615 (((-114) $ $) 226 (|has| |#1| (-376)) ELT)) (-3491 (($ $ (-793)) 249 T ELT)) (-3802 (($ $ (-793)) 248 T ELT)) (-2498 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 236 (|has| |#1| (-466)) ELT)) (-2238 (($) 18 T CONST)) (-2539 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-421 (-560)) "failed") $) 168 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) 166 (|has| |#1| (-1069 (-560))) ELT) (((-3 (-1113) "failed") $) 143 T ELT)) (-3330 ((|#1| $) 170 T ELT) (((-421 (-560)) $) 169 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) 167 (|has| |#1| (-1069 (-560))) ELT) (((-1113) $) 144 T ELT)) (-2788 (($ $ $ (-1113)) 111 (|has| |#1| (-175)) ELT) ((|#1| $ $) 244 (|has| |#1| (-175)) ELT)) (-1478 (($ $ $) 230 (|has| |#1| (-376)) ELT)) (-1624 (($ $) 161 T ELT)) (-3142 (((-711 (-560)) (-711 $)) 139 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 138 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 137 T ELT) (((-711 |#1|) (-711 $)) 136 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1490 (($ $ $) 229 (|has| |#1| (-376)) ELT)) (-2186 (($ $ $) 247 T ELT)) (-2853 (($ $ $) 238 (|has| |#1| (-571)) ELT)) (-4365 (((-2 (|:| -2115 |#1|) (|:| -1774 $) (|:| -2341 $)) $ $) 237 (|has| |#1| (-571)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 224 (|has| |#1| (-376)) ELT)) (-2806 (($ $) 183 (|has| |#1| (-466)) ELT) (($ $ (-1113)) 108 (|has| |#1| (-466)) ELT)) (-1608 (((-663 $) $) 112 T ELT)) (-4330 (((-114) $) 99 (|has| |#1| (-939)) ELT)) (-4342 (($ $ |#1| (-793) $) 179 T ELT)) (-2427 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 87 (-12 (|has| (-1113) (-911 (-391))) (|has| |#1| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 86 (-12 (|has| (-1113) (-911 (-560))) (|has| |#1| (-911 (-560)))) ELT)) (-3913 (((-793) $ $) 242 (|has| |#1| (-571)) ELT)) (-1581 (((-114) $) 35 T ELT)) (-3531 (((-793) $) 176 T ELT)) (-3009 (((-3 $ "failed") $) 222 (|has| |#1| (-1182)) ELT)) (-1427 (($ (-1201 |#1|) (-1113)) 120 T ELT) (($ (-1201 $) (-1113)) 119 T ELT)) (-3022 (($ $ (-793)) 253 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 233 (|has| |#1| (-376)) ELT)) (-3997 (((-663 $) $) 129 T ELT)) (-1556 (((-114) $) 159 T ELT)) (-1417 (($ |#1| (-793)) 160 T ELT) (($ $ (-1113) (-793)) 122 T ELT) (($ $ (-663 (-1113)) (-663 (-793))) 121 T ELT)) (-3559 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $ (-1113)) 123 T ELT) (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 251 T ELT)) (-3011 (((-793) $) 177 T ELT) (((-793) $ (-1113)) 125 T ELT) (((-663 (-793)) $ (-663 (-1113))) 124 T ELT)) (-4321 (($ (-1 (-793) (-793)) $) 178 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-4381 (((-1201 |#1|) $) 255 T ELT)) (-1955 (((-3 (-1113) "failed") $) 126 T ELT)) (-2484 (((-711 (-560)) (-1297 $)) 141 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 140 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -3822 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 135 T ELT) (((-711 |#1|) (-1297 $)) 134 T ELT)) (-1583 (($ $) 156 T ELT)) (-1597 ((|#1| $) 155 T ELT)) (-2093 (($ (-663 $)) 97 (|has| |#1| (-466)) ELT) (($ $ $) 96 (|has| |#1| (-466)) ELT)) (-1905 (((-1189) $) 10 T ELT)) (-4000 (((-2 (|:| -1774 $) (|:| -2341 $)) $ (-793)) 250 T ELT)) (-3479 (((-3 (-663 $) "failed") $) 117 T ELT)) (-2590 (((-3 (-663 $) "failed") $) 118 T ELT)) (-3683 (((-3 (-2 (|:| |var| (-1113)) (|:| -3205 (-793))) "failed") $) 116 T ELT)) (-2518 (($ $) 234 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3161 (($) 221 (|has| |#1| (-1182)) CONST)) (-3855 (((-1151) $) 11 T ELT)) (-1554 (((-114) $) 173 T ELT)) (-1566 ((|#1| $) 174 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 98 (|has| |#1| (-466)) ELT)) (-2132 (($ (-663 $)) 95 (|has| |#1| (-466)) ELT) (($ $ $) 94 (|has| |#1| (-466)) ELT)) (-1941 (((-419 (-1201 $)) (-1201 $)) 105 (|has| |#1| (-939)) ELT)) (-1960 (((-419 (-1201 $)) (-1201 $)) 104 (|has| |#1| (-939)) ELT)) (-4457 (((-419 $) $) 102 (|has| |#1| (-939)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 232 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 231 (|has| |#1| (-376)) ELT)) (-1528 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-571)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 225 (|has| |#1| (-376)) ELT)) (-4187 (($ $ (-663 (-305 $))) 152 T ELT) (($ $ (-305 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-663 $) (-663 $)) 149 T ELT) (($ $ (-1113) |#1|) 148 T ELT) (($ $ (-663 (-1113)) (-663 |#1|)) 147 T ELT) (($ $ (-1113) $) 146 T ELT) (($ $ (-663 (-1113)) (-663 $)) 145 T ELT)) (-2901 (((-793) $) 227 (|has| |#1| (-376)) ELT)) (-3924 ((|#1| $ |#1|) 266 T ELT) (($ $ $) 265 T ELT) (((-421 $) (-421 $) (-421 $)) 243 (|has| |#1| (-571)) ELT) ((|#1| (-421 $) |#1|) 235 (|has| |#1| (-376)) ELT) (((-421 $) $ (-421 $)) 223 (|has| |#1| (-571)) ELT)) (-1676 (((-3 $ "failed") $ (-793)) 252 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 228 (|has| |#1| (-376)) ELT)) (-2690 (($ $ (-1113)) 110 (|has| |#1| (-175)) ELT) ((|#1| $) 245 (|has| |#1| (-175)) ELT)) (-2894 (($ $ (-663 (-1113)) (-663 (-793))) 44 T ELT) (($ $ (-1113) (-793)) 43 T ELT) (($ $ (-663 (-1113))) 42 T ELT) (($ $ (-1113)) 40 T ELT) (($ $) 264 T ELT) (($ $ (-793)) 262 T ELT) (($ $ (-1 |#1| |#1|)) 260 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 259 T ELT) (($ $ (-1 |#1| |#1|) $) 246 T ELT) (($ $ (-1207)) 220 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 218 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 217 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 216 (|has| |#1| (-929 (-1207))) ELT)) (-3630 (((-793) $) 157 T ELT) (((-793) $ (-1113)) 133 T ELT) (((-663 (-793)) $ (-663 (-1113))) 132 T ELT)) (-1407 (((-915 (-391)) $) 85 (-12 (|has| (-1113) (-633 (-915 (-391)))) (|has| |#1| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) 84 (-12 (|has| (-1113) (-633 (-915 (-560)))) (|has| |#1| (-633 (-915 (-560))))) ELT) (((-549) $) 83 (-12 (|has| (-1113) (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-2053 ((|#1| $) 182 (|has| |#1| (-466)) ELT) (($ $ (-1113)) 109 (|has| |#1| (-466)) ELT)) (-2048 (((-3 (-1297 $) "failed") (-711 $)) 107 (-1953 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-1974 (((-3 $ "failed") $ $) 240 (|has| |#1| (-571)) ELT) (((-3 (-421 $) "failed") (-421 $) $) 239 (|has| |#1| (-571)) ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 172 T ELT) (($ (-1113)) 142 T ELT) (($ (-421 (-560))) 81 (-2304 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ELT) (($ $) 88 (|has| |#1| (-571)) ELT)) (-3409 (((-663 |#1|) $) 175 T ELT)) (-2305 ((|#1| $ (-793)) 162 T ELT) (($ $ (-1113) (-793)) 131 T ELT) (($ $ (-663 (-1113)) (-663 (-793))) 130 T ELT)) (-1964 (((-3 $ "failed") $) 82 (-2304 (-1953 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-2930 (((-793)) 32 T CONST)) (-2392 (($ $ $ (-793)) 180 (|has| |#1| (-175)) ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 92 (|has| |#1| (-571)) ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($ $ (-663 (-1113)) (-663 (-793))) 47 T ELT) (($ $ (-1113) (-793)) 46 T ELT) (($ $ (-663 (-1113))) 45 T ELT) (($ $ (-1113)) 41 T ELT) (($ $) 263 T ELT) (($ $ (-793)) 261 T ELT) (($ $ (-1 |#1| |#1|)) 258 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 257 T ELT) (($ $ (-1207)) 219 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 215 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 214 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 213 (|has| |#1| (-929 (-1207))) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ |#1|) 163 (|has| |#1| (-376)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 165 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) 164 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT)))
+((-4197 (((-2 (|:| |contp| (-560)) (|:| -2609 (-663 (-2 (|:| |irr| |#1|) (|:| -4181 (-560)))))) |#1| (-114)) 13 T ELT)) (-2669 (((-419 |#1|) |#1|) 26 T ELT)) (-4012 (((-419 |#1|) |#1|) 24 T ELT)))
+(((-1263 |#1|) (-10 -7 (-15 -4012 ((-419 |#1|) |#1|)) (-15 -2669 ((-419 |#1|) |#1|)) (-15 -4197 ((-2 (|:| |contp| (-560)) (|:| -2609 (-663 (-2 (|:| |irr| |#1|) (|:| -4181 (-560)))))) |#1| (-114)))) (-1273 (-560))) (T -1263))
+((-4197 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *2 (-2 (|:| |contp| (-560)) (|:| -2609 (-663 (-2 (|:| |irr| *3) (|:| -4181 (-560))))))) (-5 *1 (-1263 *3)) (-4 *3 (-1273 (-560))))) (-2669 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-1263 *3)) (-4 *3 (-1273 (-560))))) (-4012 (*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-1263 *3)) (-4 *3 (-1273 (-560))))))
+(-10 -7 (-15 -4012 ((-419 |#1|) |#1|)) (-15 -2669 ((-419 |#1|) |#1|)) (-15 -4197 ((-2 (|:| |contp| (-560)) (|:| -2609 (-663 (-2 (|:| |irr| |#1|) (|:| -4181 (-560)))))) |#1| (-114))))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-1886 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-2260 (((-1185 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-870)) ELT)) (-1333 ((|#1| $) 15 T ELT)) (-3760 ((|#1| $) 12 T ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3695 (((-560) $) 19 T ELT)) (-4227 ((|#1| $) 18 T ELT)) (-3707 ((|#1| $) 13 T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3725 (((-114) $) 17 T ELT)) (-3890 (((-1185 |#1|) $) 41 (|has| |#1| (-870)) ELT) (((-1185 |#1|) (-663 $)) 40 (|has| |#1| (-870)) ELT)) (-2400 (($ |#1|) 26 T ELT)) (-3913 (($ (-1120 |#1|)) 25 T ELT) (((-887) $) 37 (|has| |#1| (-1132)) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-1132)) ELT)) (-2224 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-2127 (($ $ (-560)) 14 T ELT)) (-2340 (((-114) $ $) 30 (|has| |#1| (-1132)) ELT)))
+(((-1264 |#1|) (-13 (-1125 |#1|) (-10 -8 (-15 -2224 ($ |#1|)) (-15 -1886 ($ |#1|)) (-15 -3913 ($ (-1120 |#1|))) (-15 -3725 ((-114) $)) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|) (IF (|has| |#1| (-870)) (-6 (-1126 |#1| (-1185 |#1|))) |%noBranch|))) (-1247)) (T -1264))
+((-2224 (*1 *1 *2) (-12 (-5 *1 (-1264 *2)) (-4 *2 (-1247)))) (-1886 (*1 *1 *2) (-12 (-5 *1 (-1264 *2)) (-4 *2 (-1247)))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-1120 *3)) (-4 *3 (-1247)) (-5 *1 (-1264 *3)))) (-3725 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1264 *3)) (-4 *3 (-1247)))))
+(-13 (-1125 |#1|) (-10 -8 (-15 -2224 ($ |#1|)) (-15 -1886 ($ |#1|)) (-15 -3913 ($ (-1120 |#1|))) (-15 -3725 ((-114) $)) (IF (|has| |#1| (-1132)) (-6 (-1132)) |%noBranch|) (IF (|has| |#1| (-870)) (-6 (-1126 |#1| (-1185 |#1|))) |%noBranch|)))
+((-2260 (((-1185 |#2|) (-1 |#2| |#1|) (-1264 |#1|)) 23 (|has| |#1| (-870)) ELT) (((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|)) 17 T ELT)))
+(((-1265 |#1| |#2|) (-10 -7 (-15 -2260 ((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) (IF (|has| |#1| (-870)) (-15 -2260 ((-1185 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) |%noBranch|)) (-1247) (-1247)) (T -1265))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-870)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1185 *6)) (-5 *1 (-1265 *5 *6)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1264 *6)) (-5 *1 (-1265 *5 *6)))))
+(-10 -7 (-15 -2260 ((-1264 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) (IF (|has| |#1| (-870)) (-15 -2260 ((-1185 |#2|) (-1 |#2| |#1|) (-1264 |#1|))) |%noBranch|))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-1797 (((-1297 |#2|) $ (-793)) NIL T ELT)) (-4162 (((-663 (-1113)) $) NIL T ELT)) (-2746 (($ (-1201 |#2|)) NIL T ELT)) (-3981 (((-1201 $) $ (-1113)) NIL T ELT) (((-1201 |#2|) $) NIL T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#2| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#2| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#2| (-571)) ELT)) (-2250 (((-793) $) NIL T ELT) (((-793) $ (-663 (-1113))) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-4293 (($ $ $) NIL (|has| |#2| (-571)) ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-1621 (($ $) NIL (|has| |#2| (-466)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#2| (-466)) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-3476 (((-114) $ $) NIL (|has| |#2| (-376)) ELT)) (-1776 (($ $ (-793)) NIL T ELT)) (-1677 (($ $ (-793)) NIL T ELT)) (-4254 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-466)) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#2| "failed") $) NIL T ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-3 (-1113) "failed") $) NIL T ELT)) (-3649 ((|#2| $) NIL T ELT) (((-421 (-560)) $) NIL (|has| |#2| (-1069 (-421 (-560)))) ELT) (((-560) $) NIL (|has| |#2| (-1069 (-560))) ELT) (((-1113) $) NIL T ELT)) (-2096 (($ $ $ (-1113)) NIL (|has| |#2| (-175)) ELT) ((|#2| $ $) NIL (|has| |#2| (-175)) ELT)) (-2186 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3062 (($ $) NIL T ELT)) (-2619 (((-711 (-560)) (-711 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-711 $) (-1297 $)) NIL T ELT) (((-711 |#2|) (-711 $)) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-2197 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-4295 (($ $ $) NIL T ELT)) (-3457 (($ $ $) NIL (|has| |#2| (-571)) ELT)) (-3390 (((-2 (|:| -2625 |#2|) (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#2| (-571)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL (|has| |#2| (-376)) ELT)) (-4239 (($ $) NIL (|has| |#2| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#2| (-466)) ELT)) (-3048 (((-663 $) $) NIL T ELT)) (-3141 (((-114) $) NIL (|has| |#2| (-939)) ELT)) (-3224 (($ $ |#2| (-793) $) NIL T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) NIL (-12 (|has| (-1113) (-911 (-391))) (|has| |#2| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) NIL (-12 (|has| (-1113) (-911 (-560))) (|has| |#2| (-911 (-560)))) ELT)) (-1460 (((-793) $ $) NIL (|has| |#2| (-571)) ELT)) (-1918 (((-114) $) NIL T ELT)) (-4127 (((-793) $) NIL T ELT)) (-3738 (((-3 $ "failed") $) NIL (|has| |#2| (-1182)) ELT)) (-4149 (($ (-1201 |#2|) (-1113)) NIL T ELT) (($ (-1201 $) (-1113)) NIL T ELT)) (-3886 (($ $ (-793)) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#2| (-376)) ELT)) (-2947 (((-663 $) $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#2| (-793)) 18 T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT)) (-4415 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $ (-1113)) NIL T ELT) (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL T ELT)) (-3765 (((-793) $) NIL T ELT) (((-793) $ (-1113)) NIL T ELT) (((-663 (-793)) $ (-663 (-1113))) NIL T ELT)) (-3060 (($ (-1 (-793) (-793)) $) NIL T ELT)) (-2260 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2298 (((-1201 |#2|) $) NIL T ELT)) (-3835 (((-3 (-1113) "failed") $) NIL T ELT)) (-4140 (((-711 (-560)) (-1297 $)) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) NIL (|has| |#2| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#2|)) (|:| |vec| (-1297 |#2|))) (-1297 $) $) NIL T ELT) (((-711 |#2|) (-1297 $)) NIL T ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#2| $) NIL T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2985 (((-2 (|:| -2584 $) (|:| -3276 $)) $ (-793)) NIL T ELT)) (-1669 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3849 (((-3 (-663 $) "failed") $) NIL T ELT)) (-3149 (((-3 (-2 (|:| |var| (-1113)) (|:| -2030 (-793))) "failed") $) NIL T ELT)) (-4424 (($ $) NIL (|has| |#2| (-38 (-421 (-560)))) ELT)) (-3239 (($) NIL (|has| |#2| (-1182)) CONST)) (-3376 (((-1151) $) NIL T ELT)) (-3000 (((-114) $) NIL T ELT)) (-3011 ((|#2| $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#2| (-466)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#2| (-466)) ELT) (($ $ $) NIL (|has| |#2| (-466)) ELT)) (-2183 (($ $ (-793) |#2| $) NIL T ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) NIL (|has| |#2| (-939)) ELT)) (-4012 (((-419 $) $) NIL (|has| |#2| (-939)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-2233 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-571)) ELT) (((-3 $ "failed") $ $) NIL (|has| |#2| (-571)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#2| (-376)) ELT)) (-2371 (($ $ (-663 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-1113) |#2|) NIL T ELT) (($ $ (-663 (-1113)) (-663 |#2|)) NIL T ELT) (($ $ (-1113) $) NIL T ELT) (($ $ (-663 (-1113)) (-663 $)) NIL T ELT)) (-3989 (((-793) $) NIL (|has| |#2| (-376)) ELT)) (-1507 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-421 $) (-421 $) (-421 $)) NIL (|has| |#2| (-571)) ELT) ((|#2| (-421 $) |#2|) NIL (|has| |#2| (-376)) ELT) (((-421 $) $ (-421 $)) NIL (|has| |#2| (-571)) ELT)) (-2829 (((-3 $ "failed") $ (-793)) NIL T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-2336 (($ $ (-1113)) NIL (|has| |#2| (-175)) ELT) ((|#2| $) NIL (|has| |#2| (-175)) ELT)) (-3161 (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-3900 (((-793) $) NIL T ELT) (((-793) $ (-1113)) NIL T ELT) (((-663 (-793)) $ (-663 (-1113))) NIL T ELT)) (-2400 (((-915 (-391)) $) NIL (-12 (|has| (-1113) (-633 (-915 (-391)))) (|has| |#2| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) NIL (-12 (|has| (-1113) (-633 (-915 (-560)))) (|has| |#2| (-633 (-915 (-560))))) ELT) (((-549) $) NIL (-12 (|has| (-1113) (-633 (-549))) (|has| |#2| (-633 (-549)))) ELT)) (-2264 ((|#2| $) NIL (|has| |#2| (-466)) ELT) (($ $ (-1113)) NIL (|has| |#2| (-466)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-939))) ELT)) (-2730 (((-3 $ "failed") $ $) NIL (|has| |#2| (-571)) ELT) (((-3 (-421 $) "failed") (-421 $) $) NIL (|has| |#2| (-571)) ELT)) (-3913 (((-887) $) 13 T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1113)) NIL T ELT) (($ (-1294 |#1|)) 20 T ELT) (($ (-421 (-560))) NIL (-2196 (|has| |#2| (-38 (-421 (-560)))) (|has| |#2| (-1069 (-421 (-560))))) ELT) (($ $) NIL (|has| |#2| (-571)) ELT)) (-2247 (((-663 |#2|) $) NIL T ELT)) (-2920 ((|#2| $ (-793)) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL (-2196 (-12 (|has| $ (-147)) (|has| |#2| (-939))) (|has| |#2| (-147))) ELT)) (-4191 (((-793)) NIL T CONST)) (-2548 (($ $ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL (|has| |#2| (-571)) ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) 14 T CONST)) (-2111 (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113))) NIL T ELT) (($ $ (-1113)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1207)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) NIL (|has| |#2| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (|has| |#2| (-929 (-1207))) ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-421 (-560))) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) NIL (|has| |#2| (-38 (-421 (-560)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT)))
+(((-1266 |#1| |#2|) (-13 (-1273 |#2|) (-635 (-1294 |#1|)) (-10 -8 (-15 -2183 ($ $ (-793) |#2| $)))) (-1207) (-1080)) (T -1266))
+((-2183 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1266 *4 *3)) (-14 *4 (-1207)) (-4 *3 (-1080)))))
+(-13 (-1273 |#2|) (-635 (-1294 |#1|)) (-10 -8 (-15 -2183 ($ $ (-793) |#2| $))))
+((-2260 (((-1266 |#3| |#4|) (-1 |#4| |#2|) (-1266 |#1| |#2|)) 15 T ELT)))
+(((-1267 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2260 ((-1266 |#3| |#4|) (-1 |#4| |#2|) (-1266 |#1| |#2|)))) (-1207) (-1080) (-1207) (-1080)) (T -1267))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1266 *5 *6)) (-14 *5 (-1207)) (-4 *6 (-1080)) (-4 *8 (-1080)) (-5 *2 (-1266 *7 *8)) (-5 *1 (-1267 *5 *6 *7 *8)) (-14 *7 (-1207)))))
+(-10 -7 (-15 -2260 ((-1266 |#3| |#4|) (-1 |#4| |#2|) (-1266 |#1| |#2|))))
+((-2685 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-3114 ((|#1| |#3|) 13 T ELT)) (-3486 ((|#3| |#3|) 19 T ELT)))
+(((-1268 |#1| |#2| |#3|) (-10 -7 (-15 -3114 (|#1| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -2685 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-571) (-1022 |#1|) (-1273 |#2|)) (T -1268))
+((-2685 (*1 *2 *3) (-12 (-4 *4 (-571)) (-4 *5 (-1022 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1268 *4 *5 *3)) (-4 *3 (-1273 *5)))) (-3486 (*1 *2 *2) (-12 (-4 *3 (-571)) (-4 *4 (-1022 *3)) (-5 *1 (-1268 *3 *4 *2)) (-4 *2 (-1273 *4)))) (-3114 (*1 *2 *3) (-12 (-4 *4 (-1022 *2)) (-4 *2 (-571)) (-5 *1 (-1268 *2 *4 *3)) (-4 *3 (-1273 *4)))))
+(-10 -7 (-15 -3114 (|#1| |#3|)) (-15 -3486 (|#3| |#3|)) (-15 -2685 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-4290 (((-3 |#2| "failed") |#2| (-793) |#1|) 35 T ELT)) (-4031 (((-3 |#2| "failed") |#2| (-793)) 36 T ELT)) (-4049 (((-3 (-2 (|:| -4335 |#2|) (|:| -4346 |#2|)) "failed") |#2|) 50 T ELT)) (-1377 (((-663 |#2|) |#2|) 52 T ELT)) (-2435 (((-3 |#2| "failed") |#2| |#2|) 46 T ELT)))
+(((-1269 |#1| |#2|) (-10 -7 (-15 -4031 ((-3 |#2| "failed") |#2| (-793))) (-15 -4290 ((-3 |#2| "failed") |#2| (-793) |#1|)) (-15 -2435 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4049 ((-3 (-2 (|:| -4335 |#2|) (|:| -4346 |#2|)) "failed") |#2|)) (-15 -1377 ((-663 |#2|) |#2|))) (-13 (-571) (-149)) (-1273 |#1|)) (T -1269))
+((-1377 (*1 *2 *3) (-12 (-4 *4 (-13 (-571) (-149))) (-5 *2 (-663 *3)) (-5 *1 (-1269 *4 *3)) (-4 *3 (-1273 *4)))) (-4049 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-571) (-149))) (-5 *2 (-2 (|:| -4335 *3) (|:| -4346 *3))) (-5 *1 (-1269 *4 *3)) (-4 *3 (-1273 *4)))) (-2435 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-1269 *3 *2)) (-4 *2 (-1273 *3)))) (-4290 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-793)) (-4 *4 (-13 (-571) (-149))) (-5 *1 (-1269 *4 *2)) (-4 *2 (-1273 *4)))) (-4031 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-793)) (-4 *4 (-13 (-571) (-149))) (-5 *1 (-1269 *4 *2)) (-4 *2 (-1273 *4)))))
+(-10 -7 (-15 -4031 ((-3 |#2| "failed") |#2| (-793))) (-15 -4290 ((-3 |#2| "failed") |#2| (-793) |#1|)) (-15 -2435 ((-3 |#2| "failed") |#2| |#2|)) (-15 -4049 ((-3 (-2 (|:| -4335 |#2|) (|:| -4346 |#2|)) "failed") |#2|)) (-15 -1377 ((-663 |#2|) |#2|)))
+((-4219 (((-3 (-2 (|:| -2584 |#2|) (|:| -3276 |#2|)) "failed") |#2| |#2|) 30 T ELT)))
+(((-1270 |#1| |#2|) (-10 -7 (-15 -4219 ((-3 (-2 (|:| -2584 |#2|) (|:| -3276 |#2|)) "failed") |#2| |#2|))) (-571) (-1273 |#1|)) (T -1270))
+((-4219 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-571)) (-5 *2 (-2 (|:| -2584 *3) (|:| -3276 *3))) (-5 *1 (-1270 *4 *3)) (-4 *3 (-1273 *4)))))
+(-10 -7 (-15 -4219 ((-3 (-2 (|:| -2584 |#2|) (|:| -3276 |#2|)) "failed") |#2| |#2|)))
+((-2170 ((|#2| |#2| |#2|) 22 T ELT)) (-2348 ((|#2| |#2| |#2|) 36 T ELT)) (-4041 ((|#2| |#2| |#2| (-793) (-793)) 44 T ELT)))
+(((-1271 |#1| |#2|) (-10 -7 (-15 -2170 (|#2| |#2| |#2|)) (-15 -2348 (|#2| |#2| |#2|)) (-15 -4041 (|#2| |#2| |#2| (-793) (-793)))) (-1080) (-1273 |#1|)) (T -1271))
+((-4041 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-793)) (-4 *4 (-1080)) (-5 *1 (-1271 *4 *2)) (-4 *2 (-1273 *4)))) (-2348 (*1 *2 *2 *2) (-12 (-4 *3 (-1080)) (-5 *1 (-1271 *3 *2)) (-4 *2 (-1273 *3)))) (-2170 (*1 *2 *2 *2) (-12 (-4 *3 (-1080)) (-5 *1 (-1271 *3 *2)) (-4 *2 (-1273 *3)))))
+(-10 -7 (-15 -2170 (|#2| |#2| |#2|)) (-15 -2348 (|#2| |#2| |#2|)) (-15 -4041 (|#2| |#2| |#2| (-793) (-793))))
+((-1797 (((-1297 |#2|) $ (-793)) 129 T ELT)) (-4162 (((-663 (-1113)) $) 16 T ELT)) (-2746 (($ (-1201 |#2|)) 80 T ELT)) (-2250 (((-793) $) NIL T ELT) (((-793) $ (-663 (-1113))) 21 T ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) 204 T ELT)) (-1621 (($ $) 194 T ELT)) (-3898 (((-419 $) $) 192 T ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 95 T ELT)) (-1776 (($ $ (-793)) 84 T ELT)) (-1677 (($ $ (-793)) 86 T ELT)) (-4254 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 145 T ELT)) (-3929 (((-3 |#2| "failed") $) 132 T ELT) (((-3 (-421 (-560)) "failed") $) NIL T ELT) (((-3 (-560) "failed") $) NIL T ELT) (((-3 (-1113) "failed") $) NIL T ELT)) (-3649 ((|#2| $) 130 T ELT) (((-421 (-560)) $) NIL T ELT) (((-560) $) NIL T ELT) (((-1113) $) NIL T ELT)) (-3457 (($ $ $) 170 T ELT)) (-3390 (((-2 (|:| -2625 |#2|) (|:| -2584 $) (|:| -3276 $)) $ $) 172 T ELT)) (-1460 (((-793) $ $) 189 T ELT)) (-3738 (((-3 $ "failed") $) 138 T ELT)) (-4139 (($ |#2| (-793)) NIL T ELT) (($ $ (-1113) (-793)) 59 T ELT) (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT)) (-3765 (((-793) $) NIL T ELT) (((-793) $ (-1113)) 54 T ELT) (((-663 (-793)) $ (-663 (-1113))) 55 T ELT)) (-2298 (((-1201 |#2|) $) 72 T ELT)) (-3835 (((-3 (-1113) "failed") $) 52 T ELT)) (-2985 (((-2 (|:| -2584 $) (|:| -3276 $)) $ (-793)) 83 T ELT)) (-4424 (($ $) 219 T ELT)) (-3239 (($) 134 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 201 T ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) 101 T ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) 99 T ELT)) (-4012 (((-419 $) $) 120 T ELT)) (-2371 (($ $ (-663 (-305 $))) 51 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-663 $) (-663 $)) NIL T ELT) (($ $ (-1113) |#2|) 39 T ELT) (($ $ (-663 (-1113)) (-663 |#2|)) 36 T ELT) (($ $ (-1113) $) 32 T ELT) (($ $ (-663 (-1113)) (-663 $)) 30 T ELT)) (-3989 (((-793) $) 207 T ELT)) (-1507 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-421 $) (-421 $) (-421 $)) 164 T ELT) ((|#2| (-421 $) |#2|) 206 T ELT) (((-421 $) $ (-421 $)) 188 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 212 T ELT)) (-3161 (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113))) NIL T ELT) (($ $ (-1113)) 157 T ELT) (($ $) 155 T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 154 T ELT) (($ $ (-1 |#2| |#2|) (-793)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 149 T ELT) (($ $ (-1207)) NIL T ELT) (($ $ (-663 (-1207))) NIL T ELT) (($ $ (-1207) (-793)) NIL T ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL T ELT)) (-3900 (((-793) $) NIL T ELT) (((-793) $ (-1113)) 17 T ELT) (((-663 (-793)) $ (-663 (-1113))) 23 T ELT)) (-2264 ((|#2| $) NIL T ELT) (($ $ (-1113)) 140 T ELT)) (-2730 (((-3 $ "failed") $ $) 180 T ELT) (((-3 (-421 $) "failed") (-421 $) $) 176 T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1113)) 64 T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT)))
+(((-1272 |#1| |#2|) (-10 -8 (-15 -3913 (|#1| |#1|)) (-15 -4362 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|))) (-15 -3161 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -3161 (|#1| |#1| (-1207) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1207)))) (-15 -3161 (|#1| |#1| (-1207))) (-15 -3898 ((-419 |#1|) |#1|)) (-15 -1621 (|#1| |#1|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -3239 (|#1|)) (-15 -3738 ((-3 |#1| "failed") |#1|)) (-15 -1507 ((-421 |#1|) |#1| (-421 |#1|))) (-15 -3989 ((-793) |#1|)) (-15 -4455 ((-2 (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1|)) (-15 -4424 (|#1| |#1|)) (-15 -1507 (|#2| (-421 |#1|) |#2|)) (-15 -4254 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3390 ((-2 (|:| -2625 |#2|) (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1|)) (-15 -3457 (|#1| |#1| |#1|)) (-15 -2730 ((-3 (-421 |#1|) "failed") (-421 |#1|) |#1|)) (-15 -2730 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1460 ((-793) |#1| |#1|)) (-15 -1507 ((-421 |#1|) (-421 |#1|) (-421 |#1|))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1677 (|#1| |#1| (-793))) (-15 -1776 (|#1| |#1| (-793))) (-15 -2985 ((-2 (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| (-793))) (-15 -2746 (|#1| (-1201 |#2|))) (-15 -2298 ((-1201 |#2|) |#1|)) (-15 -1797 ((-1297 |#2|) |#1| (-793))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3161 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1|)) (-15 -1507 (|#1| |#1| |#1|)) (-15 -1507 (|#2| |#1| |#2|)) (-15 -4012 ((-419 |#1|) |#1|)) (-15 -2491 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -3885 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -3690 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -2182 ((-3 (-663 (-1201 |#1|)) "failed") (-663 (-1201 |#1|)) (-1201 |#1|))) (-15 -2264 (|#1| |#1| (-1113))) (-15 -4162 ((-663 (-1113)) |#1|)) (-15 -2250 ((-793) |#1| (-663 (-1113)))) (-15 -2250 ((-793) |#1|)) (-15 -4139 (|#1| |#1| (-663 (-1113)) (-663 (-793)))) (-15 -4139 (|#1| |#1| (-1113) (-793))) (-15 -3765 ((-663 (-793)) |#1| (-663 (-1113)))) (-15 -3765 ((-793) |#1| (-1113))) (-15 -3835 ((-3 (-1113) "failed") |#1|)) (-15 -3900 ((-663 (-793)) |#1| (-663 (-1113)))) (-15 -3900 ((-793) |#1| (-1113))) (-15 -3913 (|#1| (-1113))) (-15 -3929 ((-3 (-1113) "failed") |#1|)) (-15 -3649 ((-1113) |#1|)) (-15 -2371 (|#1| |#1| (-663 (-1113)) (-663 |#1|))) (-15 -2371 (|#1| |#1| (-1113) |#1|)) (-15 -2371 (|#1| |#1| (-663 (-1113)) (-663 |#2|))) (-15 -2371 (|#1| |#1| (-1113) |#2|)) (-15 -2371 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -2371 (|#1| |#1| |#1| |#1|)) (-15 -2371 (|#1| |#1| (-305 |#1|))) (-15 -2371 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -3900 ((-793) |#1|)) (-15 -4139 (|#1| |#2| (-793))) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -3649 ((-560) |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3913 (|#1| |#2|)) (-15 -3765 ((-793) |#1|)) (-15 -2264 (|#2| |#1|)) (-15 -3161 (|#1| |#1| (-1113))) (-15 -3161 (|#1| |#1| (-663 (-1113)))) (-15 -3161 (|#1| |#1| (-1113) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1113)) (-663 (-793)))) (-15 -3913 (|#1| (-560))) (-15 -3913 ((-887) |#1|))) (-1273 |#2|) (-1080)) (T -1272))
+NIL
+(-10 -8 (-15 -3913 (|#1| |#1|)) (-15 -4362 ((-1201 |#1|) (-1201 |#1|) (-1201 |#1|))) (-15 -3161 (|#1| |#1| (-663 (-1207)) (-663 (-793)))) (-15 -3161 (|#1| |#1| (-1207) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1207)))) (-15 -3161 (|#1| |#1| (-1207))) (-15 -3898 ((-419 |#1|) |#1|)) (-15 -1621 (|#1| |#1|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -3239 (|#1|)) (-15 -3738 ((-3 |#1| "failed") |#1|)) (-15 -1507 ((-421 |#1|) |#1| (-421 |#1|))) (-15 -3989 ((-793) |#1|)) (-15 -4455 ((-2 (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1|)) (-15 -4424 (|#1| |#1|)) (-15 -1507 (|#2| (-421 |#1|) |#2|)) (-15 -4254 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -3390 ((-2 (|:| -2625 |#2|) (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| |#1|)) (-15 -3457 (|#1| |#1| |#1|)) (-15 -2730 ((-3 (-421 |#1|) "failed") (-421 |#1|) |#1|)) (-15 -2730 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1460 ((-793) |#1| |#1|)) (-15 -1507 ((-421 |#1|) (-421 |#1|) (-421 |#1|))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -1677 (|#1| |#1| (-793))) (-15 -1776 (|#1| |#1| (-793))) (-15 -2985 ((-2 (|:| -2584 |#1|) (|:| -3276 |#1|)) |#1| (-793))) (-15 -2746 (|#1| (-1201 |#2|))) (-15 -2298 ((-1201 |#2|) |#1|)) (-15 -1797 ((-1297 |#2|) |#1| (-793))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|) (-793))) (-15 -3161 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3161 (|#1| |#1| (-793))) (-15 -3161 (|#1| |#1|)) (-15 -1507 (|#1| |#1| |#1|)) (-15 -1507 (|#2| |#1| |#2|)) (-15 -4012 ((-419 |#1|) |#1|)) (-15 -2491 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -3885 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -3690 ((-419 (-1201 |#1|)) (-1201 |#1|))) (-15 -2182 ((-3 (-663 (-1201 |#1|)) "failed") (-663 (-1201 |#1|)) (-1201 |#1|))) (-15 -2264 (|#1| |#1| (-1113))) (-15 -4162 ((-663 (-1113)) |#1|)) (-15 -2250 ((-793) |#1| (-663 (-1113)))) (-15 -2250 ((-793) |#1|)) (-15 -4139 (|#1| |#1| (-663 (-1113)) (-663 (-793)))) (-15 -4139 (|#1| |#1| (-1113) (-793))) (-15 -3765 ((-663 (-793)) |#1| (-663 (-1113)))) (-15 -3765 ((-793) |#1| (-1113))) (-15 -3835 ((-3 (-1113) "failed") |#1|)) (-15 -3900 ((-663 (-793)) |#1| (-663 (-1113)))) (-15 -3900 ((-793) |#1| (-1113))) (-15 -3913 (|#1| (-1113))) (-15 -3929 ((-3 (-1113) "failed") |#1|)) (-15 -3649 ((-1113) |#1|)) (-15 -2371 (|#1| |#1| (-663 (-1113)) (-663 |#1|))) (-15 -2371 (|#1| |#1| (-1113) |#1|)) (-15 -2371 (|#1| |#1| (-663 (-1113)) (-663 |#2|))) (-15 -2371 (|#1| |#1| (-1113) |#2|)) (-15 -2371 (|#1| |#1| (-663 |#1|) (-663 |#1|))) (-15 -2371 (|#1| |#1| |#1| |#1|)) (-15 -2371 (|#1| |#1| (-305 |#1|))) (-15 -2371 (|#1| |#1| (-663 (-305 |#1|)))) (-15 -3900 ((-793) |#1|)) (-15 -4139 (|#1| |#2| (-793))) (-15 -3929 ((-3 (-560) "failed") |#1|)) (-15 -3649 ((-560) |#1|)) (-15 -3929 ((-3 (-421 (-560)) "failed") |#1|)) (-15 -3649 ((-421 (-560)) |#1|)) (-15 -3649 (|#2| |#1|)) (-15 -3929 ((-3 |#2| "failed") |#1|)) (-15 -3913 (|#1| |#2|)) (-15 -3765 ((-793) |#1|)) (-15 -2264 (|#2| |#1|)) (-15 -3161 (|#1| |#1| (-1113))) (-15 -3161 (|#1| |#1| (-663 (-1113)))) (-15 -3161 (|#1| |#1| (-1113) (-793))) (-15 -3161 (|#1| |#1| (-663 (-1113)) (-663 (-793)))) (-15 -3913 (|#1| (-560))) (-15 -3913 ((-887) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-1797 (((-1297 |#1|) $ (-793)) 256 T ELT)) (-4162 (((-663 (-1113)) $) 113 T ELT)) (-2746 (($ (-1201 |#1|)) 254 T ELT)) (-3981 (((-1201 $) $ (-1113)) 128 T ELT) (((-1201 |#1|) $) 127 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 90 (|has| |#1| (-571)) ELT)) (-4366 (($ $) 91 (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) 93 (|has| |#1| (-571)) ELT)) (-2250 (((-793) $) 115 T ELT) (((-793) $ (-663 (-1113))) 114 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-4293 (($ $ $) 241 (|has| |#1| (-571)) ELT)) (-2491 (((-419 (-1201 $)) (-1201 $)) 103 (|has| |#1| (-939)) ELT)) (-1621 (($ $) 101 (|has| |#1| (-466)) ELT)) (-3898 (((-419 $) $) 100 (|has| |#1| (-466)) ELT)) (-2182 (((-3 (-663 (-1201 $)) "failed") (-663 (-1201 $)) (-1201 $)) 106 (|has| |#1| (-939)) ELT)) (-3476 (((-114) $ $) 226 (|has| |#1| (-376)) ELT)) (-1776 (($ $ (-793)) 249 T ELT)) (-1677 (($ $ (-793)) 248 T ELT)) (-4254 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 236 (|has| |#1| (-466)) ELT)) (-3525 (($) 18 T CONST)) (-3929 (((-3 |#1| "failed") $) 171 T ELT) (((-3 (-421 (-560)) "failed") $) 168 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-3 (-560) "failed") $) 166 (|has| |#1| (-1069 (-560))) ELT) (((-3 (-1113) "failed") $) 143 T ELT)) (-3649 ((|#1| $) 170 T ELT) (((-421 (-560)) $) 169 (|has| |#1| (-1069 (-421 (-560)))) ELT) (((-560) $) 167 (|has| |#1| (-1069 (-560))) ELT) (((-1113) $) 144 T ELT)) (-2096 (($ $ $ (-1113)) 111 (|has| |#1| (-175)) ELT) ((|#1| $ $) 244 (|has| |#1| (-175)) ELT)) (-2186 (($ $ $) 230 (|has| |#1| (-376)) ELT)) (-3062 (($ $) 161 T ELT)) (-2619 (((-711 (-560)) (-711 $)) 139 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-711 $) (-1297 $)) 138 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-711 $) (-1297 $)) 137 T ELT) (((-711 |#1|) (-711 $)) 136 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-2197 (($ $ $) 229 (|has| |#1| (-376)) ELT)) (-4295 (($ $ $) 247 T ELT)) (-3457 (($ $ $) 238 (|has| |#1| (-571)) ELT)) (-3390 (((-2 (|:| -2625 |#1|) (|:| -2584 $) (|:| -3276 $)) $ $) 237 (|has| |#1| (-571)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 224 (|has| |#1| (-376)) ELT)) (-4239 (($ $) 183 (|has| |#1| (-466)) ELT) (($ $ (-1113)) 108 (|has| |#1| (-466)) ELT)) (-3048 (((-663 $) $) 112 T ELT)) (-3141 (((-114) $) 99 (|has| |#1| (-939)) ELT)) (-3224 (($ $ |#1| (-793) $) 179 T ELT)) (-1646 (((-913 (-391) $) $ (-915 (-391)) (-913 (-391) $)) 87 (-12 (|has| (-1113) (-911 (-391))) (|has| |#1| (-911 (-391)))) ELT) (((-913 (-560) $) $ (-915 (-560)) (-913 (-560) $)) 86 (-12 (|has| (-1113) (-911 (-560))) (|has| |#1| (-911 (-560)))) ELT)) (-1460 (((-793) $ $) 242 (|has| |#1| (-571)) ELT)) (-1918 (((-114) $) 35 T ELT)) (-4127 (((-793) $) 176 T ELT)) (-3738 (((-3 $ "failed") $) 222 (|has| |#1| (-1182)) ELT)) (-4149 (($ (-1201 |#1|) (-1113)) 120 T ELT) (($ (-1201 $) (-1113)) 119 T ELT)) (-3886 (($ $ (-793)) 253 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 233 (|has| |#1| (-376)) ELT)) (-2947 (((-663 $) $) 129 T ELT)) (-1673 (((-114) $) 159 T ELT)) (-4139 (($ |#1| (-793)) 160 T ELT) (($ $ (-1113) (-793)) 122 T ELT) (($ $ (-663 (-1113)) (-663 (-793))) 121 T ELT)) (-4415 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $ (-1113)) 123 T ELT) (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 251 T ELT)) (-3765 (((-793) $) 177 T ELT) (((-793) $ (-1113)) 125 T ELT) (((-663 (-793)) $ (-663 (-1113))) 124 T ELT)) (-3060 (($ (-1 (-793) (-793)) $) 178 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 158 T ELT)) (-2298 (((-1201 |#1|) $) 255 T ELT)) (-3835 (((-3 (-1113) "failed") $) 126 T ELT)) (-4140 (((-711 (-560)) (-1297 $)) 141 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 (-560))) (|:| |vec| (-1297 (-560)))) (-1297 $) $) 140 (|has| |#1| (-660 (-560))) ELT) (((-2 (|:| -1871 (-711 |#1|)) (|:| |vec| (-1297 |#1|))) (-1297 $) $) 135 T ELT) (((-711 |#1|) (-1297 $)) 134 T ELT)) (-3024 (($ $) 156 T ELT)) (-3037 ((|#1| $) 155 T ELT)) (-1861 (($ (-663 $)) 97 (|has| |#1| (-466)) ELT) (($ $ $) 96 (|has| |#1| (-466)) ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2985 (((-2 (|:| -2584 $) (|:| -3276 $)) $ (-793)) 250 T ELT)) (-1669 (((-3 (-663 $) "failed") $) 117 T ELT)) (-3849 (((-3 (-663 $) "failed") $) 118 T ELT)) (-3149 (((-3 (-2 (|:| |var| (-1113)) (|:| -2030 (-793))) "failed") $) 116 T ELT)) (-4424 (($ $) 234 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3239 (($) 221 (|has| |#1| (-1182)) CONST)) (-3376 (((-1151) $) 11 T ELT)) (-3000 (((-114) $) 173 T ELT)) (-3011 ((|#1| $) 174 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 98 (|has| |#1| (-466)) ELT)) (-1938 (($ (-663 $)) 95 (|has| |#1| (-466)) ELT) (($ $ $) 94 (|has| |#1| (-466)) ELT)) (-3690 (((-419 (-1201 $)) (-1201 $)) 105 (|has| |#1| (-939)) ELT)) (-3885 (((-419 (-1201 $)) (-1201 $)) 104 (|has| |#1| (-939)) ELT)) (-4012 (((-419 $) $) 102 (|has| |#1| (-939)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 232 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 231 (|has| |#1| (-376)) ELT)) (-2233 (((-3 $ "failed") $ |#1|) 181 (|has| |#1| (-571)) ELT) (((-3 $ "failed") $ $) 89 (|has| |#1| (-571)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 225 (|has| |#1| (-376)) ELT)) (-2371 (($ $ (-663 (-305 $))) 152 T ELT) (($ $ (-305 $)) 151 T ELT) (($ $ $ $) 150 T ELT) (($ $ (-663 $) (-663 $)) 149 T ELT) (($ $ (-1113) |#1|) 148 T ELT) (($ $ (-663 (-1113)) (-663 |#1|)) 147 T ELT) (($ $ (-1113) $) 146 T ELT) (($ $ (-663 (-1113)) (-663 $)) 145 T ELT)) (-3989 (((-793) $) 227 (|has| |#1| (-376)) ELT)) (-1507 ((|#1| $ |#1|) 266 T ELT) (($ $ $) 265 T ELT) (((-421 $) (-421 $) (-421 $)) 243 (|has| |#1| (-571)) ELT) ((|#1| (-421 $) |#1|) 235 (|has| |#1| (-376)) ELT) (((-421 $) $ (-421 $)) 223 (|has| |#1| (-571)) ELT)) (-2829 (((-3 $ "failed") $ (-793)) 252 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 228 (|has| |#1| (-376)) ELT)) (-2336 (($ $ (-1113)) 110 (|has| |#1| (-175)) ELT) ((|#1| $) 245 (|has| |#1| (-175)) ELT)) (-3161 (($ $ (-663 (-1113)) (-663 (-793))) 44 T ELT) (($ $ (-1113) (-793)) 43 T ELT) (($ $ (-663 (-1113))) 42 T ELT) (($ $ (-1113)) 40 T ELT) (($ $) 264 T ELT) (($ $ (-793)) 262 T ELT) (($ $ (-1 |#1| |#1|)) 260 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 259 T ELT) (($ $ (-1 |#1| |#1|) $) 246 T ELT) (($ $ (-1207)) 220 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 218 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 217 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 216 (|has| |#1| (-929 (-1207))) ELT)) (-3900 (((-793) $) 157 T ELT) (((-793) $ (-1113)) 133 T ELT) (((-663 (-793)) $ (-663 (-1113))) 132 T ELT)) (-2400 (((-915 (-391)) $) 85 (-12 (|has| (-1113) (-633 (-915 (-391)))) (|has| |#1| (-633 (-915 (-391))))) ELT) (((-915 (-560)) $) 84 (-12 (|has| (-1113) (-633 (-915 (-560)))) (|has| |#1| (-633 (-915 (-560))))) ELT) (((-549) $) 83 (-12 (|has| (-1113) (-633 (-549))) (|has| |#1| (-633 (-549)))) ELT)) (-2264 ((|#1| $) 182 (|has| |#1| (-466)) ELT) (($ $ (-1113)) 109 (|has| |#1| (-466)) ELT)) (-2215 (((-3 (-1297 $) "failed") (-711 $)) 107 (-1404 (|has| $ (-147)) (|has| |#1| (-939))) ELT)) (-2730 (((-3 $ "failed") $ $) 240 (|has| |#1| (-571)) ELT) (((-3 (-421 $) "failed") (-421 $) $) 239 (|has| |#1| (-571)) ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 172 T ELT) (($ (-1113)) 142 T ELT) (($ (-421 (-560))) 81 (-2196 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ELT) (($ $) 88 (|has| |#1| (-571)) ELT)) (-2247 (((-663 |#1|) $) 175 T ELT)) (-2920 ((|#1| $ (-793)) 162 T ELT) (($ $ (-1113) (-793)) 131 T ELT) (($ $ (-663 (-1113)) (-663 (-793))) 130 T ELT)) (-3919 (((-3 $ "failed") $) 82 (-2196 (-1404 (|has| $ (-147)) (|has| |#1| (-939))) (|has| |#1| (-147))) ELT)) (-4191 (((-793)) 32 T CONST)) (-2548 (($ $ $ (-793)) 180 (|has| |#1| (-175)) ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 92 (|has| |#1| (-571)) ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($ $ (-663 (-1113)) (-663 (-793))) 47 T ELT) (($ $ (-1113) (-793)) 46 T ELT) (($ $ (-663 (-1113))) 45 T ELT) (($ $ (-1113)) 41 T ELT) (($ $) 263 T ELT) (($ $ (-793)) 261 T ELT) (($ $ (-1 |#1| |#1|)) 258 T ELT) (($ $ (-1 |#1| |#1|) (-793)) 257 T ELT) (($ $ (-1207)) 219 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207))) 215 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-1207) (-793)) 214 (|has| |#1| (-929 (-1207))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 213 (|has| |#1| (-929 (-1207))) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ |#1|) 163 (|has| |#1| (-376)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 165 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ (-421 (-560)) $) 164 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ |#1| $) 154 T ELT) (($ $ |#1|) 153 T ELT)))
(((-1273 |#1|) (-142) (-1080)) (T -1273))
-((-4468 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-1273 *4)) (-4 *4 (-1080)) (-5 *2 (-1297 *4)))) (-4381 (*1 *2 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1080)) (-5 *2 (-1201 *3)))) (-1667 (*1 *1 *2) (-12 (-5 *2 (-1201 *3)) (-4 *3 (-1080)) (-4 *1 (-1273 *3)))) (-3022 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1273 *3)) (-4 *3 (-1080)))) (-1676 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-793)) (-4 *1 (-1273 *3)) (-4 *3 (-1080)))) (-3559 (*1 *2 *1 *1) (-12 (-4 *3 (-1080)) (-5 *2 (-2 (|:| -1774 *1) (|:| -2341 *1))) (-4 *1 (-1273 *3)))) (-4000 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *4 (-1080)) (-5 *2 (-2 (|:| -1774 *1) (|:| -2341 *1))) (-4 *1 (-1273 *4)))) (-3491 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1273 *3)) (-4 *3 (-1080)))) (-3802 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1273 *3)) (-4 *3 (-1080)))) (-2186 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)))) (-2894 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1273 *3)) (-4 *3 (-1080)))) (-2690 (*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-175)))) (-2788 (*1 *2 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-175)))) (-3924 (*1 *2 *2 *2) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1273 *3)) (-4 *3 (-1080)) (-4 *3 (-571)))) (-3913 (*1 *2 *1 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1080)) (-4 *3 (-571)) (-5 *2 (-793)))) (-4182 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-571)))) (-1974 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-571)))) (-1974 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-421 *1)) (-4 *1 (-1273 *3)) (-4 *3 (-1080)) (-4 *3 (-571)))) (-2853 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-571)))) (-4365 (*1 *2 *1 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| -2115 *3) (|:| -1774 *1) (|:| -2341 *1))) (-4 *1 (-1273 *3)))) (-2498 (*1 *2 *1 *1) (-12 (-4 *3 (-466)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1273 *3)))) (-3924 (*1 *2 *3 *2) (-12 (-5 *3 (-421 *1)) (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-2518 (*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-560)))))))
-(-13 (-979 |t#1| (-793) (-1113)) (-298 |t#1| |t#1|) (-298 $ $) (-240) (-234 |t#1|) (-10 -8 (-15 -4468 ((-1297 |t#1|) $ (-793))) (-15 -4381 ((-1201 |t#1|) $)) (-15 -1667 ($ (-1201 |t#1|))) (-15 -3022 ($ $ (-793))) (-15 -1676 ((-3 $ "failed") $ (-793))) (-15 -3559 ((-2 (|:| -1774 $) (|:| -2341 $)) $ $)) (-15 -4000 ((-2 (|:| -1774 $) (|:| -2341 $)) $ (-793))) (-15 -3491 ($ $ (-793))) (-15 -3802 ($ $ (-793))) (-15 -2186 ($ $ $)) (-15 -2894 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1182)) (-6 (-1182)) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-15 -2690 (|t#1| $)) (-15 -2788 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-571)) (PROGN (-6 (-298 (-421 $) (-421 $))) (-15 -3924 ((-421 $) (-421 $) (-421 $))) (-15 -3913 ((-793) $ $)) (-15 -4182 ($ $ $)) (-15 -1974 ((-3 $ "failed") $ $)) (-15 -1974 ((-3 (-421 $) "failed") (-421 $) $)) (-15 -2853 ($ $ $)) (-15 -4365 ((-2 (|:| -2115 |t#1|) (|:| -1774 $) (|:| -2341 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-466)) (-15 -2498 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-6 (-319)) (-6 -4504) (-15 -3924 (|t#1| (-421 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-421 (-560)))) (-15 -2518 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-793)) . T) ((-25) . T) ((-38 #1=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) -2304 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 #2=(-1113)) . T) ((-635 |#1|) . T) ((-635 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-632 (-887)) . T) ((-175) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-633 (-549)) -12 (|has| (-1113) (-633 (-549))) (|has| |#1| (-633 (-549)))) ((-633 (-915 (-391))) -12 (|has| (-1113) (-633 (-915 (-391)))) (|has| |#1| (-633 (-915 (-391))))) ((-633 (-915 (-560))) -12 (|has| (-1113) (-633 (-915 (-560)))) (|has| |#1| (-633 (-915 (-560))))) ((-236 $) . T) ((-234 |#1|) . T) ((-240) . T) ((-239) . T) ((-274 |#1|) . T) ((-298 (-421 $) (-421 $)) |has| |#1| (-571)) ((-298 |#1| |#1|) . T) ((-298 $ $) . T) ((-302) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-321 $) . T) ((-338 |#1| #0#) . T) ((-390 |#1|) . T) ((-426 |#1|) . T) ((-466) -2304 (|has| |#1| (-939)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-528 #2# |#1|) . T) ((-528 #2# $) . T) ((-528 $ $) . T) ((-571) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-668 #1#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) |has| |#1| (-38 (-421 (-560)))) ((-670 #3=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-660 #3#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #1#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-748) . T) ((-921 $ #2#) . T) ((-921 $ #4=(-1207)) -2304 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-927 #2#) . T) ((-927 (-1207)) |has| |#1| (-927 (-1207))) ((-929 #2#) . T) ((-929 #4#) -2304 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-911 (-391)) -12 (|has| (-1113) (-911 (-391))) (|has| |#1| (-911 (-391)))) ((-911 (-560)) -12 (|has| (-1113) (-911 (-560))) (|has| |#1| (-911 (-560)))) ((-979 |#1| #0# #2#) . T) ((-939) |has| |#1| (-939)) ((-950) |has| |#1| (-376)) ((-1069 (-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 #2#) . T) ((-1069 |#1|) . T) ((-1082 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1082 |#1|) . T) ((-1082 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1087 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1087 |#1|) . T) ((-1087 $) -2304 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1182) |has| |#1| (-1182)) ((-1247) . T) ((-1252) |has| |#1| (-939)))
-((-3957 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT)))
-(((-1274 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#4| (-1 |#3| |#1|) |#2|))) (-1080) (-1273 |#1|) (-1080) (-1273 |#3|)) (T -1274))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-4 *2 (-1273 *6)) (-5 *1 (-1274 *5 *4 *6 *2)) (-4 *4 (-1273 *5)))))
-(-10 -7 (-15 -3957 (|#4| (-1 |#3| |#1|) |#2|)))
-((-1443 (((-663 (-1113)) $) 34 T ELT)) (-1624 (($ $) 31 T ELT)) (-1417 (($ |#2| |#3|) NIL T ELT) (($ $ (-1113) |#3|) 28 T ELT) (($ $ (-663 (-1113)) (-663 |#3|)) 27 T ELT)) (-1583 (($ $) 14 T ELT)) (-1597 ((|#2| $) 12 T ELT)) (-3630 ((|#3| $) 10 T ELT)))
-(((-1275 |#1| |#2| |#3|) (-10 -8 (-15 -1443 ((-663 (-1113)) |#1|)) (-15 -1417 (|#1| |#1| (-663 (-1113)) (-663 |#3|))) (-15 -1417 (|#1| |#1| (-1113) |#3|)) (-15 -1624 (|#1| |#1|)) (-15 -1417 (|#1| |#2| |#3|)) (-15 -3630 (|#3| |#1|)) (-15 -1583 (|#1| |#1|)) (-15 -1597 (|#2| |#1|))) (-1276 |#2| |#3|) (-1080) (-814)) (T -1275))
-NIL
-(-10 -8 (-15 -1443 ((-663 (-1113)) |#1|)) (-15 -1417 (|#1| |#1| (-663 (-1113)) (-663 |#3|))) (-15 -1417 (|#1| |#1| (-1113) |#3|)) (-15 -1624 (|#1| |#1|)) (-15 -1417 (|#1| |#2| |#3|)) (-15 -3630 (|#3| |#1|)) (-15 -1583 (|#1| |#1|)) (-15 -1597 (|#2| |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-1443 (((-663 (-1113)) $) 86 T ELT)) (-2462 (((-1207) $) 118 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 63 (|has| |#1| (-571)) ELT)) (-3244 (($ $) 64 (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) 66 (|has| |#1| (-571)) ELT)) (-4267 (($ $ |#2|) 113 T ELT) (($ $ |#2| |#2|) 112 T ELT)) (-1425 (((-1185 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1624 (($ $) 72 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-4386 (((-114) $) 85 T ELT)) (-3913 ((|#2| $) 115 T ELT) ((|#2| $ |#2|) 114 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-3022 (($ $ (-948)) 116 T ELT)) (-1556 (((-114) $) 74 T ELT)) (-1417 (($ |#1| |#2|) 73 T ELT) (($ $ (-1113) |#2|) 88 T ELT) (($ $ (-663 (-1113)) (-663 |#2|)) 87 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-1583 (($ $) 77 T ELT)) (-1597 ((|#1| $) 78 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-4372 (($ $ |#2|) 110 T ELT)) (-1528 (((-3 $ "failed") $ $) 62 (|has| |#1| (-571)) ELT)) (-4187 (((-1185 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-3924 ((|#1| $ |#2|) 120 T ELT) (($ $ $) 96 (|has| |#2| (-1143)) ELT)) (-2894 (($ $ (-1207)) 108 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-663 (-1207))) 106 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1207) (-793)) 105 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 104 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-793)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3630 ((|#2| $) 76 T ELT)) (-3266 (($ $) 84 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ (-421 (-560))) 69 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 61 (|has| |#1| (-571)) ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT)) (-2305 ((|#1| $ |#2|) 71 T ELT)) (-1964 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-2930 (((-793)) 32 T CONST)) (-3355 ((|#1| $) 117 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 65 (|has| |#1| (-571)) ELT)) (-2239 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -1578 (|#1| (-1207))))) ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($ $ (-1207)) 107 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-663 (-1207))) 103 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1207) (-793)) 102 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 101 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-793)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-560)) $) 68 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 67 (|has| |#1| (-38 (-421 (-560)))) ELT)))
+((-1797 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-1273 *4)) (-4 *4 (-1080)) (-5 *2 (-1297 *4)))) (-2298 (*1 *2 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1080)) (-5 *2 (-1201 *3)))) (-2746 (*1 *1 *2) (-12 (-5 *2 (-1201 *3)) (-4 *3 (-1080)) (-4 *1 (-1273 *3)))) (-3886 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1273 *3)) (-4 *3 (-1080)))) (-2829 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-793)) (-4 *1 (-1273 *3)) (-4 *3 (-1080)))) (-4415 (*1 *2 *1 *1) (-12 (-4 *3 (-1080)) (-5 *2 (-2 (|:| -2584 *1) (|:| -3276 *1))) (-4 *1 (-1273 *3)))) (-2985 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *4 (-1080)) (-5 *2 (-2 (|:| -2584 *1) (|:| -3276 *1))) (-4 *1 (-1273 *4)))) (-1776 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1273 *3)) (-4 *3 (-1080)))) (-1677 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1273 *3)) (-4 *3 (-1080)))) (-4295 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)))) (-3161 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1273 *3)) (-4 *3 (-1080)))) (-2336 (*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-175)))) (-2096 (*1 *2 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-175)))) (-1507 (*1 *2 *2 *2) (-12 (-5 *2 (-421 *1)) (-4 *1 (-1273 *3)) (-4 *3 (-1080)) (-4 *3 (-571)))) (-1460 (*1 *2 *1 *1) (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1080)) (-4 *3 (-571)) (-5 *2 (-793)))) (-4293 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-571)))) (-2730 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-571)))) (-2730 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-421 *1)) (-4 *1 (-1273 *3)) (-4 *3 (-1080)) (-4 *3 (-571)))) (-3457 (*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-571)))) (-3390 (*1 *2 *1 *1) (-12 (-4 *3 (-571)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| -2625 *3) (|:| -2584 *1) (|:| -3276 *1))) (-4 *1 (-1273 *3)))) (-4254 (*1 *2 *1 *1) (-12 (-4 *3 (-466)) (-4 *3 (-1080)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1273 *3)))) (-1507 (*1 *2 *3 *2) (-12 (-5 *3 (-421 *1)) (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-4424 (*1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-560)))))))
+(-13 (-979 |t#1| (-793) (-1113)) (-298 |t#1| |t#1|) (-298 $ $) (-240) (-234 |t#1|) (-10 -8 (-15 -1797 ((-1297 |t#1|) $ (-793))) (-15 -2298 ((-1201 |t#1|) $)) (-15 -2746 ($ (-1201 |t#1|))) (-15 -3886 ($ $ (-793))) (-15 -2829 ((-3 $ "failed") $ (-793))) (-15 -4415 ((-2 (|:| -2584 $) (|:| -3276 $)) $ $)) (-15 -2985 ((-2 (|:| -2584 $) (|:| -3276 $)) $ (-793))) (-15 -1776 ($ $ (-793))) (-15 -1677 ($ $ (-793))) (-15 -4295 ($ $ $)) (-15 -3161 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1182)) (-6 (-1182)) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-15 -2336 (|t#1| $)) (-15 -2096 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-571)) (PROGN (-6 (-298 (-421 $) (-421 $))) (-15 -1507 ((-421 $) (-421 $) (-421 $))) (-15 -1460 ((-793) $ $)) (-15 -4293 ($ $ $)) (-15 -2730 ((-3 $ "failed") $ $)) (-15 -2730 ((-3 (-421 $) "failed") (-421 $) $)) (-15 -3457 ($ $ $)) (-15 -3390 ((-2 (|:| -2625 |t#1|) (|:| -2584 $) (|:| -3276 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-466)) (-15 -4254 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-6 (-319)) (-6 -4504) (-15 -1507 (|t#1| (-421 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-421 (-560)))) (-15 -4424 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-793)) . T) ((-25) . T) ((-38 #1=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) -2196 (|has| |#1| (-1069 (-421 (-560)))) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 #2=(-1113)) . T) ((-635 |#1|) . T) ((-635 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-632 (-887)) . T) ((-175) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-633 (-549)) -12 (|has| (-1113) (-633 (-549))) (|has| |#1| (-633 (-549)))) ((-633 (-915 (-391))) -12 (|has| (-1113) (-633 (-915 (-391)))) (|has| |#1| (-633 (-915 (-391))))) ((-633 (-915 (-560))) -12 (|has| (-1113) (-633 (-915 (-560)))) (|has| |#1| (-633 (-915 (-560))))) ((-236 $) . T) ((-234 |#1|) . T) ((-240) . T) ((-239) . T) ((-274 |#1|) . T) ((-298 (-421 $) (-421 $)) |has| |#1| (-571)) ((-298 |#1| |#1|) . T) ((-298 $ $) . T) ((-302) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-321 $) . T) ((-338 |#1| #0#) . T) ((-390 |#1|) . T) ((-426 |#1|) . T) ((-466) -2196 (|has| |#1| (-939)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-528 #2# |#1|) . T) ((-528 #2# $) . T) ((-528 $ $) . T) ((-571) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-668 #1#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) |has| |#1| (-38 (-421 (-560)))) ((-670 #3=(-560)) |has| |#1| (-660 (-560))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-660 #3#) |has| |#1| (-660 (-560))) ((-660 |#1|) . T) ((-739 #1#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376))) ((-748) . T) ((-921 $ #2#) . T) ((-921 $ #4=(-1207)) -2196 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-927 #2#) . T) ((-927 (-1207)) |has| |#1| (-927 (-1207))) ((-929 #2#) . T) ((-929 #4#) -2196 (|has| |#1| (-929 (-1207))) (|has| |#1| (-927 (-1207)))) ((-911 (-391)) -12 (|has| (-1113) (-911 (-391))) (|has| |#1| (-911 (-391)))) ((-911 (-560)) -12 (|has| (-1113) (-911 (-560))) (|has| |#1| (-911 (-560)))) ((-979 |#1| #0# #2#) . T) ((-939) |has| |#1| (-939)) ((-950) |has| |#1| (-376)) ((-1069 (-421 (-560))) |has| |#1| (-1069 (-421 (-560)))) ((-1069 (-560)) |has| |#1| (-1069 (-560))) ((-1069 #2#) . T) ((-1069 |#1|) . T) ((-1082 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1082 |#1|) . T) ((-1082 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1087 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1087 |#1|) . T) ((-1087 $) -2196 (|has| |#1| (-939)) (|has| |#1| (-571)) (|has| |#1| (-466)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1182) |has| |#1| (-1182)) ((-1247) . T) ((-1252) |has| |#1| (-939)))
+((-2260 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT)))
+(((-1274 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2260 (|#4| (-1 |#3| |#1|) |#2|))) (-1080) (-1273 |#1|) (-1080) (-1273 |#3|)) (T -1274))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-4 *2 (-1273 *6)) (-5 *1 (-1274 *5 *4 *6 *2)) (-4 *4 (-1273 *5)))))
+(-10 -7 (-15 -2260 (|#4| (-1 |#3| |#1|) |#2|)))
+((-4162 (((-663 (-1113)) $) 34 T ELT)) (-3062 (($ $) 31 T ELT)) (-4139 (($ |#2| |#3|) NIL T ELT) (($ $ (-1113) |#3|) 28 T ELT) (($ $ (-663 (-1113)) (-663 |#3|)) 27 T ELT)) (-3024 (($ $) 14 T ELT)) (-3037 ((|#2| $) 12 T ELT)) (-3900 ((|#3| $) 10 T ELT)))
+(((-1275 |#1| |#2| |#3|) (-10 -8 (-15 -4162 ((-663 (-1113)) |#1|)) (-15 -4139 (|#1| |#1| (-663 (-1113)) (-663 |#3|))) (-15 -4139 (|#1| |#1| (-1113) |#3|)) (-15 -3062 (|#1| |#1|)) (-15 -4139 (|#1| |#2| |#3|)) (-15 -3900 (|#3| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 -3037 (|#2| |#1|))) (-1276 |#2| |#3|) (-1080) (-814)) (T -1275))
+NIL
+(-10 -8 (-15 -4162 ((-663 (-1113)) |#1|)) (-15 -4139 (|#1| |#1| (-663 (-1113)) (-663 |#3|))) (-15 -4139 (|#1| |#1| (-1113) |#3|)) (-15 -3062 (|#1| |#1|)) (-15 -4139 (|#1| |#2| |#3|)) (-15 -3900 (|#3| |#1|)) (-15 -3024 (|#1| |#1|)) (-15 -3037 (|#2| |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-4162 (((-663 (-1113)) $) 86 T ELT)) (-2558 (((-1207) $) 118 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 63 (|has| |#1| (-571)) ELT)) (-4366 (($ $) 64 (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) 66 (|has| |#1| (-571)) ELT)) (-3864 (($ $ |#2|) 113 T ELT) (($ $ |#2| |#2|) 112 T ELT)) (-1465 (((-1185 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 119 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-3062 (($ $) 72 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-2328 (((-114) $) 85 T ELT)) (-1460 ((|#2| $) 115 T ELT) ((|#2| $ |#2|) 114 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3886 (($ $ (-948)) 116 T ELT)) (-1673 (((-114) $) 74 T ELT)) (-4139 (($ |#1| |#2|) 73 T ELT) (($ $ (-1113) |#2|) 88 T ELT) (($ $ (-663 (-1113)) (-663 |#2|)) 87 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-3024 (($ $) 77 T ELT)) (-3037 ((|#1| $) 78 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2219 (($ $ |#2|) 110 T ELT)) (-2233 (((-3 $ "failed") $ $) 62 (|has| |#1| (-571)) ELT)) (-2371 (((-1185 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-1507 ((|#1| $ |#2|) 120 T ELT) (($ $ $) 96 (|has| |#2| (-1143)) ELT)) (-3161 (($ $ (-1207)) 108 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-663 (-1207))) 106 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1207) (-793)) 105 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 104 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-793)) 98 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3900 ((|#2| $) 76 T ELT)) (-3329 (($ $) 84 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ (-421 (-560))) 69 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 61 (|has| |#1| (-571)) ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT)) (-2920 ((|#1| $ |#2|) 71 T ELT)) (-3919 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-4191 (((-793)) 32 T CONST)) (-1351 ((|#1| $) 117 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 65 (|has| |#1| (-571)) ELT)) (-2905 ((|#1| $ |#2|) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -3913 (|#1| (-1207))))) ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($ $ (-1207)) 107 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-663 (-1207))) 103 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1207) (-793)) 102 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 101 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-793)) 97 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-560)) $) 68 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 67 (|has| |#1| (-38 (-421 (-560)))) ELT)))
(((-1276 |#1| |#2|) (-142) (-1080) (-814)) (T -1276))
-((-1425 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (-5 *2 (-1185 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2462 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (-5 *2 (-1207)))) (-3355 (*1 *2 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080)))) (-3022 (*1 *1 *1 *2) (-12 (-5 *2 (-948)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)))) (-3913 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) (-3913 (*1 *2 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) (-4267 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) (-4267 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) (-2239 (*1 *2 *1 *3) (-12 (-4 *1 (-1276 *2 *3)) (-4 *3 (-814)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1578 (*2 (-1207)))) (-4 *2 (-1080)))) (-4372 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) (-4187 (*1 *2 *1 *3) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1185 *3)))))
-(-13 (-1004 |t#1| |t#2| (-1113)) (-298 |t#2| |t#1|) (-10 -8 (-15 -1425 ((-1185 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2462 ((-1207) $)) (-15 -3355 (|t#1| $)) (-15 -3022 ($ $ (-948))) (-15 -3913 (|t#2| $)) (-15 -3913 (|t#2| $ |t#2|)) (-15 -4267 ($ $ |t#2|)) (-15 -4267 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -1578 (|t#1| (-1207)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2239 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4372 ($ $ |t#2|)) (IF (|has| |t#2| (-1143)) (-6 (-298 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-240)) (IF (|has| |t#1| (-927 (-1207))) (-6 (-927 (-1207))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4187 ((-1185 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-571)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) |has| |#1| (-38 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) |has| |#1| (-571)) ((-632 (-887)) . T) ((-175) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-240) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-239) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-298 |#2| |#1|) . T) ((-298 $ $) |has| |#2| (-1143)) ((-302) |has| |#1| (-571)) ((-571) |has| |#1| (-571)) ((-668 #0#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-38 (-421 (-560)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-571)) ((-739 #0#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-571)) ((-748) . T) ((-921 $ #1=(-1207)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-927 (-1207)))) ((-927 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-927 (-1207)))) ((-929 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-927 (-1207)))) ((-1004 |#1| |#2| (-1113)) . T) ((-1082 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1082 |#1|) . T) ((-1082 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1087 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1087 |#1|) . T) ((-1087 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-1804 ((|#2| |#2|) 12 T ELT)) (-3023 (((-419 |#2|) |#2|) 14 T ELT)) (-1958 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-560))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-560)))) 30 T ELT)))
-(((-1277 |#1| |#2|) (-10 -7 (-15 -3023 ((-419 |#2|) |#2|)) (-15 -1804 (|#2| |#2|)) (-15 -1958 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-560))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-560)))))) (-571) (-13 (-1273 |#1|) (-571) (-10 -8 (-15 -2132 ($ $ $))))) (T -1277))
-((-1958 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-560)))) (-4 *4 (-13 (-1273 *3) (-571) (-10 -8 (-15 -2132 ($ $ $))))) (-4 *3 (-571)) (-5 *1 (-1277 *3 *4)))) (-1804 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-1277 *3 *2)) (-4 *2 (-13 (-1273 *3) (-571) (-10 -8 (-15 -2132 ($ $ $))))))) (-3023 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-419 *3)) (-5 *1 (-1277 *4 *3)) (-4 *3 (-13 (-1273 *4) (-571) (-10 -8 (-15 -2132 ($ $ $))))))))
-(-10 -7 (-15 -3023 ((-419 |#2|) |#2|)) (-15 -1804 (|#2| |#2|)) (-15 -1958 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-560))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-560))))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1443 (((-663 (-1113)) $) NIL T ELT)) (-2462 (((-1207) $) 11 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4267 (($ $ (-421 (-560))) NIL T ELT) (($ $ (-421 (-560)) (-421 (-560))) NIL T ELT)) (-1425 (((-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|))) $) NIL T ELT)) (-4337 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3455 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-4471 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1615 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4313 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3430 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3781 (($ (-793) (-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|)))) NIL T ELT)) (-4363 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-1257 |#1| |#2| |#3|) "failed") $) 19 T ELT) (((-3 (-1287 |#1| |#2| |#3|) "failed") $) 22 T ELT)) (-3330 (((-1257 |#1| |#2| |#3|) $) NIL T ELT) (((-1287 |#1| |#2| |#3|) $) NIL T ELT)) (-1478 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1624 (($ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2464 (((-421 (-560)) $) 69 T ELT)) (-1490 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1519 (($ (-421 (-560)) (-1257 |#1| |#2| |#3|)) NIL T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4330 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-4386 (((-114) $) NIL T ELT)) (-3796 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3913 (((-421 (-560)) $) NIL T ELT) (((-421 (-560)) $ (-421 (-560))) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-2146 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3022 (($ $ (-948)) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-421 (-560))) 30 T ELT) (($ $ (-1113) (-421 (-560))) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-421 (-560)))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2192 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3154 (((-1257 |#1| |#2| |#3|) $) 72 T ELT)) (-2328 (((-3 (-1257 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-1507 (((-1257 |#1| |#2| |#3|) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2518 (($ $) 39 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) NIL (-2304 (-12 (|has| |#1| (-15 -2518 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -1443 ((-663 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-989)) (|has| |#1| (-1233)))) ELT) (($ $ (-1294 |#2|)) 40 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4457 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4372 (($ $ (-421 (-560))) NIL T ELT)) (-1528 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-3251 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4187 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) ELT)) (-2901 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-3924 ((|#1| $ (-421 (-560))) NIL T ELT) (($ $ $) NIL (|has| (-421 (-560)) (-1143)) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2894 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-1294 |#2|)) 38 T ELT)) (-3630 (((-421 (-560)) $) NIL T ELT)) (-4373 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4352 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3466 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4325 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3443 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3266 (($ $) NIL T ELT)) (-1578 (((-887) $) 107 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1257 |#1| |#2| |#3|)) 16 T ELT) (($ (-1287 |#1| |#2| |#3|)) 17 T ELT) (($ (-1294 |#2|)) 36 T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-2305 ((|#1| $ (-421 (-560))) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-2930 (((-793)) NIL T CONST)) (-3355 ((|#1| $) 12 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-4411 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4263 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4387 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4438 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4287 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2239 ((|#1| $ (-421 (-560))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) (|has| |#1| (-15 -1578 (|#1| (-1207))))) ELT)) (-3837 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4302 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4423 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4275 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4398 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4252 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2001 (($) 32 T CONST)) (-2011 (($) 26 T CONST)) (-3305 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-1294 |#2|)) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 34 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
-(((-1278 |#1| |#2| |#3|) (-13 (-1282 |#1| (-1257 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-1069 (-1287 |#1| |#2| |#3|)) (-635 (-1294 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -2518 ($ $ (-1294 |#2|))) |%noBranch|))) (-1080) (-1207) |#1|) (T -1278))
-((-2518 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3))))
-(-13 (-1282 |#1| (-1257 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-1069 (-1287 |#1| |#2| |#3|)) (-635 (-1294 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -2518 ($ $ (-1294 |#2|))) |%noBranch|)))
-((-3957 (((-1278 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1278 |#1| |#3| |#5|)) 24 T ELT)))
-(((-1279 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3957 ((-1278 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1278 |#1| |#3| |#5|)))) (-1080) (-1080) (-1207) (-1207) |#1| |#2|) (T -1279))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1278 *5 *7 *9)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-14 *7 (-1207)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1278 *6 *8 *10)) (-5 *1 (-1279 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1207)))))
-(-10 -7 (-15 -3957 ((-1278 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1278 |#1| |#3| |#5|))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-1443 (((-663 (-1113)) $) 86 T ELT)) (-2462 (((-1207) $) 118 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 63 (|has| |#1| (-571)) ELT)) (-3244 (($ $) 64 (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) 66 (|has| |#1| (-571)) ELT)) (-4267 (($ $ (-421 (-560))) 113 T ELT) (($ $ (-421 (-560)) (-421 (-560))) 112 T ELT)) (-1425 (((-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|))) $) 119 T ELT)) (-4337 (($ $) 150 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3455 (($ $) 133 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-1804 (($ $) 177 (|has| |#1| (-376)) ELT)) (-3023 (((-419 $) $) 178 (|has| |#1| (-376)) ELT)) (-4471 (($ $) 132 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1615 (((-114) $ $) 168 (|has| |#1| (-376)) ELT)) (-4313 (($ $) 149 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3430 (($ $) 134 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3781 (($ (-793) (-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|)))) 186 T ELT)) (-4363 (($ $) 148 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3477 (($ $) 135 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2238 (($) 18 T CONST)) (-1478 (($ $ $) 172 (|has| |#1| (-376)) ELT)) (-1624 (($ $) 72 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1490 (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 166 (|has| |#1| (-376)) ELT)) (-4330 (((-114) $) 179 (|has| |#1| (-376)) ELT)) (-4386 (((-114) $) 85 T ELT)) (-3796 (($) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3913 (((-421 (-560)) $) 115 T ELT) (((-421 (-560)) $ (-421 (-560))) 114 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-2146 (($ $ (-560)) 131 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3022 (($ $ (-948)) 116 T ELT) (($ $ (-421 (-560))) 185 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 175 (|has| |#1| (-376)) ELT)) (-1556 (((-114) $) 74 T ELT)) (-1417 (($ |#1| (-421 (-560))) 73 T ELT) (($ $ (-1113) (-421 (-560))) 88 T ELT) (($ $ (-663 (-1113)) (-663 (-421 (-560)))) 87 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2192 (($ $) 157 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1583 (($ $) 77 T ELT)) (-1597 ((|#1| $) 78 T ELT)) (-2093 (($ (-663 $)) 164 (|has| |#1| (-376)) ELT) (($ $ $) 163 (|has| |#1| (-376)) ELT)) (-1905 (((-1189) $) 10 T ELT)) (-1544 (($ $) 180 (|has| |#1| (-376)) ELT)) (-2518 (($ $) 184 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) 183 (-2304 (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-989)) (|has| |#1| (-1233)) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-15 -1443 ((-663 (-1207)) |#1|))) (|has| |#1| (-15 -2518 (|#1| |#1| (-1207)))) (|has| |#1| (-38 (-421 (-560)))))) ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 165 (|has| |#1| (-376)) ELT)) (-2132 (($ (-663 $)) 162 (|has| |#1| (-376)) ELT) (($ $ $) 161 (|has| |#1| (-376)) ELT)) (-4457 (((-419 $) $) 176 (|has| |#1| (-376)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 173 (|has| |#1| (-376)) ELT)) (-4372 (($ $ (-421 (-560))) 110 T ELT)) (-1528 (((-3 $ "failed") $ $) 62 (|has| |#1| (-571)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 167 (|has| |#1| (-376)) ELT)) (-3251 (($ $) 158 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4187 (((-1185 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) ELT)) (-2901 (((-793) $) 169 (|has| |#1| (-376)) ELT)) (-3924 ((|#1| $ (-421 (-560))) 120 T ELT) (($ $ $) 96 (|has| (-421 (-560)) (-1143)) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 170 (|has| |#1| (-376)) ELT)) (-2894 (($ $ (-1207)) 108 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1207))) 106 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-1207) (-793)) 105 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 104 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) 98 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-3630 (((-421 (-560)) $) 76 T ELT)) (-4373 (($ $) 147 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3488 (($ $) 136 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4352 (($ $) 146 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3466 (($ $) 137 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4325 (($ $) 145 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3443 (($ $) 138 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3266 (($ $) 84 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT) (($ (-421 (-560))) 69 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 61 (|has| |#1| (-571)) ELT)) (-2305 ((|#1| $ (-421 (-560))) 71 T ELT)) (-1964 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-2930 (((-793)) 32 T CONST)) (-3355 ((|#1| $) 117 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-4411 (($ $) 156 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4263 (($ $) 144 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2948 (((-114) $ $) 65 (|has| |#1| (-571)) ELT)) (-4387 (($ $) 155 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3499 (($ $) 143 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4438 (($ $) 154 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4287 (($ $) 142 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2239 ((|#1| $ (-421 (-560))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) (|has| |#1| (-15 -1578 (|#1| (-1207))))) ELT)) (-3837 (($ $) 153 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4302 (($ $) 141 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4423 (($ $) 152 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4275 (($ $) 140 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4398 (($ $) 151 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4252 (($ $) 139 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($ $ (-1207)) 107 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1207))) 103 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-1207) (-793)) 102 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 101 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) 97 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT) (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 181 (|has| |#1| (-376)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 130 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-560)) $) 68 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 67 (|has| |#1| (-38 (-421 (-560)))) ELT)))
+((-1465 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (-5 *2 (-1185 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2558 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (-5 *2 (-1207)))) (-1351 (*1 *2 *1) (-12 (-4 *1 (-1276 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080)))) (-3886 (*1 *1 *1 *2) (-12 (-5 *2 (-948)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)))) (-1460 (*1 *2 *1) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) (-1460 (*1 *2 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) (-3864 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) (-3864 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) (-2905 (*1 *2 *1 *3) (-12 (-4 *1 (-1276 *2 *3)) (-4 *3 (-814)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3913 (*2 (-1207)))) (-4 *2 (-1080)))) (-2219 (*1 *1 *1 *2) (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))) (-2371 (*1 *2 *1 *3) (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1185 *3)))))
+(-13 (-1004 |t#1| |t#2| (-1113)) (-298 |t#2| |t#1|) (-10 -8 (-15 -1465 ((-1185 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2558 ((-1207) $)) (-15 -1351 (|t#1| $)) (-15 -3886 ($ $ (-948))) (-15 -1460 (|t#2| $)) (-15 -1460 (|t#2| $ |t#2|)) (-15 -3864 ($ $ |t#2|)) (-15 -3864 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -3913 (|t#1| (-1207)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2905 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -2219 ($ $ |t#2|)) (IF (|has| |t#2| (-1143)) (-6 (-298 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-240)) (IF (|has| |t#1| (-927 (-1207))) (-6 (-927 (-1207))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -2371 ((-1185 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 #0=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-571)) ((-102) . T) ((-111 #0# #0#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #0#) |has| |#1| (-38 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) |has| |#1| (-571)) ((-632 (-887)) . T) ((-175) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-240) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-239) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-298 |#2| |#1|) . T) ((-298 $ $) |has| |#2| (-1143)) ((-302) |has| |#1| (-571)) ((-571) |has| |#1| (-571)) ((-668 #0#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) |has| |#1| (-38 (-421 (-560)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-571)) ((-739 #0#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-571)) ((-748) . T) ((-921 $ #1=(-1207)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-927 (-1207)))) ((-927 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-927 (-1207)))) ((-929 #1#) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-927 (-1207)))) ((-1004 |#1| |#2| (-1113)) . T) ((-1082 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1082 |#1|) . T) ((-1082 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1087 #0#) |has| |#1| (-38 (-421 (-560)))) ((-1087 |#1|) . T) ((-1087 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
+((-1621 ((|#2| |#2|) 12 T ELT)) (-3898 (((-419 |#2|) |#2|) 14 T ELT)) (-3861 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-560))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-560)))) 30 T ELT)))
+(((-1277 |#1| |#2|) (-10 -7 (-15 -3898 ((-419 |#2|) |#2|)) (-15 -1621 (|#2| |#2|)) (-15 -3861 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-560))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-560)))))) (-571) (-13 (-1273 |#1|) (-571) (-10 -8 (-15 -1938 ($ $ $))))) (T -1277))
+((-3861 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-560)))) (-4 *4 (-13 (-1273 *3) (-571) (-10 -8 (-15 -1938 ($ $ $))))) (-4 *3 (-571)) (-5 *1 (-1277 *3 *4)))) (-1621 (*1 *2 *2) (-12 (-4 *3 (-571)) (-5 *1 (-1277 *3 *2)) (-4 *2 (-13 (-1273 *3) (-571) (-10 -8 (-15 -1938 ($ $ $))))))) (-3898 (*1 *2 *3) (-12 (-4 *4 (-571)) (-5 *2 (-419 *3)) (-5 *1 (-1277 *4 *3)) (-4 *3 (-13 (-1273 *4) (-571) (-10 -8 (-15 -1938 ($ $ $))))))))
+(-10 -7 (-15 -3898 ((-419 |#2|) |#2|)) (-15 -1621 (|#2| |#2|)) (-15 -3861 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-560))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-560))))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-4162 (((-663 (-1113)) $) NIL T ELT)) (-2558 (((-1207) $) 11 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3864 (($ $ (-421 (-560))) NIL T ELT) (($ $ (-421 (-560)) (-421 (-560))) NIL T ELT)) (-1465 (((-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|))) $) NIL T ELT)) (-1982 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1832 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-4021 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3476 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-1958 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1806 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2882 (($ (-793) (-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|)))) NIL T ELT)) (-2003 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1856 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-1257 |#1| |#2| |#3|) "failed") $) 19 T ELT) (((-3 (-1287 |#1| |#2| |#3|) "failed") $) 22 T ELT)) (-3649 (((-1257 |#1| |#2| |#3|) $) NIL T ELT) (((-1287 |#1| |#2| |#3|) $) NIL T ELT)) (-2186 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3062 (($ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-2018 (((-421 (-560)) $) 69 T ELT)) (-2197 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2962 (($ (-421 (-560)) (-1257 |#1| |#2| |#3|)) NIL T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-3141 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-2328 (((-114) $) NIL T ELT)) (-2503 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1460 (((-421 (-560)) $) NIL T ELT) (((-421 (-560)) $ (-421 (-560))) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-1956 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3886 (($ $ (-948)) NIL T ELT) (($ $ (-421 (-560))) NIL T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-421 (-560))) 30 T ELT) (($ $ (-1113) (-421 (-560))) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-421 (-560)))) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2831 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1527 (((-1257 |#1| |#2| |#3|) $) 72 T ELT)) (-3154 (((-3 (-1257 |#1| |#2| |#3|) "failed") $) NIL T ELT)) (-2949 (((-1257 |#1| |#2| |#3|) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4424 (($ $) 39 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) NIL (-2196 (-12 (|has| |#1| (-15 -4424 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -4162 ((-663 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-989)) (|has| |#1| (-1233)))) ELT) (($ $ (-1294 |#2|)) 40 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4012 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2219 (($ $ (-421 (-560))) NIL T ELT)) (-2233 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-2515 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2371 (((-1185 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) ELT)) (-3989 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-1507 ((|#1| $ (-421 (-560))) NIL T ELT) (($ $ $) NIL (|has| (-421 (-560)) (-1143)) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3161 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-1294 |#2|)) 38 T ELT)) (-3900 (((-421 (-560)) $) NIL T ELT)) (-2013 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1870 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1992 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1844 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1972 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1820 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3329 (($ $) NIL T ELT)) (-3913 (((-887) $) 107 T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1257 |#1| |#2| |#3|)) 16 T ELT) (($ (-1287 |#1| |#2| |#3|)) 17 T ELT) (($ (-1294 |#2|)) 36 T ELT) (($ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-2920 ((|#1| $ (-421 (-560))) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-4191 (((-793)) NIL T CONST)) (-1351 ((|#1| $) 12 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2042 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1907 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2022 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1882 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2059 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1932 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2905 ((|#1| $ (-421 (-560))) 74 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) (|has| |#1| (-15 -3913 (|#1| (-1207))))) ELT)) (-3392 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1945 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2050 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1920 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2032 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1895 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1446 (($) 32 T CONST)) (-1456 (($) 26 T CONST)) (-2111 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-1294 |#2|)) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 34 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ (-560)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
+(((-1278 |#1| |#2| |#3|) (-13 (-1282 |#1| (-1257 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-1069 (-1287 |#1| |#2| |#3|)) (-635 (-1294 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4424 ($ $ (-1294 |#2|))) |%noBranch|))) (-1080) (-1207) |#1|) (T -1278))
+((-4424 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3))))
+(-13 (-1282 |#1| (-1257 |#1| |#2| |#3|)) (-921 $ (-1294 |#2|)) (-1069 (-1287 |#1| |#2| |#3|)) (-635 (-1294 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4424 ($ $ (-1294 |#2|))) |%noBranch|)))
+((-2260 (((-1278 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1278 |#1| |#3| |#5|)) 24 T ELT)))
+(((-1279 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2260 ((-1278 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1278 |#1| |#3| |#5|)))) (-1080) (-1080) (-1207) (-1207) |#1| |#2|) (T -1279))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1278 *5 *7 *9)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-14 *7 (-1207)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1278 *6 *8 *10)) (-5 *1 (-1279 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1207)))))
+(-10 -7 (-15 -2260 ((-1278 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1278 |#1| |#3| |#5|))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-4162 (((-663 (-1113)) $) 86 T ELT)) (-2558 (((-1207) $) 118 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 63 (|has| |#1| (-571)) ELT)) (-4366 (($ $) 64 (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) 66 (|has| |#1| (-571)) ELT)) (-3864 (($ $ (-421 (-560))) 113 T ELT) (($ $ (-421 (-560)) (-421 (-560))) 112 T ELT)) (-1465 (((-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|))) $) 119 T ELT)) (-1982 (($ $) 150 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1832 (($ $) 133 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-1621 (($ $) 177 (|has| |#1| (-376)) ELT)) (-3898 (((-419 $) $) 178 (|has| |#1| (-376)) ELT)) (-4021 (($ $) 132 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3476 (((-114) $ $) 168 (|has| |#1| (-376)) ELT)) (-1958 (($ $) 149 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1806 (($ $) 134 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2882 (($ (-793) (-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|)))) 186 T ELT)) (-2003 (($ $) 148 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1856 (($ $) 135 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3525 (($) 18 T CONST)) (-2186 (($ $ $) 172 (|has| |#1| (-376)) ELT)) (-3062 (($ $) 72 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-2197 (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 166 (|has| |#1| (-376)) ELT)) (-3141 (((-114) $) 179 (|has| |#1| (-376)) ELT)) (-2328 (((-114) $) 85 T ELT)) (-2503 (($) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1460 (((-421 (-560)) $) 115 T ELT) (((-421 (-560)) $ (-421 (-560))) 114 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-1956 (($ $ (-560)) 131 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3886 (($ $ (-948)) 116 T ELT) (($ $ (-421 (-560))) 185 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 175 (|has| |#1| (-376)) ELT)) (-1673 (((-114) $) 74 T ELT)) (-4139 (($ |#1| (-421 (-560))) 73 T ELT) (($ $ (-1113) (-421 (-560))) 88 T ELT) (($ $ (-663 (-1113)) (-663 (-421 (-560)))) 87 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2831 (($ $) 157 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3024 (($ $) 77 T ELT)) (-3037 ((|#1| $) 78 T ELT)) (-1861 (($ (-663 $)) 164 (|has| |#1| (-376)) ELT) (($ $ $) 163 (|has| |#1| (-376)) ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2986 (($ $) 180 (|has| |#1| (-376)) ELT)) (-4424 (($ $) 184 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) 183 (-2196 (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-989)) (|has| |#1| (-1233)) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-15 -4162 ((-663 (-1207)) |#1|))) (|has| |#1| (-15 -4424 (|#1| |#1| (-1207)))) (|has| |#1| (-38 (-421 (-560)))))) ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 165 (|has| |#1| (-376)) ELT)) (-1938 (($ (-663 $)) 162 (|has| |#1| (-376)) ELT) (($ $ $) 161 (|has| |#1| (-376)) ELT)) (-4012 (((-419 $) $) 176 (|has| |#1| (-376)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 173 (|has| |#1| (-376)) ELT)) (-2219 (($ $ (-421 (-560))) 110 T ELT)) (-2233 (((-3 $ "failed") $ $) 62 (|has| |#1| (-571)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 167 (|has| |#1| (-376)) ELT)) (-2515 (($ $) 158 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2371 (((-1185 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) ELT)) (-3989 (((-793) $) 169 (|has| |#1| (-376)) ELT)) (-1507 ((|#1| $ (-421 (-560))) 120 T ELT) (($ $ $) 96 (|has| (-421 (-560)) (-1143)) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 170 (|has| |#1| (-376)) ELT)) (-3161 (($ $ (-1207)) 108 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1207))) 106 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-1207) (-793)) 105 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 104 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) 98 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-3900 (((-421 (-560)) $) 76 T ELT)) (-2013 (($ $) 147 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1870 (($ $) 136 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1992 (($ $) 146 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1844 (($ $) 137 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1972 (($ $) 145 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1820 (($ $) 138 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3329 (($ $) 84 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT) (($ (-421 (-560))) 69 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 61 (|has| |#1| (-571)) ELT)) (-2920 ((|#1| $ (-421 (-560))) 71 T ELT)) (-3919 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-4191 (((-793)) 32 T CONST)) (-1351 ((|#1| $) 117 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2042 (($ $) 156 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1907 (($ $) 144 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4361 (((-114) $ $) 65 (|has| |#1| (-571)) ELT)) (-2022 (($ $) 155 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1882 (($ $) 143 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2059 (($ $) 154 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1932 (($ $) 142 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2905 ((|#1| $ (-421 (-560))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) (|has| |#1| (-15 -3913 (|#1| (-1207))))) ELT)) (-3392 (($ $) 153 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1945 (($ $) 141 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2050 (($ $) 152 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1920 (($ $) 140 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2032 (($ $) 151 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1895 (($ $) 139 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($ $ (-1207)) 107 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1207))) 103 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-1207) (-793)) 102 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 101 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) 97 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT) (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 181 (|has| |#1| (-376)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 130 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-560)) $) 68 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 67 (|has| |#1| (-38 (-421 (-560)))) ELT)))
(((-1280 |#1|) (-142) (-1080)) (T -1280))
-((-3781 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| *4)))) (-4 *4 (-1080)) (-4 *1 (-1280 *4)))) (-3022 (*1 *1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-4 *1 (-1280 *3)) (-4 *3 (-1080)))) (-2518 (*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-560)))))) (-2518 (*1 *1 *1 *2) (-2304 (-12 (-5 *2 (-1207)) (-4 *1 (-1280 *3)) (-4 *3 (-1080)) (-12 (-4 *3 (-29 (-560))) (-4 *3 (-989)) (-4 *3 (-1233)) (-4 *3 (-38 (-421 (-560)))))) (-12 (-5 *2 (-1207)) (-4 *1 (-1280 *3)) (-4 *3 (-1080)) (-12 (|has| *3 (-15 -1443 ((-663 *2) *3))) (|has| *3 (-15 -2518 (*3 *3 *2))) (-4 *3 (-38 (-421 (-560)))))))))
-(-13 (-1276 |t#1| (-421 (-560))) (-10 -8 (-15 -3781 ($ (-793) (-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |t#1|))))) (-15 -3022 ($ $ (-421 (-560)))) (IF (|has| |t#1| (-38 (-421 (-560)))) (PROGN (-15 -2518 ($ $)) (IF (|has| |t#1| (-15 -2518 (|t#1| |t#1| (-1207)))) (IF (|has| |t#1| (-15 -1443 ((-663 (-1207)) |t#1|))) (-15 -2518 ($ $ (-1207))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1233)) (IF (|has| |t#1| (-989)) (IF (|has| |t#1| (-29 (-560))) (-15 -2518 ($ $ (-1207))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1033)) (-6 (-1233))) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-421 (-560))) . T) ((-25) . T) ((-38 #1=(-421 (-560))) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-421 (-560)))) ((-95) |has| |#1| (-38 (-421 (-560)))) ((-102) . T) ((-111 #1# #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-632 (-887)) . T) ((-175) -2304 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-421 (-560)))) ((-298 #0# |#1|) . T) ((-298 $ $) |has| (-421 (-560)) (-1143)) ((-302) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-466) |has| |#1| (-376)) ((-507) |has| |#1| (-38 (-421 (-560)))) ((-571) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-668 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-739 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-748) . T) ((-921 $ #2=(-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ((-927 #2#) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ((-929 #2#) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ((-1004 |#1| #0# (-1113)) . T) ((-950) |has| |#1| (-376)) ((-1033) |has| |#1| (-38 (-421 (-560)))) ((-1082 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1082 |#1|) . T) ((-1082 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1087 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1087 |#1|) . T) ((-1087 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1233) |has| |#1| (-38 (-421 (-560)))) ((-1236) |has| |#1| (-38 (-421 (-560)))) ((-1247) . T) ((-1252) |has| |#1| (-376)) ((-1276 |#1| #0#) . T))
-((-2388 (((-114) $) 12 T ELT)) (-2539 (((-3 |#3| "failed") $) 17 T ELT)) (-3330 ((|#3| $) 14 T ELT)))
-(((-1281 |#1| |#2| |#3|) (-10 -8 (-15 -2539 ((-3 |#3| "failed") |#1|)) (-15 -3330 (|#3| |#1|)) (-15 -2388 ((-114) |#1|))) (-1282 |#2| |#3|) (-1080) (-1259 |#2|)) (T -1281))
-NIL
-(-10 -8 (-15 -2539 ((-3 |#3| "failed") |#1|)) (-15 -3330 (|#3| |#1|)) (-15 -2388 ((-114) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-1443 (((-663 (-1113)) $) 86 T ELT)) (-2462 (((-1207) $) 118 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 63 (|has| |#1| (-571)) ELT)) (-3244 (($ $) 64 (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) 66 (|has| |#1| (-571)) ELT)) (-4267 (($ $ (-421 (-560))) 113 T ELT) (($ $ (-421 (-560)) (-421 (-560))) 112 T ELT)) (-1425 (((-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|))) $) 119 T ELT)) (-4337 (($ $) 150 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3455 (($ $) 133 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-1804 (($ $) 177 (|has| |#1| (-376)) ELT)) (-3023 (((-419 $) $) 178 (|has| |#1| (-376)) ELT)) (-4471 (($ $) 132 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1615 (((-114) $ $) 168 (|has| |#1| (-376)) ELT)) (-4313 (($ $) 149 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3430 (($ $) 134 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3781 (($ (-793) (-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|)))) 186 T ELT)) (-4363 (($ $) 148 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3477 (($ $) 135 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2238 (($) 18 T CONST)) (-2539 (((-3 |#2| "failed") $) 197 T ELT)) (-3330 ((|#2| $) 198 T ELT)) (-1478 (($ $ $) 172 (|has| |#1| (-376)) ELT)) (-1624 (($ $) 72 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-2464 (((-421 (-560)) $) 194 T ELT)) (-1490 (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-1519 (($ (-421 (-560)) |#2|) 195 T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 166 (|has| |#1| (-376)) ELT)) (-4330 (((-114) $) 179 (|has| |#1| (-376)) ELT)) (-4386 (((-114) $) 85 T ELT)) (-3796 (($) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3913 (((-421 (-560)) $) 115 T ELT) (((-421 (-560)) $ (-421 (-560))) 114 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-2146 (($ $ (-560)) 131 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3022 (($ $ (-948)) 116 T ELT) (($ $ (-421 (-560))) 185 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 175 (|has| |#1| (-376)) ELT)) (-1556 (((-114) $) 74 T ELT)) (-1417 (($ |#1| (-421 (-560))) 73 T ELT) (($ $ (-1113) (-421 (-560))) 88 T ELT) (($ $ (-663 (-1113)) (-663 (-421 (-560)))) 87 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2192 (($ $) 157 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1583 (($ $) 77 T ELT)) (-1597 ((|#1| $) 78 T ELT)) (-2093 (($ (-663 $)) 164 (|has| |#1| (-376)) ELT) (($ $ $) 163 (|has| |#1| (-376)) ELT)) (-3154 ((|#2| $) 193 T ELT)) (-2328 (((-3 |#2| "failed") $) 191 T ELT)) (-1507 ((|#2| $) 192 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-1544 (($ $) 180 (|has| |#1| (-376)) ELT)) (-2518 (($ $) 184 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) 183 (-2304 (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-989)) (|has| |#1| (-1233)) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-15 -1443 ((-663 (-1207)) |#1|))) (|has| |#1| (-15 -2518 (|#1| |#1| (-1207)))) (|has| |#1| (-38 (-421 (-560)))))) ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 165 (|has| |#1| (-376)) ELT)) (-2132 (($ (-663 $)) 162 (|has| |#1| (-376)) ELT) (($ $ $) 161 (|has| |#1| (-376)) ELT)) (-4457 (((-419 $) $) 176 (|has| |#1| (-376)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 173 (|has| |#1| (-376)) ELT)) (-4372 (($ $ (-421 (-560))) 110 T ELT)) (-1528 (((-3 $ "failed") $ $) 62 (|has| |#1| (-571)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 167 (|has| |#1| (-376)) ELT)) (-3251 (($ $) 158 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4187 (((-1185 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) ELT)) (-2901 (((-793) $) 169 (|has| |#1| (-376)) ELT)) (-3924 ((|#1| $ (-421 (-560))) 120 T ELT) (($ $ $) 96 (|has| (-421 (-560)) (-1143)) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 170 (|has| |#1| (-376)) ELT)) (-2894 (($ $ (-1207)) 108 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1207))) 106 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-1207) (-793)) 105 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 104 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) 98 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-3630 (((-421 (-560)) $) 76 T ELT)) (-4373 (($ $) 147 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3488 (($ $) 136 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4352 (($ $) 146 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3466 (($ $) 137 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4325 (($ $) 145 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3443 (($ $) 138 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3266 (($ $) 84 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT) (($ |#2|) 196 T ELT) (($ (-421 (-560))) 69 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 61 (|has| |#1| (-571)) ELT)) (-2305 ((|#1| $ (-421 (-560))) 71 T ELT)) (-1964 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-2930 (((-793)) 32 T CONST)) (-3355 ((|#1| $) 117 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-4411 (($ $) 156 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4263 (($ $) 144 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2948 (((-114) $ $) 65 (|has| |#1| (-571)) ELT)) (-4387 (($ $) 155 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3499 (($ $) 143 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4438 (($ $) 154 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4287 (($ $) 142 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2239 ((|#1| $ (-421 (-560))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) (|has| |#1| (-15 -1578 (|#1| (-1207))))) ELT)) (-3837 (($ $) 153 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4302 (($ $) 141 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4423 (($ $) 152 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4275 (($ $) 140 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4398 (($ $) 151 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4252 (($ $) 139 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($ $ (-1207)) 107 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1207))) 103 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-1207) (-793)) 102 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 101 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) 97 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT) (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 181 (|has| |#1| (-376)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 130 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-560)) $) 68 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 67 (|has| |#1| (-38 (-421 (-560)))) ELT)))
+((-2882 (*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| *4)))) (-4 *4 (-1080)) (-4 *1 (-1280 *4)))) (-3886 (*1 *1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-4 *1 (-1280 *3)) (-4 *3 (-1080)))) (-4424 (*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-560)))))) (-4424 (*1 *1 *1 *2) (-2196 (-12 (-5 *2 (-1207)) (-4 *1 (-1280 *3)) (-4 *3 (-1080)) (-12 (-4 *3 (-29 (-560))) (-4 *3 (-989)) (-4 *3 (-1233)) (-4 *3 (-38 (-421 (-560)))))) (-12 (-5 *2 (-1207)) (-4 *1 (-1280 *3)) (-4 *3 (-1080)) (-12 (|has| *3 (-15 -4162 ((-663 *2) *3))) (|has| *3 (-15 -4424 (*3 *3 *2))) (-4 *3 (-38 (-421 (-560)))))))))
+(-13 (-1276 |t#1| (-421 (-560))) (-10 -8 (-15 -2882 ($ (-793) (-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |t#1|))))) (-15 -3886 ($ $ (-421 (-560)))) (IF (|has| |t#1| (-38 (-421 (-560)))) (PROGN (-15 -4424 ($ $)) (IF (|has| |t#1| (-15 -4424 (|t#1| |t#1| (-1207)))) (IF (|has| |t#1| (-15 -4162 ((-663 (-1207)) |t#1|))) (-15 -4424 ($ $ (-1207))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1233)) (IF (|has| |t#1| (-989)) (IF (|has| |t#1| (-29 (-560))) (-15 -4424 ($ $ (-1207))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1033)) (-6 (-1233))) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-421 (-560))) . T) ((-25) . T) ((-38 #1=(-421 (-560))) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-421 (-560)))) ((-95) |has| |#1| (-38 (-421 (-560)))) ((-102) . T) ((-111 #1# #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-632 (-887)) . T) ((-175) -2196 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-421 (-560)))) ((-298 #0# |#1|) . T) ((-298 $ $) |has| (-421 (-560)) (-1143)) ((-302) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-466) |has| |#1| (-376)) ((-507) |has| |#1| (-38 (-421 (-560)))) ((-571) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-668 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-739 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-748) . T) ((-921 $ #2=(-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ((-927 #2#) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ((-929 #2#) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ((-1004 |#1| #0# (-1113)) . T) ((-950) |has| |#1| (-376)) ((-1033) |has| |#1| (-38 (-421 (-560)))) ((-1082 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1082 |#1|) . T) ((-1082 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1087 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1087 |#1|) . T) ((-1087 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1233) |has| |#1| (-38 (-421 (-560)))) ((-1236) |has| |#1| (-38 (-421 (-560)))) ((-1247) . T) ((-1252) |has| |#1| (-376)) ((-1276 |#1| #0#) . T))
+((-2505 (((-114) $) 12 T ELT)) (-3929 (((-3 |#3| "failed") $) 17 T ELT)) (-3649 ((|#3| $) 14 T ELT)))
+(((-1281 |#1| |#2| |#3|) (-10 -8 (-15 -3929 ((-3 |#3| "failed") |#1|)) (-15 -3649 (|#3| |#1|)) (-15 -2505 ((-114) |#1|))) (-1282 |#2| |#3|) (-1080) (-1259 |#2|)) (T -1281))
+NIL
+(-10 -8 (-15 -3929 ((-3 |#3| "failed") |#1|)) (-15 -3649 (|#3| |#1|)) (-15 -2505 ((-114) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-4162 (((-663 (-1113)) $) 86 T ELT)) (-2558 (((-1207) $) 118 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 63 (|has| |#1| (-571)) ELT)) (-4366 (($ $) 64 (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) 66 (|has| |#1| (-571)) ELT)) (-3864 (($ $ (-421 (-560))) 113 T ELT) (($ $ (-421 (-560)) (-421 (-560))) 112 T ELT)) (-1465 (((-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|))) $) 119 T ELT)) (-1982 (($ $) 150 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1832 (($ $) 133 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-1621 (($ $) 177 (|has| |#1| (-376)) ELT)) (-3898 (((-419 $) $) 178 (|has| |#1| (-376)) ELT)) (-4021 (($ $) 132 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3476 (((-114) $ $) 168 (|has| |#1| (-376)) ELT)) (-1958 (($ $) 149 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1806 (($ $) 134 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2882 (($ (-793) (-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|)))) 186 T ELT)) (-2003 (($ $) 148 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1856 (($ $) 135 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3525 (($) 18 T CONST)) (-3929 (((-3 |#2| "failed") $) 197 T ELT)) (-3649 ((|#2| $) 198 T ELT)) (-2186 (($ $ $) 172 (|has| |#1| (-376)) ELT)) (-3062 (($ $) 72 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-2018 (((-421 (-560)) $) 194 T ELT)) (-2197 (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-2962 (($ (-421 (-560)) |#2|) 195 T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 166 (|has| |#1| (-376)) ELT)) (-3141 (((-114) $) 179 (|has| |#1| (-376)) ELT)) (-2328 (((-114) $) 85 T ELT)) (-2503 (($) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1460 (((-421 (-560)) $) 115 T ELT) (((-421 (-560)) $ (-421 (-560))) 114 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-1956 (($ $ (-560)) 131 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3886 (($ $ (-948)) 116 T ELT) (($ $ (-421 (-560))) 185 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 175 (|has| |#1| (-376)) ELT)) (-1673 (((-114) $) 74 T ELT)) (-4139 (($ |#1| (-421 (-560))) 73 T ELT) (($ $ (-1113) (-421 (-560))) 88 T ELT) (($ $ (-663 (-1113)) (-663 (-421 (-560)))) 87 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2831 (($ $) 157 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3024 (($ $) 77 T ELT)) (-3037 ((|#1| $) 78 T ELT)) (-1861 (($ (-663 $)) 164 (|has| |#1| (-376)) ELT) (($ $ $) 163 (|has| |#1| (-376)) ELT)) (-1527 ((|#2| $) 193 T ELT)) (-3154 (((-3 |#2| "failed") $) 191 T ELT)) (-2949 ((|#2| $) 192 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2986 (($ $) 180 (|has| |#1| (-376)) ELT)) (-4424 (($ $) 184 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) 183 (-2196 (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-989)) (|has| |#1| (-1233)) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-15 -4162 ((-663 (-1207)) |#1|))) (|has| |#1| (-15 -4424 (|#1| |#1| (-1207)))) (|has| |#1| (-38 (-421 (-560)))))) ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 165 (|has| |#1| (-376)) ELT)) (-1938 (($ (-663 $)) 162 (|has| |#1| (-376)) ELT) (($ $ $) 161 (|has| |#1| (-376)) ELT)) (-4012 (((-419 $) $) 176 (|has| |#1| (-376)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 174 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 173 (|has| |#1| (-376)) ELT)) (-2219 (($ $ (-421 (-560))) 110 T ELT)) (-2233 (((-3 $ "failed") $ $) 62 (|has| |#1| (-571)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 167 (|has| |#1| (-376)) ELT)) (-2515 (($ $) 158 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2371 (((-1185 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) ELT)) (-3989 (((-793) $) 169 (|has| |#1| (-376)) ELT)) (-1507 ((|#1| $ (-421 (-560))) 120 T ELT) (($ $ $) 96 (|has| (-421 (-560)) (-1143)) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 170 (|has| |#1| (-376)) ELT)) (-3161 (($ $ (-1207)) 108 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1207))) 106 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-1207) (-793)) 105 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 104 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) 98 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-3900 (((-421 (-560)) $) 76 T ELT)) (-2013 (($ $) 147 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1870 (($ $) 136 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1992 (($ $) 146 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1844 (($ $) 137 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1972 (($ $) 145 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1820 (($ $) 138 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3329 (($ $) 84 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT) (($ |#2|) 196 T ELT) (($ (-421 (-560))) 69 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 61 (|has| |#1| (-571)) ELT)) (-2920 ((|#1| $ (-421 (-560))) 71 T ELT)) (-3919 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-4191 (((-793)) 32 T CONST)) (-1351 ((|#1| $) 117 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2042 (($ $) 156 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1907 (($ $) 144 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4361 (((-114) $ $) 65 (|has| |#1| (-571)) ELT)) (-2022 (($ $) 155 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1882 (($ $) 143 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2059 (($ $) 154 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1932 (($ $) 142 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2905 ((|#1| $ (-421 (-560))) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) (|has| |#1| (-15 -3913 (|#1| (-1207))))) ELT)) (-3392 (($ $) 153 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1945 (($ $) 141 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2050 (($ $) 152 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1920 (($ $) 140 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2032 (($ $) 151 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1895 (($ $) 139 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($ $ (-1207)) 107 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1207))) 103 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-1207) (-793)) 102 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 101 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) 97 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT) (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 181 (|has| |#1| (-376)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 130 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-560)) $) 68 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 67 (|has| |#1| (-38 (-421 (-560)))) ELT)))
(((-1282 |#1| |#2|) (-142) (-1080) (-1259 |t#1|)) (T -1282))
-((-3630 (*1 *2 *1) (-12 (-4 *1 (-1282 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1259 *3)) (-5 *2 (-421 (-560))))) (-1519 (*1 *1 *2 *3) (-12 (-5 *2 (-421 (-560))) (-4 *4 (-1080)) (-4 *1 (-1282 *4 *3)) (-4 *3 (-1259 *4)))) (-2464 (*1 *2 *1) (-12 (-4 *1 (-1282 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1259 *3)) (-5 *2 (-421 (-560))))) (-3154 (*1 *2 *1) (-12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1259 *3)))) (-1507 (*1 *2 *1) (-12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1259 *3)))) (-2328 (*1 *2 *1) (|partial| -12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1259 *3)))))
-(-13 (-1280 |t#1|) (-1069 |t#2|) (-635 |t#2|) (-10 -8 (-15 -1519 ($ (-421 (-560)) |t#2|)) (-15 -2464 ((-421 (-560)) $)) (-15 -3154 (|t#2| $)) (-15 -3630 ((-421 (-560)) $)) (-15 -1507 (|t#2| $)) (-15 -2328 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-421 (-560))) . T) ((-25) . T) ((-38 #1=(-421 (-560))) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-421 (-560)))) ((-95) |has| |#1| (-38 (-421 (-560)))) ((-102) . T) ((-111 #1# #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 |#2|) . T) ((-635 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-632 (-887)) . T) ((-175) -2304 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-421 (-560)))) ((-298 #0# |#1|) . T) ((-298 $ $) |has| (-421 (-560)) (-1143)) ((-302) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-466) |has| |#1| (-376)) ((-507) |has| |#1| (-38 (-421 (-560)))) ((-571) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-668 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-739 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-748) . T) ((-921 $ #2=(-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ((-927 #2#) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ((-929 #2#) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ((-1004 |#1| #0# (-1113)) . T) ((-950) |has| |#1| (-376)) ((-1033) |has| |#1| (-38 (-421 (-560)))) ((-1069 |#2|) . T) ((-1082 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1082 |#1|) . T) ((-1082 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1087 #1#) -2304 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1087 |#1|) . T) ((-1087 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1233) |has| |#1| (-38 (-421 (-560)))) ((-1236) |has| |#1| (-38 (-421 (-560)))) ((-1247) . T) ((-1252) |has| |#1| (-376)) ((-1276 |#1| #0#) . T) ((-1280 |#1|) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1443 (((-663 (-1113)) $) NIL T ELT)) (-2462 (((-1207) $) 104 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4267 (($ $ (-421 (-560))) 116 T ELT) (($ $ (-421 (-560)) (-421 (-560))) 118 T ELT)) (-1425 (((-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|))) $) 54 T ELT)) (-4337 (($ $) 192 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3455 (($ $) 168 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1804 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3023 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-4471 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1615 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4313 (($ $) 188 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3430 (($ $) 164 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3781 (($ (-793) (-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|)))) 65 T ELT)) (-4363 (($ $) 196 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3477 (($ $) 172 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#2| "failed") $) NIL T ELT)) (-3330 ((|#2| $) NIL T ELT)) (-1478 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1624 (($ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) 85 T ELT)) (-2464 (((-421 (-560)) $) 13 T ELT)) (-1490 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1519 (($ (-421 (-560)) |#2|) 11 T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-4330 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-4386 (((-114) $) 74 T ELT)) (-3796 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3913 (((-421 (-560)) $) 113 T ELT) (((-421 (-560)) $ (-421 (-560))) 114 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-2146 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3022 (($ $ (-948)) 130 T ELT) (($ $ (-421 (-560))) 128 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-421 (-560))) 33 T ELT) (($ $ (-1113) (-421 (-560))) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-421 (-560)))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-2192 (($ $) 162 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-2093 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3154 ((|#2| $) 12 T ELT)) (-2328 (((-3 |#2| "failed") $) 44 T ELT)) (-1507 ((|#2| $) 45 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-1544 (($ $) 101 (|has| |#1| (-376)) ELT)) (-2518 (($ $) 146 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) 151 (-2304 (-12 (|has| |#1| (-15 -2518 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -1443 ((-663 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-989)) (|has| |#1| (-1233)))) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-2132 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4457 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-3812 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4372 (($ $ (-421 (-560))) 122 T ELT)) (-1528 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-3251 (($ $) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4187 (((-1185 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) ELT)) (-2901 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-3924 ((|#1| $ (-421 (-560))) 108 T ELT) (($ $ $) 94 (|has| (-421 (-560)) (-1143)) ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2894 (($ $ (-1207)) 138 (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-3630 (((-421 (-560)) $) 16 T ELT)) (-4373 (($ $) 198 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3488 (($ $) 174 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4352 (($ $) 194 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3466 (($ $) 170 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4325 (($ $) 190 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3443 (($ $) 166 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3266 (($ $) 120 T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-175)) ELT) (($ |#2|) 34 T ELT) (($ (-421 (-560))) 139 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-2305 ((|#1| $ (-421 (-560))) 107 T ELT)) (-1964 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-2930 (((-793)) 127 T CONST)) (-3355 ((|#1| $) 106 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-4411 (($ $) 204 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4263 (($ $) 180 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4387 (($ $) 200 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3499 (($ $) 176 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4438 (($ $) 208 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4287 (($ $) 184 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2239 ((|#1| $ (-421 (-560))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) (|has| |#1| (-15 -1578 (|#1| (-1207))))) ELT)) (-3837 (($ $) 210 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4302 (($ $) 186 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4423 (($ $) 206 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4275 (($ $) 182 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4398 (($ $) 202 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4252 (($ $) 178 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2001 (($) 21 T CONST)) (-2011 (($) 17 T CONST)) (-3305 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-2473 (((-114) $ $) 72 T ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 100 (|has| |#1| (-376)) ELT)) (-2580 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-2567 (($ $ $) 76 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 82 T ELT) (($ $ (-560)) 157 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 158 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
+((-3900 (*1 *2 *1) (-12 (-4 *1 (-1282 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1259 *3)) (-5 *2 (-421 (-560))))) (-2962 (*1 *1 *2 *3) (-12 (-5 *2 (-421 (-560))) (-4 *4 (-1080)) (-4 *1 (-1282 *4 *3)) (-4 *3 (-1259 *4)))) (-2018 (*1 *2 *1) (-12 (-4 *1 (-1282 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1259 *3)) (-5 *2 (-421 (-560))))) (-1527 (*1 *2 *1) (-12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1259 *3)))) (-2949 (*1 *2 *1) (-12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1259 *3)))) (-3154 (*1 *2 *1) (|partial| -12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1259 *3)))))
+(-13 (-1280 |t#1|) (-1069 |t#2|) (-635 |t#2|) (-10 -8 (-15 -2962 ($ (-421 (-560)) |t#2|)) (-15 -2018 ((-421 (-560)) $)) (-15 -1527 (|t#2| $)) (-15 -3900 ((-421 (-560)) $)) (-15 -2949 (|t#2| $)) (-15 -3154 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-421 (-560))) . T) ((-25) . T) ((-38 #1=(-421 (-560))) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-421 (-560)))) ((-95) |has| |#1| (-38 (-421 (-560)))) ((-102) . T) ((-111 #1# #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 |#2|) . T) ((-635 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-632 (-887)) . T) ((-175) -2196 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-421 (-560)))) ((-298 #0# |#1|) . T) ((-298 $ $) |has| (-421 (-560)) (-1143)) ((-302) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-466) |has| |#1| (-376)) ((-507) |has| |#1| (-38 (-421 (-560)))) ((-571) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-668 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-739 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376))) ((-748) . T) ((-921 $ #2=(-1207)) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ((-927 #2#) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ((-929 #2#) -12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ((-1004 |#1| #0# (-1113)) . T) ((-950) |has| |#1| (-376)) ((-1033) |has| |#1| (-38 (-421 (-560)))) ((-1069 |#2|) . T) ((-1082 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1082 |#1|) . T) ((-1082 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1087 #1#) -2196 (|has| |#1| (-376)) (|has| |#1| (-38 (-421 (-560))))) ((-1087 |#1|) . T) ((-1087 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1233) |has| |#1| (-38 (-421 (-560)))) ((-1236) |has| |#1| (-38 (-421 (-560)))) ((-1247) . T) ((-1252) |has| |#1| (-376)) ((-1276 |#1| #0#) . T) ((-1280 |#1|) . T))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-4162 (((-663 (-1113)) $) NIL T ELT)) (-2558 (((-1207) $) 104 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3864 (($ $ (-421 (-560))) 116 T ELT) (($ $ (-421 (-560)) (-421 (-560))) 118 T ELT)) (-1465 (((-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|))) $) 54 T ELT)) (-1982 (($ $) 192 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1832 (($ $) 168 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-1621 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3898 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-4021 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3476 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-1958 (($ $) 188 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1806 (($ $) 164 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2882 (($ (-793) (-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#1|)))) 65 T ELT)) (-2003 (($ $) 196 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1856 (($ $) 172 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#2| "failed") $) NIL T ELT)) (-3649 ((|#2| $) NIL T ELT)) (-2186 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3062 (($ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) 85 T ELT)) (-2018 (((-421 (-560)) $) 13 T ELT)) (-2197 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2962 (($ (-421 (-560)) |#2|) 11 T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) NIL (|has| |#1| (-376)) ELT)) (-3141 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-2328 (((-114) $) 74 T ELT)) (-2503 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1460 (((-421 (-560)) $) 113 T ELT) (((-421 (-560)) $ (-421 (-560))) 114 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-1956 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3886 (($ $ (-948)) 130 T ELT) (($ $ (-421 (-560))) 128 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-421 (-560))) 33 T ELT) (($ $ (-1113) (-421 (-560))) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-421 (-560)))) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-2831 (($ $) 162 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-1861 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1527 ((|#2| $) 12 T ELT)) (-3154 (((-3 |#2| "failed") $) 44 T ELT)) (-2949 ((|#2| $) 45 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-2986 (($ $) 101 (|has| |#1| (-376)) ELT)) (-4424 (($ $) 146 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) 151 (-2196 (-12 (|has| |#1| (-15 -4424 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -4162 ((-663 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-989)) (|has| |#1| (-1233)))) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) NIL (|has| |#1| (-376)) ELT)) (-1938 (($ (-663 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4012 (((-419 $) $) NIL (|has| |#1| (-376)) ELT)) (-1760 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2219 (($ $ (-421 (-560))) 122 T ELT)) (-2233 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) NIL (|has| |#1| (-376)) ELT)) (-2515 (($ $) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2371 (((-1185 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) ELT)) (-3989 (((-793) $) NIL (|has| |#1| (-376)) ELT)) (-1507 ((|#1| $ (-421 (-560))) 108 T ELT) (($ $ $) 94 (|has| (-421 (-560)) (-1143)) ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3161 (($ $ (-1207)) 138 (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-3900 (((-421 (-560)) $) 16 T ELT)) (-2013 (($ $) 198 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1870 (($ $) 174 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1992 (($ $) 194 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1844 (($ $) 170 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1972 (($ $) 190 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1820 (($ $) 166 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3329 (($ $) 120 T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-175)) ELT) (($ |#2|) 34 T ELT) (($ (-421 (-560))) 139 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT)) (-2920 ((|#1| $ (-421 (-560))) 107 T ELT)) (-3919 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-4191 (((-793)) 127 T CONST)) (-1351 ((|#1| $) 106 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2042 (($ $) 204 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1907 (($ $) 180 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2022 (($ $) 200 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1882 (($ $) 176 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2059 (($ $) 208 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1932 (($ $) 184 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2905 ((|#1| $ (-421 (-560))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-421 (-560))))) (|has| |#1| (-15 -3913 (|#1| (-1207))))) ELT)) (-3392 (($ $) 210 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1945 (($ $) 186 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2050 (($ $) 206 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1920 (($ $) 182 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2032 (($ $) 202 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1895 (($ $) 178 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1446 (($) 21 T CONST)) (-1456 (($) 17 T CONST)) (-2111 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-421 (-560)) |#1|))) ELT)) (-2340 (((-114) $ $) 72 T ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 100 (|has| |#1| (-376)) ELT)) (-2441 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-2429 (($ $ $) 76 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 82 T ELT) (($ $ (-560)) 157 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 158 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
(((-1283 |#1| |#2|) (-1282 |#1| |#2|) (-1080) (-1259 |#1|)) (T -1283))
NIL
(-1282 |#1| |#2|)
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 37 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-3244 (($ $) NIL T ELT)) (-4093 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 (-560) "failed") $) NIL (|has| (-1278 |#2| |#3| |#4|) (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| (-1278 |#2| |#3| |#4|) (-1069 (-421 (-560)))) ELT) (((-3 (-1278 |#2| |#3| |#4|) "failed") $) 22 T ELT)) (-3330 (((-560) $) NIL (|has| (-1278 |#2| |#3| |#4|) (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| (-1278 |#2| |#3| |#4|) (-1069 (-421 (-560)))) ELT) (((-1278 |#2| |#3| |#4|) $) NIL T ELT)) (-1624 (($ $) 41 T ELT)) (-1990 (((-3 $ "failed") $) 27 T ELT)) (-2806 (($ $) NIL (|has| (-1278 |#2| |#3| |#4|) (-466)) ELT)) (-4342 (($ $ (-1278 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|) $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-3531 (((-793) $) 11 T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ (-1278 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) 25 T ELT)) (-3011 (((-331 |#2| |#3| |#4|) $) NIL T ELT)) (-4321 (($ (-1 (-331 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) $) NIL T ELT)) (-3957 (($ (-1 (-1278 |#2| |#3| |#4|) (-1278 |#2| |#3| |#4|)) $) NIL T ELT)) (-2097 (((-3 (-864 |#2|) "failed") $) 90 T ELT)) (-1583 (($ $) NIL T ELT)) (-1597 (((-1278 |#2| |#3| |#4|) $) 20 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1554 (((-114) $) NIL T ELT)) (-1566 (((-1278 |#2| |#3| |#4|) $) NIL T ELT)) (-1528 (((-3 $ "failed") $ (-1278 |#2| |#3| |#4|)) NIL (|has| (-1278 |#2| |#3| |#4|) (-571)) ELT) (((-3 $ "failed") $ $) NIL T ELT)) (-1434 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1278 |#2| |#3| |#4|)) (|:| |%expon| (-331 |#2| |#3| |#4|)) (|:| |%expTerms| (-663 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#2|)))))) (|:| |%type| (-1189))) "failed") $) 74 T ELT)) (-3630 (((-331 |#2| |#3| |#4|) $) 17 T ELT)) (-2053 (((-1278 |#2| |#3| |#4|) $) NIL (|has| (-1278 |#2| |#3| |#4|) (-466)) ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-1278 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL (-2304 (|has| (-1278 |#2| |#3| |#4|) (-38 (-421 (-560)))) (|has| (-1278 |#2| |#3| |#4|) (-1069 (-421 (-560))))) ELT)) (-3409 (((-663 (-1278 |#2| |#3| |#4|)) $) NIL T ELT)) (-2305 (((-1278 |#2| |#3| |#4|) $ (-331 |#2| |#3| |#4|)) NIL T ELT)) (-1964 (((-3 $ "failed") $) NIL (|has| (-1278 |#2| |#3| |#4|) (-147)) ELT)) (-2930 (((-793)) NIL T CONST)) (-2392 (($ $ $ (-793)) NIL (|has| (-1278 |#2| |#3| |#4|) (-175)) ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2948 (((-114) $ $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-2011 (($) NIL T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ (-1278 |#2| |#3| |#4|)) NIL (|has| (-1278 |#2| |#3| |#4|) (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1278 |#2| |#3| |#4|)) NIL T ELT) (($ (-1278 |#2| |#3| |#4|) $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| (-1278 |#2| |#3| |#4|) (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| (-1278 |#2| |#3| |#4|) (-38 (-421 (-560)))) ELT)))
-(((-1284 |#1| |#2| |#3| |#4|) (-13 (-338 (-1278 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) (-571) (-10 -8 (-15 -2097 ((-3 (-864 |#2|) "failed") $)) (-15 -1434 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1278 |#2| |#3| |#4|)) (|:| |%expon| (-331 |#2| |#3| |#4|)) (|:| |%expTerms| (-663 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#2|)))))) (|:| |%type| (-1189))) "failed") $)))) (-13 (-1069 (-560)) (-660 (-560)) (-466)) (-13 (-27) (-1233) (-435 |#1|)) (-1207) |#2|) (T -1284))
-((-2097 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1069 (-560)) (-660 (-560)) (-466))) (-5 *2 (-864 *4)) (-5 *1 (-1284 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-435 *3))) (-14 *5 (-1207)) (-14 *6 *4))) (-1434 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1069 (-560)) (-660 (-560)) (-466))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1278 *4 *5 *6)) (|:| |%expon| (-331 *4 *5 *6)) (|:| |%expTerms| (-663 (-2 (|:| |k| (-421 (-560))) (|:| |c| *4)))))) (|:| |%type| (-1189)))) (-5 *1 (-1284 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-435 *3))) (-14 *5 (-1207)) (-14 *6 *4))))
-(-13 (-338 (-1278 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) (-571) (-10 -8 (-15 -2097 ((-3 (-864 |#2|) "failed") $)) (-15 -1434 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1278 |#2| |#3| |#4|)) (|:| |%expon| (-331 |#2| |#3| |#4|)) (|:| |%expTerms| (-663 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#2|)))))) (|:| |%type| (-1189))) "failed") $))))
-((-3853 ((|#2| $) 34 T ELT)) (-3273 ((|#2| $) 18 T ELT)) (-2270 (($ $) 53 T ELT)) (-2194 (($ $ (-560)) 85 T ELT)) (-3363 (((-114) $ (-793)) 46 T ELT)) (-2869 ((|#2| $ |#2|) 82 T ELT)) (-4319 ((|#2| $ |#2|) 78 T ELT)) (-1773 ((|#2| $ "value" |#2|) NIL T ELT) ((|#2| $ "first" |#2|) 71 T ELT) (($ $ "rest" $) 75 T ELT) ((|#2| $ "last" |#2|) 73 T ELT)) (-2083 (($ $ (-663 $)) 81 T ELT)) (-3264 ((|#2| $) 17 T ELT)) (-3649 (($ $) NIL T ELT) (($ $ (-793)) 59 T ELT)) (-3092 (((-663 $) $) 31 T ELT)) (-3398 (((-114) $ $) 69 T ELT)) (-4034 (((-114) $ (-793)) 45 T ELT)) (-1805 (((-114) $ (-793)) 43 T ELT)) (-2409 (((-114) $) 33 T ELT)) (-2398 ((|#2| $) 25 T ELT) (($ $ (-793)) 64 T ELT)) (-3924 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 10 T ELT) (($ $ "rest") 16 T ELT) ((|#2| $ "last") 13 T ELT)) (-1978 (((-114) $) 23 T ELT)) (-1763 (($ $) 56 T ELT)) (-1915 (($ $) 86 T ELT)) (-1502 (((-793) $) 58 T ELT)) (-3458 (($ $) 57 T ELT)) (-3415 (($ $ $) 77 T ELT) (($ |#2| $) NIL T ELT)) (-3955 (((-663 $) $) 32 T ELT)) (-2473 (((-114) $ $) 67 T ELT)) (-1553 (((-793) $) 52 T ELT)))
-(((-1285 |#1| |#2|) (-10 -8 (-15 -2473 ((-114) |#1| |#1|)) (-15 -2194 (|#1| |#1| (-560))) (-15 -1773 (|#2| |#1| "last" |#2|)) (-15 -4319 (|#2| |#1| |#2|)) (-15 -1773 (|#1| |#1| "rest" |#1|)) (-15 -1773 (|#2| |#1| "first" |#2|)) (-15 -1915 (|#1| |#1|)) (-15 -1763 (|#1| |#1|)) (-15 -1502 ((-793) |#1|)) (-15 -3458 (|#1| |#1|)) (-15 -3273 (|#2| |#1|)) (-15 -3264 (|#2| |#1|)) (-15 -2270 (|#1| |#1|)) (-15 -2398 (|#1| |#1| (-793))) (-15 -3924 (|#2| |#1| "last")) (-15 -2398 (|#2| |#1|)) (-15 -3649 (|#1| |#1| (-793))) (-15 -3924 (|#1| |#1| "rest")) (-15 -3649 (|#1| |#1|)) (-15 -3924 (|#2| |#1| "first")) (-15 -3415 (|#1| |#2| |#1|)) (-15 -3415 (|#1| |#1| |#1|)) (-15 -2869 (|#2| |#1| |#2|)) (-15 -1773 (|#2| |#1| "value" |#2|)) (-15 -2083 (|#1| |#1| (-663 |#1|))) (-15 -3398 ((-114) |#1| |#1|)) (-15 -1978 ((-114) |#1|)) (-15 -3924 (|#2| |#1| "value")) (-15 -3853 (|#2| |#1|)) (-15 -2409 ((-114) |#1|)) (-15 -3092 ((-663 |#1|) |#1|)) (-15 -3955 ((-663 |#1|) |#1|)) (-15 -1553 ((-793) |#1|)) (-15 -3363 ((-114) |#1| (-793))) (-15 -4034 ((-114) |#1| (-793))) (-15 -1805 ((-114) |#1| (-793)))) (-1286 |#2|) (-1247)) (T -1285))
-NIL
-(-10 -8 (-15 -2473 ((-114) |#1| |#1|)) (-15 -2194 (|#1| |#1| (-560))) (-15 -1773 (|#2| |#1| "last" |#2|)) (-15 -4319 (|#2| |#1| |#2|)) (-15 -1773 (|#1| |#1| "rest" |#1|)) (-15 -1773 (|#2| |#1| "first" |#2|)) (-15 -1915 (|#1| |#1|)) (-15 -1763 (|#1| |#1|)) (-15 -1502 ((-793) |#1|)) (-15 -3458 (|#1| |#1|)) (-15 -3273 (|#2| |#1|)) (-15 -3264 (|#2| |#1|)) (-15 -2270 (|#1| |#1|)) (-15 -2398 (|#1| |#1| (-793))) (-15 -3924 (|#2| |#1| "last")) (-15 -2398 (|#2| |#1|)) (-15 -3649 (|#1| |#1| (-793))) (-15 -3924 (|#1| |#1| "rest")) (-15 -3649 (|#1| |#1|)) (-15 -3924 (|#2| |#1| "first")) (-15 -3415 (|#1| |#2| |#1|)) (-15 -3415 (|#1| |#1| |#1|)) (-15 -2869 (|#2| |#1| |#2|)) (-15 -1773 (|#2| |#1| "value" |#2|)) (-15 -2083 (|#1| |#1| (-663 |#1|))) (-15 -3398 ((-114) |#1| |#1|)) (-15 -1978 ((-114) |#1|)) (-15 -3924 (|#2| |#1| "value")) (-15 -3853 (|#2| |#1|)) (-15 -2409 ((-114) |#1|)) (-15 -3092 ((-663 |#1|) |#1|)) (-15 -3955 ((-663 |#1|) |#1|)) (-15 -1553 ((-793) |#1|)) (-15 -3363 ((-114) |#1| (-793))) (-15 -4034 ((-114) |#1| (-793))) (-15 -1805 ((-114) |#1| (-793))))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3853 ((|#1| $) 49 T ELT)) (-3273 ((|#1| $) 66 T ELT)) (-2270 (($ $) 68 T ELT)) (-2194 (($ $ (-560)) 53 (|has| $ (-6 -4509)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-2869 ((|#1| $ |#1|) 40 (|has| $ (-6 -4509)) ELT)) (-2102 (($ $ $) 57 (|has| $ (-6 -4509)) ELT)) (-4319 ((|#1| $ |#1|) 55 (|has| $ (-6 -4509)) ELT)) (-3132 ((|#1| $ |#1|) 59 (|has| $ (-6 -4509)) ELT)) (-1773 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4509)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4509)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4509)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4509)) ELT)) (-2083 (($ $ (-663 $)) 42 (|has| $ (-6 -4509)) ELT)) (-3264 ((|#1| $) 67 T ELT)) (-2238 (($) 7 T CONST)) (-3649 (($ $) 74 T ELT) (($ $ (-793)) 72 T ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-3092 (((-663 $) $) 51 T ELT)) (-3398 (((-114) $ $) 43 (|has| |#1| (-1132)) ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-3596 (((-663 |#1|) $) 46 T ELT)) (-2409 (((-114) $) 50 T ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-2398 ((|#1| $) 71 T ELT) (($ $ (-793)) 69 T ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-3637 ((|#1| $) 77 T ELT) (($ $ (-793)) 75 T ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3924 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT)) (-1750 (((-560) $ $) 45 T ELT)) (-1978 (((-114) $) 47 T ELT)) (-1763 (($ $) 63 T ELT)) (-1915 (($ $) 60 (|has| $ (-6 -4509)) ELT)) (-1502 (((-793) $) 64 T ELT)) (-3458 (($ $) 65 T ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-1799 (($ $) 13 T ELT)) (-4354 (($ $ $) 62 (|has| $ (-6 -4509)) ELT) (($ $ |#1|) 61 (|has| $ (-6 -4509)) ELT)) (-3415 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3955 (((-663 $) $) 52 T ELT)) (-2997 (((-114) $ $) 44 (|has| |#1| (-1132)) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 37 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-2667 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 (-560) "failed") $) NIL (|has| (-1278 |#2| |#3| |#4|) (-1069 (-560))) ELT) (((-3 (-421 (-560)) "failed") $) NIL (|has| (-1278 |#2| |#3| |#4|) (-1069 (-421 (-560)))) ELT) (((-3 (-1278 |#2| |#3| |#4|) "failed") $) 22 T ELT)) (-3649 (((-560) $) NIL (|has| (-1278 |#2| |#3| |#4|) (-1069 (-560))) ELT) (((-421 (-560)) $) NIL (|has| (-1278 |#2| |#3| |#4|) (-1069 (-421 (-560)))) ELT) (((-1278 |#2| |#3| |#4|) $) NIL T ELT)) (-3062 (($ $) 41 T ELT)) (-2873 (((-3 $ "failed") $) 27 T ELT)) (-4239 (($ $) NIL (|has| (-1278 |#2| |#3| |#4|) (-466)) ELT)) (-3224 (($ $ (-1278 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|) $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-4127 (((-793) $) 11 T ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ (-1278 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) 25 T ELT)) (-3765 (((-331 |#2| |#3| |#4|) $) NIL T ELT)) (-3060 (($ (-1 (-331 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) $) NIL T ELT)) (-2260 (($ (-1 (-1278 |#2| |#3| |#4|) (-1278 |#2| |#3| |#4|)) $) NIL T ELT)) (-1478 (((-3 (-864 |#2|) "failed") $) 90 T ELT)) (-3024 (($ $) NIL T ELT)) (-3037 (((-1278 |#2| |#3| |#4|) $) 20 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3000 (((-114) $) NIL T ELT)) (-3011 (((-1278 |#2| |#3| |#4|) $) NIL T ELT)) (-2233 (((-3 $ "failed") $ (-1278 |#2| |#3| |#4|)) NIL (|has| (-1278 |#2| |#3| |#4|) (-571)) ELT) (((-3 $ "failed") $ $) NIL T ELT)) (-1664 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1278 |#2| |#3| |#4|)) (|:| |%expon| (-331 |#2| |#3| |#4|)) (|:| |%expTerms| (-663 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#2|)))))) (|:| |%type| (-1189))) "failed") $) 74 T ELT)) (-3900 (((-331 |#2| |#3| |#4|) $) 17 T ELT)) (-2264 (((-1278 |#2| |#3| |#4|) $) NIL (|has| (-1278 |#2| |#3| |#4|) (-466)) ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ (-1278 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-421 (-560))) NIL (-2196 (|has| (-1278 |#2| |#3| |#4|) (-38 (-421 (-560)))) (|has| (-1278 |#2| |#3| |#4|) (-1069 (-421 (-560))))) ELT)) (-2247 (((-663 (-1278 |#2| |#3| |#4|)) $) NIL T ELT)) (-2920 (((-1278 |#2| |#3| |#4|) $ (-331 |#2| |#3| |#4|)) NIL T ELT)) (-3919 (((-3 $ "failed") $) NIL (|has| (-1278 |#2| |#3| |#4|) (-147)) ELT)) (-4191 (((-793)) NIL T CONST)) (-2548 (($ $ $ (-793)) NIL (|has| (-1278 |#2| |#3| |#4|) (-175)) ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4361 (((-114) $ $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-1456 (($) NIL T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ (-1278 |#2| |#3| |#4|)) NIL (|has| (-1278 |#2| |#3| |#4|) (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1278 |#2| |#3| |#4|)) NIL T ELT) (($ (-1278 |#2| |#3| |#4|) $) NIL T ELT) (($ (-421 (-560)) $) NIL (|has| (-1278 |#2| |#3| |#4|) (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| (-1278 |#2| |#3| |#4|) (-38 (-421 (-560)))) ELT)))
+(((-1284 |#1| |#2| |#3| |#4|) (-13 (-338 (-1278 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) (-571) (-10 -8 (-15 -1478 ((-3 (-864 |#2|) "failed") $)) (-15 -1664 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1278 |#2| |#3| |#4|)) (|:| |%expon| (-331 |#2| |#3| |#4|)) (|:| |%expTerms| (-663 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#2|)))))) (|:| |%type| (-1189))) "failed") $)))) (-13 (-1069 (-560)) (-660 (-560)) (-466)) (-13 (-27) (-1233) (-435 |#1|)) (-1207) |#2|) (T -1284))
+((-1478 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1069 (-560)) (-660 (-560)) (-466))) (-5 *2 (-864 *4)) (-5 *1 (-1284 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-435 *3))) (-14 *5 (-1207)) (-14 *6 *4))) (-1664 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1069 (-560)) (-660 (-560)) (-466))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1278 *4 *5 *6)) (|:| |%expon| (-331 *4 *5 *6)) (|:| |%expTerms| (-663 (-2 (|:| |k| (-421 (-560))) (|:| |c| *4)))))) (|:| |%type| (-1189)))) (-5 *1 (-1284 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-435 *3))) (-14 *5 (-1207)) (-14 *6 *4))))
+(-13 (-338 (-1278 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) (-571) (-10 -8 (-15 -1478 ((-3 (-864 |#2|) "failed") $)) (-15 -1664 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1278 |#2| |#3| |#4|)) (|:| |%expon| (-331 |#2| |#3| |#4|)) (|:| |%expTerms| (-663 (-2 (|:| |k| (-421 (-560))) (|:| |c| |#2|)))))) (|:| |%type| (-1189))) "failed") $))))
+((-1430 ((|#2| $) 34 T ELT)) (-3853 ((|#2| $) 18 T ELT)) (-3990 (($ $) 53 T ELT)) (-4367 (($ $ (-560)) 85 T ELT)) (-3045 (((-114) $ (-793)) 46 T ELT)) (-3654 ((|#2| $ |#2|) 82 T ELT)) (-3042 ((|#2| $ |#2|) 78 T ELT)) (-4083 ((|#2| $ "value" |#2|) NIL T ELT) ((|#2| $ "first" |#2|) 71 T ELT) (($ $ "rest" $) 75 T ELT) ((|#2| $ "last" |#2|) 73 T ELT)) (-2566 (($ $ (-663 $)) 81 T ELT)) (-3839 ((|#2| $) 17 T ELT)) (-4345 (($ $) NIL T ELT) (($ $ (-793)) 59 T ELT)) (-2104 (((-663 $) $) 31 T ELT)) (-2150 (((-114) $ $) 69 T ELT)) (-3332 (((-114) $ (-793)) 45 T ELT)) (-1634 (((-114) $ (-793)) 43 T ELT)) (-1485 (((-114) $) 33 T ELT)) (-3057 ((|#2| $) 25 T ELT) (($ $ (-793)) 64 T ELT)) (-1507 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 10 T ELT) (($ $ "rest") 16 T ELT) ((|#2| $ "last") 13 T ELT)) (-2752 (((-114) $) 23 T ELT)) (-2493 (($ $) 56 T ELT)) (-3438 (($ $) 86 T ELT)) (-3010 (((-793) $) 58 T ELT)) (-1474 (($ $) 57 T ELT)) (-1955 (($ $ $) 77 T ELT) (($ |#2| $) NIL T ELT)) (-3809 (((-663 $) $) 32 T ELT)) (-2340 (((-114) $ $) 67 T ELT)) (-2256 (((-793) $) 52 T ELT)))
+(((-1285 |#1| |#2|) (-10 -8 (-15 -2340 ((-114) |#1| |#1|)) (-15 -4367 (|#1| |#1| (-560))) (-15 -4083 (|#2| |#1| "last" |#2|)) (-15 -3042 (|#2| |#1| |#2|)) (-15 -4083 (|#1| |#1| "rest" |#1|)) (-15 -4083 (|#2| |#1| "first" |#2|)) (-15 -3438 (|#1| |#1|)) (-15 -2493 (|#1| |#1|)) (-15 -3010 ((-793) |#1|)) (-15 -1474 (|#1| |#1|)) (-15 -3853 (|#2| |#1|)) (-15 -3839 (|#2| |#1|)) (-15 -3990 (|#1| |#1|)) (-15 -3057 (|#1| |#1| (-793))) (-15 -1507 (|#2| |#1| "last")) (-15 -3057 (|#2| |#1|)) (-15 -4345 (|#1| |#1| (-793))) (-15 -1507 (|#1| |#1| "rest")) (-15 -4345 (|#1| |#1|)) (-15 -1507 (|#2| |#1| "first")) (-15 -1955 (|#1| |#2| |#1|)) (-15 -1955 (|#1| |#1| |#1|)) (-15 -3654 (|#2| |#1| |#2|)) (-15 -4083 (|#2| |#1| "value" |#2|)) (-15 -2566 (|#1| |#1| (-663 |#1|))) (-15 -2150 ((-114) |#1| |#1|)) (-15 -2752 ((-114) |#1|)) (-15 -1507 (|#2| |#1| "value")) (-15 -1430 (|#2| |#1|)) (-15 -1485 ((-114) |#1|)) (-15 -2104 ((-663 |#1|) |#1|)) (-15 -3809 ((-663 |#1|) |#1|)) (-15 -2256 ((-793) |#1|)) (-15 -3045 ((-114) |#1| (-793))) (-15 -3332 ((-114) |#1| (-793))) (-15 -1634 ((-114) |#1| (-793)))) (-1286 |#2|) (-1247)) (T -1285))
+NIL
+(-10 -8 (-15 -2340 ((-114) |#1| |#1|)) (-15 -4367 (|#1| |#1| (-560))) (-15 -4083 (|#2| |#1| "last" |#2|)) (-15 -3042 (|#2| |#1| |#2|)) (-15 -4083 (|#1| |#1| "rest" |#1|)) (-15 -4083 (|#2| |#1| "first" |#2|)) (-15 -3438 (|#1| |#1|)) (-15 -2493 (|#1| |#1|)) (-15 -3010 ((-793) |#1|)) (-15 -1474 (|#1| |#1|)) (-15 -3853 (|#2| |#1|)) (-15 -3839 (|#2| |#1|)) (-15 -3990 (|#1| |#1|)) (-15 -3057 (|#1| |#1| (-793))) (-15 -1507 (|#2| |#1| "last")) (-15 -3057 (|#2| |#1|)) (-15 -4345 (|#1| |#1| (-793))) (-15 -1507 (|#1| |#1| "rest")) (-15 -4345 (|#1| |#1|)) (-15 -1507 (|#2| |#1| "first")) (-15 -1955 (|#1| |#2| |#1|)) (-15 -1955 (|#1| |#1| |#1|)) (-15 -3654 (|#2| |#1| |#2|)) (-15 -4083 (|#2| |#1| "value" |#2|)) (-15 -2566 (|#1| |#1| (-663 |#1|))) (-15 -2150 ((-114) |#1| |#1|)) (-15 -2752 ((-114) |#1|)) (-15 -1507 (|#2| |#1| "value")) (-15 -1430 (|#2| |#1|)) (-15 -1485 ((-114) |#1|)) (-15 -2104 ((-663 |#1|) |#1|)) (-15 -3809 ((-663 |#1|) |#1|)) (-15 -2256 ((-793) |#1|)) (-15 -3045 ((-114) |#1| (-793))) (-15 -3332 ((-114) |#1| (-793))) (-15 -1634 ((-114) |#1| (-793))))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1430 ((|#1| $) 49 T ELT)) (-3853 ((|#1| $) 66 T ELT)) (-3990 (($ $) 68 T ELT)) (-4367 (($ $ (-560)) 53 (|has| $ (-6 -4509)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-3654 ((|#1| $ |#1|) 40 (|has| $ (-6 -4509)) ELT)) (-1518 (($ $ $) 57 (|has| $ (-6 -4509)) ELT)) (-3042 ((|#1| $ |#1|) 55 (|has| $ (-6 -4509)) ELT)) (-2509 ((|#1| $ |#1|) 59 (|has| $ (-6 -4509)) ELT)) (-4083 ((|#1| $ "value" |#1|) 41 (|has| $ (-6 -4509)) ELT) ((|#1| $ "first" |#1|) 58 (|has| $ (-6 -4509)) ELT) (($ $ "rest" $) 56 (|has| $ (-6 -4509)) ELT) ((|#1| $ "last" |#1|) 54 (|has| $ (-6 -4509)) ELT)) (-2566 (($ $ (-663 $)) 42 (|has| $ (-6 -4509)) ELT)) (-3839 ((|#1| $) 67 T ELT)) (-3525 (($) 7 T CONST)) (-4345 (($ $) 74 T ELT) (($ $ (-793)) 72 T ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-2104 (((-663 $) $) 51 T ELT)) (-2150 (((-114) $ $) 43 (|has| |#1| (-1132)) ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-2656 (((-663 |#1|) $) 46 T ELT)) (-1485 (((-114) $) 50 T ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3057 ((|#1| $) 71 T ELT) (($ $ (-793)) 69 T ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-4334 ((|#1| $) 77 T ELT) (($ $ (-793)) 75 T ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1507 ((|#1| $ "value") 48 T ELT) ((|#1| $ "first") 76 T ELT) (($ $ "rest") 73 T ELT) ((|#1| $ "last") 70 T ELT)) (-2374 (((-560) $ $) 45 T ELT)) (-2752 (((-114) $) 47 T ELT)) (-2493 (($ $) 63 T ELT)) (-3438 (($ $) 60 (|has| $ (-6 -4509)) ELT)) (-3010 (((-793) $) 64 T ELT)) (-1474 (($ $) 65 T ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4107 (($ $) 13 T ELT)) (-3305 (($ $ $) 62 (|has| $ (-6 -4509)) ELT) (($ $ |#1|) 61 (|has| $ (-6 -4509)) ELT)) (-1955 (($ $ $) 79 T ELT) (($ |#1| $) 78 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3809 (((-663 $) $) 52 T ELT)) (-3606 (((-114) $ $) 44 (|has| |#1| (-1132)) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-1286 |#1|) (-142) (-1247)) (T -1286))
-((-3415 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-3415 (*1 *1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-3637 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-3637 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1286 *3)) (-4 *3 (-1247)))) (-3649 (*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-3924 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1286 *3)) (-4 *3 (-1247)))) (-3649 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1286 *3)) (-4 *3 (-1247)))) (-2398 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-3924 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-2398 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1286 *3)) (-4 *3 (-1247)))) (-2270 (*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-3264 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-3273 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-3458 (*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-1502 (*1 *2 *1) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-1247)) (-5 *2 (-793)))) (-1763 (*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4354 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4354 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-1915 (*1 *1 *1) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-3132 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-1773 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-2102 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-1773 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4509)) (-4 *1 (-1286 *3)) (-4 *3 (-1247)))) (-4319 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-1773 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-2194 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (|has| *1 (-6 -4509)) (-4 *1 (-1286 *3)) (-4 *3 (-1247)))))
-(-13 (-1041 |t#1|) (-10 -8 (-15 -3415 ($ $ $)) (-15 -3415 ($ |t#1| $)) (-15 -3637 (|t#1| $)) (-15 -3924 (|t#1| $ "first")) (-15 -3637 ($ $ (-793))) (-15 -3649 ($ $)) (-15 -3924 ($ $ "rest")) (-15 -3649 ($ $ (-793))) (-15 -2398 (|t#1| $)) (-15 -3924 (|t#1| $ "last")) (-15 -2398 ($ $ (-793))) (-15 -2270 ($ $)) (-15 -3264 (|t#1| $)) (-15 -3273 (|t#1| $)) (-15 -3458 ($ $)) (-15 -1502 ((-793) $)) (-15 -1763 ($ $)) (IF (|has| $ (-6 -4509)) (PROGN (-15 -4354 ($ $ $)) (-15 -4354 ($ $ |t#1|)) (-15 -1915 ($ $)) (-15 -3132 (|t#1| $ |t#1|)) (-15 -1773 (|t#1| $ "first" |t#1|)) (-15 -2102 ($ $ $)) (-15 -1773 ($ $ "rest" $)) (-15 -4319 (|t#1| $ |t#1|)) (-15 -1773 (|t#1| $ "last" |t#1|)) (-15 -2194 ($ $ (-560)))) |%noBranch|)))
-(((-34) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1041 |#1|) . T) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-1443 (((-663 (-1113)) $) NIL T ELT)) (-2462 (((-1207) $) 90 T ELT)) (-3218 (((-1266 |#2| |#1|) $ (-793)) 73 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-3244 (($ $) NIL (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) 142 (|has| |#1| (-571)) ELT)) (-4267 (($ $ (-793)) 127 T ELT) (($ $ (-793) (-793)) 130 T ELT)) (-1425 (((-1185 (-2 (|:| |k| (-793)) (|:| |c| |#1|))) $) 43 T ELT)) (-4337 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3455 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-4471 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4313 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3430 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3781 (($ (-1185 (-2 (|:| |k| (-793)) (|:| |c| |#1|)))) 52 T ELT) (($ (-1185 |#1|)) NIL T ELT)) (-4363 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3477 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2238 (($) NIL T CONST)) (-4350 (($ $) 134 T ELT)) (-1624 (($ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-3703 (($ $) 140 T ELT)) (-3739 (((-975 |#1|) $ (-793)) 63 T ELT) (((-975 |#1|) $ (-793) (-793)) 65 T ELT)) (-4386 (((-114) $) NIL T ELT)) (-3796 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3913 (((-793) $) NIL T ELT) (((-793) $ (-793)) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-2760 (($ $) 117 T ELT)) (-2146 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3511 (($ (-560) (-560) $) 136 T ELT)) (-3022 (($ $ (-948)) 139 T ELT)) (-1540 (($ (-1 |#1| (-560)) $) 111 T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1417 (($ |#1| (-793)) 16 T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 98 T ELT)) (-2192 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1583 (($ $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3015 (($ $) 115 T ELT)) (-3337 (($ $) 113 T ELT)) (-4199 (($ (-560) (-560) $) 138 T ELT)) (-2518 (($ $) 150 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) 156 (-2304 (-12 (|has| |#1| (-15 -2518 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -1443 ((-663 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-989)) (|has| |#1| (-1233)))) ELT) (($ $ (-1294 |#2|)) 151 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3860 (($ $ (-560) (-560)) 121 T ELT)) (-4372 (($ $ (-793)) 123 T ELT)) (-1528 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-3251 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3299 (($ $) 119 T ELT)) (-4187 (((-1185 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-793)))) ELT)) (-3924 ((|#1| $ (-793)) 95 T ELT) (($ $ $) 132 (|has| (-793) (-1143)) ELT)) (-2894 (($ $ (-1207)) 108 (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) 102 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-1294 |#2|)) 103 T ELT)) (-3630 (((-793) $) NIL T ELT)) (-4373 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3488 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4352 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3466 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4325 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3443 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3266 (($ $) 125 T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) 26 T ELT) (($ (-421 (-560))) 148 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ |#1|) 25 (|has| |#1| (-175)) ELT) (($ (-1266 |#2| |#1|)) 81 T ELT) (($ (-1294 |#2|)) 22 T ELT)) (-3409 (((-1185 |#1|) $) NIL T ELT)) (-2305 ((|#1| $ (-793)) 94 T ELT)) (-1964 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-2930 (((-793)) NIL T CONST)) (-3355 ((|#1| $) 91 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-4411 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4263 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2948 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4387 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3499 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4438 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4287 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2239 ((|#1| $ (-793)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-793)))) (|has| |#1| (-15 -1578 (|#1| (-1207))))) ELT)) (-3837 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4302 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4423 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4275 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4398 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4252 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2001 (($) 18 T CONST)) (-2011 (($) 13 T CONST)) (-3305 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-1294 |#2|)) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-2594 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) 107 T ELT)) (-2567 (($ $ $) 20 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ |#1|) 145 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 106 T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
-(((-1287 |#1| |#2| |#3|) (-13 (-1290 |#1|) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -1578 ($ (-1266 |#2| |#1|))) (-15 -3218 ((-1266 |#2| |#1|) $ (-793))) (-15 -1578 ($ (-1294 |#2|))) (-15 -3337 ($ $)) (-15 -3015 ($ $)) (-15 -2760 ($ $)) (-15 -3299 ($ $)) (-15 -3860 ($ $ (-560) (-560))) (-15 -4350 ($ $)) (-15 -3511 ($ (-560) (-560) $)) (-15 -4199 ($ (-560) (-560) $)) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -2518 ($ $ (-1294 |#2|))) |%noBranch|))) (-1080) (-1207) |#1|) (T -1287))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-1266 *4 *3)) (-4 *3 (-1080)) (-14 *4 (-1207)) (-14 *5 *3) (-5 *1 (-1287 *3 *4 *5)))) (-3218 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1266 *5 *4)) (-5 *1 (-1287 *4 *5 *6)) (-4 *4 (-1080)) (-14 *5 (-1207)) (-14 *6 *4))) (-1578 (*1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-1080)) (-14 *5 *3))) (-3337 (*1 *1 *1) (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207)) (-14 *4 *2))) (-3015 (*1 *1 *1) (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207)) (-14 *4 *2))) (-2760 (*1 *1 *1) (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207)) (-14 *4 *2))) (-3299 (*1 *1 *1) (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207)) (-14 *4 *2))) (-3860 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-1080)) (-14 *4 (-1207)) (-14 *5 *3))) (-4350 (*1 *1 *1) (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207)) (-14 *4 *2))) (-3511 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-1080)) (-14 *4 (-1207)) (-14 *5 *3))) (-4199 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-1080)) (-14 *4 (-1207)) (-14 *5 *3))) (-2518 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3))))
-(-13 (-1290 |#1|) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -1578 ($ (-1266 |#2| |#1|))) (-15 -3218 ((-1266 |#2| |#1|) $ (-793))) (-15 -1578 ($ (-1294 |#2|))) (-15 -3337 ($ $)) (-15 -3015 ($ $)) (-15 -2760 ($ $)) (-15 -3299 ($ $)) (-15 -3860 ($ $ (-560) (-560))) (-15 -4350 ($ $)) (-15 -3511 ($ (-560) (-560) $)) (-15 -4199 ($ (-560) (-560) $)) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -2518 ($ $ (-1294 |#2|))) |%noBranch|)))
-((-3957 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT)))
-(((-1288 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3957 (|#4| (-1 |#2| |#1|) |#3|))) (-1080) (-1080) (-1290 |#1|) (-1290 |#2|)) (T -1288))
-((-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-4 *2 (-1290 *6)) (-5 *1 (-1288 *5 *6 *4 *2)) (-4 *4 (-1290 *5)))))
-(-10 -7 (-15 -3957 (|#4| (-1 |#2| |#1|) |#3|)))
-((-2388 (((-114) $) 17 T ELT)) (-4337 (($ $) 105 T ELT)) (-3455 (($ $) 81 T ELT)) (-4313 (($ $) 101 T ELT)) (-3430 (($ $) 77 T ELT)) (-4363 (($ $) 109 T ELT)) (-3477 (($ $) 85 T ELT)) (-2192 (($ $) 75 T ELT)) (-3251 (($ $) 73 T ELT)) (-4373 (($ $) 111 T ELT)) (-3488 (($ $) 87 T ELT)) (-4352 (($ $) 107 T ELT)) (-3466 (($ $) 83 T ELT)) (-4325 (($ $) 103 T ELT)) (-3443 (($ $) 79 T ELT)) (-1578 (((-887) $) 61 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-4411 (($ $) 117 T ELT)) (-4263 (($ $) 93 T ELT)) (-4387 (($ $) 113 T ELT)) (-3499 (($ $) 89 T ELT)) (-4438 (($ $) 121 T ELT)) (-4287 (($ $) 97 T ELT)) (-3837 (($ $) 123 T ELT)) (-4302 (($ $) 99 T ELT)) (-4423 (($ $) 119 T ELT)) (-4275 (($ $) 95 T ELT)) (-4398 (($ $) 115 T ELT)) (-4252 (($ $) 91 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-421 (-560))) 71 T ELT)))
-(((-1289 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-421 (-560)))) (-15 -3455 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3466 (|#1| |#1|)) (-15 -3443 (|#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 -4275 (|#1| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -4263 (|#1| |#1|)) (-15 -4325 (|#1| |#1|)) (-15 -4352 (|#1| |#1|)) (-15 -4373 (|#1| |#1|)) (-15 -4363 (|#1| |#1|)) (-15 -4313 (|#1| |#1|)) (-15 -4337 (|#1| |#1|)) (-15 -4398 (|#1| |#1|)) (-15 -4423 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -4438 (|#1| |#1|)) (-15 -4387 (|#1| |#1|)) (-15 -4411 (|#1| |#1|)) (-15 -2192 (|#1| |#1|)) (-15 -3251 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1578 (|#1| |#2|)) (-15 -1578 (|#1| |#1|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -1578 (|#1| (-560))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-948))) (-15 -2388 ((-114) |#1|)) (-15 -1578 ((-887) |#1|))) (-1290 |#2|) (-1080)) (T -1289))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-421 (-560)))) (-15 -3455 (|#1| |#1|)) (-15 -3430 (|#1| |#1|)) (-15 -3477 (|#1| |#1|)) (-15 -3488 (|#1| |#1|)) (-15 -3466 (|#1| |#1|)) (-15 -3443 (|#1| |#1|)) (-15 -4252 (|#1| |#1|)) (-15 -4275 (|#1| |#1|)) (-15 -4302 (|#1| |#1|)) (-15 -4287 (|#1| |#1|)) (-15 -3499 (|#1| |#1|)) (-15 -4263 (|#1| |#1|)) (-15 -4325 (|#1| |#1|)) (-15 -4352 (|#1| |#1|)) (-15 -4373 (|#1| |#1|)) (-15 -4363 (|#1| |#1|)) (-15 -4313 (|#1| |#1|)) (-15 -4337 (|#1| |#1|)) (-15 -4398 (|#1| |#1|)) (-15 -4423 (|#1| |#1|)) (-15 -3837 (|#1| |#1|)) (-15 -4438 (|#1| |#1|)) (-15 -4387 (|#1| |#1|)) (-15 -4411 (|#1| |#1|)) (-15 -2192 (|#1| |#1|)) (-15 -3251 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -1578 (|#1| |#2|)) (-15 -1578 (|#1| |#1|)) (-15 -1578 (|#1| (-421 (-560)))) (-15 -1578 (|#1| (-560))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-948))) (-15 -2388 ((-114) |#1|)) (-15 -1578 ((-887) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-1443 (((-663 (-1113)) $) 86 T ELT)) (-2462 (((-1207) $) 118 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 63 (|has| |#1| (-571)) ELT)) (-3244 (($ $) 64 (|has| |#1| (-571)) ELT)) (-4093 (((-114) $) 66 (|has| |#1| (-571)) ELT)) (-4267 (($ $ (-793)) 113 T ELT) (($ $ (-793) (-793)) 112 T ELT)) (-1425 (((-1185 (-2 (|:| |k| (-793)) (|:| |c| |#1|))) $) 119 T ELT)) (-4337 (($ $) 150 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3455 (($ $) 133 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-4471 (($ $) 132 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4313 (($ $) 149 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3430 (($ $) 134 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3781 (($ (-1185 (-2 (|:| |k| (-793)) (|:| |c| |#1|)))) 170 T ELT) (($ (-1185 |#1|)) 168 T ELT)) (-4363 (($ $) 148 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3477 (($ $) 135 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2238 (($) 18 T CONST)) (-1624 (($ $) 72 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-3703 (($ $) 167 T ELT)) (-3739 (((-975 |#1|) $ (-793)) 165 T ELT) (((-975 |#1|) $ (-793) (-793)) 164 T ELT)) (-4386 (((-114) $) 85 T ELT)) (-3796 (($) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3913 (((-793) $) 115 T ELT) (((-793) $ (-793)) 114 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-2146 (($ $ (-560)) 131 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3022 (($ $ (-948)) 116 T ELT)) (-1540 (($ (-1 |#1| (-560)) $) 166 T ELT)) (-1556 (((-114) $) 74 T ELT)) (-1417 (($ |#1| (-793)) 73 T ELT) (($ $ (-1113) (-793)) 88 T ELT) (($ $ (-663 (-1113)) (-663 (-793))) 87 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2192 (($ $) 157 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1583 (($ $) 77 T ELT)) (-1597 ((|#1| $) 78 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-2518 (($ $) 162 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) 161 (-2304 (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-989)) (|has| |#1| (-1233)) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-15 -1443 ((-663 (-1207)) |#1|))) (|has| |#1| (-15 -2518 (|#1| |#1| (-1207)))) (|has| |#1| (-38 (-421 (-560)))))) ELT)) (-3855 (((-1151) $) 11 T ELT)) (-4372 (($ $ (-793)) 110 T ELT)) (-1528 (((-3 $ "failed") $ $) 62 (|has| |#1| (-571)) ELT)) (-3251 (($ $) 158 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4187 (((-1185 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-793)))) ELT)) (-3924 ((|#1| $ (-793)) 120 T ELT) (($ $ $) 96 (|has| (-793) (-1143)) ELT)) (-2894 (($ $ (-1207)) 108 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-663 (-1207))) 106 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-1207) (-793)) 105 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 104 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) 98 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT)) (-3630 (((-793) $) 76 T ELT)) (-4373 (($ $) 147 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3488 (($ $) 136 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4352 (($ $) 146 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3466 (($ $) 137 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4325 (($ $) 145 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3443 (($ $) 138 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3266 (($ $) 84 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ (-421 (-560))) 69 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 61 (|has| |#1| (-571)) ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT)) (-3409 (((-1185 |#1|) $) 169 T ELT)) (-2305 ((|#1| $ (-793)) 71 T ELT)) (-1964 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-2930 (((-793)) 32 T CONST)) (-3355 ((|#1| $) 117 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-4411 (($ $) 156 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4263 (($ $) 144 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2948 (((-114) $ $) 65 (|has| |#1| (-571)) ELT)) (-4387 (($ $) 155 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3499 (($ $) 143 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4438 (($ $) 154 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4287 (($ $) 142 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2239 ((|#1| $ (-793)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-793)))) (|has| |#1| (-15 -1578 (|#1| (-1207))))) ELT)) (-3837 (($ $) 153 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4302 (($ $) 141 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4423 (($ $) 152 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4275 (($ $) 140 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4398 (($ $) 151 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4252 (($ $) 139 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3305 (($ $ (-1207)) 107 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-663 (-1207))) 103 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-1207) (-793)) 102 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 101 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) 97 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ |#1|) 163 (|has| |#1| (-376)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 130 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-560)) $) 68 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 67 (|has| |#1| (-38 (-421 (-560)))) ELT)))
+((-1955 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-1955 (*1 *1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4334 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-1507 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4334 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1286 *3)) (-4 *3 (-1247)))) (-4345 (*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-1507 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1286 *3)) (-4 *3 (-1247)))) (-4345 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1286 *3)) (-4 *3 (-1247)))) (-3057 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-1507 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-3057 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1286 *3)) (-4 *3 (-1247)))) (-3990 (*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-3839 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-3853 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-1474 (*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-3010 (*1 *2 *1) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-1247)) (-5 *2 (-793)))) (-2493 (*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-3305 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-3305 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-3438 (*1 *1 *1) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-2509 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4083 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-1518 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4083 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4509)) (-4 *1 (-1286 *3)) (-4 *3 (-1247)))) (-3042 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4083 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))) (-4367 (*1 *1 *1 *2) (-12 (-5 *2 (-560)) (|has| *1 (-6 -4509)) (-4 *1 (-1286 *3)) (-4 *3 (-1247)))))
+(-13 (-1041 |t#1|) (-10 -8 (-15 -1955 ($ $ $)) (-15 -1955 ($ |t#1| $)) (-15 -4334 (|t#1| $)) (-15 -1507 (|t#1| $ "first")) (-15 -4334 ($ $ (-793))) (-15 -4345 ($ $)) (-15 -1507 ($ $ "rest")) (-15 -4345 ($ $ (-793))) (-15 -3057 (|t#1| $)) (-15 -1507 (|t#1| $ "last")) (-15 -3057 ($ $ (-793))) (-15 -3990 ($ $)) (-15 -3839 (|t#1| $)) (-15 -3853 (|t#1| $)) (-15 -1474 ($ $)) (-15 -3010 ((-793) $)) (-15 -2493 ($ $)) (IF (|has| $ (-6 -4509)) (PROGN (-15 -3305 ($ $ $)) (-15 -3305 ($ $ |t#1|)) (-15 -3438 ($ $)) (-15 -2509 (|t#1| $ |t#1|)) (-15 -4083 (|t#1| $ "first" |t#1|)) (-15 -1518 ($ $ $)) (-15 -4083 ($ $ "rest" $)) (-15 -3042 (|t#1| $ |t#1|)) (-15 -4083 (|t#1| $ "last" |t#1|)) (-15 -4367 ($ $ (-560)))) |%noBranch|)))
+(((-34) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-632 (-887)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-503 |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-1041 |#1|) . T) ((-1132) |has| |#1| (-1132)) ((-1247) . T))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-4162 (((-663 (-1113)) $) NIL T ELT)) (-2558 (((-1207) $) 90 T ELT)) (-4106 (((-1266 |#2| |#1|) $ (-793)) 73 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) NIL (|has| |#1| (-571)) ELT)) (-4366 (($ $) NIL (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) 142 (|has| |#1| (-571)) ELT)) (-3864 (($ $ (-793)) 127 T ELT) (($ $ (-793) (-793)) 130 T ELT)) (-1465 (((-1185 (-2 (|:| |k| (-793)) (|:| |c| |#1|))) $) 43 T ELT)) (-1982 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1832 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-4021 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1958 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1806 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2882 (($ (-1185 (-2 (|:| |k| (-793)) (|:| |c| |#1|)))) 52 T ELT) (($ (-1185 |#1|)) NIL T ELT)) (-2003 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1856 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3525 (($) NIL T CONST)) (-3281 (($ $) 134 T ELT)) (-3062 (($ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-3348 (($ $) 140 T ELT)) (-4153 (((-975 |#1|) $ (-793)) 63 T ELT) (((-975 |#1|) $ (-793) (-793)) 65 T ELT)) (-2328 (((-114) $) NIL T ELT)) (-2503 (($) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1460 (((-793) $) NIL T ELT) (((-793) $ (-793)) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-1808 (($ $) 117 T ELT)) (-1956 (($ $ (-560)) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1978 (($ (-560) (-560) $) 136 T ELT)) (-3886 (($ $ (-948)) 139 T ELT)) (-1537 (($ (-1 |#1| (-560)) $) 111 T ELT)) (-1673 (((-114) $) NIL T ELT)) (-4139 (($ |#1| (-793)) 16 T ELT) (($ $ (-1113) (-793)) NIL T ELT) (($ $ (-663 (-1113)) (-663 (-793))) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 98 T ELT)) (-2831 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3024 (($ $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3801 (($ $) 115 T ELT)) (-2768 (($ $) 113 T ELT)) (-4434 (($ (-560) (-560) $) 138 T ELT)) (-4424 (($ $) 150 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) 156 (-2196 (-12 (|has| |#1| (-15 -4424 (|#1| |#1| (-1207)))) (|has| |#1| (-15 -4162 ((-663 (-1207)) |#1|))) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-38 (-421 (-560)))) (|has| |#1| (-989)) (|has| |#1| (-1233)))) ELT) (($ $ (-1294 |#2|)) 151 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4146 (($ $ (-560) (-560)) 121 T ELT)) (-2219 (($ $ (-793)) 123 T ELT)) (-2233 (((-3 $ "failed") $ $) NIL (|has| |#1| (-571)) ELT)) (-2515 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3676 (($ $) 119 T ELT)) (-2371 (((-1185 |#1|) $ |#1|) 100 (|has| |#1| (-15 ** (|#1| |#1| (-793)))) ELT)) (-1507 ((|#1| $ (-793)) 95 T ELT) (($ $ $) 132 (|has| (-793) (-1143)) ELT)) (-3161 (($ $ (-1207)) 108 (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) 102 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-1294 |#2|)) 103 T ELT)) (-3900 (((-793) $) NIL T ELT)) (-2013 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1870 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1992 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1844 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1972 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1820 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3329 (($ $) 125 T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) 26 T ELT) (($ (-421 (-560))) 148 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) NIL (|has| |#1| (-571)) ELT) (($ |#1|) 25 (|has| |#1| (-175)) ELT) (($ (-1266 |#2| |#1|)) 81 T ELT) (($ (-1294 |#2|)) 22 T ELT)) (-2247 (((-1185 |#1|) $) NIL T ELT)) (-2920 ((|#1| $ (-793)) 94 T ELT)) (-3919 (((-3 $ "failed") $) NIL (|has| |#1| (-147)) ELT)) (-4191 (((-793)) NIL T CONST)) (-1351 ((|#1| $) 91 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2042 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1907 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4361 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2022 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1882 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2059 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1932 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2905 ((|#1| $ (-793)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-793)))) (|has| |#1| (-15 -3913 (|#1| (-1207))))) ELT)) (-3392 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1945 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2050 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1920 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2032 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1895 (($ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1446 (($) 18 T CONST)) (-1456 (($) 13 T CONST)) (-2111 (($ $ (-1207)) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-1207) (-793)) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) NIL (-12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) NIL (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-1294 |#2|)) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2453 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) 107 T ELT)) (-2429 (($ $ $) 20 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ |#1|) 145 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 106 T ELT) (($ (-421 (-560)) $) NIL (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) NIL (|has| |#1| (-38 (-421 (-560)))) ELT)))
+(((-1287 |#1| |#2| |#3|) (-13 (-1290 |#1|) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -3913 ($ (-1266 |#2| |#1|))) (-15 -4106 ((-1266 |#2| |#1|) $ (-793))) (-15 -3913 ($ (-1294 |#2|))) (-15 -2768 ($ $)) (-15 -3801 ($ $)) (-15 -1808 ($ $)) (-15 -3676 ($ $)) (-15 -4146 ($ $ (-560) (-560))) (-15 -3281 ($ $)) (-15 -1978 ($ (-560) (-560) $)) (-15 -4434 ($ (-560) (-560) $)) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4424 ($ $ (-1294 |#2|))) |%noBranch|))) (-1080) (-1207) |#1|) (T -1287))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-1266 *4 *3)) (-4 *3 (-1080)) (-14 *4 (-1207)) (-14 *5 *3) (-5 *1 (-1287 *3 *4 *5)))) (-4106 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1266 *5 *4)) (-5 *1 (-1287 *4 *5 *6)) (-4 *4 (-1080)) (-14 *5 (-1207)) (-14 *6 *4))) (-3913 (*1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-1080)) (-14 *5 *3))) (-2768 (*1 *1 *1) (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207)) (-14 *4 *2))) (-3801 (*1 *1 *1) (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207)) (-14 *4 *2))) (-1808 (*1 *1 *1) (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207)) (-14 *4 *2))) (-3676 (*1 *1 *1) (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207)) (-14 *4 *2))) (-4146 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-1080)) (-14 *4 (-1207)) (-14 *5 *3))) (-3281 (*1 *1 *1) (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207)) (-14 *4 *2))) (-1978 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-1080)) (-14 *4 (-1207)) (-14 *5 *3))) (-4434 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-1080)) (-14 *4 (-1207)) (-14 *5 *3))) (-4424 (*1 *1 *1 *2) (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3))))
+(-13 (-1290 |#1|) (-921 $ (-1294 |#2|)) (-10 -8 (-15 -3913 ($ (-1266 |#2| |#1|))) (-15 -4106 ((-1266 |#2| |#1|) $ (-793))) (-15 -3913 ($ (-1294 |#2|))) (-15 -2768 ($ $)) (-15 -3801 ($ $)) (-15 -1808 ($ $)) (-15 -3676 ($ $)) (-15 -4146 ($ $ (-560) (-560))) (-15 -3281 ($ $)) (-15 -1978 ($ (-560) (-560) $)) (-15 -4434 ($ (-560) (-560) $)) (IF (|has| |#1| (-38 (-421 (-560)))) (-15 -4424 ($ $ (-1294 |#2|))) |%noBranch|)))
+((-2260 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT)))
+(((-1288 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2260 (|#4| (-1 |#2| |#1|) |#3|))) (-1080) (-1080) (-1290 |#1|) (-1290 |#2|)) (T -1288))
+((-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1080)) (-4 *6 (-1080)) (-4 *2 (-1290 *6)) (-5 *1 (-1288 *5 *6 *4 *2)) (-4 *4 (-1290 *5)))))
+(-10 -7 (-15 -2260 (|#4| (-1 |#2| |#1|) |#3|)))
+((-2505 (((-114) $) 17 T ELT)) (-1982 (($ $) 105 T ELT)) (-1832 (($ $) 81 T ELT)) (-1958 (($ $) 101 T ELT)) (-1806 (($ $) 77 T ELT)) (-2003 (($ $) 109 T ELT)) (-1856 (($ $) 85 T ELT)) (-2831 (($ $) 75 T ELT)) (-2515 (($ $) 73 T ELT)) (-2013 (($ $) 111 T ELT)) (-1870 (($ $) 87 T ELT)) (-1992 (($ $) 107 T ELT)) (-1844 (($ $) 83 T ELT)) (-1972 (($ $) 103 T ELT)) (-1820 (($ $) 79 T ELT)) (-3913 (((-887) $) 61 T ELT) (($ (-560)) NIL T ELT) (($ (-421 (-560))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-2042 (($ $) 117 T ELT)) (-1907 (($ $) 93 T ELT)) (-2022 (($ $) 113 T ELT)) (-1882 (($ $) 89 T ELT)) (-2059 (($ $) 121 T ELT)) (-1932 (($ $) 97 T ELT)) (-3392 (($ $) 123 T ELT)) (-1945 (($ $) 99 T ELT)) (-2050 (($ $) 119 T ELT)) (-1920 (($ $) 95 T ELT)) (-2032 (($ $) 115 T ELT)) (-1895 (($ $) 91 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-421 (-560))) 71 T ELT)))
+(((-1289 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-421 (-560)))) (-15 -1832 (|#1| |#1|)) (-15 -1806 (|#1| |#1|)) (-15 -1856 (|#1| |#1|)) (-15 -1870 (|#1| |#1|)) (-15 -1844 (|#1| |#1|)) (-15 -1820 (|#1| |#1|)) (-15 -1895 (|#1| |#1|)) (-15 -1920 (|#1| |#1|)) (-15 -1945 (|#1| |#1|)) (-15 -1932 (|#1| |#1|)) (-15 -1882 (|#1| |#1|)) (-15 -1907 (|#1| |#1|)) (-15 -1972 (|#1| |#1|)) (-15 -1992 (|#1| |#1|)) (-15 -2013 (|#1| |#1|)) (-15 -2003 (|#1| |#1|)) (-15 -1958 (|#1| |#1|)) (-15 -1982 (|#1| |#1|)) (-15 -2032 (|#1| |#1|)) (-15 -2050 (|#1| |#1|)) (-15 -3392 (|#1| |#1|)) (-15 -2059 (|#1| |#1|)) (-15 -2022 (|#1| |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2831 (|#1| |#1|)) (-15 -2515 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3913 (|#1| |#2|)) (-15 -3913 (|#1| |#1|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -3913 (|#1| (-560))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-948))) (-15 -2505 ((-114) |#1|)) (-15 -3913 ((-887) |#1|))) (-1290 |#2|) (-1080)) (T -1289))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-421 (-560)))) (-15 -1832 (|#1| |#1|)) (-15 -1806 (|#1| |#1|)) (-15 -1856 (|#1| |#1|)) (-15 -1870 (|#1| |#1|)) (-15 -1844 (|#1| |#1|)) (-15 -1820 (|#1| |#1|)) (-15 -1895 (|#1| |#1|)) (-15 -1920 (|#1| |#1|)) (-15 -1945 (|#1| |#1|)) (-15 -1932 (|#1| |#1|)) (-15 -1882 (|#1| |#1|)) (-15 -1907 (|#1| |#1|)) (-15 -1972 (|#1| |#1|)) (-15 -1992 (|#1| |#1|)) (-15 -2013 (|#1| |#1|)) (-15 -2003 (|#1| |#1|)) (-15 -1958 (|#1| |#1|)) (-15 -1982 (|#1| |#1|)) (-15 -2032 (|#1| |#1|)) (-15 -2050 (|#1| |#1|)) (-15 -3392 (|#1| |#1|)) (-15 -2059 (|#1| |#1|)) (-15 -2022 (|#1| |#1|)) (-15 -2042 (|#1| |#1|)) (-15 -2831 (|#1| |#1|)) (-15 -2515 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -3913 (|#1| |#2|)) (-15 -3913 (|#1| |#1|)) (-15 -3913 (|#1| (-421 (-560)))) (-15 -3913 (|#1| (-560))) (-15 ** (|#1| |#1| (-793))) (-15 ** (|#1| |#1| (-948))) (-15 -2505 ((-114) |#1|)) (-15 -3913 ((-887) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-4162 (((-663 (-1113)) $) 86 T ELT)) (-2558 (((-1207) $) 118 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 63 (|has| |#1| (-571)) ELT)) (-4366 (($ $) 64 (|has| |#1| (-571)) ELT)) (-2667 (((-114) $) 66 (|has| |#1| (-571)) ELT)) (-3864 (($ $ (-793)) 113 T ELT) (($ $ (-793) (-793)) 112 T ELT)) (-1465 (((-1185 (-2 (|:| |k| (-793)) (|:| |c| |#1|))) $) 119 T ELT)) (-1982 (($ $) 150 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1832 (($ $) 133 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-4021 (($ $) 132 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1958 (($ $) 149 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1806 (($ $) 134 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2882 (($ (-1185 (-2 (|:| |k| (-793)) (|:| |c| |#1|)))) 170 T ELT) (($ (-1185 |#1|)) 168 T ELT)) (-2003 (($ $) 148 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1856 (($ $) 135 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3525 (($) 18 T CONST)) (-3062 (($ $) 72 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-3348 (($ $) 167 T ELT)) (-4153 (((-975 |#1|) $ (-793)) 165 T ELT) (((-975 |#1|) $ (-793) (-793)) 164 T ELT)) (-2328 (((-114) $) 85 T ELT)) (-2503 (($) 160 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1460 (((-793) $) 115 T ELT) (((-793) $ (-793)) 114 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-1956 (($ $ (-560)) 131 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3886 (($ $ (-948)) 116 T ELT)) (-1537 (($ (-1 |#1| (-560)) $) 166 T ELT)) (-1673 (((-114) $) 74 T ELT)) (-4139 (($ |#1| (-793)) 73 T ELT) (($ $ (-1113) (-793)) 88 T ELT) (($ $ (-663 (-1113)) (-663 (-793))) 87 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2831 (($ $) 157 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3024 (($ $) 77 T ELT)) (-3037 ((|#1| $) 78 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-4424 (($ $) 162 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-1207)) 161 (-2196 (-12 (|has| |#1| (-29 (-560))) (|has| |#1| (-989)) (|has| |#1| (-1233)) (|has| |#1| (-38 (-421 (-560))))) (-12 (|has| |#1| (-15 -4162 ((-663 (-1207)) |#1|))) (|has| |#1| (-15 -4424 (|#1| |#1| (-1207)))) (|has| |#1| (-38 (-421 (-560)))))) ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2219 (($ $ (-793)) 110 T ELT)) (-2233 (((-3 $ "failed") $ $) 62 (|has| |#1| (-571)) ELT)) (-2515 (($ $) 158 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2371 (((-1185 |#1|) $ |#1|) 109 (|has| |#1| (-15 ** (|#1| |#1| (-793)))) ELT)) (-1507 ((|#1| $ (-793)) 120 T ELT) (($ $ $) 96 (|has| (-793) (-1143)) ELT)) (-3161 (($ $ (-1207)) 108 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-663 (-1207))) 106 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-1207) (-793)) 105 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 104 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $) 100 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) 98 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT)) (-3900 (((-793) $) 76 T ELT)) (-2013 (($ $) 147 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1870 (($ $) 136 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1992 (($ $) 146 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1844 (($ $) 137 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1972 (($ $) 145 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1820 (($ $) 138 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-3329 (($ $) 84 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ (-421 (-560))) 69 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $) 61 (|has| |#1| (-571)) ELT) (($ |#1|) 59 (|has| |#1| (-175)) ELT)) (-2247 (((-1185 |#1|) $) 169 T ELT)) (-2920 ((|#1| $ (-793)) 71 T ELT)) (-3919 (((-3 $ "failed") $) 60 (|has| |#1| (-147)) ELT)) (-4191 (((-793)) 32 T CONST)) (-1351 ((|#1| $) 117 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-2042 (($ $) 156 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1907 (($ $) 144 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-4361 (((-114) $ $) 65 (|has| |#1| (-571)) ELT)) (-2022 (($ $) 155 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1882 (($ $) 143 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2059 (($ $) 154 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1932 (($ $) 142 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2905 ((|#1| $ (-793)) 111 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-793)))) (|has| |#1| (-15 -3913 (|#1| (-1207))))) ELT)) (-3392 (($ $) 153 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1945 (($ $) 141 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2050 (($ $) 152 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1920 (($ $) 140 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-2032 (($ $) 151 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1895 (($ $) 139 (|has| |#1| (-38 (-421 (-560)))) ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2111 (($ $ (-1207)) 107 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-663 (-1207))) 103 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-1207) (-793)) 102 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $ (-663 (-1207)) (-663 (-793))) 101 (-12 (|has| |#1| (-927 (-1207))) (|has| |#1| (-15 * (|#1| (-793) |#1|)))) ELT) (($ $) 99 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT) (($ $ (-793)) 97 (|has| |#1| (-15 * (|#1| (-793) |#1|))) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ |#1|) 70 (|has| |#1| (-376)) ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ |#1|) 163 (|has| |#1| (-376)) ELT) (($ $ $) 159 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 130 (|has| |#1| (-38 (-421 (-560)))) ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 80 T ELT) (($ |#1| $) 79 T ELT) (($ (-421 (-560)) $) 68 (|has| |#1| (-38 (-421 (-560)))) ELT) (($ $ (-421 (-560))) 67 (|has| |#1| (-38 (-421 (-560)))) ELT)))
(((-1290 |#1|) (-142) (-1080)) (T -1290))
-((-3781 (*1 *1 *2) (-12 (-5 *2 (-1185 (-2 (|:| |k| (-793)) (|:| |c| *3)))) (-4 *3 (-1080)) (-4 *1 (-1290 *3)))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-1290 *3)) (-4 *3 (-1080)) (-5 *2 (-1185 *3)))) (-3781 (*1 *1 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-4 *1 (-1290 *3)))) (-3703 (*1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1080)))) (-1540 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-560))) (-4 *1 (-1290 *3)) (-4 *3 (-1080)))) (-3739 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-1290 *4)) (-4 *4 (-1080)) (-5 *2 (-975 *4)))) (-3739 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-4 *1 (-1290 *4)) (-4 *4 (-1080)) (-5 *2 (-975 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-2518 (*1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-560)))))) (-2518 (*1 *1 *1 *2) (-2304 (-12 (-5 *2 (-1207)) (-4 *1 (-1290 *3)) (-4 *3 (-1080)) (-12 (-4 *3 (-29 (-560))) (-4 *3 (-989)) (-4 *3 (-1233)) (-4 *3 (-38 (-421 (-560)))))) (-12 (-5 *2 (-1207)) (-4 *1 (-1290 *3)) (-4 *3 (-1080)) (-12 (|has| *3 (-15 -1443 ((-663 *2) *3))) (|has| *3 (-15 -2518 (*3 *3 *2))) (-4 *3 (-38 (-421 (-560)))))))))
-(-13 (-1276 |t#1| (-793)) (-10 -8 (-15 -3781 ($ (-1185 (-2 (|:| |k| (-793)) (|:| |c| |t#1|))))) (-15 -3409 ((-1185 |t#1|) $)) (-15 -3781 ($ (-1185 |t#1|))) (-15 -3703 ($ $)) (-15 -1540 ($ (-1 |t#1| (-560)) $)) (-15 -3739 ((-975 |t#1|) $ (-793))) (-15 -3739 ((-975 |t#1|) $ (-793) (-793))) (IF (|has| |t#1| (-376)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-421 (-560)))) (PROGN (-15 -2518 ($ $)) (IF (|has| |t#1| (-15 -2518 (|t#1| |t#1| (-1207)))) (IF (|has| |t#1| (-15 -1443 ((-663 (-1207)) |t#1|))) (-15 -2518 ($ $ (-1207))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1233)) (IF (|has| |t#1| (-989)) (IF (|has| |t#1| (-29 (-560))) (-15 -2518 ($ $ (-1207))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1033)) (-6 (-1233))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-793)) . T) ((-25) . T) ((-38 #1=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-571)) ((-35) |has| |#1| (-38 (-421 (-560)))) ((-95) |has| |#1| (-38 (-421 (-560)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) |has| |#1| (-38 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) |has| |#1| (-571)) ((-632 (-887)) . T) ((-175) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-793) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-793) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-793) |#1|))) ((-296) |has| |#1| (-38 (-421 (-560)))) ((-298 #0# |#1|) . T) ((-298 $ $) |has| (-793) (-1143)) ((-302) |has| |#1| (-571)) ((-507) |has| |#1| (-38 (-421 (-560)))) ((-571) |has| |#1| (-571)) ((-668 #1#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) |has| |#1| (-38 (-421 (-560)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-571)) ((-739 #1#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-571)) ((-748) . T) ((-921 $ #2=(-1207)) -12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ((-927 #2#) -12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ((-929 #2#) -12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ((-1004 |#1| #0# (-1113)) . T) ((-1033) |has| |#1| (-38 (-421 (-560)))) ((-1082 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1082 |#1|) . T) ((-1082 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1087 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1087 |#1|) . T) ((-1087 $) -2304 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1233) |has| |#1| (-38 (-421 (-560)))) ((-1236) |has| |#1| (-38 (-421 (-560)))) ((-1247) . T) ((-1276 |#1| #0#) . T))
-((-1353 (((-1 (-1185 |#1|) (-663 (-1185 |#1|))) (-1 |#2| (-663 |#2|))) 24 T ELT)) (-2776 (((-1 (-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-1435 (((-1 (-1185 |#1|) (-1185 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3934 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3676 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-2622 ((|#2| (-1 |#2| (-663 |#2|)) (-663 |#1|)) 60 T ELT)) (-2739 (((-663 |#2|) (-663 |#1|) (-663 (-1 |#2| (-663 |#2|)))) 66 T ELT)) (-2187 ((|#2| |#2| |#2|) 43 T ELT)))
-(((-1291 |#1| |#2|) (-10 -7 (-15 -1435 ((-1 (-1185 |#1|) (-1185 |#1|)) (-1 |#2| |#2|))) (-15 -2776 ((-1 (-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1353 ((-1 (-1185 |#1|) (-663 (-1185 |#1|))) (-1 |#2| (-663 |#2|)))) (-15 -2187 (|#2| |#2| |#2|)) (-15 -3676 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3934 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2622 (|#2| (-1 |#2| (-663 |#2|)) (-663 |#1|))) (-15 -2739 ((-663 |#2|) (-663 |#1|) (-663 (-1 |#2| (-663 |#2|)))))) (-38 (-421 (-560))) (-1290 |#1|)) (T -1291))
-((-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 (-1 *6 (-663 *6)))) (-4 *5 (-38 (-421 (-560)))) (-4 *6 (-1290 *5)) (-5 *2 (-663 *6)) (-5 *1 (-1291 *5 *6)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-663 *2))) (-5 *4 (-663 *5)) (-4 *5 (-38 (-421 (-560)))) (-4 *2 (-1290 *5)) (-5 *1 (-1291 *5 *2)))) (-3934 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1290 *4)) (-5 *1 (-1291 *4 *2)) (-4 *4 (-38 (-421 (-560)))))) (-3676 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1290 *4)) (-5 *1 (-1291 *4 *2)) (-4 *4 (-38 (-421 (-560)))))) (-2187 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1291 *3 *2)) (-4 *2 (-1290 *3)))) (-1353 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-663 *5))) (-4 *5 (-1290 *4)) (-4 *4 (-38 (-421 (-560)))) (-5 *2 (-1 (-1185 *4) (-663 (-1185 *4)))) (-5 *1 (-1291 *4 *5)))) (-2776 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1290 *4)) (-4 *4 (-38 (-421 (-560)))) (-5 *2 (-1 (-1185 *4) (-1185 *4) (-1185 *4))) (-5 *1 (-1291 *4 *5)))) (-1435 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1290 *4)) (-4 *4 (-38 (-421 (-560)))) (-5 *2 (-1 (-1185 *4) (-1185 *4))) (-5 *1 (-1291 *4 *5)))))
-(-10 -7 (-15 -1435 ((-1 (-1185 |#1|) (-1185 |#1|)) (-1 |#2| |#2|))) (-15 -2776 ((-1 (-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1353 ((-1 (-1185 |#1|) (-663 (-1185 |#1|))) (-1 |#2| (-663 |#2|)))) (-15 -2187 (|#2| |#2| |#2|)) (-15 -3676 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3934 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2622 (|#2| (-1 |#2| (-663 |#2|)) (-663 |#1|))) (-15 -2739 ((-663 |#2|) (-663 |#1|) (-663 (-1 |#2| (-663 |#2|))))))
-((-1536 ((|#2| |#4| (-793)) 31 T ELT)) (-3051 ((|#4| |#2|) 26 T ELT)) (-3268 ((|#4| (-421 |#2|)) 49 (|has| |#1| (-571)) ELT)) (-3772 (((-1 |#4| (-663 |#4|)) |#3|) 43 T ELT)))
-(((-1292 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3051 (|#4| |#2|)) (-15 -1536 (|#2| |#4| (-793))) (-15 -3772 ((-1 |#4| (-663 |#4|)) |#3|)) (IF (|has| |#1| (-571)) (-15 -3268 (|#4| (-421 |#2|))) |%noBranch|)) (-1080) (-1273 |#1|) (-680 |#2|) (-1290 |#1|)) (T -1292))
-((-3268 (*1 *2 *3) (-12 (-5 *3 (-421 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-571)) (-4 *4 (-1080)) (-4 *2 (-1290 *4)) (-5 *1 (-1292 *4 *5 *6 *2)) (-4 *6 (-680 *5)))) (-3772 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-1273 *4)) (-5 *2 (-1 *6 (-663 *6))) (-5 *1 (-1292 *4 *5 *3 *6)) (-4 *3 (-680 *5)) (-4 *6 (-1290 *4)))) (-1536 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-1080)) (-4 *2 (-1273 *5)) (-5 *1 (-1292 *5 *2 *6 *3)) (-4 *6 (-680 *2)) (-4 *3 (-1290 *5)))) (-3051 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *3 (-1273 *4)) (-4 *2 (-1290 *4)) (-5 *1 (-1292 *4 *3 *5 *2)) (-4 *5 (-680 *3)))))
-(-10 -7 (-15 -3051 (|#4| |#2|)) (-15 -1536 (|#2| |#4| (-793))) (-15 -3772 ((-1 |#4| (-663 |#4|)) |#3|)) (IF (|has| |#1| (-571)) (-15 -3268 (|#4| (-421 |#2|))) |%noBranch|))
+((-2882 (*1 *1 *2) (-12 (-5 *2 (-1185 (-2 (|:| |k| (-793)) (|:| |c| *3)))) (-4 *3 (-1080)) (-4 *1 (-1290 *3)))) (-2247 (*1 *2 *1) (-12 (-4 *1 (-1290 *3)) (-4 *3 (-1080)) (-5 *2 (-1185 *3)))) (-2882 (*1 *1 *2) (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-4 *1 (-1290 *3)))) (-3348 (*1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1080)))) (-1537 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-560))) (-4 *1 (-1290 *3)) (-4 *3 (-1080)))) (-4153 (*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-1290 *4)) (-4 *4 (-1080)) (-5 *2 (-975 *4)))) (-4153 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-4 *1 (-1290 *4)) (-4 *4 (-1080)) (-5 *2 (-975 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))) (-4424 (*1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-560)))))) (-4424 (*1 *1 *1 *2) (-2196 (-12 (-5 *2 (-1207)) (-4 *1 (-1290 *3)) (-4 *3 (-1080)) (-12 (-4 *3 (-29 (-560))) (-4 *3 (-989)) (-4 *3 (-1233)) (-4 *3 (-38 (-421 (-560)))))) (-12 (-5 *2 (-1207)) (-4 *1 (-1290 *3)) (-4 *3 (-1080)) (-12 (|has| *3 (-15 -4162 ((-663 *2) *3))) (|has| *3 (-15 -4424 (*3 *3 *2))) (-4 *3 (-38 (-421 (-560)))))))))
+(-13 (-1276 |t#1| (-793)) (-10 -8 (-15 -2882 ($ (-1185 (-2 (|:| |k| (-793)) (|:| |c| |t#1|))))) (-15 -2247 ((-1185 |t#1|) $)) (-15 -2882 ($ (-1185 |t#1|))) (-15 -3348 ($ $)) (-15 -1537 ($ (-1 |t#1| (-560)) $)) (-15 -4153 ((-975 |t#1|) $ (-793))) (-15 -4153 ((-975 |t#1|) $ (-793) (-793))) (IF (|has| |t#1| (-376)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-421 (-560)))) (PROGN (-15 -4424 ($ $)) (IF (|has| |t#1| (-15 -4424 (|t#1| |t#1| (-1207)))) (IF (|has| |t#1| (-15 -4162 ((-663 (-1207)) |t#1|))) (-15 -4424 ($ $ (-1207))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1233)) (IF (|has| |t#1| (-989)) (IF (|has| |t#1| (-29 (-560))) (-15 -4424 ($ $ (-1207))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1033)) (-6 (-1233))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-47 |#1| #0=(-793)) . T) ((-25) . T) ((-38 #1=(-421 (-560))) |has| |#1| (-38 (-421 (-560)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-571)) ((-35) |has| |#1| (-38 (-421 (-560)))) ((-95) |has| |#1| (-38 (-421 (-560)))) ((-102) . T) ((-111 #1# #1#) |has| |#1| (-38 (-421 (-560)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-635 #1#) |has| |#1| (-38 (-421 (-560)))) ((-635 (-560)) . T) ((-635 |#1|) |has| |#1| (-175)) ((-635 $) |has| |#1| (-571)) ((-632 (-887)) . T) ((-175) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-793) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-793) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-793) |#1|))) ((-296) |has| |#1| (-38 (-421 (-560)))) ((-298 #0# |#1|) . T) ((-298 $ $) |has| (-793) (-1143)) ((-302) |has| |#1| (-571)) ((-507) |has| |#1| (-38 (-421 (-560)))) ((-571) |has| |#1| (-571)) ((-668 #1#) |has| |#1| (-38 (-421 (-560)))) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #1#) |has| |#1| (-38 (-421 (-560)))) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #1#) |has| |#1| (-38 (-421 (-560)))) ((-662 |#1|) |has| |#1| (-175)) ((-662 $) |has| |#1| (-571)) ((-739 #1#) |has| |#1| (-38 (-421 (-560)))) ((-739 |#1|) |has| |#1| (-175)) ((-739 $) |has| |#1| (-571)) ((-748) . T) ((-921 $ #2=(-1207)) -12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ((-927 #2#) -12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ((-929 #2#) -12 (|has| |#1| (-15 * (|#1| (-793) |#1|))) (|has| |#1| (-927 (-1207)))) ((-1004 |#1| #0# (-1113)) . T) ((-1033) |has| |#1| (-38 (-421 (-560)))) ((-1082 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1082 |#1|) . T) ((-1082 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1087 #1#) |has| |#1| (-38 (-421 (-560)))) ((-1087 |#1|) . T) ((-1087 $) -2196 (|has| |#1| (-571)) (|has| |#1| (-175))) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1233) |has| |#1| (-38 (-421 (-560)))) ((-1236) |has| |#1| (-38 (-421 (-560)))) ((-1247) . T) ((-1276 |#1| #0#) . T))
+((-3685 (((-1 (-1185 |#1|) (-663 (-1185 |#1|))) (-1 |#2| (-663 |#2|))) 24 T ELT)) (-1984 (((-1 (-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-1675 (((-1 (-1185 |#1|) (-1185 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-3562 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-3077 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-2875 ((|#2| (-1 |#2| (-663 |#2|)) (-663 |#1|)) 60 T ELT)) (-1632 (((-663 |#2|) (-663 |#1|) (-663 (-1 |#2| (-663 |#2|)))) 66 T ELT)) (-4304 ((|#2| |#2| |#2|) 43 T ELT)))
+(((-1291 |#1| |#2|) (-10 -7 (-15 -1675 ((-1 (-1185 |#1|) (-1185 |#1|)) (-1 |#2| |#2|))) (-15 -1984 ((-1 (-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3685 ((-1 (-1185 |#1|) (-663 (-1185 |#1|))) (-1 |#2| (-663 |#2|)))) (-15 -4304 (|#2| |#2| |#2|)) (-15 -3077 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3562 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2875 (|#2| (-1 |#2| (-663 |#2|)) (-663 |#1|))) (-15 -1632 ((-663 |#2|) (-663 |#1|) (-663 (-1 |#2| (-663 |#2|)))))) (-38 (-421 (-560))) (-1290 |#1|)) (T -1291))
+((-1632 (*1 *2 *3 *4) (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 (-1 *6 (-663 *6)))) (-4 *5 (-38 (-421 (-560)))) (-4 *6 (-1290 *5)) (-5 *2 (-663 *6)) (-5 *1 (-1291 *5 *6)))) (-2875 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-663 *2))) (-5 *4 (-663 *5)) (-4 *5 (-38 (-421 (-560)))) (-4 *2 (-1290 *5)) (-5 *1 (-1291 *5 *2)))) (-3562 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1290 *4)) (-5 *1 (-1291 *4 *2)) (-4 *4 (-38 (-421 (-560)))))) (-3077 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1290 *4)) (-5 *1 (-1291 *4 *2)) (-4 *4 (-38 (-421 (-560)))))) (-4304 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1291 *3 *2)) (-4 *2 (-1290 *3)))) (-3685 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-663 *5))) (-4 *5 (-1290 *4)) (-4 *4 (-38 (-421 (-560)))) (-5 *2 (-1 (-1185 *4) (-663 (-1185 *4)))) (-5 *1 (-1291 *4 *5)))) (-1984 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1290 *4)) (-4 *4 (-38 (-421 (-560)))) (-5 *2 (-1 (-1185 *4) (-1185 *4) (-1185 *4))) (-5 *1 (-1291 *4 *5)))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1290 *4)) (-4 *4 (-38 (-421 (-560)))) (-5 *2 (-1 (-1185 *4) (-1185 *4))) (-5 *1 (-1291 *4 *5)))))
+(-10 -7 (-15 -1675 ((-1 (-1185 |#1|) (-1185 |#1|)) (-1 |#2| |#2|))) (-15 -1984 ((-1 (-1185 |#1|) (-1185 |#1|) (-1185 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3685 ((-1 (-1185 |#1|) (-663 (-1185 |#1|))) (-1 |#2| (-663 |#2|)))) (-15 -4304 (|#2| |#2| |#2|)) (-15 -3077 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3562 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2875 (|#2| (-1 |#2| (-663 |#2|)) (-663 |#1|))) (-15 -1632 ((-663 |#2|) (-663 |#1|) (-663 (-1 |#2| (-663 |#2|))))))
+((-1516 ((|#2| |#4| (-793)) 31 T ELT)) (-2885 ((|#4| |#2|) 26 T ELT)) (-3351 ((|#4| (-421 |#2|)) 49 (|has| |#1| (-571)) ELT)) (-2643 (((-1 |#4| (-663 |#4|)) |#3|) 43 T ELT)))
+(((-1292 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2885 (|#4| |#2|)) (-15 -1516 (|#2| |#4| (-793))) (-15 -2643 ((-1 |#4| (-663 |#4|)) |#3|)) (IF (|has| |#1| (-571)) (-15 -3351 (|#4| (-421 |#2|))) |%noBranch|)) (-1080) (-1273 |#1|) (-680 |#2|) (-1290 |#1|)) (T -1292))
+((-3351 (*1 *2 *3) (-12 (-5 *3 (-421 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-571)) (-4 *4 (-1080)) (-4 *2 (-1290 *4)) (-5 *1 (-1292 *4 *5 *6 *2)) (-4 *6 (-680 *5)))) (-2643 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *5 (-1273 *4)) (-5 *2 (-1 *6 (-663 *6))) (-5 *1 (-1292 *4 *5 *3 *6)) (-4 *3 (-680 *5)) (-4 *6 (-1290 *4)))) (-1516 (*1 *2 *3 *4) (-12 (-5 *4 (-793)) (-4 *5 (-1080)) (-4 *2 (-1273 *5)) (-5 *1 (-1292 *5 *2 *6 *3)) (-4 *6 (-680 *2)) (-4 *3 (-1290 *5)))) (-2885 (*1 *2 *3) (-12 (-4 *4 (-1080)) (-4 *3 (-1273 *4)) (-4 *2 (-1290 *4)) (-5 *1 (-1292 *4 *3 *5 *2)) (-4 *5 (-680 *3)))))
+(-10 -7 (-15 -2885 (|#4| |#2|)) (-15 -1516 (|#2| |#4| (-793))) (-15 -2643 ((-1 |#4| (-663 |#4|)) |#3|)) (IF (|has| |#1| (-571)) (-15 -3351 (|#4| (-421 |#2|))) |%noBranch|))
NIL
(((-1293) (-142)) (T -1293))
NIL
-(-13 (-10 -7 (-6 -2201)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2462 (((-1207)) 12 T ELT)) (-1905 (((-1189) $) 18 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 11 T ELT) (((-1207) $) 8 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 15 T ELT)))
-(((-1294 |#1|) (-13 (-1132) (-632 (-1207)) (-10 -8 (-15 -1578 ((-1207) $)) (-15 -2462 ((-1207))))) (-1207)) (T -1294))
-((-1578 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1294 *3)) (-14 *3 *2))) (-2462 (*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1294 *3)) (-14 *3 *2))))
-(-13 (-1132) (-632 (-1207)) (-10 -8 (-15 -1578 ((-1207) $)) (-15 -2462 ((-1207)))))
-((-3759 (($ (-793)) 19 T ELT)) (-1848 (((-711 |#2|) $ $) 41 T ELT)) (-4216 ((|#2| $) 51 T ELT)) (-4108 ((|#2| $) 50 T ELT)) (-3232 ((|#2| $ $) 36 T ELT)) (-2046 (($ $ $) 47 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ (-560) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT)))
-(((-1295 |#1| |#2|) (-10 -8 (-15 -4216 (|#2| |#1|)) (-15 -4108 (|#2| |#1|)) (-15 -2046 (|#1| |#1| |#1|)) (-15 -1848 ((-711 |#2|) |#1| |#1|)) (-15 -3232 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -2580 (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1|)) (-15 -3759 (|#1| (-793))) (-15 -2567 (|#1| |#1| |#1|))) (-1296 |#2|) (-1247)) (T -1295))
+(-13 (-10 -7 (-6 -2866)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2558 (((-1207)) 12 T ELT)) (-3358 (((-1189) $) 18 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 11 T ELT) (((-1207) $) 8 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 15 T ELT)))
+(((-1294 |#1|) (-13 (-1132) (-632 (-1207)) (-10 -8 (-15 -3913 ((-1207) $)) (-15 -2558 ((-1207))))) (-1207)) (T -1294))
+((-3913 (*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1294 *3)) (-14 *3 *2))) (-2558 (*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1294 *3)) (-14 *3 *2))))
+(-13 (-1132) (-632 (-1207)) (-10 -8 (-15 -3913 ((-1207) $)) (-15 -2558 ((-1207)))))
+((-3068 (($ (-793)) 19 T ELT)) (-1451 (((-711 |#2|) $ $) 41 T ELT)) (-1422 ((|#2| $) 51 T ELT)) (-2946 ((|#2| $) 50 T ELT)) (-4258 ((|#2| $ $) 36 T ELT)) (-2192 (($ $ $) 47 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ (-560) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT)))
+(((-1295 |#1| |#2|) (-10 -8 (-15 -1422 (|#2| |#1|)) (-15 -2946 (|#2| |#1|)) (-15 -2192 (|#1| |#1| |#1|)) (-15 -1451 ((-711 |#2|) |#1| |#1|)) (-15 -4258 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -2441 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 -3068 (|#1| (-793))) (-15 -2429 (|#1| |#1| |#1|))) (-1296 |#2|) (-1247)) (T -1295))
NIL
-(-10 -8 (-15 -4216 (|#2| |#1|)) (-15 -4108 (|#2| |#1|)) (-15 -2046 (|#1| |#1| |#1|)) (-15 -1848 ((-711 |#2|) |#1| |#1|)) (-15 -3232 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -2580 (|#1| |#1| |#1|)) (-15 -2580 (|#1| |#1|)) (-15 -3759 (|#1| (-793))) (-15 -2567 (|#1| |#1| |#1|)))
-((-1538 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3759 (($ (-793)) 115 (|has| |#1| (-23)) ELT)) (-3839 (((-1303) $ (-560) (-560)) 41 (|has| $ (-6 -4509)) ELT)) (-4040 (((-114) (-1 (-114) |#1| |#1|) $) 101 T ELT) (((-114) $) 95 (|has| |#1| (-871)) ELT)) (-1703 (($ (-1 (-114) |#1| |#1|) $) 92 (|has| $ (-6 -4509)) ELT) (($ $) 91 (-12 (|has| |#1| (-871)) (|has| $ (-6 -4509))) ELT)) (-2286 (($ (-1 (-114) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-871)) ELT)) (-3363 (((-114) $ (-793)) 8 T ELT)) (-1773 ((|#1| $ (-560) |#1|) 53 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) 60 (|has| $ (-6 -4509)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) 77 (|has| $ (-6 -4508)) ELT)) (-2238 (($) 7 T CONST)) (-4391 (($ $) 93 (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) 103 T ELT)) (-3606 (($ $) 80 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2375 (($ |#1| $) 79 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 76 (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4508)) ELT)) (-3779 ((|#1| $ (-560) |#1|) 54 (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-560)) 52 T ELT)) (-1722 (((-560) (-1 (-114) |#1|) $) 100 T ELT) (((-560) |#1| $) 99 (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) 98 (|has| |#1| (-1132)) ELT)) (-2181 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-1848 (((-711 |#1|) $ $) 108 (|has| |#1| (-1080)) ELT)) (-4095 (($ (-793) |#1|) 70 T ELT)) (-4034 (((-114) $ (-793)) 9 T ELT)) (-1762 (((-560) $) 44 (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) 85 (|has| |#1| (-871)) ELT)) (-3223 (($ (-1 (-114) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-871)) ELT)) (-2656 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-2937 (((-560) $) 45 (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) 86 (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-4216 ((|#1| $) 105 (-12 (|has| |#1| (-1080)) (|has| |#1| (-1033))) ELT)) (-1805 (((-114) $ (-793)) 10 T ELT)) (-4108 ((|#1| $) 106 (-12 (|has| |#1| (-1080)) (|has| |#1| (-1033))) ELT)) (-1905 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-3996 (($ |#1| $ (-560)) 62 T ELT) (($ $ $ (-560)) 61 T ELT)) (-3270 (((-663 (-560)) $) 47 T ELT)) (-3586 (((-114) (-560) $) 48 T ELT)) (-3855 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-3637 ((|#1| $) 43 (|has| (-560) (-871)) ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 73 T ELT)) (-3037 (($ $ |#1|) 42 (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) 14 T ELT)) (-2914 (((-114) |#1| $) 46 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) 49 T ELT)) (-1663 (((-114) $) 11 T ELT)) (-3986 (($) 12 T ELT)) (-3924 ((|#1| $ (-560) |#1|) 51 T ELT) ((|#1| $ (-560)) 50 T ELT) (($ $ (-1264 (-560))) 71 T ELT)) (-3232 ((|#1| $ $) 109 (|has| |#1| (-1080)) ELT)) (-4413 (($ $ (-560)) 64 T ELT) (($ $ (-1264 (-560))) 63 T ELT)) (-2046 (($ $ $) 107 (|has| |#1| (-1080)) ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3640 (($ $ $ (-560)) 94 (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) 13 T ELT)) (-1407 (((-549) $) 81 (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 72 T ELT)) (-3415 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-663 $)) 66 T ELT)) (-1578 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2536 (((-114) $ $) 87 (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) 89 (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2521 (((-114) $ $) 88 (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) 90 (|has| |#1| (-871)) ELT)) (-2580 (($ $) 114 (|has| |#1| (-21)) ELT) (($ $ $) 113 (|has| |#1| (-21)) ELT)) (-2567 (($ $ $) 116 (|has| |#1| (-25)) ELT)) (* (($ (-560) $) 112 (|has| |#1| (-21)) ELT) (($ |#1| $) 111 (|has| |#1| (-748)) ELT) (($ $ |#1|) 110 (|has| |#1| (-748)) ELT)) (-1553 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
+(-10 -8 (-15 -1422 (|#2| |#1|)) (-15 -2946 (|#2| |#1|)) (-15 -2192 (|#1| |#1| |#1|)) (-15 -1451 ((-711 |#2|) |#1| |#1|)) (-15 -4258 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-560) |#1|)) (-15 -2441 (|#1| |#1| |#1|)) (-15 -2441 (|#1| |#1|)) (-15 -3068 (|#1| (-793))) (-15 -2429 (|#1| |#1| |#1|)))
+((-2243 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-3068 (($ (-793)) 115 (|has| |#1| (-23)) ELT)) (-2033 (((-1303) $ (-560) (-560)) 41 (|has| $ (-6 -4509)) ELT)) (-2152 (((-114) (-1 (-114) |#1| |#1|) $) 101 T ELT) (((-114) $) 95 (|has| |#1| (-871)) ELT)) (-3152 (($ (-1 (-114) |#1| |#1|) $) 92 (|has| $ (-6 -4509)) ELT) (($ $) 91 (-12 (|has| |#1| (-871)) (|has| $ (-6 -4509))) ELT)) (-1787 (($ (-1 (-114) |#1| |#1|) $) 102 T ELT) (($ $) 96 (|has| |#1| (-871)) ELT)) (-3045 (((-114) $ (-793)) 8 T ELT)) (-4083 ((|#1| $ (-560) |#1|) 53 (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) 60 (|has| $ (-6 -4509)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) 77 (|has| $ (-6 -4508)) ELT)) (-3525 (($) 7 T CONST)) (-2372 (($ $) 93 (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) 103 T ELT)) (-3658 (($ $) 80 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3033 (($ |#1| $) 79 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) (($ (-1 (-114) |#1|) $) 76 (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 78 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 75 (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 74 (|has| $ (-6 -4508)) ELT)) (-3338 ((|#1| $ (-560) |#1|) 54 (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-560)) 52 T ELT)) (-2359 (((-560) (-1 (-114) |#1|) $) 100 T ELT) (((-560) |#1| $) 99 (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) 98 (|has| |#1| (-1132)) ELT)) (-3737 (((-663 |#1|) $) 31 (|has| $ (-6 -4508)) ELT)) (-1451 (((-711 |#1|) $ $) 108 (|has| |#1| (-1080)) ELT)) (-4246 (($ (-793) |#1|) 70 T ELT)) (-3332 (((-114) $ (-793)) 9 T ELT)) (-2483 (((-560) $) 44 (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) 85 (|has| |#1| (-871)) ELT)) (-4167 (($ (-1 (-114) |#1| |#1|) $ $) 104 T ELT) (($ $ $) 97 (|has| |#1| (-871)) ELT)) (-3243 (((-663 |#1|) $) 30 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) 28 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-4263 (((-560) $) 45 (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) 86 (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) 35 (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) 36 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 65 T ELT)) (-1422 ((|#1| $) 105 (-12 (|has| |#1| (-1080)) (|has| |#1| (-1033))) ELT)) (-1634 (((-114) $ (-793)) 10 T ELT)) (-2946 ((|#1| $) 106 (-12 (|has| |#1| (-1080)) (|has| |#1| (-1033))) ELT)) (-3358 (((-1189) $) 23 (|has| |#1| (-1132)) ELT)) (-2507 (($ |#1| $ (-560)) 62 T ELT) (($ $ $ (-560)) 61 T ELT)) (-3372 (((-663 (-560)) $) 47 T ELT)) (-3439 (((-114) (-560) $) 48 T ELT)) (-3376 (((-1151) $) 22 (|has| |#1| (-1132)) ELT)) (-4334 ((|#1| $) 43 (|has| (-560) (-871)) ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 73 T ELT)) (-2740 (($ $ |#1|) 42 (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) 27 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) 14 T ELT)) (-4019 (((-114) |#1| $) 46 (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) 49 T ELT)) (-2706 (((-114) $) 11 T ELT)) (-2832 (($) 12 T ELT)) (-1507 ((|#1| $ (-560) |#1|) 51 T ELT) ((|#1| $ (-560)) 50 T ELT) (($ $ (-1264 (-560))) 71 T ELT)) (-4258 ((|#1| $ $) 109 (|has| |#1| (-1080)) ELT)) (-2579 (($ $ (-560)) 64 T ELT) (($ $ (-1264 (-560))) 63 T ELT)) (-2192 (($ $ $) 107 (|has| |#1| (-1080)) ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) 29 (-12 (|has| |#1| (-1132)) (|has| $ (-6 -4508))) ELT)) (-3993 (($ $ $ (-560)) 94 (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) 13 T ELT)) (-2400 (((-549) $) 81 (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 72 T ELT)) (-1955 (($ $ |#1|) 69 T ELT) (($ |#1| $) 68 T ELT) (($ $ $) 67 T ELT) (($ (-663 $)) 66 T ELT)) (-3913 (((-887) $) 18 (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) 34 (|has| $ (-6 -4508)) ELT)) (-2396 (((-114) $ $) 87 (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) 89 (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2386 (((-114) $ $) 88 (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) 90 (|has| |#1| (-871)) ELT)) (-2441 (($ $) 114 (|has| |#1| (-21)) ELT) (($ $ $) 113 (|has| |#1| (-21)) ELT)) (-2429 (($ $ $) 116 (|has| |#1| (-25)) ELT)) (* (($ (-560) $) 112 (|has| |#1| (-21)) ELT) (($ |#1| $) 111 (|has| |#1| (-748)) ELT) (($ $ |#1|) 110 (|has| |#1| (-748)) ELT)) (-2256 (((-793) $) 6 (|has| $ (-6 -4508)) ELT)))
(((-1296 |#1|) (-142) (-1247)) (T -1296))
-((-2567 (*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-25)))) (-3759 (*1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1296 *3)) (-4 *3 (-23)) (-4 *3 (-1247)))) (-2580 (*1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-21)))) (-2580 (*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-4 *1 (-1296 *3)) (-4 *3 (-1247)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-748)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-748)))) (-3232 (*1 *2 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1080)))) (-1848 (*1 *2 *1 *1) (-12 (-4 *1 (-1296 *3)) (-4 *3 (-1247)) (-4 *3 (-1080)) (-5 *2 (-711 *3)))) (-2046 (*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1080)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1033)) (-4 *2 (-1080)))) (-4216 (*1 *2 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1033)) (-4 *2 (-1080)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2567 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3759 ($ (-793))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2580 ($ $)) (-15 -2580 ($ $ $)) (-15 * ($ (-560) $))) |%noBranch|) (IF (|has| |t#1| (-748)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1080)) (PROGN (-15 -3232 (|t#1| $ $)) (-15 -1848 ((-711 |t#1|) $ $)) (-15 -2046 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1033)) (IF (|has| |t#1| (-1080)) (PROGN (-15 -4108 (|t#1| $)) (-15 -4216 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-34) . T) ((-102) -2304 (|has| |#1| (-1132)) (|has| |#1| (-871)) (|has| |#1| (-102))) ((-632 (-887)) -2304 (|has| |#1| (-1132)) (|has| |#1| (-871)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #0=(-560) |#1|) . T) ((-298 (-1264 (-560)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-385 |#1|) . T) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-673 |#1|) . T) ((-19 |#1|) . T) ((-871) |has| |#1| (-871)) ((-874) |has| |#1| (-871)) ((-1132) -2304 (|has| |#1| (-1132)) (|has| |#1| (-871))) ((-1247) . T))
-((-1538 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3759 (($ (-793)) NIL (|has| |#1| (-23)) ELT)) (-2885 (($ (-663 |#1|)) 11 T ELT)) (-3839 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4040 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-1703 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| |#1| (-871))) ELT)) (-2286 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1773 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-1982 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2238 (($) NIL T CONST)) (-4391 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4292 (($ $) NIL T ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2375 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4129 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3779 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3709 ((|#1| $ (-560)) NIL T ELT)) (-1722 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1132)) ELT)) (-2181 (((-663 |#1|) $) 16 (|has| $ (-6 -4508)) ELT)) (-1848 (((-711 |#1|) $ $) NIL (|has| |#1| (-1080)) ELT)) (-4095 (($ (-793) |#1|) NIL T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-1762 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-3825 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3223 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-2656 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-2937 (((-560) $) 12 (|has| (-560) (-871)) ELT)) (-2820 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3768 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4216 ((|#1| $) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1080))) ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-4108 ((|#1| $) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1080))) ELT)) (-1905 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-3996 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3270 (((-663 (-560)) $) NIL T ELT)) (-3586 (((-114) (-560) $) NIL T ELT)) (-3855 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-3637 ((|#1| $) NIL (|has| (-560) (-871)) ELT)) (-3329 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-3037 (($ $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2787 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-2914 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3571 (((-663 |#1|) $) NIL T ELT)) (-1663 (((-114) $) NIL T ELT)) (-3986 (($) NIL T ELT)) (-3924 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-3232 ((|#1| $ $) NIL (|has| |#1| (-1080)) ELT)) (-4413 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-2046 (($ $ $) NIL (|has| |#1| (-1080)) ELT)) (-3865 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3640 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) 20 (|has| |#1| (-633 (-549))) ELT)) (-1592 (($ (-663 |#1|)) 10 T ELT)) (-3415 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-1578 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-2275 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1728 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2536 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2508 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2473 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2521 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2495 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2580 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-2567 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-560) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-748)) ELT) (($ $ |#1|) NIL (|has| |#1| (-748)) ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-1297 |#1|) (-13 (-1296 |#1|) (-10 -8 (-15 -2885 ($ (-663 |#1|))))) (-1247)) (T -1297))
-((-2885 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-1297 *3)))))
-(-13 (-1296 |#1|) (-10 -8 (-15 -2885 ($ (-663 |#1|)))))
-((-1520 (((-1297 |#2|) (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|) 13 T ELT)) (-4129 ((|#2| (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|) 15 T ELT)) (-3957 (((-3 (-1297 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1297 |#1|)) 30 T ELT) (((-1297 |#2|) (-1 |#2| |#1|) (-1297 |#1|)) 18 T ELT)))
-(((-1298 |#1| |#2|) (-10 -7 (-15 -1520 ((-1297 |#2|) (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|)) (-15 -4129 (|#2| (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|)) (-15 -3957 ((-1297 |#2|) (-1 |#2| |#1|) (-1297 |#1|))) (-15 -3957 ((-3 (-1297 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1297 |#1|)))) (-1247) (-1247)) (T -1298))
-((-3957 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1297 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1297 *6)) (-5 *1 (-1298 *5 *6)))) (-3957 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1297 *6)) (-5 *1 (-1298 *5 *6)))) (-4129 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1297 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-1298 *5 *2)))) (-1520 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1297 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-5 *2 (-1297 *5)) (-5 *1 (-1298 *6 *5)))))
-(-10 -7 (-15 -1520 ((-1297 |#2|) (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|)) (-15 -4129 (|#2| (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|)) (-15 -3957 ((-1297 |#2|) (-1 |#2| |#1|) (-1297 |#1|))) (-15 -3957 ((-3 (-1297 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1297 |#1|))))
-((-1458 (((-482) (-663 (-663 (-972 (-229)))) (-663 (-270))) 22 T ELT) (((-482) (-663 (-663 (-972 (-229))))) 21 T ELT) (((-482) (-663 (-663 (-972 (-229)))) (-898) (-898) (-948) (-663 (-270))) 20 T ELT)) (-2202 (((-1300) (-663 (-663 (-972 (-229)))) (-663 (-270))) 30 T ELT) (((-1300) (-663 (-663 (-972 (-229)))) (-898) (-898) (-948) (-663 (-270))) 29 T ELT)) (-1578 (((-1300) (-482)) 46 T ELT)))
-(((-1299) (-10 -7 (-15 -1458 ((-482) (-663 (-663 (-972 (-229)))) (-898) (-898) (-948) (-663 (-270)))) (-15 -1458 ((-482) (-663 (-663 (-972 (-229)))))) (-15 -1458 ((-482) (-663 (-663 (-972 (-229)))) (-663 (-270)))) (-15 -2202 ((-1300) (-663 (-663 (-972 (-229)))) (-898) (-898) (-948) (-663 (-270)))) (-15 -2202 ((-1300) (-663 (-663 (-972 (-229)))) (-663 (-270)))) (-15 -1578 ((-1300) (-482))))) (T -1299))
-((-1578 (*1 *2 *3) (-12 (-5 *3 (-482)) (-5 *2 (-1300)) (-5 *1 (-1299)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *4 (-663 (-270))) (-5 *2 (-1300)) (-5 *1 (-1299)))) (-2202 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *4 (-898)) (-5 *5 (-948)) (-5 *6 (-663 (-270))) (-5 *2 (-1300)) (-5 *1 (-1299)))) (-1458 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *4 (-663 (-270))) (-5 *2 (-482)) (-5 *1 (-1299)))) (-1458 (*1 *2 *3) (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *2 (-482)) (-5 *1 (-1299)))) (-1458 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *4 (-898)) (-5 *5 (-948)) (-5 *6 (-663 (-270))) (-5 *2 (-482)) (-5 *1 (-1299)))))
-(-10 -7 (-15 -1458 ((-482) (-663 (-663 (-972 (-229)))) (-898) (-898) (-948) (-663 (-270)))) (-15 -1458 ((-482) (-663 (-663 (-972 (-229)))))) (-15 -1458 ((-482) (-663 (-663 (-972 (-229)))) (-663 (-270)))) (-15 -2202 ((-1300) (-663 (-663 (-972 (-229)))) (-898) (-898) (-948) (-663 (-270)))) (-15 -2202 ((-1300) (-663 (-663 (-972 (-229)))) (-663 (-270)))) (-15 -1578 ((-1300) (-482))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3031 (((-1189) $ (-1189)) 107 T ELT) (((-1189) $ (-1189) (-1189)) 105 T ELT) (((-1189) $ (-1189) (-663 (-1189))) 104 T ELT)) (-4009 (($) 69 T ELT)) (-1668 (((-1303) $ (-482) (-948)) 54 T ELT)) (-2431 (((-1303) $ (-948) (-1189)) 89 T ELT) (((-1303) $ (-948) (-898)) 90 T ELT)) (-4205 (((-1303) $ (-948) (-391) (-391)) 57 T ELT)) (-4346 (((-1303) $ (-1189)) 84 T ELT)) (-3332 (((-1303) $ (-948) (-1189)) 94 T ELT)) (-4166 (((-1303) $ (-948) (-391) (-391)) 58 T ELT)) (-1611 (((-1303) $ (-948) (-948)) 55 T ELT)) (-3007 (((-1303) $) 85 T ELT)) (-1983 (((-1303) $ (-948) (-1189)) 93 T ELT)) (-2030 (((-1303) $ (-482) (-948)) 41 T ELT)) (-2317 (((-1303) $ (-948) (-1189)) 92 T ELT)) (-1579 (((-663 (-270)) $) 29 T ELT) (($ $ (-663 (-270))) 30 T ELT)) (-3105 (((-1303) $ (-793) (-793)) 52 T ELT)) (-1761 (($ $) 70 T ELT) (($ (-482) (-663 (-270))) 71 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2968 (((-560) $) 48 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3198 (((-1297 (-3 (-482) "undefined")) $) 47 T ELT)) (-2063 (((-1297 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -2317 (-560)) (|:| -3766 (-560)) (|:| |spline| (-560)) (|:| -2206 (-560)) (|:| |axesColor| (-898)) (|:| -2431 (-560)) (|:| |unitsColor| (-898)) (|:| |showing| (-560)))) $) 46 T ELT)) (-3525 (((-1303) $ (-948) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-898) (-560) (-898) (-560)) 83 T ELT)) (-2125 (((-663 (-972 (-229))) $) NIL T ELT)) (-1670 (((-482) $ (-948)) 43 T ELT)) (-2210 (((-1303) $ (-793) (-793) (-948) (-948)) 50 T ELT)) (-2891 (((-1303) $ (-1189)) 95 T ELT)) (-3766 (((-1303) $ (-948) (-1189)) 91 T ELT)) (-1578 (((-887) $) 102 T ELT)) (-4332 (((-1303) $) 96 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2206 (((-1303) $ (-948) (-1189)) 87 T ELT) (((-1303) $ (-948) (-898)) 88 T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-1300) (-13 (-1132) (-10 -8 (-15 -2125 ((-663 (-972 (-229))) $)) (-15 -4009 ($)) (-15 -1761 ($ $)) (-15 -1579 ((-663 (-270)) $)) (-15 -1579 ($ $ (-663 (-270)))) (-15 -1761 ($ (-482) (-663 (-270)))) (-15 -3525 ((-1303) $ (-948) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-898) (-560) (-898) (-560))) (-15 -2063 ((-1297 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -2317 (-560)) (|:| -3766 (-560)) (|:| |spline| (-560)) (|:| -2206 (-560)) (|:| |axesColor| (-898)) (|:| -2431 (-560)) (|:| |unitsColor| (-898)) (|:| |showing| (-560)))) $)) (-15 -3198 ((-1297 (-3 (-482) "undefined")) $)) (-15 -4346 ((-1303) $ (-1189))) (-15 -2030 ((-1303) $ (-482) (-948))) (-15 -1670 ((-482) $ (-948))) (-15 -2206 ((-1303) $ (-948) (-1189))) (-15 -2206 ((-1303) $ (-948) (-898))) (-15 -2431 ((-1303) $ (-948) (-1189))) (-15 -2431 ((-1303) $ (-948) (-898))) (-15 -2317 ((-1303) $ (-948) (-1189))) (-15 -1983 ((-1303) $ (-948) (-1189))) (-15 -3766 ((-1303) $ (-948) (-1189))) (-15 -2891 ((-1303) $ (-1189))) (-15 -4332 ((-1303) $)) (-15 -2210 ((-1303) $ (-793) (-793) (-948) (-948))) (-15 -4166 ((-1303) $ (-948) (-391) (-391))) (-15 -4205 ((-1303) $ (-948) (-391) (-391))) (-15 -3332 ((-1303) $ (-948) (-1189))) (-15 -3105 ((-1303) $ (-793) (-793))) (-15 -1668 ((-1303) $ (-482) (-948))) (-15 -1611 ((-1303) $ (-948) (-948))) (-15 -3031 ((-1189) $ (-1189))) (-15 -3031 ((-1189) $ (-1189) (-1189))) (-15 -3031 ((-1189) $ (-1189) (-663 (-1189)))) (-15 -3007 ((-1303) $)) (-15 -2968 ((-560) $)) (-15 -1578 ((-887) $))))) (T -1300))
-((-1578 (*1 *2 *1) (-12 (-5 *2 (-887)) (-5 *1 (-1300)))) (-2125 (*1 *2 *1) (-12 (-5 *2 (-663 (-972 (-229)))) (-5 *1 (-1300)))) (-4009 (*1 *1) (-5 *1 (-1300))) (-1761 (*1 *1 *1) (-5 *1 (-1300))) (-1579 (*1 *2 *1) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1300)))) (-1579 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1300)))) (-1761 (*1 *1 *2 *3) (-12 (-5 *2 (-482)) (-5 *3 (-663 (-270))) (-5 *1 (-1300)))) (-3525 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-948)) (-5 *4 (-229)) (-5 *5 (-560)) (-5 *6 (-898)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2063 (*1 *2 *1) (-12 (-5 *2 (-1297 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -2317 (-560)) (|:| -3766 (-560)) (|:| |spline| (-560)) (|:| -2206 (-560)) (|:| |axesColor| (-898)) (|:| -2431 (-560)) (|:| |unitsColor| (-898)) (|:| |showing| (-560))))) (-5 *1 (-1300)))) (-3198 (*1 *2 *1) (-12 (-5 *2 (-1297 (-3 (-482) "undefined"))) (-5 *1 (-1300)))) (-4346 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2030 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-482)) (-5 *4 (-948)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-1670 (*1 *2 *1 *3) (-12 (-5 *3 (-948)) (-5 *2 (-482)) (-5 *1 (-1300)))) (-2206 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2206 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-948)) (-5 *4 (-898)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2431 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2431 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-948)) (-5 *4 (-898)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2317 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-1983 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-3766 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2891 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4332 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2210 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-793)) (-5 *4 (-948)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4166 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-948)) (-5 *4 (-391)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4205 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-948)) (-5 *4 (-391)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-3332 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-3105 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-1668 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-482)) (-5 *4 (-948)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-1611 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-3031 (*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1300)))) (-3031 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1300)))) (-3031 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-1189)) (-5 *1 (-1300)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1300)))))
-(-13 (-1132) (-10 -8 (-15 -2125 ((-663 (-972 (-229))) $)) (-15 -4009 ($)) (-15 -1761 ($ $)) (-15 -1579 ((-663 (-270)) $)) (-15 -1579 ($ $ (-663 (-270)))) (-15 -1761 ($ (-482) (-663 (-270)))) (-15 -3525 ((-1303) $ (-948) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-898) (-560) (-898) (-560))) (-15 -2063 ((-1297 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -2317 (-560)) (|:| -3766 (-560)) (|:| |spline| (-560)) (|:| -2206 (-560)) (|:| |axesColor| (-898)) (|:| -2431 (-560)) (|:| |unitsColor| (-898)) (|:| |showing| (-560)))) $)) (-15 -3198 ((-1297 (-3 (-482) "undefined")) $)) (-15 -4346 ((-1303) $ (-1189))) (-15 -2030 ((-1303) $ (-482) (-948))) (-15 -1670 ((-482) $ (-948))) (-15 -2206 ((-1303) $ (-948) (-1189))) (-15 -2206 ((-1303) $ (-948) (-898))) (-15 -2431 ((-1303) $ (-948) (-1189))) (-15 -2431 ((-1303) $ (-948) (-898))) (-15 -2317 ((-1303) $ (-948) (-1189))) (-15 -1983 ((-1303) $ (-948) (-1189))) (-15 -3766 ((-1303) $ (-948) (-1189))) (-15 -2891 ((-1303) $ (-1189))) (-15 -4332 ((-1303) $)) (-15 -2210 ((-1303) $ (-793) (-793) (-948) (-948))) (-15 -4166 ((-1303) $ (-948) (-391) (-391))) (-15 -4205 ((-1303) $ (-948) (-391) (-391))) (-15 -3332 ((-1303) $ (-948) (-1189))) (-15 -3105 ((-1303) $ (-793) (-793))) (-15 -1668 ((-1303) $ (-482) (-948))) (-15 -1611 ((-1303) $ (-948) (-948))) (-15 -3031 ((-1189) $ (-1189))) (-15 -3031 ((-1189) $ (-1189) (-1189))) (-15 -3031 ((-1189) $ (-1189) (-663 (-1189)))) (-15 -3007 ((-1303) $)) (-15 -2968 ((-560) $)) (-15 -1578 ((-887) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2674 (((-1303) $ (-391)) 169 T ELT) (((-1303) $ (-391) (-391) (-391)) 170 T ELT)) (-3031 (((-1189) $ (-1189)) 179 T ELT) (((-1189) $ (-1189) (-1189)) 177 T ELT) (((-1189) $ (-1189) (-663 (-1189))) 176 T ELT)) (-1473 (($) 67 T ELT)) (-1873 (((-1303) $ (-391) (-391) (-391) (-391) (-391)) 141 T ELT) (((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) $) 139 T ELT) (((-1303) $ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 140 T ELT) (((-1303) $ (-560) (-560) (-391) (-391) (-391)) 144 T ELT) (((-1303) $ (-391) (-391)) 145 T ELT) (((-1303) $ (-391) (-391) (-391)) 152 T ELT)) (-2954 (((-391)) 122 T ELT) (((-391) (-391)) 123 T ELT)) (-2459 (((-391)) 117 T ELT) (((-391) (-391)) 119 T ELT)) (-4312 (((-391)) 120 T ELT) (((-391) (-391)) 121 T ELT)) (-4281 (((-391)) 126 T ELT) (((-391) (-391)) 127 T ELT)) (-1893 (((-391)) 124 T ELT) (((-391) (-391)) 125 T ELT)) (-4205 (((-1303) $ (-391) (-391)) 171 T ELT)) (-4346 (((-1303) $ (-1189)) 153 T ELT)) (-2570 (((-1164 (-229)) $) 68 T ELT) (($ $ (-1164 (-229))) 69 T ELT)) (-3600 (((-1303) $ (-1189)) 187 T ELT)) (-4005 (((-1303) $ (-1189)) 188 T ELT)) (-1420 (((-1303) $ (-391) (-391)) 151 T ELT) (((-1303) $ (-560) (-560)) 168 T ELT)) (-1611 (((-1303) $ (-948) (-948)) 160 T ELT)) (-3007 (((-1303) $) 137 T ELT)) (-2219 (((-1303) $ (-1189)) 186 T ELT)) (-3285 (((-1303) $ (-1189)) 134 T ELT)) (-1579 (((-663 (-270)) $) 70 T ELT) (($ $ (-663 (-270))) 71 T ELT)) (-3105 (((-1303) $ (-793) (-793)) 159 T ELT)) (-2203 (((-1303) $ (-793) (-972 (-229))) 193 T ELT)) (-2404 (($ $) 73 T ELT) (($ (-1164 (-229)) (-1189)) 74 T ELT) (($ (-1164 (-229)) (-663 (-270))) 75 T ELT)) (-2479 (((-1303) $ (-391) (-391) (-391)) 131 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2968 (((-560) $) 128 T ELT)) (-1575 (((-1303) $ (-391)) 174 T ELT)) (-1460 (((-1303) $ (-391)) 191 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3573 (((-1303) $ (-391)) 190 T ELT)) (-2077 (((-1303) $ (-1189)) 136 T ELT)) (-2210 (((-1303) $ (-793) (-793) (-948) (-948)) 158 T ELT)) (-3080 (((-1303) $ (-1189)) 133 T ELT)) (-2891 (((-1303) $ (-1189)) 135 T ELT)) (-2447 (((-1303) $ (-159) (-159)) 157 T ELT)) (-1578 (((-887) $) 166 T ELT)) (-4332 (((-1303) $) 138 T ELT)) (-2152 (((-1303) $ (-1189)) 189 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2206 (((-1303) $ (-1189)) 132 T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-1301) (-13 (-1132) (-10 -8 (-15 -2459 ((-391))) (-15 -2459 ((-391) (-391))) (-15 -4312 ((-391))) (-15 -4312 ((-391) (-391))) (-15 -2954 ((-391))) (-15 -2954 ((-391) (-391))) (-15 -1893 ((-391))) (-15 -1893 ((-391) (-391))) (-15 -4281 ((-391))) (-15 -4281 ((-391) (-391))) (-15 -1473 ($)) (-15 -2404 ($ $)) (-15 -2404 ($ (-1164 (-229)) (-1189))) (-15 -2404 ($ (-1164 (-229)) (-663 (-270)))) (-15 -2570 ((-1164 (-229)) $)) (-15 -2570 ($ $ (-1164 (-229)))) (-15 -2203 ((-1303) $ (-793) (-972 (-229)))) (-15 -1579 ((-663 (-270)) $)) (-15 -1579 ($ $ (-663 (-270)))) (-15 -3105 ((-1303) $ (-793) (-793))) (-15 -1611 ((-1303) $ (-948) (-948))) (-15 -4346 ((-1303) $ (-1189))) (-15 -2210 ((-1303) $ (-793) (-793) (-948) (-948))) (-15 -1873 ((-1303) $ (-391) (-391) (-391) (-391) (-391))) (-15 -1873 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) $)) (-15 -1873 ((-1303) $ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -1873 ((-1303) $ (-560) (-560) (-391) (-391) (-391))) (-15 -1873 ((-1303) $ (-391) (-391))) (-15 -1873 ((-1303) $ (-391) (-391) (-391))) (-15 -2891 ((-1303) $ (-1189))) (-15 -2206 ((-1303) $ (-1189))) (-15 -3080 ((-1303) $ (-1189))) (-15 -3285 ((-1303) $ (-1189))) (-15 -2077 ((-1303) $ (-1189))) (-15 -1420 ((-1303) $ (-391) (-391))) (-15 -1420 ((-1303) $ (-560) (-560))) (-15 -2674 ((-1303) $ (-391))) (-15 -2674 ((-1303) $ (-391) (-391) (-391))) (-15 -4205 ((-1303) $ (-391) (-391))) (-15 -2219 ((-1303) $ (-1189))) (-15 -3573 ((-1303) $ (-391))) (-15 -1460 ((-1303) $ (-391))) (-15 -3600 ((-1303) $ (-1189))) (-15 -4005 ((-1303) $ (-1189))) (-15 -2152 ((-1303) $ (-1189))) (-15 -2479 ((-1303) $ (-391) (-391) (-391))) (-15 -1575 ((-1303) $ (-391))) (-15 -3007 ((-1303) $)) (-15 -2447 ((-1303) $ (-159) (-159))) (-15 -3031 ((-1189) $ (-1189))) (-15 -3031 ((-1189) $ (-1189) (-1189))) (-15 -3031 ((-1189) $ (-1189) (-663 (-1189)))) (-15 -4332 ((-1303) $)) (-15 -2968 ((-560) $))))) (T -1301))
-((-2459 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-2459 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-4312 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-4312 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-2954 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-2954 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-1893 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-1893 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-4281 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-4281 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-1473 (*1 *1) (-5 *1 (-1301))) (-2404 (*1 *1 *1) (-5 *1 (-1301))) (-2404 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 (-229))) (-5 *3 (-1189)) (-5 *1 (-1301)))) (-2404 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 (-229))) (-5 *3 (-663 (-270))) (-5 *1 (-1301)))) (-2570 (*1 *2 *1) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-1301)))) (-2570 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-1301)))) (-2203 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-793)) (-5 *4 (-972 (-229))) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-1579 (*1 *2 *1) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1301)))) (-1579 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1301)))) (-3105 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-1611 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4346 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-2210 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-793)) (-5 *4 (-948)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-1873 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-1873 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *1 (-1301)))) (-1873 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-1873 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-560)) (-5 *4 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-1873 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-1873 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-2891 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-2206 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-3080 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-3285 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-2077 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-1420 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-1420 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-2674 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-2674 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4205 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-2219 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-3573 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-1460 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-3600 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4005 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-2152 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-2479 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-1575 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1301)))) (-2447 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-159)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-3031 (*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1301)))) (-3031 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1301)))) (-3031 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-1189)) (-5 *1 (-1301)))) (-4332 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1301)))) (-2968 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1301)))))
-(-13 (-1132) (-10 -8 (-15 -2459 ((-391))) (-15 -2459 ((-391) (-391))) (-15 -4312 ((-391))) (-15 -4312 ((-391) (-391))) (-15 -2954 ((-391))) (-15 -2954 ((-391) (-391))) (-15 -1893 ((-391))) (-15 -1893 ((-391) (-391))) (-15 -4281 ((-391))) (-15 -4281 ((-391) (-391))) (-15 -1473 ($)) (-15 -2404 ($ $)) (-15 -2404 ($ (-1164 (-229)) (-1189))) (-15 -2404 ($ (-1164 (-229)) (-663 (-270)))) (-15 -2570 ((-1164 (-229)) $)) (-15 -2570 ($ $ (-1164 (-229)))) (-15 -2203 ((-1303) $ (-793) (-972 (-229)))) (-15 -1579 ((-663 (-270)) $)) (-15 -1579 ($ $ (-663 (-270)))) (-15 -3105 ((-1303) $ (-793) (-793))) (-15 -1611 ((-1303) $ (-948) (-948))) (-15 -4346 ((-1303) $ (-1189))) (-15 -2210 ((-1303) $ (-793) (-793) (-948) (-948))) (-15 -1873 ((-1303) $ (-391) (-391) (-391) (-391) (-391))) (-15 -1873 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) $)) (-15 -1873 ((-1303) $ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -1873 ((-1303) $ (-560) (-560) (-391) (-391) (-391))) (-15 -1873 ((-1303) $ (-391) (-391))) (-15 -1873 ((-1303) $ (-391) (-391) (-391))) (-15 -2891 ((-1303) $ (-1189))) (-15 -2206 ((-1303) $ (-1189))) (-15 -3080 ((-1303) $ (-1189))) (-15 -3285 ((-1303) $ (-1189))) (-15 -2077 ((-1303) $ (-1189))) (-15 -1420 ((-1303) $ (-391) (-391))) (-15 -1420 ((-1303) $ (-560) (-560))) (-15 -2674 ((-1303) $ (-391))) (-15 -2674 ((-1303) $ (-391) (-391) (-391))) (-15 -4205 ((-1303) $ (-391) (-391))) (-15 -2219 ((-1303) $ (-1189))) (-15 -3573 ((-1303) $ (-391))) (-15 -1460 ((-1303) $ (-391))) (-15 -3600 ((-1303) $ (-1189))) (-15 -4005 ((-1303) $ (-1189))) (-15 -2152 ((-1303) $ (-1189))) (-15 -2479 ((-1303) $ (-391) (-391) (-391))) (-15 -1575 ((-1303) $ (-391))) (-15 -3007 ((-1303) $)) (-15 -2447 ((-1303) $ (-159) (-159))) (-15 -3031 ((-1189) $ (-1189))) (-15 -3031 ((-1189) $ (-1189) (-1189))) (-15 -3031 ((-1189) $ (-1189) (-663 (-1189)))) (-15 -4332 ((-1303) $)) (-15 -2968 ((-560) $))))
-((-3719 (((-663 (-1189)) (-663 (-1189))) 104 T ELT) (((-663 (-1189))) 96 T ELT)) (-2335 (((-663 (-1189))) 94 T ELT)) (-2854 (((-663 (-948)) (-663 (-948))) 69 T ELT) (((-663 (-948))) 64 T ELT)) (-3269 (((-663 (-793)) (-663 (-793))) 61 T ELT) (((-663 (-793))) 55 T ELT)) (-3827 (((-1303)) 71 T ELT)) (-4445 (((-948) (-948)) 87 T ELT) (((-948)) 86 T ELT)) (-1363 (((-948) (-948)) 85 T ELT) (((-948)) 84 T ELT)) (-1449 (((-898) (-898)) 81 T ELT) (((-898)) 80 T ELT)) (-4062 (((-229)) 91 T ELT) (((-229) (-391)) 93 T ELT)) (-4460 (((-948)) 88 T ELT) (((-948) (-948)) 89 T ELT)) (-2505 (((-948) (-948)) 83 T ELT) (((-948)) 82 T ELT)) (-4019 (((-898) (-898)) 75 T ELT) (((-898)) 73 T ELT)) (-2263 (((-898) (-898)) 77 T ELT) (((-898)) 76 T ELT)) (-2419 (((-898) (-898)) 79 T ELT) (((-898)) 78 T ELT)))
-(((-1302) (-10 -7 (-15 -4019 ((-898))) (-15 -4019 ((-898) (-898))) (-15 -2263 ((-898))) (-15 -2263 ((-898) (-898))) (-15 -2419 ((-898))) (-15 -2419 ((-898) (-898))) (-15 -1449 ((-898))) (-15 -1449 ((-898) (-898))) (-15 -2505 ((-948))) (-15 -2505 ((-948) (-948))) (-15 -3269 ((-663 (-793)))) (-15 -3269 ((-663 (-793)) (-663 (-793)))) (-15 -2854 ((-663 (-948)))) (-15 -2854 ((-663 (-948)) (-663 (-948)))) (-15 -3827 ((-1303))) (-15 -3719 ((-663 (-1189)))) (-15 -3719 ((-663 (-1189)) (-663 (-1189)))) (-15 -2335 ((-663 (-1189)))) (-15 -1363 ((-948))) (-15 -4445 ((-948))) (-15 -1363 ((-948) (-948))) (-15 -4445 ((-948) (-948))) (-15 -4460 ((-948) (-948))) (-15 -4460 ((-948))) (-15 -4062 ((-229) (-391))) (-15 -4062 ((-229))))) (T -1302))
-((-4062 (*1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1302)))) (-4062 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-1302)))) (-4460 (*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))) (-4460 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))) (-4445 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))) (-1363 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))) (-4445 (*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))) (-1363 (*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))) (-2335 (*1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1302)))) (-3719 (*1 *2 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1302)))) (-3719 (*1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1302)))) (-3827 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1302)))) (-2854 (*1 *2 *2) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1302)))) (-2854 (*1 *2) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1302)))) (-3269 (*1 *2 *2) (-12 (-5 *2 (-663 (-793))) (-5 *1 (-1302)))) (-3269 (*1 *2) (-12 (-5 *2 (-663 (-793))) (-5 *1 (-1302)))) (-2505 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))) (-2505 (*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))) (-1449 (*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))) (-1449 (*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))) (-2419 (*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))) (-2419 (*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))) (-2263 (*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))) (-2263 (*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))) (-4019 (*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))) (-4019 (*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))))
-(-10 -7 (-15 -4019 ((-898))) (-15 -4019 ((-898) (-898))) (-15 -2263 ((-898))) (-15 -2263 ((-898) (-898))) (-15 -2419 ((-898))) (-15 -2419 ((-898) (-898))) (-15 -1449 ((-898))) (-15 -1449 ((-898) (-898))) (-15 -2505 ((-948))) (-15 -2505 ((-948) (-948))) (-15 -3269 ((-663 (-793)))) (-15 -3269 ((-663 (-793)) (-663 (-793)))) (-15 -2854 ((-663 (-948)))) (-15 -2854 ((-663 (-948)) (-663 (-948)))) (-15 -3827 ((-1303))) (-15 -3719 ((-663 (-1189)))) (-15 -3719 ((-663 (-1189)) (-663 (-1189)))) (-15 -2335 ((-663 (-1189)))) (-15 -1363 ((-948))) (-15 -4445 ((-948))) (-15 -1363 ((-948) (-948))) (-15 -4445 ((-948) (-948))) (-15 -4460 ((-948) (-948))) (-15 -4460 ((-948))) (-15 -4062 ((-229) (-391))) (-15 -4062 ((-229))))
-((-3280 (($) 6 T ELT)) (-1578 (((-887) $) 9 T ELT)))
-(((-1303) (-13 (-632 (-887)) (-10 -8 (-15 -3280 ($))))) (T -1303))
-((-3280 (*1 *1) (-5 *1 (-1303))))
-(-13 (-632 (-887)) (-10 -8 (-15 -3280 ($))))
-((-2594 (($ $ |#2|) 10 T ELT)))
-(((-1304 |#1| |#2|) (-10 -8 (-15 -2594 (|#1| |#1| |#2|))) (-1305 |#2|) (-376)) (T -1304))
-NIL
-(-10 -8 (-15 -2594 (|#1| |#1| |#2|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-3669 (((-136)) 33 T ELT)) (-1578 (((-887) $) 12 T ELT)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ |#1|) 34 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT)))
+((-2429 (*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-25)))) (-3068 (*1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1296 *3)) (-4 *3 (-23)) (-4 *3 (-1247)))) (-2441 (*1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-21)))) (-2441 (*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-4 *1 (-1296 *3)) (-4 *3 (-1247)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-748)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-748)))) (-4258 (*1 *2 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1080)))) (-1451 (*1 *2 *1 *1) (-12 (-4 *1 (-1296 *3)) (-4 *3 (-1247)) (-4 *3 (-1080)) (-5 *2 (-711 *3)))) (-2192 (*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1080)))) (-2946 (*1 *2 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1033)) (-4 *2 (-1080)))) (-1422 (*1 *2 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1033)) (-4 *2 (-1080)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2429 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -3068 ($ (-793))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2441 ($ $)) (-15 -2441 ($ $ $)) (-15 * ($ (-560) $))) |%noBranch|) (IF (|has| |t#1| (-748)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1080)) (PROGN (-15 -4258 (|t#1| $ $)) (-15 -1451 ((-711 |t#1|) $ $)) (-15 -2192 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1033)) (IF (|has| |t#1| (-1080)) (PROGN (-15 -2946 (|t#1| $)) (-15 -1422 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-34) . T) ((-102) -2196 (|has| |#1| (-1132)) (|has| |#1| (-871)) (|has| |#1| (-102))) ((-632 (-887)) -2196 (|has| |#1| (-1132)) (|has| |#1| (-871)) (|has| |#1| (-632 (-887)))) ((-153 |#1|) . T) ((-633 (-549)) |has| |#1| (-633 (-549))) ((-298 #0=(-560) |#1|) . T) ((-298 (-1264 (-560)) $) . T) ((-300 #0# |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-385 |#1|) . T) ((-503 |#1|) . T) ((-618 #0# |#1|) . T) ((-528 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ((-673 |#1|) . T) ((-19 |#1|) . T) ((-871) |has| |#1| (-871)) ((-874) |has| |#1| (-871)) ((-1132) -2196 (|has| |#1| (-1132)) (|has| |#1| (-871))) ((-1247) . T))
+((-2243 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3068 (($ (-793)) NIL (|has| |#1| (-23)) ELT)) (-3151 (($ (-663 |#1|)) 11 T ELT)) (-2033 (((-1303) $ (-560) (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-2152 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-871)) ELT)) (-3152 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4509)) (|has| |#1| (-871))) ELT)) (-1787 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-871)) ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-4083 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT) ((|#1| $ (-1264 (-560)) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3923 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3525 (($) NIL T CONST)) (-2372 (($ $) NIL (|has| $ (-6 -4509)) ELT)) (-4374 (($ $) NIL T ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3033 (($ |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1778 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4508)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3338 ((|#1| $ (-560) |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-3274 ((|#1| $ (-560)) NIL T ELT)) (-2359 (((-560) (-1 (-114) |#1|) $) NIL T ELT) (((-560) |#1| $) NIL (|has| |#1| (-1132)) ELT) (((-560) |#1| $ (-560)) NIL (|has| |#1| (-1132)) ELT)) (-3737 (((-663 |#1|) $) 16 (|has| $ (-6 -4508)) ELT)) (-1451 (((-711 |#1|) $ $) NIL (|has| |#1| (-1080)) ELT)) (-4246 (($ (-793) |#1|) NIL T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-2483 (((-560) $) NIL (|has| (-560) (-871)) ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-4167 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3243 (((-663 |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-4263 (((-560) $) 12 (|has| (-560) (-871)) ELT)) (-4379 (($ $ $) NIL (|has| |#1| (-871)) ELT)) (-3324 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-1422 ((|#1| $) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1080))) ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-2946 ((|#1| $) NIL (-12 (|has| |#1| (-1033)) (|has| |#1| (-1080))) ELT)) (-3358 (((-1189) $) NIL (|has| |#1| (-1132)) ELT)) (-2507 (($ |#1| $ (-560)) NIL T ELT) (($ $ $ (-560)) NIL T ELT)) (-3372 (((-663 (-560)) $) NIL T ELT)) (-3439 (((-114) (-560) $) NIL T ELT)) (-3376 (((-1151) $) NIL (|has| |#1| (-1132)) ELT)) (-4334 ((|#1| $) NIL (|has| (-560) (-871)) ELT)) (-2708 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2740 (($ $ |#1|) NIL (|has| $ (-6 -4509)) ELT)) (-2086 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT) (($ $ (-663 |#1|) (-663 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-4019 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-1383 (((-663 |#1|) $) NIL T ELT)) (-2706 (((-114) $) NIL T ELT)) (-2832 (($) NIL T ELT)) (-1507 ((|#1| $ (-560) |#1|) NIL T ELT) ((|#1| $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-4258 ((|#1| $ $) NIL (|has| |#1| (-1080)) ELT)) (-2579 (($ $ (-560)) NIL T ELT) (($ $ (-1264 (-560))) NIL T ELT)) (-2192 (($ $ $) NIL (|has| |#1| (-1080)) ELT)) (-3384 (((-793) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT) (((-793) |#1| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#1| (-1132))) ELT)) (-3993 (($ $ $ (-560)) NIL (|has| $ (-6 -4509)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) 20 (|has| |#1| (-633 (-549))) ELT)) (-3924 (($ (-663 |#1|)) 10 T ELT)) (-1955 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-663 $)) NIL T ELT)) (-3913 (((-887) $) NIL (|has| |#1| (-632 (-887))) ELT)) (-3925 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2149 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2396 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2373 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2340 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2386 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2362 (((-114) $ $) NIL (|has| |#1| (-871)) ELT)) (-2441 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-2429 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-560) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-748)) ELT) (($ $ |#1|) NIL (|has| |#1| (-748)) ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-1297 |#1|) (-13 (-1296 |#1|) (-10 -8 (-15 -3151 ($ (-663 |#1|))))) (-1247)) (T -1297))
+((-3151 (*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-1297 *3)))))
+(-13 (-1296 |#1|) (-10 -8 (-15 -3151 ($ (-663 |#1|)))))
+((-2928 (((-1297 |#2|) (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|) 13 T ELT)) (-1778 ((|#2| (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|) 15 T ELT)) (-2260 (((-3 (-1297 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1297 |#1|)) 30 T ELT) (((-1297 |#2|) (-1 |#2| |#1|) (-1297 |#1|)) 18 T ELT)))
+(((-1298 |#1| |#2|) (-10 -7 (-15 -2928 ((-1297 |#2|) (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|)) (-15 -1778 (|#2| (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|)) (-15 -2260 ((-1297 |#2|) (-1 |#2| |#1|) (-1297 |#1|))) (-15 -2260 ((-3 (-1297 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1297 |#1|)))) (-1247) (-1247)) (T -1298))
+((-2260 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1297 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1297 *6)) (-5 *1 (-1298 *5 *6)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1297 *6)) (-5 *1 (-1298 *5 *6)))) (-1778 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1297 *5)) (-4 *5 (-1247)) (-4 *2 (-1247)) (-5 *1 (-1298 *5 *2)))) (-2928 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1297 *6)) (-4 *6 (-1247)) (-4 *5 (-1247)) (-5 *2 (-1297 *5)) (-5 *1 (-1298 *6 *5)))))
+(-10 -7 (-15 -2928 ((-1297 |#2|) (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|)) (-15 -1778 (|#2| (-1 |#2| |#1| |#2|) (-1297 |#1|) |#2|)) (-15 -2260 ((-1297 |#2|) (-1 |#2| |#1|) (-1297 |#1|))) (-15 -2260 ((-3 (-1297 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1297 |#1|))))
+((-4466 (((-482) (-663 (-663 (-972 (-229)))) (-663 (-270))) 22 T ELT) (((-482) (-663 (-663 (-972 (-229))))) 21 T ELT) (((-482) (-663 (-663 (-972 (-229)))) (-898) (-898) (-948) (-663 (-270))) 20 T ELT)) (-4436 (((-1300) (-663 (-663 (-972 (-229)))) (-663 (-270))) 30 T ELT) (((-1300) (-663 (-663 (-972 (-229)))) (-898) (-898) (-948) (-663 (-270))) 29 T ELT)) (-3913 (((-1300) (-482)) 46 T ELT)))
+(((-1299) (-10 -7 (-15 -4466 ((-482) (-663 (-663 (-972 (-229)))) (-898) (-898) (-948) (-663 (-270)))) (-15 -4466 ((-482) (-663 (-663 (-972 (-229)))))) (-15 -4466 ((-482) (-663 (-663 (-972 (-229)))) (-663 (-270)))) (-15 -4436 ((-1300) (-663 (-663 (-972 (-229)))) (-898) (-898) (-948) (-663 (-270)))) (-15 -4436 ((-1300) (-663 (-663 (-972 (-229)))) (-663 (-270)))) (-15 -3913 ((-1300) (-482))))) (T -1299))
+((-3913 (*1 *2 *3) (-12 (-5 *3 (-482)) (-5 *2 (-1300)) (-5 *1 (-1299)))) (-4436 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *4 (-663 (-270))) (-5 *2 (-1300)) (-5 *1 (-1299)))) (-4436 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *4 (-898)) (-5 *5 (-948)) (-5 *6 (-663 (-270))) (-5 *2 (-1300)) (-5 *1 (-1299)))) (-4466 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *4 (-663 (-270))) (-5 *2 (-482)) (-5 *1 (-1299)))) (-4466 (*1 *2 *3) (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *2 (-482)) (-5 *1 (-1299)))) (-4466 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *4 (-898)) (-5 *5 (-948)) (-5 *6 (-663 (-270))) (-5 *2 (-482)) (-5 *1 (-1299)))))
+(-10 -7 (-15 -4466 ((-482) (-663 (-663 (-972 (-229)))) (-898) (-898) (-948) (-663 (-270)))) (-15 -4466 ((-482) (-663 (-663 (-972 (-229)))))) (-15 -4466 ((-482) (-663 (-663 (-972 (-229)))) (-663 (-270)))) (-15 -4436 ((-1300) (-663 (-663 (-972 (-229)))) (-898) (-898) (-948) (-663 (-270)))) (-15 -4436 ((-1300) (-663 (-663 (-972 (-229)))) (-663 (-270)))) (-15 -3913 ((-1300) (-482))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2895 (((-1189) $ (-1189)) 107 T ELT) (((-1189) $ (-1189) (-1189)) 105 T ELT) (((-1189) $ (-1189) (-663 (-1189))) 104 T ELT)) (-3093 (($) 69 T ELT)) (-2000 (((-1303) $ (-482) (-948)) 54 T ELT)) (-2402 (((-1303) $ (-948) (-1189)) 89 T ELT) (((-1303) $ (-948) (-898)) 90 T ELT)) (-2979 (((-1303) $ (-948) (-391) (-391)) 57 T ELT)) (-2868 (((-1303) $ (-1189)) 84 T ELT)) (-4088 (((-1303) $ (-948) (-1189)) 94 T ELT)) (-4130 (((-1303) $ (-948) (-391) (-391)) 58 T ELT)) (-3443 (((-1303) $ (-948) (-948)) 55 T ELT)) (-2872 (((-1303) $) 85 T ELT)) (-2795 (((-1303) $ (-948) (-1189)) 93 T ELT)) (-2068 (((-1303) $ (-482) (-948)) 41 T ELT)) (-3046 (((-1303) $ (-948) (-1189)) 92 T ELT)) (-4155 (((-663 (-270)) $) 29 T ELT) (($ $ (-663 (-270))) 30 T ELT)) (-2228 (((-1303) $ (-793) (-793)) 52 T ELT)) (-2474 (($ $) 70 T ELT) (($ (-482) (-663 (-270))) 71 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1438 (((-560) $) 48 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1971 (((-1297 (-3 (-482) "undefined")) $) 47 T ELT)) (-2345 (((-1297 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -3046 (-560)) (|:| -2634 (-560)) (|:| |spline| (-560)) (|:| -4467 (-560)) (|:| |axesColor| (-898)) (|:| -2402 (-560)) (|:| |unitsColor| (-898)) (|:| |showing| (-560)))) $) 46 T ELT)) (-4054 (((-1303) $ (-948) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-898) (-560) (-898) (-560)) 83 T ELT)) (-1729 (((-663 (-972 (-229))) $) NIL T ELT)) (-2766 (((-482) $ (-948)) 43 T ELT)) (-1345 (((-1303) $ (-793) (-793) (-948) (-948)) 50 T ELT)) (-3896 (((-1303) $ (-1189)) 95 T ELT)) (-2634 (((-1303) $ (-948) (-1189)) 91 T ELT)) (-3913 (((-887) $) 102 T ELT)) (-1924 (((-1303) $) 96 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4467 (((-1303) $ (-948) (-1189)) 87 T ELT) (((-1303) $ (-948) (-898)) 88 T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-1300) (-13 (-1132) (-10 -8 (-15 -1729 ((-663 (-972 (-229))) $)) (-15 -3093 ($)) (-15 -2474 ($ $)) (-15 -4155 ((-663 (-270)) $)) (-15 -4155 ($ $ (-663 (-270)))) (-15 -2474 ($ (-482) (-663 (-270)))) (-15 -4054 ((-1303) $ (-948) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-898) (-560) (-898) (-560))) (-15 -2345 ((-1297 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -3046 (-560)) (|:| -2634 (-560)) (|:| |spline| (-560)) (|:| -4467 (-560)) (|:| |axesColor| (-898)) (|:| -2402 (-560)) (|:| |unitsColor| (-898)) (|:| |showing| (-560)))) $)) (-15 -1971 ((-1297 (-3 (-482) "undefined")) $)) (-15 -2868 ((-1303) $ (-1189))) (-15 -2068 ((-1303) $ (-482) (-948))) (-15 -2766 ((-482) $ (-948))) (-15 -4467 ((-1303) $ (-948) (-1189))) (-15 -4467 ((-1303) $ (-948) (-898))) (-15 -2402 ((-1303) $ (-948) (-1189))) (-15 -2402 ((-1303) $ (-948) (-898))) (-15 -3046 ((-1303) $ (-948) (-1189))) (-15 -2795 ((-1303) $ (-948) (-1189))) (-15 -2634 ((-1303) $ (-948) (-1189))) (-15 -3896 ((-1303) $ (-1189))) (-15 -1924 ((-1303) $)) (-15 -1345 ((-1303) $ (-793) (-793) (-948) (-948))) (-15 -4130 ((-1303) $ (-948) (-391) (-391))) (-15 -2979 ((-1303) $ (-948) (-391) (-391))) (-15 -4088 ((-1303) $ (-948) (-1189))) (-15 -2228 ((-1303) $ (-793) (-793))) (-15 -2000 ((-1303) $ (-482) (-948))) (-15 -3443 ((-1303) $ (-948) (-948))) (-15 -2895 ((-1189) $ (-1189))) (-15 -2895 ((-1189) $ (-1189) (-1189))) (-15 -2895 ((-1189) $ (-1189) (-663 (-1189)))) (-15 -2872 ((-1303) $)) (-15 -1438 ((-560) $)) (-15 -3913 ((-887) $))))) (T -1300))
+((-3913 (*1 *2 *1) (-12 (-5 *2 (-887)) (-5 *1 (-1300)))) (-1729 (*1 *2 *1) (-12 (-5 *2 (-663 (-972 (-229)))) (-5 *1 (-1300)))) (-3093 (*1 *1) (-5 *1 (-1300))) (-2474 (*1 *1 *1) (-5 *1 (-1300))) (-4155 (*1 *2 *1) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1300)))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1300)))) (-2474 (*1 *1 *2 *3) (-12 (-5 *2 (-482)) (-5 *3 (-663 (-270))) (-5 *1 (-1300)))) (-4054 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-948)) (-5 *4 (-229)) (-5 *5 (-560)) (-5 *6 (-898)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2345 (*1 *2 *1) (-12 (-5 *2 (-1297 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -3046 (-560)) (|:| -2634 (-560)) (|:| |spline| (-560)) (|:| -4467 (-560)) (|:| |axesColor| (-898)) (|:| -2402 (-560)) (|:| |unitsColor| (-898)) (|:| |showing| (-560))))) (-5 *1 (-1300)))) (-1971 (*1 *2 *1) (-12 (-5 *2 (-1297 (-3 (-482) "undefined"))) (-5 *1 (-1300)))) (-2868 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2068 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-482)) (-5 *4 (-948)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2766 (*1 *2 *1 *3) (-12 (-5 *3 (-948)) (-5 *2 (-482)) (-5 *1 (-1300)))) (-4467 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4467 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-948)) (-5 *4 (-898)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2402 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2402 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-948)) (-5 *4 (-898)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-3046 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2795 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2634 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-3896 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-1924 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1300)))) (-1345 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-793)) (-5 *4 (-948)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4130 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-948)) (-5 *4 (-391)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2979 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-948)) (-5 *4 (-391)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-4088 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2228 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2000 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-482)) (-5 *4 (-948)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-3443 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1303)) (-5 *1 (-1300)))) (-2895 (*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1300)))) (-2895 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1300)))) (-2895 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-1189)) (-5 *1 (-1300)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1300)))) (-1438 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1300)))))
+(-13 (-1132) (-10 -8 (-15 -1729 ((-663 (-972 (-229))) $)) (-15 -3093 ($)) (-15 -2474 ($ $)) (-15 -4155 ((-663 (-270)) $)) (-15 -4155 ($ $ (-663 (-270)))) (-15 -2474 ($ (-482) (-663 (-270)))) (-15 -4054 ((-1303) $ (-948) (-229) (-229) (-229) (-229) (-560) (-560) (-560) (-560) (-898) (-560) (-898) (-560))) (-15 -2345 ((-1297 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -3046 (-560)) (|:| -2634 (-560)) (|:| |spline| (-560)) (|:| -4467 (-560)) (|:| |axesColor| (-898)) (|:| -2402 (-560)) (|:| |unitsColor| (-898)) (|:| |showing| (-560)))) $)) (-15 -1971 ((-1297 (-3 (-482) "undefined")) $)) (-15 -2868 ((-1303) $ (-1189))) (-15 -2068 ((-1303) $ (-482) (-948))) (-15 -2766 ((-482) $ (-948))) (-15 -4467 ((-1303) $ (-948) (-1189))) (-15 -4467 ((-1303) $ (-948) (-898))) (-15 -2402 ((-1303) $ (-948) (-1189))) (-15 -2402 ((-1303) $ (-948) (-898))) (-15 -3046 ((-1303) $ (-948) (-1189))) (-15 -2795 ((-1303) $ (-948) (-1189))) (-15 -2634 ((-1303) $ (-948) (-1189))) (-15 -3896 ((-1303) $ (-1189))) (-15 -1924 ((-1303) $)) (-15 -1345 ((-1303) $ (-793) (-793) (-948) (-948))) (-15 -4130 ((-1303) $ (-948) (-391) (-391))) (-15 -2979 ((-1303) $ (-948) (-391) (-391))) (-15 -4088 ((-1303) $ (-948) (-1189))) (-15 -2228 ((-1303) $ (-793) (-793))) (-15 -2000 ((-1303) $ (-482) (-948))) (-15 -3443 ((-1303) $ (-948) (-948))) (-15 -2895 ((-1189) $ (-1189))) (-15 -2895 ((-1189) $ (-1189) (-1189))) (-15 -2895 ((-1189) $ (-1189) (-663 (-1189)))) (-15 -2872 ((-1303) $)) (-15 -1438 ((-560) $)) (-15 -3913 ((-887) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2174 (((-1303) $ (-391)) 169 T ELT) (((-1303) $ (-391) (-391) (-391)) 170 T ELT)) (-2895 (((-1189) $ (-1189)) 179 T ELT) (((-1189) $ (-1189) (-1189)) 177 T ELT) (((-1189) $ (-1189) (-663 (-1189))) 176 T ELT)) (-3624 (($) 67 T ELT)) (-4272 (((-1303) $ (-391) (-391) (-391) (-391) (-391)) 141 T ELT) (((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) $) 139 T ELT) (((-1303) $ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 140 T ELT) (((-1303) $ (-560) (-560) (-391) (-391) (-391)) 144 T ELT) (((-1303) $ (-391) (-391)) 145 T ELT) (((-1303) $ (-391) (-391) (-391)) 152 T ELT)) (-4413 (((-391)) 122 T ELT) (((-391) (-391)) 123 T ELT)) (-1988 (((-391)) 117 T ELT) (((-391) (-391)) 119 T ELT)) (-2967 (((-391)) 120 T ELT) (((-391) (-391)) 121 T ELT)) (-3995 (((-391)) 126 T ELT) (((-391) (-391)) 127 T ELT)) (-4471 (((-391)) 124 T ELT) (((-391) (-391)) 125 T ELT)) (-2979 (((-1303) $ (-391) (-391)) 171 T ELT)) (-2868 (((-1303) $ (-1189)) 153 T ELT)) (-3682 (((-1164 (-229)) $) 68 T ELT) (($ $ (-1164 (-229))) 69 T ELT)) (-3595 (((-1303) $ (-1189)) 187 T ELT)) (-3047 (((-1303) $ (-1189)) 188 T ELT)) (-2838 (((-1303) $ (-391) (-391)) 151 T ELT) (((-1303) $ (-560) (-560)) 168 T ELT)) (-3443 (((-1303) $ (-948) (-948)) 160 T ELT)) (-2872 (((-1303) $) 137 T ELT)) (-3352 (((-1303) $ (-1189)) 186 T ELT)) (-3514 (((-1303) $ (-1189)) 134 T ELT)) (-4155 (((-663 (-270)) $) 70 T ELT) (($ $ (-663 (-270))) 71 T ELT)) (-2228 (((-1303) $ (-793) (-793)) 159 T ELT)) (-4445 (((-1303) $ (-793) (-972 (-229))) 193 T ELT)) (-2666 (($ $) 73 T ELT) (($ (-1164 (-229)) (-1189)) 74 T ELT) (($ (-1164 (-229)) (-663 (-270))) 75 T ELT)) (-4076 (((-1303) $ (-391) (-391) (-391)) 131 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-1438 (((-560) $) 128 T ELT)) (-1867 (((-1303) $ (-391)) 174 T ELT)) (-4488 (((-1303) $ (-391)) 191 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-1402 (((-1303) $ (-391)) 190 T ELT)) (-2498 (((-1303) $ (-1189)) 136 T ELT)) (-1345 (((-1303) $ (-793) (-793) (-948) (-948)) 158 T ELT)) (-3221 (((-1303) $ (-1189)) 133 T ELT)) (-3896 (((-1303) $ (-1189)) 135 T ELT)) (-1850 (((-1303) $ (-159) (-159)) 157 T ELT)) (-3913 (((-887) $) 166 T ELT)) (-1924 (((-1303) $) 138 T ELT)) (-2012 (((-1303) $ (-1189)) 189 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-4467 (((-1303) $ (-1189)) 132 T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-1301) (-13 (-1132) (-10 -8 (-15 -1988 ((-391))) (-15 -1988 ((-391) (-391))) (-15 -2967 ((-391))) (-15 -2967 ((-391) (-391))) (-15 -4413 ((-391))) (-15 -4413 ((-391) (-391))) (-15 -4471 ((-391))) (-15 -4471 ((-391) (-391))) (-15 -3995 ((-391))) (-15 -3995 ((-391) (-391))) (-15 -3624 ($)) (-15 -2666 ($ $)) (-15 -2666 ($ (-1164 (-229)) (-1189))) (-15 -2666 ($ (-1164 (-229)) (-663 (-270)))) (-15 -3682 ((-1164 (-229)) $)) (-15 -3682 ($ $ (-1164 (-229)))) (-15 -4445 ((-1303) $ (-793) (-972 (-229)))) (-15 -4155 ((-663 (-270)) $)) (-15 -4155 ($ $ (-663 (-270)))) (-15 -2228 ((-1303) $ (-793) (-793))) (-15 -3443 ((-1303) $ (-948) (-948))) (-15 -2868 ((-1303) $ (-1189))) (-15 -1345 ((-1303) $ (-793) (-793) (-948) (-948))) (-15 -4272 ((-1303) $ (-391) (-391) (-391) (-391) (-391))) (-15 -4272 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) $)) (-15 -4272 ((-1303) $ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4272 ((-1303) $ (-560) (-560) (-391) (-391) (-391))) (-15 -4272 ((-1303) $ (-391) (-391))) (-15 -4272 ((-1303) $ (-391) (-391) (-391))) (-15 -3896 ((-1303) $ (-1189))) (-15 -4467 ((-1303) $ (-1189))) (-15 -3221 ((-1303) $ (-1189))) (-15 -3514 ((-1303) $ (-1189))) (-15 -2498 ((-1303) $ (-1189))) (-15 -2838 ((-1303) $ (-391) (-391))) (-15 -2838 ((-1303) $ (-560) (-560))) (-15 -2174 ((-1303) $ (-391))) (-15 -2174 ((-1303) $ (-391) (-391) (-391))) (-15 -2979 ((-1303) $ (-391) (-391))) (-15 -3352 ((-1303) $ (-1189))) (-15 -1402 ((-1303) $ (-391))) (-15 -4488 ((-1303) $ (-391))) (-15 -3595 ((-1303) $ (-1189))) (-15 -3047 ((-1303) $ (-1189))) (-15 -2012 ((-1303) $ (-1189))) (-15 -4076 ((-1303) $ (-391) (-391) (-391))) (-15 -1867 ((-1303) $ (-391))) (-15 -2872 ((-1303) $)) (-15 -1850 ((-1303) $ (-159) (-159))) (-15 -2895 ((-1189) $ (-1189))) (-15 -2895 ((-1189) $ (-1189) (-1189))) (-15 -2895 ((-1189) $ (-1189) (-663 (-1189)))) (-15 -1924 ((-1303) $)) (-15 -1438 ((-560) $))))) (T -1301))
+((-1988 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-1988 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-2967 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-2967 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-4413 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-4413 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-4471 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-4471 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-3995 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-3995 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))) (-3624 (*1 *1) (-5 *1 (-1301))) (-2666 (*1 *1 *1) (-5 *1 (-1301))) (-2666 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 (-229))) (-5 *3 (-1189)) (-5 *1 (-1301)))) (-2666 (*1 *1 *2 *3) (-12 (-5 *2 (-1164 (-229))) (-5 *3 (-663 (-270))) (-5 *1 (-1301)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-1301)))) (-3682 (*1 *1 *1 *2) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-1301)))) (-4445 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-793)) (-5 *4 (-972 (-229))) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4155 (*1 *2 *1) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1301)))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1301)))) (-2228 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-3443 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-2868 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-1345 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-793)) (-5 *4 (-948)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4272 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4272 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *1 (-1301)))) (-4272 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4272 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-560)) (-5 *4 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4272 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4272 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-3896 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4467 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-3221 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-3514 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-2498 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-2838 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-2838 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-2174 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-2174 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-2979 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-3352 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-1402 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4488 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-3595 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-3047 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-4076 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-1867 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-2872 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1301)))) (-1850 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-159)) (-5 *2 (-1303)) (-5 *1 (-1301)))) (-2895 (*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1301)))) (-2895 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1301)))) (-2895 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-1189)) (-5 *1 (-1301)))) (-1924 (*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1301)))) (-1438 (*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1301)))))
+(-13 (-1132) (-10 -8 (-15 -1988 ((-391))) (-15 -1988 ((-391) (-391))) (-15 -2967 ((-391))) (-15 -2967 ((-391) (-391))) (-15 -4413 ((-391))) (-15 -4413 ((-391) (-391))) (-15 -4471 ((-391))) (-15 -4471 ((-391) (-391))) (-15 -3995 ((-391))) (-15 -3995 ((-391) (-391))) (-15 -3624 ($)) (-15 -2666 ($ $)) (-15 -2666 ($ (-1164 (-229)) (-1189))) (-15 -2666 ($ (-1164 (-229)) (-663 (-270)))) (-15 -3682 ((-1164 (-229)) $)) (-15 -3682 ($ $ (-1164 (-229)))) (-15 -4445 ((-1303) $ (-793) (-972 (-229)))) (-15 -4155 ((-663 (-270)) $)) (-15 -4155 ($ $ (-663 (-270)))) (-15 -2228 ((-1303) $ (-793) (-793))) (-15 -3443 ((-1303) $ (-948) (-948))) (-15 -2868 ((-1303) $ (-1189))) (-15 -1345 ((-1303) $ (-793) (-793) (-948) (-948))) (-15 -4272 ((-1303) $ (-391) (-391) (-391) (-391) (-391))) (-15 -4272 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) $)) (-15 -4272 ((-1303) $ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4272 ((-1303) $ (-560) (-560) (-391) (-391) (-391))) (-15 -4272 ((-1303) $ (-391) (-391))) (-15 -4272 ((-1303) $ (-391) (-391) (-391))) (-15 -3896 ((-1303) $ (-1189))) (-15 -4467 ((-1303) $ (-1189))) (-15 -3221 ((-1303) $ (-1189))) (-15 -3514 ((-1303) $ (-1189))) (-15 -2498 ((-1303) $ (-1189))) (-15 -2838 ((-1303) $ (-391) (-391))) (-15 -2838 ((-1303) $ (-560) (-560))) (-15 -2174 ((-1303) $ (-391))) (-15 -2174 ((-1303) $ (-391) (-391) (-391))) (-15 -2979 ((-1303) $ (-391) (-391))) (-15 -3352 ((-1303) $ (-1189))) (-15 -1402 ((-1303) $ (-391))) (-15 -4488 ((-1303) $ (-391))) (-15 -3595 ((-1303) $ (-1189))) (-15 -3047 ((-1303) $ (-1189))) (-15 -2012 ((-1303) $ (-1189))) (-15 -4076 ((-1303) $ (-391) (-391) (-391))) (-15 -1867 ((-1303) $ (-391))) (-15 -2872 ((-1303) $)) (-15 -1850 ((-1303) $ (-159) (-159))) (-15 -2895 ((-1189) $ (-1189))) (-15 -2895 ((-1189) $ (-1189) (-1189))) (-15 -2895 ((-1189) $ (-1189) (-663 (-1189)))) (-15 -1924 ((-1303) $)) (-15 -1438 ((-560) $))))
+((-2230 (((-663 (-1189)) (-663 (-1189))) 104 T ELT) (((-663 (-1189))) 96 T ELT)) (-3217 (((-663 (-1189))) 94 T ELT)) (-3468 (((-663 (-948)) (-663 (-948))) 69 T ELT) (((-663 (-948))) 64 T ELT)) (-3362 (((-663 (-793)) (-663 (-793))) 61 T ELT) (((-663 (-793))) 55 T ELT)) (-1922 (((-1303)) 71 T ELT)) (-1595 (((-948) (-948)) 87 T ELT) (((-948)) 86 T ELT)) (-3794 (((-948) (-948)) 85 T ELT) (((-948)) 84 T ELT)) (-1836 (((-898) (-898)) 81 T ELT) (((-898)) 80 T ELT)) (-2377 (((-229)) 91 T ELT) (((-229) (-391)) 93 T ELT)) (-1720 (((-948)) 88 T ELT) (((-948) (-948)) 89 T ELT)) (-4320 (((-948) (-948)) 83 T ELT) (((-948)) 82 T ELT)) (-3197 (((-898) (-898)) 75 T ELT) (((-898)) 73 T ELT)) (-3796 (((-898) (-898)) 77 T ELT) (((-898)) 76 T ELT)) (-1564 (((-898) (-898)) 79 T ELT) (((-898)) 78 T ELT)))
+(((-1302) (-10 -7 (-15 -3197 ((-898))) (-15 -3197 ((-898) (-898))) (-15 -3796 ((-898))) (-15 -3796 ((-898) (-898))) (-15 -1564 ((-898))) (-15 -1564 ((-898) (-898))) (-15 -1836 ((-898))) (-15 -1836 ((-898) (-898))) (-15 -4320 ((-948))) (-15 -4320 ((-948) (-948))) (-15 -3362 ((-663 (-793)))) (-15 -3362 ((-663 (-793)) (-663 (-793)))) (-15 -3468 ((-663 (-948)))) (-15 -3468 ((-663 (-948)) (-663 (-948)))) (-15 -1922 ((-1303))) (-15 -2230 ((-663 (-1189)))) (-15 -2230 ((-663 (-1189)) (-663 (-1189)))) (-15 -3217 ((-663 (-1189)))) (-15 -3794 ((-948))) (-15 -1595 ((-948))) (-15 -3794 ((-948) (-948))) (-15 -1595 ((-948) (-948))) (-15 -1720 ((-948) (-948))) (-15 -1720 ((-948))) (-15 -2377 ((-229) (-391))) (-15 -2377 ((-229))))) (T -1302))
+((-2377 (*1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1302)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-1302)))) (-1720 (*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))) (-1720 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))) (-1595 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))) (-3794 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))) (-1595 (*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))) (-3794 (*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))) (-3217 (*1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1302)))) (-2230 (*1 *2 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1302)))) (-2230 (*1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1302)))) (-1922 (*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1302)))) (-3468 (*1 *2 *2) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1302)))) (-3468 (*1 *2) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1302)))) (-3362 (*1 *2 *2) (-12 (-5 *2 (-663 (-793))) (-5 *1 (-1302)))) (-3362 (*1 *2) (-12 (-5 *2 (-663 (-793))) (-5 *1 (-1302)))) (-4320 (*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))) (-4320 (*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))) (-1836 (*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))) (-1836 (*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))) (-1564 (*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))) (-1564 (*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))) (-3796 (*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))) (-3796 (*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))) (-3197 (*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))) (-3197 (*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))))
+(-10 -7 (-15 -3197 ((-898))) (-15 -3197 ((-898) (-898))) (-15 -3796 ((-898))) (-15 -3796 ((-898) (-898))) (-15 -1564 ((-898))) (-15 -1564 ((-898) (-898))) (-15 -1836 ((-898))) (-15 -1836 ((-898) (-898))) (-15 -4320 ((-948))) (-15 -4320 ((-948) (-948))) (-15 -3362 ((-663 (-793)))) (-15 -3362 ((-663 (-793)) (-663 (-793)))) (-15 -3468 ((-663 (-948)))) (-15 -3468 ((-663 (-948)) (-663 (-948)))) (-15 -1922 ((-1303))) (-15 -2230 ((-663 (-1189)))) (-15 -2230 ((-663 (-1189)) (-663 (-1189)))) (-15 -3217 ((-663 (-1189)))) (-15 -3794 ((-948))) (-15 -1595 ((-948))) (-15 -3794 ((-948) (-948))) (-15 -1595 ((-948) (-948))) (-15 -1720 ((-948) (-948))) (-15 -1720 ((-948))) (-15 -2377 ((-229) (-391))) (-15 -2377 ((-229))))
+((-3231 (($) 6 T ELT)) (-3913 (((-887) $) 9 T ELT)))
+(((-1303) (-13 (-632 (-887)) (-10 -8 (-15 -3231 ($))))) (T -1303))
+((-3231 (*1 *1) (-5 *1 (-1303))))
+(-13 (-632 (-887)) (-10 -8 (-15 -3231 ($))))
+((-2453 (($ $ |#2|) 10 T ELT)))
+(((-1304 |#1| |#2|) (-10 -8 (-15 -2453 (|#1| |#1| |#2|))) (-1305 |#2|) (-376)) (T -1304))
+NIL
+(-10 -8 (-15 -2453 (|#1| |#1| |#2|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3015 (((-136)) 33 T ELT)) (-3913 (((-887) $) 12 T ELT)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ |#1|) 34 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ |#1| $) 27 T ELT) (($ $ |#1|) 31 T ELT)))
(((-1305 |#1|) (-142) (-376)) (T -1305))
-((-2594 (*1 *1 *1 *2) (-12 (-4 *1 (-1305 *2)) (-4 *2 (-376)))) (-3669 (*1 *2) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-376)) (-5 *2 (-136)))))
-(-13 (-739 |t#1|) (-10 -8 (-15 -2594 ($ $ |t#1|)) (-15 -3669 ((-136)))))
+((-2453 (*1 *1 *1 *2) (-12 (-4 *1 (-1305 *2)) (-4 *2 (-376)))) (-3015 (*1 *2) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-376)) (-5 *2 (-136)))))
+(-13 (-739 |t#1|) (-10 -8 (-15 -2453 ($ $ |t#1|)) (-15 -3015 ((-136)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-670 |#1|) . T) ((-662 |#1|) . T) ((-739 |#1|) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1132) . T) ((-1247) . T))
-((-3546 (((-663 (-1240 |#1|)) (-1207) (-1240 |#1|)) 83 T ELT)) (-3099 (((-1185 (-1185 (-975 |#1|))) (-1207) (-1185 (-975 |#1|))) 63 T ELT)) (-1681 (((-1 (-1185 (-1240 |#1|)) (-1185 (-1240 |#1|))) (-793) (-1240 |#1|) (-1185 (-1240 |#1|))) 74 T ELT)) (-2896 (((-1 (-1185 (-975 |#1|)) (-1185 (-975 |#1|))) (-793)) 65 T ELT)) (-3091 (((-1 (-1201 (-975 |#1|)) (-975 |#1|)) (-1207)) 32 T ELT)) (-2871 (((-1 (-1185 (-975 |#1|)) (-1185 (-975 |#1|))) (-793)) 64 T ELT)))
-(((-1306 |#1|) (-10 -7 (-15 -2896 ((-1 (-1185 (-975 |#1|)) (-1185 (-975 |#1|))) (-793))) (-15 -2871 ((-1 (-1185 (-975 |#1|)) (-1185 (-975 |#1|))) (-793))) (-15 -3099 ((-1185 (-1185 (-975 |#1|))) (-1207) (-1185 (-975 |#1|)))) (-15 -3091 ((-1 (-1201 (-975 |#1|)) (-975 |#1|)) (-1207))) (-15 -3546 ((-663 (-1240 |#1|)) (-1207) (-1240 |#1|))) (-15 -1681 ((-1 (-1185 (-1240 |#1|)) (-1185 (-1240 |#1|))) (-793) (-1240 |#1|) (-1185 (-1240 |#1|))))) (-376)) (T -1306))
-((-1681 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-793)) (-4 *6 (-376)) (-5 *4 (-1240 *6)) (-5 *2 (-1 (-1185 *4) (-1185 *4))) (-5 *1 (-1306 *6)) (-5 *5 (-1185 *4)))) (-3546 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-4 *5 (-376)) (-5 *2 (-663 (-1240 *5))) (-5 *1 (-1306 *5)) (-5 *4 (-1240 *5)))) (-3091 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1 (-1201 (-975 *4)) (-975 *4))) (-5 *1 (-1306 *4)) (-4 *4 (-376)))) (-3099 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-4 *5 (-376)) (-5 *2 (-1185 (-1185 (-975 *5)))) (-5 *1 (-1306 *5)) (-5 *4 (-1185 (-975 *5))))) (-2871 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-1185 (-975 *4)) (-1185 (-975 *4)))) (-5 *1 (-1306 *4)) (-4 *4 (-376)))) (-2896 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-1185 (-975 *4)) (-1185 (-975 *4)))) (-5 *1 (-1306 *4)) (-4 *4 (-376)))))
-(-10 -7 (-15 -2896 ((-1 (-1185 (-975 |#1|)) (-1185 (-975 |#1|))) (-793))) (-15 -2871 ((-1 (-1185 (-975 |#1|)) (-1185 (-975 |#1|))) (-793))) (-15 -3099 ((-1185 (-1185 (-975 |#1|))) (-1207) (-1185 (-975 |#1|)))) (-15 -3091 ((-1 (-1201 (-975 |#1|)) (-975 |#1|)) (-1207))) (-15 -3546 ((-663 (-1240 |#1|)) (-1207) (-1240 |#1|))) (-15 -1681 ((-1 (-1185 (-1240 |#1|)) (-1185 (-1240 |#1|))) (-793) (-1240 |#1|) (-1185 (-1240 |#1|)))))
-((-2215 (((-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|) 80 T ELT)) (-3932 (((-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) 79 T ELT)))
-(((-1307 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3932 ((-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))))) (-15 -2215 ((-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|))) (-363) (-1273 |#1|) (-1273 |#2|) (-424 |#2| |#3|)) (T -1307))
-((-2215 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 *3)) (-5 *2 (-2 (|:| -1954 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-5 *1 (-1307 *4 *3 *5 *6)) (-4 *6 (-424 *3 *5)))) (-3932 (*1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -1954 (-711 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-711 *4)))) (-5 *1 (-1307 *3 *4 *5 *6)) (-4 *6 (-424 *4 *5)))))
-(-10 -7 (-15 -3932 ((-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))))) (-15 -2215 ((-2 (|:| -1954 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2490 (((-1166) $) 11 T ELT)) (-3641 (((-1166) $) 9 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-1308) (-13 (-1114) (-10 -8 (-15 -3641 ((-1166) $)) (-15 -2490 ((-1166) $))))) (T -1308))
-((-3641 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1308)))) (-2490 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1308)))))
-(-13 (-1114) (-10 -8 (-15 -3641 ((-1166) $)) (-15 -2490 ((-1166) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3674 (((-1166) $) 9 T ELT)) (-1578 (((-887) $) 15 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)))
-(((-1309) (-13 (-1114) (-10 -8 (-15 -3674 ((-1166) $))))) (T -1309))
-((-3674 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1309)))))
-(-13 (-1114) (-10 -8 (-15 -3674 ((-1166) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 58 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 81 T ELT) (($ (-560)) NIL T ELT) (($ |#4|) 65 T ELT) ((|#4| $) 70 T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT)) (-2930 (((-793)) NIL T CONST)) (-1379 (((-1303) (-793)) 16 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 37 T CONST)) (-2011 (($) 84 T CONST)) (-2473 (((-114) $ $) 87 T ELT)) (-2594 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-2580 (($ $) 89 T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 63 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 91 T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT)))
-(((-1310 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1080) (-504 |#4|) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -2594 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1379 ((-1303) (-793))))) (-1080) (-871) (-815) (-979 |#1| |#3| |#2|) (-663 |#2|) (-663 (-793)) (-793)) (T -1310))
-((-2594 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-376)) (-4 *2 (-1080)) (-4 *3 (-871)) (-4 *4 (-815)) (-14 *6 (-663 *3)) (-5 *1 (-1310 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-979 *2 *4 *3)) (-14 *7 (-663 (-793))) (-14 *8 (-793)))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-1080)) (-4 *5 (-871)) (-4 *6 (-815)) (-14 *8 (-663 *5)) (-5 *2 (-1303)) (-5 *1 (-1310 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-979 *4 *6 *5)) (-14 *9 (-663 *3)) (-14 *10 *3))))
-(-13 (-1080) (-504 |#4|) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -2594 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1379 ((-1303) (-793)))))
-((-1538 (((-114) $ $) NIL T ELT)) (-3721 (((-663 (-2 (|:| -4332 $) (|:| -2109 (-663 |#4|)))) (-663 |#4|)) NIL T ELT)) (-3904 (((-663 $) (-663 |#4|)) 96 T ELT)) (-1443 (((-663 |#3|) $) NIL T ELT)) (-1466 (((-114) $) NIL T ELT)) (-3101 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3036 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-1813 ((|#4| |#4| $) NIL T ELT)) (-2286 (((-2 (|:| |under| $) (|:| -2016 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3363 (((-114) $ (-793)) NIL T ELT)) (-1982 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#4| "failed") $ |#3|) NIL T ELT)) (-2238 (($) NIL T CONST)) (-4436 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4246 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-1860 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-3745 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-1477 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 31 T ELT)) (-4027 (((-663 |#4|) (-663 |#4|) $) 28 (|has| |#1| (-571)) ELT)) (-2528 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-2539 (((-3 $ "failed") (-663 |#4|)) NIL T ELT)) (-3330 (($ (-663 |#4|)) NIL T ELT)) (-3649 (((-3 $ "failed") $) 78 T ELT)) (-2841 ((|#4| |#4| $) 83 T ELT)) (-3606 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-2375 (($ |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2341 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-3989 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3093 ((|#4| |#4| $) NIL T ELT)) (-4129 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4508)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4508)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-1723 (((-2 (|:| -4332 (-663 |#4|)) (|:| -2109 (-663 |#4|))) $) NIL T ELT)) (-2181 (((-663 |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3544 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4132 ((|#3| $) 84 T ELT)) (-4034 (((-114) $ (-793)) NIL T ELT)) (-2656 (((-663 |#4|) $) 32 (|has| $ (-6 -4508)) ELT)) (-2321 (((-114) |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-4293 (((-3 $ "failed") (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ "failed") (-663 |#4|)) 38 T ELT)) (-3768 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4509)) ELT)) (-3957 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-1918 (((-663 |#3|) $) NIL T ELT)) (-2724 (((-114) |#3| $) NIL T ELT)) (-1805 (((-114) $ (-793)) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-2398 (((-3 |#4| "failed") $) NIL T ELT)) (-1756 (((-663 |#4|) $) 54 T ELT)) (-3548 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3212 ((|#4| |#4| $) 82 T ELT)) (-2925 (((-114) $ $) 93 T ELT)) (-2557 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-1563 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3171 ((|#4| |#4| $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3637 (((-3 |#4| "failed") $) 77 T ELT)) (-3329 (((-3 |#4| "failed") (-1 (-114) |#4|) $) NIL T ELT)) (-1370 (((-3 $ "failed") $ |#4|) NIL T ELT)) (-4372 (($ $ |#4|) NIL T ELT)) (-2787 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4187 (($ $ (-663 |#4|) (-663 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-4124 (((-114) $ $) NIL T ELT)) (-1663 (((-114) $) 75 T ELT)) (-3986 (($) 46 T ELT)) (-3630 (((-793) $) NIL T ELT)) (-3865 (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) (((-793) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-1799 (($ $) NIL T ELT)) (-1407 (((-549) $) NIL (|has| |#4| (-633 (-549))) ELT)) (-1592 (($ (-663 |#4|)) NIL T ELT)) (-3752 (($ $ |#3|) NIL T ELT)) (-4288 (($ $ |#3|) NIL T ELT)) (-2886 (($ $) NIL T ELT)) (-4397 (($ $ |#3|) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (((-663 |#4|) $) 63 T ELT)) (-1582 (((-793) $) NIL (|has| |#3| (-381)) ELT)) (-1423 (((-3 $ "failed") (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44 T ELT) (((-3 $ "failed") (-663 |#4|)) 45 T ELT)) (-3662 (((-663 $) (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73 T ELT) (((-663 $) (-663 |#4|)) 74 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-1810 (((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -2572 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4006 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) NIL T ELT)) (-1728 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3938 (((-663 |#3|) $) NIL T ELT)) (-3602 (((-114) |#3| $) NIL T ELT)) (-2473 (((-114) $ $) NIL T ELT)) (-1553 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
-(((-1311 |#1| |#2| |#3| |#4|) (-13 (-1242 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4293 ((-3 $ "failed") (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4293 ((-3 $ "failed") (-663 |#4|))) (-15 -1423 ((-3 $ "failed") (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1423 ((-3 $ "failed") (-663 |#4|))) (-15 -3662 ((-663 $) (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3662 ((-663 $) (-663 |#4|))))) (-571) (-815) (-871) (-1096 |#1| |#2| |#3|)) (T -1311))
-((-4293 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-663 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1311 *5 *6 *7 *8)))) (-4293 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1311 *3 *4 *5 *6)))) (-1423 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-663 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1311 *5 *6 *7 *8)))) (-1423 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1311 *3 *4 *5 *6)))) (-3662 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *4 (-1 (-114) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1096 *6 *7 *8)) (-4 *6 (-571)) (-4 *7 (-815)) (-4 *8 (-871)) (-5 *2 (-663 (-1311 *6 *7 *8 *9))) (-5 *1 (-1311 *6 *7 *8 *9)))) (-3662 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 (-1311 *4 *5 *6 *7))) (-5 *1 (-1311 *4 *5 *6 *7)))))
-(-13 (-1242 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4293 ((-3 $ "failed") (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4293 ((-3 $ "failed") (-663 |#4|))) (-15 -1423 ((-3 $ "failed") (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1423 ((-3 $ "failed") (-663 |#4|))) (-15 -3662 ((-663 $) (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3662 ((-663 $) (-663 |#4|)))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-2238 (($) 18 T CONST)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 45 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 47 T ELT) (($ |#1| $) 46 T ELT)))
+((-4283 (((-663 (-1240 |#1|)) (-1207) (-1240 |#1|)) 83 T ELT)) (-2163 (((-1185 (-1185 (-975 |#1|))) (-1207) (-1185 (-975 |#1|))) 63 T ELT)) (-2891 (((-1 (-1185 (-1240 |#1|)) (-1185 (-1240 |#1|))) (-793) (-1240 |#1|) (-1185 (-1240 |#1|))) 74 T ELT)) (-3939 (((-1 (-1185 (-975 |#1|)) (-1185 (-975 |#1|))) (-793)) 65 T ELT)) (-2094 (((-1 (-1201 (-975 |#1|)) (-975 |#1|)) (-1207)) 32 T ELT)) (-3678 (((-1 (-1185 (-975 |#1|)) (-1185 (-975 |#1|))) (-793)) 64 T ELT)))
+(((-1306 |#1|) (-10 -7 (-15 -3939 ((-1 (-1185 (-975 |#1|)) (-1185 (-975 |#1|))) (-793))) (-15 -3678 ((-1 (-1185 (-975 |#1|)) (-1185 (-975 |#1|))) (-793))) (-15 -2163 ((-1185 (-1185 (-975 |#1|))) (-1207) (-1185 (-975 |#1|)))) (-15 -2094 ((-1 (-1201 (-975 |#1|)) (-975 |#1|)) (-1207))) (-15 -4283 ((-663 (-1240 |#1|)) (-1207) (-1240 |#1|))) (-15 -2891 ((-1 (-1185 (-1240 |#1|)) (-1185 (-1240 |#1|))) (-793) (-1240 |#1|) (-1185 (-1240 |#1|))))) (-376)) (T -1306))
+((-2891 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-793)) (-4 *6 (-376)) (-5 *4 (-1240 *6)) (-5 *2 (-1 (-1185 *4) (-1185 *4))) (-5 *1 (-1306 *6)) (-5 *5 (-1185 *4)))) (-4283 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-4 *5 (-376)) (-5 *2 (-663 (-1240 *5))) (-5 *1 (-1306 *5)) (-5 *4 (-1240 *5)))) (-2094 (*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1 (-1201 (-975 *4)) (-975 *4))) (-5 *1 (-1306 *4)) (-4 *4 (-376)))) (-2163 (*1 *2 *3 *4) (-12 (-5 *3 (-1207)) (-4 *5 (-376)) (-5 *2 (-1185 (-1185 (-975 *5)))) (-5 *1 (-1306 *5)) (-5 *4 (-1185 (-975 *5))))) (-3678 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-1185 (-975 *4)) (-1185 (-975 *4)))) (-5 *1 (-1306 *4)) (-4 *4 (-376)))) (-3939 (*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-1185 (-975 *4)) (-1185 (-975 *4)))) (-5 *1 (-1306 *4)) (-4 *4 (-376)))))
+(-10 -7 (-15 -3939 ((-1 (-1185 (-975 |#1|)) (-1185 (-975 |#1|))) (-793))) (-15 -3678 ((-1 (-1185 (-975 |#1|)) (-1185 (-975 |#1|))) (-793))) (-15 -2163 ((-1185 (-1185 (-975 |#1|))) (-1207) (-1185 (-975 |#1|)))) (-15 -2094 ((-1 (-1201 (-975 |#1|)) (-975 |#1|)) (-1207))) (-15 -4283 ((-663 (-1240 |#1|)) (-1207) (-1240 |#1|))) (-15 -2891 ((-1 (-1185 (-1240 |#1|)) (-1185 (-1240 |#1|))) (-793) (-1240 |#1|) (-1185 (-1240 |#1|)))))
+((-1396 (((-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|) 80 T ELT)) (-3538 (((-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|)))) 79 T ELT)))
+(((-1307 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3538 ((-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))))) (-15 -1396 ((-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|))) (-363) (-1273 |#1|) (-1273 |#2|) (-424 |#2| |#3|)) (T -1307))
+((-1396 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 *3)) (-5 *2 (-2 (|:| -3822 (-711 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-711 *3)))) (-5 *1 (-1307 *4 *3 *5 *6)) (-4 *6 (-424 *3 *5)))) (-3538 (*1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 *4)) (-5 *2 (-2 (|:| -3822 (-711 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-711 *4)))) (-5 *1 (-1307 *3 *4 *5 *6)) (-4 *6 (-424 *4 *5)))))
+(-10 -7 (-15 -3538 ((-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))))) (-15 -1396 ((-2 (|:| -3822 (-711 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-711 |#2|))) |#2|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-4193 (((-1166) $) 11 T ELT)) (-4003 (((-1166) $) 9 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 17 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-1308) (-13 (-1114) (-10 -8 (-15 -4003 ((-1166) $)) (-15 -4193 ((-1166) $))))) (T -1308))
+((-4003 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1308)))) (-4193 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1308)))))
+(-13 (-1114) (-10 -8 (-15 -4003 ((-1166) $)) (-15 -4193 ((-1166) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2367 (((-1166) $) 9 T ELT)) (-3913 (((-887) $) 15 T ELT) (($ (-1212)) NIL T ELT) (((-1212) $) NIL T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)))
+(((-1309) (-13 (-1114) (-10 -8 (-15 -2367 ((-1166) $))))) (T -1309))
+((-2367 (*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1309)))))
+(-13 (-1114) (-10 -8 (-15 -2367 ((-1166) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 58 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 81 T ELT) (($ (-560)) NIL T ELT) (($ |#4|) 65 T ELT) ((|#4| $) 70 T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT)) (-4191 (((-793)) NIL T CONST)) (-4013 (((-1303) (-793)) 16 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 37 T CONST)) (-1456 (($) 84 T CONST)) (-2340 (((-114) $ $) 87 T ELT)) (-2453 (((-3 $ "failed") $ $) NIL (|has| |#1| (-376)) ELT)) (-2441 (($ $) 89 T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 63 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 91 T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT)))
+(((-1310 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1080) (-504 |#4|) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -2453 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4013 ((-1303) (-793))))) (-1080) (-871) (-815) (-979 |#1| |#3| |#2|) (-663 |#2|) (-663 (-793)) (-793)) (T -1310))
+((-2453 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-376)) (-4 *2 (-1080)) (-4 *3 (-871)) (-4 *4 (-815)) (-14 *6 (-663 *3)) (-5 *1 (-1310 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-979 *2 *4 *3)) (-14 *7 (-663 (-793))) (-14 *8 (-793)))) (-4013 (*1 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-1080)) (-4 *5 (-871)) (-4 *6 (-815)) (-14 *8 (-663 *5)) (-5 *2 (-1303)) (-5 *1 (-1310 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-979 *4 *6 *5)) (-14 *9 (-663 *3)) (-14 *10 *3))))
+(-13 (-1080) (-504 |#4|) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -2453 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4013 ((-1303) (-793)))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2253 (((-663 (-2 (|:| -1924 $) (|:| -2888 (-663 |#4|)))) (-663 |#4|)) NIL T ELT)) (-1372 (((-663 $) (-663 |#4|)) 96 T ELT)) (-4162 (((-663 |#3|) $) NIL T ELT)) (-1362 (((-114) $) NIL T ELT)) (-2179 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-2729 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-1722 ((|#4| |#4| $) NIL T ELT)) (-1787 (((-2 (|:| |under| $) (|:| -3147 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-3045 (((-114) $ (-793)) NIL T ELT)) (-3923 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT) (((-3 |#4| "failed") $ |#3|) NIL T ELT)) (-3525 (($) NIL T CONST)) (-2733 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-3672 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-4148 (((-114) $ $) NIL (|has| |#1| (-571)) ELT)) (-2449 (((-114) $) NIL (|has| |#1| (-571)) ELT)) (-4108 (((-663 |#4|) (-663 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 31 T ELT)) (-3277 (((-663 |#4|) (-663 |#4|) $) 28 (|has| |#1| (-571)) ELT)) (-4485 (((-663 |#4|) (-663 |#4|) $) NIL (|has| |#1| (-571)) ELT)) (-3929 (((-3 $ "failed") (-663 |#4|)) NIL T ELT)) (-3649 (($ (-663 |#4|)) NIL T ELT)) (-4345 (((-3 $ "failed") $) 78 T ELT)) (-1440 ((|#4| |#4| $) 83 T ELT)) (-3658 (($ $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-3033 (($ |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3276 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-2869 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-2113 ((|#4| |#4| $) NIL T ELT)) (-1778 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4508)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4508)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-2115 (((-2 (|:| -1924 (-663 |#4|)) (|:| -2888 (-663 |#4|))) $) NIL T ELT)) (-3737 (((-663 |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4264 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-1816 ((|#3| $) 84 T ELT)) (-3332 (((-114) $ (-793)) NIL T ELT)) (-3243 (((-663 |#4|) $) 32 (|has| $ (-6 -4508)) ELT)) (-3091 (((-114) |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT)) (-4066 (((-3 $ "failed") (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ "failed") (-663 |#4|)) 38 T ELT)) (-3324 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4509)) ELT)) (-2260 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-3471 (((-663 |#3|) $) NIL T ELT)) (-2703 (((-114) |#3| $) NIL T ELT)) (-1634 (((-114) $ (-793)) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3057 (((-3 |#4| "failed") $) NIL T ELT)) (-2428 (((-663 |#4|) $) 54 T ELT)) (-4301 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4039 ((|#4| |#4| $) 82 T ELT)) (-4138 (((-114) $ $) 93 T ELT)) (-3531 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-571)) ELT)) (-1737 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-1686 ((|#4| |#4| $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-4334 (((-3 |#4| "failed") $) 77 T ELT)) (-2708 (((-3 |#4| "failed") (-1 (-114) |#4|) $) NIL T ELT)) (-3867 (((-3 $ "failed") $ |#4|) NIL T ELT)) (-2219 (($ $ |#4|) NIL T ELT)) (-2086 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-2371 (($ $ (-663 |#4|) (-663 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT) (($ $ (-663 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1132))) ELT)) (-1736 (((-114) $ $) NIL T ELT)) (-2706 (((-114) $) 75 T ELT)) (-2832 (($) 46 T ELT)) (-3900 (((-793) $) NIL T ELT)) (-3384 (((-793) |#4| $) NIL (-12 (|has| $ (-6 -4508)) (|has| |#4| (-1132))) ELT) (((-793) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-4107 (($ $) NIL T ELT)) (-2400 (((-549) $) NIL (|has| |#4| (-633 (-549))) ELT)) (-3924 (($ (-663 |#4|)) NIL T ELT)) (-2511 (($ $ |#3|) NIL T ELT)) (-4047 (($ $ |#3|) NIL T ELT)) (-3833 (($ $) NIL T ELT)) (-2438 (($ $ |#3|) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (((-663 |#4|) $) 63 T ELT)) (-1930 (((-793) $) NIL (|has| |#3| (-381)) ELT)) (-2861 (((-3 $ "failed") (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44 T ELT) (((-3 $ "failed") (-663 |#4|)) 45 T ELT)) (-2926 (((-663 $) (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73 T ELT) (((-663 $) (-663 |#4|)) 74 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-1690 (((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3172 (-663 |#4|))) "failed") (-663 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3058 (((-114) $ (-1 (-114) |#4| (-663 |#4|))) NIL T ELT)) (-2149 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4508)) ELT)) (-3616 (((-663 |#3|) $) NIL T ELT)) (-3621 (((-114) |#3| $) NIL T ELT)) (-2340 (((-114) $ $) NIL T ELT)) (-2256 (((-793) $) NIL (|has| $ (-6 -4508)) ELT)))
+(((-1311 |#1| |#2| |#3| |#4|) (-13 (-1242 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4066 ((-3 $ "failed") (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4066 ((-3 $ "failed") (-663 |#4|))) (-15 -2861 ((-3 $ "failed") (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2861 ((-3 $ "failed") (-663 |#4|))) (-15 -2926 ((-663 $) (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2926 ((-663 $) (-663 |#4|))))) (-571) (-815) (-871) (-1096 |#1| |#2| |#3|)) (T -1311))
+((-4066 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-663 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1311 *5 *6 *7 *8)))) (-4066 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1311 *3 *4 *5 *6)))) (-2861 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-663 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1311 *5 *6 *7 *8)))) (-2861 (*1 *1 *2) (|partial| -12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1311 *3 *4 *5 *6)))) (-2926 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-663 *9)) (-5 *4 (-1 (-114) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1096 *6 *7 *8)) (-4 *6 (-571)) (-4 *7 (-815)) (-4 *8 (-871)) (-5 *2 (-663 (-1311 *6 *7 *8 *9))) (-5 *1 (-1311 *6 *7 *8 *9)))) (-2926 (*1 *2 *3) (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 (-1311 *4 *5 *6 *7))) (-5 *1 (-1311 *4 *5 *6 *7)))))
+(-13 (-1242 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4066 ((-3 $ "failed") (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4066 ((-3 $ "failed") (-663 |#4|))) (-15 -2861 ((-3 $ "failed") (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2861 ((-3 $ "failed") (-663 |#4|))) (-15 -2926 ((-663 $) (-663 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2926 ((-663 $) (-663 |#4|)))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-3525 (($) 18 T CONST)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#1|) 45 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ |#1|) 47 T ELT) (($ |#1| $) 46 T ELT)))
(((-1312 |#1|) (-142) (-1080)) (T -1312))
NIL
(-13 (-1080) (-111 |t#1| |t#1|) (-635 |t#1|) (-10 -7 (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 |#1|) |has| |#1| (-175)) ((-739 |#1|) |has| |#1| (-175)) ((-748) . T) ((-1082 |#1|) . T) ((-1087 |#1|) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T))
-((-1538 (((-114) $ $) 67 T ELT)) (-2388 (((-114) $) NIL T ELT)) (-2571 (((-663 |#1|) $) 52 T ELT)) (-2672 (($ $ (-793)) 46 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1454 (($ $ (-793)) 24 (|has| |#2| (-175)) ELT) (($ $ $) 25 (|has| |#2| (-175)) ELT)) (-2238 (($) NIL T CONST)) (-2942 (($ $ $) 70 T ELT) (($ $ (-841 |#1|)) 56 T ELT) (($ $ |#1|) 60 T ELT)) (-2539 (((-3 (-841 |#1|) "failed") $) NIL T ELT)) (-3330 (((-841 |#1|) $) NIL T ELT)) (-1624 (($ $) 39 T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2100 (((-114) $) NIL T ELT)) (-1661 (($ $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-3531 (((-793) $) NIL T ELT)) (-3997 (((-663 $) $) NIL T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1471 (($ (-841 |#1|) |#2|) 38 T ELT)) (-2256 (($ $) 40 T ELT)) (-4401 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) 12 T ELT)) (-1851 (((-841 |#1|) $) NIL T ELT)) (-2568 (((-841 |#1|) $) 41 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4058 (($ $ $) 69 T ELT) (($ $ (-841 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-2064 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-1583 (((-841 |#1|) $) 35 T ELT)) (-1597 ((|#2| $) 37 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3630 (((-793) $) 43 T ELT)) (-4305 (((-114) $) 47 T ELT)) (-3081 ((|#2| $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-841 |#1|)) 30 T ELT) (($ |#1|) 31 T ELT) (($ |#2|) NIL T ELT) (($ (-560)) NIL T ELT)) (-3409 (((-663 |#2|) $) NIL T ELT)) (-2305 ((|#2| $ (-841 |#1|)) NIL T ELT)) (-2115 ((|#2| $ $) 76 T ELT) ((|#2| $ (-841 |#1|)) NIL T ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 13 T CONST)) (-2011 (($) 19 T CONST)) (-4165 (((-663 (-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-2473 (((-114) $ $) 44 T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 28 T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-948)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#2| $) 27 T ELT) (($ $ |#2|) 68 T ELT) (($ |#2| (-841 |#1|)) NIL T ELT) (($ |#1| $) 33 T ELT) (($ $ $) NIL T ELT)))
+((-2243 (((-114) $ $) 67 T ELT)) (-2505 (((-114) $) NIL T ELT)) (-4356 (((-663 |#1|) $) 52 T ELT)) (-2165 (($ $ (-793)) 46 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2245 (($ $ (-793)) 24 (|has| |#2| (-175)) ELT) (($ $ $) 25 (|has| |#2| (-175)) ELT)) (-3525 (($) NIL T CONST)) (-4308 (($ $ $) 70 T ELT) (($ $ (-841 |#1|)) 56 T ELT) (($ $ |#1|) 60 T ELT)) (-3929 (((-3 (-841 |#1|) "failed") $) NIL T ELT)) (-3649 (((-841 |#1|) $) NIL T ELT)) (-3062 (($ $) 39 T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1498 (((-114) $) NIL T ELT)) (-2686 (($ $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-4127 (((-793) $) NIL T ELT)) (-2947 (((-663 $) $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-1405 (($ (-841 |#1|) |#2|) 38 T ELT)) (-3723 (($ $) 40 T ELT)) (-2463 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) 12 T ELT)) (-4052 (((-841 |#1|) $) NIL T ELT)) (-3659 (((-841 |#1|) $) 41 T ELT)) (-2260 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2343 (($ $ $) 69 T ELT) (($ $ (-841 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-2354 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3024 (((-841 |#1|) $) 35 T ELT)) (-3037 ((|#2| $) 37 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3900 (((-793) $) 43 T ELT)) (-2889 (((-114) $) 47 T ELT)) (-2650 ((|#2| $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-841 |#1|)) 30 T ELT) (($ |#1|) 31 T ELT) (($ |#2|) NIL T ELT) (($ (-560)) NIL T ELT)) (-2247 (((-663 |#2|) $) NIL T ELT)) (-2920 ((|#2| $ (-841 |#1|)) NIL T ELT)) (-2625 ((|#2| $ $) 76 T ELT) ((|#2| $ (-841 |#1|)) NIL T ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 13 T CONST)) (-1456 (($) 19 T CONST)) (-4118 (((-663 (-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-2340 (((-114) $ $) 44 T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 28 T ELT)) (** (($ $ (-793)) NIL T ELT) (($ $ (-948)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ |#2| $) 27 T ELT) (($ $ |#2|) 68 T ELT) (($ |#2| (-841 |#1|)) NIL T ELT) (($ |#1| $) 33 T ELT) (($ $ $) NIL T ELT)))
(((-1313 |#1| |#2|) (-13 (-397 |#2| (-841 |#1|)) (-1320 |#1| |#2|)) (-871) (-1080)) (T -1313))
NIL
(-13 (-397 |#2| (-841 |#1|)) (-1320 |#1| |#2|))
-((-2192 ((|#3| |#3| (-793)) 28 T ELT)) (-3251 ((|#3| |#3| (-793)) 34 T ELT)) (-2713 ((|#3| |#3| |#3| (-793)) 35 T ELT)))
-(((-1314 |#1| |#2| |#3|) (-10 -7 (-15 -3251 (|#3| |#3| (-793))) (-15 -2192 (|#3| |#3| (-793))) (-15 -2713 (|#3| |#3| |#3| (-793)))) (-13 (-1080) (-739 (-421 (-560)))) (-871) (-1320 |#2| |#1|)) (T -1314))
-((-2713 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-13 (-1080) (-739 (-421 (-560))))) (-4 *5 (-871)) (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1320 *5 *4)))) (-2192 (*1 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-13 (-1080) (-739 (-421 (-560))))) (-4 *5 (-871)) (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1320 *5 *4)))) (-3251 (*1 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-13 (-1080) (-739 (-421 (-560))))) (-4 *5 (-871)) (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1320 *5 *4)))))
-(-10 -7 (-15 -3251 (|#3| |#3| (-793))) (-15 -2192 (|#3| |#3| (-793))) (-15 -2713 (|#3| |#3| |#3| (-793))))
-((-1947 (((-114) $) 15 T ELT)) (-3602 (((-114) $) 14 T ELT)) (-3054 (($ $) 19 T ELT) (($ $ (-793)) 21 T ELT)))
-(((-1315 |#1| |#2|) (-10 -8 (-15 -3054 (|#1| |#1| (-793))) (-15 -3054 (|#1| |#1|)) (-15 -1947 ((-114) |#1|)) (-15 -3602 ((-114) |#1|))) (-1316 |#2|) (-376)) (T -1315))
-NIL
-(-10 -8 (-15 -3054 (|#1| |#1| (-793))) (-15 -3054 (|#1| |#1|)) (-15 -1947 ((-114) |#1|)) (-15 -3602 ((-114) |#1|)))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-4091 (((-2 (|:| -2489 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-3244 (($ $) 46 T ELT)) (-4093 (((-114) $) 44 T ELT)) (-1947 (((-114) $) 104 T ELT)) (-1796 (((-793)) 100 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-1804 (($ $) 81 T ELT)) (-3023 (((-419 $) $) 80 T ELT)) (-1615 (((-114) $ $) 65 T ELT)) (-2238 (($) 18 T CONST)) (-2539 (((-3 |#1| "failed") $) 111 T ELT)) (-3330 ((|#1| $) 112 T ELT)) (-1478 (($ $ $) 61 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-1490 (($ $ $) 62 T ELT)) (-2950 (((-2 (|:| -2115 (-663 $)) (|:| -2748 $)) (-663 $)) 57 T ELT)) (-1696 (($ $ (-793)) 97 (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) 96 (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4330 (((-114) $) 79 T ELT)) (-3913 (((-854 (-948)) $) 94 (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-1581 (((-114) $) 35 T ELT)) (-4361 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-2093 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-1544 (($ $) 78 T ELT)) (-3583 (((-114) $) 103 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-1882 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-2132 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-4457 (((-419 $) $) 82 T ELT)) (-2969 (((-854 (-948))) 101 T ELT)) (-3812 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2748 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-1528 (((-3 $ "failed") $ $) 48 T ELT)) (-2661 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-2901 (((-793) $) 64 T ELT)) (-2205 (((-2 (|:| -1774 $) (|:| -2341 $)) $ $) 63 T ELT)) (-2364 (((-3 (-793) "failed") $ $) 95 (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3669 (((-136)) 109 T ELT)) (-3630 (((-854 (-948)) $) 102 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-560))) 74 T ELT) (($ |#1|) 110 T ELT)) (-1964 (((-3 $ "failed") $) 93 (-2304 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2948 (((-114) $ $) 45 T ELT)) (-3602 (((-114) $) 105 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-3054 (($ $) 99 (|has| |#1| (-381)) ELT) (($ $ (-793)) 98 (|has| |#1| (-381)) ELT)) (-2473 (((-114) $ $) 8 T ELT)) (-2594 (($ $ $) 73 T ELT) (($ $ |#1|) 108 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 77 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 76 T ELT) (($ (-421 (-560)) $) 75 T ELT) (($ $ |#1|) 107 T ELT) (($ |#1| $) 106 T ELT)))
+((-2831 ((|#3| |#3| (-793)) 28 T ELT)) (-2515 ((|#3| |#3| (-793)) 34 T ELT)) (-2591 ((|#3| |#3| |#3| (-793)) 35 T ELT)))
+(((-1314 |#1| |#2| |#3|) (-10 -7 (-15 -2515 (|#3| |#3| (-793))) (-15 -2831 (|#3| |#3| (-793))) (-15 -2591 (|#3| |#3| |#3| (-793)))) (-13 (-1080) (-739 (-421 (-560)))) (-871) (-1320 |#2| |#1|)) (T -1314))
+((-2591 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-13 (-1080) (-739 (-421 (-560))))) (-4 *5 (-871)) (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1320 *5 *4)))) (-2831 (*1 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-13 (-1080) (-739 (-421 (-560))))) (-4 *5 (-871)) (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1320 *5 *4)))) (-2515 (*1 *2 *2 *3) (-12 (-5 *3 (-793)) (-4 *4 (-13 (-1080) (-739 (-421 (-560))))) (-4 *5 (-871)) (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1320 *5 *4)))))
+(-10 -7 (-15 -2515 (|#3| |#3| (-793))) (-15 -2831 (|#3| |#3| (-793))) (-15 -2591 (|#3| |#3| |#3| (-793))))
+((-3752 (((-114) $) 15 T ELT)) (-3621 (((-114) $) 14 T ELT)) (-2925 (($ $) 19 T ELT) (($ $ (-793)) 21 T ELT)))
+(((-1315 |#1| |#2|) (-10 -8 (-15 -2925 (|#1| |#1| (-793))) (-15 -2925 (|#1| |#1|)) (-15 -3752 ((-114) |#1|)) (-15 -3621 ((-114) |#1|))) (-1316 |#2|) (-376)) (T -1315))
+NIL
+(-10 -8 (-15 -2925 (|#1| |#1| (-793))) (-15 -2925 (|#1| |#1|)) (-15 -3752 ((-114) |#1|)) (-15 -3621 ((-114) |#1|)))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-2640 (((-2 (|:| -4184 $) (|:| -4495 $) (|:| |associate| $)) $) 47 T ELT)) (-4366 (($ $) 46 T ELT)) (-2667 (((-114) $) 44 T ELT)) (-3752 (((-114) $) 104 T ELT)) (-1542 (((-793)) 100 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-1621 (($ $) 81 T ELT)) (-3898 (((-419 $) $) 80 T ELT)) (-3476 (((-114) $ $) 65 T ELT)) (-3525 (($) 18 T CONST)) (-3929 (((-3 |#1| "failed") $) 111 T ELT)) (-3649 ((|#1| $) 112 T ELT)) (-2186 (($ $ $) 61 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-2197 (($ $ $) 62 T ELT)) (-4382 (((-2 (|:| -2625 (-663 $)) (|:| -3583 $)) (-663 $)) 57 T ELT)) (-3079 (($ $ (-793)) 97 (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) 96 (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3141 (((-114) $) 79 T ELT)) (-1460 (((-854 (-948)) $) 94 (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-1918 (((-114) $) 35 T ELT)) (-3369 (((-3 (-663 $) "failed") (-663 $) $) 58 T ELT)) (-1861 (($ $ $) 52 T ELT) (($ (-663 $)) 51 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-2986 (($ $) 78 T ELT)) (-3410 (((-114) $) 103 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-4362 (((-1201 $) (-1201 $) (-1201 $)) 50 T ELT)) (-1938 (($ $ $) 54 T ELT) (($ (-663 $)) 53 T ELT)) (-4012 (((-419 $) $) 82 T ELT)) (-3313 (((-854 (-948))) 101 T ELT)) (-1760 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -3583 $)) $ $) 60 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 59 T ELT)) (-2233 (((-3 $ "failed") $ $) 48 T ELT)) (-3291 (((-3 (-663 $) "failed") (-663 $) $) 56 T ELT)) (-3989 (((-793) $) 64 T ELT)) (-4455 (((-2 (|:| -2584 $) (|:| -3276 $)) $ $) 63 T ELT)) (-2258 (((-3 (-793) "failed") $ $) 95 (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3015 (((-136)) 109 T ELT)) (-3900 (((-854 (-948)) $) 102 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ $) 49 T ELT) (($ (-421 (-560))) 74 T ELT) (($ |#1|) 110 T ELT)) (-3919 (((-3 $ "failed") $) 93 (-2196 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-4361 (((-114) $ $) 45 T ELT)) (-3621 (((-114) $) 105 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2925 (($ $) 99 (|has| |#1| (-381)) ELT) (($ $ (-793)) 98 (|has| |#1| (-381)) ELT)) (-2340 (((-114) $ $) 8 T ELT)) (-2453 (($ $ $) 73 T ELT) (($ $ |#1|) 108 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT) (($ $ (-560)) 77 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ $ (-421 (-560))) 76 T ELT) (($ (-421 (-560)) $) 75 T ELT) (($ $ |#1|) 107 T ELT) (($ |#1| $) 106 T ELT)))
(((-1316 |#1|) (-142) (-376)) (T -1316))
-((-3602 (*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-114)))) (-1947 (*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-114)))) (-3583 (*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-114)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-854 (-948))))) (-2969 (*1 *2) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-854 (-948))))) (-1796 (*1 *2) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-793)))) (-3054 (*1 *1 *1) (-12 (-4 *1 (-1316 *2)) (-4 *2 (-376)) (-4 *2 (-381)))) (-3054 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-4 *3 (-381)))))
-(-13 (-376) (-1069 |t#1|) (-1305 |t#1|) (-10 -8 (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-416)) |%noBranch|) (-15 -3602 ((-114) $)) (-15 -1947 ((-114) $)) (-15 -3583 ((-114) $)) (-15 -3630 ((-854 (-948)) $)) (-15 -2969 ((-854 (-948)))) (-15 -1796 ((-793))) (IF (|has| |t#1| (-381)) (PROGN (-6 (-416)) (-15 -3054 ($ $)) (-15 -3054 ($ $ (-793)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -2304 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-635 #0#) . T) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-416) -2304 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-466) . T) ((-571) . T) ((-668 #0#) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-739 #0#) . T) ((-739 |#1|) . T) ((-739 $) . T) ((-748) . T) ((-950) . T) ((-1069 |#1|) . T) ((-1082 #0#) . T) ((-1082 |#1|) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 |#1|) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T) ((-1252) . T) ((-1305 |#1|) . T))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-2571 (((-663 |#1|) $) 47 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-1454 (($ $ $) 50 (|has| |#2| (-175)) ELT) (($ $ (-793)) 49 (|has| |#2| (-175)) ELT)) (-2238 (($) 18 T CONST)) (-2942 (($ $ |#1|) 61 T ELT) (($ $ (-841 |#1|)) 60 T ELT) (($ $ $) 59 T ELT)) (-2539 (((-3 (-841 |#1|) "failed") $) 71 T ELT)) (-3330 (((-841 |#1|) $) 72 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-2100 (((-114) $) 52 T ELT)) (-1661 (($ $) 51 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-1556 (((-114) $) 57 T ELT)) (-1471 (($ (-841 |#1|) |#2|) 58 T ELT)) (-2256 (($ $) 56 T ELT)) (-4401 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) 67 T ELT)) (-1851 (((-841 |#1|) $) 68 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-4058 (($ $ |#1|) 64 T ELT) (($ $ (-841 |#1|)) 63 T ELT) (($ $ $) 62 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-4305 (((-114) $) 54 T ELT)) (-3081 ((|#2| $) 53 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#2|) 75 T ELT) (($ (-841 |#1|)) 70 T ELT) (($ |#1|) 55 T ELT)) (-2115 ((|#2| $ (-841 |#1|)) 66 T ELT) ((|#2| $ $) 65 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ |#2| $) 74 T ELT) (($ $ |#2|) 73 T ELT) (($ |#1| $) 69 T ELT)))
+((-3621 (*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-114)))) (-3752 (*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-114)))) (-3410 (*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-114)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-854 (-948))))) (-3313 (*1 *2) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-854 (-948))))) (-1542 (*1 *2) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-793)))) (-2925 (*1 *1 *1) (-12 (-4 *1 (-1316 *2)) (-4 *2 (-376)) (-4 *2 (-381)))) (-2925 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-4 *3 (-381)))))
+(-13 (-376) (-1069 |t#1|) (-1305 |t#1|) (-10 -8 (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-416)) |%noBranch|) (-15 -3621 ((-114) $)) (-15 -3752 ((-114) $)) (-15 -3410 ((-114) $)) (-15 -3900 ((-854 (-948)) $)) (-15 -3313 ((-854 (-948)))) (-15 -1542 ((-793))) (IF (|has| |t#1| (-381)) (PROGN (-6 (-416)) (-15 -2925 ($ $)) (-15 -2925 ($ $ (-793)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-38 #0=(-421 (-560))) . T) ((-38 $) . T) ((-102) . T) ((-111 #0# #0#) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -2196 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-635 #0#) . T) ((-635 (-560)) . T) ((-635 |#1|) . T) ((-635 $) . T) ((-632 (-887)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-416) -2196 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-466) . T) ((-571) . T) ((-668 #0#) . T) ((-668 (-560)) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-670 #0#) . T) ((-670 |#1|) . T) ((-670 $) . T) ((-662 #0#) . T) ((-662 |#1|) . T) ((-662 $) . T) ((-739 #0#) . T) ((-739 |#1|) . T) ((-739 $) . T) ((-748) . T) ((-950) . T) ((-1069 |#1|) . T) ((-1082 #0#) . T) ((-1082 |#1|) . T) ((-1082 $) . T) ((-1087 #0#) . T) ((-1087 |#1|) . T) ((-1087 $) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T) ((-1252) . T) ((-1305 |#1|) . T))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-4356 (((-663 |#1|) $) 47 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-2245 (($ $ $) 50 (|has| |#2| (-175)) ELT) (($ $ (-793)) 49 (|has| |#2| (-175)) ELT)) (-3525 (($) 18 T CONST)) (-4308 (($ $ |#1|) 61 T ELT) (($ $ (-841 |#1|)) 60 T ELT) (($ $ $) 59 T ELT)) (-3929 (((-3 (-841 |#1|) "failed") $) 71 T ELT)) (-3649 (((-841 |#1|) $) 72 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1498 (((-114) $) 52 T ELT)) (-2686 (($ $) 51 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-1673 (((-114) $) 57 T ELT)) (-1405 (($ (-841 |#1|) |#2|) 58 T ELT)) (-3723 (($ $) 56 T ELT)) (-2463 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) 67 T ELT)) (-4052 (((-841 |#1|) $) 68 T ELT)) (-2260 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-2343 (($ $ |#1|) 64 T ELT) (($ $ (-841 |#1|)) 63 T ELT) (($ $ $) 62 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-2889 (((-114) $) 54 T ELT)) (-2650 ((|#2| $) 53 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#2|) 75 T ELT) (($ (-841 |#1|)) 70 T ELT) (($ |#1|) 55 T ELT)) (-2625 ((|#2| $ (-841 |#1|)) 66 T ELT) ((|#2| $ $) 65 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ |#2| $) 74 T ELT) (($ $ |#2|) 73 T ELT) (($ |#1| $) 69 T ELT)))
(((-1317 |#1| |#2|) (-142) (-871) (-1080)) (T -1317))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1317 *3 *2)) (-4 *3 (-871)) (-4 *2 (-1080)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-1851 (*1 *2 *1) (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-841 *3)))) (-4401 (*1 *2 *1) (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-2 (|:| |k| (-841 *3)) (|:| |c| *4))))) (-2115 (*1 *2 *1 *3) (-12 (-5 *3 (-841 *4)) (-4 *1 (-1317 *4 *2)) (-4 *4 (-871)) (-4 *2 (-1080)))) (-2115 (*1 *2 *1 *1) (-12 (-4 *1 (-1317 *3 *2)) (-4 *3 (-871)) (-4 *2 (-1080)))) (-4058 (*1 *1 *1 *2) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-4058 (*1 *1 *1 *2) (-12 (-5 *2 (-841 *3)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)))) (-4058 (*1 *1 *1 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-2942 (*1 *1 *1 *2) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-2942 (*1 *1 *1 *2) (-12 (-5 *2 (-841 *3)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)))) (-2942 (*1 *1 *1 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-1471 (*1 *1 *2 *3) (-12 (-5 *2 (-841 *4)) (-4 *4 (-871)) (-4 *1 (-1317 *4 *3)) (-4 *3 (-1080)))) (-1556 (*1 *2 *1) (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-114)))) (-2256 (*1 *1 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-1578 (*1 *1 *2) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-4305 (*1 *2 *1) (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-114)))) (-3081 (*1 *2 *1) (-12 (-4 *1 (-1317 *3 *2)) (-4 *3 (-871)) (-4 *2 (-1080)))) (-2100 (*1 *2 *1) (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-114)))) (-1661 (*1 *1 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-1454 (*1 *1 *1 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)) (-4 *3 (-175)))) (-1454 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-4 *4 (-175)))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)))) (-2571 (*1 *2 *1) (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-663 *3)))))
-(-13 (-1080) (-1312 |t#2|) (-1069 (-841 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -1851 ((-841 |t#1|) $)) (-15 -4401 ((-2 (|:| |k| (-841 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2115 (|t#2| $ (-841 |t#1|))) (-15 -2115 (|t#2| $ $)) (-15 -4058 ($ $ |t#1|)) (-15 -4058 ($ $ (-841 |t#1|))) (-15 -4058 ($ $ $)) (-15 -2942 ($ $ |t#1|)) (-15 -2942 ($ $ (-841 |t#1|))) (-15 -2942 ($ $ $)) (-15 -1471 ($ (-841 |t#1|) |t#2|)) (-15 -1556 ((-114) $)) (-15 -2256 ($ $)) (-15 -1578 ($ |t#1|)) (-15 -4305 ((-114) $)) (-15 -3081 (|t#2| $)) (-15 -2100 ((-114) $)) (-15 -1661 ($ $)) (IF (|has| |t#2| (-175)) (PROGN (-15 -1454 ($ $ $)) (-15 -1454 ($ $ (-793)))) |%noBranch|) (-15 -3957 ($ (-1 |t#2| |t#2|) $)) (-15 -2571 ((-663 |t#1|) $)) (IF (|has| |t#2| (-6 -4501)) (-6 -4501) |%noBranch|)))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1317 *3 *2)) (-4 *3 (-871)) (-4 *2 (-1080)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-4052 (*1 *2 *1) (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-841 *3)))) (-2463 (*1 *2 *1) (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-2 (|:| |k| (-841 *3)) (|:| |c| *4))))) (-2625 (*1 *2 *1 *3) (-12 (-5 *3 (-841 *4)) (-4 *1 (-1317 *4 *2)) (-4 *4 (-871)) (-4 *2 (-1080)))) (-2625 (*1 *2 *1 *1) (-12 (-4 *1 (-1317 *3 *2)) (-4 *3 (-871)) (-4 *2 (-1080)))) (-2343 (*1 *1 *1 *2) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 (-841 *3)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)))) (-2343 (*1 *1 *1 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-4308 (*1 *1 *1 *2) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-4308 (*1 *1 *1 *2) (-12 (-5 *2 (-841 *3)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)))) (-4308 (*1 *1 *1 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-1405 (*1 *1 *2 *3) (-12 (-5 *2 (-841 *4)) (-4 *4 (-871)) (-4 *1 (-1317 *4 *3)) (-4 *3 (-1080)))) (-1673 (*1 *2 *1) (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-114)))) (-3723 (*1 *1 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-3913 (*1 *1 *2) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-2889 (*1 *2 *1) (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-114)))) (-2650 (*1 *2 *1) (-12 (-4 *1 (-1317 *3 *2)) (-4 *3 (-871)) (-4 *2 (-1080)))) (-1498 (*1 *2 *1) (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-114)))) (-2686 (*1 *1 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))) (-2245 (*1 *1 *1 *1) (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)) (-4 *3 (-175)))) (-2245 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-4 *4 (-175)))) (-2260 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)))) (-4356 (*1 *2 *1) (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-663 *3)))))
+(-13 (-1080) (-1312 |t#2|) (-1069 (-841 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4052 ((-841 |t#1|) $)) (-15 -2463 ((-2 (|:| |k| (-841 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2625 (|t#2| $ (-841 |t#1|))) (-15 -2625 (|t#2| $ $)) (-15 -2343 ($ $ |t#1|)) (-15 -2343 ($ $ (-841 |t#1|))) (-15 -2343 ($ $ $)) (-15 -4308 ($ $ |t#1|)) (-15 -4308 ($ $ (-841 |t#1|))) (-15 -4308 ($ $ $)) (-15 -1405 ($ (-841 |t#1|) |t#2|)) (-15 -1673 ((-114) $)) (-15 -3723 ($ $)) (-15 -3913 ($ |t#1|)) (-15 -2889 ((-114) $)) (-15 -2650 (|t#2| $)) (-15 -1498 ((-114) $)) (-15 -2686 ($ $)) (IF (|has| |t#2| (-175)) (PROGN (-15 -2245 ($ $ $)) (-15 -2245 ($ $ (-793)))) |%noBranch|) (-15 -2260 ($ (-1 |t#2| |t#2|) $)) (-15 -4356 ((-663 |t#1|) $)) (IF (|has| |t#2| (-6 -4501)) (-6 -4501) |%noBranch|)))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-175)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 #0=(-841 |#1|)) . T) ((-635 |#2|) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 |#2|) . T) ((-668 $) . T) ((-670 |#2|) . T) ((-670 $) . T) ((-662 |#2|) |has| |#2| (-175)) ((-739 |#2|) |has| |#2| (-175)) ((-748) . T) ((-1069 #0#) . T) ((-1082 |#2|) . T) ((-1087 |#2|) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T) ((-1312 |#2|) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-2571 (((-663 |#1|) $) 98 T ELT)) (-2672 (($ $ (-793)) 102 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1454 (($ $ $) NIL (|has| |#2| (-175)) ELT) (($ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-2238 (($) NIL T CONST)) (-2942 (($ $ |#1|) NIL T ELT) (($ $ (-841 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-2539 (((-3 (-841 |#1|) "failed") $) NIL T ELT) (((-3 (-918 |#1|) "failed") $) NIL T ELT)) (-3330 (((-841 |#1|) $) NIL T ELT) (((-918 |#1|) $) NIL T ELT)) (-1624 (($ $) 101 T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2100 (((-114) $) 90 T ELT)) (-1661 (($ $) 93 T ELT)) (-1480 (($ $ $ (-793)) 103 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-3531 (((-793) $) NIL T ELT)) (-3997 (((-663 $) $) NIL T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1471 (($ (-841 |#1|) |#2|) NIL T ELT) (($ (-918 |#1|) |#2|) 29 T ELT)) (-2256 (($ $) 119 T ELT)) (-4401 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-1851 (((-841 |#1|) $) NIL T ELT)) (-2568 (((-841 |#1|) $) NIL T ELT)) (-3957 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4058 (($ $ |#1|) NIL T ELT) (($ $ (-841 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-2192 (($ $ (-793)) 112 (|has| |#2| (-739 (-421 (-560)))) ELT)) (-2064 (((-2 (|:| |k| (-918 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-1583 (((-918 |#1|) $) 83 T ELT)) (-1597 ((|#2| $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-3251 (($ $ (-793)) 109 (|has| |#2| (-739 (-421 (-560)))) ELT)) (-3630 (((-793) $) 99 T ELT)) (-4305 (((-114) $) 84 T ELT)) (-3081 ((|#2| $) 88 T ELT)) (-1578 (((-887) $) 69 T ELT) (($ (-560)) NIL T ELT) (($ |#2|) 60 T ELT) (($ (-841 |#1|)) NIL T ELT) (($ |#1|) 71 T ELT) (($ (-918 |#1|)) NIL T ELT) (($ (-686 |#1| |#2|)) 48 T ELT) (((-1313 |#1| |#2|) $) 76 T ELT) (((-1322 |#1| |#2|) $) 81 T ELT)) (-3409 (((-663 |#2|) $) NIL T ELT)) (-2305 ((|#2| $ (-918 |#1|)) NIL T ELT)) (-2115 ((|#2| $ (-841 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 21 T CONST)) (-2011 (($) 28 T CONST)) (-4165 (((-663 (-2 (|:| |k| (-918 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-1712 (((-3 (-686 |#1| |#2|) "failed") $) 118 T ELT)) (-2473 (((-114) $ $) 77 T ELT)) (-2580 (($ $) 111 T ELT) (($ $ $) 110 T ELT)) (-2567 (($ $ $) 20 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 49 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-918 |#1|)) NIL T ELT)))
-(((-1318 |#1| |#2|) (-13 (-1320 |#1| |#2|) (-397 |#2| (-918 |#1|)) (-10 -8 (-15 -1578 ($ (-686 |#1| |#2|))) (-15 -1578 ((-1313 |#1| |#2|) $)) (-15 -1578 ((-1322 |#1| |#2|) $)) (-15 -1712 ((-3 (-686 |#1| |#2|) "failed") $)) (-15 -1480 ($ $ $ (-793))) (IF (|has| |#2| (-739 (-421 (-560)))) (PROGN (-15 -3251 ($ $ (-793))) (-15 -2192 ($ $ (-793)))) |%noBranch|))) (-871) (-175)) (T -1318))
-((-1578 (*1 *1 *2) (-12 (-5 *2 (-686 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) (-5 *1 (-1318 *3 *4)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)))) (-1578 (*1 *2 *1) (-12 (-5 *2 (-1322 *3 *4)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)))) (-1712 (*1 *2 *1) (|partial| -12 (-5 *2 (-686 *3 *4)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)))) (-1480 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)))) (-3251 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1318 *3 *4)) (-4 *4 (-739 (-421 (-560)))) (-4 *3 (-871)) (-4 *4 (-175)))) (-2192 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1318 *3 *4)) (-4 *4 (-739 (-421 (-560)))) (-4 *3 (-871)) (-4 *4 (-175)))))
-(-13 (-1320 |#1| |#2|) (-397 |#2| (-918 |#1|)) (-10 -8 (-15 -1578 ($ (-686 |#1| |#2|))) (-15 -1578 ((-1313 |#1| |#2|) $)) (-15 -1578 ((-1322 |#1| |#2|) $)) (-15 -1712 ((-3 (-686 |#1| |#2|) "failed") $)) (-15 -1480 ($ $ $ (-793))) (IF (|has| |#2| (-739 (-421 (-560)))) (PROGN (-15 -3251 ($ $ (-793))) (-15 -2192 ($ $ (-793)))) |%noBranch|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-2571 (((-663 (-1207)) $) NIL T ELT)) (-1366 (($ (-1313 (-1207) |#1|)) NIL T ELT)) (-2672 (($ $ (-793)) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1454 (($ $ $) NIL (|has| |#1| (-175)) ELT) (($ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-2238 (($) NIL T CONST)) (-2942 (($ $ (-1207)) NIL T ELT) (($ $ (-841 (-1207))) NIL T ELT) (($ $ $) NIL T ELT)) (-2539 (((-3 (-841 (-1207)) "failed") $) NIL T ELT)) (-3330 (((-841 (-1207)) $) NIL T ELT)) (-1990 (((-3 $ "failed") $) NIL T ELT)) (-2100 (((-114) $) NIL T ELT)) (-1661 (($ $) NIL T ELT)) (-1581 (((-114) $) NIL T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1471 (($ (-841 (-1207)) |#1|) NIL T ELT)) (-2256 (($ $) NIL T ELT)) (-4401 (((-2 (|:| |k| (-841 (-1207))) (|:| |c| |#1|)) $) NIL T ELT)) (-1851 (((-841 (-1207)) $) NIL T ELT)) (-2568 (((-841 (-1207)) $) NIL T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4058 (($ $ (-1207)) NIL T ELT) (($ $ (-841 (-1207))) NIL T ELT) (($ $ $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1945 (((-1313 (-1207) |#1|) $) NIL T ELT)) (-3630 (((-793) $) NIL T ELT)) (-4305 (((-114) $) NIL T ELT)) (-3081 ((|#1| $) NIL T ELT)) (-1578 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-841 (-1207))) NIL T ELT) (($ (-1207)) NIL T ELT)) (-2115 ((|#1| $ (-841 (-1207))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-2930 (((-793)) NIL T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) NIL T CONST)) (-3411 (((-663 (-2 (|:| |k| (-1207)) (|:| |c| $))) $) NIL T ELT)) (-2011 (($) NIL T CONST)) (-2473 (((-114) $ $) NIL T ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1207) $) NIL T ELT)))
-(((-1319 |#1|) (-13 (-1320 (-1207) |#1|) (-10 -8 (-15 -1945 ((-1313 (-1207) |#1|) $)) (-15 -1366 ($ (-1313 (-1207) |#1|))) (-15 -3411 ((-663 (-2 (|:| |k| (-1207)) (|:| |c| $))) $)))) (-1080)) (T -1319))
-((-1945 (*1 *2 *1) (-12 (-5 *2 (-1313 (-1207) *3)) (-5 *1 (-1319 *3)) (-4 *3 (-1080)))) (-1366 (*1 *1 *2) (-12 (-5 *2 (-1313 (-1207) *3)) (-4 *3 (-1080)) (-5 *1 (-1319 *3)))) (-3411 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |k| (-1207)) (|:| |c| (-1319 *3))))) (-5 *1 (-1319 *3)) (-4 *3 (-1080)))))
-(-13 (-1320 (-1207) |#1|) (-10 -8 (-15 -1945 ((-1313 (-1207) |#1|) $)) (-15 -1366 ($ (-1313 (-1207) |#1|))) (-15 -3411 ((-663 (-2 (|:| |k| (-1207)) (|:| |c| $))) $))))
-((-1538 (((-114) $ $) 7 T ELT)) (-2388 (((-114) $) 17 T ELT)) (-2571 (((-663 |#1|) $) 47 T ELT)) (-2672 (($ $ (-793)) 80 T ELT)) (-3068 (((-3 $ "failed") $ $) 20 T ELT)) (-1454 (($ $ $) 50 (|has| |#2| (-175)) ELT) (($ $ (-793)) 49 (|has| |#2| (-175)) ELT)) (-2238 (($) 18 T CONST)) (-2942 (($ $ |#1|) 61 T ELT) (($ $ (-841 |#1|)) 60 T ELT) (($ $ $) 59 T ELT)) (-2539 (((-3 (-841 |#1|) "failed") $) 71 T ELT)) (-3330 (((-841 |#1|) $) 72 T ELT)) (-1990 (((-3 $ "failed") $) 37 T ELT)) (-2100 (((-114) $) 52 T ELT)) (-1661 (($ $) 51 T ELT)) (-1581 (((-114) $) 35 T ELT)) (-1556 (((-114) $) 57 T ELT)) (-1471 (($ (-841 |#1|) |#2|) 58 T ELT)) (-2256 (($ $) 56 T ELT)) (-4401 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) 67 T ELT)) (-1851 (((-841 |#1|) $) 68 T ELT)) (-2568 (((-841 |#1|) $) 82 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-4058 (($ $ |#1|) 64 T ELT) (($ $ (-841 |#1|)) 63 T ELT) (($ $ $) 62 T ELT)) (-1905 (((-1189) $) 10 T ELT)) (-3855 (((-1151) $) 11 T ELT)) (-3630 (((-793) $) 81 T ELT)) (-4305 (((-114) $) 54 T ELT)) (-3081 ((|#2| $) 53 T ELT)) (-1578 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#2|) 75 T ELT) (($ (-841 |#1|)) 70 T ELT) (($ |#1|) 55 T ELT)) (-2115 ((|#2| $ (-841 |#1|)) 66 T ELT) ((|#2| $ $) 65 T ELT)) (-2930 (((-793)) 32 T CONST)) (-2275 (((-114) $ $) 6 T ELT)) (-2001 (($) 19 T CONST)) (-2011 (($) 34 T CONST)) (-2473 (((-114) $ $) 8 T ELT)) (-2580 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2567 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ |#2| $) 74 T ELT) (($ $ |#2|) 73 T ELT) (($ |#1| $) 69 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-4356 (((-663 |#1|) $) 98 T ELT)) (-2165 (($ $ (-793)) 102 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2245 (($ $ $) NIL (|has| |#2| (-175)) ELT) (($ $ (-793)) NIL (|has| |#2| (-175)) ELT)) (-3525 (($) NIL T CONST)) (-4308 (($ $ |#1|) NIL T ELT) (($ $ (-841 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3929 (((-3 (-841 |#1|) "failed") $) NIL T ELT) (((-3 (-918 |#1|) "failed") $) NIL T ELT)) (-3649 (((-841 |#1|) $) NIL T ELT) (((-918 |#1|) $) NIL T ELT)) (-3062 (($ $) 101 T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1498 (((-114) $) 90 T ELT)) (-2686 (($ $) 93 T ELT)) (-1866 (($ $ $ (-793)) 103 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-4127 (((-793) $) NIL T ELT)) (-2947 (((-663 $) $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-1405 (($ (-841 |#1|) |#2|) NIL T ELT) (($ (-918 |#1|) |#2|) 29 T ELT)) (-3723 (($ $) 119 T ELT)) (-2463 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-4052 (((-841 |#1|) $) NIL T ELT)) (-3659 (((-841 |#1|) $) NIL T ELT)) (-2260 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2343 (($ $ |#1|) NIL T ELT) (($ $ (-841 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-2831 (($ $ (-793)) 112 (|has| |#2| (-739 (-421 (-560)))) ELT)) (-2354 (((-2 (|:| |k| (-918 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3024 (((-918 |#1|) $) 83 T ELT)) (-3037 ((|#2| $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2515 (($ $ (-793)) 109 (|has| |#2| (-739 (-421 (-560)))) ELT)) (-3900 (((-793) $) 99 T ELT)) (-2889 (((-114) $) 84 T ELT)) (-2650 ((|#2| $) 88 T ELT)) (-3913 (((-887) $) 69 T ELT) (($ (-560)) NIL T ELT) (($ |#2|) 60 T ELT) (($ (-841 |#1|)) NIL T ELT) (($ |#1|) 71 T ELT) (($ (-918 |#1|)) NIL T ELT) (($ (-686 |#1| |#2|)) 48 T ELT) (((-1313 |#1| |#2|) $) 76 T ELT) (((-1322 |#1| |#2|) $) 81 T ELT)) (-2247 (((-663 |#2|) $) NIL T ELT)) (-2920 ((|#2| $ (-918 |#1|)) NIL T ELT)) (-2625 ((|#2| $ (-841 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 21 T CONST)) (-1456 (($) 28 T CONST)) (-4118 (((-663 (-2 (|:| |k| (-918 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-2026 (((-3 (-686 |#1| |#2|) "failed") $) 118 T ELT)) (-2340 (((-114) $ $) 77 T ELT)) (-2441 (($ $) 111 T ELT) (($ $ $) 110 T ELT)) (-2429 (($ $ $) 20 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 49 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-918 |#1|)) NIL T ELT)))
+(((-1318 |#1| |#2|) (-13 (-1320 |#1| |#2|) (-397 |#2| (-918 |#1|)) (-10 -8 (-15 -3913 ($ (-686 |#1| |#2|))) (-15 -3913 ((-1313 |#1| |#2|) $)) (-15 -3913 ((-1322 |#1| |#2|) $)) (-15 -2026 ((-3 (-686 |#1| |#2|) "failed") $)) (-15 -1866 ($ $ $ (-793))) (IF (|has| |#2| (-739 (-421 (-560)))) (PROGN (-15 -2515 ($ $ (-793))) (-15 -2831 ($ $ (-793)))) |%noBranch|))) (-871) (-175)) (T -1318))
+((-3913 (*1 *1 *2) (-12 (-5 *2 (-686 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)) (-5 *1 (-1318 *3 *4)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)))) (-3913 (*1 *2 *1) (-12 (-5 *2 (-1322 *3 *4)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)))) (-2026 (*1 *2 *1) (|partial| -12 (-5 *2 (-686 *3 *4)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)))) (-1866 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175)))) (-2515 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1318 *3 *4)) (-4 *4 (-739 (-421 (-560)))) (-4 *3 (-871)) (-4 *4 (-175)))) (-2831 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1318 *3 *4)) (-4 *4 (-739 (-421 (-560)))) (-4 *3 (-871)) (-4 *4 (-175)))))
+(-13 (-1320 |#1| |#2|) (-397 |#2| (-918 |#1|)) (-10 -8 (-15 -3913 ($ (-686 |#1| |#2|))) (-15 -3913 ((-1313 |#1| |#2|) $)) (-15 -3913 ((-1322 |#1| |#2|) $)) (-15 -2026 ((-3 (-686 |#1| |#2|) "failed") $)) (-15 -1866 ($ $ $ (-793))) (IF (|has| |#2| (-739 (-421 (-560)))) (PROGN (-15 -2515 ($ $ (-793))) (-15 -2831 ($ $ (-793)))) |%noBranch|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-4356 (((-663 (-1207)) $) NIL T ELT)) (-3817 (($ (-1313 (-1207) |#1|)) NIL T ELT)) (-2165 (($ $ (-793)) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2245 (($ $ $) NIL (|has| |#1| (-175)) ELT) (($ $ (-793)) NIL (|has| |#1| (-175)) ELT)) (-3525 (($) NIL T CONST)) (-4308 (($ $ (-1207)) NIL T ELT) (($ $ (-841 (-1207))) NIL T ELT) (($ $ $) NIL T ELT)) (-3929 (((-3 (-841 (-1207)) "failed") $) NIL T ELT)) (-3649 (((-841 (-1207)) $) NIL T ELT)) (-2873 (((-3 $ "failed") $) NIL T ELT)) (-1498 (((-114) $) NIL T ELT)) (-2686 (($ $) NIL T ELT)) (-1918 (((-114) $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-1405 (($ (-841 (-1207)) |#1|) NIL T ELT)) (-3723 (($ $) NIL T ELT)) (-2463 (((-2 (|:| |k| (-841 (-1207))) (|:| |c| |#1|)) $) NIL T ELT)) (-4052 (((-841 (-1207)) $) NIL T ELT)) (-3659 (((-841 (-1207)) $) NIL T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2343 (($ $ (-1207)) NIL T ELT) (($ $ (-841 (-1207))) NIL T ELT) (($ $ $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3890 (((-1313 (-1207) |#1|) $) NIL T ELT)) (-3900 (((-793) $) NIL T ELT)) (-2889 (((-114) $) NIL T ELT)) (-2650 ((|#1| $) NIL T ELT)) (-3913 (((-887) $) NIL T ELT) (($ (-560)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-841 (-1207))) NIL T ELT) (($ (-1207)) NIL T ELT)) (-2625 ((|#1| $ (-841 (-1207))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-4191 (((-793)) NIL T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) NIL T CONST)) (-2271 (((-663 (-2 (|:| |k| (-1207)) (|:| |c| $))) $) NIL T ELT)) (-1456 (($) NIL T CONST)) (-2340 (((-114) $ $) NIL T ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) NIL T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) NIL T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1207) $) NIL T ELT)))
+(((-1319 |#1|) (-13 (-1320 (-1207) |#1|) (-10 -8 (-15 -3890 ((-1313 (-1207) |#1|) $)) (-15 -3817 ($ (-1313 (-1207) |#1|))) (-15 -2271 ((-663 (-2 (|:| |k| (-1207)) (|:| |c| $))) $)))) (-1080)) (T -1319))
+((-3890 (*1 *2 *1) (-12 (-5 *2 (-1313 (-1207) *3)) (-5 *1 (-1319 *3)) (-4 *3 (-1080)))) (-3817 (*1 *1 *2) (-12 (-5 *2 (-1313 (-1207) *3)) (-4 *3 (-1080)) (-5 *1 (-1319 *3)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |k| (-1207)) (|:| |c| (-1319 *3))))) (-5 *1 (-1319 *3)) (-4 *3 (-1080)))))
+(-13 (-1320 (-1207) |#1|) (-10 -8 (-15 -3890 ((-1313 (-1207) |#1|) $)) (-15 -3817 ($ (-1313 (-1207) |#1|))) (-15 -2271 ((-663 (-2 (|:| |k| (-1207)) (|:| |c| $))) $))))
+((-2243 (((-114) $ $) 7 T ELT)) (-2505 (((-114) $) 17 T ELT)) (-4356 (((-663 |#1|) $) 47 T ELT)) (-2165 (($ $ (-793)) 80 T ELT)) (-3094 (((-3 $ "failed") $ $) 20 T ELT)) (-2245 (($ $ $) 50 (|has| |#2| (-175)) ELT) (($ $ (-793)) 49 (|has| |#2| (-175)) ELT)) (-3525 (($) 18 T CONST)) (-4308 (($ $ |#1|) 61 T ELT) (($ $ (-841 |#1|)) 60 T ELT) (($ $ $) 59 T ELT)) (-3929 (((-3 (-841 |#1|) "failed") $) 71 T ELT)) (-3649 (((-841 |#1|) $) 72 T ELT)) (-2873 (((-3 $ "failed") $) 37 T ELT)) (-1498 (((-114) $) 52 T ELT)) (-2686 (($ $) 51 T ELT)) (-1918 (((-114) $) 35 T ELT)) (-1673 (((-114) $) 57 T ELT)) (-1405 (($ (-841 |#1|) |#2|) 58 T ELT)) (-3723 (($ $) 56 T ELT)) (-2463 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) 67 T ELT)) (-4052 (((-841 |#1|) $) 68 T ELT)) (-3659 (((-841 |#1|) $) 82 T ELT)) (-2260 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-2343 (($ $ |#1|) 64 T ELT) (($ $ (-841 |#1|)) 63 T ELT) (($ $ $) 62 T ELT)) (-3358 (((-1189) $) 10 T ELT)) (-3376 (((-1151) $) 11 T ELT)) (-3900 (((-793) $) 81 T ELT)) (-2889 (((-114) $) 54 T ELT)) (-2650 ((|#2| $) 53 T ELT)) (-3913 (((-887) $) 12 T ELT) (($ (-560)) 33 T ELT) (($ |#2|) 75 T ELT) (($ (-841 |#1|)) 70 T ELT) (($ |#1|) 55 T ELT)) (-2625 ((|#2| $ (-841 |#1|)) 66 T ELT) ((|#2| $ $) 65 T ELT)) (-4191 (((-793)) 32 T CONST)) (-3925 (((-114) $ $) 6 T ELT)) (-1446 (($) 19 T CONST)) (-1456 (($) 34 T CONST)) (-2340 (((-114) $ $) 8 T ELT)) (-2441 (($ $) 23 T ELT) (($ $ $) 22 T ELT)) (-2429 (($ $ $) 15 T ELT)) (** (($ $ (-948)) 28 T ELT) (($ $ (-793)) 36 T ELT)) (* (($ (-948) $) 14 T ELT) (($ (-793) $) 16 T ELT) (($ (-560) $) 24 T ELT) (($ $ $) 27 T ELT) (($ |#2| $) 74 T ELT) (($ $ |#2|) 73 T ELT) (($ |#1| $) 69 T ELT)))
(((-1320 |#1| |#2|) (-142) (-871) (-1080)) (T -1320))
-((-2568 (*1 *2 *1) (-12 (-4 *1 (-1320 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-841 *3)))) (-3630 (*1 *2 *1) (-12 (-4 *1 (-1320 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-793)))) (-2672 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1320 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)))))
-(-13 (-1317 |t#1| |t#2|) (-10 -8 (-15 -2568 ((-841 |t#1|) $)) (-15 -3630 ((-793) $)) (-15 -2672 ($ $ (-793)))))
+((-3659 (*1 *2 *1) (-12 (-4 *1 (-1320 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-841 *3)))) (-3900 (*1 *2 *1) (-12 (-4 *1 (-1320 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *2 (-793)))) (-2165 (*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-4 *1 (-1320 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)))))
+(-13 (-1317 |t#1| |t#2|) (-10 -8 (-15 -3659 ((-841 |t#1|) $)) (-15 -3900 ((-793) $)) (-15 -2165 ($ $ (-793)))))
(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-175)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-635 (-560)) . T) ((-635 #0=(-841 |#1|)) . T) ((-635 |#2|) . T) ((-632 (-887)) . T) ((-668 (-560)) . T) ((-668 |#2|) . T) ((-668 $) . T) ((-670 |#2|) . T) ((-670 $) . T) ((-662 |#2|) |has| |#2| (-175)) ((-739 |#2|) |has| |#2| (-175)) ((-748) . T) ((-1069 #0#) . T) ((-1082 |#2|) . T) ((-1087 |#2|) . T) ((-1080) . T) ((-1088) . T) ((-1143) . T) ((-1132) . T) ((-1247) . T) ((-1312 |#2|) . T) ((-1317 |#1| |#2|) . T))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) NIL T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-2238 (($) NIL T CONST)) (-2539 (((-3 |#2| "failed") $) NIL T ELT)) (-3330 ((|#2| $) NIL T ELT)) (-1624 (($ $) NIL T ELT)) (-1990 (((-3 $ "failed") $) 42 T ELT)) (-2100 (((-114) $) 35 T ELT)) (-1661 (($ $) 37 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-3531 (((-793) $) NIL T ELT)) (-3997 (((-663 $) $) NIL T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1471 (($ |#2| |#1|) NIL T ELT)) (-1851 ((|#2| $) 24 T ELT)) (-2568 ((|#2| $) 22 T ELT)) (-3957 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2064 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-1583 ((|#2| $) NIL T ELT)) (-1597 ((|#1| $) NIL T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-4305 (((-114) $) 32 T ELT)) (-3081 ((|#1| $) 33 T ELT)) (-1578 (((-887) $) 65 T ELT) (($ (-560)) 46 T ELT) (($ |#1|) 41 T ELT) (($ |#2|) NIL T ELT)) (-3409 (((-663 |#1|) $) NIL T ELT)) (-2305 ((|#1| $ |#2|) NIL T ELT)) (-2115 ((|#1| $ |#2|) 28 T ELT)) (-2930 (((-793)) 14 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 29 T CONST)) (-2011 (($) 11 T CONST)) (-4165 (((-663 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-2473 (((-114) $ $) 30 T ELT)) (-2594 (($ $ |#1|) 67 (|has| |#1| (-376)) ELT)) (-2580 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2567 (($ $ $) 50 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 52 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 51 T ELT) (($ |#1| $) 47 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-1553 (((-793) $) 16 T ELT)))
-(((-1321 |#1| |#2|) (-13 (-1080) (-1312 |#1|) (-397 |#1| |#2|) (-635 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -1553 ((-793) $)) (-15 -2568 (|#2| $)) (-15 -1851 (|#2| $)) (-15 -1624 ($ $)) (-15 -2115 (|#1| $ |#2|)) (-15 -4305 ((-114) $)) (-15 -3081 (|#1| $)) (-15 -2100 ((-114) $)) (-15 -1661 ($ $)) (-15 -3957 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-376)) (-15 -2594 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4501)) (-6 -4501) |%noBranch|) (IF (|has| |#1| (-6 -4505)) (-6 -4505) |%noBranch|) (IF (|has| |#1| (-6 -4506)) (-6 -4506) |%noBranch|))) (-1080) (-868)) (T -1321))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-868)))) (-1624 (*1 *1 *1) (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-868)))) (-3957 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-1321 *3 *4)) (-4 *4 (-868)))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-868)))) (-2568 (*1 *2 *1) (-12 (-4 *2 (-868)) (-5 *1 (-1321 *3 *2)) (-4 *3 (-1080)))) (-1851 (*1 *2 *1) (-12 (-4 *2 (-868)) (-5 *1 (-1321 *3 *2)) (-4 *3 (-1080)))) (-2115 (*1 *2 *1 *3) (-12 (-4 *2 (-1080)) (-5 *1 (-1321 *2 *3)) (-4 *3 (-868)))) (-4305 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-868)))) (-3081 (*1 *2 *1) (-12 (-4 *2 (-1080)) (-5 *1 (-1321 *2 *3)) (-4 *3 (-868)))) (-2100 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-868)))) (-1661 (*1 *1 *1) (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-868)))) (-2594 (*1 *1 *1 *2) (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-376)) (-4 *2 (-1080)) (-4 *3 (-868)))))
-(-13 (-1080) (-1312 |#1|) (-397 |#1| |#2|) (-635 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -1553 ((-793) $)) (-15 -2568 (|#2| $)) (-15 -1851 (|#2| $)) (-15 -1624 ($ $)) (-15 -2115 (|#1| $ |#2|)) (-15 -4305 ((-114) $)) (-15 -3081 (|#1| $)) (-15 -2100 ((-114) $)) (-15 -1661 ($ $)) (-15 -3957 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-376)) (-15 -2594 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4501)) (-6 -4501) |%noBranch|) (IF (|has| |#1| (-6 -4505)) (-6 -4505) |%noBranch|) (IF (|has| |#1| (-6 -4506)) (-6 -4506) |%noBranch|)))
-((-1538 (((-114) $ $) 27 T ELT)) (-2388 (((-114) $) NIL T ELT)) (-2571 (((-663 |#1|) $) 132 T ELT)) (-1366 (($ (-1313 |#1| |#2|)) 50 T ELT)) (-2672 (($ $ (-793)) 38 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-1454 (($ $ $) 54 (|has| |#2| (-175)) ELT) (($ $ (-793)) 52 (|has| |#2| (-175)) ELT)) (-2238 (($) NIL T CONST)) (-2942 (($ $ |#1|) 114 T ELT) (($ $ (-841 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-2539 (((-3 (-841 |#1|) "failed") $) NIL T ELT)) (-3330 (((-841 |#1|) $) NIL T ELT)) (-1990 (((-3 $ "failed") $) 122 T ELT)) (-2100 (((-114) $) 117 T ELT)) (-1661 (($ $) 118 T ELT)) (-1581 (((-114) $) NIL T ELT)) (-1556 (((-114) $) NIL T ELT)) (-1471 (($ (-841 |#1|) |#2|) 20 T ELT)) (-2256 (($ $) NIL T ELT)) (-4401 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-1851 (((-841 |#1|) $) 123 T ELT)) (-2568 (((-841 |#1|) $) 126 T ELT)) (-3957 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-4058 (($ $ |#1|) 112 T ELT) (($ $ (-841 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1945 (((-1313 |#1| |#2|) $) 94 T ELT)) (-3630 (((-793) $) 129 T ELT)) (-4305 (((-114) $) 81 T ELT)) (-3081 ((|#2| $) 32 T ELT)) (-1578 (((-887) $) 73 T ELT) (($ (-560)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-841 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-2115 ((|#2| $ (-841 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-2930 (((-793)) 120 T CONST)) (-2275 (((-114) $ $) NIL T ELT)) (-2001 (($) 15 T CONST)) (-3411 (((-663 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-2011 (($) 33 T CONST)) (-2473 (((-114) $ $) 14 T ELT)) (-2580 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-2567 (($ $ $) 61 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 55 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) 53 T ELT) (($ (-560) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT)))
-(((-1322 |#1| |#2|) (-13 (-1320 |#1| |#2|) (-10 -8 (-15 -1945 ((-1313 |#1| |#2|) $)) (-15 -1366 ($ (-1313 |#1| |#2|))) (-15 -3411 ((-663 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-871) (-1080)) (T -1322))
-((-1945 (*1 *2 *1) (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-1322 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)))) (-1366 (*1 *1 *2) (-12 (-5 *2 (-1313 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *1 (-1322 *3 *4)))) (-3411 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |k| *3) (|:| |c| (-1322 *3 *4))))) (-5 *1 (-1322 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)))))
-(-13 (-1320 |#1| |#2|) (-10 -8 (-15 -1945 ((-1313 |#1| |#2|) $)) (-15 -1366 ($ (-1313 |#1| |#2|))) (-15 -3411 ((-663 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-1538 (((-114) $ $) NIL T ELT)) (-2380 (($ (-663 (-948))) 10 T ELT)) (-2585 (((-1002) $) 12 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1578 (((-887) $) 25 T ELT) (($ (-1002)) 14 T ELT) (((-1002) $) 13 T ELT)) (-2275 (((-114) $ $) NIL T ELT)) (-2473 (((-114) $ $) 17 T ELT)))
-(((-1323) (-13 (-1132) (-504 (-1002)) (-10 -8 (-15 -2380 ($ (-663 (-948)))) (-15 -2585 ((-1002) $))))) (T -1323))
-((-2380 (*1 *1 *2) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1323)))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-1002)) (-5 *1 (-1323)))))
-(-13 (-1132) (-504 (-1002)) (-10 -8 (-15 -2380 ($ (-663 (-948)))) (-15 -2585 ((-1002) $))))
-((-4064 (((-663 (-1185 |#1|)) (-1 (-663 (-1185 |#1|)) (-663 (-1185 |#1|))) (-560)) 16 T ELT) (((-1185 |#1|) (-1 (-1185 |#1|) (-1185 |#1|))) 13 T ELT)))
-(((-1324 |#1|) (-10 -7 (-15 -4064 ((-1185 |#1|) (-1 (-1185 |#1|) (-1185 |#1|)))) (-15 -4064 ((-663 (-1185 |#1|)) (-1 (-663 (-1185 |#1|)) (-663 (-1185 |#1|))) (-560)))) (-1247)) (T -1324))
-((-4064 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-663 (-1185 *5)) (-663 (-1185 *5)))) (-5 *4 (-560)) (-5 *2 (-663 (-1185 *5))) (-5 *1 (-1324 *5)) (-4 *5 (-1247)))) (-4064 (*1 *2 *3) (-12 (-5 *3 (-1 (-1185 *4) (-1185 *4))) (-5 *2 (-1185 *4)) (-5 *1 (-1324 *4)) (-4 *4 (-1247)))))
-(-10 -7 (-15 -4064 ((-1185 |#1|) (-1 (-1185 |#1|) (-1185 |#1|)))) (-15 -4064 ((-663 (-1185 |#1|)) (-1 (-663 (-1185 |#1|)) (-663 (-1185 |#1|))) (-560))))
-((-1367 (((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-663 (-975 |#1|))) 174 T ELT) (((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114)) 173 T ELT) (((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114) (-114)) 172 T ELT) (((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114) (-114) (-114)) 171 T ELT) (((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-1077 |#1| |#2|)) 156 T ELT)) (-4013 (((-663 (-1077 |#1| |#2|)) (-663 (-975 |#1|))) 85 T ELT) (((-663 (-1077 |#1| |#2|)) (-663 (-975 |#1|)) (-114)) 84 T ELT) (((-663 (-1077 |#1| |#2|)) (-663 (-975 |#1|)) (-114) (-114)) 83 T ELT)) (-3023 (((-663 (-1177 |#1| (-545 (-888 |#3|)) (-888 |#3|) (-802 |#1| (-888 |#3|)))) (-1077 |#1| |#2|)) 73 T ELT)) (-2798 (((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|))) 140 T ELT) (((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114)) 139 T ELT) (((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114) (-114)) 138 T ELT) (((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114) (-114) (-114)) 137 T ELT) (((-663 (-663 (-1055 (-421 |#1|)))) (-1077 |#1| |#2|)) 132 T ELT)) (-2561 (((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|))) 145 T ELT) (((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114)) 144 T ELT) (((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114) (-114)) 143 T ELT) (((-663 (-663 (-1055 (-421 |#1|)))) (-1077 |#1| |#2|)) 142 T ELT)) (-1407 (((-663 (-802 |#1| (-888 |#3|))) (-1177 |#1| (-545 (-888 |#3|)) (-888 |#3|) (-802 |#1| (-888 |#3|)))) 111 T ELT) (((-1201 (-1055 (-421 |#1|))) (-1201 |#1|)) 102 T ELT) (((-975 (-1055 (-421 |#1|))) (-802 |#1| (-888 |#3|))) 109 T ELT) (((-975 (-1055 (-421 |#1|))) (-975 |#1|)) 107 T ELT) (((-802 |#1| (-888 |#3|)) (-802 |#1| (-888 |#2|))) 33 T ELT)))
-(((-1325 |#1| |#2| |#3|) (-10 -7 (-15 -4013 ((-663 (-1077 |#1| |#2|)) (-663 (-975 |#1|)) (-114) (-114))) (-15 -4013 ((-663 (-1077 |#1| |#2|)) (-663 (-975 |#1|)) (-114))) (-15 -4013 ((-663 (-1077 |#1| |#2|)) (-663 (-975 |#1|)))) (-15 -1367 ((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-1077 |#1| |#2|))) (-15 -1367 ((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114) (-114) (-114))) (-15 -1367 ((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114) (-114))) (-15 -1367 ((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114))) (-15 -1367 ((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-663 (-975 |#1|)))) (-15 -2798 ((-663 (-663 (-1055 (-421 |#1|)))) (-1077 |#1| |#2|))) (-15 -2798 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114) (-114) (-114))) (-15 -2798 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114) (-114))) (-15 -2798 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114))) (-15 -2798 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)))) (-15 -2561 ((-663 (-663 (-1055 (-421 |#1|)))) (-1077 |#1| |#2|))) (-15 -2561 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114) (-114))) (-15 -2561 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114))) (-15 -2561 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)))) (-15 -3023 ((-663 (-1177 |#1| (-545 (-888 |#3|)) (-888 |#3|) (-802 |#1| (-888 |#3|)))) (-1077 |#1| |#2|))) (-15 -1407 ((-802 |#1| (-888 |#3|)) (-802 |#1| (-888 |#2|)))) (-15 -1407 ((-975 (-1055 (-421 |#1|))) (-975 |#1|))) (-15 -1407 ((-975 (-1055 (-421 |#1|))) (-802 |#1| (-888 |#3|)))) (-15 -1407 ((-1201 (-1055 (-421 |#1|))) (-1201 |#1|))) (-15 -1407 ((-663 (-802 |#1| (-888 |#3|))) (-1177 |#1| (-545 (-888 |#3|)) (-888 |#3|) (-802 |#1| (-888 |#3|)))))) (-13 (-870) (-319) (-149) (-1051)) (-663 (-1207)) (-663 (-1207))) (T -1325))
-((-1407 (*1 *2 *3) (-12 (-5 *3 (-1177 *4 (-545 (-888 *6)) (-888 *6) (-802 *4 (-888 *6)))) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-14 *6 (-663 (-1207))) (-5 *2 (-663 (-802 *4 (-888 *6)))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-663 (-1207))))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-1201 *4)) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-1201 (-1055 (-421 *4)))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207))))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-802 *4 (-888 *6))) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-14 *6 (-663 (-1207))) (-5 *2 (-975 (-1055 (-421 *4)))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-663 (-1207))))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-975 *4)) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-975 (-1055 (-421 *4)))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207))))) (-1407 (*1 *2 *3) (-12 (-5 *3 (-802 *4 (-888 *5))) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-14 *5 (-663 (-1207))) (-5 *2 (-802 *4 (-888 *6))) (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-663 (-1207))))) (-3023 (*1 *2 *3) (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-14 *5 (-663 (-1207))) (-5 *2 (-663 (-1177 *4 (-545 (-888 *6)) (-888 *6) (-802 *4 (-888 *6))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-663 (-1207))))) (-2561 (*1 *2 *3) (-12 (-5 *3 (-663 (-975 *4))) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-663 (-1055 (-421 *4))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207))))) (-2561 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-663 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207))))) (-2561 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-663 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207))))) (-2561 (*1 *2 *3) (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-14 *5 (-663 (-1207))) (-5 *2 (-663 (-663 (-1055 (-421 *4))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-663 (-1207))))) (-2798 (*1 *2 *3) (-12 (-5 *3 (-663 (-975 *4))) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-663 (-1055 (-421 *4))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207))))) (-2798 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-663 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207))))) (-2798 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-663 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207))))) (-2798 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-663 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207))))) (-2798 (*1 *2 *3) (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-14 *5 (-663 (-1207))) (-5 *2 (-663 (-663 (-1055 (-421 *4))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-663 (-1207))))) (-1367 (*1 *2 *3) (-12 (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-2 (|:| -4410 (-1201 *4)) (|:| -2178 (-663 (-975 *4)))))) (-5 *1 (-1325 *4 *5 *6)) (-5 *3 (-663 (-975 *4))) (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207))))) (-1367 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-2 (|:| -4410 (-1201 *5)) (|:| -2178 (-663 (-975 *5)))))) (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-663 (-975 *5))) (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207))))) (-1367 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-2 (|:| -4410 (-1201 *5)) (|:| -2178 (-663 (-975 *5)))))) (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-663 (-975 *5))) (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207))))) (-1367 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-2 (|:| -4410 (-1201 *5)) (|:| -2178 (-663 (-975 *5)))))) (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-663 (-975 *5))) (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207))))) (-1367 (*1 *2 *3) (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-14 *5 (-663 (-1207))) (-5 *2 (-663 (-2 (|:| -4410 (-1201 *4)) (|:| -2178 (-663 (-975 *4)))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-663 (-1207))))) (-4013 (*1 *2 *3) (-12 (-5 *3 (-663 (-975 *4))) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-1077 *4 *5))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207))))) (-4013 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-1077 *5 *6))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207))))) (-4013 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-1077 *5 *6))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207))))))
-(-10 -7 (-15 -4013 ((-663 (-1077 |#1| |#2|)) (-663 (-975 |#1|)) (-114) (-114))) (-15 -4013 ((-663 (-1077 |#1| |#2|)) (-663 (-975 |#1|)) (-114))) (-15 -4013 ((-663 (-1077 |#1| |#2|)) (-663 (-975 |#1|)))) (-15 -1367 ((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-1077 |#1| |#2|))) (-15 -1367 ((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114) (-114) (-114))) (-15 -1367 ((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114) (-114))) (-15 -1367 ((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114))) (-15 -1367 ((-663 (-2 (|:| -4410 (-1201 |#1|)) (|:| -2178 (-663 (-975 |#1|))))) (-663 (-975 |#1|)))) (-15 -2798 ((-663 (-663 (-1055 (-421 |#1|)))) (-1077 |#1| |#2|))) (-15 -2798 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114) (-114) (-114))) (-15 -2798 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114) (-114))) (-15 -2798 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114))) (-15 -2798 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)))) (-15 -2561 ((-663 (-663 (-1055 (-421 |#1|)))) (-1077 |#1| |#2|))) (-15 -2561 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114) (-114))) (-15 -2561 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114))) (-15 -2561 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)))) (-15 -3023 ((-663 (-1177 |#1| (-545 (-888 |#3|)) (-888 |#3|) (-802 |#1| (-888 |#3|)))) (-1077 |#1| |#2|))) (-15 -1407 ((-802 |#1| (-888 |#3|)) (-802 |#1| (-888 |#2|)))) (-15 -1407 ((-975 (-1055 (-421 |#1|))) (-975 |#1|))) (-15 -1407 ((-975 (-1055 (-421 |#1|))) (-802 |#1| (-888 |#3|)))) (-15 -1407 ((-1201 (-1055 (-421 |#1|))) (-1201 |#1|))) (-15 -1407 ((-663 (-802 |#1| (-888 |#3|))) (-1177 |#1| (-545 (-888 |#3|)) (-888 |#3|) (-802 |#1| (-888 |#3|))))))
-((-2883 (((-3 (-1297 (-421 (-560))) "failed") (-1297 |#1|) |#1|) 21 T ELT)) (-1497 (((-114) (-1297 |#1|)) 12 T ELT)) (-3965 (((-3 (-1297 (-560)) "failed") (-1297 |#1|)) 16 T ELT)))
-(((-1326 |#1|) (-10 -7 (-15 -1497 ((-114) (-1297 |#1|))) (-15 -3965 ((-3 (-1297 (-560)) "failed") (-1297 |#1|))) (-15 -2883 ((-3 (-1297 (-421 (-560))) "failed") (-1297 |#1|) |#1|))) (-13 (-1080) (-660 (-560)))) (T -1326))
-((-2883 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1080) (-660 (-560)))) (-5 *2 (-1297 (-421 (-560)))) (-5 *1 (-1326 *4)))) (-3965 (*1 *2 *3) (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1080) (-660 (-560)))) (-5 *2 (-1297 (-560))) (-5 *1 (-1326 *4)))) (-1497 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1080) (-660 (-560)))) (-5 *2 (-114)) (-5 *1 (-1326 *4)))))
-(-10 -7 (-15 -1497 ((-114) (-1297 |#1|))) (-15 -3965 ((-3 (-1297 (-560)) "failed") (-1297 |#1|))) (-15 -2883 ((-3 (-1297 (-421 (-560))) "failed") (-1297 |#1|) |#1|)))
-((-1538 (((-114) $ $) NIL T ELT)) (-2388 (((-114) $) 11 T ELT)) (-3068 (((-3 $ "failed") $ $) NIL T ELT)) (-3241 (((-793)) 8 T ELT)) (-2238 (($) NIL T CONST)) (-1990 (((-3 $ "failed") $) 58 T ELT)) (-2310 (($) 49 T ELT)) (-1581 (((-114) $) 57 T ELT)) (-3009 (((-3 $ "failed") $) 40 T ELT)) (-4419 (((-948) $) 15 T ELT)) (-1905 (((-1189) $) NIL T ELT)) (-3161 (($) 32 T CONST)) (-3128 (($ (-948)) 50 T ELT)) (-3855 (((-1151) $) NIL T ELT)) (-1407 (((-560) $) 13 T ELT)) (-1578 (((-887) $) 27 T ELT) (($ (-560)) 24 T ELT)) (-2930 (((-793)) 9 T CONST)) (-2275 (((-114) $ $) 60 T ELT)) (-2001 (($) 29 T CONST)) (-2011 (($) 31 T CONST)) (-2473 (((-114) $ $) 38 T ELT)) (-2580 (($ $) 52 T ELT) (($ $ $) 47 T ELT)) (-2567 (($ $ $) 35 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 54 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 44 T ELT) (($ $ $) 43 T ELT)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) NIL T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-3525 (($) NIL T CONST)) (-3929 (((-3 |#2| "failed") $) NIL T ELT)) (-3649 ((|#2| $) NIL T ELT)) (-3062 (($ $) NIL T ELT)) (-2873 (((-3 $ "failed") $) 42 T ELT)) (-1498 (((-114) $) 35 T ELT)) (-2686 (($ $) 37 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-4127 (((-793) $) NIL T ELT)) (-2947 (((-663 $) $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-1405 (($ |#2| |#1|) NIL T ELT)) (-4052 ((|#2| $) 24 T ELT)) (-3659 ((|#2| $) 22 T ELT)) (-2260 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2354 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-3024 ((|#2| $) NIL T ELT)) (-3037 ((|#1| $) NIL T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2889 (((-114) $) 32 T ELT)) (-2650 ((|#1| $) 33 T ELT)) (-3913 (((-887) $) 65 T ELT) (($ (-560)) 46 T ELT) (($ |#1|) 41 T ELT) (($ |#2|) NIL T ELT)) (-2247 (((-663 |#1|) $) NIL T ELT)) (-2920 ((|#1| $ |#2|) NIL T ELT)) (-2625 ((|#1| $ |#2|) 28 T ELT)) (-4191 (((-793)) 14 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 29 T CONST)) (-1456 (($) 11 T CONST)) (-4118 (((-663 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-2340 (((-114) $ $) 30 T ELT)) (-2453 (($ $ |#1|) 67 (|has| |#1| (-376)) ELT)) (-2441 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2429 (($ $ $) 50 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 52 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) NIL T ELT) (($ $ $) 51 T ELT) (($ |#1| $) 47 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-2256 (((-793) $) 16 T ELT)))
+(((-1321 |#1| |#2|) (-13 (-1080) (-1312 |#1|) (-397 |#1| |#2|) (-635 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2256 ((-793) $)) (-15 -3659 (|#2| $)) (-15 -4052 (|#2| $)) (-15 -3062 ($ $)) (-15 -2625 (|#1| $ |#2|)) (-15 -2889 ((-114) $)) (-15 -2650 (|#1| $)) (-15 -1498 ((-114) $)) (-15 -2686 ($ $)) (-15 -2260 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-376)) (-15 -2453 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4501)) (-6 -4501) |%noBranch|) (IF (|has| |#1| (-6 -4505)) (-6 -4505) |%noBranch|) (IF (|has| |#1| (-6 -4506)) (-6 -4506) |%noBranch|))) (-1080) (-868)) (T -1321))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-868)))) (-3062 (*1 *1 *1) (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-868)))) (-2260 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-1321 *3 *4)) (-4 *4 (-868)))) (-2256 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-868)))) (-3659 (*1 *2 *1) (-12 (-4 *2 (-868)) (-5 *1 (-1321 *3 *2)) (-4 *3 (-1080)))) (-4052 (*1 *2 *1) (-12 (-4 *2 (-868)) (-5 *1 (-1321 *3 *2)) (-4 *3 (-1080)))) (-2625 (*1 *2 *1 *3) (-12 (-4 *2 (-1080)) (-5 *1 (-1321 *2 *3)) (-4 *3 (-868)))) (-2889 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-868)))) (-2650 (*1 *2 *1) (-12 (-4 *2 (-1080)) (-5 *1 (-1321 *2 *3)) (-4 *3 (-868)))) (-1498 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-868)))) (-2686 (*1 *1 *1) (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-868)))) (-2453 (*1 *1 *1 *2) (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-376)) (-4 *2 (-1080)) (-4 *3 (-868)))))
+(-13 (-1080) (-1312 |#1|) (-397 |#1| |#2|) (-635 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2256 ((-793) $)) (-15 -3659 (|#2| $)) (-15 -4052 (|#2| $)) (-15 -3062 ($ $)) (-15 -2625 (|#1| $ |#2|)) (-15 -2889 ((-114) $)) (-15 -2650 (|#1| $)) (-15 -1498 ((-114) $)) (-15 -2686 ($ $)) (-15 -2260 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-376)) (-15 -2453 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4501)) (-6 -4501) |%noBranch|) (IF (|has| |#1| (-6 -4505)) (-6 -4505) |%noBranch|) (IF (|has| |#1| (-6 -4506)) (-6 -4506) |%noBranch|)))
+((-2243 (((-114) $ $) 27 T ELT)) (-2505 (((-114) $) NIL T ELT)) (-4356 (((-663 |#1|) $) 132 T ELT)) (-3817 (($ (-1313 |#1| |#2|)) 50 T ELT)) (-2165 (($ $ (-793)) 38 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2245 (($ $ $) 54 (|has| |#2| (-175)) ELT) (($ $ (-793)) 52 (|has| |#2| (-175)) ELT)) (-3525 (($) NIL T CONST)) (-4308 (($ $ |#1|) 114 T ELT) (($ $ (-841 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3929 (((-3 (-841 |#1|) "failed") $) NIL T ELT)) (-3649 (((-841 |#1|) $) NIL T ELT)) (-2873 (((-3 $ "failed") $) 122 T ELT)) (-1498 (((-114) $) 117 T ELT)) (-2686 (($ $) 118 T ELT)) (-1918 (((-114) $) NIL T ELT)) (-1673 (((-114) $) NIL T ELT)) (-1405 (($ (-841 |#1|) |#2|) 20 T ELT)) (-3723 (($ $) NIL T ELT)) (-2463 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-4052 (((-841 |#1|) $) 123 T ELT)) (-3659 (((-841 |#1|) $) 126 T ELT)) (-2260 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-2343 (($ $ |#1|) 112 T ELT) (($ $ (-841 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3890 (((-1313 |#1| |#2|) $) 94 T ELT)) (-3900 (((-793) $) 129 T ELT)) (-2889 (((-114) $) 81 T ELT)) (-2650 ((|#2| $) 32 T ELT)) (-3913 (((-887) $) 73 T ELT) (($ (-560)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-841 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-2625 ((|#2| $ (-841 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-4191 (((-793)) 120 T CONST)) (-3925 (((-114) $ $) NIL T ELT)) (-1446 (($) 15 T CONST)) (-2271 (((-663 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-1456 (($) 33 T CONST)) (-2340 (((-114) $ $) 14 T ELT)) (-2441 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-2429 (($ $ $) 61 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 55 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) 53 T ELT) (($ (-560) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT)))
+(((-1322 |#1| |#2|) (-13 (-1320 |#1| |#2|) (-10 -8 (-15 -3890 ((-1313 |#1| |#2|) $)) (-15 -3817 ($ (-1313 |#1| |#2|))) (-15 -2271 ((-663 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-871) (-1080)) (T -1322))
+((-3890 (*1 *2 *1) (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-1322 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)))) (-3817 (*1 *1 *2) (-12 (-5 *2 (-1313 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)) (-5 *1 (-1322 *3 *4)))) (-2271 (*1 *2 *1) (-12 (-5 *2 (-663 (-2 (|:| |k| *3) (|:| |c| (-1322 *3 *4))))) (-5 *1 (-1322 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)))))
+(-13 (-1320 |#1| |#2|) (-10 -8 (-15 -3890 ((-1313 |#1| |#2|) $)) (-15 -3817 ($ (-1313 |#1| |#2|))) (-15 -2271 ((-663 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-2243 (((-114) $ $) NIL T ELT)) (-2419 (($ (-663 (-948))) 10 T ELT)) (-3814 (((-1002) $) 12 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-3913 (((-887) $) 25 T ELT) (($ (-1002)) 14 T ELT) (((-1002) $) 13 T ELT)) (-3925 (((-114) $ $) NIL T ELT)) (-2340 (((-114) $ $) 17 T ELT)))
+(((-1323) (-13 (-1132) (-504 (-1002)) (-10 -8 (-15 -2419 ($ (-663 (-948)))) (-15 -3814 ((-1002) $))))) (T -1323))
+((-2419 (*1 *1 *2) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1323)))) (-3814 (*1 *2 *1) (-12 (-5 *2 (-1002)) (-5 *1 (-1323)))))
+(-13 (-1132) (-504 (-1002)) (-10 -8 (-15 -2419 ($ (-663 (-948)))) (-15 -3814 ((-1002) $))))
+((-1623 (((-663 (-1185 |#1|)) (-1 (-663 (-1185 |#1|)) (-663 (-1185 |#1|))) (-560)) 16 T ELT) (((-1185 |#1|) (-1 (-1185 |#1|) (-1185 |#1|))) 13 T ELT)))
+(((-1324 |#1|) (-10 -7 (-15 -1623 ((-1185 |#1|) (-1 (-1185 |#1|) (-1185 |#1|)))) (-15 -1623 ((-663 (-1185 |#1|)) (-1 (-663 (-1185 |#1|)) (-663 (-1185 |#1|))) (-560)))) (-1247)) (T -1324))
+((-1623 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-663 (-1185 *5)) (-663 (-1185 *5)))) (-5 *4 (-560)) (-5 *2 (-663 (-1185 *5))) (-5 *1 (-1324 *5)) (-4 *5 (-1247)))) (-1623 (*1 *2 *3) (-12 (-5 *3 (-1 (-1185 *4) (-1185 *4))) (-5 *2 (-1185 *4)) (-5 *1 (-1324 *4)) (-4 *4 (-1247)))))
+(-10 -7 (-15 -1623 ((-1185 |#1|) (-1 (-1185 |#1|) (-1185 |#1|)))) (-15 -1623 ((-663 (-1185 |#1|)) (-1 (-663 (-1185 |#1|)) (-663 (-1185 |#1|))) (-560))))
+((-3829 (((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-663 (-975 |#1|))) 174 T ELT) (((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114)) 173 T ELT) (((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114) (-114)) 172 T ELT) (((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114) (-114) (-114)) 171 T ELT) (((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-1077 |#1| |#2|)) 156 T ELT)) (-3136 (((-663 (-1077 |#1| |#2|)) (-663 (-975 |#1|))) 85 T ELT) (((-663 (-1077 |#1| |#2|)) (-663 (-975 |#1|)) (-114)) 84 T ELT) (((-663 (-1077 |#1| |#2|)) (-663 (-975 |#1|)) (-114) (-114)) 83 T ELT)) (-3898 (((-663 (-1177 |#1| (-545 (-888 |#3|)) (-888 |#3|) (-802 |#1| (-888 |#3|)))) (-1077 |#1| |#2|)) 73 T ELT)) (-4159 (((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|))) 140 T ELT) (((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114)) 139 T ELT) (((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114) (-114)) 138 T ELT) (((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114) (-114) (-114)) 137 T ELT) (((-663 (-663 (-1055 (-421 |#1|)))) (-1077 |#1| |#2|)) 132 T ELT)) (-3581 (((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|))) 145 T ELT) (((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114)) 144 T ELT) (((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114) (-114)) 143 T ELT) (((-663 (-663 (-1055 (-421 |#1|)))) (-1077 |#1| |#2|)) 142 T ELT)) (-2400 (((-663 (-802 |#1| (-888 |#3|))) (-1177 |#1| (-545 (-888 |#3|)) (-888 |#3|) (-802 |#1| (-888 |#3|)))) 111 T ELT) (((-1201 (-1055 (-421 |#1|))) (-1201 |#1|)) 102 T ELT) (((-975 (-1055 (-421 |#1|))) (-802 |#1| (-888 |#3|))) 109 T ELT) (((-975 (-1055 (-421 |#1|))) (-975 |#1|)) 107 T ELT) (((-802 |#1| (-888 |#3|)) (-802 |#1| (-888 |#2|))) 33 T ELT)))
+(((-1325 |#1| |#2| |#3|) (-10 -7 (-15 -3136 ((-663 (-1077 |#1| |#2|)) (-663 (-975 |#1|)) (-114) (-114))) (-15 -3136 ((-663 (-1077 |#1| |#2|)) (-663 (-975 |#1|)) (-114))) (-15 -3136 ((-663 (-1077 |#1| |#2|)) (-663 (-975 |#1|)))) (-15 -3829 ((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-1077 |#1| |#2|))) (-15 -3829 ((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114) (-114) (-114))) (-15 -3829 ((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114) (-114))) (-15 -3829 ((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114))) (-15 -3829 ((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-663 (-975 |#1|)))) (-15 -4159 ((-663 (-663 (-1055 (-421 |#1|)))) (-1077 |#1| |#2|))) (-15 -4159 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114) (-114) (-114))) (-15 -4159 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114) (-114))) (-15 -4159 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114))) (-15 -4159 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)))) (-15 -3581 ((-663 (-663 (-1055 (-421 |#1|)))) (-1077 |#1| |#2|))) (-15 -3581 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114) (-114))) (-15 -3581 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114))) (-15 -3581 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)))) (-15 -3898 ((-663 (-1177 |#1| (-545 (-888 |#3|)) (-888 |#3|) (-802 |#1| (-888 |#3|)))) (-1077 |#1| |#2|))) (-15 -2400 ((-802 |#1| (-888 |#3|)) (-802 |#1| (-888 |#2|)))) (-15 -2400 ((-975 (-1055 (-421 |#1|))) (-975 |#1|))) (-15 -2400 ((-975 (-1055 (-421 |#1|))) (-802 |#1| (-888 |#3|)))) (-15 -2400 ((-1201 (-1055 (-421 |#1|))) (-1201 |#1|))) (-15 -2400 ((-663 (-802 |#1| (-888 |#3|))) (-1177 |#1| (-545 (-888 |#3|)) (-888 |#3|) (-802 |#1| (-888 |#3|)))))) (-13 (-870) (-319) (-149) (-1051)) (-663 (-1207)) (-663 (-1207))) (T -1325))
+((-2400 (*1 *2 *3) (-12 (-5 *3 (-1177 *4 (-545 (-888 *6)) (-888 *6) (-802 *4 (-888 *6)))) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-14 *6 (-663 (-1207))) (-5 *2 (-663 (-802 *4 (-888 *6)))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-663 (-1207))))) (-2400 (*1 *2 *3) (-12 (-5 *3 (-1201 *4)) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-1201 (-1055 (-421 *4)))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207))))) (-2400 (*1 *2 *3) (-12 (-5 *3 (-802 *4 (-888 *6))) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-14 *6 (-663 (-1207))) (-5 *2 (-975 (-1055 (-421 *4)))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-663 (-1207))))) (-2400 (*1 *2 *3) (-12 (-5 *3 (-975 *4)) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-975 (-1055 (-421 *4)))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207))))) (-2400 (*1 *2 *3) (-12 (-5 *3 (-802 *4 (-888 *5))) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-14 *5 (-663 (-1207))) (-5 *2 (-802 *4 (-888 *6))) (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-663 (-1207))))) (-3898 (*1 *2 *3) (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-14 *5 (-663 (-1207))) (-5 *2 (-663 (-1177 *4 (-545 (-888 *6)) (-888 *6) (-802 *4 (-888 *6))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-663 (-1207))))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-663 (-975 *4))) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-663 (-1055 (-421 *4))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207))))) (-3581 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-663 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207))))) (-3581 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-663 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207))))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-14 *5 (-663 (-1207))) (-5 *2 (-663 (-663 (-1055 (-421 *4))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-663 (-1207))))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-663 (-975 *4))) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-663 (-1055 (-421 *4))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207))))) (-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-663 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207))))) (-4159 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-663 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207))))) (-4159 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-663 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207))))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-14 *5 (-663 (-1207))) (-5 *2 (-663 (-663 (-1055 (-421 *4))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-663 (-1207))))) (-3829 (*1 *2 *3) (-12 (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-2 (|:| -2557 (-1201 *4)) (|:| -4226 (-663 (-975 *4)))))) (-5 *1 (-1325 *4 *5 *6)) (-5 *3 (-663 (-975 *4))) (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207))))) (-3829 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-2 (|:| -2557 (-1201 *5)) (|:| -4226 (-663 (-975 *5)))))) (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-663 (-975 *5))) (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207))))) (-3829 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-2 (|:| -2557 (-1201 *5)) (|:| -4226 (-663 (-975 *5)))))) (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-663 (-975 *5))) (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207))))) (-3829 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-2 (|:| -2557 (-1201 *5)) (|:| -4226 (-663 (-975 *5)))))) (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-663 (-975 *5))) (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207))))) (-3829 (*1 *2 *3) (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-14 *5 (-663 (-1207))) (-5 *2 (-663 (-2 (|:| -2557 (-1201 *4)) (|:| -4226 (-663 (-975 *4)))))) (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-663 (-1207))))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-663 (-975 *4))) (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-1077 *4 *5))) (-5 *1 (-1325 *4 *5 *6)) (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207))))) (-3136 (*1 *2 *3 *4) (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-1077 *5 *6))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207))))) (-3136 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051))) (-5 *2 (-663 (-1077 *5 *6))) (-5 *1 (-1325 *5 *6 *7)) (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207))))))
+(-10 -7 (-15 -3136 ((-663 (-1077 |#1| |#2|)) (-663 (-975 |#1|)) (-114) (-114))) (-15 -3136 ((-663 (-1077 |#1| |#2|)) (-663 (-975 |#1|)) (-114))) (-15 -3136 ((-663 (-1077 |#1| |#2|)) (-663 (-975 |#1|)))) (-15 -3829 ((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-1077 |#1| |#2|))) (-15 -3829 ((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114) (-114) (-114))) (-15 -3829 ((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114) (-114))) (-15 -3829 ((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-663 (-975 |#1|)) (-114))) (-15 -3829 ((-663 (-2 (|:| -2557 (-1201 |#1|)) (|:| -4226 (-663 (-975 |#1|))))) (-663 (-975 |#1|)))) (-15 -4159 ((-663 (-663 (-1055 (-421 |#1|)))) (-1077 |#1| |#2|))) (-15 -4159 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114) (-114) (-114))) (-15 -4159 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114) (-114))) (-15 -4159 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114))) (-15 -4159 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)))) (-15 -3581 ((-663 (-663 (-1055 (-421 |#1|)))) (-1077 |#1| |#2|))) (-15 -3581 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114) (-114))) (-15 -3581 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)) (-114))) (-15 -3581 ((-663 (-663 (-1055 (-421 |#1|)))) (-663 (-975 |#1|)))) (-15 -3898 ((-663 (-1177 |#1| (-545 (-888 |#3|)) (-888 |#3|) (-802 |#1| (-888 |#3|)))) (-1077 |#1| |#2|))) (-15 -2400 ((-802 |#1| (-888 |#3|)) (-802 |#1| (-888 |#2|)))) (-15 -2400 ((-975 (-1055 (-421 |#1|))) (-975 |#1|))) (-15 -2400 ((-975 (-1055 (-421 |#1|))) (-802 |#1| (-888 |#3|)))) (-15 -2400 ((-1201 (-1055 (-421 |#1|))) (-1201 |#1|))) (-15 -2400 ((-663 (-802 |#1| (-888 |#3|))) (-1177 |#1| (-545 (-888 |#3|)) (-888 |#3|) (-802 |#1| (-888 |#3|))))))
+((-3810 (((-3 (-1297 (-421 (-560))) "failed") (-1297 |#1|) |#1|) 21 T ELT)) (-2845 (((-114) (-1297 |#1|)) 12 T ELT)) (-3917 (((-3 (-1297 (-560)) "failed") (-1297 |#1|)) 16 T ELT)))
+(((-1326 |#1|) (-10 -7 (-15 -2845 ((-114) (-1297 |#1|))) (-15 -3917 ((-3 (-1297 (-560)) "failed") (-1297 |#1|))) (-15 -3810 ((-3 (-1297 (-421 (-560))) "failed") (-1297 |#1|) |#1|))) (-13 (-1080) (-660 (-560)))) (T -1326))
+((-3810 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1080) (-660 (-560)))) (-5 *2 (-1297 (-421 (-560)))) (-5 *1 (-1326 *4)))) (-3917 (*1 *2 *3) (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1080) (-660 (-560)))) (-5 *2 (-1297 (-560))) (-5 *1 (-1326 *4)))) (-2845 (*1 *2 *3) (-12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1080) (-660 (-560)))) (-5 *2 (-114)) (-5 *1 (-1326 *4)))))
+(-10 -7 (-15 -2845 ((-114) (-1297 |#1|))) (-15 -3917 ((-3 (-1297 (-560)) "failed") (-1297 |#1|))) (-15 -3810 ((-3 (-1297 (-421 (-560))) "failed") (-1297 |#1|) |#1|)))
+((-2243 (((-114) $ $) NIL T ELT)) (-2505 (((-114) $) 11 T ELT)) (-3094 (((-3 $ "failed") $ $) NIL T ELT)) (-2552 (((-793)) 8 T ELT)) (-3525 (($) NIL T CONST)) (-2873 (((-3 $ "failed") $) 58 T ELT)) (-1812 (($) 49 T ELT)) (-1918 (((-114) $) 57 T ELT)) (-3738 (((-3 $ "failed") $) 40 T ELT)) (-2622 (((-948) $) 15 T ELT)) (-3358 (((-1189) $) NIL T ELT)) (-3239 (($) 32 T CONST)) (-1591 (($ (-948)) 50 T ELT)) (-3376 (((-1151) $) NIL T ELT)) (-2400 (((-560) $) 13 T ELT)) (-3913 (((-887) $) 27 T ELT) (($ (-560)) 24 T ELT)) (-4191 (((-793)) 9 T CONST)) (-3925 (((-114) $ $) 60 T ELT)) (-1446 (($) 29 T CONST)) (-1456 (($) 31 T CONST)) (-2340 (((-114) $ $) 38 T ELT)) (-2441 (($ $) 52 T ELT) (($ $ $) 47 T ELT)) (-2429 (($ $ $) 35 T ELT)) (** (($ $ (-948)) NIL T ELT) (($ $ (-793)) 54 T ELT)) (* (($ (-948) $) NIL T ELT) (($ (-793) $) NIL T ELT) (($ (-560) $) 44 T ELT) (($ $ $) 43 T ELT)))
(((-1327 |#1|) (-13 (-175) (-381) (-633 (-560)) (-1182)) (-948)) (T -1327))
NIL
(-13 (-175) (-381) (-633 (-560)) (-1182))
@@ -5481,4 +5481,4 @@ NIL
NIL
NIL
NIL
-((-3 3472754 3472759 3472764 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3472739 3472744 3472749 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3472724 3472729 3472734 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3472709 3472714 3472719 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1327 3471696 3472584 3472661 "ZMOD" 3472666 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1326 3470732 3470914 3471137 "ZLINDEP" 3471528 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1325 3459894 3461800 3463772 "ZDSOLVE" 3468862 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1324 3459128 3459281 3459470 "YSTREAM" 3459740 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1323 3458488 3458797 3458912 "YDIAGRAM" 3459035 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1322 3455936 3457789 3457993 "XRPOLY" 3458331 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1321 3452203 3453807 3454382 "XPR" 3455408 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1320 3449534 3451210 3451265 "XPOLYC" 3451553 NIL XPOLYC (NIL T T) -9 NIL 3451666 NIL) (-1319 3446929 3448865 3449069 "XPOLY" 3449365 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1318 3442875 3445446 3445834 "XPBWPOLY" 3446587 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1317 3437767 3439346 3439401 "XFALG" 3441573 NIL XFALG (NIL T T) -9 NIL 3442362 NIL) (-1316 3433036 3435743 3435785 "XF" 3436406 NIL XF (NIL T) -9 NIL 3436806 NIL) (-1315 3432633 3432745 3432914 "XF-" 3432919 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1314 3431748 3431870 3432075 "XEXPPKG" 3432525 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1313 3429489 3431598 3431694 "XDPOLY" 3431699 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1312 3428144 3428882 3428925 "XALG" 3428930 NIL XALG (NIL T) -9 NIL 3429041 NIL) (-1311 3421054 3426121 3426615 "WUTSET" 3427736 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1310 3419156 3420106 3420429 "WP" 3420865 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1309 3418704 3418978 3419048 "WHILEAST" 3419108 T WHILEAST (NIL) -8 NIL NIL NIL) (-1308 3418116 3418421 3418515 "WHEREAST" 3418632 T WHEREAST (NIL) -8 NIL NIL NIL) (-1307 3416990 3417200 3417495 "WFFINTBS" 3417913 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1306 3414858 3415321 3415783 "WEIER" 3416562 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1305 3413782 3414340 3414382 "VSPACE" 3414518 NIL VSPACE (NIL T) -9 NIL 3414592 NIL) (-1304 3413614 3413647 3413738 "VSPACE-" 3413743 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1303 3413411 3413465 3413533 "VOID" 3413568 T VOID (NIL) -8 NIL NIL NIL) (-1302 3409679 3410474 3411211 "VIEWDEF" 3412696 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1301 3398623 3401227 3403400 "VIEW3D" 3407528 T VIEW3D (NIL) -8 NIL NIL NIL) (-1300 3390640 3392534 3394113 "VIEW2D" 3397066 T VIEW2D (NIL) -8 NIL NIL NIL) (-1299 3388740 3389135 3389541 "VIEW" 3390256 T VIEW (NIL) -7 NIL NIL NIL) (-1298 3387293 3387576 3387894 "VECTOR2" 3388470 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1297 3382199 3387063 3387155 "VECTOR" 3387236 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1296 3375153 3379903 3379946 "VECTCAT" 3380941 NIL VECTCAT (NIL T) -9 NIL 3381528 NIL) (-1295 3374095 3374421 3374811 "VECTCAT-" 3374816 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1294 3373501 3373746 3373866 "VARIABLE" 3374010 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1293 3373434 3373439 3373469 "UTYPE" 3373474 T UTYPE (NIL) -9 NIL NIL NIL) (-1292 3372242 3372418 3372680 "UTSODETL" 3373260 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1291 3369634 3370142 3370666 "UTSODE" 3371783 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1290 3359641 3365567 3365610 "UTSCAT" 3366722 NIL UTSCAT (NIL T) -9 NIL 3367480 NIL) (-1289 3356767 3357711 3358700 "UTSCAT-" 3358705 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1288 3356388 3356437 3356570 "UTS2" 3356718 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1287 3347698 3354149 3354629 "UTS" 3355966 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1286 3341565 3344508 3344551 "URAGG" 3346621 NIL URAGG (NIL T) -9 NIL 3347344 NIL) (-1285 3338288 3339367 3340490 "URAGG-" 3340495 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1284 3333657 3336923 3337388 "UPXSSING" 3337952 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1283 3326072 3333561 3333633 "UPXSCONS" 3333638 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1282 3314820 3322274 3322336 "UPXSCCA" 3322910 NIL UPXSCCA (NIL T T) -9 NIL 3323143 NIL) (-1281 3314440 3314543 3314717 "UPXSCCA-" 3314722 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1280 3303088 3310267 3310310 "UPXSCAT" 3310958 NIL UPXSCAT (NIL T) -9 NIL 3311567 NIL) (-1279 3302512 3302597 3302776 "UPXS2" 3303003 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1278 3293990 3301894 3302158 "UPXS" 3302306 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1277 3292626 3292897 3293248 "UPSQFREE" 3293733 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1276 3285454 3288892 3288947 "UPSCAT" 3290027 NIL UPSCAT (NIL T T) -9 NIL 3290793 NIL) (-1275 3284610 3284865 3285192 "UPSCAT-" 3285197 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1274 3284231 3284280 3284413 "UPOLYC2" 3284561 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1273 3268365 3277358 3277401 "UPOLYC" 3279502 NIL UPOLYC (NIL T) -9 NIL 3280723 NIL) (-1272 3259213 3262119 3265266 "UPOLYC-" 3265271 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1271 3258534 3258659 3258823 "UPMP" 3259102 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1270 3258081 3258168 3258307 "UPDIVP" 3258447 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1269 3256619 3256898 3257214 "UPDECOMP" 3257830 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1268 3255832 3255962 3256148 "UPCDEN" 3256503 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1267 3255345 3255420 3255569 "UP2" 3255757 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1266 3245920 3255028 3255157 "UP" 3255264 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1265 3245125 3245262 3245467 "UNISEG2" 3245763 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1264 3243478 3244329 3244606 "UNISEG" 3244883 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1263 3242520 3242718 3242944 "UNIFACT" 3243294 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1262 3229230 3242424 3242496 "ULSCONS" 3242501 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1261 3209030 3222310 3222372 "ULSCCAT" 3223010 NIL ULSCCAT (NIL T T) -9 NIL 3223299 NIL) (-1260 3208026 3208325 3208713 "ULSCCAT-" 3208718 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1259 3196471 3203572 3203615 "ULSCAT" 3204478 NIL ULSCAT (NIL T) -9 NIL 3205209 NIL) (-1258 3195895 3195980 3196159 "ULS2" 3196386 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1257 3177705 3195207 3195449 "ULS" 3195711 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1256 3176620 3177320 3177434 "UINT8" 3177545 T UINT8 (NIL) -8 NIL NIL 3177637) (-1255 3175534 3176234 3176348 "UINT64" 3176459 T UINT64 (NIL) -8 NIL NIL 3176551) (-1254 3174448 3175148 3175262 "UINT32" 3175373 T UINT32 (NIL) -8 NIL NIL 3175465) (-1253 3173362 3174062 3174176 "UINT16" 3174287 T UINT16 (NIL) -8 NIL NIL 3174379) (-1252 3171441 3172608 3172638 "UFD" 3172850 T UFD (NIL) -9 NIL 3172964 NIL) (-1251 3171223 3171281 3171376 "UFD-" 3171381 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1250 3170281 3170488 3170704 "UDVO" 3171029 T UDVO (NIL) -7 NIL NIL NIL) (-1249 3168047 3168506 3168977 "UDPO" 3169845 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1248 3167759 3168002 3168033 "TYPEAST" 3168038 T TYPEAST (NIL) -8 NIL NIL NIL) (-1247 3167692 3167697 3167727 "TYPE" 3167732 T TYPE (NIL) -9 NIL NIL NIL) (-1246 3166645 3166865 3167105 "TWOFACT" 3167486 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1245 3165620 3166054 3166289 "TUPLE" 3166445 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1244 3163257 3163830 3164369 "TUBETOOL" 3165103 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1243 3162063 3162304 3162546 "TUBE" 3163050 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1242 3150205 3154820 3154917 "TSETCAT" 3160186 NIL TSETCAT (NIL T T T T) -9 NIL 3161718 NIL) (-1241 3144673 3146537 3148428 "TSETCAT-" 3148433 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1240 3138852 3143645 3143928 "TS" 3144425 NIL TS (NIL T) -8 NIL NIL NIL) (-1239 3133325 3134338 3135267 "TRMANIP" 3137988 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1238 3132754 3132829 3132992 "TRIMAT" 3133257 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1237 3130566 3130857 3131214 "TRIGMNIP" 3132503 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1236 3130050 3130199 3130229 "TRIGCAT" 3130442 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1235 3129695 3129798 3129939 "TRIGCAT-" 3129944 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1234 3126309 3128553 3128834 "TREE" 3129449 NIL TREE (NIL T) -8 NIL NIL NIL) (-1233 3125415 3126111 3126141 "TRANFUN" 3126176 T TRANFUN (NIL) -9 NIL 3126242 NIL) (-1232 3124634 3124885 3125165 "TRANFUN-" 3125170 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1231 3124432 3124470 3124531 "TOPSP" 3124595 T TOPSP (NIL) -7 NIL NIL NIL) (-1230 3123762 3123895 3124049 "TOOLSIGN" 3124313 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1229 3122276 3122939 3123178 "TEXTFILE" 3123545 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1228 3122051 3122088 3122160 "TEX1" 3122239 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1227 3119855 3120504 3120933 "TEX" 3121644 T TEX (NIL) -8 NIL NIL NIL) (-1226 3119491 3119566 3119656 "TEMUTL" 3119787 T TEMUTL (NIL) -7 NIL NIL NIL) (-1225 3117585 3117925 3118250 "TBCMPPK" 3119214 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1224 3108912 3115671 3115727 "TBAGG" 3116127 NIL TBAGG (NIL T T) -9 NIL 3116338 NIL) (-1223 3103796 3105470 3107224 "TBAGG-" 3107229 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1222 3103162 3103287 3103432 "TANEXP" 3103685 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1221 3102613 3102937 3103027 "TALGOP" 3103107 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1220 3102007 3102124 3102262 "TABLEAU" 3102510 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1219 3095021 3101864 3101957 "TABLE" 3101962 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1218 3089551 3090849 3092097 "TABLBUMP" 3093807 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1217 3088761 3088920 3089101 "SYSTEM" 3089392 T SYSTEM (NIL) -8 NIL NIL NIL) (-1216 3085166 3085919 3086702 "SYSSOLP" 3088012 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1215 3084928 3085121 3085152 "SYSPTR" 3085157 T SYSPTR (NIL) -8 NIL NIL NIL) (-1214 3083763 3084455 3084581 "SYSNNI" 3084767 NIL SYSNNI (NIL NIL) -8 NIL NIL 3084859) (-1213 3082966 3083521 3083600 "SYSINT" 3083660 NIL SYSINT (NIL NIL) -8 NIL NIL 3083705) (-1212 3079064 3080244 3080954 "SYNTAX" 3082278 T SYNTAX (NIL) -8 NIL NIL NIL) (-1211 3076144 3076824 3077456 "SYMTAB" 3078454 T SYMTAB (NIL) -8 NIL NIL NIL) (-1210 3071243 3072295 3073278 "SYMS" 3075183 T SYMS (NIL) -8 NIL NIL NIL) (-1209 3068142 3070694 3070927 "SYMPOLY" 3071045 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1208 3067647 3067734 3067857 "SYMFUNC" 3068054 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1207 3063445 3064959 3065772 "SYMBOL" 3066856 T SYMBOL (NIL) -8 NIL NIL NIL) (-1206 3056918 3058673 3060393 "SWITCH" 3061747 T SWITCH (NIL) -8 NIL NIL NIL) (-1205 3049672 3055874 3056168 "SUTS" 3056682 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1204 3041150 3049054 3049318 "SUPXS" 3049466 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1203 3040297 3040436 3040653 "SUPFRACF" 3041018 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1202 3039912 3039977 3040090 "SUP2" 3040232 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1201 3030435 3039530 3039656 "SUP" 3039821 NIL SUP (NIL T) -8 NIL NIL NIL) (-1200 3028859 3029157 3029513 "SUMRF" 3030134 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1199 3028182 3028260 3028452 "SUMFS" 3028780 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1198 3010027 3027494 3027736 "SULS" 3027998 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1197 3009575 3009849 3009919 "SUCHTAST" 3009979 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1196 3008816 3009100 3009240 "SUCH" 3009483 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1195 3002455 3003722 3004681 "SUBSPACE" 3007904 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1194 3001875 3001975 3002139 "SUBRESP" 3002343 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1193 2995886 2997168 2998315 "STTFNC" 3000775 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1192 2989080 2990551 2991862 "STTF" 2994622 NIL STTF (NIL T) -7 NIL NIL NIL) (-1191 2980197 2982262 2984056 "STTAYLOR" 2987321 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1190 2972951 2980061 2980144 "STRTBL" 2980149 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1189 2967348 2972660 2972759 "STRING" 2972874 T STRING (NIL) -8 NIL NIL NIL) (-1188 2966852 2966935 2967079 "STREAM3" 2967265 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1187 2965816 2966017 2966252 "STREAM2" 2966665 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1186 2965498 2965556 2965649 "STREAM1" 2965758 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1185 2957608 2963117 2963728 "STREAM" 2964922 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1184 2956600 2956805 2957036 "STINPROD" 2957424 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1183 2955715 2956089 2956237 "STEPAST" 2956474 T STEPAST (NIL) -8 NIL NIL NIL) (-1182 2955211 2955463 2955493 "STEP" 2955573 T STEP (NIL) -9 NIL 2955651 NIL) (-1181 2948267 2955110 2955187 "STBL" 2955192 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1180 2942825 2947430 2947473 "STAGG" 2947626 NIL STAGG (NIL T) -9 NIL 2947715 NIL) (-1179 2940377 2941129 2942001 "STAGG-" 2942006 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1178 2938349 2940147 2940239 "STACK" 2940320 NIL STACK (NIL T) -8 NIL NIL NIL) (-1177 2930356 2936490 2936946 "SREGSET" 2937979 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1176 2922703 2924150 2925663 "SRDCMPK" 2928962 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1175 2915012 2920062 2920092 "SRAGG" 2921395 T SRAGG (NIL) -9 NIL 2922003 NIL) (-1174 2913963 2914284 2914663 "SRAGG-" 2914668 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1173 2907547 2912910 2913331 "SQMATRIX" 2913589 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1172 2900959 2904265 2904992 "SPLTREE" 2906892 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1171 2896784 2897615 2898261 "SPLNODE" 2900385 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1170 2895759 2896064 2896094 "SPFCAT" 2896538 T SPFCAT (NIL) -9 NIL NIL NIL) (-1169 2894454 2894706 2894970 "SPECOUT" 2895517 T SPECOUT (NIL) -7 NIL NIL NIL) (-1168 2885100 2887418 2887448 "SPADXPT" 2892126 T SPADXPT (NIL) -9 NIL 2894292 NIL) (-1167 2884855 2884901 2884970 "SPADPRSR" 2885053 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1166 2882458 2884810 2884841 "SPADAST" 2884846 T SPADAST (NIL) -8 NIL NIL NIL) (-1165 2874059 2876162 2876205 "SPACEC" 2880578 NIL SPACEC (NIL T) -9 NIL 2882394 NIL) (-1164 2871859 2873991 2874040 "SPACE3" 2874045 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1163 2870591 2870782 2871073 "SORTPAK" 2871664 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1162 2868653 2868986 2869398 "SOLVETRA" 2870255 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1161 2867691 2867925 2868186 "SOLVESER" 2868426 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1160 2862923 2863883 2864878 "SOLVERAD" 2866743 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1159 2858648 2859347 2860076 "SOLVEFOR" 2862290 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1158 2852259 2857996 2858093 "SNTSCAT" 2858098 NIL SNTSCAT (NIL T T T T) -9 NIL 2858168 NIL) (-1157 2845803 2850582 2850973 "SMTS" 2851949 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1156 2839518 2845691 2845768 "SMP" 2845773 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1155 2837647 2837978 2838376 "SMITH" 2839215 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1154 2829179 2834226 2834329 "SMATCAT" 2835680 NIL SMATCAT (NIL NIL T T T) -9 NIL 2836230 NIL) (-1153 2825951 2826942 2828120 "SMATCAT-" 2828125 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1152 2823420 2825159 2825202 "SKAGG" 2825463 NIL SKAGG (NIL T) -9 NIL 2825598 NIL) (-1151 2818914 2822893 2823077 "SINT" 2823229 T SINT (NIL) -8 NIL NIL 2823391) (-1150 2818680 2818724 2818790 "SIMPAN" 2818870 T SIMPAN (NIL) -7 NIL NIL NIL) (-1149 2817500 2817739 2818014 "SIGNRF" 2818439 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1148 2816315 2816484 2816768 "SIGNEF" 2817329 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1147 2815555 2815898 2816022 "SIGAST" 2816213 T SIGAST (NIL) -8 NIL NIL NIL) (-1146 2814780 2815090 2815230 "SIG" 2815437 T SIG (NIL) -8 NIL NIL NIL) (-1145 2812432 2812924 2813430 "SHP" 2814321 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1144 2805805 2812333 2812409 "SHDP" 2812414 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1143 2805316 2805556 2805586 "SGROUP" 2805679 T SGROUP (NIL) -9 NIL 2805741 NIL) (-1142 2805168 2805200 2805273 "SGROUP-" 2805278 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1141 2801887 2802657 2803380 "SGCF" 2804467 T SGCF (NIL) -7 NIL NIL NIL) (-1140 2795596 2801333 2801430 "SFRTCAT" 2801435 NIL SFRTCAT (NIL T T T T) -9 NIL 2801474 NIL) (-1139 2788915 2790035 2791171 "SFRGCD" 2794579 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1138 2781933 2783114 2784300 "SFQCMPK" 2787848 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1137 2781535 2781642 2781753 "SFORT" 2781874 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1136 2780461 2781375 2781496 "SEXOF" 2781501 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1135 2776050 2776957 2777052 "SEXCAT" 2779674 NIL SEXCAT (NIL T T T T T) -9 NIL 2780234 NIL) (-1134 2774965 2775931 2775999 "SEX" 2776004 T SEX (NIL) -8 NIL NIL NIL) (-1133 2773087 2773678 2773983 "SETMN" 2774706 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1132 2772617 2772805 2772835 "SETCAT" 2772952 T SETCAT (NIL) -9 NIL 2773037 NIL) (-1131 2772385 2772449 2772548 "SETCAT-" 2772553 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1130 2768488 2770846 2770889 "SETAGG" 2771759 NIL SETAGG (NIL T) -9 NIL 2772099 NIL) (-1129 2767910 2768062 2768299 "SETAGG-" 2768304 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1128 2764719 2767844 2767892 "SET" 2767897 NIL SET (NIL T) -8 NIL NIL NIL) (-1127 2764102 2764415 2764516 "SEQAST" 2764640 T SEQAST (NIL) -8 NIL NIL NIL) (-1126 2763229 2763595 2763656 "SEGXCAT" 2763942 NIL SEGXCAT (NIL T T) -9 NIL 2764062 NIL) (-1125 2762154 2762422 2762465 "SEGCAT" 2762987 NIL SEGCAT (NIL T) -9 NIL 2763208 NIL) (-1124 2761769 2761834 2761947 "SEGBIND2" 2762089 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1123 2760659 2761132 2761340 "SEGBIND" 2761596 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1122 2760178 2760460 2760537 "SEGAST" 2760604 T SEGAST (NIL) -8 NIL NIL NIL) (-1121 2759387 2759523 2759727 "SEG2" 2760022 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1120 2758303 2759053 2759235 "SEG" 2759240 NIL SEG (NIL T) -8 NIL NIL NIL) (-1119 2757536 2758238 2758285 "SDVAR" 2758290 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1118 2748887 2757306 2757436 "SDPOL" 2757441 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1117 2747456 2747746 2748065 "SCPKG" 2748602 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1116 2746578 2746792 2746984 "SCOPE" 2747286 T SCOPE (NIL) -8 NIL NIL NIL) (-1115 2745774 2745932 2746111 "SCACHE" 2746433 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1114 2745358 2745592 2745622 "SASTCAT" 2745627 T SASTCAT (NIL) -9 NIL 2745640 NIL) (-1113 2744761 2745193 2745269 "SAOS" 2745304 T SAOS (NIL) -8 NIL NIL NIL) (-1112 2744320 2744361 2744534 "SAERFFC" 2744720 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1111 2743907 2743948 2744107 "SAEFACT" 2744279 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1110 2736934 2743804 2743884 "SAE" 2743889 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1109 2735237 2735569 2735970 "RURPK" 2736600 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1108 2733814 2734180 2734485 "RULESET" 2735071 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1107 2733384 2733608 2733691 "RULECOLD" 2733766 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1106 2730499 2731137 2731595 "RULE" 2733065 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1105 2730283 2730317 2730388 "RTVALUE" 2730450 T RTVALUE (NIL) -8 NIL NIL NIL) (-1104 2729694 2730000 2730094 "RSTRCAST" 2730211 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1103 2724464 2725337 2726257 "RSETGCD" 2728893 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1102 2713035 2718772 2718869 "RSETCAT" 2722988 NIL RSETCAT (NIL T T T T) -9 NIL 2724085 NIL) (-1101 2710854 2711501 2712325 "RSETCAT-" 2712330 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1100 2703162 2704616 2706136 "RSDCMPK" 2709453 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1099 2701031 2701594 2701668 "RRCC" 2702754 NIL RRCC (NIL T T) -9 NIL 2703098 NIL) (-1098 2700352 2700556 2700835 "RRCC-" 2700840 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1097 2699735 2700048 2700149 "RPTAST" 2700273 T RPTAST (NIL) -8 NIL NIL NIL) (-1096 2672121 2682847 2682914 "RPOLCAT" 2693580 NIL RPOLCAT (NIL T T T) -9 NIL 2696740 NIL) (-1095 2663091 2665959 2669081 "RPOLCAT-" 2669086 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1094 2653544 2661302 2661784 "ROUTINE" 2662631 T ROUTINE (NIL) -8 NIL NIL NIL) (-1093 2649593 2653170 2653310 "ROMAN" 2653426 T ROMAN (NIL) -8 NIL NIL NIL) (-1092 2647705 2648453 2648713 "ROIRC" 2649398 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1091 2643423 2646194 2646224 "RNS" 2646528 T RNS (NIL) -9 NIL 2646802 NIL) (-1090 2641830 2642315 2642849 "RNS-" 2642924 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1089 2640791 2641195 2641397 "RNGBIND" 2641681 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1088 2640084 2640588 2640618 "RNG" 2640623 T RNG (NIL) -9 NIL 2640644 NIL) (-1087 2639379 2639857 2639900 "RMODULE" 2639905 NIL RMODULE (NIL T) -9 NIL 2639932 NIL) (-1086 2638203 2638309 2638645 "RMCAT2" 2639280 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1085 2634705 2637549 2637846 "RMATRIX" 2637965 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1084 2627204 2629792 2629907 "RMATCAT" 2633266 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2634248 NIL) (-1083 2626543 2626726 2627033 "RMATCAT-" 2627038 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1082 2626116 2626330 2626373 "RLINSET" 2626435 NIL RLINSET (NIL T) -9 NIL 2626479 NIL) (-1081 2625677 2625758 2625886 "RINTERP" 2626035 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1080 2624601 2625275 2625305 "RING" 2625361 T RING (NIL) -9 NIL 2625453 NIL) (-1079 2624381 2624437 2624534 "RING-" 2624539 NIL RING- (NIL T) -8 NIL NIL NIL) (-1078 2623192 2623459 2623717 "RIDIST" 2624145 T RIDIST (NIL) -7 NIL NIL NIL) (-1077 2613817 2622660 2622866 "RGCHAIN" 2623040 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1076 2613075 2613559 2613600 "RGBCSPC" 2613658 NIL RGBCSPC (NIL T) -9 NIL 2613710 NIL) (-1075 2612141 2612600 2612641 "RGBCMDL" 2612873 NIL RGBCMDL (NIL T) -9 NIL 2612987 NIL) (-1074 2611781 2611850 2611953 "RFFACTOR" 2612072 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1073 2611500 2611541 2611638 "RFFACT" 2611740 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1072 2609551 2609981 2610363 "RFDIST" 2611140 T RFDIST (NIL) -7 NIL NIL NIL) (-1071 2606491 2607159 2607829 "RF" 2608915 NIL RF (NIL T) -7 NIL NIL NIL) (-1070 2605938 2606036 2606199 "RETSOL" 2606393 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1069 2605556 2605654 2605697 "RETRACT" 2605830 NIL RETRACT (NIL T) -9 NIL 2605917 NIL) (-1068 2605399 2605430 2605517 "RETRACT-" 2605522 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1067 2604947 2605221 2605291 "RETAST" 2605351 T RETAST (NIL) -8 NIL NIL NIL) (-1066 2597297 2604600 2604727 "RESULT" 2604842 T RESULT (NIL) -8 NIL NIL NIL) (-1065 2595732 2596566 2596765 "RESRING" 2597200 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1064 2595356 2595417 2595515 "RESLATC" 2595669 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1063 2595055 2595096 2595203 "REPSQ" 2595315 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1062 2594746 2594787 2594898 "REPDB" 2595014 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1061 2588578 2590035 2591258 "REP2" 2593558 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1060 2584881 2585636 2586444 "REP1" 2587805 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1059 2582261 2582883 2583485 "REP" 2584301 T REP (NIL) -7 NIL NIL NIL) (-1058 2574269 2580402 2580858 "REGSET" 2581891 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1057 2572978 2573417 2573667 "REF" 2574054 NIL REF (NIL T) -8 NIL NIL NIL) (-1056 2572343 2572458 2572625 "REDORDER" 2572862 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1055 2567707 2571556 2571783 "RECLOS" 2572171 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1054 2566741 2566940 2567155 "REALSOLV" 2567514 T REALSOLV (NIL) -7 NIL NIL NIL) (-1053 2563188 2564026 2564910 "REAL0Q" 2565906 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1052 2558741 2559777 2560838 "REAL0" 2562169 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1051 2558575 2558628 2558658 "REAL" 2558663 T REAL (NIL) -9 NIL 2558698 NIL) (-1050 2557986 2558292 2558386 "RDUCEAST" 2558503 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1049 2557385 2557463 2557670 "RDIV" 2557908 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1048 2556435 2556627 2556840 "RDIST" 2557207 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1047 2555020 2555319 2555691 "RDETRS" 2556143 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1046 2552814 2553286 2553824 "RDETR" 2554562 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1045 2551433 2551717 2552114 "RDEEFS" 2552530 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1044 2549936 2550248 2550673 "RDEEF" 2551121 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1043 2543413 2546890 2546920 "RCFIELD" 2548215 T RCFIELD (NIL) -9 NIL 2548946 NIL) (-1042 2541369 2541981 2542677 "RCFIELD-" 2542752 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1041 2537421 2539442 2539485 "RCAGG" 2540569 NIL RCAGG (NIL T) -9 NIL 2541034 NIL) (-1040 2537031 2537143 2537306 "RCAGG-" 2537311 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1039 2536348 2536478 2536643 "RATRET" 2536915 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1038 2535889 2535968 2536089 "RATFACT" 2536276 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1037 2535167 2535317 2535469 "RANDSRC" 2535759 T RANDSRC (NIL) -7 NIL NIL NIL) (-1036 2534895 2534945 2535018 "RADUTIL" 2535116 T RADUTIL (NIL) -7 NIL NIL NIL) (-1035 2527019 2533726 2534037 "RADIX" 2534618 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1034 2516613 2526861 2526991 "RADFF" 2526996 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1033 2516242 2516335 2516365 "RADCAT" 2516525 T RADCAT (NIL) -9 NIL NIL NIL) (-1032 2516012 2516072 2516172 "RADCAT-" 2516177 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1031 2513923 2515782 2515874 "QUEUE" 2515955 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1030 2513548 2513597 2513728 "QUATCT2" 2513874 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1029 2505924 2509971 2510013 "QUATCAT" 2510804 NIL QUATCAT (NIL T) -9 NIL 2511570 NIL) (-1028 2501805 2503100 2504490 "QUATCAT-" 2504586 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1027 2497644 2501738 2501786 "QUAT" 2501791 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1026 2494900 2496692 2496735 "QUAGG" 2497116 NIL QUAGG (NIL T) -9 NIL 2497291 NIL) (-1025 2494448 2494722 2494792 "QQUTAST" 2494852 T QQUTAST (NIL) -8 NIL NIL NIL) (-1024 2493359 2493961 2494126 "QFORM" 2494329 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1023 2492984 2493033 2493164 "QFCAT2" 2493310 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1022 2482660 2488831 2488873 "QFCAT" 2489541 NIL QFCAT (NIL T) -9 NIL 2490542 NIL) (-1021 2477975 2479428 2481022 "QFCAT-" 2481118 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1020 2477406 2477540 2477672 "QEQUAT" 2477865 T QEQUAT (NIL) -8 NIL NIL NIL) (-1019 2470424 2471605 2472791 "QCMPACK" 2476339 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1018 2469653 2469835 2470071 "QALGSET2" 2470242 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1017 2467103 2467639 2468069 "QALGSET" 2469308 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1016 2465770 2466012 2466331 "PWFFINTB" 2466876 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1015 2463915 2464113 2464469 "PUSHVAR" 2465584 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1014 2459642 2460858 2460901 "PTRANFN" 2462812 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-1013 2457979 2458324 2458648 "PTPACK" 2459353 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-1012 2457602 2457665 2457776 "PTFUNC2" 2457916 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-1011 2451527 2456391 2456434 "PTCAT" 2456734 NIL PTCAT (NIL T) -9 NIL 2456887 NIL) (-1010 2451176 2451217 2451343 "PSQFR" 2451486 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-1009 2449748 2450064 2450400 "PSEUDLIN" 2450874 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-1008 2436268 2438843 2441169 "PSETPK" 2447508 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-1007 2428976 2432004 2432102 "PSETCAT" 2435143 NIL PSETCAT (NIL T T T T) -9 NIL 2435957 NIL) (-1006 2426701 2427443 2428267 "PSETCAT-" 2428272 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1005 2426014 2426209 2426239 "PSCURVE" 2426511 T PSCURVE (NIL) -9 NIL 2426678 NIL) (-1004 2421730 2423504 2423571 "PSCAT" 2424423 NIL PSCAT (NIL T T T) -9 NIL 2424663 NIL) (-1003 2420724 2421006 2421409 "PSCAT-" 2421414 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-1002 2418923 2419783 2420048 "PRTITION" 2420481 T PRTITION (NIL) -8 NIL NIL NIL) (-1001 2418334 2418640 2418734 "PRTDAST" 2418851 T PRTDAST (NIL) -8 NIL NIL NIL) (-1000 2407178 2409600 2411790 "PRS" 2416196 NIL PRS (NIL T T) -7 NIL NIL NIL) (-999 2404798 2406500 2406540 "PRQAGG" 2406723 NIL PRQAGG (NIL T) -9 NIL 2406825 NIL) (-998 2403977 2404426 2404454 "PROPLOG" 2404593 T PROPLOG (NIL) -9 NIL 2404708 NIL) (-997 2403575 2403638 2403761 "PROPFUN2" 2403900 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-996 2402872 2403011 2403183 "PROPFUN1" 2403436 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-995 2400851 2401619 2401916 "PROPFRML" 2402608 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-994 2400296 2400427 2400555 "PROPERTY" 2400743 T PROPERTY (NIL) -8 NIL NIL NIL) (-993 2394184 2398462 2399282 "PRODUCT" 2399522 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-992 2393974 2394012 2394071 "PRINT" 2394145 T PRINT (NIL) -7 NIL NIL NIL) (-991 2393290 2393431 2393583 "PRIMES" 2393854 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-990 2391337 2391756 2392222 "PRIMELT" 2392869 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-989 2391054 2391115 2391143 "PRIMCAT" 2391267 T PRIMCAT (NIL) -9 NIL NIL NIL) (-988 2390043 2390239 2390467 "PRIMARR2" 2390872 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-987 2385765 2389981 2390026 "PRIMARR" 2390031 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-986 2385402 2385464 2385575 "PREASSOC" 2385703 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-985 2382360 2384860 2385094 "PR" 2385213 NIL PR (NIL T T) -8 NIL NIL NIL) (-984 2381811 2381968 2381996 "PPCURVE" 2382201 T PPCURVE (NIL) -9 NIL 2382337 NIL) (-983 2381358 2381606 2381689 "PORTNUM" 2381748 T PORTNUM (NIL) -8 NIL NIL NIL) (-982 2378695 2379116 2379708 "POLYROOT" 2380939 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-981 2378072 2378136 2378370 "POLYLIFT" 2378631 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-980 2374293 2374796 2375425 "POLYCATQ" 2377617 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-979 2359941 2366040 2366105 "POLYCAT" 2369619 NIL POLYCAT (NIL T T T) -9 NIL 2371497 NIL) (-978 2353060 2355252 2357636 "POLYCAT-" 2357641 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-977 2352641 2352715 2352835 "POLY2UP" 2352986 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-976 2352267 2352330 2352439 "POLY2" 2352578 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-975 2345475 2351871 2352031 "POLY" 2352140 NIL POLY (NIL T) -8 NIL NIL NIL) (-974 2344136 2344399 2344675 "POLUTIL" 2345249 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-973 2342455 2342768 2343099 "POLTOPOL" 2343858 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-972 2337451 2342389 2342436 "POINT" 2342441 NIL POINT (NIL T) -8 NIL NIL NIL) (-971 2335584 2335995 2336370 "PNTHEORY" 2337096 T PNTHEORY (NIL) -7 NIL NIL NIL) (-970 2334030 2334339 2334738 "PMTOOLS" 2335282 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-969 2333617 2333701 2333818 "PMSYM" 2333946 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-968 2333119 2333194 2333369 "PMQFCAT" 2333542 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-967 2332500 2332598 2332760 "PMPREDFS" 2333020 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-966 2331843 2331965 2332121 "PMPRED" 2332377 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-965 2330497 2330715 2331093 "PMPLCAT" 2331605 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-964 2330023 2330108 2330260 "PMLSAGG" 2330412 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-963 2329490 2329572 2329754 "PMKERNEL" 2329941 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-962 2329101 2329182 2329295 "PMINS" 2329409 NIL PMINS (NIL T) -7 NIL NIL NIL) (-961 2328537 2328612 2328821 "PMFS" 2329026 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-960 2327753 2327883 2328088 "PMDOWN" 2328414 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-959 2327002 2327136 2327299 "PMASSFS" 2327640 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-958 2326145 2326327 2326508 "PMASS" 2326841 T PMASS (NIL) -7 NIL NIL NIL) (-957 2325794 2325868 2325962 "PLOTTOOL" 2326071 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-956 2321446 2322640 2323562 "PLOT3D" 2324892 T PLOT3D (NIL) -8 NIL NIL NIL) (-955 2320334 2320535 2320770 "PLOT1" 2321250 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-954 2314755 2316145 2317293 "PLOT" 2319206 T PLOT (NIL) -8 NIL NIL NIL) (-953 2289930 2294821 2299672 "PLEQN" 2310021 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-952 2289617 2289670 2289773 "PINTERPA" 2289877 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-951 2288923 2289057 2289237 "PINTERP" 2289482 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-950 2287008 2288181 2288209 "PID" 2288391 T PID (NIL) -9 NIL 2288525 NIL) (-949 2286753 2286796 2286871 "PICOERCE" 2286965 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-948 2285849 2286517 2286604 "PI" 2286644 T PI (NIL) -8 NIL NIL 2286711) (-947 2285157 2285308 2285484 "PGROEB" 2285705 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-946 2280596 2281555 2282461 "PGE" 2284271 T PGE (NIL) -7 NIL NIL NIL) (-945 2278677 2278966 2279332 "PGCD" 2280313 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-944 2278003 2278118 2278279 "PFRPAC" 2278561 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-943 2274253 2276551 2276904 "PFR" 2277682 NIL PFR (NIL T) -8 NIL NIL NIL) (-942 2272606 2272886 2273211 "PFOTOOLS" 2274000 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-941 2271121 2271378 2271729 "PFOQ" 2272363 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-940 2269604 2269834 2270190 "PFO" 2270905 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-939 2266682 2268195 2268223 "PFECAT" 2268808 T PFECAT (NIL) -9 NIL 2269192 NIL) (-938 2266109 2266281 2266495 "PFECAT-" 2266500 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-937 2264682 2264964 2265265 "PFBRU" 2265858 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-936 2262512 2262900 2263332 "PFBR" 2264333 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-935 2258437 2262401 2262470 "PF" 2262475 NIL PF (NIL NIL) -8 NIL NIL NIL) (-934 2253491 2254644 2255514 "PERMGRP" 2257600 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-933 2251403 2252515 2252556 "PERMCAT" 2252956 NIL PERMCAT (NIL T) -9 NIL 2253254 NIL) (-932 2251050 2251097 2251221 "PERMAN" 2251356 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-931 2246852 2248559 2249207 "PERM" 2250435 NIL PERM (NIL T) -8 NIL NIL NIL) (-930 2244093 2246517 2246639 "PENDTREE" 2246763 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-929 2242974 2243237 2243278 "PDSPC" 2243811 NIL PDSPC (NIL T) -9 NIL 2244056 NIL) (-928 2242029 2242295 2242657 "PDSPC-" 2242662 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-927 2240743 2241679 2241720 "PDRING" 2241725 NIL PDRING (NIL T) -9 NIL 2241753 NIL) (-926 2239486 2240248 2240302 "PDMOD" 2240307 NIL PDMOD (NIL T T) -9 NIL 2240411 NIL) (-925 2236653 2237479 2238147 "PDEPROB" 2238838 T PDEPROB (NIL) -8 NIL NIL NIL) (-924 2234162 2234702 2235257 "PDEPACK" 2236118 T PDEPACK (NIL) -7 NIL NIL NIL) (-923 2233050 2233264 2233515 "PDECOMP" 2233961 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-922 2230567 2231458 2231486 "PDECAT" 2232273 T PDECAT (NIL) -9 NIL 2232986 NIL) (-921 2230184 2230251 2230305 "PDDOM" 2230470 NIL PDDOM (NIL T T) -9 NIL 2230550 NIL) (-920 2229997 2230033 2230140 "PDDOM-" 2230145 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-919 2229742 2229781 2229871 "PCOMP" 2229958 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-918 2227782 2228543 2228840 "PBWLB" 2229471 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-917 2227408 2227471 2227580 "PATTERN2" 2227719 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-916 2225117 2225553 2226010 "PATTERN1" 2226997 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-915 2217296 2219190 2220528 "PATTERN" 2223800 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-914 2216854 2216927 2217059 "PATRES2" 2217223 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-913 2214120 2214803 2215284 "PATRES" 2216419 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-912 2211973 2212408 2212815 "PATMATCH" 2213787 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-911 2211427 2211678 2211719 "PATMAB" 2211826 NIL PATMAB (NIL T) -9 NIL 2211909 NIL) (-910 2209873 2210281 2210539 "PATLRES" 2211232 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-909 2209411 2209542 2209583 "PATAB" 2209588 NIL PATAB (NIL T) -9 NIL 2209760 NIL) (-908 2207551 2207988 2208411 "PARTPERM" 2209008 T PARTPERM (NIL) -7 NIL NIL NIL) (-907 2207160 2207235 2207337 "PARSURF" 2207482 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-906 2206786 2206849 2206958 "PARSU2" 2207097 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-905 2206544 2206590 2206657 "PARSER" 2206739 T PARSER (NIL) -7 NIL NIL NIL) (-904 2206153 2206228 2206330 "PARSCURV" 2206475 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-903 2205779 2205842 2205951 "PARSC2" 2206090 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-902 2205406 2205476 2205573 "PARPCURV" 2205715 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-901 2205032 2205095 2205204 "PARPC2" 2205343 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-900 2204021 2204405 2204587 "PARAMAST" 2204870 T PARAMAST (NIL) -8 NIL NIL NIL) (-899 2203529 2203627 2203746 "PAN2EXPR" 2203922 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-898 2202222 2202650 2202878 "PALETTE" 2203321 T PALETTE (NIL) -8 NIL NIL NIL) (-897 2200567 2201227 2201587 "PAIR" 2201908 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-896 2193479 2199824 2200019 "PADICRC" 2200421 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-895 2185715 2192823 2193008 "PADICRAT" 2193326 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-894 2182505 2184375 2184415 "PADICCT" 2184996 NIL PADICCT (NIL NIL) -9 NIL 2185278 NIL) (-893 2180514 2182442 2182487 "PADIC" 2182492 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-892 2179459 2179671 2179939 "PADEPAC" 2180301 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-891 2178659 2178804 2179010 "PADE" 2179321 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-890 2176892 2177867 2178147 "OWP" 2178463 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-889 2176337 2176598 2176695 "OVERSET" 2176815 T OVERSET (NIL) -8 NIL NIL NIL) (-888 2175257 2175942 2176114 "OVAR" 2176205 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-887 2163493 2166366 2168566 "OUTFORM" 2173077 T OUTFORM (NIL) -8 NIL NIL NIL) (-886 2162775 2163090 2163217 "OUTBFILE" 2163386 T OUTBFILE (NIL) -8 NIL NIL NIL) (-885 2162052 2162247 2162275 "OUTBCON" 2162593 T OUTBCON (NIL) -9 NIL 2162759 NIL) (-884 2161635 2161765 2161922 "OUTBCON-" 2161927 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-883 2160875 2161020 2161181 "OUT" 2161494 T OUT (NIL) -7 NIL NIL NIL) (-882 2160171 2160604 2160693 "OSI" 2160806 T OSI (NIL) -8 NIL NIL NIL) (-881 2159590 2160012 2160040 "OSGROUP" 2160045 T OSGROUP (NIL) -9 NIL 2160067 NIL) (-880 2158301 2158562 2158847 "ORTHPOL" 2159337 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-879 2155552 2158136 2158257 "OREUP" 2158262 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-878 2152655 2155243 2155370 "ORESUP" 2155494 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-877 2150155 2150683 2151244 "OREPCTO" 2152144 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-876 2143533 2146028 2146069 "OREPCAT" 2148417 NIL OREPCAT (NIL T) -9 NIL 2149521 NIL) (-875 2140506 2141462 2142520 "OREPCAT-" 2142525 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-874 2139699 2139976 2140004 "ORDTYPE" 2140313 T ORDTYPE (NIL) -9 NIL 2140476 NIL) (-873 2139000 2139216 2139471 "ORDTYPE-" 2139476 NIL ORDTYPE- (NIL T) -8 NIL NIL NIL) (-872 2138356 2138739 2138897 "ORDSTRCT" 2138902 NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-871 2137854 2138224 2138252 "ORDSET" 2138257 T ORDSET (NIL) -9 NIL 2138279 NIL) (-870 2136212 2137183 2137211 "ORDRING" 2137413 T ORDRING (NIL) -9 NIL 2137538 NIL) (-869 2135833 2135951 2136095 "ORDRING-" 2136100 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-868 2135084 2135649 2135677 "ORDMON" 2135682 T ORDMON (NIL) -9 NIL 2135703 NIL) (-867 2134228 2134393 2134588 "ORDFUNS" 2134933 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-866 2133443 2133958 2133986 "ORDFIN" 2134051 T ORDFIN (NIL) -9 NIL 2134125 NIL) (-865 2132697 2132836 2133022 "ORDCOMP2" 2133303 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-864 2129044 2131283 2131692 "ORDCOMP" 2132321 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-863 2125565 2126535 2127349 "OPTPROB" 2128250 T OPTPROB (NIL) -8 NIL NIL NIL) (-862 2122307 2123006 2123710 "OPTPACK" 2124881 T OPTPACK (NIL) -7 NIL NIL NIL) (-861 2119920 2120746 2120774 "OPTCAT" 2121593 T OPTCAT (NIL) -9 NIL 2122243 NIL) (-860 2119238 2119597 2119702 "OPSIG" 2119835 T OPSIG (NIL) -8 NIL NIL NIL) (-859 2119000 2119045 2119111 "OPQUERY" 2119192 T OPQUERY (NIL) -7 NIL NIL NIL) (-858 2118306 2118586 2118627 "OPERCAT" 2118839 NIL OPERCAT (NIL T) -9 NIL 2118936 NIL) (-857 2118049 2118117 2118234 "OPERCAT-" 2118239 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-856 2114958 2116360 2116864 "OP" 2117578 NIL OP (NIL T) -8 NIL NIL NIL) (-855 2114251 2114378 2114552 "ONECOMP2" 2114830 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-854 2110864 2113048 2113417 "ONECOMP" 2113915 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-853 2110265 2110389 2110519 "OMSERVER" 2110754 T OMSERVER (NIL) -7 NIL NIL NIL) (-852 2106779 2109705 2109745 "OMSAGG" 2109806 NIL OMSAGG (NIL T) -9 NIL 2109870 NIL) (-851 2105354 2105665 2105947 "OMPKG" 2106517 T OMPKG (NIL) -7 NIL NIL NIL) (-850 2103701 2104903 2105072 "OMLO" 2105235 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-849 2102637 2102808 2103028 "OMEXPR" 2103527 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-848 2101722 2102058 2102218 "OMERRK" 2102497 T OMERRK (NIL) -8 NIL NIL NIL) (-847 2100959 2101268 2101404 "OMERR" 2101606 T OMERR (NIL) -8 NIL NIL NIL) (-846 2100350 2100636 2100744 "OMENC" 2100871 T OMENC (NIL) -8 NIL NIL NIL) (-845 2093987 2095430 2096601 "OMDEV" 2099199 T OMDEV (NIL) -8 NIL NIL NIL) (-844 2093020 2093227 2093421 "OMCONN" 2093813 T OMCONN (NIL) -8 NIL NIL NIL) (-843 2092426 2092553 2092581 "OM" 2092880 T OM (NIL) -9 NIL NIL NIL) (-842 2090704 2091896 2091924 "OINTDOM" 2091929 T OINTDOM (NIL) -9 NIL 2091950 NIL) (-841 2087778 2089392 2089729 "OFMONOID" 2090399 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-840 2087012 2087715 2087760 "ODVAR" 2087765 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-839 2084149 2086757 2086912 "ODR" 2086917 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-838 2075554 2083925 2084051 "ODPOL" 2084056 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-837 2068897 2075426 2075531 "ODP" 2075536 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-836 2067639 2067878 2068153 "ODETOOLS" 2068671 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-835 2064582 2065264 2065980 "ODESYS" 2066972 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-834 2059412 2060372 2061397 "ODERTRIC" 2063657 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-833 2058832 2058920 2059114 "ODERED" 2059324 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-832 2055684 2056268 2056945 "ODERAT" 2058255 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-831 2052601 2053108 2053705 "ODEPRRIC" 2055213 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-830 2050496 2051140 2051626 "ODEPROB" 2052135 T ODEPROB (NIL) -8 NIL NIL NIL) (-829 2046962 2047501 2048148 "ODEPRIM" 2049975 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-828 2046205 2046313 2046573 "ODEPAL" 2046854 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-827 2042307 2043158 2044022 "ODEPACK" 2045361 T ODEPACK (NIL) -7 NIL NIL NIL) (-826 2041350 2041475 2041697 "ODEINT" 2042196 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-825 2035415 2036876 2038323 "ODEIFTBL" 2039923 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-824 2030765 2031599 2032551 "ODEEF" 2034574 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-823 2030108 2030203 2030426 "ODECONST" 2030670 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-822 2028171 2028880 2028908 "ODECAT" 2029513 T ODECAT (NIL) -9 NIL 2030044 NIL) (-821 2027803 2027852 2027979 "OCTCT2" 2028122 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-820 2024296 2027508 2027630 "OCT" 2027713 NIL OCT (NIL T) -8 NIL NIL NIL) (-819 2023519 2024089 2024117 "OCAMON" 2024122 T OCAMON (NIL) -9 NIL 2024143 NIL) (-818 2017788 2020562 2020602 "OC" 2021699 NIL OC (NIL T) -9 NIL 2022557 NIL) (-817 2014823 2015763 2016753 "OC-" 2016847 NIL OC- (NIL T T) -8 NIL NIL NIL) (-816 2014243 2014668 2014696 "OASGP" 2014701 T OASGP (NIL) -9 NIL 2014721 NIL) (-815 2013369 2013966 2013994 "OAMONS" 2014034 T OAMONS (NIL) -9 NIL 2014077 NIL) (-814 2012660 2013189 2013217 "OAMON" 2013222 T OAMON (NIL) -9 NIL 2013242 NIL) (-813 2011771 2012409 2012437 "OAGROUP" 2012442 T OAGROUP (NIL) -9 NIL 2012462 NIL) (-812 2011453 2011509 2011598 "NUMTUBE" 2011715 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-811 2004972 2006544 2008080 "NUMQUAD" 2009937 T NUMQUAD (NIL) -7 NIL NIL NIL) (-810 2000652 2001686 2002721 "NUMODE" 2003957 T NUMODE (NIL) -7 NIL NIL NIL) (-809 1997933 1998873 1998901 "NUMINT" 1999824 T NUMINT (NIL) -9 NIL 2000588 NIL) (-808 1996845 1997078 1997296 "NUMFMT" 1997735 T NUMFMT (NIL) -7 NIL NIL NIL) (-807 1983028 1986149 1988681 "NUMERIC" 1994352 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-806 1976739 1982476 1982571 "NTSCAT" 1982576 NIL NTSCAT (NIL T T T T) -9 NIL 1982615 NIL) (-805 1975919 1976098 1976291 "NTPOLFN" 1976578 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-804 1975545 1975608 1975717 "NSUP2" 1975856 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-803 1962306 1972370 1973182 "NSUP" 1974766 NIL NSUP (NIL T) -8 NIL NIL NIL) (-802 1951142 1962080 1962213 "NSMP" 1962218 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-801 1949550 1949875 1950232 "NREP" 1950830 NIL NREP (NIL T) -7 NIL NIL NIL) (-800 1948129 1948393 1948751 "NPCOEF" 1949293 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-799 1947177 1947310 1947526 "NORMRETR" 1948010 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-798 1945188 1945508 1945917 "NORMPK" 1946885 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-797 1944867 1944901 1945025 "NORMMA" 1945154 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-796 1944650 1944685 1944754 "NONE1" 1944831 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-795 1944414 1944607 1944636 "NONE" 1944641 T NONE (NIL) -8 NIL NIL NIL) (-794 1943905 1943973 1944152 "NODE1" 1944346 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-793 1941997 1943028 1943283 "NNI" 1943630 T NNI (NIL) -8 NIL NIL 1943865) (-792 1940393 1940730 1941094 "NLINSOL" 1941665 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-791 1936574 1937629 1938528 "NIPROB" 1939514 T NIPROB (NIL) -8 NIL NIL NIL) (-790 1935313 1935565 1935867 "NFINTBAS" 1936336 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-789 1934397 1934963 1935004 "NETCLT" 1935176 NIL NETCLT (NIL T) -9 NIL 1935258 NIL) (-788 1933069 1933336 1933617 "NCODIV" 1934165 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-787 1932825 1932868 1932943 "NCNTFRAC" 1933026 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-786 1930981 1931369 1931789 "NCEP" 1932450 NIL NCEP (NIL T) -7 NIL NIL NIL) (-785 1929644 1930591 1930619 "NASRING" 1930729 T NASRING (NIL) -9 NIL 1930809 NIL) (-784 1929427 1929483 1929577 "NASRING-" 1929582 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-783 1928394 1929045 1929073 "NARNG" 1929190 T NARNG (NIL) -9 NIL 1929281 NIL) (-782 1928068 1928153 1928287 "NARNG-" 1928292 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-781 1926905 1927154 1927389 "NAGSP" 1927853 T NAGSP (NIL) -7 NIL NIL NIL) (-780 1917949 1919861 1921534 "NAGS" 1925252 T NAGS (NIL) -7 NIL NIL NIL) (-779 1916473 1916805 1917136 "NAGF07" 1917638 T NAGF07 (NIL) -7 NIL NIL NIL) (-778 1910945 1912302 1913609 "NAGF04" 1915186 T NAGF04 (NIL) -7 NIL NIL NIL) (-777 1903817 1905527 1907160 "NAGF02" 1909332 T NAGF02 (NIL) -7 NIL NIL NIL) (-776 1898981 1900141 1901258 "NAGF01" 1902720 T NAGF01 (NIL) -7 NIL NIL NIL) (-775 1892561 1894175 1895760 "NAGE04" 1897416 T NAGE04 (NIL) -7 NIL NIL NIL) (-774 1883622 1885851 1887981 "NAGE02" 1890451 T NAGE02 (NIL) -7 NIL NIL NIL) (-773 1879515 1880522 1881486 "NAGE01" 1882678 T NAGE01 (NIL) -7 NIL NIL NIL) (-772 1877292 1877844 1878402 "NAGD03" 1878977 T NAGD03 (NIL) -7 NIL NIL NIL) (-771 1868988 1870970 1872924 "NAGD02" 1875358 T NAGD02 (NIL) -7 NIL NIL NIL) (-770 1862727 1864224 1865664 "NAGD01" 1867568 T NAGD01 (NIL) -7 NIL NIL NIL) (-769 1858864 1859758 1860595 "NAGC06" 1861910 T NAGC06 (NIL) -7 NIL NIL NIL) (-768 1857311 1857661 1858017 "NAGC05" 1858528 T NAGC05 (NIL) -7 NIL NIL NIL) (-767 1856675 1856806 1856950 "NAGC02" 1857187 T NAGC02 (NIL) -7 NIL NIL NIL) (-766 1855476 1856203 1856243 "NAALG" 1856322 NIL NAALG (NIL T) -9 NIL 1856383 NIL) (-765 1855305 1855340 1855430 "NAALG-" 1855435 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-764 1849177 1850363 1851550 "MULTSQFR" 1854201 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-763 1848484 1848571 1848755 "MULTFACT" 1849089 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-762 1840629 1845067 1845120 "MTSCAT" 1846190 NIL MTSCAT (NIL T T) -9 NIL 1846706 NIL) (-761 1840335 1840395 1840487 "MTHING" 1840569 NIL MTHING (NIL T) -7 NIL NIL NIL) (-760 1840121 1840160 1840220 "MSYSCMD" 1840295 T MSYSCMD (NIL) -7 NIL NIL NIL) (-759 1836866 1839682 1839723 "MSETAGG" 1839728 NIL MSETAGG (NIL T) -9 NIL 1839762 NIL) (-758 1832580 1835621 1835941 "MSET" 1836579 NIL MSET (NIL T) -8 NIL NIL NIL) (-757 1828172 1829959 1830704 "MRING" 1831880 NIL MRING (NIL T T) -8 NIL NIL NIL) (-756 1827732 1827805 1827936 "MRF2" 1828099 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-755 1827344 1827385 1827529 "MRATFAC" 1827691 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-754 1824914 1825251 1825682 "MPRFF" 1827049 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-753 1818241 1824768 1824865 "MPOLY" 1824870 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-752 1817725 1817766 1817974 "MPCPF" 1818200 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-751 1817233 1817282 1817466 "MPC3" 1817676 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-750 1816416 1816509 1816730 "MPC2" 1817148 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-749 1814693 1815054 1815444 "MONOTOOL" 1816076 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-748 1813838 1814221 1814249 "MONOID" 1814468 T MONOID (NIL) -9 NIL 1814615 NIL) (-747 1813354 1813503 1813684 "MONOID-" 1813689 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-746 1802308 1809174 1809233 "MONOGEN" 1809907 NIL MONOGEN (NIL T T) -9 NIL 1810363 NIL) (-745 1799358 1800261 1801261 "MONOGEN-" 1801380 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-744 1798075 1798623 1798651 "MONADWU" 1799043 T MONADWU (NIL) -9 NIL 1799281 NIL) (-743 1797405 1797606 1797854 "MONADWU-" 1797859 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-742 1796690 1796994 1797022 "MONAD" 1797229 T MONAD (NIL) -9 NIL 1797341 NIL) (-741 1796357 1796453 1796585 "MONAD-" 1796590 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-740 1794496 1795270 1795549 "MOEBIUS" 1796110 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-739 1793664 1794164 1794204 "MODULE" 1794209 NIL MODULE (NIL T) -9 NIL 1794248 NIL) (-738 1793202 1793328 1793518 "MODULE-" 1793523 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-737 1790732 1791566 1791893 "MODRING" 1793026 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-736 1787454 1788837 1789358 "MODOP" 1790261 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-735 1785940 1786521 1786798 "MODMONOM" 1787317 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-734 1774680 1784231 1784645 "MODMON" 1785577 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-733 1771506 1773524 1773800 "MODFIELD" 1774555 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-732 1770417 1770787 1770977 "MMLFORM" 1771336 T MMLFORM (NIL) -8 NIL NIL NIL) (-731 1769937 1769986 1770165 "MMAP" 1770368 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-730 1767830 1768769 1768810 "MLO" 1769233 NIL MLO (NIL T) -9 NIL 1769475 NIL) (-729 1765178 1765712 1766314 "MLIFT" 1767311 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-728 1764557 1764653 1764807 "MKUCFUNC" 1765089 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-727 1764150 1764226 1764349 "MKRECORD" 1764480 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-726 1763173 1763359 1763587 "MKFUNC" 1763961 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-725 1762549 1762665 1762821 "MKFLCFN" 1763056 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-724 1761814 1761928 1762113 "MKBCFUNC" 1762442 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-723 1757797 1761368 1761504 "MINT" 1761698 T MINT (NIL) -8 NIL NIL NIL) (-722 1756579 1756852 1757129 "MHROWRED" 1757552 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-721 1751323 1755114 1755519 "MFLOAT" 1756194 T MFLOAT (NIL) -8 NIL NIL NIL) (-720 1750668 1750756 1750927 "MFINFACT" 1751235 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-719 1746947 1747831 1748715 "MESH" 1749804 T MESH (NIL) -7 NIL NIL NIL) (-718 1745301 1745649 1746002 "MDDFACT" 1746634 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-717 1741837 1744432 1744473 "MDAGG" 1744728 NIL MDAGG (NIL T) -9 NIL 1744871 NIL) (-716 1729539 1741130 1741337 "MCMPLX" 1741650 T MCMPLX (NIL) -8 NIL NIL NIL) (-715 1728658 1728822 1729023 "MCDEN" 1729388 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-714 1726506 1726818 1727198 "MCALCFN" 1728388 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-713 1725383 1725671 1725904 "MAYBE" 1726312 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-712 1722941 1723518 1724080 "MATSTOR" 1724854 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-711 1718363 1722313 1722561 "MATRIX" 1722726 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-710 1714063 1714836 1715572 "MATLIN" 1717720 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-709 1712639 1712810 1713143 "MATCAT2" 1713898 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-708 1701985 1705696 1705773 "MATCAT" 1710805 NIL MATCAT (NIL T T T) -9 NIL 1712277 NIL) (-707 1697938 1699248 1700661 "MATCAT-" 1700666 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-706 1696014 1696374 1696758 "MAPPKG3" 1697613 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-705 1694971 1695168 1695390 "MAPPKG2" 1695838 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-704 1693428 1693754 1694081 "MAPPKG1" 1694677 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-703 1692429 1692834 1693011 "MAPPAST" 1693271 T MAPPAST (NIL) -8 NIL NIL NIL) (-702 1692034 1692098 1692221 "MAPHACK3" 1692365 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-701 1691614 1691687 1691801 "MAPHACK2" 1691966 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-700 1691040 1691155 1691297 "MAPHACK1" 1691505 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-699 1688963 1689740 1690044 "MAGMA" 1690768 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-698 1688382 1688687 1688778 "MACROAST" 1688892 T MACROAST (NIL) -8 NIL NIL NIL) (-697 1684625 1686621 1687082 "M3D" 1687954 NIL M3D (NIL T) -8 NIL NIL NIL) (-696 1678105 1682936 1682977 "LZSTAGG" 1683759 NIL LZSTAGG (NIL T) -9 NIL 1684054 NIL) (-695 1673787 1675236 1676693 "LZSTAGG-" 1676698 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-694 1670700 1671678 1672165 "LWORD" 1673332 NIL LWORD (NIL T) -8 NIL NIL NIL) (-693 1670222 1670504 1670579 "LSTAST" 1670645 T LSTAST (NIL) -8 NIL NIL NIL) (-692 1662150 1669993 1670127 "LSQM" 1670132 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-691 1661368 1661513 1661741 "LSPP" 1662005 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-690 1658105 1658821 1659551 "LSMP1" 1660670 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-689 1655887 1656218 1656674 "LSMP" 1657794 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-688 1649023 1654977 1655018 "LSAGG" 1655080 NIL LSAGG (NIL T) -9 NIL 1655158 NIL) (-687 1645532 1646642 1647855 "LSAGG-" 1647860 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-686 1642827 1644676 1644925 "LPOLY" 1645327 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-685 1642403 1642494 1642617 "LPEFRAC" 1642736 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-684 1642086 1642165 1642193 "LOGIC" 1642304 T LOGIC (NIL) -9 NIL 1642386 NIL) (-683 1641942 1641971 1642042 "LOGIC-" 1642047 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-682 1641117 1641275 1641468 "LODOOPS" 1641798 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-681 1639641 1639890 1640243 "LODOF" 1640864 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-680 1635517 1638276 1638317 "LODOCAT" 1638755 NIL LODOCAT (NIL T) -9 NIL 1638966 NIL) (-679 1635232 1635308 1635435 "LODOCAT-" 1635440 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-678 1632218 1635073 1635191 "LODO2" 1635196 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-677 1629325 1632155 1632200 "LODO1" 1632205 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-676 1626420 1629241 1629307 "LODO" 1629312 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-675 1625289 1625466 1625771 "LODEEF" 1626243 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-674 1623466 1624383 1624636 "LO" 1625121 NIL LO (NIL T T T) -8 NIL NIL NIL) (-673 1618438 1621632 1621673 "LNAGG" 1622535 NIL LNAGG (NIL T) -9 NIL 1622970 NIL) (-672 1617531 1617799 1618141 "LNAGG-" 1618146 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-671 1613511 1614456 1615095 "LMOPS" 1616946 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-670 1612810 1613288 1613329 "LMODULE" 1613334 NIL LMODULE (NIL T) -9 NIL 1613360 NIL) (-669 1609765 1612455 1612578 "LMDICT" 1612720 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-668 1609341 1609555 1609596 "LLINSET" 1609657 NIL LLINSET (NIL T) -9 NIL 1609701 NIL) (-667 1608986 1609249 1609309 "LITERAL" 1609314 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-666 1608505 1608585 1608724 "LIST3" 1608906 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-665 1606603 1606951 1607350 "LIST2MAP" 1608152 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-664 1605592 1605788 1606016 "LIST2" 1606421 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-663 1598046 1604526 1604830 "LIST" 1605321 NIL LIST (NIL T) -8 NIL NIL NIL) (-662 1597629 1597865 1597906 "LINSET" 1597911 NIL LINSET (NIL T) -9 NIL 1597945 NIL) (-661 1596443 1597137 1597304 "LINFORM" 1597514 NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-660 1594742 1595470 1595511 "LINEXP" 1596001 NIL LINEXP (NIL T) -9 NIL 1596274 NIL) (-659 1593318 1594222 1594403 "LINELT" 1594613 NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-658 1591875 1592155 1592466 "LINDEP" 1593070 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-657 1591011 1591607 1591717 "LINBASIS" 1591805 NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-656 1587748 1588497 1589274 "LIMITRF" 1590266 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-655 1586033 1586347 1586756 "LIMITPS" 1587443 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-654 1584861 1585436 1585476 "LIECAT" 1585616 NIL LIECAT (NIL T) -9 NIL 1585767 NIL) (-653 1584696 1584729 1584817 "LIECAT-" 1584822 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-652 1578716 1584207 1584435 "LIE" 1584517 NIL LIE (NIL T T) -8 NIL NIL NIL) (-651 1570903 1578256 1578412 "LIB" 1578580 T LIB (NIL) -8 NIL NIL NIL) (-650 1566472 1567421 1568356 "LGROBP" 1570020 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-649 1565096 1566004 1566032 "LFCAT" 1566239 T LFCAT (NIL) -9 NIL 1566378 NIL) (-648 1563034 1563368 1563718 "LF" 1564817 NIL LF (NIL T T) -7 NIL NIL NIL) (-647 1559894 1560566 1561254 "LEXTRIPK" 1562398 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-646 1556482 1557464 1557967 "LEXP" 1559474 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-645 1555898 1556203 1556295 "LETAST" 1556410 T LETAST (NIL) -8 NIL NIL NIL) (-644 1554284 1554609 1555010 "LEADCDET" 1555580 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-643 1553462 1553548 1553777 "LAZM3PK" 1554205 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-642 1547973 1551539 1552077 "LAUPOL" 1552974 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-641 1547546 1547596 1547757 "LAPLACE" 1547923 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-640 1546394 1547110 1547151 "LALG" 1547213 NIL LALG (NIL T) -9 NIL 1547272 NIL) (-639 1546090 1546167 1546303 "LALG-" 1546308 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-638 1543827 1545191 1545442 "LA" 1545923 NIL LA (NIL T T T) -8 NIL NIL NIL) (-637 1543656 1543686 1543727 "KVTFROM" 1543789 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-636 1542413 1543023 1543208 "KTVLOGIC" 1543491 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-635 1542242 1542272 1542313 "KRCFROM" 1542375 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-634 1541134 1541333 1541632 "KOVACIC" 1542042 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-633 1540963 1540993 1541034 "KONVERT" 1541096 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-632 1540792 1540822 1540863 "KOERCE" 1540925 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-631 1540276 1540369 1540501 "KERNEL2" 1540706 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-630 1537963 1538869 1539246 "KERNEL" 1539932 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-629 1531434 1536440 1536494 "KDAGG" 1536871 NIL KDAGG (NIL T T) -9 NIL 1537077 NIL) (-628 1530945 1531087 1531292 "KDAGG-" 1531297 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-627 1523645 1530606 1530761 "KAFILE" 1530823 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-626 1523249 1523534 1523597 "JVMOP" 1523602 T JVMOP (NIL) -8 NIL NIL NIL) (-625 1521985 1522489 1522738 "JVMMDACC" 1523020 T JVMMDACC (NIL) -8 NIL NIL NIL) (-624 1520921 1521375 1521580 "JVMFDACC" 1521800 T JVMFDACC (NIL) -8 NIL NIL NIL) (-623 1519502 1519997 1520297 "JVMCSTTG" 1520641 T JVMCSTTG (NIL) -8 NIL NIL NIL) (-622 1518638 1519042 1519203 "JVMCFACC" 1519361 T JVMCFACC (NIL) -8 NIL NIL NIL) (-621 1518316 1518555 1518604 "JVMBCODE" 1518609 T JVMBCODE (NIL) -8 NIL NIL NIL) (-620 1512336 1517827 1518055 "JORDAN" 1518137 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-619 1511649 1511985 1512106 "JOINAST" 1512235 T JOINAST (NIL) -8 NIL NIL NIL) (-618 1507684 1509826 1509880 "IXAGG" 1510809 NIL IXAGG (NIL T T) -9 NIL 1511268 NIL) (-617 1506537 1506909 1507328 "IXAGG-" 1507333 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-616 1501626 1506459 1506518 "IVECTOR" 1506523 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-615 1500350 1500629 1500895 "ITUPLE" 1501393 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-614 1498822 1499029 1499324 "ITRIGMNP" 1500172 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-613 1497549 1497771 1498054 "ITFUN3" 1498598 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-612 1497175 1497238 1497347 "ITFUN2" 1497486 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-611 1496280 1496655 1496829 "ITFORM" 1497021 T ITFORM (NIL) -8 NIL NIL NIL) (-610 1494049 1495300 1495578 "ITAYLOR" 1496035 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-609 1482446 1488186 1489349 "ISUPS" 1492919 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-608 1481538 1481690 1481926 "ISUMP" 1482293 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-607 1476388 1481483 1481524 "ISTRING" 1481529 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-606 1475804 1476109 1476201 "ISAST" 1476316 T ISAST (NIL) -8 NIL NIL NIL) (-605 1475001 1475095 1475311 "IRURPK" 1475718 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-604 1473913 1474138 1474378 "IRSN" 1474781 T IRSN (NIL) -7 NIL NIL NIL) (-603 1471958 1472339 1472768 "IRRF2F" 1473551 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-602 1471699 1471743 1471819 "IRREDFFX" 1471914 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-601 1470272 1470573 1470872 "IROOT" 1471432 NIL IROOT (NIL T) -7 NIL NIL NIL) (-600 1469411 1469765 1469916 "IRFORM" 1470141 T IRFORM (NIL) -8 NIL NIL NIL) (-599 1468493 1468624 1468838 "IR2F" 1469294 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-598 1466082 1466601 1467167 "IR2" 1467971 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-597 1462522 1463766 1464458 "IR" 1465422 NIL IR (NIL T) -8 NIL NIL NIL) (-596 1462307 1462347 1462407 "IPRNTPK" 1462482 T IPRNTPK (NIL) -7 NIL NIL NIL) (-595 1458260 1462196 1462265 "IPF" 1462270 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-594 1456281 1458185 1458242 "IPADIC" 1458247 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-593 1455539 1455841 1455971 "IP4ADDR" 1456171 T IP4ADDR (NIL) -8 NIL NIL NIL) (-592 1454877 1455168 1455300 "IOMODE" 1455427 T IOMODE (NIL) -8 NIL NIL NIL) (-591 1453848 1454474 1454601 "IOBFILE" 1454770 T IOBFILE (NIL) -8 NIL NIL NIL) (-590 1453258 1453752 1453780 "IOBCON" 1453785 T IOBCON (NIL) -9 NIL 1453806 NIL) (-589 1452763 1452827 1453010 "INVLAPLA" 1453194 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-588 1442333 1444765 1447151 "INTTR" 1450427 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-587 1438626 1439410 1440275 "INTTOOLS" 1441518 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-586 1438206 1438303 1438420 "INTSLPE" 1438529 T INTSLPE (NIL) -7 NIL NIL NIL) (-585 1435673 1438129 1438188 "INTRVL" 1438193 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-584 1433251 1433787 1434362 "INTRF" 1435158 NIL INTRF (NIL T) -7 NIL NIL NIL) (-583 1432644 1432759 1432901 "INTRET" 1433149 NIL INTRET (NIL T) -7 NIL NIL NIL) (-582 1430617 1431030 1431500 "INTRAT" 1432252 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-581 1427862 1428463 1429082 "INTPM" 1430102 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-580 1424579 1425206 1425944 "INTPAF" 1427248 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-579 1419680 1420720 1421771 "INTPACK" 1423548 T INTPACK (NIL) -7 NIL NIL NIL) (-578 1418926 1419084 1419292 "INTHERTR" 1419522 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-577 1418359 1418445 1418633 "INTHERAL" 1418840 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-576 1416127 1416648 1417105 "INTHEORY" 1417922 T INTHEORY (NIL) -7 NIL NIL NIL) (-575 1407459 1409154 1410926 "INTG0" 1414479 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-574 1387984 1392822 1397632 "INTFTBL" 1402669 T INTFTBL (NIL) -8 NIL NIL NIL) (-573 1387209 1387371 1387544 "INTFACT" 1387843 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-572 1384606 1385082 1385639 "INTEF" 1386763 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-571 1382803 1383698 1383726 "INTDOM" 1384027 T INTDOM (NIL) -9 NIL 1384234 NIL) (-570 1382142 1382346 1382588 "INTDOM-" 1382593 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-569 1378016 1380431 1380485 "INTCAT" 1381284 NIL INTCAT (NIL T) -9 NIL 1381605 NIL) (-568 1377470 1377591 1377719 "INTBIT" 1377908 T INTBIT (NIL) -7 NIL NIL NIL) (-567 1376151 1376323 1376630 "INTALG" 1377315 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-566 1375628 1375724 1375881 "INTAF" 1376055 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-565 1368595 1375438 1375578 "INTABL" 1375583 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-564 1367832 1368394 1368459 "INT8" 1368493 T INT8 (NIL) -8 NIL NIL 1368538) (-563 1367068 1367630 1367695 "INT64" 1367729 T INT64 (NIL) -8 NIL NIL 1367774) (-562 1366304 1366866 1366931 "INT32" 1366965 T INT32 (NIL) -8 NIL NIL 1367010) (-561 1365540 1366102 1366167 "INT16" 1366201 T INT16 (NIL) -8 NIL NIL 1366246) (-560 1361728 1365337 1365446 "INT" 1365451 T INT (NIL) -8 NIL NIL NIL) (-559 1355829 1359276 1359304 "INS" 1360238 T INS (NIL) -9 NIL 1360903 NIL) (-558 1352883 1353840 1354814 "INS-" 1354887 NIL INS- (NIL T) -8 NIL NIL NIL) (-557 1351640 1351885 1352183 "INPSIGN" 1352636 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-556 1350734 1350875 1351072 "INPRODPF" 1351520 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-555 1349604 1349745 1349982 "INPRODFF" 1350614 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-554 1348592 1348756 1349016 "INNMFACT" 1349440 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-553 1347771 1347886 1348074 "INMODGCD" 1348491 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-552 1346255 1346524 1346848 "INFSP" 1347516 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-551 1345415 1345556 1345739 "INFPROD0" 1346135 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-550 1345013 1345085 1345183 "INFORM1" 1345350 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-549 1341580 1343078 1343593 "INFORM" 1344506 T INFORM (NIL) -8 NIL NIL NIL) (-548 1341085 1341192 1341306 "INFINITY" 1341486 T INFINITY (NIL) -7 NIL NIL NIL) (-547 1340159 1340805 1340906 "INETCLTS" 1341004 T INETCLTS (NIL) -8 NIL NIL NIL) (-546 1338757 1339025 1339346 "INEP" 1339907 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-545 1337818 1338654 1338719 "INDE" 1338724 NIL INDE (NIL T) -8 NIL NIL NIL) (-544 1337370 1337450 1337567 "INCRMAPS" 1337745 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-543 1336092 1336639 1336845 "INBFILE" 1337184 T INBFILE (NIL) -8 NIL NIL NIL) (-542 1331271 1332328 1333272 "INBFF" 1335180 NIL INBFF (NIL T) -7 NIL NIL NIL) (-541 1330125 1330448 1330476 "INBCON" 1330989 T INBCON (NIL) -9 NIL 1331255 NIL) (-540 1329335 1329600 1329876 "INBCON-" 1329881 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-539 1328754 1329059 1329150 "INAST" 1329264 T INAST (NIL) -8 NIL NIL NIL) (-538 1328121 1328433 1328539 "IMPTAST" 1328668 T IMPTAST (NIL) -8 NIL NIL NIL) (-537 1324042 1327965 1328069 "IMATRIX" 1328074 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-536 1322734 1322873 1323189 "IMATQF" 1323898 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-535 1320914 1321181 1321518 "IMATLIN" 1322490 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-534 1314829 1320838 1320896 "ILIST" 1320901 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-533 1312495 1314689 1314802 "IIARRAY2" 1314807 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-532 1307295 1312406 1312470 "IFF" 1312475 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-531 1306576 1306912 1307028 "IFAST" 1307199 T IFAST (NIL) -8 NIL NIL NIL) (-530 1301088 1305868 1306056 "IFARRAY" 1306433 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-529 1300126 1300992 1301065 "IFAMON" 1301070 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-528 1299698 1299775 1299829 "IEVALAB" 1300036 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-527 1299361 1299441 1299601 "IEVALAB-" 1299606 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-526 1298425 1299250 1299325 "IDPOAMS" 1299330 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-525 1297558 1298314 1298389 "IDPOAM" 1298394 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-524 1296939 1297473 1297535 "IDPO" 1297540 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-523 1295419 1295946 1295998 "IDPC" 1296510 NIL IDPC (NIL T T) -9 NIL 1296791 NIL) (-522 1294751 1295311 1295384 "IDPAM" 1295389 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-521 1293966 1294643 1294716 "IDPAG" 1294721 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-520 1293510 1293772 1293862 "IDENT" 1293896 T IDENT (NIL) -8 NIL NIL NIL) (-519 1289729 1290613 1291508 "IDECOMP" 1292667 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-518 1282364 1283652 1284699 "IDEAL" 1288765 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-517 1281506 1281636 1281836 "ICDEN" 1282248 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-516 1280481 1280986 1281133 "ICARD" 1281379 T ICARD (NIL) -8 NIL NIL NIL) (-515 1278511 1278854 1279259 "IBPTOOLS" 1280158 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-514 1273626 1278131 1278244 "IBITS" 1278430 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-513 1270301 1270925 1271620 "IBATOOL" 1273043 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-512 1268062 1268542 1269075 "IBACHIN" 1269836 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-511 1265652 1267908 1268011 "IARRAY2" 1268016 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-510 1261365 1265578 1265635 "IARRAY1" 1265640 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-509 1254375 1259777 1260258 "IAN" 1260904 T IAN (NIL) -8 NIL NIL NIL) (-508 1253880 1253943 1254116 "IALGFACT" 1254312 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-507 1253372 1253521 1253549 "HYPCAT" 1253756 T HYPCAT (NIL) -9 NIL NIL NIL) (-506 1252874 1253027 1253213 "HYPCAT-" 1253218 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-505 1252421 1252669 1252752 "HOSTNAME" 1252811 T HOSTNAME (NIL) -8 NIL NIL NIL) (-504 1252254 1252303 1252344 "HOMOTOP" 1252349 NIL HOMOTOP (NIL T) -9 NIL 1252382 NIL) (-503 1248687 1250186 1250227 "HOAGG" 1251208 NIL HOAGG (NIL T) -9 NIL 1251937 NIL) (-502 1247203 1247680 1248206 "HOAGG-" 1248211 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-501 1240239 1246796 1246946 "HEXADEC" 1247073 T HEXADEC (NIL) -8 NIL NIL NIL) (-500 1238951 1239209 1239472 "HEUGCD" 1240016 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-499 1237883 1238788 1238918 "HELLFDIV" 1238923 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-498 1235893 1237660 1237748 "HEAP" 1237827 NIL HEAP (NIL T) -8 NIL NIL NIL) (-497 1235090 1235445 1235579 "HEADAST" 1235779 T HEADAST (NIL) -8 NIL NIL NIL) (-496 1228477 1235005 1235067 "HDP" 1235072 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-495 1221489 1228112 1228264 "HDMP" 1228378 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-494 1220795 1220953 1221117 "HB" 1221345 T HB (NIL) -7 NIL NIL NIL) (-493 1213805 1220641 1220745 "HASHTBL" 1220750 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-492 1213221 1213526 1213618 "HASAST" 1213733 T HASAST (NIL) -8 NIL NIL NIL) (-491 1210627 1212843 1213025 "HACKPI" 1213059 T HACKPI (NIL) -8 NIL NIL NIL) (-490 1205799 1210480 1210593 "GTSET" 1210598 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-489 1198838 1205677 1205775 "GSTBL" 1205780 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-488 1190587 1198003 1198259 "GSERIES" 1198638 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-487 1189618 1190131 1190159 "GROUP" 1190362 T GROUP (NIL) -9 NIL 1190496 NIL) (-486 1188942 1189143 1189394 "GROUP-" 1189399 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-485 1187291 1187630 1188017 "GROEBSOL" 1188619 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-484 1186119 1186479 1186530 "GRMOD" 1187059 NIL GRMOD (NIL T T) -9 NIL 1187227 NIL) (-483 1185875 1185923 1186051 "GRMOD-" 1186056 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-482 1181015 1182229 1183229 "GRIMAGE" 1184895 T GRIMAGE (NIL) -8 NIL NIL NIL) (-481 1179409 1179742 1180066 "GRDEF" 1180711 T GRDEF (NIL) -7 NIL NIL NIL) (-480 1178841 1178969 1179110 "GRAY" 1179288 T GRAY (NIL) -7 NIL NIL NIL) (-479 1177918 1178420 1178471 "GRALG" 1178624 NIL GRALG (NIL T T) -9 NIL 1178717 NIL) (-478 1177555 1177652 1177815 "GRALG-" 1177820 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-477 1174036 1177138 1177317 "GPOLSET" 1177461 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-476 1173384 1173447 1173705 "GOSPER" 1173973 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-475 1168954 1169822 1170348 "GMODPOL" 1173083 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-474 1167941 1168143 1168381 "GHENSEL" 1168766 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-473 1162013 1162940 1163960 "GENUPS" 1167025 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-472 1161704 1161761 1161850 "GENUFACT" 1161956 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-471 1161104 1161193 1161358 "GENPGCD" 1161622 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-470 1160572 1160613 1160826 "GENMFACT" 1161063 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-469 1159108 1159395 1159702 "GENEEZ" 1160315 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-468 1152280 1158719 1158881 "GDMP" 1159031 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-467 1141019 1146051 1147157 "GCNAALG" 1151263 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-466 1139146 1140194 1140222 "GCDDOM" 1140477 T GCDDOM (NIL) -9 NIL 1140634 NIL) (-465 1138586 1138743 1138958 "GCDDOM-" 1138963 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-464 1127058 1129532 1131924 "GBINTERN" 1136277 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-463 1124859 1125187 1125608 "GBF" 1126733 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-462 1123616 1123805 1124072 "GBEUCLID" 1124675 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-461 1122266 1122473 1122777 "GB" 1123395 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-460 1121597 1121740 1121889 "GAUSSFAC" 1122137 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-459 1119918 1120266 1120580 "GALUTIL" 1121316 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-458 1118178 1118500 1118824 "GALPOLYU" 1119645 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-457 1115477 1115833 1116240 "GALFACTU" 1117875 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-456 1107091 1108782 1110390 "GALFACT" 1113909 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-455 1104377 1105137 1105165 "FVFUN" 1106321 T FVFUN (NIL) -9 NIL 1107041 NIL) (-454 1103607 1103825 1103853 "FVC" 1104144 T FVC (NIL) -9 NIL 1104327 NIL) (-453 1103208 1103432 1103500 "FUNDESC" 1103559 T FUNDESC (NIL) -8 NIL NIL NIL) (-452 1102781 1103005 1103086 "FUNCTION" 1103160 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-451 1101458 1102082 1102285 "FTEM" 1102598 T FTEM (NIL) -8 NIL NIL NIL) (-450 1099088 1099780 1100246 "FT" 1101012 T FT (NIL) -8 NIL NIL NIL) (-449 1097357 1097668 1098065 "FSUPFACT" 1098779 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-448 1095676 1096043 1096375 "FST" 1097045 T FST (NIL) -8 NIL NIL NIL) (-447 1094857 1094981 1095169 "FSRED" 1095558 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-446 1093546 1093812 1094159 "FSPRMELT" 1094572 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-445 1090756 1091290 1091776 "FSPECF" 1093109 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-444 1090278 1090338 1090508 "FSINT" 1090697 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-443 1088414 1089271 1089574 "FSERIES" 1090057 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-442 1087438 1087572 1087796 "FSCINT" 1088294 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-441 1086462 1086623 1086850 "FSAGG2" 1087291 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-440 1082326 1085406 1085447 "FSAGG" 1085817 NIL FSAGG (NIL T) -9 NIL 1086076 NIL) (-439 1079926 1080689 1081485 "FSAGG-" 1081580 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-438 1077586 1077884 1078432 "FS2UPS" 1079644 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-437 1076452 1076635 1076937 "FS2EXPXP" 1077411 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-436 1076080 1076129 1076258 "FS2" 1076403 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-435 1056307 1065854 1065895 "FS" 1069779 NIL FS (NIL T) -9 NIL 1072068 NIL) (-434 1044368 1047943 1052000 "FS-" 1052300 NIL FS- (NIL T T) -8 NIL NIL NIL) (-433 1043782 1043909 1044061 "FRUTIL" 1044248 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-432 1038300 1041471 1041511 "FRNAALG" 1042831 NIL FRNAALG (NIL T) -9 NIL 1043429 NIL) (-431 1033781 1035049 1036324 "FRNAALG-" 1037074 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-430 1033413 1033462 1033589 "FRNAAF2" 1033732 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-429 1031700 1032262 1032558 "FRMOD" 1033225 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-428 1030885 1030978 1031269 "FRIDEAL2" 1031607 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-427 1028490 1029260 1029578 "FRIDEAL" 1030676 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-426 1027581 1028037 1028078 "FRETRCT" 1028083 NIL FRETRCT (NIL T) -9 NIL 1028259 NIL) (-425 1026639 1026924 1027275 "FRETRCT-" 1027280 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-424 1023453 1024923 1024982 "FRAMALG" 1025864 NIL FRAMALG (NIL T T) -9 NIL 1026156 NIL) (-423 1021491 1022042 1022672 "FRAMALG-" 1022895 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-422 1021121 1021184 1021291 "FRAC2" 1021428 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-421 1014092 1020594 1020871 "FRAC" 1020876 NIL FRAC (NIL T) -8 NIL NIL NIL) (-420 1013722 1013785 1013892 "FR2" 1014029 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-419 1004639 1009217 1010575 "FR" 1012396 NIL FR (NIL T) -8 NIL NIL NIL) (-418 998556 1002018 1002046 "FPS" 1003165 T FPS (NIL) -9 NIL 1003722 NIL) (-417 997981 998114 998278 "FPS-" 998424 NIL FPS- (NIL T) -8 NIL NIL NIL) (-416 994933 996938 996966 "FPC" 997191 T FPC (NIL) -9 NIL 997333 NIL) (-415 994714 994766 994863 "FPC-" 994868 NIL FPC- (NIL T) -8 NIL NIL NIL) (-414 993472 994202 994243 "FPATMAB" 994248 NIL FPATMAB (NIL T) -9 NIL 994400 NIL) (-413 991615 992214 992561 "FPARFRAC" 993188 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-412 986907 987507 988189 "FORTRAN" 991047 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-411 984481 985145 985173 "FORTFN" 986233 T FORTFN (NIL) -9 NIL 986857 NIL) (-410 984233 984295 984323 "FORTCAT" 984382 T FORTCAT (NIL) -9 NIL 984444 NIL) (-409 981919 982449 982988 "FORT" 983714 T FORT (NIL) -7 NIL NIL NIL) (-408 981701 981737 981806 "FORMULA1" 981883 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-407 979705 980317 980707 "FORMULA" 981331 T FORMULA (NIL) -8 NIL NIL NIL) (-406 979222 979280 979453 "FORDER" 979647 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-405 978282 978482 978675 "FOP" 979049 T FOP (NIL) -7 NIL NIL NIL) (-404 976695 977562 977736 "FNLA" 978164 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-403 975314 975825 975853 "FNCAT" 976313 T FNCAT (NIL) -9 NIL 976573 NIL) (-402 974757 975273 975301 "FNAME" 975306 T FNAME (NIL) -8 NIL NIL NIL) (-401 973083 974256 974284 "FMTC" 974289 T FMTC (NIL) -9 NIL 974325 NIL) (-400 971631 973019 973065 "FMONOID" 973070 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-399 968220 969586 969627 "FMONCAT" 970844 NIL FMONCAT (NIL T) -9 NIL 971449 NIL) (-398 965542 966290 966318 "FMFUN" 967462 T FMFUN (NIL) -9 NIL 968170 NIL) (-397 962415 963467 963521 "FMCAT" 964716 NIL FMCAT (NIL T T) -9 NIL 965211 NIL) (-396 961648 961865 961893 "FMC" 962183 T FMC (NIL) -9 NIL 962365 NIL) (-395 960316 961414 961514 "FM1" 961593 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-394 959334 960058 960207 "FM" 960212 NIL FM (NIL T T) -8 NIL NIL NIL) (-393 957072 957524 958018 "FLOATRP" 958885 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-392 954474 955010 955588 "FLOATCP" 956539 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-391 947130 952203 952824 "FLOAT" 953873 T FLOAT (NIL) -8 NIL NIL NIL) (-390 945648 946722 946763 "FLINEXP" 946768 NIL FLINEXP (NIL T) -9 NIL 946861 NIL) (-389 944778 945037 945365 "FLINEXP-" 945370 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-388 943836 943998 944222 "FLASORT" 944630 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-387 940754 941806 941858 "FLALG" 943085 NIL FLALG (NIL T T) -9 NIL 943552 NIL) (-386 939778 939939 940166 "FLAGG2" 940607 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-385 933042 937187 937228 "FLAGG" 938490 NIL FLAGG (NIL T) -9 NIL 939142 NIL) (-384 931696 932107 932597 "FLAGG-" 932602 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-383 928327 929541 929600 "FINRALG" 930728 NIL FINRALG (NIL T T) -9 NIL 931236 NIL) (-382 927451 927716 928055 "FINRALG-" 928060 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-381 926757 927056 927084 "FINITE" 927280 T FINITE (NIL) -9 NIL 927387 NIL) (-380 918708 921287 921327 "FINAALG" 924994 NIL FINAALG (NIL T) -9 NIL 926447 NIL) (-379 913824 915090 916234 "FINAALG-" 917613 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-378 912384 912806 912860 "FILECAT" 913544 NIL FILECAT (NIL T T) -9 NIL 913760 NIL) (-377 911662 912139 912242 "FILE" 912314 NIL FILE (NIL T) -8 NIL NIL NIL) (-376 909058 910892 910920 "FIELD" 910960 T FIELD (NIL) -9 NIL 911040 NIL) (-375 907600 908063 908574 "FIELD-" 908579 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-374 905282 906235 906582 "FGROUP" 907286 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-373 904354 904536 904756 "FGLMICPK" 905114 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-372 899588 904279 904336 "FFX" 904341 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-371 899183 899250 899385 "FFSLPE" 899521 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-370 898681 898723 898932 "FFPOLY2" 899141 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-369 894557 895453 896249 "FFPOLY" 897917 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-368 889805 894476 894539 "FFP" 894544 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-367 884315 889148 889338 "FFNBX" 889659 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-366 878627 883450 883708 "FFNBP" 884169 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-365 872644 877911 878122 "FFNB" 878460 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-364 871464 871674 871989 "FFINTBAS" 872441 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-363 867040 869711 869739 "FFIELDC" 870359 T FFIELDC (NIL) -9 NIL 870735 NIL) (-362 865618 866073 866570 "FFIELDC-" 866575 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-361 865175 865233 865357 "FFHOM" 865560 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-360 862834 863357 863874 "FFF" 864690 NIL FFF (NIL T) -7 NIL NIL NIL) (-359 857848 862576 862677 "FFCGX" 862777 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-358 852866 857580 857687 "FFCGP" 857791 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-357 847445 852593 852701 "FFCG" 852802 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-356 846850 846899 847134 "FFCAT2" 847396 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-355 825513 836582 836668 "FFCAT" 841833 NIL FFCAT (NIL T T T) -9 NIL 843284 NIL) (-354 820524 821758 823072 "FFCAT-" 824302 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-353 815324 820435 820499 "FF" 820504 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-352 803977 808296 809516 "FEXPR" 814176 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-351 802905 803374 803415 "FEVALAB" 803499 NIL FEVALAB (NIL T) -9 NIL 803760 NIL) (-350 802022 802274 802612 "FEVALAB-" 802617 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-349 798884 799769 799884 "FDIVCAT" 801452 NIL FDIVCAT (NIL T T T T) -9 NIL 801889 NIL) (-348 798640 798673 798843 "FDIVCAT-" 798848 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-347 797854 797947 798224 "FDIV2" 798547 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-346 796264 797237 797440 "FDIV" 797753 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-345 795172 795559 795761 "FCTRDATA" 796082 T FCTRDATA (NIL) -8 NIL NIL NIL) (-344 793828 794117 794406 "FCPAK1" 794903 T FCPAK1 (NIL) -7 NIL NIL NIL) (-343 792831 793328 793469 "FCOMP" 793719 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-342 776146 779981 783519 "FC" 789313 T FC (NIL) -8 NIL NIL NIL) (-341 767841 772467 772507 "FAXF" 774309 NIL FAXF (NIL T) -9 NIL 775001 NIL) (-340 764962 765775 766600 "FAXF-" 767065 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-339 759531 764338 764514 "FARRAY" 764819 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-338 754095 756478 756531 "FAMR" 757554 NIL FAMR (NIL T T) -9 NIL 758014 NIL) (-337 752919 753287 753722 "FAMR-" 753727 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-336 751946 752841 752894 "FAMONOID" 752899 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-335 749576 750428 750481 "FAMONC" 751422 NIL FAMONC (NIL T T) -9 NIL 751808 NIL) (-334 748050 749330 749467 "FAGROUP" 749472 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-333 745803 746164 746567 "FACUTIL" 747731 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-332 744890 745087 745309 "FACTFUNC" 745613 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-331 736648 744193 744392 "EXPUPXS" 744746 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-330 734101 734671 735257 "EXPRTUBE" 736082 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-329 730312 730964 731694 "EXPRODE" 733440 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-328 724746 725453 726259 "EXPR2UPS" 729610 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-327 724372 724435 724544 "EXPR2" 724683 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-326 708666 723021 723450 "EXPR" 723976 NIL EXPR (NIL T) -8 NIL NIL NIL) (-325 698983 707817 708108 "EXPEXPAN" 708502 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-324 698403 698707 698798 "EXITAST" 698912 T EXITAST (NIL) -8 NIL NIL NIL) (-323 698167 698360 698389 "EXIT" 698394 T EXIT (NIL) -8 NIL NIL NIL) (-322 697788 697856 697969 "EVALCYC" 698099 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-321 697305 697447 697488 "EVALAB" 697658 NIL EVALAB (NIL T) -9 NIL 697762 NIL) (-320 696762 696908 697129 "EVALAB-" 697134 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-319 693870 695418 695446 "EUCDOM" 696001 T EUCDOM (NIL) -9 NIL 696351 NIL) (-318 692209 692717 693307 "EUCDOM-" 693312 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-317 691835 691898 692007 "ESTOOLS2" 692146 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-316 691580 691628 691708 "ESTOOLS1" 691787 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-315 678897 681878 684628 "ESTOOLS" 688850 T ESTOOLS (NIL) -7 NIL NIL NIL) (-314 678636 678674 678756 "ESCONT1" 678859 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-313 674944 675771 676551 "ESCONT" 677876 T ESCONT (NIL) -7 NIL NIL NIL) (-312 674613 674669 674769 "ES2" 674888 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-311 674237 674301 674410 "ES1" 674549 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-310 667938 669868 669896 "ES" 672664 T ES (NIL) -9 NIL 674074 NIL) (-309 662615 664172 665989 "ES-" 666153 NIL ES- (NIL T) -8 NIL NIL NIL) (-308 661807 661960 662136 "ERROR" 662459 T ERROR (NIL) -7 NIL NIL NIL) (-307 654823 661666 661757 "EQTBL" 661762 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-306 654449 654512 654621 "EQ2" 654760 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-305 646708 649763 651212 "EQ" 653033 NIL -1537 (NIL T) -8 NIL NIL NIL) (-304 641951 643046 644139 "EP" 645647 NIL EP (NIL T) -7 NIL NIL NIL) (-303 640491 640842 641148 "ENV" 641665 T ENV (NIL) -8 NIL NIL NIL) (-302 639451 640125 640153 "ENTIRER" 640158 T ENTIRER (NIL) -9 NIL 640204 NIL) (-301 635863 637633 637994 "EMR" 639259 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-300 634967 635178 635232 "ELTAGG" 635612 NIL ELTAGG (NIL T T) -9 NIL 635823 NIL) (-299 634674 634748 634889 "ELTAGG-" 634894 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-298 634432 634467 634521 "ELTAB" 634605 NIL ELTAB (NIL T T) -9 NIL 634657 NIL) (-297 633534 633704 633903 "ELFUTS" 634283 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-296 633258 633332 633360 "ELEMFUN" 633465 T ELEMFUN (NIL) -9 NIL NIL NIL) (-295 633122 633149 633217 "ELEMFUN-" 633222 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-294 627539 631164 631205 "ELAGG" 632145 NIL ELAGG (NIL T) -9 NIL 632608 NIL) (-293 625716 626258 626921 "ELAGG-" 626926 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-292 624998 625165 625321 "ELABOR" 625580 T ELABOR (NIL) -8 NIL NIL NIL) (-291 623605 623938 624232 "ELABEXPR" 624724 T ELABEXPR (NIL) -8 NIL NIL NIL) (-290 616117 618242 619071 "EFUPXS" 622880 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-289 609243 611366 612177 "EFULS" 615392 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-288 606680 607086 607558 "EFSTRUC" 608875 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-287 596117 598037 599585 "EF" 605195 NIL EF (NIL T T) -7 NIL NIL NIL) (-286 595095 595602 595751 "EAB" 595988 T EAB (NIL) -8 NIL NIL NIL) (-285 594217 595054 595082 "E04UCFA" 595087 T E04UCFA (NIL) -8 NIL NIL NIL) (-284 593339 594176 594204 "E04NAFA" 594209 T E04NAFA (NIL) -8 NIL NIL NIL) (-283 592461 593298 593326 "E04MBFA" 593331 T E04MBFA (NIL) -8 NIL NIL NIL) (-282 591583 592420 592448 "E04JAFA" 592453 T E04JAFA (NIL) -8 NIL NIL NIL) (-281 590707 591542 591570 "E04GCFA" 591575 T E04GCFA (NIL) -8 NIL NIL NIL) (-280 589831 590666 590694 "E04FDFA" 590699 T E04FDFA (NIL) -8 NIL NIL NIL) (-279 588953 589790 589818 "E04DGFA" 589823 T E04DGFA (NIL) -8 NIL NIL NIL) (-278 583030 584478 585842 "E04AGNT" 587609 T E04AGNT (NIL) -7 NIL NIL NIL) (-277 581650 582331 582371 "DVARCAT" 582712 NIL DVARCAT (NIL T) -9 NIL 582875 NIL) (-276 580800 581066 581380 "DVARCAT-" 581385 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-275 572761 580599 580728 "DSMP" 580733 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-274 571112 571903 571944 "DSEXT" 572307 NIL DSEXT (NIL T) -9 NIL 572601 NIL) (-273 569301 569825 570491 "DSEXT-" 570496 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-272 568960 569025 569123 "DROPT1" 569236 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-271 563979 565201 566338 "DROPT0" 567843 T DROPT0 (NIL) -7 NIL NIL NIL) (-270 558562 559924 560992 "DROPT" 562931 T DROPT (NIL) -8 NIL NIL NIL) (-269 556871 557232 557618 "DRAWPT" 558196 T DRAWPT (NIL) -7 NIL NIL NIL) (-268 556498 556557 556675 "DRAWHACK" 556812 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-267 555199 555498 555789 "DRAWCX" 556227 T DRAWCX (NIL) -7 NIL NIL NIL) (-266 554708 554783 554934 "DRAWCURV" 555125 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-265 545026 547138 549253 "DRAWCFUN" 552613 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-264 539517 540536 541615 "DRAW" 544000 NIL DRAW (NIL T) -7 NIL NIL NIL) (-263 535988 538182 538223 "DQAGG" 538852 NIL DQAGG (NIL T) -9 NIL 539126 NIL) (-262 522571 530199 530282 "DPOLCAT" 532134 NIL DPOLCAT (NIL T T T T) -9 NIL 532679 NIL) (-261 517090 518756 520714 "DPOLCAT-" 520719 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-260 509947 516951 517049 "DPMO" 517054 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-259 502701 509727 509894 "DPMM" 509899 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-258 502223 502485 502574 "DOMTMPLT" 502632 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-257 501572 502025 502105 "DOMCTOR" 502163 T DOMCTOR (NIL) -8 NIL NIL NIL) (-256 500724 501052 501203 "DOMAIN" 501441 T DOMAIN (NIL) -8 NIL NIL NIL) (-255 493736 500359 500511 "DMP" 500625 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-254 491513 492803 492844 "DMEXT" 492849 NIL DMEXT (NIL T) -9 NIL 493025 NIL) (-253 491107 491169 491313 "DLP" 491451 NIL DLP (NIL T) -7 NIL NIL NIL) (-252 484230 490434 490624 "DLIST" 490949 NIL DLIST (NIL T) -8 NIL NIL NIL) (-251 480768 483055 483096 "DLAGG" 483646 NIL DLAGG (NIL T) -9 NIL 483876 NIL) (-250 479280 480094 480122 "DIVRING" 480214 T DIVRING (NIL) -9 NIL 480297 NIL) (-249 478463 478707 479007 "DIVRING-" 479012 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-248 476505 476922 477328 "DISPLAY" 478077 T DISPLAY (NIL) -7 NIL NIL NIL) (-247 475335 475556 475821 "DIRPROD2" 476298 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-246 468742 475249 475312 "DIRPROD" 475317 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-245 456961 463453 463506 "DIRPCAT" 463764 NIL DIRPCAT (NIL NIL T) -9 NIL 464639 NIL) (-244 454161 454929 455810 "DIRPCAT-" 456147 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-243 453442 453608 453794 "DIOSP" 453995 T DIOSP (NIL) -7 NIL NIL NIL) (-242 449856 452326 452367 "DIOPS" 452801 NIL DIOPS (NIL T) -9 NIL 453030 NIL) (-241 449375 449519 449710 "DIOPS-" 449715 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-240 448282 449054 449082 "DIFRING" 449087 T DIFRING (NIL) -9 NIL 449109 NIL) (-239 447930 448028 448056 "DIFFSPC" 448175 T DIFFSPC (NIL) -9 NIL 448250 NIL) (-238 447551 447653 447805 "DIFFSPC-" 447810 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-237 446487 447085 447126 "DIFFMOD" 447131 NIL DIFFMOD (NIL T) -9 NIL 447229 NIL) (-236 446183 446240 446281 "DIFFDOM" 446402 NIL DIFFDOM (NIL T) -9 NIL 446470 NIL) (-235 446030 446060 446144 "DIFFDOM-" 446149 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-234 443770 445234 445275 "DIFEXT" 445280 NIL DIFEXT (NIL T) -9 NIL 445433 NIL) (-233 440804 443274 443315 "DIAGG" 443320 NIL DIAGG (NIL T) -9 NIL 443340 NIL) (-232 440152 440345 440597 "DIAGG-" 440602 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-231 435002 439111 439388 "DHMATRIX" 439921 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-230 430470 431523 432533 "DFSFUN" 434012 T DFSFUN (NIL) -7 NIL NIL NIL) (-229 424704 429401 429713 "DFLOAT" 430178 T DFLOAT (NIL) -8 NIL NIL NIL) (-228 422943 423248 423637 "DFINTTLS" 424412 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-227 419762 420964 421364 "DERHAM" 422609 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-226 417298 419537 419626 "DEQUEUE" 419706 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-225 416540 416685 416868 "DEGRED" 417160 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-224 412946 413715 414561 "DEFINTRF" 415768 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-223 410483 410970 411562 "DEFINTEF" 412465 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-222 409767 410103 410218 "DEFAST" 410388 T DEFAST (NIL) -8 NIL NIL NIL) (-221 402803 409360 409510 "DECIMAL" 409637 T DECIMAL (NIL) -8 NIL NIL NIL) (-220 400261 400773 401279 "DDFACT" 402347 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-219 399851 399900 400051 "DBLRESP" 400212 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-218 399052 399621 399712 "DBASIS" 399800 NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-217 396836 397282 397643 "DBASE" 398818 NIL DBASE (NIL T) -8 NIL NIL NIL) (-216 396024 396316 396462 "DATAARY" 396735 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-215 395082 395983 396011 "D03FAFA" 396016 T D03FAFA (NIL) -8 NIL NIL NIL) (-214 394141 395041 395069 "D03EEFA" 395074 T D03EEFA (NIL) -8 NIL NIL NIL) (-213 392067 392557 393046 "D03AGNT" 393672 T D03AGNT (NIL) -7 NIL NIL NIL) (-212 391308 392026 392054 "D02EJFA" 392059 T D02EJFA (NIL) -8 NIL NIL NIL) (-211 390549 391267 391295 "D02CJFA" 391300 T D02CJFA (NIL) -8 NIL NIL NIL) (-210 389790 390508 390536 "D02BHFA" 390541 T D02BHFA (NIL) -8 NIL NIL NIL) (-209 389031 389749 389777 "D02BBFA" 389782 T D02BBFA (NIL) -8 NIL NIL NIL) (-208 382162 383817 385423 "D02AGNT" 387445 T D02AGNT (NIL) -7 NIL NIL NIL) (-207 379912 380453 380999 "D01WGTS" 381636 T D01WGTS (NIL) -7 NIL NIL NIL) (-206 378919 379871 379899 "D01TRNS" 379904 T D01TRNS (NIL) -8 NIL NIL NIL) (-205 377927 378878 378906 "D01GBFA" 378911 T D01GBFA (NIL) -8 NIL NIL NIL) (-204 376935 377886 377914 "D01FCFA" 377919 T D01FCFA (NIL) -8 NIL NIL NIL) (-203 375943 376894 376922 "D01ASFA" 376927 T D01ASFA (NIL) -8 NIL NIL NIL) (-202 374951 375902 375930 "D01AQFA" 375935 T D01AQFA (NIL) -8 NIL NIL NIL) (-201 373959 374910 374938 "D01APFA" 374943 T D01APFA (NIL) -8 NIL NIL NIL) (-200 372967 373918 373946 "D01ANFA" 373951 T D01ANFA (NIL) -8 NIL NIL NIL) (-199 371975 372926 372954 "D01AMFA" 372959 T D01AMFA (NIL) -8 NIL NIL NIL) (-198 370983 371934 371962 "D01ALFA" 371967 T D01ALFA (NIL) -8 NIL NIL NIL) (-197 369991 370942 370970 "D01AKFA" 370975 T D01AKFA (NIL) -8 NIL NIL NIL) (-196 368999 369950 369978 "D01AJFA" 369983 T D01AJFA (NIL) -8 NIL NIL NIL) (-195 362222 363847 365408 "D01AGNT" 367458 T D01AGNT (NIL) -7 NIL NIL NIL) (-194 361541 361687 361839 "CYCLOTOM" 362090 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-193 358196 358989 359716 "CYCLES" 360834 T CYCLES (NIL) -7 NIL NIL NIL) (-192 357496 357642 357813 "CVMP" 358057 NIL CVMP (NIL T) -7 NIL NIL NIL) (-191 355283 355595 355964 "CTRIGMNP" 357224 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-190 354756 355014 355115 "CTORKIND" 355202 T CTORKIND (NIL) -8 NIL NIL NIL) (-189 353961 354349 354377 "CTORCAT" 354559 T CTORCAT (NIL) -9 NIL 354672 NIL) (-188 353535 353670 353829 "CTORCAT-" 353834 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-187 352949 353209 353317 "CTORCALL" 353459 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-186 352307 352743 352816 "CTOR" 352896 T CTOR (NIL) -8 NIL NIL NIL) (-185 351663 351780 351933 "CSTTOOLS" 352204 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-184 347360 348119 348877 "CRFP" 350975 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-183 346775 347081 347173 "CRCEAST" 347288 T CRCEAST (NIL) -8 NIL NIL NIL) (-182 345798 346007 346235 "CRAPACK" 346579 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-181 345178 345283 345487 "CPMATCH" 345674 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-180 344897 344931 345037 "CPIMA" 345144 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-179 341155 341917 342636 "COORDSYS" 344232 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-178 340543 340688 340830 "CONTOUR" 341033 T CONTOUR (NIL) -8 NIL NIL NIL) (-177 336008 338546 339038 "CONTFRAC" 340083 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-176 335882 335909 335937 "CONDUIT" 335974 T CONDUIT (NIL) -9 NIL NIL NIL) (-175 334836 335510 335538 "COMRING" 335543 T COMRING (NIL) -9 NIL 335595 NIL) (-174 333818 334194 334378 "COMPPROP" 334672 T COMPPROP (NIL) -8 NIL NIL NIL) (-173 333473 333514 333642 "COMPLPAT" 333777 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-172 333103 333166 333273 "COMPLEX2" 333410 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-171 321486 332912 333021 "COMPLEX" 333026 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 320807 320946 321106 "COMPILER" 321346 T COMPILER (NIL) -8 NIL NIL NIL) (-169 320519 320560 320658 "COMPFACT" 320766 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-168 301894 314223 314263 "COMPCAT" 315267 NIL COMPCAT (NIL T) -9 NIL 316615 NIL) (-167 290782 294333 297960 "COMPCAT-" 298316 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-166 290505 290539 290642 "COMMUPC" 290748 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-165 290293 290333 290392 "COMMONOP" 290466 T COMMONOP (NIL) -7 NIL NIL NIL) (-164 289815 290097 290172 "COMMAAST" 290238 T COMMAAST (NIL) -8 NIL NIL NIL) (-163 289323 289566 289653 "COMM" 289748 T COMM (NIL) -8 NIL NIL NIL) (-162 288518 288766 288794 "COMBOPC" 289132 T COMBOPC (NIL) -9 NIL 289307 NIL) (-161 287372 287624 287866 "COMBINAT" 288308 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-160 283715 284403 285030 "COMBF" 286794 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-159 282377 282831 283066 "COLOR" 283500 T COLOR (NIL) -8 NIL NIL NIL) (-158 281793 282098 282190 "COLONAST" 282305 T COLONAST (NIL) -8 NIL NIL NIL) (-157 281427 281480 281605 "CMPLXRT" 281740 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-156 280815 281127 281226 "CLLCTAST" 281348 T CLLCTAST (NIL) -8 NIL NIL NIL) (-155 276275 277345 278425 "CLIP" 279755 T CLIP (NIL) -7 NIL NIL NIL) (-154 274448 275376 275616 "CLIF" 276102 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-153 270430 272566 272607 "CLAGG" 273536 NIL CLAGG (NIL T) -9 NIL 274072 NIL) (-152 268774 269309 269892 "CLAGG-" 269897 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-151 268312 268403 268543 "CINTSLPE" 268683 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-150 265777 266284 266832 "CHVAR" 267840 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-149 264817 265491 265519 "CHARZ" 265524 T CHARZ (NIL) -9 NIL 265539 NIL) (-148 264565 264611 264689 "CHARPOL" 264771 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-147 263483 264196 264224 "CHARNZ" 264271 T CHARNZ (NIL) -9 NIL 264327 NIL) (-146 260427 261537 262066 "CHAR" 262974 T CHAR (NIL) -8 NIL NIL NIL) (-145 260135 260214 260242 "CFCAT" 260353 T CFCAT (NIL) -9 NIL NIL NIL) (-144 259358 259487 259670 "CDEN" 260019 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-143 254955 258511 258791 "CCLASS" 259098 T CCLASS (NIL) -8 NIL NIL NIL) (-142 254176 254363 254540 "CATEGORY" 254798 T -10 (NIL) -8 NIL NIL NIL) (-141 253671 254095 254143 "CATCTOR" 254148 T CATCTOR (NIL) -8 NIL NIL NIL) (-140 253062 253374 253472 "CATAST" 253593 T CATAST (NIL) -8 NIL NIL NIL) (-139 252478 252783 252875 "CASEAST" 252990 T CASEAST (NIL) -8 NIL NIL NIL) (-138 251574 251734 251955 "CARTEN2" 252325 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-137 246472 247731 248475 "CARTEN" 250886 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 244602 245622 245879 "CARD" 246235 T CARD (NIL) -8 NIL NIL NIL) (-135 244124 244406 244481 "CAPSLAST" 244547 T CAPSLAST (NIL) -8 NIL NIL NIL) (-134 243566 243822 243850 "CACHSET" 243982 T CACHSET (NIL) -9 NIL 244060 NIL) (-133 242956 243344 243372 "CABMON" 243422 T CABMON (NIL) -9 NIL 243478 NIL) (-132 242393 242660 242770 "BYTEORD" 242866 T BYTEORD (NIL) -8 NIL NIL NIL) (-131 237320 241898 242070 "BYTEBUF" 242241 T BYTEBUF (NIL) -8 NIL NIL NIL) (-130 236078 236835 236984 "BYTE" 237147 T BYTE (NIL) -8 NIL NIL 237276) (-129 233340 235770 235877 "BTREE" 236004 NIL BTREE (NIL T) -8 NIL NIL NIL) (-128 230542 232988 233110 "BTOURN" 233250 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-127 227649 229984 230025 "BTCAT" 230093 NIL BTCAT (NIL T) -9 NIL 230170 NIL) (-126 227298 227396 227545 "BTCAT-" 227550 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-125 222190 226544 226572 "BTAGG" 226686 T BTAGG (NIL) -9 NIL 226796 NIL) (-124 221644 221805 222011 "BTAGG-" 222016 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-123 218380 220922 221137 "BSTREE" 221461 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-122 217488 217644 217828 "BRILL" 218236 NIL BRILL (NIL T) -7 NIL NIL NIL) (-121 213883 216186 216227 "BRAGG" 216876 NIL BRAGG (NIL T) -9 NIL 217134 NIL) (-120 212316 212818 213373 "BRAGG-" 213378 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-119 204552 211660 211845 "BPADICRT" 212163 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-118 202561 204489 204534 "BPADIC" 204539 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-117 202253 202289 202403 "BOUNDZRO" 202525 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-116 199980 200438 200913 "BOP1" 201811 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-115 194962 196406 197318 "BOP" 199088 T BOP (NIL) -8 NIL NIL NIL) (-114 193627 194550 194692 "BOOLEAN" 194840 T BOOLEAN (NIL) -8 NIL NIL NIL) (-113 193220 193377 193405 "BOOLE" 193516 T BOOLE (NIL) -9 NIL 193597 NIL) (-112 193088 193115 193181 "BOOLE-" 193186 NIL BOOLE- (NIL T) -8 NIL NIL NIL) (-111 192257 192757 192811 "BMODULE" 192816 NIL BMODULE (NIL T T) -9 NIL 192881 NIL) (-110 187578 192055 192128 "BITS" 192204 T BITS (NIL) -8 NIL NIL NIL) (-109 186975 187118 187258 "BINDING" 187458 T BINDING (NIL) -8 NIL NIL NIL) (-108 180014 186570 186719 "BINARY" 186846 T BINARY (NIL) -8 NIL NIL NIL) (-107 177621 179241 179282 "BGAGG" 179542 NIL BGAGG (NIL T) -9 NIL 179679 NIL) (-106 177446 177484 177575 "BGAGG-" 177580 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 176469 176830 177035 "BFUNCT" 177261 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 175139 175337 175625 "BEZOUT" 176293 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 171337 173991 174321 "BBTREE" 174842 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 170920 171016 171044 "BASTYPE" 171221 T BASTYPE (NIL) -9 NIL 171320 NIL) (-101 170578 170677 170812 "BASTYPE-" 170817 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 170000 170088 170240 "BALFACT" 170489 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 168736 169415 169601 "AUTOMOR" 169845 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 168462 168467 168493 "ATTREG" 168498 T ATTREG (NIL) -9 NIL NIL NIL) (-97 166624 167159 167511 "ATTRBUT" 168128 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 166178 166452 166518 "ATTRAST" 166576 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 165678 165827 165853 "ATRIG" 166054 T ATRIG (NIL) -9 NIL NIL NIL) (-94 165475 165528 165615 "ATRIG-" 165620 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 165058 165292 165318 "ASTCAT" 165323 T ASTCAT (NIL) -9 NIL 165353 NIL) (-92 164767 164844 164963 "ASTCAT-" 164968 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 162741 164543 164631 "ASTACK" 164710 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 161230 161543 161908 "ASSOCEQ" 162423 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 160154 160889 161013 "ASP9" 161137 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 158914 159759 159901 "ASP80" 160043 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-87 158641 158862 158901 "ASP8" 158906 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-86 157487 158318 158436 "ASP78" 158554 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-85 156348 157167 157284 "ASP77" 157401 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-84 155152 155986 156117 "ASP74" 156248 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-83 153944 154787 154919 "ASP73" 155051 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-82 152734 153579 153711 "ASP7" 153843 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-81 151730 152560 152660 "ASP6" 152665 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 150569 151407 151525 "ASP55" 151643 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 149410 150243 150362 "ASP50" 150481 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 148390 149111 149221 "ASP49" 149331 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-77 147066 147929 148097 "ASP42" 148279 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-76 145735 146599 146769 "ASP41" 146953 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 144715 145436 145546 "ASP4" 145656 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-74 143557 144392 144510 "ASP35" 144628 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 143286 143505 143544 "ASP34" 143549 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 143005 143090 143166 "ASP33" 143241 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 141791 142640 142772 "ASP31" 142904 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 141520 141739 141778 "ASP30" 141783 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 141237 141324 141400 "ASP29" 141475 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 140966 141185 141224 "ASP28" 141229 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 140695 140914 140953 "ASP27" 140958 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 139671 140393 140504 "ASP24" 140615 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 138640 139473 139585 "ASP20" 139590 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 137475 138314 138433 "ASP19" 138552 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-63 137194 137279 137355 "ASP12" 137430 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-62 135938 136793 136937 "ASP10" 137081 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-61 134918 135639 135749 "ASP1" 135859 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-60 132530 134762 134853 "ARRAY2" 134858 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 131544 131735 131956 "ARRAY12" 132353 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 126904 131192 131306 "ARRAY1" 131461 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 120949 123106 123181 "ARR2CAT" 125811 NIL ARR2CAT (NIL T T T) -9 NIL 126569 NIL) (-56 118239 119127 120081 "ARR2CAT-" 120086 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 117490 117866 117991 "ARITY" 118132 T ARITY (NIL) -8 NIL NIL NIL) (-54 116248 116418 116717 "APPRULE" 117326 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 115893 115947 116066 "APPLYORE" 116194 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 115147 115294 115451 "ANY1" 115767 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 114447 114740 114860 "ANY" 115045 T ANY (NIL) -8 NIL NIL NIL) (-50 111773 112884 113211 "ANTISYM" 114171 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 111217 111480 111576 "ANON" 111695 T ANON (NIL) -8 NIL NIL NIL) (-48 104373 109756 110210 "AN" 110781 T AN (NIL) -8 NIL NIL NIL) (-47 100029 101645 101696 "AMR" 102444 NIL AMR (NIL T T) -9 NIL 103044 NIL) (-46 99081 99362 99725 "AMR-" 99730 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 82550 98998 99059 "ALIST" 99064 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 78847 82144 82313 "ALGSC" 82468 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 75297 75957 76564 "ALGPKG" 78287 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 74562 74675 74859 "ALGMFACT" 75183 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 70545 71176 71770 "ALGMANIP" 74146 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 59884 70171 70321 "ALGFF" 70478 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 59056 59211 59390 "ALGFACT" 59742 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 57845 58583 58621 "ALGEBRA" 58626 NIL ALGEBRA (NIL T) -9 NIL 58667 NIL) (-37 57545 57622 57754 "ALGEBRA-" 57759 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 38506 55382 55434 "ALAGG" 55570 NIL ALAGG (NIL T T) -9 NIL 55731 NIL) (-35 38006 38155 38181 "AHYP" 38382 T AHYP (NIL) -9 NIL NIL NIL) (-34 36891 37185 37211 "AGG" 37710 T AGG (NIL) -9 NIL 37989 NIL) (-33 36289 36487 36701 "AGG-" 36706 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 34049 34518 34923 "AF" 35931 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 33469 33774 33864 "ADDAST" 33977 T ADDAST (NIL) -8 NIL NIL NIL) (-30 32701 32996 33152 "ACPLOT" 33331 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 20258 29633 29671 "ACFS" 30278 NIL ACFS (NIL T) -9 NIL 30517 NIL) (-28 18165 18775 19537 "ACFS-" 19542 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 13873 16198 16224 "ACF" 17103 T ACF (NIL) -9 NIL 17516 NIL) (-26 12505 12911 13404 "ACF-" 13409 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 12015 12258 12284 "ABELSG" 12376 T ABELSG (NIL) -9 NIL 12441 NIL) (-24 11876 11907 11973 "ABELSG-" 11978 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 11145 11492 11518 "ABELMON" 11688 T ABELMON (NIL) -9 NIL 11800 NIL) (-22 10785 10893 11031 "ABELMON-" 11036 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 10035 10491 10517 "ABELGRP" 10589 T ABELGRP (NIL) -9 NIL 10664 NIL) (-20 9462 9627 9843 "ABELGRP-" 9848 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4579 8724 8763 "A1AGG" 8768 NIL A1AGG (NIL T) -9 NIL 8808 NIL) (-18 30 1497 3059 "A1AGG-" 3064 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
+((-3 3472754 3472759 3472764 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3472739 3472744 3472749 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3472724 3472729 3472734 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3472709 3472714 3472719 NIL NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1327 3471696 3472584 3472661 "ZMOD" 3472666 NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1326 3470732 3470914 3471137 "ZLINDEP" 3471528 NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1325 3459894 3461800 3463772 "ZDSOLVE" 3468862 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1324 3459128 3459281 3459470 "YSTREAM" 3459740 NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1323 3458488 3458797 3458912 "YDIAGRAM" 3459035 T YDIAGRAM (NIL) -8 NIL NIL NIL) (-1322 3455936 3457789 3457993 "XRPOLY" 3458331 NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1321 3452203 3453807 3454382 "XPR" 3455408 NIL XPR (NIL T T) -8 NIL NIL NIL) (-1320 3449534 3451210 3451265 "XPOLYC" 3451553 NIL XPOLYC (NIL T T) -9 NIL 3451666 NIL) (-1319 3446929 3448865 3449069 "XPOLY" 3449365 NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1318 3442875 3445446 3445834 "XPBWPOLY" 3446587 NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1317 3437767 3439346 3439401 "XFALG" 3441573 NIL XFALG (NIL T T) -9 NIL 3442362 NIL) (-1316 3433036 3435743 3435785 "XF" 3436406 NIL XF (NIL T) -9 NIL 3436806 NIL) (-1315 3432633 3432745 3432914 "XF-" 3432919 NIL XF- (NIL T T) -8 NIL NIL NIL) (-1314 3431748 3431870 3432075 "XEXPPKG" 3432525 NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1313 3429489 3431598 3431694 "XDPOLY" 3431699 NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1312 3428144 3428882 3428925 "XALG" 3428930 NIL XALG (NIL T) -9 NIL 3429041 NIL) (-1311 3421054 3426121 3426615 "WUTSET" 3427736 NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1310 3419156 3420106 3420429 "WP" 3420865 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1309 3418704 3418978 3419048 "WHILEAST" 3419108 T WHILEAST (NIL) -8 NIL NIL NIL) (-1308 3418116 3418421 3418515 "WHEREAST" 3418632 T WHEREAST (NIL) -8 NIL NIL NIL) (-1307 3416990 3417200 3417495 "WFFINTBS" 3417913 NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1306 3414858 3415321 3415783 "WEIER" 3416562 NIL WEIER (NIL T) -7 NIL NIL NIL) (-1305 3413782 3414340 3414382 "VSPACE" 3414518 NIL VSPACE (NIL T) -9 NIL 3414592 NIL) (-1304 3413614 3413647 3413738 "VSPACE-" 3413743 NIL VSPACE- (NIL T T) -8 NIL NIL NIL) (-1303 3413411 3413465 3413533 "VOID" 3413568 T VOID (NIL) -8 NIL NIL NIL) (-1302 3409679 3410474 3411211 "VIEWDEF" 3412696 T VIEWDEF (NIL) -7 NIL NIL NIL) (-1301 3398623 3401227 3403400 "VIEW3D" 3407528 T VIEW3D (NIL) -8 NIL NIL NIL) (-1300 3390640 3392534 3394113 "VIEW2D" 3397066 T VIEW2D (NIL) -8 NIL NIL NIL) (-1299 3388740 3389135 3389541 "VIEW" 3390256 T VIEW (NIL) -7 NIL NIL NIL) (-1298 3387293 3387576 3387894 "VECTOR2" 3388470 NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1297 3382199 3387063 3387155 "VECTOR" 3387236 NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1296 3375153 3379903 3379946 "VECTCAT" 3380941 NIL VECTCAT (NIL T) -9 NIL 3381528 NIL) (-1295 3374095 3374421 3374811 "VECTCAT-" 3374816 NIL VECTCAT- (NIL T T) -8 NIL NIL NIL) (-1294 3373501 3373746 3373866 "VARIABLE" 3374010 NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1293 3373434 3373439 3373469 "UTYPE" 3373474 T UTYPE (NIL) -9 NIL NIL NIL) (-1292 3372242 3372418 3372680 "UTSODETL" 3373260 NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1291 3369634 3370142 3370666 "UTSODE" 3371783 NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1290 3359641 3365567 3365610 "UTSCAT" 3366722 NIL UTSCAT (NIL T) -9 NIL 3367480 NIL) (-1289 3356767 3357711 3358700 "UTSCAT-" 3358705 NIL UTSCAT- (NIL T T) -8 NIL NIL NIL) (-1288 3356388 3356437 3356570 "UTS2" 3356718 NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1287 3347698 3354149 3354629 "UTS" 3355966 NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1286 3341565 3344508 3344551 "URAGG" 3346621 NIL URAGG (NIL T) -9 NIL 3347344 NIL) (-1285 3338288 3339367 3340490 "URAGG-" 3340495 NIL URAGG- (NIL T T) -8 NIL NIL NIL) (-1284 3333657 3336923 3337388 "UPXSSING" 3337952 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1283 3326072 3333561 3333633 "UPXSCONS" 3333638 NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1282 3314820 3322274 3322336 "UPXSCCA" 3322910 NIL UPXSCCA (NIL T T) -9 NIL 3323143 NIL) (-1281 3314440 3314543 3314717 "UPXSCCA-" 3314722 NIL UPXSCCA- (NIL T T T) -8 NIL NIL NIL) (-1280 3303088 3310267 3310310 "UPXSCAT" 3310958 NIL UPXSCAT (NIL T) -9 NIL 3311567 NIL) (-1279 3302512 3302597 3302776 "UPXS2" 3303003 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1278 3293990 3301894 3302158 "UPXS" 3302306 NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1277 3292626 3292897 3293248 "UPSQFREE" 3293733 NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1276 3285454 3288892 3288947 "UPSCAT" 3290027 NIL UPSCAT (NIL T T) -9 NIL 3290793 NIL) (-1275 3284610 3284865 3285192 "UPSCAT-" 3285197 NIL UPSCAT- (NIL T T T) -8 NIL NIL NIL) (-1274 3284231 3284280 3284413 "UPOLYC2" 3284561 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1273 3268365 3277358 3277401 "UPOLYC" 3279502 NIL UPOLYC (NIL T) -9 NIL 3280723 NIL) (-1272 3259213 3262119 3265266 "UPOLYC-" 3265271 NIL UPOLYC- (NIL T T) -8 NIL NIL NIL) (-1271 3258534 3258659 3258823 "UPMP" 3259102 NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1270 3258081 3258168 3258307 "UPDIVP" 3258447 NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1269 3256619 3256898 3257214 "UPDECOMP" 3257830 NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1268 3255832 3255962 3256148 "UPCDEN" 3256503 NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1267 3255345 3255420 3255569 "UP2" 3255757 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1266 3245920 3255028 3255157 "UP" 3255264 NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1265 3245125 3245262 3245467 "UNISEG2" 3245763 NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1264 3243478 3244329 3244606 "UNISEG" 3244883 NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1263 3242520 3242718 3242944 "UNIFACT" 3243294 NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1262 3229230 3242424 3242496 "ULSCONS" 3242501 NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1261 3209030 3222310 3222372 "ULSCCAT" 3223010 NIL ULSCCAT (NIL T T) -9 NIL 3223299 NIL) (-1260 3208026 3208325 3208713 "ULSCCAT-" 3208718 NIL ULSCCAT- (NIL T T T) -8 NIL NIL NIL) (-1259 3196471 3203572 3203615 "ULSCAT" 3204478 NIL ULSCAT (NIL T) -9 NIL 3205209 NIL) (-1258 3195895 3195980 3196159 "ULS2" 3196386 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1257 3177705 3195207 3195449 "ULS" 3195711 NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1256 3176620 3177320 3177434 "UINT8" 3177545 T UINT8 (NIL) -8 NIL NIL 3177637) (-1255 3175534 3176234 3176348 "UINT64" 3176459 T UINT64 (NIL) -8 NIL NIL 3176551) (-1254 3174448 3175148 3175262 "UINT32" 3175373 T UINT32 (NIL) -8 NIL NIL 3175465) (-1253 3173362 3174062 3174176 "UINT16" 3174287 T UINT16 (NIL) -8 NIL NIL 3174379) (-1252 3171441 3172608 3172638 "UFD" 3172850 T UFD (NIL) -9 NIL 3172964 NIL) (-1251 3171223 3171281 3171376 "UFD-" 3171381 NIL UFD- (NIL T) -8 NIL NIL NIL) (-1250 3170281 3170488 3170704 "UDVO" 3171029 T UDVO (NIL) -7 NIL NIL NIL) (-1249 3168047 3168506 3168977 "UDPO" 3169845 NIL UDPO (NIL T) -7 NIL NIL NIL) (-1248 3167759 3168002 3168033 "TYPEAST" 3168038 T TYPEAST (NIL) -8 NIL NIL NIL) (-1247 3167692 3167697 3167727 "TYPE" 3167732 T TYPE (NIL) -9 NIL NIL NIL) (-1246 3166645 3166865 3167105 "TWOFACT" 3167486 NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1245 3165620 3166054 3166289 "TUPLE" 3166445 NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1244 3163257 3163830 3164369 "TUBETOOL" 3165103 T TUBETOOL (NIL) -7 NIL NIL NIL) (-1243 3162063 3162304 3162546 "TUBE" 3163050 NIL TUBE (NIL T) -8 NIL NIL NIL) (-1242 3150205 3154820 3154917 "TSETCAT" 3160186 NIL TSETCAT (NIL T T T T) -9 NIL 3161718 NIL) (-1241 3144673 3146537 3148428 "TSETCAT-" 3148433 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1240 3138852 3143645 3143928 "TS" 3144425 NIL TS (NIL T) -8 NIL NIL NIL) (-1239 3133325 3134338 3135267 "TRMANIP" 3137988 NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1238 3132754 3132829 3132992 "TRIMAT" 3133257 NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1237 3130566 3130857 3131214 "TRIGMNIP" 3132503 NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1236 3130050 3130199 3130229 "TRIGCAT" 3130442 T TRIGCAT (NIL) -9 NIL NIL NIL) (-1235 3129695 3129798 3129939 "TRIGCAT-" 3129944 NIL TRIGCAT- (NIL T) -8 NIL NIL NIL) (-1234 3126309 3128553 3128834 "TREE" 3129449 NIL TREE (NIL T) -8 NIL NIL NIL) (-1233 3125415 3126111 3126141 "TRANFUN" 3126176 T TRANFUN (NIL) -9 NIL 3126242 NIL) (-1232 3124634 3124885 3125165 "TRANFUN-" 3125170 NIL TRANFUN- (NIL T) -8 NIL NIL NIL) (-1231 3124432 3124470 3124531 "TOPSP" 3124595 T TOPSP (NIL) -7 NIL NIL NIL) (-1230 3123762 3123895 3124049 "TOOLSIGN" 3124313 NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1229 3122276 3122939 3123178 "TEXTFILE" 3123545 T TEXTFILE (NIL) -8 NIL NIL NIL) (-1228 3122051 3122088 3122160 "TEX1" 3122239 NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1227 3119855 3120504 3120933 "TEX" 3121644 T TEX (NIL) -8 NIL NIL NIL) (-1226 3119491 3119566 3119656 "TEMUTL" 3119787 T TEMUTL (NIL) -7 NIL NIL NIL) (-1225 3117585 3117925 3118250 "TBCMPPK" 3119214 NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1224 3108912 3115671 3115727 "TBAGG" 3116127 NIL TBAGG (NIL T T) -9 NIL 3116338 NIL) (-1223 3103796 3105470 3107224 "TBAGG-" 3107229 NIL TBAGG- (NIL T T T) -8 NIL NIL NIL) (-1222 3103162 3103287 3103432 "TANEXP" 3103685 NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1221 3102613 3102937 3103027 "TALGOP" 3103107 NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1220 3102007 3102124 3102262 "TABLEAU" 3102510 NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1219 3095021 3101864 3101957 "TABLE" 3101962 NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1218 3089551 3090849 3092097 "TABLBUMP" 3093807 NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1217 3088761 3088920 3089101 "SYSTEM" 3089392 T SYSTEM (NIL) -8 NIL NIL NIL) (-1216 3085166 3085919 3086702 "SYSSOLP" 3088012 NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1215 3084928 3085121 3085152 "SYSPTR" 3085157 T SYSPTR (NIL) -8 NIL NIL NIL) (-1214 3083763 3084455 3084581 "SYSNNI" 3084767 NIL SYSNNI (NIL NIL) -8 NIL NIL 3084859) (-1213 3082966 3083521 3083600 "SYSINT" 3083660 NIL SYSINT (NIL NIL) -8 NIL NIL 3083705) (-1212 3079064 3080244 3080954 "SYNTAX" 3082278 T SYNTAX (NIL) -8 NIL NIL NIL) (-1211 3076144 3076824 3077456 "SYMTAB" 3078454 T SYMTAB (NIL) -8 NIL NIL NIL) (-1210 3071243 3072295 3073278 "SYMS" 3075183 T SYMS (NIL) -8 NIL NIL NIL) (-1209 3068142 3070694 3070927 "SYMPOLY" 3071045 NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1208 3067647 3067734 3067857 "SYMFUNC" 3068054 NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1207 3063445 3064959 3065772 "SYMBOL" 3066856 T SYMBOL (NIL) -8 NIL NIL NIL) (-1206 3056918 3058673 3060393 "SWITCH" 3061747 T SWITCH (NIL) -8 NIL NIL NIL) (-1205 3049672 3055874 3056168 "SUTS" 3056682 NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1204 3041150 3049054 3049318 "SUPXS" 3049466 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1203 3040297 3040436 3040653 "SUPFRACF" 3041018 NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1202 3039912 3039977 3040090 "SUP2" 3040232 NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1201 3030435 3039530 3039656 "SUP" 3039821 NIL SUP (NIL T) -8 NIL NIL NIL) (-1200 3028859 3029157 3029513 "SUMRF" 3030134 NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1199 3028182 3028260 3028452 "SUMFS" 3028780 NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1198 3010027 3027494 3027736 "SULS" 3027998 NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1197 3009575 3009849 3009919 "SUCHTAST" 3009979 T SUCHTAST (NIL) -8 NIL NIL NIL) (-1196 3008816 3009100 3009240 "SUCH" 3009483 NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1195 3002455 3003722 3004681 "SUBSPACE" 3007904 NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1194 3001875 3001975 3002139 "SUBRESP" 3002343 NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1193 2995886 2997168 2998315 "STTFNC" 3000775 NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1192 2989080 2990551 2991862 "STTF" 2994622 NIL STTF (NIL T) -7 NIL NIL NIL) (-1191 2980197 2982262 2984056 "STTAYLOR" 2987321 NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1190 2972951 2980061 2980144 "STRTBL" 2980149 NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1189 2967348 2972660 2972759 "STRING" 2972874 T STRING (NIL) -8 NIL NIL NIL) (-1188 2966852 2966935 2967079 "STREAM3" 2967265 NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1187 2965816 2966017 2966252 "STREAM2" 2966665 NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1186 2965498 2965556 2965649 "STREAM1" 2965758 NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1185 2957608 2963117 2963728 "STREAM" 2964922 NIL STREAM (NIL T) -8 NIL NIL NIL) (-1184 2956600 2956805 2957036 "STINPROD" 2957424 NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1183 2955715 2956089 2956237 "STEPAST" 2956474 T STEPAST (NIL) -8 NIL NIL NIL) (-1182 2955211 2955463 2955493 "STEP" 2955573 T STEP (NIL) -9 NIL 2955651 NIL) (-1181 2948267 2955110 2955187 "STBL" 2955192 NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1180 2942825 2947430 2947473 "STAGG" 2947626 NIL STAGG (NIL T) -9 NIL 2947715 NIL) (-1179 2940377 2941129 2942001 "STAGG-" 2942006 NIL STAGG- (NIL T T) -8 NIL NIL NIL) (-1178 2938349 2940147 2940239 "STACK" 2940320 NIL STACK (NIL T) -8 NIL NIL NIL) (-1177 2930356 2936490 2936946 "SREGSET" 2937979 NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1176 2922703 2924150 2925663 "SRDCMPK" 2928962 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1175 2915012 2920062 2920092 "SRAGG" 2921395 T SRAGG (NIL) -9 NIL 2922003 NIL) (-1174 2913963 2914284 2914663 "SRAGG-" 2914668 NIL SRAGG- (NIL T) -8 NIL NIL NIL) (-1173 2907547 2912910 2913331 "SQMATRIX" 2913589 NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1172 2900959 2904265 2904992 "SPLTREE" 2906892 NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1171 2896784 2897615 2898261 "SPLNODE" 2900385 NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1170 2895759 2896064 2896094 "SPFCAT" 2896538 T SPFCAT (NIL) -9 NIL NIL NIL) (-1169 2894454 2894706 2894970 "SPECOUT" 2895517 T SPECOUT (NIL) -7 NIL NIL NIL) (-1168 2885100 2887418 2887448 "SPADXPT" 2892126 T SPADXPT (NIL) -9 NIL 2894292 NIL) (-1167 2884855 2884901 2884970 "SPADPRSR" 2885053 T SPADPRSR (NIL) -7 NIL NIL NIL) (-1166 2882458 2884810 2884841 "SPADAST" 2884846 T SPADAST (NIL) -8 NIL NIL NIL) (-1165 2874059 2876162 2876205 "SPACEC" 2880578 NIL SPACEC (NIL T) -9 NIL 2882394 NIL) (-1164 2871859 2873991 2874040 "SPACE3" 2874045 NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1163 2870591 2870782 2871073 "SORTPAK" 2871664 NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1162 2868653 2868986 2869398 "SOLVETRA" 2870255 NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1161 2867691 2867925 2868186 "SOLVESER" 2868426 NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1160 2862923 2863883 2864878 "SOLVERAD" 2866743 NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1159 2858648 2859347 2860076 "SOLVEFOR" 2862290 NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1158 2852259 2857996 2858093 "SNTSCAT" 2858098 NIL SNTSCAT (NIL T T T T) -9 NIL 2858168 NIL) (-1157 2845803 2850582 2850973 "SMTS" 2851949 NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1156 2839518 2845691 2845768 "SMP" 2845773 NIL SMP (NIL T T) -8 NIL NIL NIL) (-1155 2837647 2837978 2838376 "SMITH" 2839215 NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1154 2829179 2834226 2834329 "SMATCAT" 2835680 NIL SMATCAT (NIL NIL T T T) -9 NIL 2836230 NIL) (-1153 2825951 2826942 2828120 "SMATCAT-" 2828125 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL NIL) (-1152 2823420 2825159 2825202 "SKAGG" 2825463 NIL SKAGG (NIL T) -9 NIL 2825598 NIL) (-1151 2818914 2822893 2823077 "SINT" 2823229 T SINT (NIL) -8 NIL NIL 2823391) (-1150 2818680 2818724 2818790 "SIMPAN" 2818870 T SIMPAN (NIL) -7 NIL NIL NIL) (-1149 2817500 2817739 2818014 "SIGNRF" 2818439 NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1148 2816315 2816484 2816768 "SIGNEF" 2817329 NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1147 2815555 2815898 2816022 "SIGAST" 2816213 T SIGAST (NIL) -8 NIL NIL NIL) (-1146 2814780 2815090 2815230 "SIG" 2815437 T SIG (NIL) -8 NIL NIL NIL) (-1145 2812432 2812924 2813430 "SHP" 2814321 NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1144 2805805 2812333 2812409 "SHDP" 2812414 NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1143 2805316 2805556 2805586 "SGROUP" 2805679 T SGROUP (NIL) -9 NIL 2805741 NIL) (-1142 2805168 2805200 2805273 "SGROUP-" 2805278 NIL SGROUP- (NIL T) -8 NIL NIL NIL) (-1141 2801887 2802657 2803380 "SGCF" 2804467 T SGCF (NIL) -7 NIL NIL NIL) (-1140 2795596 2801333 2801430 "SFRTCAT" 2801435 NIL SFRTCAT (NIL T T T T) -9 NIL 2801474 NIL) (-1139 2788915 2790035 2791171 "SFRGCD" 2794579 NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1138 2781933 2783114 2784300 "SFQCMPK" 2787848 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1137 2781535 2781642 2781753 "SFORT" 2781874 NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1136 2780461 2781375 2781496 "SEXOF" 2781501 NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1135 2776050 2776957 2777052 "SEXCAT" 2779674 NIL SEXCAT (NIL T T T T T) -9 NIL 2780234 NIL) (-1134 2774965 2775931 2775999 "SEX" 2776004 T SEX (NIL) -8 NIL NIL NIL) (-1133 2773087 2773678 2773983 "SETMN" 2774706 NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1132 2772617 2772805 2772835 "SETCAT" 2772952 T SETCAT (NIL) -9 NIL 2773037 NIL) (-1131 2772385 2772449 2772548 "SETCAT-" 2772553 NIL SETCAT- (NIL T) -8 NIL NIL NIL) (-1130 2768488 2770846 2770889 "SETAGG" 2771759 NIL SETAGG (NIL T) -9 NIL 2772099 NIL) (-1129 2767910 2768062 2768299 "SETAGG-" 2768304 NIL SETAGG- (NIL T T) -8 NIL NIL NIL) (-1128 2764719 2767844 2767892 "SET" 2767897 NIL SET (NIL T) -8 NIL NIL NIL) (-1127 2764102 2764415 2764516 "SEQAST" 2764640 T SEQAST (NIL) -8 NIL NIL NIL) (-1126 2763229 2763595 2763656 "SEGXCAT" 2763942 NIL SEGXCAT (NIL T T) -9 NIL 2764062 NIL) (-1125 2762154 2762422 2762465 "SEGCAT" 2762987 NIL SEGCAT (NIL T) -9 NIL 2763208 NIL) (-1124 2761769 2761834 2761947 "SEGBIND2" 2762089 NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1123 2760659 2761132 2761340 "SEGBIND" 2761596 NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1122 2760178 2760460 2760537 "SEGAST" 2760604 T SEGAST (NIL) -8 NIL NIL NIL) (-1121 2759387 2759523 2759727 "SEG2" 2760022 NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1120 2758303 2759053 2759235 "SEG" 2759240 NIL SEG (NIL T) -8 NIL NIL NIL) (-1119 2757536 2758238 2758285 "SDVAR" 2758290 NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1118 2748887 2757306 2757436 "SDPOL" 2757441 NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1117 2747456 2747746 2748065 "SCPKG" 2748602 NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1116 2746578 2746792 2746984 "SCOPE" 2747286 T SCOPE (NIL) -8 NIL NIL NIL) (-1115 2745774 2745932 2746111 "SCACHE" 2746433 NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1114 2745358 2745592 2745622 "SASTCAT" 2745627 T SASTCAT (NIL) -9 NIL 2745640 NIL) (-1113 2744761 2745193 2745269 "SAOS" 2745304 T SAOS (NIL) -8 NIL NIL NIL) (-1112 2744320 2744361 2744534 "SAERFFC" 2744720 NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1111 2743907 2743948 2744107 "SAEFACT" 2744279 NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1110 2736934 2743804 2743884 "SAE" 2743889 NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1109 2735237 2735569 2735970 "RURPK" 2736600 NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1108 2733814 2734180 2734485 "RULESET" 2735071 NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1107 2733384 2733608 2733691 "RULECOLD" 2733766 NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1106 2730499 2731137 2731595 "RULE" 2733065 NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1105 2730283 2730317 2730388 "RTVALUE" 2730450 T RTVALUE (NIL) -8 NIL NIL NIL) (-1104 2729694 2730000 2730094 "RSTRCAST" 2730211 T RSTRCAST (NIL) -8 NIL NIL NIL) (-1103 2724464 2725337 2726257 "RSETGCD" 2728893 NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1102 2713035 2718772 2718869 "RSETCAT" 2722988 NIL RSETCAT (NIL T T T T) -9 NIL 2724085 NIL) (-1101 2710854 2711501 2712325 "RSETCAT-" 2712330 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1100 2703162 2704616 2706136 "RSDCMPK" 2709453 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1099 2701031 2701594 2701668 "RRCC" 2702754 NIL RRCC (NIL T T) -9 NIL 2703098 NIL) (-1098 2700352 2700556 2700835 "RRCC-" 2700840 NIL RRCC- (NIL T T T) -8 NIL NIL NIL) (-1097 2699735 2700048 2700149 "RPTAST" 2700273 T RPTAST (NIL) -8 NIL NIL NIL) (-1096 2672121 2682847 2682914 "RPOLCAT" 2693580 NIL RPOLCAT (NIL T T T) -9 NIL 2696740 NIL) (-1095 2663091 2665959 2669081 "RPOLCAT-" 2669086 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL NIL) (-1094 2653544 2661302 2661784 "ROUTINE" 2662631 T ROUTINE (NIL) -8 NIL NIL NIL) (-1093 2649593 2653170 2653310 "ROMAN" 2653426 T ROMAN (NIL) -8 NIL NIL NIL) (-1092 2647705 2648453 2648713 "ROIRC" 2649398 NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1091 2643423 2646194 2646224 "RNS" 2646528 T RNS (NIL) -9 NIL 2646802 NIL) (-1090 2641830 2642315 2642849 "RNS-" 2642924 NIL RNS- (NIL T) -8 NIL NIL NIL) (-1089 2640791 2641195 2641397 "RNGBIND" 2641681 NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1088 2640084 2640588 2640618 "RNG" 2640623 T RNG (NIL) -9 NIL 2640644 NIL) (-1087 2639379 2639857 2639900 "RMODULE" 2639905 NIL RMODULE (NIL T) -9 NIL 2639932 NIL) (-1086 2638203 2638309 2638645 "RMCAT2" 2639280 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1085 2634705 2637549 2637846 "RMATRIX" 2637965 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1084 2627204 2629792 2629907 "RMATCAT" 2633266 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2634248 NIL) (-1083 2626543 2626726 2627033 "RMATCAT-" 2627038 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL NIL) (-1082 2626116 2626330 2626373 "RLINSET" 2626435 NIL RLINSET (NIL T) -9 NIL 2626479 NIL) (-1081 2625677 2625758 2625886 "RINTERP" 2626035 NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1080 2624601 2625275 2625305 "RING" 2625361 T RING (NIL) -9 NIL 2625453 NIL) (-1079 2624381 2624437 2624534 "RING-" 2624539 NIL RING- (NIL T) -8 NIL NIL NIL) (-1078 2623192 2623459 2623717 "RIDIST" 2624145 T RIDIST (NIL) -7 NIL NIL NIL) (-1077 2613817 2622660 2622866 "RGCHAIN" 2623040 NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1076 2613075 2613559 2613600 "RGBCSPC" 2613658 NIL RGBCSPC (NIL T) -9 NIL 2613710 NIL) (-1075 2612141 2612600 2612641 "RGBCMDL" 2612873 NIL RGBCMDL (NIL T) -9 NIL 2612987 NIL) (-1074 2611781 2611850 2611953 "RFFACTOR" 2612072 NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1073 2611500 2611541 2611638 "RFFACT" 2611740 NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1072 2609551 2609981 2610363 "RFDIST" 2611140 T RFDIST (NIL) -7 NIL NIL NIL) (-1071 2606491 2607159 2607829 "RF" 2608915 NIL RF (NIL T) -7 NIL NIL NIL) (-1070 2605938 2606036 2606199 "RETSOL" 2606393 NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1069 2605556 2605654 2605697 "RETRACT" 2605830 NIL RETRACT (NIL T) -9 NIL 2605917 NIL) (-1068 2605399 2605430 2605517 "RETRACT-" 2605522 NIL RETRACT- (NIL T T) -8 NIL NIL NIL) (-1067 2604947 2605221 2605291 "RETAST" 2605351 T RETAST (NIL) -8 NIL NIL NIL) (-1066 2597297 2604600 2604727 "RESULT" 2604842 T RESULT (NIL) -8 NIL NIL NIL) (-1065 2595732 2596566 2596765 "RESRING" 2597200 NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1064 2595356 2595417 2595515 "RESLATC" 2595669 NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1063 2595055 2595096 2595203 "REPSQ" 2595315 NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1062 2594746 2594787 2594898 "REPDB" 2595014 NIL REPDB (NIL T) -7 NIL NIL NIL) (-1061 2588578 2590035 2591258 "REP2" 2593558 NIL REP2 (NIL T) -7 NIL NIL NIL) (-1060 2584881 2585636 2586444 "REP1" 2587805 NIL REP1 (NIL T) -7 NIL NIL NIL) (-1059 2582261 2582883 2583485 "REP" 2584301 T REP (NIL) -7 NIL NIL NIL) (-1058 2574269 2580402 2580858 "REGSET" 2581891 NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1057 2572978 2573417 2573667 "REF" 2574054 NIL REF (NIL T) -8 NIL NIL NIL) (-1056 2572343 2572458 2572625 "REDORDER" 2572862 NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1055 2567707 2571556 2571783 "RECLOS" 2572171 NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1054 2566741 2566940 2567155 "REALSOLV" 2567514 T REALSOLV (NIL) -7 NIL NIL NIL) (-1053 2563188 2564026 2564910 "REAL0Q" 2565906 NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1052 2558741 2559777 2560838 "REAL0" 2562169 NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1051 2558575 2558628 2558658 "REAL" 2558663 T REAL (NIL) -9 NIL 2558698 NIL) (-1050 2557986 2558292 2558386 "RDUCEAST" 2558503 T RDUCEAST (NIL) -8 NIL NIL NIL) (-1049 2557385 2557463 2557670 "RDIV" 2557908 NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1048 2556435 2556627 2556840 "RDIST" 2557207 NIL RDIST (NIL T) -7 NIL NIL NIL) (-1047 2555020 2555319 2555691 "RDETRS" 2556143 NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1046 2552814 2553286 2553824 "RDETR" 2554562 NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1045 2551433 2551717 2552114 "RDEEFS" 2552530 NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1044 2549936 2550248 2550673 "RDEEF" 2551121 NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1043 2543413 2546890 2546920 "RCFIELD" 2548215 T RCFIELD (NIL) -9 NIL 2548946 NIL) (-1042 2541369 2541981 2542677 "RCFIELD-" 2542752 NIL RCFIELD- (NIL T) -8 NIL NIL NIL) (-1041 2537421 2539442 2539485 "RCAGG" 2540569 NIL RCAGG (NIL T) -9 NIL 2541034 NIL) (-1040 2537031 2537143 2537306 "RCAGG-" 2537311 NIL RCAGG- (NIL T T) -8 NIL NIL NIL) (-1039 2536348 2536478 2536643 "RATRET" 2536915 NIL RATRET (NIL T) -7 NIL NIL NIL) (-1038 2535889 2535968 2536089 "RATFACT" 2536276 NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1037 2535167 2535317 2535469 "RANDSRC" 2535759 T RANDSRC (NIL) -7 NIL NIL NIL) (-1036 2534895 2534945 2535018 "RADUTIL" 2535116 T RADUTIL (NIL) -7 NIL NIL NIL) (-1035 2527019 2533726 2534037 "RADIX" 2534618 NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1034 2516613 2526861 2526991 "RADFF" 2526996 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1033 2516242 2516335 2516365 "RADCAT" 2516525 T RADCAT (NIL) -9 NIL NIL NIL) (-1032 2516012 2516072 2516172 "RADCAT-" 2516177 NIL RADCAT- (NIL T) -8 NIL NIL NIL) (-1031 2513923 2515782 2515874 "QUEUE" 2515955 NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1030 2513548 2513597 2513728 "QUATCT2" 2513874 NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1029 2505924 2509971 2510013 "QUATCAT" 2510804 NIL QUATCAT (NIL T) -9 NIL 2511570 NIL) (-1028 2501805 2503100 2504490 "QUATCAT-" 2504586 NIL QUATCAT- (NIL T T) -8 NIL NIL NIL) (-1027 2497644 2501738 2501786 "QUAT" 2501791 NIL QUAT (NIL T) -8 NIL NIL NIL) (-1026 2494900 2496692 2496735 "QUAGG" 2497116 NIL QUAGG (NIL T) -9 NIL 2497291 NIL) (-1025 2494448 2494722 2494792 "QQUTAST" 2494852 T QQUTAST (NIL) -8 NIL NIL NIL) (-1024 2493359 2493961 2494126 "QFORM" 2494329 NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1023 2492984 2493033 2493164 "QFCAT2" 2493310 NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1022 2482660 2488831 2488873 "QFCAT" 2489541 NIL QFCAT (NIL T) -9 NIL 2490542 NIL) (-1021 2477975 2479428 2481022 "QFCAT-" 2481118 NIL QFCAT- (NIL T T) -8 NIL NIL NIL) (-1020 2477406 2477540 2477672 "QEQUAT" 2477865 T QEQUAT (NIL) -8 NIL NIL NIL) (-1019 2470424 2471605 2472791 "QCMPACK" 2476339 NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1018 2469653 2469835 2470071 "QALGSET2" 2470242 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1017 2467103 2467639 2468069 "QALGSET" 2469308 NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1016 2465770 2466012 2466331 "PWFFINTB" 2466876 NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1015 2463915 2464113 2464469 "PUSHVAR" 2465584 NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1014 2459642 2460858 2460901 "PTRANFN" 2462812 NIL PTRANFN (NIL T) -9 NIL NIL NIL) (-1013 2457979 2458324 2458648 "PTPACK" 2459353 NIL PTPACK (NIL T) -7 NIL NIL NIL) (-1012 2457602 2457665 2457776 "PTFUNC2" 2457916 NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-1011 2451527 2456391 2456434 "PTCAT" 2456734 NIL PTCAT (NIL T) -9 NIL 2456887 NIL) (-1010 2451176 2451217 2451343 "PSQFR" 2451486 NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-1009 2449748 2450064 2450400 "PSEUDLIN" 2450874 NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-1008 2436268 2438843 2441169 "PSETPK" 2447508 NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-1007 2428976 2432004 2432102 "PSETCAT" 2435143 NIL PSETCAT (NIL T T T T) -9 NIL 2435957 NIL) (-1006 2426701 2427443 2428267 "PSETCAT-" 2428272 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL NIL) (-1005 2426014 2426209 2426239 "PSCURVE" 2426511 T PSCURVE (NIL) -9 NIL 2426678 NIL) (-1004 2421730 2423504 2423571 "PSCAT" 2424423 NIL PSCAT (NIL T T T) -9 NIL 2424663 NIL) (-1003 2420724 2421006 2421409 "PSCAT-" 2421414 NIL PSCAT- (NIL T T T T) -8 NIL NIL NIL) (-1002 2418923 2419783 2420048 "PRTITION" 2420481 T PRTITION (NIL) -8 NIL NIL NIL) (-1001 2418334 2418640 2418734 "PRTDAST" 2418851 T PRTDAST (NIL) -8 NIL NIL NIL) (-1000 2407178 2409600 2411790 "PRS" 2416196 NIL PRS (NIL T T) -7 NIL NIL NIL) (-999 2404798 2406500 2406540 "PRQAGG" 2406723 NIL PRQAGG (NIL T) -9 NIL 2406825 NIL) (-998 2403977 2404426 2404454 "PROPLOG" 2404593 T PROPLOG (NIL) -9 NIL 2404708 NIL) (-997 2403575 2403638 2403761 "PROPFUN2" 2403900 NIL PROPFUN2 (NIL T T) -8 NIL NIL NIL) (-996 2402872 2403011 2403183 "PROPFUN1" 2403436 NIL PROPFUN1 (NIL T) -8 NIL NIL NIL) (-995 2400851 2401619 2401916 "PROPFRML" 2402608 NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-994 2400296 2400427 2400555 "PROPERTY" 2400743 T PROPERTY (NIL) -8 NIL NIL NIL) (-993 2394184 2398462 2399282 "PRODUCT" 2399522 NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-992 2393974 2394012 2394071 "PRINT" 2394145 T PRINT (NIL) -7 NIL NIL NIL) (-991 2393290 2393431 2393583 "PRIMES" 2393854 NIL PRIMES (NIL T) -7 NIL NIL NIL) (-990 2391337 2391756 2392222 "PRIMELT" 2392869 NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-989 2391054 2391115 2391143 "PRIMCAT" 2391267 T PRIMCAT (NIL) -9 NIL NIL NIL) (-988 2390043 2390239 2390467 "PRIMARR2" 2390872 NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-987 2385765 2389981 2390026 "PRIMARR" 2390031 NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-986 2385402 2385464 2385575 "PREASSOC" 2385703 NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-985 2382360 2384860 2385094 "PR" 2385213 NIL PR (NIL T T) -8 NIL NIL NIL) (-984 2381811 2381968 2381996 "PPCURVE" 2382201 T PPCURVE (NIL) -9 NIL 2382337 NIL) (-983 2381358 2381606 2381689 "PORTNUM" 2381748 T PORTNUM (NIL) -8 NIL NIL NIL) (-982 2378695 2379116 2379708 "POLYROOT" 2380939 NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-981 2378072 2378136 2378370 "POLYLIFT" 2378631 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-980 2374293 2374796 2375425 "POLYCATQ" 2377617 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-979 2359941 2366040 2366105 "POLYCAT" 2369619 NIL POLYCAT (NIL T T T) -9 NIL 2371497 NIL) (-978 2353060 2355252 2357636 "POLYCAT-" 2357641 NIL POLYCAT- (NIL T T T T) -8 NIL NIL NIL) (-977 2352641 2352715 2352835 "POLY2UP" 2352986 NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-976 2352267 2352330 2352439 "POLY2" 2352578 NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-975 2345475 2351871 2352031 "POLY" 2352140 NIL POLY (NIL T) -8 NIL NIL NIL) (-974 2344136 2344399 2344675 "POLUTIL" 2345249 NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-973 2342455 2342768 2343099 "POLTOPOL" 2343858 NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-972 2337451 2342389 2342436 "POINT" 2342441 NIL POINT (NIL T) -8 NIL NIL NIL) (-971 2335584 2335995 2336370 "PNTHEORY" 2337096 T PNTHEORY (NIL) -7 NIL NIL NIL) (-970 2334030 2334339 2334738 "PMTOOLS" 2335282 NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-969 2333617 2333701 2333818 "PMSYM" 2333946 NIL PMSYM (NIL T) -7 NIL NIL NIL) (-968 2333119 2333194 2333369 "PMQFCAT" 2333542 NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-967 2332500 2332598 2332760 "PMPREDFS" 2333020 NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-966 2331843 2331965 2332121 "PMPRED" 2332377 NIL PMPRED (NIL T) -7 NIL NIL NIL) (-965 2330497 2330715 2331093 "PMPLCAT" 2331605 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-964 2330023 2330108 2330260 "PMLSAGG" 2330412 NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-963 2329490 2329572 2329754 "PMKERNEL" 2329941 NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-962 2329101 2329182 2329295 "PMINS" 2329409 NIL PMINS (NIL T) -7 NIL NIL NIL) (-961 2328537 2328612 2328821 "PMFS" 2329026 NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-960 2327753 2327883 2328088 "PMDOWN" 2328414 NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-959 2327002 2327136 2327299 "PMASSFS" 2327640 NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-958 2326145 2326327 2326508 "PMASS" 2326841 T PMASS (NIL) -7 NIL NIL NIL) (-957 2325794 2325868 2325962 "PLOTTOOL" 2326071 T PLOTTOOL (NIL) -7 NIL NIL NIL) (-956 2321446 2322640 2323562 "PLOT3D" 2324892 T PLOT3D (NIL) -8 NIL NIL NIL) (-955 2320334 2320535 2320770 "PLOT1" 2321250 NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-954 2314755 2316145 2317293 "PLOT" 2319206 T PLOT (NIL) -8 NIL NIL NIL) (-953 2289930 2294821 2299672 "PLEQN" 2310021 NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-952 2289617 2289670 2289773 "PINTERPA" 2289877 NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-951 2288923 2289057 2289237 "PINTERP" 2289482 NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-950 2287008 2288181 2288209 "PID" 2288391 T PID (NIL) -9 NIL 2288525 NIL) (-949 2286753 2286796 2286871 "PICOERCE" 2286965 NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-948 2285849 2286517 2286604 "PI" 2286644 T PI (NIL) -8 NIL NIL 2286711) (-947 2285157 2285308 2285484 "PGROEB" 2285705 NIL PGROEB (NIL T) -7 NIL NIL NIL) (-946 2280596 2281555 2282461 "PGE" 2284271 T PGE (NIL) -7 NIL NIL NIL) (-945 2278677 2278966 2279332 "PGCD" 2280313 NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-944 2278003 2278118 2278279 "PFRPAC" 2278561 NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-943 2274253 2276551 2276904 "PFR" 2277682 NIL PFR (NIL T) -8 NIL NIL NIL) (-942 2272606 2272886 2273211 "PFOTOOLS" 2274000 NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-941 2271121 2271378 2271729 "PFOQ" 2272363 NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-940 2269604 2269834 2270190 "PFO" 2270905 NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-939 2266682 2268195 2268223 "PFECAT" 2268808 T PFECAT (NIL) -9 NIL 2269192 NIL) (-938 2266109 2266281 2266495 "PFECAT-" 2266500 NIL PFECAT- (NIL T) -8 NIL NIL NIL) (-937 2264682 2264964 2265265 "PFBRU" 2265858 NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-936 2262512 2262900 2263332 "PFBR" 2264333 NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-935 2258437 2262401 2262470 "PF" 2262475 NIL PF (NIL NIL) -8 NIL NIL NIL) (-934 2253491 2254644 2255514 "PERMGRP" 2257600 NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-933 2251403 2252515 2252556 "PERMCAT" 2252956 NIL PERMCAT (NIL T) -9 NIL 2253254 NIL) (-932 2251050 2251097 2251221 "PERMAN" 2251356 NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-931 2246852 2248559 2249207 "PERM" 2250435 NIL PERM (NIL T) -8 NIL NIL NIL) (-930 2244093 2246517 2246639 "PENDTREE" 2246763 NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-929 2242974 2243237 2243278 "PDSPC" 2243811 NIL PDSPC (NIL T) -9 NIL 2244056 NIL) (-928 2242029 2242295 2242657 "PDSPC-" 2242662 NIL PDSPC- (NIL T T) -8 NIL NIL NIL) (-927 2240743 2241679 2241720 "PDRING" 2241725 NIL PDRING (NIL T) -9 NIL 2241753 NIL) (-926 2239486 2240248 2240302 "PDMOD" 2240307 NIL PDMOD (NIL T T) -9 NIL 2240411 NIL) (-925 2236653 2237479 2238147 "PDEPROB" 2238838 T PDEPROB (NIL) -8 NIL NIL NIL) (-924 2234162 2234702 2235257 "PDEPACK" 2236118 T PDEPACK (NIL) -7 NIL NIL NIL) (-923 2233050 2233264 2233515 "PDECOMP" 2233961 NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-922 2230567 2231458 2231486 "PDECAT" 2232273 T PDECAT (NIL) -9 NIL 2232986 NIL) (-921 2230184 2230251 2230305 "PDDOM" 2230470 NIL PDDOM (NIL T T) -9 NIL 2230550 NIL) (-920 2229997 2230033 2230140 "PDDOM-" 2230145 NIL PDDOM- (NIL T T T) -8 NIL NIL NIL) (-919 2229742 2229781 2229871 "PCOMP" 2229958 NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-918 2227782 2228543 2228840 "PBWLB" 2229471 NIL PBWLB (NIL T) -8 NIL NIL NIL) (-917 2227408 2227471 2227580 "PATTERN2" 2227719 NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-916 2225117 2225553 2226010 "PATTERN1" 2226997 NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-915 2217296 2219190 2220528 "PATTERN" 2223800 NIL PATTERN (NIL T) -8 NIL NIL NIL) (-914 2216854 2216927 2217059 "PATRES2" 2217223 NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-913 2214120 2214803 2215284 "PATRES" 2216419 NIL PATRES (NIL T T) -8 NIL NIL NIL) (-912 2211973 2212408 2212815 "PATMATCH" 2213787 NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-911 2211427 2211678 2211719 "PATMAB" 2211826 NIL PATMAB (NIL T) -9 NIL 2211909 NIL) (-910 2209873 2210281 2210539 "PATLRES" 2211232 NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-909 2209411 2209542 2209583 "PATAB" 2209588 NIL PATAB (NIL T) -9 NIL 2209760 NIL) (-908 2207551 2207988 2208411 "PARTPERM" 2209008 T PARTPERM (NIL) -7 NIL NIL NIL) (-907 2207160 2207235 2207337 "PARSURF" 2207482 NIL PARSURF (NIL T) -8 NIL NIL NIL) (-906 2206786 2206849 2206958 "PARSU2" 2207097 NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-905 2206544 2206590 2206657 "PARSER" 2206739 T PARSER (NIL) -7 NIL NIL NIL) (-904 2206153 2206228 2206330 "PARSCURV" 2206475 NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-903 2205779 2205842 2205951 "PARSC2" 2206090 NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-902 2205406 2205476 2205573 "PARPCURV" 2205715 NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-901 2205032 2205095 2205204 "PARPC2" 2205343 NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-900 2204021 2204405 2204587 "PARAMAST" 2204870 T PARAMAST (NIL) -8 NIL NIL NIL) (-899 2203529 2203627 2203746 "PAN2EXPR" 2203922 T PAN2EXPR (NIL) -7 NIL NIL NIL) (-898 2202222 2202650 2202878 "PALETTE" 2203321 T PALETTE (NIL) -8 NIL NIL NIL) (-897 2200567 2201227 2201587 "PAIR" 2201908 NIL PAIR (NIL T T) -8 NIL NIL NIL) (-896 2193479 2199824 2200019 "PADICRC" 2200421 NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-895 2185715 2192823 2193008 "PADICRAT" 2193326 NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-894 2182505 2184375 2184415 "PADICCT" 2184996 NIL PADICCT (NIL NIL) -9 NIL 2185278 NIL) (-893 2180514 2182442 2182487 "PADIC" 2182492 NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-892 2179459 2179671 2179939 "PADEPAC" 2180301 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-891 2178659 2178804 2179010 "PADE" 2179321 NIL PADE (NIL T T T) -7 NIL NIL NIL) (-890 2176892 2177867 2178147 "OWP" 2178463 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-889 2176337 2176598 2176695 "OVERSET" 2176815 T OVERSET (NIL) -8 NIL NIL NIL) (-888 2175257 2175942 2176114 "OVAR" 2176205 NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-887 2163493 2166366 2168566 "OUTFORM" 2173077 T OUTFORM (NIL) -8 NIL NIL NIL) (-886 2162775 2163090 2163217 "OUTBFILE" 2163386 T OUTBFILE (NIL) -8 NIL NIL NIL) (-885 2162052 2162247 2162275 "OUTBCON" 2162593 T OUTBCON (NIL) -9 NIL 2162759 NIL) (-884 2161635 2161765 2161922 "OUTBCON-" 2161927 NIL OUTBCON- (NIL T) -8 NIL NIL NIL) (-883 2160875 2161020 2161181 "OUT" 2161494 T OUT (NIL) -7 NIL NIL NIL) (-882 2160171 2160604 2160693 "OSI" 2160806 T OSI (NIL) -8 NIL NIL NIL) (-881 2159590 2160012 2160040 "OSGROUP" 2160045 T OSGROUP (NIL) -9 NIL 2160067 NIL) (-880 2158301 2158562 2158847 "ORTHPOL" 2159337 NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-879 2155552 2158136 2158257 "OREUP" 2158262 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-878 2152655 2155243 2155370 "ORESUP" 2155494 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-877 2150155 2150683 2151244 "OREPCTO" 2152144 NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-876 2143533 2146028 2146069 "OREPCAT" 2148417 NIL OREPCAT (NIL T) -9 NIL 2149521 NIL) (-875 2140506 2141462 2142520 "OREPCAT-" 2142525 NIL OREPCAT- (NIL T T) -8 NIL NIL NIL) (-874 2139699 2139976 2140004 "ORDTYPE" 2140313 T ORDTYPE (NIL) -9 NIL 2140476 NIL) (-873 2139000 2139216 2139471 "ORDTYPE-" 2139476 NIL ORDTYPE- (NIL T) -8 NIL NIL NIL) (-872 2138356 2138739 2138897 "ORDSTRCT" 2138902 NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-871 2137854 2138224 2138252 "ORDSET" 2138257 T ORDSET (NIL) -9 NIL 2138279 NIL) (-870 2136212 2137183 2137211 "ORDRING" 2137413 T ORDRING (NIL) -9 NIL 2137538 NIL) (-869 2135833 2135951 2136095 "ORDRING-" 2136100 NIL ORDRING- (NIL T) -8 NIL NIL NIL) (-868 2135084 2135649 2135677 "ORDMON" 2135682 T ORDMON (NIL) -9 NIL 2135703 NIL) (-867 2134228 2134393 2134588 "ORDFUNS" 2134933 NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-866 2133443 2133958 2133986 "ORDFIN" 2134051 T ORDFIN (NIL) -9 NIL 2134125 NIL) (-865 2132697 2132836 2133022 "ORDCOMP2" 2133303 NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-864 2129044 2131283 2131692 "ORDCOMP" 2132321 NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-863 2125565 2126535 2127349 "OPTPROB" 2128250 T OPTPROB (NIL) -8 NIL NIL NIL) (-862 2122307 2123006 2123710 "OPTPACK" 2124881 T OPTPACK (NIL) -7 NIL NIL NIL) (-861 2119920 2120746 2120774 "OPTCAT" 2121593 T OPTCAT (NIL) -9 NIL 2122243 NIL) (-860 2119238 2119597 2119702 "OPSIG" 2119835 T OPSIG (NIL) -8 NIL NIL NIL) (-859 2119000 2119045 2119111 "OPQUERY" 2119192 T OPQUERY (NIL) -7 NIL NIL NIL) (-858 2118306 2118586 2118627 "OPERCAT" 2118839 NIL OPERCAT (NIL T) -9 NIL 2118936 NIL) (-857 2118049 2118117 2118234 "OPERCAT-" 2118239 NIL OPERCAT- (NIL T T) -8 NIL NIL NIL) (-856 2114958 2116360 2116864 "OP" 2117578 NIL OP (NIL T) -8 NIL NIL NIL) (-855 2114251 2114378 2114552 "ONECOMP2" 2114830 NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-854 2110864 2113048 2113417 "ONECOMP" 2113915 NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-853 2110265 2110389 2110519 "OMSERVER" 2110754 T OMSERVER (NIL) -7 NIL NIL NIL) (-852 2106779 2109705 2109745 "OMSAGG" 2109806 NIL OMSAGG (NIL T) -9 NIL 2109870 NIL) (-851 2105354 2105665 2105947 "OMPKG" 2106517 T OMPKG (NIL) -7 NIL NIL NIL) (-850 2103701 2104903 2105072 "OMLO" 2105235 NIL OMLO (NIL T T) -8 NIL NIL NIL) (-849 2102637 2102808 2103028 "OMEXPR" 2103527 NIL OMEXPR (NIL T) -7 NIL NIL NIL) (-848 2101722 2102058 2102218 "OMERRK" 2102497 T OMERRK (NIL) -8 NIL NIL NIL) (-847 2100959 2101268 2101404 "OMERR" 2101606 T OMERR (NIL) -8 NIL NIL NIL) (-846 2100350 2100636 2100744 "OMENC" 2100871 T OMENC (NIL) -8 NIL NIL NIL) (-845 2093987 2095430 2096601 "OMDEV" 2099199 T OMDEV (NIL) -8 NIL NIL NIL) (-844 2093020 2093227 2093421 "OMCONN" 2093813 T OMCONN (NIL) -8 NIL NIL NIL) (-843 2092426 2092553 2092581 "OM" 2092880 T OM (NIL) -9 NIL NIL NIL) (-842 2090704 2091896 2091924 "OINTDOM" 2091929 T OINTDOM (NIL) -9 NIL 2091950 NIL) (-841 2087778 2089392 2089729 "OFMONOID" 2090399 NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-840 2087012 2087715 2087760 "ODVAR" 2087765 NIL ODVAR (NIL T) -8 NIL NIL NIL) (-839 2084149 2086757 2086912 "ODR" 2086917 NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-838 2075554 2083925 2084051 "ODPOL" 2084056 NIL ODPOL (NIL T) -8 NIL NIL NIL) (-837 2068897 2075426 2075531 "ODP" 2075536 NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-836 2067639 2067878 2068153 "ODETOOLS" 2068671 NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-835 2064582 2065264 2065980 "ODESYS" 2066972 NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-834 2059412 2060372 2061397 "ODERTRIC" 2063657 NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-833 2058832 2058920 2059114 "ODERED" 2059324 NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-832 2055684 2056268 2056945 "ODERAT" 2058255 NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-831 2052601 2053108 2053705 "ODEPRRIC" 2055213 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-830 2050496 2051140 2051626 "ODEPROB" 2052135 T ODEPROB (NIL) -8 NIL NIL NIL) (-829 2046962 2047501 2048148 "ODEPRIM" 2049975 NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-828 2046205 2046313 2046573 "ODEPAL" 2046854 NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-827 2042307 2043158 2044022 "ODEPACK" 2045361 T ODEPACK (NIL) -7 NIL NIL NIL) (-826 2041350 2041475 2041697 "ODEINT" 2042196 NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-825 2035415 2036876 2038323 "ODEIFTBL" 2039923 T ODEIFTBL (NIL) -8 NIL NIL NIL) (-824 2030765 2031599 2032551 "ODEEF" 2034574 NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-823 2030108 2030203 2030426 "ODECONST" 2030670 NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-822 2028171 2028880 2028908 "ODECAT" 2029513 T ODECAT (NIL) -9 NIL 2030044 NIL) (-821 2027803 2027852 2027979 "OCTCT2" 2028122 NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-820 2024296 2027508 2027630 "OCT" 2027713 NIL OCT (NIL T) -8 NIL NIL NIL) (-819 2023519 2024089 2024117 "OCAMON" 2024122 T OCAMON (NIL) -9 NIL 2024143 NIL) (-818 2017788 2020562 2020602 "OC" 2021699 NIL OC (NIL T) -9 NIL 2022557 NIL) (-817 2014823 2015763 2016753 "OC-" 2016847 NIL OC- (NIL T T) -8 NIL NIL NIL) (-816 2014243 2014668 2014696 "OASGP" 2014701 T OASGP (NIL) -9 NIL 2014721 NIL) (-815 2013369 2013966 2013994 "OAMONS" 2014034 T OAMONS (NIL) -9 NIL 2014077 NIL) (-814 2012660 2013189 2013217 "OAMON" 2013222 T OAMON (NIL) -9 NIL 2013242 NIL) (-813 2011771 2012409 2012437 "OAGROUP" 2012442 T OAGROUP (NIL) -9 NIL 2012462 NIL) (-812 2011453 2011509 2011598 "NUMTUBE" 2011715 NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-811 2004972 2006544 2008080 "NUMQUAD" 2009937 T NUMQUAD (NIL) -7 NIL NIL NIL) (-810 2000652 2001686 2002721 "NUMODE" 2003957 T NUMODE (NIL) -7 NIL NIL NIL) (-809 1997933 1998873 1998901 "NUMINT" 1999824 T NUMINT (NIL) -9 NIL 2000588 NIL) (-808 1996845 1997078 1997296 "NUMFMT" 1997735 T NUMFMT (NIL) -7 NIL NIL NIL) (-807 1983028 1986149 1988681 "NUMERIC" 1994352 NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-806 1976739 1982476 1982571 "NTSCAT" 1982576 NIL NTSCAT (NIL T T T T) -9 NIL 1982615 NIL) (-805 1975919 1976098 1976291 "NTPOLFN" 1976578 NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-804 1975545 1975608 1975717 "NSUP2" 1975856 NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-803 1962306 1972370 1973182 "NSUP" 1974766 NIL NSUP (NIL T) -8 NIL NIL NIL) (-802 1951142 1962080 1962213 "NSMP" 1962218 NIL NSMP (NIL T T) -8 NIL NIL NIL) (-801 1949550 1949875 1950232 "NREP" 1950830 NIL NREP (NIL T) -7 NIL NIL NIL) (-800 1948129 1948393 1948751 "NPCOEF" 1949293 NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-799 1947177 1947310 1947526 "NORMRETR" 1948010 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-798 1945188 1945508 1945917 "NORMPK" 1946885 NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-797 1944867 1944901 1945025 "NORMMA" 1945154 NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-796 1944650 1944685 1944754 "NONE1" 1944831 NIL NONE1 (NIL T) -7 NIL NIL NIL) (-795 1944414 1944607 1944636 "NONE" 1944641 T NONE (NIL) -8 NIL NIL NIL) (-794 1943905 1943973 1944152 "NODE1" 1944346 NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-793 1941997 1943028 1943283 "NNI" 1943630 T NNI (NIL) -8 NIL NIL 1943865) (-792 1940393 1940730 1941094 "NLINSOL" 1941665 NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-791 1936574 1937629 1938528 "NIPROB" 1939514 T NIPROB (NIL) -8 NIL NIL NIL) (-790 1935313 1935565 1935867 "NFINTBAS" 1936336 NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-789 1934397 1934963 1935004 "NETCLT" 1935176 NIL NETCLT (NIL T) -9 NIL 1935258 NIL) (-788 1933069 1933336 1933617 "NCODIV" 1934165 NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-787 1932825 1932868 1932943 "NCNTFRAC" 1933026 NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-786 1930981 1931369 1931789 "NCEP" 1932450 NIL NCEP (NIL T) -7 NIL NIL NIL) (-785 1929644 1930591 1930619 "NASRING" 1930729 T NASRING (NIL) -9 NIL 1930809 NIL) (-784 1929427 1929483 1929577 "NASRING-" 1929582 NIL NASRING- (NIL T) -8 NIL NIL NIL) (-783 1928394 1929045 1929073 "NARNG" 1929190 T NARNG (NIL) -9 NIL 1929281 NIL) (-782 1928068 1928153 1928287 "NARNG-" 1928292 NIL NARNG- (NIL T) -8 NIL NIL NIL) (-781 1926905 1927154 1927389 "NAGSP" 1927853 T NAGSP (NIL) -7 NIL NIL NIL) (-780 1917949 1919861 1921534 "NAGS" 1925252 T NAGS (NIL) -7 NIL NIL NIL) (-779 1916473 1916805 1917136 "NAGF07" 1917638 T NAGF07 (NIL) -7 NIL NIL NIL) (-778 1910945 1912302 1913609 "NAGF04" 1915186 T NAGF04 (NIL) -7 NIL NIL NIL) (-777 1903817 1905527 1907160 "NAGF02" 1909332 T NAGF02 (NIL) -7 NIL NIL NIL) (-776 1898981 1900141 1901258 "NAGF01" 1902720 T NAGF01 (NIL) -7 NIL NIL NIL) (-775 1892561 1894175 1895760 "NAGE04" 1897416 T NAGE04 (NIL) -7 NIL NIL NIL) (-774 1883622 1885851 1887981 "NAGE02" 1890451 T NAGE02 (NIL) -7 NIL NIL NIL) (-773 1879515 1880522 1881486 "NAGE01" 1882678 T NAGE01 (NIL) -7 NIL NIL NIL) (-772 1877292 1877844 1878402 "NAGD03" 1878977 T NAGD03 (NIL) -7 NIL NIL NIL) (-771 1868988 1870970 1872924 "NAGD02" 1875358 T NAGD02 (NIL) -7 NIL NIL NIL) (-770 1862727 1864224 1865664 "NAGD01" 1867568 T NAGD01 (NIL) -7 NIL NIL NIL) (-769 1858864 1859758 1860595 "NAGC06" 1861910 T NAGC06 (NIL) -7 NIL NIL NIL) (-768 1857311 1857661 1858017 "NAGC05" 1858528 T NAGC05 (NIL) -7 NIL NIL NIL) (-767 1856675 1856806 1856950 "NAGC02" 1857187 T NAGC02 (NIL) -7 NIL NIL NIL) (-766 1855476 1856203 1856243 "NAALG" 1856322 NIL NAALG (NIL T) -9 NIL 1856383 NIL) (-765 1855305 1855340 1855430 "NAALG-" 1855435 NIL NAALG- (NIL T T) -8 NIL NIL NIL) (-764 1849177 1850363 1851550 "MULTSQFR" 1854201 NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-763 1848484 1848571 1848755 "MULTFACT" 1849089 NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-762 1840629 1845067 1845120 "MTSCAT" 1846190 NIL MTSCAT (NIL T T) -9 NIL 1846706 NIL) (-761 1840335 1840395 1840487 "MTHING" 1840569 NIL MTHING (NIL T) -7 NIL NIL NIL) (-760 1840121 1840160 1840220 "MSYSCMD" 1840295 T MSYSCMD (NIL) -7 NIL NIL NIL) (-759 1836866 1839682 1839723 "MSETAGG" 1839728 NIL MSETAGG (NIL T) -9 NIL 1839762 NIL) (-758 1832580 1835621 1835941 "MSET" 1836579 NIL MSET (NIL T) -8 NIL NIL NIL) (-757 1828172 1829959 1830704 "MRING" 1831880 NIL MRING (NIL T T) -8 NIL NIL NIL) (-756 1827732 1827805 1827936 "MRF2" 1828099 NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-755 1827344 1827385 1827529 "MRATFAC" 1827691 NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-754 1824914 1825251 1825682 "MPRFF" 1827049 NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-753 1818241 1824768 1824865 "MPOLY" 1824870 NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-752 1817725 1817766 1817974 "MPCPF" 1818200 NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-751 1817233 1817282 1817466 "MPC3" 1817676 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-750 1816416 1816509 1816730 "MPC2" 1817148 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-749 1814693 1815054 1815444 "MONOTOOL" 1816076 NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-748 1813838 1814221 1814249 "MONOID" 1814468 T MONOID (NIL) -9 NIL 1814615 NIL) (-747 1813354 1813503 1813684 "MONOID-" 1813689 NIL MONOID- (NIL T) -8 NIL NIL NIL) (-746 1802308 1809174 1809233 "MONOGEN" 1809907 NIL MONOGEN (NIL T T) -9 NIL 1810363 NIL) (-745 1799358 1800261 1801261 "MONOGEN-" 1801380 NIL MONOGEN- (NIL T T T) -8 NIL NIL NIL) (-744 1798075 1798623 1798651 "MONADWU" 1799043 T MONADWU (NIL) -9 NIL 1799281 NIL) (-743 1797405 1797606 1797854 "MONADWU-" 1797859 NIL MONADWU- (NIL T) -8 NIL NIL NIL) (-742 1796690 1796994 1797022 "MONAD" 1797229 T MONAD (NIL) -9 NIL 1797341 NIL) (-741 1796357 1796453 1796585 "MONAD-" 1796590 NIL MONAD- (NIL T) -8 NIL NIL NIL) (-740 1794496 1795270 1795549 "MOEBIUS" 1796110 NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-739 1793664 1794164 1794204 "MODULE" 1794209 NIL MODULE (NIL T) -9 NIL 1794248 NIL) (-738 1793202 1793328 1793518 "MODULE-" 1793523 NIL MODULE- (NIL T T) -8 NIL NIL NIL) (-737 1790732 1791566 1791893 "MODRING" 1793026 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-736 1787454 1788837 1789358 "MODOP" 1790261 NIL MODOP (NIL T T) -8 NIL NIL NIL) (-735 1785940 1786521 1786798 "MODMONOM" 1787317 NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-734 1774680 1784231 1784645 "MODMON" 1785577 NIL MODMON (NIL T T) -8 NIL NIL NIL) (-733 1771506 1773524 1773800 "MODFIELD" 1774555 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-732 1770417 1770787 1770977 "MMLFORM" 1771336 T MMLFORM (NIL) -8 NIL NIL NIL) (-731 1769937 1769986 1770165 "MMAP" 1770368 NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-730 1767830 1768769 1768810 "MLO" 1769233 NIL MLO (NIL T) -9 NIL 1769475 NIL) (-729 1765178 1765712 1766314 "MLIFT" 1767311 NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-728 1764557 1764653 1764807 "MKUCFUNC" 1765089 NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-727 1764150 1764226 1764349 "MKRECORD" 1764480 NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-726 1763173 1763359 1763587 "MKFUNC" 1763961 NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-725 1762549 1762665 1762821 "MKFLCFN" 1763056 NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-724 1761814 1761928 1762113 "MKBCFUNC" 1762442 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-723 1757797 1761368 1761504 "MINT" 1761698 T MINT (NIL) -8 NIL NIL NIL) (-722 1756579 1756852 1757129 "MHROWRED" 1757552 NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-721 1751323 1755114 1755519 "MFLOAT" 1756194 T MFLOAT (NIL) -8 NIL NIL NIL) (-720 1750668 1750756 1750927 "MFINFACT" 1751235 NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-719 1746947 1747831 1748715 "MESH" 1749804 T MESH (NIL) -7 NIL NIL NIL) (-718 1745301 1745649 1746002 "MDDFACT" 1746634 NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-717 1741837 1744432 1744473 "MDAGG" 1744728 NIL MDAGG (NIL T) -9 NIL 1744871 NIL) (-716 1729539 1741130 1741337 "MCMPLX" 1741650 T MCMPLX (NIL) -8 NIL NIL NIL) (-715 1728658 1728822 1729023 "MCDEN" 1729388 NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-714 1726506 1726818 1727198 "MCALCFN" 1728388 NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-713 1725383 1725671 1725904 "MAYBE" 1726312 NIL MAYBE (NIL T) -8 NIL NIL NIL) (-712 1722941 1723518 1724080 "MATSTOR" 1724854 NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-711 1718363 1722313 1722561 "MATRIX" 1722726 NIL MATRIX (NIL T) -8 NIL NIL NIL) (-710 1714063 1714836 1715572 "MATLIN" 1717720 NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-709 1712639 1712810 1713143 "MATCAT2" 1713898 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-708 1701985 1705696 1705773 "MATCAT" 1710805 NIL MATCAT (NIL T T T) -9 NIL 1712277 NIL) (-707 1697938 1699248 1700661 "MATCAT-" 1700666 NIL MATCAT- (NIL T T T T) -8 NIL NIL NIL) (-706 1696014 1696374 1696758 "MAPPKG3" 1697613 NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-705 1694971 1695168 1695390 "MAPPKG2" 1695838 NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-704 1693428 1693754 1694081 "MAPPKG1" 1694677 NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-703 1692429 1692834 1693011 "MAPPAST" 1693271 T MAPPAST (NIL) -8 NIL NIL NIL) (-702 1692034 1692098 1692221 "MAPHACK3" 1692365 NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-701 1691614 1691687 1691801 "MAPHACK2" 1691966 NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-700 1691040 1691155 1691297 "MAPHACK1" 1691505 NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-699 1688963 1689740 1690044 "MAGMA" 1690768 NIL MAGMA (NIL T) -8 NIL NIL NIL) (-698 1688382 1688687 1688778 "MACROAST" 1688892 T MACROAST (NIL) -8 NIL NIL NIL) (-697 1684625 1686621 1687082 "M3D" 1687954 NIL M3D (NIL T) -8 NIL NIL NIL) (-696 1678105 1682936 1682977 "LZSTAGG" 1683759 NIL LZSTAGG (NIL T) -9 NIL 1684054 NIL) (-695 1673787 1675236 1676693 "LZSTAGG-" 1676698 NIL LZSTAGG- (NIL T T) -8 NIL NIL NIL) (-694 1670700 1671678 1672165 "LWORD" 1673332 NIL LWORD (NIL T) -8 NIL NIL NIL) (-693 1670222 1670504 1670579 "LSTAST" 1670645 T LSTAST (NIL) -8 NIL NIL NIL) (-692 1662150 1669993 1670127 "LSQM" 1670132 NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-691 1661368 1661513 1661741 "LSPP" 1662005 NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-690 1658105 1658821 1659551 "LSMP1" 1660670 NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-689 1655887 1656218 1656674 "LSMP" 1657794 NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-688 1649023 1654977 1655018 "LSAGG" 1655080 NIL LSAGG (NIL T) -9 NIL 1655158 NIL) (-687 1645532 1646642 1647855 "LSAGG-" 1647860 NIL LSAGG- (NIL T T) -8 NIL NIL NIL) (-686 1642827 1644676 1644925 "LPOLY" 1645327 NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-685 1642403 1642494 1642617 "LPEFRAC" 1642736 NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-684 1642086 1642165 1642193 "LOGIC" 1642304 T LOGIC (NIL) -9 NIL 1642386 NIL) (-683 1641942 1641971 1642042 "LOGIC-" 1642047 NIL LOGIC- (NIL T) -8 NIL NIL NIL) (-682 1641117 1641275 1641468 "LODOOPS" 1641798 NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-681 1639641 1639890 1640243 "LODOF" 1640864 NIL LODOF (NIL T T) -7 NIL NIL NIL) (-680 1635517 1638276 1638317 "LODOCAT" 1638755 NIL LODOCAT (NIL T) -9 NIL 1638966 NIL) (-679 1635232 1635308 1635435 "LODOCAT-" 1635440 NIL LODOCAT- (NIL T T) -8 NIL NIL NIL) (-678 1632218 1635073 1635191 "LODO2" 1635196 NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-677 1629325 1632155 1632200 "LODO1" 1632205 NIL LODO1 (NIL T) -8 NIL NIL NIL) (-676 1626420 1629241 1629307 "LODO" 1629312 NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-675 1625289 1625466 1625771 "LODEEF" 1626243 NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-674 1623466 1624383 1624636 "LO" 1625121 NIL LO (NIL T T T) -8 NIL NIL NIL) (-673 1618438 1621632 1621673 "LNAGG" 1622535 NIL LNAGG (NIL T) -9 NIL 1622970 NIL) (-672 1617531 1617799 1618141 "LNAGG-" 1618146 NIL LNAGG- (NIL T T) -8 NIL NIL NIL) (-671 1613511 1614456 1615095 "LMOPS" 1616946 NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-670 1612810 1613288 1613329 "LMODULE" 1613334 NIL LMODULE (NIL T) -9 NIL 1613360 NIL) (-669 1609765 1612455 1612578 "LMDICT" 1612720 NIL LMDICT (NIL T) -8 NIL NIL NIL) (-668 1609341 1609555 1609596 "LLINSET" 1609657 NIL LLINSET (NIL T) -9 NIL 1609701 NIL) (-667 1608986 1609249 1609309 "LITERAL" 1609314 NIL LITERAL (NIL T) -8 NIL NIL NIL) (-666 1608505 1608585 1608724 "LIST3" 1608906 NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-665 1606603 1606951 1607350 "LIST2MAP" 1608152 NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-664 1605592 1605788 1606016 "LIST2" 1606421 NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-663 1598046 1604526 1604830 "LIST" 1605321 NIL LIST (NIL T) -8 NIL NIL NIL) (-662 1597629 1597865 1597906 "LINSET" 1597911 NIL LINSET (NIL T) -9 NIL 1597945 NIL) (-661 1596443 1597137 1597304 "LINFORM" 1597514 NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-660 1594742 1595470 1595511 "LINEXP" 1596001 NIL LINEXP (NIL T) -9 NIL 1596274 NIL) (-659 1593318 1594222 1594403 "LINELT" 1594613 NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-658 1591875 1592155 1592466 "LINDEP" 1593070 NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-657 1591011 1591607 1591717 "LINBASIS" 1591805 NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-656 1587748 1588497 1589274 "LIMITRF" 1590266 NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-655 1586033 1586347 1586756 "LIMITPS" 1587443 NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-654 1584861 1585436 1585476 "LIECAT" 1585616 NIL LIECAT (NIL T) -9 NIL 1585767 NIL) (-653 1584696 1584729 1584817 "LIECAT-" 1584822 NIL LIECAT- (NIL T T) -8 NIL NIL NIL) (-652 1578716 1584207 1584435 "LIE" 1584517 NIL LIE (NIL T T) -8 NIL NIL NIL) (-651 1570903 1578256 1578412 "LIB" 1578580 T LIB (NIL) -8 NIL NIL NIL) (-650 1566472 1567421 1568356 "LGROBP" 1570020 NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-649 1565096 1566004 1566032 "LFCAT" 1566239 T LFCAT (NIL) -9 NIL 1566378 NIL) (-648 1563034 1563368 1563718 "LF" 1564817 NIL LF (NIL T T) -7 NIL NIL NIL) (-647 1559894 1560566 1561254 "LEXTRIPK" 1562398 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-646 1556482 1557464 1557967 "LEXP" 1559474 NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-645 1555898 1556203 1556295 "LETAST" 1556410 T LETAST (NIL) -8 NIL NIL NIL) (-644 1554284 1554609 1555010 "LEADCDET" 1555580 NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-643 1553462 1553548 1553777 "LAZM3PK" 1554205 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-642 1547973 1551539 1552077 "LAUPOL" 1552974 NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-641 1547546 1547596 1547757 "LAPLACE" 1547923 NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-640 1546394 1547110 1547151 "LALG" 1547213 NIL LALG (NIL T) -9 NIL 1547272 NIL) (-639 1546090 1546167 1546303 "LALG-" 1546308 NIL LALG- (NIL T T) -8 NIL NIL NIL) (-638 1543827 1545191 1545442 "LA" 1545923 NIL LA (NIL T T T) -8 NIL NIL NIL) (-637 1543656 1543686 1543727 "KVTFROM" 1543789 NIL KVTFROM (NIL T) -9 NIL NIL NIL) (-636 1542413 1543023 1543208 "KTVLOGIC" 1543491 T KTVLOGIC (NIL) -8 NIL NIL NIL) (-635 1542242 1542272 1542313 "KRCFROM" 1542375 NIL KRCFROM (NIL T) -9 NIL NIL NIL) (-634 1541134 1541333 1541632 "KOVACIC" 1542042 NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-633 1540963 1540993 1541034 "KONVERT" 1541096 NIL KONVERT (NIL T) -9 NIL NIL NIL) (-632 1540792 1540822 1540863 "KOERCE" 1540925 NIL KOERCE (NIL T) -9 NIL NIL NIL) (-631 1540276 1540369 1540501 "KERNEL2" 1540706 NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-630 1537963 1538869 1539246 "KERNEL" 1539932 NIL KERNEL (NIL T) -8 NIL NIL NIL) (-629 1531434 1536440 1536494 "KDAGG" 1536871 NIL KDAGG (NIL T T) -9 NIL 1537077 NIL) (-628 1530945 1531087 1531292 "KDAGG-" 1531297 NIL KDAGG- (NIL T T T) -8 NIL NIL NIL) (-627 1523645 1530606 1530761 "KAFILE" 1530823 NIL KAFILE (NIL T) -8 NIL NIL NIL) (-626 1523249 1523534 1523597 "JVMOP" 1523602 T JVMOP (NIL) -8 NIL NIL NIL) (-625 1521985 1522489 1522738 "JVMMDACC" 1523020 T JVMMDACC (NIL) -8 NIL NIL NIL) (-624 1520921 1521375 1521580 "JVMFDACC" 1521800 T JVMFDACC (NIL) -8 NIL NIL NIL) (-623 1519502 1519997 1520297 "JVMCSTTG" 1520641 T JVMCSTTG (NIL) -8 NIL NIL NIL) (-622 1518638 1519042 1519203 "JVMCFACC" 1519361 T JVMCFACC (NIL) -8 NIL NIL NIL) (-621 1518316 1518555 1518604 "JVMBCODE" 1518609 T JVMBCODE (NIL) -8 NIL NIL NIL) (-620 1512336 1517827 1518055 "JORDAN" 1518137 NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-619 1511649 1511985 1512106 "JOINAST" 1512235 T JOINAST (NIL) -8 NIL NIL NIL) (-618 1507684 1509826 1509880 "IXAGG" 1510809 NIL IXAGG (NIL T T) -9 NIL 1511268 NIL) (-617 1506537 1506909 1507328 "IXAGG-" 1507333 NIL IXAGG- (NIL T T T) -8 NIL NIL NIL) (-616 1501626 1506459 1506518 "IVECTOR" 1506523 NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-615 1500350 1500629 1500895 "ITUPLE" 1501393 NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-614 1498822 1499029 1499324 "ITRIGMNP" 1500172 NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-613 1497549 1497771 1498054 "ITFUN3" 1498598 NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-612 1497175 1497238 1497347 "ITFUN2" 1497486 NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-611 1496280 1496655 1496829 "ITFORM" 1497021 T ITFORM (NIL) -8 NIL NIL NIL) (-610 1494049 1495300 1495578 "ITAYLOR" 1496035 NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-609 1482446 1488186 1489349 "ISUPS" 1492919 NIL ISUPS (NIL T) -8 NIL NIL NIL) (-608 1481538 1481690 1481926 "ISUMP" 1482293 NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-607 1476388 1481483 1481524 "ISTRING" 1481529 NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-606 1475804 1476109 1476201 "ISAST" 1476316 T ISAST (NIL) -8 NIL NIL NIL) (-605 1475001 1475095 1475311 "IRURPK" 1475718 NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-604 1473913 1474138 1474378 "IRSN" 1474781 T IRSN (NIL) -7 NIL NIL NIL) (-603 1471958 1472339 1472768 "IRRF2F" 1473551 NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-602 1471699 1471743 1471819 "IRREDFFX" 1471914 NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-601 1470272 1470573 1470872 "IROOT" 1471432 NIL IROOT (NIL T) -7 NIL NIL NIL) (-600 1469411 1469765 1469916 "IRFORM" 1470141 T IRFORM (NIL) -8 NIL NIL NIL) (-599 1468493 1468624 1468838 "IR2F" 1469294 NIL IR2F (NIL T T) -7 NIL NIL NIL) (-598 1466082 1466601 1467167 "IR2" 1467971 NIL IR2 (NIL T T) -7 NIL NIL NIL) (-597 1462522 1463766 1464458 "IR" 1465422 NIL IR (NIL T) -8 NIL NIL NIL) (-596 1462307 1462347 1462407 "IPRNTPK" 1462482 T IPRNTPK (NIL) -7 NIL NIL NIL) (-595 1458260 1462196 1462265 "IPF" 1462270 NIL IPF (NIL NIL) -8 NIL NIL NIL) (-594 1456281 1458185 1458242 "IPADIC" 1458247 NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-593 1455539 1455841 1455971 "IP4ADDR" 1456171 T IP4ADDR (NIL) -8 NIL NIL NIL) (-592 1454877 1455168 1455300 "IOMODE" 1455427 T IOMODE (NIL) -8 NIL NIL NIL) (-591 1453848 1454474 1454601 "IOBFILE" 1454770 T IOBFILE (NIL) -8 NIL NIL NIL) (-590 1453258 1453752 1453780 "IOBCON" 1453785 T IOBCON (NIL) -9 NIL 1453806 NIL) (-589 1452763 1452827 1453010 "INVLAPLA" 1453194 NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-588 1442333 1444765 1447151 "INTTR" 1450427 NIL INTTR (NIL T T) -7 NIL NIL NIL) (-587 1438626 1439410 1440275 "INTTOOLS" 1441518 NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-586 1438206 1438303 1438420 "INTSLPE" 1438529 T INTSLPE (NIL) -7 NIL NIL NIL) (-585 1435673 1438129 1438188 "INTRVL" 1438193 NIL INTRVL (NIL T) -8 NIL NIL NIL) (-584 1433251 1433787 1434362 "INTRF" 1435158 NIL INTRF (NIL T) -7 NIL NIL NIL) (-583 1432644 1432759 1432901 "INTRET" 1433149 NIL INTRET (NIL T) -7 NIL NIL NIL) (-582 1430617 1431030 1431500 "INTRAT" 1432252 NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-581 1427862 1428463 1429082 "INTPM" 1430102 NIL INTPM (NIL T T) -7 NIL NIL NIL) (-580 1424579 1425206 1425944 "INTPAF" 1427248 NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-579 1419680 1420720 1421771 "INTPACK" 1423548 T INTPACK (NIL) -7 NIL NIL NIL) (-578 1418926 1419084 1419292 "INTHERTR" 1419522 NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-577 1418359 1418445 1418633 "INTHERAL" 1418840 NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-576 1416127 1416648 1417105 "INTHEORY" 1417922 T INTHEORY (NIL) -7 NIL NIL NIL) (-575 1407459 1409154 1410926 "INTG0" 1414479 NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-574 1387984 1392822 1397632 "INTFTBL" 1402669 T INTFTBL (NIL) -8 NIL NIL NIL) (-573 1387209 1387371 1387544 "INTFACT" 1387843 NIL INTFACT (NIL T) -7 NIL NIL NIL) (-572 1384606 1385082 1385639 "INTEF" 1386763 NIL INTEF (NIL T T) -7 NIL NIL NIL) (-571 1382803 1383698 1383726 "INTDOM" 1384027 T INTDOM (NIL) -9 NIL 1384234 NIL) (-570 1382142 1382346 1382588 "INTDOM-" 1382593 NIL INTDOM- (NIL T) -8 NIL NIL NIL) (-569 1378016 1380431 1380485 "INTCAT" 1381284 NIL INTCAT (NIL T) -9 NIL 1381605 NIL) (-568 1377470 1377591 1377719 "INTBIT" 1377908 T INTBIT (NIL) -7 NIL NIL NIL) (-567 1376151 1376323 1376630 "INTALG" 1377315 NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-566 1375628 1375724 1375881 "INTAF" 1376055 NIL INTAF (NIL T T) -7 NIL NIL NIL) (-565 1368595 1375438 1375578 "INTABL" 1375583 NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-564 1367832 1368394 1368459 "INT8" 1368493 T INT8 (NIL) -8 NIL NIL 1368538) (-563 1367068 1367630 1367695 "INT64" 1367729 T INT64 (NIL) -8 NIL NIL 1367774) (-562 1366304 1366866 1366931 "INT32" 1366965 T INT32 (NIL) -8 NIL NIL 1367010) (-561 1365540 1366102 1366167 "INT16" 1366201 T INT16 (NIL) -8 NIL NIL 1366246) (-560 1361728 1365337 1365446 "INT" 1365451 T INT (NIL) -8 NIL NIL NIL) (-559 1355829 1359276 1359304 "INS" 1360238 T INS (NIL) -9 NIL 1360903 NIL) (-558 1352883 1353840 1354814 "INS-" 1354887 NIL INS- (NIL T) -8 NIL NIL NIL) (-557 1351640 1351885 1352183 "INPSIGN" 1352636 NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-556 1350734 1350875 1351072 "INPRODPF" 1351520 NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-555 1349604 1349745 1349982 "INPRODFF" 1350614 NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-554 1348592 1348756 1349016 "INNMFACT" 1349440 NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-553 1347771 1347886 1348074 "INMODGCD" 1348491 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-552 1346255 1346524 1346848 "INFSP" 1347516 NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-551 1345415 1345556 1345739 "INFPROD0" 1346135 NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-550 1345013 1345085 1345183 "INFORM1" 1345350 NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-549 1341580 1343078 1343593 "INFORM" 1344506 T INFORM (NIL) -8 NIL NIL NIL) (-548 1341085 1341192 1341306 "INFINITY" 1341486 T INFINITY (NIL) -7 NIL NIL NIL) (-547 1340159 1340805 1340906 "INETCLTS" 1341004 T INETCLTS (NIL) -8 NIL NIL NIL) (-546 1338757 1339025 1339346 "INEP" 1339907 NIL INEP (NIL T T T) -7 NIL NIL NIL) (-545 1337818 1338654 1338719 "INDE" 1338724 NIL INDE (NIL T) -8 NIL NIL NIL) (-544 1337370 1337450 1337567 "INCRMAPS" 1337745 NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-543 1336092 1336639 1336845 "INBFILE" 1337184 T INBFILE (NIL) -8 NIL NIL NIL) (-542 1331271 1332328 1333272 "INBFF" 1335180 NIL INBFF (NIL T) -7 NIL NIL NIL) (-541 1330125 1330448 1330476 "INBCON" 1330989 T INBCON (NIL) -9 NIL 1331255 NIL) (-540 1329335 1329600 1329876 "INBCON-" 1329881 NIL INBCON- (NIL T) -8 NIL NIL NIL) (-539 1328754 1329059 1329150 "INAST" 1329264 T INAST (NIL) -8 NIL NIL NIL) (-538 1328121 1328433 1328539 "IMPTAST" 1328668 T IMPTAST (NIL) -8 NIL NIL NIL) (-537 1324042 1327965 1328069 "IMATRIX" 1328074 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-536 1322734 1322873 1323189 "IMATQF" 1323898 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-535 1320914 1321181 1321518 "IMATLIN" 1322490 NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-534 1314829 1320838 1320896 "ILIST" 1320901 NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-533 1312495 1314689 1314802 "IIARRAY2" 1314807 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-532 1307295 1312406 1312470 "IFF" 1312475 NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-531 1306576 1306912 1307028 "IFAST" 1307199 T IFAST (NIL) -8 NIL NIL NIL) (-530 1301088 1305868 1306056 "IFARRAY" 1306433 NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-529 1300126 1300992 1301065 "IFAMON" 1301070 NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-528 1299698 1299775 1299829 "IEVALAB" 1300036 NIL IEVALAB (NIL T T) -9 NIL NIL NIL) (-527 1299361 1299441 1299601 "IEVALAB-" 1299606 NIL IEVALAB- (NIL T T T) -8 NIL NIL NIL) (-526 1298425 1299250 1299325 "IDPOAMS" 1299330 NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-525 1297558 1298314 1298389 "IDPOAM" 1298394 NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-524 1296939 1297473 1297535 "IDPO" 1297540 NIL IDPO (NIL T T) -8 NIL NIL NIL) (-523 1295419 1295946 1295998 "IDPC" 1296510 NIL IDPC (NIL T T) -9 NIL 1296791 NIL) (-522 1294751 1295311 1295384 "IDPAM" 1295389 NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-521 1293966 1294643 1294716 "IDPAG" 1294721 NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-520 1293510 1293772 1293862 "IDENT" 1293896 T IDENT (NIL) -8 NIL NIL NIL) (-519 1289729 1290613 1291508 "IDECOMP" 1292667 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-518 1282364 1283652 1284699 "IDEAL" 1288765 NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-517 1281506 1281636 1281836 "ICDEN" 1282248 NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-516 1280481 1280986 1281133 "ICARD" 1281379 T ICARD (NIL) -8 NIL NIL NIL) (-515 1278511 1278854 1279259 "IBPTOOLS" 1280158 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-514 1273626 1278131 1278244 "IBITS" 1278430 NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-513 1270301 1270925 1271620 "IBATOOL" 1273043 NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-512 1268062 1268542 1269075 "IBACHIN" 1269836 NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-511 1265652 1267908 1268011 "IARRAY2" 1268016 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-510 1261365 1265578 1265635 "IARRAY1" 1265640 NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-509 1254375 1259777 1260258 "IAN" 1260904 T IAN (NIL) -8 NIL NIL NIL) (-508 1253880 1253943 1254116 "IALGFACT" 1254312 NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-507 1253372 1253521 1253549 "HYPCAT" 1253756 T HYPCAT (NIL) -9 NIL NIL NIL) (-506 1252874 1253027 1253213 "HYPCAT-" 1253218 NIL HYPCAT- (NIL T) -8 NIL NIL NIL) (-505 1252421 1252669 1252752 "HOSTNAME" 1252811 T HOSTNAME (NIL) -8 NIL NIL NIL) (-504 1252254 1252303 1252344 "HOMOTOP" 1252349 NIL HOMOTOP (NIL T) -9 NIL 1252382 NIL) (-503 1248687 1250186 1250227 "HOAGG" 1251208 NIL HOAGG (NIL T) -9 NIL 1251937 NIL) (-502 1247203 1247680 1248206 "HOAGG-" 1248211 NIL HOAGG- (NIL T T) -8 NIL NIL NIL) (-501 1240239 1246796 1246946 "HEXADEC" 1247073 T HEXADEC (NIL) -8 NIL NIL NIL) (-500 1238951 1239209 1239472 "HEUGCD" 1240016 NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-499 1237883 1238788 1238918 "HELLFDIV" 1238923 NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-498 1235893 1237660 1237748 "HEAP" 1237827 NIL HEAP (NIL T) -8 NIL NIL NIL) (-497 1235090 1235445 1235579 "HEADAST" 1235779 T HEADAST (NIL) -8 NIL NIL NIL) (-496 1228477 1235005 1235067 "HDP" 1235072 NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-495 1221489 1228112 1228264 "HDMP" 1228378 NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-494 1220795 1220953 1221117 "HB" 1221345 T HB (NIL) -7 NIL NIL NIL) (-493 1213805 1220641 1220745 "HASHTBL" 1220750 NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-492 1213221 1213526 1213618 "HASAST" 1213733 T HASAST (NIL) -8 NIL NIL NIL) (-491 1210627 1212843 1213025 "HACKPI" 1213059 T HACKPI (NIL) -8 NIL NIL NIL) (-490 1205799 1210480 1210593 "GTSET" 1210598 NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-489 1198838 1205677 1205775 "GSTBL" 1205780 NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-488 1190587 1198003 1198259 "GSERIES" 1198638 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-487 1189618 1190131 1190159 "GROUP" 1190362 T GROUP (NIL) -9 NIL 1190496 NIL) (-486 1188942 1189143 1189394 "GROUP-" 1189399 NIL GROUP- (NIL T) -8 NIL NIL NIL) (-485 1187291 1187630 1188017 "GROEBSOL" 1188619 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-484 1186119 1186479 1186530 "GRMOD" 1187059 NIL GRMOD (NIL T T) -9 NIL 1187227 NIL) (-483 1185875 1185923 1186051 "GRMOD-" 1186056 NIL GRMOD- (NIL T T T) -8 NIL NIL NIL) (-482 1181015 1182229 1183229 "GRIMAGE" 1184895 T GRIMAGE (NIL) -8 NIL NIL NIL) (-481 1179409 1179742 1180066 "GRDEF" 1180711 T GRDEF (NIL) -7 NIL NIL NIL) (-480 1178841 1178969 1179110 "GRAY" 1179288 T GRAY (NIL) -7 NIL NIL NIL) (-479 1177918 1178420 1178471 "GRALG" 1178624 NIL GRALG (NIL T T) -9 NIL 1178717 NIL) (-478 1177555 1177652 1177815 "GRALG-" 1177820 NIL GRALG- (NIL T T T) -8 NIL NIL NIL) (-477 1174036 1177138 1177317 "GPOLSET" 1177461 NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-476 1173384 1173447 1173705 "GOSPER" 1173973 NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-475 1168954 1169822 1170348 "GMODPOL" 1173083 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-474 1167941 1168143 1168381 "GHENSEL" 1168766 NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-473 1162013 1162940 1163960 "GENUPS" 1167025 NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-472 1161704 1161761 1161850 "GENUFACT" 1161956 NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-471 1161104 1161193 1161358 "GENPGCD" 1161622 NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-470 1160572 1160613 1160826 "GENMFACT" 1161063 NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-469 1159108 1159395 1159702 "GENEEZ" 1160315 NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-468 1152280 1158719 1158881 "GDMP" 1159031 NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-467 1141019 1146051 1147157 "GCNAALG" 1151263 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-466 1139146 1140194 1140222 "GCDDOM" 1140477 T GCDDOM (NIL) -9 NIL 1140634 NIL) (-465 1138586 1138743 1138958 "GCDDOM-" 1138963 NIL GCDDOM- (NIL T) -8 NIL NIL NIL) (-464 1127058 1129532 1131924 "GBINTERN" 1136277 NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-463 1124859 1125187 1125608 "GBF" 1126733 NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-462 1123616 1123805 1124072 "GBEUCLID" 1124675 NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-461 1122266 1122473 1122777 "GB" 1123395 NIL GB (NIL T T T T) -7 NIL NIL NIL) (-460 1121597 1121740 1121889 "GAUSSFAC" 1122137 T GAUSSFAC (NIL) -7 NIL NIL NIL) (-459 1119918 1120266 1120580 "GALUTIL" 1121316 NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-458 1118178 1118500 1118824 "GALPOLYU" 1119645 NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-457 1115477 1115833 1116240 "GALFACTU" 1117875 NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-456 1107091 1108782 1110390 "GALFACT" 1113909 NIL GALFACT (NIL T) -7 NIL NIL NIL) (-455 1104377 1105137 1105165 "FVFUN" 1106321 T FVFUN (NIL) -9 NIL 1107041 NIL) (-454 1103607 1103825 1103853 "FVC" 1104144 T FVC (NIL) -9 NIL 1104327 NIL) (-453 1103208 1103432 1103500 "FUNDESC" 1103559 T FUNDESC (NIL) -8 NIL NIL NIL) (-452 1102781 1103005 1103086 "FUNCTION" 1103160 NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-451 1101458 1102082 1102285 "FTEM" 1102598 T FTEM (NIL) -8 NIL NIL NIL) (-450 1099088 1099780 1100246 "FT" 1101012 T FT (NIL) -8 NIL NIL NIL) (-449 1097357 1097668 1098065 "FSUPFACT" 1098779 NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-448 1095676 1096043 1096375 "FST" 1097045 T FST (NIL) -8 NIL NIL NIL) (-447 1094857 1094981 1095169 "FSRED" 1095558 NIL FSRED (NIL T T) -7 NIL NIL NIL) (-446 1093546 1093812 1094159 "FSPRMELT" 1094572 NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-445 1090756 1091290 1091776 "FSPECF" 1093109 NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-444 1090278 1090338 1090508 "FSINT" 1090697 NIL FSINT (NIL T T) -7 NIL NIL NIL) (-443 1088414 1089271 1089574 "FSERIES" 1090057 NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-442 1087438 1087572 1087796 "FSCINT" 1088294 NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-441 1086462 1086623 1086850 "FSAGG2" 1087291 NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-440 1082326 1085406 1085447 "FSAGG" 1085817 NIL FSAGG (NIL T) -9 NIL 1086076 NIL) (-439 1079926 1080689 1081485 "FSAGG-" 1081580 NIL FSAGG- (NIL T T) -8 NIL NIL NIL) (-438 1077586 1077884 1078432 "FS2UPS" 1079644 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-437 1076452 1076635 1076937 "FS2EXPXP" 1077411 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-436 1076080 1076129 1076258 "FS2" 1076403 NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-435 1056307 1065854 1065895 "FS" 1069779 NIL FS (NIL T) -9 NIL 1072068 NIL) (-434 1044368 1047943 1052000 "FS-" 1052300 NIL FS- (NIL T T) -8 NIL NIL NIL) (-433 1043782 1043909 1044061 "FRUTIL" 1044248 NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-432 1038300 1041471 1041511 "FRNAALG" 1042831 NIL FRNAALG (NIL T) -9 NIL 1043429 NIL) (-431 1033781 1035049 1036324 "FRNAALG-" 1037074 NIL FRNAALG- (NIL T T) -8 NIL NIL NIL) (-430 1033413 1033462 1033589 "FRNAAF2" 1033732 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-429 1031700 1032262 1032558 "FRMOD" 1033225 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-428 1030885 1030978 1031269 "FRIDEAL2" 1031607 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-427 1028490 1029260 1029578 "FRIDEAL" 1030676 NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-426 1027581 1028037 1028078 "FRETRCT" 1028083 NIL FRETRCT (NIL T) -9 NIL 1028259 NIL) (-425 1026639 1026924 1027275 "FRETRCT-" 1027280 NIL FRETRCT- (NIL T T) -8 NIL NIL NIL) (-424 1023453 1024923 1024982 "FRAMALG" 1025864 NIL FRAMALG (NIL T T) -9 NIL 1026156 NIL) (-423 1021491 1022042 1022672 "FRAMALG-" 1022895 NIL FRAMALG- (NIL T T T) -8 NIL NIL NIL) (-422 1021121 1021184 1021291 "FRAC2" 1021428 NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-421 1014092 1020594 1020871 "FRAC" 1020876 NIL FRAC (NIL T) -8 NIL NIL NIL) (-420 1013722 1013785 1013892 "FR2" 1014029 NIL FR2 (NIL T T) -7 NIL NIL NIL) (-419 1004639 1009217 1010575 "FR" 1012396 NIL FR (NIL T) -8 NIL NIL NIL) (-418 998556 1002018 1002046 "FPS" 1003165 T FPS (NIL) -9 NIL 1003722 NIL) (-417 997981 998114 998278 "FPS-" 998424 NIL FPS- (NIL T) -8 NIL NIL NIL) (-416 994933 996938 996966 "FPC" 997191 T FPC (NIL) -9 NIL 997333 NIL) (-415 994714 994766 994863 "FPC-" 994868 NIL FPC- (NIL T) -8 NIL NIL NIL) (-414 993472 994202 994243 "FPATMAB" 994248 NIL FPATMAB (NIL T) -9 NIL 994400 NIL) (-413 991615 992214 992561 "FPARFRAC" 993188 NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-412 986907 987507 988189 "FORTRAN" 991047 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-411 984481 985145 985173 "FORTFN" 986233 T FORTFN (NIL) -9 NIL 986857 NIL) (-410 984233 984295 984323 "FORTCAT" 984382 T FORTCAT (NIL) -9 NIL 984444 NIL) (-409 981919 982449 982988 "FORT" 983714 T FORT (NIL) -7 NIL NIL NIL) (-408 981701 981737 981806 "FORMULA1" 981883 NIL FORMULA1 (NIL T) -7 NIL NIL NIL) (-407 979705 980317 980707 "FORMULA" 981331 T FORMULA (NIL) -8 NIL NIL NIL) (-406 979222 979280 979453 "FORDER" 979647 NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-405 978282 978482 978675 "FOP" 979049 T FOP (NIL) -7 NIL NIL NIL) (-404 976695 977562 977736 "FNLA" 978164 NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-403 975314 975825 975853 "FNCAT" 976313 T FNCAT (NIL) -9 NIL 976573 NIL) (-402 974757 975273 975301 "FNAME" 975306 T FNAME (NIL) -8 NIL NIL NIL) (-401 973083 974256 974284 "FMTC" 974289 T FMTC (NIL) -9 NIL 974325 NIL) (-400 971631 973019 973065 "FMONOID" 973070 NIL FMONOID (NIL T) -8 NIL NIL NIL) (-399 968220 969586 969627 "FMONCAT" 970844 NIL FMONCAT (NIL T) -9 NIL 971449 NIL) (-398 965542 966290 966318 "FMFUN" 967462 T FMFUN (NIL) -9 NIL 968170 NIL) (-397 962415 963467 963521 "FMCAT" 964716 NIL FMCAT (NIL T T) -9 NIL 965211 NIL) (-396 961648 961865 961893 "FMC" 962183 T FMC (NIL) -9 NIL 962365 NIL) (-395 960316 961414 961514 "FM1" 961593 NIL FM1 (NIL T T) -8 NIL NIL NIL) (-394 959334 960058 960207 "FM" 960212 NIL FM (NIL T T) -8 NIL NIL NIL) (-393 957072 957524 958018 "FLOATRP" 958885 NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-392 954474 955010 955588 "FLOATCP" 956539 NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-391 947130 952203 952824 "FLOAT" 953873 T FLOAT (NIL) -8 NIL NIL NIL) (-390 945648 946722 946763 "FLINEXP" 946768 NIL FLINEXP (NIL T) -9 NIL 946861 NIL) (-389 944778 945037 945365 "FLINEXP-" 945370 NIL FLINEXP- (NIL T T) -8 NIL NIL NIL) (-388 943836 943998 944222 "FLASORT" 944630 NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-387 940754 941806 941858 "FLALG" 943085 NIL FLALG (NIL T T) -9 NIL 943552 NIL) (-386 939778 939939 940166 "FLAGG2" 940607 NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-385 933042 937187 937228 "FLAGG" 938490 NIL FLAGG (NIL T) -9 NIL 939142 NIL) (-384 931696 932107 932597 "FLAGG-" 932602 NIL FLAGG- (NIL T T) -8 NIL NIL NIL) (-383 928327 929541 929600 "FINRALG" 930728 NIL FINRALG (NIL T T) -9 NIL 931236 NIL) (-382 927451 927716 928055 "FINRALG-" 928060 NIL FINRALG- (NIL T T T) -8 NIL NIL NIL) (-381 926757 927056 927084 "FINITE" 927280 T FINITE (NIL) -9 NIL 927387 NIL) (-380 918708 921287 921327 "FINAALG" 924994 NIL FINAALG (NIL T) -9 NIL 926447 NIL) (-379 913824 915090 916234 "FINAALG-" 917613 NIL FINAALG- (NIL T T) -8 NIL NIL NIL) (-378 912384 912806 912860 "FILECAT" 913544 NIL FILECAT (NIL T T) -9 NIL 913760 NIL) (-377 911662 912139 912242 "FILE" 912314 NIL FILE (NIL T) -8 NIL NIL NIL) (-376 909058 910892 910920 "FIELD" 910960 T FIELD (NIL) -9 NIL 911040 NIL) (-375 907600 908063 908574 "FIELD-" 908579 NIL FIELD- (NIL T) -8 NIL NIL NIL) (-374 905282 906235 906582 "FGROUP" 907286 NIL FGROUP (NIL T) -8 NIL NIL NIL) (-373 904354 904536 904756 "FGLMICPK" 905114 NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-372 899588 904279 904336 "FFX" 904341 NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-371 899183 899250 899385 "FFSLPE" 899521 NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-370 898681 898723 898932 "FFPOLY2" 899141 NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-369 894557 895453 896249 "FFPOLY" 897917 NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-368 889805 894476 894539 "FFP" 894544 NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-367 884315 889148 889338 "FFNBX" 889659 NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-366 878627 883450 883708 "FFNBP" 884169 NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-365 872644 877911 878122 "FFNB" 878460 NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-364 871464 871674 871989 "FFINTBAS" 872441 NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-363 867040 869711 869739 "FFIELDC" 870359 T FFIELDC (NIL) -9 NIL 870735 NIL) (-362 865618 866073 866570 "FFIELDC-" 866575 NIL FFIELDC- (NIL T) -8 NIL NIL NIL) (-361 865175 865233 865357 "FFHOM" 865560 NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-360 862834 863357 863874 "FFF" 864690 NIL FFF (NIL T) -7 NIL NIL NIL) (-359 857848 862576 862677 "FFCGX" 862777 NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-358 852866 857580 857687 "FFCGP" 857791 NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-357 847445 852593 852701 "FFCG" 852802 NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-356 846850 846899 847134 "FFCAT2" 847396 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-355 825513 836582 836668 "FFCAT" 841833 NIL FFCAT (NIL T T T) -9 NIL 843284 NIL) (-354 820524 821758 823072 "FFCAT-" 824302 NIL FFCAT- (NIL T T T T) -8 NIL NIL NIL) (-353 815324 820435 820499 "FF" 820504 NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-352 803977 808296 809516 "FEXPR" 814176 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-351 802905 803374 803415 "FEVALAB" 803499 NIL FEVALAB (NIL T) -9 NIL 803760 NIL) (-350 802022 802274 802612 "FEVALAB-" 802617 NIL FEVALAB- (NIL T T) -8 NIL NIL NIL) (-349 798884 799769 799884 "FDIVCAT" 801452 NIL FDIVCAT (NIL T T T T) -9 NIL 801889 NIL) (-348 798640 798673 798843 "FDIVCAT-" 798848 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL NIL) (-347 797854 797947 798224 "FDIV2" 798547 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-346 796264 797237 797440 "FDIV" 797753 NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-345 795172 795559 795761 "FCTRDATA" 796082 T FCTRDATA (NIL) -8 NIL NIL NIL) (-344 793828 794117 794406 "FCPAK1" 794903 T FCPAK1 (NIL) -7 NIL NIL NIL) (-343 792831 793328 793469 "FCOMP" 793719 NIL FCOMP (NIL T) -8 NIL NIL NIL) (-342 776146 779981 783519 "FC" 789313 T FC (NIL) -8 NIL NIL NIL) (-341 767841 772467 772507 "FAXF" 774309 NIL FAXF (NIL T) -9 NIL 775001 NIL) (-340 764962 765775 766600 "FAXF-" 767065 NIL FAXF- (NIL T T) -8 NIL NIL NIL) (-339 759531 764338 764514 "FARRAY" 764819 NIL FARRAY (NIL T) -8 NIL NIL NIL) (-338 754095 756478 756531 "FAMR" 757554 NIL FAMR (NIL T T) -9 NIL 758014 NIL) (-337 752919 753287 753722 "FAMR-" 753727 NIL FAMR- (NIL T T T) -8 NIL NIL NIL) (-336 751946 752841 752894 "FAMONOID" 752899 NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-335 749576 750428 750481 "FAMONC" 751422 NIL FAMONC (NIL T T) -9 NIL 751808 NIL) (-334 748050 749330 749467 "FAGROUP" 749472 NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-333 745803 746164 746567 "FACUTIL" 747731 NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-332 744890 745087 745309 "FACTFUNC" 745613 NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-331 736648 744193 744392 "EXPUPXS" 744746 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-330 734101 734671 735257 "EXPRTUBE" 736082 T EXPRTUBE (NIL) -7 NIL NIL NIL) (-329 730312 730964 731694 "EXPRODE" 733440 NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-328 724746 725453 726259 "EXPR2UPS" 729610 NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-327 724372 724435 724544 "EXPR2" 724683 NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-326 708666 723021 723450 "EXPR" 723976 NIL EXPR (NIL T) -8 NIL NIL NIL) (-325 698983 707817 708108 "EXPEXPAN" 708502 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-324 698403 698707 698798 "EXITAST" 698912 T EXITAST (NIL) -8 NIL NIL NIL) (-323 698167 698360 698389 "EXIT" 698394 T EXIT (NIL) -8 NIL NIL NIL) (-322 697788 697856 697969 "EVALCYC" 698099 NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-321 697305 697447 697488 "EVALAB" 697658 NIL EVALAB (NIL T) -9 NIL 697762 NIL) (-320 696762 696908 697129 "EVALAB-" 697134 NIL EVALAB- (NIL T T) -8 NIL NIL NIL) (-319 693870 695418 695446 "EUCDOM" 696001 T EUCDOM (NIL) -9 NIL 696351 NIL) (-318 692209 692717 693307 "EUCDOM-" 693312 NIL EUCDOM- (NIL T) -8 NIL NIL NIL) (-317 691835 691898 692007 "ESTOOLS2" 692146 NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-316 691580 691628 691708 "ESTOOLS1" 691787 NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-315 678897 681878 684628 "ESTOOLS" 688850 T ESTOOLS (NIL) -7 NIL NIL NIL) (-314 678636 678674 678756 "ESCONT1" 678859 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-313 674944 675771 676551 "ESCONT" 677876 T ESCONT (NIL) -7 NIL NIL NIL) (-312 674613 674669 674769 "ES2" 674888 NIL ES2 (NIL T T) -7 NIL NIL NIL) (-311 674237 674301 674410 "ES1" 674549 NIL ES1 (NIL T T) -7 NIL NIL NIL) (-310 667938 669868 669896 "ES" 672664 T ES (NIL) -9 NIL 674074 NIL) (-309 662615 664172 665989 "ES-" 666153 NIL ES- (NIL T) -8 NIL NIL NIL) (-308 661807 661960 662136 "ERROR" 662459 T ERROR (NIL) -7 NIL NIL NIL) (-307 654823 661666 661757 "EQTBL" 661762 NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-306 654449 654512 654621 "EQ2" 654760 NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-305 646708 649763 651212 "EQ" 653033 NIL -1491 (NIL T) -8 NIL NIL NIL) (-304 641951 643046 644139 "EP" 645647 NIL EP (NIL T) -7 NIL NIL NIL) (-303 640491 640842 641148 "ENV" 641665 T ENV (NIL) -8 NIL NIL NIL) (-302 639451 640125 640153 "ENTIRER" 640158 T ENTIRER (NIL) -9 NIL 640204 NIL) (-301 635863 637633 637994 "EMR" 639259 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-300 634967 635178 635232 "ELTAGG" 635612 NIL ELTAGG (NIL T T) -9 NIL 635823 NIL) (-299 634674 634748 634889 "ELTAGG-" 634894 NIL ELTAGG- (NIL T T T) -8 NIL NIL NIL) (-298 634432 634467 634521 "ELTAB" 634605 NIL ELTAB (NIL T T) -9 NIL 634657 NIL) (-297 633534 633704 633903 "ELFUTS" 634283 NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-296 633258 633332 633360 "ELEMFUN" 633465 T ELEMFUN (NIL) -9 NIL NIL NIL) (-295 633122 633149 633217 "ELEMFUN-" 633222 NIL ELEMFUN- (NIL T) -8 NIL NIL NIL) (-294 627539 631164 631205 "ELAGG" 632145 NIL ELAGG (NIL T) -9 NIL 632608 NIL) (-293 625716 626258 626921 "ELAGG-" 626926 NIL ELAGG- (NIL T T) -8 NIL NIL NIL) (-292 624998 625165 625321 "ELABOR" 625580 T ELABOR (NIL) -8 NIL NIL NIL) (-291 623605 623938 624232 "ELABEXPR" 624724 T ELABEXPR (NIL) -8 NIL NIL NIL) (-290 616117 618242 619071 "EFUPXS" 622880 NIL EFUPXS (NIL T T T T) -8 NIL NIL NIL) (-289 609243 611366 612177 "EFULS" 615392 NIL EFULS (NIL T T T) -8 NIL NIL NIL) (-288 606680 607086 607558 "EFSTRUC" 608875 NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-287 596117 598037 599585 "EF" 605195 NIL EF (NIL T T) -7 NIL NIL NIL) (-286 595095 595602 595751 "EAB" 595988 T EAB (NIL) -8 NIL NIL NIL) (-285 594217 595054 595082 "E04UCFA" 595087 T E04UCFA (NIL) -8 NIL NIL NIL) (-284 593339 594176 594204 "E04NAFA" 594209 T E04NAFA (NIL) -8 NIL NIL NIL) (-283 592461 593298 593326 "E04MBFA" 593331 T E04MBFA (NIL) -8 NIL NIL NIL) (-282 591583 592420 592448 "E04JAFA" 592453 T E04JAFA (NIL) -8 NIL NIL NIL) (-281 590707 591542 591570 "E04GCFA" 591575 T E04GCFA (NIL) -8 NIL NIL NIL) (-280 589831 590666 590694 "E04FDFA" 590699 T E04FDFA (NIL) -8 NIL NIL NIL) (-279 588953 589790 589818 "E04DGFA" 589823 T E04DGFA (NIL) -8 NIL NIL NIL) (-278 583030 584478 585842 "E04AGNT" 587609 T E04AGNT (NIL) -7 NIL NIL NIL) (-277 581650 582331 582371 "DVARCAT" 582712 NIL DVARCAT (NIL T) -9 NIL 582875 NIL) (-276 580800 581066 581380 "DVARCAT-" 581385 NIL DVARCAT- (NIL T T) -8 NIL NIL NIL) (-275 572761 580599 580728 "DSMP" 580733 NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-274 571112 571903 571944 "DSEXT" 572307 NIL DSEXT (NIL T) -9 NIL 572601 NIL) (-273 569301 569825 570491 "DSEXT-" 570496 NIL DSEXT- (NIL T T) -8 NIL NIL NIL) (-272 568960 569025 569123 "DROPT1" 569236 NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-271 563979 565201 566338 "DROPT0" 567843 T DROPT0 (NIL) -7 NIL NIL NIL) (-270 558562 559924 560992 "DROPT" 562931 T DROPT (NIL) -8 NIL NIL NIL) (-269 556871 557232 557618 "DRAWPT" 558196 T DRAWPT (NIL) -7 NIL NIL NIL) (-268 556498 556557 556675 "DRAWHACK" 556812 NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-267 555199 555498 555789 "DRAWCX" 556227 T DRAWCX (NIL) -7 NIL NIL NIL) (-266 554708 554783 554934 "DRAWCURV" 555125 NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-265 545026 547138 549253 "DRAWCFUN" 552613 T DRAWCFUN (NIL) -7 NIL NIL NIL) (-264 539517 540536 541615 "DRAW" 544000 NIL DRAW (NIL T) -7 NIL NIL NIL) (-263 535988 538182 538223 "DQAGG" 538852 NIL DQAGG (NIL T) -9 NIL 539126 NIL) (-262 522571 530199 530282 "DPOLCAT" 532134 NIL DPOLCAT (NIL T T T T) -9 NIL 532679 NIL) (-261 517090 518756 520714 "DPOLCAT-" 520719 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL NIL) (-260 509947 516951 517049 "DPMO" 517054 NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-259 502701 509727 509894 "DPMM" 509899 NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-258 502223 502485 502574 "DOMTMPLT" 502632 T DOMTMPLT (NIL) -8 NIL NIL NIL) (-257 501572 502025 502105 "DOMCTOR" 502163 T DOMCTOR (NIL) -8 NIL NIL NIL) (-256 500724 501052 501203 "DOMAIN" 501441 T DOMAIN (NIL) -8 NIL NIL NIL) (-255 493736 500359 500511 "DMP" 500625 NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-254 491513 492803 492844 "DMEXT" 492849 NIL DMEXT (NIL T) -9 NIL 493025 NIL) (-253 491107 491169 491313 "DLP" 491451 NIL DLP (NIL T) -7 NIL NIL NIL) (-252 484230 490434 490624 "DLIST" 490949 NIL DLIST (NIL T) -8 NIL NIL NIL) (-251 480768 483055 483096 "DLAGG" 483646 NIL DLAGG (NIL T) -9 NIL 483876 NIL) (-250 479280 480094 480122 "DIVRING" 480214 T DIVRING (NIL) -9 NIL 480297 NIL) (-249 478463 478707 479007 "DIVRING-" 479012 NIL DIVRING- (NIL T) -8 NIL NIL NIL) (-248 476505 476922 477328 "DISPLAY" 478077 T DISPLAY (NIL) -7 NIL NIL NIL) (-247 475335 475556 475821 "DIRPROD2" 476298 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-246 468742 475249 475312 "DIRPROD" 475317 NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-245 456961 463453 463506 "DIRPCAT" 463764 NIL DIRPCAT (NIL NIL T) -9 NIL 464639 NIL) (-244 454161 454929 455810 "DIRPCAT-" 456147 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL NIL) (-243 453442 453608 453794 "DIOSP" 453995 T DIOSP (NIL) -7 NIL NIL NIL) (-242 449856 452326 452367 "DIOPS" 452801 NIL DIOPS (NIL T) -9 NIL 453030 NIL) (-241 449375 449519 449710 "DIOPS-" 449715 NIL DIOPS- (NIL T T) -8 NIL NIL NIL) (-240 448282 449054 449082 "DIFRING" 449087 T DIFRING (NIL) -9 NIL 449109 NIL) (-239 447930 448028 448056 "DIFFSPC" 448175 T DIFFSPC (NIL) -9 NIL 448250 NIL) (-238 447551 447653 447805 "DIFFSPC-" 447810 NIL DIFFSPC- (NIL T) -8 NIL NIL NIL) (-237 446487 447085 447126 "DIFFMOD" 447131 NIL DIFFMOD (NIL T) -9 NIL 447229 NIL) (-236 446183 446240 446281 "DIFFDOM" 446402 NIL DIFFDOM (NIL T) -9 NIL 446470 NIL) (-235 446030 446060 446144 "DIFFDOM-" 446149 NIL DIFFDOM- (NIL T T) -8 NIL NIL NIL) (-234 443770 445234 445275 "DIFEXT" 445280 NIL DIFEXT (NIL T) -9 NIL 445433 NIL) (-233 440804 443274 443315 "DIAGG" 443320 NIL DIAGG (NIL T) -9 NIL 443340 NIL) (-232 440152 440345 440597 "DIAGG-" 440602 NIL DIAGG- (NIL T T) -8 NIL NIL NIL) (-231 435002 439111 439388 "DHMATRIX" 439921 NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-230 430470 431523 432533 "DFSFUN" 434012 T DFSFUN (NIL) -7 NIL NIL NIL) (-229 424704 429401 429713 "DFLOAT" 430178 T DFLOAT (NIL) -8 NIL NIL NIL) (-228 422943 423248 423637 "DFINTTLS" 424412 NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-227 419762 420964 421364 "DERHAM" 422609 NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-226 417298 419537 419626 "DEQUEUE" 419706 NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-225 416540 416685 416868 "DEGRED" 417160 NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-224 412946 413715 414561 "DEFINTRF" 415768 NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-223 410483 410970 411562 "DEFINTEF" 412465 NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-222 409767 410103 410218 "DEFAST" 410388 T DEFAST (NIL) -8 NIL NIL NIL) (-221 402803 409360 409510 "DECIMAL" 409637 T DECIMAL (NIL) -8 NIL NIL NIL) (-220 400261 400773 401279 "DDFACT" 402347 NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-219 399851 399900 400051 "DBLRESP" 400212 NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-218 399052 399621 399712 "DBASIS" 399800 NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-217 396836 397282 397643 "DBASE" 398818 NIL DBASE (NIL T) -8 NIL NIL NIL) (-216 396024 396316 396462 "DATAARY" 396735 NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-215 395082 395983 396011 "D03FAFA" 396016 T D03FAFA (NIL) -8 NIL NIL NIL) (-214 394141 395041 395069 "D03EEFA" 395074 T D03EEFA (NIL) -8 NIL NIL NIL) (-213 392067 392557 393046 "D03AGNT" 393672 T D03AGNT (NIL) -7 NIL NIL NIL) (-212 391308 392026 392054 "D02EJFA" 392059 T D02EJFA (NIL) -8 NIL NIL NIL) (-211 390549 391267 391295 "D02CJFA" 391300 T D02CJFA (NIL) -8 NIL NIL NIL) (-210 389790 390508 390536 "D02BHFA" 390541 T D02BHFA (NIL) -8 NIL NIL NIL) (-209 389031 389749 389777 "D02BBFA" 389782 T D02BBFA (NIL) -8 NIL NIL NIL) (-208 382162 383817 385423 "D02AGNT" 387445 T D02AGNT (NIL) -7 NIL NIL NIL) (-207 379912 380453 380999 "D01WGTS" 381636 T D01WGTS (NIL) -7 NIL NIL NIL) (-206 378919 379871 379899 "D01TRNS" 379904 T D01TRNS (NIL) -8 NIL NIL NIL) (-205 377927 378878 378906 "D01GBFA" 378911 T D01GBFA (NIL) -8 NIL NIL NIL) (-204 376935 377886 377914 "D01FCFA" 377919 T D01FCFA (NIL) -8 NIL NIL NIL) (-203 375943 376894 376922 "D01ASFA" 376927 T D01ASFA (NIL) -8 NIL NIL NIL) (-202 374951 375902 375930 "D01AQFA" 375935 T D01AQFA (NIL) -8 NIL NIL NIL) (-201 373959 374910 374938 "D01APFA" 374943 T D01APFA (NIL) -8 NIL NIL NIL) (-200 372967 373918 373946 "D01ANFA" 373951 T D01ANFA (NIL) -8 NIL NIL NIL) (-199 371975 372926 372954 "D01AMFA" 372959 T D01AMFA (NIL) -8 NIL NIL NIL) (-198 370983 371934 371962 "D01ALFA" 371967 T D01ALFA (NIL) -8 NIL NIL NIL) (-197 369991 370942 370970 "D01AKFA" 370975 T D01AKFA (NIL) -8 NIL NIL NIL) (-196 368999 369950 369978 "D01AJFA" 369983 T D01AJFA (NIL) -8 NIL NIL NIL) (-195 362222 363847 365408 "D01AGNT" 367458 T D01AGNT (NIL) -7 NIL NIL NIL) (-194 361541 361687 361839 "CYCLOTOM" 362090 T CYCLOTOM (NIL) -7 NIL NIL NIL) (-193 358196 358989 359716 "CYCLES" 360834 T CYCLES (NIL) -7 NIL NIL NIL) (-192 357496 357642 357813 "CVMP" 358057 NIL CVMP (NIL T) -7 NIL NIL NIL) (-191 355283 355595 355964 "CTRIGMNP" 357224 NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-190 354756 355014 355115 "CTORKIND" 355202 T CTORKIND (NIL) -8 NIL NIL NIL) (-189 353961 354349 354377 "CTORCAT" 354559 T CTORCAT (NIL) -9 NIL 354672 NIL) (-188 353535 353670 353829 "CTORCAT-" 353834 NIL CTORCAT- (NIL T) -8 NIL NIL NIL) (-187 352949 353209 353317 "CTORCALL" 353459 NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-186 352307 352743 352816 "CTOR" 352896 T CTOR (NIL) -8 NIL NIL NIL) (-185 351663 351780 351933 "CSTTOOLS" 352204 NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-184 347360 348119 348877 "CRFP" 350975 NIL CRFP (NIL T T) -7 NIL NIL NIL) (-183 346775 347081 347173 "CRCEAST" 347288 T CRCEAST (NIL) -8 NIL NIL NIL) (-182 345798 346007 346235 "CRAPACK" 346579 NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-181 345178 345283 345487 "CPMATCH" 345674 NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-180 344897 344931 345037 "CPIMA" 345144 NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-179 341155 341917 342636 "COORDSYS" 344232 NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-178 340543 340688 340830 "CONTOUR" 341033 T CONTOUR (NIL) -8 NIL NIL NIL) (-177 336008 338546 339038 "CONTFRAC" 340083 NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-176 335882 335909 335937 "CONDUIT" 335974 T CONDUIT (NIL) -9 NIL NIL NIL) (-175 334836 335510 335538 "COMRING" 335543 T COMRING (NIL) -9 NIL 335595 NIL) (-174 333818 334194 334378 "COMPPROP" 334672 T COMPPROP (NIL) -8 NIL NIL NIL) (-173 333473 333514 333642 "COMPLPAT" 333777 NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-172 333103 333166 333273 "COMPLEX2" 333410 NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-171 321486 332912 333021 "COMPLEX" 333026 NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 320807 320946 321106 "COMPILER" 321346 T COMPILER (NIL) -8 NIL NIL NIL) (-169 320519 320560 320658 "COMPFACT" 320766 NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-168 301894 314223 314263 "COMPCAT" 315267 NIL COMPCAT (NIL T) -9 NIL 316615 NIL) (-167 290782 294333 297960 "COMPCAT-" 298316 NIL COMPCAT- (NIL T T) -8 NIL NIL NIL) (-166 290505 290539 290642 "COMMUPC" 290748 NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-165 290293 290333 290392 "COMMONOP" 290466 T COMMONOP (NIL) -7 NIL NIL NIL) (-164 289815 290097 290172 "COMMAAST" 290238 T COMMAAST (NIL) -8 NIL NIL NIL) (-163 289323 289566 289653 "COMM" 289748 T COMM (NIL) -8 NIL NIL NIL) (-162 288518 288766 288794 "COMBOPC" 289132 T COMBOPC (NIL) -9 NIL 289307 NIL) (-161 287372 287624 287866 "COMBINAT" 288308 NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-160 283715 284403 285030 "COMBF" 286794 NIL COMBF (NIL T T) -7 NIL NIL NIL) (-159 282377 282831 283066 "COLOR" 283500 T COLOR (NIL) -8 NIL NIL NIL) (-158 281793 282098 282190 "COLONAST" 282305 T COLONAST (NIL) -8 NIL NIL NIL) (-157 281427 281480 281605 "CMPLXRT" 281740 NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-156 280815 281127 281226 "CLLCTAST" 281348 T CLLCTAST (NIL) -8 NIL NIL NIL) (-155 276275 277345 278425 "CLIP" 279755 T CLIP (NIL) -7 NIL NIL NIL) (-154 274448 275376 275616 "CLIF" 276102 NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-153 270430 272566 272607 "CLAGG" 273536 NIL CLAGG (NIL T) -9 NIL 274072 NIL) (-152 268774 269309 269892 "CLAGG-" 269897 NIL CLAGG- (NIL T T) -8 NIL NIL NIL) (-151 268312 268403 268543 "CINTSLPE" 268683 NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-150 265777 266284 266832 "CHVAR" 267840 NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-149 264817 265491 265519 "CHARZ" 265524 T CHARZ (NIL) -9 NIL 265539 NIL) (-148 264565 264611 264689 "CHARPOL" 264771 NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-147 263483 264196 264224 "CHARNZ" 264271 T CHARNZ (NIL) -9 NIL 264327 NIL) (-146 260427 261537 262066 "CHAR" 262974 T CHAR (NIL) -8 NIL NIL NIL) (-145 260135 260214 260242 "CFCAT" 260353 T CFCAT (NIL) -9 NIL NIL NIL) (-144 259358 259487 259670 "CDEN" 260019 NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-143 254955 258511 258791 "CCLASS" 259098 T CCLASS (NIL) -8 NIL NIL NIL) (-142 254176 254363 254540 "CATEGORY" 254798 T -10 (NIL) -8 NIL NIL NIL) (-141 253671 254095 254143 "CATCTOR" 254148 T CATCTOR (NIL) -8 NIL NIL NIL) (-140 253062 253374 253472 "CATAST" 253593 T CATAST (NIL) -8 NIL NIL NIL) (-139 252478 252783 252875 "CASEAST" 252990 T CASEAST (NIL) -8 NIL NIL NIL) (-138 251574 251734 251955 "CARTEN2" 252325 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-137 246472 247731 248475 "CARTEN" 250886 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 244602 245622 245879 "CARD" 246235 T CARD (NIL) -8 NIL NIL NIL) (-135 244124 244406 244481 "CAPSLAST" 244547 T CAPSLAST (NIL) -8 NIL NIL NIL) (-134 243566 243822 243850 "CACHSET" 243982 T CACHSET (NIL) -9 NIL 244060 NIL) (-133 242956 243344 243372 "CABMON" 243422 T CABMON (NIL) -9 NIL 243478 NIL) (-132 242393 242660 242770 "BYTEORD" 242866 T BYTEORD (NIL) -8 NIL NIL NIL) (-131 237320 241898 242070 "BYTEBUF" 242241 T BYTEBUF (NIL) -8 NIL NIL NIL) (-130 236078 236835 236984 "BYTE" 237147 T BYTE (NIL) -8 NIL NIL 237276) (-129 233340 235770 235877 "BTREE" 236004 NIL BTREE (NIL T) -8 NIL NIL NIL) (-128 230542 232988 233110 "BTOURN" 233250 NIL BTOURN (NIL T) -8 NIL NIL NIL) (-127 227649 229984 230025 "BTCAT" 230093 NIL BTCAT (NIL T) -9 NIL 230170 NIL) (-126 227298 227396 227545 "BTCAT-" 227550 NIL BTCAT- (NIL T T) -8 NIL NIL NIL) (-125 222190 226544 226572 "BTAGG" 226686 T BTAGG (NIL) -9 NIL 226796 NIL) (-124 221644 221805 222011 "BTAGG-" 222016 NIL BTAGG- (NIL T) -8 NIL NIL NIL) (-123 218380 220922 221137 "BSTREE" 221461 NIL BSTREE (NIL T) -8 NIL NIL NIL) (-122 217488 217644 217828 "BRILL" 218236 NIL BRILL (NIL T) -7 NIL NIL NIL) (-121 213883 216186 216227 "BRAGG" 216876 NIL BRAGG (NIL T) -9 NIL 217134 NIL) (-120 212316 212818 213373 "BRAGG-" 213378 NIL BRAGG- (NIL T T) -8 NIL NIL NIL) (-119 204552 211660 211845 "BPADICRT" 212163 NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-118 202561 204489 204534 "BPADIC" 204539 NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-117 202253 202289 202403 "BOUNDZRO" 202525 NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-116 199980 200438 200913 "BOP1" 201811 NIL BOP1 (NIL T) -7 NIL NIL NIL) (-115 194962 196406 197318 "BOP" 199088 T BOP (NIL) -8 NIL NIL NIL) (-114 193627 194550 194692 "BOOLEAN" 194840 T BOOLEAN (NIL) -8 NIL NIL NIL) (-113 193220 193377 193405 "BOOLE" 193516 T BOOLE (NIL) -9 NIL 193597 NIL) (-112 193088 193115 193181 "BOOLE-" 193186 NIL BOOLE- (NIL T) -8 NIL NIL NIL) (-111 192257 192757 192811 "BMODULE" 192816 NIL BMODULE (NIL T T) -9 NIL 192881 NIL) (-110 187578 192055 192128 "BITS" 192204 T BITS (NIL) -8 NIL NIL NIL) (-109 186975 187118 187258 "BINDING" 187458 T BINDING (NIL) -8 NIL NIL NIL) (-108 180014 186570 186719 "BINARY" 186846 T BINARY (NIL) -8 NIL NIL NIL) (-107 177621 179241 179282 "BGAGG" 179542 NIL BGAGG (NIL T) -9 NIL 179679 NIL) (-106 177446 177484 177575 "BGAGG-" 177580 NIL BGAGG- (NIL T T) -8 NIL NIL NIL) (-105 176469 176830 177035 "BFUNCT" 177261 T BFUNCT (NIL) -8 NIL NIL NIL) (-104 175139 175337 175625 "BEZOUT" 176293 NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 171337 173991 174321 "BBTREE" 174842 NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 170920 171016 171044 "BASTYPE" 171221 T BASTYPE (NIL) -9 NIL 171320 NIL) (-101 170578 170677 170812 "BASTYPE-" 170817 NIL BASTYPE- (NIL T) -8 NIL NIL NIL) (-100 170000 170088 170240 "BALFACT" 170489 NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 168736 169415 169601 "AUTOMOR" 169845 NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 168462 168467 168493 "ATTREG" 168498 T ATTREG (NIL) -9 NIL NIL NIL) (-97 166624 167159 167511 "ATTRBUT" 168128 T ATTRBUT (NIL) -8 NIL NIL NIL) (-96 166178 166452 166518 "ATTRAST" 166576 T ATTRAST (NIL) -8 NIL NIL NIL) (-95 165678 165827 165853 "ATRIG" 166054 T ATRIG (NIL) -9 NIL NIL NIL) (-94 165475 165528 165615 "ATRIG-" 165620 NIL ATRIG- (NIL T) -8 NIL NIL NIL) (-93 165058 165292 165318 "ASTCAT" 165323 T ASTCAT (NIL) -9 NIL 165353 NIL) (-92 164767 164844 164963 "ASTCAT-" 164968 NIL ASTCAT- (NIL T) -8 NIL NIL NIL) (-91 162741 164543 164631 "ASTACK" 164710 NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 161230 161543 161908 "ASSOCEQ" 162423 NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 160154 160889 161013 "ASP9" 161137 NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 158914 159759 159901 "ASP80" 160043 NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-87 158641 158862 158901 "ASP8" 158906 NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-86 157487 158318 158436 "ASP78" 158554 NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-85 156348 157167 157284 "ASP77" 157401 NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-84 155152 155986 156117 "ASP74" 156248 NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-83 153944 154787 154919 "ASP73" 155051 NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-82 152734 153579 153711 "ASP7" 153843 NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-81 151730 152560 152660 "ASP6" 152665 NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 150569 151407 151525 "ASP55" 151643 NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 149410 150243 150362 "ASP50" 150481 NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 148390 149111 149221 "ASP49" 149331 NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-77 147066 147929 148097 "ASP42" 148279 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-76 145735 146599 146769 "ASP41" 146953 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 144715 145436 145546 "ASP4" 145656 NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-74 143557 144392 144510 "ASP35" 144628 NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 143286 143505 143544 "ASP34" 143549 NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 143005 143090 143166 "ASP33" 143241 NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 141791 142640 142772 "ASP31" 142904 NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 141520 141739 141778 "ASP30" 141783 NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 141237 141324 141400 "ASP29" 141475 NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 140966 141185 141224 "ASP28" 141229 NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 140695 140914 140953 "ASP27" 140958 NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 139671 140393 140504 "ASP24" 140615 NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 138640 139473 139585 "ASP20" 139590 NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 137475 138314 138433 "ASP19" 138552 NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-63 137194 137279 137355 "ASP12" 137430 NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-62 135938 136793 136937 "ASP10" 137081 NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-61 134918 135639 135749 "ASP1" 135859 NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-60 132530 134762 134853 "ARRAY2" 134858 NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 131544 131735 131956 "ARRAY12" 132353 NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 126904 131192 131306 "ARRAY1" 131461 NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 120949 123106 123181 "ARR2CAT" 125811 NIL ARR2CAT (NIL T T T) -9 NIL 126569 NIL) (-56 118239 119127 120081 "ARR2CAT-" 120086 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL NIL) (-55 117490 117866 117991 "ARITY" 118132 T ARITY (NIL) -8 NIL NIL NIL) (-54 116248 116418 116717 "APPRULE" 117326 NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 115893 115947 116066 "APPLYORE" 116194 NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 115147 115294 115451 "ANY1" 115767 NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 114447 114740 114860 "ANY" 115045 T ANY (NIL) -8 NIL NIL NIL) (-50 111773 112884 113211 "ANTISYM" 114171 NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 111217 111480 111576 "ANON" 111695 T ANON (NIL) -8 NIL NIL NIL) (-48 104373 109756 110210 "AN" 110781 T AN (NIL) -8 NIL NIL NIL) (-47 100029 101645 101696 "AMR" 102444 NIL AMR (NIL T T) -9 NIL 103044 NIL) (-46 99081 99362 99725 "AMR-" 99730 NIL AMR- (NIL T T T) -8 NIL NIL NIL) (-45 82550 98998 99059 "ALIST" 99064 NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 78847 82144 82313 "ALGSC" 82468 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 75297 75957 76564 "ALGPKG" 78287 NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 74562 74675 74859 "ALGMFACT" 75183 NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 70545 71176 71770 "ALGMANIP" 74146 NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 59884 70171 70321 "ALGFF" 70478 NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 59056 59211 59390 "ALGFACT" 59742 NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 57845 58583 58621 "ALGEBRA" 58626 NIL ALGEBRA (NIL T) -9 NIL 58667 NIL) (-37 57545 57622 57754 "ALGEBRA-" 57759 NIL ALGEBRA- (NIL T T) -8 NIL NIL NIL) (-36 38506 55382 55434 "ALAGG" 55570 NIL ALAGG (NIL T T) -9 NIL 55731 NIL) (-35 38006 38155 38181 "AHYP" 38382 T AHYP (NIL) -9 NIL NIL NIL) (-34 36891 37185 37211 "AGG" 37710 T AGG (NIL) -9 NIL 37989 NIL) (-33 36289 36487 36701 "AGG-" 36706 NIL AGG- (NIL T) -8 NIL NIL NIL) (-32 34049 34518 34923 "AF" 35931 NIL AF (NIL T T) -7 NIL NIL NIL) (-31 33469 33774 33864 "ADDAST" 33977 T ADDAST (NIL) -8 NIL NIL NIL) (-30 32701 32996 33152 "ACPLOT" 33331 T ACPLOT (NIL) -8 NIL NIL NIL) (-29 20258 29633 29671 "ACFS" 30278 NIL ACFS (NIL T) -9 NIL 30517 NIL) (-28 18165 18775 19537 "ACFS-" 19542 NIL ACFS- (NIL T T) -8 NIL NIL NIL) (-27 13873 16198 16224 "ACF" 17103 T ACF (NIL) -9 NIL 17516 NIL) (-26 12505 12911 13404 "ACF-" 13409 NIL ACF- (NIL T) -8 NIL NIL NIL) (-25 12015 12258 12284 "ABELSG" 12376 T ABELSG (NIL) -9 NIL 12441 NIL) (-24 11876 11907 11973 "ABELSG-" 11978 NIL ABELSG- (NIL T) -8 NIL NIL NIL) (-23 11145 11492 11518 "ABELMON" 11688 T ABELMON (NIL) -9 NIL 11800 NIL) (-22 10785 10893 11031 "ABELMON-" 11036 NIL ABELMON- (NIL T) -8 NIL NIL NIL) (-21 10035 10491 10517 "ABELGRP" 10589 T ABELGRP (NIL) -9 NIL 10664 NIL) (-20 9462 9627 9843 "ABELGRP-" 9848 NIL ABELGRP- (NIL T) -8 NIL NIL NIL) (-19 4579 8724 8763 "A1AGG" 8768 NIL A1AGG (NIL T) -9 NIL 8808 NIL) (-18 30 1497 3059 "A1AGG-" 3064 NIL A1AGG- (NIL T T) -8 NIL NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index c8823fbf..1f061129 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,1281 +1,582 @@
-(733360 . 3500593099)
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1297 *4)) (-4 *4 (-1080)) (-4 *2 (-1273 *4))
- (-5 *1 (-458 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-421 (-1201 (-326 *5)))) (-5 *3 (-1297 (-326 *5)))
- (-5 *4 (-560)) (-4 *5 (-571)) (-5 *1 (-1161 *5)))))
+(733360 . 3501779186)
+(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23))
+ (-14 *4 *3)))
+ ((*1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23))
+ (-14 *4 *3)))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-697 *2)) (-4 *2 (-1080)) (-4 *2 (-1132)))))
+(((*1 *2)
+ (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-432 *3)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-663 *6)) (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5))
+ (-4 *3 (-571)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1273 (-421 (-560)))) (-5 *1 (-942 *3 *2))
+ (-4 *2 (-1273 (-421 *3))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-777)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7))
+ (-5 *2 (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4))))
+ (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-983)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *6 (-229))
+ (-5 *3 (-560)) (-5 *2 (-1066)) (-5 *1 (-773)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-541)) (-5 *3 (-131)) (-5 *2 (-793)))))
+(((*1 *2 *3) (-12 (-5 *2 (-560)) (-5 *1 (-583 *3)) (-4 *3 (-1069 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1135 *3 *4 *2 *5 *6)) (-4 *3 (-1132)) (-4 *4 (-1132))
+ (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-1132)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4))) (-4 *6 (-355 *3 *4 *5))
+ (-5 *2 (-427 *4 (-421 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1297 *6)) (-4 *6 (-13 (-424 *4 *5) (-1069 *4)))
+ (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-4 *3 (-319))
+ (-5 *1 (-427 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-663 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-376))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-1189)) (-5 *5 (-711 (-229)))
- (-5 *2 (-1066)) (-5 *1 (-769)))))
+ (-12 (-5 *3 (-1207)) (-5 *4 (-975 (-560))) (-5 *2 (-342))
+ (-5 *1 (-344)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)) (-5 *2 (-663 *6))
- (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-979 *3 *5 *4)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391))
- (-5 *2
- (-2 (|:| -3853 *4) (|:| -4223 *4) (|:| |totalpts| (-560))
- (|:| |success| (-114))))
- (-5 *1 (-811)) (-5 *5 (-560)))))
-(((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175))))
+ (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
+ (-4 *4 (-1080)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-114)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-597 *3)) (-4 *3 (-376)))))
+(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301))))
+ ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-569 *3)) (-4 *3 (-13 (-418) (-1233))) (-5 *2 (-114))))
+ ((*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-114))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376)))
+ (-4 *3 (-1273 *4)) (-5 *2 (-114)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-4 *1 (-242 *3))))
+ ((*1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1132)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-948)) (-5 *4 (-898)) (-5 *2 (-1303)) (-5 *1 (-1300))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *4 (-898))
+ (-5 *5 (-948)) (-5 *6 (-663 (-270))) (-5 *2 (-482)) (-5 *1 (-1299))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-326 *4))
- (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 (-171 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175))))
- ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560))))
- (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2)
- (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6))
- (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-114)) (-5 *1 (-844)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-38 (-421 (-560))))
- (-4 *2 (-175)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1290 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-885)) (-5 *2 (-713 (-564))) (-5 *3 (-564)))))
-(((*1 *1 *1) (-4 *1 (-176)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))))
+ (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *2 (-482))
+ (-5 *1 (-1299))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *4 (-663 (-270)))
+ (-5 *2 (-482)) (-5 *1 (-1299)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-183))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-324))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1001))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1025))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1067))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1104)))))
+(((*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1080)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -1938 *3)))
+ (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-520)) (-5 *2 (-713 (-109))) (-5 *1 (-178))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-520)) (-5 *2 (-713 (-109))) (-5 *1 (-1116)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *6)) (-4 *5 (-1132))
- (-4 *6 (-1247)) (-5 *2 (-1 *6 *5)) (-5 *1 (-665 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *2)) (-4 *5 (-1132))
- (-4 *2 (-1247)) (-5 *1 (-665 *5 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 *5)) (-4 *6 (-1132))
- (-4 *5 (-1247)) (-5 *2 (-1 *5 *6)) (-5 *1 (-665 *6 *5))))
- ((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *2)) (-4 *5 (-1132))
- (-4 *2 (-1247)) (-5 *1 (-665 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-663 *5)) (-5 *4 (-663 *6))
- (-4 *5 (-1132)) (-4 *6 (-1247)) (-5 *1 (-665 *5 *6))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1132)) (-4 *2 (-1247)) (-5 *1 (-665 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1175)) (-5 *3 (-146)) (-5 *2 (-793)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1207)) (-5 *3 (-663 *1)) (-4 *1 (-435 *4))
- (-4 *4 (-1132))))
- ((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1207)) (-4 *1 (-435 *3)) (-4 *3 (-1132))))
- ((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1207)) (-4 *1 (-435 *3)) (-4 *3 (-1132))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1207)) (-4 *1 (-435 *3)) (-4 *3 (-1132))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1207)) (-4 *1 (-435 *3)) (-4 *3 (-1132)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
- (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-894 *3)) (-5 *2 (-560))))
- ((*1 *1 *1) (-4 *1 (-1033)))
- ((*1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1043))))
- ((*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-4 *1 (-1043))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-948))))
- ((*1 *1 *1) (-4 *1 (-1043))))
+ (-12 (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-571))
+ (-4 *7 (-979 *3 *5 *6))
+ (-5 *2 (-2 (|:| -2030 (-793)) (|:| -2625 *8) (|:| |radicand| *8)))
+ (-5 *1 (-982 *5 *6 *3 *7 *8)) (-5 *4 (-793))
+ (-4 *8
+ (-13 (-376)
+ (-10 -8 (-15 -3913 ($ *7)) (-15 -2473 (*7 $)) (-15 -2484 (*7 $))))))))
(((*1 *2)
- (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4))) (-5 *2 (-711 (-421 *4))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-793)) (-4 *1 (-1273 *4)) (-4 *4 (-1080))
- (-5 *2 (-1297 *4)))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-663 (-495 *4 *5))) (-5 *3 (-888 *4))
- (-14 *4 (-663 (-1207))) (-4 *5 (-466)) (-5 *1 (-650 *4 *5)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-229)) (|:| |xend| (-229))
- (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229)))
- (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229)))
- (|:| |abserr| (-229)) (|:| |relerr| (-229))))
- (-5 *2 (-391)) (-5 *1 (-208)))))
-(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))))
+ (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
+ (-4 *3 (-380 *4))))
+ ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-871)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)) (-4 *2 (-466)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2132 *3)))
+ (|partial| -12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1132) (-34)))
+ (-4 *3 (-13 (-1132) (-34))))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-663 (-114))) (-5 *7 (-711 (-229)))
+ (-5 *8 (-711 (-560))) (-5 *3 (-560)) (-5 *4 (-229)) (-5 *5 (-114))
+ (-5 *2 (-1066)) (-5 *1 (-776)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-887)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2584 *1) (|:| -3276 *1))) (-4 *1 (-319))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-4 *3 (-1132))
+ (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2584 (-793)) (|:| -3276 (-793))))
+ (-5 *1 (-793))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| -2584 *3) (|:| -3276 *3)))
(-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-930 *2)) (-4 *2 (-1132))))
- ((*1 *1 *2) (-12 (-5 *1 (-930 *2)) (-4 *2 (-1132)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))))
-(((*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302))))
- ((*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-663 *4)) (-5 *1 (-1172 *3 *4))
- (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34))))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1125 *3)) (-5 *1 (-1089 *2 *3)) (-4 *3 (-1247))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1120 *3)) (-5 *1 (-1123 *3)) (-4 *3 (-1247))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247))))
- ((*1 *1 *2) (-12 (-5 *1 (-1264 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 (-48))) (-5 *2 (-419 *3)) (-5 *1 (-39 *3))
- (-4 *3 (-1273 (-48)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-419 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 (-48))) (-4 *5 (-871)) (-4 *6 (-815))
- (-5 *2 (-419 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-979 (-48) *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 (-48))) (-4 *5 (-871)) (-4 *6 (-815))
- (-4 *7 (-979 (-48) *6 *5)) (-5 *2 (-419 (-1201 *7)))
- (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1201 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-319)) (-5 *2 (-419 *3)) (-5 *1 (-169 *4 *3))
- (-4 *3 (-1273 (-171 *4)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-870))) (-5 *2 (-419 *3))
- (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-419 *3))
- (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-419 *3))
- (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-5 *2 (-419 *3)) (-5 *1 (-220 *4 *3))
- (-4 *3 (-1273 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3))
- (-4 *3 (-1273 (-560)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 (-793))) (-5 *2 (-419 *3)) (-5 *1 (-456 *3))
- (-4 *3 (-1273 (-560)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-663 (-793))) (-5 *5 (-793)) (-5 *2 (-419 *3))
- (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3))
- (-4 *3 (-1273 (-560)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-419 (-171 (-560)))) (-5 *1 (-460))
- (-5 *3 (-171 (-560)))))
- ((*1 *2 *3)
- (-12
- (-4 *4
- (-13 (-871)
- (-10 -8 (-15 -1407 ((-1207) $))
- (-15 -2462 ((-3 $ "failed") (-1207))))))
- (-4 *5 (-815)) (-4 *7 (-571)) (-5 *2 (-419 *3))
- (-5 *1 (-470 *4 *5 *6 *7 *3)) (-4 *6 (-571))
- (-4 *3 (-979 *7 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-319)) (-5 *2 (-419 (-1201 *4))) (-5 *1 (-472 *4))
- (-5 *3 (-1201 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376))
- (-4 *7 (-13 (-376) (-149) (-746 *5 *6))) (-5 *2 (-419 *3))
- (-5 *1 (-508 *5 *6 *7 *3)) (-4 *3 (-1273 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-419 (-1201 *7)) (-1201 *7)))
- (-4 *7 (-13 (-319) (-149))) (-4 *5 (-871)) (-4 *6 (-815))
- (-5 *2 (-419 *3)) (-5 *1 (-554 *5 *6 *7 *3))
- (-4 *3 (-979 *7 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-419 (-1201 *7)) (-1201 *7)))
- (-4 *7 (-13 (-319) (-149))) (-4 *5 (-871)) (-4 *6 (-815))
- (-4 *8 (-979 *7 *6 *5)) (-5 *2 (-419 (-1201 *8)))
- (-5 *1 (-554 *5 *6 *7 *8)) (-5 *3 (-1201 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-573 *3)) (-4 *3 (-559))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-663 *5) *6))
- (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))))
- (-4 *6 (-1273 *5)) (-5 *2 (-663 (-677 (-421 *6))))
- (-5 *1 (-681 *5 *6)) (-5 *3 (-677 (-421 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))))
- (-4 *5 (-1273 *4)) (-5 *2 (-663 (-677 (-421 *5))))
- (-5 *1 (-681 *4 *5)) (-5 *3 (-677 (-421 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-841 *4)) (-4 *4 (-871)) (-5 *2 (-663 (-694 *4)))
- (-5 *1 (-694 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-560)) (-5 *2 (-663 *3)) (-5 *1 (-718 *3))
- (-4 *3 (-1273 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-363)) (-5 *2 (-419 *3))
- (-5 *1 (-720 *4 *5 *6 *3)) (-4 *3 (-979 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-363))
- (-4 *7 (-979 *6 *5 *4)) (-5 *2 (-419 (-1201 *7)))
- (-5 *1 (-720 *4 *5 *6 *7)) (-5 *3 (-1201 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-815))
- (-4 *5
- (-13 (-871)
- (-10 -8 (-15 -1407 ((-1207) $))
- (-15 -2462 ((-3 $ "failed") (-1207))))))
- (-4 *6 (-319)) (-5 *2 (-419 *3)) (-5 *1 (-752 *4 *5 *6 *3))
- (-4 *3 (-979 (-975 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-815))
- (-4 *5 (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $))))) (-4 *6 (-571))
- (-5 *2 (-419 *3)) (-5 *1 (-754 *4 *5 *6 *3))
- (-4 *3 (-979 (-421 (-975 *6)) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-13 (-319) (-149)))
- (-5 *2 (-419 *3)) (-5 *1 (-755 *4 *5 *6 *3))
- (-4 *3 (-979 (-421 *6) *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-13 (-319) (-149)))
- (-5 *2 (-419 *3)) (-5 *1 (-763 *4 *5 *6 *3))
- (-4 *3 (-979 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-13 (-319) (-149)))
- (-4 *7 (-979 *6 *5 *4)) (-5 *2 (-419 (-1201 *7)))
- (-5 *1 (-763 *4 *5 *6 *7)) (-5 *3 (-1201 *7))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-419 *3)) (-5 *1 (-1038 *3))
- (-4 *3 (-1273 (-421 (-560))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-419 *3)) (-5 *1 (-1073 *3))
- (-4 *3 (-1273 (-421 (-975 (-560)))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1273 (-421 (-560))))
- (-4 *5 (-13 (-376) (-149) (-746 (-421 (-560)) *4)))
- (-5 *2 (-419 *3)) (-5 *1 (-1111 *4 *5 *3)) (-4 *3 (-1273 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1273 (-421 (-975 (-560)))))
- (-4 *5 (-13 (-376) (-149) (-746 (-421 (-975 (-560))) *4)))
- (-5 *2 (-419 *3)) (-5 *1 (-1112 *4 *5 *3)) (-4 *3 (-1273 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-466))
- (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-419 (-1201 (-421 *7))))
- (-5 *1 (-1203 *4 *5 *6 *7)) (-5 *3 (-1201 (-421 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1252))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-419 *3)) (-5 *1 (-1263 *3)) (-4 *3 (-1273 (-560))))))
+ (-12 (-4 *1 (-1135 *3 *2 *4 *5 *6)) (-4 *3 (-1132)) (-4 *4 (-1132))
+ (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-1132)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571))
- (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-520)) (-5 *1 (-291))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-3 (-560) (-229) (-520) (-1189) (-1212)))
- (-5 *1 (-1212)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1207)) (-5 *2 (-326 (-560))) (-5 *1 (-958))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-1132)) (-5 *1 (-959 *3 *2)) (-4 *2 (-435 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-432 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-114) "failed")) (-4 *3 (-466)) (-4 *4 (-871))
- (-4 *5 (-815)) (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-979 *3 *5 *4)))))
-(((*1 *2 *2 *3)
- (-12
+ (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-887))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-421 (-975 *5)))) (-5 *4 (-663 (-1207)))
+ (-4 *5 (-571)) (-5 *2 (-663 (-663 (-975 *5)))) (-5 *1 (-1216 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -4378 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-376)) (-4 *7 (-1273 *6))
+ (-5 *2 (-2 (|:| |answer| (-597 (-421 *7))) (|:| |a0| *6)))
+ (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))))
+(((*1 *1 *1) (-12 (-5 *1 (-419 *2)) (-4 *2 (-571)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1273 *6))
+ (-4 *6 (-13 (-376) (-149) (-1069 *4))) (-5 *4 (-560))
(-5 *2
- (-2 (|:| |partsol| (-1297 (-421 (-975 *4))))
- (|:| -1954 (-663 (-1297 (-421 (-975 *4)))))))
- (-5 *3 (-663 *7)) (-4 *4 (-13 (-319) (-149)))
- (-4 *7 (-979 *4 *6 *5)) (-4 *5 (-13 (-871) (-633 (-1207))))
- (-4 *6 (-815)) (-5 *1 (-953 *4 *5 *6 *7)))))
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-114))))
+ (|:| -2439
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-1046 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-793)) (-5 *3 (-972 *4)) (-4 *1 (-1165 *4))
+ (-4 *4 (-1080))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-793)) (-5 *4 (-972 (-229))) (-5 *2 (-1303))
+ (-5 *1 (-1301)))))
+(((*1 *1) (-5 *1 (-846))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1175)) (-5 *2 (-1264 (-560))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *2 (-871))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871)))))
+(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-956)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-793)) (-4 *4 (-319)) (-4 *6 (-1273 *4))
+ (-5 *2 (-1297 (-663 *6))) (-5 *1 (-469 *4 *6)) (-5 *5 (-663 *6)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1132)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
- (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
- (|:| |relerr| (-229))))
- (-5 *2 (-114)) (-5 *1 (-313)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381))
- (-5 *2 (-1201 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381))
- (-5 *2 (-1201 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-593)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-975 (-560))) (-5 *3 (-1207))
- (-5 *4 (-1120 (-421 (-560)))) (-5 *1 (-30)))))
-(((*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302))))
- ((*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-663 (-2 (|:| |val| (-663 *6)) (|:| -4297 *7))))
- (-4 *6 (-1096 *3 *4 *5)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466))
- (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1019 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-663 (-2 (|:| |val| (-663 *6)) (|:| -4297 *7))))
- (-4 *6 (-1096 *3 *4 *5)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466))
- (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1138 *3 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-494)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-495 *4 *5)) (-14 *4 (-663 (-1207))) (-4 *5 (-1080))
- (-5 *2 (-975 *5)) (-5 *1 (-973 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-115))))
- ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-115))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1080)) (-4 *3 (-871))
- (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-793))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871))
- (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-793))))
- ((*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-871)) (-5 *2 (-793)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-571)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *2 (-663 *1)) (-4 *1 (-1096 *3 *4 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3)))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1066))
- (-5 *1 (-770)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571))
- (-5 *2 (-114)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-846)) (-5 *1 (-845)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *1 (-701 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132)))))
+ (-663
+ (-2 (|:| -1604 (-793))
+ (|:| |eqns|
+ (-663
+ (-2 (|:| |det| *7) (|:| |rows| (-663 (-560)))
+ (|:| |cols| (-663 (-560))))))
+ (|:| |fgb| (-663 *7)))))
+ (-4 *7 (-979 *4 *6 *5)) (-4 *4 (-13 (-319) (-149)))
+ (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-793))
+ (-5 *1 (-953 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-663 (-663 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-663 (-3 (|:| |array| (-663 *3)) (|:| |scalar| (-1207)))))
+ (-5 *6 (-663 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1134))
+ (-5 *1 (-409))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-663 (-663 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-663 (-3 (|:| |array| (-663 *3)) (|:| |scalar| (-1207)))))
+ (-5 *6 (-663 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1134))
+ (-5 *1 (-409))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-663 (-1207))) (-5 *5 (-1210)) (-5 *3 (-1207))
+ (-5 *2 (-1134)) (-5 *1 (-409)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *4 (-898))
+ (-5 *5 (-948)) (-5 *6 (-663 (-270))) (-5 *2 (-1300))
+ (-5 *1 (-1299))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *4 (-663 (-270)))
+ (-5 *2 (-1300)) (-5 *1 (-1299)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-560)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080)))))
-(((*1 *2 *1) (-12 (-5 *2 (-987 (-187 (-141)))) (-5 *1 (-345))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 (-1248))) (-5 *1 (-619)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-376)) (-5 *1 (-661 *3 *4))
- (-14 *4 (-663 (-1207))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-948)) (-5 *1 (-808)))))
-(((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-651)))))
-(((*1 *2 *1) (-12 (-5 *2 (-258)) (-5 *1 (-345)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-262 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-871))
- (-4 *5 (-815)) (-4 *2 (-277 *4)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2788 *3) (|:| |coef2| (-803 *3))))
- (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080)))))
+ (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319))
+ (-5 *2 (-663 (-793))) (-5 *1 (-800 *3 *4 *5 *6 *7))
+ (-4 *3 (-1273 *6)) (-4 *7 (-979 *6 *4 *5)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1185 *4)) (-5 *3 (-560)) (-4 *4 (-1080))
+ (-5 *1 (-1191 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-560)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-1080))
+ (-14 *4 (-1207)) (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *6))
- (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-663 (-931 *3))) (-5 *1 (-934 *3)) (-4 *3 (-1132)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
+ (-12 (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4)))
+ (-5 *2 (-1297 *6)) (-5 *1 (-346 *3 *4 *5 *6))
+ (-4 *6 (-355 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-286)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1297 *5)) (-4 *5 (-814)) (-5 *2 (-114))
+ (-5 *1 (-867 *4 *5)) (-14 *4 (-793)))))
+(((*1 *2 *2)
(-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-630 *1)) (-4 *1 (-435 *4)) (-4 *4 (-1132))
- (-4 *4 (-571)) (-5 *2 (-421 (-1201 *1)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1233)))
- (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
- (-5 *2 (-1201 (-421 (-1201 *3)))) (-5 *1 (-575 *6 *3 *7))
- (-5 *5 (-1201 *3)) (-4 *7 (-1132))))
+ (-4 *2 (-13 (-435 *3) (-1033))))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1141)) (-5 *3 (-560)))))
+(((*1 *1) (-5 *1 (-623))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-844)) (-5 *4 (-51)) (-5 *2 (-1303)) (-5 *1 (-853)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1123 (-864 *3))) (-4 *3 (-13 (-1233) (-989) (-29 *5)))
+ (-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
+ (-5 *2
+ (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-663 (-864 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-223 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1123 (-864 *3))) (-5 *5 (-1189))
+ (-4 *3 (-13 (-1233) (-989) (-29 *6)))
+ (-4 *6 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
+ (-5 *2
+ (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-663 (-864 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-223 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1294 *5)) (-14 *5 (-1207)) (-4 *6 (-1080))
- (-5 *2 (-1266 *5 (-975 *6))) (-5 *1 (-977 *5 *6)) (-5 *3 (-975 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *5 (-871)) (-5 *2 (-1201 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-5 *2 (-1201 *1))
- (-4 *1 (-979 *4 *5 *3))))
+ (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1123 (-864 (-326 *5))))
+ (-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
+ (-5 *2
+ (-3 (|:| |f1| (-864 (-326 *5))) (|:| |f2| (-663 (-864 (-326 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-224 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-421 (-975 *6))) (-5 *4 (-1123 (-864 (-326 *6))))
+ (-5 *5 (-1189))
+ (-4 *6 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
+ (-5 *2
+ (-3 (|:| |f1| (-864 (-326 *6))) (|:| |f2| (-663 (-864 (-326 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-224 *6))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-1080))
- (-4 *7 (-979 *6 *5 *4)) (-5 *2 (-421 (-1201 *3)))
- (-5 *1 (-980 *5 *4 *6 *7 *3))
- (-4 *3
- (-13 (-376)
- (-10 -8 (-15 -1578 ($ *7)) (-15 -3757 (*7 $)) (-15 -3771 (*7 $)))))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1201 *3))
- (-4 *3
- (-13 (-376)
- (-10 -8 (-15 -1578 ($ *7)) (-15 -3757 (*7 $)) (-15 -3771 (*7 $)))))
- (-4 *7 (-979 *6 *5 *4)) (-4 *5 (-815)) (-4 *4 (-871))
- (-4 *6 (-1080)) (-5 *1 (-980 *5 *4 *6 *7 *3))))
+ (-12 (-5 *4 (-1123 (-864 (-421 (-975 *5))))) (-5 *3 (-421 (-975 *5)))
+ (-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
+ (-5 *2
+ (-3 (|:| |f1| (-864 (-326 *5))) (|:| |f2| (-663 (-864 (-326 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-224 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1123 (-864 (-421 (-975 *6))))) (-5 *5 (-1189))
+ (-5 *3 (-421 (-975 *6)))
+ (-4 *6 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
+ (-5 *2
+ (-3 (|:| |f1| (-864 (-326 *6))) (|:| |f2| (-663 (-864 (-326 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-224 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1207)) (-4 *5 (-571))
- (-5 *2 (-421 (-1201 (-421 (-975 *5))))) (-5 *1 (-1071 *5))
- (-5 *3 (-421 (-975 *5))))))
-(((*1 *2)
- (-12 (-5 *2 (-114)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132))
- (-4 *4 (-1132)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *1 (-701 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))))
-(((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-948))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-948))
- (-5 *1 (-542 *4)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-948)) (-5 *1 (-456 *2))
- (-4 *2 (-1273 (-560)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-948)) (-5 *4 (-793)) (-5 *1 (-456 *2))
- (-4 *2 (-1273 (-560)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-948)) (-5 *4 (-663 (-793))) (-5 *1 (-456 *2))
- (-4 *2 (-1273 (-560)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-948)) (-5 *4 (-663 (-793))) (-5 *5 (-793))
- (-5 *1 (-456 *2)) (-4 *2 (-1273 (-560)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-948)) (-5 *4 (-663 (-793))) (-5 *5 (-793))
- (-5 *6 (-114)) (-5 *1 (-456 *2)) (-4 *2 (-1273 (-560)))))
+ (-12 (-5 *4 (-1207))
+ (-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
+ (-5 *2 (-3 *3 (-663 *3))) (-5 *1 (-444 *5 *3))
+ (-4 *3 (-13 (-1233) (-989) (-29 *5)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-488 *3 *4 *5))
+ (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1120 (-864 (-391))))
+ (-5 *5 (-391)) (-5 *6 (-1094)) (-5 *2 (-1066)) (-5 *1 (-579))))
+ ((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1066)) (-5 *1 (-579))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1120 (-864 (-391))))
+ (-5 *5 (-391)) (-5 *2 (-1066)) (-5 *1 (-579))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1120 (-864 (-391))))
+ (-5 *5 (-391)) (-5 *2 (-1066)) (-5 *1 (-579))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-948)) (-5 *4 (-419 *2)) (-4 *2 (-1273 *5))
- (-5 *1 (-458 *5 *2)) (-4 *5 (-1080)))))
-(((*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-948)) (-5 *2 (-1297 *4)) (-5 *1 (-542 *4))
- (-4 *4 (-363)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-774)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-549) (-663 (-549)))) (-5 *1 (-115))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-549) (-663 (-549)))) (-5 *1 (-115))))
- ((*1 *1) (-5 *1 (-592))))
-(((*1 *2 *3) (-12 (-5 *3 (-421 (-560))) (-5 *2 (-229)) (-5 *1 (-315)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1264 (-560))) (-4 *1 (-673 *3)) (-4 *3 (-1247))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-673 *3)) (-4 *3 (-1247)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132))
- (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-421 (-975 (-171 (-560))))) (-5 *2 (-663 (-171 *4)))
- (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-870)))))
+ (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1120 (-864 (-391))))
+ (-5 *2 (-1066)) (-5 *1 (-579))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1120 (-864 (-391)))))
+ (-5 *2 (-1066)) (-5 *1 (-579))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-663 (-421 (-975 (-171 (-560))))))
- (-5 *4 (-663 (-1207))) (-5 *2 (-663 (-663 (-171 *5))))
- (-5 *1 (-392 *5)) (-4 *5 (-13 (-376) (-870))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6))
- (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871))
- (-4 *3 (-1096 *6 *7 *8))
- (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *4))))
- (-5 *1 (-1103 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3))))
+ (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1120 (-864 (-391)))))
+ (-5 *5 (-391)) (-5 *2 (-1066)) (-5 *1 (-579))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1120 (-864 (-391)))))
+ (-5 *5 (-391)) (-5 *2 (-1066)) (-5 *1 (-579))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1120 (-864 (-391)))))
+ (-5 *5 (-391)) (-5 *6 (-1094)) (-5 *2 (-1066)) (-5 *1 (-579))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -4297 *9))))
- (-5 *5 (-114)) (-4 *8 (-1096 *6 *7 *4)) (-4 *9 (-1102 *6 *7 *4 *8))
- (-4 *6 (-466)) (-4 *7 (-815)) (-4 *4 (-871))
- (-5 *2 (-663 (-2 (|:| |val| *8) (|:| -4297 *9))))
- (-5 *1 (-1103 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-793)) (-4 *5 (-376)) (-5 *2 (-421 *6))
- (-5 *1 (-891 *5 *4 *6)) (-4 *4 (-1290 *5)) (-4 *6 (-1273 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-793)) (-5 *4 (-1287 *5 *6 *7)) (-4 *5 (-376))
- (-14 *6 (-1207)) (-14 *7 *5) (-5 *2 (-421 (-1266 *6 *5)))
- (-5 *1 (-892 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-793)) (-5 *4 (-1287 *5 *6 *7)) (-4 *5 (-376))
- (-14 *6 (-1207)) (-14 *7 *5) (-5 *2 (-421 (-1266 *6 *5)))
- (-5 *1 (-892 *5 *6 *7)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2788 *4)))
- (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-793)) (-4 *5 (-363)) (-4 *6 (-1273 *5))
- (-5 *2
- (-663
- (-2 (|:| -1954 (-711 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-711 *6)))))
- (-5 *1 (-512 *5 *6 *7))
- (-5 *3
- (-2 (|:| -1954 (-711 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-711 *6))))
- (-4 *7 (-1273 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080))
- (-5 *2 (-2 (|:| |k| (-841 *3)) (|:| |c| *4))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1132)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-32 *3 *4))
- (-4 *4 (-435 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-55)) (-5 *1 (-115))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-793)) (-5 *1 (-115))))
- ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-115))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-160 *3 *4))
- (-4 *4 (-435 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-115)) (-5 *1 (-165))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-287 *3 *4))
- (-4 *4 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310))))
- ((*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *4 (-1132)) (-5 *1 (-434 *3 *4))
- (-4 *3 (-435 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-445 *3 *4))
- (-4 *4 (-435 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-630 *3)) (-4 *3 (-1132))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-648 *3 *4))
- (-4 *4 (-13 (-435 *3) (-1033) (-1233)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1050))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1221 *2)) (-4 *2 (-1132)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *2 (-871)) (-4 *5 (-1096 *3 *4 *2)))))
-(((*1 *1) (-5 *1 (-592))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815))
- (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1069 (-560))) (-4 *3 (-571)) (-5 *1 (-32 *3 *2))
- (-4 *2 (-435 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-1201 *4)) (-5 *1 (-167 *3 *4))
- (-4 *3 (-168 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-1080)) (-4 *1 (-310))))
- ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1201 *3))))
- ((*1 *2) (-12 (-4 *1 (-746 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1273 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1099 *3 *2)) (-4 *3 (-13 (-870) (-376)))
- (-4 *2 (-1273 *3)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-841 *3)) (-4 *3 (-871)) (-5 *1 (-694 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-448)) (|:| -3280 "void")))
- (-5 *2 (-1303)) (-5 *1 (-1210))))
+ (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1123 (-864 (-391))))
+ (-5 *5 (-1189)) (-5 *2 (-1066)) (-5 *1 (-579))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1123 (-864 (-391))))
+ (-5 *5 (-1207)) (-5 *2 (-1066)) (-5 *1 (-579))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-560)))) (-4 *5 (-1273 *4))
+ (-5 *2 (-597 (-421 *5))) (-5 *1 (-582 *4 *5)) (-5 *3 (-421 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1207))
- (-5 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-5 *2 (-1303))
- (-5 *1 (-1210))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1207))
- (-5 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-5 *2 (-1303))
- (-5 *1 (-1210)))))
-(((*1 *1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4509)) (-4 *1 (-385 *2)) (-4 *2 (-1247))))
+ (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207)) (-4 *5 (-149))
+ (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560))))
+ (-5 *2 (-3 (-326 *5) (-663 (-326 *5)))) (-5 *1 (-603 *5))))
((*1 *1 *1)
- (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-174))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303))
- (-5 *1 (-1103 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303))
- (-5 *1 (-1139 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466))
- (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *1 (-1008 *3 *4 *5 *6)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-610 *3)) (-4 *3 (-1080))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1004 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-814))
- (-4 *5 (-871)) (-5 *2 (-114)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-630 *1))) (-4 *1 (-310)))))
-(((*1 *1) (-5 *1 (-146))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-948)) (-5 *1 (-154 *3 *4 *5)) (-14 *3 *2)
- (-4 *4 (-376)) (-14 *5 (-1024 *3 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1080)) (-5 *2 (-1201 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1135 *2 *3 *4 *5 *6)) (-4 *2 (-1132)) (-4 *3 (-1132))
- (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)) (-4 *2 (-571))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)) (-4 *2 (-571)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1132)) (-4 *4 (-1132))
- (-4 *6 (-1132)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *5 *4 *6)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-1229)))))
-(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-450)) (-5 *3 (-1207)) (-5 *1 (-1210))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-450)) (-5 *3 (-1207)) (-5 *1 (-1210))))
- ((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-450)) (-5 *3 (-663 (-1207))) (-5 *4 (-1207))
- (-5 *1 (-1210))))
- ((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-450)) (-5 *3 (-1207)) (-5 *1 (-1210))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-450)) (-5 *3 (-1207)) (-5 *1 (-1211))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-450)) (-5 *3 (-663 (-1207))) (-5 *1 (-1211)))))
-(((*1 *1 *1 *1) (-5 *1 (-229)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1072))))
- ((*1 *1 *1 *1) (-4 *1 (-1170))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *1 *1) (-4 *1 (-507)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-177 *3)) (-4 *3 (-319))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-696 *3)) (-4 *3 (-1247))))
+ (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-793)) (-4 *1 (-762 *3 *4)) (-4 *3 (-1080))
- (-4 *4 (-871))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-894 *3)) (-5 *2 (-560))))
+ (-12 (-4 *1 (-762 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-871))
+ (-4 *3 (-38 (-421 (-560))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *1 (-1011 *3)) (-4 *3 (-1080))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-663 *1)) (-5 *3 (-663 *7)) (-4 *1 (-1102 *4 *5 *6 *7))
- (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *1))
- (-4 *1 (-1102 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-1207)) (-5 *1 (-975 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-4 *3 (-1080))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-4 *2 (-871))
+ (-5 *1 (-1157 *3 *2 *4)) (-4 *4 (-979 *3 (-545 *2) *2))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466))
- (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-663 *1))
- (-4 *1 (-1102 *4 *5 *6 *3))))
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080))
+ (-5 *1 (-1191 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5))))
+ (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1198 *3 *4 *5))
+ (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -3251 *4))))
- (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *1) (-5 *1 (-623))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-793)) (-5 *1 (-803 *3)) (-4 *3 (-1080))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-985 *3 *2)) (-4 *2 (-133)) (-4 *3 (-571))
- (-4 *3 (-1080)) (-4 *2 (-814))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-793)) (-5 *1 (-1201 *3)) (-4 *3 (-1080))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1002)) (-4 *2 (-133)) (-5 *1 (-1209 *3)) (-4 *3 (-571))
+ (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1204 *3 *4 *5))
+ (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1205 *3 *4 *5))
+ (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1207)) (-5 *1 (-1240 *3)) (-4 *3 (-38 (-421 (-560))))
(-4 *3 (-1080))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-793)) (-5 *1 (-1266 *4 *3)) (-14 *4 (-1207))
- (-4 *3 (-1080)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-171 (-229)))) (-5 *2 (-1066))
- (-5 *1 (-776)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-948)) (-5 *1 (-808)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1257 *3 *4 *5))
+ (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-2196
+ (-12 (-5 *2 (-1207)) (-4 *1 (-1259 *3)) (-4 *3 (-1080))
+ (-12 (-4 *3 (-29 (-560))) (-4 *3 (-989)) (-4 *3 (-1233))
+ (-4 *3 (-38 (-421 (-560))))))
+ (-12 (-5 *2 (-1207)) (-4 *1 (-1259 *3)) (-4 *3 (-1080))
+ (-12 (|has| *3 (-15 -4162 ((-663 *2) *3)))
+ (|has| *3 (-15 -4424 (*3 *3 *2))) (-4 *3 (-38 (-421 (-560))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-560))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-560))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1278 *3 *4 *5))
+ (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-2196
+ (-12 (-5 *2 (-1207)) (-4 *1 (-1280 *3)) (-4 *3 (-1080))
+ (-12 (-4 *3 (-29 (-560))) (-4 *3 (-989)) (-4 *3 (-1233))
+ (-4 *3 (-38 (-421 (-560))))))
+ (-12 (-5 *2 (-1207)) (-4 *1 (-1280 *3)) (-4 *3 (-1080))
+ (-12 (|has| *3 (-15 -4162 ((-663 *2) *3)))
+ (|has| *3 (-15 -4424 (*3 *3 *2))) (-4 *3 (-38 (-421 (-560))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-560))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1287 *3 *4 *5))
+ (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-2196
+ (-12 (-5 *2 (-1207)) (-4 *1 (-1290 *3)) (-4 *3 (-1080))
+ (-12 (-4 *3 (-29 (-560))) (-4 *3 (-989)) (-4 *3 (-1233))
+ (-4 *3 (-38 (-421 (-560))))))
+ (-12 (-5 *2 (-1207)) (-4 *1 (-1290 *3)) (-4 *3 (-1080))
+ (-12 (|has| *3 (-15 -4162 ((-663 *2) *3)))
+ (|has| *3 (-15 -4424 (*3 *3 *2))) (-4 *3 (-38 (-421 (-560))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-560)))))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887))))
+ ((*1 *1 *1 *1) (-5 *1 (-887))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-793)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2))
+ (-4 *2 (-1273 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))))
+(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *3 (-560)) (-5 *2 (-114)) (-5 *1 (-494)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1297 (-663 (-2 (|:| -3853 *4) (|:| -3128 (-1151))))))
- (-4 *4 (-363)) (-5 *2 (-793)) (-5 *1 (-360 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-793)) (-5 *1 (-365 *3 *4)) (-14 *3 (-948))
- (-14 *4 (-948))))
- ((*1 *2)
- (-12 (-5 *2 (-793)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363))
- (-14 *4
- (-3 (-1201 *3)
- (-1297 (-663 (-2 (|:| -3853 *3) (|:| -3128 (-1151)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-793)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363))
- (-14 *4 (-948)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-571))
- (-5 *2 (-2 (|:| -2115 *4) (|:| -1774 *3) (|:| -2341 *3)))
- (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *2 (-2 (|:| -1774 *1) (|:| -2341 *1))) (-4 *1 (-1096 *3 *4 *5))))
+ (-12 (-5 *3 (-560)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-5 *2 (-1303)) (-5 *1 (-464 *4 *5 *6 *7)) (-4 *7 (-979 *4 *5 *6)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871))
+ (-5 *2 (-2 (|:| -2584 *1) (|:| -3276 *1))) (-4 *1 (-979 *4 *5 *3))))
((*1 *2 *1 *1)
- (-12 (-4 *3 (-571)) (-4 *3 (-1080))
- (-5 *2 (-2 (|:| -2115 *3) (|:| -1774 *1) (|:| -2341 *1)))
+ (-12 (-4 *3 (-1080)) (-5 *2 (-2 (|:| -2584 *1) (|:| -3276 *1)))
(-4 *1 (-1273 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-51)) (-5 *1 (-851)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *1 *1) (-4 *1 (-507)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175))
+ (-5 *2 (-711 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301))))
+ ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5)))
+ (-5 *2 (-663 (-663 *4))) (-5 *1 (-354 *3 *4 *5 *6))
+ (-4 *3 (-355 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4))) (-4 *3 (-381)) (-5 *2 (-663 (-663 *3))))))
+(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-171 (-391))) (-5 *1 (-807 *3)) (-4 *3 (-633 (-391)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-948)) (-5 *2 (-171 (-391))) (-5 *1 (-807 *3))
- (-4 *3 (-633 (-391)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-171 *4)) (-4 *4 (-175)) (-4 *4 (-633 (-391)))
- (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-171 *5)) (-5 *4 (-948)) (-4 *5 (-175))
- (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-975 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-633 (-391)))
- (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-975 (-171 *5))) (-5 *4 (-948)) (-4 *5 (-175))
- (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-975 *4)) (-4 *4 (-1080)) (-4 *4 (-633 (-391)))
- (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-975 *5)) (-5 *4 (-948)) (-4 *5 (-1080))
- (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571)) (-4 *4 (-633 (-391)))
- (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-948)) (-4 *5 (-571))
- (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-421 (-975 (-171 *4)))) (-4 *4 (-571))
- (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-421 (-975 (-171 *5)))) (-5 *4 (-948)) (-4 *5 (-571))
- (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-871))
- (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-326 *5)) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-871))
- (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-571)) (-4 *4 (-871))
- (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-948)) (-4 *5 (-571))
- (-4 *5 (-871)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391)))
- (-5 *1 (-807 *5)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-663 *1)) (-4 *1 (-319)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1252)) (-5 *1 (-150 *2 *4 *3))
- (-4 *3 (-1273 (-421 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-551 *3 *2))
- (-4 *2 (-1290 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-4 *4 (-1273 *3))
- (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1290 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-5 *1 (-556 *3 *2))
- (-4 *2 (-1290 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-13 (-571) (-149)))
- (-5 *1 (-1184 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-887) (-887))) (-5 *1 (-115))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-887) (-663 (-887)))) (-5 *1 (-115))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-887) (-663 (-887)))) (-5 *1 (-115))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1303)) (-5 *1 (-217 *3))
- (-4 *3
- (-13 (-871)
- (-10 -8 (-15 -3924 ((-1189) $ (-1207))) (-15 -4358 (*2 $))
- (-15 -4331 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-407))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-407))))
- ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-516))))
- ((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-732))))
- ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1227))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-1227)))))
-(((*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1189)) (-5 *1 (-808)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1135 *2 *3 *4 *5 *6)) (-4 *2 (-1132)) (-4 *3 (-1132))
- (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-793)) (-4 *6 (-1132)) (-4 *7 (-927 *6))
- (-5 *2 (-711 *7)) (-5 *1 (-714 *6 *7 *3 *4)) (-4 *3 (-385 *7))
- (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4508)))))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4509)) (-4 *1 (-251 *2)) (-4 *2 (-1247))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *3) (-12 (-5 *2 (-560)) (-5 *1 (-583 *3)) (-4 *3 (-1069 *2))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1135 *3 *4 *2 *5 *6)) (-4 *3 (-1132)) (-4 *4 (-1132))
- (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-1132)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *1 *1) (-4 *1 (-507)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3)))))
-(((*1 *1) (-5 *1 (-624))) ((*1 *1) (-5 *1 (-625))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207))
- (-14 *4 *2))))
+ (-12 (-5 *2 (-630 *4)) (-5 *1 (-631 *3 *4)) (-4 *3 (-1132))
+ (-4 *4 (-1132)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-114)) (-5 *5 (-1128 (-793))) (-5 *6 (-793))
+ (-5 *2
+ (-2 (|:| |contp| (-560))
+ (|:| -2609 (-663 (-2 (|:| |irr| *3) (|:| -4181 (-560)))))))
+ (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1066)) (-5 *3 (-1207)) (-5 *1 (-278)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-4 *2 (-13 (-435 *4) (-1033) (-1233)))
- (-5 *1 (-614 *4 *2 *3))
- (-4 *3 (-13 (-435 (-171 *4)) (-1033) (-1233))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1132))
- (-4 *6 (-1132)) (-4 *2 (-1132)) (-5 *1 (-702 *5 *6 *2)))))
+ (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207))
+ (-5 *2 (-560)) (-5 *1 (-1145 *4 *5)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229)))
- (|:| |lb| (-663 (-864 (-229))))
- (|:| |cf| (-663 (-326 (-229))))
- (|:| |ub| (-663 (-864 (-229))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-663 (-326 (-229))))
- (|:| -3161 (-663 (-229)))))))
- (-5 *2 (-663 (-1189))) (-5 *1 (-278)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-270))))
+ (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3))
+ (-4 *3 (-13 (-376) (-1233) (-1033))))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-114))
+ (-5 *2 (-1066)) (-5 *1 (-767)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-948)) (-4 *5 (-319)) (-4 *3 (-1273 *5))
+ (-5 *2 (-2 (|:| |plist| (-663 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-474 *5 *3)) (-5 *4 (-663 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1201 *7)) (-4 *7 (-979 *6 *4 *5)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *6 (-1080)) (-5 *2 (-1201 *6))
+ (-5 *1 (-333 *4 *5 *6 *7)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-31))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-135))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-140))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-156))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-164))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-222))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-698))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1050))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1097))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-1127)))))
+(((*1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-5 *1 (-146)))
+ ((*1 *1 *1) (-4 *1 (-1175))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-663 (-174)))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1132)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-711 *8)) (-4 *8 (-979 *5 *7 *6))
+ (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207))))
+ (-4 *7 (-815))
+ (-5 *2
+ (-663
+ (-2 (|:| -1604 (-793))
+ (|:| |eqns|
+ (-663
+ (-2 (|:| |det| *8) (|:| |rows| (-663 (-560)))
+ (|:| |cols| (-663 (-560))))))
+ (|:| |fgb| (-663 *8)))))
+ (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-793)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-363)) (-4 *2 (-1080)) (-5 *1 (-734 *2 *3))
+ (-4 *3 (-1273 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-270))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1189)) (-5 *3 (-663 (-270))) (-5 *1 (-271))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))))
-(((*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1080))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-4 *4 (-175)) (-4 *5 (-385 *4))
- (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-175)) (-4 *2 (-1080)) (-5 *1 (-736 *2 *3))
- (-4 *3 (-670 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-175)) (-4 *2 (-1080)) (-5 *1 (-736 *2 *3))
- (-4 *3 (-670 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-856 *2)) (-4 *2 (-175)) (-4 *2 (-1080))))
- ((*1 *1 *1) (-12 (-5 *1 (-856 *2)) (-4 *2 (-175)) (-4 *2 (-1080)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-560)) (-4 *3 (-175)) (-4 *5 (-385 *3))
- (-4 *6 (-385 *3)) (-5 *1 (-710 *3 *5 *6 *2))
- (-4 *2 (-708 *3 *5 *6)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-183))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-324))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1001))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1025))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1067))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1104)))))
+ (-12 (-5 *2 (-948)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-2 (|:| -4457 (-1201 *6)) (|:| -3205 (-560)))))
- (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-560))
- (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-979 *6 *4 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1207))
- (-4 *4 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)))
- (-5 *1 (-826 *4 *2)) (-4 *2 (-13 (-29 *4) (-1233) (-989)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-887))) ((*1 *1 *1 *1) (-5 *1 (-887)))
- ((*1 *1 *1) (-5 *1 (-887)))
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1078)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4))
+ (-4 *5 (-1273 (-421 *3))) (-5 *2 (-114))))
((*1 *2 *3)
- (-12 (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1080)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3))
- (-4 *5 (-385 *3)) (-5 *2 (-114))))
+ (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-96))))
+ ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-109))))
((*1 *2 *1)
- (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
- (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
- (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
- ((*1 *1 *1) (-4 *1 (-507)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3)))))
-(((*1 *1) (-4 *1 (-363)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 *5)) (-4 *5 (-435 *4)) (-4 *4 (-13 (-571) (-149)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-663 (-1201 *5)))
- (|:| |prim| (-1201 *5))))
- (-5 *1 (-446 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-571) (-149)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1201 *3))
- (|:| |pol2| (-1201 *3)) (|:| |prim| (-1201 *3))))
- (-5 *1 (-446 *4 *3)) (-4 *3 (-27)) (-4 *3 (-435 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-975 *5)) (-5 *4 (-1207)) (-4 *5 (-13 (-376) (-149)))
- (-5 *2
- (-2 (|:| |coef1| (-560)) (|:| |coef2| (-560))
- (|:| |prim| (-1201 *5))))
- (-5 *1 (-990 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-663 (-1207)))
- (-4 *5 (-13 (-376) (-149)))
- (-5 *2
- (-2 (|:| -2115 (-663 (-560))) (|:| |poly| (-663 (-1201 *5)))
- (|:| |prim| (-1201 *5))))
- (-5 *1 (-990 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-663 (-975 *6))) (-5 *4 (-663 (-1207))) (-5 *5 (-1207))
- (-4 *6 (-13 (-376) (-149)))
+ (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1132)) (-4 *2 (-1132))))
+ ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-452 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-497))))
+ ((*1 *2 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1132))))
+ ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-889))))
+ ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-994))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1107 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1147))))
+ ((*1 *1 *1) (-5 *1 (-1207))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-730 *3)) (-5 *1 (-850 *2 *3)) (-4 *3 (-1080)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-114)) (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560))))
+ (-4 *3 (-13 (-27) (-1233) (-435 *6) (-10 -8 (-15 -3913 ($ *7)))))
+ (-4 *7 (-870))
+ (-4 *8
+ (-13 (-1276 *3 *7) (-376) (-1233)
+ (-10 -8 (-15 -3161 ($ $)) (-15 -4424 ($ $)))))
(-5 *2
- (-2 (|:| -2115 (-663 (-560))) (|:| |poly| (-663 (-1201 *6)))
- (|:| |prim| (-1201 *6))))
- (-5 *1 (-990 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252))
- (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))))))
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))))
+ (-5 *1 (-438 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1189)) (-4 *9 (-1014 *8))
+ (-14 *10 (-1207)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-560))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175))
- (-4 *5 (-1273 *4)) (-5 *2 (-711 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3))
- (-5 *2 (-711 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174))))
- ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1300))))
- ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1301)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-948)) (-5 *2 (-1303)) (-5 *1 (-217 *4))
- (-4 *4
- (-13 (-871)
- (-10 -8 (-15 -3924 ((-1189) $ (-1207))) (-15 -4358 (*2 $))
- (-15 -4331 (*2 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1303)) (-5 *1 (-217 *3))
- (-4 *3
- (-13 (-871)
- (-10 -8 (-15 -3924 ((-1189) $ (-1207))) (-15 -4358 (*2 $))
- (-15 -4331 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-516)))))
-(((*1 *2 *3) (-12 (-5 *3 (-171 (-560))) (-5 *2 (-114)) (-5 *1 (-460))))
- ((*1 *2 *3)
(-12
(-5 *3
- (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4)
- (-255 *4 (-421 (-560)))))
- (-14 *4 (-663 (-1207))) (-14 *5 (-793)) (-5 *2 (-114))
- (-5 *1 (-519 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-991 *3)) (-4 *3 (-559))))
- ((*1 *2 *1) (-12 (-4 *1 (-1252)) (-5 *2 (-114)))))
-(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-195))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-313))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-315)))))
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-815)) (-4 *2 (-979 *4 *5 *6)) (-5 *1 (-464 *4 *5 *6 *2))
+ (-4 *4 (-466)) (-4 *6 (-871)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1135 *3 *2 *4 *5 *6)) (-4 *3 (-1132)) (-4 *4 (-1132))
- (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-1132)))))
+ (-12
+ (-5 *2
+ (-663
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-560)))))
+ (-5 *1 (-419 *3)) (-4 *3 (-571))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-793)) (-4 *3 (-363)) (-4 *5 (-1273 *3))
+ (-5 *2 (-663 (-1201 *3))) (-5 *1 (-512 *3 *5 *6))
+ (-4 *6 (-1273 *5)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1132))))
+ ((*1 *1 *2) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1132)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-5 *2 (-1201 *3)) (-5 *1 (-41 *4 *3))
- (-4 *3
- (-13 (-376) (-310)
- (-10 -8 (-15 -3757 ((-1156 *4 (-630 $)) $))
- (-15 -3771 ((-1156 *4 (-630 $)) $))
- (-15 -1578 ($ (-1156 *4 (-630 $))))))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
- (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
- ((*1 *1 *1) (-4 *1 (-507)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3)))))
-(((*1 *1) (-5 *1 (-623))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848)))))
-(((*1 *1 *1 *1) (-4 *1 (-559))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1080))
- (-4 *4 (-814)))))
-(((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
- (-4 *3 (-380 *4))))
- ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-222))))
- ((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247))))
- ((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-698))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-793)) (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080))
- (-4 *4 (-815)) (-4 *5 (-871)) (-4 *3 (-571)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 *4))
- (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7))
- (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *4))))
- (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
- (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
- ((*1 *1 *1) (-4 *1 (-507)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301))))
- ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229))
- (-5 *2 (-1066)) (-5 *1 (-777)))))
-(((*1 *2)
- (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1170))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-774)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1297 (-663 (-2 (|:| -3853 *4) (|:| -3128 (-1151))))))
- (-4 *4 (-363)) (-5 *2 (-1303)) (-5 *1 (-542 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080))
- (-5 *2 (-114))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-114)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1080))
- (-4 *4 (-868)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2))
- (-4 *4 (-385 *2)))))
-(((*1 *2 *2 *2)
+ (-12 (-4 *1 (-950)) (-5 *2 (-2 (|:| -2625 (-663 *1)) (|:| -3583 *1)))
+ (-5 *3 (-663 *1)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391))
+ (-5 *2
+ (-2 (|:| -1430 *4) (|:| -2403 *4) (|:| |totalpts| (-560))
+ (|:| |success| (-114))))
+ (-5 *1 (-811)) (-5 *5 (-560)))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-704 *3)) (-4 *3 (-1132)))))
+(((*1 *1)
+ (-12 (-4 *1 (-418)) (-1394 (|has| *1 (-6 -4499)))
+ (-1394 (|has| *1 (-6 -4491)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1132)) (-4 *2 (-871))))
+ ((*1 *1) (-4 *1 (-866))) ((*1 *1 *1 *1) (-4 *1 (-874)))
+ ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-871)))))
+(((*1 *2 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-376)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407)))))
+(((*1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793))
+ (-4 *4 (-175)))))
+(((*1 *2 *3 *2)
(-12 (-5 *2 (-1185 *3)) (-4 *3 (-376)) (-4 *3 (-1080))
(-5 *1 (-1191 *3)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-769)))))
-(((*1 *2 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-1132)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-543)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-793)) (-4 *5 (-1080)) (-5 *2 (-560))
- (-5 *1 (-457 *5 *3 *6)) (-4 *3 (-1273 *5))
- (-4 *6 (-13 (-418) (-1069 *5) (-376) (-1233) (-296)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1080)) (-5 *2 (-560)) (-5 *1 (-457 *4 *3 *5))
- (-4 *3 (-1273 *4))
- (-4 *5 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-630 *1))) (-4 *1 (-310)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-663 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466))
- (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5))
- (-5 *1 (-1019 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-663 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466))
- (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5))
- (-5 *1 (-1138 *3 *4 *5 *6 *7)))))
-(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-544 *3)) (-4 *3 (-13 (-748) (-25))))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5))
- (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *1 (-1311 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-663 *8)) (-5 *3 (-1 (-114) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571))
- (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1311 *5 *6 *7 *8)))))
(((*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247))))
((*1 *2 *2)
(-12 (-4 *3 (-1080)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1273 *3))))
@@ -1283,372 +584,121 @@
(-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23))
(-14 *4 *3))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 *4))
- (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1290 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-948)) (-5 *1 (-1062 *2))
- (-4 *2 (-13 (-1132) (-10 -8 (-15 -2567 ($ $ $))))))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *2 (-871)) (-4 *5 (-1096 *3 *4 *2)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1303)) (-5 *1 (-1169))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-887))) (-5 *2 (-1303)) (-5 *1 (-1169)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080))))
- ((*1 *2)
- (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-948)) (-5 *4 (-419 *6)) (-4 *6 (-1273 *5))
- (-4 *5 (-1080)) (-5 *2 (-663 *6)) (-5 *1 (-458 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-51)))))
-(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301))))
- ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1201 *2)) (-4 *2 (-979 (-421 (-975 *6)) *5 *4))
- (-5 *1 (-754 *5 *4 *6 *2)) (-4 *5 (-815))
- (-4 *4 (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $)))))
- (-4 *6 (-571)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1120 (-229)))
- (-5 *2 (-1301)) (-5 *1 (-267)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1297 (-1297 (-560)))) (-5 *3 (-948)) (-5 *1 (-480)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-943 *3)) (-4 *3 (-319)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-174)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
- (-4 *4 (-1080)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2690 *4)))
- (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-705 *4 *3)) (-4 *4 (-1132))
- (-4 *3 (-1132)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-711 (-421 (-975 (-560)))))
- (-5 *2 (-663 (-711 (-326 (-560))))) (-5 *1 (-1059))
- (-5 *3 (-326 (-560))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-602 *4))
- (-4 *4 (-363)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1273 *2)) (-4 *2 (-1273 *4))
- (-5 *1 (-1016 *4 *2 *3 *5)) (-4 *4 (-363)) (-4 *5 (-746 *2 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-1178 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-934 (-560))) (-5 *1 (-946))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
-(((*1 *1 *1) (-4 *1 (-1091)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))))
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *1) (-5 *1 (-625))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1146)) (-5 *1 (-1147)))))
(((*1 *2)
- (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1080)) (-5 *2 (-114)) (-5 *1 (-458 *4 *3))
- (-4 *3 (-1273 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *5 (-871)) (-5 *2 (-114)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-663 *4)) (-4 *4 (-376)) (-5 *2 (-1297 *4))
- (-5 *1 (-836 *4 *3)) (-4 *3 (-680 *4)))))
-(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-229)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
- (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
- ((*1 *1 *1 *1) (-5 *1 (-391)))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-278)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-663 *2)) (-4 *2 (-1096 *4 *5 *6)) (-4 *4 (-571))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815))
- (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-663 *3))
- (-5 *1 (-605 *5 *6 *7 *8 *3)) (-4 *3 (-1140 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149)))
- (-5 *2
- (-663 (-2 (|:| -4410 (-1201 *5)) (|:| -2178 (-663 (-975 *5))))))
- (-5 *1 (-1109 *5 *6)) (-5 *3 (-663 (-975 *5)))
- (-14 *6 (-663 (-1207)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-319) (-149)))
- (-5 *2
- (-663 (-2 (|:| -4410 (-1201 *4)) (|:| -2178 (-663 (-975 *4))))))
- (-5 *1 (-1109 *4 *5)) (-5 *3 (-663 (-975 *4)))
- (-14 *5 (-663 (-1207)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149)))
+ (-12 (-4 *2 (-13 (-435 *3) (-1033))) (-5 *1 (-287 *3 *2))
+ (-4 *3 (-571)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-448))
(-5 *2
- (-663 (-2 (|:| -4410 (-1201 *5)) (|:| -2178 (-663 (-975 *5))))))
- (-5 *1 (-1109 *5 *6)) (-5 *3 (-663 (-975 *5)))
- (-14 *6 (-663 (-1207))))))
+ (-663
+ (-3 (|:| -4389 (-1207))
+ (|:| -1417 (-663 (-3 (|:| S (-1207)) (|:| P (-975 (-560)))))))))
+ (-5 *1 (-1211)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1207))
- (-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)))
- (-4 *4 (-13 (-29 *6) (-1233) (-989)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -1954 (-663 *4))))
- (-5 *1 (-823 *6 *4 *3)) (-4 *3 (-680 *4)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-629 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132)))))
-(((*1 *1) (-5 *1 (-229))) ((*1 *1) (-5 *1 (-391))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848)))))
-(((*1 *1 *1) (-4 *1 (-95)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
- (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-171 (-229))) (-5 *4 (-560)) (-5 *2 (-1066))
- (-5 *1 (-780)))))
+ (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4))
+ (-4 *5 (-1273 (-421 *3))) (-5 *2 (-114))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-560)) (|has| *1 (-6 -4509)) (-4 *1 (-1286 *3))
+ (-4 *3 (-1247)))))
+(((*1 *1 *1) (-4 *1 (-571))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560))))
- (-5 *1 (-437 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1233) (-435 *3)))
- (-14 *4 (-1207)) (-14 *5 *2)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560))))
- (-4 *2 (-13 (-27) (-1233) (-435 *3) (-10 -8 (-15 -1578 ($ *4)))))
- (-4 *4 (-870))
- (-4 *5
- (-13 (-1276 *2 *4) (-376) (-1233)
- (-10 -8 (-15 -2894 ($ $)) (-15 -2518 ($ $)))))
- (-5 *1 (-438 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1014 *5))
- (-14 *7 (-1207)))))
+ (-12 (-4 *3 (-633 (-915 *3))) (-4 *3 (-911 *3)) (-4 *3 (-466))
+ (-5 *1 (-1239 *3 *2)) (-4 *2 (-633 (-915 *3))) (-4 *2 (-911 *3))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-520)) (-5 *3 (-663 (-994))) (-5 *1 (-109)))))
+(((*1 *2)
+ (-12 (-4 *3 (-571)) (-5 *2 (-663 (-711 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-432 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-466))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1201 *6)) (-4 *6 (-979 *5 *3 *4)) (-4 *3 (-815))
+ (-4 *4 (-871)) (-4 *5 (-939)) (-5 *1 (-471 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-939)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-571)) (-5 *2 (-114)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229))
+ (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))
+ (-5 *2 (-1066)) (-5 *1 (-770)))))
+(((*1 *1 *1 *1) (-4 *1 (-559))))
(((*1 *2 *2)
(-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033)))
(-5 *1 (-179 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-130)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *4))))
- (-5 *1 (-1172 *3 *4)) (-4 *3 (-13 (-1132) (-34)))
- (-4 *4 (-13 (-1132) (-34))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571))
- (-5 *2 (-114)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *6 (-633 (-1207)))
- (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-871))
- (-5 *2 (-1196 (-663 (-975 *4)) (-663 (-305 (-975 *4)))))
- (-5 *1 (-518 *4 *5 *6 *7)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-793)) (-5 *1 (-697 *3)) (-4 *3 (-1080))
- (-4 *3 (-1132)))))
-(((*1 *1 *1) (-5 *1 (-1094))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-663 (-560))) (-5 *3 (-711 (-560))) (-5 *1 (-1141)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-229)) (|:| |xend| (-229))
- (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229)))
- (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229)))
- (|:| |abserr| (-229)) (|:| |relerr| (-229))))
- (-5 *2
- (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391))
- (|:| |expense| (-391)) (|:| |accuracy| (-391))
- (|:| |intermediateResults| (-391))))
- (-5 *1 (-825)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *5)) (-5 *4 (-948)) (-4 *5 (-871))
- (-5 *2 (-663 (-694 *5))) (-5 *1 (-694 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1207)) (-5 *2 (-1 (-229) (-229))) (-5 *1 (-725 *3))
- (-4 *3 (-633 (-549)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1207)) (-5 *2 (-1 (-229) (-229) (-229)))
- (-5 *1 (-725 *3)) (-4 *3 (-633 (-549))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-713 (-995 *3))) (-5 *1 (-995 *3)) (-4 *3 (-1132)))))
-(((*1 *1) (-5 *1 (-623))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-777)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-520)) (-5 *1 (-291)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391))
- (-5 *2
- (-2 (|:| -3853 *4) (|:| -4223 *4) (|:| |totalpts| (-560))
- (|:| |success| (-114))))
- (-5 *1 (-811)) (-5 *5 (-560)))))
-(((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-1201 (-975 *4))) (-5 *1 (-431 *3 *4))
- (-4 *3 (-432 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-4 *3 (-376))
- (-5 *2 (-1201 (-975 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1201 (-421 (-975 *3)))) (-5 *1 (-467 *3 *4 *5 *6))
- (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-793)) (-5 *1 (-576)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-376))
- (-5 *1 (-535 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5))))
+ (-12 (-5 *4 (-793)) (-5 *2 (-663 (-1207))) (-5 *1 (-213))
+ (-5 *3 (-1207))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-326 (-229))) (-5 *4 (-793)) (-5 *2 (-663 (-1207)))
+ (-5 *1 (-278))))
((*1 *2 *1)
- (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2))
- (|has| *2 (-6 (-4510 "*"))) (-4 *2 (-1080))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-175))
- (-5 *1 (-710 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5))))
+ (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175))
+ (-5 *2 (-663 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2))
- (-4 *5 (-245 *3 *2)) (|has| *2 (-6 (-4510 "*"))) (-4 *2 (-1080)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-793)) (-4 *5 (-571))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-1000 *5 *3)) (-4 *3 (-1273 *5)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-560) "failed") *5)) (-4 *5 (-1080))
- (-5 *2 (-560)) (-5 *1 (-557 *5 *3)) (-4 *3 (-1273 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-560) "failed") *4)) (-4 *4 (-1080))
- (-5 *2 (-560)) (-5 *1 (-557 *4 *3)) (-4 *3 (-1273 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-560) "failed") *4)) (-4 *4 (-1080))
- (-5 *2 (-560)) (-5 *1 (-557 *4 *3)) (-4 *3 (-1273 *4)))))
+ (-12 (-5 *2 (-663 *3)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871))
+ (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-694 *3)) (-4 *3 (-871))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-699 *3)) (-4 *3 (-871))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-841 *3)) (-4 *3 (-871))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-918 *3)) (-4 *3 (-871))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080))
+ (-5 *2 (-663 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-4 *5 (-435 *4))
- (-5 *2 (-419 *3)) (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1273 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323)) (-5 *1 (-308))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-323)) (-5 *1 (-308))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323)) (-5 *1 (-308))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 (-1189))) (-5 *3 (-1189)) (-5 *2 (-323))
- (-5 *1 (-308)))))
+ (-12 (-5 *3 (-948))
+ (-5 *2
+ (-3 (-1201 *4)
+ (-1297 (-663 (-2 (|:| -1430 *4) (|:| -1591 (-1151)))))))
+ (-5 *1 (-360 *4)) (-4 *4 (-363)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1207))
- (-4 *4 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
- (-5 *1 (-442 *4 *2)) (-4 *2 (-13 (-1233) (-29 *4)))))
+ (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-149))
+ (-4 *3 (-319)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *1 (-1008 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *7 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-571))
+ (-4 *8 (-979 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2030 (-793)) (|:| -2625 *3) (|:| |radicand| *3)))
+ (-5 *1 (-982 *5 *6 *7 *8 *3)) (-5 *4 (-793))
+ (-4 *3
+ (-13 (-376)
+ (-10 -8 (-15 -3913 ($ *8)) (-15 -2473 (*8 $)) (-15 -2484 (*8 $))))))))
+(((*1 *2 *2) (-12 (-5 *1 (-991 *2)) (-4 *2 (-559)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2))
+ (-4 *2 (-435 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207))))
+ ((*1 *1 *1) (-4 *1 (-162))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-505)) (-5 *4 (-983)) (-5 *2 (-713 (-547)))
+ (-5 *1 (-547))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207)) (-4 *5 (-149))
- (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-326 *5))
- (-5 *1 (-603 *5)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229))
- (-5 *2 (-1066)) (-5 *1 (-773)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-630 *3)) (-5 *5 (-1 (-1201 *3) (-1201 *3)))
- (-4 *3 (-13 (-27) (-435 *6))) (-4 *6 (-571)) (-5 *2 (-597 *3))
- (-5 *1 (-566 *6 *3)))))
-(((*1 *2)
- (-12 (-4 *1 (-363))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1033))
- (-4 *2 (-1080)))))
+ (-12 (-5 *4 (-983)) (-4 *3 (-1132)) (-5 *2 (-713 *1))
+ (-4 *1 (-789 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-711 (-421 (-975 (-560)))))
- (-5 *2
- (-663
- (-2 (|:| |radval| (-326 (-560))) (|:| |radmult| (-560))
- (|:| |radvect| (-663 (-711 (-326 (-560))))))))
- (-5 *1 (-1059)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-845)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887))))
- ((*1 *2 *1)
(-12
- (-5 *2
- (-2 (|:| -2600 (-663 (-887))) (|:| -3168 (-663 (-887)))
- (|:| |presup| (-663 (-887))) (|:| -4114 (-663 (-887)))
- (|:| |args| (-663 (-887)))))
- (-5 *1 (-1207)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-663 (-793))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
- (-4 *4 (-1080)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-376)) (-4 *3 (-1080))
- (-5 *2 (-2 (|:| -1774 *1) (|:| -2341 *1))) (-4 *1 (-876 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1080))
- (-5 *2 (-2 (|:| -1774 *3) (|:| -2341 *3))) (-5 *1 (-877 *5 *3))
- (-4 *3 (-876 *5)))))
+ (-5 *3
+ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229))
+ (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229)))
+ (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229)))
+ (|:| |abserr| (-229)) (|:| |relerr| (-229))))
+ (-5 *2 (-391)) (-5 *1 (-208)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391)))
+ (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303))
+ (-5 *1 (-810))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391)))
+ (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303))
+ (-5 *1 (-810)))))
+(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-146)))))
(((*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1247))))
((*1 *1 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-871))))
((*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871))))
@@ -1657,41 +707,40 @@
((*1 *2 *1)
(-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3))
(-4 *3 (-1273 *2)))))
+(((*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871))))
+ ((*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-871))))
+ ((*1 *1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-871))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1242 *2 *3 *4 *5)) (-4 *2 (-571))
+ (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-1096 *2 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-793)) (-4 *1 (-1286 *3)) (-4 *3 (-1247))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-993 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))))
+(((*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1303)) (-5 *1 (-1169))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-887))) (-5 *2 (-1303)) (-5 *1 (-1169)))))
+(((*1 *2 *1) (-12 (-5 *2 (-600)) (-5 *1 (-292)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-571) (-149))) (-5 *2 (-663 *3))
- (-5 *1 (-1269 *4 *3)) (-4 *3 (-1273 *4)))))
-(((*1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-381)) (-4 *2 (-1132)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-114)) (-4 *5 (-363))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -3764 (-663 (-2 (|:| |irr| *3) (|:| -2929 (-560)))))))
- (-5 *1 (-220 *5 *3)) (-4 *3 (-1273 *5)))))
-(((*1 *1) (-5 *1 (-55))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233)))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-948)) (-5 *4 (-391)) (-5 *2 (-1303)) (-5 *1 (-1300))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
-(((*1 *2)
- (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-432 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
- (-4 *4 (-1080)))))
+ (-12 (-5 *3 (-975 *5)) (-4 *5 (-1080)) (-5 *2 (-495 *4 *5))
+ (-5 *1 (-973 *4 *5)) (-14 *4 (-663 (-1207))))))
+(((*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-221)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-591))))
+ ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-591)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1207)) (-5 *2 (-114))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-114)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2132 *3)))
- (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1175)) (-5 *2 (-1264 (-560))))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1185 *4)) (-5 *3 (-560)) (-4 *4 (-1080))
- (-5 *1 (-1191 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-560)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-1080))
- (-14 *4 (-1207)) (-14 *5 *3))))
+ (-12 (-5 *2 (-1185 (-663 (-560)))) (-5 *1 (-908))
+ (-5 *3 (-663 (-560)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1185 (-663 (-560)))) (-5 *1 (-908))
+ (-5 *3 (-663 (-560))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-704 *2)) (-4 *2 (-1132))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-663 *5) (-663 *5))) (-5 *4 (-560))
+ (-5 *2 (-663 *5)) (-5 *1 (-704 *5)) (-4 *5 (-1132)))))
(((*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1247))))
((*1 *1 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-871))))
((*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871))))
@@ -1700,156 +749,257 @@
((*1 *2 *1)
(-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3))
(-4 *3 (-1273 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-844)) (-5 *4 (-51)) (-5 *2 (-1303)) (-5 *1 (-853)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-618 *3 *2)) (-4 *3 (-1132)) (-4 *3 (-871))
+ (-4 *2 (-1247))))
+ ((*1 *2 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871))))
+ ((*1 *2 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-871))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1247)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1247))))
+ ((*1 *2 *1) (-12 (-5 *2 (-694 *3)) (-5 *1 (-918 *3)) (-4 *3 (-871))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-793)) (-4 *1 (-1286 *3)) (-4 *3 (-1247))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
+(((*1 *1 *1) (-5 *1 (-1094))))
(((*1 *2 *3)
- (-12 (-5 *3 (-560)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-5 *2 (-1303)) (-5 *1 (-464 *4 *5 *6 *7)) (-4 *7 (-979 *4 *5 *6)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-711 *8)) (-4 *8 (-979 *5 *7 *6))
- (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207))))
- (-4 *7 (-815))
+ (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
+ (-5 *2 (-663 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1273 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
+ (-5 *2 (-663 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1273 *3)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-793)) (-5 *1 (-601 *2)) (-4 *2 (-559))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -2671 *3) (|:| -2030 (-793)))) (-5 *1 (-601 *3))
+ (-4 *3 (-559)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-376)) (-5 *2 (-2 (|:| -2584 *3) (|:| -3276 *3)))
+ (-5 *1 (-788 *3 *4)) (-4 *3 (-730 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-376)) (-4 *3 (-1080))
+ (-5 *2 (-2 (|:| -2584 *1) (|:| -3276 *1))) (-4 *1 (-876 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1080))
+ (-5 *2 (-2 (|:| -2584 *3) (|:| -3276 *3))) (-5 *1 (-877 *5 *3))
+ (-4 *3 (-876 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)) (-4 *2 (-1132))))
+ ((*1 *1 *1) (-12 (-4 *1 (-717 *2)) (-4 *2 (-1132)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-663 (-1207))) (-14 *5 (-793))
(-5 *2
(-663
- (-2 (|:| -2326 (-793))
- (|:| |eqns|
- (-663
- (-2 (|:| |det| *8) (|:| |rows| (-663 (-560)))
- (|:| |cols| (-663 (-560))))))
- (|:| |fgb| (-663 *8)))))
- (-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-793)))))
-(((*1 *2 *3)
- (-12
+ (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4)
+ (-255 *4 (-421 (-560))))))
+ (-5 *1 (-519 *4 *5))
(-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-815)) (-4 *2 (-979 *4 *5 *6)) (-5 *1 (-464 *4 *5 *6 *2))
- (-4 *4 (-466)) (-4 *6 (-871)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-994))) (-5 *1 (-109))))
- ((*1 *2 *1) (-12 (-5 *2 (-45 (-1189) (-795))) (-5 *1 (-115)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-376)) (-4 *3 (-1080))
- (-5 *1 (-1191 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-633 (-915 *3))) (-4 *3 (-911 *3)) (-4 *3 (-466))
- (-5 *1 (-1239 *3 *2)) (-4 *2 (-633 (-915 *3))) (-4 *2 (-911 *3))
- (-4 *2 (-13 (-435 *3) (-1233))))))
+ (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4)
+ (-255 *4 (-421 (-560))))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-948))
- (-5 *2
- (-3 (-1201 *4)
- (-1297 (-663 (-2 (|:| -3853 *4) (|:| -3128 (-1151)))))))
- (-5 *1 (-360 *4)) (-4 *4 (-363)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-993 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-421 *5)) (-4 *4 (-1252)) (-4 *5 (-1273 *4))
- (-5 *1 (-150 *4 *5 *2)) (-4 *2 (-1273 *3))))
+ (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4))
+ (-4 *5 (-1273 (-421 *3))) (-5 *2 (-114))))
((*1 *2 *3)
- (-12 (-5 *3 (-1209 (-421 (-560)))) (-5 *2 (-421 (-560)))
- (-5 *1 (-193))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-711 (-326 (-229)))) (-5 *3 (-663 (-1207)))
- (-5 *4 (-1297 (-326 (-229)))) (-5 *1 (-208))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-663 (-305 *3))) (-4 *3 (-321 *3)) (-4 *3 (-1132))
- (-4 *3 (-1247)) (-5 *1 (-305 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-321 *2)) (-4 *2 (-1132)) (-4 *2 (-1247))
- (-5 *1 (-305 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-663 *1))) (-4 *1 (-310))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-663 (-115))) (-5 *3 (-663 (-1 *1 (-663 *1))))
- (-4 *1 (-310))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-663 (-115))) (-5 *3 (-663 (-1 *1 *1))) (-4 *1 (-310))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1207)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1207)) (-5 *3 (-1 *1 (-663 *1))) (-4 *1 (-310))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-663 (-1 *1 (-663 *1))))
- (-4 *1 (-310))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-663 (-1 *1 *1))) (-4 *1 (-310))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-663 (-305 *3))) (-4 *1 (-321 *3)) (-4 *3 (-1132))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-305 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1132))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-560))) (-5 *4 (-1209 (-421 (-560))))
- (-5 *1 (-322 *2)) (-4 *2 (-38 (-421 (-560))))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 *1)) (-4 *1 (-387 *4 *5))
- (-4 *4 (-871)) (-4 *5 (-175))))
- ((*1 *1 *1 *2 *1)
- (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-871)) (-4 *3 (-175))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1207)) (-5 *3 (-793)) (-5 *4 (-1 *1 *1))
- (-4 *1 (-435 *5)) (-4 *5 (-1132)) (-4 *5 (-1080))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1207)) (-5 *3 (-793)) (-5 *4 (-1 *1 (-663 *1)))
- (-4 *1 (-435 *5)) (-4 *5 (-1132)) (-4 *5 (-1080))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-663 (-793)))
- (-5 *4 (-663 (-1 *1 (-663 *1)))) (-4 *1 (-435 *5)) (-4 *5 (-1132))
- (-4 *5 (-1080))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-663 (-793)))
- (-5 *4 (-663 (-1 *1 *1))) (-4 *1 (-435 *5)) (-4 *5 (-1132))
- (-4 *5 (-1080))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-663 (-115))) (-5 *3 (-663 *1)) (-5 *4 (-1207))
- (-4 *1 (-435 *5)) (-4 *5 (-1132)) (-4 *5 (-633 (-549)))))
- ((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1207)) (-4 *1 (-435 *4)) (-4 *4 (-1132))
- (-4 *4 (-633 (-549)))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-435 *2)) (-4 *2 (-1132)) (-4 *2 (-633 (-549)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-663 (-1207))) (-4 *1 (-435 *3)) (-4 *3 (-1132))
- (-4 *3 (-633 (-549)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1207)) (-4 *1 (-435 *3)) (-4 *3 (-1132))
- (-4 *3 (-633 (-549)))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-528 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1247))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 *5)) (-4 *1 (-528 *4 *5))
- (-4 *4 (-1132)) (-4 *5 (-1247))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-854 *3)) (-4 *3 (-376)) (-5 *1 (-740 *3))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376))))
- ((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-421 (-975 *4))) (-5 *3 (-1207)) (-4 *4 (-571))
- (-5 *1 (-1071 *4))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-663 (-1207))) (-5 *4 (-663 (-421 (-975 *5))))
- (-5 *2 (-421 (-975 *5))) (-4 *5 (-571)) (-5 *1 (-1071 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-305 (-421 (-975 *4)))) (-5 *2 (-421 (-975 *4)))
- (-4 *4 (-571)) (-5 *1 (-1071 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-663 (-305 (-421 (-975 *4))))) (-5 *2 (-421 (-975 *4)))
- (-4 *4 (-571)) (-5 *1 (-1071 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1185 *3)))))
-(((*1 *1 *1) (-5 *1 (-1094))))
+ (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-663 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5))
+ (-5 *1 (-1019 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-663 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5))
+ (-5 *1 (-1138 *3 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-663
+ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
+ (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
+ (|:| |relerr| (-229)))))
+ (-5 *1 (-574))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-629 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132))
+ (-5 *2 (-663 *3))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-663
+ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229))
+ (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229)))
+ (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229)))
+ (|:| |abserr| (-229)) (|:| |relerr| (-229)))))
+ (-5 *1 (-825)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-663 (-495 *3 *4))) (-14 *3 (-663 (-1207)))
+ (-4 *4 (-466)) (-5 *1 (-650 *3 *4)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-670 *5)) (-4 *5 (-1080))
+ (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-876 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-711 *3)) (-4 *1 (-432 *3)) (-4 *3 (-175))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080))))
+ ((*1 *2 *3 *2 *2 *4 *5)
+ (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1080))
+ (-5 *1 (-877 *2 *3)) (-4 *3 (-876 *2)))))
(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
(-12 (-5 *3 (-560)) (-5 *4 (-711 (-229)))
(-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2))))
(-5 *2 (-1066)) (-5 *1 (-775)))))
(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-518 (-421 (-560)) (-246 *4 (-793)) (-888 *3)
+ (-255 *3 (-421 (-560)))))
+ (-14 *3 (-663 (-1207))) (-14 *4 (-793)) (-5 *1 (-519 *3 *4)))))
+(((*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302))))
+ ((*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
+ (-4 *4 (-1080)))))
+(((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-663 (-115))))))
+(((*1 *1) (-5 *1 (-146))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-711 *5))) (-5 *4 (-560)) (-4 *5 (-376))
+ (-4 *5 (-1080)) (-5 *2 (-114)) (-5 *1 (-1061 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-711 *4))) (-4 *4 (-376)) (-4 *4 (-1080))
+ (-5 *2 (-114)) (-5 *1 (-1061 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-663 (-1248))) (-5 *3 (-1248)) (-5 *1 (-703)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-844)))))
+(((*1 *1) (-5 *1 (-622))))
+(((*1 *2 *3) (-12 (-5 *2 (-391)) (-5 *1 (-807 *3)) (-4 *3 (-633 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-948)) (-5 *2 (-391)) (-5 *1 (-807 *3))
+ (-4 *3 (-633 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-975 *4)) (-4 *4 (-1080)) (-4 *4 (-633 *2))
+ (-5 *2 (-391)) (-5 *1 (-807 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-975 *5)) (-5 *4 (-948)) (-4 *5 (-1080))
+ (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571)) (-4 *4 (-633 *2))
+ (-5 *2 (-391)) (-5 *1 (-807 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-948)) (-4 *5 (-571))
+ (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-871))
+ (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-326 *5)) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-871))
+ (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5)))))
+(((*1 *2 *2)
(|partial| -12 (-5 *2 (-421 *4)) (-4 *4 (-1273 *3))
(-4 *3 (-13 (-376) (-149) (-1069 (-560)))) (-5 *1 (-582 *3 *4)))))
+(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-376) (-1069 (-421 *2)))) (-5 *2 (-560))
+ (-5 *1 (-117 *4 *3)) (-4 *3 (-1273 *4)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1322 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-871))
+ (-4 *4 (-175))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1132))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-841 *2)) (-4 *2 (-871))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-841 *3)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-871))
+ (-4 *4 (-1080))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207))
+ (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-305 (-326 *5))))
+ (-5 *1 (-1160 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-13 (-319) (-149)))
+ (-5 *2 (-663 (-305 (-326 *4)))) (-5 *1 (-1160 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-305 (-421 (-975 *5)))) (-5 *4 (-1207))
+ (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-305 (-326 *5))))
+ (-5 *1 (-1160 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-305 (-421 (-975 *4)))) (-4 *4 (-13 (-319) (-149)))
+ (-5 *2 (-663 (-305 (-326 *4)))) (-5 *1 (-1160 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-421 (-975 *5)))) (-5 *4 (-663 (-1207)))
+ (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *5)))))
+ (-5 *1 (-1160 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-421 (-975 *4)))) (-4 *4 (-13 (-319) (-149)))
+ (-5 *2 (-663 (-663 (-305 (-326 *4))))) (-5 *1 (-1160 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-305 (-421 (-975 *5))))) (-5 *4 (-663 (-1207)))
+ (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *5)))))
+ (-5 *1 (-1160 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-305 (-421 (-975 *4)))))
+ (-4 *4 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *4)))))
+ (-5 *1 (-1160 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-376)) (-5 *2 (-663 *3)) (-5 *1 (-974 *4 *3))
+ (-4 *3 (-1273 *4)))))
+(((*1 *1) (-5 *1 (-622))) ((*1 *1) (-5 *1 (-625))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1291 *3 *2))
+ (-4 *2 (-1290 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-376))
+ (-5 *2
+ (-2 (|:| A (-711 *5))
+ (|:| |eqs|
+ (-663
+ (-2 (|:| C (-711 *5)) (|:| |g| (-1297 *5)) (|:| -2439 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-835 *5 *6)) (-5 *3 (-711 *5)) (-5 *4 (-1297 *5))
+ (-4 *6 (-680 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-376)) (-4 *6 (-680 *5))
+ (-5 *2 (-2 (|:| -1871 (-711 *6)) (|:| |vec| (-1297 *5))))
+ (-5 *1 (-835 *5 *6)) (-5 *3 (-711 *6)) (-5 *4 (-1297 *5)))))
(((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-663 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-5 *2 (-114))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1242 *4 *5 *6 *3)) (-4 *4 (-571)) (-4 *5 (-815))
+ (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
+ (-5 *2 (-663 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1273 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
+ (-5 *2 (-663 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1273 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-319)) (-4 *6 (-385 *5)) (-4 *4 (-385 *5))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3822 (-663 *4))))
+ (-5 *1 (-1155 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278))))
+ ((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
+ (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-571))))
+ ((*1 *1 *1) (|partial| -4 *1 (-744))))
(((*1 *2 *2 *2)
(-12 (-4 *3 (-571)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1273 *3))))
((*1 *1 *1 *1)
@@ -1857,55 +1007,955 @@
(-4 *4 (-871)) (-4 *2 (-571))))
((*1 *1 *1 *1)
(-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-571)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-520)) (-5 *2 (-713 (-795))) (-5 *1 (-115))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1189)) (-5 *2 (-795)) (-5 *1 (-115))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1134)) (-5 *1 (-994)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-793)) (-4 *4 (-13 (-571) (-149)))
+ (-5 *1 (-1269 *4 *2)) (-4 *2 (-1273 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
+ (-4 *3 (-380 *4))))
+ ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1207)) (-5 *1 (-597 *2)) (-4 *2 (-1069 *3))
+ (-4 *2 (-376))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-376))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *1 (-648 *4 *2))
+ (-4 *2 (-13 (-435 *4) (-1033) (-1233)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1123 *2)) (-4 *2 (-13 (-435 *4) (-1033) (-1233)))
+ (-4 *4 (-571)) (-5 *1 (-648 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-989)) (-5 *2 (-1207))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1123 *1)) (-4 *1 (-989)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-432 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-421 (-560)))
+ (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560))))
+ (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1189))
+ (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-114))
+ (-5 *1 (-228 *4 *5)) (-4 *5 (-13 (-1233) (-29 *4))))))
(((*1 *2 *3 *4)
(-12 (-4 *5 (-376))
(-5 *2 (-663 (-2 (|:| C (-711 *5)) (|:| |g| (-1297 *5)))))
(-5 *1 (-1009 *5)) (-5 *3 (-711 *5)) (-5 *4 (-1297 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1207)) (-4 *5 (-376)) (-5 *2 (-663 (-1240 *5)))
+ (-5 *1 (-1306 *5)) (-5 *4 (-1240 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-342)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-864 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-1212))) (-5 *1 (-1212))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-520)) (-5 *3 (-663 (-1212))) (-5 *1 (-1212)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))))
(((*1 *1 *2 *1)
(-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1132))
(-4 *4 (-133)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229))
+ (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229))
+ (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))
+ (-5 *1 (-270))))
+ ((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229))
+ (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229))
+ (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))
+ (-5 *3 (-663 (-270))) (-5 *1 (-271))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-560)) (-5 *4 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301))))
+ ((*1 *2 *1 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229))
+ (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229))
+ (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))
+ (-5 *2 (-1303)) (-5 *1 (-1301))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4130 (-229))
+ (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229))
+ (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))
+ (-5 *1 (-1301))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -1333 (-663 *3)) (|:| -4227 (-663 *3))))
+ (-5 *1 (-1249 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3))
+ (-4 *3 (-13 (-376) (-1233) (-1033))))))
+(((*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-5 *1 (-1222 *2)) (-4 *2 (-376)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))))
(((*1 *1 *1 *1) (-5 *1 (-887))) ((*1 *1 *1) (-5 *1 (-887)))
((*1 *1 *2 *3)
(-12 (-5 *2 (-1201 (-560))) (-5 *3 (-560)) (-4 *1 (-894 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-1178 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-663 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-5 *2 (-114))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1242 *4 *5 *6 *3)) (-4 *4 (-571)) (-4 *5 (-815))
+ (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-618 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1132))
+ (-4 *2 (-871)))))
+(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1253))))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-245 *3 *2)) (-4 *2 (-1247)) (-4 *2 (-1080))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-887))))
+ ((*1 *1 *1) (-5 *1 (-887)))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-972 (-229))) (-5 *2 (-229)) (-5 *1 (-1244))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1080)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-663 (-495 *5 *6))) (-5 *4 (-888 *5))
+ (-14 *5 (-663 (-1207))) (-5 *2 (-495 *5 *6)) (-5 *1 (-650 *5 *6))
+ (-4 *6 (-466))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-495 *5 *6))) (-5 *4 (-888 *5))
+ (-14 *5 (-663 (-1207))) (-5 *2 (-495 *5 *6)) (-5 *1 (-650 *5 *6))
+ (-4 *6 (-466)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
+ (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
+ (|:| |relerr| (-229))))
+ (-5 *2
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1185 (-229)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1585
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-574)))))
(((*1 *2 *3 *3)
(-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3))
(-4 *3 (-13 (-376) (-1233) (-1033))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-376)) (-4 *4 (-571)) (-4 *5 (-1273 *4))
+ (-5 *2 (-2 (|:| -3247 (-642 *4 *5)) (|:| -2001 (-421 *5))))
+ (-5 *1 (-642 *4 *5)) (-5 *3 (-421 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-663 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4))
+ (-14 *3 (-948)) (-4 *4 (-1080))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-466)) (-4 *3 (-1080))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (-4 *1 (-1273 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-972 *4)) (-4 *4 (-1080)) (-5 *1 (-1195 *3 *4))
+ (-14 *3 (-948)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-630 *5)) (-4 *5 (-435 *4)) (-4 *4 (-1069 (-560)))
+ (-4 *4 (-571)) (-5 *2 (-1201 *5)) (-5 *1 (-32 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-630 *1)) (-4 *1 (-1080)) (-4 *1 (-310))
+ (-5 *2 (-1201 *1)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033))))))
+(((*1 *2 *3 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |cycle?| (-114)) (|:| -1903 (-793)) (|:| |period| (-793))))
+ (-5 *1 (-1185 *4)) (-4 *4 (-1247)) (-5 *3 (-793)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-642 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -4346 *4) (|:| |sol?| (-114)))
+ (-560) *4))
+ (-4 *4 (-376)) (-4 *5 (-1273 *4)) (-5 *1 (-588 *4 *5)))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-793)) (-4 *3 (-1247)) (-4 *1 (-57 *3 *4 *5))
+ (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
+ ((*1 *1) (-5 *1 (-174)))
+ ((*1 *1) (-12 (-5 *1 (-216 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1132))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-403))))
+ ((*1 *1) (-5 *1 (-407)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-4 *1 (-673 *3)) (-4 *3 (-1247))))
+ ((*1 *1)
+ (-12 (-4 *3 (-1132)) (-5 *1 (-910 *2 *3 *4)) (-4 *2 (-1132))
+ (-4 *4 (-688 *3))))
+ ((*1 *1) (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132))))
+ ((*1 *1 *2)
+ (-12 (-5 *1 (-1173 *3 *2)) (-14 *3 (-793)) (-4 *2 (-1080))))
+ ((*1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080))))
+ ((*1 *1 *1) (-5 *1 (-1207))) ((*1 *1) (-5 *1 (-1207)))
+ ((*1 *1) (-5 *1 (-1227))))
(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-114) (-115) (-115))) (-5 *1 (-115)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207))
+ (-5 *2 (-663 *4)) (-5 *1 (-1145 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -2515 *4))))
+ (-4 *3 (-1132)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-671 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-270))) (-5 *4 (-1207)) (-5 *2 (-114))
+ (-5 *1 (-270)))))
+(((*1 *2) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-1231)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814))
+ (-4 *2 (-466))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1252)) (-4 *3 (-1273 *2))
+ (-4 *4 (-1273 (-421 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-466))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *2 (-871)) (-4 *3 (-466))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871)) (-4 *2 (-466))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-319)) (-4 *3 (-571)) (-5 *1 (-1194 *3 *2))
+ (-4 *2 (-1273 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1080))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *1 (-464 *3 *4 *5 *2)) (-4 *2 (-979 *3 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-2 (|:| -1438 *3) (|:| -3067 *4))))
+ (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *1 (-1224 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-256)))))
(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
(-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229))
(-5 *2 (-1066)) (-5 *1 (-773)))))
+(((*1 *2 *2) (-12 (-5 *2 (-711 (-326 (-560)))) (-5 *1 (-1059)))))
+(((*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-934 (-560))) (-5 *1 (-946))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1247))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-972 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-972 *3))) (-4 *3 (-1080)) (-4 *1 (-1165 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-663 (-663 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-663 (-972 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7))
+ (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *4))))
+ (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1207)) (-5 *2 (-326 (-560))) (-5 *1 (-958))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-1132)) (-5 *1 (-959 *3 *2)) (-4 *2 (-435 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-972 (-229)) (-972 (-229)))) (-5 *1 (-270))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1297 *1)) (-4 *1 (-341 *4)) (-4 *4 (-376))
+ (-5 *2 (-711 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1297 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175))
+ (-5 *2 (-711 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175))
+ (-5 *2 (-1297 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175))
+ (-4 *5 (-1273 *4)) (-5 *2 (-711 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175))
+ (-4 *5 (-1273 *4)) (-5 *2 (-1297 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1297 *1)) (-4 *1 (-424 *4 *5)) (-4 *4 (-175))
+ (-4 *5 (-1273 *4)) (-5 *2 (-711 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3))
+ (-5 *2 (-1297 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1297 *1)) (-4 *1 (-432 *4)) (-4 *4 (-175))
+ (-5 *2 (-711 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-1297 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1297 *3)) (-5 *1 (-659 *3 *4)) (-4 *3 (-376))
+ (-14 *4 (-663 (-1207)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1297 *3)) (-5 *1 (-661 *3 *4)) (-4 *3 (-376))
+ (-14 *4 (-663 (-1207)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-663 (-711 *5))) (-5 *3 (-711 *5)) (-4 *5 (-376))
+ (-5 *2 (-1297 *5)) (-5 *1 (-1117 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1080)) (-5 *1 (-734 *3 *4))
+ (-4 *4 (-1273 *3)))))
(((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))))
(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))))
+ (-5 *2 (-663 (-421 (-560)))) (-5 *1 (-1052 *4))
+ (-4 *4 (-1273 (-560))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-466)) (-4 *3 (-815)) (-4 *5 (-871)) (-5 *2 (-114))
+ (-5 *1 (-464 *4 *3 *5 *6)) (-4 *6 (-979 *4 *3 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *3))
+ (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-663
+ (-2
+ (|:| -1438
+ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229))
+ (|:| |fn| (-1297 (-326 (-229))))
+ (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229)))
+ (|:| |g| (-326 (-229))) (|:| |abserr| (-229))
+ (|:| |relerr| (-229))))
+ (|:| -3067
+ (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391))
+ (|:| |expense| (-391)) (|:| |accuracy| (-391))
+ (|:| |intermediateResults| (-391)))))))
+ (-5 *1 (-825)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-571))
+ (-5 *2 (-2 (|:| -2584 *3) (|:| -3276 *3))) (-5 *1 (-1270 *4 *3))
+ (-4 *3 (-1273 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1201 (-421 (-975 *3)))) (-5 *1 (-467 *3 *4 *5 *6))
+ (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229))
+ (-5 *2 (-1066)) (-5 *1 (-772)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1189)) (-4 *1 (-378 *3 *4)) (-4 *3 (-1132))
+ (-4 *4 (-1132)))))
+(((*1 *2 *3)
(-12 (-5 *3 (-1297 *5)) (-4 *5 (-13 (-1080) (-660 *4)))
(-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-658 *4 *5)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-143))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-146)))))
+(((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
+ (-4 *3 (-380 *4))))
+ ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1132)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3))))
+ (-5 *2 (-663 (-1207))) (-5 *1 (-1106 *3 *4 *5))
+ (-4 *5 (-13 (-435 *4) (-911 *3) (-633 (-915 *3)))))))
+(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4))
+ (-4 *4 (-363)))))
+(((*1 *1 *1 *1) (-4 *1 (-783))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-663 (-421 (-975 (-560))))) (-5 *4 (-663 (-1207)))
+ (-5 *2 (-663 (-663 *5))) (-5 *1 (-393 *5))
+ (-4 *5 (-13 (-870) (-376)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-421 (-975 (-560)))) (-5 *2 (-663 *4)) (-5 *1 (-393 *4))
+ (-4 *4 (-13 (-870) (-376))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1207))
+ (-5 *2 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-5 *1 (-1210)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-226 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-4 *1 (-263 *3))))
+ ((*1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))))
(((*1 *2 *3)
(-12 (-5 *3 (-711 (-326 (-229))))
(-5 *2
(-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))))
(-5 *1 (-208)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-143))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-146)))))
+(((*1 *2 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-409)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-1132))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-864 *3)) (-4 *3 (-1132)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-948))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-793)))))
+(((*1 *1) (-5 *1 (-132))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
+ (-5 *1 (-1159 *3 *2)) (-4 *3 (-1273 *2)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-1132)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-114))
+ (-5 *2
+ (-2 (|:| |contp| (-560))
+ (|:| -2609 (-663 (-2 (|:| |irr| *3) (|:| -4181 (-560)))))))
+ (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-114))
+ (-5 *2
+ (-2 (|:| |contp| (-560))
+ (|:| -2609 (-663 (-2 (|:| |irr| *3) (|:| -4181 (-560)))))))
+ (-5 *1 (-1263 *3)) (-4 *3 (-1273 (-560))))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-342))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-342)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-326 (-391))) (-5 *2 (-326 (-229))) (-5 *1 (-315)))))
(((*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *1 (-58 *3)) (-4 *3 (-1247))))
((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-58 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1308)))))
+(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481))))
+ ((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481))))
+ ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))))
+(((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-167 *3 *4))
+ (-4 *3 (-168 *4))))
+ ((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1247)) (-5 *2 (-793))
+ (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1132)) (-5 *2 (-793)) (-5 *1 (-434 *3 *4))
+ (-4 *3 (-435 *4))))
+ ((*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-558 *3)) (-4 *3 (-559))))
+ ((*1 *2) (-12 (-4 *1 (-785)) (-5 *2 (-793))))
+ ((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-817 *3 *4))
+ (-4 *3 (-818 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-1021 *3 *4))
+ (-4 *3 (-1022 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-1028 *3 *4))
+ (-4 *3 (-1029 *4))))
+ ((*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1042 *3)) (-4 *3 (-1043))))
+ ((*1 *2) (-12 (-4 *1 (-1080)) (-5 *2 (-793))))
+ ((*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1090 *3)) (-4 *3 (-1091)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1266 *4 *5)) (-5 *3 (-663 *5)) (-14 *4 (-1207))
+ (-4 *5 (-376)) (-5 *1 (-951 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-663 *5)) (-4 *5 (-376)) (-5 *2 (-1201 *5))
+ (-5 *1 (-951 *4 *5)) (-14 *4 (-1207))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-663 *6)) (-5 *4 (-793)) (-4 *6 (-376))
+ (-5 *2 (-421 (-975 *6))) (-5 *1 (-1081 *5 *6)) (-14 *5 (-1207)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-194)) (-5 *3 (-560))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-175))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-971)) (-5 *3 (-560)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1185 (-560))) (-5 *1 (-1191 *4)) (-4 *4 (-1080))
+ (-5 *3 (-560)))))
+(((*1 *1) (-5 *1 (-623))))
(((*1 *2 *3)
(-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560)))))
(-4 *5 (-1273 *4))
- (-5 *2 (-663 (-2 (|:| |deg| (-793)) (|:| -3192 *5))))
+ (-5 *2 (-663 (-2 (|:| |deg| (-793)) (|:| -2439 *5))))
(-5 *1 (-831 *4 *5 *3 *6)) (-4 *3 (-680 *5))
(-4 *6 (-680 (-421 *5))))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 (-391))) (-5 *1 (-270))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-571)) (-4 *2 (-175))))
+ ((*1 *2 *1) (-12 (-5 *1 (-419 *2)) (-4 *2 (-571)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4))
+ (-5 *2 (-2 (|:| -2625 (-421 *5)) (|:| |poly| *3)))
+ (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1273 (-421 *5))))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391)))
+ (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206))))
+ (-5 *1 (-1206)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1080)) (-5 *2 (-987 (-734 *3 *4))) (-5 *1 (-734 *3 *4))
+ (-4 *4 (-1273 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871))
+ (-5 *2 (-2 (|:| -2625 *1) (|:| |gap| (-793)) (|:| -3276 *1)))
+ (-4 *1 (-1096 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *2 (-2 (|:| -2625 *1) (|:| |gap| (-793)) (|:| -3276 *1)))
+ (-4 *1 (-1096 *3 *4 *5)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391))
+ (-5 *2
+ (-2 (|:| -1430 *4) (|:| -2403 *4) (|:| |totalpts| (-560))
+ (|:| |success| (-114))))
+ (-5 *1 (-811)) (-5 *5 (-560)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *2 *2) (-12 (-5 *2 (-663 (-326 (-229)))) (-5 *1 (-278)))))
(((*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-369 *3)) (-4 *3 (-363)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2))
+ (|has| *2 (-6 (-4510 "*"))) (-4 *2 (-1080))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-175))
+ (-5 *1 (-710 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2))
+ (-4 *5 (-245 *3 *2)) (|has| *2 (-6 (-4510 "*"))) (-4 *2 (-1080)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-663 *3)) (-5 *1 (-991 *3)) (-4 *3 (-559)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-569 *3)) (-4 *3 (-13 (-418) (-1233))) (-5 *2 (-114))))
+ ((*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-114))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376)))
+ (-4 *3 (-1273 *4)) (-5 *2 (-114)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-694 *3)) (-4 *3 (-871))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-699 *3)) (-4 *3 (-871))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-841 *3)) (-4 *3 (-871)))))
+(((*1 *1) (-5 *1 (-846))))
+(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-887)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-900))))
+ ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-900))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-560))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1189))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-520))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-606))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-492))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-139))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-158))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1197))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-645))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1127))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1122))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1104))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1001))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-183))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1067))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-324))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-693))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-156))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1183))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-539))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1309))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1097))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-531))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-703))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-96))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1147))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-135))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-619))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-140))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1308))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-698))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-222))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-538))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1212))))
+ ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1212))))
+ ((*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1212))))
+ ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1212)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-871))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1247))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-871))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-663 *1)) (-4 *1 (-1165 *3)) (-4 *3 (-1080))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4))
+ (-14 *3 (-948)) (-4 *4 (-1080))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-948)) (-5 *1 (-721))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-711 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-376)) (-5 *1 (-1009 *5)))))
(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-954)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-229)))
+ (-5 *2 (-1066)) (-5 *1 (-776)))))
+(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1254))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229)))))
+ (-5 *2 (-663 (-1207))) (-5 *1 (-278))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1201 *7)) (-4 *7 (-979 *6 *4 *5)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *6 (-1080)) (-5 *2 (-663 *5))
+ (-5 *1 (-333 *4 *5 *6 *7))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-352 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 *2) (-4 *5 (-401))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-435 *3)) (-4 *3 (-1132)) (-5 *2 (-663 (-1207)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1132))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-5 *2 (-663 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080))
+ (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-663 *5))
+ (-5 *1 (-980 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-376)
+ (-10 -8 (-15 -3913 ($ *7)) (-15 -2473 (*7 $)) (-15 -2484 (*7 $)))))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1004 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-814))
+ (-4 *5 (-871)) (-5 *2 (-663 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-663 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571)) (-5 *2 (-663 (-1207)))
+ (-5 *1 (-1071 *4)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |polnum| (-803 *3)) (|:| |polden| *3) (|:| -4375 (-793))))
+ (-5 *1 (-803 *3)) (-4 *3 (-1080))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4375 (-793))))
+ (-4 *1 (-1096 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-663 (-975 (-560)))) (-5 *4 (-663 (-1207)))
+ (-5 *2 (-663 (-663 (-391)))) (-5 *1 (-1054)) (-5 *5 (-391))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1051)))
+ (-14 *5 (-663 (-1207))) (-5 *2 (-663 (-663 (-1055 (-421 *4)))))
+ (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-663 (-1207)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114))
+ (-4 *5 (-13 (-870) (-319) (-149) (-1051)))
+ (-5 *2 (-663 (-663 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7))
+ (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114))
+ (-4 *5 (-13 (-870) (-319) (-149) (-1051)))
+ (-5 *2 (-663 (-663 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7))
+ (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114))
+ (-4 *5 (-13 (-870) (-319) (-149) (-1051)))
+ (-5 *2 (-663 (-663 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7))
+ (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-975 *4)))
+ (-4 *4 (-13 (-870) (-319) (-149) (-1051)))
+ (-5 *2 (-663 (-663 (-1055 (-421 *4))))) (-5 *1 (-1325 *4 *5 *6))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207))))))
+(((*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233)))))
+ ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887))))
+ ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-887)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-777)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-571)) (-4 *2 (-175)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1300))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1300))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1301))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1301)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5)))
+ (-5 *2 (-114)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *5)) (-4 *4 (-1080))
+ (-4 *5 (-871)) (-5 *2 (-975 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *5)) (-4 *4 (-1080))
+ (-4 *5 (-871)) (-5 *2 (-975 *4))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-793)) (-4 *1 (-1290 *4)) (-4 *4 (-1080))
+ (-5 *2 (-975 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-793)) (-4 *1 (-1290 *4)) (-4 *4 (-1080))
+ (-5 *2 (-975 *4)))))
(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *2 *1) (-12 (-5 *2 (-713 *3)) (-5 *1 (-995 *3)) (-4 *3 (-1132)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1201 (-421 (-1201 *2)))) (-5 *4 (-630 *2))
+ (-4 *2 (-13 (-435 *5) (-27) (-1233)))
+ (-4 *5 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
+ (-5 *1 (-575 *5 *2 *6)) (-4 *6 (-1132))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1201 *1)) (-4 *1 (-979 *4 *5 *3)) (-4 *4 (-1080))
+ (-4 *5 (-815)) (-4 *3 (-871))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1201 *4)) (-4 *4 (-1080)) (-4 *1 (-979 *4 *5 *3))
+ (-4 *5 (-815)) (-4 *3 (-871))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-421 (-1201 *2))) (-4 *5 (-815)) (-4 *4 (-871))
+ (-4 *6 (-1080))
+ (-4 *2
+ (-13 (-376)
+ (-10 -8 (-15 -3913 ($ *7)) (-15 -2473 (*7 $)) (-15 -2484 (*7 $)))))
+ (-5 *1 (-980 *5 *4 *6 *7 *2)) (-4 *7 (-979 *6 *5 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-421 (-1201 (-421 (-975 *5))))) (-5 *4 (-1207))
+ (-5 *2 (-421 (-975 *5))) (-5 *1 (-1071 *5)) (-4 *5 (-571)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571))
+ (-5 *2 (-114)))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 (-915 *6)))
+ (-5 *5 (-1 (-913 *6 *8) *8 (-915 *6) (-913 *6 *8))) (-4 *6 (-1132))
+ (-4 *8 (-13 (-1080) (-633 (-915 *6)) (-1069 *7)))
+ (-5 *2 (-913 *6 *8)) (-4 *7 (-1080)) (-5 *1 (-970 *6 *7 *8)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1185 *4)) (-5 *3 (-560)) (-4 *4 (-1080))
+ (-5 *1 (-1191 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-560)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-1080))
+ (-14 *4 (-1207)) (-14 *5 *3))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-571))
+ (-5 *2 (-2 (|:| -1871 (-711 *5)) (|:| |vec| (-1297 (-663 (-948))))))
+ (-5 *1 (-90 *5 *3)) (-5 *4 (-948)) (-4 *3 (-680 *5)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-663 *1))
+ (-4 *1 (-1102 *4 *5 *6 *3)))))
+(((*1 *1 *1) (-5 *1 (-1094))))
(((*1 *2 *1)
(-12 (-4 *4 (-1132)) (-5 *2 (-913 *3 *4)) (-5 *1 (-910 *3 *4 *5))
(-4 *3 (-1132)) (-4 *5 (-688 *4))))
((*1 *2 *3)
(-12 (-5 *3 (-995 *4)) (-4 *4 (-1132)) (-5 *2 (-1128 *4))
(-5 *1 (-996 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1297 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1080))
+ (-5 *2 (-2 (|:| -1871 (-711 *4)) (|:| |vec| (-1297 *4))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1297 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1080))
+ (-5 *2 (-711 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-663 (-948))) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-948))
+ (-4 *2 (-376)) (-14 *5 (-1024 *4 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-735 *5 *6 *7)) (-4 *5 (-871))
+ (-4 *6 (-245 (-2256 *4) (-793)))
+ (-14 *7
+ (-1 (-114) (-2 (|:| -1591 *5) (|:| -2030 *6))
+ (-2 (|:| -1591 *5) (|:| -2030 *6))))
+ (-14 *4 (-663 (-1207))) (-4 *2 (-175))
+ (-5 *1 (-475 *4 *2 *5 *6 *7 *8)) (-4 *8 (-979 *2 *6 (-888 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *1 (-523 *2 *3)) (-4 *2 (-102)) (-4 *3 (-874))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-560)) (-4 *2 (-571)) (-5 *1 (-642 *2 *4))
+ (-4 *4 (-1273 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-730 *2)) (-4 *2 (-1080))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-757 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-748))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-663 *5)) (-5 *3 (-663 (-793))) (-4 *1 (-762 *4 *5))
+ (-4 *4 (-1080)) (-4 *5 (-871))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *2)) (-4 *4 (-1080))
+ (-4 *2 (-871))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-876 *2)) (-4 *2 (-1080))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-663 *6)) (-5 *3 (-663 (-793))) (-4 *1 (-979 *4 *5 *6))
+ (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-793)) (-4 *1 (-979 *4 *5 *2)) (-4 *4 (-1080))
+ (-4 *5 (-815)) (-4 *2 (-871))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-663 *6)) (-5 *3 (-663 *5)) (-4 *1 (-1004 *4 *5 *6))
+ (-4 *4 (-1080)) (-4 *5 (-814)) (-4 *6 (-871))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *1 (-1004 *4 *3 *2)) (-4 *4 (-1080)) (-4 *3 (-814))
+ (-4 *2 (-871)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
+ (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-5 *2 (-114))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
+ (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1273 *9)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *9 (-319))
+ (-4 *10 (-979 *9 *7 *8))
+ (-5 *2
+ (-2 (|:| |deter| (-663 (-1201 *10)))
+ (|:| |dterm|
+ (-663 (-663 (-2 (|:| -1439 (-793)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-663 *6)) (|:| |nlead| (-663 *10))))
+ (-5 *1 (-800 *6 *7 *8 *9 *10)) (-5 *3 (-1201 *10)) (-5 *4 (-663 *6))
+ (-5 *5 (-663 *10)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-663 *1)) (-5 *3 (-663 *7)) (-4 *1 (-1102 *4 *5 *6 *7))
+ (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *1))
+ (-4 *1 (-1102 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-663 *1))
+ (-4 *1 (-1102 *4 *5 *6 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3))
+ (-4 *3 (-1132)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-139))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-158))))
+ ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-492))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-606))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-645))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1132))
+ (-4 *2 (-13 (-435 *4) (-911 *3) (-633 (-915 *3))))
+ (-5 *1 (-1106 *3 *4 *2))
+ (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1132)) (-5 *1 (-1196 *3 *2)) (-4 *3 (-1132)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-51)) (-5 *1 (-1226)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4))
+ (-4 *4 (-363)))))
(((*1 *1 *2 *2 *2)
(-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233)))))
((*1 *1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376))))
((*1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376))))
((*1 *2 *1 *3 *4 *4)
(-12 (-5 *3 (-948)) (-5 *4 (-391)) (-5 *2 (-1303)) (-5 *1 (-1300)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
+ (-5 *2 (-663 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1273 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
+ (-5 *2 (-663 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1273 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1170))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814))
+ (-5 *2 (-793))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1132))
+ (-5 *2 (-793))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-793)) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080))
+ (-4 *4 (-748)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-490 *4 *5 *6 *7)) (|:| -3172 (-663 *7))))
+ (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-663 *7)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229))
+ (-5 *2 (-1066)) (-5 *1 (-774)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-629 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132))
+ (-5 *2 (-114)))))
+(((*1 *1) (-5 *1 (-1116))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-902 *2)) (-4 *2 (-1247))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-904 *2)) (-4 *2 (-1247))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-907 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-139))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-158))))
+ ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-492))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-606))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-645))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1132))
+ (-4 *2 (-13 (-435 *4) (-911 *3) (-633 (-915 *3))))
+ (-5 *1 (-1106 *3 *4 *2))
+ (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1132)) (-5 *1 (-1196 *2 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 *6)) (-5 *4 (-1207)) (-4 *6 (-435 *5))
+ (-4 *5 (-1132)) (-5 *2 (-663 (-630 *6))) (-5 *1 (-587 *5 *6)))))
(((*1 *2 *1)
(-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1132))
(-5 *2 (-663 (-2 (|:| |k| *4) (|:| |c| *3))))))
@@ -1915,666 +1965,372 @@
(-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948))))
((*1 *2 *1)
(-12 (-5 *2 (-663 (-694 *3))) (-5 *1 (-918 *3)) (-4 *3 (-871)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-248)) (-5 *3 (-1189))))
- ((*1 *2 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-248))))
- ((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-571))
- (-5 *2 (-1201 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 *4)) (-4 *4 (-1080)) (-5 *2 (-1297 *4))
- (-5 *1 (-1208 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-948)) (-5 *2 (-1297 *3)) (-5 *1 (-1208 *3))
- (-4 *3 (-1080)))))
-(((*1 *1) (-5 *1 (-450))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4509)) (-4 *1 (-251 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))))
(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-663 (-51))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-793)) (-4 *5 (-571))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-1000 *5 *3)) (-4 *3 (-1273 *5)))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229))
- (-5 *2 (-1066)) (-5 *1 (-774)))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-711 *4)) (-5 *3 (-793)) (-4 *4 (-1080))
- (-5 *1 (-712 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-848)) (-5 *3 (-663 (-1207))) (-5 *1 (-847)))))
-(((*1 *1 *2 *3 *4)
+(((*1 *1 *2 *2)
(-12
- (-5 *3
- (-663
- (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1201 *2))
- (|:| |logand| (-1201 *2)))))
- (-5 *4 (-663 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-376)) (-5 *1 (-597 *2)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-793)) (-4 *6 (-1132)) (-4 *3 (-927 *6))
- (-5 *2 (-711 *3)) (-5 *1 (-714 *6 *3 *7 *4)) (-4 *7 (-385 *3))
- (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4508)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))))
+ (-5 *2
+ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391)))
+ (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206))))
+ (-5 *1 (-1206)))))
(((*1 *1 *1 *2)
- (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23))
- (-14 *4 *3))))
+ (-12 (-5 *2 (-948)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381))))
+ ((*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-175))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1297 *4)) (-5 *3 (-948)) (-4 *4 (-363))
+ (-5 *1 (-542 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2))
+ (-4 *5 (-245 *3 *2)) (-4 *2 (-1080)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-630 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4)))
+ (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560))))
+ (-5 *1 (-288 *4 *2)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-915 *4)) (-4 *4 (-1132)) (-5 *1 (-913 *4 *3))
+ (-4 *3 (-1132)))))
(((*1 *2 *2)
(-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
(-4 *2 (-13 (-435 *3) (-1033))))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-663 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-114) *8 *8)) (-4 *1 (-1242 *5 *6 *7 *8)) (-4 *5 (-571))
+ (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)))))
+(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115)))
+ ((*1 *1 *1) (-5 *1 (-174))) ((*1 *1 *1) (-4 *1 (-559)))
+ ((*1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34)))
+ (-4 *3 (-13 (-1132) (-34))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-793)) (-5 *2 (-1266 *5 *4)) (-5 *1 (-1205 *4 *5 *6))
+ (-4 *4 (-1080)) (-14 *5 (-1207)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-793)) (-5 *2 (-1266 *5 *4)) (-5 *1 (-1287 *4 *5 *6))
+ (-4 *4 (-1080)) (-14 *5 (-1207)) (-14 *6 *4))))
(((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-663
- (-2 (|:| |eqzro| (-663 *8)) (|:| |neqzro| (-663 *8))
- (|:| |wcond| (-663 (-975 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1297 (-421 (-975 *5))))
- (|:| -1954 (-663 (-1297 (-421 (-975 *5))))))))))
- (-5 *4 (-1189)) (-4 *5 (-13 (-319) (-149))) (-4 *8 (-979 *5 *7 *6))
- (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-560))
- (-5 *1 (-953 *5 *6 *7 *8)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1))
- (-4 *1 (-1096 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1120 (-864 (-229)))) (-5 *1 (-315)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-376)) (-4 *1 (-341 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1273 *4)) (-4 *4 (-1252))
- (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1273 (-421 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1297 *1)) (-4 *4 (-175))
- (-4 *1 (-380 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1297 *1)) (-4 *4 (-175))
- (-4 *1 (-383 *4 *5)) (-4 *5 (-1273 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-424 *3 *4))
- (-4 *4 (-1273 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-432 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-663 (-931 *3))) (-5 *1 (-934 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391))
- (-5 *2
- (-2 (|:| -3853 *4) (|:| -4223 *4) (|:| |totalpts| (-560))
- (|:| |success| (-114))))
- (-5 *1 (-811)) (-5 *5 (-560)))))
-(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1066)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-114)) (-5 *1 (-110))))
- ((*1 *2 *2) (-12 (-5 *2 (-948)) (|has| *1 (-6 -4499)) (-4 *1 (-418))))
- ((*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-948)))))
-(((*1 *2 *3 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-815)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-871))
- (-5 *2 (-114)) (-5 *1 (-464 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-663 (-326 (-229)))) (-5 *4 (-793))
+ (-5 *2 (-711 (-229))) (-5 *1 (-278)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
+ (-4 *3 (-380 *4))))
+ ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
+(((*1 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-23)))))
+(((*1 *1) (-5 *1 (-146))) ((*1 *1 *1) (-5 *1 (-887))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1185 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-195))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1185 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-313))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1185 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-315)))))
+ (-12 (-5 *3 (-663 (-495 *4 *5))) (-14 *4 (-663 (-1207)))
+ (-4 *5 (-466))
+ (-5 *2
+ (-2 (|:| |gblist| (-663 (-255 *4 *5)))
+ (|:| |gvlist| (-663 (-560)))))
+ (-5 *1 (-650 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946))))
- ((*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-887)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-793))
- (-14 *4 (-793)) (-4 *5 (-175)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-421 (-560))) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-571)) (-4 *8 (-979 *7 *5 *6))
- (-5 *2 (-2 (|:| -3205 (-793)) (|:| -2115 *9) (|:| |radicand| *9)))
- (-5 *1 (-982 *5 *6 *7 *8 *9)) (-5 *4 (-793))
- (-4 *9
- (-13 (-376)
- (-10 -8 (-15 -1578 ($ *8)) (-15 -3757 (*8 $)) (-15 -3771 (*8 $))))))))
+ (|partial| -12 (-4 *5 (-1069 (-48)))
+ (-4 *4 (-13 (-571) (-1069 (-560)))) (-4 *5 (-435 *4))
+ (-5 *2 (-419 (-1201 (-48)))) (-5 *1 (-449 *4 *5 *3))
+ (-4 *3 (-1273 *5)))))
+(((*1 *1 *1 *1) (-5 *1 (-130)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-948))))
+ ((*1 *1 *1 *1) (-5 *1 (-1253))) ((*1 *1 *1 *1) (-5 *1 (-1254)))
+ ((*1 *1 *1 *1) (-5 *1 (-1255))) ((*1 *1 *1 *1) (-5 *1 (-1256))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-543))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-591))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-886)))))
(((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-1201 (-975 *4))) (-5 *1 (-431 *3 *4))
- (-4 *3 (-432 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-4 *3 (-376))
- (-5 *2 (-1201 (-975 *3)))))
+ (-12 (-5 *2 (-114)) (-5 *1 (-1185 *3)) (-4 *3 (-1132))
+ (-4 *3 (-1247)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560))
+ (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1066))
+ (-5 *1 (-770)))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1273 (-421 *2)))
+ (-4 *2 (-1273 *4)) (-5 *1 (-354 *3 *4 *2 *5))
+ (-4 *3 (-355 *4 *2 *5))))
((*1 *2)
- (-12 (-5 *2 (-1201 (-421 (-975 *3)))) (-5 *1 (-467 *3 *4 *5 *6))
- (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
+ (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1252))
+ (-4 *4 (-1273 (-421 *2))) (-4 *2 (-1273 *3)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-663 *2) *2 *2 *2)) (-4 *2 (-1132))
+ (-5 *1 (-103 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1132)) (-5 *1 (-103 *2)))))
+(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1072)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 *2)) (-5 *1 (-500 *2)) (-4 *2 (-1273 (-560))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *5 (-1096 *3 *4 *2)) (-4 *2 (-871))))
+ (-12 (-5 *2 (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 *4))))
+ (-5 *1 (-913 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132))))
((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *2 (-871)))))
-(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132))
+ (-4 *7 (-1132)) (-5 *2 (-663 *1)) (-4 *1 (-1135 *3 *4 *5 *6 *7)))))
+(((*1 *1 *2 *2)
(-12
(-5 *2
- (-2 (|:| -2132 (-803 *3)) (|:| |coef1| (-803 *3))
- (|:| |coef2| (-803 *3))))
- (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-571)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *2 (-2 (|:| -2132 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-1096 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-571)) (-4 *2 (-1080))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1273 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)) (-4 *2 (-571))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *3 (-1096 *4 *5 *6))
- (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *1))))
- (-4 *1 (-1102 *4 *5 *6 *3)))))
-(((*1 *1 *1) (-5 *1 (-48)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1247))
- (-4 *2 (-1247)) (-5 *1 (-59 *5 *2))))
- ((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1132)) (|has| *1 (-6 -4508))
- (-4 *1 (-153 *2)) (-4 *2 (-1247))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4508)) (-4 *1 (-153 *2))
+ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391)))
+ (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206))))
+ (-5 *1 (-1206)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))))
+(((*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1297 *1)) (-4 *1 (-380 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1273 *4)) (-4 *4 (-1252))
+ (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1273 (-421 *3))))))
+(((*1 *1 *1 *1) (-5 *1 (-130)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-948))))
+ ((*1 *1 *1 *1) (-5 *1 (-1253))) ((*1 *1 *1 *1) (-5 *1 (-1254)))
+ ((*1 *1 *1 *1) (-5 *1 (-1255))) ((*1 *1 *1 *1) (-5 *1 (-1256))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-435 *3) (-1033))) (-5 *1 (-287 *3 *2))
+ (-4 *3 (-571)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247))
+ (-4 *4 (-385 *2)) (-4 *5 (-385 *2))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4509)) (-4 *1 (-121 *3))
+ (-4 *3 (-1247))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4509)) (-4 *1 (-121 *3))
+ (-4 *3 (-1247))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4509)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1132))
(-4 *2 (-1247))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4508)) (-4 *1 (-153 *2))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1207)) (-5 *1 (-651))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-1264 (-560))) (|has| *1 (-6 -4509)) (-4 *1 (-673 *2))
(-4 *2 (-1247))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1080))
- (-5 *2 (-2 (|:| -2738 (-1201 *4)) (|:| |deg| (-948))))
- (-5 *1 (-225 *4 *5)) (-5 *3 (-1201 *4)) (-4 *5 (-571))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-793))
- (-4 *6 (-1247)) (-4 *2 (-1247)) (-5 *1 (-247 *5 *6 *2))))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-175)) (-5 *1 (-301 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1273 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-571)) (-4 *2 (-1132))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-349 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *3 (-1273 *2))
- (-4 *4 (-1273 (-421 *3))) (-4 *5 (-355 *2 *3 *4))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1247)) (-4 *2 (-1247))
- (-5 *1 (-386 *5 *4 *2 *6)) (-4 *4 (-385 *5)) (-4 *6 (-385 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1132)) (-4 *2 (-1132))
- (-5 *1 (-441 *5 *4 *2 *6)) (-4 *4 (-440 *5)) (-4 *6 (-440 *2))))
- ((*1 *1 *1) (-5 *1 (-509)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-663 *5)) (-4 *5 (-1247))
- (-4 *2 (-1247)) (-5 *1 (-664 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1080)) (-4 *2 (-1080))
- (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *8 (-385 *2))
- (-4 *9 (-385 *2)) (-5 *1 (-709 *5 *6 *7 *4 *2 *8 *9 *10))
- (-4 *4 (-708 *5 *6 *7)) (-4 *10 (-708 *2 *8 *9))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1080)) (-5 *1 (-734 *3 *2)) (-4 *2 (-1273 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-421 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-376))
- (-4 *3 (-175)) (-4 *1 (-746 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-175)) (-4 *1 (-746 *3 *2)) (-4 *2 (-1273 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-987 *5)) (-4 *5 (-1247))
- (-4 *2 (-1247)) (-5 *1 (-988 *5 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *1 (-1065 *3 *4 *5 *2 *6)) (-4 *2 (-979 *3 *4 *5))
- (-14 *6 (-663 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1080)) (-4 *2 (-1080))
- (-14 *5 (-793)) (-14 *6 (-793)) (-4 *8 (-245 *6 *7))
- (-4 *9 (-245 *5 *7)) (-4 *10 (-245 *6 *2)) (-4 *11 (-245 *5 *2))
- (-5 *1 (-1086 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-1084 *5 *6 *7 *8 *9)) (-4 *12 (-1084 *5 *6 *2 *10 *11))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1185 *5)) (-4 *5 (-1247))
- (-4 *2 (-1247)) (-5 *1 (-1187 *5 *2))))
- ((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-114) *2 *2))
- (-4 *1 (-1242 *5 *6 *7 *2)) (-4 *5 (-571)) (-4 *6 (-815))
- (-4 *7 (-871)) (-4 *2 (-1096 *5 *6 *7))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1297 *5)) (-4 *5 (-1247))
- (-4 *2 (-1247)) (-5 *1 (-1298 *5 *2)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-783))))
+ ((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-663 (-560))) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080))
+ (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4509)) (-4 *1 (-1041 *2))
+ (-4 *2 (-1247))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1247))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2))
+ (-4 *2 (-1247))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4509)) (-4 *1 (-1286 *3))
+ (-4 *3 (-1247))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2))
+ (-4 *2 (-1247)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-773)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229))
+ (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1066))
+ (-5 *1 (-768)))))
+(((*1 *1 *1) (-4 *1 (-559))))
(((*1 *2)
- (|partial| -12 (-4 *3 (-571)) (-4 *3 (-175))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -1954 (-663 *1))))
- (-4 *1 (-380 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-467 *3 *4 *5 *6))
- (|:| -1954 (-663 (-467 *3 *4 *5 *6)))))
- (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-948))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
-(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-116 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229)))
- (-5 *5 (-1120 (-229))) (-5 *6 (-560)) (-5 *2 (-1243 (-956)))
- (-5 *1 (-330))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229)))
- (-5 *5 (-1120 (-229))) (-5 *6 (-560)) (-5 *7 (-1189))
- (-5 *2 (-1243 (-956))) (-5 *1 (-330))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229)))
- (-5 *5 (-1120 (-229))) (-5 *6 (-229)) (-5 *7 (-560))
- (-5 *2 (-1243 (-956))) (-5 *1 (-330))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229)))
- (-5 *5 (-1120 (-229))) (-5 *6 (-229)) (-5 *7 (-560)) (-5 *8 (-1189))
- (-5 *2 (-1243 (-956))) (-5 *1 (-330)))))
-(((*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175))))
- ((*1 *1 *1 *1) (-4 *1 (-487)))
- ((*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175))))
- ((*1 *2 *2) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-908))))
- ((*1 *1 *1) (-5 *1 (-1002)))
- ((*1 *1 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-601 *2)) (-4 *2 (-559)))))
-(((*1 *2)
- (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-887))))
- ((*1 *1 *1) (-5 *1 (-887))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2))
- (-4 *4 (-571)))))
-(((*1 *1 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-630 *6)) (-4 *6 (-13 (-435 *5) (-27) (-1233)))
- (-4 *5 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
- (-5 *2 (-1201 (-421 (-1201 *6)))) (-5 *1 (-575 *5 *6 *7))
- (-5 *3 (-1201 *6)) (-4 *7 (-1132))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1273 *3)) (-5 *1 (-734 *3 *2)) (-4 *3 (-1080))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-746 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1273 *3))))
- ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1201 *11)) (-5 *6 (-663 *10))
- (-5 *7 (-663 (-793))) (-5 *8 (-663 *11)) (-4 *10 (-871))
- (-4 *11 (-319)) (-4 *9 (-815)) (-4 *5 (-979 *11 *9 *10))
- (-5 *2 (-663 (-1201 *5))) (-5 *1 (-764 *9 *10 *11 *5))
- (-5 *3 (-1201 *5))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-979 *3 *4 *5)) (-5 *1 (-1065 *3 *4 *5 *2 *6))
- (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-14 *6 (-663 *2)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-149))
- (-4 *3 (-319)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *1 (-1008 *3 *4 *5 *6)))))
-(((*1 *1 *1 *1) (-5 *1 (-887))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-571)) (-4 *3 (-1080))
- (-5 *2 (-2 (|:| -1774 *1) (|:| -2341 *1))) (-4 *1 (-876 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-571)) (-4 *5 (-1080))
- (-5 *2 (-2 (|:| -1774 *3) (|:| -2341 *3))) (-5 *1 (-877 *5 *3))
- (-4 *3 (-876 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-573 *3)) (-4 *3 (-559)))))
-(((*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-663 (-114))))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-793)) (-4 *4 (-571)) (-5 *1 (-1000 *4 *2))
- (-4 *2 (-1273 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-948))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-544 *3)) (-4 *3 (-13 (-748) (-25))))))
+(((*1 *1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-270))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-948)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887))))
+ ((*1 *1 *1) (-5 *1 (-887)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-4 *1 (-1130 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-887)))))
+(((*1 *1 *1 *1) (-4 *1 (-559))))
+(((*1 *1 *1) (-5 *1 (-229)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
+ (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
+ ((*1 *1 *1) (-5 *1 (-391))) ((*1 *1) (-5 *1 (-391))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-972 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-972 *3))) (-4 *3 (-1080)) (-4 *1 (-1165 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-663 (-663 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-663 (-972 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))))
+(((*1 *1) (-5 *1 (-143))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5))
+ (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *1 (-1311 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-663 *8)) (-5 *3 (-1 (-114) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571))
+ (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1311 *5 *6 *7 *8)))))
(((*1 *2 *3)
(-12 (-4 *4 (-1080))
(-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296)))
- (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1273 *4))))
- ((*1 *1 *1) (-4 *1 (-559)))
- ((*1 *2 *1) (-12 (-5 *2 (-948)) (-5 *1 (-694 *3)) (-4 *3 (-871))))
- ((*1 *2 *1) (-12 (-5 *2 (-948)) (-5 *1 (-699 *3)) (-4 *3 (-871))))
- ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-841 *3)) (-4 *3 (-871))))
- ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-918 *3)) (-4 *3 (-871))))
- ((*1 *2 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1247)) (-5 *2 (-793))))
- ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1245 *3)) (-4 *3 (-1247))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1033))
- (-4 *2 (-1080)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1273 *4)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-560)) (-5 *1 (-391)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391)))
+ (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206))))
+ (-5 *1 (-1206)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-711 *4)) (-4 *4 (-1080)) (-5 *1 (-1173 *3 *4))
+ (-14 *3 (-793)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-633 (-915 (-560))))
+ (-4 *5 (-911 (-560)))
+ (-4 *5 (-13 (-1069 (-560)) (-466) (-660 (-560))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-581 *5 *3)) (-4 *3 (-649))
+ (-4 *3 (-13 (-27) (-1233) (-435 *5))))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
(-12 (-5 *4 (-560)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391)))
(-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303))
(-5 *1 (-810)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-543))))
+ ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-543)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175))
- (-5 *2 (-663 (-975 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-663 (-975 *4))) (-5 *1 (-431 *3 *4))
- (-4 *3 (-432 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-663 (-975 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-663 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6))
- (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1297 (-467 *4 *5 *6 *7))) (-5 *2 (-663 (-975 *4)))
- (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-571)) (-4 *4 (-175))
- (-14 *5 (-948)) (-14 *6 (-663 (-1207))) (-14 *7 (-1297 (-711 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-421 (-560))) (-5 *1 (-315)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-149))
- (-4 *3 (-319)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *1 (-1008 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1189))
- (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1297 *5)) (-4 *5 (-13 (-1080) (-660 *4)))
- (-4 *4 (-571)) (-5 *2 (-1297 *4)) (-5 *1 (-658 *4 *5)))))
+ (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946))))
+ ((*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
+(((*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-844)))))
+(((*1 *2 *1) (-12 (-5 *2 (-795)) (-5 *1 (-51)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 *4))
+ (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-948)) (-5 *4 (-229)) (-5 *5 (-560)) (-5 *6 (-898))
+ (-5 *2 (-1303)) (-5 *1 (-1300)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-229))) (-5 *2 (-1297 (-721))) (-5 *1 (-315)))))
-(((*1 *2) (-12 (-5 *2 (-663 *3)) (-5 *1 (-1115 *3)) (-4 *3 (-134)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1057 (-864 (-560)))) (-5 *1 (-609 *3)) (-4 *3 (-1080)))))
-(((*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-934 (-560))) (-5 *1 (-946))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-663 *3))
- (-4 *3 (-13 (-435 *6) (-27) (-1233)))
- (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-580 *6 *3 *7)) (-4 *7 (-1132)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-774)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-793)) (-4 *3 (-1247)) (-4 *1 (-57 *3 *4 *5))
- (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
- ((*1 *1) (-5 *1 (-174)))
- ((*1 *1) (-12 (-5 *1 (-216 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1132))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-403))))
- ((*1 *1) (-5 *1 (-407)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-4 *1 (-673 *3)) (-4 *3 (-1247))))
- ((*1 *1)
- (-12 (-4 *3 (-1132)) (-5 *1 (-910 *2 *3 *4)) (-4 *2 (-1132))
- (-4 *4 (-688 *3))))
- ((*1 *1) (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132))))
- ((*1 *1 *2)
- (-12 (-5 *1 (-1173 *3 *2)) (-14 *3 (-793)) (-4 *2 (-1080))))
- ((*1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080))))
- ((*1 *1 *1) (-5 *1 (-1207))) ((*1 *1) (-5 *1 (-1207)))
- ((*1 *1) (-5 *1 (-1227))))
-(((*1 *2 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-576)) (-5 *3 (-560)))))
-(((*1 *2 *1) (-12 (-4 *1 (-571)) (-5 *2 (-114)))))
-(((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))))
+ (-12 (-5 *3 (-1 (-114) *6)) (-4 *6 (-13 (-1132) (-1069 *5)))
+ (-4 *5 (-911 *4)) (-4 *4 (-1132)) (-5 *2 (-1 (-114) *5))
+ (-5 *1 (-960 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -2489 *1) (|:| -4495 *1) (|:| |associate| *1)))
- (-4 *1 (-571)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3))
- (-4 *3 (-1273 (-171 *2)))))
+ (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080))
+ (-5 *2 (-841 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-868)) (-5 *1 (-1321 *3 *2)) (-4 *3 (-1080)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 *7)) (-4 *7 (-979 *4 *6 *5))
+ (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207))))
+ (-4 *6 (-815)) (-5 *2 (-114)) (-5 *1 (-953 *4 *5 *6 *7))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3))
- (-4 *3 (-1273 (-171 *2))))))
-(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-97)))))
-(((*1 *2 *1) (-12 (-5 *2 (-795)) (-5 *1 (-51)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-898)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2132 (-803 *3)) (|:| |coef1| (-803 *3))))
- (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-571)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *2 (-2 (|:| -2132 *1) (|:| |coef1| *1)))
- (-4 *1 (-1096 *3 *4 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1209 (-421 (-560)))) (-5 *2 (-421 (-560)))
- (-5 *1 (-193)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-376)) (-5 *1 (-659 *3 *4))
- (-14 *4 (-663 (-1207))))))
+ (-12 (-5 *3 (-663 (-975 *4))) (-4 *4 (-13 (-319) (-149)))
+ (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-114))
+ (-5 *1 (-953 *4 *5 *6 *7)) (-4 *7 (-979 *4 *6 *5)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-663 (-2 (|:| -2968 *3) (|:| -2460 *4))))
- (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *1 (-1224 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1224 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-773)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-898)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))))
+ (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1247)) (-4 *1 (-245 *3 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-571) (-149)))
+ (-5 *2 (-2 (|:| -4335 *3) (|:| -4346 *3))) (-5 *1 (-1269 *4 *3))
+ (-4 *3 (-1273 *4)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *2 (-871)) (-4 *5 (-1096 *3 *4 *2)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-770)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))))
-(((*1 *2 *3) (-12 (-5 *3 (-663 (-948))) (-5 *2 (-793)) (-5 *1 (-604)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-248))))
+ (-12 (-4 *2 (-319)) (-4 *3 (-1022 *2)) (-4 *4 (-1273 *3))
+ (-5 *1 (-427 *2 *3 *4 *5)) (-4 *5 (-13 (-424 *3 *4) (-1069 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175))))
((*1 *2 *3)
- (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-1303)) (-5 *1 (-248)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033)))
- (-5 *1 (-179 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-419 *4) *4)) (-4 *4 (-571)) (-5 *2 (-419 *4))
- (-5 *1 (-433 *4))))
- ((*1 *1 *1) (-5 *1 (-954)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-954))))
- ((*1 *1 *1) (-5 *1 (-956)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-956))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))
- (-5 *4 (-421 (-560))) (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-560)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))
- (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-560)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))
- (-5 *4 (-421 (-560))) (-5 *1 (-1053 *3)) (-4 *3 (-1273 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))
- (-5 *1 (-1053 *3)) (-4 *3 (-1273 (-421 (-560))))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3))
- (-4 *3 (-1273 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-663 (-1212))) (-5 *1 (-187 *3)) (-4 *3 (-189)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2132 (-803 *3)) (|:| |coef2| (-803 *3))))
- (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-571)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *2 (-2 (|:| -2132 *1) (|:| |coef2| *1)))
- (-4 *1 (-1096 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-114)) (-5 *3 (-663 (-270))) (-5 *1 (-271))))
- ((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481))))
- ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))))
-(((*1 *2 *1) (-12 (-4 *1 (-984)) (-5 *2 (-663 (-663 (-972 (-229)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-663 (-663 (-972 (-229))))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *5 (-871)) (-5 *2 (-114)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-793)) (-4 *1 (-680 *3)) (-4 *3 (-1080)) (-4 *3 (-376))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-793)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376))
- (-5 *1 (-682 *5 *2)) (-4 *2 (-680 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-663 (-1234 *3))) (-5 *1 (-1234 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-897 (-1212) (-793)))) (-5 *1 (-345)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-319))
- (-5 *2 (-793)) (-5 *1 (-469 *5 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1185 *4) (-1185 *4))) (-5 *2 (-1185 *4))
- (-5 *1 (-1324 *4)) (-4 *4 (-1247))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-663 (-1185 *5)) (-663 (-1185 *5)))) (-5 *4 (-560))
- (-5 *2 (-663 (-1185 *5))) (-5 *1 (-1324 *5)) (-4 *5 (-1247)))))
-(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-339 *3)) (-4 *3 (-1247))))
+ (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-326 *4))
+ (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 (-171 *4))))))
((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1247))
- (-14 *4 (-560)))))
-(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-1302))))
- ((*1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1302)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1120 *3)) (-4 *3 (-979 *7 *6 *4)) (-4 *6 (-815))
- (-4 *4 (-871)) (-4 *7 (-571))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-560))))
- (-5 *1 (-608 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-571))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-560))))
- (-5 *1 (-608 *5 *4 *6 *3)) (-4 *3 (-979 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-887))) ((*1 *1 *1 *1) (-5 *1 (-887)))
- ((*1 *1 *1) (-5 *1 (-887)))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1207))
- (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560))))
- (-5 *1 (-1199 *4 *2)) (-4 *2 (-13 (-435 *4) (-162) (-27) (-1233)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1123 *2)) (-4 *2 (-13 (-435 *4) (-162) (-27) (-1233)))
- (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560))))
- (-5 *1 (-1199 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-571) (-1069 (-560))))
- (-5 *2 (-421 (-975 *5))) (-5 *1 (-1200 *5)) (-5 *3 (-975 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-571) (-1069 (-560))))
- (-5 *2 (-3 (-421 (-975 *5)) (-326 *5))) (-5 *1 (-1200 *5))
- (-5 *3 (-421 (-975 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1123 (-975 *5))) (-5 *3 (-975 *5))
- (-4 *5 (-13 (-571) (-1069 (-560)))) (-5 *2 (-421 *3))
- (-5 *1 (-1200 *5))))
+ (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560))))
+ (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-948))) (-5 *4 (-931 (-560)))
+ (-5 *2 (-711 (-560))) (-5 *1 (-604))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-948))) (-5 *2 (-663 (-711 (-560))))
+ (-5 *1 (-604))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1123 (-421 (-975 *5)))) (-5 *3 (-421 (-975 *5)))
- (-4 *5 (-13 (-571) (-1069 (-560)))) (-5 *2 (-3 *3 (-326 *5)))
- (-5 *1 (-1200 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *1) (-5 *1 (-146))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1322 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-871))
- (-4 *4 (-175))))
- ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1132))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-841 *2)) (-4 *2 (-871))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-841 *3)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-871))
- (-4 *4 (-1080))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))))
-(((*1 *1) (-5 *1 (-520))))
-(((*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-844)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-571)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1273 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1072)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-466) (-1069 (-560)))) (-4 *3 (-571))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3))
- (-4 *2
- (-13 (-376) (-310)
- (-10 -8 (-15 -3757 ((-1156 *3 (-630 $)) $))
- (-15 -3771 ((-1156 *3 (-630 $)) $))
- (-15 -1578 ($ (-1156 *3 (-630 $))))))))))
-(((*1 *2 *2)
- (-12
- (-5 *2
- (-1017 (-421 (-560)) (-888 *3) (-246 *4 (-793))
- (-255 *3 (-421 (-560)))))
- (-14 *3 (-663 (-1207))) (-14 *4 (-793)) (-5 *1 (-1018 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207))))
- (-4 *6 (-815)) (-5 *2 (-663 *3)) (-5 *1 (-953 *4 *5 *6 *3))
- (-4 *3 (-979 *4 *6 *5)))))
+ (-12 (-5 *3 (-663 (-948))) (-5 *4 (-663 (-931 (-560))))
+ (-5 *2 (-663 (-711 (-560)))) (-5 *1 (-604)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-600)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-793)) (-4 *4 (-1080)) (-5 *1 (-1271 *4 *2))
+ (-4 *2 (-1273 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+ (-12 (-5 *4 (-663 *3)) (-4 *3 (-979 *5 *6 *7)) (-4 *5 (-466))
+ (-4 *6 (-815)) (-4 *7 (-871))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-464 *5 *6 *7 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-114) *5 *5)) (-5 *4 (-1 (-114) *6 *6))
+ (-4 *5 (-13 (-1132) (-34))) (-4 *6 (-13 (-1132) (-34)))
+ (-5 *2 (-114)) (-5 *1 (-1171 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1303)) (-5 *1 (-1169))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-887))) (-5 *2 (-1303)) (-5 *1 (-1169)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-114)))))
+(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))))
+(((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-326 *4))
+ (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 (-171 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560))))
+ (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3))))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-773)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-845)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-758 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1132))))
- ((*1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1132)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2))
- (-4 *2 (-435 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1123 *2)) (-4 *2 (-435 *4)) (-4 *4 (-571))
- (-5 *1 (-160 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1123 *1)) (-4 *1 (-162))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207)))))
-(((*1 *1 *1 *1) (-5 *1 (-887))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 (-255 *5 *6))) (-4 *6 (-466))
- (-5 *2 (-255 *5 *6)) (-14 *5 (-663 (-1207))) (-5 *1 (-650 *5 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1080)) (-5 *1 (-1271 *3 *2)) (-4 *2 (-1273 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1080))
- (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296)))
- (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1273 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-948)) (-4 *5 (-1080))
- (-4 *2 (-13 (-418) (-1069 *5) (-376) (-1233) (-296)))
- (-5 *1 (-457 *5 *3 *2)) (-4 *3 (-1273 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-871)) (-5 *2 (-114))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *1 (-385 *4)) (-4 *4 (-1247))
- (-5 *2 (-114)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2))
- (-4 *4 (-571)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1183)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-531)))))
+ (-12 (-5 *2 (-663 *3)) (-4 *3 (-1273 (-560))) (-5 *1 (-500 *3)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-663 (-1201 *7))) (-5 *3 (-1201 *7))
- (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-939)) (-4 *5 (-815))
- (-4 *6 (-871)) (-5 *1 (-936 *4 *5 *6 *7))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-663 (-1201 *5))) (-5 *3 (-1201 *5))
- (-4 *5 (-1273 *4)) (-4 *4 (-939)) (-5 *1 (-937 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-793)) (-5 *2 (-114))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-114)) (-5 *1 (-1249 *3)) (-4 *3 (-871))
- (-4 *3 (-1132)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34)))
- (-4 *3 (-13 (-1132) (-34))))))
+ (|partial| -12 (-5 *3 (-793)) (-4 *4 (-13 (-571) (-149)))
+ (-5 *1 (-1269 *4 *2)) (-4 *2 (-1273 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4))
+ (-4 *5 (-1273 (-421 *3))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-778)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229)))
+ (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-229))
+ (-5 *2 (-1066)) (-5 *1 (-771)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-1132))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-1234 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-663 (-1234 *2))) (-5 *1 (-1234 *2)) (-4 *2 (-1132)))))
(((*1 *2 *2 *3)
(-12 (-5 *3 (-421 (-560))) (-4 *4 (-1069 (-560))) (-4 *4 (-571))
(-5 *1 (-32 *4 *2)) (-4 *2 (-435 *4))))
@@ -2646,841 +2402,392 @@
(-5 *1 (-1193 *3))))
((*1 *1 *1 *2)
(-12 (-4 *1 (-1290 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-663 (-630 *4))) (-4 *4 (-435 *3)) (-4 *3 (-1132))
- (-5 *1 (-587 *3 *4))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-663 *6)) (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080))
- (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5))
- (-4 *3 (-571)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-663 (-1201 *7))) (-5 *3 (-1201 *7))
- (-4 *7 (-979 *5 *6 *4)) (-4 *5 (-939)) (-4 *6 (-815))
- (-4 *4 (-871)) (-5 *1 (-936 *5 *6 *4 *7)))))
-(((*1 *1) (-5 *1 (-574))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1273 *3)) (-5 *1 (-413 *3 *2))
- (-4 *3 (-13 (-376) (-149))))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-450)) (-5 *1 (-1211)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-793))
- (-4 *3 (-13 (-748) (-381) (-10 -7 (-15 ** (*3 *3 (-560))))))
- (-5 *1 (-253 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-948))) (-5 *2 (-1209 (-421 (-560))))
- (-5 *1 (-193)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
-(((*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302))))
- ((*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-663 (-560))) (-5 *3 (-663 (-948))) (-5 *4 (-114))
- (-5 *1 (-1141)))))
-(((*1 *2)
- (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207))))
- (-4 *6 (-815)) (-5 *2 (-663 (-663 (-560))))
- (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-560)) (-4 *7 (-979 *4 *6 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-391)) (-5 *1 (-1094)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6))
- (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114))
- (-4 *5 (-13 (-870) (-319) (-149) (-1051)))
- (-5 *2 (-663 (-1077 *5 *6))) (-5 *1 (-1325 *5 *6 *7))
- (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114))
- (-4 *5 (-13 (-870) (-319) (-149) (-1051)))
- (-5 *2 (-663 (-1077 *5 *6))) (-5 *1 (-1325 *5 *6 *7))
- (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-975 *4)))
- (-4 *4 (-13 (-870) (-319) (-149) (-1051)))
- (-5 *2 (-663 (-1077 *4 *5))) (-5 *1 (-1325 *4 *5 *6))
- (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207))))))
-(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-466) (-149))) (-5 *2 (-419 *3))
- (-5 *1 (-100 *4 *3)) (-4 *3 (-1273 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-13 (-466) (-149)))
- (-5 *2 (-419 *3)) (-5 *1 (-100 *5 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1297 (-1207))) (-5 *3 (-1297 (-467 *4 *5 *6 *7)))
- (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-948))
- (-14 *6 (-663 (-1207))) (-14 *7 (-1297 (-711 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-467 *4 *5 *6 *7)))
- (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-948))
- (-14 *6 (-663 *2)) (-14 *7 (-1297 (-711 *4)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1297 (-467 *3 *4 *5 *6))) (-5 *1 (-467 *3 *4 *5 *6))
- (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207)))
- (-14 *6 (-1297 (-711 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1297 (-1207))) (-5 *1 (-467 *3 *4 *5 *6))
- (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207)))
- (-14 *6 (-1297 (-711 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1207)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175))
- (-14 *4 (-948)) (-14 *5 (-663 *2)) (-14 *6 (-1297 (-711 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-467 *2 *3 *4 *5)) (-4 *2 (-175)) (-14 *3 (-948))
- (-14 *4 (-663 (-1207))) (-14 *5 (-1297 (-711 *2))))))
-(((*1 *1) (-5 *1 (-1300))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-948)) (-5 *1 (-1133 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1189)) (-5 *2 (-663 (-1212))) (-5 *1 (-905)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-114) *7 (-663 *7))) (-4 *1 (-1242 *4 *5 *6 *7))
- (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-560)) (|has| *1 (-6 -4499)) (-4 *1 (-418))
- (-5 *2 (-948)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1207)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229))
- (-5 *2 (-1066)) (-5 *1 (-775)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7))
- (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *4))))
- (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-793)) (-4 *4 (-1080))
- (-5 *2 (-2 (|:| -1774 *1) (|:| -2341 *1))) (-4 *1 (-1273 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-1163 *4 *2))
- (-4 *2 (-13 (-618 (-560) *4) (-10 -7 (-6 -4508) (-6 -4509))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-871)) (-4 *3 (-1247)) (-5 *1 (-1163 *3 *2))
- (-4 *2 (-13 (-618 (-560) *3) (-10 -7 (-6 -4508) (-6 -4509)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-466))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1303))
- (-5 *1 (-464 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1080)) (-4 *4 (-1132)) (-5 *2 (-663 *1))
- (-4 *1 (-397 *3 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-663 (-757 *3 *4))) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080))
- (-4 *4 (-748))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1))
- (-4 *1 (-979 *3 *4 *5)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-560)) (-4 *1 (-673 *3)) (-4 *3 (-1247))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-560)) (-4 *1 (-673 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1201 (-421 (-560)))) (-5 *1 (-971)) (-5 *3 (-560)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-934 *4))
- (-4 *4 (-1132))))
- ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-663 *4)) (-4 *4 (-1132)) (-4 *4 (-1247)) (-5 *2 (-114))
- (-5 *1 (-1185 *4)))))
(((*1 *1 *1)
(-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1080)) (-4 *3 (-871))
- (-4 *4 (-277 *3)) (-4 *5 (-815)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-663 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *5 (-871)) (-5 *2 (-114))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *1 (-1242 *5 *6 *7 *3))
- (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-114)))))
-(((*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))))
-(((*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))))
-(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-303)))
- ((*1 *1) (-5 *1 (-887)))
- ((*1 *1)
- (-12 (-4 *2 (-466)) (-4 *3 (-871)) (-4 *4 (-815))
- (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-979 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1116)))
- ((*1 *1)
- (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34)))
- (-4 *3 (-13 (-1132) (-34)))))
- ((*1 *1) (-5 *1 (-1210))) ((*1 *1) (-5 *1 (-1211))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-342))))
- ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-342)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1134)) (-5 *1 (-291)))))
-(((*1 *1 *2) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-887)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-793))
- (-14 *4 (-793)) (-4 *5 (-175)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-560)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1247))
- (-4 *3 (-385 *4)) (-4 *5 (-385 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3))
+ (-4 *3 (-1273 (-171 *2))))))
(((*1 *2)
- (-12 (-4 *3 (-571)) (-5 *2 (-663 (-711 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-432 *3)))))
+ (-12 (-5 *2 (-114)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132))
+ (-4 *4 (-1132)))))
+(((*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-108))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-549))) (-5 *1 (-549)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
+ (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-894 *3)) (-5 *2 (-560))))
+ ((*1 *1 *1) (-4 *1 (-1033)))
+ ((*1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-1043))))
+ ((*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-4 *1 (-1043))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-948))))
+ ((*1 *1 *1) (-4 *1 (-1043))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229)))
+ (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-229))
+ (-5 *2 (-1066)) (-5 *1 (-777))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229)))
+ (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-402))
+ (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-777)))))
(((*1 *2 *3 *1)
- (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-3 (-114) (-663 *1)))
- (-4 *1 (-1102 *4 *5 *6 *3)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-793)) (-4 *4 (-1080)) (-5 *1 (-1271 *4 *2))
- (-4 *2 (-1273 *4)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-793)) (-4 *4 (-13 (-571) (-149)))
- (-5 *1 (-1269 *4 *2)) (-4 *2 (-1273 *4)))))
+ (-12 (|has| *1 (-6 -4508)) (-4 *1 (-618 *4 *3)) (-4 *4 (-1132))
+ (-4 *3 (-1247)) (-4 *3 (-1132)) (-5 *2 (-114)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |var| (-663 (-1207))) (|:| |pred| (-51))))
+ (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-114))))
((*1 *2 *3)
(-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-5 *2 (-114))
(-5 *1 (-369 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
+ (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
+ (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-5 *2 (-663 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-432 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-871) (-633 (-1207))))
- (-4 *5 (-815)) (-5 *1 (-953 *3 *4 *5 *2)) (-4 *2 (-979 *3 *5 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-114)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-630 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1207))) (-5 *5 (-1201 *2))
- (-4 *2 (-13 (-435 *6) (-27) (-1233)))
- (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
- (-5 *1 (-575 *6 *2 *7)) (-4 *7 (-1132))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-630 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1207)))
- (-5 *5 (-421 (-1201 *2))) (-4 *2 (-13 (-435 *6) (-27) (-1233)))
- (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
- (-5 *1 (-575 *6 *2 *7)) (-4 *7 (-1132)))))
-(((*1 *2)
- (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-432 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-793)) (-4 *4 (-376)) (-4 *5 (-1273 *4)) (-5 *2 (-1303))
- (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1273 (-421 *5))) (-14 *7 *6))))
-(((*1 *2) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1066))
- (-5 *1 (-778)))))
-(((*1 *1 *2)
- (-12 (-4 *3 (-1080)) (-5 *1 (-850 *2 *3)) (-4 *2 (-730 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1201 *9)) (-5 *4 (-663 *7)) (-4 *7 (-871))
- (-4 *9 (-979 *8 *6 *7)) (-4 *6 (-815)) (-4 *8 (-319))
- (-5 *2 (-663 (-793))) (-5 *1 (-764 *6 *7 *8 *9)) (-5 *5 (-793)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1080) (-660 (-560))))
- (-5 *2 (-1297 (-560))) (-5 *1 (-1326 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-887)) (-5 *1 (-1185 *3)) (-4 *3 (-1132))
- (-4 *3 (-1247)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1130 *3)) (-4 *3 (-1132)) (-5 *2 (-114)))))
-(((*1 *1) (-5 *1 (-482))))
+ (-12 (-4 *4 (-363)) (-5 *2 (-987 (-1201 *4))) (-5 *1 (-369 *4))
+ (-5 *3 (-1201 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-663 *3)) (-5 *5 (-948)) (-4 *3 (-1273 *4))
- (-4 *4 (-319)) (-5 *1 (-474 *4 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+ (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080))))
+ ((*1 *2)
+ (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-220 *4 *3))
- (-4 *3 (-1273 *4)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1080))
- (-4 *4 (-814))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-50 *3 *4))
- (-14 *4 (-663 (-1207)))))
- ((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247))
- (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247))
- (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247))
- (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1247))
- (-4 *6 (-1247)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-560))
- (-14 *6 (-793)) (-4 *7 (-175)) (-4 *8 (-175))
- (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-138 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-175))
- (-4 *6 (-175)) (-5 *2 (-171 *6)) (-5 *1 (-172 *5 *6))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1080) (-871)))
- (-5 *1 (-227 *3 *4)) (-14 *4 (-663 (-1207)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-793))
- (-4 *6 (-1247)) (-4 *7 (-1247)) (-5 *2 (-246 *5 *7))
- (-5 *1 (-247 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-305 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-305 *5)) (-4 *5 (-1247))
- (-4 *6 (-1247)) (-5 *2 (-305 *6)) (-5 *1 (-306 *5 *6))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-630 *1)) (-4 *1 (-310))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1189)) (-5 *5 (-630 *6))
- (-4 *6 (-310)) (-4 *2 (-1247)) (-5 *1 (-311 *6 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-630 *5)) (-4 *5 (-310))
- (-4 *2 (-310)) (-5 *1 (-312 *5 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-711 *5)) (-4 *5 (-1080))
- (-4 *6 (-1080)) (-5 *2 (-711 *6)) (-5 *1 (-317 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1132))
- (-4 *6 (-1132)) (-5 *2 (-326 *6)) (-5 *1 (-327 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-346 *5 *6 *7 *8)) (-4 *5 (-376))
- (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6))) (-4 *8 (-355 *5 *6 *7))
- (-4 *9 (-376)) (-4 *10 (-1273 *9)) (-4 *11 (-1273 (-421 *10)))
- (-5 *2 (-346 *9 *10 *11 *12))
- (-5 *1 (-347 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-355 *9 *10 *11))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1132))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1252)) (-4 *8 (-1252))
- (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6))) (-4 *9 (-1273 *8))
- (-4 *2 (-355 *8 *9 *10)) (-5 *1 (-356 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-355 *5 *6 *7)) (-4 *10 (-1273 (-421 *9)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1247)) (-4 *6 (-1247))
- (-4 *2 (-385 *6)) (-5 *1 (-386 *5 *4 *6 *2)) (-4 *4 (-385 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3 *4)) (-4 *3 (-1080))
- (-4 *4 (-1132))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-571)) (-5 *1 (-419 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-571))
- (-4 *6 (-571)) (-5 *2 (-419 *6)) (-5 *1 (-420 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-421 *5)) (-4 *5 (-571))
- (-4 *6 (-571)) (-5 *2 (-421 *6)) (-5 *1 (-422 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-427 *5 *6 *7 *8)) (-4 *5 (-319))
- (-4 *6 (-1022 *5)) (-4 *7 (-1273 *6))
- (-4 *8 (-13 (-424 *6 *7) (-1069 *6))) (-4 *9 (-319))
- (-4 *10 (-1022 *9)) (-4 *11 (-1273 *10))
- (-5 *2 (-427 *9 *10 *11 *12))
- (-5 *1 (-428 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-424 *10 *11) (-1069 *10)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175))
- (-4 *2 (-432 *6)) (-5 *1 (-430 *4 *5 *2 *6)) (-4 *4 (-432 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1080)) (-4 *6 (-1080))
- (-4 *2 (-435 *6)) (-5 *1 (-436 *5 *4 *6 *2)) (-4 *4 (-435 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1132)) (-4 *6 (-1132))
- (-4 *2 (-440 *6)) (-5 *1 (-441 *5 *4 *6 *2)) (-4 *4 (-440 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-503 *3)) (-4 *3 (-1247))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-523 *3 *4)) (-4 *3 (-102))
- (-4 *4 (-874))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-597 *5)) (-4 *5 (-376))
- (-4 *6 (-376)) (-5 *2 (-597 *6)) (-5 *1 (-598 *5 *6))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -3887 *5) (|:| |coeff| *5)) "failed"))
- (-4 *5 (-376)) (-4 *6 (-376))
- (-5 *2 (-2 (|:| -3887 *6) (|:| |coeff| *6)))
- (-5 *1 (-598 *5 *6))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
- (-4 *5 (-376)) (-4 *2 (-376)) (-5 *1 (-598 *5 *2))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4
- (-3
- (-2 (|:| |mainpart| *5)
- (|:| |limitedlogs|
- (-663 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
- "failed"))
- (-4 *5 (-376)) (-4 *6 (-376))
- (-5 *2
- (-2 (|:| |mainpart| *6)
- (|:| |limitedlogs|
- (-663 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-598 *5 *6))))
+ (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-890 *4 *5 *6 *7))
+ (-4 *4 (-1080)) (-14 *5 (-663 (-1207))) (-14 *6 (-663 *3))
+ (-14 *7 *3)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-793)) (-4 *4 (-1080)) (-4 *5 (-871)) (-4 *6 (-815))
+ (-14 *8 (-663 *5)) (-5 *2 (-1303))
+ (-5 *1 (-1310 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-979 *4 *6 *5))
+ (-14 *9 (-663 *3)) (-14 *10 *3))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-663 (-48))) (-5 *2 (-419 *3)) (-5 *1 (-39 *3))
+ (-4 *3 (-1273 (-48)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-419 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-615 *5)) (-4 *5 (-1247))
- (-4 *6 (-1247)) (-5 *2 (-615 *6)) (-5 *1 (-612 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-615 *6)) (-5 *5 (-615 *7))
- (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-615 *8))
- (-5 *1 (-613 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1185 *6)) (-5 *5 (-615 *7))
- (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1185 *8))
- (-5 *1 (-613 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-615 *6)) (-5 *5 (-1185 *7))
- (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1185 *8))
- (-5 *1 (-613 *6 *7 *8))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-615 *3))))
+ (-12 (-5 *4 (-663 (-48))) (-4 *5 (-871)) (-4 *6 (-815))
+ (-5 *2 (-419 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-979 (-48) *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-663 *5)) (-4 *5 (-1247))
- (-4 *6 (-1247)) (-5 *2 (-663 *6)) (-5 *1 (-664 *5 *6))))
+ (-12 (-5 *4 (-663 (-48))) (-4 *5 (-871)) (-4 *6 (-815))
+ (-4 *7 (-979 (-48) *6 *5)) (-5 *2 (-419 (-1201 *7)))
+ (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1201 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-319)) (-5 *2 (-419 *3)) (-5 *1 (-169 *4 *3))
+ (-4 *3 (-1273 (-171 *4)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-663 *6)) (-5 *5 (-663 *7))
- (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-663 *8))
- (-5 *1 (-666 *6 *7 *8))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-673 *3)) (-4 *3 (-1247))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1080)) (-4 *8 (-1080))
- (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-708 *8 *9 *10))
- (-5 *1 (-709 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-708 *5 *6 *7))
- (-4 *9 (-385 *8)) (-4 *10 (-385 *8))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1080))
- (-4 *8 (-1080)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5))
- (-4 *2 (-708 *8 *9 *10)) (-5 *1 (-709 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-708 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-571)) (-4 *7 (-571))
- (-4 *6 (-1273 *5)) (-4 *2 (-1273 (-421 *8)))
- (-5 *1 (-731 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1273 (-421 *6)))
- (-4 *8 (-1273 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1080)) (-4 *9 (-1080))
- (-4 *5 (-871)) (-4 *6 (-815)) (-4 *2 (-979 *9 *7 *5))
- (-5 *1 (-750 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-815))
- (-4 *4 (-979 *8 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-871)) (-4 *6 (-871)) (-4 *7 (-815))
- (-4 *9 (-1080)) (-4 *2 (-979 *9 *8 *6))
- (-5 *1 (-751 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-815))
- (-4 *4 (-979 *9 *7 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-757 *5 *7)) (-4 *5 (-1080))
- (-4 *6 (-1080)) (-4 *7 (-748)) (-5 *2 (-757 *6 *7))
- (-5 *1 (-756 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-757 *3 *4))
- (-4 *4 (-748))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-803 *5)) (-4 *5 (-1080))
- (-4 *6 (-1080)) (-5 *2 (-803 *6)) (-5 *1 (-804 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175))
- (-4 *2 (-818 *6)) (-5 *1 (-821 *4 *5 *2 *6)) (-4 *4 (-818 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1132))
- (-4 *6 (-1132)) (-5 *2 (-854 *6)) (-5 *1 (-855 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-854 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5))
- (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *1 (-855 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1132))
- (-4 *6 (-1132)) (-5 *2 (-864 *6)) (-5 *1 (-865 *5 *6))))
- ((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-864 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5))
- (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *1 (-865 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-902 *5)) (-4 *5 (-1247))
- (-4 *6 (-1247)) (-5 *2 (-902 *6)) (-5 *1 (-901 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-904 *5)) (-4 *5 (-1247))
- (-4 *6 (-1247)) (-5 *2 (-904 *6)) (-5 *1 (-903 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-907 *5)) (-4 *5 (-1247))
- (-4 *6 (-1247)) (-5 *2 (-907 *6)) (-5 *1 (-906 *5 *6))))
+ (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-870))) (-5 *2 (-419 *3))
+ (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-913 *5 *6)) (-4 *5 (-1132))
- (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-913 *5 *7))
- (-5 *1 (-914 *5 *6 *7))))
+ (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-419 *3))
+ (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-419 *3))
+ (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-363)) (-5 *2 (-419 *3)) (-5 *1 (-220 *4 *3))
+ (-4 *3 (-1273 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-915 *5)) (-4 *5 (-1132))
- (-4 *6 (-1132)) (-5 *2 (-915 *6)) (-5 *1 (-917 *5 *6))))
+ (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3))
+ (-4 *3 (-1273 (-560)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-975 *5)) (-4 *5 (-1080))
- (-4 *6 (-1080)) (-5 *2 (-975 *6)) (-5 *1 (-976 *5 *6))))
+ (-12 (-5 *4 (-663 (-793))) (-5 *2 (-419 *3)) (-5 *1 (-456 *3))
+ (-4 *3 (-1273 (-560)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-871))
- (-4 *8 (-1080)) (-4 *6 (-815))
- (-4 *2
- (-13 (-1132)
- (-10 -8 (-15 -2567 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-793))))))
- (-5 *1 (-981 *6 *7 *8 *5 *2)) (-4 *5 (-979 *8 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-987 *5)) (-4 *5 (-1247))
- (-4 *6 (-1247)) (-5 *2 (-987 *6)) (-5 *1 (-988 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-995 *5)) (-4 *5 (-1132))
- (-4 *6 (-1132)) (-5 *2 (-995 *6)) (-5 *1 (-997 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-972 *5)) (-4 *5 (-1080))
- (-4 *6 (-1080)) (-5 *2 (-972 *6)) (-5 *1 (-1012 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-975 *4))) (-4 *4 (-1080))
- (-4 *2 (-979 (-975 *4) *5 *6)) (-4 *5 (-815))
- (-4 *6
+ (-12 (-5 *4 (-663 (-793))) (-5 *5 (-793)) (-5 *2 (-419 *3))
+ (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3))
+ (-4 *3 (-1273 (-560)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-419 (-171 (-560)))) (-5 *1 (-460))
+ (-5 *3 (-171 (-560)))))
+ ((*1 *2 *3)
+ (-12
+ (-4 *4
(-13 (-871)
- (-10 -8 (-15 -1407 ((-1207) $))
- (-15 -2462 ((-3 $ "failed") (-1207))))))
- (-5 *1 (-1015 *4 *5 *6 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-571)) (-4 *6 (-571))
- (-4 *2 (-1022 *6)) (-5 *1 (-1023 *5 *6 *4 *2)) (-4 *4 (-1022 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175))
- (-4 *2 (-1029 *6)) (-5 *1 (-1030 *4 *5 *2 *6)) (-4 *4 (-1029 *5))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1084 *3 *4 *5 *6 *7))
- (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1084 *3 *4 *5 *6 *7))
- (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1080)) (-4 *10 (-1080))
- (-14 *5 (-793)) (-14 *6 (-793)) (-4 *8 (-245 *6 *7))
- (-4 *9 (-245 *5 *7)) (-4 *2 (-1084 *5 *6 *10 *11 *12))
- (-5 *1 (-1086 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-1084 *5 *6 *7 *8 *9)) (-4 *11 (-245 *6 *10))
- (-4 *12 (-245 *5 *10))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1120 *5)) (-4 *5 (-1247))
- (-4 *6 (-1247)) (-5 *2 (-1120 *6)) (-5 *1 (-1121 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1120 *5)) (-4 *5 (-870))
- (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-663 *6))
- (-5 *1 (-1121 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1123 *5)) (-4 *5 (-1247))
- (-4 *6 (-1247)) (-5 *2 (-1123 *6)) (-5 *1 (-1124 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1126 *4 *2)) (-4 *4 (-870))
- (-4 *2 (-1180 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1185 *5)) (-4 *5 (-1247))
- (-4 *6 (-1247)) (-5 *2 (-1185 *6)) (-5 *1 (-1187 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1185 *6)) (-5 *5 (-1185 *7))
- (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1185 *8))
- (-5 *1 (-1188 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1201 *5)) (-4 *5 (-1080))
- (-4 *6 (-1080)) (-5 *2 (-1201 *6)) (-5 *1 (-1202 *5 *6))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-1132))
- (-4 *4 (-1132))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1257 *5 *7 *9)) (-4 *5 (-1080))
- (-4 *6 (-1080)) (-14 *7 (-1207)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1257 *6 *8 *10)) (-5 *1 (-1258 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1207))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-1247))
- (-4 *6 (-1247)) (-5 *2 (-1264 *6)) (-5 *1 (-1265 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-870))
- (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1185 *6))
- (-5 *1 (-1265 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1266 *5 *6)) (-14 *5 (-1207))
- (-4 *6 (-1080)) (-4 *8 (-1080)) (-5 *2 (-1266 *7 *8))
- (-5 *1 (-1267 *5 *6 *7 *8)) (-14 *7 (-1207))))
+ (-10 -8 (-15 -2400 ((-1207) $))
+ (-15 -2558 ((-3 $ "failed") (-1207))))))
+ (-4 *5 (-815)) (-4 *7 (-571)) (-5 *2 (-419 *3))
+ (-5 *1 (-470 *4 *5 *6 *7 *3)) (-4 *6 (-571))
+ (-4 *3 (-979 *7 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-319)) (-5 *2 (-419 (-1201 *4))) (-5 *1 (-472 *4))
+ (-5 *3 (-1201 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1080)) (-4 *6 (-1080))
- (-4 *2 (-1273 *6)) (-5 *1 (-1274 *5 *4 *6 *2)) (-4 *4 (-1273 *5))))
+ (-12 (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376))
+ (-4 *7 (-13 (-376) (-149) (-746 *5 *6))) (-5 *2 (-419 *3))
+ (-5 *1 (-508 *5 *6 *7 *3)) (-4 *3 (-1273 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1278 *5 *7 *9)) (-4 *5 (-1080))
- (-4 *6 (-1080)) (-14 *7 (-1207)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1278 *6 *8 *10)) (-5 *1 (-1279 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1207))))
+ (-12 (-5 *4 (-1 (-419 (-1201 *7)) (-1201 *7)))
+ (-4 *7 (-13 (-319) (-149))) (-4 *5 (-871)) (-4 *6 (-815))
+ (-5 *2 (-419 *3)) (-5 *1 (-554 *5 *6 *7 *3))
+ (-4 *3 (-979 *7 *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1080)) (-4 *6 (-1080))
- (-4 *2 (-1290 *6)) (-5 *1 (-1288 *5 *6 *4 *2)) (-4 *4 (-1290 *5))))
+ (-12 (-5 *4 (-1 (-419 (-1201 *7)) (-1201 *7)))
+ (-4 *7 (-13 (-319) (-149))) (-4 *5 (-871)) (-4 *6 (-815))
+ (-4 *8 (-979 *7 *6 *5)) (-5 *2 (-419 (-1201 *8)))
+ (-5 *1 (-554 *5 *6 *7 *8)) (-5 *3 (-1201 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-573 *3)) (-4 *3 (-559))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-1247))
- (-4 *6 (-1247)) (-5 *2 (-1297 *6)) (-5 *1 (-1298 *5 *6))))
+ (-12 (-5 *4 (-1 (-663 *5) *6))
+ (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))))
+ (-4 *6 (-1273 *5)) (-5 *2 (-663 (-677 (-421 *6))))
+ (-5 *1 (-681 *5 *6)) (-5 *3 (-677 (-421 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))))
+ (-4 *5 (-1273 *4)) (-5 *2 (-663 (-677 (-421 *5))))
+ (-5 *1 (-681 *4 *5)) (-5 *3 (-677 (-421 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-841 *4)) (-4 *4 (-871)) (-5 *2 (-663 (-694 *4)))
+ (-5 *1 (-694 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1297 *5))
- (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1297 *6))
- (-5 *1 (-1298 *5 *6))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-871))
- (-4 *4 (-1080))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-1321 *3 *4))
- (-4 *4 (-868)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-114) *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571))
- (-4 *6 (-815)) (-4 *7 (-871))
- (-5 *2 (-2 (|:| |goodPols| (-663 *8)) (|:| |badPols| (-663 *8))))
- (-5 *1 (-1008 *5 *6 *7 *8)) (-5 *4 (-663 *8)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1247)) (-5 *2 (-663 *1)) (-4 *1 (-1041 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-663 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4))
- (-14 *3 (-948)) (-4 *4 (-1080)))))
-(((*1 *2 *1) (-12 (-5 *2 (-190)) (-5 *1 (-140))))
- ((*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-190)))))
-(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175))))
- ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-229)) (-5 *4 (-560))
- (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1066))
- (-5 *1 (-770)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-663 *2)) (-4 *2 (-1132)) (-4 *2 (-1247)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-343 *3)) (-4 *3 (-871)))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-793)) (-4 *5 (-376)) (-5 *2 (-177 *6))
- (-5 *1 (-891 *5 *4 *6)) (-4 *4 (-1290 *5)) (-4 *6 (-1273 *5)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-663 (-114))) (-5 *5 (-711 (-229)))
- (-5 *6 (-711 (-560))) (-5 *7 (-229)) (-5 *3 (-560)) (-5 *2 (-1066))
- (-5 *1 (-776)))))
-(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-793)) (-4 *5 (-571))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-1000 *5 *3)) (-4 *3 (-1273 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132)))))
-(((*1 *2) (-12 (-5 *2 (-1178 (-1189))) (-5 *1 (-405)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-975 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315)))))
-(((*1 *2 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319))))
- ((*1 *2 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319))))
- ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)) (-4 *2 (-319))))
- ((*1 *2 *1) (-12 (-4 *1 (-1091)) (-5 *2 (-560)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-793))
- (-4 *3 (-13 (-319) (-10 -8 (-15 -3023 ((-419 $) $)))))
- (-4 *4 (-1273 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))))
+ (-12 (-5 *4 (-560)) (-5 *2 (-663 *3)) (-5 *1 (-718 *3))
+ (-4 *3 (-1273 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-363)) (-5 *2 (-419 *3))
+ (-5 *1 (-720 *4 *5 *6 *3)) (-4 *3 (-979 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-363))
+ (-4 *7 (-979 *6 *5 *4)) (-5 *2 (-419 (-1201 *7)))
+ (-5 *1 (-720 *4 *5 *6 *7)) (-5 *3 (-1201 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-815))
+ (-4 *5
+ (-13 (-871)
+ (-10 -8 (-15 -2400 ((-1207) $))
+ (-15 -2558 ((-3 $ "failed") (-1207))))))
+ (-4 *6 (-319)) (-5 *2 (-419 *3)) (-5 *1 (-752 *4 *5 *6 *3))
+ (-4 *3 (-979 (-975 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-815))
+ (-4 *5 (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $))))) (-4 *6 (-571))
+ (-5 *2 (-419 *3)) (-5 *1 (-754 *4 *5 *6 *3))
+ (-4 *3 (-979 (-421 (-975 *6)) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-13 (-319) (-149)))
+ (-5 *2 (-419 *3)) (-5 *1 (-755 *4 *5 *6 *3))
+ (-4 *3 (-979 (-421 *6) *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-13 (-319) (-149)))
+ (-5 *2 (-419 *3)) (-5 *1 (-763 *4 *5 *6 *3))
+ (-4 *3 (-979 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-13 (-319) (-149)))
+ (-4 *7 (-979 *6 *5 *4)) (-5 *2 (-419 (-1201 *7)))
+ (-5 *1 (-763 *4 *5 *6 *7)) (-5 *3 (-1201 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-419 *3)) (-5 *1 (-1038 *3))
+ (-4 *3 (-1273 (-421 (-560))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-419 *3)) (-5 *1 (-1073 *3))
+ (-4 *3 (-1273 (-421 (-975 (-560)))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1273 (-421 (-560))))
+ (-4 *5 (-13 (-376) (-149) (-746 (-421 (-560)) *4)))
+ (-5 *2 (-419 *3)) (-5 *1 (-1111 *4 *5 *3)) (-4 *3 (-1273 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1273 (-421 (-975 (-560)))))
+ (-4 *5 (-13 (-376) (-149) (-746 (-421 (-975 (-560))) *4)))
+ (-5 *2 (-419 *3)) (-5 *1 (-1112 *4 *5 *3)) (-4 *3 (-1273 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-466))
+ (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-419 (-1201 (-421 *7))))
+ (-5 *1 (-1203 *4 *5 *6 *7)) (-5 *3 (-1201 (-421 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1252))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-419 *3)) (-5 *1 (-1263 *3)) (-4 *3 (-1273 (-560))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-663 *5)))))
-(((*1 *2 *3)
(-12
- (-5 *3
+ (-5 *2
(-663
- (-2 (|:| -2326 (-793))
- (|:| |eqns|
- (-663
- (-2 (|:| |det| *7) (|:| |rows| (-663 (-560)))
- (|:| |cols| (-663 (-560))))))
- (|:| |fgb| (-663 *7)))))
- (-4 *7 (-979 *4 *6 *5)) (-4 *4 (-13 (-319) (-149)))
- (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-793))
- (-5 *1 (-953 *4 *5 *6 *7)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-979 *4 *6 *5)) (-4 *4 (-466))
- (-4 *5 (-871)) (-4 *6 (-815)) (-5 *1 (-1017 *4 *5 *6 *3)))))
+ (-663
+ (-3 (|:| -4389 (-1207))
+ (|:| -1417 (-663 (-3 (|:| S (-1207)) (|:| P (-975 (-560))))))))))
+ (-5 *1 (-1211)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1297 *5)) (-5 *3 (-793)) (-5 *4 (-1151)) (-4 *5 (-363))
+ (-5 *1 (-542 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1185 (-663 (-948)))) (-5 *1 (-908)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1189)) (-5 *2 (-560)) (-5 *1 (-1230 *4))
- (-4 *4 (-1080)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1290 *4)) (-5 *1 (-1291 *4 *2))
- (-4 *4 (-38 (-421 (-560)))))))
+ (-12 (-4 *4 (-571)) (-5 *2 (-663 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-432 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-663 (-711 (-326 (-560))))) (-5 *1 (-1059)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1207))
+ (-4 *5 (-13 (-1069 (-560)) (-466) (-660 (-560))))
+ (-5 *2 (-2 (|:| -3922 *3) (|:| |nconst| *3))) (-5 *1 (-581 *5 *3))
+ (-4 *3 (-13 (-27) (-1233) (-435 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-948)) (-5 *4 (-419 *6)) (-4 *6 (-1273 *5))
+ (-4 *5 (-1080)) (-5 *2 (-663 *6)) (-5 *1 (-458 *5 *6)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1080))
+ (-4 *2 (-1290 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1308)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-466)) (-4 *4 (-571))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -3164 *4))) (-5 *1 (-1000 *4 *3))
- (-4 *3 (-1273 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4)))
- (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -3023 ((-419 $) $)))))
- (-4 *4 (-1273 *3))
- (-5 *2
- (-2 (|:| -1954 (-711 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-711 *3))))
- (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-424 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-1273 (-560)))
- (-5 *2
- (-2 (|:| -1954 (-711 (-560))) (|:| |basisDen| (-560))
- (|:| |basisInv| (-711 (-560)))))
- (-5 *1 (-790 *3 *4)) (-4 *4 (-424 (-560) *3))))
- ((*1 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 *4))
- (-5 *2
- (-2 (|:| -1954 (-711 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-711 *4))))
- (-5 *1 (-1016 *3 *4 *5 *6)) (-4 *6 (-746 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-363)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 *4))
- (-5 *2
- (-2 (|:| -1954 (-711 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-711 *4))))
- (-5 *1 (-1307 *3 *4 *5 *6)) (-4 *6 (-424 *4 *5)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1207))
- (-4 *5 (-13 (-466) (-149) (-1069 (-560)) (-660 (-560))))
- (-5 *2 (-2 (|:| -3887 *3) (|:| |coeff| *3))) (-5 *1 (-572 *5 *3))
- (-4 *3 (-13 (-27) (-1233) (-435 *5))))))
+ (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-571))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
+ (-5 *1 (-1008 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-776)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *2 (-663 (-229)))
+ (-5 *1 (-482)))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-518 (-421 (-560)) (-246 *4 (-793)) (-888 *3)
- (-255 *3 (-421 (-560)))))
- (-14 *3 (-663 (-1207))) (-14 *4 (-793)) (-5 *1 (-519 *3 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1057 (-864 (-560))))
- (-5 *3 (-1185 (-2 (|:| |k| (-560)) (|:| |c| *4)))) (-4 *4 (-1080))
- (-5 *1 (-609 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-793)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-560)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-793)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-560))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-531)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1134)) (-5 *3 (-795)) (-5 *1 (-51)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-114)) (-4 *5 (-13 (-376) (-870)))
- (-5 *2 (-663 (-2 (|:| -3764 (-663 *3)) (|:| -4223 *5))))
- (-5 *1 (-184 *5 *3)) (-4 *3 (-1273 (-171 *5)))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-376) (-870)))
- (-5 *2 (-663 (-2 (|:| -3764 (-663 *3)) (|:| -4223 *4))))
- (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247))
- (-4 *4 (-385 *2)) (-4 *5 (-385 *2))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2))
- (-4 *5 (-385 *2)) (-4 *2 (-1247))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 "right") (-4 *1 (-121 *3)) (-4 *3 (-1247))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-121 *3)) (-4 *3 (-1247))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-663 (-560))) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2))
- (-14 *4 (-560)) (-14 *5 (-793))))
- ((*1 *2 *1 *3 *3 *3 *3)
- (-12 (-5 *3 (-560)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-793))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-560)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-793))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-560)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-793))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-175)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-560))
- (-14 *4 (-793))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1207)) (-5 *2 (-252 (-1189))) (-5 *1 (-217 *4))
- (-4 *4
- (-13 (-871)
- (-10 -8 (-15 -3924 ((-1189) $ *3)) (-15 -4358 ((-1303) $))
- (-15 -4331 ((-1303) $)))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1020)) (-5 *1 (-217 *3))
- (-4 *3
- (-13 (-871)
- (-10 -8 (-15 -3924 ((-1189) $ (-1207))) (-15 -4358 ((-1303) $))
- (-15 -4331 ((-1303) $)))))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "count") (-5 *2 (-793)) (-5 *1 (-252 *4)) (-4 *4 (-871))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-252 *3)) (-4 *3 (-871))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 "unique") (-5 *1 (-252 *3)) (-4 *3 (-871))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1247)) (-4 *2 (-1247))))
- ((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1247))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-663 *1)) (-4 *1 (-310))))
- ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
- ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
- ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
- ((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1252)) (-4 *3 (-1273 *2))
- (-4 *4 (-1273 (-421 *3)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1189)) (-5 *1 (-516))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-793)) (-5 *1 (-697 *2)) (-4 *2 (-1132))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-663 (-560))) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080))
- (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-663 (-915 *4))) (-5 *1 (-915 *4))
- (-4 *4 (-1132))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-793)) (-5 *2 (-931 *4)) (-5 *1 (-934 *4))
- (-4 *4 (-1132))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 "value") (-4 *1 (-1041 *2)) (-4 *2 (-1247))))
- ((*1 *2 *1) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1247))))
- ((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-560)) (-4 *1 (-1084 *4 *5 *2 *6 *7)) (-4 *2 (-1080))
- (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-560)) (-4 *1 (-1084 *4 *5 *2 *6 *7))
- (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)) (-4 *2 (-1080))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-948)) (-4 *4 (-1132))
- (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4))))
- (-5 *1 (-1106 *4 *5 *2))
- (-4 *2 (-13 (-435 *5) (-911 *4) (-633 (-915 *4))))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-948)) (-4 *4 (-1132))
- (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4))))
- (-5 *1 (-1108 *4 *5 *2))
- (-4 *2 (-13 (-435 *5) (-911 *4) (-633 (-915 *4))))))
- ((*1 *1 *1 *1) (-4 *1 (-1175)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-1207))))
+ (-12 (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-871) (-633 (-1207))))
+ (-4 *5 (-815)) (-5 *1 (-953 *3 *4 *5 *2)) (-4 *2 (-979 *3 *5 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-1189)) (-5 *1 (-195))))
+ ((*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-267)))))
+(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301))))
+ ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-1031 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-560)) (|has| *1 (-6 -4509)) (-4 *1 (-385 *3))
+ (-4 *3 (-1247)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1225 *4 *5))
+ (-4 *4 (-1132)) (-4 *5 (-1132)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-663 (-2 (|:| |k| (-694 *3)) (|:| |c| *4))))
+ (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871))
+ (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948)))))
+(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-793)))))
+(((*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-421 *1)) (-4 *1 (-1273 *2)) (-4 *2 (-1080))
- (-4 *2 (-376))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-421 *1)) (-4 *1 (-1273 *3)) (-4 *3 (-1080))
- (-4 *3 (-571))))
+ (-12 (-5 *2 (-114)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-975 (-560))) (-5 *2 (-663 *1)) (-4 *1 (-1043))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-975 (-421 (-560)))) (-5 *2 (-663 *1)) (-4 *1 (-1043))))
+ ((*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-1043)) (-5 *2 (-663 *1))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1201 (-560))) (-5 *2 (-663 *1)) (-4 *1 (-1043))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1201 (-421 (-560)))) (-5 *2 (-663 *1)) (-4 *1 (-1043))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1201 *1)) (-4 *1 (-1043)) (-5 *2 (-663 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-870) (-376))) (-4 *3 (-1273 *4)) (-5 *2 (-663 *1))
+ (-4 *1 (-1099 *4 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-933 *3)) (-4 *3 (-1132)) (-5 *2 (-1128 *3))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "last") (-4 *1 (-1286 *2)) (-4 *2 (-1247))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 "rest") (-4 *1 (-1286 *3)) (-4 *3 (-1247))))
+ (-12 (-4 *4 (-1132)) (-5 *2 (-1128 (-663 *4))) (-5 *1 (-934 *4))
+ (-5 *3 (-663 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "first") (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
+ (-12 (-4 *4 (-1132)) (-5 *2 (-1128 (-1128 *4))) (-5 *1 (-934 *4))
+ (-5 *3 (-1128 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-1128 *3)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
+ (-5 *1 (-727 *3 *4)) (-4 *3 (-1247)) (-4 *4 (-1247)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1201 *2)) (-4 *2 (-979 (-421 (-975 *6)) *5 *4))
+ (-5 *1 (-754 *5 *4 *6 *2)) (-4 *5 (-815))
+ (-4 *4 (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $)))))
+ (-4 *6 (-571)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-571) (-1069 (-560)) (-660 (-560))))
+ (-5 *1 (-288 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1207))
+ (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560))))
+ (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4)))))
+ ((*1 *1 *1) (-5 *1 (-391)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7))
+ (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *4))))
+ (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-871)) (-4 *5 (-815))
+ (-4 *6 (-571)) (-4 *7 (-979 *6 *5 *3))
+ (-5 *1 (-476 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-1069 (-421 (-560))) (-376)
+ (-10 -8 (-15 -3913 ($ *7)) (-15 -2473 (*7 $))
+ (-15 -2484 (*7 $))))))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-972 *5)) (-4 *5 (-1080)) (-5 *2 (-793))
+ (-12 (-5 *3 (-630 *1)) (-4 *1 (-435 *4)) (-4 *4 (-1132))
+ (-4 *4 (-571)) (-5 *2 (-421 (-1201 *1)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-435 *6) (-27) (-1233)))
+ (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
+ (-5 *2 (-1201 (-421 (-1201 *3)))) (-5 *1 (-575 *6 *3 *7))
+ (-5 *5 (-1201 *3)) (-4 *7 (-1132))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1294 *5)) (-14 *5 (-1207)) (-4 *6 (-1080))
+ (-5 *2 (-1266 *5 (-975 *6))) (-5 *1 (-977 *5 *6)) (-5 *3 (-975 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-5 *2 (-1201 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871)) (-5 *2 (-1201 *1))
+ (-4 *1 (-979 *4 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-1080))
+ (-4 *7 (-979 *6 *5 *4)) (-5 *2 (-421 (-1201 *3)))
+ (-5 *1 (-980 *5 *4 *6 *7 *3))
+ (-4 *3
+ (-13 (-376)
+ (-10 -8 (-15 -3913 ($ *7)) (-15 -2473 (*7 $)) (-15 -2484 (*7 $)))))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1201 *3))
+ (-4 *3
+ (-13 (-376)
+ (-10 -8 (-15 -3913 ($ *7)) (-15 -2473 (*7 $)) (-15 -2484 (*7 $)))))
+ (-4 *7 (-979 *6 *5 *4)) (-4 *5 (-815)) (-4 *4 (-871))
+ (-4 *6 (-1080)) (-5 *1 (-980 *5 *4 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1207)) (-4 *5 (-571))
+ (-5 *2 (-421 (-1201 (-421 (-975 *5))))) (-5 *1 (-1071 *5))
+ (-5 *3 (-421 (-975 *5))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-871)) (-5 *2 (-663 (-663 (-663 *4))))
+ (-5 *1 (-1218 *4)) (-5 *3 (-663 (-663 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033))))))
+(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721))))
+ ((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-630 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1207))) (-5 *5 (-1201 *2))
+ (-4 *2 (-13 (-435 *6) (-27) (-1233)))
+ (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
+ (-5 *1 (-575 *6 *2 *7)) (-4 *7 (-1132))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-630 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1207)))
+ (-5 *5 (-421 (-1201 *2))) (-4 *2 (-13 (-435 *6) (-27) (-1233)))
+ (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
+ (-5 *1 (-575 *6 *2 *7)) (-4 *7 (-1132)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1120 (-229)))
+ (-5 *2 (-1301)) (-5 *1 (-267)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-793)) (-5 *3 (-972 *5)) (-4 *5 (-1080))
(-5 *1 (-1195 *4 *5)) (-14 *4 (-948))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-663 (-793))) (-5 *3 (-793)) (-5 *1 (-1195 *4 *5))
@@ -3488,1394 +2795,1002 @@
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-663 (-793))) (-5 *3 (-972 *5)) (-4 *5 (-1080))
(-5 *1 (-1195 *4 *5)) (-14 *4 (-948)))))
-(((*1 *2 *2) (-12 (-5 *2 (-995 *3)) (-4 *3 (-1132)) (-5 *1 (-996 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-149)) (-4 *2 (-319)) (-4 *2 (-466)) (-4 *3 (-871))
- (-4 *4 (-815)) (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-979 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-560))) (-5 *1 (-1150))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560)))))
+ (-4 *3 (-1273 *4)) (-5 *1 (-831 *4 *3 *2 *5)) (-4 *2 (-680 *3))
+ (-4 *5 (-680 (-421 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-421 *5))
+ (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *5 (-1273 *4))
+ (-5 *1 (-831 *4 *5 *2 *6)) (-4 *2 (-680 *5)) (-4 *6 (-680 *3)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-663 *11)) (-5 *5 (-663 (-1201 *9)))
+ (-5 *6 (-663 *9)) (-5 *7 (-663 *12)) (-5 *8 (-663 (-793)))
+ (-4 *11 (-871)) (-4 *9 (-319)) (-4 *12 (-979 *9 *10 *11))
+ (-4 *10 (-815)) (-5 *2 (-663 (-1201 *12)))
+ (-5 *1 (-729 *10 *11 *9 *12)) (-5 *3 (-1201 *12)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-539)))))
+(((*1 *2)
+ (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-432 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1207))
+ (-4 *4 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-826 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1233) (-989))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1189) (-795))) (-5 *1 (-115)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1072)) (-5 *3 (-391)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1297 (-1297 (-560)))) (-5 *3 (-948)) (-5 *1 (-480)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207))))
+ (-4 *6 (-815)) (-5 *2 (-421 (-975 *4))) (-5 *1 (-953 *4 *5 *6 *3))
+ (-4 *3 (-979 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-711 *7)) (-4 *7 (-979 *4 *6 *5))
+ (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207))))
+ (-4 *6 (-815)) (-5 *2 (-711 (-421 (-975 *4))))
+ (-5 *1 (-953 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 *7)) (-4 *7 (-979 *4 *6 *5))
+ (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207))))
+ (-4 *6 (-815)) (-5 *2 (-663 (-421 (-975 *4))))
+ (-5 *1 (-953 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1201 *1)) (-5 *4 (-1207)) (-4 *1 (-27))
+ (-5 *2 (-663 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1201 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *2 (-663 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-571)) (-5 *2 (-663 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-326 (-229))) (-5 *4 (-663 (-1207)))
+ (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-1185 (-229))) (-5 *1 (-313)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-32 *3 *4))
+ (-4 *4 (-435 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-55)) (-5 *1 (-115))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-793)) (-5 *1 (-115))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-115))))
((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1080)) (-14 *3 (-663 (-1207)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1080) (-871)))
- (-14 *3 (-663 (-1207))))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-229)))
- (-5 *2 (-1066)) (-5 *1 (-776)))))
-(((*1 *2 *3) (-12 (-5 *2 (-391)) (-5 *1 (-807 *3)) (-4 *3 (-633 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-948)) (-5 *2 (-391)) (-5 *1 (-807 *3))
- (-4 *3 (-633 *2))))
+ (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-160 *3 *4))
+ (-4 *4 (-435 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-115)) (-5 *1 (-165))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-287 *3 *4))
+ (-4 *4 (-13 (-435 *3) (-1033)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310))))
+ ((*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-115)) (-4 *4 (-1132)) (-5 *1 (-434 *3 *4))
+ (-4 *3 (-435 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-445 *3 *4))
+ (-4 *4 (-435 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-630 *3)) (-4 *3 (-1132))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-115)) (-4 *3 (-571)) (-5 *1 (-648 *3 *4))
+ (-4 *4 (-13 (-435 *3) (-1033) (-1233)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1050))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1221 *2)) (-4 *2 (-1132)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-32 *4 *5))
+ (-4 *5 (-435 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-975 *4)) (-4 *4 (-1080)) (-4 *4 (-633 *2))
- (-5 *2 (-391)) (-5 *1 (-807 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-975 *5)) (-5 *4 (-948)) (-4 *5 (-1080))
- (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5))))
+ (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114))
+ (-5 *1 (-160 *4 *5)) (-4 *5 (-435 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571)) (-4 *4 (-633 *2))
- (-5 *2 (-391)) (-5 *1 (-807 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-948)) (-4 *5 (-571))
- (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5))))
+ (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114))
+ (-5 *1 (-287 *4 *5)) (-4 *5 (-13 (-435 *4) (-1033)))))
((*1 *2 *3)
- (-12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-871))
- (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-326 *5)) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-871))
- (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 *4))
- (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-560)) (-5 *1 (-248))))
+ (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-309 *4)) (-4 *4 (-310))))
+ ((*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114))))
((*1 *2 *3)
- (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-560)) (-5 *1 (-248)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-663 (-291))) (-5 *1 (-291))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 (-1212))) (-5 *1 (-1212)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871))
- (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-793))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1080)) (-4 *3 (-871))
- (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-793))))
- ((*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-871)) (-5 *2 (-793))))
- ((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-948))))
+ (-12 (-5 *3 (-115)) (-4 *5 (-1132)) (-5 *2 (-114))
+ (-5 *1 (-434 *4 *5)) (-4 *4 (-435 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-346 *4 *5 *6 *7)) (-4 *4 (-13 (-381) (-376)))
- (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5))) (-4 *7 (-355 *4 *5 *6))
- (-5 *2 (-793)) (-5 *1 (-406 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-854 (-948)))))
- ((*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-560))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-610 *3)) (-4 *3 (-1080))))
- ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-610 *3)) (-4 *3 (-1080))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-571)) (-5 *2 (-560)) (-5 *1 (-642 *3 *4))
- (-4 *4 (-1273 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-793)) (-4 *1 (-762 *4 *3)) (-4 *4 (-1080))
- (-4 *3 (-871))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-762 *4 *3)) (-4 *4 (-1080)) (-4 *3 (-871))
- (-5 *2 (-793))))
- ((*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-5 *2 (-793))))
- ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-931 *3)) (-4 *3 (-1132))))
- ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-934 *3)) (-4 *3 (-1132))))
+ (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114))
+ (-5 *1 (-445 *4 *5)) (-4 *5 (-435 *4))))
((*1 *2 *3)
+ (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114))
+ (-5 *1 (-648 *4 *5)) (-4 *5 (-13 (-435 *4) (-1033) (-1233))))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-187 (-141)))) (-5 *1 (-142)))))
+(((*1 *1) (-4 *1 (-998))))
+(((*1 *1 *1 *1) (-5 *1 (-887))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-630 *3))
+ (-4 *3 (-13 (-435 *5) (-27) (-1233)))
+ (-4 *5 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
+ (-5 *2 (-2 (|:| -4378 *3) (|:| |coeff| *3)))
+ (-5 *1 (-580 *5 *3 *6)) (-4 *6 (-1132)))))
+(((*1 *1) (-5 *1 (-146))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-793)) (-4 *4 (-376)) (-4 *5 (-1273 *4)) (-5 *2 (-1303))
+ (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1273 (-421 *5))) (-14 *7 *6))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-943 *3)) (-4 *3 (-319)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-663 (-663 *4)))) (-5 *2 (-663 (-663 *4)))
+ (-5 *1 (-1218 *4)) (-4 *4 (-871)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1189)) (-5 *2 (-663 (-713 (-292)))) (-5 *1 (-170)))))
+(((*1 *2 *3)
(|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-435 *4))
(-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6)))
(-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-571) (-1069 (-560))))
- (-5 *2 (-793)) (-5 *1 (-940 *4 *5 *6 *7 *8))))
+ (-5 *2 (-2 (|:| -1460 (-793)) (|:| -1608 *8)))
+ (-5 *1 (-940 *4 *5 *6 *7 *8))))
((*1 *2 *3)
(|partial| -12 (-5 *3 (-346 (-421 (-560)) *4 *5 *6))
(-4 *4 (-1273 (-421 (-560)))) (-4 *5 (-1273 (-421 *4)))
- (-4 *6 (-355 (-421 (-560)) *4 *5)) (-5 *2 (-793))
- (-5 *1 (-941 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-346 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-376))
- (-4 *7 (-1273 *6)) (-4 *4 (-1273 (-421 *7))) (-4 *8 (-355 *6 *7 *4))
- (-4 *9 (-13 (-381) (-376))) (-5 *2 (-793))
- (-5 *1 (-1049 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1080)) (-4 *3 (-571))
- (-5 *2 (-793))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))))
-(((*1 *2)
- (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4))) (-5 *2 (-711 (-421 *4))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-948)) (-5 *1 (-1063 *2))
- (-4 *2 (-13 (-1132) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-1122)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-571)) (-4 *3 (-175)) (-4 *4 (-385 *3))
- (-4 *5 (-385 *3)) (-5 *1 (-710 *3 *4 *5 *2))
- (-4 *2 (-708 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1297 (-793))) (-5 *1 (-697 *3)) (-4 *3 (-1132)))))
-(((*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-954)))))
+ (-4 *6 (-355 (-421 (-560)) *4 *5))
+ (-5 *2 (-2 (|:| -1460 (-793)) (|:| -1608 *6)))
+ (-5 *1 (-941 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-1201 *3))
+ (-4 *3 (-13 (-435 *6) (-27) (-1233)))
+ (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
+ (-5 *2 (-2 (|:| -4378 *3) (|:| |coeff| *3)))
+ (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1132))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-421 (-1201 *3)))
+ (-4 *3 (-13 (-435 *6) (-27) (-1233)))
+ (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
+ (-5 *2 (-2 (|:| -4378 *3) (|:| |coeff| *3)))
+ (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1132)))))
+(((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-651)))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-630 *1))) (-4 *1 (-310)))))
+(((*1 *2) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7))
- (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 *10))
- (-5 *1 (-643 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1102 *5 *6 *7 *8))
- (-4 *10 (-1140 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-802 *5 (-888 *6)))) (-5 *4 (-114)) (-4 *5 (-466))
- (-14 *6 (-663 (-1207))) (-5 *2 (-663 (-1077 *5 *6)))
- (-5 *1 (-647 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-802 *5 (-888 *6)))) (-5 *4 (-114)) (-4 *5 (-466))
- (-14 *6 (-663 (-1207)))
- (-5 *2
- (-663 (-1177 *5 (-545 (-888 *6)) (-888 *6) (-802 *5 (-888 *6)))))
- (-5 *1 (-647 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7))
- (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-5 *2 (-663 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7))
- (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-5 *2 (-663 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-663 (-802 *5 (-888 *6)))) (-5 *4 (-114)) (-4 *5 (-466))
- (-14 *6 (-663 (-1207))) (-5 *2 (-663 (-1077 *5 *6)))
- (-5 *1 (-1077 *5 *6))))
+ (-12 (-5 *3 (-793)) (-5 *4 (-1297 *2)) (-4 *5 (-319))
+ (-4 *6 (-1022 *5)) (-4 *2 (-13 (-424 *6 *7) (-1069 *6)))
+ (-5 *1 (-427 *5 *6 *7 *2)) (-4 *7 (-1273 *6)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1201 *1)) (-5 *3 (-1207)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-975 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-4 *1 (-29 *3)) (-4 *3 (-571))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-571))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7))
- (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 *1))
- (-4 *1 (-1102 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7))
- (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-5 *2 (-663 (-1177 *5 *6 *7 *8))) (-5 *1 (-1177 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7))
- (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-5 *2 (-663 (-1177 *5 *6 *7 *8))) (-5 *1 (-1177 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-571))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *1))
- (-4 *1 (-1242 *4 *5 *6 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210))))
- ((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1210)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *6 (-229))
- (-5 *3 (-560)) (-5 *2 (-1066)) (-5 *1 (-774)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-663 (-1201 *13))) (-5 *3 (-1201 *13))
- (-5 *4 (-663 *12)) (-5 *5 (-663 *10)) (-5 *6 (-663 *13))
- (-5 *7 (-663 (-663 (-2 (|:| -3911 (-793)) (|:| |pcoef| *13)))))
- (-5 *8 (-663 (-793))) (-5 *9 (-1297 (-663 (-1201 *10))))
- (-4 *12 (-871)) (-4 *10 (-319)) (-4 *13 (-979 *10 *11 *12))
- (-4 *11 (-815)) (-5 *1 (-729 *11 *12 *10 *13)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-520))) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 (-900))) (-5 *1 (-497)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-291)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *6 (-229))
- (-5 *3 (-560)) (-5 *2 (-1066)) (-5 *1 (-773)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-4 *1 (-242 *3))))
- ((*1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1132)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1132) (-34)))
- (-4 *3 (-13 (-1132) (-34))))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1273 *6))
- (-4 *6 (-13 (-376) (-149) (-1069 *4))) (-5 *4 (-560))
- (-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-114))))
- (|:| -3192
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-1046 *6 *3)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-663 (-663 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-663 (-3 (|:| |array| (-663 *3)) (|:| |scalar| (-1207)))))
- (-5 *6 (-663 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1134))
- (-5 *1 (-409))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-663 (-663 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-663 (-3 (|:| |array| (-663 *3)) (|:| |scalar| (-1207)))))
- (-5 *6 (-663 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1134))
- (-5 *1 (-409))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-663 (-1207))) (-5 *5 (-1210)) (-5 *3 (-1207))
- (-5 *2 (-1134)) (-5 *1 (-409)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))))
-(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217)))))
-(((*1 *1 *1) (-4 *1 (-559))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1132)))))
+ (-12 (-5 *3 (-1201 *2)) (-5 *4 (-1207)) (-4 *2 (-435 *5))
+ (-5 *1 (-32 *5 *2)) (-4 *5 (-571))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1201 *1)) (-5 *3 (-948)) (-4 *1 (-1043))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1201 *1)) (-5 *3 (-948)) (-5 *4 (-887))
+ (-4 *1 (-1043))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-948)) (-4 *4 (-13 (-870) (-376)))
+ (-4 *1 (-1099 *4 *2)) (-4 *2 (-1273 *4)))))
+(((*1 *1) (-5 *1 (-625))))
+(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-760)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-730 *3)) (-5 *1 (-850 *2 *3)) (-4 *3 (-1080)))))
-(((*1 *2 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-376)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-448))
- (-5 *2
- (-663
- (-3 (|:| -3614 (-1207))
- (|:| -3909 (-663 (-3 (|:| S (-1207)) (|:| P (-975 (-560)))))))))
- (-5 *1 (-1211)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229))
- (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))
- (-5 *2 (-1066)) (-5 *1 (-770)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-505)) (-5 *4 (-983)) (-5 *2 (-713 (-547)))
- (-5 *1 (-547))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-983)) (-4 *3 (-1132)) (-5 *2 (-713 *1))
- (-4 *1 (-789 *3)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1207)) (-5 *2 (-114))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-114)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4))
- (-4 *5 (-1273 (-421 *3))) (-5 *2 (-114))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-711 *5))) (-5 *4 (-560)) (-4 *5 (-376))
- (-4 *5 (-1080)) (-5 *2 (-114)) (-5 *1 (-1061 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-711 *4))) (-4 *4 (-376)) (-4 *4 (-1080))
- (-5 *2 (-114)) (-5 *1 (-1061 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-376)) (-5 *2 (-663 *3)) (-5 *1 (-974 *4 *3))
- (-4 *3 (-1273 *4)))))
+ (-12 (-5 *2 (-174)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
+ (-4 *4 (-1080)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-560)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1247))
+ (-4 *5 (-385 *4)) (-4 *2 (-385 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-560)) (-4 *1 (-1084 *4 *5 *6 *2 *7)) (-4 *6 (-1080))
+ (-4 *7 (-245 *4 *6)) (-4 *2 (-245 *5 *6)))))
+(((*1 *1 *1 *1) (-5 *1 (-887))))
(((*1 *2 *1)
- (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-887)))))
+ (|partial| -12 (-5 *2 (-1 (-549) (-663 (-549)))) (-5 *1 (-115))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-549) (-663 (-549)))) (-5 *1 (-115))))
+ ((*1 *1) (-5 *1 (-592))))
(((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-432 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))))
+ (-12 (-5 *3 (-793)) (-5 *2 (-1 (-1185 (-975 *4)) (-1185 (-975 *4))))
+ (-5 *1 (-1306 *4)) (-4 *4 (-376)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1066))
+ (-5 *1 (-778)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3)))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))))
+ (-12 (-4 *3 (-13 (-571) (-1069 (-560)) (-660 (-560))))
+ (-5 *1 (-288 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1207))
+ (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560))))
+ (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-630 *5)) (-4 *5 (-435 *4)) (-4 *4 (-1069 (-560)))
- (-4 *4 (-571)) (-5 *2 (-1201 *5)) (-5 *1 (-32 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-630 *1)) (-4 *1 (-1080)) (-4 *1 (-310))
- (-5 *2 (-1201 *1)))))
-(((*1 *2) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-1231)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1080)) (-5 *1 (-734 *3 *4))
- (-4 *4 (-1273 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1201 (-421 (-975 *3)))) (-5 *1 (-467 *3 *4 *5 *6))
- (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
-(((*1 *1 *1 *1) (-4 *1 (-783))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-1132)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1266 *4 *5)) (-5 *3 (-663 *5)) (-14 *4 (-1207))
- (-4 *5 (-376)) (-5 *1 (-951 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-663 *5)) (-4 *5 (-376)) (-5 *2 (-1201 *5))
- (-5 *1 (-951 *4 *5)) (-14 *4 (-1207))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-663 *6)) (-5 *4 (-793)) (-4 *6 (-376))
- (-5 *2 (-421 (-975 *6))) (-5 *1 (-1081 *5 *6)) (-14 *5 (-1207)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4508)) (-4 *1 (-503 *3)) (-4 *3 (-1247))
- (-4 *3 (-1132)) (-5 *2 (-793))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4508)) (-4 *1 (-503 *4))
- (-4 *4 (-1247)) (-5 *2 (-793)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871))
- (-5 *2 (-2 (|:| -2115 *1) (|:| |gap| (-793)) (|:| -2341 *1)))
- (-4 *1 (-1096 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *2 (-2 (|:| -2115 *1) (|:| |gap| (-793)) (|:| -2341 *1)))
- (-4 *1 (-1096 *3 *4 *5)))))
-(((*1 *1) (-5 *1 (-846))))
-(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189)))))
-(((*1 *2)
- (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5)))
- (-5 *2 (-114)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1185 *4)) (-5 *3 (-560)) (-4 *4 (-1080))
- (-5 *1 (-1191 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-560)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-1080))
- (-14 *4 (-1207)) (-14 *5 *3))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3))
- (-4 *3 (-1132)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-902 *2)) (-4 *2 (-1247))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-904 *2)) (-4 *2 (-1247))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-5 *1 (-907 *2)) (-4 *2 (-1247)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-915 *4)) (-4 *4 (-1132)) (-5 *1 (-913 *4 *3))
- (-4 *3 (-1132)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-543))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-591))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-886)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1132)) (-5 *2 (-1151)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-435 *3) (-1033))) (-5 *1 (-287 *3 *2))
- (-4 *3 (-571)))))
-(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-882))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-994))))
- ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1020))))
- ((*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-1247))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1132) (-34))) (-5 *1 (-1171 *2 *3))
- (-4 *3 (-13 (-1132) (-34))))))
-(((*1 *1) (-5 *1 (-143))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391)))
- (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303))
- (-5 *1 (-810)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-931 (-560))) (-5 *4 (-560)) (-5 *2 (-711 *4))
- (-5 *1 (-1060 *5)) (-4 *5 (-1080))))
+ (-12 (-5 *2 (-171 *4)) (-5 *1 (-184 *4 *3))
+ (-4 *4 (-13 (-376) (-870))) (-4 *3 (-1273 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2336 *4)))
+ (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-711 (-560))) (-5 *3 (-663 (-560))) (-5 *1 (-1141)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080))
+ (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-421 (-1201 (-326 *3)))) (-4 *3 (-571))
+ (-5 *1 (-1161 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1080)) (-4 *2 (-376))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-682 *4 *2))
+ (-4 *2 (-680 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-171 (-391))) (-5 *1 (-807 *3)) (-4 *3 (-633 (-391)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-948)) (-5 *2 (-171 (-391))) (-5 *1 (-807 *3))
+ (-4 *3 (-633 (-391)))))
((*1 *2 *3)
- (-12 (-5 *3 (-663 (-560))) (-5 *2 (-711 (-560))) (-5 *1 (-1060 *4))
- (-4 *4 (-1080))))
+ (-12 (-5 *3 (-171 *4)) (-4 *4 (-175)) (-4 *4 (-633 (-391)))
+ (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-931 (-560)))) (-5 *4 (-560))
- (-5 *2 (-663 (-711 *4))) (-5 *1 (-1060 *5)) (-4 *5 (-1080))))
+ (-12 (-5 *3 (-171 *5)) (-5 *4 (-948)) (-4 *5 (-175))
+ (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-663 (-663 (-560)))) (-5 *2 (-663 (-711 (-560))))
- (-5 *1 (-1060 *4)) (-4 *4 (-1080)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 *3)) (-4 *3 (-1140 *5 *6 *7 *8))
- (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-114))
- (-5 *1 (-605 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-630 *3)) (-5 *5 (-1201 *3))
- (-4 *3 (-13 (-435 *6) (-27) (-1233)))
- (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
- (-5 *2 (-597 *3)) (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1132))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-630 *3)) (-5 *5 (-421 (-1201 *3)))
- (-4 *3 (-13 (-435 *6) (-27) (-1233)))
- (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
- (-5 *2 (-597 *3)) (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1132)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1207)) (-5 *3 (-663 (-549))) (-5 *1 (-549)))))
-(((*1 *2) (-12 (-5 *2 (-864 (-560))) (-5 *1 (-548))))
- ((*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1132)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1247)) (-5 *1 (-185 *3 *2))
- (-4 *2 (-696 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1233))))
- ((*1 *2 *1) (-12 (-5 *1 (-343 *2)) (-4 *2 (-871))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
- (-5 *2 (-663 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1273 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
- (-5 *2 (-663 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1273 *3)))))
-(((*1 *1) (-5 *1 (-624))) ((*1 *1) (-5 *1 (-625))))
-(((*1 *1) (-4 *1 (-998))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-769)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4509)) (-4 *1 (-618 *3 *4)) (-4 *3 (-1132))
- (-4 *4 (-1247)) (-5 *2 (-1303)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391))
- (-5 *2
- (-2 (|:| -3853 *4) (|:| -4223 *4) (|:| |totalpts| (-560))
- (|:| |success| (-114))))
- (-5 *1 (-811)) (-5 *5 (-560)))))
-(((*1 *1 *1) (-4 *1 (-35)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-136)))))
-(((*1 *2) (-12 (-5 *2 (-864 (-560))) (-5 *1 (-548))))
- ((*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1132)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1226)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1273 (-421 (-560))))
- (-5 *2 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))))
- (-5 *1 (-942 *3 *4)) (-4 *4 (-1273 (-421 *3)))))
+ (-12 (-5 *3 (-975 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-633 (-391)))
+ (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-975 (-171 *5))) (-5 *4 (-948)) (-4 *5 (-175))
+ (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-1273 (-421 *2))) (-5 *2 (-560)) (-5 *1 (-942 *4 *3))
- (-4 *3 (-1273 (-421 *4))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2788 *4)))
- (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-571))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2132 *3)))
- (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1302)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1094)) (-5 *3 (-1189)))))
-(((*1 *1)
- (-12 (-4 *1 (-418)) (-1937 (|has| *1 (-6 -4499)))
- (-1937 (|has| *1 (-6 -4491)))))
- ((*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1132)) (-4 *2 (-871))))
- ((*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-871))))
- ((*1 *1) (-4 *1 (-866))) ((*1 *1 *1 *1) (-4 *1 (-874))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
-(((*1 *1 *2 *3)
- (-12
- (-5 *3
- (-663
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-560)))))
- (-4 *2 (-571)) (-5 *1 (-419 *2))))
+ (-12 (-5 *3 (-975 *4)) (-4 *4 (-1080)) (-4 *4 (-633 (-391)))
+ (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-975 *5)) (-5 *4 (-948)) (-4 *5 (-1080))
+ (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5))))
((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |contp| (-560))
- (|:| -3764 (-663 (-2 (|:| |irr| *4) (|:| -2929 (-560)))))))
- (-4 *4 (-1273 (-560))) (-5 *2 (-419 *4)) (-5 *1 (-456 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-229))) (-5 *4 (-793)) (-5 *2 (-711 (-229)))
- (-5 *1 (-315)))))
-(((*1 *1 *1 *1) (-4 *1 (-998))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1132)) (-4 *5 (-1132))
- (-5 *2 (-1 *5)) (-5 *1 (-705 *4 *5)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-114))
- (-5 *2 (-1066)) (-5 *1 (-775)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1207))
- (-4 *4 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
- (-5 *1 (-641 *4 *2)) (-4 *2 (-13 (-1233) (-989) (-29 *4))))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229)))
- (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))) (-5 *4 (-229))
- (-5 *2 (-1066)) (-5 *1 (-778)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-560)) (-5 *4 (-419 *2)) (-4 *2 (-979 *7 *5 *6))
- (-5 *1 (-764 *5 *6 *7 *2)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-319)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1175)) (-5 *2 (-114)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3))
- (-4 *3 (-1132)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-560)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-319))
- (-4 *9 (-979 *8 *6 *7))
- (-5 *2 (-2 (|:| -2738 (-1201 *9)) (|:| |polval| (-1201 *8))))
- (-5 *1 (-764 *6 *7 *8 *9)) (-5 *3 (-1201 *9)) (-5 *4 (-1201 *8)))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-319))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2748 *1)))
- (-4 *1 (-319)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-975 *4)) (-4 *4 (-13 (-319) (-149)))
- (-4 *2 (-979 *4 *6 *5)) (-5 *1 (-953 *4 *5 *6 *2))
- (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1243 *3)) (-4 *3 (-1005)))))
-(((*1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-560))))
- ((*1 *1 *1) (-5 *1 (-1151))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1297 *5)) (-4 *5 (-814)) (-5 *2 (-114))
- (-5 *1 (-867 *4 *5)) (-14 *4 (-793)))))
-(((*1 *2) (-12 (-5 *2 (-854 (-560))) (-5 *1 (-548))))
- ((*1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1132)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-573 *2)) (-4 *2 (-559)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-802 *5 (-888 *6)))) (-5 *4 (-114)) (-4 *5 (-466))
- (-14 *6 (-663 (-1207))) (-5 *2 (-663 (-1077 *5 *6)))
- (-5 *1 (-647 *5 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-793)) (-4 *1 (-1273 *3)) (-4 *3 (-1080)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-270))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-270))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-270)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-114)) (-5 *1 (-326 *3)) (-4 *3 (-571)) (-4 *3 (-1132)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-560))))
- ((*1 *1 *1 *1) (-5 *1 (-1151))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7))
- (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *4))))
- (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-435 *3) (-1033))) (-5 *1 (-287 *3 *2))
- (-4 *3 (-571))))
- ((*1 *1)
- (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
- (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
- ((*1 *1) (-5 *1 (-491))) ((*1 *1) (-4 *1 (-1233))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1185 (-663 (-560)))) (-5 *1 (-908)) (-5 *3 (-560)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1175)) (-5 *2 (-114)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-568)))))
-(((*1 *2 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-460)) (-5 *3 (-560)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-954))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229)))
- (-5 *1 (-954))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229)))
- (-5 *1 (-954))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-663 (-1 (-229) (-229)))) (-5 *3 (-1120 (-229)))
- (-5 *1 (-954))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-663 (-1 (-229) (-229)))) (-5 *3 (-1120 (-229)))
- (-5 *1 (-954))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229)))
- (-5 *1 (-954))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229)))
- (-5 *1 (-954))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1207)) (-5 *5 (-1120 (-229))) (-5 *2 (-954))
- (-5 *1 (-955 *3)) (-4 *3 (-633 (-549)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1207)) (-5 *5 (-1120 (-229))) (-5 *2 (-954))
- (-5 *1 (-955 *3)) (-4 *3 (-633 (-549)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-956))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229)))
- (-5 *1 (-956))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229)))
- (-5 *1 (-956)))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5))
- (-4 *5 (-13 (-376) (-149) (-1069 (-560))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-421 *6)) (|:| |c| (-421 *6))
- (|:| -3735 *6)))
- (-5 *1 (-1046 *5 *6)) (-5 *3 (-421 *6)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-114) (-115) (-115))) (-5 *1 (-115)))))
-(((*1 *2 *2) (-12 (-5 *2 (-948)) (|has| *1 (-6 -4499)) (-4 *1 (-418))))
- ((*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-948))))
- ((*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-721))))
- ((*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-721)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-663 (-560))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560))
- (-14 *4 (-793)) (-4 *5 (-175)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7))
- (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *4))))
- (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-571)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))
- (-5 *1 (-1238 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-560))))
- ((*1 *1 *1 *1) (-5 *1 (-1151))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1132)) (-4 *5 (-1132))
- (-4 *6 (-1132)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-663 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-466))
- (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-464 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1207))
- (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-435 *4)))))
+ (-12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571)) (-4 *4 (-633 (-391)))
+ (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-948)) (-4 *5 (-571))
+ (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4)))))
+ (-12 (-5 *3 (-421 (-975 (-171 *4)))) (-4 *4 (-571))
+ (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-421 (-560)))
- (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5)))))
+ (-12 (-5 *3 (-421 (-975 (-171 *5)))) (-5 *4 (-948)) (-4 *5 (-571))
+ (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-871))
+ (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5)))
- (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-328 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-305 *3)) (-5 *5 (-421 (-560)))
- (-4 *3 (-13 (-27) (-1233) (-435 *6)))
- (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-328 *6 *3))))
+ (-12 (-5 *3 (-326 *5)) (-5 *4 (-948)) (-4 *5 (-571)) (-4 *5 (-871))
+ (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-571)) (-4 *4 (-871))
+ (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-560))) (-5 *4 (-305 *6))
- (-4 *6 (-13 (-27) (-1233) (-435 *5)))
- (-4 *5 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-473 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3))
- (-4 *3 (-13 (-27) (-1233) (-435 *6)))
- (-4 *6 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-473 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-560)))
- (-4 *7 (-13 (-27) (-1233) (-435 *6)))
- (-4 *6 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-473 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-560)))
- (-4 *3 (-13 (-27) (-1233) (-435 *7)))
- (-4 *7 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-473 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-421 (-560)))) (-5 *4 (-305 *8))
- (-5 *5 (-1264 (-421 (-560)))) (-5 *6 (-421 (-560)))
- (-4 *8 (-13 (-27) (-1233) (-435 *7)))
- (-4 *7 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-473 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-421 (-560))))
- (-5 *7 (-421 (-560))) (-4 *3 (-13 (-27) (-1233) (-435 *8)))
- (-4 *8 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-473 *8 *3))))
+ (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-948)) (-4 *5 (-571))
+ (-4 *5 (-871)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391)))
+ (-5 *1 (-807 *5)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1247))))
((*1 *1 *2)
- (-12 (-5 *2 (-1185 (-2 (|:| |k| (-560)) (|:| |c| *3))))
- (-4 *3 (-1080)) (-5 *1 (-609 *3))))
+ (|partial| -12 (-5 *2 (-975 (-391))) (-5 *1 (-352 *3 *4 *5))
+ (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207)))
+ (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
((*1 *1 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-610 *3))))
+ (|partial| -12 (-5 *2 (-421 (-975 (-391)))) (-5 *1 (-352 *3 *4 *5))
+ (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207)))
+ (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
((*1 *1 *2)
- (-12 (-5 *2 (-1185 (-2 (|:| |k| (-560)) (|:| |c| *3))))
- (-4 *3 (-1080)) (-4 *1 (-1259 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-793))
- (-5 *3 (-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| *4))))
- (-4 *4 (-1080)) (-4 *1 (-1280 *4))))
+ (|partial| -12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5))
+ (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207)))
+ (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
((*1 *1 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-4 *1 (-1290 *3))))
+ (|partial| -12 (-5 *2 (-975 (-560))) (-5 *1 (-352 *3 *4 *5))
+ (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207)))
+ (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
((*1 *1 *2)
- (-12 (-5 *2 (-1185 (-2 (|:| |k| (-793)) (|:| |c| *3))))
- (-4 *3 (-1080)) (-4 *1 (-1290 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-5 *1 (-342)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247))
- (-4 *4 (-385 *2)) (-4 *5 (-385 *2))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4509)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1132))
- (-4 *2 (-1247)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-769)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114))
- (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 *3)) (-4 *3 (-1102 *5 *6 *7 *8)) (-4 *5 (-466))
- (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7))
- (-5 *2 (-114)) (-5 *1 (-1019 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114))
- (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 *3)) (-4 *3 (-1102 *5 *6 *7 *8)) (-4 *5 (-466))
- (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7))
- (-5 *2 (-114)) (-5 *1 (-1138 *5 *6 *7 *8 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-421 (-560))) (-5 *1 (-609 *3)) (-4 *3 (-38 *2))
- (-4 *3 (-1080)))))
-(((*1 *2)
- (-12 (-5 *2 (-948)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-948)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))))
-(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-898))))
+ (|partial| -12 (-5 *2 (-421 (-975 (-560)))) (-5 *1 (-352 *3 *4 *5))
+ (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207)))
+ (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-326 (-560))) (-5 *1 (-352 *3 *4 *5))
+ (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207)))
+ (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-352 *3 *4 *5))
+ (-14 *3 (-663 *2)) (-14 *4 (-663 *2)) (-4 *5 (-401))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-401))
+ (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1207)))
+ (-14 *4 (-663 (-1207)))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-711 (-421 (-975 (-560))))) (-4 *1 (-398))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-711 (-421 (-975 (-391))))) (-4 *1 (-398))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-711 (-975 (-560)))) (-4 *1 (-398))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-711 (-975 (-391)))) (-4 *1 (-398))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-711 (-326 (-560)))) (-4 *1 (-398))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-711 (-326 (-391)))) (-4 *1 (-398))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-421 (-975 (-560)))) (-4 *1 (-411))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-421 (-975 (-391)))) (-4 *1 (-411))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-560))) (-4 *1 (-411))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-391))) (-4 *1 (-411))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-560))) (-4 *1 (-411))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-391))) (-4 *1 (-411))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1297 (-421 (-975 (-560))))) (-4 *1 (-455))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1297 (-421 (-975 (-391))))) (-4 *1 (-455))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1297 (-975 (-560)))) (-4 *1 (-455))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1297 (-975 (-391)))) (-4 *1 (-455))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1297 (-326 (-560)))) (-4 *1 (-455))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1297 (-326 (-391)))) (-4 *1 (-455))))
((*1 *2 *3)
- (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-229)) (-5 *4 (-560))
- (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1066))
- (-5 *1 (-770)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1080)) (-4 *5 (-1273 *4)) (-5 *2 (-1 *6 (-663 *6)))
- (-5 *1 (-1292 *4 *5 *3 *6)) (-4 *3 (-680 *5)) (-4 *6 (-1290 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1156 (-560) (-630 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1022 *2)) (-4 *4 (-1273 *3)) (-4 *2 (-319))
- (-5 *1 (-427 *2 *3 *4 *5)) (-4 *5 (-13 (-424 *3 *4) (-1069 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-571)) (-4 *3 (-1132)) (-5 *2 (-1156 *3 (-630 *1)))
- (-4 *1 (-435 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1156 (-560) (-630 (-509)))) (-5 *1 (-509))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-748) *4))
- (-5 *1 (-638 *3 *4 *2)) (-4 *3 (-38 *4))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-748) *4))
- (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-739 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1175)) (-5 *3 (-560)) (-5 *2 (-114)))))
-(((*1 *1 *1) (-4 *1 (-559))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247))
- (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4509)) (-4 *1 (-503 *3))
- (-4 *3 (-1247)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-663 (-270))) (-5 *4 (-1207)) (-5 *2 (-51))
- (-5 *1 (-270))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-663 (-270))) (-5 *4 (-1207))
- (-5 *1 (-272 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-972 (-229)) (-229) (-229)))
- (-5 *3 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-265)))))
+ (|partial| -12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1273 *5))
+ (-5 *2 (-1201 (-1201 *4))) (-5 *1 (-799 *4 *5 *6 *3 *7))
+ (-4 *3 (-1273 *6)) (-14 *7 (-948))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5))
+ (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-4 *1 (-1007 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-1069 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *2)
+ (|partial| -2196
+ (-12 (-5 *2 (-975 *3))
+ (-12 (-1394 (-4 *3 (-38 (-421 (-560)))))
+ (-1394 (-4 *3 (-38 (-560)))) (-4 *5 (-633 (-1207))))
+ (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815))
+ (-4 *5 (-871)))
+ (-12 (-5 *2 (-975 *3))
+ (-12 (-1394 (-4 *3 (-559))) (-1394 (-4 *3 (-38 (-421 (-560)))))
+ (-4 *3 (-38 (-560))) (-4 *5 (-633 (-1207))))
+ (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815))
+ (-4 *5 (-871)))
+ (-12 (-5 *2 (-975 *3))
+ (-12 (-1394 (-4 *3 (-1022 (-560)))) (-4 *3 (-38 (-421 (-560))))
+ (-4 *5 (-633 (-1207))))
+ (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815))
+ (-4 *5 (-871)))))
+ ((*1 *1 *2)
+ (|partial| -2196
+ (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5))
+ (-12 (-1394 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560)))
+ (-4 *5 (-633 (-1207))))
+ (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))
+ (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207))))
+ (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-975 (-421 (-560)))) (-4 *1 (-1096 *3 *4 *5))
+ (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207)))
+ (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -3251 (-560)))))
- (-5 *1 (-374 *3)) (-4 *3 (-1132))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-399 *3)) (-4 *3 (-1132))
- (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -3251 (-793)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-663 (-2 (|:| -4457 *3) (|:| -3205 (-560)))))
- (-5 *1 (-419 *3)) (-4 *3 (-571)))))
-(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-391))))
- ((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-391)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-435 *5) (-27) (-1233)))
- (-4 *5 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
- (-5 *2 (-597 *3)) (-5 *1 (-580 *5 *3 *6)) (-4 *6 (-1132)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-1222 *2)) (-4 *2 (-376)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1120 (-229))))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-793)) (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *5))
+ (-12 (-5 *2 (-663 (-51))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1201 *9)) (-5 *4 (-663 *7)) (-4 *7 (-871))
+ (-4 *9 (-979 *8 *6 *7)) (-4 *6 (-815)) (-4 *8 (-319))
+ (-5 *2 (-663 (-793))) (-5 *1 (-764 *6 *7 *8 *9)) (-5 *5 (-793)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 *1)) (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *5))
(-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-793)) (-4 *1 (-1296 *3)) (-4 *3 (-23)) (-4 *3 (-1247)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114))
- (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114))
- (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1156 (-560) (-630 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-319)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4))
- (-5 *2 (-1297 *6)) (-5 *1 (-427 *3 *4 *5 *6))
- (-4 *6 (-13 (-424 *4 *5) (-1069 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1080)) (-4 *3 (-1132)) (-5 *2 (-1156 *3 (-630 *1)))
- (-4 *1 (-435 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1156 (-560) (-630 (-509)))) (-5 *1 (-509))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-175)) (-4 *2 (-38 *3)) (-5 *1 (-638 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-748) *3))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-175)) (-4 *2 (-739 *3)) (-5 *1 (-674 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-748) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3))
- (-4 *5 (-385 *3)) (-5 *2 (-2 (|:| -1774 *3) (|:| -2341 *3)))
- (-5 *1 (-710 *3 *4 *5 *6)) (-4 *6 (-708 *3 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -1774 *3) (|:| -2341 *3))) (-5 *1 (-722 *3))
- (-4 *3 (-319)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
-(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1207)) (-5 *6 (-663 (-630 *3)))
- (-5 *5 (-630 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *7)))
- (-4 *7 (-13 (-466) (-149) (-1069 (-560)) (-660 (-560))))
- (-5 *2 (-2 (|:| -3887 *3) (|:| |coeff| *3)))
- (-5 *1 (-572 *7 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *2 (-871)) (-4 *5 (-1096 *3 *4 *2)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-948)) (-4 *5 (-571)) (-5 *2 (-711 *5))
- (-5 *1 (-986 *5 *3)) (-4 *3 (-680 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-421 (-560))) (-4 *1 (-569 *3))
- (-4 *3 (-13 (-418) (-1233)))))
- ((*1 *1 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-114)) (-5 *1 (-1234 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *1) (-12 (-4 *1 (-984)) (-5 *2 (-1120 (-229)))))
- ((*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1120 (-229))))))
-(((*1 *1) (-5 *1 (-622))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571))
- (-5 *2 (-114)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-769)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-972 (-229))) (-5 *4 (-898)) (-5 *2 (-1303))
- (-5 *1 (-482))))
+ (-12 (-5 *2 (-663 *3)) (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *5))
+ (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-1080)) (-4 *1 (-1011 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-972 *3))))
+ (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1080)) (-5 *1 (-711 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-972 *3)) (-4 *3 (-1080)) (-4 *1 (-1165 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-793)) (-4 *1 (-1165 *3)) (-4 *3 (-1080))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *1 (-1165 *3)) (-4 *3 (-1080))))
+ (-12 (-5 *2 (-663 *4)) (-4 *4 (-1080)) (-4 *1 (-1154 *3 *4 *5 *6))
+ (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-4 *1 (-153 *3))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-663 (-2 (|:| -2030 (-793)) (|:| -1351 *4) (|:| |num| *4))))
+ (-4 *4 (-1273 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-413 *3 *4))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -3231 "void")))
+ (-5 *3 (-663 (-975 (-560)))) (-5 *4 (-114)) (-5 *1 (-450))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -3231 "void")))
+ (-5 *3 (-663 (-1207))) (-5 *4 (-114)) (-5 *1 (-450))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1185 *3)) (-5 *1 (-615 *3)) (-4 *3 (-1247))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-175))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-972 *3)) (-4 *1 (-1165 *3)) (-4 *3 (-1080))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)) (-5 *3 (-229)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-388 *4 *2))
- (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4509)))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1141)) (-5 *3 (-560)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-885)) (-5 *2 (-713 (-1256))) (-5 *3 (-1256)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *5)) (-4 *4 (-1080))
- (-4 *5 (-871)) (-5 *2 (-975 *4))))
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-5 *1 (-686 *3 *4))
+ (-4 *4 (-175))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-5 *1 (-686 *3 *4))
+ (-4 *4 (-175))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-5 *1 (-686 *3 *4))
+ (-4 *4 (-175))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-663 (-663 *3)))) (-4 *3 (-1132))
+ (-5 *1 (-697 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-735 *2 *3 *4)) (-4 *2 (-871)) (-4 *3 (-1132))
+ (-14 *4
+ (-1 (-114) (-2 (|:| -1591 *2) (|:| -2030 *3))
+ (-2 (|:| -1591 *2) (|:| -2030 *3))))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1146)) (-5 *1 (-860))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-897 *2 *3)) (-4 *2 (-1247)) (-4 *3 (-1247))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 *4))))
+ (-4 *4 (-1132)) (-5 *1 (-913 *3 *4)) (-4 *3 (-1132))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-663 *5)) (-4 *5 (-13 (-1132) (-34)))
+ (-5 *2 (-663 (-1171 *3 *5))) (-5 *1 (-1171 *3 *5))
+ (-4 *3 (-13 (-1132) (-34)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-2 (|:| |val| *4) (|:| -3859 *5))))
+ (-4 *4 (-13 (-1132) (-34))) (-4 *5 (-13 (-1132) (-34)))
+ (-5 *2 (-663 (-1171 *4 *5))) (-5 *1 (-1171 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -3859 *4)))
+ (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34)))
+ (-5 *1 (-1171 *3 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34)))
+ (-4 *3 (-13 (-1132) (-34)))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-114)) (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34)))
+ (-4 *3 (-13 (-1132) (-34)))))
+ ((*1 *1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-663 *3)) (-4 *3 (-13 (-1132) (-34)))
+ (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1132) (-34)))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-663 (-1171 *2 *3))) (-4 *2 (-13 (-1132) (-34)))
+ (-4 *3 (-13 (-1132) (-34))) (-5 *1 (-1172 *2 *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *4 (-663 (-1172 *2 *3))) (-5 *1 (-1172 *2 *3))
+ (-4 *2 (-13 (-1132) (-34))) (-4 *3 (-13 (-1132) (-34)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34)))
+ (-4 *4 (-13 (-1132) (-34))) (-5 *1 (-1172 *3 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-1196 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4508)) (-4 *1 (-153 *3))
+ (-4 *3 (-1247))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-615 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-696 *3)) (-4 *3 (-1247))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *5)) (-4 *4 (-1080))
- (-4 *5 (-871)) (-5 *2 (-975 *4))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-793)) (-4 *1 (-1290 *4)) (-4 *4 (-1080))
- (-5 *2 (-975 *4))))
+ (|partial| -12 (-4 *1 (-1242 *4 *5 *3 *2)) (-4 *4 (-571))
+ (-4 *5 (-815)) (-4 *3 (-871)) (-4 *2 (-1096 *4 *5 *3))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-793)) (-4 *1 (-1290 *4)) (-4 *4 (-1080))
- (-5 *2 (-975 *4)))))
-(((*1 *1) (-5 *1 (-303))))
-(((*1 *1) (-5 *1 (-303))))
-(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-222))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-453))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-860))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-663 (-1212))) (-5 *3 (-1212)) (-5 *1 (-1146))))
- ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1147)))))
-(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1072)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1243 *2)) (-4 *2 (-1005)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))))
-(((*1 *2 *1) (-12 (-4 *1 (-984)) (-5 *2 (-1120 (-229)))))
- ((*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1120 (-229))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1080)) (-5 *1 (-1271 *3 *2)) (-4 *2 (-1273 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114))
- (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114))
- (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2788 *3) (|:| |coef1| (-803 *3))))
- (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080)))))
-(((*1 *1 *1) (-4 *1 (-559))))
+ (-12 (-5 *3 (-793)) (-5 *1 (-1245 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-705 *4 *3)) (-4 *4 (-1132))
+ (-4 *3 (-1132)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-553 *4 *2 *5 *6))
+ (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-793))))))
(((*1 *2 *2)
(-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
(-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-663 (-1201 *11))) (-5 *3 (-1201 *11))
- (-5 *4 (-663 *10)) (-5 *5 (-663 *8)) (-5 *6 (-663 (-793)))
- (-5 *7 (-1297 (-663 (-1201 *8)))) (-4 *10 (-871))
- (-4 *8 (-319)) (-4 *11 (-979 *8 *9 *10)) (-4 *9 (-815))
- (-5 *1 (-729 *9 *10 *8 *11)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *2)) (-5 *4 (-1 (-114) *2 *2)) (-5 *1 (-1249 *2))
- (-4 *2 (-1132))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 *2)) (-4 *2 (-1132)) (-4 *2 (-871))
- (-5 *1 (-1249 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-677 *4)) (-4 *4 (-355 *5 *6 *7))
- (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))))
- (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6)))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1954 (-663 *4))))
- (-5 *1 (-828 *5 *6 *7 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1273 *5))
- (-4 *7 (-1273 (-421 *6))) (-4 *8 (-355 *5 *6 *7))
- (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-114))
- (-5 *1 (-940 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-346 (-421 (-560)) *4 *5 *6))
- (-4 *4 (-1273 (-421 (-560)))) (-4 *5 (-1273 (-421 *4)))
- (-4 *6 (-355 (-421 (-560)) *4 *5)) (-5 *2 (-114))
- (-5 *1 (-941 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252))
- (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6))
- (-5 *2 (-663 (-2 (|:| -4332 *1) (|:| -2109 (-663 *7)))))
- (-5 *3 (-663 *7)) (-4 *1 (-1242 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-885)) (-5 *2 (-713 (-130))) (-5 *3 (-130)))))
-(((*1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1302))))
- ((*1 *2 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1302)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-560)) (-4 *5 (-363)) (-5 *2 (-419 (-1201 (-1201 *5))))
- (-5 *1 (-1246 *5)) (-5 *3 (-1201 (-1201 *5))))))
-(((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-793)) (-5 *1 (-216 *4 *2)) (-14 *4 (-948))
- (-4 *2 (-1132)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1132)) (-4 *3 (-927 *5)) (-5 *2 (-711 *3))
- (-5 *1 (-714 *5 *3 *6 *4)) (-4 *6 (-385 *3))
- (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4508)))))))
+(((*1 *1 *1) (|partial| -4 *1 (-147))) ((*1 *1 *1) (-4 *1 (-363)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-147)) (-4 *1 (-939)))))
+(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-131)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
- (-5 *2 (-663 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1273 *4))))
- ((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
- (-5 *2 (-663 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1273 *3)))))
-(((*1 *1) (-5 *1 (-624))))
+ (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1080) (-660 (-560))))
+ (-5 *2 (-1297 (-560))) (-5 *1 (-1326 *4)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-663 (-1201 *5))) (-5 *3 (-1201 *5))
- (-4 *5 (-168 *4)) (-4 *4 (-559)) (-5 *1 (-151 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-663 *3)) (-4 *3 (-1273 *5))
- (-4 *5 (-1273 *4)) (-4 *4 (-363)) (-5 *1 (-371 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-663 (-1201 (-560)))) (-5 *3 (-1201 (-560)))
- (-5 *1 (-586))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-663 (-1201 *1))) (-5 *3 (-1201 *1))
- (-4 *1 (-939)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-134)) (-5 *3 (-793)) (-5 *2 (-1303)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-983)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2))
- (-4 *5 (-385 *2)) (-4 *2 (-1247))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-793)) (-4 *2 (-1132)) (-5 *1 (-216 *4 *2))
- (-14 *4 (-948))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1247))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-560)) (-4 *1 (-1084 *4 *5 *2 *6 *7))
- (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)) (-4 *2 (-1080)))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1207))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-663 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-663 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -3887 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1233) (-27) (-435 *8)))
- (-4 *8 (-13 (-466) (-149) (-1069 *3) (-660 *3))) (-5 *3 (-560))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -4210 *4) (|:| |sol?| (-114))))
- (-5 *1 (-1044 *8 *4)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-663 (-1207))) (-4 *5 (-466))
- (-5 *2
- (-2 (|:| |glbase| (-663 (-255 *4 *5))) (|:| |glval| (-663 (-560)))))
- (-5 *1 (-650 *4 *5)) (-5 *3 (-663 (-255 *4 *5))))))
-(((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
- (-4 *3 (-380 *4))))
- ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-663 (-171 *4))) (-5 *1 (-157 *3 *4))
- (-4 *3 (-1273 (-171 (-560)))) (-4 *4 (-13 (-376) (-870)))))
+ (|partial| -12
+ (-5 *3 (-663 (-2 (|:| |func| *2) (|:| |pole| (-114)))))
+ (-4 *2 (-13 (-435 *4) (-1033))) (-4 *4 (-571))
+ (-5 *1 (-287 *4 *2)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))))
+(((*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-213)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1297 *3)) (-4 *3 (-376)) (-14 *6 (-1297 (-711 *3)))
+ (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-948)) (-14 *5 (-663 (-1207)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1156 (-560) (-630 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1247))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-352 (-3924 'X) (-3924) (-721))) (-5 *1 (-61 *3))
+ (-14 *3 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1297 (-352 (-3924 'JINT 'X 'ELAM) (-3924) (-721))))
+ (-5 *1 (-62 *3)) (-14 *3 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1297 (-352 (-3924) (-3924 'XC) (-721))))
+ (-5 *1 (-64 *3)) (-14 *3 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-352 (-3924) (-3924 'XC) (-721))) (-5 *1 (-66 *3))
+ (-14 *3 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1297 (-352 (-3924 'X) (-3924 '-1623) (-721))))
+ (-5 *1 (-71 *3)) (-14 *3 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1297 (-352 (-3924) (-3924 'X) (-721))))
+ (-5 *1 (-74 *3)) (-14 *3 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-352 (-3924) (-3924 'X) (-721))) (-5 *1 (-75 *3))
+ (-14 *3 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1297 (-352 (-3924 'X 'EPS) (-3924 '-1623) (-721))))
+ (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1207)) (-14 *4 (-1207))
+ (-14 *5 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1297 (-352 (-3924 'EPS) (-3924 'YA 'YB) (-721))))
+ (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1207)) (-14 *4 (-1207))
+ (-14 *5 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-352 (-3924) (-3924 'X) (-721))) (-5 *1 (-78 *3))
+ (-14 *3 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1297 (-352 (-3924) (-3924 'XC) (-721))))
+ (-5 *1 (-79 *3)) (-14 *3 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1297 (-352 (-3924) (-3924 'X) (-721))))
+ (-5 *1 (-80 *3)) (-14 *3 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1297 (-352 (-3924 'X) (-3924 '-1623) (-721))))
+ (-5 *1 (-82 *3)) (-14 *3 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1297 (-352 (-3924 'X '-1623) (-3924) (-721))))
+ (-5 *1 (-83 *3)) (-14 *3 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-711 (-352 (-3924 'X '-1623) (-3924) (-721))))
+ (-5 *1 (-84 *3)) (-14 *3 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-711 (-352 (-3924 'X) (-3924) (-721)))) (-5 *1 (-85 *3))
+ (-14 *3 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1297 (-352 (-3924 'X) (-3924) (-721))))
+ (-5 *1 (-86 *3)) (-14 *3 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-711 (-352 (-3924 'XL 'XR 'ELAM) (-3924) (-721))))
+ (-5 *1 (-88 *3)) (-14 *3 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-352 (-3924 'X) (-3924 '-1623) (-721))) (-5 *1 (-89 *3))
+ (-14 *3 (-1207))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5))
+ (-14 *3 (-560)) (-14 *4 (-793)) (-4 *5 (-175))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-663 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5))
+ (-14 *3 (-560)) (-14 *4 (-793))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1173 *4 *5)) (-14 *4 (-793)) (-4 *5 (-175))
+ (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-793)) (-4 *5 (-175))
+ (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-663 (-171 *4)))
- (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-663 (-171 *4)))
- (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1243 *3)) (-4 *3 (-1005)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1080)))))
-(((*1 *2 *3)
(-12 (-5 *3 (-1297 (-711 *4))) (-4 *4 (-175))
- (-5 *2 (-1297 (-711 (-975 *4)))) (-5 *1 (-192 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1252))
- (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5)))
- (-5 *2 (-2 (|:| |num| (-711 *5)) (|:| |den| *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-326 (-229))) (-5 *2 (-421 (-560))) (-5 *1 (-315)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-948))) (-5 *2 (-663 (-711 (-560))))
- (-5 *1 (-1141)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *1 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1201 *9)) (-5 *4 (-663 *7)) (-5 *5 (-663 (-663 *8)))
- (-4 *7 (-871)) (-4 *8 (-319)) (-4 *9 (-979 *8 *6 *7)) (-4 *6 (-815))
- (-5 *2
- (-2 (|:| |upol| (-1201 *8)) (|:| |Lval| (-663 *8))
- (|:| |Lfact|
- (-663 (-2 (|:| -4457 (-1201 *8)) (|:| -3205 (-560)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-764 *6 *7 *8 *9)))))
-(((*1 *1) (-5 *1 (-159)))
- ((*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23)))))
-(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-781)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
-(((*1 *1) (-5 *1 (-611))))
-(((*1 *1) (-5 *1 (-450))))
-(((*1 *1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-4 *1 (-310))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-663 *3))
- (-4 *3 (-13 (-27) (-1233) (-435 *6)))
- (-4 *6 (-13 (-466) (-149) (-1069 (-560)) (-660 (-560))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-572 *6 *3)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-560))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-793)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-815)) (-4 *4 (-979 *5 *6 *7)) (-4 *5 (-466)) (-4 *7 (-871))
- (-5 *1 (-464 *5 *6 *7 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-663 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815))
- (-5 *2
- (-2 (|:| |mval| (-711 *4)) (|:| |invmval| (-711 *4))
- (|:| |genIdeal| (-518 *4 *5 *6 *7))))
- (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-979 *4 *5 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1201 *1)) (-5 *3 (-1207)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-975 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-4 *1 (-29 *3)) (-4 *3 (-571))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-571)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1207)) (-4 *4 (-1080)) (-4 *4 (-1132))
- (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -3205 (-560))))
- (-4 *1 (-435 *4))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1080)) (-4 *4 (-1132))
- (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -3205 (-560))))
- (-4 *1 (-435 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1143)) (-4 *3 (-1132))
- (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -3205 (-560))))
- (-4 *1 (-435 *3))))
+ (-5 *2 (-1297 (-711 (-421 (-975 *4))))) (-5 *1 (-192 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1123 (-326 *4)))
+ (-4 *4 (-13 (-871) (-571) (-633 (-391)))) (-5 *2 (-1123 (-391)))
+ (-5 *1 (-268 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-871))))
+ ((*1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-286))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-915 *3)) (|:| -3205 (-793))))
- (-5 *1 (-915 *3)) (-4 *3 (-1132))))
+ (-12 (-4 *2 (-1273 *3)) (-5 *1 (-301 *3 *2 *4 *5 *6 *7))
+ (-4 *3 (-175)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1278 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-435 *3)))
+ (-14 *5 (-1207)) (-14 *6 *4)
+ (-4 *3 (-13 (-1069 (-560)) (-660 (-560)) (-466)))
+ (-5 *1 (-325 *3 *4 *5 *6))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *5 (-871)) (-5 *2 (-2 (|:| |var| *5) (|:| -3205 (-793))))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080))
- (-4 *7 (-979 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -3205 (-560))))
- (-5 *1 (-980 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-376)
- (-10 -8 (-15 -1578 ($ *7)) (-15 -3757 (*7 $))
- (-15 -3771 (*7 $))))))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-466)) (-4 *3 (-815)) (-4 *5 (-871)) (-5 *2 (-114))
- (-5 *1 (-464 *4 *3 *5 *6)) (-4 *6 (-979 *4 *3 *5)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
- (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
- (|:| |relerr| (-229))))
- (-5 *2 (-560)) (-5 *1 (-207)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3))
- (-4 *3 (-13 (-376) (-1233) (-1033))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
- (-4 *4 (-1080)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946))))
- ((*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-939)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-419 (-1201 *7)))
- (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-1201 *7))))
+ (-12 (-5 *2 (-326 *5)) (-5 *1 (-352 *3 *4 *5))
+ (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
((*1 *2 *3)
- (-12 (-4 *4 (-939)) (-4 *5 (-1273 *4)) (-5 *2 (-419 (-1201 *5)))
- (-5 *1 (-937 *4 *5)) (-5 *3 (-1201 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1290 *4)) (-5 *1 (-1291 *4 *2))
- (-4 *4 (-38 (-421 (-560)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-531))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1132) (-34))) (-5 *1 (-1171 *3 *2))
- (-4 *3 (-13 (-1132) (-34)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1309)))))
-(((*1 *1 *1 *1) (-5 *1 (-887))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1250))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-663 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1250)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)) (-4 *2 (-466)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-711 *5)) (-4 *5 (-1080)) (-5 *1 (-1085 *3 *4 *5))
- (-14 *3 (-793)) (-14 *4 (-793)))))
-(((*1 *2)
- (-12 (-14 *4 (-793)) (-4 *5 (-1247)) (-5 *2 (-136))
- (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-376)) (-5 *2 (-136)) (-5 *1 (-340 *3 *4))
+ (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *3 *4 *2))
(-4 *3 (-341 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-793)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-175))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-560))
- (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-663 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815))
- (-5 *2 (-560)) (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-979 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1080)) (-5 *2 (-948))))
- ((*1 *2) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-376)) (-5 *2 (-136)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-376)) (-5 *1 (-923 *2 *3))
- (-4 *2 (-1273 *3)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323)) (-5 *1 (-851)))))
-(((*1 *2)
- (-12 (-4 *1 (-363))
- (-5 *2 (-663 (-2 (|:| -4457 (-560)) (|:| -3205 (-560))))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1201 *1)) (-4 *1 (-1043)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *3 (-663 (-898)))
- (-5 *1 (-482)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-571))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 (-1311 *4 *5 *6 *7)))
- (-5 *1 (-1311 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-663 *9)) (-5 *4 (-1 (-114) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1096 *6 *7 *8)) (-4 *6 (-571))
- (-4 *7 (-815)) (-4 *8 (-871)) (-5 *2 (-663 (-1311 *6 *7 *8 *9)))
- (-5 *1 (-1311 *6 *7 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-13 (-29 *4) (-1233)))
- (-5 *1 (-599 *4 *2))
- (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560))))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 (-421 (-975 *4))))
- (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-326 *4))
- (-5 *1 (-603 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-781)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1225 *4 *5))
- (-4 *4 (-1132)) (-4 *5 (-1132)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3))
- (-4 *5 (-385 *3)) (-5 *2 (-793))))
+ (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *2 *4 *3))
+ (-4 *3 (-341 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
- (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-793)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7))
- (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *4))))
- (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303))
- (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303))
- (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-419 *3)) (-4 *3 (-571)) (-5 *1 (-433 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560)))))
- (-4 *5 (-1273 *4)) (-5 *2 (-663 (-2 (|:| -3355 *5) (|:| -3439 *5))))
- (-5 *1 (-829 *4 *5 *3 *6)) (-4 *3 (-680 *5))
- (-4 *6 (-680 (-421 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560)))))
- (-4 *4 (-1273 *5)) (-5 *2 (-663 (-2 (|:| -3355 *4) (|:| -3439 *4))))
- (-5 *1 (-829 *5 *4 *3 *6)) (-4 *3 (-680 *4))
- (-4 *6 (-680 (-421 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560)))))
- (-4 *5 (-1273 *4)) (-5 *2 (-663 (-2 (|:| -3355 *5) (|:| -3439 *5))))
- (-5 *1 (-829 *4 *5 *6 *3)) (-4 *6 (-680 *5))
- (-4 *3 (-680 (-421 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560)))))
- (-4 *4 (-1273 *5)) (-5 *2 (-663 (-2 (|:| -3355 *4) (|:| -3439 *4))))
- (-5 *1 (-829 *5 *4 *6 *3)) (-4 *6 (-680 *4))
- (-4 *3 (-680 (-421 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560)))))
- (-4 *4 (-1273 (-421 *2))) (-5 *2 (-560)) (-5 *1 (-942 *4 *5))
- (-4 *5 (-1273 (-421 *4))))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-559))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-560)) (-5 *2 (-663 (-663 (-229)))) (-5 *1 (-1244)))))
-(((*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871))))
- ((*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-871))))
- ((*1 *1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-871))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1242 *2 *3 *4 *5)) (-4 *2 (-571))
- (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-1096 *2 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-793)) (-4 *1 (-1286 *3)) (-4 *3 (-1247))))
- ((*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3))
- (-4 *5 (-385 *3)) (-5 *2 (-793))))
+ (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175))
+ (-5 *2 (-1322 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
- (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-793)))))
-(((*1 *1) (-5 *1 (-450))))
-(((*1 *1 *2)
+ (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175))
+ (-5 *2 (-1313 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-871)) (-4 *3 (-175))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342)))))
+ (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-396))))
+ ((*1 *1 *2) (-12 (-5 *2 (-711 (-721))) (-4 *1 (-396))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342)))))
+ (-4 *1 (-398))))
+ ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-398))))
+ ((*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-398))))
+ ((*1 *2 *3) (-12 (-5 *2 (-407)) (-5 *1 (-408 *3)) (-4 *3 (-1132))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342)))))
+ (-4 *1 (-411))))
+ ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-411))))
+ ((*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-411))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-305 (-326 (-171 (-391))))) (-5 *1 (-412 *3 *4 *5 *6))
+ (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void")))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-305 (-326 (-391)))) (-5 *1 (-412 *3 *4 *5 *6))
+ (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void")))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-305 (-326 (-560)))) (-5 *1 (-412 *3 *4 *5 *6))
+ (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void")))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-412 *3 *4 *5 *6))
+ (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void")))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-326 (-391))) (-5 *1 (-412 *3 *4 *5 *6))
+ (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void")))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-326 (-560))) (-5 *1 (-412 *3 *4 *5 *6))
+ (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void")))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-305 (-326 (-716)))) (-5 *1 (-412 *3 *4 *5 *6))
+ (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void")))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-305 (-326 (-721)))) (-5 *1 (-412 *3 *4 *5 *6))
+ (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void")))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-305 (-326 (-723)))) (-5 *1 (-412 *3 *4 *5 *6))
+ (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void")))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-326 (-716))) (-5 *1 (-412 *3 *4 *5 *6))
+ (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void")))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-326 (-721))) (-5 *1 (-412 *3 *4 *5 *6))
+ (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void")))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-326 (-723))) (-5 *1 (-412 *3 *4 *5 *6))
+ (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void")))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342)))))
+ (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207))
+ (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void")))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-342))) (-5 *1 (-412 *3 *4 *5 *6))
+ (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void")))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-342)) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207))
+ (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void")))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-421 (-975 (-421 *3)))) (-4 *3 (-571)) (-4 *3 (-1132))
+ (-4 *1 (-435 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-975 (-421 *3))) (-4 *3 (-571)) (-4 *3 (-1132))
+ (-4 *1 (-435 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-421 *3)) (-4 *3 (-571)) (-4 *3 (-1132))
+ (-4 *1 (-435 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1156 *3 (-630 *1))) (-4 *3 (-1080)) (-4 *3 (-1132))
+ (-4 *1 (-435 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-343 *4)) (-4 *4 (-13 (-871) (-21)))
+ (-5 *1 (-443 *3 *4)) (-4 *3 (-13 (-175) (-38 (-421 (-560)))))))
+ ((*1 *1 *2)
+ (-12 (-5 *1 (-443 *2 *3)) (-4 *2 (-13 (-175) (-38 (-421 (-560)))))
+ (-4 *3 (-13 (-871) (-21)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-448))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-448))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-448))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-448))))
+ ((*1 *1 *2) (-12 (-5 *2 (-448)) (-5 *1 (-450))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342)))))
+ (-4 *1 (-454))))
+ ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-454))))
+ ((*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-454))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1297 (-721))) (-4 *1 (-454))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2458 (-663 (-342)))))
+ (-4 *1 (-455))))
+ ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-455))))
+ ((*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-455))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1297 (-421 (-975 *3)))) (-4 *3 (-175))
+ (-14 *6 (-1297 (-711 *3))) (-5 *1 (-467 *3 *4 *5 *6))
+ (-14 *4 (-948)) (-14 *5 (-663 (-1207)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *1 (-482))))
+ ((*1 *2 *1) (-12 (-5 *2 (-887)) (-5 *1 (-482))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1278 *3 *4 *5)) (-4 *3 (-1080)) (-14 *4 (-1207))
+ (-14 *5 *3) (-5 *1 (-488 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-488 *3 *4 *5))
+ (-4 *3 (-1080)) (-14 *5 *3)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1156 (-560) (-630 (-509)))) (-5 *1 (-509))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-516))))
+ ((*1 *1 *2)
(-12 (-5 *2 (-663 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-376))
- (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207))
- (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-326 *5)))
- (-5 *1 (-1160 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-421 (-975 *5)))) (-5 *4 (-663 (-1207)))
- (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-326 *5))))
- (-5 *1 (-1160 *5)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559))
- (-5 *2 (-421 (-560)))))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-663 (-1248))) (-5 *1 (-538))))
+ ((*1 *1 *2) (-12 (-5 *2 (-663 (-1248))) (-5 *1 (-619))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-175)) (-5 *1 (-620 *3 *2)) (-4 *2 (-766 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *2) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *2) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1080))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-419 *3)) (-4 *3 (-559))
- (-4 *3 (-571))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-559)) (-5 *2 (-421 (-560)))))
+ (-12 (-5 *2 (-1318 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871))
+ (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-559))
- (-5 *2 (-421 (-560)))))
+ (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871))
+ (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-175)) (-5 *1 (-652 *3 *2)) (-4 *2 (-766 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-699 *3)) (-5 *1 (-694 *3)) (-4 *3 (-871))))
+ ((*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-694 *3)) (-4 *3 (-871))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-854 *3)) (-4 *3 (-559))
- (-4 *3 (-1132))))
+ (-12 (-5 *2 (-987 (-987 (-987 *3)))) (-5 *1 (-697 *3))
+ (-4 *3 (-1132))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-987 (-987 (-987 *3)))) (-4 *3 (-1132))
+ (-5 *1 (-697 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-699 *3)) (-4 *3 (-871))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1146)) (-5 *1 (-703))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-704 *3)) (-4 *3 (-1132))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *2)) (-4 *4 (-385 *3))
+ (-4 *2 (-385 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-716))))
+ ((*1 *1 *2) (-12 (-5 *2 (-171 (-723))) (-5 *1 (-716))))
+ ((*1 *1 *2) (-12 (-5 *2 (-171 (-721))) (-5 *1 (-716))))
+ ((*1 *1 *2) (-12 (-5 *2 (-171 (-560))) (-5 *1 (-716))))
+ ((*1 *1 *2) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-716))))
+ ((*1 *1 *2) (-12 (-5 *2 (-723)) (-5 *1 (-721))))
+ ((*1 *2 *1) (-12 (-5 *2 (-391)) (-5 *1 (-721))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-326 (-560))) (-5 *2 (-326 (-723))) (-5 *1 (-723))))
+ ((*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1189)) (-5 *1 (-732))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-864 *3)) (-4 *3 (-559))
- (-4 *3 (-1132))))
+ (-12 (-4 *2 (-175)) (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1029 *3)) (-4 *3 (-175)) (-4 *3 (-559))
- (-5 *2 (-421 (-560)))))
+ (-12 (-4 *2 (-175)) (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-2 (|:| -2625 *3) (|:| -1405 *4))))
+ (-4 *3 (-1080)) (-4 *4 (-748)) (-5 *1 (-757 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-785))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-3
+ (|:| |nia|
+ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
+ (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
+ (|:| |relerr| (-229))))
+ (|:| |mdnia|
+ (-2 (|:| |fn| (-326 (-229)))
+ (|:| -1585 (-663 (-1120 (-864 (-229)))))
+ (|:| |abserr| (-229)) (|:| |relerr| (-229))))))
+ (-5 *1 (-791))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-326 (-229)))
+ (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229))
+ (|:| |relerr| (-229))))
+ (-5 *1 (-791))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
+ (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
+ (|:| |relerr| (-229))))
+ (-5 *1 (-791))))
+ ((*1 *2 *3) (-12 (-5 *2 (-795)) (-5 *1 (-796 *3)) (-4 *3 (-1247))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229))
+ (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229)))
+ (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229)))
+ (|:| |abserr| (-229)) (|:| |relerr| (-229))))
+ (-5 *1 (-830))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-848))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229)))
+ (|:| |lb| (-663 (-864 (-229))))
+ (|:| |cf| (-663 (-326 (-229))))
+ (|:| |ub| (-663 (-864 (-229))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-663 (-326 (-229))))
+ (|:| -3239 (-663 (-229)))))))
+ (-5 *1 (-863))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229)))))
+ (-5 *1 (-863))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229)))
+ (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229))))
+ (|:| |ub| (-663 (-864 (-229))))))
+ (-5 *1 (-863))))
+ ((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-882))))
+ ((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898))))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-1039 *3))
- (-4 *3 (-1069 *2)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1189))
- (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1308)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-560)) (|has| *1 (-6 -4509)) (-4 *1 (-385 *3))
- (-4 *3 (-1247)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-571) (-1069 (-560)) (-660 (-560))))
- (-5 *1 (-288 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1207))
- (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560))))
- (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4)))))
- ((*1 *1 *1) (-5 *1 (-391)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7))
- (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *4))))
- (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-618 *3 *2)) (-4 *3 (-1132)) (-4 *3 (-871))
- (-4 *2 (-1247))))
- ((*1 *2 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871))))
- ((*1 *2 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-871))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1247)) (-5 *1 (-897 *2 *3)) (-4 *3 (-1247))))
- ((*1 *2 *1) (-12 (-5 *2 (-694 *3)) (-5 *1 (-918 *3)) (-4 *3 (-871))))
+ (-12 (-5 *3 (-975 (-48))) (-5 *2 (-326 (-560))) (-5 *1 (-899))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-421 (-975 (-48)))) (-5 *2 (-326 (-560)))
+ (-5 *1 (-899))))
+ ((*1 *1 *2) (-12 (-5 *1 (-918 *2)) (-4 *2 (-871))))
+ ((*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-918 *3)) (-4 *3 (-871))))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |pde| (-663 (-326 (-229))))
+ (|:| |constraints|
+ (-663
+ (-2 (|:| |start| (-229)) (|:| |finish| (-229))
+ (|:| |grid| (-793)) (|:| |boundaryType| (-560))
+ (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229))))))
+ (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189))
+ (|:| |tol| (-229))))
+ (-5 *1 (-925))))
+ ((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-931 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1132)) (-5 *1 (-931 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-931 *3))) (-4 *3 (-1132)) (-5 *1 (-934 *3))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571))
- (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-793)) (-4 *1 (-1286 *3)) (-4 *3 (-1247))))
- ((*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207))))
- (-4 *6 (-815)) (-5 *2 (-421 (-975 *4))) (-5 *1 (-953 *4 *5 *6 *3))
- (-4 *3 (-979 *4 *6 *5))))
+ (-12 (-5 *2 (-663 (-931 *3))) (-5 *1 (-934 *3)) (-4 *3 (-1132))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-421 (-419 *3))) (-4 *3 (-319)) (-5 *1 (-943 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-421 *3)) (-5 *1 (-943 *3)) (-4 *3 (-319))))
((*1 *2 *3)
- (-12 (-5 *3 (-711 *7)) (-4 *7 (-979 *4 *6 *5))
- (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207))))
- (-4 *6 (-815)) (-5 *2 (-711 (-421 (-975 *4))))
- (-5 *1 (-953 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-491)) (-5 *2 (-326 *4)) (-5 *1 (-949 *4))
+ (-4 *4 (-571))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1303)) (-5 *1 (-1064 *3)) (-4 *3 (-1247))))
+ ((*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *1 (-1064 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *1 (-1065 *3 *4 *5 *2 *6)) (-4 *2 (-979 *3 *4 *5))
+ (-14 *6 (-663 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-663 *7)) (-4 *7 (-979 *4 *6 *5))
- (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207))))
- (-4 *6 (-815)) (-5 *2 (-663 (-421 (-975 *4))))
- (-5 *1 (-953 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-663 (-663 *4)))) (-5 *2 (-663 (-663 *4)))
- (-5 *1 (-1218 *4)) (-4 *4 (-871)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-560)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1247))
- (-4 *5 (-385 *4)) (-4 *2 (-385 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-560)) (-4 *1 (-1084 *4 *5 *6 *2 *7)) (-4 *6 (-1080))
- (-4 *7 (-245 *4 *6)) (-4 *2 (-245 *5 *6)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-711 (-560))) (-5 *3 (-663 (-560))) (-5 *1 (-1141)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-553 *4 *2 *5 *6))
- (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-793))))))
+ (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-1071 *3)) (-4 *3 (-571))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1080)) (-4 *4 (-871)) (-5 *1 (-1157 *3 *4 *2))
+ (-4 *2 (-979 *3 (-545 *4) *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1080)) (-4 *2 (-871)) (-5 *1 (-1157 *3 *2 *4))
+ (-4 *4 (-979 *3 (-545 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-887))))
+ ((*1 *1 *2) (-12 (-5 *2 (-146)) (-4 *1 (-1175))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1080))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1198 *3 *4 *5))
+ (-4 *3 (-1080)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1205 *3 *4 *5))
+ (-4 *3 (-1080)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1266 *4 *3)) (-4 *3 (-1080)) (-14 *4 (-1207))
+ (-14 *5 *3) (-5 *1 (-1205 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1206))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1219 (-1207) (-450))) (-5 *1 (-1211))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1212))))
+ ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1212))))
+ ((*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1212))))
+ ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1212))))
+ ((*1 *2 *1) (-12 (-5 *2 (-887)) (-5 *1 (-1220 *3)) (-4 *3 (-1132))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1227)) (-5 *1 (-1228 *3)) (-4 *3 (-1132))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-975 *3)) (-4 *3 (-1080)) (-5 *1 (-1240 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1240 *3)) (-4 *3 (-1080))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1257 *3 *4 *5))
+ (-4 *3 (-1080)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1120 *3)) (-4 *3 (-1247)) (-5 *1 (-1264 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1287 *3 *4 *5))
+ (-4 *3 (-1080)) (-14 *5 *3)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1266 *4 *3)) (-4 *3 (-1080)) (-14 *4 (-1207))
+ (-14 *5 *3) (-5 *1 (-1287 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1294 *3)) (-14 *3 *2)))
+ ((*1 *2 *3) (-12 (-5 *3 (-482)) (-5 *2 (-1300)) (-5 *1 (-1299))))
+ ((*1 *2 *1) (-12 (-5 *2 (-887)) (-5 *1 (-1300))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1322 *3 *4)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-871))
+ (-4 *4 (-175))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-871))
+ (-4 *4 (-175))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-686 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175))
+ (-5 *1 (-1318 *3 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-615 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-711 (-421 (-975 (-560)))))
+ (-5 *2 (-663 (-711 (-326 (-560))))) (-5 *1 (-1059))
+ (-5 *3 (-326 (-560))))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -4297 *8)))
+ (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -3859 *8)))
(-4 *7 (-1096 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-466))
(-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
(-5 *1 (-1019 *4 *5 *6 *7 *8))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -4297 *8)))
+ (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -3859 *8)))
(-4 *7 (-1096 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-466))
(-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
(-5 *1 (-1138 *4 *5 *6 *7 *8)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-954))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229)))
+ (-5 *1 (-954))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1207)) (-5 *5 (-1120 (-229))) (-5 *2 (-954))
+ (-5 *1 (-955 *3)) (-4 *3 (-633 (-549)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1207)) (-5 *2 (-954)) (-5 *1 (-955 *3))
+ (-4 *3 (-633 (-549))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-871)) (-5 *2 (-663 (-663 *4))) (-5 *1 (-1218 *4))
+ (-5 *3 (-663 *4)))))
+(((*1 *1 *1) (-5 *1 (-1094))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-887)) (-5 *1 (-1185 *3)) (-4 *3 (-1132))
+ (-4 *3 (-1247)))))
+(((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
+ (-4 *3 (-380 *4))))
+ ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-38 (-421 (-560))))
+ (-4 *2 (-175)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-615 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-602 *4))
+ (-4 *4 (-363)))))
(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814))))
((*1 *2 *1)
(-12 (-5 *2 (-793)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080))
@@ -4926,6 +3841,98 @@
((*1 *2 *1)
(-12 (-4 *1 (-1320 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080))
(-5 *2 (-793)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -1871 (-711 (-421 (-975 *4))))
+ (|:| |vec| (-663 (-421 (-975 *4)))) (|:| -1604 (-793))
+ (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))
+ (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207))))
+ (-4 *6 (-815))
+ (-5 *2
+ (-2 (|:| |partsol| (-1297 (-421 (-975 *4))))
+ (|:| -3822 (-663 (-1297 (-421 (-975 *4)))))))
+ (-5 *1 (-953 *4 *5 *6 *7)) (-4 *7 (-979 *4 *6 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-573 *3)) (-4 *3 (-559))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) (-5 *2 (-419 *3))
+ (-5 *1 (-764 *4 *5 *6 *3)) (-4 *3 (-979 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319))
+ (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-419 (-1201 *7)))
+ (-5 *1 (-764 *4 *5 *6 *7)) (-5 *3 (-1201 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-466)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *2 (-419 *1)) (-4 *1 (-979 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-466)) (-5 *2 (-419 *3))
+ (-5 *1 (-1010 *4 *5 *6 *3)) (-4 *3 (-979 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-466))
+ (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-419 (-1201 (-421 *7))))
+ (-5 *1 (-1203 *4 *5 *6 *7)) (-5 *3 (-1201 (-421 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1252))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-571)) (-5 *2 (-419 *3)) (-5 *1 (-1277 *4 *3))
+ (-4 *3 (-13 (-1273 *4) (-571) (-10 -8 (-15 -1938 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1051)))
+ (-14 *5 (-663 (-1207)))
+ (-5 *2
+ (-663 (-1177 *4 (-545 (-888 *6)) (-888 *6) (-802 *4 (-888 *6)))))
+ (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-663 (-1207))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1130 *3)) (-4 *3 (-1132)) (-5 *2 (-114)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-815))
+ (-4 *8 (-871)) (-4 *9 (-1096 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -2439 (-663 *9)) (|:| -3859 *4) (|:| |ineq| (-663 *9))))
+ (-5 *1 (-1019 *6 *7 *8 *9 *4)) (-5 *3 (-663 *9))
+ (-4 *4 (-1102 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-815))
+ (-4 *8 (-871)) (-4 *9 (-1096 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -2439 (-663 *9)) (|:| -3859 *4) (|:| |ineq| (-663 *9))))
+ (-5 *1 (-1138 *6 *7 *8 *9 *4)) (-5 *3 (-663 *9))
+ (-4 *4 (-1102 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1247)))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080))
+ (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-501)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-948)) (-4 *6 (-571)) (-5 *2 (-663 (-326 *6)))
+ (-5 *1 (-225 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1080))))
+ ((*1 *2 *1) (-12 (-5 *1 (-419 *2)) (-4 *2 (-571))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 *5)) (-4 *5 (-13 (-29 *4) (-1233)))
+ (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-663 *5))
+ (-5 *1 (-599 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-421 (-975 *4))))
+ (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560))))
+ (-5 *2 (-663 (-326 *4))) (-5 *1 (-603 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1126 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1180 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 *1)) (-4 *1 (-1126 *4 *2)) (-4 *4 (-870))
+ (-4 *2 (-1180 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1313 (-1207) *3)) (-5 *1 (-1319 *3)) (-4 *3 (-1080))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-1322 *3 *4)) (-4 *3 (-871))
+ (-4 *4 (-1080)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1273 *2)) (-4 *2 (-1273 *4))
+ (-5 *1 (-1016 *4 *2 *3 *5)) (-4 *4 (-363)) (-4 *5 (-746 *2 *3)))))
(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247))))
((*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-871))))
((*1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-871))))
@@ -4937,11 +3944,11 @@
(-12
(-5 *2
(-2
- (|:| -2968
+ (|:| -1438
(-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
- (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
+ (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
(|:| |relerr| (-229))))
- (|:| -2460
+ (|:| -3067
(-2
(|:| |endPointContinuity|
(-3 (|:| |continuous| "Continuous at the end points")
@@ -4957,7 +3964,7 @@
(-3 (|:| |str| (-1185 (-229)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -3471
+ (|:| -1585
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite|
"The bottom of range is infinite")
@@ -4972,12 +3979,12 @@
(-12
(-5 *2
(-2
- (|:| -2968
+ (|:| -1438
(-2 (|:| |xinit| (-229)) (|:| |xend| (-229))
(|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229)))
(|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229)))
(|:| |abserr| (-229)) (|:| |relerr| (-229))))
- (|:| -2460
+ (|:| -3067
(-2 (|:| |stiffness| (-391)) (|:| |stability| (-391))
(|:| |expense| (-391)) (|:| |accuracy| (-391))
(|:| |intermediateResults| (-391))))))
@@ -4985,106 +3992,593 @@
((*1 *2 *3 *4)
(-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132))
(-4 *4 (-1132)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-376))
+ (-5 *2 (-2 (|:| -3967 (-419 *3)) (|:| |special| (-419 *3))))
+ (-5 *1 (-749 *5 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-793)) (-4 *1 (-1273 *3)) (-4 *3 (-1080))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-948)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080))
+ (-4 *4 (-814))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-421 (-560))) (-4 *1 (-1280 *3)) (-4 *3 (-1080)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-419 (-1201 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1201 *1))
+ (-4 *4 (-466)) (-4 *4 (-571)) (-4 *4 (-1132))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-939)) (-5 *2 (-419 (-1201 *1))) (-5 *3 (-1201 *1)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-887) (-887))) (-5 *1 (-115))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-887) (-663 (-887)))) (-5 *1 (-115))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1 (-887) (-663 (-887)))) (-5 *1 (-115))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1303)) (-5 *1 (-217 *3))
+ (-4 *3
+ (-13 (-871)
+ (-10 -8 (-15 -1507 ((-1189) $ (-1207))) (-15 -3884 (*2 $))
+ (-15 -3150 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-407))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-407))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-516))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-732))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1227))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-1227)))))
+(((*1 *1) (-5 *1 (-482))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-793)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2))
+ (-4 *2 (-1273 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1201 *9)) (-5 *4 (-663 *7)) (-5 *5 (-663 *8))
+ (-4 *7 (-871)) (-4 *8 (-1080)) (-4 *9 (-979 *8 *6 *7))
+ (-4 *6 (-815)) (-5 *2 (-1201 *8)) (-5 *1 (-333 *6 *7 *8 *9)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-663 (-803 *3))) (-5 *1 (-803 *3)) (-4 *3 (-571))
+ (-4 *3 (-1080)))))
+(((*1 *1) (-5 *1 (-611))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-544 *3)) (-4 *3 (-13 (-748) (-25))))))
+(((*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-934 (-560))) (-5 *1 (-946))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
+(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))))
(((*1 *2 *3 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-1303)) (-5 *1 (-853)))))
+(((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))))
+(((*1 *1) (-5 *1 (-622))) ((*1 *1) (-5 *1 (-624)))
+ ((*1 *1) (-5 *1 (-625))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1297 *5)) (-4 *5 (-814)) (-5 *2 (-114))
+ (-5 *1 (-867 *4 *5)) (-14 *4 (-793)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033))))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-663 (-663 (-229)))) (-5 *4 (-229))
+ (-5 *2 (-663 (-972 *4))) (-5 *1 (-1244)) (-5 *3 (-972 *4)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-571)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1273 *3)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-975 (-421 (-560)))) (-5 *4 (-1207))
+ (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-663 (-229))) (-5 *1 (-313)))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-187 (-141)))) (-5 *1 (-142)))))
+(((*1 *1 *1) (-4 *1 (-1091)))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2096 *4)))
+ (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
(((*1 *2 *3)
(-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1132)) (-4 *6 (-1132))
(-5 *2 (-1 *6 *4 *5)) (-5 *1 (-706 *4 *5 *6)) (-4 *5 (-1132)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-670 *5)) (-4 *5 (-1080))
- (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-876 *5))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-711 *3)) (-4 *1 (-432 *3)) (-4 *3 (-175))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080))))
- ((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1080))
- (-5 *1 (-877 *2 *3)) (-4 *3 (-876 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-31))))
- ((*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-49))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-135))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-140))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-156))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-164))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-222))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-698))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1050))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1097))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-1127)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-560))))
+ (-4 *4 (-13 (-1273 *3) (-571) (-10 -8 (-15 -1938 ($ $ $)))))
+ (-4 *3 (-571)) (-5 *1 (-1277 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-711 (-421 (-975 *4)))) (-4 *4 (-466))
+ (-5 *2 (-663 (-3 (-421 (-975 *4)) (-1196 (-1207) (-975 *4)))))
+ (-5 *1 (-304 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-630 *1))) (-4 *1 (-310)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-972 (-229))) (-5 *2 (-1303)) (-5 *1 (-482)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-663 *3)) (-5 *5 (-948)) (-4 *3 (-1273 *4))
+ (-4 *4 (-319)) (-5 *1 (-474 *4 *3)))))
+(((*1 *1 *1 *1) (-5 *1 (-887))))
+(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-886))))
+ ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-886)))))
+(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-845)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-793)) (-5 *2 (-1297 (-663 (-560)))) (-5 *1 (-494))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-615 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))))
+(((*1 *2)
+ (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1132)) (-5 *2 (-663 *1))
+ (-4 *1 (-435 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3))
+ (-4 *3 (-1132))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *2 (-663 *1)) (-4 *1 (-979 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080))
+ (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-663 *3))
+ (-5 *1 (-980 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-376)
+ (-10 -8 (-15 -3913 ($ *7)) (-15 -2473 (*7 $))
+ (-15 -2484 (*7 $))))))))
(((*1 *2 *2)
(-12 (-4 *3 (-571)) (-5 *1 (-41 *3 *2))
(-4 *2
(-13 (-376) (-310)
- (-10 -8 (-15 -3757 ((-1156 *3 (-630 $)) $))
- (-15 -3771 ((-1156 *3 (-630 $)) $))
- (-15 -1578 ($ (-1156 *3 (-630 $))))))))))
+ (-10 -8 (-15 -2473 ((-1156 *3 (-630 $)) $))
+ (-15 -2484 ((-1156 *3 (-630 $)) $))
+ (-15 -3913 ($ (-1156 *3 (-630 $))))))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-388 *4 *2))
+ (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4509)))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229)))))
+ (-5 *2 (-391)) (-5 *1 (-278))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-315)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1120 (-864 (-391)))) (-5 *2 (-1120 (-864 (-229))))
+ (-5 *1 (-315)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1132) (-34)))
+ (-4 *3 (-13 (-1132) (-34))))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-793)) (-4 *3 (-571)) (-5 *1 (-1000 *3 *2))
+ (-4 *2 (-1273 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1247)) (-5 *1 (-897 *3 *2)) (-4 *3 (-1247))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1080)) (-5 *2 (-114)) (-5 *1 (-458 *4 *3))
+ (-4 *3 (-1273 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-5 *2 (-114)))))
(((*1 *2 *3)
(-12 (-5 *3 (-975 *5)) (-4 *5 (-1080)) (-5 *2 (-255 *4 *5))
(-5 *1 (-973 *4 *5)) (-14 *4 (-663 (-1207))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-319)) (-5 *1 (-469 *3 *2)) (-4 *2 (-1273 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-319)) (-5 *1 (-474 *3 *2)) (-4 *2 (-1273 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-319)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-793)))
+ (-5 *1 (-553 *3 *2 *4 *5)) (-4 *2 (-1273 *3)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *2 (-871))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-815)) (-4 *5 (-1080)) (-4 *6 (-979 *5 *4 *2))
+ (-4 *2 (-871)) (-5 *1 (-980 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-376)
+ (-10 -8 (-15 -3913 ($ *6)) (-15 -2473 (*6 $))
+ (-15 -2484 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571))
+ (-5 *2 (-1207)) (-5 *1 (-1071 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2))
+ (-4 *4 (-571)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1242 *2 *3 *4 *5)) (-4 *2 (-571)) (-4 *3 (-815))
+ (-4 *4 (-871)) (-4 *5 (-1096 *2 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-220 *4 *3))
+ (-4 *3 (-1273 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-376)) (-5 *1 (-1056 *3 *2)) (-4 *2 (-680 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| -2439 *3) (|:| -3494 (-663 *5))))
+ (-5 *1 (-1056 *5 *3)) (-5 *4 (-663 *5)) (-4 *3 (-680 *5)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1120 (-229)))
+ (-5 *1 (-954))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1120 (-229)))
+ (-5 *1 (-954))))
+ ((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1120 (-229)))
+ (-5 *1 (-956))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1120 (-229)))
+ (-5 *1 (-956)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1051)))
+ (-14 *5 (-663 (-1207)))
+ (-5 *2
+ (-663 (-2 (|:| -2557 (-1201 *4)) (|:| -4226 (-663 (-975 *4))))))
+ (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-663 (-1207)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051)))
+ (-5 *2
+ (-663 (-2 (|:| -2557 (-1201 *5)) (|:| -4226 (-663 (-975 *5))))))
+ (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-663 (-975 *5)))
+ (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051)))
+ (-5 *2
+ (-663 (-2 (|:| -2557 (-1201 *5)) (|:| -4226 (-663 (-975 *5))))))
+ (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-663 (-975 *5)))
+ (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051)))
+ (-5 *2
+ (-663 (-2 (|:| -2557 (-1201 *5)) (|:| -4226 (-663 (-975 *5))))))
+ (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-663 (-975 *5)))
+ (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-870) (-319) (-149) (-1051)))
+ (-5 *2
+ (-663 (-2 (|:| -2557 (-1201 *4)) (|:| -4226 (-663 (-975 *4))))))
+ (-5 *1 (-1325 *4 *5 *6)) (-5 *3 (-663 (-975 *4)))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207))))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *1) (-12 (-4 *1 (-263 *3)) (-4 *3 (-1247)) (-5 *2 (-793))))
+ ((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-793))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1080))
+ (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296)))
+ (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1273 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-630 *3)) (-4 *3 (-1132))))
+ ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887))))
+ ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-887)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-663 *4)) (-4 *4 (-376)) (-5 *2 (-1297 *4))
+ (-5 *1 (-836 *4 *3)) (-4 *3 (-680 *4)))))
(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-115)) (-5 *3 (-663 (-1 *4 (-663 *4)))) (-4 *4 (-1132))
+ (-5 *1 (-116 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1132))
+ (-5 *1 (-116 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-115)) (-5 *2 (-663 (-1 *4 (-663 *4))))
+ (-5 *1 (-116 *4)) (-4 *4 (-1132)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-114) *2)) (-4 *2 (-134)) (-5 *1 (-1115 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-560) *2 *2)) (-4 *2 (-134)) (-5 *1 (-1115 *2)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1297 *4)) (-4 *4 (-432 *3)) (-4 *3 (-319))
+ (-4 *3 (-571)) (-5 *1 (-43 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-948)) (-4 *4 (-376)) (-5 *2 (-1297 *1))
+ (-4 *1 (-341 *4))))
+ ((*1 *2) (-12 (-4 *3 (-376)) (-5 *2 (-1297 *1)) (-4 *1 (-341 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-175)) (-4 *4 (-1273 *3)) (-5 *2 (-1297 *1))
+ (-4 *1 (-424 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-319)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4))
+ (-5 *2 (-1297 *6)) (-5 *1 (-427 *3 *4 *5 *6))
+ (-4 *6 (-13 (-424 *4 *5) (-1069 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-319)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4))
+ (-5 *2 (-1297 *6)) (-5 *1 (-429 *3 *4 *5 *6 *7))
+ (-4 *6 (-424 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1297 *1)) (-4 *1 (-432 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-948)) (-5 *2 (-1297 (-1297 *4))) (-5 *1 (-542 *4))
+ (-4 *4 (-363)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-114) *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571))
+ (-4 *6 (-815)) (-4 *7 (-871))
+ (-5 *2 (-2 (|:| |goodPols| (-663 *8)) (|:| |badPols| (-663 *8))))
+ (-5 *1 (-1008 *5 *6 *7 *8)) (-5 *4 (-663 *8)))))
+(((*1 *1 *2) (-12 (-5 *2 (-841 *3)) (-4 *3 (-871)) (-5 *1 (-694 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-4 *1 (-933 *3)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-915 *4)) (-4 *4 (-1132)) (-5 *1 (-913 *4 *3))
+ (-4 *3 (-1132)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1313 (-1207) *3)) (-4 *3 (-1080)) (-5 *1 (-1319 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1313 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080))
+ (-5 *1 (-1322 *3 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1207))
+ (-4 *4 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)))
+ (-5 *1 (-826 *4 *2)) (-4 *2 (-13 (-29 *4) (-1233) (-989))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1002)) (-5 *1 (-1323)))))
(((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))
((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))
((*1 *2 *2)
(-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
((*1 *1 *1) (-4 *1 (-1170))))
-(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-549))))
- ((*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-550 *2)) (-4 *2 (-1247)))))
+(((*1 *1) (-5 *1 (-825))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-761 *3)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1080) (-660 (-560))))
+ (-5 *2 (-1297 (-421 (-560)))) (-5 *1 (-1326 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1247)) (-5 *2 (-663 *1)) (-4 *1 (-1041 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-663 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4))
+ (-14 *3 (-948)) (-4 *4 (-1080)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-5 *3 (-520)) (-5 *2 (-713 (-1134))) (-5 *1 (-303)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-466) (-1069 (-560)))) (-4 *3 (-571))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3))
+ (-4 *2
+ (-13 (-376) (-310)
+ (-10 -8 (-15 -2473 ((-1156 *3 (-630 $)) $))
+ (-15 -2484 ((-1156 *3 (-630 $)) $))
+ (-15 -3913 ($ (-1156 *3 (-630 $))))))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1185 *4)) (-5 *3 (-1 *4 (-560))) (-4 *4 (-1080))
+ (-5 *1 (-1191 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1080)) (-4 *2 (-376))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-682 *4 *2))
+ (-4 *2 (-680 *4)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))))
(((*1 *1 *1)
(|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-748)) (-4 *2 (-1247)))))
+(((*1 *2 *1) (-12 (-5 *2 (-303)) (-5 *1 (-292)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207))
+ (-14 *4 *2))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-774)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-629 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132)))))
+(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1207))
+ (-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
+ (-5 *2 (-597 *3)) (-5 *1 (-442 *5 *3))
+ (-4 *3 (-13 (-1233) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-571) (-1069 (-560)) (-149)))
+ (-5 *2 (-597 (-421 (-975 *5)))) (-5 *1 (-584 *5))
+ (-5 *3 (-421 (-975 *5))))))
+(((*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302))))
+ ((*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1211)))))
+(((*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302))))
+ ((*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-600)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-278)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-339 *3)) (-4 *3 (-1247))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-560)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1247)) (-14 *4 *2))))
(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -3280 "void")))
+ (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -3231 "void")))
(-5 *1 (-450)))))
+(((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-51)) (-5 *1 (-853)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560))
+ (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1066))
+ (-5 *1 (-770)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1132)) (-5 *2 (-114)) (-5 *1 (-910 *3 *4 *5))
+ (-4 *3 (-1132)) (-4 *5 (-688 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-114)) (-5 *1 (-913 *3 *4)) (-4 *3 (-1132))
+ (-4 *4 (-1132)))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-1211)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1128 *3)) (-5 *1 (-931 *3)) (-4 *3 (-381))
+ (-4 *3 (-1132)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-560)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1247))
+ (-4 *5 (-385 *4)) (-4 *2 (-385 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-560)) (-4 *1 (-1084 *4 *5 *6 *7 *2)) (-4 *6 (-1080))
+ (-4 *7 (-245 *5 *6)) (-4 *2 (-245 *4 *6)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-229) (-229) (-229)))
+ (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) "undefined"))
+ (-5 *5 (-1120 (-229))) (-5 *6 (-663 (-270))) (-5 *2 (-1164 (-229)))
+ (-5 *1 (-719)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-663 *2)) (-4 *2 (-1096 *4 *5 *6)) (-4 *4 (-571))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *2)))))
(((*1 *2 *1) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1132)) (-5 *2 (-55)))))
+(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-114)) (-5 *5 (-711 (-229)))
+ (-5 *2 (-1066)) (-5 *1 (-777)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-559))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-114)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34)))
+ (-4 *4 (-13 (-1132) (-34))))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560))
+ (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1066))
+ (-5 *1 (-770)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))
+ (-5 *2
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1155 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-466)) (-4 *4 (-842))
+ (-14 *5 (-1207)) (-5 *2 (-560)) (-5 *1 (-1145 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-342)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1201 *2)) (-4 *2 (-435 *4)) (-4 *4 (-571))
+ (-5 *1 (-32 *4 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-663 *2)) (-4 *2 (-979 *4 *5 *6)) (-4 *4 (-466))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-464 *4 *5 *6 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815))
+ (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-663 *3))
+ (-5 *1 (-605 *5 *6 *7 *8 *3)) (-4 *3 (-1140 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149)))
+ (-5 *2
+ (-663 (-2 (|:| -2557 (-1201 *5)) (|:| -4226 (-663 (-975 *5))))))
+ (-5 *1 (-1109 *5 *6)) (-5 *3 (-663 (-975 *5)))
+ (-14 *6 (-663 (-1207)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-319) (-149)))
+ (-5 *2
+ (-663 (-2 (|:| -2557 (-1201 *4)) (|:| -4226 (-663 (-975 *4))))))
+ (-5 *1 (-1109 *4 *5)) (-5 *3 (-663 (-975 *4)))
+ (-14 *5 (-663 (-1207)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149)))
+ (-5 *2
+ (-663 (-2 (|:| -2557 (-1201 *5)) (|:| -4226 (-663 (-975 *5))))))
+ (-5 *1 (-1109 *5 *6)) (-5 *3 (-663 (-975 *5)))
+ (-14 *6 (-663 (-1207))))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-315))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |num| (-915 *3)) (|:| |den| (-915 *3))))
+ (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
(((*1 *2 *2)
(-12 (-5 *2 (-663 *3)) (-4 *3 (-1273 (-560))) (-5 *1 (-500 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814))))
+ ((*1 *2 *1) (-12 (-4 *1 (-730 *3)) (-4 *3 (-1080)) (-5 *2 (-793))))
+ ((*1 *2 *1) (-12 (-4 *1 (-876 *3)) (-4 *3 (-1080)) (-5 *2 (-793))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-663 *6)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-1080))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 (-793)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-979 *4 *5 *3)) (-4 *4 (-1080)) (-4 *5 (-815))
+ (-4 *3 (-871)) (-5 *2 (-793)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1080)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1273 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-663 *2)) (-4 *2 (-1132)) (-4 *2 (-1247)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-870))) (-5 *2 (-419 *3))
+ (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-419 *3))
+ (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-51)) (-5 *1 (-915 *4))
+ (-4 *4 (-1132)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1171 *3 *2)) (-4 *3 (-13 (-1132) (-34)))
+ (-4 *2 (-13 (-1132) (-34))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+(((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
+ (-4 *3 (-380 *4))))
+ ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-114)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))))
(((*1 *1 *2 *3 *1)
(-12 (-14 *4 (-663 (-1207))) (-4 *2 (-175))
- (-4 *3 (-245 (-1553 *4) (-793)))
+ (-4 *3 (-245 (-2256 *4) (-793)))
(-14 *6
- (-1 (-114) (-2 (|:| -3128 *5) (|:| -3205 *3))
- (-2 (|:| -3128 *5) (|:| -3205 *3))))
+ (-1 (-114) (-2 (|:| -1591 *5) (|:| -2030 *3))
+ (-2 (|:| -1591 *5) (|:| -2030 *3))))
(-5 *1 (-475 *4 *2 *5 *3 *6 *7)) (-4 *5 (-871))
(-4 *7 (-979 *2 *3 (-888 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-96))))
- ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-109))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1132)) (-4 *2 (-1132))))
- ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189))))
- ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-452 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-497))))
- ((*1 *2 *1) (-12 (-4 *1 (-858 *2)) (-4 *2 (-1132))))
- ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-889))))
- ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-994))))
- ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1107 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1147))))
- ((*1 *1 *1) (-5 *1 (-1207))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4)))
+ (-5 *2 (-2 (|:| |num| (-1297 *4)) (|:| |den| *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-114)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1189)) (-5 *2 (-217 (-516))) (-5 *1 (-859)))))
+(((*1 *1 *1) (-5 *1 (-1094))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-343 *3)) (-4 *3 (-871)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-663 (-663 (-663 *5)))) (-5 *3 (-1 (-114) *5 *5))
+ (-5 *4 (-663 *5)) (-4 *5 (-871)) (-5 *1 (-1218 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1080)) (-5 *2 (-1297 *3)) (-5 *1 (-734 *3 *4))
+ (-4 *4 (-1273 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-663 (-663 *8))) (-5 *3 (-663 *8))
+ (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-815))
+ (-4 *7 (-871)) (-5 *2 (-114)) (-5 *1 (-1008 *5 *6 *7 *8)))))
+(((*1 *2 *2) (-12 (-5 *1 (-704 *2)) (-4 *2 (-1132)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-421 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1273 *5))
+ (-5 *1 (-749 *5 *2)) (-4 *5 (-376)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-669 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1207))
+ (-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)))
+ (-4 *4 (-13 (-29 *6) (-1233) (-989)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -3822 (-663 *4))))
+ (-5 *1 (-823 *6 *4 *3)) (-4 *3 (-680 *4)))))
(((*1 *2 *3)
(-12 (-5 *3 (-791))
(-5 *2
- (-2 (|:| -3613 (-391)) (|:| -3614 (-1189))
+ (-2 (|:| -3741 (-391)) (|:| -4389 (-1189))
(|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066))))
(-5 *1 (-579))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-791)) (-5 *4 (-1094))
(-5 *2
- (-2 (|:| -3613 (-391)) (|:| -3614 (-1189))
+ (-2 (|:| -3741 (-391)) (|:| -4389 (-1189))
(|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066))))
(-5 *1 (-579))))
((*1 *2 *3 *4)
(-12 (-4 *1 (-809)) (-5 *3 (-1094))
(-5 *4
(-2 (|:| |fn| (-326 (-229)))
- (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229))
+ (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229))
(|:| |relerr| (-229))))
(-5 *2
- (-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))
+ (-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))
(|:| |extra| (-1066))))))
((*1 *2 *3 *4)
(-12 (-4 *1 (-809)) (-5 *3 (-1094))
(-5 *4
(-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
- (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
+ (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
(|:| |relerr| (-229))))
(-5 *2
- (-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))
+ (-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))
(|:| |extra| (-1066))))))
((*1 *2 *3 *4)
(-12 (-4 *1 (-822)) (-5 *3 (-1094))
@@ -5093,41 +4587,41 @@
(|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229)))
(|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229)))
(|:| |abserr| (-229)) (|:| |relerr| (-229))))
- (-5 *2 (-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))))))
+ (-5 *2 (-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))))))
((*1 *2 *3)
(-12 (-5 *3 (-830))
(-5 *2
- (-2 (|:| -3613 (-391)) (|:| -3614 (-1189))
+ (-2 (|:| -3741 (-391)) (|:| -4389 (-1189))
(|:| |explanations| (-663 (-1189)))))
(-5 *1 (-827))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-830)) (-5 *4 (-1094))
(-5 *2
- (-2 (|:| -3613 (-391)) (|:| -3614 (-1189))
+ (-2 (|:| -3741 (-391)) (|:| -4389 (-1189))
(|:| |explanations| (-663 (-1189)))))
(-5 *1 (-827))))
((*1 *2 *3 *4)
(-12 (-4 *1 (-861)) (-5 *3 (-1094))
(-5 *4
- (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229)))))
- (-5 *2 (-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))))))
+ (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229)))))
+ (-5 *2 (-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))))))
((*1 *2 *3 *4)
(-12 (-4 *1 (-861)) (-5 *3 (-1094))
(-5 *4
- (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229)))
+ (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229)))
(|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229))))
(|:| |ub| (-663 (-864 (-229))))))
- (-5 *2 (-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))))))
+ (-5 *2 (-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))))))
((*1 *2 *3)
(-12 (-5 *3 (-863))
(-5 *2
- (-2 (|:| -3613 (-391)) (|:| -3614 (-1189))
+ (-2 (|:| -3741 (-391)) (|:| -4389 (-1189))
(|:| |explanations| (-663 (-1189)))))
(-5 *1 (-862))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-863)) (-5 *4 (-1094))
(-5 *2
- (-2 (|:| -3613 (-391)) (|:| -3614 (-1189))
+ (-2 (|:| -3741 (-391)) (|:| -4389 (-1189))
(|:| |explanations| (-663 (-1189)))))
(-5 *1 (-862))))
((*1 *2 *3 *4)
@@ -5141,77 +4635,1024 @@
(|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229))))))
(|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189))
(|:| |tol| (-229))))
- (-5 *2 (-2 (|:| -3613 (-391)) (|:| |explanations| (-1189))))))
+ (-5 *2 (-2 (|:| -3741 (-391)) (|:| |explanations| (-1189))))))
((*1 *2 *3)
(-12 (-5 *3 (-925))
(-5 *2
- (-2 (|:| -3613 (-391)) (|:| -3614 (-1189))
+ (-2 (|:| -3741 (-391)) (|:| -4389 (-1189))
(|:| |explanations| (-663 (-1189)))))
(-5 *1 (-924))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-925)) (-5 *4 (-1094))
(-5 *2
- (-2 (|:| -3613 (-391)) (|:| -3614 (-1189))
+ (-2 (|:| -3741 (-391)) (|:| -4389 (-1189))
(|:| |explanations| (-663 (-1189)))))
(-5 *1 (-924)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-103 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *1 *1) (|partial| -4 *1 (-1182))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3))
+ (-4 *5 (-385 *3)) (-5 *2 (-663 *3))))
+ ((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4508)) (-4 *1 (-503 *3)) (-4 *3 (-1247))
+ (-5 *2 (-663 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1002)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-793)) (-4 *5 (-376)) (-5 *2 (-177 *6))
+ (-5 *1 (-891 *5 *4 *6)) (-4 *4 (-1290 *5)) (-4 *6 (-1273 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-663 (-888 *5))) (-14 *5 (-663 (-1207))) (-4 *6 (-466))
+ (-5 *2
+ (-2 (|:| |dpolys| (-663 (-255 *5 *6)))
+ (|:| |coords| (-663 (-560)))))
+ (-5 *1 (-485 *5 *6 *7)) (-5 *3 (-663 (-255 *5 *6))) (-4 *7 (-466)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-711 (-171 (-421 (-560))))) (-5 *2 (-663 (-171 *4)))
+ (-5 *1 (-786 *4)) (-4 *4 (-13 (-376) (-870))))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-630 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-435 *4) (-1033) (-1233)))
+ (-4 *4 (-571)) (-4 *2 (-13 (-435 (-171 *4)) (-1033) (-1233)))
+ (-5 *1 (-614 *4 *5 *2)))))
+(((*1 *1) (-5 *1 (-143))))
+(((*1 *1) (-5 *1 (-229))) ((*1 *1) (-5 *1 (-391))))
(((*1 *2 *1)
(-12 (-4 *1 (-1069 (-560))) (-4 *1 (-310)) (-5 *2 (-114))))
((*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-114))))
((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-931 *3)) (-4 *3 (-1132)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-91 *3)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1273 (-421 *2))) (-5 *2 (-560)) (-5 *1 (-942 *4 *3))
+ (-4 *3 (-1273 (-421 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1264 *3)) (-4 *3 (-1247)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-663 (-114))) (-5 *5 (-711 (-229)))
+ (-5 *6 (-711 (-560))) (-5 *7 (-229)) (-5 *3 (-560)) (-5 *2 (-1066))
+ (-5 *1 (-776)))))
+(((*1 *1 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-871)) (-4 *3 (-175))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-871))
+ (-4 *3 (-13 (-175) (-739 (-421 (-560))))) (-14 *4 (-948))))
+ ((*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871))))
+ ((*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-871))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-871))
+ (-5 *2
+ (-2 (|:| |f1| (-663 *4)) (|:| |f2| (-663 (-663 (-663 *4))))
+ (|:| |f3| (-663 (-663 *4))) (|:| |f4| (-663 (-663 (-663 *4))))))
+ (-5 *1 (-1218 *4)) (-5 *3 (-663 (-663 (-663 *4)))))))
+(((*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1210)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-663 *5)) (-5 *4 (-560)) (-4 *5 (-870)) (-4 *5 (-376))
+ (-5 *2 (-793)) (-5 *1 (-974 *5 *6)) (-4 *6 (-1273 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-711 *4)) (-4 *4 (-376)) (-5 *2 (-1201 *4))
+ (-5 *1 (-546 *4 *5 *6)) (-4 *5 (-376)) (-4 *6 (-13 (-376) (-870))))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-114)))))
(((*1 *2 *2 *3 *3)
(|partial| -12 (-5 *3 (-1207))
(-4 *4 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
(-5 *1 (-589 *4 *2))
(-4 *2 (-13 (-1233) (-989) (-1170) (-29 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-560)) (-5 *2 (-663 (-2 (|:| -4012 *3) (|:| -3900 *4))))
+ (-5 *1 (-718 *3)) (-4 *3 (-1273 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-561))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *1) (-5 *1 (-450))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3))
+ (-4 *3 (-1132)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229))
+ (-5 *2 (-1066)) (-5 *1 (-774)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-171 (-229))) (-5 *4 (-560)) (-5 *2 (-1066))
+ (-5 *1 (-780)))))
(((*1 *2 *2 *2)
(-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466))
(-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871))
(-5 *1 (-1008 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-571))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
+ (-5 *1 (-1008 *4 *5 *6 *7)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1132))
+ (-4 *4 (-133))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1132)) (-5 *1 (-374 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-399 *3)) (-4 *3 (-1132))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1132)) (-5 *1 (-671 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-630 *1)) (-4 *1 (-310)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-114))
+ (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 (-171 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-114))
+ (-5 *1 (-1237 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-793)) (-4 *5 (-571))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-1000 *5 *3)) (-4 *3 (-1273 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
+ (-5 *2
+ (-2 (|:| |solns| (-663 *5))
+ (|:| |maps| (-663 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1159 *3 *5)) (-4 *3 (-1273 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132))
+ (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-97)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1125 *3)) (-4 *3 (-1247)) (-5 *2 (-560)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560))))
+ (-5 *1 (-437 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1233) (-435 *3)))
+ (-14 *4 (-1207)) (-14 *5 *2)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560))))
+ (-4 *2 (-13 (-27) (-1233) (-435 *3) (-10 -8 (-15 -3913 ($ *4)))))
+ (-4 *4 (-870))
+ (-4 *5
+ (-13 (-1276 *2 *4) (-376) (-1233)
+ (-10 -8 (-15 -3161 ($ $)) (-15 -4424 ($ $)))))
+ (-5 *1 (-438 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1014 *5))
+ (-14 *7 (-1207)))))
(((*1 *1 *2) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-887))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1201 *1)) (-4 *1 (-1043)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-939)) (-5 *2 (-419 (-1201 *1))) (-5 *3 (-1201 *1)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1080)) (-5 *2 (-663 *1)) (-4 *1 (-1165 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-597 *3) *3 (-1207)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1207)))
+ (-4 *3 (-296)) (-4 *3 (-649)) (-4 *3 (-1069 *4)) (-4 *3 (-435 *7))
+ (-5 *4 (-1207)) (-4 *7 (-633 (-915 (-560)))) (-4 *7 (-466))
+ (-4 *7 (-911 (-560))) (-4 *7 (-1132)) (-5 *2 (-597 *3))
+ (-5 *1 (-587 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 (-663 *5))) (-4 *5 (-1290 *4))
+ (-4 *4 (-38 (-421 (-560))))
+ (-5 *2 (-1 (-1185 *4) (-663 (-1185 *4)))) (-5 *1 (-1291 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033)))
+ (-5 *1 (-179 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-1195 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-1301))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-1301)))))
(((*1 *1)
(|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-571)) (-4 *2 (-175)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))))
+(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-451)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-793)) (-5 *2 (-1 (-1185 (-975 *4)) (-1185 (-975 *4))))
+ (-5 *1 (-1306 *4)) (-4 *4 (-376)))))
+(((*1 *2) (-12 (-5 *2 (-1178 (-1189))) (-5 *1 (-405)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207))
+ (-14 *4 *2))))
+(((*1 *1 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1132)) (-4 *3 (-927 *5)) (-5 *2 (-1297 *3))
+ (-5 *1 (-714 *5 *3 *6 *4)) (-4 *6 (-385 *3))
+ (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4508)))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571))
+ (-5 *2 (-114)))))
(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-114)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-663 (-1266 *5 *4)))
+ (-5 *1 (-1145 *4 *5)) (-5 *3 (-1266 *5 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
+ (-5 *1 (-1159 *3 *2)) (-4 *3 (-1273 *2)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-1043)) (-5 *2 (-887)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3))
+ (-4 *3 (-13 (-376) (-1233) (-1033)))))
+ ((*1 *2)
+ (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1273 (-421 *2)))
+ (-4 *2 (-1273 *4)) (-5 *1 (-354 *3 *4 *2 *5))
+ (-4 *3 (-355 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1252))
+ (-4 *4 (-1273 (-421 *2))) (-4 *2 (-1273 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-975 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-119 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-119 *2)) (-14 *2 (-560))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-895 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-895 *2)) (-14 *2 (-560))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-560)) (-14 *3 *2) (-5 *1 (-896 *3 *4))
+ (-4 *4 (-894 *3))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-560)) (-5 *1 (-896 *2 *3)) (-4 *3 (-894 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-560)) (-4 *1 (-1261 *3 *4)) (-4 *3 (-1080))
+ (-4 *4 (-1290 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1261 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-1290 *2)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-630 *4)) (-4 *4 (-1132)) (-4 *2 (-1132))
+ (-5 *1 (-631 *2 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-1 (-114) *8))) (-4 *8 (-1096 *5 *6 *7))
+ (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-5 *2 (-2 (|:| |goodPols| (-663 *8)) (|:| |badPols| (-663 *8))))
+ (-5 *1 (-1008 *5 *6 *7 *8)) (-5 *4 (-663 *8)))))
+(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1080) (-871)))
+ (-5 *1 (-227 *3 *4)) (-14 *4 (-663 (-1207))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1320 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080))
+ (-5 *2 (-841 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-868)) (-5 *1 (-1321 *3 *2)) (-4 *3 (-1080)))))
(((*1 *1 *1)
(-12 (|has| *1 (-6 -4508)) (-4 *1 (-153 *2)) (-4 *2 (-1247))
(-4 *2 (-1132)))))
+(((*1 *2)
+ (-12 (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-939))
+ (-5 *1 (-471 *3 *4 *2 *5)) (-4 *5 (-979 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-939))
+ (-5 *1 (-936 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-939)) (-5 *1 (-937 *2 *3)) (-4 *3 (-1273 *2)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-663
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-815)) (-4 *3 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-871))
+ (-5 *1 (-464 *4 *5 *6 *3)))))
+(((*1 *2 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319))))
+ ((*1 *2 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)) (-4 *2 (-319))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1091)) (-5 *2 (-560)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1041 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1130 *3)) (-4 *3 (-1132)) (-5 *2 (-114)))))
+(((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-697 (-229)))
+ (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-772)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1069 (-560))))
+ (-4 *5 (-1273 *4))
+ (-5 *2 (-2 (|:| -4378 (-421 *5)) (|:| |coeff| (-421 *5))))
+ (-5 *1 (-582 *4 *5)) (-5 *3 (-421 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-975 (-391))) (-5 *1 (-352 *3 *4 *5))
+ (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207)))
+ (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-421 (-975 (-391)))) (-5 *1 (-352 *3 *4 *5))
+ (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207)))
+ (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5))
+ (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207)))
+ (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-975 (-560))) (-5 *1 (-352 *3 *4 *5))
+ (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207)))
+ (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-421 (-975 (-560)))) (-5 *1 (-352 *3 *4 *5))
+ (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207)))
+ (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-326 (-560))) (-5 *1 (-352 *3 *4 *5))
+ (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207)))
+ (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1207)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 *2))
+ (-14 *4 (-663 *2)) (-4 *5 (-401))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-326 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5))
+ (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-711 (-421 (-975 (-560))))) (-4 *1 (-398))))
+ ((*1 *1 *2) (-12 (-5 *2 (-711 (-421 (-975 (-391))))) (-4 *1 (-398))))
+ ((*1 *1 *2) (-12 (-5 *2 (-711 (-975 (-560)))) (-4 *1 (-398))))
+ ((*1 *1 *2) (-12 (-5 *2 (-711 (-975 (-391)))) (-4 *1 (-398))))
+ ((*1 *1 *2) (-12 (-5 *2 (-711 (-326 (-560)))) (-4 *1 (-398))))
+ ((*1 *1 *2) (-12 (-5 *2 (-711 (-326 (-391)))) (-4 *1 (-398))))
+ ((*1 *1 *2) (-12 (-5 *2 (-421 (-975 (-560)))) (-4 *1 (-411))))
+ ((*1 *1 *2) (-12 (-5 *2 (-421 (-975 (-391)))) (-4 *1 (-411))))
+ ((*1 *1 *2) (-12 (-5 *2 (-975 (-560))) (-4 *1 (-411))))
+ ((*1 *1 *2) (-12 (-5 *2 (-975 (-391))) (-4 *1 (-411))))
+ ((*1 *1 *2) (-12 (-5 *2 (-326 (-560))) (-4 *1 (-411))))
+ ((*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-4 *1 (-411))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1297 (-421 (-975 (-560))))) (-4 *1 (-455))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1297 (-421 (-975 (-391))))) (-4 *1 (-455))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1297 (-975 (-560)))) (-4 *1 (-455))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1297 (-975 (-391)))) (-4 *1 (-455))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1297 (-326 (-560)))) (-4 *1 (-455))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1297 (-326 (-391)))) (-4 *1 (-455))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3
+ (|:| |nia|
+ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
+ (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
+ (|:| |relerr| (-229))))
+ (|:| |mdnia|
+ (-2 (|:| |fn| (-326 (-229)))
+ (|:| -1585 (-663 (-1120 (-864 (-229)))))
+ (|:| |abserr| (-229)) (|:| |relerr| (-229))))))
+ (-5 *1 (-791))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229))
+ (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229)))
+ (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229)))
+ (|:| |abserr| (-229)) (|:| |relerr| (-229))))
+ (-5 *1 (-830))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229)))
+ (|:| |lb| (-663 (-864 (-229))))
+ (|:| |cf| (-663 (-326 (-229))))
+ (|:| |ub| (-663 (-864 (-229))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-663 (-326 (-229))))
+ (|:| -3239 (-663 (-229)))))))
+ (-5 *1 (-863))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |pde| (-663 (-326 (-229))))
+ (|:| |constraints|
+ (-663
+ (-2 (|:| |start| (-229)) (|:| |finish| (-229))
+ (|:| |grid| (-793)) (|:| |boundaryType| (-560))
+ (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229))))))
+ (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189))
+ (|:| |tol| (-229))))
+ (-5 *1 (-925))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-1080))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-4 *1 (-1007 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *2)
+ (-2196
+ (-12 (-5 *2 (-975 *3))
+ (-12 (-1394 (-4 *3 (-38 (-421 (-560)))))
+ (-1394 (-4 *3 (-38 (-560)))) (-4 *5 (-633 (-1207))))
+ (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815))
+ (-4 *5 (-871)))
+ (-12 (-5 *2 (-975 *3))
+ (-12 (-1394 (-4 *3 (-559))) (-1394 (-4 *3 (-38 (-421 (-560)))))
+ (-4 *3 (-38 (-560))) (-4 *5 (-633 (-1207))))
+ (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815))
+ (-4 *5 (-871)))
+ (-12 (-5 *2 (-975 *3))
+ (-12 (-1394 (-4 *3 (-1022 (-560)))) (-4 *3 (-38 (-421 (-560))))
+ (-4 *5 (-633 (-1207))))
+ (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815))
+ (-4 *5 (-871)))))
+ ((*1 *1 *2)
+ (-2196
+ (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5))
+ (-12 (-1394 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560)))
+ (-4 *5 (-633 (-1207))))
+ (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))
+ (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207))))
+ (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-975 (-421 (-560)))) (-4 *1 (-1096 *3 *4 *5))
+ (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207))) (-4 *3 (-1080))
+ (-4 *4 (-815)) (-4 *5 (-871)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *6 (-633 (-1207)))
+ (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-5 *2 (-1196 (-663 (-975 *4)) (-663 (-305 (-975 *4)))))
+ (-5 *1 (-518 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-114)) (-5 *5 (-711 (-171 (-229))))
+ (-5 *2 (-1066)) (-5 *1 (-777)))))
(((*1 *2 *3)
(-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1303))
(-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1132)) (-5 *1 (-993 *2 *3)) (-4 *3 (-1132)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-421 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-13 (-376) (-149)))
+ (-5 *1 (-413 *3 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-248))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-1303)) (-5 *1 (-248)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-793))
+ (-4 *3 (-13 (-319) (-10 -8 (-15 -3898 ((-419 $) $)))))
+ (-4 *4 (-1273 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-793)) (-5 *4 (-560)) (-5 *1 (-459 *2)) (-4 *2 (-1080)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-571)) (-5 *2 (-663 *3)) (-5 *1 (-1000 *4 *3))
+ (-4 *3 (-1273 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1264 (-560))) (-4 *1 (-294 *3)) (-4 *3 (-1247))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-294 *3)) (-4 *3 (-1247)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-1207)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-1189)) (-5 *5 (-711 (-229)))
+ (-5 *2 (-1066)) (-5 *1 (-769)))))
+(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-793)) (-5 *1 (-697 *3)) (-4 *3 (-1080))
+ (-4 *3 (-1132)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-1297 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376))
(-4 *1 (-746 *5 *6)) (-4 *5 (-175)) (-4 *6 (-1273 *5))
(-5 *2 (-711 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-711 *2)) (-5 *4 (-560))
+ (-4 *2 (-13 (-319) (-10 -8 (-15 -3898 ((-419 $) $)))))
+ (-4 *5 (-1273 *2)) (-5 *1 (-513 *2 *5 *6)) (-4 *6 (-424 *2 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))))
+(((*1 *2 *3 *3)
+ (-12 (|has| *2 (-6 (-4510 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2))
+ (-4 *2 (-1080)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1273 *2))
+ (-4 *4 (-708 *2 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *6 (-571)) (-4 *2 (-979 *3 *5 *4))
+ (-5 *1 (-754 *5 *4 *6 *2)) (-5 *3 (-421 (-975 *6))) (-4 *5 (-815))
+ (-4 *4 (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466))
+ (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *1 (-1008 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-663 *7)) (-5 *3 (-114)) (-4 *7 (-1096 *4 *5 *6))
+ (-4 *4 (-466)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-5 *1 (-1008 *4 *5 *6 *7)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *1 (-103 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *1) (-5 *1 (-1301))))
+(((*1 *1 *1) (-5 *1 (-1094))))
+(((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)) (-4 *2 (-559))))
+ ((*1 *1 *1) (-4 *1 (-1091))))
(((*1 *2 *3 *1)
(-12 (-4 *1 (-1242 *4 *5 *3 *6)) (-4 *4 (-571)) (-4 *5 (-815))
(-4 *3 (-871)) (-4 *6 (-1096 *4 *5 *3)) (-5 *2 (-114))))
((*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-114)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1173 *4 *2)) (-14 *4 (-948))
+ (-4 *2 (-13 (-1080) (-10 -7 (-6 (-4510 "*")))))
+ (-5 *1 (-932 *4 *2)))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
+ (-5 *1 (-1159 *3 *2)) (-4 *3 (-1273 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-663 (-51))) (-5 *2 (-1303)) (-5 *1 (-883)))))
+(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481))))
+ ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-663 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-345)) (-5 *1 (-257)))))
+(((*1 *1) (-5 *1 (-623))))
+(((*1 *1) (-5 *1 (-450))))
+(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1211)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-560)) (|has| *1 (-6 -4499)) (-4 *1 (-418))
+ (-5 *2 (-948)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-195))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-313))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-315)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-663 (-560))) (-5 *3 (-711 (-560))) (-5 *1 (-1141)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1207)) (-4 *5 (-1252)) (-4 *6 (-1273 *5))
+ (-4 *7 (-1273 (-421 *6))) (-5 *2 (-663 (-975 *5)))
+ (-5 *1 (-354 *4 *5 *6 *7)) (-4 *4 (-355 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1207)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1252))
+ (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5))) (-4 *4 (-376))
+ (-5 *2 (-663 (-975 *4))))))
(((*1 *2 *3 *4)
(-12 (-4 *5 (-376)) (-4 *5 (-571))
(-5 *2
- (-2 (|:| |minor| (-663 (-948))) (|:| -3192 *3)
+ (-2 (|:| |minor| (-663 (-948))) (|:| -2439 *3)
(|:| |minors| (-663 (-663 (-948)))) (|:| |ops| (-663 *3))))
(-5 *1 (-90 *5 *3)) (-5 *4 (-948)) (-4 *3 (-680 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-4 *3 (-1132))
+ (-5 *2 (-114)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229))
+ (-5 *2 (-1066)) (-5 *1 (-774)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-466) (-1069 (-560)))) (-4 *3 (-571))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3))
+ (-4 *2
+ (-13 (-376) (-310)
+ (-10 -8 (-15 -2473 ((-1156 *3 (-630 $)) $))
+ (-15 -2484 ((-1156 *3 (-630 $)) $))
+ (-15 -3913 ($ (-1156 *3 (-630 $))))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-713 (-1166))) (-5 *1 (-1183)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-663
+ (-2 (|:| -1604 (-793))
+ (|:| |eqns|
+ (-663
+ (-2 (|:| |det| *7) (|:| |rows| (-663 (-560)))
+ (|:| |cols| (-663 (-560))))))
+ (|:| |fgb| (-663 *7)))))
+ (-4 *7 (-979 *4 *6 *5)) (-4 *4 (-13 (-319) (-149)))
+ (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-793))
+ (-5 *1 (-953 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-175)) (-4 *2 (-23)) (-5 *1 (-301 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1273 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-733 *3 *2 *4 *5 *6)) (-4 *3 (-175))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2)
+ (-12 (-4 *2 (-1273 *3)) (-5 *1 (-734 *3 *2)) (-4 *3 (-1080))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-737 *3 *2 *4 *5 *6)) (-4 *3 (-175))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-894 *3)) (-5 *2 (-560)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 *4)) (-4 *4 (-376)) (-5 *2 (-711 *4))
+ (-5 *1 (-836 *4 *5)) (-4 *5 (-680 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 *5)) (-5 *4 (-793)) (-4 *5 (-376))
+ (-5 *2 (-711 *5)) (-5 *1 (-836 *5 *6)) (-4 *6 (-680 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1201 (-975 *6))) (-4 *6 (-571))
+ (-4 *2 (-979 (-421 (-975 *6)) *5 *4)) (-5 *1 (-754 *5 *4 *6 *2))
+ (-4 *5 (-815))
+ (-4 *4 (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $))))))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229))
+ (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229)))
+ (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229)))
+ (|:| |abserr| (-229)) (|:| |relerr| (-229))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391))
+ (|:| |expense| (-391)) (|:| |accuracy| (-391))
+ (|:| |intermediateResults| (-391))))
+ (-5 *1 (-825)))))
(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
+(((*1 *1) (-5 *1 (-623))))
+(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1250)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-600)) (-5 *3 (-611)) (-5 *4 (-303)) (-5 *1 (-292)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229)))
+ (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229))))
+ (|:| |ub| (-663 (-864 (-229))))))
+ (-5 *1 (-278)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-663 *3)) (-4 *3 (-979 *4 *6 *5)) (-4 *4 (-466))
+ (-4 *5 (-871)) (-4 *6 (-815)) (-5 *1 (-1017 *4 *5 *6 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-971)) (-5 *3 (-560))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))
+ (-5 *1 (-1155 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-571)) (-4 *2 (-13 (-435 (-171 *4)) (-1033) (-1233)))
+ (-5 *1 (-614 *4 *3 *2)) (-4 *3 (-13 (-435 *4) (-1033) (-1233))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-793)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080))
+ (-14 *4 (-663 (-1207)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-793)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871)))
+ (-14 *4 (-663 (-1207)))))
+ ((*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-349 *3 *4 *5 *2)) (-4 *3 (-376))
+ (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4)))
+ (-4 *2 (-355 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-793)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-175))))
+ ((*1 *1) (-12 (-4 *2 (-175)) (-4 *1 (-746 *2 *3)) (-4 *3 (-1273 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 *5)) (-5 *4 (-948)) (-4 *5 (-871))
+ (-5 *2 (-663 (-694 *5))) (-5 *1 (-694 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1051)))
+ (-14 *5 (-663 (-1207))) (-5 *2 (-663 (-663 (-1055 (-421 *4)))))
+ (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-663 (-1207)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114))
+ (-4 *5 (-13 (-870) (-319) (-149) (-1051)))
+ (-5 *2 (-663 (-663 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7))
+ (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114))
+ (-4 *5 (-13 (-870) (-319) (-149) (-1051)))
+ (-5 *2 (-663 (-663 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7))
+ (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-975 *4)))
+ (-4 *4 (-13 (-870) (-319) (-149) (-1051)))
+ (-5 *2 (-663 (-663 (-1055 (-421 *4))))) (-5 *1 (-1325 *4 *5 *6))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207))))))
(((*1 *2 *2)
(-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
(-4 *2 (-13 (-435 *3) (-1033))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1183)))))
+(((*1 *1) (-5 *1 (-450))))
+(((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
+ (-4 *3 (-380 *4))))
+ ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1189)) (-5 *5 (-711 (-229))) (-5 *6 (-711 (-560)))
+ (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-779)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1189)) (-5 *2 (-560)) (-5 *1 (-1230 *4))
+ (-4 *4 (-1080)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-663 (-630 *4))) (-4 *4 (-435 *3)) (-4 *3 (-1132))
+ (-5 *1 (-587 *3 *4))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871)) (-4 *2 (-571))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871)) (-4 *2 (-571)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-114))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-5 *2 (-114))
+ (-5 *1 (-369 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-114))
+ (-5 *1 (-542 *4)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
+ (-5 *1 (-1159 *3 *2)) (-4 *3 (-1273 *2)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-663 *2)) (-4 *2 (-1132)) (-4 *2 (-1247)))))
+(((*1 *1) (-4 *1 (-363))))
+(((*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233))))))
+(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-195))))
+ ((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-313))))
+ ((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-315)))))
(((*1 *2 *3 *3)
(-12 (-4 *4 (-1080)) (-4 *2 (-708 *4 *5 *6))
(-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1273 *4)) (-4 *5 (-385 *4))
(-4 *6 (-385 *4)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-748)) (-4 *2 (-1247)))))
+(((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-267)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-774)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1290 *4)) (-5 *1 (-1291 *4 *2))
+ (-4 *4 (-38 (-421 (-560)))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-115))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-115)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-376)) (-5 *2 (-663 *3)) (-5 *1 (-974 *4 *3))
+ (-4 *3 (-1273 *4)))))
+(((*1 *1 *2 *2 *3 *1)
+ (-12 (-5 *2 (-520)) (-5 *3 (-1134)) (-5 *1 (-303)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
+ (-4 *4 (-1080)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-571) (-1069 (-560)))) (-5 *2 (-1303))
+ (-5 *1 (-447 *3 *4)) (-4 *4 (-435 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1207)) (-5 *2 (-1 (-229) (-229))) (-5 *1 (-725 *3))
+ (-4 *3 (-633 (-549)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1207)) (-5 *2 (-1 (-229) (-229) (-229)))
+ (-5 *1 (-725 *3)) (-4 *3 (-633 (-549))))))
(((*1 *2 *1)
(-12 (-5 *2 (-663 (-1234 *3))) (-5 *1 (-1234 *3)) (-4 *3 (-1132)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-1207)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-5 *2 (-663 *3)))))
+ (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080))
+ (-5 *2 (-663 (-663 (-972 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-663 (-663 (-972 *4)))) (-5 *3 (-114)) (-4 *4 (-1080))
+ (-4 *1 (-1165 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-663 (-972 *3)))) (-4 *3 (-1080))
+ (-4 *1 (-1165 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-663 (-663 (-663 *4)))) (-5 *3 (-114))
+ (-4 *1 (-1165 *4)) (-4 *4 (-1080))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-663 (-663 (-972 *4)))) (-5 *3 (-114))
+ (-4 *1 (-1165 *4)) (-4 *4 (-1080))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-663 (-663 (-663 *5)))) (-5 *3 (-663 (-174)))
+ (-5 *4 (-174)) (-4 *1 (-1165 *5)) (-4 *5 (-1080))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-663 (-663 (-972 *5)))) (-5 *3 (-663 (-174)))
+ (-5 *4 (-174)) (-4 *1 (-1165 *5)) (-4 *5 (-1080)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376))
+ (-4 *7 (-1273 (-421 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -2268 *3)))
+ (-5 *1 (-577 *5 *6 *7 *3)) (-4 *3 (-355 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376))
+ (-5 *2
+ (-2 (|:| |answer| (-421 *6)) (|:| -2268 (-421 *6))
+ (|:| |specpart| (-421 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-578 *5 *6)) (-5 *3 (-421 *6)))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-793)) (-5 *3 (-1 *4 (-560) (-560))) (-4 *4 (-1080))
+ (-4 *1 (-708 *4 *5 *6)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *5))
+ (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-887)))) (-5 *1 (-887))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1173 *3 *4)) (-5 *1 (-1024 *3 *4)) (-14 *3 (-948))
+ (-4 *4 (-376))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-663 *5))) (-4 *5 (-1080))
+ (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *6 (-245 *4 *5))
+ (-4 *7 (-245 *3 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-466)) (-4 *4 (-571))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -1616 *4))) (-5 *1 (-1000 *4 *3))
+ (-4 *3 (-1273 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-777)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *3))
+ (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-663 *3)) (-4 *3 (-1096 *4 *5 *6)) (-4 *4 (-571))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-663 *7) (-663 *7))) (-5 *2 (-663 *7))
+ (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-815))
+ (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229)))
+ (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))
+ (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-713 (-995 *3))) (-5 *1 (-995 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-975 (-560)))) (-5 *1 (-450))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1207)) (-5 *4 (-711 (-229))) (-5 *2 (-1134))
+ (-5 *1 (-781))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1207)) (-5 *4 (-711 (-560))) (-5 *2 (-1134))
+ (-5 *1 (-781)))))
(((*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033) (-1233)))))
+ ((*1 *1 *1) (-4 *1 (-649))))
+(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))))
+(((*1 *2)
+ (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4))) (-5 *2 (-711 (-421 *4))))))
+(((*1 *2)
+ (-12 (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4)))
+ (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -3898 ((-419 $) $)))))
+ (-4 *4 (-1273 *3))
+ (-5 *2
+ (-2 (|:| -3822 (-711 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-711 *3))))
+ (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-424 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1273 (-560)))
+ (-5 *2
+ (-2 (|:| -3822 (-711 (-560))) (|:| |basisDen| (-560))
+ (|:| |basisInv| (-711 (-560)))))
+ (-5 *1 (-790 *3 *4)) (-4 *4 (-424 (-560) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-363)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 *4))
+ (-5 *2
+ (-2 (|:| -3822 (-711 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-711 *4))))
+ (-5 *1 (-1016 *3 *4 *5 *6)) (-4 *6 (-746 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-363)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 *4))
+ (-5 *2
+ (-2 (|:| -3822 (-711 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-711 *4))))
+ (-5 *1 (-1307 *3 *4 *5 *6)) (-4 *6 (-424 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-793)) (-5 *2 (-114)) (-5 *1 (-601 *3)) (-4 *3 (-559)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033)))
+ (-5 *1 (-179 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-405)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363))
+ (-4 *2
+ (-13 (-416)
+ (-10 -7 (-15 -3913 (*2 *4)) (-15 -2622 ((-948) *2))
+ (-15 -3822 ((-1297 *2) (-948))) (-15 -2925 (*2 *2)))))
+ (-5 *1 (-370 *2 *4)))))
+(((*1 *1) (-5 *1 (-623))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1007 *4 *5 *6 *3)) (-4 *4 (-1080)) (-4 *5 (-815))
+ (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-4 *4 (-571))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-421 *6)) (-4 *5 (-1252)) (-4 *6 (-1273 *5))
- (-5 *2 (-2 (|:| -3205 (-793)) (|:| -2115 *3) (|:| |radicand| *6)))
+ (-5 *2 (-2 (|:| -2030 (-793)) (|:| -2625 *3) (|:| |radicand| *6)))
(-5 *1 (-150 *5 *6 *7)) (-5 *4 (-793)) (-4 *7 (-1273 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-560)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1080))
+ (-5 *1 (-333 *4 *5 *2 *6)) (-4 *6 (-979 *2 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1229)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1207))
+ (-4 *5 (-13 (-466) (-149) (-1069 (-560)) (-660 (-560))))
+ (-5 *2 (-2 (|:| -4378 *3) (|:| |coeff| *3))) (-5 *1 (-572 *5 *3))
+ (-4 *3 (-13 (-27) (-1233) (-435 *5))))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
+ ((*1 *1) (-5 *1 (-130)))
+ ((*1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793))
+ (-4 *4 (-175))))
+ ((*1 *1) (-5 *1 (-561))) ((*1 *1) (-5 *1 (-562)))
+ ((*1 *1) (-5 *1 (-563))) ((*1 *1) (-5 *1 (-564)))
+ ((*1 *1) (-4 *1 (-748))) ((*1 *1) (-5 *1 (-1207)))
+ ((*1 *1) (-12 (-5 *1 (-1213 *2)) (-14 *2 (-948))))
+ ((*1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-948))))
+ ((*1 *1) (-5 *1 (-1253))) ((*1 *1) (-5 *1 (-1254)))
+ ((*1 *1) (-5 *1 (-1255))) ((*1 *1) (-5 *1 (-1256))))
+(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-339 *3)) (-4 *3 (-1247))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-793)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1247))
+ (-14 *4 (-560)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1132))
+ (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
+ (-4 *1 (-399 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1290 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-777)))))
(((*1 *1 *1)
(-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
(-4 *4 (-871)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1207)) (-5 *6 (-114))
+ (-4 *7 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
+ (-4 *3 (-13 (-1233) (-989) (-29 *7)))
+ (-5 *2
+ (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-663 (-864 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-223 *7 *3)) (-5 *5 (-864 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-1207))) (-4 *4 (-13 (-319) (-149)))
+ (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815))
+ (-5 *2 (-663 (-421 (-975 *4)))) (-5 *1 (-953 *4 *5 *6 *7))
+ (-4 *7 (-979 *4 *6 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-663 (-560))) (-5 *1 (-255 *3 *4))
+ (-14 *3 (-663 (-1207))) (-4 *4 (-1080))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-663 (-560))) (-14 *3 (-663 (-1207)))
+ (-5 *1 (-468 *3 *4 *5)) (-4 *4 (-1080))
+ (-4 *5 (-245 (-2256 *3) (-793)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-663 (-560))) (-5 *1 (-495 *3 *4))
+ (-14 *3 (-663 (-1207))) (-4 *4 (-1080)))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229))
+ (-5 *2 (-1066)) (-5 *1 (-774)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1057 (-864 (-560))))
+ (-5 *3 (-1185 (-2 (|:| |k| (-560)) (|:| |c| *4)))) (-4 *4 (-1080))
+ (-5 *1 (-609 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-319) (-149)))
+ (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815))
+ (-5 *2
+ (-663
+ (-2 (|:| |eqzro| (-663 *7)) (|:| |neqzro| (-663 *7))
+ (|:| |wcond| (-663 (-975 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1297 (-421 (-975 *4))))
+ (|:| -3822 (-663 (-1297 (-421 (-975 *4))))))))))
+ (-5 *1 (-953 *4 *5 *6 *7)) (-4 *7 (-979 *4 *6 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-677 (-421 *6))) (-5 *4 (-1 (-663 *5) *6))
(-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))))
@@ -5248,9 +5689,102 @@
(-4 *6 (-1273 *5)) (-4 *5 (-27))
(-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))))
(-5 *2 (-663 (-421 *6))) (-5 *1 (-834 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-822))
+ (-5 *3
+ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229))
+ (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229)))
+ (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229)))
+ (|:| |abserr| (-229)) (|:| |relerr| (-229))))
+ (-5 *2 (-1066)))))
+(((*1 *1 *1) (-4 *1 (-1175))))
+(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-419 *3)) (-4 *3 (-571))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-2 (|:| -4012 *4) (|:| -3900 (-560)))))
+ (-4 *4 (-1273 (-560))) (-5 *2 (-793)) (-5 *1 (-456 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-931 *4)) (-4 *4 (-1132)) (-5 *2 (-663 (-793)))
+ (-5 *1 (-934 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-793)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-560)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-793)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-560))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1))
+ (-4 *1 (-1096 *3 *4 *5)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-229)))
+ (-5 *2 (-1066)) (-5 *1 (-779)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1201 (-560))) (-5 *2 (-560)) (-5 *1 (-971)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-663
+ (-2
+ (|:| -1438
+ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
+ (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
+ (|:| |relerr| (-229))))
+ (|:| -3067
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1185 (-229)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1585
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-574)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-520)) (-5 *1 (-291)))))
(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
(-12 (-5 *3 (-560)) (-5 *4 (-711 (-171 (-229)))) (-5 *2 (-1066))
(-5 *1 (-778)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 *5)) (-5 *4 (-948)) (-4 *5 (-871))
+ (-5 *2 (-58 (-663 (-694 *5)))) (-5 *1 (-694 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-663 (-326 (-229)))) (-5 *1 (-278)))))
+(((*1 *1) (-5 *1 (-146))))
+(((*1 *1 *2)
+ (-12 (-4 *3 (-1080)) (-5 *1 (-850 *2 *3)) (-4 *2 (-730 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-531)))))
+(((*1 *2 *3) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-576)) (-5 *3 (-560))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1201 (-421 (-560)))) (-5 *1 (-971)) (-5 *3 (-560)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033) (-1233)))))
+ ((*1 *1 *1) (-4 *1 (-649))))
+(((*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1132)) (-4 *2 (-1080))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-793)) (-4 *4 (-571)) (-5 *1 (-1000 *4 *2))
+ (-4 *2 (-1273 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4)))
+ (-5 *2 (-2 (|:| |num| (-1297 *4)) (|:| |den| *4))))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391))
+ (-5 *2
+ (-2 (|:| -1430 *4) (|:| -2403 *4) (|:| |totalpts| (-560))
+ (|:| |success| (-114))))
+ (-5 *1 (-811)) (-5 *5 (-560)))))
(((*1 *2 *2)
(-12 (-4 *3 (-571)) (-4 *4 (-1022 *3)) (-5 *1 (-144 *3 *4 *2))
(-4 *2 (-385 *4))))
@@ -5263,37 +5797,139 @@
((*1 *2 *2)
(-12 (-4 *3 (-571)) (-4 *4 (-1022 *3)) (-5 *1 (-1268 *3 *4 *2))
(-4 *2 (-1273 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-887))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1175)) (-5 *3 (-146)) (-5 *2 (-114)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-38 (-421 (-560))))
+ (-4 *2 (-175)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-190)) (-5 *1 (-140))))
+ ((*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-190)))))
+(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-956)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-114)) (-4 *5 (-13 (-376) (-870)))
+ (-5 *2 (-663 (-2 (|:| -2609 (-663 *3)) (|:| -2403 *5))))
+ (-5 *1 (-184 *5 *3)) (-4 *3 (-1273 (-171 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-376) (-870)))
+ (-5 *2 (-663 (-2 (|:| -2609 (-663 *3)) (|:| -2403 *4))))
+ (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-845)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-319)) (-5 *2 (-114)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))))
+(((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-1201 (-975 *4))) (-5 *1 (-431 *3 *4))
+ (-4 *3 (-432 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-4 *3 (-376))
+ (-5 *2 (-1201 (-975 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1201 (-421 (-975 *3)))) (-5 *1 (-467 *3 *4 *5 *6))
+ (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
+(((*1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-5 *1 (-146)))
+ ((*1 *1 *1) (-4 *1 (-1175))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033) (-1233)))))
+ ((*1 *1 *1) (-4 *1 (-649))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-663 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-342))))
+ ((*1 *1 *2) (-12 (-5 *2 (-326 (-560))) (-5 *1 (-342))))
+ ((*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-342))))
+ ((*1 *1 *2) (-12 (-5 *2 (-326 (-716))) (-5 *1 (-342))))
+ ((*1 *1 *2) (-12 (-5 *2 (-326 (-723))) (-5 *1 (-342))))
+ ((*1 *1 *2) (-12 (-5 *2 (-326 (-721))) (-5 *1 (-342))))
+ ((*1 *1) (-5 *1 (-342))))
(((*1 *2 *2)
(-12 (-4 *3 (-571)) (-5 *1 (-41 *3 *2))
(-4 *2
(-13 (-376) (-310)
- (-10 -8 (-15 -3757 ((-1156 *3 (-630 $)) $))
- (-15 -3771 ((-1156 *3 (-630 $)) $))
- (-15 -1578 ($ (-1156 *3 (-630 $)))))))))
+ (-10 -8 (-15 -2473 ((-1156 *3 (-630 $)) $))
+ (-15 -2484 ((-1156 *3 (-630 $)) $))
+ (-15 -3913 ($ (-1156 *3 (-630 $)))))))))
((*1 *2 *2 *2)
(-12 (-4 *3 (-571)) (-5 *1 (-41 *3 *2))
(-4 *2
(-13 (-376) (-310)
- (-10 -8 (-15 -3757 ((-1156 *3 (-630 $)) $))
- (-15 -3771 ((-1156 *3 (-630 $)) $))
- (-15 -1578 ($ (-1156 *3 (-630 $)))))))))
+ (-10 -8 (-15 -2473 ((-1156 *3 (-630 $)) $))
+ (-15 -2484 ((-1156 *3 (-630 $)) $))
+ (-15 -3913 ($ (-1156 *3 (-630 $)))))))))
((*1 *2 *2 *3)
(-12 (-5 *3 (-663 *2))
(-4 *2
(-13 (-376) (-310)
- (-10 -8 (-15 -3757 ((-1156 *4 (-630 $)) $))
- (-15 -3771 ((-1156 *4 (-630 $)) $))
- (-15 -1578 ($ (-1156 *4 (-630 $)))))))
+ (-10 -8 (-15 -2473 ((-1156 *4 (-630 $)) $))
+ (-15 -2484 ((-1156 *4 (-630 $)) $))
+ (-15 -3913 ($ (-1156 *4 (-630 $)))))))
(-4 *4 (-571)) (-5 *1 (-41 *4 *2))))
((*1 *2 *2 *3)
(-12 (-5 *3 (-663 (-630 *2)))
(-4 *2
(-13 (-376) (-310)
- (-10 -8 (-15 -3757 ((-1156 *4 (-630 $)) $))
- (-15 -3771 ((-1156 *4 (-630 $)) $))
- (-15 -1578 ($ (-1156 *4 (-630 $)))))))
+ (-10 -8 (-15 -2473 ((-1156 *4 (-630 $)) $))
+ (-15 -2484 ((-1156 *4 (-630 $)) $))
+ (-15 -3913 ($ (-1156 *4 (-630 $)))))))
(-4 *4 (-571)) (-5 *1 (-41 *4 *2)))))
+(((*1 *2) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1302))))
+ ((*1 *2 *2) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1302)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-972 *5)) (-4 *5 (-1080)) (-5 *2 (-793))
+ (-5 *1 (-1195 *4 *5)) (-14 *4 (-948))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-663 (-793))) (-5 *3 (-793)) (-5 *1 (-1195 *4 *5))
+ (-14 *4 (-948)) (-4 *5 (-1080))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-663 (-793))) (-5 *3 (-972 *5)) (-4 *5 (-1080))
+ (-5 *1 (-1195 *4 *5)) (-14 *4 (-948)))))
+(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-376)) (-4 *6 (-1273 (-421 *2)))
+ (-4 *2 (-1273 *5)) (-5 *1 (-219 *5 *2 *6 *3))
+ (-4 *3 (-355 *5 *2 *6)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1185 (-421 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-793)) (-5 *1 (-576)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132))
+ (-4 *4 (-1132)))))
(((*1 *1) (-5 *1 (-132))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-887) (-887) (-887))) (-5 *4 (-560)) (-5 *2 (-887))
+ (-5 *1 (-671 *5 *6 *7)) (-4 *5 (-1132)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-887)) (-5 *1 (-878 *3 *4 *5)) (-4 *3 (-1080))
+ (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-887))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-887))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-887))))
+ ((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-887)) (-5 *1 (-1201 *3)) (-4 *3 (-1080)))))
+(((*1 *1 *1) (-4 *1 (-1175))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-571)))))
+(((*1 *2 *2) (-12 (-5 *2 (-995 *3)) (-4 *3 (-1132)) (-5 *1 (-996 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-149)) (-4 *2 (-319)) (-4 *2 (-466)) (-4 *3 (-871))
+ (-4 *4 (-815)) (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-979 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-560))) (-5 *1 (-1150))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-777)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-114))
+ (-5 *2 (-1066)) (-5 *1 (-767)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-450)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))))
(((*1 *2 *1)
(|partial| -12 (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815))
(-5 *2 (-114)) (-5 *1 (-1017 *3 *4 *5 *6))
@@ -5301,239 +5937,52 @@
((*1 *2 *1)
(-12 (-5 *2 (-114)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34)))
(-4 *4 (-13 (-1132) (-34))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1247))
- (-5 *2 (-114)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-777)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-793)) (-4 *2 (-571)) (-5 *1 (-1000 *2 *4))
+ (-4 *4 (-1273 *2)))))
(((*1 *1 *1)
(-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-114)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1094)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *1 *1 *1) (-5 *1 (-887))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-310))))
- ((*1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-5 *1 (-887))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1201 *7))
- (-4 *5 (-1080)) (-4 *7 (-1080)) (-4 *2 (-1273 *5))
- (-5 *1 (-515 *5 *2 *6 *7)) (-4 *6 (-1273 *2)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-305 (-421 (-975 *5)))) (-5 *4 (-1207))
- (-4 *5 (-13 (-319) (-149)))
- (-5 *2 (-1196 (-663 (-326 *5)) (-663 (-305 (-326 *5)))))
- (-5 *1 (-1160 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207))
- (-4 *5 (-13 (-319) (-149)))
- (-5 *2 (-1196 (-663 (-326 *5)) (-663 (-305 (-326 *5)))))
- (-5 *1 (-1160 *5)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-846)) (-5 *1 (-845)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1155 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-663 *2)) (-5 *1 (-182 *2)) (-4 *2 (-319))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-663 (-663 *4))) (-5 *2 (-663 *4)) (-4 *4 (-319))
- (-5 *1 (-182 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-663 *8))
- (-5 *4
- (-663
- (-2 (|:| -1954 (-711 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-711 *7)))))
- (-5 *5 (-793)) (-4 *8 (-1273 *7)) (-4 *7 (-1273 *6)) (-4 *6 (-363))
+ (-12 (-5 *3 (-677 (-421 *6))) (-5 *4 (-421 *6)) (-4 *6 (-1273 *5))
+ (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))))
(-5 *2
- (-2 (|:| -1954 (-711 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-711 *7))))
- (-5 *1 (-512 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))))
-(((*1 *2 *1)
- (-12
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3822 (-663 *4))))
+ (-5 *1 (-832 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-677 (-421 *6))) (-4 *6 (-1273 *5))
+ (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))))
+ (-5 *2 (-2 (|:| -3822 (-663 (-421 *6))) (|:| -1871 (-711 *5))))
+ (-5 *1 (-832 *5 *6)) (-5 *4 (-663 (-421 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-678 *6 (-421 *6))) (-5 *4 (-421 *6)) (-4 *6 (-1273 *5))
+ (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))))
(-5 *2
- (-663
- (-2
- (|:| -2968
- (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
- (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
- (|:| |relerr| (-229))))
- (|:| -2460
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1185 (-229)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -3471
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-574))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1247))
- (-5 *2 (-663 *4)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3822 (-663 *4))))
+ (-5 *1 (-832 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-678 *6 (-421 *6))) (-4 *6 (-1273 *5))
+ (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))))
+ (-5 *2 (-2 (|:| -3822 (-663 (-421 *6))) (|:| -1871 (-711 *5))))
+ (-5 *1 (-832 *5 *6)) (-5 *4 (-663 (-421 *6))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-930 *2)) (-4 *2 (-1132))))
+ ((*1 *1 *2) (-12 (-5 *1 (-930 *2)) (-4 *2 (-1132)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-948)) (-5 *2 (-1303)) (-5 *1 (-1300))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-948)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-229)) (|:| |xend| (-229))
- (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229)))
- (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229)))
- (|:| |abserr| (-229)) (|:| |relerr| (-229))))
- (-5 *2
- (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))))
- (-5 *1 (-208)))))
-(((*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1201 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1273 (-421 (-560)))) (-5 *1 (-942 *3 *2))
- (-4 *2 (-1273 (-421 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-597 *3)) (-4 *3 (-376)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-571))
- (-4 *7 (-979 *3 *5 *6))
- (-5 *2 (-2 (|:| -3205 (-793)) (|:| -2115 *8) (|:| |radicand| *8)))
- (-5 *1 (-982 *5 *6 *3 *7 *8)) (-5 *4 (-793))
- (-4 *8
- (-13 (-376)
- (-10 -8 (-15 -1578 ($ *7)) (-15 -3757 (*7 $)) (-15 -3771 (*7 $))))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -3887 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-376)) (-4 *7 (-1273 *6))
- (-5 *2 (-2 (|:| |answer| (-597 (-421 *7))) (|:| |a0| *6)))
- (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *2 (-871))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4)))
- (-5 *2 (-1297 *6)) (-5 *1 (-346 *3 *4 *5 *6))
- (-4 *6 (-355 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887))))
- ((*1 *1 *1 *1) (-5 *1 (-887))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871))
- (-5 *2 (-2 (|:| -1774 *1) (|:| -2341 *1))) (-4 *1 (-979 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1080)) (-5 *2 (-2 (|:| -1774 *1) (|:| -2341 *1)))
- (-4 *1 (-1273 *3)))))
+ (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207))
- (-5 *2 (-560)) (-5 *1 (-1145 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-363)) (-4 *2 (-1080)) (-5 *1 (-734 *2 *3))
- (-4 *3 (-1273 *2)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-663
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-560)))))
- (-5 *1 (-419 *3)) (-4 *3 (-571))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-793)) (-4 *3 (-363)) (-4 *5 (-1273 *3))
- (-5 *2 (-663 (-1201 *3))) (-5 *1 (-512 *3 *5 *6))
- (-4 *6 (-1273 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2)
- (-12 (-4 *3 (-571)) (-5 *2 (-663 (-711 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-432 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *7 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-571))
- (-4 *8 (-979 *7 *5 *6))
- (-5 *2 (-2 (|:| -3205 (-793)) (|:| -2115 *3) (|:| |radicand| *3)))
- (-5 *1 (-982 *5 *6 *7 *8 *3)) (-5 *4 (-793))
- (-4 *3
- (-13 (-376)
- (-10 -8 (-15 -1578 ($ *8)) (-15 -3757 (*8 $)) (-15 -3771 (*8 $))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-600)) (-5 *1 (-292)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-793)) (-5 *1 (-601 *2)) (-4 *2 (-559))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -1792 *3) (|:| -3205 (-793)))) (-5 *1 (-601 *3))
- (-4 *3 (-559)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
- (-4 *4 (-1080)))))
-(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-663 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *5 (-871)) (-5 *2 (-114))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1242 *4 *5 *6 *3)) (-4 *4 (-571)) (-4 *5 (-815))
- (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1207)) (-4 *5 (-376)) (-5 *2 (-663 (-1240 *5)))
- (-5 *1 (-1306 *5)) (-5 *4 (-1240 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-663 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *5 (-871)) (-5 *2 (-114))))
+ (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-376))
+ (-5 *1 (-535 *2 *4 *5 *3)) (-4 *3 (-708 *2 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1242 *4 *5 *6 *3)) (-4 *4 (-571)) (-4 *5 (-815))
- (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))))
-(((*1 *1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-270))))
- ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -3251 *4))))
- (-4 *3 (-1132)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-671 *3 *4 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-934 (-560))) (-5 *1 (-946))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-466)) (-4 *3 (-815)) (-4 *5 (-871)) (-5 *2 (-114))
- (-5 *1 (-464 *4 *3 *5 *6)) (-4 *6 (-979 *4 *3 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4))
- (-4 *4 (-363)))))
-(((*1 *1) (-5 *1 (-132))))
-(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481))))
- ((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481))))
- ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4))
- (-5 *2 (-2 (|:| -2115 (-421 *5)) (|:| |poly| *3)))
- (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1273 (-421 *5))))))
-(((*1 *2 *1)
(-12 (-4 *1 (-708 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2))
(|has| *2 (-6 (-4510 "*"))) (-4 *2 (-1080))))
((*1 *2 *3)
@@ -5542,136 +5991,181 @@
((*1 *2 *1)
(-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2))
(-4 *5 (-245 *3 *2)) (|has| *2 (-6 (-4510 "*"))) (-4 *2 (-1080)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1066))
+ (-5 *1 (-777)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1247))
+ (-5 *2 (-114)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-560))) (-5 *5 (-1 (-1185 *4))) (-4 *4 (-376))
+ (-4 *4 (-1080)) (-5 *2 (-1185 *4)) (-5 *1 (-1191 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1080)) (-14 *3 (-663 (-1207)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1080) (-871)))
+ (-14 *3 (-663 (-1207))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-560)) (-4 *1 (-1259 *4)) (-4 *4 (-1080)) (-4 *4 (-571))
+ (-5 *2 (-421 (-975 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-560)) (-4 *1 (-1259 *4)) (-4 *4 (-1080)) (-4 *4 (-571))
+ (-5 *2 (-421 (-975 *4))))))
+(((*1 *1 *1 *1) (-5 *1 (-163)))
+ ((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-163)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-711 (-421 (-975 (-560)))))
+ (-5 *2 (-711 (-326 (-560)))) (-5 *1 (-1059)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-549))) (-5 *2 (-1207)) (-5 *1 (-549)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))))
+(((*1 *1) (-5 *1 (-146))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-1 (-114) *8))) (-4 *8 (-1096 *5 *6 *7))
+ (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-5 *2 (-2 (|:| |goodPols| (-663 *8)) (|:| |badPols| (-663 *8))))
+ (-5 *1 (-1008 *5 *6 *7 *8)) (-5 *4 (-663 *8)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3494 (-115)) (|:| |arg| (-663 (-915 *3)))))
+ (-5 *1 (-915 *3)) (-4 *3 (-1132))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-115)) (-5 *2 (-663 (-915 *4)))
+ (-5 *1 (-915 *4)) (-4 *4 (-1132)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
(-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-229)))
(-5 *2 (-1066)) (-5 *1 (-776)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-520)) (-5 *3 (-663 (-900))) (-5 *1 (-497)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-971)) (-5 *3 (-560)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1201 *1)) (-5 *4 (-1207)) (-4 *1 (-27))
+ (-5 *2 (-663 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1201 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *2 (-663 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1) (-12 (-4 *3 (-571)) (-5 *2 (-663 *1)) (-4 *1 (-29 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-171 (-229)))) (-5 *2 (-1066))
+ (-5 *1 (-776)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-2 (|:| -1430 *4) (|:| -2775 (-560)))))
+ (-4 *4 (-1132)) (-5 *2 (-1 *4)) (-5 *1 (-1048 *4)))))
(((*1 *1 *1)
(-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+(((*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-943 *3)) (-4 *3 (-319)))))
+(((*1 *2 *1) (-12 (-5 *2 (-216 4 (-130))) (-5 *1 (-593)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+ (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 *4))
+ (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1132)) (-5 *1 (-931 *3)))))
+(((*1 *2 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1132))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-1229)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1297 (-560))) (-5 *3 (-560)) (-5 *1 (-1141))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1297 (-560))) (-5 *3 (-663 (-560))) (-5 *4 (-560))
+ (-5 *1 (-1141)))))
+(((*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-948)) (-5 *1 (-808)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-114)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-663 (-975 *3))) (-4 *3 (-466)) (-5 *1 (-373 *3 *4))
+ (-14 *4 (-663 (-1207)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-663 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-466))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-461 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-663 *7)) (-5 *3 (-1189)) (-4 *7 (-979 *4 *5 *6))
+ (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-5 *1 (-461 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-663 *7)) (-5 *3 (-1189)) (-4 *7 (-979 *4 *5 *6))
+ (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-5 *1 (-461 *4 *5 *6 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871))
+ (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-663 (-802 *3 (-888 *4)))) (-4 *3 (-466))
+ (-14 *4 (-663 (-1207))) (-5 *1 (-647 *3 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-778)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1066))
+ (-5 *1 (-777)))))
+(((*1 *1) (-5 *1 (-625))))
(((*1 *2 *1)
- (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814))
- (-5 *2 (-793))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1132))
- (-5 *2 (-793))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-793)) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080))
- (-4 *4 (-748)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4509)) (-4 *1 (-251 *2)) (-4 *2 (-1247)))))
-(((*1 *1) (-5 *1 (-146))) ((*1 *1 *1) (-5 *1 (-887))))
+ (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-5 *2 (-793)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-549)))))
+(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1115 *3)) (-4 *3 (-134)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-663 *2)) (-5 *1 (-500 *2)) (-4 *2 (-1273 (-560))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23))
- (-14 *4 *3))))
+ (-12 (-5 *3 (-1297 (-663 (-2 (|:| -1430 *4) (|:| -1591 (-1151))))))
+ (-4 *4 (-363)) (-5 *2 (-793)) (-5 *1 (-360 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-793)) (-5 *1 (-365 *3 *4)) (-14 *3 (-948))
+ (-14 *4 (-948))))
+ ((*1 *2)
+ (-12 (-5 *2 (-793)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363))
+ (-14 *4
+ (-3 (-1201 *3)
+ (-1297 (-663 (-2 (|:| -1430 *3) (|:| -1591 (-1151)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-793)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363))
+ (-14 *4 (-948)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1080))
- (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296)))
- (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1273 *4)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-948)) (-5 *4 (-229)) (-5 *5 (-560)) (-5 *6 (-898))
- (-5 *2 (-1303)) (-5 *1 (-1300)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-770)))))
-(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))))
-(((*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-108))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-549))) (-5 *1 (-549)))))
-(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1207)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-948))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-793)))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-114)) (-5 *3 (-975 *6)) (-5 *4 (-1207))
- (-5 *5 (-864 *7))
- (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560))))
- (-4 *7 (-13 (-1233) (-29 *6))) (-5 *1 (-228 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-114)) (-5 *3 (-1201 *6)) (-5 *4 (-864 *6))
- (-4 *6 (-13 (-1233) (-29 *5)))
- (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560))))
- (-5 *1 (-228 *5 *6)))))
+ (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175))
+ (-5 *2 (-1297 (-711 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-1297 (-711 *4))) (-5 *1 (-431 *3 *4))
+ (-4 *3 (-432 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-1297 (-711 *3)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-1207))) (-4 *5 (-376))
+ (-5 *2 (-1297 (-711 (-421 (-975 *5))))) (-5 *1 (-1117 *5))
+ (-5 *4 (-711 (-421 (-975 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-1207))) (-4 *5 (-376))
+ (-5 *2 (-1297 (-711 (-975 *5)))) (-5 *1 (-1117 *5))
+ (-5 *4 (-711 (-975 *5)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-711 *4))) (-4 *4 (-376))
+ (-5 *2 (-1297 (-711 *4))) (-5 *1 (-1117 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1094)))))
(((*1 *2)
- (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-432 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-5 *2 (-663 *3)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-432 *4)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)) (-4 *2 (-571)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-793)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2))
- (-4 *2 (-1273 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-560)) (-5 *1 (-718 *2)) (-4 *2 (-1273 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-808)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-781)))))
+ (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132))
+ (-4 *4 (-1132)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-571))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2096 *4)))
+ (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-663 (-255 *4 *5))) (-5 *2 (-255 *4 *5))
- (-14 *4 (-663 (-1207))) (-4 *5 (-466)) (-5 *1 (-650 *4 *5)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1185 *4)) (-5 *3 (-560)) (-4 *4 (-1080))
- (-5 *1 (-1191 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-560)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-1080))
- (-14 *4 (-1207)) (-14 *5 *3))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
- (-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-663 (-560)))
- (|:| |cols| (-663 (-560)))))
- (-5 *4 (-711 *12)) (-5 *5 (-663 (-421 (-975 *9))))
- (-5 *6 (-663 (-663 *12))) (-5 *7 (-793)) (-5 *8 (-560))
- (-4 *9 (-13 (-319) (-149))) (-4 *12 (-979 *9 *11 *10))
- (-4 *10 (-13 (-871) (-633 (-1207)))) (-4 *11 (-815))
- (-5 *2
- (-2 (|:| |eqzro| (-663 *12)) (|:| |neqzro| (-663 *12))
- (|:| |wcond| (-663 (-975 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1297 (-421 (-975 *9))))
- (|:| -1954 (-663 (-1297 (-421 (-975 *9)))))))))
- (-5 *1 (-953 *9 *10 *11 *12)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-451)))))
-(((*1 *1 *1) (-5 *1 (-1094))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-793) *2)) (-5 *4 (-793)) (-4 *2 (-1132))
- (-5 *1 (-700 *2))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-793) *3)) (-4 *3 (-1132)) (-5 *1 (-704 *3)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-421 *2)) (-4 *2 (-1273 *5))
- (-5 *1 (-829 *5 *2 *3 *6))
- (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560)))))
- (-4 *3 (-680 *2)) (-4 *6 (-680 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 (-421 *2))) (-4 *2 (-1273 *5))
- (-5 *1 (-829 *5 *2 *3 *6))
- (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *3 (-680 *2))
- (-4 *6 (-680 (-421 *2))))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-663 (-630 *6))) (-5 *4 (-1207)) (-5 *2 (-630 *6))
- (-4 *6 (-435 *5)) (-4 *5 (-1132)) (-5 *1 (-587 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1207)) (-5 *2 (-326 (-560))) (-5 *1 (-958))))
+ (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-1163 *4 *2))
+ (-4 *2 (-13 (-618 (-560) *4) (-10 -7 (-6 -4508) (-6 -4509))))))
((*1 *2 *2)
- (-12 (-4 *3 (-1132)) (-5 *1 (-959 *3 *2)) (-4 *2 (-435 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-663 (-305 *4))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871))
- (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2))
- (-4 *4 (-571)))))
-(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-324))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
- (-4 *4 (-1080)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4508)) (-4 *1 (-242 *3))
- (-4 *3 (-1132))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1247)))))
-(((*1 *1 *1) (-4 *1 (-95)))
+ (-12 (-4 *3 (-871)) (-4 *3 (-1247)) (-5 *1 (-1163 *3 *2))
+ (-4 *2 (-13 (-618 (-560) *3) (-10 -7 (-6 -4508) (-6 -4509)))))))
+(((*1 *1) (-5 *1 (-1113))))
+(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
(-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
(-4 *2 (-13 (-435 *3) (-1033)))))
@@ -5681,646 +6175,588 @@
((*1 *2 *2)
(-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
(-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
- (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
((*1 *2 *2)
(-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
(-5 *1 (-1192 *3))))
((*1 *2 *2)
(-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
(-5 *1 (-1193 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887))))
- ((*1 *1 *1 *1) (-5 *1 (-887))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-143))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-146)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1080)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1185 (-663 (-560)))) (-5 *1 (-908))
- (-5 *3 (-663 (-560))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1132))
- (-5 *2 (-2 (|:| -2115 (-560)) (|:| |var| (-630 *1))))
- (-4 *1 (-435 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -3613 (-391)) (|:| -3614 (-1189))
- (|:| |explanations| (-663 (-1189)))))
- (-5 *2 (-1066)) (-5 *1 (-315))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -3613 (-391)) (|:| -3614 (-1189))
- (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066))))
- (-5 *2 (-1066)) (-5 *1 (-315)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-560)) (-5 *5 (-171 (-229))) (-5 *6 (-1189))
- (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-975 *4))) (-4 *4 (-466)) (-5 *2 (-114))
- (-5 *1 (-373 *4 *5)) (-14 *5 (-663 (-1207)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-802 *4 (-888 *5)))) (-4 *4 (-466))
- (-14 *5 (-663 (-1207))) (-5 *2 (-114)) (-5 *1 (-647 *4 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-793)) (-4 *1 (-1273 *3)) (-4 *3 (-1080)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1092 (-1055 *4) (-1201 (-1055 *4)))) (-5 *3 (-887))
- (-5 *1 (-1055 *4)) (-4 *4 (-13 (-870) (-376) (-1051))))))
+ (-12 (-4 *4 (-571))
+ (-5 *2 (-2 (|:| -2625 *4) (|:| -2584 *3) (|:| -3276 *3)))
+ (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *2 (-2 (|:| -2584 *1) (|:| -3276 *1))) (-4 *1 (-1096 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-571)) (-4 *3 (-1080))
+ (-5 *2 (-2 (|:| -2625 *3) (|:| -2584 *1) (|:| -3276 *1)))
+ (-4 *1 (-1273 *3)))))
+(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-781)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3))))
- ((*1 *1 *1) (-4 *1 (-1236))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1080)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1273 *3)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-143))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-146)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-229)))
- (-5 *6 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))))
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-1248))) (-5 *1 (-538)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1132)))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560))
+ (-5 *2 (-1066)) (-5 *1 (-778)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4508)) (-4 *1 (-503 *3)) (-4 *3 (-1247))
+ (-4 *3 (-1132)) (-5 *2 (-793))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4508)) (-4 *1 (-503 *4))
+ (-4 *4 (-1247)) (-5 *2 (-793)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1080)) (-5 *2 (-560)) (-5 *1 (-457 *4 *3 *5))
- (-4 *3 (-1273 *4))
- (-4 *5 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12
- (-5 *3
- (-1 (-3 (-2 (|:| -3887 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-376)) (-5 *1 (-588 *4 *2)) (-4 *2 (-1273 *4)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-3 *3 (-663 *1)))
- (-4 *1 (-1102 *4 *5 *6 *3)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1273 *5))
- (-4 *5 (-13 (-27) (-435 *4))) (-4 *4 (-13 (-571) (-1069 (-560))))
- (-4 *7 (-1273 (-421 *6))) (-5 *1 (-567 *4 *5 *6 *7 *2))
- (-4 *2 (-355 *5 *6 *7)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1143)) (-4 *3 (-1132)) (-5 *2 (-663 *1))
- (-4 *1 (-435 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3))
- (-4 *3 (-1132))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *2 (-663 *1)) (-4 *1 (-979 *3 *4 *5))))
+ (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2))
+ (-4 *4 (-571)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-870) (-376))) (-5 *2 (-114)) (-5 *1 (-1092 *4 *3))
+ (-4 *3 (-1273 *4)))))
+(((*1 *1 *1 *1) (-4 *1 (-145)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559))))
+ ((*1 *1 *1 *1) (-5 *1 (-887)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1078))
+ (-5 *3 (-560)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-114)) (-5 *5 (-560)) (-4 *6 (-376)) (-4 *6 (-381))
+ (-4 *6 (-1080)) (-5 *2 (-663 (-663 (-711 *6)))) (-5 *1 (-1061 *6))
+ (-5 *3 (-663 (-711 *6)))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080))
- (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-663 *3))
- (-5 *1 (-980 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-376)
- (-10 -8 (-15 -1578 ($ *7)) (-15 -3757 (*7 $))
- (-15 -3771 (*7 $))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3))))
- ((*1 *1 *1) (-4 *1 (-1236))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-793)) (-5 *2 (-711 (-975 *4))) (-5 *1 (-1060 *4))
- (-4 *4 (-1080)))))
-(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-391))))
- ((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-391)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1297 (-326 (-229))))
- (-5 *2
- (-2 (|:| |additions| (-560)) (|:| |multiplications| (-560))
- (|:| |exponentiations| (-560)) (|:| |functionCalls| (-560))))
- (-5 *1 (-315)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
-(((*1 *1) (-5 *1 (-1094))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 (-1120 (-421 (-560))))) (-5 *1 (-270))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *1 (-270)))))
-(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-915 *3)) (-4 *3 (-1132))))
- ((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1247)) (-5 *2 (-793)))))
+ (-12 (-4 *4 (-376)) (-4 *4 (-381)) (-4 *4 (-1080))
+ (-5 *2 (-663 (-663 (-711 *4)))) (-5 *1 (-1061 *4))
+ (-5 *3 (-663 (-711 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-114)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1080))
+ (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1061 *5))
+ (-5 *3 (-663 (-711 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-948)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1080))
+ (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1061 *5))
+ (-5 *3 (-663 (-711 *5))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-51)) (-5 *1 (-851)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-114))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-114)) (-5 *1 (-419 *3)) (-4 *3 (-559)) (-4 *3 (-571))))
- ((*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-114))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-114))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-559)) (-4 *3 (-1132))))
+ (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3))
+ (-4 *5 (-385 *3)) (-5 *2 (-663 (-663 *3)))))
((*1 *2 *1)
- (-12 (-5 *2 (-114)) (-5 *1 (-864 *3)) (-4 *3 (-559)) (-4 *3 (-1132))))
+ (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
+ (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-663 (-663 *5)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1029 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-114))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *1 (-1039 *3)) (-4 *3 (-1069 (-421 (-560)))))))
-(((*1 *2 *3 *4)
+ (-12 (-5 *2 (-663 (-663 *3))) (-5 *1 (-1220 *3)) (-4 *3 (-1132)))))
+(((*1 *1 *1 *1) (-5 *1 (-887))))
+(((*1 *2 *1) (-12 (-4 *1 (-1132)) (-5 *2 (-1151)))))
+(((*1 *2 *3 *3 *3 *4)
(-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-663 (-711 *4))) (-5 *2 (-711 *4)) (-4 *4 (-1080))
- (-5 *1 (-1061 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3))))
- ((*1 *1 *1) (-4 *1 (-1236))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-972 (-229)) (-972 (-229)))) (-5 *1 (-270))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-972 (-229)) (-972 (-229)))) (-5 *3 (-663 (-270)))
+ (-5 *1 (-271))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-663 (-495 *5 *6))) (-5 *3 (-495 *5 *6))
+ (-14 *5 (-663 (-1207))) (-4 *6 (-466)) (-5 *2 (-1297 *6))
+ (-5 *1 (-650 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1183)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1247))
+ (-5 *2 (-663 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *1) (-5 *1 (-624))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))))
+ (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-417 *3)) (-4 *3 (-418))))
+ ((*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-417 *3)) (-4 *3 (-418))))
+ ((*1 *2 *2) (-12 (-5 *2 (-948)) (|has| *1 (-6 -4499)) (-4 *1 (-418))))
+ ((*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-948))))
+ ((*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-5 *2 (-1185 (-560))))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-663 *1)) (-4 *1 (-319)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-633 (-915 (-560))))
+ (-4 *5 (-911 (-560)))
+ (-4 *5 (-13 (-1069 (-560)) (-466) (-660 (-560))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-581 *5 *3)) (-4 *3 (-649))
+ (-4 *3 (-13 (-27) (-1233) (-435 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1207)) (-5 *4 (-864 *2)) (-4 *2 (-1170))
+ (-4 *2 (-13 (-27) (-1233) (-435 *5)))
+ (-4 *5 (-633 (-915 (-560)))) (-4 *5 (-911 (-560)))
+ (-4 *5 (-13 (-1069 (-560)) (-466) (-660 (-560))))
+ (-5 *1 (-581 *5 *2)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1201 *7))
+ (-4 *5 (-1080)) (-4 *7 (-1080)) (-4 *2 (-1273 *5))
+ (-5 *1 (-515 *5 *2 *6 *7)) (-4 *6 (-1273 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-130))))))
+(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))))
+(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-531)))))
+(((*1 *2) (-12 (-5 *2 (-663 (-793))) (-5 *1 (-1302))))
+ ((*1 *2 *2) (-12 (-5 *2 (-663 (-793))) (-5 *1 (-1302)))))
+(((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
+ (-4 *3 (-380 *4))))
+ ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4))
+ (-4 *4 (-363)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1252)) (-5 *1 (-150 *2 *4 *3))
+ (-4 *3 (-1273 (-421 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1132)) (-5 *2 (-1189)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-793)) (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-4 *3 (-571)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-975 *6))) (-5 *4 (-663 (-1207)))
+ (-4 *6 (-13 (-571) (-1069 *5))) (-4 *5 (-571))
+ (-5 *2 (-663 (-663 (-305 (-421 (-975 *6)))))) (-5 *1 (-1070 *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-711 *3))
+ (-4 *3 (-13 (-319) (-10 -8 (-15 -3898 ((-419 $) $)))))
+ (-4 *4 (-1273 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-711 *3))
+ (-4 *3 (-13 (-319) (-10 -8 (-15 -3898 ((-419 $) $)))))
+ (-4 *4 (-1273 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-663 (-663 (-663 *4)))) (-5 *2 (-663 (-663 *4)))
- (-4 *4 (-871)) (-5 *1 (-1218 *4)))))
+ (|partial| -12 (-5 *2 (-663 (-1201 *7))) (-5 *3 (-1201 *7))
+ (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-939)) (-4 *5 (-815))
+ (-4 *6 (-871)) (-5 *1 (-936 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-663 (-1201 *5))) (-5 *3 (-1201 *5))
+ (-4 *5 (-1273 *4)) (-4 *4 (-939)) (-5 *1 (-937 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-421 *5))
+ (|:| |c2| (-421 *5)) (|:| |deg| (-793))))
+ (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1273 (-421 *5))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946))))
- ((*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
-(((*1 *2)
- (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-432 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-376)) (-4 *3 (-1080))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2748 *1)))
- (-4 *1 (-876 *3)))))
+ (-12 (-5 *3 (-421 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-571))
+ (-4 *4 (-1080)) (-4 *2 (-1290 *4)) (-5 *1 (-1292 *4 *5 *6 *2))
+ (-4 *6 (-680 *5)))))
+(((*1 *1) (-5 *1 (-146))))
(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ (-12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-551 *3 *2))
+ (-4 *2 (-1290 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
- (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
+ (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-4 *4 (-1273 *3))
+ (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1290 *5))))
((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
+ (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-5 *1 (-556 *3 *2))
+ (-4 *2 (-1290 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3))))
- ((*1 *1 *1) (-4 *1 (-1236))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-778)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-663 (-560))) (-5 *2 (-711 (-560))) (-5 *1 (-1141)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-663 (-975 *4))) (-5 *3 (-663 (-1207))) (-4 *4 (-466))
- (-5 *1 (-947 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))))
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-13 (-571) (-149)))
+ (-5 *1 (-1184 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1080)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1080))
+ (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296)))
+ (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1273 *4)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-663 (-711 *6))) (-5 *4 (-114)) (-5 *5 (-560))
+ (-5 *2 (-711 *6)) (-5 *1 (-1061 *6)) (-4 *6 (-376)) (-4 *6 (-1080))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-663 (-711 *4))) (-5 *2 (-711 *4)) (-5 *1 (-1061 *4))
+ (-4 *4 (-376)) (-4 *4 (-1080))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-663 (-711 *5))) (-5 *4 (-560)) (-5 *2 (-711 *5))
+ (-5 *1 (-1061 *5)) (-4 *5 (-376)) (-4 *5 (-1080)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4))) (-4 *6 (-355 *3 *4 *5))
- (-5 *2
- (-2 (|:| -4300 (-427 *4 (-421 *4) *5 *6)) (|:| |principalPart| *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376))
- (-5 *2
- (-2 (|:| |poly| *6) (|:| -2773 (-421 *6))
- (|:| |special| (-421 *6))))
- (-5 *1 (-749 *5 *6)) (-5 *3 (-421 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-376)) (-5 *2 (-663 *3)) (-5 *1 (-923 *3 *4))
- (-4 *3 (-1273 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-793)) (-4 *5 (-376))
- (-5 *2 (-2 (|:| -4198 *3) (|:| -4210 *3))) (-5 *1 (-923 *3 *5))
- (-4 *3 (-1273 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114))
- (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466))
- (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1100 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114))
- (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466))
- (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1100 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114))
- (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466))
- (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1176 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114))
- (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466))
- (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1176 *5 *6 *7 *8 *9)))))
-(((*1 *2)
- (-12 (-5 *2 (-948)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-948)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1171 *5 *6)) (-5 *4 (-1 (-114) *6 *6))
- (-4 *5 (-13 (-1132) (-34))) (-4 *6 (-13 (-1132) (-34)))
- (-5 *2 (-114)) (-5 *1 (-1172 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-847)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-419 *3)) (-4 *3 (-571)))))
+ (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1080)) (-4 *3 (-871))
+ (-4 *4 (-277 *3)) (-4 *5 (-815)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-663 (-1207))) (-4 *5 (-1080))
+ (-5 *2 (-975 *5)) (-5 *1 (-973 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-871))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
- (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
+ (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))))
+(((*1 *1 *1 *1) (-5 *1 (-114))) ((*1 *1 *1 *1) (-4 *1 (-125))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-1297 *5))) (-5 *4 (-560)) (-5 *2 (-1297 *5))
+ (-5 *1 (-1061 *5)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1080)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-931 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-571) (-1069 (-560)))) (-5 *1 (-191 *3 *2))
+ (-4 *2 (-13 (-27) (-1233) (-435 (-171 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-571) (-1069 (-560))))
+ (-5 *1 (-191 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 (-171 *4))))))
((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3))))
- ((*1 *1 *1) (-4 *1 (-1236))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1278 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1207))
- (-14 *5 *3) (-5 *1 (-331 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1072)) (-5 *3 (-391)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-887)))))
-(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1189)) (-5 *1 (-1020))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1207)) (-4 *4 (-1247)) (-5 *1 (-1089 *3 *4))
- (-4 *3 (-1125 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1207)) (-5 *3 (-1120 *4)) (-4 *4 (-1247))
- (-5 *1 (-1123 *4)))))
+ (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560))))
+ (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1207))
+ (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560))))
+ (-5 *1 (-1237 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247))
+ (-4 *4 (-385 *2)) (-4 *5 (-385 *2))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4509)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1132))
+ (-4 *2 (-1247)))))
+(((*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1189)) (-5 *1 (-808)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1297 (-711 *4))) (-4 *4 (-175))
+ (-5 *2 (-1297 (-711 (-975 *4)))) (-5 *1 (-192 *4)))))
+(((*1 *1) (-5 *1 (-132))))
(((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |mval| (-711 *3)) (|:| |invmval| (-711 *3))
- (|:| |genIdeal| (-518 *3 *4 *5 *6))))
- (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6))
- (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1080)) (-4 *3 (-1132))
- (-5 *2 (-2 (|:| |val| *1) (|:| -3205 (-560)))) (-4 *1 (-435 *3))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-915 *3)) (|:| -3205 (-915 *3))))
- (-5 *1 (-915 *3)) (-4 *3 (-1132))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080))
- (-4 *7 (-979 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -3205 (-560))))
- (-5 *1 (-980 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-376)
- (-10 -8 (-15 -1578 ($ *7)) (-15 -3757 (*7 $))
- (-15 -3771 (*7 $))))))))
-(((*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-560))))
- ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-721)))))
+ (-12 (-5 *2 (-663 (-518 *3 *4 *5 *6))) (-4 *3 (-376)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871))
+ (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-663 *1)) (-5 *3 (-663 *7)) (-4 *1 (-1102 *4 *5 *6 *7))
+ (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *1))
+ (-4 *1 (-1102 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-663 *1))
+ (-4 *1 (-1102 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1185 (-663 (-560)))) (-5 *3 (-663 (-560)))
+ (-5 *1 (-908)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-793)) (-5 *2 (-114))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-114)) (-5 *1 (-1249 *3)) (-4 *3 (-871))
+ (-4 *3 (-1132)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-5 *2 (-419 (-1201 (-1201 *4))))
- (-5 *1 (-1246 *4)) (-5 *3 (-1201 (-1201 *4))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-114)) (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560))))
- (-4 *3 (-13 (-27) (-1233) (-435 *6) (-10 -8 (-15 -1578 ($ *7)))))
- (-4 *7 (-870))
- (-4 *8
- (-13 (-1276 *3 *7) (-376) (-1233)
- (-10 -8 (-15 -2894 ($ $)) (-15 -2518 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))))
- (-5 *1 (-438 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1189)) (-4 *9 (-1014 *8))
- (-14 *10 (-1207)))))
-(((*1 *2)
- (-12
- (-5 *2
- (-1297 (-663 (-2 (|:| -3853 (-935 *3)) (|:| -3128 (-1151))))))
- (-5 *1 (-365 *3 *4)) (-14 *3 (-948)) (-14 *4 (-948))))
- ((*1 *2)
- (-12 (-5 *2 (-1297 (-663 (-2 (|:| -3853 *3) (|:| -3128 (-1151))))))
- (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1201 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1297 (-663 (-2 (|:| -3853 *3) (|:| -3128 (-1151))))))
- (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-948)))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-663 *9)) (-5 *3 (-1 (-114) *9))
- (-5 *4 (-1 (-114) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-1096 *6 *7 *8)) (-4 *6 (-571)) (-4 *7 (-815))
- (-4 *8 (-871)) (-5 *1 (-1008 *6 *7 *8 *9)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-871))))
+ (-12 (-5 *3 (-663 *4)) (-4 *4 (-870)) (-4 *4 (-376)) (-5 *2 (-793))
+ (-5 *1 (-974 *4 *5)) (-4 *5 (-1273 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-109))) (-5 *1 (-178)))))
+(((*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193))))
+ ((*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *1) (-4 *1 (-894 *2)))
((*1 *1 *1)
- (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
- (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3))))
- ((*1 *1 *1) (-4 *1 (-1236))))
-(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-568)))))
+ (-12 (-4 *1 (-1004 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-814))
+ (-4 *4 (-871)))))
(((*1 *1) (-5 *1 (-623))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-663 *2)) (-4 *2 (-979 *4 *5 *6)) (-4 *4 (-466))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-464 *4 *5 *6 *2)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376))
- (-5 *2 (-2 (|:| -3887 (-421 *6)) (|:| |coeff| (-421 *6))))
- (-5 *1 (-588 *5 *6)) (-5 *3 (-421 *6)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-115)) (-4 *4 (-1080)) (-5 *1 (-736 *4 *2))
- (-4 *2 (-670 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-856 *2)) (-4 *2 (-1080)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-229)) (-5 *4 (-560))
- (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284))))
- (-5 *2 (-1066)) (-5 *1 (-768)))))
-(((*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233)))))
- ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887))))
- ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-887)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-769)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-948)) (-5 *2 (-793)) (-5 *1 (-1133 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
(((*1 *2 *3)
- (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-421 (-560))))
- (-5 *1 (-315)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033) (-1233)))))
- ((*1 *1 *1) (-4 *1 (-649))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1207))
- (-4 *5 (-13 (-571) (-1069 (-560)) (-149)))
- (-5 *2
- (-2 (|:| -3887 (-421 (-975 *5))) (|:| |coeff| (-421 (-975 *5)))))
- (-5 *1 (-584 *5)) (-5 *3 (-421 (-975 *5))))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1189)) (-5 *3 (-560)) (-5 *1 (-1094)))))
+ (-12 (-4 *4 (-38 (-421 (-560))))
+ (-5 *2 (-2 (|:| -1958 (-1185 *4)) (|:| -1972 (-1185 *4))))
+ (-5 *1 (-1192 *4)) (-5 *3 (-1185 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1135 *2 *3 *4 *5 *6)) (-4 *2 (-1132)) (-4 *3 (-1132))
+ (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247))
+ (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4509)) (-4 *1 (-503 *3))
+ (-4 *3 (-1247)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-845)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1207)) (-5 *2 (-549)) (-5 *1 (-550 *4))
- (-4 *4 (-1247)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-315))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-1066))) (-5 *2 (-1066)) (-5 *1 (-315))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-673 *3)) (-4 *3 (-1247))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1247))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1247))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1247))))
- ((*1 *1 *1 *1) (-5 *1 (-1094)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1185 (-1185 *4))) (-5 *2 (-1185 *4)) (-5 *1 (-1186 *4))
- (-4 *4 (-1247))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-421 (-975 (-171 (-560))))))
- (-5 *2 (-663 (-663 (-305 (-975 (-171 *4)))))) (-5 *1 (-392 *4))
- (-4 *4 (-13 (-376) (-870)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-305 (-421 (-975 (-171 (-560)))))))
- (-5 *2 (-663 (-663 (-305 (-975 (-171 *4)))))) (-5 *1 (-392 *4))
- (-4 *4 (-13 (-376) (-870)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-421 (-975 (-171 (-560)))))
- (-5 *2 (-663 (-305 (-975 (-171 *4))))) (-5 *1 (-392 *4))
- (-4 *4 (-13 (-376) (-870)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-305 (-421 (-975 (-171 (-560))))))
- (-5 *2 (-663 (-305 (-975 (-171 *4))))) (-5 *1 (-392 *4))
- (-4 *4 (-13 (-376) (-870))))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-509)))))
-(((*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1201 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-663 (-2 (|:| |k| (-1207)) (|:| |c| (-1319 *3)))))
- (-5 *1 (-1319 *3)) (-4 *3 (-1080))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-663 (-2 (|:| |k| *3) (|:| |c| (-1322 *3 *4)))))
- (-5 *1 (-1322 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-305 *6)) (-5 *4 (-115)) (-4 *6 (-435 *5))
- (-4 *5 (-13 (-571) (-633 (-549)))) (-5 *2 (-51))
- (-5 *1 (-329 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-663 *7))
- (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51))
- (-5 *1 (-329 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-663 (-305 *7))) (-5 *4 (-663 (-115))) (-5 *5 (-305 *7))
- (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51))
- (-5 *1 (-329 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-663 (-305 *8))) (-5 *4 (-663 (-115))) (-5 *5 (-305 *8))
- (-5 *6 (-663 *8)) (-4 *8 (-435 *7))
- (-4 *7 (-13 (-571) (-633 (-549)))) (-5 *2 (-51))
- (-5 *1 (-329 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-663 *7)) (-5 *4 (-663 (-115))) (-5 *5 (-305 *7))
- (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51))
- (-5 *1 (-329 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 (-115))) (-5 *6 (-663 (-305 *8)))
- (-4 *8 (-435 *7)) (-5 *5 (-305 *8))
- (-4 *7 (-13 (-571) (-633 (-549)))) (-5 *2 (-51))
- (-5 *1 (-329 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-305 *5)) (-5 *4 (-115)) (-4 *5 (-435 *6))
- (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51))
- (-5 *1 (-329 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-435 *6))
- (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51))
- (-5 *1 (-329 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-435 *6))
- (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51))
- (-5 *1 (-329 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-5 *6 (-663 *3))
- (-4 *3 (-435 *7)) (-4 *7 (-13 (-571) (-633 (-549)))) (-5 *2 (-51))
- (-5 *1 (-329 *7 *3)))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1252))
+ (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5)))
+ (-5 *2 (-2 (|:| |num| (-711 *5)) (|:| |den| *5))))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-559))))
(((*1 *2 *1)
- (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814))
- (-5 *2 (-663 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1132))
- (-5 *2 (-663 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1185 *3)) (-5 *1 (-610 *3)) (-4 *3 (-1080))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-663 *3)) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080))
- (-4 *4 (-748))))
- ((*1 *2 *1) (-12 (-4 *1 (-876 *3)) (-4 *3 (-1080)) (-5 *2 (-663 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1290 *3)) (-4 *3 (-1080)) (-5 *2 (-1185 *3)))))
+ (-12 (-5 *2 (-1185 (-421 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34)))
+ (-4 *3 (-13 (-1132) (-34))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1120 (-229))))))
(((*1 *2 *3)
- (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-851)) (-5 *3 (-1189)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-376) (-870))) (-5 *1 (-184 *3 *2))
- (-4 *2 (-1273 (-171 *3))))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560))
- (-5 *2 (-1066)) (-5 *1 (-778)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-972 *5)) (-5 *3 (-793)) (-4 *5 (-1080))
- (-5 *1 (-1195 *4 *5)) (-14 *4 (-948)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-727 *3 *4)) (-4 *3 (-1247)) (-4 *4 (-1247)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-887)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))))
+ (-12 (-4 *2 (-376)) (-4 *2 (-870)) (-5 *1 (-974 *2 *3))
+ (-4 *3 (-1273 *2)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-793)) (-4 *6 (-1132)) (-4 *7 (-927 *6))
+ (-5 *2 (-711 *7)) (-5 *1 (-714 *6 *7 *3 *4)) (-4 *3 (-385 *7))
+ (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4508)))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871)) (-4 *2 (-571)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-711 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-139))))
- ((*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-158))))
- ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-492))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-606))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-645))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1132))
- (-4 *2 (-13 (-435 *4) (-911 *3) (-633 (-915 *3))))
- (-5 *1 (-1106 *3 *4 *2))
- (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1132)) (-5 *1 (-1196 *3 *2)) (-4 *3 (-1132)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-229)) (-5 *4 (-560))
- (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284))))
- (-5 *2 (-1066)) (-5 *1 (-770)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-131)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-4 *3 (-1132))
- (-5 *2 (-114)))))
-(((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))
- ((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *1 *1) (-4 *1 (-1170))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-171 (-229))))
- (-5 *2 (-1066)) (-5 *1 (-776)))))
+ (-12 (-5 *3 (-326 (-229))) (-5 *2 (-421 (-560))) (-5 *1 (-315)))))
+(((*1 *2)
+ (-12 (-4 *4 (-376)) (-5 *2 (-948)) (-5 *1 (-340 *3 *4))
+ (-4 *3 (-341 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-376)) (-5 *2 (-854 (-948))) (-5 *1 (-340 *3 *4))
+ (-4 *3 (-341 *4))))
+ ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-948))))
+ ((*1 *2)
+ (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-854 (-948))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1185 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1080)) (-5 *1 (-734 *3 *2)) (-4 *2 (-1273 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7))))
- (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-663 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175))))
- ((*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-431 *3 *2)) (-4 *3 (-432 *2))))
- ((*1 *2) (-12 (-4 *1 (-432 *2)) (-4 *2 (-175)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-139))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-158))))
- ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-492))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-606))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-645))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1132))
- (-4 *2 (-13 (-435 *4) (-911 *3) (-633 (-915 *3))))
- (-5 *1 (-1106 *3 *4 *2))
- (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3))))))
+ (-12 (-4 *1 (-933 *3)) (-4 *3 (-1132)) (-5 *2 (-1128 *3))))
((*1 *2 *1)
- (-12 (-4 *2 (-1132)) (-5 *1 (-1196 *2 *3)) (-4 *3 (-1132)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4508)) (-4 *1 (-242 *3))
- (-4 *3 (-1132))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4508)) (-4 *1 (-242 *2)) (-4 *2 (-1132))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)) (-4 *2 (-1132))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1247))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-629 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-560)) (-4 *4 (-1132))
- (-5 *1 (-758 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-560)) (-5 *1 (-758 *2)) (-4 *2 (-1132))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34)))
- (-4 *4 (-13 (-1132) (-34))) (-5 *1 (-1172 *3 *4)))))
+ (-12 (-5 *2 (-1128 *3)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1132)) (-5 *1 (-993 *3 *2)) (-4 *3 (-1132)))))
(((*1 *2 *2 *3 *3)
(-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132))
- (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))))
(((*1 *2 *2)
(-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2))
(-4 *2 (-13 (-435 *3) (-1033) (-1233)))))
((*1 *1 *1) (-4 *1 (-649))))
+(((*1 *2 *1) (-12 (-4 *1 (-984)) (-5 *2 (-1120 (-229)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1120 (-229))))))
+(((*1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-851)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4509)) (-4 *1 (-251 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-948))) (-5 *2 (-663 (-711 (-560))))
+ (-5 *1 (-1141)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-466)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-5 *2 (-663 *3)) (-5 *1 (-1008 *4 *5 *6 *3))
+ (-4 *3 (-1096 *4 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-183))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-703))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-1001))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-1104))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-1146)))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132))
+ (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1297 (-1133 *3 *4))) (-5 *1 (-1133 *3 *4))
+ (-14 *3 (-948)) (-14 *4 (-948)))))
+(((*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-131)))))
+(((*1 *2 *1) (-12 (-4 *1 (-984)) (-5 *2 (-1120 (-229)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-1120 (-229))))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-543)))))
+(((*1 *1) (-5 *1 (-624))) ((*1 *1) (-5 *1 (-625))))
+(((*1 *1) (-5 *1 (-190))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-663 *1)) (-4 *1 (-950)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1132)) (-4 *6 (-911 *5)) (-5 *2 (-910 *5 *6 (-663 *6)))
+ (-5 *1 (-912 *5 *6 *4)) (-5 *3 (-663 *6)) (-4 *4 (-633 (-915 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1132)) (-5 *2 (-663 (-305 *3))) (-5 *1 (-912 *5 *3 *4))
+ (-4 *3 (-1069 (-1207))) (-4 *3 (-911 *5)) (-4 *4 (-633 (-915 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1132)) (-5 *2 (-663 (-305 (-975 *3))))
+ (-5 *1 (-912 *5 *3 *4)) (-4 *3 (-1080))
+ (-1394 (-4 *3 (-1069 (-1207)))) (-4 *3 (-911 *5))
+ (-4 *4 (-633 (-915 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1132)) (-5 *2 (-913 *5 *3)) (-5 *1 (-912 *5 *3 *4))
+ (-1394 (-4 *3 (-1069 (-1207)))) (-1394 (-4 *3 (-1080)))
+ (-4 *3 (-911 *5)) (-4 *4 (-633 (-915 *5))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-240)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-277 *4))
+ (-4 *6 (-815)) (-5 *2 (-1 *1 (-793))) (-4 *1 (-262 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1080)) (-4 *3 (-871)) (-4 *5 (-277 *3)) (-4 *6 (-815))
+ (-5 *2 (-1 *1 (-793))) (-4 *1 (-262 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-277 *2)) (-4 *2 (-871)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033))))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-1207))
(-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
(-5 *2 (-597 *3)) (-5 *1 (-442 *5 *3))
(-4 *3 (-13 (-1233) (-29 *5))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-663 (-1212))) (-5 *1 (-187 *3)) (-4 *3 (-189)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-663 *2)) (-4 *2 (-979 *4 *5 *6)) (-4 *4 (-319))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-462 *4 *5 *6 *2)))))
+(((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-793)) (-5 *1 (-216 *4 *2)) (-14 *4 (-948))
+ (-4 *2 (-1132)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207))
+ (-14 *4 *2))))
+(((*1 *1) (-5 *1 (-190))))
+(((*1 *1 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-663 *6)) (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5))
+ (-4 *3 (-571)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1007 *4 *5 *6 *3)) (-4 *4 (-1080)) (-4 *5 (-815))
+ (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-4 *4 (-571))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-559)) (-5 *2 (-114)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2))
+ (-4 *5 (-385 *2)) (-4 *2 (-1247))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-793)) (-4 *2 (-1132)) (-5 *1 (-216 *4 *2))
+ (-14 *4 (-948))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1247))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-560)) (-4 *1 (-1084 *4 *5 *2 *6 *7))
+ (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)) (-4 *2 (-1080)))))
+(((*1 *2)
+ (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4))) (-5 *2 (-711 (-421 *4))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-571)) (-4 *2 (-13 (-435 *4) (-1033) (-1233)))
+ (-5 *1 (-614 *4 *2 *3))
+ (-4 *3 (-13 (-435 (-171 *4)) (-1033) (-1233))))))
+(((*1 *1) (-5 *1 (-190))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1201 *9)) (-5 *4 (-663 *7)) (-5 *5 (-663 (-663 *8)))
+ (-4 *7 (-871)) (-4 *8 (-319)) (-4 *9 (-979 *8 *6 *7)) (-4 *6 (-815))
+ (-5 *2
+ (-2 (|:| |upol| (-1201 *8)) (|:| |Lval| (-663 *8))
+ (|:| |Lfact|
+ (-663 (-2 (|:| -4012 (-1201 *8)) (|:| -2030 (-560)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-764 *6 *7 *8 *9)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1252)) (-4 *5 (-1273 *3)) (-4 *6 (-1273 (-421 *5)))
+ (-5 *2 (-114)) (-5 *1 (-354 *4 *3 *5 *6)) (-4 *4 (-355 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))))
+(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-600)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-443 *3 *2)) (-4 *3 (-13 (-175) (-38 (-421 (-560)))))
+ (-4 *2 (-13 (-871) (-21))))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-1248))) (-5 *1 (-703))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 (-1212))) (-5 *1 (-1146)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-663 (-1201 *7))) (-5 *3 (-1201 *7))
+ (-4 *7 (-979 *5 *6 *4)) (-4 *5 (-939)) (-4 *6 (-815))
+ (-4 *4 (-871)) (-5 *1 (-936 *5 *6 *4 *7)))))
(((*1 *1 *1 *2)
(-12 (-5 *2 (-1201 *3)) (-4 *3 (-381)) (-4 *1 (-341 *3))
(-4 *3 (-376)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1273 *4))
+ (-5 *2 (-2 (|:| |radicand| (-421 *5)) (|:| |deg| (-793))))
+ (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1273 (-421 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363))
+ (-5 *2 (-1297 (-663 (-2 (|:| -1430 *4) (|:| -1591 (-1151))))))
+ (-5 *1 (-360 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229)))
+ (|:| |lb| (-663 (-864 (-229))))
+ (|:| |cf| (-663 (-326 (-229))))
+ (|:| |ub| (-663 (-864 (-229))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-663 (-326 (-229))))
+ (|:| -3239 (-663 (-229)))))))
+ (-5 *2 (-663 (-1189))) (-5 *1 (-278)))))
+(((*1 *1) (-5 *1 (-159)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-549)))))
+(((*1 *1) (-5 *1 (-624))) ((*1 *1) (-5 *1 (-625))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-663 *7)) (-5 *3 (-560)) (-4 *7 (-979 *4 *5 *6))
+ (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-5 *1 (-464 *4 *5 *6 *7)))))
+(((*1 *1) (-5 *1 (-574))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114))
+ (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114))
+ (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))))
(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-887)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
+ (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
+ (|:| |relerr| (-229))))
+ (-5 *2
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-195)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-505)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-663 (-51))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-4 *5 (-435 *4))
+ (-5 *2 (-419 (-1201 (-421 (-560))))) (-5 *1 (-449 *4 *5 *3))
+ (-4 *3 (-1273 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1273 *3)) (-5 *1 (-413 *3 *2))
+ (-4 *3 (-13 (-376) (-149))))))
(((*1 *2 *3 *4 *3 *5)
(-12 (-5 *3 (-1189)) (-5 *4 (-171 (-229))) (-5 *5 (-560))
(-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-248)))))
+(((*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1080))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-571)) (-4 *4 (-175)) (-4 *5 (-385 *4))
+ (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (-5 *1 (-710 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-175)) (-4 *2 (-1080)) (-5 *1 (-736 *2 *3))
+ (-4 *3 (-670 *2))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-175)) (-4 *2 (-1080)) (-5 *1 (-736 *2 *3))
+ (-4 *3 (-670 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-856 *2)) (-4 *2 (-175)) (-4 *2 (-1080))))
+ ((*1 *1 *1) (-12 (-5 *1 (-856 *2)) (-4 *2 (-175)) (-4 *2 (-1080)))))
+(((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4508)) (-4 *1 (-503 *3)) (-4 *3 (-1247))
+ (-5 *2 (-663 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-758 *3)) (-4 *3 (-1132))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 (-453))) (-5 *1 (-889)))))
+(((*1 *1) (-5 *1 (-611))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-948)) (-5 *1 (-1133 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871))))
+ ((*1 *1) (-4 *1 (-1182))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-450)) (-5 *1 (-1211)))))
(((*1 *2 *3)
(-12
(-5 *3
(-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
- (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
+ (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
(|:| |relerr| (-229))))
(-5 *2
(-3 (|:| |continuous| "Continuous at the end points")
@@ -6331,17 +6767,261 @@
(|:| |bothSingular| "There are singularities at both end points")
(|:| |notEvaluated| "End point continuity not yet evaluated")))
(-5 *1 (-195)))))
+(((*1 *2)
+ (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-432 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *1 (-482)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-560)) (-4 *3 (-175)) (-4 *5 (-385 *3))
+ (-4 *6 (-385 *3)) (-5 *1 (-710 *3 *5 *6 *2))
+ (-4 *2 (-708 *3 *5 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-931 *3))) (-4 *3 (-1132)) (-5 *1 (-934 *3)))))
+(((*1 *1) (-5 *1 (-450))))
+(((*1 *1) (-5 *1 (-1303))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560))
+ (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683))))
+ (-5 *2 (-1066)) (-5 *1 (-770)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-4 *3 (-175)) (-4 *4 (-385 *3))
+ (-4 *5 (-385 *3)) (-5 *1 (-710 *3 *4 *5 *2))
+ (-4 *2 (-708 *3 *4 *5)))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-793))
+ (-4 *3 (-13 (-748) (-381) (-10 -7 (-15 ** (*3 *3 (-560))))))
+ (-5 *1 (-253 *3)))))
+(((*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559))))
+ ((*1 *1 *2) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1002)))))
(((*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-934 (-560))) (-5 *1 (-946))))
((*1 *2 *3)
(-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871))
+ (-4 *3 (-1096 *6 *7 *8))
+ (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *4))))
+ (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -3859 *9))))
+ (-5 *5 (-114)) (-4 *8 (-1096 *6 *7 *4)) (-4 *9 (-1102 *6 *7 *4 *8))
+ (-4 *6 (-466)) (-4 *7 (-815)) (-4 *4 (-871))
+ (-5 *2 (-663 (-2 (|:| |val| *8) (|:| -3859 *9))))
+ (-5 *1 (-1139 *6 *7 *4 *8 *9)))))
+(((*1 *1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-4 *1 (-310))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4509)) (-4 *1 (-121 *2)) (-4 *2 (-1247)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1185 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-948))) (-5 *2 (-1209 (-421 (-560))))
+ (-5 *1 (-193)))))
+(((*1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1302)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-222))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-453))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-860))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-663 (-1212))) (-5 *3 (-1212)) (-5 *1 (-1146))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1146)) (-5 *1 (-1147)))))
(((*1 *1 *2 *3 *1 *3)
(-12 (-5 *2 (-915 *4)) (-4 *4 (-1132)) (-5 *1 (-913 *4 *3))
(-4 *3 (-1132)))))
(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))
+ (-5 *2 (-793)) (-5 *1 (-535 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3))
+ (-4 *5 (-385 *3)) (-4 *3 (-571)) (-5 *2 (-793))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-571)) (-4 *4 (-175)) (-4 *5 (-385 *4))
+ (-4 *6 (-385 *4)) (-5 *2 (-793)) (-5 *1 (-710 *4 *5 *6 *3))
+ (-4 *3 (-708 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
+ (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-571))
+ (-5 *2 (-793)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-2 (|:| -4012 (-1201 *6)) (|:| -2030 (-560)))))
+ (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-560))
+ (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-979 *6 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-108))))
+ ((*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-221))))
+ ((*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-501))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)) (-4 *2 (-319))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-421 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560))))
+ ((*1 *1 *1) (-4 *1 (-1091))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3))))
+ ((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-774)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4)
+ (-255 *4 (-421 (-560)))))
+ (-14 *4 (-663 (-1207))) (-14 *5 (-793)) (-5 *2 (-114))
+ (-5 *1 (-519 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721))))
+ ((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721)))))
+(((*1 *2 *2)
(-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
(-4 *2 (-13 (-435 *3) (-1033))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)) (-4 *2 (-871))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-294 *3)) (-4 *3 (-1247))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-871)))))
+(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1037))))
+ ((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1037)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3))
+ (-4 *5 (-385 *3)) (-5 *2 (-114))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
+ (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-663 *3))
+ (-4 *3 (-13 (-27) (-1233) (-435 *6)))
+ (-4 *6 (-13 (-466) (-149) (-1069 (-560)) (-660 (-560))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-572 *6 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1132)) (-5 *2 (-793)))))
+(((*1 *1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-270))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-948)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))))
+(((*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302))))
+ ((*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1132))
+ (-4 *6 (-1132)) (-4 *2 (-1132)) (-5 *1 (-702 *5 *6 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-871)) (-5 *2 (-1220 (-663 *4))) (-5 *1 (-1218 *4))
+ (-5 *3 (-663 *4)))))
(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))))
+(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481))))
+ ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-305 (-854 *3)))
+ (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560))))
+ (-5 *2 (-854 *3)) (-5 *1 (-655 *5 *3))
+ (-4 *3 (-13 (-27) (-1233) (-435 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-305 (-854 (-975 *5)))) (-4 *5 (-466))
+ (-5 *2 (-854 (-421 (-975 *5)))) (-5 *1 (-656 *5))
+ (-5 *3 (-421 (-975 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-305 (-421 (-975 *5)))) (-5 *3 (-421 (-975 *5)))
+ (-4 *5 (-466)) (-5 *2 (-854 *3)) (-5 *1 (-656 *5)))))
+(((*1 *1) (-4 *1 (-363)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 *5)) (-4 *5 (-435 *4)) (-4 *4 (-13 (-571) (-149)))
+ (-5 *2
+ (-2 (|:| |primelt| *5) (|:| |poly| (-663 (-1201 *5)))
+ (|:| |prim| (-1201 *5))))
+ (-5 *1 (-446 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-571) (-149)))
+ (-5 *2
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1201 *3))
+ (|:| |pol2| (-1201 *3)) (|:| |prim| (-1201 *3))))
+ (-5 *1 (-446 *4 *3)) (-4 *3 (-27)) (-4 *3 (-435 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-975 *5)) (-5 *4 (-1207)) (-4 *5 (-13 (-376) (-149)))
+ (-5 *2
+ (-2 (|:| |coef1| (-560)) (|:| |coef2| (-560))
+ (|:| |prim| (-1201 *5))))
+ (-5 *1 (-990 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-663 (-1207)))
+ (-4 *5 (-13 (-376) (-149)))
+ (-5 *2
+ (-2 (|:| -2625 (-663 (-560))) (|:| |poly| (-663 (-1201 *5)))
+ (|:| |prim| (-1201 *5))))
+ (-5 *1 (-990 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-663 (-975 *6))) (-5 *4 (-663 (-1207))) (-5 *5 (-1207))
+ (-4 *6 (-13 (-376) (-149)))
+ (-5 *2
+ (-2 (|:| -2625 (-663 (-560))) (|:| |poly| (-663 (-1201 *6)))
+ (|:| |prim| (-1201 *6))))
+ (-5 *1 (-990 *6)))))
+(((*1 *2)
+ (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303))
+ (-5 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303))
+ (-5 *1 (-1139 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-560))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-793)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-815)) (-4 *4 (-979 *5 *6 *7)) (-4 *5 (-466)) (-4 *7 (-871))
+ (-5 *1 (-464 *5 *6 *7 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-498 *3)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-663 (-560))) (-5 *3 (-663 (-948))) (-5 *4 (-114))
+ (-5 *1 (-1141)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 (-1207))) (-4 *6 (-376))
+ (-5 *2 (-663 (-305 (-975 *6)))) (-5 *1 (-552 *5 *6 *7))
+ (-4 *5 (-466)) (-4 *7 (-13 (-376) (-870))))))
(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-4 *1 (-107 *3)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-663 (-421 (-975 *6))))
+ (-5 *3 (-421 (-975 *6)))
+ (-4 *6 (-13 (-571) (-1069 (-560)) (-149)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-584 *6)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252))
+ (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-342)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-663 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815))
+ (-5 *2
+ (-2 (|:| |mval| (-711 *4)) (|:| |invmval| (-711 *4))
+ (|:| |genIdeal| (-518 *4 *5 *6 *7))))
+ (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-979 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4)
+ (-255 *4 (-421 (-560)))))
+ (-14 *4 (-663 (-1207))) (-14 *5 (-793)) (-5 *2 (-114))
+ (-5 *1 (-519 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1201 *7)) (-5 *3 (-560)) (-4 *7 (-979 *6 *4 *5))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080))
+ (-5 *1 (-333 *4 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815))
+ (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))))
(((*1 *2 *3 *4 *4 *5 *3 *6)
(|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-663 *3)) (-5 *6 (-1201 *3))
(-4 *3 (-13 (-435 *7) (-27) (-1233)))
@@ -6360,13 +7040,181 @@
(|:| |limitedlogs|
(-663 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
(-5 *1 (-575 *7 *3 *8)) (-4 *8 (-1132)))))
+(((*1 *1) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-560))))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-871)) (-5 *3 (-663 *6)) (-5 *5 (-663 *3))
+ (-5 *2
+ (-2 (|:| |f1| *3) (|:| |f2| (-663 *5)) (|:| |f3| *5)
+ (|:| |f4| (-663 *5))))
+ (-5 *1 (-1218 *6)) (-5 *4 (-663 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))))
+(((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))
+ ((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1) (-4 *1 (-1170))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-421 (-975 *6)) (-1196 (-1207) (-975 *6))))
+ (-5 *5 (-793)) (-4 *6 (-466)) (-5 *2 (-663 (-711 (-421 (-975 *6)))))
+ (-5 *1 (-304 *6)) (-5 *4 (-711 (-421 (-975 *6))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-421 (-975 *5)) (-1196 (-1207) (-975 *5))))
+ (|:| |eigmult| (-793)) (|:| |eigvec| (-663 *4))))
+ (-4 *5 (-466)) (-5 *2 (-663 (-711 (-421 (-975 *5)))))
+ (-5 *1 (-304 *5)) (-5 *4 (-711 (-421 (-975 *5)))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207))))
+ (-4 *6 (-815)) (-5 *2 (-663 (-663 (-560))))
+ (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-560)) (-4 *7 (-979 *4 *6 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-663 (-1207))) (-4 *5 (-571))
+ (-5 *2 (-663 (-663 (-305 (-421 (-975 *5)))))) (-5 *1 (-792 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-975 *4))) (-4 *4 (-571))
+ (-5 *2 (-663 (-663 (-305 (-421 (-975 *4)))))) (-5 *1 (-792 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-711 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3822 (-663 *6)))
+ *7 *6))
+ (-4 *6 (-376)) (-4 *7 (-680 *6))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1297 *6) "failed"))
+ (|:| -3822 (-663 (-1297 *6)))))
+ (-5 *1 (-835 *6 *7)) (-5 *4 (-1297 *6)))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-663 (-1207))) (-4 *4 (-1132))
+ (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4))))
+ (-5 *1 (-1106 *4 *5 *2))
+ (-4 *2 (-13 (-435 *5) (-911 *4) (-633 (-915 *4))))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *3 (-1132)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3))))
+ (-5 *1 (-1106 *3 *4 *2))
+ (-4 *2 (-13 (-435 *4) (-911 *3) (-633 (-915 *3)))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
(((*1 *1 *2 *3 *1)
(-12 (-5 *2 (-1123 (-975 (-560)))) (-5 *3 (-975 (-560)))
(-5 *1 (-342))))
((*1 *1 *2 *1) (-12 (-5 *2 (-1123 (-975 (-560)))) (-5 *1 (-342)))))
+(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-793))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-793)) (-4 *1 (-274 *4))
+ (-4 *4 (-1247))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1247))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252))
+ (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-376)) (-4 *2 (-927 *3)) (-5 *1 (-597 *2))
+ (-5 *3 (-1207))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-597 *2)) (-4 *2 (-376))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-887))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-921 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1247))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 (-793))) (-4 *1 (-929 *4))
+ (-4 *4 (-1132))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-793)) (-4 *1 (-929 *2)) (-4 *2 (-1132))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-663 *3)) (-4 *1 (-929 *3)) (-4 *3 (-1132))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1273 *3)) (-4 *3 (-1080)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175))
+ (-4 *5 (-1273 *4)) (-5 *2 (-711 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3))
+ (-5 *2 (-711 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-1091)) (-4 *3 (-1233))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1201 *1)) (-5 *3 (-1207)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-975 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-4 *1 (-29 *3)) (-4 *3 (-571))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-571)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-560)) (-5 *1 (-583 *3)) (-4 *3 (-1069 *2)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-391)) (-5 *1 (-1094)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-1080))
+ (-4 *2 (-1259 *3)))))
(((*1 *2 *3 *3)
(-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207))
(-5 *2 (-560)) (-5 *1 (-1145 *4 *5)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4509)) (-4 *1 (-385 *2)) (-4 *2 (-1247))
+ (-4 *2 (-871))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-114) *3 *3)) (|has| *1 (-6 -4509))
+ (-4 *1 (-385 *3)) (-4 *3 (-1247)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-1297 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-948)) (-5 *2 (-1303)) (-5 *1 (-217 *4))
+ (-4 *4
+ (-13 (-871)
+ (-10 -8 (-15 -1507 ((-1189) $ (-1207))) (-15 -3884 (*2 $))
+ (-15 -3150 (*2 $)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1303)) (-5 *1 (-217 *3))
+ (-4 *3
+ (-13 (-871)
+ (-10 -8 (-15 -1507 ((-1189) $ (-1207))) (-15 -3884 (*2 $))
+ (-15 -3150 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-516)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1207)) (-4 *4 (-1080)) (-4 *4 (-1132))
+ (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2030 (-560))))
+ (-4 *1 (-435 *4))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1080)) (-4 *4 (-1132))
+ (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2030 (-560))))
+ (-4 *1 (-435 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1143)) (-4 *3 (-1132))
+ (-5 *2 (-2 (|:| |var| (-630 *1)) (|:| -2030 (-560))))
+ (-4 *1 (-435 *3))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-915 *3)) (|:| -2030 (-793))))
+ (-5 *1 (-915 *3)) (-4 *3 (-1132))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-5 *2 (-2 (|:| |var| *5) (|:| -2030 (-793))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080))
+ (-4 *7 (-979 *6 *4 *5))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -2030 (-560))))
+ (-5 *1 (-980 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-376)
+ (-10 -8 (-15 -3913 ($ *7)) (-15 -2473 (*7 $))
+ (-15 -2484 (*7 $))))))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)) (-4 *2 (-559))))
+ ((*1 *1 *1) (-4 *1 (-1091))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-115)) (-5 *1 (-116 *2)) (-4 *2 (-1132)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6))
+ (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-793)) (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
(((*1 *1 *2 *1)
(-12 (-5 *2 (-1 (-560) (-560))) (-5 *1 (-374 *3)) (-4 *3 (-1132))))
((*1 *1 *2 *1)
@@ -6375,9 +7223,106 @@
(-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
(-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1132)))))
(((*1 *2 *1)
+ (-12 (-5 *2 (-972 *4)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
+ (-4 *4 (-1080)))))
+(((*1 *2 *3) (-12 (-5 *3 (-171 (-560))) (-5 *2 (-114)) (-5 *1 (-460))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4)
+ (-255 *4 (-421 (-560)))))
+ (-14 *4 (-663 (-1207))) (-14 *5 (-793)) (-5 *2 (-114))
+ (-5 *1 (-519 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-991 *3)) (-4 *3 (-559))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1252)) (-5 *2 (-114)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6))
+ (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-466)) (-4 *3 (-815)) (-4 *5 (-871)) (-5 *2 (-114))
+ (-5 *1 (-464 *4 *3 *5 *6)) (-4 *6 (-979 *4 *3 *5)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-114)) (-5 *1 (-851)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-270))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1189)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114))
+ (-4 *5 (-13 (-870) (-319) (-149) (-1051)))
+ (-5 *2 (-663 (-1077 *5 *6))) (-5 *1 (-1325 *5 *6 *7))
+ (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114))
+ (-4 *5 (-13 (-870) (-319) (-149) (-1051)))
+ (-5 *2 (-663 (-1077 *5 *6))) (-5 *1 (-1325 *5 *6 *7))
+ (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-975 *4)))
+ (-4 *4 (-13 (-870) (-319) (-149) (-1051)))
+ (-5 *2 (-663 (-1077 *4 *5))) (-5 *1 (-1325 *4 *5 *6))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207))))))
+(((*1 *2)
+ (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5)))
+ (-5 *2 (-793)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4))) (-5 *2 (-793))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))))
+(((*1 *2 *1)
(|partial| -12 (-5 *2 (-1092 (-1055 *3) (-1201 (-1055 *3))))
(-5 *1 (-1055 *3)) (-4 *3 (-13 (-870) (-376) (-1051))))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-195))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-313))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-315)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-863)) (-5 *4 (-1094)) (-5 *2 (-1066)) (-5 *1 (-862))))
+ ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1066)) (-5 *1 (-862))))
+ ((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-663 (-391))) (-5 *5 (-663 (-864 (-391))))
+ (-5 *6 (-663 (-326 (-391)))) (-5 *3 (-326 (-391))) (-5 *2 (-1066))
+ (-5 *1 (-862))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-391)))
+ (-5 *5 (-663 (-864 (-391)))) (-5 *2 (-1066)) (-5 *1 (-862))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-391))) (-5 *2 (-1066))
+ (-5 *1 (-862))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-326 (-391)))) (-5 *4 (-663 (-391)))
+ (-5 *2 (-1066)) (-5 *1 (-862)))))
+(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1207)) (-5 *4 (-975 (-560))) (-5 *2 (-342))
+ (-5 *1 (-344)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
+ (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
+ (|:| |relerr| (-229))))
+ (-5 *2 (-560)) (-5 *1 (-207)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *2 (-871))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-663 *4)) (-4 *4 (-376)) (-4 *2 (-1273 *4))
+ (-5 *1 (-952 *4 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-560))) (-5 *2 (-560)) (-5 *1 (-500 *4))
+ (-4 *4 (-1273 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-1189))
+ (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1066))
+ (-5 *1 (-772)))))
+(((*1 *2 *3)
(-12
(-5 *3
(-2 (|:| |pde| (-663 (-326 (-229))))
@@ -6389,872 +7334,268 @@
(|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189))
(|:| |tol| (-229))))
(-5 *2 (-114)) (-5 *1 (-213)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-861))
+ (-5 *3
+ (-2 (|:| |fn| (-326 (-229))) (|:| -3239 (-663 (-229)))
+ (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229))))
+ (|:| |ub| (-663 (-864 (-229))))))
+ (-5 *2 (-1066))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-861))
+ (-5 *3
+ (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3239 (-663 (-229)))))
+ (-5 *2 (-1066)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-195))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-313))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-315)))))
+(((*1 *1 *1) (-5 *1 (-1094))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3))
+ (-4 *3 (-13 (-376) (-1233) (-1033))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871)) (-4 *2 (-466)))))
+(((*1 *1 *1 *1) (-4 *1 (-487))) ((*1 *1 *1 *1) (-4 *1 (-783))))
+(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-459 *3)) (-4 *3 (-1080)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-466) (-149))) (-5 *2 (-419 *3))
+ (-5 *1 (-100 *4 *3)) (-4 *3 (-1273 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-663 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-13 (-466) (-149)))
+ (-5 *2 (-419 *3)) (-5 *1 (-100 *5 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1022 *2)) (-4 *2 (-571)) (-5 *1 (-144 *2 *4 *3))
+ (-4 *3 (-385 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1022 *2)) (-4 *2 (-571)) (-5 *1 (-517 *2 *4 *5 *3))
+ (-4 *5 (-385 *2)) (-4 *3 (-385 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-711 *4)) (-4 *4 (-1022 *2)) (-4 *2 (-571))
+ (-5 *1 (-715 *2 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1022 *2)) (-4 *2 (-571)) (-5 *1 (-1268 *2 *4 *3))
+ (-4 *3 (-1273 *4)))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871))
(-4 *3 (-1096 *6 *7 *8))
(-5 *2
(-2 (|:| |done| (-663 *4))
- (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4))))))
+ (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4))))))
(-5 *1 (-1100 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3))))
((*1 *2 *3 *4)
(-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
(-4 *3 (-1096 *5 *6 *7))
(-5 *2
(-2 (|:| |done| (-663 *4))
- (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4))))))
+ (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4))))))
(-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))
((*1 *2 *3 *4 *5)
(-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871))
(-4 *3 (-1096 *6 *7 *8))
(-5 *2
(-2 (|:| |done| (-663 *4))
- (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4))))))
+ (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4))))))
(-5 *1 (-1176 *6 *7 *8 *3 *4)) (-4 *4 (-1140 *6 *7 *8 *3))))
((*1 *2 *3 *4)
(-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
(-4 *3 (-1096 *5 *6 *7))
(-5 *2
(-2 (|:| |done| (-663 *4))
- (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4))))))
+ (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4))))))
(-5 *1 (-1176 *5 *6 *7 *3 *4)) (-4 *4 (-1140 *5 *6 *7 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))
- (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1170))))
-(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-956)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *7)) (-4 *7 (-871)) (-4 *5 (-939)) (-4 *6 (-815))
- (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-419 (-1201 *8)))
- (-5 *1 (-936 *5 *6 *7 *8)) (-5 *4 (-1201 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-939)) (-4 *5 (-1273 *4)) (-5 *2 (-419 (-1201 *5)))
- (-5 *1 (-937 *4 *5)) (-5 *3 (-1201 *5)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-793)) (-5 *2 (-114)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-663 (-1207))) (-4 *4 (-1132))
- (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4))))
- (-5 *1 (-1106 *4 *5 *2))
- (-4 *2 (-13 (-435 *5) (-911 *4) (-633 (-915 *4))))))
- ((*1 *1 *2 *2)
- (-12 (-4 *3 (-1132)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3))))
- (-5 *1 (-1106 *3 *4 *2))
- (-4 *2 (-13 (-435 *4) (-911 *3) (-633 (-915 *3)))))))
-(((*1 *2)
- (-12
- (-5 *2 (-2 (|:| -3229 (-663 (-1207))) (|:| -3257 (-663 (-1207)))))
- (-5 *1 (-1250)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-571) (-1069 (-560)))) (-5 *1 (-191 *3 *2))
- (-4 *2 (-13 (-27) (-1233) (-435 (-171 *3))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560))))
- (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3))))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-560)) (-5 *1 (-248)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
- (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-229)))
- (-5 *2 (-1066)) (-5 *1 (-779)))))
-(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1210))))
- ((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-560)) (-5 *1 (-248))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-663 (-1189))) (-5 *3 (-560)) (-5 *4 (-1189))
- (-5 *1 (-248))))
- ((*1 *1 *1) (-5 *1 (-887)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1276 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-663 (-972 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
- (-4 *4 (-1080)))))
+ (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-793))
+ (-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))))
+(((*1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-560))))
+ ((*1 *1 *1) (-5 *1 (-1151))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1185 (-1185 *4))) (-5 *2 (-1185 *4)) (-5 *1 (-1191 *4))
- (-4 *4 (-1080)))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5))
- (-4 *5 (-13 (-376) (-149) (-1069 (-560))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-421 *6)) (|:| |h| *6)
- (|:| |c1| (-421 *6)) (|:| |c2| (-421 *6)) (|:| -3735 *6)))
- (-5 *1 (-1047 *5 *6)) (-5 *3 (-421 *6)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-115)) (-5 *4 (-793))
- (-4 *5 (-13 (-466) (-1069 (-560)))) (-4 *5 (-571))
- (-5 *1 (-41 *5 *2)) (-4 *2 (-435 *5))
- (-4 *2
+ (-12 (-4 *4 (-571)) (-5 *2 (-1201 *3)) (-5 *1 (-41 *4 *3))
+ (-4 *3
(-13 (-376) (-310)
- (-10 -8 (-15 -3757 ((-1156 *5 (-630 $)) $))
- (-15 -3771 ((-1156 *5 (-630 $)) $))
- (-15 -1578 ($ (-1156 *5 (-630 $))))))))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-178)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-948)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381))))
- ((*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-175))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1297 *4)) (-5 *3 (-948)) (-4 *4 (-363))
- (-5 *1 (-542 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2))
- (-4 *5 (-245 *3 *2)) (-4 *2 (-1080)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7))
- (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -4297 *4))))
- (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-1037)))))
-(((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-560)) (-4 *3 (-175)) (-4 *5 (-385 *3))
- (-4 *6 (-385 *3)) (-5 *1 (-710 *3 *5 *6 *2))
- (-4 *2 (-708 *3 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-432 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-711 *8)) (-5 *4 (-793)) (-4 *8 (-979 *5 *7 *6))
- (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207))))
- (-4 *7 (-815))
- (-5 *2
- (-663
- (-2 (|:| |det| *8) (|:| |rows| (-663 (-560)))
- (|:| |cols| (-663 (-560))))))
- (-5 *1 (-953 *5 *6 *7 *8)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-427 *3 *4 *5 *6)) (-4 *6 (-1069 *4)) (-4 *3 (-319))
- (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-4 *6 (-424 *4 *5))
- (-14 *7 (-1297 *6)) (-5 *1 (-429 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1297 *6)) (-4 *6 (-424 *4 *5)) (-4 *4 (-1022 *3))
- (-4 *5 (-1273 *4)) (-4 *3 (-319)) (-5 *1 (-429 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-419 (-1201 (-560)))) (-5 *1 (-194)) (-5 *3 (-560)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2))
- (-4 *4 (-571)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1132)) (-4 *6 (-1132))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-706 *4 *5 *6)) (-4 *4 (-1132)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207))
- (-14 *4 *2))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *5 (-871)) (-5 *2 (-114)))))
-(((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1093))))
- ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1093)))))
+ (-10 -8 (-15 -2473 ((-1156 *4 (-630 $)) $))
+ (-15 -2484 ((-1156 *4 (-630 $)) $))
+ (-15 -3913 ($ (-1156 *4 (-630 $))))))))))
(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3))
- (-4 *3 (-1273 *2)))))
-(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1072)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1185 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1080))
- (-5 *3 (-421 (-560))) (-5 *1 (-1191 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1247))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-975 (-391))) (-5 *1 (-352 *3 *4 *5))
- (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207)))
- (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-421 (-975 (-391)))) (-5 *1 (-352 *3 *4 *5))
- (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207)))
- (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5))
- (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207)))
- (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-975 (-560))) (-5 *1 (-352 *3 *4 *5))
- (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207)))
- (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-421 (-975 (-560)))) (-5 *1 (-352 *3 *4 *5))
- (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207)))
- (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-326 (-560))) (-5 *1 (-352 *3 *4 *5))
- (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207)))
- (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1207)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 *2))
- (-14 *4 (-663 *2)) (-4 *5 (-401))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-326 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5))
- (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207)))))
- ((*1 *1 *2) (-12 (-5 *2 (-711 (-421 (-975 (-560))))) (-4 *1 (-398))))
- ((*1 *1 *2) (-12 (-5 *2 (-711 (-421 (-975 (-391))))) (-4 *1 (-398))))
- ((*1 *1 *2) (-12 (-5 *2 (-711 (-975 (-560)))) (-4 *1 (-398))))
- ((*1 *1 *2) (-12 (-5 *2 (-711 (-975 (-391)))) (-4 *1 (-398))))
- ((*1 *1 *2) (-12 (-5 *2 (-711 (-326 (-560)))) (-4 *1 (-398))))
- ((*1 *1 *2) (-12 (-5 *2 (-711 (-326 (-391)))) (-4 *1 (-398))))
- ((*1 *1 *2) (-12 (-5 *2 (-421 (-975 (-560)))) (-4 *1 (-411))))
- ((*1 *1 *2) (-12 (-5 *2 (-421 (-975 (-391)))) (-4 *1 (-411))))
- ((*1 *1 *2) (-12 (-5 *2 (-975 (-560))) (-4 *1 (-411))))
- ((*1 *1 *2) (-12 (-5 *2 (-975 (-391))) (-4 *1 (-411))))
- ((*1 *1 *2) (-12 (-5 *2 (-326 (-560))) (-4 *1 (-411))))
- ((*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-4 *1 (-411))))
- ((*1 *1 *2) (-12 (-5 *2 (-1297 (-421 (-975 (-560))))) (-4 *1 (-455))))
- ((*1 *1 *2) (-12 (-5 *2 (-1297 (-421 (-975 (-391))))) (-4 *1 (-455))))
- ((*1 *1 *2) (-12 (-5 *2 (-1297 (-975 (-560)))) (-4 *1 (-455))))
- ((*1 *1 *2) (-12 (-5 *2 (-1297 (-975 (-391)))) (-4 *1 (-455))))
- ((*1 *1 *2) (-12 (-5 *2 (-1297 (-326 (-560)))) (-4 *1 (-455))))
- ((*1 *1 *2) (-12 (-5 *2 (-1297 (-326 (-391)))) (-4 *1 (-455))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-3
- (|:| |nia|
- (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
- (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
- (|:| |relerr| (-229))))
- (|:| |mdnia|
- (-2 (|:| |fn| (-326 (-229)))
- (|:| -3471 (-663 (-1120 (-864 (-229)))))
- (|:| |abserr| (-229)) (|:| |relerr| (-229))))))
- (-5 *1 (-791))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |xinit| (-229)) (|:| |xend| (-229))
- (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229)))
- (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229)))
- (|:| |abserr| (-229)) (|:| |relerr| (-229))))
- (-5 *1 (-830))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229)))
- (|:| |lb| (-663 (-864 (-229))))
- (|:| |cf| (-663 (-326 (-229))))
- (|:| |ub| (-663 (-864 (-229))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-663 (-326 (-229))))
- (|:| -3161 (-663 (-229)))))))
- (-5 *1 (-863))))
- ((*1 *2 *1)
+ (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
+ (-4 *4 (-1080)))))
+(((*1 *2 *2)
(-12
(-5 *2
- (-2 (|:| |pde| (-663 (-326 (-229))))
- (|:| |constraints|
- (-663
- (-2 (|:| |start| (-229)) (|:| |finish| (-229))
- (|:| |grid| (-793)) (|:| |boundaryType| (-560))
- (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229))))))
- (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189))
- (|:| |tol| (-229))))
- (-5 *1 (-925))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-1080))
- (-4 *4 (-815)) (-4 *5 (-871)) (-4 *1 (-1007 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-1069 *2)) (-4 *2 (-1247))))
- ((*1 *1 *2)
- (-2304
- (-12 (-5 *2 (-975 *3))
- (-12 (-1937 (-4 *3 (-38 (-421 (-560)))))
- (-1937 (-4 *3 (-38 (-560)))) (-4 *5 (-633 (-1207))))
- (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815))
- (-4 *5 (-871)))
- (-12 (-5 *2 (-975 *3))
- (-12 (-1937 (-4 *3 (-559))) (-1937 (-4 *3 (-38 (-421 (-560)))))
- (-4 *3 (-38 (-560))) (-4 *5 (-633 (-1207))))
- (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815))
- (-4 *5 (-871)))
- (-12 (-5 *2 (-975 *3))
- (-12 (-1937 (-4 *3 (-1022 (-560)))) (-4 *3 (-38 (-421 (-560))))
- (-4 *5 (-633 (-1207))))
- (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815))
- (-4 *5 (-871)))))
- ((*1 *1 *2)
- (-2304
- (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5))
- (-12 (-1937 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560)))
- (-4 *5 (-633 (-1207))))
- (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))
- (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5))
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207))))
- (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-975 (-421 (-560)))) (-4 *1 (-1096 *3 *4 *5))
- (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207))) (-4 *3 (-1080))
- (-4 *4 (-815)) (-4 *5 (-871)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-114) *2)) (-4 *1 (-153 *2))
- (-4 *2 (-1247)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5))
- (-14 *3 (-560)) (-14 *4 (-793)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1207))
- (-4 *4 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-826 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1233) (-989))))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-630 *3))
- (-4 *3 (-13 (-435 *5) (-27) (-1233)))
- (-4 *5 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
- (-5 *2 (-2 (|:| -3887 *3) (|:| |coeff| *3)))
- (-5 *1 (-580 *5 *3 *6)) (-4 *6 (-1132)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1201 *1)) (-5 *3 (-1207)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-975 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1207)) (-4 *1 (-29 *3)) (-4 *3 (-571))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-571))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1201 *2)) (-5 *4 (-1207)) (-4 *2 (-435 *5))
- (-5 *1 (-32 *5 *2)) (-4 *5 (-571))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1201 *1)) (-5 *3 (-948)) (-4 *1 (-1043))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1201 *1)) (-5 *3 (-948)) (-5 *4 (-887))
- (-4 *1 (-1043))))
+ (-663
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-793)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-815)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-466)) (-4 *5 (-871))
+ (-5 *1 (-464 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-571)) (-5 *1 (-1000 *2 *3)) (-4 *3 (-1273 *2)))))
+(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-781)))))
+(((*1 *1 *1) (-4 *1 (-559))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1297 (-1207))) (-5 *3 (-1297 (-467 *4 *5 *6 *7)))
+ (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-948))
+ (-14 *6 (-663 (-1207))) (-14 *7 (-1297 (-711 *4)))))
((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-948)) (-4 *4 (-13 (-870) (-376)))
- (-4 *1 (-1099 *4 *2)) (-4 *2 (-1273 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-571) (-1069 (-560)) (-660 (-560))))
- (-5 *1 (-288 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1207))
- (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560))))
- (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 *1)) (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *5))
- (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
+ (-12 (-5 *2 (-1207)) (-5 *3 (-1297 (-467 *4 *5 *6 *7)))
+ (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-948))
+ (-14 *6 (-663 *2)) (-14 *7 (-1297 (-711 *4)))))
((*1 *1 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *5))
- (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
+ (-12 (-5 *2 (-1297 (-467 *3 *4 *5 *6))) (-5 *1 (-467 *3 *4 *5 *6))
+ (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207)))
+ (-14 *6 (-1297 (-711 *3)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1080)) (-5 *1 (-711 *3))))
+ (-12 (-5 *2 (-1297 (-1207))) (-5 *1 (-467 *3 *4 *5 *6))
+ (-4 *3 (-175)) (-14 *4 (-948)) (-14 *5 (-663 (-1207)))
+ (-14 *6 (-1297 (-711 *3)))))
((*1 *1 *2)
- (-12 (-5 *2 (-663 *4)) (-4 *4 (-1080)) (-4 *1 (-1154 *3 *4 *5 *6))
- (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-38 (-421 (-560))))
- (-4 *2 (-175)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-127 *2)) (-4 *2 (-1132)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1201 *9)) (-5 *4 (-663 *7)) (-5 *5 (-663 *8))
- (-4 *7 (-871)) (-4 *8 (-1080)) (-4 *9 (-979 *8 *6 *7))
- (-4 *6 (-815)) (-5 *2 (-1201 *8)) (-5 *1 (-333 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-663 (-663 (-229)))) (-5 *4 (-229))
- (-5 *2 (-663 (-972 *4))) (-5 *1 (-1244)) (-5 *3 (-972 *4)))))
-(((*1 *1 *1 *1) (-5 *1 (-887))))
-(((*1 *1) (-5 *1 (-342))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1120 (-864 (-391)))) (-5 *2 (-1120 (-864 (-229))))
- (-5 *1 (-315)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-376)) (-5 *1 (-1056 *3 *2)) (-4 *2 (-680 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| -3192 *3) (|:| -3967 (-663 *5))))
- (-5 *1 (-1056 *5 *3)) (-5 *4 (-663 *5)) (-4 *3 (-680 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-4 *1 (-933 *3)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-5 *3 (-520)) (-5 *2 (-713 (-1134))) (-5 *1 (-303)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210))))
- ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1211)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1128 *3)) (-5 *1 (-931 *3)) (-4 *3 (-381))
- (-4 *3 (-1132)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))
- (-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1155 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-663 (-663 (-663 *5)))) (-5 *3 (-1 (-114) *5 *5))
- (-5 *4 (-663 *5)) (-4 *5 (-871)) (-5 *1 (-1218 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1247))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-793))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-793)) (-4 *1 (-274 *4))
- (-4 *4 (-1247))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1247))))
- ((*1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1080))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-921 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1247))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 (-793))) (-4 *1 (-929 *4))
- (-4 *4 (-1132))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-793)) (-4 *1 (-929 *2)) (-4 *2 (-1132))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *1 (-929 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-711 (-171 (-421 (-560))))) (-5 *2 (-663 (-171 *4)))
- (-5 *1 (-786 *4)) (-4 *4 (-13 (-376) (-870))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-711 *4)) (-4 *4 (-376)) (-5 *2 (-1201 *4))
- (-5 *1 (-546 *4 *5 *6)) (-4 *5 (-376)) (-4 *6 (-13 (-376) (-870))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132))
- (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-597 *3) *3 (-1207)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1207)))
- (-4 *3 (-296)) (-4 *3 (-649)) (-4 *3 (-1069 *4)) (-4 *3 (-435 *7))
- (-5 *4 (-1207)) (-4 *7 (-633 (-915 (-560)))) (-4 *7 (-466))
- (-4 *7 (-911 (-560))) (-4 *7 (-1132)) (-5 *2 (-597 *3))
- (-5 *1 (-587 *7 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207))
- (-14 *4 *2))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-119 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-119 *2)) (-14 *2 (-560))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-895 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-895 *2)) (-14 *2 (-560))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-560)) (-14 *3 *2) (-5 *1 (-896 *3 *4))
- (-4 *4 (-894 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-560)) (-5 *1 (-896 *2 *3)) (-4 *3 (-894 *2))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-560)) (-4 *1 (-1261 *3 *4)) (-4 *3 (-1080))
- (-4 *4 (-1290 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1261 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-1290 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-954)))))
-(((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-571)) (-5 *2 (-663 *3)) (-5 *1 (-1000 *4 *3))
- (-4 *3 (-1273 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *1 (-103 *3)) (-4 *3 (-1132)))))
-(((*1 *1) (-5 *1 (-450))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)) (-4 *2 (-571))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)) (-4 *2 (-571)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-376)) (-5 *2 (-663 *3)) (-5 *1 (-974 *4 *3))
- (-4 *3 (-1273 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-793)) (-5 *2 (-114)) (-5 *1 (-601 *3)) (-4 *3 (-559)))))
-(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-339 *3)) (-4 *3 (-1247))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-793)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1247))
- (-14 *4 (-560)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-229)))
- (-5 *2 (-1066)) (-5 *1 (-779)))))
-(((*1 *2 *3) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-576)) (-5 *3 (-560))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1201 (-421 (-560)))) (-5 *1 (-971)) (-5 *3 (-560)))))
-(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-956)))))
-(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))))
-(((*1 *1) (-5 *1 (-1303))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-114))
- (-5 *2 (-1066)) (-5 *1 (-767)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))))
-(((*1 *1 *1 *1) (-5 *1 (-163)))
- ((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-163)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1201 *1)) (-5 *4 (-1207)) (-4 *1 (-27))
- (-5 *2 (-663 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1201 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *2 (-663 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-571)) (-5 *2 (-663 *1)) (-4 *1 (-29 *3)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1297 (-560))) (-5 *3 (-560)) (-5 *1 (-1141))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1297 (-560))) (-5 *3 (-663 (-560))) (-5 *4 (-560))
- (-5 *1 (-1141)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1066))
- (-5 *1 (-777)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
-(((*1 *1) (-5 *1 (-1113))))
-(((*1 *1 *1 *1) (-4 *1 (-145)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559))))
- ((*1 *1 *1 *1) (-5 *1 (-887)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1078))
- (-5 *3 (-560)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1247))
- (-5 *2 (-663 *3)))))
-(((*1 *2) (-12 (-5 *2 (-663 (-793))) (-5 *1 (-1302))))
- ((*1 *2 *2) (-12 (-5 *2 (-663 (-793))) (-5 *1 (-1302)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-421 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-571))
- (-4 *4 (-1080)) (-4 *2 (-1290 *4)) (-5 *1 (-1292 *4 *5 *6 *2))
- (-4 *6 (-680 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-1297 *5))) (-5 *4 (-560)) (-5 *2 (-1297 *5))
- (-5 *1 (-1061 *5)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1080)))))
-(((*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193))))
- ((*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1247))))
- ((*1 *1 *1) (-4 *1 (-894 *2)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1004 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-814))
- (-4 *4 (-871)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1247)) (-5 *1 (-897 *3 *2)) (-4 *3 (-1247))))
- ((*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1116)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1297 (-1297 *4))) (-4 *4 (-1080)) (-5 *2 (-711 *4))
- (-5 *1 (-1061 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 (-146))) (-5 *1 (-143))))
- ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-143)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-559))))
-(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175))))
- ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))))
-(((*1 *1) (-5 *1 (-450))))
-(((*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-541)) (-5 *3 (-131)) (-5 *2 (-793)))))
-(((*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1080)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-887)))))
-(((*1 *1) (-5 *1 (-846))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319))
- (-5 *2 (-663 (-793))) (-5 *1 (-800 *3 *4 *5 *6 *7))
- (-4 *3 (-1273 *6)) (-4 *7 (-979 *6 *4 *5)))))
+ (-12 (-5 *2 (-1207)) (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175))
+ (-14 *4 (-948)) (-14 *5 (-663 *2)) (-14 *6 (-1297 (-711 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-467 *2 *3 *4 *5)) (-4 *2 (-175)) (-14 *3 (-948))
+ (-14 *4 (-663 (-1207))) (-14 *5 (-1297 (-711 *2))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -2609 (-663 (-2 (|:| |irr| *10) (|:| -4181 (-560)))))))
+ (-5 *6 (-663 *3)) (-5 *7 (-663 *8)) (-4 *8 (-871)) (-4 *3 (-319))
+ (-4 *10 (-979 *3 *9 *8)) (-4 *9 (-815))
+ (-5 *2
+ (-2 (|:| |polfac| (-663 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-663 (-1201 *3)))))
+ (-5 *1 (-644 *8 *9 *3 *10)) (-5 *4 (-663 (-1201 *3))))))
(((*1 *1 *2)
- (-12 (-5 *2 (-663 (-560))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080))
- (-14 *4 (-663 (-1207)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
- (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
- (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *1 *1) (-4 *1 (-296)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
- (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
+ (-12 (-5 *2 (-948)) (-4 *1 (-245 *3 *4)) (-4 *4 (-1080))
+ (-4 *4 (-1247))))
((*1 *1 *2)
- (-12 (-5 *2 (-686 *3 *4)) (-4 *3 (-871))
- (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-5 *1 (-646 *3 *4 *5))
- (-14 *5 (-948))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1192 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-793)) (-4 *4 (-13 (-1080) (-739 (-421 (-560)))))
- (-4 *5 (-871)) (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1320 *5 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-793)) (-5 *1 (-1318 *3 *4))
- (-4 *4 (-739 (-421 (-560)))) (-4 *3 (-871)) (-4 *4 (-175)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1141)) (-5 *3 (-560)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1066)) (-5 *3 (-1207)) (-5 *1 (-278)))))
-(((*1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-5 *1 (-146)))
- ((*1 *1 *1) (-4 *1 (-1175))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407)))))
-(((*1 *1 *1) (-4 *1 (-571))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136)))))
-(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-146)))))
-(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1247)) (-5 *2 (-793))
- (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-133))
- (-5 *2 (-793))))
- ((*1 *2)
- (-12 (-4 *4 (-376)) (-5 *2 (-793)) (-5 *1 (-340 *3 *4))
- (-4 *3 (-341 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-374 *3)) (-4 *3 (-1132))))
- ((*1 *2) (-12 (-4 *1 (-381)) (-5 *2 (-793))))
- ((*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1132)) (-5 *2 (-793))))
+ (-12 (-14 *3 (-663 (-1207))) (-4 *4 (-175))
+ (-4 *5 (-245 (-2256 *3) (-793)))
+ (-14 *6
+ (-1 (-114) (-2 (|:| -1591 *2) (|:| -2030 *5))
+ (-2 (|:| -1591 *2) (|:| -2030 *5))))
+ (-5 *1 (-475 *3 *4 *2 *5 *6 *7)) (-4 *2 (-871))
+ (-4 *7 (-979 *4 *5 (-888 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175))
+ (-4 *5 (-1273 *4)) (-5 *2 (-711 *4))))
((*1 *2)
- (-12 (-4 *4 (-1132)) (-5 *2 (-793)) (-5 *1 (-439 *3 *4))
- (-4 *3 (-440 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-793)) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1132))
- (-4 *4 (-23)) (-14 *5 *4)))
+ (-12 (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-711 *4))
+ (-5 *1 (-423 *3 *4 *5)) (-4 *3 (-424 *4 *5))))
((*1 *2)
- (-12 (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-793))
- (-5 *1 (-745 *3 *4 *5)) (-4 *3 (-746 *4 *5))))
- ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1037))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3))
- (-4 *3 (-1273 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1185 (-663 (-560)))) (-5 *1 (-908))
- (-5 *3 (-663 (-560)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1185 (-663 (-560)))) (-5 *1 (-908))
- (-5 *3 (-663 (-560))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-663 (-495 *3 *4))) (-14 *3 (-663 (-1207)))
- (-4 *4 (-466)) (-5 *1 (-650 *3 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-844)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-376))
- (-5 *2
- (-2 (|:| A (-711 *5))
- (|:| |eqs|
- (-663
- (-2 (|:| C (-711 *5)) (|:| |g| (-1297 *5)) (|:| -3192 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-835 *5 *6)) (-5 *3 (-711 *5)) (-5 *4 (-1297 *5))
- (-4 *6 (-680 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-376)) (-4 *6 (-680 *5))
- (-5 *2 (-2 (|:| -3822 (-711 *6)) (|:| |vec| (-1297 *5))))
- (-5 *1 (-835 *5 *6)) (-5 *3 (-711 *6)) (-5 *4 (-1297 *5)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-571))))
- ((*1 *1 *1) (|partial| -4 *1 (-744))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-421 (-560)))
- (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560))))
- (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-1212))) (-5 *1 (-1212))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-520)) (-5 *3 (-663 (-1212))) (-5 *1 (-1212)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-245 *3 *2)) (-4 *2 (-1247)) (-4 *2 (-1080))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-887))))
- ((*1 *1 *1) (-5 *1 (-887)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-972 (-229))) (-5 *2 (-229)) (-5 *1 (-1244))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1080)))))
-(((*1 *2 *3 *1)
- (-12
- (-5 *2
- (-2 (|:| |cycle?| (-114)) (|:| -2513 (-793)) (|:| |period| (-793))))
- (-5 *1 (-1185 *4)) (-4 *4 (-1247)) (-5 *3 (-793)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1080))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229))
- (-5 *2 (-1066)) (-5 *1 (-772)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-226 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-4 *1 (-263 *3))))
- ((*1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-114))
- (-5 *2
- (-2 (|:| |contp| (-560))
- (|:| -3764 (-663 (-2 (|:| |irr| *3) (|:| -2929 (-560)))))))
- (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-114))
- (-5 *2
- (-2 (|:| |contp| (-560))
- (|:| -3764 (-663 (-2 (|:| |irr| *3) (|:| -2929 (-560)))))))
- (-5 *1 (-1263 *3)) (-4 *3 (-1273 (-560))))))
+ (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3))
+ (-5 *2 (-711 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-560))))
+ ((*1 *1 *1 *1) (-5 *1 (-1151))))
(((*1 *1) (-5 *1 (-623))))
-(((*1 *2 *2) (-12 (-5 *2 (-663 (-326 (-229)))) (-5 *1 (-278)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-871))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1247))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-871))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-663 *1)) (-4 *1 (-1165 *3)) (-4 *3 (-1080))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-972 *3)))))
((*1 *1 *2)
- (-12 (-5 *2 (-663 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4))
- (-14 *3 (-948)) (-4 *4 (-1080))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-777)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-663 *1))
- (-4 *1 (-1102 *4 *5 *6 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-51)) (-5 *1 (-1226)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-793)) (-5 *2 (-1266 *5 *4)) (-5 *1 (-1205 *4 *5 *6))
- (-4 *4 (-1080)) (-14 *5 (-1207)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-793)) (-5 *2 (-1266 *5 *4)) (-5 *1 (-1287 *4 *5 *6))
- (-4 *4 (-1080)) (-14 *5 (-1207)) (-14 *6 *4))))
-(((*1 *2)
- (-12 (-5 *2 (-114)) (-5 *1 (-1185 *3)) (-4 *3 (-1132))
- (-4 *3 (-1247)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))))
+ (-12 (-5 *2 (-663 (-972 *3))) (-4 *3 (-1080)) (-4 *1 (-1165 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-663 (-663 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-663 (-972 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))))
(((*1 *2 *3)
(-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946))))
((*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229)))
- (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-229))
- (-5 *2 (-1066)) (-5 *1 (-771)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
- (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
- (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-663 (-711 (-326 (-560))))) (-5 *1 (-1059)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+(((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))
+ ((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-133))))
+(((*1 *1) (-5 *1 (-1300))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-887)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4508)) (-4 *1 (-503 *3)) (-4 *3 (-1247))
+ (-4 *3 (-1132)) (-5 *2 (-114))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-931 *4)) (-4 *4 (-1132)) (-5 *2 (-114))
+ (-5 *1 (-934 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-948)) (-5 *2 (-114)) (-5 *1 (-1133 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))
+ (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-514 *2)) (-14 *2 (-560))))
+ ((*1 *1 *1 *1) (-5 *1 (-1151))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-975 (-560))) (-5 *2 (-663 *1)) (-4 *1 (-1043))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-975 (-421 (-560)))) (-5 *2 (-663 *1)) (-4 *1 (-1043))))
- ((*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-1043)) (-5 *2 (-663 *1))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1201 (-560))) (-5 *2 (-663 *1)) (-4 *1 (-1043))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1201 (-421 (-560)))) (-5 *2 (-663 *1)) (-4 *1 (-1043))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1201 *1)) (-4 *1 (-1043)) (-5 *2 (-663 *1))))
+ (-12 (-4 *4 (-939)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-419 (-1201 *7)))
+ (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-1201 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-870) (-376))) (-4 *3 (-1273 *4)) (-5 *2 (-663 *1))
- (-4 *1 (-1099 *4 *3)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-560)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-419 *2)) (-4 *2 (-571)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1278 *3 *4 *5)) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376))
- (-14 *4 (-1207)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-560))))
- ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-419 *3)) (-4 *3 (-571))))
- ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-721))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1132)) (-5 *1 (-735 *3 *2 *4)) (-4 *3 (-871))
- (-14 *4
- (-1 (-114) (-2 (|:| -3128 *3) (|:| -3205 *2))
- (-2 (|:| -3128 *3) (|:| -3205 *2)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))))
+ (-12 (-4 *4 (-939)) (-4 *5 (-1273 *4)) (-5 *2 (-419 (-1201 *5)))
+ (-5 *1 (-937 *4 *5)) (-5 *3 (-1201 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-677 (-421 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-832 *4 *2))
- (-4 *4 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-678 *2 (-421 *2))) (-4 *2 (-1273 *4))
- (-5 *1 (-832 *4 *2))
- (-4 *4 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-793)) (-4 *2 (-1132))
- (-5 *1 (-700 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-376) (-149)))
- (-5 *2 (-663 (-2 (|:| -3205 (-793)) (|:| -3355 *4) (|:| |num| *4))))
- (-5 *1 (-413 *3 *4)) (-4 *4 (-1273 *3)))))
+ (|partial| -12 (-5 *2 (-560)) (-5 *1 (-1230 *3)) (-4 *3 (-1080)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1170))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-948)) (-5 *1 (-1133 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1170))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-560)) (-4 *4 (-175)) (-4 *5 (-385 *4))
+ (-4 *6 (-385 *4)) (-5 *1 (-710 *4 *5 *6 *2))
+ (-4 *2 (-708 *4 *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-793))))
+ ((*1 *1 *1) (-4 *1 (-416))))
+(((*1 *1 *1 *1) (-4 *1 (-559))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1290 *4)) (-5 *1 (-1291 *4 *2))
+ (-4 *4 (-38 (-421 (-560)))))))
(((*1 *2 *2 *2)
- (-12
+ (-12 (-4 *3 (-1247)) (-5 *1 (-185 *3 *2)) (-4 *2 (-696 *3)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -4378 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-376)) (-4 *7 (-1273 *6))
(-5 *2
- (-2 (|:| -1954 (-711 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-711 *3))))
- (-4 *3 (-13 (-319) (-10 -8 (-15 -3023 ((-419 $) $)))))
- (-4 *4 (-1273 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-864 (-229)))) (-5 *4 (-229)) (-5 *2 (-663 *4))
- (-5 *1 (-278)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1297 (-3 (-482) "undefined"))) (-5 *1 (-1300)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559))
- (-5 *2 (-421 (-560)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-421 (-560))) (-5 *1 (-419 *3)) (-4 *3 (-559))
- (-4 *3 (-571))))
- ((*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-421 (-560)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-559))
- (-5 *2 (-421 (-560)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-421 (-560))) (-5 *1 (-854 *3)) (-4 *3 (-559))
- (-4 *3 (-1132))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-421 (-560))) (-5 *1 (-864 *3)) (-4 *3 (-559))
- (-4 *3 (-1132))))
+ (-3 (-2 (|:| |answer| (-421 *7)) (|:| |a0| *6))
+ (-2 (|:| -4378 (-421 *7)) (|:| |coeff| (-421 *7))) "failed"))
+ (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1080)) (-4 *3 (-871))
+ (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-663 (-793)))))
((*1 *2 *1)
- (-12 (-4 *1 (-1029 *3)) (-4 *3 (-175)) (-4 *3 (-559))
- (-5 *2 (-421 (-560)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-421 (-560))) (-5 *1 (-1039 *3)) (-4 *3 (-1069 *2)))))
-(((*1 *1) (-5 *1 (-623))))
+ (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871))
+ (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-663 (-793))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-711 *2)) (-4 *4 (-1273 *2))
- (-4 *2 (-13 (-319) (-10 -8 (-15 -3023 ((-419 $) $)))))
- (-5 *1 (-513 *2 *4 *5)) (-4 *5 (-424 *2 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2))
- (-4 *5 (-245 *3 *2)) (-4 *2 (-1080)))))
+ (-12 (-5 *3 (-1189)) (-5 *2 (-663 (-1212))) (-5 *1 (-905)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1078)))))
+(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-956)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132))
+ (-5 *2 (-2 (|:| -1438 *3) (|:| -3067 *4))))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-793)) (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *5))
+ (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-793)) (-4 *1 (-1296 *3)) (-4 *3 (-23)) (-4 *3 (-1247)))))
(((*1 *2 *3)
(-12
(-5 *3
+ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
+ (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
+ (|:| |relerr| (-229))))
+ (-5 *2
(-2
(|:| |endPointContinuity|
(-3 (|:| |continuous| "Continuous at the end points")
@@ -7270,506 +7611,373 @@
(-3 (|:| |str| (-1185 (-229)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -3471
+ (|:| -1585
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-1066)) (-5 *1 (-315)))))
-(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1037)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1105))))
- ((*1 *2 *1 *1)
+ (-5 *1 (-574)))))
+(((*1 *2 *1)
(-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132))
(-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *2 *1 *2)
+ (-12 (-5 *2 (-114)) (-5 *1 (-1243 *3)) (-4 *3 (-1005)))))
+(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-915 *3)) (-4 *3 (-1132))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1152 *3)) (-4 *3 (-1247)) (-5 *2 (-793)))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1080)) (-14 *3 (-663 (-1207)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1080) (-871)))
+ (-14 *3 (-663 (-1207)))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-1132))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-663 (-1207))) (-4 *3 (-175))
+ (-4 *5 (-245 (-2256 *2) (-793)))
+ (-14 *6
+ (-1 (-114) (-2 (|:| -1591 *4) (|:| -2030 *5))
+ (-2 (|:| -1591 *4) (|:| -2030 *5))))
+ (-5 *1 (-475 *2 *3 *4 *5 *6 *7)) (-4 *4 (-871))
+ (-4 *7 (-979 *3 *5 (-888 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-523 *2 *3)) (-4 *2 (-102)) (-4 *3 (-874))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-571)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1273 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-730 *2)) (-4 *2 (-1080))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-757 *2 *3)) (-4 *3 (-871)) (-4 *2 (-1080))
+ (-4 *3 (-748))))
+ ((*1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *2 (-871))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-868)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-310))))
+ ((*1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-5 *1 (-887))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1080))
+ (-4 *4 (-814)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229))
+ (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229)))
+ (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229)))
+ (|:| |abserr| (-229)) (|:| |relerr| (-229))))
+ (-5 *2 (-391)) (-5 *1 (-208)))))
(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-915 *4)) (-4 *4 (-1132)) (-5 *2 (-114))
- (-5 *1 (-913 *4 *5)) (-4 *5 (-1132))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-915 *5)) (-4 *5 (-1132)) (-5 *2 (-114))
- (-5 *1 (-916 *5 *3)) (-4 *3 (-1247))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *6)) (-5 *4 (-915 *5)) (-4 *5 (-1132))
- (-4 *6 (-1247)) (-5 *2 (-114)) (-5 *1 (-916 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-539))))
- ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1183)))))
-(((*1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -4297 *9))))
- (-5 *4 (-793)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8))
- (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-1303))
- (-5 *1 (-1100 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -4297 *9))))
- (-5 *4 (-793)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8))
- (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-1303))
- (-5 *1 (-1176 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-663 (-1106 *4 *5 *2))) (-4 *4 (-1132))
- (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4))))
- (-4 *2 (-13 (-435 *5) (-911 *4) (-633 (-915 *4))))
- (-5 *1 (-54 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-663 (-1106 *5 *6 *2))) (-5 *4 (-948)) (-4 *5 (-1132))
- (-4 *6 (-13 (-1080) (-911 *5) (-633 (-915 *5))))
- (-4 *2 (-13 (-435 *6) (-911 *5) (-633 (-915 *5))))
- (-5 *1 (-54 *5 *6 *2)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-549)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-549)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-229))
- (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1066))
- (-5 *1 (-771)))))
+ (-12 (-5 *3 (-1 (-114) *7 (-663 *7))) (-4 *1 (-1242 *4 *5 *6 *7))
+ (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114)))))
+(((*1 *2 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1127))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-793)) (-4 *1 (-1286 *3)) (-4 *3 (-1247))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1201 *7)) (-4 *5 (-1080))
- (-4 *7 (-1080)) (-4 *2 (-1273 *5)) (-5 *1 (-515 *5 *2 *6 *7))
- (-4 *6 (-1273 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1080)) (-4 *7 (-1080))
- (-4 *4 (-1273 *5)) (-5 *2 (-1201 *7)) (-5 *1 (-515 *5 *4 *6 *7))
- (-4 *6 (-1273 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-571))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-229) (-229) (-229)))
- (-5 *4 (-1 (-229) (-229) (-229) (-229)))
- (-5 *2 (-1 (-972 (-229)) (-229) (-229))) (-5 *1 (-719)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-611))) (-5 *1 (-611)))))
-(((*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-369 *3)) (-4 *3 (-363)))))
-(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-954)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-229))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-229))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-391))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-391)))))
+ (-12 (-5 *3 (-663 *7)) (-4 *7 (-871)) (-4 *5 (-939)) (-4 *6 (-815))
+ (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-419 (-1201 *8)))
+ (-5 *1 (-936 *5 *6 *7 *8)) (-5 *4 (-1201 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-939)) (-4 *5 (-1273 *4)) (-5 *2 (-419 (-1201 *5)))
+ (-5 *1 (-937 *4 *5)) (-5 *3 (-1201 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))
- (-5 *2 (-421 (-560))) (-5 *1 (-1052 *4)) (-4 *4 (-1273 (-560))))))
-(((*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-845)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-114)) (-5 *1 (-115)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233)))))
- ((*1 *1 *1 *1) (-4 *1 (-815))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-773)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-187 (-141)))) (-5 *1 (-142)))))
+ (-12 (-5 *3 (-841 *4)) (-4 *4 (-871)) (-5 *2 (-114))
+ (-5 *1 (-694 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
+ (-4 *3 (-380 *4))))
+ ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-363))
- (-5 *2 (-663 (-2 (|:| |deg| (-793)) (|:| -2401 *3))))
- (-5 *1 (-220 *4 *3)) (-4 *3 (-1273 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-571)) (-4 *2 (-466)) (-5 *1 (-1000 *2 *3))
- (-4 *3 (-1273 *2)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229))
- (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1066))
- (-5 *1 (-768)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34)))
- (-4 *3 (-13 (-1132) (-34))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871))))
- ((*1 *1) (-4 *1 (-1182))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-897 *2 *3)) (-4 *2 (-1247)) (-4 *3 (-1247)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-885)) (-5 *3 (-131)) (-5 *2 (-793)))))
+ (-12 (-5 *3 (-663 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1250))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-663 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1250)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-711 (-421 (-560))))
+ (-12 (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-571))
+ (-4 *3 (-979 *7 *5 *6))
(-5 *2
- (-663
- (-2 (|:| |outval| *4) (|:| |outmult| (-560))
- (|:| |outvect| (-663 (-711 *4))))))
- (-5 *1 (-801 *4)) (-4 *4 (-13 (-376) (-870))))))
-(((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-1060 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-663 (-711 *3))) (-4 *3 (-1080)) (-5 *1 (-1060 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-1060 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-663 (-711 *3))) (-4 *3 (-1080)) (-5 *1 (-1060 *3)))))
-(((*1 *1) (-5 *1 (-143))))
+ (-2 (|:| -2030 (-793)) (|:| -2625 *3) (|:| |radicand| (-663 *3))))
+ (-5 *1 (-982 *5 *6 *7 *3 *8)) (-5 *4 (-793))
+ (-4 *8
+ (-13 (-376)
+ (-10 -8 (-15 -3913 ($ *3)) (-15 -2473 (*3 $)) (-15 -2484 (*3 $))))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114))
+ (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114))
+ (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-466)) (-4 *4 (-571))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1616 *4)))
+ (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1259 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-560)) (-5 *5 (-1189)) (-5 *6 (-711 (-229)))
- (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))))
- (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))
- (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))
- (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-793)) (-5 *2 (-1201 *4)) (-5 *1 (-542 *4))
- (-4 *4 (-363)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-663 (-793))) (-5 *3 (-114)) (-5 *1 (-1195 *4 *5))
- (-14 *4 (-948)) (-4 *5 (-1080)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229)))
- (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))))
- (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *3 (-229))
- (-5 *2 (-1066)) (-5 *1 (-771)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1297 (-663 (-2 (|:| -3853 *4) (|:| -3128 (-1151))))))
- (-4 *4 (-363)) (-5 *2 (-711 *4)) (-5 *1 (-360 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1297 *6)) (-5 *4 (-1297 (-560))) (-5 *5 (-560))
- (-4 *6 (-1132)) (-5 *2 (-1 *6)) (-5 *1 (-1048 *6)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2) (-12 (-5 *2 (-132)) (-5 *1 (-1217)))))
-(((*1 *1) (-5 *1 (-146))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-711 *1)) (-5 *4 (-1297 *1)) (-4 *1 (-660 *5))
- (-4 *5 (-1080))
- (-5 *2 (-2 (|:| -3822 (-711 *5)) (|:| |vec| (-1297 *5))))))
+ (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1))
+ (-4 *1 (-979 *3 *4 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-793)) (-5 *2 (-114)))))
+(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-391)) (-5 *1 (-1072)))))
+(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-63 *3)) (-14 *3 (-1207))))
+ ((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-69 *3)) (-14 *3 (-1207))))
+ ((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-72 *3)) (-14 *3 (-1207))))
+ ((*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1303)) (-5 *1 (-409))))
+ ((*1 *2 *1) (-12 (-4 *1 (-410)) (-5 *2 (-1303))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1189)) (-5 *4 (-887)) (-5 *2 (-1303)) (-5 *1 (-1169))))
+ ((*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1303)) (-5 *1 (-1169))))
((*1 *2 *3)
- (-12 (-5 *3 (-711 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1080))
- (-5 *2 (-711 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871))
- (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-663 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-4 *5 (-435 *4))
- (-5 *2
- (-3 (|:| |overq| (-1201 (-421 (-560))))
- (|:| |overan| (-1201 (-48))) (|:| -2060 (-114))))
- (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1273 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1132)) (-4 *2 (-381)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-1189)) (-5 *5 (-711 (-229)))
- (-5 *2 (-1066)) (-5 *1 (-769)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1185 (-2 (|:| |k| (-560)) (|:| |c| *6))))
- (-5 *4 (-1057 (-864 (-560)))) (-5 *5 (-1207)) (-5 *7 (-421 (-560)))
- (-4 *6 (-1080)) (-5 *2 (-887)) (-5 *1 (-609 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175))
- (-5 *2 (-711 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -4210 *6) (|:| |sol?| (-114))) (-560)
- *6))
- (-4 *6 (-376)) (-4 *7 (-1273 *6))
- (-5 *2 (-2 (|:| |answer| (-597 (-421 *7))) (|:| |a0| *6)))
- (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+ (-12 (-5 *3 (-663 (-887))) (-5 *2 (-1303)) (-5 *1 (-1169)))))
(((*1 *2 *1 *2)
(-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-114)) (-5 *1 (-568)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1273 *6))
- (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-571) (-1069 (-560))))
- (-4 *8 (-1273 (-421 *7))) (-5 *2 (-597 *3))
- (-5 *1 (-567 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-466)) (-4 *4 (-842))
- (-14 *5 (-1207)) (-5 *2 (-560)) (-5 *1 (-1145 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-948)) (-4 *1 (-381))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-948)) (-5 *2 (-1297 *4)) (-5 *1 (-542 *4))
- (-4 *4 (-363))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-871)) (-5 *1 (-735 *2 *3 *4)) (-4 *3 (-1132))
- (-14 *4
- (-1 (-114) (-2 (|:| -3128 *2) (|:| -3205 *3))
- (-2 (|:| -3128 *2) (|:| -3205 *3)))))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1207))
- (-5 *2
- (-2 (|:| |zeros| (-1185 (-229))) (|:| |ones| (-1185 (-229)))
- (|:| |singularities| (-1185 (-229)))))
- (-5 *1 (-105)))))
-(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-574)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871)) (-4 *2 (-466)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3))
- (-4 *3 (-13 (-376) (-1233) (-1033))))))
-(((*1 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-451))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-451)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-560)) (-4 *1 (-335 *4 *2)) (-4 *4 (-1132))
- (-4 *2 (-133)))))
-(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1201 (-421 (-560)))) (-5 *1 (-971)) (-5 *3 (-560)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1207))
- (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-663 (-229))) (-5 *1 (-195))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1207))
- (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-663 (-229))) (-5 *1 (-313)))))
-(((*1 *2)
- (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-432 *3)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-663 (-975 *6))) (-5 *4 (-663 (-1207))) (-4 *6 (-466))
- (-5 *2 (-663 (-663 *7))) (-5 *1 (-552 *6 *7 *5)) (-4 *7 (-376))
- (-4 *5 (-13 (-376) (-870))))))
-(((*1 *2 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-114) *6 *6)) (-4 *6 (-871)) (-5 *4 (-663 *6))
- (-5 *2 (-2 (|:| |fs| (-114)) (|:| |sd| *4) (|:| |td| (-663 *4))))
- (-5 *1 (-1218 *6)) (-5 *5 (-663 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *1 (-1243 *3))
- (-4 *3 (-1005)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-793)) (-4 *5 (-571))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-1000 *5 *3)) (-4 *3 (-1273 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1))
- (-4 *1 (-1096 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-421 (-560))) (-5 *4 (-560)) (-5 *2 (-51))
- (-5 *1 (-1036)))))
-(((*1 *2 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-663 (-663 *6))) (-4 *6 (-979 *3 *5 *4))
- (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-871) (-633 (-1207))))
- (-4 *5 (-815)) (-5 *1 (-953 *3 *4 *5 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-663 *6)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-1080))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-793))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *5 (-871)) (-5 *2 (-793)))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-376)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-421 *3)))
- (-4 *1 (-349 *4 *3 *5 *2)) (-4 *2 (-355 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-560)) (-4 *2 (-376)) (-4 *4 (-1273 *2))
- (-4 *5 (-1273 (-421 *4))) (-4 *1 (-349 *2 *4 *5 *6))
- (-4 *6 (-355 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-376)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-421 *3)))
- (-4 *1 (-349 *2 *3 *4 *5)) (-4 *5 (-355 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4)))
- (-4 *1 (-349 *3 *4 *5 *2)) (-4 *2 (-355 *3 *4 *5))))
+ (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-971)) (-5 *3 (-560)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-657 *3)) (-14 *3 (-663 (-1207))) (-5 *1 (-218 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-427 *4 (-421 *4) *5 *6)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-4 *3 (-376))
- (-4 *1 (-349 *3 *4 *5 *6)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-1300))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-571)) (-5 *2 (-987 *3)) (-5 *1 (-1194 *4 *3))
- (-4 *3 (-1273 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1185 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571))
- (-5 *2 (-114)))))
+ (-12 (-5 *2 (-218 *3)) (-14 *3 (-663 (-1207))) (-5 *1 (-657 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-995 *3)) (-4 *3 (-1132)) (-5 *1 (-996 *3)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-374 *3)) (-4 *3 (-1132))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-560)) (-4 *1 (-399 *4)) (-4 *4 (-1132)) (-5 *2 (-793))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-560)) (-4 *2 (-23)) (-5 *1 (-671 *4 *2 *5))
+ (-4 *4 (-1132)) (-14 *5 *2))))
+(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1080)) (-5 *1 (-50 *2 *3)) (-14 *3 (-663 (-1207)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4))
+ (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-663 (-1207)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1132)) (-4 *2 (-1080))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-663 (-1207))) (-4 *5 (-245 (-2256 *3) (-793)))
+ (-14 *6
+ (-1 (-114) (-2 (|:| -1591 *4) (|:| -2030 *5))
+ (-2 (|:| -1591 *4) (|:| -2030 *5))))
+ (-4 *2 (-175)) (-5 *1 (-475 *3 *2 *4 *5 *6 *7)) (-4 *4 (-871))
+ (-4 *7 (-979 *2 *5 (-888 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-523 *2 *3)) (-4 *3 (-874)) (-4 *2 (-102))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-571)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1273 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-730 *2)) (-4 *2 (-1080))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1080)) (-5 *1 (-757 *2 *3)) (-4 *3 (-871))
+ (-4 *3 (-748))))
+ ((*1 *2 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1004 *2 *3 *4)) (-4 *3 (-814)) (-4 *4 (-871))
+ (-4 *2 (-1080))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *2 (-871)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-954))
- (-5 *2
- (-2 (|:| |brans| (-663 (-663 (-972 (-229)))))
- (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))))
- (-5 *1 (-155))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-954)) (-5 *4 (-421 (-560)))
- (-5 *2
- (-2 (|:| |brans| (-663 (-663 (-972 (-229)))))
- (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))))
- (-5 *1 (-155)))))
+ (-12 (-5 *3 (-560)) (|has| *1 (-6 -4499)) (-4 *1 (-418))
+ (-5 *2 (-948)))))
+(((*1 *1) (-5 *1 (-342))))
+(((*1 *2)
+ (-12
+ (-5 *2 (-2 (|:| -4227 (-663 (-1207))) (|:| -1333 (-663 (-1207)))))
+ (-5 *1 (-1250)))))
+(((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4508)) (-4 *1 (-153 *2)) (-4 *2 (-1247))
+ (-4 *2 (-1132))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4508)) (-4 *1 (-153 *3))
+ (-4 *3 (-1247))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-696 *3)) (-4 *3 (-1247))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-560)) (-4 *4 (-1132))
+ (-5 *1 (-758 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-560)) (-5 *1 (-758 *2)) (-4 *2 (-1132))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34)))
+ (-4 *4 (-13 (-1132) (-34))) (-5 *1 (-1172 *3 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1207)) (-4 *5 (-376)) (-5 *2 (-1185 (-1185 (-975 *5))))
- (-5 *1 (-1306 *5)) (-5 *4 (-1185 (-975 *5))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1207)))
- (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
- ((*1 *2)
- (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1207)))
- (-14 *4 (-663 (-1207))) (-4 *5 (-401)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-793)) (-5 *1 (-601 *2)) (-4 *2 (-559)))))
+ (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 (-1185 *7))) (-4 *6 (-871))
+ (-4 *7 (-979 *5 (-545 *6) *6)) (-4 *5 (-1080))
+ (-5 *2 (-1 (-1185 *7) *7)) (-5 *1 (-1157 *5 *6 *7)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466))
+ (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *1 (-1008 *3 *4 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-405)))))
(((*1 *2 *2)
(-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
(-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-711 *5)) (-4 *5 (-1080)) (-5 *1 (-1085 *3 *4 *5))
+ (-14 *3 (-793)) (-14 *4 (-793)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3))
- (-4 *3 (-432 *4)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1247)) (-5 *2 (-663 *1)) (-4 *1 (-1041 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1207)) (-5 *2 (-1 (-1201 (-975 *4)) (-975 *4)))
- (-5 *1 (-1306 *4)) (-4 *4 (-376)))))
-(((*1 *2)
- (-12 (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4)))
- (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-711 *2)) (-5 *4 (-793))
- (-4 *2 (-13 (-319) (-10 -8 (-15 -3023 ((-419 $) $)))))
- (-4 *5 (-1273 *2)) (-5 *1 (-513 *2 *5 *6)) (-4 *6 (-424 *2 *5)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229))
- (-5 *2 (-1066)) (-5 *1 (-774)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *4 (-663 (-1207)))
- (-5 *2 (-711 (-326 (-229)))) (-5 *1 (-208))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1132)) (-4 *6 (-927 *5)) (-5 *2 (-711 *6))
- (-5 *1 (-714 *5 *6 *3 *4)) (-4 *3 (-385 *6))
- (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4508)))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-443 *3 *2)) (-4 *3 (-13 (-175) (-38 (-421 (-560)))))
- (-4 *2 (-13 (-871) (-21))))))
-(((*1 *1) (-5 *1 (-624))) ((*1 *1) (-5 *1 (-625))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-4 *5 (-435 *4))
- (-5 *2 (-419 (-1201 (-421 (-560))))) (-5 *1 (-449 *4 *5 *3))
- (-4 *3 (-1273 *5)))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-948)) (-5 *1 (-1133 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-229)) (-5 *4 (-560))
- (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284))))
- (-5 *2 (-1066)) (-5 *1 (-770)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1132)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-705 *4 *5)) (-4 *4 (-1132))))
+ (-12 (-5 *3 (-663 (-2 (|:| -4012 *4) (|:| -3900 (-560)))))
+ (-4 *4 (-1273 (-560))) (-5 *2 (-758 (-793))) (-5 *1 (-456 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-1207)) (-5 *2 (-326 (-560))) (-5 *1 (-958))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-1132)) (-5 *1 (-959 *3 *2)) (-4 *2 (-435 *3))))
+ (-12 (-5 *3 (-419 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-1080))
+ (-5 *2 (-758 (-793))) (-5 *1 (-458 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1207))
+ (-4 *4 (-13 (-466) (-149) (-1069 (-560)) (-660 (-560))))
+ (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))))))
+(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814))))
((*1 *2 *1)
- (-12 (-4 *1 (-1317 *3 *2)) (-4 *3 (-871)) (-4 *2 (-1080))))
+ (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1132))))
((*1 *2 *1)
- (-12 (-4 *2 (-1080)) (-5 *1 (-1321 *2 *3)) (-4 *3 (-868)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-774)))))
-(((*1 *2 *1) (-12 (-4 *1 (-440 *3)) (-4 *3 (-1132)) (-5 *2 (-793)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-498 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4)
- (-255 *4 (-421 (-560)))))
- (-14 *4 (-663 (-1207))) (-14 *5 (-793)) (-5 *2 (-114))
- (-5 *1 (-519 *4 *5)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-421 (-975 *6)) (-1196 (-1207) (-975 *6))))
- (-5 *5 (-793)) (-4 *6 (-466)) (-5 *2 (-663 (-711 (-421 (-975 *6)))))
- (-5 *1 (-304 *6)) (-5 *4 (-711 (-421 (-975 *6))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *3
- (-2 (|:| |eigval| (-3 (-421 (-975 *5)) (-1196 (-1207) (-975 *5))))
- (|:| |eigmult| (-793)) (|:| |eigvec| (-663 *4))))
- (-4 *5 (-466)) (-5 *2 (-663 (-711 (-421 (-975 *5)))))
- (-5 *1 (-304 *5)) (-5 *4 (-711 (-421 (-975 *5)))))))
+ (-12 (-14 *3 (-663 (-1207))) (-4 *4 (-175))
+ (-4 *6 (-245 (-2256 *3) (-793)))
+ (-14 *7
+ (-1 (-114) (-2 (|:| -1591 *5) (|:| -2030 *6))
+ (-2 (|:| -1591 *5) (|:| -2030 *6))))
+ (-5 *2 (-735 *5 *6 *7)) (-5 *1 (-475 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-871)) (-4 *8 (-979 *4 *6 (-888 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-748)) (-4 *2 (-871)) (-5 *1 (-757 *3 *2))
+ (-4 *3 (-1080))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1004 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-814))
+ (-4 *4 (-871)))))
+(((*1 *2)
+ (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1207)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1175)) (-5 *2 (-114)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
+ (-12 (-4 *3 (-13 (-571) (-1069 (-560)))) (-5 *1 (-191 *3 *2))
+ (-4 *2 (-13 (-27) (-1233) (-435 (-171 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560))))
+ (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-115)) (-5 *1 (-116 *2)) (-4 *2 (-1132)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-270))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1189)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *2 (-871))))
- ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *3 (-975 (-171 *4))) (-4 *4 (-175))
+ (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-975 (-171 *5))) (-5 *4 (-948)) (-4 *5 (-175))
+ (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-975 *4)) (-4 *4 (-1080))
+ (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-975 *5)) (-5 *4 (-948)) (-4 *5 (-1080))
+ (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571))
+ (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-948)) (-4 *5 (-571))
+ (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-421 (-975 (-171 *4)))) (-4 *4 (-571))
+ (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-421 (-975 (-171 *5)))) (-5 *4 (-948))
+ (-4 *5 (-571)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391)))
+ (-5 *1 (-807 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-871))
+ (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-948)) (-4 *5 (-571))
+ (-4 *5 (-871)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391)))
+ (-5 *1 (-807 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-571)) (-4 *4 (-871))
+ (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-948)) (-4 *5 (-571))
+ (-4 *5 (-871)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391)))
+ (-5 *1 (-807 *5)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-1189)) (-5 *5 (-711 (-229)))
+ (-5 *2 (-1066)) (-5 *1 (-769)))))
+(((*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1303)) (-5 *1 (-405))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-405)))))
+(((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-222))))
+ ((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247))))
+ ((*1 *2 *1) (-12 (-5 *2 (-497)) (-5 *1 (-698))))
+ ((*1 *1 *1)
(-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
(-4 *4 (-871)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)) (-4 *2 (-466)))))
-(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-781)))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-133))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1170))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1080)) (-4 *3 (-871))
- (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-663 (-793)))))
+(((*1 *2)
+ (-12 (-14 *4 (-793)) (-4 *5 (-1247)) (-5 *2 (-136))
+ (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-376)) (-5 *2 (-136)) (-5 *1 (-340 *3 *4))
+ (-4 *3 (-341 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-793)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-175))))
((*1 *2 *1)
- (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871))
- (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-663 (-793))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-229)) (|:| |xend| (-229))
- (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229)))
- (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229)))
- (|:| |abserr| (-229)) (|:| |relerr| (-229))))
- (-5 *2 (-391)) (-5 *1 (-208)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114))
- (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114))
- (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-657 *3)) (-14 *3 (-663 (-1207))) (-5 *1 (-218 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-218 *3)) (-14 *3 (-663 (-1207))) (-5 *1 (-657 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-995 *3)) (-4 *3 (-1132)) (-5 *1 (-996 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
+ (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-560))
+ (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-663 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815))
+ (-5 *2 (-560)) (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-979 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1011 *3)) (-4 *3 (-1080)) (-5 *2 (-948))))
+ ((*1 *2) (-12 (-4 *1 (-1305 *3)) (-4 *3 (-376)) (-5 *2 (-136)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1141)) (-5 *3 (-560)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1080)) (-5 *1 (-919 *2 *3)) (-4 *2 (-1273 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-1 (-663 *7) *7 (-1201 *7))) (-5 *5 (-1 (-419 *7) *7))
(-4 *7 (-1273 *6)) (-4 *6 (-13 (-376) (-149) (-1069 (-421 (-560)))))
- (-5 *2 (-663 (-2 (|:| |frac| (-421 *7)) (|:| -3192 *3))))
+ (-5 *2 (-663 (-2 (|:| |frac| (-421 *7)) (|:| -2439 *3))))
(-5 *1 (-831 *6 *7 *3 *8)) (-4 *3 (-680 *7))
(-4 *8 (-680 (-421 *7)))))
((*1 *2 *3 *4)
(-12 (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1273 *5))
(-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))))
(-5 *2
- (-663 (-2 (|:| |frac| (-421 *6)) (|:| -3192 (-678 *6 (-421 *6))))))
+ (-663 (-2 (|:| |frac| (-421 *6)) (|:| -2439 (-678 *6 (-421 *6))))))
(-5 *1 (-834 *5 *6)) (-5 *3 (-678 *6 (-421 *6))))))
+(((*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080))))
+ ((*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1132)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-1247)) (-5 *2 (-793)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229))
+ (-5 *2 (-1066)) (-5 *1 (-775)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1157 *4 *3 *5))) (-4 *4 (-38 (-421 (-560))))
+ (-4 *4 (-1080)) (-4 *3 (-871)) (-5 *1 (-1157 *4 *3 *5))
+ (-4 *5 (-979 *4 (-545 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1240 *4))) (-5 *3 (-1207)) (-5 *1 (-1240 *4))
+ (-4 *4 (-38 (-421 (-560)))) (-4 *4 (-1080)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-560)) (-5 *1 (-248)))))
+(((*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-278)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-793)) (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-4 *3 (-571)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3))
+ (-4 *5 (-385 *3)) (-5 *2 (-560))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
+ (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-560)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-376)) (-5 *1 (-923 *2 *3))
+ (-4 *2 (-1273 *3)))))
+(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481))))
+ ((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481))))
+ ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))))
(((*1 *2 *2 *2)
(-12 (-4 *3 (-815)) (-4 *4 (-871)) (-4 *5 (-319))
(-5 *1 (-945 *3 *4 *5 *2)) (-4 *2 (-979 *5 *3 *4))))
@@ -7780,6 +7988,45 @@
(-12 (-5 *3 (-663 *2)) (-4 *2 (-979 *6 *4 *5))
(-5 *1 (-945 *4 *5 *6 *2)) (-4 *4 (-815)) (-4 *5 (-871))
(-4 *6 (-319)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814))
+ (-5 *2 (-114))))
+ ((*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1132)) (-5 *2 (-114)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175))
+ (-5 *2 (-711 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-711 *4)) (-5 *1 (-431 *3 *4))
+ (-4 *3 (-432 *4))))
+ ((*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1175)) (-5 *2 (-114)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7))
+ (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *4))))
+ (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
+ (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-663 (-51))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
+(((*1 *1) (-5 *1 (-1116))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-2 (|:| -1438 (-1207)) (|:| -3067 (-450)))))
+ (-5 *1 (-1211)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *2 (-1096 *4 *5 *6)) (-5 *1 (-798 *4 *5 *6 *2 *3))
+ (-4 *3 (-1102 *4 *5 *6 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 *4))
+ (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323)) (-5 *1 (-851)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1080)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1133 *3 *4)) (-14 *3 (-948))
+ (-14 *4 (-948)))))
(((*1 *2 *1 *3)
(-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-1252))
(-4 *6 (-1273 (-421 *5)))
@@ -7787,40 +8034,920 @@
(-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
(|:| |gd| *5)))
(-4 *1 (-355 *4 *5 *6)))))
+(((*1 *1 *1) (-4 *1 (-250)))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (-2196 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1247)))
+ (-12 (-5 *1 (-305 *2)) (-4 *2 (-487)) (-4 *2 (-1247)))))
+ ((*1 *1 *1) (-4 *1 (-487)))
+ ((*1 *2 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-363)) (-5 *1 (-542 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)) (-4 *2 (-376)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-793)) (-4 *4 (-1080))
+ (-5 *2 (-2 (|:| -2584 *1) (|:| -3276 *1))) (-4 *1 (-1273 *4)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-229)))
+ (-5 *2 (-1066)) (-5 *1 (-779)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-630 *5))) (-4 *4 (-1132)) (-5 *2 (-630 *5))
+ (-5 *1 (-587 *4 *5)) (-4 *5 (-435 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
+ (-5 *1 (-518 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1132)) (-5 *1 (-1220 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7))
+ (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *4))))
+ (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233)))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-948)) (-5 *4 (-391)) (-5 *2 (-1303)) (-5 *1 (-1300))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-711 *2)) (-4 *2 (-175)) (-5 *1 (-148 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-175)) (-4 *2 (-1273 *4)) (-5 *1 (-180 *4 *2 *3))
+ (-4 *3 (-746 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-711 (-421 (-975 *5)))) (-5 *4 (-1207))
+ (-5 *2 (-975 *5)) (-5 *1 (-304 *5)) (-4 *5 (-466))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-711 (-421 (-975 *4)))) (-5 *2 (-975 *4))
+ (-5 *1 (-304 *4)) (-4 *4 (-466))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1273 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-711 (-171 (-421 (-560)))))
+ (-5 *2 (-975 (-171 (-421 (-560))))) (-5 *1 (-786 *4))
+ (-4 *4 (-13 (-376) (-870)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-711 (-171 (-421 (-560))))) (-5 *4 (-1207))
+ (-5 *2 (-975 (-171 (-421 (-560))))) (-5 *1 (-786 *5))
+ (-4 *5 (-13 (-376) (-870)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-711 (-421 (-560)))) (-5 *2 (-975 (-421 (-560))))
+ (-5 *1 (-801 *4)) (-4 *4 (-13 (-376) (-870)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-711 (-421 (-560)))) (-5 *4 (-1207))
+ (-5 *2 (-975 (-421 (-560)))) (-5 *1 (-801 *5))
+ (-4 *5 (-13 (-376) (-870))))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1201 *3)) (-5 *1 (-943 *3)) (-4 *3 (-319)))))
+(((*1 *2)
+ (-12 (-4 *1 (-363))
+ (-5 *2 (-663 (-2 (|:| -4012 (-560)) (|:| -2030 (-560))))))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1206)) (-5 *1 (-342)))))
(((*1 *2 *3 *2 *4)
(|partial| -12 (-5 *3 (-663 (-630 *2))) (-5 *4 (-1207))
(-4 *2 (-13 (-27) (-1233) (-435 *5)))
(-4 *5 (-13 (-571) (-1069 (-560)) (-660 (-560))))
(-5 *1 (-288 *5 *2)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1175)) (-5 *3 (-560)) (-5 *2 (-114)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-1163 *4 *2))
+ (-4 *2 (-13 (-618 (-560) *4) (-10 -7 (-6 -4508) (-6 -4509))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-871)) (-4 *3 (-1247)) (-5 *1 (-1163 *3 *2))
+ (-4 *2 (-13 (-618 (-560) *3) (-10 -7 (-6 -4508) (-6 -4509)))))))
+(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1210))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-663 *2)) (-4 *2 (-979 *4 *5 *6)) (-4 *4 (-376))
+ (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-5 *1 (-461 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-376))
+ (-5 *2
+ (-2 (|:| R (-711 *6)) (|:| A (-711 *6)) (|:| |Ainv| (-711 *6))))
+ (-5 *1 (-1009 *6)) (-5 *3 (-711 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-630 *4)) (-5 *6 (-1207))
+ (-4 *4 (-13 (-435 *7) (-27) (-1233)))
+ (-4 *7 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3822 (-663 *4))))
+ (-5 *1 (-580 *7 *4 *3)) (-4 *3 (-680 *4)) (-4 *3 (-1132)))))
+(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301))))
+ ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-560)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-793)) (-4 *5 (-175))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793))
+ (-4 *4 (-175))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2))
+ (-4 *4 (-385 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1080)) (-4 *1 (-708 *3 *2 *4)) (-4 *2 (-385 *3))
+ (-4 *4 (-385 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-793)) (-4 *3 (-1080)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1201 *1)) (-4 *1 (-1043)))))
(((*1 *2 *3)
(-12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-319))
(-5 *2 (-421 (-419 (-975 *4)))) (-5 *1 (-1074 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1207))
+ (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-435 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-421 (-560)))
+ (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5)))
+ (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-328 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-305 *3)) (-5 *5 (-421 (-560)))
+ (-4 *3 (-13 (-27) (-1233) (-435 *6)))
+ (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-328 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-421 (-560)))) (-5 *4 (-305 *8))
+ (-5 *5 (-1264 (-421 (-560)))) (-5 *6 (-421 (-560)))
+ (-4 *8 (-13 (-27) (-1233) (-435 *7)))
+ (-4 *7 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-473 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-421 (-560))))
+ (-5 *7 (-421 (-560))) (-4 *3 (-13 (-27) (-1233) (-435 *8)))
+ (-4 *8 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-473 *8 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-421 (-560))) (-4 *4 (-1080)) (-4 *1 (-1282 *4 *3))
+ (-4 *3 (-1259 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1120 *3)) (-4 *3 (-979 *7 *6 *4)) (-4 *6 (-815))
+ (-4 *4 (-871)) (-4 *7 (-571))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-560))))
+ (-5 *1 (-608 *6 *4 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-571))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-560))))
+ (-5 *1 (-608 *5 *4 *6 *3)) (-4 *3 (-979 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-887))) ((*1 *1 *1 *1) (-5 *1 (-887)))
+ ((*1 *1 *1) (-5 *1 (-887)))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1207))
+ (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560))))
+ (-5 *1 (-1199 *4 *2)) (-4 *2 (-13 (-435 *4) (-162) (-27) (-1233)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1123 *2)) (-4 *2 (-13 (-435 *4) (-162) (-27) (-1233)))
+ (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560))))
+ (-5 *1 (-1199 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-571) (-1069 (-560))))
+ (-5 *2 (-421 (-975 *5))) (-5 *1 (-1200 *5)) (-5 *3 (-975 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-571) (-1069 (-560))))
+ (-5 *2 (-3 (-421 (-975 *5)) (-326 *5))) (-5 *1 (-1200 *5))
+ (-5 *3 (-421 (-975 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1123 (-975 *5))) (-5 *3 (-975 *5))
+ (-4 *5 (-13 (-571) (-1069 (-560)))) (-5 *2 (-421 *3))
+ (-5 *1 (-1200 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1123 (-421 (-975 *5)))) (-5 *3 (-421 (-975 *5)))
+ (-4 *5 (-13 (-571) (-1069 (-560)))) (-5 *2 (-3 *3 (-326 *5)))
+ (-5 *1 (-1200 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-994))) (-5 *1 (-109))))
+ ((*1 *2 *1) (-12 (-5 *2 (-45 (-1189) (-795))) (-5 *1 (-115)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 *7)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-466))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1303))
+ (-5 *1 (-464 *4 *5 *6 *7)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887))))
+ ((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -3941 (-663 (-887))) (|:| -1651 (-663 (-887)))
+ (|:| |presup| (-663 (-887))) (|:| -1637 (-663 (-887)))
+ (|:| |args| (-663 (-887)))))
+ (-5 *1 (-1207)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-663 (-972 *4))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
+ (-4 *4 (-1080)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
+ (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
+ (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-51)) (-5 *1 (-851)))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229))
+ (-5 *2 (-1066)) (-5 *1 (-777)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-171 (-326 *4)))
+ (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 (-171 *4))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560))))
+ (-5 *2 (-171 *3)) (-5 *1 (-1237 *4 *3))
+ (-4 *3 (-13 (-27) (-1233) (-435 *4))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *3 (-663 (-898)))
+ (-5 *1 (-482)))))
(((*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1132)) (-4 *2 (-571))))
((*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3))
+ (-4 *3 (-1132)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1207))
+ (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-435 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-560)) (-4 *5 (-13 (-466) (-1069 *4) (-660 *4)))
+ (-5 *2 (-51)) (-5 *1 (-328 *5 *3))
+ (-4 *3 (-13 (-27) (-1233) (-435 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5)))
+ (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-328 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *6)))
+ (-4 *6 (-13 (-466) (-1069 *5) (-660 *5))) (-5 *5 (-560))
+ (-5 *2 (-51)) (-5 *1 (-328 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-560)))
+ (-4 *7 (-13 (-27) (-1233) (-435 *6)))
+ (-4 *6 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-473 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-560)))
+ (-4 *3 (-13 (-27) (-1233) (-435 *7)))
+ (-4 *7 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-473 *7 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-560)) (-4 *4 (-1080)) (-4 *1 (-1261 *4 *3))
+ (-4 *3 (-1290 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1259 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-141)) (-5 *1 (-142))))
+ ((*1 *2 *1) (-12 (-5 *1 (-187 *2)) (-4 *2 (-189))))
+ ((*1 *2 *1) (-12 (-5 *2 (-257)) (-5 *1 (-256)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1080)) (-4 *4 (-1132)) (-5 *2 (-663 *1))
+ (-4 *1 (-397 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-663 (-757 *3 *4))) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080))
+ (-4 *4 (-748))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1))
+ (-4 *1 (-979 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1080))
+ (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296)))
+ (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1273 *4))))
+ ((*1 *1 *1) (-4 *1 (-559)))
+ ((*1 *2 *1) (-12 (-5 *2 (-948)) (-5 *1 (-694 *3)) (-4 *3 (-871))))
+ ((*1 *2 *1) (-12 (-5 *2 (-948)) (-5 *1 (-699 *3)) (-4 *3 (-871))))
+ ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-841 *3)) (-4 *3 (-871))))
+ ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-918 *3)) (-4 *3 (-871))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1026 *3)) (-4 *3 (-1247)) (-5 *2 (-793))))
+ ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1245 *3)) (-4 *3 (-1247))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1033))
+ (-4 *2 (-1080)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1185 (-1185 *4))) (-5 *2 (-1185 *4)) (-5 *1 (-1191 *4))
+ (-4 *4 (-1080)))))
+(((*1 *2)
+ (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303))
+ (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303))
+ (-5 *1 (-1138 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5)))
+ (-5 *2 (-793)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4))) (-5 *2 (-793)))))
+(((*1 *2)
+ (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))))
+(((*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-663 (-889))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033) (-1233)))))
+ ((*1 *1 *1) (-4 *1 (-649))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
+ (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
+ (|:| |relerr| (-229))))
+ (-5 *2 (-2 (|:| -3494 (-115)) (|:| |w| (-229)))) (-5 *1 (-207)))))
(((*1 *2 *3)
(-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-663 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1207))
+ (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-435 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-793)) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560))))
+ (-5 *2 (-51)) (-5 *1 (-328 *5 *3))
+ (-4 *3 (-13 (-27) (-1233) (-435 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5)))
+ (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-328 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-305 *3)) (-5 *5 (-793))
+ (-4 *3 (-13 (-27) (-1233) (-435 *6)))
+ (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-328 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-560))) (-5 *4 (-305 *6))
+ (-4 *6 (-13 (-27) (-1233) (-435 *5)))
+ (-4 *5 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-473 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3))
+ (-4 *3 (-13 (-27) (-1233) (-435 *6)))
+ (-4 *6 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-473 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-793)))
+ (-4 *7 (-13 (-27) (-1233) (-435 *6)))
+ (-4 *6 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-473 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-793)))
+ (-4 *3 (-13 (-27) (-1233) (-435 *7)))
+ (-4 *7 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-473 *7 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1290 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1201 (-421 (-560)))) (-5 *1 (-971)) (-5 *3 (-560)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5))
+ (-4 *5 (-13 (-376) (-149) (-1069 (-560))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-421 *6)) (|:| |h| *6)
+ (|:| |c1| (-421 *6)) (|:| |c2| (-421 *6)) (|:| -1347 *6)))
+ (-5 *1 (-1047 *5 *6)) (-5 *3 (-421 *6)))))
+(((*1 *1)
+ (-12 (-4 *1 (-418)) (-1394 (|has| *1 (-6 -4499)))
+ (-1394 (|has| *1 (-6 -4491)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1132)) (-4 *2 (-871))))
+ ((*1 *2 *1) (-12 (-4 *1 (-852 *2)) (-4 *2 (-871))))
+ ((*1 *1) (-4 *1 (-866))) ((*1 *1 *1 *1) (-4 *1 (-874))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871)) (-4 *2 (-571)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033)))
+ (-5 *1 (-179 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1170))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1247))
+ (-4 *5 (-1247)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-793))
+ (-4 *7 (-1247)) (-4 *5 (-1247)) (-5 *2 (-246 *6 *5))
+ (-5 *1 (-247 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1247)) (-4 *5 (-1247))
+ (-4 *2 (-385 *5)) (-5 *1 (-386 *6 *4 *5 *2)) (-4 *4 (-385 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1132)) (-4 *5 (-1132))
+ (-4 *2 (-440 *5)) (-5 *1 (-441 *6 *4 *5 *2)) (-4 *4 (-440 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-663 *6)) (-4 *6 (-1247))
+ (-4 *5 (-1247)) (-5 *2 (-663 *5)) (-5 *1 (-664 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-987 *6)) (-4 *6 (-1247))
+ (-4 *5 (-1247)) (-5 *2 (-987 *5)) (-5 *1 (-988 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1185 *6)) (-4 *6 (-1247))
+ (-4 *3 (-1247)) (-5 *2 (-1185 *3)) (-5 *1 (-1187 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1297 *6)) (-4 *6 (-1247))
+ (-4 *5 (-1247)) (-5 *2 (-1297 *5)) (-5 *1 (-1298 *6 *5)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *2 (-871))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-571))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 (-1311 *4 *5 *6 *7)))
+ (-5 *1 (-1311 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-663 *9)) (-5 *4 (-1 (-114) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1096 *6 *7 *8)) (-4 *6 (-571))
+ (-4 *7 (-815)) (-4 *8 (-871)) (-5 *2 (-663 (-1311 *6 *7 *8 *9)))
+ (-5 *1 (-1311 *6 *7 *8 *9)))))
(((*1 *2 *2)
(-12 (-4 *3 (-363)) (-4 *4 (-341 *3)) (-4 *5 (-1273 *4))
(-5 *1 (-799 *3 *4 *5 *2 *6)) (-4 *2 (-1273 *5)) (-14 *6 (-948))))
((*1 *1 *1 *2)
(-12 (-5 *2 (-793)) (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-4 *3 (-381))))
((*1 *1 *1) (-12 (-4 *1 (-1316 *2)) (-4 *2 (-376)) (-4 *2 (-381)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-229)) (-5 *3 (-793)) (-5 *1 (-230))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-171 (-229))) (-5 *3 (-793)) (-5 *1 (-230))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1170))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-663 (-630 *5))) (-5 *3 (-1207)) (-4 *5 (-435 *4))
+ (-4 *4 (-1132)) (-5 *1 (-587 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-934 *4))
+ (-4 *4 (-1132))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *2 (-1080)) (-5 *1 (-50 *2 *3)) (-14 *3 (-663 (-1207)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-663 (-948))) (-4 *2 (-376)) (-5 *1 (-154 *4 *2 *5))
+ (-14 *4 (-948)) (-14 *5 (-1024 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4))
+ (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-663 (-1207)))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-133))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1132)) (-4 *2 (-1080))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-560)) (-4 *2 (-571)) (-5 *1 (-642 *2 *4))
+ (-4 *4 (-1273 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-730 *2)) (-4 *2 (-1080))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-1080)) (-5 *1 (-757 *2 *3)) (-4 *3 (-748))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-663 *5)) (-5 *3 (-663 (-793))) (-4 *1 (-762 *4 *5))
+ (-4 *4 (-1080)) (-4 *5 (-871))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *2)) (-4 *4 (-1080))
+ (-4 *2 (-871))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-876 *2)) (-4 *2 (-1080))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-663 *6)) (-5 *3 (-663 (-793))) (-4 *1 (-979 *4 *5 *6))
+ (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-793)) (-4 *1 (-979 *4 *5 *2)) (-4 *4 (-1080))
+ (-4 *5 (-815)) (-4 *2 (-871))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-793)) (-4 *2 (-979 *4 (-545 *5) *5))
+ (-5 *1 (-1157 *4 *5 *2)) (-4 *4 (-1080)) (-4 *5 (-871))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-793)) (-5 *2 (-975 *4)) (-5 *1 (-1240 *4))
+ (-4 *4 (-1080)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-115)) (-5 *4 (-793))
+ (-4 *5 (-13 (-466) (-1069 (-560)))) (-4 *5 (-571))
+ (-5 *1 (-41 *5 *2)) (-4 *2 (-435 *5))
+ (-4 *2
+ (-13 (-376) (-310)
+ (-10 -8 (-15 -2473 ((-1156 *5 (-630 $)) $))
+ (-15 -2484 ((-1156 *5 (-630 $)) $))
+ (-15 -3913 ($ (-1156 *5 (-630 $))))))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-342)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-1132))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-864 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-774)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-1185 *3))) (-5 *1 (-1185 *3)) (-4 *3 (-1247)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-597 *2)) (-4 *2 (-13 (-29 *4) (-1233)))
+ (-5 *1 (-599 *4 *2))
+ (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-597 (-421 (-975 *4))))
+ (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-326 *4))
+ (-5 *1 (-603 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-571))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
(((*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1189)) (-5 *1 (-732)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-711 *6)) (-5 *5 (-1 (-419 (-1201 *6)) (-1201 *6)))
+ (-4 *6 (-376))
+ (-5 *2
+ (-663
+ (-2 (|:| |outval| *7) (|:| |outmult| (-560))
+ (|:| |outvect| (-663 (-711 *7))))))
+ (-5 *1 (-546 *6 *7 *4)) (-4 *7 (-376)) (-4 *4 (-13 (-376) (-870))))))
+(((*1 *1) (-5 *1 (-342))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-663 *4)) (-4 *4 (-1132)) (-4 *4 (-1247)) (-5 *2 (-114))
+ (-5 *1 (-1185 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-663 (-663 (-793)))) (-5 *1 (-934 *3)) (-4 *3 (-1132)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-178)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-421 (-560))) (-5 *1 (-119 *4)) (-14 *4 *3)
+ (-5 *3 (-560))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-894 *3)) (-5 *2 (-560))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-421 (-560))) (-5 *1 (-895 *4)) (-14 *4 *3)
+ (-5 *3 (-560))))
+ ((*1 *2 *1 *3)
+ (-12 (-14 *4 *3) (-5 *2 (-421 (-560))) (-5 *1 (-896 *4 *5))
+ (-5 *3 (-560)) (-4 *5 (-894 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1043)) (-5 *2 (-421 (-560)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1099 *2 *3)) (-4 *2 (-13 (-870) (-376)))
+ (-4 *3 (-1273 *2))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1276 *2 *3)) (-4 *3 (-814))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -3913 (*2 (-1207))))
+ (-4 *2 (-1080)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3)))))
+(((*1 *1 *1) (-5 *1 (-887)))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1135 *2 *3 *4 *5 *6)) (-4 *3 (-1132)) (-4 *4 (-1132))
+ (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-1132))))
+ ((*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1189))))
+ ((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1189))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1207)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-948)) (-5 *1 (-154 *3 *4 *5)) (-14 *3 *2)
+ (-4 *4 (-376)) (-14 *5 (-1024 *3 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1297 (-663 (-2 (|:| -1430 *4) (|:| -1591 (-1151))))))
+ (-4 *4 (-363)) (-5 *2 (-1303)) (-5 *1 (-542 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-948))) (-5 *4 (-663 (-560)))
+ (-5 *2 (-711 (-560))) (-5 *1 (-1141)))))
+(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-781)))))
(((*1 *2 *2)
(-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))
(-5 *1 (-1155 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-1189)) (-5 *1 (-1300))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1300))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1300))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-1189)) (-5 *1 (-1301))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1301))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1301)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7))
+ (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -3859 *4))))
+ (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1189)) (-5 *5 (-711 (-229))) (-5 *6 (-229))
+ (-5 *7 (-711 (-560))) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-774)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-793)) (-4 *6 (-376)) (-5 *4 (-1240 *6))
+ (-5 *2 (-1 (-1185 *4) (-1185 *4))) (-5 *1 (-1306 *6))
+ (-5 *5 (-1185 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-2 (|:| |deg| (-793)) (|:| -2627 *5))))
+ (-4 *5 (-1273 *4)) (-4 *4 (-363)) (-5 *2 (-663 *5))
+ (-5 *1 (-220 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-2 (|:| -4012 *5) (|:| -3900 (-560)))))
+ (-5 *4 (-560)) (-4 *5 (-1273 *4)) (-5 *2 (-663 *5))
+ (-5 *1 (-718 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080))
+ (-5 *2 (-114))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-114)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1080))
+ (-4 *4 (-868)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1189)) (-4 *1 (-378 *2 *4)) (-4 *2 (-1132))
+ (-4 *4 (-1132))))
+ ((*1 *1 *2)
+ (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1225 *4 *5))
+ (-4 *4 (-1132)) (-4 *5 (-1132)))))
+(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-267)))))
(((*1 *2 *3)
(-12 (-4 *4 (-1080)) (-4 *3 (-1273 *4)) (-4 *2 (-1290 *4))
(-5 *1 (-1292 *4 *3 *5 *2)) (-4 *5 (-680 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132))
+ (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1207))
+ (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-435 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-421 (-560)))
+ (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5)))
+ (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-328 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-305 *3)) (-5 *5 (-421 (-560)))
+ (-4 *3 (-13 (-27) (-1233) (-435 *6)))
+ (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-328 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 (-560))) (-5 *4 (-305 *6))
+ (-4 *6 (-13 (-27) (-1233) (-435 *5)))
+ (-4 *5 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-473 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3))
+ (-4 *3 (-13 (-27) (-1233) (-435 *6)))
+ (-4 *6 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-473 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-560)))
+ (-4 *7 (-13 (-27) (-1233) (-435 *6)))
+ (-4 *6 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-473 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-560)))
+ (-4 *3 (-13 (-27) (-1233) (-435 *7)))
+ (-4 *7 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-473 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-421 (-560)))) (-5 *4 (-305 *8))
+ (-5 *5 (-1264 (-421 (-560)))) (-5 *6 (-421 (-560)))
+ (-4 *8 (-13 (-27) (-1233) (-435 *7)))
+ (-4 *7 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-473 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-421 (-560))))
+ (-5 *7 (-421 (-560))) (-4 *3 (-13 (-27) (-1233) (-435 *8)))
+ (-4 *8 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
+ (-5 *1 (-473 *8 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1185 (-2 (|:| |k| (-560)) (|:| |c| *3))))
+ (-4 *3 (-1080)) (-5 *1 (-609 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-610 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1185 (-2 (|:| |k| (-560)) (|:| |c| *3))))
+ (-4 *3 (-1080)) (-4 *1 (-1259 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-793))
+ (-5 *3 (-1185 (-2 (|:| |k| (-421 (-560))) (|:| |c| *4))))
+ (-4 *4 (-1080)) (-4 *1 (-1280 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-4 *1 (-1290 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1185 (-2 (|:| |k| (-793)) (|:| |c| *3))))
+ (-4 *3 (-1080)) (-4 *1 (-1290 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-1037)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207))))
+ (-4 *6 (-815)) (-4 *7 (-979 *4 *6 *5))
+ (-5 *2
+ (-2 (|:| |sysok| (-114)) (|:| |z0| (-663 *7)) (|:| |n0| (-663 *7))))
+ (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-663 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-897 (-948) (-948)))) (-5 *1 (-1002)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1207)) (-5 *4 (-975 (-560))) (-5 *2 (-342))
+ (-5 *1 (-344)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2))
+ (-4 *4 (-385 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1189)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-663 *2))) (-5 *4 (-663 *5))
+ (-4 *5 (-38 (-421 (-560)))) (-4 *2 (-1290 *5))
+ (-5 *1 (-1291 *5 *2)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7))
+ (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *4))))
+ (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-154 *2 *3 *4)) (-14 *2 (-948)) (-4 *3 (-376))
+ (-14 *4 (-1024 *2 *3))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-571))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376))))
+ ((*1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376))))
+ ((*1 *1 *1) (|partial| -4 *1 (-744)))
+ ((*1 *1 *1) (|partial| -4 *1 (-748)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-1099 *3 *2)) (-4 *3 (-13 (-870) (-376)))
+ (-4 *2 (-1273 *3))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1300))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1301)))))
(((*1 *2 *3 *4 *3 *5)
(-12 (-5 *3 (-1189)) (-5 *4 (-171 (-229))) (-5 *5 (-560))
(-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-663 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-5 *2 (-114))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *1 (-1242 *5 *6 *7 *3))
+ (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-114)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-270))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1189)) (-5 *3 (-663 (-270))) (-5 *1 (-271))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-779)))))
+(((*1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))))
+(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-376)) (-4 *3 (-1080))
+ (-5 *1 (-1191 *3)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5))
+ (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *1 (-1311 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-663 *8)) (-5 *3 (-1 (-114) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571))
+ (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1311 *5 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1207)) (-5 *2 (-1 *6 *5)) (-5 *1 (-728 *4 *5 *6))
+ (-4 *4 (-633 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247)))))
+(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
+ (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))))
(((*1 *1 *1 *1)
(-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2))
(-4 *4 (-385 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7))))
+ (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-663 *7)))))
+(((*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-560)) (-4 *3 (-175)) (-4 *5 (-385 *3))
+ (-4 *6 (-385 *3)) (-5 *1 (-710 *3 *5 *6 *2))
+ (-4 *2 (-708 *3 *5 *6)))))
+(((*1 *1) (-5 *1 (-159))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-971)) (-5 *3 (-560)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *9)) (-4 *8 (-1096 *5 *6 *7))
+ (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815))
+ (-4 *7 (-871)) (-5 *2 (-793)) (-5 *1 (-1100 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *9)) (-4 *8 (-1096 *5 *6 *7))
+ (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815))
+ (-4 *7 (-871)) (-5 *2 (-793)) (-5 *1 (-1176 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-769)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303))
+ (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303))
+ (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
+ (-4 *3 (-380 *4))))
+ ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481))))
((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481))))
((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-711 *7)) (-5 *3 (-663 *7)) (-4 *7 (-979 *4 *6 *5))
+ (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207))))
+ (-4 *6 (-815)) (-5 *1 (-953 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1080) (-660 (-560))))
+ (-5 *2 (-114)) (-5 *1 (-1326 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-972 (-229))) (-5 *4 (-898)) (-5 *2 (-1303))
+ (-5 *1 (-482))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-663 *3)) (-4 *3 (-1080)) (-4 *1 (-1011 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-972 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-972 *3)) (-4 *3 (-1080)) (-4 *1 (-1165 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-793)) (-4 *1 (-1165 *3)) (-4 *3 (-1080))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-663 *3)) (-4 *1 (-1165 *3)) (-4 *3 (-1080))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-972 *3)) (-4 *1 (-1165 *3)) (-4 *3 (-1080))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)) (-5 *3 (-229)))))
+(((*1 *2)
+ (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))))
+(((*1 *1 *1 *1) (-5 *1 (-887))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-376))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-588 *5 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-432 *4)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-1301))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-543)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-339 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-530 *3 *4))
+ (-14 *4 (-560)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-419 *3)) (-4 *3 (-571)) (-5 *1 (-433 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
(((*1 *2 *3)
(-12 (-5 *3 (-954))
(-5 *2
@@ -7847,21 +8974,412 @@
(-5 *1 (-155)) (-5 *3 (-663 (-663 (-972 (-229)))))))
((*1 *1 *2) (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *1 (-270))))
((*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))))
+(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-303)))
+ ((*1 *1) (-5 *1 (-887)))
+ ((*1 *1)
+ (-12 (-4 *2 (-466)) (-4 *3 (-871)) (-4 *4 (-815))
+ (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-979 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1116)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34)))
+ (-4 *3 (-13 (-1132) (-34)))))
+ ((*1 *1) (-5 *1 (-1210))) ((*1 *1) (-5 *1 (-1211))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
+ ((*1 *1 *1) (-4 *1 (-296)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-419 *4)) (-4 *4 (-571))
+ (-5 *2 (-663 (-2 (|:| -2625 (-793)) (|:| |logand| *4))))
+ (-5 *1 (-332 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
+ (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-686 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871))
+ (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-793)) (-4 *4 (-13 (-1080) (-739 (-421 (-560)))))
+ (-4 *5 (-871)) (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1320 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-793)) (-5 *1 (-1318 *3 *4))
+ (-4 *4 (-739 (-421 (-560)))) (-4 *3 (-871)) (-4 *4 (-175)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-793)) (-4 *1 (-1273 *3)) (-4 *3 (-1080)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-520)) (-5 *3 (-663 (-994))) (-5 *1 (-303)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-793)) (-4 *5 (-1080)) (-5 *2 (-560))
+ (-5 *1 (-457 *5 *3 *6)) (-4 *3 (-1273 *5))
+ (-4 *6 (-13 (-418) (-1069 *5) (-376) (-1233) (-296)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-1080)) (-5 *2 (-560)) (-5 *1 (-457 *4 *3 *5))
+ (-4 *3 (-1273 *4))
+ (-4 *5 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560)))))
+ (-4 *5 (-1273 *4)) (-5 *2 (-663 (-2 (|:| -1351 *5) (|:| -2793 *5))))
+ (-5 *1 (-829 *4 *5 *3 *6)) (-4 *3 (-680 *5))
+ (-4 *6 (-680 (-421 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560)))))
+ (-4 *4 (-1273 *5)) (-5 *2 (-663 (-2 (|:| -1351 *4) (|:| -2793 *4))))
+ (-5 *1 (-829 *5 *4 *3 *6)) (-4 *3 (-680 *4))
+ (-4 *6 (-680 (-421 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560)))))
+ (-4 *5 (-1273 *4)) (-5 *2 (-663 (-2 (|:| -1351 *5) (|:| -2793 *5))))
+ (-5 *1 (-829 *4 *5 *6 *3)) (-4 *6 (-680 *5))
+ (-4 *3 (-680 (-421 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560)))))
+ (-4 *4 (-1273 *5)) (-5 *2 (-663 (-2 (|:| -1351 *4) (|:| -2793 *4))))
+ (-5 *1 (-829 *5 *4 *6 *3)) (-4 *6 (-680 *4))
+ (-4 *3 (-680 (-421 *4))))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-663 (-1207))) (-4 *4 (-175))
+ (-14 *6
+ (-1 (-114) (-2 (|:| -1591 *5) (|:| -2030 *2))
+ (-2 (|:| -1591 *5) (|:| -2030 *2))))
+ (-4 *2 (-245 (-2256 *3) (-793))) (-5 *1 (-475 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-871)) (-4 *7 (-979 *4 *2 (-888 *3))))))
(((*1 *1 *1) (-5 *1 (-887))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-802 *5 (-888 *6)))) (-5 *4 (-114)) (-4 *5 (-466))
+ (-14 *6 (-663 (-1207)))
+ (-5 *2
+ (-663 (-1177 *5 (-545 (-888 *6)) (-888 *6) (-802 *5 (-888 *6)))))
+ (-5 *1 (-647 *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1290 *3)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1134)) (-5 *1 (-291)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-711 *8)) (-5 *4 (-793)) (-4 *8 (-979 *5 *7 *6))
+ (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207))))
+ (-4 *7 (-815))
+ (-5 *2
+ (-663
+ (-2 (|:| |det| *8) (|:| |rows| (-663 (-560)))
+ (|:| |cols| (-663 (-560))))))
+ (-5 *1 (-953 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229))
+ (-5 *2 (-1066)) (-5 *1 (-778)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-663 (-2 (|:| -4012 (-1201 *6)) (|:| -2030 (-560)))))
+ (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114))
+ (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-979 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560)))))
+ (-4 *4 (-1273 (-421 *2))) (-5 *2 (-560)) (-5 *1 (-942 *4 *5))
+ (-4 *5 (-1273 (-421 *4))))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1207))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-663 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-663 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -4378 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1233) (-27) (-435 *8)))
+ (-4 *8 (-13 (-466) (-149) (-1069 *3) (-660 *3))) (-5 *3 (-560))
+ (-5 *2 (-663 *4)) (-5 *1 (-1045 *8 *4)))))
(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-391))))
((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-391)))))
+(((*1 *1 *2) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256)))))
+(((*1 *1) (-5 *1 (-636))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -4346 *7) (|:| |sol?| (-114)))
+ (-560) *7))
+ (-5 *6 (-663 (-421 *8))) (-4 *7 (-376)) (-4 *8 (-1273 *7))
+ (-5 *3 (-421 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-588 *7 *8)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
+ (-4 *4 (-1080)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-427 *3 *4 *5 *6)) (-4 *6 (-1069 *4)) (-4 *3 (-319))
+ (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-4 *6 (-424 *4 *5))
+ (-14 *7 (-1297 *6)) (-5 *1 (-429 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1297 *6)) (-4 *6 (-424 *4 *5)) (-4 *4 (-1022 *3))
+ (-4 *5 (-1273 *4)) (-4 *3 (-319)) (-5 *1 (-429 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
+(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-51)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-663 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5))
+ (-5 *1 (-1019 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-663 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5))
+ (-5 *1 (-1138 *3 *4 *5 *6 *7)))))
+(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-825)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-559))))
+(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))))
(((*1 *2 *3 *2)
(-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-388 *4 *2))
(-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4509)))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-887)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-793))
+ (-14 *4 (-793)) (-4 *5 (-175)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-419 (-1201 (-560)))) (-5 *1 (-194)) (-5 *3 (-560)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3))
+ (-4 *5 (-385 *3)) (-5 *2 (-114))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
+ (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-560)) (-5 *2 (-663 (-663 (-229)))) (-5 *1 (-1244)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))))
(((*1 *2 *3)
(-12 (-5 *3 (-1166)) (-5 *2 (-713 (-292))) (-5 *1 (-170)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1189)) (-5 *1 (-1020))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1207)) (-4 *4 (-1247)) (-5 *1 (-1089 *3 *4))
+ (-4 *3 (-1125 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1207)) (-5 *3 (-1120 *4)) (-4 *4 (-1247))
+ (-5 *1 (-1123 *4)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-560)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1247))
+ (-4 *3 (-385 *4)) (-4 *5 (-385 *4)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2))
+ (-4 *4 (-571)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3))
+ (-4 *5 (-385 *3)) (-5 *2 (-793))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
+ (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-793)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-809)) (-5 *2 (-1066))
+ (-5 *3
+ (-2 (|:| |fn| (-326 (-229)))
+ (|:| -1585 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229))
+ (|:| |relerr| (-229))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-809)) (-5 *2 (-1066))
+ (-5 *3
+ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
+ (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
+ (|:| |relerr| (-229)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-495 *4 *5)) (-14 *4 (-663 (-1207))) (-4 *5 (-1080))
+ (-5 *2 (-975 *5)) (-5 *1 (-973 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *1) (-5 *1 (-450))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-663 (-711 *5))) (-5 *4 (-1297 *5)) (-4 *5 (-319))
(-4 *5 (-1080)) (-5 *2 (-711 *5)) (-5 *1 (-1061 *5)))))
-(((*1 *1) (-5 *1 (-342))))
+(((*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-887)))))
+(((*1 *2)
+ (-12 (-4 *3 (-571)) (-5 *2 (-663 (-711 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-432 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1132)) (-4 *6 (-1132))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-706 *4 *5 *6)) (-4 *4 (-1132)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-663 (-663 *7)))
+ (-5 *1 (-463 *4 *5 *6 *7)) (-5 *3 (-663 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815))
+ (-4 *7 (-871)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-663 (-663 *8)))
+ (-5 *1 (-463 *5 *6 *7 *8)) (-5 *3 (-663 *8)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080))
+ (-5 *2 (-663 (-663 (-663 (-793))))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3))
+ (-4 *5 (-385 *3)) (-5 *2 (-793))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
+ (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-793)))))
+(((*1 *1 *1) (-4 *1 (-559))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-115))))
+ ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-115))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1080)) (-4 *3 (-871))
+ (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-793))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871))
+ (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-793))))
+ ((*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-871)) (-5 *2 (-793)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-376))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-611)) (-5 *1 (-292)))))
(((*1 *2 *1) (-12 (-4 *1 (-789 *3)) (-4 *3 (-1132)) (-5 *2 (-114)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
+ (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
+ (|:| |relerr| (-229))))
+ (-5 *2 (-1185 (-229))) (-5 *1 (-195))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-326 (-229))) (-5 *4 (-663 (-1207)))
+ (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-1185 (-229))) (-5 *1 (-313))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *4 (-663 (-1207)))
+ (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-1185 (-229))) (-5 *1 (-313)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-560)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1247))
+ (-4 *5 (-385 *4)) (-4 *3 (-385 *4)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-3 (-114) (-663 *1)))
+ (-4 *1 (-1102 *4 *5 *6 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207))
+ (-14 *4 *2))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-663 (-1266 *5 *4)))
+ (-5 *1 (-1145 *4 *5)) (-5 *3 (-1266 *5 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-948)) (-5 *2 (-482)) (-5 *1 (-1300)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-571)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *2 (-663 *1)) (-4 *1 (-1096 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1132)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3))))
+ (-5 *2 (-663 (-1106 *3 *4 *5))) (-5 *1 (-1108 *3 *4 *5))
+ (-4 *5 (-13 (-435 *4) (-911 *3) (-633 (-915 *3)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-711 *4)) (-5 *3 (-948)) (-4 *4 (-1080))
+ (-5 *1 (-1060 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-663 (-711 *4))) (-5 *3 (-948)) (-4 *4 (-1080))
+ (-5 *1 (-1060 *4)))))
(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1189)) (-5 *1 (-732)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-5 *2 (-114)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1128 (-1128 *3))) (-5 *1 (-934 *3)) (-4 *3 (-1132)))))
+(((*1 *1 *1) (-5 *1 (-1094))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *8 (-1096 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-663 *8))
+ (|:| |towers| (-663 (-1058 *5 *6 *7 *8)))))
+ (-5 *1 (-1058 *5 *6 *7 *8)) (-5 *3 (-663 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *8 (-1096 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-663 *8))
+ (|:| |towers| (-663 (-1177 *5 *6 *7 *8)))))
+ (-5 *1 (-1177 *5 *6 *7 *8)) (-5 *3 (-663 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207))
+ (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-326 *5)))
+ (-5 *1 (-1160 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-421 (-975 *5)))) (-5 *4 (-663 (-1207)))
+ (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-326 *5))))
+ (-5 *1 (-1160 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-5 *2 (-114))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1234 *3)) (-4 *3 (-1132)))))
(((*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-369 *3)) (-4 *3 (-363)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-818 *2)) (-4 *2 (-175))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1027 *3)) (-4 *3 (-175)) (-5 *1 (-820 *3)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1189))
+ (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1093))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1093)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033)))
+ (-5 *1 (-179 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1201 *3)) (-4 *3 (-1080)) (-4 *1 (-1273 *3)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1134)) (-5 *3 (-795)) (-5 *1 (-51)))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1066))
+ (-5 *1 (-770)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559))
+ (-5 *2 (-421 (-560)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-419 *3)) (-4 *3 (-559))
+ (-4 *3 (-571))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-559)) (-5 *2 (-421 (-560)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-559))
+ (-5 *2 (-421 (-560)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-854 *3)) (-4 *3 (-559))
+ (-4 *3 (-1132))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-864 *3)) (-4 *3 (-559))
+ (-4 *3 (-1132))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1029 *3)) (-4 *3 (-175)) (-4 *3 (-559))
+ (-5 *2 (-421 (-560)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-421 (-560))) (-5 *1 (-1039 *3))
+ (-4 *3 (-1069 *2)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1132)) (-5 *1 (-103 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1132)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-495 *4 *5)) (-14 *4 (-663 (-1207))) (-4 *5 (-1080))
+ (-5 *2 (-255 *4 *5)) (-5 *1 (-973 *4 *5)))))
(((*1 *1 *1 *2)
(-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1247)) (-4 *3 (-385 *2))
(-4 *4 (-385 *2))))
@@ -7869,14 +9387,182 @@
(-12 (|has| *1 (-6 -4509)) (-4 *1 (-618 *3 *2)) (-4 *3 (-1132))
(-4 *2 (-1247)))))
(((*1 *2 *1)
+ (-12 (-5 *2 (-421 (-560))) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376))
+ (-14 *4 (-1207)) (-14 *5 *3))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1297 *5)) (-4 *5 (-13 (-1080) (-660 *4)))
+ (-4 *4 (-571)) (-5 *2 (-1297 *4)) (-5 *1 (-658 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3))
+ (-4 *3 (-1273 *2)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080))
+ (-14 *4 (-663 (-1207)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-51)) (-5 *2 (-114)) (-5 *1 (-52 *4)) (-4 *4 (-1247))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871)))
+ (-14 *4 (-663 (-1207)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-694 *3)) (-4 *3 (-871))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-699 *3)) (-4 *3 (-871))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-918 *3)) (-4 *3 (-871)))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-407)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))))
+ (-5 *2 (-663 (-229))) (-5 *1 (-315)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571))
+ (-5 *2 (-114)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-421 (-560))) (-5 *1 (-1055 *3))
+ (-4 *3 (-13 (-870) (-376) (-1051)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3))
+ (-4 *3 (-1273 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1099 *2 *3)) (-4 *2 (-13 (-870) (-376)))
+ (-4 *3 (-1273 *2)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1189))
+ (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 *1)) (-4 *1 (-1165 *3)) (-4 *3 (-1080))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-421 *1)) (-4 *1 (-1273 *3)) (-4 *3 (-1080))
+ (-4 *3 (-571))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-571)))))
+(((*1 *2 *1)
(-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815))
(-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114))))
((*1 *2 *3 *1)
(-12 (-4 *1 (-1242 *4 *5 *6 *3)) (-4 *4 (-571)) (-4 *5 (-815))
(-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-229))) (-5 *2 (-1297 (-721))) (-5 *1 (-315)))))
+(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1072)))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-864 *4)) (-5 *3 (-630 *4)) (-5 *5 (-114))
+ (-4 *4 (-13 (-1233) (-29 *6)))
+ (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560))))
+ (-5 *1 (-228 *6 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-374 (-115))) (-4 *2 (-1080)) (-5 *1 (-736 *2 *4))
+ (-4 *4 (-670 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-374 (-115))) (-5 *1 (-856 *2)) (-4 *2 (-1080)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-846)) (-5 *1 (-845)))))
+(((*1 *2)
+ (-12 (-5 *2 (-114)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132))
+ (-4 *4 (-1132)))))
(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1189)) (-5 *1 (-315)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1057 (-864 (-560)))) (-5 *1 (-609 *3)) (-4 *3 (-1080)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1185 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1080))
+ (-5 *3 (-421 (-560))) (-5 *1 (-1191 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1091))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
+ (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)) (-4 *2 (-1091))))
+ ((*1 *1 *1) (-4 *1 (-870)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)) (-4 *2 (-1091))))
+ ((*1 *1 *1) (-4 *1 (-1091))) ((*1 *1 *1) (-4 *1 (-1170))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-711 (-421 (-560)))) (-5 *2 (-663 *4)) (-5 *1 (-801 *4))
+ (-4 *4 (-13 (-376) (-870))))))
+(((*1 *1)
+ (-12 (-4 *3 (-1132)) (-5 *1 (-910 *2 *3 *4)) (-4 *2 (-1132))
+ (-4 *4 (-688 *3))))
+ ((*1 *1) (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-560)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-769)))))
+(((*1 *2)
+ (-12 (-5 *2 (-987 (-1151))) (-5 *1 (-357 *3 *4)) (-14 *3 (-948))
+ (-14 *4 (-948))))
+ ((*1 *2)
+ (-12 (-5 *2 (-987 (-1151))) (-5 *1 (-358 *3 *4)) (-4 *3 (-363))
+ (-14 *4 (-1201 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-987 (-1151))) (-5 *1 (-359 *3 *4)) (-4 *3 (-363))
+ (-14 *4 (-948)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560))
+ (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683))))
+ (-5 *2 (-1066)) (-5 *1 (-770)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1207)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-724 *3 *5 *6 *7))
+ (-4 *3 (-633 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247))
+ (-4 *7 (-1247))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1207)) (-5 *2 (-1 *6 *5)) (-5 *1 (-728 *3 *5 *6))
+ (-4 *3 (-633 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247)))))
(((*1 *2 *3)
(-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))))
+(((*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-934 (-560))) (-5 *1 (-946))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-178))) (-5 *1 (-1116)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-114) *2)) (-4 *1 (-153 *2))
+ (-4 *2 (-1247)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *6)) (-4 *5 (-1132))
+ (-4 *6 (-1247)) (-5 *2 (-1 *6 *5)) (-5 *1 (-665 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *2)) (-4 *5 (-1132))
+ (-4 *2 (-1247)) (-5 *1 (-665 *5 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 *5)) (-4 *6 (-1132))
+ (-4 *5 (-1247)) (-5 *2 (-1 *5 *6)) (-5 *1 (-665 *6 *5))))
+ ((*1 *2 *3 *4 *5 *2)
+ (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *2)) (-4 *5 (-1132))
+ (-4 *2 (-1247)) (-5 *1 (-665 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-663 *5)) (-5 *4 (-663 *6))
+ (-4 *5 (-1132)) (-4 *6 (-1247)) (-5 *1 (-665 *5 *6))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 *2)) (-5 *6 (-1 *2 *5))
+ (-4 *5 (-1132)) (-4 *2 (-1247)) (-5 *1 (-665 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1175)) (-5 *3 (-146)) (-5 *2 (-793)))))
+(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)) (-5 *2 (-114))
+ (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-979 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-114)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34)))
+ (-4 *4 (-13 (-1132) (-34))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 *3)) (-4 *3 (-376)) (-5 *1 (-661 *3 *4))
+ (-14 *4 (-663 (-1207))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114))
+ (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-663 *3)) (-4 *3 (-1102 *5 *6 *7 *8)) (-4 *5 (-466))
+ (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7))
+ (-5 *2 (-114)) (-5 *1 (-1019 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114))
+ (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-663 *3)) (-4 *3 (-1102 *5 *6 *7 *8)) (-4 *5 (-466))
+ (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7))
+ (-5 *2 (-114)) (-5 *1 (-1138 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1007 *4 *5 *3 *6)) (-4 *4 (-1080)) (-4 *5 (-815))
+ (-4 *3 (-871)) (-4 *6 (-1096 *4 *5 *3)) (-5 *2 (-114)))))
(((*1 *2 *3 *4)
(-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
(-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-114))
@@ -7884,1353 +9570,838 @@
((*1 *2 *3 *4)
(-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
(-4 *3 (-1096 *5 *6 *7))
- (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -4297 *4))))
+ (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -3859 *4))))
(-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-663 (-975 *3))) (-4 *3 (-466))
+ (-5 *1 (-373 *3 *4)) (-14 *4 (-663 (-1207)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-663 (-802 *3 (-888 *4)))) (-4 *3 (-466))
+ (-14 *4 (-663 (-1207))) (-5 *1 (-647 *3 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-4 *1 (-387 *3 *4))
+ (-4 *4 (-175)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-663 *3))
+ (-4 *3 (-13 (-435 *6) (-27) (-1233)))
+ (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-580 *6 *3 *7)) (-4 *7 (-1132)))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-114))
+ (-5 *6 (-229)) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE))))
+ (-5 *2 (-1066)) (-5 *1 (-778)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5))
+ (-14 *3 (-560)) (-14 *4 (-793)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-663 *4)) (-5 *1 (-1172 *3 *4))
+ (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34))))))
+(((*1 *1 *1 *1) (-4 *1 (-998))))
+(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-948)) (-5 *1 (-808)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-421 (-560))) (-5 *1 (-609 *3)) (-4 *3 (-38 *2))
+ (-4 *3 (-1080)))))
+(((*1 *2)
+ (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6))
+ (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
(((*1 *2 *1)
(-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3))
(-4 *5 (-385 *3)) (-5 *2 (-114))))
((*1 *2 *1)
(-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
(-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))))
-(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-1189)) (-5 *1 (-1300))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1300))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1300))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-1189)) (-5 *1 (-1301))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1301))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1301)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-114)) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1132))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-972 *3))))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229)))
- (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284)))) (-5 *3 (-229))
- (-5 *2 (-1066)) (-5 *1 (-770)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-711 (-229))) (-5 *6 (-711 (-560))) (-5 *3 (-560))
- (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1080)) (-4 *2 (-376))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-682 *4 *2))
- (-4 *2 (-680 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-131)))))
-(((*1 *1 *1) (-5 *1 (-1094))))
-(((*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-573 *3)) (-4 *3 (-559))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) (-5 *2 (-419 *3))
- (-5 *1 (-764 *4 *5 *6 *3)) (-4 *3 (-979 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319))
- (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-419 (-1201 *7)))
- (-5 *1 (-764 *4 *5 *6 *7)) (-5 *3 (-1201 *7))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-466)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *2 (-419 *1)) (-4 *1 (-979 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-871)) (-4 *5 (-815)) (-4 *6 (-466)) (-5 *2 (-419 *3))
- (-5 *1 (-1010 *4 *5 *6 *3)) (-4 *3 (-979 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-466))
- (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-419 (-1201 (-421 *7))))
- (-5 *1 (-1203 *4 *5 *6 *7)) (-5 *3 (-1201 (-421 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1252))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-5 *2 (-419 *3)) (-5 *1 (-1277 *4 *3))
- (-4 *3 (-13 (-1273 *4) (-571) (-10 -8 (-15 -2132 ($ $ $)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1051)))
- (-14 *5 (-663 (-1207)))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -4346 *6) (|:| |sol?| (-114))) (-560)
+ *6))
+ (-4 *6 (-376)) (-4 *7 (-1273 *6))
(-5 *2
- (-663 (-1177 *4 (-545 (-888 *6)) (-888 *6) (-802 *4 (-888 *6)))))
- (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-663 (-1207))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-793)) (-4 *1 (-1273 *3)) (-4 *3 (-1080))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-948)) (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080))
- (-4 *4 (-814))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-421 (-560))) (-4 *1 (-1280 *3)) (-4 *3 (-1080)))))
-(((*1 *1) (-5 *1 (-622))) ((*1 *1) (-5 *1 (-624)))
- ((*1 *1) (-5 *1 (-625))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-711 (-421 (-975 *4)))) (-4 *4 (-466))
- (-5 *2 (-663 (-3 (-421 (-975 *4)) (-1196 (-1207) (-975 *4)))))
- (-5 *1 (-304 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-388 *4 *2))
- (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4509)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2))
- (-4 *4 (-571)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-114) *2)) (-4 *2 (-134)) (-5 *1 (-1115 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-560) *2 *2)) (-4 *2 (-134)) (-5 *1 (-1115 *2)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-761 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3))))
+ (-3 (-2 (|:| |answer| (-421 *7)) (|:| |a0| *6))
+ (-2 (|:| -4378 (-421 *7)) (|:| |coeff| (-421 *7))) "failed"))
+ (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1080)) (-4 *3 (-871))
+ (-4 *4 (-277 *3)) (-4 *5 (-815)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-795)) (-5 *1 (-115))))
+ ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-795)) (-5 *1 (-115)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-774)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080))))
((*1 *1 *1)
- (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207))
- (-14 *4 *2))))
-(((*1 *2 *3) (-12 (-5 *3 (-844)) (-5 *2 (-51)) (-5 *1 (-853)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1189)) (-5 *2 (-663 (-1212))) (-5 *1 (-1167)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-114)) (-5 *5 (-711 (-229)))
- (-5 *2 (-1066)) (-5 *1 (-777)))))
-(((*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814))))
- ((*1 *2 *1) (-12 (-4 *1 (-730 *3)) (-4 *3 (-1080)) (-5 *2 (-793))))
- ((*1 *2 *1) (-12 (-4 *1 (-876 *3)) (-4 *3 (-1080)) (-5 *2 (-793))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-663 *6)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-1080))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 (-793)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-979 *4 *5 *3)) (-4 *4 (-1080)) (-4 *5 (-815))
- (-4 *3 (-871)) (-5 *2 (-793)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1189)) (-5 *2 (-217 (-516))) (-5 *1 (-859)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1182))))
+ (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-868)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1273 (-421 *2))) (-5 *2 (-560)) (-5 *1 (-942 *4 *3))
- (-4 *3 (-1273 (-421 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1300))))
- ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1301)))))
-(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-561))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-630 *1)) (-4 *1 (-310)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1201 *1)) (-4 *1 (-1043)))))
-(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-451)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
- (-5 *1 (-1159 *3 *2)) (-4 *3 (-1273 *2)))))
+ (-12 (-4 *4 (-571)) (-4 *5 (-1022 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-144 *4 *5 *3))
+ (-4 *3 (-385 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-571)) (-4 *5 (-1022 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-517 *4 *5 *6 *3)) (-4 *6 (-385 *4)) (-4 *3 (-385 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-711 *5)) (-4 *5 (-1022 *4)) (-4 *4 (-571))
+ (-5 *2 (-2 (|:| |num| (-711 *4)) (|:| |den| *4)))
+ (-5 *1 (-715 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560)))))
+ (-4 *6 (-1273 *5))
+ (-5 *2 (-2 (|:| -2439 *7) (|:| |rh| (-663 (-421 *6)))))
+ (-5 *1 (-829 *5 *6 *7 *3)) (-5 *4 (-663 (-421 *6)))
+ (-4 *7 (-680 *6)) (-4 *3 (-680 (-421 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-571)) (-4 *5 (-1022 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1268 *4 *5 *3))
+ (-4 *3 (-1273 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-258)) (-5 *1 (-345)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-769)))))
(((*1 *2)
- (-12 (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-939))
- (-5 *1 (-471 *3 *4 *2 *5)) (-4 *5 (-979 *2 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-815)) (-4 *4 (-871)) (-4 *2 (-939))
- (-5 *1 (-936 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-939)) (-5 *1 (-937 *2 *3)) (-4 *3 (-1273 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1132)) (-5 *1 (-993 *2 *3)) (-4 *3 (-1132)))))
-(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))))
-(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481))))
- ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))))
+ (-12 (-5 *2 (-948)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-948)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-4 *3 (-1132))
- (-5 *2 (-114)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-600)) (-5 *3 (-611)) (-5 *4 (-303)) (-5 *1 (-292)))))
-(((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
- (-4 *3 (-380 *4))))
- ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
-(((*1 *1 *1) (-5 *1 (-549))))
-(((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-267)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080))
- (-5 *2 (-663 (-663 (-972 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-663 (-663 (-972 *4)))) (-5 *3 (-114)) (-4 *4 (-1080))
- (-4 *1 (-1165 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-663 (-663 (-972 *3)))) (-4 *3 (-1080))
- (-4 *1 (-1165 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-663 (-663 (-663 *4)))) (-5 *3 (-114))
- (-4 *1 (-1165 *4)) (-4 *4 (-1080))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-663 (-663 (-972 *4)))) (-5 *3 (-114))
- (-4 *1 (-1165 *4)) (-4 *4 (-1080))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-663 (-663 (-663 *5)))) (-5 *3 (-663 (-174)))
- (-5 *4 (-174)) (-4 *1 (-1165 *5)) (-4 *5 (-1080))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-663 (-663 (-972 *5)))) (-5 *3 (-663 (-174)))
- (-5 *4 (-174)) (-4 *1 (-1165 *5)) (-4 *5 (-1080)))))
-(((*1 *2)
- (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4))) (-5 *2 (-711 (-421 *4))))))
+ (-12 (-5 *2 (-114)) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1132))
+ (-4 *4 (-23)) (-14 *5 *4))))
(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-1207))) (-4 *4 (-13 (-319) (-149)))
- (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815))
- (-5 *2 (-663 (-421 (-975 *4)))) (-5 *1 (-953 *4 *5 *6 *7))
- (-4 *7 (-979 *4 *6 *5)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-403)))))
-(((*1 *1 *1) (-4 *1 (-1175))))
-(((*1 *2 *2) (-12 (-5 *2 (-663 (-326 (-229)))) (-5 *1 (-278)))))
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033))))))
+(((*1 *2 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-576)) (-5 *3 (-560)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-376)) (-4 *3 (-1080))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3583 *1)))
+ (-4 *1 (-876 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
(((*1 *2 *3 *2)
- (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-38 (-421 (-560))))
- (-4 *2 (-175)))))
-(((*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-342))))
- ((*1 *1 *2) (-12 (-5 *2 (-326 (-560))) (-5 *1 (-342))))
- ((*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-342))))
- ((*1 *1 *2) (-12 (-5 *2 (-326 (-716))) (-5 *1 (-342))))
- ((*1 *1 *2) (-12 (-5 *2 (-326 (-723))) (-5 *1 (-342))))
- ((*1 *1 *2) (-12 (-5 *2 (-326 (-721))) (-5 *1 (-342))))
- ((*1 *1) (-5 *1 (-342))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-887) (-887) (-887))) (-5 *4 (-560)) (-5 *2 (-887))
- (-5 *1 (-671 *5 *6 *7)) (-4 *5 (-1132)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-887)) (-5 *1 (-878 *3 *4 *5)) (-4 *3 (-1080))
- (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-887))))
- ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-887))))
- ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-887))))
- ((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887))))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-887)) (-5 *1 (-1201 *3)) (-4 *3 (-1080)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
-(((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| -3967 (-115)) (|:| |arg| (-663 (-915 *3)))))
- (-5 *1 (-915 *3)) (-4 *3 (-1132))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-115)) (-5 *2 (-663 (-915 *4)))
- (-5 *1 (-915 *4)) (-4 *4 (-1132)))))
-(((*1 *2 *1) (-12 (-5 *2 (-216 4 (-130))) (-5 *1 (-593)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-778)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-571))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2788 *4)))
- (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560))
- (-5 *2 (-1066)) (-5 *1 (-778)))))
+ (-12 (-5 *1 (-701 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132)))))
(((*1 *2 *3 *3 *3 *4)
(-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-793)) (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080))
- (-4 *4 (-815)) (-4 *5 (-871)) (-4 *3 (-571)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1080)) (-4 *3 (-871))
- (-4 *4 (-277 *3)) (-4 *5 (-815)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1185 (-663 (-560)))) (-5 *3 (-663 (-560)))
- (-5 *1 (-908)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-559))))
-(((*1 *2)
- (-12 (-4 *4 (-376)) (-5 *2 (-948)) (-5 *1 (-340 *3 *4))
- (-4 *3 (-341 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-376)) (-5 *2 (-854 (-948))) (-5 *1 (-340 *3 *4))
- (-4 *3 (-341 *4))))
- ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-948))))
- ((*1 *2)
- (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-854 (-948))))))
-(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-482))))
- ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1300))))
- ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1301)))))
-(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-240)) (-4 *3 (-1080)) (-4 *4 (-871)) (-4 *5 (-277 *4))
- (-4 *6 (-815)) (-5 *2 (-1 *1 (-793))) (-4 *1 (-262 *3 *4 *5 *6))))
+(((*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-286)))))
+(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-898))))
((*1 *2 *3)
- (-12 (-4 *4 (-1080)) (-4 *3 (-871)) (-4 *5 (-277 *3)) (-4 *6 (-815))
- (-5 *2 (-1 *1 (-793))) (-4 *1 (-262 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-277 *2)) (-4 *2 (-871)))))
-(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-815))
- (-4 *5 (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $))))) (-4 *6 (-571))
- (-5 *2 (-2 (|:| -3168 (-975 *6)) (|:| -4238 (-975 *6))))
- (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-979 (-421 (-975 *6)) *4 *5)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) (-5 *2 (-419 *3))
- (-5 *1 (-764 *4 *5 *6 *3)) (-4 *3 (-979 *6 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-569 *3)) (-4 *3 (-13 (-418) (-1233))) (-5 *2 (-114))))
- ((*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-114))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376)))
- (-4 *3 (-1273 *4)) (-5 *2 (-114)))))
-(((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
- (-4 *3 (-380 *4))))
- ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
-(((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-793)) (-4 *4 (-319)) (-4 *6 (-1273 *4))
- (-5 *2 (-1297 (-663 *6))) (-5 *1 (-469 *4 *6)) (-5 *5 (-663 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))))
-(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301))))
- ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-948)) (-4 *5 (-319)) (-4 *3 (-1273 *5))
- (-5 *2 (-2 (|:| |plist| (-663 *3)) (|:| |modulo| *5)))
- (-5 *1 (-474 *5 *3)) (-5 *4 (-663 *3)))))
+ (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-31))))
+ ((*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-948)))) ((*1 *1) (-4 *1 (-559)))
+ ((*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-721))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))))
+(((*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1080)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4))
- (-4 *5 (-1273 (-421 *3))) (-5 *2 (-114))))
+ (-12 (-4 *4 (-363)) (-5 *2 (-419 *3)) (-5 *1 (-220 *4 *3))
+ (-4 *3 (-1273 *4))))
((*1 *2 *3)
- (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-871))
- (-5 *2
- (-2 (|:| |f1| (-663 *4)) (|:| |f2| (-663 (-663 (-663 *4))))
- (|:| |f3| (-663 (-663 *4))) (|:| |f4| (-663 (-663 (-663 *4))))))
- (-5 *1 (-1218 *4)) (-5 *3 (-663 (-663 (-663 *4)))))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-950)) (-5 *2 (-2 (|:| -2115 (-663 *1)) (|:| -2748 *1)))
- (-5 *3 (-663 *1)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1146)) (-5 *1 (-1147)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-571)) (-5 *2 (-114)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2))
- (-4 *2 (-435 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207))))
- ((*1 *1 *1) (-4 *1 (-162))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-975 *5)) (-4 *5 (-1080)) (-5 *2 (-495 *4 *5))
- (-5 *1 (-973 *4 *5)) (-14 *4 (-663 (-1207))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-549))) (-5 *2 (-1207)) (-5 *1 (-549)))))
-(((*1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)) (-4 *2 (-1132))))
- ((*1 *1 *1) (-12 (-4 *1 (-717 *2)) (-4 *2 (-1132)))))
-(((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-663 (-115))))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1322 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-871))
- (-4 *4 (-175))))
- ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1132))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-841 *2)) (-4 *2 (-871))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-841 *3)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-871))
- (-4 *4 (-1080))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-319)) (-4 *6 (-385 *5)) (-4 *4 (-385 *5))
+ (-12 (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3))
+ (-4 *3 (-1273 (-560)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-663 (-793))) (-5 *2 (-419 *3)) (-5 *1 (-456 *3))
+ (-4 *3 (-1273 (-560)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-663 (-793))) (-5 *5 (-793)) (-5 *2 (-419 *3))
+ (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3))
+ (-4 *3 (-1273 (-560)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-419 *3)) (-5 *1 (-1038 *3))
+ (-4 *3 (-1273 (-421 (-560))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-419 *3)) (-5 *1 (-1263 *3)) (-4 *3 (-1273 (-560))))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229)))
+ (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683)))) (-5 *3 (-229))
+ (-5 *2 (-1066)) (-5 *1 (-770)))))
+(((*1 *2 *1) (-12 (-4 *1 (-571)) (-5 *2 (-114)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1164 (-229))) (-5 *3 (-663 (-270))) (-5 *1 (-1301))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1164 (-229))) (-5 *3 (-1189)) (-5 *1 (-1301))))
+ ((*1 *1 *1) (-5 *1 (-1301))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-778)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-711 *11)) (-5 *4 (-663 (-421 (-975 *8))))
+ (-5 *5 (-793)) (-5 *6 (-1189)) (-4 *8 (-13 (-319) (-149)))
+ (-4 *11 (-979 *8 *10 *9)) (-4 *9 (-13 (-871) (-633 (-1207))))
+ (-4 *10 (-815))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1954 (-663 *4))))
- (-5 *1 (-1155 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
- (-4 *3 (-380 *4))))
- ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -3257 (-663 *3)) (|:| -3229 (-663 *3))))
- (-5 *1 (-1249 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-618 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1132))
- (-4 *2 (-871)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-972 *4)) (-4 *4 (-1080)) (-5 *1 (-1195 *3 *4))
- (-14 *3 (-948)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-1247))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1247))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-972 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-663 (-972 *3))) (-4 *3 (-1080)) (-4 *1 (-1165 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-663 (-663 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-663 (-972 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *3))
- (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-1132))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-864 *3)) (-4 *3 (-1132)))))
-(((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-167 *3 *4))
- (-4 *3 (-168 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1247)) (-5 *2 (-793))
- (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-1132)) (-5 *2 (-793)) (-5 *1 (-434 *3 *4))
- (-4 *3 (-435 *4))))
- ((*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-558 *3)) (-4 *3 (-559))))
- ((*1 *2) (-12 (-4 *1 (-785)) (-5 *2 (-793))))
- ((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-817 *3 *4))
- (-4 *3 (-818 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-1021 *3 *4))
- (-4 *3 (-1022 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-793)) (-5 *1 (-1028 *3 *4))
- (-4 *3 (-1029 *4))))
- ((*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1042 *3)) (-4 *3 (-1043))))
- ((*1 *2) (-12 (-4 *1 (-1080)) (-5 *2 (-793))))
- ((*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-1090 *3)) (-4 *3 (-1091)))))
+ (-2
+ (|:| |rgl|
+ (-663
+ (-2 (|:| |eqzro| (-663 *11)) (|:| |neqzro| (-663 *11))
+ (|:| |wcond| (-663 (-975 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1297 (-421 (-975 *8))))
+ (|:| -3822 (-663 (-1297 (-421 (-975 *8))))))))))
+ (|:| |rgsz| (-560))))
+ (-5 *1 (-953 *8 *9 *10 *11)) (-5 *7 (-560)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *1 (-701 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))))
(((*1 *2)
- (-12 (-4 *3 (-1080)) (-5 *2 (-987 (-734 *3 *4))) (-5 *1 (-734 *3 *4))
- (-4 *4 (-1273 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-569 *3)) (-4 *3 (-13 (-418) (-1233))) (-5 *2 (-114))))
- ((*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-114))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376)))
- (-4 *3 (-1273 *4)) (-5 *2 (-114)))))
+ (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132))
+ (-4 *4 (-1132)))))
(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |polnum| (-803 *3)) (|:| |polden| *3) (|:| -4191 (-793))))
- (-5 *1 (-803 *3)) (-4 *3 (-1080))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4191 (-793))))
- (-4 *1 (-1096 *3 *4 *5)))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 (-915 *6)))
- (-5 *5 (-1 (-913 *6 *8) *8 (-915 *6) (-913 *6 *8))) (-4 *6 (-1132))
- (-4 *8 (-13 (-1080) (-633 (-915 *6)) (-1069 *7)))
- (-5 *2 (-913 *6 *8)) (-4 *7 (-1080)) (-5 *1 (-970 *6 *7 *8)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
- (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *5 (-871)) (-5 *2 (-114))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
- (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229))
- (-5 *2 (-1066)) (-5 *1 (-774)))))
+ (-12 (-5 *2 (-2 (|:| -2096 *3) (|:| |coef2| (-803 *3))))
+ (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-630 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4)))
- (-4 *4 (-13 (-571) (-1069 (-560)) (-660 (-560))))
- (-5 *1 (-288 *4 *2)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-1069 (-48)))
- (-4 *4 (-13 (-571) (-1069 (-560)))) (-4 *5 (-435 *4))
- (-5 *2 (-419 (-1201 (-48)))) (-5 *1 (-449 *4 *5 *3))
- (-4 *3 (-1273 *5)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1273 *4)) (-4 *4 (-1252))
- (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1273 (-421 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-887)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-633 (-915 (-560))))
- (-4 *5 (-911 (-560)))
- (-4 *5 (-13 (-1069 (-560)) (-466) (-660 (-560))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-581 *5 *3)) (-4 *3 (-649))
- (-4 *3 (-13 (-27) (-1233) (-435 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 *7)) (-4 *7 (-979 *4 *6 *5))
- (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207))))
- (-4 *6 (-815)) (-5 *2 (-114)) (-5 *1 (-953 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-975 *4))) (-4 *4 (-13 (-319) (-149)))
- (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-114))
- (-5 *1 (-953 *4 *5 *6 *7)) (-4 *7 (-979 *4 *6 *5)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-948)) (-4 *1 (-418))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-418))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1135 *3 *4 *5 *2 *6)) (-4 *3 (-1132)) (-4 *4 (-1132))
- (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-1132)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-948))) (-5 *4 (-931 (-560)))
- (-5 *2 (-711 (-560))) (-5 *1 (-604))))
+ (-12 (-5 *3 (-1207))
+ (-4 *4 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)))
+ (-5 *1 (-826 *4 *2)) (-4 *2 (-13 (-29 *4) (-1233) (-989)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-887))) ((*1 *1 *1 *1) (-5 *1 (-887)))
+ ((*1 *1 *1) (-5 *1 (-887)))
((*1 *2 *3)
- (-12 (-5 *3 (-663 (-948))) (-5 *2 (-663 (-711 (-560))))
- (-5 *1 (-604))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-948))) (-5 *4 (-663 (-931 (-560))))
- (-5 *2 (-663 (-711 (-560)))) (-5 *1 (-604)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-1273 (-560))) (-5 *1 (-500 *3)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4508)) (-4 *1 (-618 *4 *3)) (-4 *4 (-1132))
- (-4 *3 (-1247)) (-4 *3 (-1132)) (-5 *2 (-114)))))
+ (-12 (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1080)))))
(((*1 *2 *1)
- (-12
+ (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080))
(-5 *2
- (-663
- (-663
- (-3 (|:| -3614 (-1207))
- (|:| -3909 (-663 (-3 (|:| S (-1207)) (|:| P (-975 (-560))))))))))
- (-5 *1 (-1211)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-776)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-663 (-2 (|:| |k| (-694 *3)) (|:| |c| *4))))
- (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871))
- (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560)))))
- (-4 *3 (-1273 *4)) (-5 *1 (-831 *4 *3 *2 *5)) (-4 *2 (-680 *3))
- (-4 *5 (-680 (-421 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-421 *5))
- (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *5 (-1273 *4))
- (-5 *1 (-831 *4 *5 *2 *6)) (-4 *2 (-680 *5)) (-4 *6 (-680 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-187 (-141)))) (-5 *1 (-142)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-1201 *3))
- (-4 *3 (-13 (-435 *6) (-27) (-1233)))
- (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
- (-5 *2 (-2 (|:| -3887 *3) (|:| |coeff| *3)))
- (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1132))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-630 *3)) (-5 *5 (-421 (-1201 *3)))
- (-4 *3 (-13 (-435 *6) (-27) (-1233)))
- (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
- (-5 *2 (-2 (|:| -3887 *3) (|:| |coeff| *3)))
- (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1132)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 *3)) (-4 *3 (-979 *5 *6 *7)) (-4 *5 (-466))
- (-4 *6 (-815)) (-4 *7 (-871))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-464 *5 *6 *7 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4))
- (-4 *5 (-1273 (-421 *3))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))))
+ (-2 (|:| -3046 (-793)) (|:| |curves| (-793))
+ (|:| |polygons| (-793)) (|:| |constructs| (-793)))))))
+(((*1 *1 *1) (-5 *1 (-229)))
+ ((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))
+ ((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1) (-4 *1 (-1170))) ((*1 *1 *1 *1) (-4 *1 (-1170))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560))
+ (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1066))
+ (-5 *1 (-770)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-663 (-1207))) (|:| |pred| (-51))))
- (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1185 (-663 (-948)))) (-5 *1 (-908)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-1189)) (-5 *1 (-195))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))))
-(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-793)))))
-(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721))))
- ((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-539)))))
-(((*1 *1 *1 *1) (-5 *1 (-887))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-793)) (-5 *4 (-1297 *2)) (-4 *5 (-319))
- (-4 *6 (-1022 *5)) (-4 *2 (-13 (-424 *6 *7) (-1069 *6)))
- (-5 *1 (-427 *5 *6 *7 *2)) (-4 *7 (-1273 *6)))))
+ (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-5 *2 (-663 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-711 (-229))) (-5 *6 (-711 (-560))) (-5 *3 (-560))
+ (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))))
+(((*1 *1)
+ (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *1) (-12 (-5 *2 (-987 (-793))) (-5 *1 (-345)))))
+(((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-793)) (-5 *2 (-1 (-1185 (-975 *4)) (-1185 (-975 *4))))
- (-5 *1 (-1306 *4)) (-4 *4 (-376)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-663 (-51))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1247))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-793))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-793)) (-4 *1 (-274 *4))
- (-4 *4 (-1247))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1247))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252))
- (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-376)) (-4 *2 (-927 *3)) (-5 *1 (-597 *2))
- (-5 *3 (-1207))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-597 *2)) (-4 *2 (-376))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-887))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-921 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1247))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 (-793))) (-4 *1 (-929 *4))
- (-4 *4 (-1132))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-793)) (-4 *1 (-929 *2)) (-4 *2 (-1132))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *1 (-929 *3)) (-4 *3 (-1132))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1273 *3)) (-4 *3 (-1080)))))
-(((*1 *2 *2 *3)
- (|partial| -12
- (-5 *3 (-663 (-2 (|:| |func| *2) (|:| |pole| (-114)))))
- (-4 *2 (-13 (-435 *4) (-1033))) (-4 *4 (-571))
- (-5 *1 (-287 *4 *2)))))
-(((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
- (-4 *3 (-380 *4))))
- ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-793)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2))
- (-4 *2 (-1273 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1297 *5)) (-4 *5 (-814)) (-5 *2 (-114))
- (-5 *1 (-867 *4 *5)) (-14 *4 (-793)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-972 (-229))) (-5 *2 (-1303)) (-5 *1 (-482)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1242 *2 *3 *4 *5)) (-4 *2 (-571)) (-4 *3 (-815))
- (-4 *4 (-871)) (-4 *5 (-1096 *2 *3 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-1297 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-841 *3)) (-4 *3 (-871)) (-5 *1 (-694 *3)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1080) (-660 (-560))))
- (-5 *2 (-1297 (-421 (-560)))) (-5 *1 (-1326 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1207))
- (-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
- (-5 *2 (-597 *3)) (-5 *1 (-442 *5 *3))
- (-4 *3 (-13 (-1233) (-29 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1207)) (-4 *5 (-13 (-571) (-1069 (-560)) (-149)))
- (-5 *2 (-597 (-421 (-975 *5)))) (-5 *1 (-584 *5))
- (-5 *3 (-421 (-975 *5))))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1132)) (-5 *2 (-114)) (-5 *1 (-910 *3 *4 *5))
- (-4 *3 (-1132)) (-4 *5 (-688 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-114)) (-5 *1 (-913 *3 *4)) (-4 *3 (-1132))
- (-4 *4 (-1132)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-114)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34)))
- (-4 *4 (-13 (-1132) (-34))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-870))) (-5 *2 (-419 *3))
- (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-419 *3))
- (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))))
-(((*1 *1 *1) (-5 *1 (-1094))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 (-888 *5))) (-14 *5 (-663 (-1207))) (-4 *6 (-466))
- (-5 *2
- (-2 (|:| |dpolys| (-663 (-255 *5 *6)))
- (|:| |coords| (-663 (-560)))))
- (-5 *1 (-485 *5 *6 *7)) (-5 *3 (-663 (-255 *5 *6))) (-4 *7 (-466)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1264 *3)) (-4 *3 (-1247)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1183)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
+ (-12 (-5 *3 (-864 (-391))) (-5 *2 (-864 (-229))) (-5 *1 (-315)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-114))
- (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 (-171 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448))))
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1132)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-705 *4 *5)) (-4 *4 (-1132))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-114))
- (-5 *1 (-1237 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4))))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1080)) (-5 *2 (-663 *1)) (-4 *1 (-1165 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-793)) (-5 *2 (-1 (-1185 (-975 *4)) (-1185 (-975 *4))))
- (-5 *1 (-1306 *4)) (-4 *4 (-376)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3))
- (-4 *3 (-13 (-376) (-1233) (-1033)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1273 (-421 *2)))
- (-4 *2 (-1273 *4)) (-5 *1 (-354 *3 *4 *2 *5))
- (-4 *3 (-355 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1252))
- (-4 *4 (-1273 (-421 *2))) (-4 *2 (-1273 *3)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1041 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-793)) (-5 *4 (-560)) (-5 *1 (-459 *2)) (-4 *2 (-1080)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *6 (-571)) (-4 *2 (-979 *3 *5 *4))
- (-5 *1 (-754 *5 *4 *6 *2)) (-5 *3 (-421 (-975 *6))) (-4 *5 (-815))
- (-4 *4 (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-345)) (-5 *1 (-257)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-175)) (-4 *2 (-23)) (-5 *1 (-301 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1273 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ (-12 (-5 *3 (-1207)) (-5 *2 (-326 (-560))) (-5 *1 (-958))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-1132)) (-5 *1 (-959 *3 *2)) (-4 *2 (-435 *3))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-733 *3 *2 *4 *5 *6)) (-4 *3 (-175))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2)
- (-12 (-4 *2 (-1273 *3)) (-5 *1 (-734 *3 *2)) (-4 *3 (-1080))))
+ (-12 (-4 *1 (-1317 *3 *2)) (-4 *3 (-871)) (-4 *2 (-1080))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-737 *3 *2 *4 *5 *6)) (-4 *3 (-175))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-894 *3)) (-5 *2 (-560)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-114))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-5 *2 (-114))
- (-5 *1 (-369 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-114))
- (-5 *1 (-542 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-115))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-115)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-777)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1229)))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229))
- (-5 *2 (-1066)) (-5 *1 (-774)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-931 *4)) (-4 *4 (-1132)) (-5 *2 (-663 (-793)))
- (-5 *1 (-934 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4)))
- (-5 *2 (-2 (|:| |num| (-1297 *4)) (|:| |den| *4))))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))))
-(((*1 *2) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1302))))
- ((*1 *2 *2) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1302)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-571)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1132)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3))))
- (-5 *2 (-663 (-1106 *3 *4 *5))) (-5 *1 (-1108 *3 *4 *5))
- (-4 *5 (-13 (-435 *4) (-911 *3) (-633 (-915 *3)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-677 (-421 *6))) (-5 *4 (-421 *6)) (-4 *6 (-1273 *5))
- (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1954 (-663 *4))))
- (-5 *1 (-832 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-677 (-421 *6))) (-4 *6 (-1273 *5))
- (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))))
- (-5 *2 (-2 (|:| -1954 (-663 (-421 *6))) (|:| -3822 (-711 *5))))
- (-5 *1 (-832 *5 *6)) (-5 *4 (-663 (-421 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-678 *6 (-421 *6))) (-5 *4 (-421 *6)) (-4 *6 (-1273 *5))
- (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1954 (-663 *4))))
- (-5 *1 (-832 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-678 *6 (-421 *6))) (-4 *6 (-1273 *5))
- (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))))
- (-5 *2 (-2 (|:| -1954 (-663 (-421 *6))) (|:| -3822 (-711 *5))))
- (-5 *1 (-832 *5 *6)) (-5 *4 (-663 (-421 *6))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-560))) (-5 *5 (-1 (-1185 *4))) (-4 *4 (-376))
- (-4 *4 (-1080)) (-5 *2 (-1185 *4)) (-5 *1 (-1191 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-520)) (-5 *3 (-663 (-900))) (-5 *1 (-497)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-146))))
- ((*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-146)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1132)) (-5 *1 (-931 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391))
- (-5 *2
- (-2 (|:| -3853 *4) (|:| -4223 *4) (|:| |totalpts| (-560))
- (|:| |success| (-114))))
- (-5 *1 (-811)) (-5 *5 (-560)))))
+ (-12 (-4 *2 (-1080)) (-5 *1 (-1321 *2 *3)) (-4 *3 (-868)))))
(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-149) (-27) (-1069 (-560)) (-1069 (-421 (-560)))))
- (-4 *5 (-1273 *4)) (-5 *2 (-1201 (-421 *5))) (-5 *1 (-634 *4 *5))
- (-5 *3 (-421 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1273 *5))
- (-4 *5 (-13 (-149) (-27) (-1069 (-560)) (-1069 (-421 (-560)))))
- (-5 *2 (-1201 (-421 *6))) (-5 *1 (-634 *5 *6)) (-5 *3 (-421 *6)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-466)) (-4 *3 (-871)) (-4 *4 (-815))
- (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-979 *2 *4 *3)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-208))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-663 (-391))) (-5 *2 (-391)) (-5 *1 (-208)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-777)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1220 (-663 *4))) (-4 *4 (-871))
- (-5 *2 (-663 (-663 *4))) (-5 *1 (-1218 *4)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-4 *4 (-1132))
- (-5 *1 (-587 *4 *2)) (-4 *2 (-435 *4)))))
+ (-12 (-5 *3 (-663 (-560))) (-5 *2 (-711 (-560))) (-5 *1 (-1141)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1189))
+ (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-127 *2)) (-4 *2 (-1132)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229)))
+ (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1))))
+ (-5 *2 (-1066)) (-5 *1 (-775)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1189)) (|:| -3614 (-1189))))
- (-5 *1 (-845)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-711 (-560))) (-5 *5 (-114)) (-5 *7 (-711 (-229)))
- (-5 *3 (-560)) (-5 *6 (-229)) (-5 *2 (-1066)) (-5 *1 (-776)))))
-(((*1 *1) (-5 *1 (-611))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7))
- (-5 *2 (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4))))
- (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+ (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *6))
+ (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-663 (-931 *3))) (-5 *1 (-934 *3)) (-4 *3 (-1132)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-663 (-114))) (-5 *7 (-711 (-229)))
- (-5 *8 (-711 (-560))) (-5 *3 (-560)) (-5 *4 (-229)) (-5 *5 (-114))
- (-5 *2 (-1066)) (-5 *1 (-776)))))
+ (-12 (-4 *4 (-1080)) (-4 *5 (-1273 *4)) (-5 *2 (-1 *6 (-663 *6)))
+ (-5 *1 (-1292 *4 *5 *3 *6)) (-4 *3 (-680 *5)) (-4 *6 (-1290 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1080))))
+ ((*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1080)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))))
+ (-12 (-5 *3 (-1207)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-724 *4 *5 *6 *7))
+ (-4 *4 (-633 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247))
+ (-4 *7 (-1247)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -4184 *1) (|:| -4495 *1) (|:| |associate| *1)))
+ (-4 *1 (-571)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-663 (-975 *4))) (-5 *3 (-663 (-1207))) (-4 *4 (-466))
+ (-5 *1 (-947 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-663
- (-2 (|:| -2326 (-793))
- (|:| |eqns|
- (-663
- (-2 (|:| |det| *7) (|:| |rows| (-663 (-560)))
- (|:| |cols| (-663 (-560))))))
- (|:| |fgb| (-663 *7)))))
- (-4 *7 (-979 *4 *6 *5)) (-4 *4 (-13 (-319) (-149)))
- (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)) (-5 *2 (-793))
- (-5 *1 (-953 *4 *5 *6 *7)))))
+ (-12 (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-287 *4 *3))
+ (-4 *3 (-13 (-435 *4) (-1033))))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1297 *5)) (-4 *5 (-814)) (-5 *2 (-114))
- (-5 *1 (-867 *4 *5)) (-14 *4 (-793)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-630 *4)) (-5 *1 (-631 *3 *4)) (-4 *3 (-1132))
+ (-12 (-5 *3 (-663 (-560))) (-5 *2 (-1209 (-421 (-560))))
+ (-5 *1 (-193)))))
+(((*1 *2)
+ (-12 (-5 *2 (-114)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132))
(-4 *4 (-1132)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210)))))
-(((*1 *1)
- (-12 (-4 *1 (-418)) (-1937 (|has| *1 (-6 -4499)))
- (-1937 (|has| *1 (-6 -4491)))))
- ((*1 *2 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1132)) (-4 *2 (-871))))
- ((*1 *1) (-4 *1 (-866))) ((*1 *1 *1 *1) (-4 *1 (-874)))
- ((*1 *2 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-871)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1252)) (-4 *3 (-1273 *4))
- (-4 *5 (-1273 (-421 *3))) (-5 *2 (-114))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))))
-(((*1 *1 *1 *1) (-4 *1 (-559))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-229)) (|:| |xend| (-229))
- (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229)))
- (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229)))
- (|:| |abserr| (-229)) (|:| |relerr| (-229))))
- (-5 *2 (-391)) (-5 *1 (-208)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-591))))
- ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-591)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-663 (-1207))) (-14 *5 (-793))
- (-5 *2
- (-663
- (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4)
- (-255 *4 (-421 (-560))))))
- (-5 *1 (-519 *4 *5))
- (-5 *3
- (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4)
- (-255 *4 (-421 (-560))))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-663 (-1248))) (-5 *3 (-1248)) (-5 *1 (-703)))))
-(((*1 *1) (-5 *1 (-622))) ((*1 *1) (-5 *1 (-625))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278))))
- ((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
- (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1207)) (-5 *1 (-597 *2)) (-4 *2 (-1069 *3))
- (-4 *2 (-376))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-597 *2)) (-4 *2 (-376))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *1 (-648 *4 *2))
- (-4 *2 (-13 (-435 *4) (-1033) (-1233)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1123 *2)) (-4 *2 (-13 (-435 *4) (-1033) (-1233)))
- (-4 *4 (-571)) (-5 *1 (-648 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-989)) (-5 *2 (-1207))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1123 *1)) (-4 *1 (-989)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-864 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3))
- (-4 *3 (-13 (-376) (-1233) (-1033))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814))
- (-4 *2 (-466))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1252)) (-4 *3 (-1273 *2))
- (-4 *4 (-1273 (-421 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-466))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *2 (-871)) (-4 *3 (-466))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)) (-4 *2 (-466))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-319)) (-4 *3 (-571)) (-5 *1 (-1194 *3 *2))
- (-4 *2 (-1273 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-571))
- (-5 *2 (-2 (|:| -1774 *3) (|:| -2341 *3))) (-5 *1 (-1270 *4 *3))
- (-4 *3 (-1273 *4)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-663 (-421 (-975 (-560))))) (-5 *4 (-663 (-1207)))
- (-5 *2 (-663 (-663 *5))) (-5 *1 (-393 *5))
- (-4 *5 (-13 (-870) (-376)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-421 (-975 (-560)))) (-5 *2 (-663 *4)) (-5 *1 (-393 *4))
- (-4 *4 (-13 (-870) (-376))))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
- (-5 *1 (-1159 *3 *2)) (-4 *3 (-1273 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-194)) (-5 *3 (-560))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-175))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-971)) (-5 *3 (-560)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391))
- (-5 *2
- (-2 (|:| -3853 *4) (|:| -4223 *4) (|:| |totalpts| (-560))
- (|:| |success| (-114))))
- (-5 *1 (-811)) (-5 *5 (-560)))))
-(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-663 (-975 (-560)))) (-5 *4 (-663 (-1207)))
- (-5 *2 (-663 (-663 (-391)))) (-5 *1 (-1054)) (-5 *5 (-391))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1051)))
- (-14 *5 (-663 (-1207))) (-5 *2 (-663 (-663 (-1055 (-421 *4)))))
- (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-663 (-1207)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114))
- (-4 *5 (-13 (-870) (-319) (-149) (-1051)))
- (-5 *2 (-663 (-663 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7))
- (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114))
- (-4 *5 (-13 (-870) (-319) (-149) (-1051)))
- (-5 *2 (-663 (-663 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7))
- (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114))
- (-4 *5 (-13 (-870) (-319) (-149) (-1051)))
- (-5 *2 (-663 (-663 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7))
- (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-975 *4)))
- (-4 *4 (-13 (-870) (-319) (-149) (-1051)))
- (-5 *2 (-663 (-663 (-1055 (-421 *4))))) (-5 *1 (-1325 *4 *5 *6))
- (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))))
+(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1189)) (-5 *1 (-315)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-571))
- (-5 *2 (-2 (|:| -3822 (-711 *5)) (|:| |vec| (-1297 (-663 (-948))))))
- (-5 *1 (-90 *5 *3)) (-5 *4 (-948)) (-4 *3 (-680 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-663 *1)) (-5 *3 (-663 *7)) (-4 *1 (-1102 *4 *5 *6 *7))
- (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *1))
- (-4 *1 (-1102 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466))
- (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-663 *1))
- (-4 *1 (-1102 *4 *5 *6 *3)))))
-(((*1 *1) (-5 *1 (-1116))))
+ (-12 (-5 *4 (-948)) (-5 *2 (-1201 *3)) (-5 *1 (-1222 *3))
+ (-4 *3 (-376)))))
+(((*1 *2 *1) (-12 (-5 *2 (-987 (-187 (-141)))) (-5 *1 (-345))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 (-1248))) (-5 *1 (-619)))))
(((*1 *2 *2)
(-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
(-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *2)
- (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1273 (-421 *2)))
- (-4 *2 (-1273 *4)) (-5 *1 (-354 *3 *4 *2 *5))
- (-4 *3 (-355 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1252))
- (-4 *4 (-1273 (-421 *2))) (-4 *2 (-1273 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-270))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-948)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))))
-(((*1 *1 *1 *1) (-4 *1 (-559))))
-(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-543))))
- ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-543)))))
-(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1072)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *2 (-871)) (-4 *3 (-175))))
- ((*1 *2 *3 *3)
- (-12 (-4 *2 (-571)) (-5 *1 (-1000 *2 *3)) (-4 *3 (-1273 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)) (-4 *2 (-571))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-175)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4508)) (-4 *1 (-503 *4))
- (-4 *4 (-1247)) (-5 *2 (-114)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080))
- (-14 *4 (-663 (-1207)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871)))
- (-14 *4 (-663 (-1207))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-939)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-419 (-1201 *7)))
- (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-1201 *7))))
+(((*1 *1) (-5 *1 (-146))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3))
+ (-4 *3 (-1273 (-171 *2)))))
((*1 *2 *3)
- (-12 (-4 *4 (-939)) (-4 *5 (-1273 *4)) (-5 *2 (-419 (-1201 *5)))
- (-5 *1 (-937 *4 *5)) (-5 *3 (-1201 *5)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1207)) (-5 *2 (-114))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114))))
+ (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3))
+ (-4 *3 (-1273 (-171 *2))))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-887))) ((*1 *1 *1 *1) (-5 *1 (-887)))
+ ((*1 *1 *1) (-5 *1 (-887))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1322 *4 *2)) (-4 *1 (-387 *4 *2)) (-4 *4 (-871))
+ (-4 *2 (-175))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1317 *3 *2)) (-4 *3 (-871)) (-4 *2 (-1080))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1207)) (-5 *2 (-114)) (-5 *1 (-630 *4))
- (-4 *4 (-1132))))
+ (-12 (-5 *3 (-841 *4)) (-4 *1 (-1317 *4 *2)) (-4 *4 (-871))
+ (-4 *2 (-1080))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-630 *4)) (-4 *4 (-1132))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1132)) (-5 *2 (-114))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1132)) (-5 *2 (-114)) (-5 *1 (-912 *5 *3 *4))
- (-4 *3 (-911 *5)) (-4 *4 (-633 (-915 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *6)) (-4 *6 (-911 *5)) (-4 *5 (-1132))
- (-5 *2 (-114)) (-5 *1 (-912 *5 *6 *4)) (-4 *4 (-633 (-915 *5))))))
-(((*1 *1) (-5 *1 (-146)))
- ((*1 *1 *2) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-270))))
+ (-12 (-4 *2 (-1080)) (-5 *1 (-1321 *2 *3)) (-4 *3 (-868)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-663 (-1207))) (-4 *4 (-1132))
+ (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4))))
+ (-5 *1 (-54 *4 *5 *2))
+ (-4 *2 (-13 (-435 *5) (-911 *4) (-633 (-915 *4)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-948))))
((*1 *2 *3)
- (-12 (-5 *3 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-271)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 *5)) (-4 *5 (-435 *4)) (-4 *4 (-571))
- (-5 *2 (-887)) (-5 *1 (-32 *4 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-1132)))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-972 (-229))) (-5 *4 (-898)) (-5 *5 (-948))
- (-5 *2 (-1303)) (-5 *1 (-482))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-972 (-229))) (-5 *2 (-1303)) (-5 *1 (-482))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-663 (-972 (-229)))) (-5 *4 (-898)) (-5 *5 (-948))
- (-5 *2 (-1303)) (-5 *1 (-482)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1069 (-560))))
- (-4 *5 (-1273 *4)) (-5 *2 (-663 (-421 *5))) (-5 *1 (-1047 *4 *5))
- (-5 *3 (-421 *5)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-630 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1207)))
- (-4 *2 (-13 (-435 *5) (-27) (-1233)))
- (-4 *5 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
- (-5 *1 (-580 *5 *2 *6)) (-4 *6 (-1132)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-376) (-870)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -3764 (-419 *3))))
- (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1290 *4))
- (-4 *4 (-38 (-421 (-560))))
- (-5 *2 (-1 (-1185 *4) (-1185 *4) (-1185 *4))) (-5 *1 (-1291 *4 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-711 (-421 (-975 (-560)))))
- (-5 *2 (-663 (-711 (-326 (-560))))) (-5 *1 (-1059)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-663 (-229)))) (-5 *1 (-956)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1072)) (-5 *3 (-391)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-975 *4)) (-4 *4 (-1080)) (-4 *4 (-633 *2))
- (-5 *2 (-391)) (-5 *1 (-807 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-975 *5)) (-5 *4 (-948)) (-4 *5 (-1080))
- (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5))))
+ (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-948))
+ (-5 *1 (-542 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1154 *3 *4 *2 *5)) (-4 *4 (-1080)) (-4 *5 (-245 *3 *4))
+ (-4 *2 (-245 *3 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-972 (-229)) (-229) (-229)))
+ (-5 *3 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-265)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-711 *1)) (-5 *4 (-1297 *1)) (-4 *1 (-660 *5))
+ (-4 *5 (-1080))
+ (-5 *2 (-2 (|:| -1871 (-711 *5)) (|:| |vec| (-1297 *5))))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571))
- (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4))))
+ (-12 (-5 *3 (-711 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1080))
+ (-5 *2 (-711 *4)))))
+(((*1 *1) (-5 *1 (-622))) ((*1 *1) (-5 *1 (-624)))
+ ((*1 *1) (-5 *1 (-625))))
+(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-97)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))))
+(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-391)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-904 *6)) (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270)))
+ (-4 *6 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1164 (-229)))
+ (-5 *1 (-264 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-948)) (-4 *5 (-571))
- (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-871))
- (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4))))
+ (-12 (-5 *3 (-904 *5)) (-5 *4 (-1123 (-391)))
+ (-4 *5 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1164 (-229)))
+ (-5 *1 (-264 *5))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270)))
+ (-5 *2 (-1164 (-229))) (-5 *1 (-264 *3))
+ (-4 *3 (-13 (-633 (-549)) (-1132)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1123 (-391))) (-5 *2 (-1164 (-229))) (-5 *1 (-264 *3))
+ (-4 *3 (-13 (-633 (-549)) (-1132)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-907 *6)) (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270)))
+ (-4 *6 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1164 (-229)))
+ (-5 *1 (-264 *6))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-907 *5)) (-5 *4 (-1123 (-391)))
+ (-4 *5 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1164 (-229)))
+ (-5 *1 (-264 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391)))
+ (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-265))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-948)) (-4 *5 (-571))
- (-4 *5 (-871)) (-4 *5 (-633 *2)) (-5 *2 (-391))
- (-5 *1 (-807 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3))
- (-4 *3 (-13 (-376) (-1233) (-1033))))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-663 *2)) (-4 *2 (-1132)) (-4 *2 (-1247)))))
-(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1115 *3)) (-4 *3 (-134)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-793)) (-5 *1 (-697 *2)) (-4 *2 (-1132)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-443 *3 *2)) (-4 *3 (-13 (-175) (-38 (-421 (-560)))))
- (-4 *2 (-13 (-871) (-21))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-663 (-1171 *4 *5))) (-5 *3 (-1 (-114) *5 *5))
- (-4 *4 (-13 (-1132) (-34))) (-4 *5 (-13 (-1132) (-34)))
- (-5 *1 (-1172 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-663 (-1171 *3 *4))) (-4 *3 (-13 (-1132) (-34)))
- (-4 *4 (-13 (-1132) (-34))) (-5 *1 (-1172 *3 *4)))))
+ (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391)))
+ (-5 *2 (-1164 (-229))) (-5 *1 (-265))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1120 (-391)))
+ (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-265))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1120 (-391)))
+ (-5 *2 (-1164 (-229))) (-5 *1 (-265))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1120 (-391)))
+ (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-265))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1120 (-391)))
+ (-5 *2 (-1164 (-229))) (-5 *1 (-265))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1120 (-391)))
+ (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-265))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1120 (-391)))
+ (-5 *2 (-1164 (-229))) (-5 *1 (-265))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1120 (-391)))
+ (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-265))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1120 (-391)))
+ (-5 *2 (-1164 (-229))) (-5 *1 (-265)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-915 *4)) (-4 *4 (-1132)) (-5 *2 (-663 *5))
- (-5 *1 (-916 *4 *5)) (-4 *5 (-1247)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *1) (-5 *1 (-623))))
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1078)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 *4))
- (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207))
- (-14 *4 *2))))
-(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-63 *3)) (-14 *3 (-1207))))
- ((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-69 *3)) (-14 *3 (-1207))))
- ((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-72 *3)) (-14 *3 (-1207))))
- ((*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1303)) (-5 *1 (-409))))
- ((*1 *2 *1) (-12 (-4 *1 (-410)) (-5 *2 (-1303))))
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-948)) (-5 *1 (-456 *2))
+ (-4 *2 (-1273 (-560)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-948)) (-5 *4 (-793)) (-5 *1 (-456 *2))
+ (-4 *2 (-1273 (-560)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-948)) (-5 *4 (-663 (-793))) (-5 *1 (-456 *2))
+ (-4 *2 (-1273 (-560)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-948)) (-5 *4 (-663 (-793))) (-5 *5 (-793))
+ (-5 *1 (-456 *2)) (-4 *2 (-1273 (-560)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-948)) (-5 *4 (-663 (-793))) (-5 *5 (-793))
+ (-5 *6 (-114)) (-5 *1 (-456 *2)) (-4 *2 (-1273 (-560)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1189)) (-5 *4 (-887)) (-5 *2 (-1303)) (-5 *1 (-1169))))
- ((*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1303)) (-5 *1 (-1169))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-887))) (-5 *2 (-1303)) (-5 *1 (-1169)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-913 *4 *5)) (-5 *3 (-913 *4 *6)) (-4 *4 (-1132))
- (-4 *5 (-1132)) (-4 *6 (-688 *5)) (-5 *1 (-910 *4 *5 *6)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))))
-(((*1 *2) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-105)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-871)) (-5 *1 (-1218 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-310))))
- ((*1 *1 *1) (-4 *1 (-310)))
- ((*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887))))
- ((*1 *1 *1) (-5 *1 (-887))))
+ (-12 (-5 *3 (-948)) (-5 *4 (-419 *2)) (-4 *2 (-1273 *5))
+ (-5 *1 (-458 *5 *2)) (-4 *5 (-1080)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2)
- (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-432 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-793)) (-4 *4 (-376)) (-5 *1 (-923 *2 *4))
- (-4 *2 (-1273 *4)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-560))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-793)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-815)) (-4 *4 (-979 *5 *6 *7)) (-4 *5 (-466)) (-4 *7 (-871))
- (-5 *1 (-464 *5 *6 *7 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-793)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080))
- (-14 *4 (-663 (-1207)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-793)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871)))
- (-14 *4 (-663 (-1207)))))
- ((*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -2515 (-560)))))
+ (-5 *1 (-374 *3)) (-4 *3 (-1132))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-349 *3 *4 *5 *2)) (-4 *3 (-376))
- (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4)))
- (-4 *2 (-355 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-793)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-175))))
- ((*1 *1) (-12 (-4 *2 (-175)) (-4 *1 (-746 *2 *3)) (-4 *3 (-1273 *2)))))
-(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-405)))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132)))))
+ (-12 (-4 *1 (-399 *3)) (-4 *3 (-1132))
+ (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -2515 (-793)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-663 (-2 (|:| -4012 *3) (|:| -2030 (-560)))))
+ (-5 *1 (-419 *3)) (-4 *3 (-571)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1080) (-660 *5)))
+ (-4 *5 (-376)) (-4 *5 (-571)) (-5 *2 (-1297 *5))
+ (-5 *1 (-658 *5 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1080) (-660 *5)))
+ (-1394 (-4 *5 (-376))) (-4 *5 (-571)) (-5 *2 (-1297 (-421 *5)))
+ (-5 *1 (-658 *5 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-310)) (-4 *2 (-1247))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-663 (-630 *1))) (-5 *3 (-663 *1)) (-4 *1 (-310))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-305 *1))) (-4 *1 (-310))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-305 *1)) (-4 *1 (-310)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1132)) (-4 *4 (-13 (-1080) (-911 *3) (-633 *2)))
- (-5 *2 (-915 *3)) (-5 *1 (-1106 *3 *4 *5))
- (-4 *5 (-13 (-435 *4) (-911 *3) (-633 *2))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1273 *5))
- (-5 *2 (-663 *3)) (-5 *1 (-799 *4 *5 *6 *3 *7)) (-4 *3 (-1273 *6))
- (-14 *7 (-948)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-760)))))
+ (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871))
+ (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-663 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-898)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1290 *3)))))
(((*1 *1 *1)
(-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *2 (-871))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-663 (-421 *6))) (-5 *3 (-421 *6))
- (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-560))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-582 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 (-1 *6 (-663 *6))))
- (-4 *5 (-38 (-421 (-560)))) (-4 *6 (-1290 *5)) (-5 *2 (-663 *6))
- (-5 *1 (-1291 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-1201 *4))
- (-5 *1 (-542 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-114)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
-(((*1 *2 *1) (-12 (-4 *1 (-843)) (-5 *2 (-1189))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-843)) (-5 *3 (-114)) (-5 *2 (-1189))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-843)) (-5 *3 (-845)) (-5 *2 (-1303))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-843)) (-5 *3 (-845)) (-5 *4 (-114)) (-5 *2 (-1303))))
+(((*1 *2 *2) (-12 (-5 *2 (-948)) (|has| *1 (-6 -4499)) (-4 *1 (-418))))
+ ((*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-948))))
+ ((*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-721))))
+ ((*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-721)))))
+(((*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376))))
((*1 *2 *3)
- (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-843) (-1080))) (-5 *2 (-1189))
- (-5 *1 (-849 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-326 *5)) (-5 *4 (-114)) (-4 *5 (-13 (-843) (-1080)))
- (-5 *2 (-1189)) (-5 *1 (-849 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-845)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-843) (-1080)))
- (-5 *2 (-1303)) (-5 *1 (-849 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-845)) (-5 *4 (-326 *6)) (-5 *5 (-114))
- (-4 *6 (-13 (-843) (-1080))) (-5 *2 (-1303)) (-5 *1 (-849 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1303)) (-5 *1 (-405))))
- ((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-405)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-793)) (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *5))
- (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
- ((*1 *1 *2)
- (-12 (-4 *2 (-1080)) (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2))
- (-4 *5 (-245 *3 *2)))))
+ (-12 (-5 *3 (-948)) (-5 *2 (-1297 *4)) (-5 *1 (-542 *4))
+ (-4 *4 (-363)))))
+(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-391))))
+ ((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-391)))))
+(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-601 *3)) (-4 *3 (-559)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-5 *2 (-171 *5)) (-5 *1 (-614 *4 *5 *3))
- (-4 *5 (-13 (-435 *4) (-1033) (-1233)))
- (-4 *3 (-13 (-435 (-171 *4)) (-1033) (-1233))))))
-(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-931 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-887)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448))))
+ (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-4 *5 (-435 *4))
+ (-5 *2
+ (-3 (|:| |overq| (-1201 (-421 (-560))))
+ (|:| |overan| (-1201 (-48))) (|:| -2717 (-114))))
+ (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1273 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1938 (-803 *3)) (|:| |coef1| (-803 *3))))
+ (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-571)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *2 (-2 (|:| -1938 *1) (|:| |coef1| *1)))
+ (-4 *1 (-1096 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4))) (-4 *6 (-355 *3 *4 *5))
+ (-5 *2
+ (-2 (|:| -3745 (-427 *4 (-421 *4) *5 *6)) (|:| |principalPart| *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376))
+ (-5 *2
+ (-2 (|:| |poly| *6) (|:| -3967 (-421 *6))
+ (|:| |special| (-421 *6))))
+ (-5 *1 (-749 *5 *6)) (-5 *3 (-421 *6))))
((*1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *1 (-583 *3)) (-4 *3 (-1069 (-560)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132))
- (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815))
- (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))))
-(((*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1247)) (-5 *2 (-793)))))
+ (-12 (-4 *4 (-376)) (-5 *2 (-663 *3)) (-5 *1 (-923 *3 *4))
+ (-4 *3 (-1273 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-793)) (-4 *5 (-376))
+ (-5 *2 (-2 (|:| -4335 *3) (|:| -4346 *3))) (-5 *1 (-923 *3 *5))
+ (-4 *3 (-1273 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114))
+ (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466))
+ (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1100 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114))
+ (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466))
+ (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1100 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114))
+ (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466))
+ (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1176 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-663 *9)) (-5 *3 (-663 *8)) (-5 *4 (-114))
+ (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466))
+ (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1176 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-51)) (-5 *1 (-851)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-948))
- (-5 *2 (-1297 (-663 (-2 (|:| -3853 *4) (|:| -3128 (-1151))))))
- (-5 *1 (-360 *4)) (-4 *4 (-363)))))
-(((*1 *2)
- (-12 (-5 *2 (-987 (-1151))) (-5 *1 (-357 *3 *4)) (-14 *3 (-948))
- (-14 *4 (-948))))
- ((*1 *2)
- (-12 (-5 *2 (-987 (-1151))) (-5 *1 (-358 *3 *4)) (-4 *3 (-363))
- (-14 *4 (-1201 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-987 (-1151))) (-5 *1 (-359 *3 *4)) (-4 *3 (-363))
- (-14 *4 (-948)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1007 *4 *5 *3 *6)) (-4 *4 (-1080)) (-4 *5 (-815))
- (-4 *3 (-871)) (-4 *6 (-1096 *4 *5 *3)) (-5 *2 (-114)))))
-(((*1 *2)
- (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6))
- (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
+ (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-663 (-1207))) (-4 *5 (-466))
+ (-5 *2 (-495 *4 *5)) (-5 *1 (-650 *4 *5)))))
(((*1 *2 *3 *4 *4 *3)
(-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-769)))))
-(((*1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1080)))))
-(((*1 *1)
- (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1080))))
- ((*1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-459 *3)) (-4 *3 (-1080)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 (-450)))))
- (-5 *1 (-1211)))))
-(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1189)) (-5 *1 (-315)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1154 *3 *4 *2 *5)) (-4 *4 (-1080)) (-4 *5 (-245 *3 *4))
- (-4 *2 (-245 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))))
+ (-5 *1 (-774)))))
(((*1 *2 *2 *2 *3)
(-12 (-5 *3 (-793)) (-4 *4 (-13 (-1080) (-739 (-421 (-560)))))
(-4 *5 (-871)) (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1320 *5 *4)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-630 *3)) (-4 *3 (-13 (-435 *5) (-27) (-1233)))
+ (-4 *5 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
+ (-5 *2 (-597 *3)) (-5 *1 (-580 *5 *3 *6)) (-4 *6 (-1132)))))
+(((*1 *1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-1132)) (-4 *2 (-381)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-342)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1209 (-421 (-560)))) (-5 *2 (-421 (-560)))
+ (-5 *1 (-193)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-114) *5 *5)) (-4 *5 (-13 (-1132) (-34)))
+ (-5 *2 (-114)) (-5 *1 (-1171 *4 *5)) (-4 *4 (-13 (-1132) (-34))))))
+(((*1 *2)
+ (-12 (-5 *2 (-948)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-948)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-979 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871))
+ (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-421 (-560))) (-5 *2 (-229)) (-5 *1 (-315)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-1222 *2)) (-4 *2 (-376)))))
(((*1 *2 *2 *2)
(-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3))))
((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1264 (-560))) (-4 *1 (-673 *3)) (-4 *3 (-1247))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-673 *3)) (-4 *3 (-1247)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-342)))))
+(((*1 *1) (-5 *1 (-303))))
+(((*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-130)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 *3)) (-4 *3 (-376)) (-5 *1 (-659 *3 *4))
+ (-14 *4 (-663 (-1207))))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1171 *5 *6)) (-5 *4 (-1 (-114) *6 *6))
+ (-4 *5 (-13 (-1132) (-34))) (-4 *6 (-13 (-1132) (-34)))
+ (-5 *2 (-114)) (-5 *1 (-1172 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252))
+ (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1300))
+ (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1132)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1123 (-391))) (-5 *2 (-1300)) (-5 *1 (-264 *3))
+ (-4 *3 (-13 (-633 (-549)) (-1132)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-902 *6)) (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270)))
+ (-4 *6 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1300))
+ (-5 *1 (-264 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-902 *5)) (-5 *4 (-1123 (-391)))
+ (-4 *5 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1300))
+ (-5 *1 (-264 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-904 *6)) (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270)))
+ (-4 *6 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1301))
+ (-5 *1 (-264 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-904 *5)) (-5 *4 (-1123 (-391)))
+ (-4 *5 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1301))
+ (-5 *1 (-264 *5))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1301))
+ (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1132)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1123 (-391))) (-5 *2 (-1301)) (-5 *1 (-264 *3))
+ (-4 *3 (-13 (-633 (-549)) (-1132)))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-907 *6)) (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270)))
+ (-4 *6 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1301))
+ (-5 *1 (-264 *6))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-907 *5)) (-5 *4 (-1123 (-391)))
+ (-4 *5 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1301))
+ (-5 *1 (-264 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1120 (-391)))
+ (-5 *5 (-663 (-270))) (-5 *2 (-1300)) (-5 *1 (-265))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1120 (-391)))
+ (-5 *2 (-1300)) (-5 *1 (-265))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-902 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391)))
+ (-5 *5 (-663 (-270))) (-5 *2 (-1300)) (-5 *1 (-265))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-902 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391)))
+ (-5 *2 (-1300)) (-5 *1 (-265))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391)))
+ (-5 *5 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-265))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391)))
+ (-5 *2 (-1301)) (-5 *1 (-265))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1120 (-391)))
+ (-5 *5 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-265))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1120 (-391)))
+ (-5 *2 (-1301)) (-5 *1 (-265))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1120 (-391)))
+ (-5 *5 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-265))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1120 (-391)))
+ (-5 *2 (-1301)) (-5 *1 (-265))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1120 (-391)))
+ (-5 *5 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-265))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1120 (-391)))
+ (-5 *2 (-1301)) (-5 *1 (-265))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1120 (-391)))
+ (-5 *5 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-265))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1120 (-391)))
+ (-5 *2 (-1301)) (-5 *1 (-265))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-305 *7)) (-5 *4 (-1207)) (-5 *5 (-663 (-270)))
+ (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-871) (-1069 (-560))))
+ (-5 *2 (-1300)) (-5 *1 (-266 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-663 (-229))) (-5 *2 (-1300)) (-5 *1 (-269))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-663 (-229))) (-5 *4 (-663 (-270))) (-5 *2 (-1300))
+ (-5 *1 (-269))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-972 (-229)))) (-5 *2 (-1300)) (-5 *1 (-269))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-972 (-229)))) (-5 *4 (-663 (-270)))
+ (-5 *2 (-1300)) (-5 *1 (-269))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-663 (-229))) (-5 *2 (-1301)) (-5 *1 (-269))))
+ ((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-663 (-229))) (-5 *4 (-663 (-270))) (-5 *2 (-1301))
+ (-5 *1 (-269)))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-156))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-1097)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132))
+ (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114))
+ (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114))
+ (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))))
(((*1 *2 *1)
(-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3))
(-4 *5 (-385 *3)) (-5 *2 (-560))))
((*1 *2 *1)
(-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
(-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-560)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-663 *1)) (|has| *1 (-6 -4509)) (-4 *1 (-1041 *3))
+ (-4 *3 (-1247)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-1189)) (-5 *5 (-711 (-229)))
+ (-5 *2 (-1066)) (-5 *1 (-769)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-773)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
+ (|:| |Conditional| "conditional") (|:| |Return| "return")
+ (|:| |Block| "block") (|:| |Comment| "comment")
+ (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
+ (|:| |Repeat| "repeat") (|:| |Goto| "goto")
+ (|:| |Continue| "continue")
+ (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
+ (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
+ (-5 *1 (-342)))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-847)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-560)) (-5 *1 (-718 *2)) (-4 *2 (-1273 *3)))))
+(((*1 *1 *2) (-12 (-4 *1 (-688 *2)) (-4 *2 (-1247))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-1207)))))
+(((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-229)) (-5 *1 (-315)))))
+(((*1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-871))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-888 *3)) (-14 *3 (-663 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1020))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1247)) (-5 *2 (-1207)) (-5 *1 (-1089 *3 *4))
+ (-4 *3 (-1125 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1123 *3)) (-4 *3 (-1247))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814))
+ (-5 *2 (-1207))))
+ ((*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1294 *3)) (-14 *3 *2))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-421 (-975 (-171 (-560))))) (-5 *2 (-663 (-171 *4)))
+ (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-870)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-663 (-421 (-975 (-171 (-560))))))
+ (-5 *4 (-663 (-1207))) (-5 *2 (-663 (-663 (-171 *5))))
+ (-5 *1 (-392 *5)) (-4 *5 (-13 (-376) (-870))))))
(((*1 *2 *3)
(-12 (-4 *4 (-38 (-421 (-560))))
- (-5 *2 (-2 (|:| -3430 (-1185 *4)) (|:| -3443 (-1185 *4))))
+ (-5 *2 (-2 (|:| -1806 (-1185 *4)) (|:| -1820 (-1185 *4))))
(-5 *1 (-1192 *4)) (-5 *3 (-1185 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3))
+ (-4 *5 (-385 *3)) (-5 *2 (-2 (|:| -2584 *3) (|:| -3276 *3)))
+ (-5 *1 (-710 *3 *4 *5 *6)) (-4 *6 (-708 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -2584 *3) (|:| -3276 *3))) (-5 *1 (-722 *3))
+ (-4 *3 (-319)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-931 *4)) (-4 *4 (-1132)) (-5 *2 (-663 (-793)))
+ (-5 *1 (-934 *4)))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1185 (-2 (|:| |k| (-560)) (|:| |c| *6))))
+ (-5 *4 (-1057 (-864 (-560)))) (-5 *5 (-1207)) (-5 *7 (-421 (-560)))
+ (-4 *6 (-1080)) (-5 *2 (-887)) (-5 *1 (-609 *6)))))
+(((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1247)) (-5 *2 (-793))
+ (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-133))
+ (-5 *2 (-793))))
+ ((*1 *2)
+ (-12 (-4 *4 (-376)) (-5 *2 (-793)) (-5 *1 (-340 *3 *4))
+ (-4 *3 (-341 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-374 *3)) (-4 *3 (-1132))))
+ ((*1 *2) (-12 (-4 *1 (-381)) (-5 *2 (-793))))
+ ((*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1132)) (-5 *2 (-793))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1132)) (-5 *2 (-793)) (-5 *1 (-439 *3 *4))
+ (-4 *3 (-440 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-793)) (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1132))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2)
+ (-12 (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-793))
+ (-5 *1 (-745 *3 *4 *5)) (-4 *3 (-746 *4 *5))))
+ ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1037))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3))
+ (-4 *3 (-1273 *2)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-972 *3))))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-419 *3)) (-4 *3 (-571)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-793)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1080))
+ (-4 *4 (-814)) (-4 *3 (-175)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-663 *1)) (-4 *1 (-310))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-630 *3)) (-4 *3 (-1132))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-115)) (-5 *3 (-663 *5)) (-5 *4 (-793)) (-4 *5 (-1132))
+ (-5 *1 (-630 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1080)) (-4 *4 (-1273 *3)) (-5 *1 (-166 *3 *4 *2))
+ (-4 *2 (-1273 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
(((*1 *2 *3 *3 *4 *4 *4 *3)
(-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
(-5 *1 (-773)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1207)) (-5 *3 (-114)) (-5 *1 (-915 *4))
+ (-4 *4 (-1132)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175))
+ (-5 *2 (-711 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-898)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1278 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1207))
+ (-14 *5 *3) (-5 *1 (-331 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1072)) (-5 *3 (-391)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887))))
+ ((*1 *1 *1) (-5 *1 (-887))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-1211)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6))
+ (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))))
(((*1 *1 *1 *1) (-4 *1 (-145)))
((*1 *2 *2 *2)
(-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3))))
((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -4346 *6) (|:| |sol?| (-114))) (-560)
+ *6))
+ (-4 *6 (-376)) (-4 *7 (-1273 *6))
+ (-5 *2 (-2 (|:| |answer| (-597 (-421 *7))) (|:| |a0| *6)))
+ (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-114)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1207)) (-5 *3 (-663 (-549))) (-5 *1 (-549)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1043)) (-5 *2 (-887)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-711 (-171 (-421 (-560)))))
(-5 *2
@@ -9238,6 +10409,83 @@
(-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-560))
(|:| |outvect| (-663 (-711 (-171 *4)))))))
(-5 *1 (-786 *4)) (-4 *4 (-13 (-376) (-870))))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1207)) (-5 *6 (-663 (-630 *3)))
+ (-5 *5 (-630 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *7)))
+ (-4 *7 (-13 (-466) (-149) (-1069 (-560)) (-660 (-560))))
+ (-5 *2 (-2 (|:| -4378 *3) (|:| |coeff| *3)))
+ (-5 *1 (-572 *7 *3)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-948)) (-4 *1 (-418))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-560)) (-4 *1 (-418))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1135 *3 *4 *5 *2 *6)) (-4 *3 (-1132)) (-4 *4 (-1132))
+ (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-1132)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-553 *4 *2 *5 *6))
+ (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-793))))))
+(((*1 *2 *3) (-12 (-5 *3 (-663 (-948))) (-5 *2 (-793)) (-5 *1 (-604)))))
+(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *4 (-376)) (-5 *2 (-663 (-1185 *4))) (-5 *1 (-297 *4 *5))
+ (-5 *3 (-1185 *4)) (-4 *5 (-1290 *4)))))
+(((*1 *2) (-12 (-5 *2 (-854 (-560))) (-5 *1 (-548))))
+ ((*1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1132)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1201 *5)) (-4 *5 (-376)) (-5 *2 (-663 *6))
+ (-5 *1 (-546 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-870))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-560))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080))
+ (-14 *4 (-663 (-1207)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
+ ((*1 *1 *1) (-4 *1 (-296)))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
+ (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-686 *3 *4)) (-4 *3 (-871))
+ (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-5 *1 (-646 *3 *4 *5))
+ (-14 *5 (-948))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-793)) (-4 *4 (-13 (-1080) (-739 (-421 (-560)))))
+ (-4 *5 (-871)) (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1320 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-793)) (-5 *1 (-1318 *3 *4))
+ (-4 *4 (-739 (-421 (-560)))) (-4 *3 (-871)) (-4 *4 (-175)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1135 *3 *4 *5 *6 *2)) (-4 *3 (-1132)) (-4 *4 (-1132))
+ (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-1132)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871))
+ (-4 *3 (-1096 *6 *7 *8))
+ (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *4))))
+ (-5 *1 (-1103 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -3859 *9))))
+ (-5 *5 (-114)) (-4 *8 (-1096 *6 *7 *4)) (-4 *9 (-1102 *6 *7 *4 *8))
+ (-4 *6 (-466)) (-4 *7 (-815)) (-4 *4 (-871))
+ (-5 *2 (-663 (-2 (|:| |val| *8) (|:| -3859 *9))))
+ (-5 *1 (-1103 *6 *7 *4 *8 *9)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-4 *1 (-1130 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *2 (-871)) (-4 *5 (-1096 *3 *4 *2)))))
(((*1 *2)
(-12 (-5 *2 (-711 (-935 *3))) (-5 *1 (-365 *3 *4)) (-14 *3 (-948))
(-14 *4 (-948))))
@@ -9245,10 +10493,60 @@
(-12 (-5 *2 (-711 *3)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363))
(-14 *4
(-3 (-1201 *3)
- (-1297 (-663 (-2 (|:| -3853 *3) (|:| -3128 (-1151)))))))))
+ (-1297 (-663 (-2 (|:| -1430 *3) (|:| -1591 (-1151)))))))))
((*1 *2)
(-12 (-5 *2 (-711 *3)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363))
(-14 *4 (-948)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-663 (-888 *5))) (-14 *5 (-663 (-1207))) (-4 *6 (-466))
+ (-5 *2 (-663 (-663 (-255 *5 *6)))) (-5 *1 (-485 *5 *6 *7))
+ (-5 *3 (-663 (-255 *5 *6))) (-4 *7 (-466)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-560)) (-4 *1 (-673 *3)) (-4 *3 (-1247))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-560)) (-4 *1 (-673 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033)))
+ (-5 *1 (-179 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-114))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114))
+ (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376)))
+ (-4 *3 (-1273 *4)) (-5 *2 (-114)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |mval| (-711 *3)) (|:| |invmval| (-711 *3))
+ (|:| |genIdeal| (-518 *3 *4 *5 *6))))
+ (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-435 *3) (-1033))) (-5 *1 (-287 *3 *2))
+ (-4 *3 (-571))))
+ ((*1 *1)
+ (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
+ (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
+ ((*1 *1) (-5 *1 (-491))) ((*1 *1) (-4 *1 (-1233))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1201 *6)) (-4 *6 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *2 (-1201 *7)) (-5 *1 (-333 *4 *5 *6 *7))
+ (-4 *7 (-979 *6 *4 *5)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-793)) (-4 *5 (-376)) (-5 *2 (-421 *6))
+ (-5 *1 (-891 *5 *4 *6)) (-4 *4 (-1290 *5)) (-4 *6 (-1273 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-793)) (-5 *4 (-1287 *5 *6 *7)) (-4 *5 (-376))
+ (-14 *6 (-1207)) (-14 *7 *5) (-5 *2 (-421 (-1266 *6 *5)))
+ (-5 *1 (-892 *5 *6 *7))))
+ ((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-793)) (-5 *4 (-1287 *5 *6 *7)) (-4 *5 (-376))
+ (-14 *6 (-1207)) (-14 *7 *5) (-5 *2 (-421 (-1266 *6 *5)))
+ (-5 *1 (-892 *5 *6 *7)))))
(((*1 *2 *2)
(-12 (-4 *3 (-13 (-571) (-1069 (-560)))) (-5 *1 (-191 *3 *2))
(-4 *2 (-13 (-27) (-1233) (-435 (-171 *3))))))
@@ -9262,11 +10560,110 @@
(-12 (-5 *3 (-1207))
(-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560))))
(-5 *1 (-1237 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-948)) (-4 *5 (-571)) (-5 *2 (-711 *5))
+ (-5 *1 (-986 *5 *3)) (-4 *3 (-680 *5)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-560)) (-5 *2 (-114)) (-5 *1 (-568)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-419 *4) *4)) (-4 *4 (-571)) (-5 *2 (-419 *4))
+ (-5 *1 (-433 *4))))
+ ((*1 *1 *1) (-5 *1 (-954)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-954))))
+ ((*1 *1 *1) (-5 *1 (-956)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-956))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))
+ (-5 *4 (-421 (-560))) (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-560)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))
+ (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-560)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))
+ (-5 *4 (-421 (-560))) (-5 *1 (-1053 *3)) (-4 *3 (-1273 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))
+ (-5 *1 (-1053 *3)) (-4 *3 (-1273 (-421 (-560))))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3))
+ (-4 *3 (-1273 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1002)) (-5 *1 (-931 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6))
+ (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
+(((*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
(((*1 *2 *3)
(-12 (-5 *2 (-419 (-1201 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1201 *1))
(-4 *4 (-466)) (-4 *4 (-571)) (-4 *4 (-1132))))
((*1 *2 *3)
(-12 (-4 *1 (-939)) (-5 *2 (-419 (-1201 *1))) (-5 *3 (-1201 *1)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-421 (-560))) (-4 *1 (-569 *3))
+ (-4 *3 (-13 (-418) (-1233)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1273 *6))
+ (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-571) (-1069 (-560))))
+ (-4 *8 (-1273 (-421 *7))) (-5 *2 (-597 *3))
+ (-5 *1 (-567 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -1938 (-803 *3)) (|:| |coef2| (-803 *3))))
+ (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-571)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *2 (-2 (|:| -1938 *1) (|:| |coef2| *1)))
+ (-4 *1 (-1096 *3 *4 *5)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-1080)) (-4 *3 (-1132))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -2030 (-560)))) (-4 *1 (-435 *3))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |val| (-915 *3)) (|:| -2030 (-915 *3))))
+ (-5 *1 (-915 *3)) (-4 *3 (-1132))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080))
+ (-4 *7 (-979 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -2030 (-560))))
+ (-5 *1 (-980 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-376)
+ (-10 -8 (-15 -3913 ($ *7)) (-15 -2473 (*7 $))
+ (-15 -2484 (*7 $))))))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-133))
+ (-4 *3 (-814)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1156 (-560) (-630 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1022 *2)) (-4 *4 (-1273 *3)) (-4 *2 (-319))
+ (-5 *1 (-427 *2 *3 *4 *5)) (-4 *5 (-13 (-424 *3 *4) (-1069 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-571)) (-4 *3 (-1132)) (-5 *2 (-1156 *3 (-630 *1)))
+ (-4 *1 (-435 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1156 (-560) (-630 (-509)))) (-5 *1 (-509))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-748) *4))
+ (-5 *1 (-638 *3 *4 *2)) (-4 *3 (-38 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-748) *4))
+ (-5 *1 (-674 *3 *4 *2)) (-4 *3 (-739 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-618 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1132))
+ (-4 *2 (-871)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2096 *4)))
+ (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-114)) (-5 *1 (-1234 *3)) (-4 *3 (-1132)))))
(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
(-12 (-5 *3 (-1 (-229) (-229) (-229)))
(-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) "undefined"))
@@ -9278,10 +10675,118 @@
((*1 *2 *2 *3 *4 *4 *5)
(-12 (-5 *2 (-1164 (-229))) (-5 *3 (-1 (-972 (-229)) (-229) (-229)))
(-5 *4 (-1120 (-229))) (-5 *5 (-663 (-270))) (-5 *1 (-719)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-466)) (-4 *4 (-842))
+ (-14 *5 (-1207)) (-5 *2 (-560)) (-5 *1 (-1145 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
+(((*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-114)) (-5 *3 (-663 (-270))) (-5 *1 (-271))))
+ ((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481))))
+ ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-363)) (-5 *2 (-419 (-1201 (-1201 *4))))
+ (-5 *1 (-1246 *4)) (-5 *3 (-1201 (-1201 *4))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-376)) (-4 *3 (-1080))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3583 *1)))
+ (-4 *1 (-876 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-482)) (-5 *3 (-663 (-270))) (-5 *1 (-1300))))
+ ((*1 *1 *1) (-5 *1 (-1300))))
+(((*1 *2 *1) (-12 (-5 *2 (-1156 (-560) (-630 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-319)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4))
+ (-5 *2 (-1297 *6)) (-5 *1 (-427 *3 *4 *5 *6))
+ (-4 *6 (-13 (-424 *4 *5) (-1069 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1080)) (-4 *3 (-1132)) (-5 *2 (-1156 *3 (-630 *1)))
+ (-4 *1 (-435 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1156 (-560) (-630 (-509)))) (-5 *1 (-509))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-175)) (-4 *2 (-38 *3)) (-5 *1 (-638 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-748) *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-175)) (-4 *2 (-739 *3)) (-5 *1 (-674 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-748) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-793)) (-4 *5 (-363)) (-4 *6 (-1273 *5))
+ (-5 *2
+ (-663
+ (-2 (|:| -3822 (-711 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-711 *6)))))
+ (-5 *1 (-512 *5 *6 *7))
+ (-5 *3
+ (-2 (|:| -3822 (-711 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-711 *6))))
+ (-4 *7 (-1273 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
(((*1 *2 *3)
(-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3))
(-4 *3 (-432 *4)))))
(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-305 (-864 *3))) (-4 *3 (-13 (-27) (-1233) (-435 *5)))
+ (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560))))
+ (-5 *2
+ (-3 (-864 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-864 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-864 *3) "failed")))
+ "failed"))
+ (-5 *1 (-655 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-305 *3)) (-5 *5 (-1189))
+ (-4 *3 (-13 (-27) (-1233) (-435 *6)))
+ (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560))))
+ (-5 *2 (-864 *3)) (-5 *1 (-655 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-305 (-864 (-975 *5)))) (-4 *5 (-466))
+ (-5 *2
+ (-3 (-864 (-421 (-975 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-864 (-421 (-975 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-864 (-421 (-975 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-656 *5)) (-5 *3 (-421 (-975 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-305 (-421 (-975 *5)))) (-5 *3 (-421 (-975 *5)))
+ (-4 *5 (-466))
+ (-5 *2
+ (-3 (-864 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-864 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-864 *3) "failed")))
+ "failed"))
+ (-5 *1 (-656 *5))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-305 (-421 (-975 *6)))) (-5 *5 (-1189))
+ (-5 *3 (-421 (-975 *6))) (-4 *6 (-466)) (-5 *2 (-864 *3))
+ (-5 *1 (-656 *6)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))))
+(((*1 *2 *1) (-12 (-4 *1 (-984)) (-5 *2 (-663 (-663 (-972 (-229)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1005)) (-5 *2 (-663 (-663 (-972 (-229))))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-114)) (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560))))
+ (-4 *3 (-13 (-27) (-1233) (-435 *6) (-10 -8 (-15 -3913 ($ *7)))))
+ (-4 *7 (-870))
+ (-4 *8
+ (-13 (-1276 *3 *7) (-376) (-1233)
+ (-10 -8 (-15 -3161 ($ $)) (-15 -4424 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))))
+ (-5 *1 (-438 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1189)) (-4 *9 (-1014 *8))
+ (-14 *10 (-1207)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-3 (-421 (-975 *5)) (-1196 (-1207) (-975 *5))))
+ (-4 *5 (-466)) (-5 *2 (-663 (-711 (-421 (-975 *5)))))
+ (-5 *1 (-304 *5)) (-5 *4 (-711 (-421 (-975 *5)))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-663 (-305 *3))) (-5 *1 (-305 *3)) (-4 *3 (-571))
+ (-4 *3 (-1247)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080))
+ (-5 *2 (-2 (|:| |k| (-841 *3)) (|:| |c| *4))))))
+(((*1 *2 *3 *4)
(-12 (-5 *3 (-711 *8)) (-4 *8 (-979 *5 *7 *6))
(-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-871) (-633 (-1207))))
(-4 *7 (-815))
@@ -9291,7 +10796,7 @@
(|:| |wcond| (-663 (-975 *5)))
(|:| |bsoln|
(-2 (|:| |partsol| (-1297 (-421 (-975 *5))))
- (|:| -1954 (-663 (-1297 (-421 (-975 *5))))))))))
+ (|:| -3822 (-663 (-1297 (-421 (-975 *5))))))))))
(-5 *1 (-953 *5 *6 *7 *8)) (-5 *4 (-663 *8))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-711 *8)) (-5 *4 (-663 (-1207))) (-4 *8 (-979 *5 *7 *6))
@@ -9303,7 +10808,7 @@
(|:| |wcond| (-663 (-975 *5)))
(|:| |bsoln|
(-2 (|:| |partsol| (-1297 (-421 (-975 *5))))
- (|:| -1954 (-663 (-1297 (-421 (-975 *5))))))))))
+ (|:| -3822 (-663 (-1297 (-421 (-975 *5))))))))))
(-5 *1 (-953 *5 *6 *7 *8))))
((*1 *2 *3)
(-12 (-5 *3 (-711 *7)) (-4 *7 (-979 *4 *6 *5))
@@ -9315,7 +10820,7 @@
(|:| |wcond| (-663 (-975 *4)))
(|:| |bsoln|
(-2 (|:| |partsol| (-1297 (-421 (-975 *4))))
- (|:| -1954 (-663 (-1297 (-421 (-975 *4))))))))))
+ (|:| -3822 (-663 (-1297 (-421 (-975 *4))))))))))
(-5 *1 (-953 *4 *5 *6 *7))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-711 *9)) (-5 *5 (-948)) (-4 *9 (-979 *6 *8 *7))
@@ -9327,7 +10832,7 @@
(|:| |wcond| (-663 (-975 *6)))
(|:| |bsoln|
(-2 (|:| |partsol| (-1297 (-421 (-975 *6))))
- (|:| -1954 (-663 (-1297 (-421 (-975 *6))))))))))
+ (|:| -3822 (-663 (-1297 (-421 (-975 *6))))))))))
(-5 *1 (-953 *6 *7 *8 *9)) (-5 *4 (-663 *9))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-711 *9)) (-5 *4 (-663 (-1207))) (-5 *5 (-948))
@@ -9339,7 +10844,7 @@
(|:| |wcond| (-663 (-975 *6)))
(|:| |bsoln|
(-2 (|:| |partsol| (-1297 (-421 (-975 *6))))
- (|:| -1954 (-663 (-1297 (-421 (-975 *6))))))))))
+ (|:| -3822 (-663 (-1297 (-421 (-975 *6))))))))))
(-5 *1 (-953 *6 *7 *8 *9))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-711 *8)) (-5 *4 (-948)) (-4 *8 (-979 *5 *7 *6))
@@ -9351,7 +10856,7 @@
(|:| |wcond| (-663 (-975 *5)))
(|:| |bsoln|
(-2 (|:| |partsol| (-1297 (-421 (-975 *5))))
- (|:| -1954 (-663 (-1297 (-421 (-975 *5))))))))))
+ (|:| -3822 (-663 (-1297 (-421 (-975 *5))))))))))
(-5 *1 (-953 *5 *6 *7 *8))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-711 *9)) (-5 *4 (-663 *9)) (-5 *5 (-1189))
@@ -9382,505 +10887,73 @@
(-4 *9 (-979 *6 *8 *7)) (-4 *6 (-13 (-319) (-149)))
(-4 *7 (-13 (-871) (-633 (-1207)))) (-4 *8 (-815)) (-5 *2 (-560))
(-5 *1 (-953 *6 *7 *8 *9)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-560)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-815))
- (-4 *3 (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $))))) (-4 *5 (-571))
- (-5 *1 (-754 *4 *3 *5 *2)) (-4 *2 (-979 (-421 (-975 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1080)) (-4 *5 (-815))
- (-4 *3
- (-13 (-871)
- (-10 -8 (-15 -1407 ((-1207) $))
- (-15 -2462 ((-3 $ "failed") (-1207))))))
- (-5 *1 (-1015 *4 *5 *3 *2)) (-4 *2 (-979 (-975 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-663 *6))
- (-4 *6
- (-13 (-871)
- (-10 -8 (-15 -1407 ((-1207) $))
- (-15 -2462 ((-3 $ "failed") (-1207))))))
- (-4 *4 (-1080)) (-4 *5 (-815)) (-5 *1 (-1015 *4 *5 *6 *2))
- (-4 *2 (-979 (-975 *4) *5 *6)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-520)) (-5 *2 (-663 (-994))) (-5 *1 (-303)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-663
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-793)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-815)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-466)) (-4 *5 (-871))
- (-5 *1 (-464 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 *4)) (-4 *4 (-871)) (-5 *2 (-663 (-686 *4 *5)))
- (-5 *1 (-646 *4 *5 *6)) (-4 *5 (-13 (-175) (-739 (-421 (-560)))))
- (-14 *6 (-948)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-793)) (-5 *5 (-663 *3)) (-4 *3 (-319)) (-4 *6 (-871))
- (-4 *7 (-815)) (-5 *2 (-114)) (-5 *1 (-644 *6 *7 *3 *8))
- (-4 *8 (-979 *3 *7 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-560)) (-4 *2 (-435 *3)) (-5 *1 (-32 *3 *2))
- (-4 *3 (-1069 *4)) (-4 *3 (-571)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132))
- (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))))
-(((*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-167 *3 *2)) (-4 *3 (-168 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *2 *4)) (-4 *4 (-1273 *2))
- (-4 *2 (-175))))
- ((*1 *2)
- (-12 (-4 *4 (-1273 *2)) (-4 *2 (-175)) (-5 *1 (-423 *3 *2 *4))
- (-4 *3 (-424 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-424 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-175))))
- ((*1 *2)
- (-12 (-4 *3 (-1273 *2)) (-5 *2 (-560)) (-5 *1 (-790 *3 *4))
- (-4 *4 (-424 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *2 (-871)) (-4 *3 (-175))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-571)) (-5 *1 (-1000 *2 *3)) (-4 *3 (-1273 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-175)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1210))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1303))
- (-5 *1 (-1210))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-663 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1303))
- (-5 *1 (-1210)))))
-(((*1 *1) (-5 *1 (-1210))))
-(((*1 *1) (-5 *1 (-303))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-711 *5))) (-4 *5 (-319)) (-4 *5 (-1080))
- (-5 *2 (-1297 (-1297 *5))) (-5 *1 (-1061 *5)) (-5 *4 (-1297 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-860))) (-5 *1 (-142)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-495 *4 *5))) (-14 *4 (-663 (-1207)))
- (-4 *5 (-466)) (-5 *2 (-663 (-255 *4 *5))) (-5 *1 (-650 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1297 (-663 *3))) (-4 *4 (-319))
- (-5 *2 (-663 *3)) (-5 *1 (-469 *4 *3)) (-4 *3 (-1273 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-315)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-419 *2)) (-4 *2 (-319)) (-5 *1 (-943 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207))
- (-4 *5 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-944 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-419 (-975 *6))) (-5 *5 (-1207)) (-5 *3 (-975 *6))
- (-4 *6 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-944 *6)))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-560))
- (-5 *6
- (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -2486 (-391))))
- (-5 *7 (-1 (-1303) (-1297 *5) (-1297 *5) (-391)))
- (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303))
- (-5 *1 (-810))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-560))
- (-5 *6
- (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -2486 (-391))))
- (-5 *7 (-1 (-1303) (-1297 *5) (-1297 *5) (-391)))
- (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303))
- (-5 *1 (-810)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1173 *3 *4)) (-14 *3 (-948)) (-4 *4 (-376))
- (-5 *1 (-1024 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))
- (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))
- (-4 *7 (-1022 *4)) (-4 *2 (-708 *7 *8 *9))
- (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-708 *4 *5 *6))
- (-4 *8 (-385 *7)) (-4 *9 (-385 *7))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2))
- (-4 *4 (-385 *2)) (-4 *2 (-319))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3))
- (-4 *5 (-385 *3)) (-5 *1 (-710 *3 *4 *5 *2))
- (-4 *2 (-708 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1084 *2 *3 *4 *5 *6)) (-4 *4 (-1080))
- (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *2 *4)) (-4 *4 (-319)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1201 (-421 (-975 *3)))) (-5 *1 (-467 *3 *4 *5 *6))
- (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
-(((*1 *2 *3)
- (-12 (-4 *2 (-1273 *4)) (-5 *1 (-831 *4 *2 *3 *5))
- (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *3 (-680 *2))
- (-4 *5 (-680 (-421 *2))))))
-(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-954))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-954))))
- ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-956))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
-(((*1 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-887))))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-793)) (-4 *1 (-387 *3 *4)) (-4 *3 (-871))
- (-4 *4 (-175))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-793)) (-4 *1 (-1320 *3 *4)) (-4 *3 (-871))
- (-4 *4 (-1080)))))
-(((*1 *1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1132))))
- ((*1 *1 *1) (-5 *1 (-651))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1132)) (-5 *1 (-931 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1229))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1229)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-693))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1133 *3 *4)) (-14 *3 (-948))
- (-14 *4 (-948)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-5 *2 (-419 (-1201 (-1201 *4))))
- (-5 *1 (-1246 *4)) (-5 *3 (-1201 (-1201 *4))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1080))
- (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296)))
- (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1273 *4)))))
-(((*1 *1) (-5 *1 (-132))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)) (-4 *2 (-571)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-466)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871))
- (-5 *2 (-663 *3)) (-5 *1 (-1008 *4 *5 *6 *3))
- (-4 *3 (-1096 *4 *5 *6)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-663 *1)) (-4 *1 (-950)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1252)) (-4 *5 (-1273 *3)) (-4 *6 (-1273 (-421 *5)))
- (-5 *2 (-114)) (-5 *1 (-354 *4 *3 *5 *6)) (-4 *4 (-355 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-549)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-505)))))
-(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4508)) (-4 *1 (-503 *3)) (-4 *3 (-1247))
- (-5 *2 (-663 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-758 *3)) (-4 *3 (-1132))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 (-453))) (-5 *1 (-889)))))
-(((*1 *1) (-5 *1 (-190))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 (-931 *3))) (-4 *3 (-1132)) (-5 *1 (-934 *3)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871))
- (-4 *3 (-1096 *6 *7 *8))
- (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *4))))
- (-5 *1 (-1139 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -4297 *9))))
- (-5 *5 (-114)) (-4 *8 (-1096 *6 *7 *4)) (-4 *9 (-1102 *6 *7 *4 *8))
- (-4 *6 (-466)) (-4 *7 (-815)) (-4 *4 (-871))
- (-5 *2 (-663 (-2 (|:| |val| *8) (|:| -4297 *9))))
- (-5 *1 (-1139 *6 *7 *4 *8 *9)))))
-(((*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-108))))
- ((*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-221))))
- ((*1 *2 *1) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-501))))
- ((*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)) (-4 *2 (-319))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-421 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560))))
- ((*1 *1 *1) (-4 *1 (-1091))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
-(((*1 *2)
- (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871))
- (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303))
- (-5 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871))
- (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303))
- (-5 *1 (-1139 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4)
+(((*1 *1) (-5 *1 (-622))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-143))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-146)))))
+(((*1 *2 *3 *3 *3 *3 *4)
(-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-871)) (-5 *3 (-663 *6)) (-5 *5 (-663 *3))
- (-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-663 *5)) (|:| |f3| *5)
- (|:| |f4| (-663 *5))))
- (-5 *1 (-1218 *6)) (-5 *4 (-663 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-1091)) (-4 *3 (-1233))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6))
- (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1207)) (-5 *4 (-975 (-560))) (-5 *2 (-342))
- (-5 *1 (-344)))))
-(((*1 *1 *1) (-5 *1 (-1094))))
-(((*1 *2 *2)
(-12
(-5 *2
- (-663
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-793)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-815)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-466)) (-4 *5 (-871))
- (-5 *1 (-464 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-972 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-663 (-972 *3))) (-4 *3 (-1080)) (-4 *1 (-1165 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-663 (-663 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-663 (-972 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-887)))))
-(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1247)) (-5 *1 (-185 *3 *2)) (-4 *2 (-696 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132))
- (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-815)) (-4 *6 (-871)) (-4 *7 (-571))
- (-4 *3 (-979 *7 *5 *6))
- (-5 *2
- (-2 (|:| -3205 (-793)) (|:| -2115 *3) (|:| |radicand| (-663 *3))))
- (-5 *1 (-982 *5 *6 *7 *3 *8)) (-5 *4 (-793))
- (-4 *8
- (-13 (-376)
- (-10 -8 (-15 -1578 ($ *3)) (-15 -3757 (*3 $)) (-15 -3771 (*3 $))))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-971)) (-5 *3 (-560)))))
+ (-3 (|:| |nullBranch| "null")
+ (|:| |assignmentBranch|
+ (-2 (|:| |var| (-1207))
+ (|:| |arrayIndex| (-663 (-975 (-560))))
+ (|:| |rand|
+ (-2 (|:| |ints2Floats?| (-114)) (|:| -2514 (-887))))))
+ (|:| |arrayAssignmentBranch|
+ (-2 (|:| |var| (-1207)) (|:| |rand| (-887))
+ (|:| |ints2Floats?| (-114))))
+ (|:| |conditionalBranch|
+ (-2 (|:| |switch| (-1206)) (|:| |thenClause| (-342))
+ (|:| |elseClause| (-342))))
+ (|:| |returnBranch|
+ (-2 (|:| -2706 (-114))
+ (|:| -1430
+ (-2 (|:| |ints2Floats?| (-114)) (|:| -2514 (-887))))))
+ (|:| |blockBranch| (-663 (-342)))
+ (|:| |commentBranch| (-663 (-1189))) (|:| |callBranch| (-1189))
+ (|:| |forBranch|
+ (-2 (|:| -1585 (-1123 (-975 (-560))))
+ (|:| |span| (-975 (-560))) (|:| -4400 (-342))))
+ (|:| |labelBranch| (-1151))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1206)) (|:| -4400 (-342))))
+ (|:| |commonBranch|
+ (-2 (|:| -4389 (-1207)) (|:| |contents| (-663 (-1207)))))
+ (|:| |printBranch| (-663 (-887)))))
+ (-5 *1 (-342)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-2 (|:| -4457 *4) (|:| -3630 (-560)))))
- (-4 *4 (-1273 (-560))) (-5 *2 (-758 (-793))) (-5 *1 (-456 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-419 *5)) (-4 *5 (-1273 *4)) (-4 *4 (-1080))
- (-5 *2 (-758 (-793))) (-5 *1 (-458 *4 *5)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1141)) (-5 *3 (-560)))))
+ (-12 (-5 *3 (-1207))
+ (-5 *2
+ (-2 (|:| |zeros| (-1185 (-229))) (|:| |ones| (-1185 (-229)))
+ (|:| |singularities| (-1185 (-229)))))
+ (-5 *1 (-105)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3))
- (-4 *5 (-385 *3)) (-5 *2 (-560))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
- (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-560)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1080)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-711 *2)) (-4 *2 (-175)) (-5 *1 (-148 *2))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-175)) (-4 *2 (-1273 *4)) (-5 *1 (-180 *4 *2 *3))
- (-4 *3 (-746 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-711 (-421 (-975 *5)))) (-5 *4 (-1207))
- (-5 *2 (-975 *5)) (-5 *1 (-304 *5)) (-4 *5 (-466))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-711 (-421 (-975 *4)))) (-5 *2 (-975 *4))
- (-5 *1 (-304 *4)) (-4 *4 (-466))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1273 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-711 (-171 (-421 (-560)))))
- (-5 *2 (-975 (-171 (-421 (-560))))) (-5 *1 (-786 *4))
- (-4 *4 (-13 (-376) (-870)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-711 (-171 (-421 (-560))))) (-5 *4 (-1207))
- (-5 *2 (-975 (-171 (-421 (-560))))) (-5 *1 (-786 *5))
- (-4 *5 (-13 (-376) (-870)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-711 (-421 (-560)))) (-5 *2 (-975 (-421 (-560))))
- (-5 *1 (-801 *4)) (-4 *4 (-13 (-376) (-870)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-711 (-421 (-560)))) (-5 *4 (-1207))
- (-5 *2 (-975 (-421 (-560)))) (-5 *1 (-801 *5))
- (-4 *5 (-13 (-376) (-870))))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-560)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-793)) (-4 *5 (-175))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793))
- (-4 *4 (-175))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2))
- (-4 *4 (-385 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1080)) (-4 *1 (-708 *3 *2 *4)) (-4 *2 (-385 *3))
- (-4 *4 (-385 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1173 *2 *3)) (-14 *2 (-793)) (-4 *3 (-1080)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-171 (-326 *4)))
- (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 (-171 *4))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560))))
- (-5 *2 (-171 *3)) (-5 *1 (-1237 *4 *3))
- (-4 *3 (-13 (-27) (-1233) (-435 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033) (-1233)))))
- ((*1 *1 *1) (-4 *1 (-649))))
+ (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-5 *2 (-114)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-663 (-630 *5))) (-5 *3 (-1207)) (-4 *5 (-435 *4))
- (-4 *4 (-1132)) (-5 *1 (-587 *4 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1185 *3))) (-5 *1 (-1185 *3)) (-4 *3 (-1247)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-948))) (-5 *4 (-663 (-560)))
- (-5 *2 (-711 (-560))) (-5 *1 (-1141)))))
-(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-267)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-663 *2))) (-5 *4 (-663 *5))
- (-4 *5 (-38 (-421 (-560)))) (-4 *2 (-1290 *5))
- (-5 *1 (-1291 *5 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1207)) (-5 *2 (-1 *6 *5)) (-5 *1 (-728 *4 *5 *6))
- (-4 *4 (-633 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247)))))
+ (-12 (-5 *2 (-711 *4)) (-5 *3 (-948)) (|has| *4 (-6 (-4510 "*")))
+ (-4 *4 (-1080)) (-5 *1 (-1060 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-663 (-711 *4))) (-5 *3 (-948))
+ (|has| *4 (-6 (-4510 "*"))) (-4 *4 (-1080)) (-5 *1 (-1060 *4)))))
(((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
- (-4 *3 (-380 *4))))
- ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-339 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-530 *3 *4))
- (-14 *4 (-560)))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-663 (-1207))) (-4 *4 (-175))
- (-14 *6
- (-1 (-114) (-2 (|:| -3128 *5) (|:| -3205 *2))
- (-2 (|:| -3128 *5) (|:| -3205 *2))))
- (-4 *2 (-245 (-1553 *3) (-793))) (-5 *1 (-475 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-871)) (-4 *7 (-979 *4 *2 (-888 *3))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-663 (-2 (|:| -4457 (-1201 *6)) (|:| -3205 (-560)))))
- (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114))
- (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-979 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080)))))
-(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-825)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-560)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1247))
- (-4 *5 (-385 *4)) (-4 *3 (-385 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *8 (-1096 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-663 *8))
- (|:| |towers| (-663 (-1058 *5 *6 *7 *8)))))
- (-5 *1 (-1058 *5 *6 *7 *8)) (-5 *3 (-663 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *8 (-1096 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-663 *8))
- (|:| |towers| (-663 (-1177 *5 *6 *7 *8)))))
- (-5 *1 (-1177 *5 *6 *7 *8)) (-5 *3 (-663 *8)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1132)) (-5 *1 (-103 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1132)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-421 (-560))) (-5 *1 (-1055 *3))
- (-4 *3 (-13 (-870) (-376) (-1051)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-870) (-376))) (-5 *1 (-1092 *2 *3))
- (-4 *3 (-1273 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1099 *2 *3)) (-4 *2 (-13 (-870) (-376)))
- (-4 *3 (-1273 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-571))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
- (-5 *1 (-1008 *4 *5 *6 *7)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-1031 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-663 (-51))) (-5 *2 (-1303)) (-5 *1 (-883)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-871)) (-4 *5 (-815))
- (-4 *6 (-571)) (-4 *7 (-979 *6 *5 *3))
- (-5 *1 (-476 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-1069 (-421 (-560))) (-376)
- (-10 -8 (-15 -1578 ($ *7)) (-15 -3757 (*7 $))
- (-15 -3771 (*7 $))))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-793)) (-5 *3 (-972 *5)) (-4 *5 (-1080))
- (-5 *1 (-1195 *4 *5)) (-14 *4 (-948))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-663 (-793))) (-5 *3 (-793)) (-5 *1 (-1195 *4 *5))
- (-14 *4 (-948)) (-4 *5 (-1080))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-663 (-793))) (-5 *3 (-972 *5)) (-4 *5 (-1080))
- (-5 *1 (-1195 *4 *5)) (-14 *4 (-948)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1201 *1)) (-5 *4 (-1207)) (-4 *1 (-27))
- (-5 *2 (-663 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1201 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-975 *1)) (-4 *1 (-27)) (-5 *2 (-663 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *2 (-663 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1) (-12 (-4 *3 (-571)) (-5 *2 (-663 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-326 (-229))) (-5 *4 (-663 (-1207)))
- (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-1185 (-229))) (-5 *1 (-313)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1189)) (-5 *2 (-663 (-713 (-292)))) (-5 *1 (-170)))))
-(((*1 *1 *1) (-5 *1 (-114))))
-(((*1 *1 *1 *1) (-5 *1 (-887))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080))
- (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-954))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229)))
- (-5 *1 (-954))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1207)) (-5 *5 (-1120 (-229))) (-5 *2 (-954))
- (-5 *1 (-955 *3)) (-4 *3 (-633 (-549)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1207)) (-5 *2 (-954)) (-5 *1 (-955 *3))
- (-4 *3 (-633 (-549))))))
-(((*1 *2 *3)
(-12
- (-5 *3
- (-2 (|:| -3822 (-711 (-421 (-975 *4))))
- (|:| |vec| (-663 (-421 (-975 *4)))) (|:| -2326 (-793))
- (|:| |rows| (-663 (-560))) (|:| |cols| (-663 (-560)))))
- (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207))))
- (-4 *6 (-815))
(-5 *2
- (-2 (|:| |partsol| (-1297 (-421 (-975 *4))))
- (|:| -1954 (-663 (-1297 (-421 (-975 *4)))))))
- (-5 *1 (-953 *4 *5 *6 *7)) (-4 *7 (-979 *4 *6 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-376))
- (-5 *2 (-2 (|:| -2773 (-419 *3)) (|:| |special| (-419 *3))))
- (-5 *1 (-749 *5 *3)))))
+ (-1297 (-663 (-2 (|:| -1430 (-935 *3)) (|:| -1591 (-1151))))))
+ (-5 *1 (-365 *3 *4)) (-14 *3 (-948)) (-14 *4 (-948))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1297 (-663 (-2 (|:| -1430 *3) (|:| -1591 (-1151))))))
+ (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1201 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1297 (-663 (-2 (|:| -1430 *3) (|:| -1591 (-1151))))))
+ (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-948)))))
(((*1 *1 *1 *2)
(-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814))
(-4 *2 (-376))))
((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-229))))
((*1 *1 *1 *1)
- (-2304 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1247)))
+ (-2196 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1247)))
(-12 (-5 *1 (-305 *2)) (-4 *2 (-487)) (-4 *2 (-1247)))))
((*1 *1 *1 *1) (-4 *1 (-376)))
((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-391))))
@@ -9928,84 +11001,50 @@
((*1 *1 *1 *2)
(-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-376)) (-4 *2 (-1080))
(-4 *3 (-868)))))
-(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175))))
- ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))))
-(((*1 *1) (-5 *1 (-592)))
- ((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-883))))
- ((*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1303)) (-5 *1 (-883))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1189)) (-5 *4 (-887)) (-5 *2 (-1303)) (-5 *1 (-883))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-1185 *4))
- (-4 *4 (-1132)) (-4 *4 (-1247)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2788 *4)))
- (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-793)) (-4 *2 (-1132))
+ (-5 *1 (-700 *2)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1132)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1132)) (-5 *2 (-663 *1))
- (-4 *1 (-435 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3))
- (-4 *3 (-1132))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *2 (-663 *1)) (-4 *1 (-979 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080))
- (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-663 *3))
- (-5 *1 (-980 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-376)
- (-10 -8 (-15 -1578 ($ *7)) (-15 -3757 (*7 $))
- (-15 -3771 (*7 $))))))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-793)) (-5 *3 (-1 *4 (-560) (-560))) (-4 *4 (-1080))
- (-4 *1 (-708 *4 *5 *6)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *5))
- (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-887)))) (-5 *1 (-887))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1173 *3 *4)) (-5 *1 (-1024 *3 *4)) (-14 *3 (-948))
- (-4 *4 (-376))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-663 (-663 *5))) (-4 *5 (-1080))
- (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *6 (-245 *4 *5))
- (-4 *7 (-245 *3 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-319)) (-5 *1 (-469 *3 *2)) (-4 *2 (-1273 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-319)) (-5 *1 (-474 *3 *2)) (-4 *2 (-1273 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-319)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-793)))
- (-5 *1 (-553 *3 *2 *4 *5)) (-4 *2 (-1273 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-141)) (-5 *1 (-142))))
- ((*1 *2 *1) (-12 (-5 *1 (-187 *2)) (-4 *2 (-189))))
- ((*1 *2 *1) (-12 (-5 *2 (-257)) (-5 *1 (-256)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-663 (-1 *4 (-663 *4)))) (-4 *4 (-1132))
- (-5 *1 (-116 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1132))
- (-5 *1 (-116 *4))))
+ (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571))
+ (-5 *2 (-114)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-560)) (-5 *1 (-459 *3)) (-4 *3 (-418)) (-4 *3 (-1080)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-115)) (-5 *2 (-663 (-1 *4 (-663 *4))))
- (-5 *1 (-116 *4)) (-4 *4 (-1132)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1002)) (-5 *1 (-1323)))))
-(((*1 *2 *1) (-12 (-5 *2 (-303)) (-5 *1 (-292)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-339 *3)) (-4 *3 (-1247))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-560)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1247)) (-14 *4 *2))))
-(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-342)))))
-(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136)))))
+ (-12 (-5 *3 (-1002)) (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
+(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-574)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-663
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-793)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-815)) (-4 *6 (-979 *4 *3 *5)) (-4 *4 (-466)) (-4 *5 (-871))
+ (-5 *1 (-464 *4 *3 *5 *6)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-793)) (-4 *1 (-680 *3)) (-4 *3 (-1080)) (-4 *3 (-376))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-793)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376))
+ (-5 *1 (-682 *5 *2)) (-4 *2 (-680 *5)))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-663 *9)) (-5 *3 (-1 (-114) *9))
+ (-5 *4 (-1 (-114) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-1096 *6 *7 *8)) (-4 *6 (-571)) (-4 *7 (-815))
+ (-4 *8 (-871)) (-5 *1 (-1008 *6 *7 *8 *9)))))
+(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))))
(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
((*1 *1 *1 *1) (|partial| -5 *1 (-136)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-217 *2))
(-4 *2
(-13 (-871)
- (-10 -8 (-15 -3924 ((-1189) $ (-1207))) (-15 -4358 ((-1303) $))
- (-15 -4331 ((-1303) $)))))))
+ (-10 -8 (-15 -1507 ((-1189) $ (-1207))) (-15 -3884 ((-1303) $))
+ (-15 -3150 ((-1303) $)))))))
((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247))))
((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1247))))
((*1 *1 *1 *1)
@@ -10025,61 +11064,60 @@
((*1 *2 *2 *2) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244))))
((*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-21))))
((*1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-21)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4)))
- (-5 *2 (-2 (|:| |num| (-1297 *4)) (|:| |den| *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033))))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1105))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132))
+ (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-103 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-91 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-114)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-571))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
- (-5 *1 (-1008 *4 *5 *6 *7)))))
+ (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *2 (-871)) (-4 *5 (-1096 *3 *4 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-815))
+ (-4 *3 (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $))))) (-4 *5 (-571))
+ (-5 *1 (-754 *4 *3 *5 *2)) (-4 *2 (-979 (-421 (-975 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1080)) (-4 *5 (-815))
+ (-4 *3
+ (-13 (-871)
+ (-10 -8 (-15 -2400 ((-1207) $))
+ (-15 -2558 ((-3 $ "failed") (-1207))))))
+ (-5 *1 (-1015 *4 *5 *3 *2)) (-4 *2 (-979 (-975 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-663 *6))
+ (-4 *6
+ (-13 (-871)
+ (-10 -8 (-15 -2400 ((-1207) $))
+ (-15 -2558 ((-3 $ "failed") (-1207))))))
+ (-4 *4 (-1080)) (-4 *5 (-815)) (-5 *1 (-1015 *4 *5 *6 *2))
+ (-4 *2 (-979 (-975 *4) *5 *6)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-769)))))
(((*1 *2 *2 *2)
- (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-793)) (-5 *2 (-663 (-1207))) (-5 *1 (-213))
- (-5 *3 (-1207))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-326 (-229))) (-5 *4 (-793)) (-5 *2 (-663 (-1207)))
- (-5 *1 (-278))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175))
- (-5 *2 (-663 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-663 *3)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871))
- (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-694 *3)) (-4 *3 (-871))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-699 *3)) (-4 *3 (-871))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-841 *3)) (-4 *3 (-871))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-918 *3)) (-4 *3 (-871))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080))
- (-5 *2 (-663 *3)))))
+ (|partial| -12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-1269 *3 *2))
+ (-4 *2 (-1273 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-1195 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-1301))))
- ((*1 *2 *1) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-1301)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-663 (-1266 *5 *4)))
- (-5 *1 (-1145 *4 *5)) (-5 *3 (-1266 *5 *4)))))
+ (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3))
+ (-4 *3 (-13 (-376) (-1233) (-1033))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1320 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080))
- (-5 *2 (-841 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-868)) (-5 *1 (-1321 *3 *2)) (-4 *3 (-1080)))))
+ (-12 (-5 *2 (-663 (-1234 *3))) (-5 *1 (-1234 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-571))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2336 *4)))
+ (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-568)))))
(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-159)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-217 *2))
(-4 *2
(-13 (-871)
- (-10 -8 (-15 -3924 ((-1189) $ (-1207))) (-15 -4358 ((-1303) $))
- (-15 -4331 ((-1303) $)))))))
+ (-10 -8 (-15 -1507 ((-1189) $ (-1207))) (-15 -3884 ((-1303) $))
+ (-15 -3150 ((-1303) $)))))))
((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1247))))
((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1247))))
((*1 *1 *2 *1)
@@ -10102,992 +11140,612 @@
(-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3))))
((*1 *2 *2 *2) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244))))
((*1 *1 *1 *1) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-25)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-114)) (-5 *5 (-711 (-171 (-229))))
- (-5 *2 (-1066)) (-5 *1 (-777)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-711 *2)) (-5 *4 (-560))
- (-4 *2 (-13 (-319) (-10 -8 (-15 -3023 ((-419 $) $)))))
- (-4 *5 (-1273 *2)) (-5 *1 (-513 *2 *5 *6)) (-4 *6 (-424 *2 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1173 *4 *2)) (-14 *4 (-948))
- (-4 *2 (-13 (-1080) (-10 -7 (-6 (-4510 "*")))))
- (-5 *1 (-932 *4 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-663 *6)))))
+(((*1 *1) (-5 *1 (-592))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-388 *4 *2))
+ (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4509)))))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-520)) (-5 *2 (-663 (-994))) (-5 *1 (-303)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-466) (-1069 (-560)))) (-4 *3 (-571))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3))
- (-4 *2
- (-13 (-376) (-310)
- (-10 -8 (-15 -3757 ((-1156 *3 (-630 $)) $))
- (-15 -3771 ((-1156 *3 (-630 $)) $))
- (-15 -1578 ($ (-1156 *3 (-630 $))))))))))
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-451))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-451)))))
+(((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-345)))))
+(((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-549))))
+ ((*1 *2 *3) (-12 (-5 *3 (-549)) (-5 *1 (-550 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-897 (-1212) (-793)))) (-5 *1 (-345)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1323)))))
(((*1 *1) (-5 *1 (-623))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1051)))
- (-14 *5 (-663 (-1207))) (-5 *2 (-663 (-663 (-1055 (-421 *4)))))
- (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-663 (-1207)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114))
- (-4 *5 (-13 (-870) (-319) (-149) (-1051)))
- (-5 *2 (-663 (-663 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7))
- (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-114))
- (-4 *5 (-13 (-870) (-319) (-149) (-1051)))
- (-5 *2 (-663 (-663 (-1055 (-421 *5))))) (-5 *1 (-1325 *5 *6 *7))
- (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-975 *4)))
- (-4 *4 (-13 (-870) (-319) (-149) (-1051)))
- (-5 *2 (-663 (-663 (-1055 (-421 *4))))) (-5 *1 (-1325 *4 *5 *6))
- (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207))))))
-(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-195))))
- ((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-313))))
- ((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1189)) (-5 *1 (-315)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-1207)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-975 (-560)))) (-5 *1 (-450))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1207)) (-5 *4 (-711 (-229))) (-5 *2 (-1134))
- (-5 *1 (-781))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1207)) (-5 *4 (-711 (-560))) (-5 *2 (-1134))
- (-5 *1 (-781)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1007 *4 *5 *6 *3)) (-4 *4 (-1080)) (-4 *5 (-815))
- (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-4 *4 (-571))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1207)) (-5 *6 (-114))
- (-4 *7 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
- (-4 *3 (-13 (-1233) (-989) (-29 *7)))
+ (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815))
+ (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1141)) (-5 *3 (-560)))))
+(((*1 *2 *2 *2)
+ (-12
(-5 *2
- (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-663 (-864 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-223 *7 *3)) (-5 *5 (-864 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-822))
- (-5 *3
- (-2 (|:| |xinit| (-229)) (|:| |xend| (-229))
- (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229)))
- (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229)))
- (|:| |abserr| (-229)) (|:| |relerr| (-229))))
- (-5 *2 (-1066)))))
+ (-663
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-793)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-815)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-466)) (-4 *5 (-871))
+ (-5 *1 (-464 *3 *4 *5 *6)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-560)) (-4 *1 (-335 *4 *2)) (-4 *4 (-1132))
+ (-4 *2 (-133)))))
+(((*1 *2 *1) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *5)) (-5 *4 (-948)) (-4 *5 (-871))
- (-5 *2 (-58 (-663 (-694 *5)))) (-5 *1 (-694 *5)))))
-(((*1 *1 *1 *1) (-5 *1 (-887))))
-(((*1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-5 *1 (-146)))
- ((*1 *1 *1) (-4 *1 (-1175))))
-(((*1 *2)
- (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132))
- (-4 *4 (-1132)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-777)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *2 (-1066))
- (-5 *1 (-777)))))
+ (-12 (-5 *4 (-663 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-319))
+ (-5 *2 (-793)) (-5 *1 (-469 *5 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-663 *7)) (-5 *5 (-663 (-663 *8))) (-4 *7 (-871))
+ (-4 *8 (-319)) (-4 *6 (-815)) (-4 *9 (-979 *8 *6 *7))
+ (-5 *2
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-663 (-2 (|:| -4012 (-1201 *9)) (|:| -2030 (-560)))))))
+ (-5 *1 (-764 *6 *7 *8 *9)) (-5 *3 (-1201 *9)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-663 *2)) (-4 *2 (-979 *4 *5 *6)) (-4 *4 (-466))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-464 *4 *5 *6 *2)))))
(((*1 *1) (-5 *1 (-146))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-2 (|:| -3853 *4) (|:| -4441 (-560)))))
- (-4 *4 (-1132)) (-5 *2 (-1 *4)) (-5 *1 (-1048 *4)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-663 (-975 *3))) (-4 *3 (-466)) (-5 *1 (-373 *3 *4))
- (-14 *4 (-663 (-1207)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-663 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-466))
- (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-461 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-663 *7)) (-5 *3 (-1189)) (-4 *7 (-979 *4 *5 *6))
- (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-5 *1 (-461 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-663 *7)) (-5 *3 (-1189)) (-4 *7 (-979 *4 *5 *6))
- (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-5 *1 (-461 *4 *5 *6 *7))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871))
- (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-663 (-802 *3 (-888 *4)))) (-4 *3 (-466))
- (-14 *4 (-663 (-1207))) (-5 *1 (-647 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175))
- (-5 *2 (-1297 (-711 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-1297 (-711 *4))) (-5 *1 (-431 *3 *4))
- (-4 *3 (-432 *4))))
+ (-12 (-4 *3 (-1069 (-560))) (-4 *3 (-571)) (-5 *1 (-32 *3 *2))
+ (-4 *2 (-435 *3))))
((*1 *2)
- (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-1297 (-711 *3)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-1207))) (-4 *5 (-376))
- (-5 *2 (-1297 (-711 (-421 (-975 *5))))) (-5 *1 (-1117 *5))
- (-5 *4 (-711 (-421 (-975 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-1207))) (-4 *5 (-376))
- (-5 *2 (-1297 (-711 (-975 *5)))) (-5 *1 (-1117 *5))
- (-5 *4 (-711 (-975 *5)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-711 *4))) (-4 *4 (-376))
- (-5 *2 (-1297 (-711 *4))) (-5 *1 (-1117 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-1248))) (-5 *1 (-538)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3))
- (-4 *5 (-385 *3)) (-5 *2 (-663 (-663 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
- (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-663 (-663 *5)))))
+ (-12 (-4 *4 (-175)) (-5 *2 (-1201 *4)) (-5 *1 (-167 *3 *4))
+ (-4 *3 (-168 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1080)) (-4 *1 (-310))))
+ ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1201 *3))))
+ ((*1 *2) (-12 (-4 *1 (-746 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1273 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-663 (-663 *3))) (-5 *1 (-1220 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1207)) (-4 *5 (-633 (-915 (-560))))
- (-4 *5 (-911 (-560)))
- (-4 *5 (-13 (-1069 (-560)) (-466) (-660 (-560))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-581 *5 *3)) (-4 *3 (-649))
- (-4 *3 (-13 (-27) (-1233) (-435 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1207)) (-5 *4 (-864 *2)) (-4 *2 (-1170))
- (-4 *2 (-13 (-27) (-1233) (-435 *5)))
- (-4 *5 (-633 (-915 (-560)))) (-4 *5 (-911 (-560)))
- (-4 *5 (-13 (-1069 (-560)) (-466) (-660 (-560))))
- (-5 *1 (-581 *5 *2)))))
-(((*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1210)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7))
- (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -4297 *4))))
- (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+ (-12 (-4 *1 (-1099 *3 *2)) (-4 *3 (-13 (-870) (-376)))
+ (-4 *2 (-1273 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-885)) (-5 *2 (-713 (-1256))) (-5 *3 (-1256)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1247))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-975 (-391))) (-5 *1 (-352 *3 *4 *5))
- (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207)))
- (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-421 (-975 (-391)))) (-5 *1 (-352 *3 *4 *5))
- (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207)))
- (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5))
- (-4 *5 (-1069 (-391))) (-14 *3 (-663 (-1207)))
- (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-975 (-560))) (-5 *1 (-352 *3 *4 *5))
- (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207)))
- (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-421 (-975 (-560)))) (-5 *1 (-352 *3 *4 *5))
- (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207)))
- (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-326 (-560))) (-5 *1 (-352 *3 *4 *5))
- (-4 *5 (-1069 (-560))) (-14 *3 (-663 (-1207)))
- (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-352 *3 *4 *5))
- (-14 *3 (-663 *2)) (-14 *4 (-663 *2)) (-4 *5 (-401))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-401))
- (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1207)))
- (-14 *4 (-663 (-1207)))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-711 (-421 (-975 (-560))))) (-4 *1 (-398))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-711 (-421 (-975 (-391))))) (-4 *1 (-398))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-711 (-975 (-560)))) (-4 *1 (-398))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-711 (-975 (-391)))) (-4 *1 (-398))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-711 (-326 (-560)))) (-4 *1 (-398))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-711 (-326 (-391)))) (-4 *1 (-398))))
+ (-12 (-5 *3 (-663 *4)) (-4 *4 (-871)) (-5 *2 (-663 (-686 *4 *5)))
+ (-5 *1 (-646 *4 *5 *6)) (-4 *5 (-13 (-175) (-739 (-421 (-560)))))
+ (-14 *6 (-948)))))
+(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1201 (-421 (-560)))) (-5 *1 (-971)) (-5 *3 (-560)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323)) (-5 *1 (-308))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-323)) (-5 *1 (-308))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-323)) (-5 *1 (-308))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-663 (-1189))) (-5 *3 (-1189)) (-5 *2 (-323))
+ (-5 *1 (-308)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-663 (-391))) (-5 *3 (-663 (-270))) (-5 *1 (-271))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-391))) (-5 *1 (-482))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 (-391))) (-5 *1 (-482))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-948)) (-5 *4 (-898)) (-5 *2 (-1303)) (-5 *1 (-1300))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1247)) (-5 *2 (-793)) (-5 *1 (-185 *4 *3))
+ (-4 *3 (-696 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *5 (-13 (-633 *2) (-175))) (-5 *2 (-915 *4))
+ (-5 *1 (-173 *4 *5 *3)) (-4 *4 (-1132)) (-4 *3 (-168 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-1120 (-864 (-391)))))
+ (-5 *2 (-663 (-1120 (-864 (-229))))) (-5 *1 (-315))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-887)) (-5 *3 (-560)) (-5 *1 (-407))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-421 (-975 (-560)))) (-4 *1 (-411))))
+ (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-424 *3 *4))
+ (-4 *4 (-1273 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3))
+ (-5 *2 (-1297 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-432 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-1297 *3))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-421 (-975 (-391)))) (-4 *1 (-411))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-560))) (-4 *1 (-411))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-975 (-391))) (-4 *1 (-411))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-560))) (-4 *1 (-411))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-391))) (-4 *1 (-411))))
+ (-12 (-5 *2 (-419 *1)) (-4 *1 (-435 *3)) (-4 *3 (-571))
+ (-4 *3 (-1132))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1297 (-421 (-975 (-560))))) (-4 *1 (-455))))
+ (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-1080))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-477 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-549))))
+ ((*1 *2 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *2) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1247))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1297 (-421 (-975 (-391))))) (-4 *1 (-455))))
+ (-12 (-4 *3 (-175)) (-4 *1 (-746 *3 *2)) (-4 *2 (-1273 *3))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1297 (-975 (-560)))) (-4 *1 (-455))))
+ (-12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1132))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1297 (-975 (-391)))) (-4 *1 (-455))))
+ (-12 (-5 *2 (-975 *3)) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5))
+ (-4 *5 (-633 (-1207))) (-4 *4 (-815)) (-4 *5 (-871))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1297 (-326 (-560)))) (-4 *1 (-455))))
+ (-2196
+ (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5))
+ (-12 (-1394 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560)))
+ (-4 *5 (-633 (-1207))))
+ (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))
+ (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5))
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207))))
+ (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1297 (-326 (-391)))) (-4 *1 (-455))))
+ (-12 (-5 *2 (-975 (-421 (-560)))) (-4 *1 (-1096 *3 *4 *5))
+ (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207))) (-4 *3 (-1080))
+ (-4 *4 (-815)) (-4 *5 (-871))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1273 *5))
- (-5 *2 (-1201 (-1201 *4))) (-5 *1 (-799 *4 *5 *6 *3 *7))
- (-4 *3 (-1273 *6)) (-14 *7 (-948))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5))
- (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
- (-4 *1 (-1007 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-1069 *2)) (-4 *2 (-1247))))
- ((*1 *1 *2)
- (|partial| -2304
- (-12 (-5 *2 (-975 *3))
- (-12 (-1937 (-4 *3 (-38 (-421 (-560)))))
- (-1937 (-4 *3 (-38 (-560)))) (-4 *5 (-633 (-1207))))
- (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815))
- (-4 *5 (-871)))
- (-12 (-5 *2 (-975 *3))
- (-12 (-1937 (-4 *3 (-559))) (-1937 (-4 *3 (-38 (-421 (-560)))))
- (-4 *3 (-38 (-560))) (-4 *5 (-633 (-1207))))
- (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815))
- (-4 *5 (-871)))
- (-12 (-5 *2 (-975 *3))
- (-12 (-1937 (-4 *3 (-1022 (-560)))) (-4 *3 (-38 (-421 (-560))))
- (-4 *5 (-633 (-1207))))
- (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5)) (-4 *4 (-815))
- (-4 *5 (-871)))))
- ((*1 *1 *2)
- (|partial| -2304
- (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5))
- (-12 (-1937 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560)))
- (-4 *5 (-633 (-1207))))
- (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))
- (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5))
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207))))
- (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-975 (-421 (-560)))) (-4 *1 (-1096 *3 *4 *5))
- (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207)))
- (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))))
-(((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-159))))
+ (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -3859 *8)))
+ (-4 *7 (-1096 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-466))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1189))
+ (-5 *1 (-1100 *4 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1132)) (-4 *2 (-927 *4)) (-5 *1 (-714 *4 *2 *5 *3))
- (-4 *5 (-385 *2)) (-4 *3 (-13 (-385 *4) (-10 -7 (-6 -4508)))))))
+ (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -3859 *8)))
+ (-4 *7 (-1096 *4 *5 *6)) (-4 *8 (-1140 *4 *5 *6 *7)) (-4 *4 (-466))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1189))
+ (-5 *1 (-1176 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1212))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1212))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-887)) (-5 *3 (-560)) (-5 *1 (-1227))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-887)) (-5 *3 (-560)) (-5 *1 (-1227))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-802 *4 (-888 *5)))
+ (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-14 *5 (-663 (-1207)))
+ (-5 *2 (-802 *4 (-888 *6))) (-5 *1 (-1325 *4 *5 *6))
+ (-14 *6 (-663 (-1207)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-975 *4)) (-4 *4 (-13 (-870) (-319) (-149) (-1051)))
+ (-5 *2 (-975 (-1055 (-421 *4)))) (-5 *1 (-1325 *4 *5 *6))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-802 *4 (-888 *6)))
+ (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-14 *6 (-663 (-1207)))
+ (-5 *2 (-975 (-1055 (-421 *4)))) (-5 *1 (-1325 *4 *5 *6))
+ (-14 *5 (-663 (-1207)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1201 *4)) (-4 *4 (-13 (-870) (-319) (-149) (-1051)))
+ (-5 *2 (-1201 (-1055 (-421 *4)))) (-5 *1 (-1325 *4 *5 *6))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207)))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3 (-1177 *4 (-545 (-888 *6)) (-888 *6) (-802 *4 (-888 *6))))
+ (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-14 *6 (-663 (-1207)))
+ (-5 *2 (-663 (-802 *4 (-888 *6)))) (-5 *1 (-1325 *4 *5 *6))
+ (-14 *5 (-663 (-1207))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376))
+ (-5 *2 (-2 (|:| -4378 (-421 *6)) (|:| |coeff| (-421 *6))))
+ (-5 *1 (-588 *5 *6)) (-5 *3 (-421 *6)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-874)) (-5 *2 (-114))))
((*1 *1 *1 *1) (-5 *1 (-887))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *3 (-663 (-898)))
- (-5 *4 (-663 (-948))) (-5 *5 (-663 (-270))) (-5 *1 (-482))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *3 (-663 (-898)))
- (-5 *4 (-663 (-948))) (-5 *1 (-482))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *1 (-482))))
- ((*1 *1 *1) (-5 *1 (-482))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-5 *2 (-663 (-1058 *5 *6 *7 *3))) (-5 *1 (-1058 *5 *6 *7 *3))
- (-4 *3 (-1096 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-663 *6)) (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-466))
- (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-466)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-5 *2 (-663 (-1177 *5 *6 *7 *3))) (-5 *1 (-1177 *5 *6 *7 *3))
- (-4 *3 (-1096 *5 *6 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1207)) (-4 *4 (-466)) (-4 *4 (-1132))
- (-5 *1 (-587 *4 *2)) (-4 *2 (-296)) (-4 *2 (-435 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080))
- (-5 *2 (-663 (-663 (-663 (-972 *3))))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-948)) (-5 *2 (-1297 (-1297 (-560)))) (-5 *1 (-480)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229))
- (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))
- (-5 *2 (-1066)) (-5 *1 (-770)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-663 *6)) (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080))
- (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5))
- (-4 *3 (-571)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-114)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-520)) (-5 *2 (-713 (-109))) (-5 *1 (-178))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-520)) (-5 *2 (-713 (-109))) (-5 *1 (-1116)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-1132))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-1234 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-663 (-1234 *2))) (-5 *1 (-1234 *2)) (-4 *2 (-1132)))))
-(((*1 *1) (-5 *1 (-190))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-252 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-421 (-975 *5)))) (-5 *4 (-663 (-1207)))
- (-4 *5 (-571)) (-5 *2 (-663 (-663 (-975 *5)))) (-5 *1 (-1216 *5)))))
+ (-12 (-5 *4 (-1 (-663 *5) *6))
+ (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *6 (-1273 *5))
+ (-5 *2 (-663 (-2 (|:| -2650 *5) (|:| -2439 *3))))
+ (-5 *1 (-831 *5 *6 *3 *7)) (-4 *3 (-680 *6))
+ (-4 *7 (-680 (-421 *6))))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-841 *3)) (-4 *3 (-871)) (-5 *1 (-694 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-793)) (-5 *5 (-663 *3)) (-4 *3 (-319)) (-4 *6 (-871))
+ (-4 *7 (-815)) (-5 *2 (-114)) (-5 *1 (-644 *6 *7 *3 *8))
+ (-4 *8 (-979 *3 *7 *6)))))
+(((*1 *1) (-5 *1 (-303))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-571)) (-5 *2 (-663 (-793))) (-5 *1 (-1000 *4 *3))
+ (-4 *3 (-1273 *4)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1207))
+ (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-663 (-229))) (-5 *1 (-195))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1207))
+ (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-663 (-229))) (-5 *1 (-313)))))
+(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-339 *3)) (-4 *3 (-1247))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-5 *1 (-530 *3 *4)) (-4 *3 (-1247))
+ (-14 *4 (-560)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-115)) (-4 *4 (-1080)) (-5 *1 (-736 *4 *2))
+ (-4 *2 (-670 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-856 *2)) (-4 *2 (-1080)))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-663 (-1207))) (-4 *4 (-175))
+ (-4 *5 (-245 (-2256 *3) (-793)))
+ (-14 *6
+ (-1 (-114) (-2 (|:| -1591 *2) (|:| -2030 *5))
+ (-2 (|:| -1591 *2) (|:| -2030 *5))))
+ (-4 *2 (-871)) (-5 *1 (-475 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-979 *4 *5 (-888 *3))))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-874)) (-5 *2 (-114))))
((*1 *1 *1 *1) (-5 *1 (-887)))
((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-956)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1123 (-864 *3))) (-4 *3 (-13 (-1233) (-989) (-29 *5)))
- (-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
- (-5 *2
- (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-663 (-864 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-223 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1123 (-864 *3))) (-5 *5 (-1189))
- (-4 *3 (-13 (-1233) (-989) (-29 *6)))
- (-4 *6 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
- (-5 *2
- (-3 (|:| |f1| (-864 *3)) (|:| |f2| (-663 (-864 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-223 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1123 (-864 (-326 *5))))
- (-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
- (-5 *2
- (-3 (|:| |f1| (-864 (-326 *5))) (|:| |f2| (-663 (-864 (-326 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-224 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-421 (-975 *6))) (-5 *4 (-1123 (-864 (-326 *6))))
- (-5 *5 (-1189))
- (-4 *6 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
- (-5 *2
- (-3 (|:| |f1| (-864 (-326 *6))) (|:| |f2| (-663 (-864 (-326 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-224 *6))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
+ (-5 *1 (-518 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-3 (|:| |fst| (-448)) (|:| -3231 "void")))
+ (-5 *2 (-1303)) (-5 *1 (-1210))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1123 (-864 (-421 (-975 *5))))) (-5 *3 (-421 (-975 *5)))
- (-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
- (-5 *2
- (-3 (|:| |f1| (-864 (-326 *5))) (|:| |f2| (-663 (-864 (-326 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-224 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1123 (-864 (-421 (-975 *6))))) (-5 *5 (-1189))
- (-5 *3 (-421 (-975 *6)))
- (-4 *6 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
+ (-12 (-5 *3 (-1207))
+ (-5 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-5 *2 (-1303))
+ (-5 *1 (-1210))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1207))
+ (-5 *4 (-3 (|:| |fst| (-448)) (|:| -3231 "void"))) (-5 *2 (-1303))
+ (-5 *1 (-1210)))))
+(((*1 *1) (-5 *1 (-303))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *4))))
+ (-5 *1 (-1172 *3 *4)) (-4 *3 (-13 (-1132) (-34)))
+ (-4 *4 (-13 (-1132) (-34))))))
+(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-564))))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-303)) (-5 *1 (-170)))))
+(((*1 *2)
+ (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-432 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-1302))))
+ ((*1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1302)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560))
+ (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683))))
+ (-5 *2 (-1066)) (-5 *1 (-768)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-466))
(-5 *2
- (-3 (|:| |f1| (-864 (-326 *6))) (|:| |f2| (-663 (-864 (-326 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-224 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1207))
- (-4 *5 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
- (-5 *2 (-3 *3 (-663 *3))) (-5 *1 (-444 *5 *3))
- (-4 *3 (-13 (-1233) (-989) (-29 *5)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-488 *3 *4 *5))
- (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3)))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1120 (-864 (-391))))
- (-5 *5 (-391)) (-5 *6 (-1094)) (-5 *2 (-1066)) (-5 *1 (-579))))
- ((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1066)) (-5 *1 (-579))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1120 (-864 (-391))))
- (-5 *5 (-391)) (-5 *2 (-1066)) (-5 *1 (-579))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1120 (-864 (-391))))
- (-5 *5 (-391)) (-5 *2 (-1066)) (-5 *1 (-579))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1120 (-864 (-391))))
- (-5 *2 (-1066)) (-5 *1 (-579))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1120 (-864 (-391)))))
- (-5 *2 (-1066)) (-5 *1 (-579))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1120 (-864 (-391)))))
- (-5 *5 (-391)) (-5 *2 (-1066)) (-5 *1 (-579))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1120 (-864 (-391)))))
- (-5 *5 (-391)) (-5 *2 (-1066)) (-5 *1 (-579))))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-1120 (-864 (-391)))))
- (-5 *5 (-391)) (-5 *6 (-1094)) (-5 *2 (-1066)) (-5 *1 (-579))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1123 (-864 (-391))))
- (-5 *5 (-1189)) (-5 *2 (-1066)) (-5 *1 (-579))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1123 (-864 (-391))))
- (-5 *5 (-1207)) (-5 *2 (-1066)) (-5 *1 (-579))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-560)))) (-4 *5 (-1273 *4))
- (-5 *2 (-597 (-421 *5))) (-5 *1 (-582 *4 *5)) (-5 *3 (-421 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207)) (-4 *5 (-149))
- (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560))))
- (-5 *2 (-3 (-326 *5) (-663 (-326 *5)))) (-5 *1 (-603 *5))))
+ (-663
+ (-2 (|:| |eigval| (-3 (-421 (-975 *4)) (-1196 (-1207) (-975 *4))))
+ (|:| |geneigvec| (-663 (-711 (-421 (-975 *4))))))))
+ (-5 *1 (-304 *4)) (-5 *3 (-711 (-421 (-975 *4)))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-5 *2 (-560)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-874)) (-5 *2 (-114))))
+ ((*1 *1 *1 *1) (-5 *1 (-887))))
+(((*1 *1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247))))
((*1 *1 *1)
- (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-762 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-871))
- (-4 *3 (-38 (-421 (-560))))))
+ (-12 (|has| *1 (-6 -4509)) (-4 *1 (-385 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-421 *5)) (-4 *4 (-1252)) (-4 *5 (-1273 *4))
+ (-5 *1 (-150 *4 *5 *2)) (-4 *2 (-1273 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1209 (-421 (-560)))) (-5 *2 (-421 (-560)))
+ (-5 *1 (-193))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-711 (-326 (-229)))) (-5 *3 (-663 (-1207)))
+ (-5 *4 (-1297 (-326 (-229)))) (-5 *1 (-208))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1207)) (-5 *1 (-975 *3)) (-4 *3 (-38 (-421 (-560))))
- (-4 *3 (-1080))))
+ (-12 (-5 *2 (-663 (-305 *3))) (-4 *3 (-321 *3)) (-4 *3 (-1132))
+ (-4 *3 (-1247)) (-5 *1 (-305 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-321 *2)) (-4 *2 (-1132)) (-4 *2 (-1247))
+ (-5 *1 (-305 *2))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-4 *2 (-871))
- (-5 *1 (-1157 *3 *2 *4)) (-4 *4 (-979 *3 (-545 *2) *2))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080))
- (-5 *1 (-1191 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1198 *3 *4 *5))
- (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1204 *3 *4 *5))
- (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1205 *3 *4 *5))
- (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3)))
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1207)) (-5 *1 (-1240 *3)) (-4 *3 (-38 (-421 (-560))))
- (-4 *3 (-1080))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1257 *3 *4 *5))
- (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-2304
- (-12 (-5 *2 (-1207)) (-4 *1 (-1259 *3)) (-4 *3 (-1080))
- (-12 (-4 *3 (-29 (-560))) (-4 *3 (-989)) (-4 *3 (-1233))
- (-4 *3 (-38 (-421 (-560))))))
- (-12 (-5 *2 (-1207)) (-4 *1 (-1259 *3)) (-4 *3 (-1080))
- (-12 (|has| *3 (-15 -1443 ((-663 *2) *3)))
- (|has| *3 (-15 -2518 (*3 *3 *2))) (-4 *3 (-38 (-421 (-560))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1259 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-560))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-560))))))
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-663 *1))) (-4 *1 (-310))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-663 (-115))) (-5 *3 (-663 (-1 *1 (-663 *1))))
+ (-4 *1 (-310))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-663 (-115))) (-5 *3 (-663 (-1 *1 *1))) (-4 *1 (-310))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1207)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1207)) (-5 *3 (-1 *1 (-663 *1))) (-4 *1 (-310))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-663 (-1 *1 (-663 *1))))
+ (-4 *1 (-310))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-663 (-1 *1 *1))) (-4 *1 (-310))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1278 *3 *4 *5))
- (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3)))
+ (-12 (-5 *2 (-663 (-305 *3))) (-4 *1 (-321 *3)) (-4 *3 (-1132))))
((*1 *1 *1 *2)
- (-2304
- (-12 (-5 *2 (-1207)) (-4 *1 (-1280 *3)) (-4 *3 (-1080))
- (-12 (-4 *3 (-29 (-560))) (-4 *3 (-989)) (-4 *3 (-1233))
- (-4 *3 (-38 (-421 (-560))))))
- (-12 (-5 *2 (-1207)) (-4 *1 (-1280 *3)) (-4 *3 (-1080))
- (-12 (|has| *3 (-15 -1443 ((-663 *2) *3)))
- (|has| *3 (-15 -2518 (*3 *3 *2))) (-4 *3 (-38 (-421 (-560))))))))
+ (-12 (-5 *2 (-305 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1132))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-560))) (-5 *4 (-1209 (-421 (-560))))
+ (-5 *1 (-322 *2)) (-4 *2 (-38 (-421 (-560))))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 *1)) (-4 *1 (-387 *4 *5))
+ (-4 *4 (-871)) (-4 *5 (-175))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-871)) (-4 *3 (-175))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1207)) (-5 *3 (-793)) (-5 *4 (-1 *1 *1))
+ (-4 *1 (-435 *5)) (-4 *5 (-1132)) (-4 *5 (-1080))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1207)) (-5 *3 (-793)) (-5 *4 (-1 *1 (-663 *1)))
+ (-4 *1 (-435 *5)) (-4 *5 (-1132)) (-4 *5 (-1080))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-663 (-793)))
+ (-5 *4 (-663 (-1 *1 (-663 *1)))) (-4 *1 (-435 *5)) (-4 *5 (-1132))
+ (-4 *5 (-1080))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-663 (-793)))
+ (-5 *4 (-663 (-1 *1 *1))) (-4 *1 (-435 *5)) (-4 *5 (-1132))
+ (-4 *5 (-1080))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-663 (-115))) (-5 *3 (-663 *1)) (-5 *4 (-1207))
+ (-4 *1 (-435 *5)) (-4 *5 (-1132)) (-4 *5 (-633 (-549)))))
+ ((*1 *1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-115)) (-5 *3 (-1207)) (-4 *1 (-435 *4)) (-4 *4 (-1132))
+ (-4 *4 (-633 (-549)))))
((*1 *1 *1)
- (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-560))))))
+ (-12 (-4 *1 (-435 *2)) (-4 *2 (-1132)) (-4 *2 (-633 (-549)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1287 *3 *4 *5))
- (-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)) (-14 *5 *3)))
+ (-12 (-5 *2 (-663 (-1207))) (-4 *1 (-435 *3)) (-4 *3 (-1132))
+ (-4 *3 (-633 (-549)))))
((*1 *1 *1 *2)
- (-2304
- (-12 (-5 *2 (-1207)) (-4 *1 (-1290 *3)) (-4 *3 (-1080))
- (-12 (-4 *3 (-29 (-560))) (-4 *3 (-989)) (-4 *3 (-1233))
- (-4 *3 (-38 (-421 (-560))))))
- (-12 (-5 *2 (-1207)) (-4 *1 (-1290 *3)) (-4 *3 (-1080))
- (-12 (|has| *3 (-15 -1443 ((-663 *2) *3)))
- (|has| *3 (-15 -2518 (*3 *3 *2))) (-4 *3 (-38 (-421 (-560))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1290 *2)) (-4 *2 (-1080)) (-4 *2 (-38 (-421 (-560)))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175))
- (-5 *2 (-711 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3))
- (-4 *3 (-13 (-376) (-1233) (-1033))))))
-(((*1 *1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-270))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-948)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1132))))
- ((*1 *1 *2) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1132)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))))
-(((*1 *1) (-5 *1 (-625))))
-(((*1 *1) (-5 *1 (-190))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-520)) (-5 *3 (-663 (-994))) (-5 *1 (-109)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-149))
- (-4 *3 (-319)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *1 (-1008 *3 *4 *5 *6)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-874)) (-5 *2 (-114))))
- ((*1 *1 *1 *1) (-5 *1 (-887))))
-(((*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1303)) (-5 *1 (-1169))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-887))) (-5 *2 (-1303)) (-5 *1 (-1169)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
- (-5 *2 (-663 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1273 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
- (-5 *2 (-663 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1273 *3)))))
-(((*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302))))
- ((*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-376) (-1069 (-421 *2)))) (-5 *2 (-560))
- (-5 *1 (-117 *4 *3)) (-4 *3 (-1273 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
- (-5 *2 (-663 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1273 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
- (-5 *2 (-663 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1273 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-520)) (-5 *2 (-713 (-795))) (-5 *1 (-115))))
+ (-12 (-5 *2 (-1207)) (-4 *1 (-435 *3)) (-4 *3 (-1132))
+ (-4 *3 (-633 (-549)))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *1 (-528 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1247))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 *5)) (-4 *1 (-528 *4 *5))
+ (-4 *4 (-1132)) (-4 *5 (-1247))))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-854 *3)) (-4 *3 (-376)) (-5 *1 (-740 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376))))
+ ((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-421 (-975 *4))) (-5 *3 (-1207)) (-4 *4 (-571))
+ (-5 *1 (-1071 *4))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-1207))) (-5 *4 (-663 (-421 (-975 *5))))
+ (-5 *2 (-421 (-975 *5))) (-4 *5 (-571)) (-5 *1 (-1071 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-305 (-421 (-975 *4)))) (-5 *2 (-421 (-975 *4)))
+ (-4 *4 (-571)) (-5 *1 (-1071 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-663 (-305 (-421 (-975 *4))))) (-5 *2 (-421 (-975 *4)))
+ (-4 *4 (-571)) (-5 *1 (-1071 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3))))
((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1189)) (-5 *2 (-795)) (-5 *1 (-115))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1134)) (-5 *1 (-994)))))
-(((*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-844)))))
-(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1253))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-376)) (-4 *4 (-571)) (-4 *5 (-1273 *4))
- (-5 *2 (-2 (|:| -4024 (-642 *4 *5)) (|:| -3201 (-421 *5))))
- (-5 *1 (-642 *4 *5)) (-5 *3 (-421 *5))))
+ (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1185 *3)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1243 *2)) (-4 *2 (-1005)))))
+(((*1 *2 *2) (-12 (-5 *1 (-601 *2)) (-4 *2 (-559)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-663 (-975 *6))) (-5 *4 (-663 (-1207))) (-4 *6 (-466))
+ (-5 *2 (-663 (-663 *7))) (-5 *1 (-552 *6 *7 *5)) (-4 *7 (-376))
+ (-4 *5 (-13 (-376) (-870))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-531))))
((*1 *2 *1)
- (-12 (-5 *2 (-663 (-1195 *3 *4))) (-5 *1 (-1195 *3 *4))
- (-14 *3 (-948)) (-4 *4 (-1080))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-466)) (-4 *3 (-1080))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1273 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1207))
- (-5 *2 (-663 *4)) (-5 *1 (-1145 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-711 (-326 (-560)))) (-5 *1 (-1059)))))
+ (-12 (-4 *2 (-13 (-1132) (-34))) (-5 *1 (-1171 *3 *2))
+ (-4 *3 (-13 (-1132) (-34)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1309)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-560)) (-4 *2 (-435 *3)) (-5 *1 (-32 *3 *2))
+ (-4 *3 (-1069 *4)) (-4 *3 (-571)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1195 3 *3)) (-4 *3 (-1080)) (-4 *1 (-1165 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-769)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-874)) (-5 *2 (-114))))
((*1 *1 *1 *1) (-5 *1 (-887)))
((*1 *2 *1 *1) (-12 (-4 *1 (-933 *3)) (-4 *3 (-1132)) (-5 *2 (-114))))
((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-711 (-1201 *8))) (-4 *5 (-1080)) (-4 *8 (-1080))
+ (-4 *6 (-1273 *5)) (-5 *2 (-711 *6)) (-5 *1 (-515 *5 *6 *7 *8))
+ (-4 *7 (-1273 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-174))))))
+(((*1 *2 *1) (-12 (-4 *1 (-134)) (-5 *2 (-793))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *2 (-560)) (-4 *1 (-385 *3)) (-4 *3 (-1247))
+ (-4 *3 (-1132))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-1132))
+ (-5 *2 (-560))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-114) *4)) (-4 *1 (-385 *4)) (-4 *4 (-1247))
+ (-5 *2 (-560))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-543))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-560)) (-5 *3 (-143))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-560)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))))
+(((*1 *2) (-12 (-5 *2 (-663 *3)) (-5 *1 (-1115 *3)) (-4 *3 (-134)))))
+(((*1 *2 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1247)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1132))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *1) (-5 *1 (-146))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229))
+ (-5 *2 (-1066)) (-5 *1 (-774)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-663 (-1201 *4))) (-5 *3 (-1201 *4))
+ (-4 *4 (-939)) (-5 *1 (-685 *4)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303))
+ (-5 *1 (-1103 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303))
+ (-5 *1 (-1139 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1080)) (-5 *1 (-1271 *3 *2)) (-4 *2 (-1273 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132))
+ (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))))
- (-5 *2 (-663 (-421 (-560)))) (-5 *1 (-1052 *4))
- (-4 *4 (-1273 (-560))))))
-(((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
- (-4 *3 (-380 *4))))
- ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
-(((*1 *2 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-409)))))
+ (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-248)) (-5 *3 (-1189))))
+ ((*1 *2 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-248))))
+ ((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-3 (|:| |nullBranch| "null")
- (|:| |assignmentBranch|
- (-2 (|:| |var| (-1207))
- (|:| |arrayIndex| (-663 (-975 (-560))))
- (|:| |rand|
- (-2 (|:| |ints2Floats?| (-114)) (|:| -2413 (-887))))))
- (|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1207)) (|:| |rand| (-887))
- (|:| |ints2Floats?| (-114))))
- (|:| |conditionalBranch|
- (-2 (|:| |switch| (-1206)) (|:| |thenClause| (-342))
- (|:| |elseClause| (-342))))
- (|:| |returnBranch|
- (-2 (|:| -1663 (-114))
- (|:| -3853
- (-2 (|:| |ints2Floats?| (-114)) (|:| -2413 (-887))))))
- (|:| |blockBranch| (-663 (-342)))
- (|:| |commentBranch| (-663 (-1189))) (|:| |callBranch| (-1189))
- (|:| |forBranch|
- (-2 (|:| -3471 (-1123 (-975 (-560))))
- (|:| |span| (-975 (-560))) (|:| -3625 (-342))))
- (|:| |labelBranch| (-1151))
- (|:| |loopBranch| (-2 (|:| |switch| (-1206)) (|:| -3625 (-342))))
- (|:| |commonBranch|
- (-2 (|:| -3614 (-1207)) (|:| |contents| (-663 (-1207)))))
- (|:| |printBranch| (-663 (-887)))))
- (-5 *1 (-342)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1308)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 (-391))) (-5 *1 (-270))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-571)) (-4 *2 (-175))))
- ((*1 *2 *1) (-12 (-5 *1 (-419 *2)) (-4 *2 (-571)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-663 *3)) (-5 *1 (-991 *3)) (-4 *3 (-559)))))
-(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1254))))))
-(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *1) (-12 (-5 *2 (-713 *3)) (-5 *1 (-995 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1297 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1080))
- (-5 *2 (-2 (|:| -3822 (-711 *4)) (|:| |vec| (-1297 *4))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1297 *1)) (-4 *1 (-660 *4)) (-4 *4 (-1080))
- (-5 *2 (-711 *4)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1170))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))))
-(((*1 *1) (-12 (-4 *1 (-1076 *2)) (-4 *2 (-23)))))
-(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1072)))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-560)) (-5 *1 (-391)))))
+ (-1297
+ (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229))
+ (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -3046 (-560))
+ (|:| -2634 (-560)) (|:| |spline| (-560)) (|:| -4467 (-560))
+ (|:| |axesColor| (-898)) (|:| -2402 (-560))
+ (|:| |unitsColor| (-898)) (|:| |showing| (-560)))))
+ (-5 *1 (-1300)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033))))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1322 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-871))
+ (-4 *4 (-175))))
+ ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1132))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-841 *2)) (-4 *2 (-871))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-841 *3)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-871))
+ (-4 *4 (-1080))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-114) *6)) (-4 *6 (-13 (-1132) (-1069 *5)))
- (-4 *5 (-911 *4)) (-4 *4 (-1132)) (-5 *2 (-1 (-114) *5))
- (-5 *1 (-960 *4 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-319)) (-4 *3 (-1022 *2)) (-4 *4 (-1273 *3))
- (-5 *1 (-427 *2 *3 *4 *5)) (-4 *5 (-13 (-424 *3 *4) (-1069 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-156))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-1097)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-114)))))
+ (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-421 (-560))))
+ (-5 *1 (-315)))))
(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114))))
((*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247))))
((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448))))
((*1 *1 *1 *1) (-5 *1 (-887)))
((*1 *2 *1 *1)
(-12 (-5 *2 (-114)) (-5 *1 (-1057 *3)) (-4 *3 (-1247)))))
-(((*1 *2)
- (-12 (-5 *2 (-114)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132))
- (-4 *4 (-1132)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-863)) (-5 *4 (-1094)) (-5 *2 (-1066)) (-5 *1 (-862))))
- ((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1066)) (-5 *1 (-862))))
- ((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-663 (-391))) (-5 *5 (-663 (-864 (-391))))
- (-5 *6 (-663 (-326 (-391)))) (-5 *3 (-326 (-391))) (-5 *2 (-1066))
- (-5 *1 (-862))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-391)))
- (-5 *5 (-663 (-864 (-391)))) (-5 *2 (-1066)) (-5 *1 (-862))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-326 (-391))) (-5 *4 (-663 (-391))) (-5 *2 (-1066))
- (-5 *1 (-862))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-326 (-391)))) (-5 *4 (-663 (-391)))
- (-5 *2 (-1066)) (-5 *1 (-862)))))
-(((*1 *2 *2)
- (-12 (-4 *2 (-175)) (-4 *2 (-1080)) (-5 *1 (-736 *2 *3))
- (-4 *3 (-670 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-856 *2)) (-4 *2 (-175)) (-4 *2 (-1080)))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-870)) (-5 *1 (-316 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-915 *3)) (-4 *3 (-1132))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-915 *4)) (-4 *4 (-1132)) (-5 *1 (-916 *4 *3))
- (-4 *3 (-1247)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-571))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2788 *4)))
- (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-721)) (-5 *1 (-315)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1282 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1259 *3))
- (-5 *2 (-421 (-560))))))
-(((*1 *2 *3)
- (-12
- (-5 *2
- (-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))))
- (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-560)))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))))
- (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-560)))
- (-5 *4 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))))
- (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-560))) (-5 *4 (-421 (-560)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-421 (-560)))
- (-5 *2 (-663 (-2 (|:| -4198 *5) (|:| -4210 *5)))) (-5 *1 (-1052 *3))
- (-4 *3 (-1273 (-560))) (-5 *4 (-2 (|:| -4198 *5) (|:| -4210 *5)))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))))
- (-5 *1 (-1053 *3)) (-4 *3 (-1273 (-421 (-560))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))))
- (-5 *1 (-1053 *3)) (-4 *3 (-1273 (-421 (-560))))
- (-5 *4 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-421 (-560)))
- (-5 *2 (-663 (-2 (|:| -4198 *4) (|:| -4210 *4)))) (-5 *1 (-1053 *3))
- (-4 *3 (-1273 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-421 (-560)))
- (-5 *2 (-663 (-2 (|:| -4198 *5) (|:| -4210 *5)))) (-5 *1 (-1053 *3))
- (-4 *3 (-1273 *5)) (-5 *4 (-2 (|:| -4198 *5) (|:| -4210 *5))))))
-(((*1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-871))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-888 *3)) (-14 *3 (-663 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1020))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1247)) (-5 *2 (-1207)) (-5 *1 (-1089 *3 *4))
- (-4 *3 (-1125 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1123 *3)) (-4 *3 (-1247))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814))
- (-5 *2 (-1207))))
- ((*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1294 *3)) (-14 *3 *2))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-560)) (-4 *1 (-335 *2 *4)) (-4 *4 (-133))
- (-4 *2 (-1132))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-374 *2)) (-4 *2 (-1132))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-399 *2)) (-4 *2 (-1132))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-560)) (-4 *2 (-1132)) (-5 *1 (-671 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
- (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
- (|:| |relerr| (-229))))
- (-5 *2
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1185 (-229)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -3471
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-574)))))
-(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301))))
- ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))))
-(((*1 *2 *3) (-12 (-5 *3 (-975 (-229))) (-5 *2 (-229)) (-5 *1 (-315)))))
-(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-943 *3)) (-4 *3 (-319)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175))))
- ((*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-431 *3 *2)) (-4 *3 (-432 *2))))
- ((*1 *2) (-12 (-4 *1 (-432 *2)) (-4 *2 (-175)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1080)) (-4 *2 (-708 *4 *5 *6))
- (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1273 *4)) (-4 *5 (-385 *4))
- (-4 *6 (-385 *4)))))
-(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4509)) (-4 *4 (-376)) (-4 *5 (-385 *4))
- (-4 *6 (-385 *4)) (-5 *2 (-663 *6)) (-5 *1 (-535 *4 *5 *6 *3))
- (-4 *3 (-708 *4 *5 *6))))
+ (-12 (-4 *4 (-1132)) (-5 *2 (-913 *3 *5)) (-5 *1 (-910 *3 *4 *5))
+ (-4 *3 (-1132)) (-4 *5 (-688 *4)))))
+(((*1 *1) (-5 *1 (-143))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466))
+ (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *1 (-1008 *3 *4 *5 *6)))))
+(((*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-167 *3 *2)) (-4 *3 (-168 *2))))
((*1 *2 *3)
- (-12 (|has| *9 (-6 -4509)) (-4 *4 (-571)) (-4 *5 (-385 *4))
- (-4 *6 (-385 *4)) (-4 *7 (-1022 *4)) (-4 *8 (-385 *7))
- (-4 *9 (-385 *7)) (-5 *2 (-663 *6))
- (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-708 *4 *5 *6))
- (-4 *10 (-708 *7 *8 *9))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3))
- (-4 *5 (-385 *3)) (-4 *3 (-571)) (-5 *2 (-663 *5))))
+ (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *2 *4)) (-4 *4 (-1273 *2))
+ (-4 *2 (-175))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1273 *2)) (-4 *2 (-175)) (-5 *1 (-423 *3 *2 *4))
+ (-4 *3 (-424 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-424 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-175))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1273 *2)) (-5 *2 (-560)) (-5 *1 (-790 *3 *4))
+ (-4 *4 (-424 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *2 (-871)) (-4 *3 (-175))))
((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-4 *4 (-175)) (-4 *5 (-385 *4))
- (-4 *6 (-385 *4)) (-5 *2 (-663 *6)) (-5 *1 (-710 *4 *5 *6 *3))
- (-4 *3 (-708 *4 *5 *6))))
+ (-12 (-4 *2 (-571)) (-5 *1 (-1000 *2 *3)) (-4 *3 (-1273 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-175)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114))
+ (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114))
+ (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-114) *6 *6)) (-4 *6 (-871)) (-5 *4 (-663 *6))
+ (-5 *2 (-2 (|:| |fs| (-114)) (|:| |sd| *4) (|:| |td| (-663 *4))))
+ (-5 *1 (-1218 *6)) (-5 *5 (-663 *4)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-560)) (-5 *5 (-114)) (-5 *6 (-711 (-229)))
+ (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))
+ (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-775)))))
+(((*1 *1) (-5 *1 (-520))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1207))
+ (-4 *5 (-13 (-571) (-1069 (-560)) (-149)))
+ (-5 *2
+ (-2 (|:| -4378 (-421 (-975 *5))) (|:| |coeff| (-421 (-975 *5)))))
+ (-5 *1 (-584 *5)) (-5 *3 (-421 (-975 *5))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114))
+ (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-610 *3)) (-4 *3 (-1080))))
((*1 *2 *1)
- (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
- (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-571))
- (-5 *2 (-663 *7)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1217)))))
+ (-12 (-4 *1 (-1004 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-814))
+ (-4 *5 (-871)) (-5 *2 (-114)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-5 *2 (-987 (-1151)))
- (-5 *1 (-360 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-979 *3 *5 *4)) (-5 *1 (-1017 *3 *4 *5 *2))
- (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)))))
+ (-12 (-5 *3 (-663 (-1207))) (-5 *2 (-1303)) (-5 *1 (-1210))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-663 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1303))
+ (-5 *1 (-1210))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-663 (-1207))) (-5 *3 (-1207)) (-5 *2 (-1303))
+ (-5 *1 (-1210)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2096 *3) (|:| |coef1| (-803 *3))))
+ (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-844)))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1189)) (-5 *3 (-560)) (-5 *1 (-1094)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2))
+ (-4 *4 (-385 *2)))))
(((*1 *1 *1)
(-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-421 (-975 *4))) (-5 *3 (-1207))
- (-4 *4 (-13 (-571) (-1069 (-560)) (-149))) (-5 *1 (-584 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-159)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-815))
- (-4 *3 (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $))))) (-4 *5 (-571))
- (-5 *1 (-754 *4 *3 *5 *2)) (-4 *2 (-979 (-421 (-975 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-1080)) (-4 *5 (-815))
- (-4 *3
- (-13 (-871)
- (-10 -8 (-15 -1407 ((-1207) $))
- (-15 -2462 ((-3 $ "failed") (-1207))))))
- (-5 *1 (-1015 *4 *5 *3 *2)) (-4 *2 (-979 (-975 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-663 *6))
- (-4 *6
- (-13 (-871)
- (-10 -8 (-15 -1407 ((-1207) $))
- (-15 -2462 ((-3 $ "failed") (-1207))))))
- (-4 *4 (-1080)) (-4 *5 (-815)) (-5 *1 (-1015 *4 *5 *6 *2))
- (-4 *2 (-979 (-975 *4) *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-391)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2))
- (-4 *4 (-571)))))
+(((*1 *1) (-5 *1 (-146))))
+(((*1 *1) (-5 *1 (-1210))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3))
- (-4 *3 (-1132)))))
-(((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))))
+ (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *1 (-1243 *3))
+ (-4 *3 (-1005)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-777)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3))
- (-4 *5 (-385 *3)) (-5 *2 (-114))))
+ (-12 (-4 *2 (-571)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1273 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3))
+ (-4 *5 (-385 *3)) (-5 *2 (-560))))
((*1 *2 *1)
(-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
- (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 *4)) (-4 *4 (-1132)) (-5 *2 (-1303))
- (-5 *1 (-1249 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-663 *4)) (-4 *4 (-1132)) (-5 *2 (-1303))
- (-5 *1 (-1249 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-1080)) (-5 *2 (-987 (-734 *3 *4))) (-5 *1 (-734 *3 *4))
- (-4 *4 (-1273 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-769)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-319)) (-5 *2 (-419 *3))
- (-5 *1 (-764 *5 *4 *6 *3)) (-4 *3 (-979 *6 *5 *4)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-560)) (-4 *4 (-13 (-571) (-149))) (-5 *1 (-551 *4 *2))
- (-4 *2 (-1290 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-560)) (-4 *4 (-13 (-376) (-381) (-633 *3)))
- (-4 *5 (-1273 *4)) (-4 *6 (-746 *4 *5)) (-5 *1 (-555 *4 *5 *6 *2))
- (-4 *2 (-1290 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-560)) (-4 *4 (-13 (-376) (-381) (-633 *3)))
- (-5 *1 (-556 *4 *2)) (-4 *2 (-1290 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1185 *4)) (-5 *3 (-560)) (-4 *4 (-13 (-571) (-149)))
- (-5 *1 (-1184 *4)))))
-(((*1 *2 *3) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-576)) (-5 *3 (-560)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175))
- (-5 *2 (-711 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-711 *4)) (-5 *1 (-431 *3 *4))
- (-4 *3 (-432 *4))))
- ((*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-663 (-391))) (-5 *3 (-663 (-270))) (-5 *1 (-271))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-391))) (-5 *1 (-482))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 (-391))) (-5 *1 (-482))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-948)) (-5 *4 (-898)) (-5 *2 (-1303)) (-5 *1 (-1300))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))))
-(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))))
-(((*1 *2)
- (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871))
- (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303))
- (-5 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871))
- (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303))
- (-5 *1 (-1139 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))))
+ (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-560)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946))))
- ((*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-913 *5 *3)) (-5 *4 (-915 *5)) (-4 *5 (-1132))
- (-4 *3 (-168 *6)) (-4 (-975 *6) (-911 *5))
- (-4 *6 (-13 (-911 *5) (-175))) (-5 *1 (-181 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-913 *4 *1)) (-5 *3 (-915 *4)) (-4 *1 (-911 *4))
- (-4 *4 (-1132))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-913 *5 *6)) (-5 *4 (-915 *5)) (-4 *5 (-1132))
- (-4 *6 (-13 (-1132) (-1069 *3))) (-4 *3 (-911 *5))
- (-5 *1 (-960 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1132))
- (-4 *3 (-13 (-435 *6) (-633 *4) (-911 *5) (-1069 (-630 $))))
- (-5 *4 (-915 *5)) (-4 *6 (-13 (-571) (-911 *5)))
- (-5 *1 (-961 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-913 (-560) *3)) (-5 *4 (-915 (-560))) (-4 *3 (-559))
- (-5 *1 (-962 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-913 *5 *6)) (-5 *3 (-630 *6)) (-4 *5 (-1132))
- (-4 *6 (-13 (-1132) (-1069 (-630 $)) (-633 *4) (-911 *5)))
- (-5 *4 (-915 *5)) (-5 *1 (-963 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-910 *5 *6 *3)) (-5 *4 (-915 *5)) (-4 *5 (-1132))
- (-4 *6 (-911 *5)) (-4 *3 (-688 *6)) (-5 *1 (-964 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-913 *6 *3) *8 (-915 *6) (-913 *6 *3)))
- (-4 *8 (-871)) (-5 *2 (-913 *6 *3)) (-5 *4 (-915 *6))
- (-4 *6 (-1132)) (-4 *3 (-13 (-979 *9 *7 *8) (-633 *4)))
- (-4 *7 (-815)) (-4 *9 (-13 (-1080) (-911 *6)))
- (-5 *1 (-965 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1132))
- (-4 *3 (-13 (-979 *8 *6 *7) (-633 *4))) (-5 *4 (-915 *5))
- (-4 *7 (-911 *5)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *8 (-13 (-1080) (-911 *5))) (-5 *1 (-965 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1132)) (-4 *3 (-1022 *6))
- (-4 *6 (-13 (-571) (-911 *5) (-633 *4))) (-5 *4 (-915 *5))
- (-5 *1 (-968 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-913 *5 (-1207))) (-5 *3 (-1207)) (-5 *4 (-915 *5))
- (-4 *5 (-1132)) (-5 *1 (-969 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-663 (-915 *7))) (-5 *5 (-1 *9 (-663 *9)))
- (-5 *6 (-1 (-913 *7 *9) *9 (-915 *7) (-913 *7 *9))) (-4 *7 (-1132))
- (-4 *9 (-13 (-1080) (-633 (-915 *7)) (-1069 *8)))
- (-5 *2 (-913 *7 *9)) (-5 *3 (-663 *9)) (-4 *8 (-1080))
- (-5 *1 (-970 *7 *8 *9)))))
-(((*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-723))))
- ((*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-723)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-114)) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560))))
+ (-12 (-5 *3 (-1207)) (-5 *2 (-549)) (-5 *1 (-550 *4))
+ (-4 *4 (-1247)))))
+(((*1 *1 *1 *1) (-4 *1 (-684))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-560)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-793)) (-4 *5 (-175))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-560)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-793)) (-4 *5 (-175))))
+ ((*1 *2 *2 *3)
+ (-12
(-5 *2
- (-3 (|:| |%expansion| (-325 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))))
- (-5 *1 (-437 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1233) (-435 *5)))
- (-14 *6 (-1207)) (-14 *7 *3))))
-(((*1 *1 *1 *1) (-5 *1 (-887))))
-(((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
- (-4 *3 (-380 *4))))
- ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
+ (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4)
+ (-255 *4 (-421 (-560)))))
+ (-5 *3 (-663 (-888 *4))) (-14 *4 (-663 (-1207))) (-14 *5 (-793))
+ (-5 *1 (-519 *4 *5)))))
(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-793))))
((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-948))))
((*1 *1 *1 *1)
@@ -11114,10 +11772,10 @@
((*1 *1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1132))))
((*1 *1 *2 *1)
(-12 (-14 *3 (-663 (-1207))) (-4 *4 (-175))
- (-4 *6 (-245 (-1553 *3) (-793)))
+ (-4 *6 (-245 (-2256 *3) (-793)))
(-14 *7
- (-1 (-114) (-2 (|:| -3128 *5) (|:| -3205 *6))
- (-2 (|:| -3128 *5) (|:| -3205 *6))))
+ (-1 (-114) (-2 (|:| -1591 *5) (|:| -2030 *6))
+ (-2 (|:| -1591 *5) (|:| -2030 *6))))
(-5 *1 (-475 *3 *4 *5 *6 *7 *2)) (-4 *5 (-871))
(-4 *2 (-979 *4 *6 (-888 *3)))))
((*1 *1 *1 *2)
@@ -11191,223 +11849,154 @@
(-12 (-4 *1 (-1317 *3 *2)) (-4 *3 (-871)) (-4 *2 (-1080))))
((*1 *1 *1 *2)
(-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-868)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1212)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815))
- (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))))
-(((*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302))))
- ((*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-663 *2)) (-4 *2 (-559)) (-5 *1 (-161 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1132)) (-4 *1 (-933 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-922))
- (-5 *3
- (-2 (|:| |pde| (-663 (-326 (-229))))
- (|:| |constraints|
- (-663
- (-2 (|:| |start| (-229)) (|:| |finish| (-229))
- (|:| |grid| (-793)) (|:| |boundaryType| (-560))
- (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229))))))
- (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189))
- (|:| |tol| (-229))))
- (-5 *2 (-1066)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *2 (-1297 (-326 (-391))))
- (-5 *1 (-315)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1135 *3 *4 *5 *6 *2)) (-4 *3 (-1132)) (-4 *4 (-1132))
- (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-1132)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132))
- (-5 *2 (-2 (|:| -2968 *3) (|:| -2460 *4))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815))
- (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *3 (-1096 *4 *5 *6))
- (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -4297 *1))))
- (-4 *1 (-1102 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1273 *4)) (-5 *1 (-829 *4 *2 *3 *5))
- (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *3 (-680 *2))
- (-4 *5 (-680 (-421 *2)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *2 (-1273 *4)) (-5 *1 (-829 *4 *2 *5 *3))
- (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *5 (-680 *2))
- (-4 *3 (-680 (-421 *2))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-5 *2 (-114))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
- (-4 *4 (-1080)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-915 *4)) (-4 *4 (-1132)) (-4 *2 (-1132))
- (-5 *1 (-913 *4 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1132)) (-5 *2 (-913 *3 *5)) (-5 *1 (-910 *3 *4 *5))
- (-4 *3 (-1132)) (-4 *5 (-688 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1128 *4)) (-4 *4 (-1132)) (-5 *2 (-1 *4))
- (-5 *1 (-1048 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1072)) (-5 *3 (-391))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1120 (-560))) (-5 *2 (-1 (-560))) (-5 *1 (-1078)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1164 (-229))) (-5 *3 (-663 (-270))) (-5 *1 (-1301))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1164 (-229))) (-5 *3 (-1189)) (-5 *1 (-1301))))
- ((*1 *1 *1) (-5 *1 (-1301))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1189))
- (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-887))) ((*1 *1 *1 *1) (-5 *1 (-887)))
- ((*1 *1 *1) (-5 *1 (-887))))
-(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-391)))))
-(((*1 *1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| -2600 (-663 (-887))) (|:| -3168 (-663 (-887)))
- (|:| |presup| (-663 (-887))) (|:| -4114 (-663 (-887)))
- (|:| |args| (-663 (-887)))))
- (-5 *1 (-1207))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-663 (-887)))) (-5 *1 (-1207)))))
-(((*1 *2 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1127))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571))
- (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-793)) (-4 *1 (-1286 *3)) (-4 *3 (-1247))))
- ((*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1290 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-51)) (-5 *1 (-851)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-114) *5 *5)) (-4 *5 (-13 (-1132) (-34)))
- (-5 *2 (-114)) (-5 *1 (-1171 *4 *5)) (-4 *4 (-13 (-1132) (-34))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-560)) (-5 *1 (-718 *2)) (-4 *2 (-1273 *3)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-793)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1080))
- (-4 *4 (-814)) (-4 *3 (-175)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887))))
- ((*1 *1 *1) (-5 *1 (-887))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *4 (-376)) (-5 *2 (-663 (-1185 *4))) (-5 *1 (-297 *4 *5))
- (-5 *3 (-1185 *4)) (-4 *5 (-1290 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-114))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114))
- (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376)))
- (-4 *3 (-1273 *4)) (-5 *2 (-114)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1002)) (-5 *1 (-931 *3)) (-4 *3 (-1132)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-133))
- (-4 *3 (-814)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-376)) (-4 *3 (-1080))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2748 *1)))
- (-4 *1 (-876 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-421 (-975 *5)) (-1196 (-1207) (-975 *5))))
- (-4 *5 (-466)) (-5 *2 (-663 (-711 (-421 (-975 *5)))))
- (-5 *1 (-304 *5)) (-5 *4 (-711 (-421 (-975 *5)))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-711 *4)) (-5 *3 (-948)) (|has| *4 (-6 (-4510 "*")))
- (-4 *4 (-1080)) (-5 *1 (-1060 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-663 (-711 *4))) (-5 *3 (-948))
- (|has| *4 (-6 (-4510 "*"))) (-4 *4 (-1080)) (-5 *1 (-1060 *4)))))
-(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-571))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2690 *4)))
- (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1323)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-663 *7)) (-5 *5 (-663 (-663 *8))) (-4 *7 (-871))
- (-4 *8 (-319)) (-4 *6 (-815)) (-4 *9 (-979 *8 *6 *7))
+ (-12 (-5 *3 (-663 (-711 *5))) (-4 *5 (-319)) (-4 *5 (-1080))
+ (-5 *2 (-1297 (-1297 *5))) (-5 *1 (-1061 *5)) (-5 *4 (-1297 *5)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-663 (-1201 *11))) (-5 *3 (-1201 *11))
+ (-5 *4 (-663 *10)) (-5 *5 (-663 *8)) (-5 *6 (-663 (-793)))
+ (-5 *7 (-1297 (-663 (-1201 *8)))) (-4 *10 (-871))
+ (-4 *8 (-319)) (-4 *11 (-979 *8 *9 *10)) (-4 *9 (-815))
+ (-5 *1 (-729 *9 *10 *8 *11)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-793)) (-4 *5 (-571))
(-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-663 (-2 (|:| -4457 (-1201 *9)) (|:| -3205 (-560)))))))
- (-5 *1 (-764 *6 *7 *8 *9)) (-5 *3 (-1201 *9)))))
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-1000 *5 *3)) (-4 *3 (-1273 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1072)))))
(((*1 *1 *1)
(-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-421 (-975 (-171 (-560))))))
+ (-5 *2 (-663 (-663 (-305 (-975 (-171 *4)))))) (-5 *1 (-392 *4))
+ (-4 *4 (-13 (-376) (-870)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-305 (-421 (-975 (-171 (-560)))))))
+ (-5 *2 (-663 (-663 (-305 (-975 (-171 *4)))))) (-5 *1 (-392 *4))
+ (-4 *4 (-13 (-376) (-870)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-421 (-975 (-171 (-560)))))
+ (-5 *2 (-663 (-305 (-975 (-171 *4))))) (-5 *1 (-392 *4))
+ (-4 *4 (-13 (-376) (-870)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-305 (-421 (-975 (-171 (-560))))))
+ (-5 *2 (-663 (-305 (-975 (-171 *4))))) (-5 *1 (-392 *4))
+ (-4 *4 (-13 (-376) (-870))))))
+(((*1 *1 *1 *1) (-4 *1 (-684))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1080)) (-4 *7 (-1080))
+ (-4 *6 (-1273 *5)) (-5 *2 (-1201 (-1201 *7)))
+ (-5 *1 (-515 *5 *6 *4 *7)) (-4 *4 (-1273 *6)))))
(((*1 *2 *1)
- (-12 (-14 *3 (-663 (-1207))) (-4 *4 (-175))
- (-4 *5 (-245 (-1553 *3) (-793)))
- (-14 *6
- (-1 (-114) (-2 (|:| -3128 *2) (|:| -3205 *5))
- (-2 (|:| -3128 *2) (|:| -3205 *5))))
- (-4 *2 (-871)) (-5 *1 (-475 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-979 *4 *5 (-888 *3))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-466))
- (-5 *2
- (-663
- (-2 (|:| |eigval| (-3 (-421 (-975 *4)) (-1196 (-1207) (-975 *4))))
- (|:| |geneigvec| (-663 (-711 (-421 (-975 *4))))))))
- (-5 *1 (-304 *4)) (-5 *3 (-711 (-421 (-975 *4)))))))
-(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4508)) (-4 *1 (-153 *2)) (-4 *2 (-1247))
+ (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1080)) (-5 *2 (-1201 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 *2)) (-5 *4 (-1 (-114) *2 *2)) (-5 *1 (-1249 *2))
(-4 *2 (-1132))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4508)) (-4 *1 (-153 *3))
- (-4 *3 (-1247))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-696 *3)) (-4 *3 (-1247))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-560)) (-4 *4 (-1132))
- (-5 *1 (-758 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-560)) (-5 *1 (-758 *2)) (-4 *2 (-1132))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34)))
- (-4 *4 (-13 (-1132) (-34))) (-5 *1 (-1172 *3 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1195 3 *3)) (-4 *3 (-1080)) (-4 *1 (-1165 *3))))
- ((*1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229))
- (-5 *2 (-1066)) (-5 *1 (-774)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114))
- (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2))
- (-4 *4 (-385 *2)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 *2)) (-4 *2 (-1132)) (-4 *2 (-871))
+ (-5 *1 (-1249 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-860))) (-5 *1 (-142)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3))
- (-4 *5 (-385 *3)) (-5 *2 (-560))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
- (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-560)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+ (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1))
+ (-4 *1 (-1096 *3 *4 *5)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229)))
+ (-5 *5 (-1120 (-229))) (-5 *6 (-663 (-270))) (-5 *2 (-1164 (-229)))
+ (-5 *1 (-719)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-466) (-1069 (-560)))) (-4 *3 (-571))
+ (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3))
+ (-4 *2
+ (-13 (-376) (-310)
+ (-10 -8 (-15 -2473 ((-1156 *3 (-630 $)) $))
+ (-15 -2484 ((-1156 *3 (-630 $)) $))
+ (-15 -3913 ($ (-1156 *3 (-630 $))))))))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-509)))))
(((*1 *2 *1)
(-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871))
(-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-114)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7))
+ (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -3859 *4))))
+ (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1135 *2 *3 *4 *5 *6)) (-4 *2 (-1132)) (-4 *3 (-1132))
+ (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-677 *4)) (-4 *4 (-355 *5 *6 *7))
+ (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))))
+ (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6)))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3822 (-663 *4))))
+ (-5 *1 (-828 *5 *6 *7 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-495 *4 *5))) (-14 *4 (-663 (-1207)))
+ (-4 *5 (-466)) (-5 *2 (-663 (-255 *4 *5))) (-5 *1 (-650 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-421 (-560))) (-5 *4 (-560)) (-5 *2 (-51))
+ (-5 *1 (-1036)))))
+(((*1 *2)
+ (-12 (-4 *3 (-571)) (-5 *2 (-663 (-711 *3))) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-432 *3)))))
+(((*1 *2 *3)
+ (-12 (|has| *2 (-6 (-4510 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2))
+ (-4 *2 (-1080)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1273 *2))
+ (-4 *4 (-708 *2 *5 *6)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-1017 (-421 (-560)) (-888 *3) (-246 *4 (-793))
+ (-255 *3 (-421 (-560)))))
+ (-14 *3 (-663 (-1207))) (-14 *4 (-793)) (-5 *1 (-1018 *3 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-115))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1207)) (-5 *4 (-520)) (-5 *2 (-326 (-560)))
+ (-5 *1 (-958))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-520)) (-4 *4 (-1132)) (-5 *1 (-959 *4 *2))
+ (-4 *2 (-435 *4)))))
(((*1 *2 *2)
(-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571))
(-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1201 *3)))))
+(((*1 *1) (-5 *1 (-159)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871)) (-4 *2 (-571))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871)) (-4 *2 (-571)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-435 *4)) (-4 *6 (-1273 *5))
+ (-4 *7 (-1273 (-421 *6))) (-4 *8 (-355 *5 *6 *7))
+ (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-114))
+ (-5 *1 (-940 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-346 (-421 (-560)) *4 *5 *6))
+ (-4 *4 (-1273 (-421 (-560)))) (-4 *5 (-1273 (-421 *4)))
+ (-4 *6 (-355 (-421 (-560)) *4 *5)) (-5 *2 (-114))
+ (-5 *1 (-941 *4 *5 *6)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1297 (-663 *3))) (-4 *4 (-319))
+ (-5 *2 (-663 *3)) (-5 *1 (-469 *4 *3)) (-4 *3 (-1273 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1229)))))
+(((*1 *2 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1189)) (-5 *1 (-97))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1189)) (-5 *1 (-97)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207))))
+ (-4 *6 (-815)) (-5 *2 (-663 *3)) (-5 *1 (-953 *4 *5 *6 *3))
+ (-4 *3 (-979 *4 *6 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-663 (-2 (|:| |k| (-1207)) (|:| |c| (-1319 *3)))))
+ (-5 *1 (-1319 *3)) (-4 *3 (-1080))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-663 (-2 (|:| |k| *3) (|:| |c| (-1322 *3 *4)))))
+ (-5 *1 (-1322 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080)))))
(((*1 *2 *3)
(-12
(-5 *3
@@ -11416,8 +12005,480 @@
(|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229)))
(|:| |abserr| (-229)) (|:| |relerr| (-229))))
(-5 *2 (-391)) (-5 *1 (-208)))))
+(((*1 *1 *1) (-4 *1 (-684))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-663
+ (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1201 *3))
+ (|:| |logand| (-1201 *3)))))
+ (-5 *1 (-597 *3)) (-4 *3 (-376)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-560))
+ (-14 *6 (-793)) (-4 *7 (-175)) (-4 *8 (-175))
+ (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-138 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 *9)) (-4 *9 (-1080)) (-4 *5 (-871)) (-4 *6 (-815))
+ (-4 *8 (-1080)) (-4 *2 (-979 *9 *7 *5))
+ (-5 *1 (-750 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-815))
+ (-4 *4 (-979 *8 *6 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252))
+ (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080))
+ (-4 *2 (-466))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 *4)) (-4 *4 (-1273 (-560))) (-5 *2 (-663 (-560)))
+ (-5 *1 (-500 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-466))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *2 (-871)) (-4 *3 (-466)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-663 (-663 *6))) (-4 *6 (-979 *3 *5 *4))
+ (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-871) (-633 (-1207))))
+ (-4 *5 (-815)) (-5 *1 (-953 *3 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-315)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2096 *3) (|:| |coef1| (-803 *3)) (|:| |coef2| (-803 *3))))
+ (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1080))
+ (-4 *4 (-814))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-50 *3 *4))
+ (-14 *4 (-663 (-1207)))))
+ ((*1 *1 *2 *1 *1 *3)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247))
+ (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247))
+ (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247))
+ (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1247))
+ (-4 *6 (-1247)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-560))
+ (-14 *6 (-793)) (-4 *7 (-175)) (-4 *8 (-175))
+ (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-138 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-175))
+ (-4 *6 (-175)) (-5 *2 (-171 *6)) (-5 *1 (-172 *5 *6))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1080) (-871)))
+ (-5 *1 (-227 *3 *4)) (-14 *4 (-663 (-1207)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-793))
+ (-4 *6 (-1247)) (-4 *7 (-1247)) (-5 *2 (-246 *5 *7))
+ (-5 *1 (-247 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-305 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-305 *5)) (-4 *5 (-1247))
+ (-4 *6 (-1247)) (-5 *2 (-305 *6)) (-5 *1 (-306 *5 *6))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-630 *1)) (-4 *1 (-310))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1189)) (-5 *5 (-630 *6))
+ (-4 *6 (-310)) (-4 *2 (-1247)) (-5 *1 (-311 *6 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-630 *5)) (-4 *5 (-310))
+ (-4 *2 (-310)) (-5 *1 (-312 *5 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-711 *5)) (-4 *5 (-1080))
+ (-4 *6 (-1080)) (-5 *2 (-711 *6)) (-5 *1 (-317 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1132))
+ (-4 *6 (-1132)) (-5 *2 (-326 *6)) (-5 *1 (-327 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-346 *5 *6 *7 *8)) (-4 *5 (-376))
+ (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6))) (-4 *8 (-355 *5 *6 *7))
+ (-4 *9 (-376)) (-4 *10 (-1273 *9)) (-4 *11 (-1273 (-421 *10)))
+ (-5 *2 (-346 *9 *10 *11 *12))
+ (-5 *1 (-347 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-355 *9 *10 *11))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1132))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1252)) (-4 *8 (-1252))
+ (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6))) (-4 *9 (-1273 *8))
+ (-4 *2 (-355 *8 *9 *10)) (-5 *1 (-356 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-355 *5 *6 *7)) (-4 *10 (-1273 (-421 *9)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1247)) (-4 *6 (-1247))
+ (-4 *2 (-385 *6)) (-5 *1 (-386 *5 *4 *6 *2)) (-4 *4 (-385 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3 *4)) (-4 *3 (-1080))
+ (-4 *4 (-1132))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-571)) (-5 *1 (-419 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-571))
+ (-4 *6 (-571)) (-5 *2 (-419 *6)) (-5 *1 (-420 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-421 *5)) (-4 *5 (-571))
+ (-4 *6 (-571)) (-5 *2 (-421 *6)) (-5 *1 (-422 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-427 *5 *6 *7 *8)) (-4 *5 (-319))
+ (-4 *6 (-1022 *5)) (-4 *7 (-1273 *6))
+ (-4 *8 (-13 (-424 *6 *7) (-1069 *6))) (-4 *9 (-319))
+ (-4 *10 (-1022 *9)) (-4 *11 (-1273 *10))
+ (-5 *2 (-427 *9 *10 *11 *12))
+ (-5 *1 (-428 *5 *6 *7 *8 *9 *10 *11 *12))
+ (-4 *12 (-13 (-424 *10 *11) (-1069 *10)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175))
+ (-4 *2 (-432 *6)) (-5 *1 (-430 *4 *5 *2 *6)) (-4 *4 (-432 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1080)) (-4 *6 (-1080))
+ (-4 *2 (-435 *6)) (-5 *1 (-436 *5 *4 *6 *2)) (-4 *4 (-435 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1132)) (-4 *6 (-1132))
+ (-4 *2 (-440 *6)) (-5 *1 (-441 *5 *4 *6 *2)) (-4 *4 (-440 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-503 *3)) (-4 *3 (-1247))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-523 *3 *4)) (-4 *3 (-102))
+ (-4 *4 (-874))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-597 *5)) (-4 *5 (-376))
+ (-4 *6 (-376)) (-5 *2 (-597 *6)) (-5 *1 (-598 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *6 *5))
+ (-5 *4 (-3 (-2 (|:| -4378 *5) (|:| |coeff| *5)) "failed"))
+ (-4 *5 (-376)) (-4 *6 (-376))
+ (-5 *2 (-2 (|:| -4378 *6) (|:| |coeff| *6)))
+ (-5 *1 (-598 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
+ (-4 *5 (-376)) (-4 *2 (-376)) (-5 *1 (-598 *5 *2))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 *6 *5))
+ (-5 *4
+ (-3
+ (-2 (|:| |mainpart| *5)
+ (|:| |limitedlogs|
+ (-663 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ "failed"))
+ (-4 *5 (-376)) (-4 *6 (-376))
+ (-5 *2
+ (-2 (|:| |mainpart| *6)
+ (|:| |limitedlogs|
+ (-663 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-598 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-615 *5)) (-4 *5 (-1247))
+ (-4 *6 (-1247)) (-5 *2 (-615 *6)) (-5 *1 (-612 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-615 *6)) (-5 *5 (-615 *7))
+ (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-615 *8))
+ (-5 *1 (-613 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1185 *6)) (-5 *5 (-615 *7))
+ (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1185 *8))
+ (-5 *1 (-613 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-615 *6)) (-5 *5 (-1185 *7))
+ (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1185 *8))
+ (-5 *1 (-613 *6 *7 *8))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-615 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-663 *5)) (-4 *5 (-1247))
+ (-4 *6 (-1247)) (-5 *2 (-663 *6)) (-5 *1 (-664 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-663 *6)) (-5 *5 (-663 *7))
+ (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-663 *8))
+ (-5 *1 (-666 *6 *7 *8))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-673 *3)) (-4 *3 (-1247))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1080)) (-4 *8 (-1080))
+ (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-708 *8 *9 *10))
+ (-5 *1 (-709 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-708 *5 *6 *7))
+ (-4 *9 (-385 *8)) (-4 *10 (-385 *8))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1080))
+ (-4 *8 (-1080)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5))
+ (-4 *2 (-708 *8 *9 *10)) (-5 *1 (-709 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-708 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-571)) (-4 *7 (-571))
+ (-4 *6 (-1273 *5)) (-4 *2 (-1273 (-421 *8)))
+ (-5 *1 (-731 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1273 (-421 *6)))
+ (-4 *8 (-1273 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1080)) (-4 *9 (-1080))
+ (-4 *5 (-871)) (-4 *6 (-815)) (-4 *2 (-979 *9 *7 *5))
+ (-5 *1 (-750 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-815))
+ (-4 *4 (-979 *8 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-871)) (-4 *6 (-871)) (-4 *7 (-815))
+ (-4 *9 (-1080)) (-4 *2 (-979 *9 *8 *6))
+ (-5 *1 (-751 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-815))
+ (-4 *4 (-979 *9 *7 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-757 *5 *7)) (-4 *5 (-1080))
+ (-4 *6 (-1080)) (-4 *7 (-748)) (-5 *2 (-757 *6 *7))
+ (-5 *1 (-756 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-757 *3 *4))
+ (-4 *4 (-748))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-803 *5)) (-4 *5 (-1080))
+ (-4 *6 (-1080)) (-5 *2 (-803 *6)) (-5 *1 (-804 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175))
+ (-4 *2 (-818 *6)) (-5 *1 (-821 *4 *5 *2 *6)) (-4 *4 (-818 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1132))
+ (-4 *6 (-1132)) (-5 *2 (-854 *6)) (-5 *1 (-855 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-854 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5))
+ (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *1 (-855 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5)) (-4 *5 (-1132))
+ (-4 *6 (-1132)) (-5 *2 (-864 *6)) (-5 *1 (-865 *5 *6))))
+ ((*1 *2 *3 *4 *2 *2)
+ (-12 (-5 *2 (-864 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-864 *5))
+ (-4 *5 (-1132)) (-4 *6 (-1132)) (-5 *1 (-865 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-902 *5)) (-4 *5 (-1247))
+ (-4 *6 (-1247)) (-5 *2 (-902 *6)) (-5 *1 (-901 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-904 *5)) (-4 *5 (-1247))
+ (-4 *6 (-1247)) (-5 *2 (-904 *6)) (-5 *1 (-903 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-907 *5)) (-4 *5 (-1247))
+ (-4 *6 (-1247)) (-5 *2 (-907 *6)) (-5 *1 (-906 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-913 *5 *6)) (-4 *5 (-1132))
+ (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-913 *5 *7))
+ (-5 *1 (-914 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-915 *5)) (-4 *5 (-1132))
+ (-4 *6 (-1132)) (-5 *2 (-915 *6)) (-5 *1 (-917 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-975 *5)) (-4 *5 (-1080))
+ (-4 *6 (-1080)) (-5 *2 (-975 *6)) (-5 *1 (-976 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-871))
+ (-4 *8 (-1080)) (-4 *6 (-815))
+ (-4 *2
+ (-13 (-1132)
+ (-10 -8 (-15 -2429 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-793))))))
+ (-5 *1 (-981 *6 *7 *8 *5 *2)) (-4 *5 (-979 *8 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-987 *5)) (-4 *5 (-1247))
+ (-4 *6 (-1247)) (-5 *2 (-987 *6)) (-5 *1 (-988 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-995 *5)) (-4 *5 (-1132))
+ (-4 *6 (-1132)) (-5 *2 (-995 *6)) (-5 *1 (-997 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-972 *5)) (-4 *5 (-1080))
+ (-4 *6 (-1080)) (-5 *2 (-972 *6)) (-5 *1 (-1012 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 *2 (-975 *4))) (-4 *4 (-1080))
+ (-4 *2 (-979 (-975 *4) *5 *6)) (-4 *5 (-815))
+ (-4 *6
+ (-13 (-871)
+ (-10 -8 (-15 -2400 ((-1207) $))
+ (-15 -2558 ((-3 $ "failed") (-1207))))))
+ (-5 *1 (-1015 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-571)) (-4 *6 (-571))
+ (-4 *2 (-1022 *6)) (-5 *1 (-1023 *5 *6 *4 *2)) (-4 *4 (-1022 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175))
+ (-4 *2 (-1029 *6)) (-5 *1 (-1030 *4 *5 *2 *6)) (-4 *4 (-1029 *5))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1084 *3 *4 *5 *6 *7))
+ (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1084 *3 *4 *5 *6 *7))
+ (-4 *5 (-1080)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1080)) (-4 *10 (-1080))
+ (-14 *5 (-793)) (-14 *6 (-793)) (-4 *8 (-245 *6 *7))
+ (-4 *9 (-245 *5 *7)) (-4 *2 (-1084 *5 *6 *10 *11 *12))
+ (-5 *1 (-1086 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-1084 *5 *6 *7 *8 *9)) (-4 *11 (-245 *6 *10))
+ (-4 *12 (-245 *5 *10))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1120 *5)) (-4 *5 (-1247))
+ (-4 *6 (-1247)) (-5 *2 (-1120 *6)) (-5 *1 (-1121 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1120 *5)) (-4 *5 (-870))
+ (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-663 *6))
+ (-5 *1 (-1121 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1123 *5)) (-4 *5 (-1247))
+ (-4 *6 (-1247)) (-5 *2 (-1123 *6)) (-5 *1 (-1124 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1126 *4 *2)) (-4 *4 (-870))
+ (-4 *2 (-1180 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1185 *5)) (-4 *5 (-1247))
+ (-4 *6 (-1247)) (-5 *2 (-1185 *6)) (-5 *1 (-1187 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1185 *6)) (-5 *5 (-1185 *7))
+ (-4 *6 (-1247)) (-4 *7 (-1247)) (-4 *8 (-1247)) (-5 *2 (-1185 *8))
+ (-5 *1 (-1188 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1201 *5)) (-4 *5 (-1080))
+ (-4 *6 (-1080)) (-5 *2 (-1201 *6)) (-5 *1 (-1202 *5 *6))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1224 *3 *4)) (-4 *3 (-1132))
+ (-4 *4 (-1132))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1257 *5 *7 *9)) (-4 *5 (-1080))
+ (-4 *6 (-1080)) (-14 *7 (-1207)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1257 *6 *8 *10)) (-5 *1 (-1258 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1207))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-1247))
+ (-4 *6 (-1247)) (-5 *2 (-1264 *6)) (-5 *1 (-1265 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1264 *5)) (-4 *5 (-870))
+ (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1185 *6))
+ (-5 *1 (-1265 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1266 *5 *6)) (-14 *5 (-1207))
+ (-4 *6 (-1080)) (-4 *8 (-1080)) (-5 *2 (-1266 *7 *8))
+ (-5 *1 (-1267 *5 *6 *7 *8)) (-14 *7 (-1207))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1080)) (-4 *6 (-1080))
+ (-4 *2 (-1273 *6)) (-5 *1 (-1274 *5 *4 *6 *2)) (-4 *4 (-1273 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1278 *5 *7 *9)) (-4 *5 (-1080))
+ (-4 *6 (-1080)) (-14 *7 (-1207)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1278 *6 *8 *10)) (-5 *1 (-1279 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1207))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1080)) (-4 *6 (-1080))
+ (-4 *2 (-1290 *6)) (-5 *1 (-1288 *5 *6 *4 *2)) (-4 *4 (-1290 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-1247))
+ (-4 *6 (-1247)) (-5 *2 (-1297 *6)) (-5 *1 (-1298 *5 *6))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1297 *5))
+ (-4 *5 (-1247)) (-4 *6 (-1247)) (-5 *2 (-1297 *6))
+ (-5 *1 (-1298 *5 *6))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-871))
+ (-4 *4 (-1080))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-1321 *3 *4))
+ (-4 *4 (-868)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-793))))
((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-416)) (-5 *2 (-793)))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-305 *6)) (-5 *4 (-115)) (-4 *6 (-435 *5))
+ (-4 *5 (-13 (-571) (-633 (-549)))) (-5 *2 (-51))
+ (-5 *1 (-329 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-663 *7))
+ (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51))
+ (-5 *1 (-329 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-663 (-305 *7))) (-5 *4 (-663 (-115))) (-5 *5 (-305 *7))
+ (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51))
+ (-5 *1 (-329 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-663 (-305 *8))) (-5 *4 (-663 (-115))) (-5 *5 (-305 *8))
+ (-5 *6 (-663 *8)) (-4 *8 (-435 *7))
+ (-4 *7 (-13 (-571) (-633 (-549)))) (-5 *2 (-51))
+ (-5 *1 (-329 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-663 *7)) (-5 *4 (-663 (-115))) (-5 *5 (-305 *7))
+ (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51))
+ (-5 *1 (-329 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 (-115))) (-5 *6 (-663 (-305 *8)))
+ (-4 *8 (-435 *7)) (-5 *5 (-305 *8))
+ (-4 *7 (-13 (-571) (-633 (-549)))) (-5 *2 (-51))
+ (-5 *1 (-329 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-305 *5)) (-5 *4 (-115)) (-4 *5 (-435 *6))
+ (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51))
+ (-5 *1 (-329 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-435 *6))
+ (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51))
+ (-5 *1 (-329 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-435 *6))
+ (-4 *6 (-13 (-571) (-633 (-549)))) (-5 *2 (-51))
+ (-5 *1 (-329 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-5 *6 (-663 *3))
+ (-4 *3 (-435 *7)) (-4 *7 (-13 (-571) (-633 (-549)))) (-5 *2 (-51))
+ (-5 *1 (-329 *7 *3)))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-34)) (-5 *2 (-793))))
+ ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-258))))
+ ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1002))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132))
+ (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-560))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-793)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1080))
+ (-4 *4 (-868)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1297 *4)) (-5 *3 (-560)) (-4 *4 (-363))
+ (-5 *1 (-542 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1132)) (-4 *4 (-1132))
+ (-4 *6 (-1132)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *5 *4 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6))
+ (-5 *2 (-663 (-2 (|:| -1924 *1) (|:| -2888 (-663 *7)))))
+ (-5 *3 (-663 *7)) (-4 *1 (-1242 *4 *5 *6 *7)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-419 *2)) (-4 *2 (-319)) (-5 *1 (-943 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207))
+ (-4 *5 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-944 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-419 (-975 *6))) (-5 *5 (-1207)) (-5 *3 (-975 *6))
+ (-4 *6 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-944 *6)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-663 *6)) (-4 *1 (-979 *4 *5 *6)) (-4 *4 (-1080))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-793))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-5 *2 (-793)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-663 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560))
+ (-14 *4 (-793)) (-4 *5 (-175)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814))
+ (-5 *2 (-663 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1132))
+ (-5 *2 (-663 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1185 *3)) (-5 *1 (-610 *3)) (-4 *3 (-1080))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-663 *3)) (-5 *1 (-757 *3 *4)) (-4 *3 (-1080))
+ (-4 *4 (-748))))
+ ((*1 *2 *1) (-12 (-4 *1 (-876 *3)) (-4 *3 (-1080)) (-5 *2 (-663 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1290 *3)) (-4 *3 (-1080)) (-5 *2 (-1185 *3)))))
(((*1 *2 *3)
(-12 (-4 *4 (-466))
(-5 *2
@@ -11426,11 +12487,180 @@
(|:| |eigmult| (-793))
(|:| |eigvec| (-663 (-711 (-421 (-975 *4))))))))
(-5 *1 (-304 *4)) (-5 *3 (-711 (-421 (-975 *4)))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-793)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-871))
+ (-4 *4 (-1080)) (-4 *4 (-175))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080))
+ (-4 *3 (-175)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1069 (-560))) (-4 *1 (-310)) (-5 *2 (-114))))
+ ((*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-114))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-931 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114))))
+ ((*1 *1 *1 *1) (-5 *1 (-887))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-1229)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-885)) (-5 *2 (-713 (-130))) (-5 *3 (-130)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-560))
+ (-5 *6
+ (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1490 (-391))))
+ (-5 *7 (-1 (-1303) (-1297 *5) (-1297 *5) (-391)))
+ (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303))
+ (-5 *1 (-810))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-560))
+ (-5 *6
+ (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1490 (-391))))
+ (-5 *7 (-1 (-1303) (-1297 *5) (-1297 *5) (-391)))
+ (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303))
+ (-5 *1 (-810)))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-376)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 (-421 *3)))
+ (-4 *1 (-349 *4 *3 *5 *2)) (-4 *2 (-355 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-560)) (-4 *2 (-376)) (-4 *4 (-1273 *2))
+ (-4 *5 (-1273 (-421 *4))) (-4 *1 (-349 *2 *4 *5 *6))
+ (-4 *6 (-355 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-376)) (-4 *3 (-1273 *2)) (-4 *4 (-1273 (-421 *3)))
+ (-4 *1 (-349 *2 *3 *4 *5)) (-4 *5 (-355 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4)))
+ (-4 *1 (-349 *3 *4 *5 *2)) (-4 *2 (-355 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-427 *4 (-421 *4) *5 *6)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-4 *3 (-376))
+ (-4 *1 (-349 *3 *4 *5 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 (-560))) (-4 *3 (-1080)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-99 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-99 *3)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-1247)))))
(((*1 *2 *1)
(-12 (-5 *2 (-2 (|:| |preimage| (-663 *3)) (|:| |image| (-663 *3))))
(-5 *1 (-931 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-851)) (-5 *3 (-1189)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1212)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-571))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814))
+ (-4 *2 (-571))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-571)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080))
+ (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-571))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-793)))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-571))))
+ ((*1 *1 *1 *1) (-5 *1 (-887)))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-571))
+ (-5 *1 (-1000 *3 *4))))
+ ((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1084 *3 *4 *2 *5 *6)) (-4 *2 (-1080))
+ (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-571))))
+ ((*1 *2 *2 *2)
+ (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))))
+(((*1 *1 *1) (-4 *1 (-894 *2))))
+(((*1 *1 *1 *1) (-5 *1 (-229)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1072))))
+ ((*1 *1 *1 *1) (-4 *1 (-1170))))
+(((*1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1302))))
+ ((*1 *2 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1302)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1173 *3 *4)) (-14 *3 (-948)) (-4 *4 (-376))
+ (-5 *1 (-1024 *3 *4)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-1300))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-1211)) (-5 *1 (-1210)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-845)))))
+(((*1 *1 *1) (-5 *1 (-887))) ((*1 *1 *1 *1) (-5 *1 (-887)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1264 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-376) (-870))) (-5 *1 (-184 *3 *2))
+ (-4 *2 (-1273 (-171 *3))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-551 *3 *2))
+ (-4 *2 (-1290 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-4 *4 (-1273 *3))
+ (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1290 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-5 *1 (-556 *3 *2))
+ (-4 *2 (-1290 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-13 (-571) (-149)))
+ (-5 *1 (-1184 *3)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-841 *3)) (|:| |rm| (-841 *3))))
+ (-5 *1 (-841 *3)) (-4 *3 (-871))))
+ ((*1 *1 *1 *1) (-5 *1 (-887))))
(((*1 *1 *1 *1)
(-12 (|has| *1 (-6 -4509)) (-4 *1 (-121 *2)) (-4 *2 (-1247)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-177 *3)) (-4 *3 (-319))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-696 *3)) (-4 *3 (-1247))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-793)) (-4 *1 (-762 *3 *4)) (-4 *3 (-1080))
+ (-4 *4 (-871))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-894 *3)) (-5 *2 (-560))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-663 *3)) (-4 *1 (-1011 *3)) (-4 *3 (-1080))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-663 *1)) (-5 *3 (-663 *7)) (-4 *1 (-1102 *4 *5 *6 *7))
+ (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *1))
+ (-4 *1 (-1102 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-663 *1))
+ (-4 *1 (-1102 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-560)) (-4 *5 (-363)) (-5 *2 (-419 (-1201 (-1201 *5))))
+ (-5 *1 (-1246 *5)) (-5 *3 (-1201 (-1201 *5))))))
+(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-571)) (-5 *2 (-987 *3)) (-5 *1 (-1194 *4 *3))
+ (-4 *3 (-1273 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-711 *1)) (-4 *1 (-363)) (-5 *2 (-1297 *1))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-711 *1)) (-4 *1 (-147)) (-4 *1 (-939))
+ (-5 *2 (-1297 *1)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-560)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-560))))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-758 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1132))))
+ ((*1 *1) (-12 (-5 *1 (-758 *2)) (-4 *2 (-1132)))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560))
+ (-5 *2 (-1066)) (-5 *1 (-778)))))
(((*1 *2 *2)
(-12 (-5 *2 (-663 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-319))
(-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-462 *3 *4 *5 *6))))
@@ -11442,12 +12672,90 @@
(-12 (-5 *2 (-663 *7)) (-5 *3 (-1189)) (-4 *7 (-979 *4 *5 *6))
(-4 *4 (-319)) (-4 *5 (-815)) (-4 *6 (-871))
(-5 *1 (-462 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-109))) (-5 *1 (-178)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3))
+ (-4 *3 (-13 (-376) (-1233) (-1033))))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391)))
+ (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206))))
+ (-5 *1 (-1206)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -2515 *4))))
+ (-5 *1 (-671 *3 *4 *5)) (-4 *3 (-1132)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))
+ (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-571)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))
+ (-4 *7 (-1022 *4)) (-4 *2 (-708 *7 *8 *9))
+ (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-708 *4 *5 *6))
+ (-4 *8 (-385 *7)) (-4 *9 (-385 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-385 *2))
+ (-4 *4 (-385 *2)) (-4 *2 (-319))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3))
+ (-4 *5 (-385 *3)) (-5 *1 (-710 *3 *4 *5 *2))
+ (-4 *2 (-708 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1084 *2 *3 *4 *5 *6)) (-4 *4 (-1080))
+ (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *2 *4)) (-4 *4 (-319)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1132)) (-4 *3 (-927 *5)) (-5 *2 (-711 *3))
+ (-5 *1 (-714 *5 *3 *6 *4)) (-4 *6 (-385 *3))
+ (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4508)))))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080))
+ (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-186))) (-5 *1 (-186)))))
+(((*1 *2 *3) (-12 (-5 *3 (-505)) (-5 *2 (-713 (-593))) (-5 *1 (-593)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1185 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2))
+ (-4 *2 (-435 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1123 *2)) (-4 *2 (-435 *4)) (-4 *4 (-571))
+ (-5 *1 (-160 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1123 *1)) (-4 *1 (-162))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-972 *5)) (-5 *3 (-793)) (-4 *5 (-1080))
+ (-5 *1 (-1195 *4 *5)) (-14 *4 (-948)))))
(((*1 *2 *3)
(-12 (-4 *4 (-27))
(-4 *4 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))))
(-4 *5 (-1273 *4)) (-5 *2 (-663 (-677 (-421 *5))))
(-5 *1 (-681 *4 *5)) (-5 *3 (-677 (-421 *5))))))
+(((*1 *1 *1) (-4 *1 (-1091))))
+(((*1 *1 *1 *1) (-4 *1 (-319))) ((*1 *1 *1 *1) (-5 *1 (-793)))
+ ((*1 *1 *1 *1) (-5 *1 (-887))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391)))
+ (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206))))
+ (-5 *1 (-1206)))))
+(((*1 *1) (-5 *1 (-623))))
+(((*1 *1) (-5 *1 (-624))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1201 (-421 (-975 *3)))) (-5 *1 (-467 *3 *4 *5 *6))
+ (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1080))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1080)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-887))))
+ ((*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1303)) (-5 *1 (-992)))))
+(((*1 *1 *1 *1) (-5 *1 (-887))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *9)) (-4 *8 (-1096 *5 *6 *7))
(-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815))
@@ -11456,12 +12764,129 @@
(-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *9)) (-4 *8 (-1096 *5 *6 *7))
(-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815))
(-4 *7 (-871)) (-5 *2 (-793)) (-5 *1 (-1176 *5 *6 *7 *8 *9)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-887)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))))
+(((*1 *1 *1 *1) (-4 *1 (-319))) ((*1 *1 *1 *1) (-5 *1 (-793)))
+ ((*1 *1 *1 *1) (-5 *1 (-887))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1080) (-871)))
+ (-14 *3 (-663 (-1207))))))
+(((*1 *1 *1) (-5 *1 (-1206)))
+ ((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391)))
+ (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206))))
+ (-5 *1 (-1206)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-793)) (-5 *1 (-803 *3)) (-4 *3 (-1080))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-985 *3 *2)) (-4 *2 (-133)) (-4 *3 (-571))
+ (-4 *3 (-1080)) (-4 *2 (-814))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-793)) (-5 *1 (-1201 *3)) (-4 *3 (-1080))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1002)) (-4 *2 (-133)) (-5 *1 (-1209 *3)) (-4 *3 (-571))
+ (-4 *3 (-1080))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-793)) (-5 *1 (-1266 *4 *3)) (-14 *4 (-1207))
+ (-4 *3 (-1080)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-663 (-1201 *5))) (-5 *3 (-1201 *5))
+ (-4 *5 (-168 *4)) (-4 *4 (-559)) (-5 *1 (-151 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-663 *3)) (-4 *3 (-1273 *5))
+ (-4 *5 (-1273 *4)) (-4 *4 (-363)) (-5 *1 (-371 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-663 (-1201 (-560)))) (-5 *3 (-1201 (-560)))
+ (-5 *1 (-586))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-663 (-1201 *1))) (-5 *3 (-1201 *1))
+ (-4 *1 (-939)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1273 *4)) (-5 *1 (-831 *4 *2 *3 *5))
+ (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *3 (-680 *2))
+ (-4 *5 (-680 (-421 *2))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1207)) (-5 *3 (-391)) (-5 *1 (-1094)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571))
+ (-5 *2 (-114)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 (-255 *5 *6))) (-4 *6 (-466))
+ (-5 *2 (-255 *5 *6)) (-14 *5 (-663 (-1207))) (-5 *1 (-650 *5 *6)))))
(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-711 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6))
+ (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
+(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-954))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-954))))
+ ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-956))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-134)) (-5 *3 (-793)) (-5 *2 (-1303)))))
+(((*1 *1) (-5 *1 (-846))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-954))
+ (-5 *2
+ (-2 (|:| |brans| (-663 (-663 (-972 (-229)))))
+ (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))))
+ (-5 *1 (-155))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-954)) (-5 *4 (-421 (-560)))
+ (-5 *2
+ (-2 (|:| |brans| (-663 (-663 (-972 (-229)))))
+ (|:| |xValues| (-1120 (-229))) (|:| |yValues| (-1120 (-229)))))
+ (-5 *1 (-155)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1080)) (-5 *1 (-1271 *3 *2)) (-4 *2 (-1273 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560))
+ (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -1683))))
+ (-5 *2 (-1066)) (-5 *1 (-770)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-1207))
(-4 *5 (-13 (-466) (-149) (-1069 (-560)) (-660 (-560))))
(-5 *2 (-597 *3)) (-5 *1 (-572 *5 *3))
(-4 *3 (-13 (-27) (-1233) (-435 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -3859 *9))))
+ (-5 *4 (-793)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1102 *5 *6 *7 *8))
+ (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-1303))
+ (-5 *1 (-1100 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-2 (|:| |val| (-663 *8)) (|:| -3859 *9))))
+ (-5 *4 (-793)) (-4 *8 (-1096 *5 *6 *7)) (-4 *9 (-1140 *5 *6 *7 *8))
+ (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-1303))
+ (-5 *1 (-1176 *5 *6 *7 *8 *9)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-793)) (-4 *1 (-387 *3 *4)) (-4 *3 (-871))
+ (-4 *4 (-175))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-793)) (-4 *1 (-1320 *3 *4)) (-4 *3 (-871))
+ (-4 *4 (-1080)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1207)) (-4 *5 (-376)) (-5 *2 (-1185 (-1185 (-975 *5))))
+ (-5 *1 (-1306 *5)) (-5 *4 (-1185 (-975 *5))))))
+(((*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1189)) (-5 *1 (-808)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-146))))
+ ((*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-146)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1080))
+ (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296)))
+ (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1273 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-948)) (-4 *5 (-1080))
+ (-4 *2 (-13 (-418) (-1069 *5) (-376) (-1233) (-296)))
+ (-5 *1 (-457 *5 *3 *2)) (-4 *3 (-1273 *5)))))
(((*1 *2 *3)
(-12
(-5 *3
@@ -11469,341 +12894,468 @@
(|:| |polj| *7)))
(-4 *5 (-815)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-871))
(-5 *2 (-114)) (-5 *1 (-464 *4 *5 *6 *7)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-131)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-808)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1207))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-663 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-663 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -4378 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1233) (-27) (-435 *8)))
+ (-4 *8 (-13 (-466) (-149) (-1069 *3) (-660 *3))) (-5 *3 (-560))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -4346 *4) (|:| |sol?| (-114))))
+ (-5 *1 (-1044 *8 *4)))))
+(((*1 *1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-1132))))
+ ((*1 *1 *1) (-5 *1 (-651))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-115)) (-5 *4 (-663 *2)) (-5 *1 (-116 *2))
+ (-4 *2 (-1132))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-663 *4))) (-4 *4 (-1132))
+ (-5 *1 (-116 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1132))
+ (-5 *1 (-116 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-663 *4)))
+ (-5 *1 (-116 *4)) (-4 *4 (-1132))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-670 *3)) (-4 *3 (-1080))
+ (-5 *1 (-736 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-856 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1207)))
+ (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
+ ((*1 *2)
+ (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-663 (-1207)))
+ (-14 *4 (-663 (-1207))) (-4 *5 (-401)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-871)) (-5 *2 (-114))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *1 (-385 *4)) (-4 *4 (-1247))
+ (-5 *2 (-114)))))
(((*1 *2 *1) (-12 (-4 *1 (-1152 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-4 *3 (-1132))
+ (-5 *2 (-114)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4508)) (-4 *1 (-503 *4))
+ (-4 *4 (-1247)) (-5 *2 (-114)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1132)) (-5 *1 (-931 *3)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-663 (-1207))) (-4 *5 (-466))
+ (-5 *2
+ (-2 (|:| |glbase| (-663 (-255 *4 *5))) (|:| |glval| (-663 (-560)))))
+ (-5 *1 (-650 *4 *5)) (-5 *3 (-663 (-255 *4 *5))))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175))))
+ ((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033)))
+ (-5 *1 (-179 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))
+ ((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
+ ((*1 *1 *1) (-4 *1 (-1170))))
(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-451)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391))
+ (-5 *2
+ (-2 (|:| -1430 *4) (|:| -2403 *4) (|:| |totalpts| (-560))
+ (|:| |success| (-114))))
+ (-5 *1 (-811)) (-5 *5 (-560)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-915 *4)) (-5 *3 (-1 (-114) *5)) (-4 *4 (-1132))
+ (-4 *5 (-1247)) (-5 *1 (-916 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-915 *4)) (-5 *3 (-663 (-1 (-114) *5))) (-4 *4 (-1132))
+ (-4 *5 (-1247)) (-5 *1 (-916 *4 *5))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-915 *5)) (-5 *3 (-663 (-1207)))
+ (-5 *4 (-1 (-114) (-663 *6))) (-4 *5 (-1132)) (-4 *6 (-1247))
+ (-5 *1 (-916 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1207)) (-5 *4 (-1 (-114) *5)) (-4 *5 (-1247))
+ (-5 *2 (-326 (-560))) (-5 *1 (-966 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1207)) (-5 *4 (-663 (-1 (-114) *5))) (-4 *5 (-1247))
+ (-5 *2 (-326 (-560))) (-5 *1 (-966 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-114) *5)) (-4 *5 (-1247)) (-4 *4 (-1132))
+ (-5 *1 (-967 *4 *2 *5)) (-4 *2 (-435 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-663 (-1 (-114) *5))) (-4 *5 (-1247)) (-4 *4 (-1132))
+ (-5 *1 (-967 *4 *2 *5)) (-4 *2 (-435 *4))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-1 (-114) (-663 *6)))
+ (-4 *6 (-13 (-435 *5) (-911 *4) (-633 (-915 *4)))) (-4 *4 (-1132))
+ (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4))))
+ (-5 *1 (-1106 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1229))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1229)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-793)) (-5 *1 (-601 *2)) (-4 *2 (-559)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))))
+(((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
+ (-4 *3 (-380 *4))))
+ ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
(((*1 *2 *3)
(-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871))
(-4 *7 (-1096 *4 *5 *6))
(-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7))))
(-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-663 *7)))))
-(((*1 *2) (-12 (-5 *2 (-1178 (-1189))) (-5 *1 (-405)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132))
- (-5 *2 (-1189)))))
-(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))))
-(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-171 (-229))))
+ (-5 *2 (-1066)) (-5 *1 (-776)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1132)) (-5 *1 (-993 *3 *2)) (-4 *3 (-1132)))))
+ (-12 (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4)))
+ (-5 *2 (-1297 *6)) (-5 *1 (-346 *3 *4 *5 *6))
+ (-4 *6 (-355 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-693))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1133 *3 *4)) (-14 *3 (-948))
+ (-14 *4 (-948)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-291)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033) (-1233)))))
- ((*1 *1 *1) (-4 *1 (-649))))
-(((*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-131)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1007 *4 *5 *6 *3)) (-4 *4 (-1080)) (-4 *5 (-815))
- (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-4 *4 (-571))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1252)) (-4 *5 (-1273 *4))
- (-5 *2 (-2 (|:| |radicand| (-421 *5)) (|:| |deg| (-793))))
- (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1273 (-421 *5))))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114))
- (-5 *1 (-1019 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-114))
- (-5 *1 (-1138 *4 *5 *6 *7 *3)) (-4 *3 (-1102 *4 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-248)))))
-(((*1 *2)
- (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4))
- (-4 *4 (-432 *3)))))
-(((*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1002)))))
-(((*1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1302)))))
-(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721))))
- ((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-721)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-871)) (-5 *2 (-1220 (-663 *4))) (-5 *1 (-1218 *4))
- (-5 *3 (-663 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 (-1207))) (-4 *6 (-376))
- (-5 *2 (-663 (-305 (-975 *6)))) (-5 *1 (-552 *5 *6 *7))
- (-4 *5 (-466)) (-4 *7 (-13 (-376) (-870))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-391))))
- ((*1 *1 *1 *1) (-4 *1 (-559)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376))))
- ((*1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-793)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815))
- (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))))
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1297 *4)) (-5 *3 (-793)) (-4 *4 (-363))
+ (-5 *1 (-542 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-663 (-1207))) (-4 *5 (-571))
- (-5 *2 (-663 (-663 (-305 (-421 (-975 *5)))))) (-5 *1 (-792 *5))))
+ (-12 (-5 *2 (-663 (-171 *4))) (-5 *1 (-157 *3 *4))
+ (-4 *3 (-1273 (-171 (-560)))) (-4 *4 (-13 (-376) (-870)))))
((*1 *2 *3)
- (-12 (-5 *3 (-663 (-975 *4))) (-4 *4 (-571))
- (-5 *2 (-663 (-663 (-305 (-421 (-975 *4)))))) (-5 *1 (-792 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-711 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -1954 (-663 *6)))
- *7 *6))
- (-4 *6 (-376)) (-4 *7 (-680 *6))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1297 *6) "failed"))
- (|:| -1954 (-663 (-1297 *6)))))
- (-5 *1 (-835 *6 *7)) (-5 *4 (-1297 *6)))))
+ (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-663 (-171 *4)))
+ (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-376) (-870))) (-5 *2 (-663 (-171 *4)))
+ (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-560)) (-4 *1 (-1125 *3)) (-4 *3 (-1247)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-1080))
- (-4 *2 (-1259 *3)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-793)) (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+ (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-571))
+ (-5 *2 (-1201 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-793)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560))
- (-14 *4 *2) (-4 *5 (-175))))
- ((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-948)) (-5 *1 (-167 *3 *4))
- (-4 *3 (-168 *4))))
- ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-948))))
- ((*1 *2)
- (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3))
- (-5 *2 (-948))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))
- (-5 *2 (-793)) (-5 *1 (-535 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4509))))
- (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4509)))) (-5 *2 (-793))
- (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-711 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-376))
- (-5 *2 (-793)) (-5 *1 (-690 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3))
- (-4 *5 (-385 *3)) (-4 *3 (-571)) (-5 *2 (-793))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-4 *4 (-175)) (-4 *5 (-385 *4))
- (-4 *6 (-385 *4)) (-5 *2 (-793)) (-5 *1 (-710 *4 *5 *6 *3))
- (-4 *3 (-708 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
- (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-571))
- (-5 *2 (-793)))))
-(((*1 *2)
- (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5)))
- (-5 *2 (-793)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4))) (-5 *2 (-793))))
- ((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-793)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *5 (-1189))
- (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1066))
- (-5 *1 (-772)))))
+ (-12 (-5 *2 (-1185 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))))
+(((*1 *2) (-12 (-5 *2 (-1178 (-1189))) (-5 *1 (-405)))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1207)) (-5 *1 (-697 *3)) (-4 *3 (-1132)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1022 *2)) (-4 *2 (-571)) (-5 *1 (-144 *2 *4 *3))
- (-4 *3 (-385 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1022 *2)) (-4 *2 (-571)) (-5 *1 (-517 *2 *4 *5 *3))
- (-4 *5 (-385 *2)) (-4 *3 (-385 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-711 *4)) (-4 *4 (-1022 *2)) (-4 *2 (-571))
- (-5 *1 (-715 *2 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1022 *2)) (-4 *2 (-571)) (-5 *1 (-1268 *2 *4 *3))
- (-4 *3 (-1273 *4)))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -3764 (-663 (-2 (|:| |irr| *10) (|:| -2929 (-560)))))))
- (-5 *6 (-663 *3)) (-5 *7 (-663 *8)) (-4 *8 (-871)) (-4 *3 (-319))
- (-4 *10 (-979 *3 *9 *8)) (-4 *9 (-815))
- (-5 *2
- (-2 (|:| |polfac| (-663 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-663 (-1201 *3)))))
- (-5 *1 (-644 *8 *9 *3 *10)) (-5 *4 (-663 (-1201 *3))))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4508)) (-4 *1 (-503 *3)) (-4 *3 (-1247))
- (-4 *3 (-1132)) (-5 *2 (-114))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-931 *4)) (-4 *4 (-1132)) (-5 *2 (-114))
- (-5 *1 (-934 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-948)) (-5 *2 (-114)) (-5 *1 (-1133 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-560)) (-4 *4 (-175)) (-4 *5 (-385 *4))
- (-4 *6 (-385 *4)) (-5 *1 (-710 *4 *5 *6 *2))
- (-4 *2 (-708 *4 *5 *6)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1078)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391)))
- (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206))))
- (-5 *1 (-1206)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466))
- (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *1 (-1008 *3 *4 *5 *6)))))
+ (-12 (-4 *4 (-363)) (-5 *2 (-419 (-1201 (-1201 *4))))
+ (-5 *1 (-1246 *4)) (-5 *3 (-1201 (-1201 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1243 *3)) (-4 *3 (-1005)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132))
+ (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-975 (-171 *4))) (-4 *4 (-175))
- (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-975 (-171 *5))) (-5 *4 (-948)) (-4 *5 (-175))
- (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-975 *4)) (-4 *4 (-1080))
- (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
+ (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-432 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 *4)) (-4 *4 (-1080)) (-5 *2 (-1297 *4))
+ (-5 *1 (-1208 *4))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-975 *5)) (-5 *4 (-948)) (-4 *5 (-1080))
- (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5))))
+ (-12 (-5 *4 (-948)) (-5 *2 (-1297 *3)) (-5 *1 (-1208 *3))
+ (-4 *3 (-1080)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-1080)) (-5 *1 (-734 *3 *2)) (-4 *2 (-1273 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5))
+ (-5 *2 (-2 (|:| -1924 (-663 *6)) (|:| -2888 (-663 *6)))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-1106 *3 *4 *5))) (-4 *3 (-1132))
+ (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3))))
+ (-4 *5 (-13 (-435 *4) (-911 *3) (-633 (-915 *3))))
+ (-5 *1 (-1108 *3 *4 *5)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-560)) (-4 *4 (-1273 (-421 *3))) (-5 *2 (-948))
+ (-5 *1 (-942 *4 *5)) (-4 *5 (-1273 (-421 *4))))))
+(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-793))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-793)) (-4 *1 (-274 *4))
+ (-4 *4 (-1247))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1247))))
+ ((*1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1080))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-921 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1247))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-663 *4)) (-5 *3 (-663 (-793))) (-4 *1 (-929 *4))
+ (-4 *4 (-1132))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-793)) (-4 *1 (-929 *2)) (-4 *2 (-1132))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-663 *3)) (-4 *1 (-929 *3)) (-4 *3 (-1132)))))
+(((*1 *1) (-5 *1 (-450))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7))))
+ (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-663 *7)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132))
+ (-5 *2 (-1189)))))
+(((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
+ (-4 *3 (-380 *4))))
+ ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
+(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1072)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-931 (-560))) (-5 *4 (-560)) (-5 *2 (-711 *4))
+ (-5 *1 (-1060 *5)) (-4 *5 (-1080))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571))
- (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
+ (-12 (-5 *3 (-663 (-560))) (-5 *2 (-711 (-560))) (-5 *1 (-1060 *4))
+ (-4 *4 (-1080))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-948)) (-4 *5 (-571))
- (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *5))))
+ (-12 (-5 *3 (-663 (-931 (-560)))) (-5 *4 (-560))
+ (-5 *2 (-663 (-711 *4))) (-5 *1 (-1060 *5)) (-4 *5 (-1080))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-421 (-975 (-171 *4)))) (-4 *4 (-571))
- (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-421 (-975 (-171 *5)))) (-5 *4 (-948))
- (-4 *5 (-571)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391)))
- (-5 *1 (-807 *5))))
+ (-12 (-5 *3 (-663 (-663 (-560)))) (-5 *2 (-663 (-711 (-560))))
+ (-5 *1 (-1060 *4)) (-4 *4 (-1080)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1247)) (-5 *2 (-663 *1)) (-4 *1 (-1041 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-562))))))
+(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-954)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-560)) (-5 *5 (-1189)) (-5 *6 (-711 (-229)))
+ (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))))
+ (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))
+ (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175))))
+ ((*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-431 *3 *2)) (-4 *3 (-432 *2))))
+ ((*1 *2) (-12 (-4 *1 (-432 *2)) (-4 *2 (-175)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-229))
+ (-5 *2
+ (-2 (|:| |brans| (-663 (-663 (-972 *4))))
+ (|:| |xValues| (-1120 *4)) (|:| |yValues| (-1120 *4))))
+ (-5 *1 (-155)) (-5 *3 (-663 (-663 (-972 *4)))))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *2 (-871)) (-4 *3 (-175))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *2 (-571)) (-5 *1 (-1000 *2 *3)) (-4 *3 (-1273 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871)) (-4 *2 (-571))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-175)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-663 *3)) (-4 *3 (-1140 *5 *6 *7 *8))
+ (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *8 (-1096 *5 *6 *7)) (-5 *2 (-114))
+ (-5 *1 (-605 *5 *6 *7 *8 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1207)) (-5 *2 (-1 (-1201 (-975 *4)) (-975 *4)))
+ (-5 *1 (-1306 *4)) (-4 *4 (-376)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1207)) (-5 *4 (-975 (-560))) (-5 *2 (-342))
+ (-5 *1 (-344))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1207)) (-5 *4 (-1123 (-975 (-560)))) (-5 *2 (-342))
+ (-5 *1 (-344))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-793)) (-5 *1 (-697 *3)) (-4 *3 (-1080))
+ (-4 *3 (-1132)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4508)) (-4 *1 (-242 *3))
+ (-4 *3 (-1132))))
+ ((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4508)) (-4 *1 (-242 *2)) (-4 *2 (-1132))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)) (-4 *2 (-1132))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1247))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-629 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-560)) (-4 *4 (-1132))
+ (-5 *1 (-758 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-560)) (-5 *1 (-758 *2)) (-4 *2 (-1132))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34)))
+ (-4 *4 (-13 (-1132) (-34))) (-5 *1 (-1172 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-376)) (-4 *7 (-1273 *5)) (-4 *4 (-746 *5 *7))
+ (-5 *2 (-2 (|:| -1871 (-711 *6)) (|:| |vec| (-1297 *5))))
+ (-5 *1 (-833 *5 *6 *7 *4 *3)) (-4 *6 (-680 *5)) (-4 *3 (-680 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-630 *3)) (-5 *5 (-1201 *3))
+ (-4 *3 (-13 (-435 *6) (-27) (-1233)))
+ (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
+ (-5 *2 (-597 *3)) (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1132))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-630 *3)) (-5 *5 (-421 (-1201 *3)))
+ (-4 *3 (-13 (-435 *6) (-27) (-1233)))
+ (-4 *6 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
+ (-5 *2 (-597 *3)) (-5 *1 (-575 *6 *3 *7)) (-4 *7 (-1132)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4508)) (-4 *1 (-503 *4))
+ (-4 *4 (-1247)) (-5 *2 (-114)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1207)) (-5 *3 (-663 *1)) (-4 *1 (-435 *4))
+ (-4 *4 (-1132))))
+ ((*1 *1 *2 *1 *1 *1 *1)
+ (-12 (-5 *2 (-1207)) (-4 *1 (-435 *3)) (-4 *3 (-1132))))
+ ((*1 *1 *2 *1 *1 *1)
+ (-12 (-5 *2 (-1207)) (-4 *1 (-435 *3)) (-4 *3 (-1132))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1207)) (-4 *1 (-435 *3)) (-4 *3 (-1132))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1207)) (-4 *1 (-435 *3)) (-4 *3 (-1132)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-630 (-48)))) (-5 *1 (-48))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1201 (-48))) (-5 *3 (-663 (-630 (-48)))) (-5 *1 (-48))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1201 (-48))) (-5 *3 (-630 (-48))) (-5 *1 (-48))))
+ ((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-871))
- (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
+ (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3))
+ (-4 *3 (-1273 (-171 *2)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-948)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381))))
+ ((*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-175))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1022 *3)) (-5 *1 (-427 *3 *2 *4 *5))
+ (-4 *3 (-319)) (-4 *5 (-13 (-424 *2 *4) (-1069 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1022 *3))
+ (-5 *1 (-429 *3 *2 *4 *5 *6)) (-4 *3 (-319)) (-4 *5 (-424 *2 *4))
+ (-14 *6 (-1297 *5))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-948)) (-4 *5 (-571))
- (-4 *5 (-871)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391)))
- (-5 *1 (-807 *5))))
+ (-12 (-5 *4 (-948)) (-4 *5 (-1080))
+ (-4 *2 (-13 (-418) (-1069 *5) (-376) (-1233) (-296)))
+ (-5 *1 (-457 *5 *3 *2)) (-4 *3 (-1273 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-630 (-509)))) (-5 *1 (-509))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-509))) (-5 *1 (-509))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1201 (-509))) (-5 *3 (-663 (-630 (-509))))
+ (-5 *1 (-509))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1201 (-509))) (-5 *3 (-630 (-509))) (-5 *1 (-509))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1297 *4)) (-5 *3 (-948)) (-4 *4 (-363))
+ (-5 *1 (-542 *4))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-571)) (-4 *4 (-871))
- (-4 *4 (-633 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-807 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-948)) (-4 *5 (-571))
- (-4 *5 (-871)) (-4 *5 (-633 (-391))) (-5 *2 (-171 (-391)))
- (-5 *1 (-807 *5)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1157 *4 *3 *5))) (-4 *4 (-38 (-421 (-560))))
- (-4 *4 (-1080)) (-4 *3 (-871)) (-5 *1 (-1157 *4 *3 *5))
- (-4 *5 (-979 *4 (-545 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1240 *4))) (-5 *3 (-1207)) (-5 *1 (-1240 *4))
- (-4 *4 (-38 (-421 (-560)))) (-4 *4 (-1080)))))
+ (-12 (-4 *4 (-466)) (-4 *5 (-746 *4 *2)) (-4 *2 (-1273 *4))
+ (-5 *1 (-797 *4 *2 *5 *3)) (-4 *3 (-1273 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175))))
+ ((*1 *1 *1) (-4 *1 (-1091))))
+(((*1 *2)
+ (-12 (-4 *3 (-1252)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4)))
+ (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)))))
(((*1 *1 *1 *2)
(-12 (-5 *2 (-663 (-51))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-630 *5))) (-4 *4 (-1132)) (-5 *2 (-630 *5))
- (-5 *1 (-587 *4 *5)) (-4 *5 (-435 *4)))))
+ (-12 (-4 *4 (-571)) (-5 *2 (-1297 (-711 *4))) (-5 *1 (-90 *4 *5))
+ (-5 *3 (-711 *4)) (-4 *5 (-680 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080))
+ (-14 *4 (-663 (-1207)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871)))
+ (-14 *4 (-663 (-1207))))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-1247)) (-5 *1 (-185 *3 *2))
+ (-4 *2 (-696 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4))
- (-4 *4 (-363))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4))
- (-4 *4 (-363))))
- ((*1 *1) (-4 *1 (-381)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-948)) (-5 *2 (-1297 *4)) (-5 *1 (-542 *4))
- (-4 *4 (-363))))
- ((*1 *1 *1) (-4 *1 (-559))) ((*1 *1) (-4 *1 (-559)))
- ((*1 *1 *1) (-5 *1 (-793)))
- ((*1 *2 *1) (-12 (-5 *2 (-931 *3)) (-5 *1 (-934 *3)) (-4 *3 (-1132))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-560)) (-5 *2 (-931 *4)) (-5 *1 (-934 *4))
- (-4 *4 (-1132))))
- ((*1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-559)) (-4 *2 (-571)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-663 *2)) (-4 *2 (-979 *4 *5 *6)) (-4 *4 (-376))
- (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-5 *1 (-461 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-376))
+ (-12 (-5 *3 (-1207)) (-5 *2 (-326 (-560))) (-5 *1 (-958))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-1132)) (-5 *1 (-959 *3 *2)) (-4 *2 (-435 *3)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-571)) (-4 *3 (-1080))
+ (-5 *2 (-2 (|:| -2584 *1) (|:| -3276 *1))) (-4 *1 (-876 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-571)) (-4 *5 (-1080))
+ (-5 *2 (-2 (|:| -2584 *3) (|:| -3276 *3))) (-5 *1 (-877 *5 *3))
+ (-4 *3 (-876 *5)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-711 *2)) (-5 *4 (-793))
+ (-4 *2 (-13 (-319) (-10 -8 (-15 -3898 ((-419 $) $)))))
+ (-4 *5 (-1273 *2)) (-5 *1 (-513 *2 *5 *6)) (-4 *6 (-424 *2 *5)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-793)) (-4 *5 (-571))
(-5 *2
- (-2 (|:| R (-711 *6)) (|:| A (-711 *6)) (|:| |Ainv| (-711 *6))))
- (-5 *1 (-1009 *6)) (-5 *3 (-711 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-845)) (-5 *2 (-51)) (-5 *1 (-851)))))
-(((*1 *2)
- (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871))
- (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303))
- (-5 *1 (-1019 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871))
- (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303))
- (-5 *1 (-1138 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))))
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-1000 *5 *3)) (-4 *3 (-1273 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1207)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033)))
- (-5 *1 (-179 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-1080)) (-5 *1 (-50 *2 *3)) (-14 *3 (-663 (-1207)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-663 (-948))) (-4 *2 (-376)) (-5 *1 (-154 *4 *2 *5))
- (-14 *4 (-948)) (-14 *5 (-1024 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4))
- (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-663 (-1207)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-133))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1132)) (-4 *2 (-1080))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-560)) (-4 *2 (-571)) (-5 *1 (-642 *2 *4))
- (-4 *4 (-1273 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-730 *2)) (-4 *2 (-1080))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1080)) (-5 *1 (-757 *2 *3)) (-4 *3 (-748))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-663 *5)) (-5 *3 (-663 (-793))) (-4 *1 (-762 *4 *5))
- (-4 *4 (-1080)) (-4 *5 (-871))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *2)) (-4 *4 (-1080))
- (-4 *2 (-871))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-793)) (-4 *1 (-876 *2)) (-4 *2 (-1080))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-663 *6)) (-5 *3 (-663 (-793))) (-4 *1 (-979 *4 *5 *6))
- (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-793)) (-4 *1 (-979 *4 *5 *2)) (-4 *4 (-1080))
- (-4 *5 (-815)) (-4 *2 (-871))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-793)) (-4 *2 (-979 *4 (-545 *5) *5))
- (-5 *1 (-1157 *4 *5 *2)) (-4 *4 (-1080)) (-4 *5 (-871))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-793)) (-5 *2 (-975 *4)) (-5 *1 (-1240 *4))
- (-4 *4 (-1080)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391)))
- (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206))))
- (-5 *1 (-1206)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-663 (-663 (-793)))) (-5 *1 (-934 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1189)) (-5 *5 (-711 (-229))) (-5 *6 (-229))
- (-5 *7 (-711 (-560))) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-774)))))
-(((*1 *1) (-5 *1 (-636))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-897 (-948) (-948)))) (-5 *1 (-1002)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-779)))))
-(((*1 *1) (-5 *1 (-159))))
-(((*1 *2)
- (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-520)) (-5 *3 (-663 (-994))) (-5 *1 (-303)))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-4 *2 (-175)) (-4 *2 (-1080)) (-5 *1 (-736 *2 *3))
+ (-4 *3 (-670 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-856 *2)) (-4 *2 (-175)) (-4 *2 (-1080)))))
+(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-939)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-419 (-1201 *7)))
+ (-5 *1 (-936 *4 *5 *6 *7)) (-5 *3 (-1201 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-939)) (-4 *5 (-1273 *4)) (-5 *2 (-419 (-1201 *5)))
+ (-5 *1 (-937 *4 *5)) (-5 *3 (-1201 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1233))))
+ ((*1 *2 *1) (-12 (-5 *1 (-343 *2)) (-4 *2 (-871))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-482)) (-5 *4 (-948)) (-5 *2 (-1303)) (-5 *1 (-1300)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
(-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229))
- (-5 *2 (-1066)) (-5 *1 (-778)))))
+ (-5 *2 (-1066)) (-5 *1 (-774)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229))
+ (-5 *2 (-1066)) (-5 *1 (-774)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-948))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-793)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
(((*1 *2 *3 *4 *5 *6)
(|partial| -12 (-5 *4 (-1 *8 *8))
(-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -4210 *7) (|:| |sol?| (-114)))
- (-560) *7))
+ (-1 (-3 (-2 (|:| -4378 *7) (|:| |coeff| *7)) "failed") *7))
(-5 *6 (-663 (-421 *8))) (-4 *7 (-376)) (-4 *8 (-1273 *7))
(-5 *3 (-421 *8))
(-5 *2
@@ -11814,436 +13366,334 @@
(-663 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
(|:| |a0| *7)))
(-5 *1 (-588 *7 *8)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *1 *1) (-5 *1 (-1206)))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391)))
- (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206))))
- (-5 *1 (-1206)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-887)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-663 (-663 *7)))
- (-5 *1 (-463 *4 *5 *6 *7)) (-5 *3 (-663 *7))))
+ (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
+ (-5 *2 (-663 *4)) (-5 *1 (-1159 *3 *4)) (-4 *3 (-1273 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
+ (-5 *2 (-663 *3)) (-5 *1 (-1159 *4 *3)) (-4 *4 (-1273 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1207)) (-5 *2 (-114))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1207)) (-5 *2 (-114)) (-5 *1 (-630 *4))
+ (-4 *4 (-1132))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-630 *4)) (-4 *4 (-1132))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-858 *3)) (-4 *3 (-1132)) (-5 *2 (-114))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815))
- (-4 *7 (-871)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-663 (-663 *8)))
- (-5 *1 (-463 *5 *6 *7 *8)) (-5 *3 (-663 *8)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-842)) (-14 *5 (-1207)) (-5 *2 (-663 (-1266 *5 *4)))
- (-5 *1 (-1145 *4 *5)) (-5 *3 (-1266 *5 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1128 (-1128 *3))) (-5 *1 (-934 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033)))
- (-5 *1 (-179 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-871))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1247))))
+ (-12 (-4 *5 (-1132)) (-5 *2 (-114)) (-5 *1 (-912 *5 *3 *4))
+ (-4 *3 (-911 *5)) (-4 *4 (-633 (-915 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 *6)) (-4 *6 (-911 *5)) (-4 *5 (-1132))
+ (-5 *2 (-114)) (-5 *1 (-912 *5 *6 *4)) (-4 *4 (-633 (-915 *5))))))
+(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-5 *2 (-663 (-931 *3))) (-5 *1 (-931 *3)) (-4 *3 (-1132))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871))
- (-4 *6 (-1096 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -2016 *1) (|:| |upper| *1)))
- (-4 *1 (-1007 *4 *5 *3 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1080))
- (-14 *4 (-663 (-1207)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-51)) (-5 *2 (-114)) (-5 *1 (-52 *4)) (-4 *4 (-1247))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1080) (-871)))
- (-14 *4 (-663 (-1207)))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-694 *3)) (-4 *3 (-871))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-699 *3)) (-4 *3 (-871))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-918 *3)) (-4 *3 (-871)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1072)))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-864 *4)) (-5 *3 (-630 *4)) (-5 *5 (-114))
- (-4 *4 (-13 (-1233) (-29 *6)))
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *4 (-663 (-1207)))
+ (-5 *2 (-711 (-326 (-229)))) (-5 *1 (-208))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1132)) (-4 *6 (-927 *5)) (-5 *2 (-711 *6))
+ (-5 *1 (-714 *5 *6 *3 *4)) (-4 *3 (-385 *6))
+ (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4508)))))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-711 *4)) (-5 *3 (-793)) (-4 *4 (-1080))
+ (-5 *1 (-712 *4)))))
+(((*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-870)) (-5 *1 (-316 *3)))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-114)) (-5 *3 (-975 *6)) (-5 *4 (-1207))
+ (-5 *5 (-864 *7))
(-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560))))
- (-5 *1 (-228 *6 *4)))))
-(((*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1091))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
- (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
+ (-4 *7 (-13 (-1233) (-29 *6))) (-5 *1 (-228 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-114)) (-5 *3 (-1201 *6)) (-5 *4 (-864 *6))
+ (-4 *6 (-13 (-1233) (-29 *5)))
+ (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560))))
+ (-5 *1 (-228 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-5 *2 (-560)))))
+(((*1 *1) (-5 *1 (-624))) ((*1 *1) (-5 *1 (-625))))
+(((*1 *1) (-5 *1 (-146)))
+ ((*1 *1 *2) (-12 (-5 *2 (-1164 (-229))) (-5 *1 (-270))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-271)))))
+(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)) (-4 *2 (-1091))))
- ((*1 *1 *1) (-4 *1 (-870)))
- ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)) (-4 *2 (-1091))))
- ((*1 *1 *1) (-4 *1 (-1091))) ((*1 *1 *1) (-4 *1 (-1170))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-178))) (-5 *1 (-1116)))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-114))
- (-5 *6 (-229)) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))))
- (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE))))
- (-5 *2 (-1066)) (-5 *1 (-778)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1189) (-795))) (-5 *1 (-115)))))
-(((*1 *1) (-5 *1 (-146))))
-(((*1 *1) (-5 *1 (-625))))
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-848)) (-5 *3 (-663 (-1207))) (-5 *1 (-847)))))
+(((*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-560))))
+ ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-721)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-915 *3)) (-4 *3 (-1132))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-915 *4)) (-4 *4 (-1132)) (-5 *1 (-916 *4 *3))
+ (-4 *3 (-1247)))))
+(((*1 *2)
+ (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-432 *3)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-171 *4)) (-5 *1 (-184 *4 *3))
- (-4 *4 (-13 (-376) (-870))) (-4 *3 (-1273 *2)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))))
-(((*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-213)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-815))
- (-4 *8 (-871)) (-4 *9 (-1096 *6 *7 *8))
- (-5 *2
- (-2 (|:| -3192 (-663 *9)) (|:| -4297 *4) (|:| |ineq| (-663 *9))))
- (-5 *1 (-1019 *6 *7 *8 *9 *4)) (-5 *3 (-663 *9))
- (-4 *4 (-1102 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-815))
- (-4 *8 (-871)) (-4 *9 (-1096 *6 *7 *8))
- (-5 *2
- (-2 (|:| -3192 (-663 *9)) (|:| -4297 *4) (|:| |ineq| (-663 *9))))
- (-5 *1 (-1138 *6 *7 *8 *9 *4)) (-5 *3 (-663 *9))
- (-4 *4 (-1102 *6 *7 *8 *9)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)))))
-(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871))))
- ((*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-571)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1273 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-886))))
- ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-886)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1180 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1120 (-229)))
- (-5 *1 (-954))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1120 (-229)))
- (-5 *1 (-954))))
- ((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1120 (-229)))
- (-5 *1 (-956))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-972 (-229)) (-229))) (-5 *3 (-1120 (-229)))
- (-5 *1 (-956)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-915 *4)) (-4 *4 (-1132)) (-5 *1 (-913 *4 *3))
- (-4 *3 (-1132)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-466) (-1069 (-560)))) (-4 *3 (-571))
- (-5 *1 (-41 *3 *2)) (-4 *2 (-435 *3))
- (-4 *2
- (-13 (-376) (-310)
- (-10 -8 (-15 -3757 ((-1156 *3 (-630 $)) $))
- (-15 -3771 ((-1156 *3 (-630 $)) $))
- (-15 -1578 ($ (-1156 *3 (-630 $))))))))))
-(((*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302))))
- ((*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-1211)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1207)) (-5 *3 (-448)) (-4 *5 (-1132))
- (-5 *1 (-1137 *5 *4)) (-4 *4 (-435 *5)))))
+ (-12 (-5 *3 (-793)) (-5 *2 (-1185 (-1002))) (-5 *1 (-1002)))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-769)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1266 *5 *4)) (-4 *4 (-466)) (-4 *4 (-842))
- (-14 *5 (-1207)) (-5 *2 (-560)) (-5 *1 (-1145 *4 *5)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-51)) (-5 *1 (-915 *4))
- (-4 *4 (-1132)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1080)) (-5 *2 (-1297 *3)) (-5 *1 (-734 *3 *4))
- (-4 *4 (-1273 *3)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1207)) (-5 *1 (-630 *3)) (-4 *3 (-1132)))))
-(((*1 *1 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-871)) (-4 *3 (-175))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-646 *2 *3 *4)) (-4 *2 (-871))
- (-4 *3 (-13 (-175) (-739 (-421 (-560))))) (-14 *4 (-948))))
- ((*1 *1 *1) (-12 (-5 *1 (-699 *2)) (-4 *2 (-871))))
- ((*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-871))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080)))))
-(((*1 *1) (-5 *1 (-450))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
- (-5 *2
- (-2 (|:| |solns| (-663 *5))
- (|:| |maps| (-663 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1159 *3 *5)) (-4 *3 (-1273 *5)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1247)))))
+ (-12 (-5 *3 (-663 *5)) (-4 *5 (-435 *4)) (-4 *4 (-571))
+ (-5 *2 (-887)) (-5 *1 (-32 *4 *5)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-560)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-419 *2)) (-4 *2 (-571)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1217)))))
+(((*1 *1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-663
+ (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1201 *2))
+ (|:| |logand| (-1201 *2)))))
+ (-5 *4 (-663 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-376)) (-5 *1 (-597 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-571))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2096 *4)))
+ (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-630 *4)) (-4 *4 (-1132)) (-4 *2 (-1132))
- (-5 *1 (-631 *2 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1130 *3)) (-4 *3 (-1132)) (-5 *2 (-114)))))
+ (-12 (-4 *4 (-571)) (-5 *2 (-663 *3)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-432 *4)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-571))))
+ ((*1 *1 *1) (|partial| -4 *1 (-744))))
+(((*1 *1 *1) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-1132)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4509)) (-4 *1 (-618 *3 *4)) (-4 *3 (-1132))
+ (-4 *4 (-1247)) (-5 *2 (-1303)))))
+(((*1 *1 *1) (-4 *1 (-35)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1264 (-560))) (-4 *1 (-294 *3)) (-4 *3 (-1247))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-294 *3)) (-4 *3 (-1247)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-466))
- (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *1 (-1008 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-663 *7)) (-5 *3 (-114)) (-4 *7 (-1096 *4 *5 *6))
- (-4 *4 (-466)) (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871))
- (-5 *1 (-1008 *4 *5 *6 *7)))))
-(((*1 *1) (-5 *1 (-623))))
-(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
-(((*1 *1) (-4 *1 (-363))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-520)) (-5 *3 (-1134)) (-5 *1 (-303)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229)))
- (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))
- (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))
- (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033)))
- (-5 *1 (-179 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-421 (-560))) (-5 *1 (-119 *4)) (-14 *4 *3)
- (-5 *3 (-560))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-894 *3)) (-5 *2 (-560))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-421 (-560))) (-5 *1 (-895 *4)) (-14 *4 *3)
- (-5 *3 (-560))))
- ((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-421 (-560))) (-5 *1 (-896 *4 *5))
- (-5 *3 (-560)) (-4 *5 (-894 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1043)) (-5 *2 (-421 (-560)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1099 *2 *3)) (-4 *2 (-13 (-870) (-376)))
- (-4 *3 (-1273 *2))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1276 *2 *3)) (-4 *3 (-814))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -1578 (*2 (-1207))))
- (-4 *2 (-1080)))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34)))
- ((*1 *1) (-5 *1 (-130)))
- ((*1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793))
- (-4 *4 (-175))))
- ((*1 *1) (-5 *1 (-561))) ((*1 *1) (-5 *1 (-562)))
- ((*1 *1) (-5 *1 (-563))) ((*1 *1) (-5 *1 (-564)))
- ((*1 *1) (-4 *1 (-748))) ((*1 *1) (-5 *1 (-1207)))
- ((*1 *1) (-12 (-5 *1 (-1213 *2)) (-14 *2 (-948))))
- ((*1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-948))))
- ((*1 *1) (-5 *1 (-1253))) ((*1 *1) (-5 *1 (-1254)))
- ((*1 *1) (-5 *1 (-1255))) ((*1 *1) (-5 *1 (-1256))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1189)) (-4 *4 (-13 (-319) (-149)))
- (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815))
- (-5 *2
- (-663
- (-2 (|:| |eqzro| (-663 *7)) (|:| |neqzro| (-663 *7))
- (|:| |wcond| (-663 (-975 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1297 (-421 (-975 *4))))
- (|:| -1954 (-663 (-1297 (-421 (-975 *4))))))))))
- (-5 *1 (-953 *4 *5 *6 *7)) (-4 *7 (-979 *4 *6 *5)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-670 *3)) (-4 *3 (-1080))
+ (-5 *1 (-736 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-856 *3)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-663
- (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
- (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
- (|:| |relerr| (-229)))))
- (-5 *1 (-574))))
+ (-12 (-5 *2 (-1278 *3 *4 *5)) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376))
+ (-14 *4 (-1207)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-560))))
+ ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-419 *3)) (-4 *3 (-571))))
+ ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-721))))
((*1 *2 *1)
- (-12 (-4 *1 (-629 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132))
- (-5 *2 (-663 *3))))
+ (-12 (-4 *2 (-1132)) (-5 *1 (-735 *3 *2 *4)) (-4 *3 (-871))
+ (-14 *4
+ (-1 (-114) (-2 (|:| -1591 *3) (|:| -2030 *2))
+ (-2 (|:| -1591 *3) (|:| -2030 *2)))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-793)) (-4 *6 (-1132)) (-4 *3 (-927 *6))
+ (-5 *2 (-711 *3)) (-5 *1 (-714 *6 *3 *7 *4)) (-4 *7 (-385 *3))
+ (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4508)))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871)) (-4 *2 (-571)))))
+(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-721)) (-5 *1 (-315)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1313 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175))
+ (-5 *1 (-686 *3 *4))))
((*1 *2 *1)
- (-12
+ (|partial| -12 (-5 *2 (-686 *3 *4)) (-5 *1 (-1318 *3 *4))
+ (-4 *3 (-871)) (-4 *4 (-175)))))
+(((*1 *1 *1) (-5 *1 (-114))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391))
(-5 *2
- (-663
- (-2 (|:| |xinit| (-229)) (|:| |xend| (-229))
- (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229)))
- (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229)))
- (|:| |abserr| (-229)) (|:| |relerr| (-229)))))
- (-5 *1 (-825)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1))
- (-4 *1 (-1096 *3 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033) (-1233)))))
- ((*1 *1 *1) (-4 *1 (-649))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-376)) (-4 *6 (-1273 (-421 *2)))
- (-4 *2 (-1273 *5)) (-5 *1 (-219 *5 *2 *6 *3))
- (-4 *3 (-355 *5 *2 *6)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-777)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-560)) (-4 *1 (-1259 *4)) (-4 *4 (-1080)) (-4 *4 (-571))
- (-5 *2 (-421 (-975 *4)))))
+ (-2 (|:| -1430 *4) (|:| -2403 *4) (|:| |totalpts| (-560))
+ (|:| |success| (-114))))
+ (-5 *1 (-811)) (-5 *5 (-560)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-972 (-229))) (-5 *4 (-898)) (-5 *5 (-948))
+ (-5 *2 (-1303)) (-5 *1 (-482))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-560)) (-4 *1 (-1259 *4)) (-4 *4 (-1080)) (-4 *4 (-571))
- (-5 *2 (-421 (-975 *4))))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-971)) (-5 *3 (-560)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-560)) (-4 *1 (-1125 *3)) (-4 *3 (-1247)))))
-(((*1 *2 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1132))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1189)) (-5 *1 (-1229)))))
-(((*1 *1) (-5 *1 (-625))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1247)) (-5 *1 (-1163 *4 *2))
- (-4 *2 (-13 (-618 (-560) *4) (-10 -7 (-6 -4508) (-6 -4509))))))
+ (-12 (-5 *3 (-972 (-229))) (-5 *2 (-1303)) (-5 *1 (-482))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-663 (-972 (-229)))) (-5 *4 (-898)) (-5 *5 (-948))
+ (-5 *2 (-1303)) (-5 *1 (-482)))))
+(((*1 *1 *1) (-4 *1 (-35)))
((*1 *2 *2)
- (-12 (-4 *3 (-871)) (-4 *3 (-1247)) (-5 *1 (-1163 *3 *2))
- (-4 *2 (-13 (-618 (-560) *3) (-10 -7 (-6 -4508) (-6 -4509)))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-870) (-376))) (-5 *2 (-114)) (-5 *1 (-1092 *4 *3))
- (-4 *3 (-1273 *4)))))
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1132)) (-4 *5 (-1132))
+ (-4 *6 (-1132)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-706 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1282 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1259 *3))
+ (-5 *2 (-421 (-560))))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-793)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2))
+ (-4 *2 (-1273 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-560)) (-5 *1 (-718 *2)) (-4 *2 (-1273 *3)))))
+(((*1 *1) (-5 *1 (-592)))
+ ((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-883))))
+ ((*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1303)) (-5 *1 (-883))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1189)) (-5 *4 (-887)) (-5 *2 (-1303)) (-5 *1 (-883))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-1185 *4))
+ (-4 *4 (-1132)) (-4 *4 (-1247)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1069 (-560))))
+ (-4 *5 (-1273 *4)) (-5 *2 (-663 (-421 *5))) (-5 *1 (-1047 *4 *5))
+ (-5 *3 (-421 *5)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-505)) (-5 *2 (-713 (-593))) (-5 *1 (-593)))))
-(((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
- (-4 *3 (-380 *4))))
- ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
+ ((*1 *1 *1) (-4 *1 (-507)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3)))))
(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-931 *3)))))
-(((*1 *1) (-5 *1 (-623))))
(((*1 *2 *3)
- (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-560))
- (-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))))
+ (-12 (-5 *3 (-677 (-421 *2))) (-4 *2 (-1273 *4)) (-5 *1 (-832 *4 *2))
+ (-4 *4 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-678 *2 (-421 *2))) (-4 *2 (-1273 *4))
+ (-5 *1 (-832 *4 *2))
+ (-4 *4 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560))))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -3023 ((-419 $) $)))))
- (-4 *4 (-1273 *3))
+ (-12
(-5 *2
- (-2 (|:| -1954 (-711 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-711 *3))))
- (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-424 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-560)) (-4 *4 (-1273 *3))
+ (-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))))
+ (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-560)))))
+ ((*1 *2 *3 *4)
+ (-12
(-5 *2
- (-2 (|:| -1954 (-711 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-711 *3))))
- (-5 *1 (-790 *4 *5)) (-4 *5 (-424 *3 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 *3))
+ (-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))))
+ (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-560)))
+ (-5 *4 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))))
+ ((*1 *2 *3 *4)
+ (-12
(-5 *2
- (-2 (|:| -1954 (-711 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-711 *3))))
- (-5 *1 (-1016 *4 *3 *5 *6)) (-4 *6 (-746 *3 *5))))
+ (-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))))
+ (-5 *1 (-1052 *3)) (-4 *3 (-1273 (-560))) (-5 *4 (-421 (-560)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-421 (-560)))
+ (-5 *2 (-663 (-2 (|:| -4335 *5) (|:| -4346 *5)))) (-5 *1 (-1052 *3))
+ (-4 *3 (-1273 (-560))) (-5 *4 (-2 (|:| -4335 *5) (|:| -4346 *5)))))
((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 *3))
+ (-12
(-5 *2
- (-2 (|:| -1954 (-711 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-711 *3))))
- (-5 *1 (-1307 *4 *3 *5 *6)) (-4 *6 (-424 *3 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-560)))) (-4 *5 (-1273 *4))
- (-5 *2 (-2 (|:| |ans| (-421 *5)) (|:| |nosol| (-114))))
- (-5 *1 (-1046 *4 *5)) (-5 *3 (-421 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-114)) (-5 *1 (-851)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229)))
- (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1))))
- (-5 *2 (-1066)) (-5 *1 (-775)))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-793)) (-5 *4 (-948)) (-5 *2 (-1303)) (-5 *1 (-1300))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-793)) (-5 *4 (-948)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-887))))
- ((*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1303)) (-5 *1 (-992)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4))) (-4 *6 (-355 *3 *4 *5))
- (-5 *2 (-427 *4 (-421 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1297 *6)) (-4 *6 (-13 (-424 *4 *5) (-1069 *4)))
- (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4)) (-4 *3 (-319))
- (-5 *1 (-427 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-663 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-376))
- (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-948)) (-5 *4 (-898)) (-5 *2 (-1303)) (-5 *1 (-1300))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1774 *1) (|:| -2341 *1))) (-4 *1 (-319))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-4 *3 (-1132))
- (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1774 (-793)) (|:| -2341 (-793))))
- (-5 *1 (-793))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| -1774 *3) (|:| -2341 *3)))
- (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-611)) (-5 *1 (-292)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-793)) (-5 *3 (-972 *4)) (-4 *1 (-1165 *4))
- (-4 *4 (-1080))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-793)) (-5 *4 (-972 (-229))) (-5 *2 (-1303))
- (-5 *1 (-1301)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *4 (-898))
- (-5 *5 (-948)) (-5 *6 (-663 (-270))) (-5 *2 (-1300))
- (-5 *1 (-1299))))
+ (-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))))
+ (-5 *1 (-1053 *3)) (-4 *3 (-1273 (-421 (-560))))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *4 (-663 (-270)))
- (-5 *2 (-1300)) (-5 *1 (-1299)))))
-(((*1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1247)))))
-(((*1 *1) (-5 *1 (-623))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-560)) (-5 *2 (-114)) (-5 *1 (-494)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-114)) (-5 *5 (-1128 (-793))) (-5 *6 (-793))
- (-5 *2
- (-2 (|:| |contp| (-560))
- (|:| -3764 (-663 (-2 (|:| |irr| *3) (|:| -2929 (-560)))))))
- (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-663 (-174)))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-114)) (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560))))
- (-4 *3 (-13 (-27) (-1233) (-435 *6) (-10 -8 (-15 -1578 ($ *7)))))
- (-4 *7 (-870))
- (-4 *8
- (-13 (-1276 *3 *7) (-376) (-1233)
- (-10 -8 (-15 -2894 ($ $)) (-15 -2518 ($ $)))))
+ (-12
(-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))))
- (-5 *1 (-438 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1189)) (-4 *9 (-1014 *8))
- (-14 *10 (-1207)))))
-(((*1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793))
- (-4 *4 (-175)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-560)) (|has| *1 (-6 -4509)) (-4 *1 (-1286 *3))
- (-4 *3 (-1247)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033)))
- (-5 *1 (-179 *3)))))
+ (-663 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560))))))
+ (-5 *1 (-1053 *3)) (-4 *3 (-1273 (-421 (-560))))
+ (-5 *4 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-421 (-560)))
+ (-5 *2 (-663 (-2 (|:| -4335 *4) (|:| -4346 *4)))) (-5 *1 (-1053 *3))
+ (-4 *3 (-1273 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-421 (-560)))
+ (-5 *2 (-663 (-2 (|:| -4335 *5) (|:| -4346 *5)))) (-5 *1 (-1053 *3))
+ (-4 *3 (-1273 *5)) (-5 *4 (-2 (|:| -4335 *5) (|:| -4346 *5))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-808)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-663 (-2 (|:| |totdeg| (-793)) (|:| -1617 *3))))
+ (-5 *4 (-793)) (-4 *3 (-979 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815))
+ (-4 *7 (-871)) (-5 *1 (-464 *5 *6 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-252 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-630 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1207)))
+ (-4 *2 (-13 (-435 *5) (-27) (-1233)))
+ (-4 *5 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
+ (-5 *1 (-580 *5 *2 *6)) (-4 *6 (-1132)))))
(((*1 *2 *2)
(-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
(-4 *2 (-13 (-435 *3) (-1033)))))
@@ -12253,212 +13703,60 @@
((*1 *2 *2)
(-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
(-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
- ((*1 *1 *1) (-4 *1 (-296)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-419 *4)) (-4 *4 (-571))
- (-5 *2 (-663 (-2 (|:| -2115 (-793)) (|:| |logand| *4))))
- (-5 *1 (-332 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
- (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-686 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871))
- (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948))))
+ ((*1 *1 *1) (-4 *1 (-507)))
((*1 *2 *2)
(-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
(-5 *1 (-1192 *3))))
((*1 *2 *2)
(-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
- (-5 *1 (-1193 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-793)) (-4 *4 (-13 (-1080) (-739 (-421 (-560)))))
- (-4 *5 (-871)) (-5 *1 (-1314 *4 *5 *2)) (-4 *2 (-1320 *5 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-793)) (-5 *1 (-1318 *3 *4))
- (-4 *4 (-739 (-421 (-560)))) (-4 *3 (-871)) (-4 *4 (-175)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391)))
- (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303))
- (-5 *1 (-810))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391)))
- (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303))
- (-5 *1 (-810)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-704 *2)) (-4 *2 (-1132))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-663 *5) (-663 *5))) (-5 *4 (-560))
- (-5 *2 (-663 *5)) (-5 *1 (-704 *5)) (-4 *5 (-1132)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-663 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466))
- (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5))
- (-5 *1 (-1019 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-663 *7)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466))
- (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5))
- (-5 *1 (-1138 *3 *4 *5 *6 *7)))))
-(((*1 *1) (-5 *1 (-622))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-38 (-421 (-560)))) (-5 *1 (-1291 *3 *2))
- (-4 *2 (-1290 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)))))
+ (-5 *1 (-1193 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1189))
- (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-114))
- (-5 *1 (-228 *4 *5)) (-4 *5 (-13 (-1233) (-29 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))))
-(((*1 *2 *3) (-12 (-5 *3 (-663 *2)) (-5 *1 (-1222 *2)) (-4 *2 (-376)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-663 (-495 *5 *6))) (-5 *4 (-888 *5))
- (-14 *5 (-663 (-1207))) (-5 *2 (-495 *5 *6)) (-5 *1 (-650 *5 *6))
- (-4 *6 (-466))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-495 *5 *6))) (-5 *4 (-888 *5))
- (-14 *5 (-663 (-1207))) (-5 *2 (-495 *5 *6)) (-5 *1 (-650 *5 *6))
- (-4 *6 (-466)))))
+ (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946))))
+ ((*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3))
- (-4 *5 (-385 *3)) (-5 *2 (-663 *3))))
- ((*1 *2 *1)
- (-12 (|has| *1 (-6 -4508)) (-4 *1 (-503 *3)) (-4 *3 (-1247))
- (-5 *2 (-663 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1002)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-642 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -4210 *4) (|:| |sol?| (-114)))
- (-560) *4))
- (-4 *4 (-376)) (-4 *5 (-1273 *4)) (-5 *1 (-588 *4 *5)))))
+ (-12 (-4 *3 (-13 (-376) (-149)))
+ (-5 *2 (-663 (-2 (|:| -2030 (-793)) (|:| -1351 *4) (|:| |num| *4))))
+ (-5 *1 (-413 *3 *4)) (-4 *4 (-1273 *3)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-482)) (-5 *4 (-948)) (-5 *2 (-1303)) (-5 *1 (-1300)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *1 (-464 *3 *4 *5 *2)) (-4 *2 (-979 *3 *4 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-972 (-229)) (-972 (-229)))) (-5 *1 (-270))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1297 *1)) (-4 *1 (-341 *4)) (-4 *4 (-376))
- (-5 *2 (-711 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1297 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175))
- (-5 *2 (-711 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175))
- (-5 *2 (-1297 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175))
- (-4 *5 (-1273 *4)) (-5 *2 (-711 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175))
- (-4 *5 (-1273 *4)) (-5 *2 (-1297 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1297 *1)) (-4 *1 (-424 *4 *5)) (-4 *4 (-175))
- (-4 *5 (-1273 *4)) (-5 *2 (-711 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3))
- (-5 *2 (-1297 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1297 *1)) (-4 *1 (-432 *4)) (-4 *4 (-175))
- (-5 *2 (-711 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-1297 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1297 *3)) (-5 *1 (-659 *3 *4)) (-4 *3 (-376))
- (-14 *4 (-663 (-1207)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1297 *3)) (-5 *1 (-661 *3 *4)) (-4 *3 (-376))
- (-14 *4 (-663 (-1207)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 (-711 *5))) (-5 *3 (-711 *5)) (-4 *5 (-376))
- (-5 *2 (-1297 *5)) (-5 *1 (-1117 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1189)) (-4 *1 (-378 *3 *4)) (-4 *3 (-1132))
- (-4 *4 (-1132)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1207))
- (-5 *2 (-3 (|:| |fst| (-448)) (|:| -3280 "void"))) (-5 *1 (-1210)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-326 (-391))) (-5 *2 (-326 (-229))) (-5 *1 (-315)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1185 (-560))) (-5 *1 (-1191 *4)) (-4 *4 (-1080))
- (-5 *3 (-560)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-560)) (-5 *3 (-948)) (-5 *1 (-721))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-711 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-376)) (-5 *1 (-1009 *5)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-571)) (-4 *2 (-175)))))
-(((*1 *1 *1) (-5 *1 (-1094))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4))
- (-4 *4 (-363)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *6)) (-5 *4 (-1207)) (-4 *6 (-435 *5))
- (-4 *5 (-1132)) (-5 *2 (-663 (-630 *6))) (-5 *1 (-587 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-326 (-229)))) (-5 *4 (-793))
- (-5 *2 (-711 (-229))) (-5 *1 (-278)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-663 *2) *2 *2 *2)) (-4 *2 (-1132))
- (-5 *1 (-103 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1132)) (-5 *1 (-103 *2)))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-773)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-663 (-972 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-663 (-972 *3))) (-4 *3 (-1080)) (-4 *1 (-1165 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-663 (-663 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-663 (-972 *3))) (-4 *1 (-1165 *3)) (-4 *3 (-1080)))))
-(((*1 *2 *1) (-12 (-5 *2 (-845)) (-5 *1 (-844)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-571) (-149)))
- (-5 *2 (-2 (|:| -4198 *3) (|:| -4210 *3))) (-5 *1 (-1269 *4 *3))
- (-4 *3 (-1273 *4)))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-114) *5 *5)) (-5 *4 (-1 (-114) *6 *6))
- (-4 *5 (-13 (-1132) (-34))) (-4 *6 (-13 (-1132) (-34)))
- (-5 *2 (-114)) (-5 *1 (-1171 *5 *6)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-778)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-5 *2 (-987 (-1201 *4))) (-5 *1 (-369 *4))
- (-5 *3 (-1201 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1207))
- (-4 *5 (-13 (-1069 (-560)) (-466) (-660 (-560))))
- (-5 *2 (-2 (|:| -4273 *3) (|:| |nconst| *3))) (-5 *1 (-581 *5 *3))
- (-4 *3 (-13 (-27) (-1233) (-435 *5))))))
-(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-267)))))
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-781)))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-933 *3)) (-4 *3 (-1132)) (-5 *2 (-1128 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1132)) (-5 *2 (-1128 (-663 *4))) (-5 *1 (-934 *4))
- (-5 *3 (-663 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1132)) (-5 *2 (-1128 (-1128 *4))) (-5 *1 (-934 *4))
- (-5 *3 (-1128 *4))))
+ (-12 (-5 *3 (-560)) (-4 *1 (-335 *2 *4)) (-4 *4 (-133))
+ (-4 *2 (-1132))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-374 *2)) (-4 *2 (-1132))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-4 *1 (-399 *2)) (-4 *2 (-1132))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-1128 *3)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-670 *3)) (-4 *3 (-1080))
- (-5 *1 (-736 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-856 *3)))))
+ (-12 (-5 *3 (-560)) (-4 *2 (-1132)) (-5 *1 (-671 *2 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1227)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1132)) (-4 *5 (-1132))
- (-4 *6 (-1132)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-706 *4 *5 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
+ (-12 (-5 *3 (-711 (-421 (-975 (-560))))) (-5 *2 (-663 (-326 (-560))))
+ (-5 *1 (-1059)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946))))
- ((*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
-(((*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-663 (-889))))))
+ (-12 (-4 *4 (-13 (-376) (-870)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -2609 (-419 *3))))
+ (-5 *1 (-184 *4 *3)) (-4 *3 (-1273 (-171 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-136)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
+ ((*1 *1 *1) (-4 *1 (-507)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3)))))
(((*1 *1 *2 *3 *4)
(-12 (-5 *2 (-1207)) (-5 *3 (-663 (-975 (-560))))
(-5 *4 (-326 (-171 (-391)))) (-5 *1 (-342))))
@@ -12529,96 +13827,315 @@
(-12 (-5 *2 (-1207)) (-5 *3 (-326 (-723))) (-5 *1 (-342))))
((*1 *1 *2 *3) (-12 (-5 *2 (-1207)) (-5 *3 (-1189)) (-5 *1 (-342))))
((*1 *1 *1 *1) (-5 *1 (-887))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -3822 (-711 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-711 *3))))
+ (-4 *3 (-13 (-319) (-10 -8 (-15 -3898 ((-419 $) $)))))
+ (-4 *4 (-1273 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))))
+(((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-663
+ (-2 (|:| |eqzro| (-663 *8)) (|:| |neqzro| (-663 *8))
+ (|:| |wcond| (-663 (-975 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1297 (-421 (-975 *5))))
+ (|:| -3822 (-663 (-1297 (-421 (-975 *5))))))))))
+ (-5 *4 (-1189)) (-4 *5 (-13 (-319) (-149))) (-4 *8 (-979 *5 *7 *6))
+ (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-560))
+ (-5 *1 (-953 *5 *6 *7 *8)))))
+(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301))))
+ ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-663 (-255 *4 *5))) (-5 *2 (-255 *4 *5))
+ (-14 *4 (-663 (-1207))) (-4 *5 (-466)) (-5 *1 (-650 *4 *5)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-114)) (-5 *1 (-609 *3)) (-4 *3 (-1080)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1290 *4))
+ (-4 *4 (-38 (-421 (-560))))
+ (-5 *2 (-1 (-1185 *4) (-1185 *4) (-1185 *4))) (-5 *1 (-1291 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
+ (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
+ ((*1 *1 *1) (-4 *1 (-507)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-864 (-229)))) (-5 *4 (-229)) (-5 *2 (-663 *4))
+ (-5 *1 (-278)))))
(((*1 *1 *1 *1) (-5 *1 (-114))) ((*1 *1 *1 *1) (-4 *1 (-125))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1))
+ (-4 *1 (-1096 *3 *4 *5)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1185 *4)) (-5 *3 (-560)) (-4 *4 (-1080))
+ (-5 *1 (-1191 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-560)) (-5 *1 (-1287 *3 *4 *5)) (-4 *3 (-1080))
+ (-14 *4 (-1207)) (-14 *5 *3))))
+(((*1 *2 *3) (-12 (-5 *3 (-975 (-229))) (-5 *2 (-229)) (-5 *1 (-315)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7))
+ (-5 *2 (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4))))
+ (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1297 *4)) (-4 *4 (-1080)) (-4 *2 (-1273 *4))
+ (-5 *1 (-458 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-421 (-1201 (-326 *5)))) (-5 *3 (-1297 (-326 *5)))
+ (-5 *4 (-560)) (-4 *5 (-571)) (-5 *1 (-1161 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1226)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-711 (-421 (-975 (-560)))))
+ (-5 *2 (-663 (-711 (-326 (-560))))) (-5 *1 (-1059)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
+ (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
+ ((*1 *1 *1) (-4 *1 (-507)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-948)) (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1297 (-3 (-482) "undefined"))) (-5 *1 (-1300)))))
(((*1 *2 *3 *4)
(-12 (-5 *4 (-1 (-1185 *3))) (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3))
(-4 *3 (-38 (-421 (-560)))) (-4 *3 (-1080)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-419 *5)) (-4 *5 (-571))
+ (-12 (-4 *5 (-1132)) (-4 *2 (-927 *5)) (-5 *1 (-714 *5 *2 *3 *4))
+ (-4 *3 (-385 *2)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4508)))))))
+(((*1 *2 *2) (-12 (-5 *2 (-1120 (-864 (-229)))) (-5 *1 (-315)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
+ (-12
+ (-5 *3
+ (-2 (|:| |det| *12) (|:| |rows| (-663 (-560)))
+ (|:| |cols| (-663 (-560)))))
+ (-5 *4 (-711 *12)) (-5 *5 (-663 (-421 (-975 *9))))
+ (-5 *6 (-663 (-663 *12))) (-5 *7 (-793)) (-5 *8 (-560))
+ (-4 *9 (-13 (-319) (-149))) (-4 *12 (-979 *9 *11 *10))
+ (-4 *10 (-13 (-871) (-633 (-1207)))) (-4 *11 (-815))
(-5 *2
- (-2 (|:| -3205 (-793)) (|:| -2115 *5) (|:| |radicand| (-663 *5))))
- (-5 *1 (-332 *5)) (-5 *4 (-793))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-560)))))
-(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1066)) (-5 *1 (-862))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-326 (-391)))) (-5 *4 (-663 (-391)))
- (-5 *2 (-1066)) (-5 *1 (-862)))))
-(((*1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793))
- (-4 *4 (-175)))))
+ (-2 (|:| |eqzro| (-663 *12)) (|:| |neqzro| (-663 *12))
+ (|:| |wcond| (-663 (-975 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1297 (-421 (-975 *9))))
+ (|:| -3822 (-663 (-1297 (-421 (-975 *9)))))))))
+ (-5 *1 (-953 *9 *10 *11 *12)))))
+(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-943 *3)) (-4 *3 (-319)))))
+(((*1 *1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -3941 (-663 (-887))) (|:| -1651 (-663 (-887)))
+ (|:| |presup| (-663 (-887))) (|:| -1637 (-663 (-887)))
+ (|:| |args| (-663 (-887)))))
+ (-5 *1 (-1207))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-663 (-887)))) (-5 *1 (-1207)))))
(((*1 *1) (-4 *1 (-998))))
-(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1249 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))
- (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391))
+ (-5 *2
+ (-2 (|:| -1430 *4) (|:| -2403 *4) (|:| |totalpts| (-560))
+ (|:| |success| (-114))))
+ (-5 *1 (-811)) (-5 *5 (-560)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *7)) (-4 *7 (-871))
+ (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-815))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1297 (-421 *8)) "failed"))
+ (|:| -3822 (-663 (-1297 (-421 *8))))))
+ (-5 *1 (-691 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-663 (-229)))) (-5 *1 (-956)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-1273 (-421 (-560))))
+ (-5 *2 (-2 (|:| |den| (-560)) (|:| |gcdnum| (-560))))
+ (-5 *1 (-942 *3 *4)) (-4 *4 (-1273 (-421 *3)))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-571)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))
- (-4 *7 (-1022 *4)) (-4 *2 (-708 *7 *8 *9))
- (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-708 *4 *5 *6))
- (-4 *8 (-385 *7)) (-4 *9 (-385 *7))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080))
- (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-376))))
+ (-12 (-4 *4 (-1273 (-421 *2))) (-5 *2 (-560)) (-5 *1 (-942 *4 *3))
+ (-4 *3 (-1273 (-421 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
((*1 *2 *2)
- (|partial| -12 (-4 *3 (-376)) (-4 *3 (-175)) (-4 *4 (-385 *3))
- (-4 *5 (-385 *3)) (-5 *1 (-710 *3 *4 *5 *2))
- (-4 *2 (-708 *3 *4 *5))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-711 *2)) (-4 *2 (-376)) (-4 *2 (-1080))))
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1154 *2 *3 *4 *5)) (-4 *3 (-1080))
- (-4 *4 (-245 *2 *3)) (-4 *5 (-245 *2 *3)) (-4 *3 (-376))))
- ((*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-1218 *3)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1189))
- (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-128 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-560))))
- ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-931 *3)) (-4 *3 (-1132))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376)))
- (-4 *3 (-1273 *4)) (-5 *2 (-560))))
+ (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
+ (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
+ ((*1 *1 *1) (-4 *1 (-507)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559))
+ (-5 *2 (-421 (-560)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-421 (-560))) (-5 *1 (-419 *3)) (-4 *3 (-559))
+ (-4 *3 (-571))))
+ ((*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-421 (-560)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-559))
+ (-5 *2 (-421 (-560)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-421 (-560))) (-5 *1 (-854 *3)) (-4 *3 (-559))
+ (-4 *3 (-1132))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-421 (-560))) (-5 *1 (-864 *3)) (-4 *3 (-559))
+ (-4 *3 (-1132))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1029 *3)) (-4 *3 (-175)) (-4 *3 (-559))
+ (-5 *2 (-421 (-560)))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-571) (-1069 *2) (-660 *2) (-466)))
- (-5 *2 (-560)) (-5 *1 (-1148 *4 *3))
- (-4 *3 (-13 (-27) (-1233) (-435 *4)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-864 *3))
- (-4 *3 (-13 (-27) (-1233) (-435 *6)))
- (-4 *6 (-13 (-571) (-1069 *2) (-660 *2) (-466))) (-5 *2 (-560))
- (-5 *1 (-1148 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-1189))
- (-4 *6 (-13 (-571) (-1069 *2) (-660 *2) (-466))) (-5 *2 (-560))
- (-5 *1 (-1148 *6 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *6)))))
+ (-12 (-5 *2 (-421 (-560))) (-5 *1 (-1039 *3)) (-4 *3 (-1069 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-419 *5)) (-4 *5 (-571))
+ (-5 *2
+ (-2 (|:| -2030 (-793)) (|:| -2625 *5) (|:| |radicand| (-663 *5))))
+ (-5 *1 (-332 *5)) (-5 *4 (-793))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-560)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1066)) (-5 *1 (-315))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-466)) (-5 *2 (-560))
- (-5 *1 (-1149 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-864 (-421 (-975 *6))))
- (-5 *3 (-421 (-975 *6))) (-4 *6 (-466)) (-5 *2 (-560))
- (-5 *1 (-1149 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-421 (-975 *6))) (-5 *4 (-1207))
- (-5 *5 (-1189)) (-4 *6 (-466)) (-5 *2 (-560)) (-5 *1 (-1149 *6))))
+ (-12 (-5 *3 (-663 (-1066))) (-5 *2 (-1066)) (-5 *1 (-315))))
+ ((*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-673 *3)) (-4 *3 (-1247))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-673 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *1 *1) (-5 *1 (-1094)))
((*1 *2 *3)
- (|partial| -12 (-5 *2 (-560)) (-5 *1 (-1230 *3)) (-4 *3 (-1080)))))
-(((*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1189)) (-5 *1 (-732)))))
-(((*1 *2 *1) (-12 (-5 *2 (-948)) (-5 *1 (-1002)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-569 *3)) (-4 *3 (-13 (-418) (-1233))) (-5 *2 (-114)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-229))
- (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))))
- (-5 *2 (-1066)) (-5 *1 (-771))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-229))
- (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))))
- (-5 *8 (-402)) (-5 *2 (-1066)) (-5 *1 (-771)))))
+ (-12 (-5 *3 (-1185 (-1185 *4))) (-5 *2 (-1185 *4)) (-5 *1 (-1186 *4))
+ (-4 *4 (-1247))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-1116))) (-5 *1 (-303)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-376)) (-4 *1 (-341 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1297 *3)) (-4 *3 (-1273 *4)) (-4 *4 (-1252))
+ (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1273 (-421 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1297 *1)) (-4 *4 (-175))
+ (-4 *1 (-380 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1297 *1)) (-4 *4 (-175))
+ (-4 *1 (-383 *4 *5)) (-4 *5 (-1273 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-424 *3 *4))
+ (-4 *4 (-1273 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-432 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-451)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175))))
+ ((*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-431 *3 *2)) (-4 *3 (-432 *2))))
+ ((*1 *2) (-12 (-4 *1 (-432 *2)) (-4 *2 (-175)))))
+(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-781)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-663 *10)) (-5 *5 (-114)) (-4 *10 (-1102 *6 *7 *8 *9))
+ (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871))
+ (-4 *9 (-1096 *6 *7 *8))
+ (-5 *2
+ (-663
+ (-2 (|:| -2439 (-663 *9)) (|:| -3859 *10) (|:| |ineq| (-663 *9)))))
+ (-5 *1 (-1019 *6 *7 *8 *9 *10)) (-5 *3 (-663 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-663 *10)) (-5 *5 (-114)) (-4 *10 (-1102 *6 *7 *8 *9))
+ (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871))
+ (-4 *9 (-1096 *6 *7 *8))
+ (-5 *2
+ (-663
+ (-2 (|:| -2439 (-663 *9)) (|:| -3859 *10) (|:| |ineq| (-663 *9)))))
+ (-5 *1 (-1138 *6 *7 *8 *9 *10)) (-5 *3 (-663 *9)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-1189)) (-5 *5 (-711 (-229)))
+ (-5 *2 (-1066)) (-5 *1 (-769)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2096 *4)))
+ (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-975 *4)) (-4 *4 (-1080)) (-4 *4 (-633 *2))
+ (-5 *2 (-391)) (-5 *1 (-807 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-975 *5)) (-5 *4 (-948)) (-4 *5 (-1080))
+ (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571))
+ (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-948)) (-4 *5 (-571))
+ (-4 *5 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-571)) (-4 *4 (-871))
+ (-4 *4 (-633 *2)) (-5 *2 (-391)) (-5 *1 (-807 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-948)) (-4 *5 (-571))
+ (-4 *5 (-871)) (-4 *5 (-633 *2)) (-5 *2 (-391))
+ (-5 *1 (-807 *5)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-863)) (-5 *2 (-1066)) (-5 *1 (-862))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-326 (-391)))) (-5 *4 (-663 (-391)))
+ (-5 *2 (-1066)) (-5 *1 (-862)))))
+(((*1 *1) (-5 *1 (-1094))))
+(((*1 *1) (-5 *1 (-623))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1080)) (-5 *2 (-663 *1)) (-4 *1 (-1165 *3)))))
+ (-12 (-5 *2 (-663 (-931 *3))) (-5 *1 (-934 *3)) (-4 *3 (-1132)))))
+(((*1 *1 *1) (-5 *1 (-1094))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1080)) (-4 *2 (-708 *4 *5 *6))
+ (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1273 *4)) (-4 *5 (-385 *4))
+ (-4 *6 (-385 *4)))))
(((*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-466))))
((*1 *1 *1 *1) (-4 *1 (-466)))
((*1 *2 *3)
@@ -12647,3324 +14164,998 @@
((*1 *2 *2 *1)
(-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
(-4 *4 (-871)) (-4 *2 (-466)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-954))))
- ((*1 *2 *1) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-956)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-560)) (-5 *5 (-114)) (-5 *6 (-711 (-229)))
- (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-777)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1207))
- (-4 *5 (-13 (-571) (-1069 (-560)) (-660 (-560))))
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376))
(-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-663 (-630 *3)))
- (|:| |vals| (-663 *3))))
- (-5 *1 (-288 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-663 (-326 (-229)))) (-5 *3 (-229)) (-5 *2 (-114))
- (-5 *1 (-213)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229)))
- (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP))))
- (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233))))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-972 (-229)))) (-5 *1 (-1300)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1120 (-229)))
- (-5 *5 (-114)) (-5 *2 (-1301)) (-5 *1 (-267)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-376))
- (-4 *5 (-13 (-385 *4) (-10 -7 (-6 -4509))))
- (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4509))))
- (-5 *1 (-689 *4 *5 *2 *3)) (-4 *3 (-708 *4 *5 *2))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1297 *4)) (-5 *3 (-711 *4)) (-4 *4 (-376))
- (-5 *1 (-690 *4))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-663 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-376))
- (-5 *1 (-836 *2 *3)) (-4 *3 (-680 *2))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
- (-5 *1 (-1159 *3 *2)) (-4 *3 (-1273 *2)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))))
+ (-2 (|:| |ir| (-597 (-421 *6))) (|:| |specpart| (-421 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-588 *5 *6)) (-5 *3 (-421 *6)))))
(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1247)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6))
- (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4))
- (-4 *4 (-363)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-571)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))
- (-5 *1 (-1238 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-663 *6) "failed") (-560) *6 *6)) (-4 *6 (-376))
- (-4 *7 (-1273 *6))
- (-5 *2 (-2 (|:| |answer| (-597 (-421 *7))) (|:| |a0| *6)))
- (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1322 *4 *2)) (-4 *1 (-387 *4 *2)) (-4 *4 (-871))
- (-4 *2 (-175))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1317 *3 *2)) (-4 *3 (-871)) (-4 *2 (-1080))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-841 *4)) (-4 *1 (-1317 *4 *2)) (-4 *4 (-871))
- (-4 *2 (-1080))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-1080)) (-5 *1 (-1321 *2 *3)) (-4 *3 (-868)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-1210)) (-5 *3 (-1207)))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-773)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080))
- (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871))
- (-4 *6 (-1096 *3 *4 *5)) (-5 *1 (-643 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *2 (-1140 *3 *4 *5 *6)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1151)) (-4 *4 (-363))
- (-5 *1 (-542 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1189)) (-4 *1 (-378 *2 *4)) (-4 *2 (-1132))
- (-4 *4 (-1132))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871))
- (-4 *3 (-1096 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-663 *4))
- (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4))))))
- (-5 *1 (-1100 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-663 *4))
- (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4))))))
- (-5 *1 (-1176 *5 *6 *7 *3 *4)) (-4 *4 (-1140 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-263 *3)) (-4 *3 (-1247)) (-5 *2 (-793))))
- ((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-793))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1080))
- (-4 *2 (-13 (-418) (-1069 *4) (-376) (-1233) (-296)))
- (-5 *1 (-457 *4 *3 *2)) (-4 *3 (-1273 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-630 *3)) (-4 *3 (-1132))))
- ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887))))
- ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-887)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-171 (-229))))
- (-5 *2 (-1066)) (-5 *1 (-776)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-363)) (-5 *3 (-560)) (-5 *2 (-1219 (-948) (-793))))))
-(((*1 *1 *1) (-5 *1 (-229))) ((*1 *1 *1) (-5 *1 (-391)))
- ((*1 *1) (-5 *1 (-391))))
-(((*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-159)))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-560)) (-5 *1 (-1185 *3)) (-4 *3 (-1247))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
+ (-12 (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)) (-5 *2 (-663 *6))
+ (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-979 *3 *5 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-571))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -1938 *3)))
+ (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-663 (-972 (-229)))))
- (-5 *2 (-663 (-1120 (-229)))) (-5 *1 (-957)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080))
- (-5 *2 (-114))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-114)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1080))
- (-4 *4 (-868)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-904 *6)) (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270)))
- (-4 *6 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1164 (-229)))
- (-5 *1 (-264 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-904 *5)) (-5 *4 (-1123 (-391)))
- (-4 *5 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1164 (-229)))
- (-5 *1 (-264 *5))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270)))
- (-5 *2 (-1164 (-229))) (-5 *1 (-264 *3))
- (-4 *3 (-13 (-633 (-549)) (-1132)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1123 (-391))) (-5 *2 (-1164 (-229))) (-5 *1 (-264 *3))
- (-4 *3 (-13 (-633 (-549)) (-1132)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-907 *6)) (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270)))
- (-4 *6 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1164 (-229)))
- (-5 *1 (-264 *6))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-907 *5)) (-5 *4 (-1123 (-391)))
- (-4 *5 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1164 (-229)))
- (-5 *1 (-264 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391)))
- (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-265))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391)))
- (-5 *2 (-1164 (-229))) (-5 *1 (-265))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1120 (-391)))
- (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-265))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1120 (-391)))
- (-5 *2 (-1164 (-229))) (-5 *1 (-265))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1120 (-391)))
- (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-265))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1120 (-391)))
- (-5 *2 (-1164 (-229))) (-5 *1 (-265))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1120 (-391)))
- (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-265))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1120 (-391)))
- (-5 *2 (-1164 (-229))) (-5 *1 (-265))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1120 (-391)))
- (-5 *5 (-663 (-270))) (-5 *2 (-1164 (-229))) (-5 *1 (-265))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1120 (-391)))
- (-5 *2 (-1164 (-229))) (-5 *1 (-265)))))
+ (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3))
+ (-4 *3 (-13 (-376) (-1233) (-1033))))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1080)) (-5 *2 (-560)) (-5 *1 (-457 *4 *3 *5))
- (-4 *3 (-1273 *4))
- (-4 *5 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1069 (-560)) (-660 (-560)) (-466)))
- (-5 *2 (-864 *4)) (-5 *1 (-325 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1233) (-435 *3))) (-14 *5 (-1207))
- (-14 *6 *4)))
+ (-12 (-5 *3 (-711 *2)) (-4 *4 (-1273 *2))
+ (-4 *2 (-13 (-319) (-10 -8 (-15 -3898 ((-419 $) $)))))
+ (-5 *1 (-513 *2 *4 *5)) (-4 *5 (-424 *2 *4))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-13 (-1069 (-560)) (-660 (-560)) (-466)))
- (-5 *2 (-864 *4)) (-5 *1 (-1284 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1233) (-435 *3))) (-14 *5 (-1207))
- (-14 *6 *4))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1207)) (-5 *3 (-391)) (-5 *1 (-1094)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1132)) (-4 *5 (-1132))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-705 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-523 *3 *2)) (-4 *3 (-102)) (-4 *2 (-874)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-466))))
- ((*1 *1 *1 *1) (-4 *1 (-466))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571))
- (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-663 *7)) (-5 *3 (-114)) (-4 *7 (-1096 *4 *5 *6))
- (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871))
- (-5 *1 (-1008 *4 *5 *6 *7)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-342)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-948)) (-5 *2 (-1201 *3)) (-5 *1 (-1222 *3))
- (-4 *3 (-376)))))
-(((*1 *1) (-5 *1 (-622))) ((*1 *1) (-5 *1 (-624)))
- ((*1 *1) (-5 *1 (-625))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1080) (-660 *5)))
- (-4 *5 (-376)) (-4 *5 (-571)) (-5 *2 (-1297 *5))
- (-5 *1 (-658 *5 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1080) (-660 *5)))
- (-1937 (-4 *5 (-376))) (-4 *5 (-571)) (-5 *2 (-1297 (-421 *5)))
- (-5 *1 (-658 *5 *4)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-1166)) (-5 *3 (-303)) (-5 *1 (-170)))))
-(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-601 *3)) (-4 *3 (-559)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-342)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-342)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-663 *1)) (|has| *1 (-6 -4509)) (-4 *1 (-1041 *3))
- (-4 *3 (-1247)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-931 *4)) (-4 *4 (-1132)) (-5 *2 (-663 (-793)))
- (-5 *1 (-934 *4)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1207)) (-5 *3 (-114)) (-5 *1 (-915 *4))
- (-4 *4 (-1132)))))
+ (-12 (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2))
+ (-4 *5 (-245 *3 *2)) (-4 *2 (-1080)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-114)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 *2)) (-4 *2 (-1273 *4)) (-5 *1 (-553 *4 *2 *5 *6))
- (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-793))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 (-888 *5))) (-14 *5 (-663 (-1207))) (-4 *6 (-466))
- (-5 *2 (-663 (-663 (-255 *5 *6)))) (-5 *1 (-485 *5 *6 *7))
- (-5 *3 (-663 (-255 *5 *6))) (-4 *7 (-466)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-305 (-864 *3))) (-4 *3 (-13 (-27) (-1233) (-435 *5)))
- (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560))))
- (-5 *2
- (-3 (-864 *3)
- (-2 (|:| |leftHandLimit| (-3 (-864 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-864 *3) "failed")))
- "failed"))
- (-5 *1 (-655 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-305 *3)) (-5 *5 (-1189))
- (-4 *3 (-13 (-27) (-1233) (-435 *6)))
- (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560))))
- (-5 *2 (-864 *3)) (-5 *1 (-655 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-305 (-864 (-975 *5)))) (-4 *5 (-466))
- (-5 *2
- (-3 (-864 (-421 (-975 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-864 (-421 (-975 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-864 (-421 (-975 *5))) "failed")))
- "failed"))
- (-5 *1 (-656 *5)) (-5 *3 (-421 (-975 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-305 (-421 (-975 *5)))) (-5 *3 (-421 (-975 *5)))
- (-4 *5 (-466))
- (-5 *2
- (-3 (-864 *3)
- (-2 (|:| |leftHandLimit| (-3 (-864 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-864 *3) "failed")))
- "failed"))
- (-5 *1 (-656 *5))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-305 (-421 (-975 *6)))) (-5 *5 (-1189))
- (-5 *3 (-421 (-975 *6))) (-4 *6 (-466)) (-5 *2 (-864 *3))
- (-5 *1 (-656 *6)))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *3 *2)
- (-12
+ (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *5 (-381))
+ (-5 *2 (-793)))))
+(((*1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793))
+ (-4 *4 (-175)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391))
(-5 *2
- (-663
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-793)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-815)) (-4 *6 (-979 *4 *3 *5)) (-4 *4 (-466)) (-4 *5 (-871))
- (-5 *1 (-464 *4 *3 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))))
-(((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-345)))))
-(((*1 *2 *1) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256)))))
+ (-2 (|:| -1430 *4) (|:| -2403 *4) (|:| |totalpts| (-560))
+ (|:| |success| (-114))))
+ (-5 *1 (-811)) (-5 *5 (-560)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1247)) (-5 *2 (-793)) (-5 *1 (-185 *4 *3))
- (-4 *3 (-696 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-571)) (-5 *2 (-663 (-793))) (-5 *1 (-1000 *4 *3))
- (-4 *3 (-1273 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-564))))))
-(((*1 *2 *2) (-12 (-5 *1 (-601 *2)) (-4 *2 (-559)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-1132))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-1297
- (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229))
- (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -2317 (-560))
- (|:| -3766 (-560)) (|:| |spline| (-560)) (|:| -2206 (-560))
- (|:| |axesColor| (-898)) (|:| -2431 (-560))
- (|:| |unitsColor| (-898)) (|:| |showing| (-560)))))
- (-5 *1 (-1300)))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-560)) (-5 *5 (-114)) (-5 *6 (-711 (-229)))
- (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))
- (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-775)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))))
-(((*1 *1)
- (-12 (-4 *3 (-1132)) (-5 *1 (-910 *2 *3 *4)) (-4 *2 (-1132))
- (-4 *4 (-688 *3))))
- ((*1 *1) (-12 (-5 *1 (-913 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-777)))))
-(((*1 *2 *2) (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1300))
- (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1132)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1123 (-391))) (-5 *2 (-1300)) (-5 *1 (-264 *3))
- (-4 *3 (-13 (-633 (-549)) (-1132)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-902 *6)) (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270)))
- (-4 *6 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1300))
- (-5 *1 (-264 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-902 *5)) (-5 *4 (-1123 (-391)))
- (-4 *5 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1300))
- (-5 *1 (-264 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-904 *6)) (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270)))
- (-4 *6 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1301))
- (-5 *1 (-264 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-904 *5)) (-5 *4 (-1123 (-391)))
- (-4 *5 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1301))
- (-5 *1 (-264 *5))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270))) (-5 *2 (-1301))
- (-5 *1 (-264 *3)) (-4 *3 (-13 (-633 (-549)) (-1132)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1123 (-391))) (-5 *2 (-1301)) (-5 *1 (-264 *3))
- (-4 *3 (-13 (-633 (-549)) (-1132)))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-907 *6)) (-5 *4 (-1123 (-391))) (-5 *5 (-663 (-270)))
- (-4 *6 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1301))
- (-5 *1 (-264 *6))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-907 *5)) (-5 *4 (-1123 (-391)))
- (-4 *5 (-13 (-633 (-549)) (-1132))) (-5 *2 (-1301))
- (-5 *1 (-264 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1120 (-391)))
- (-5 *5 (-663 (-270))) (-5 *2 (-1300)) (-5 *1 (-265))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1120 (-391)))
- (-5 *2 (-1300)) (-5 *1 (-265))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-902 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391)))
- (-5 *5 (-663 (-270))) (-5 *2 (-1300)) (-5 *1 (-265))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-902 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391)))
- (-5 *2 (-1300)) (-5 *1 (-265))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391)))
- (-5 *5 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-265))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-904 (-1 (-229) (-229)))) (-5 *4 (-1120 (-391)))
- (-5 *2 (-1301)) (-5 *1 (-265))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1120 (-391)))
- (-5 *5 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-265))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-972 (-229)) (-229))) (-5 *4 (-1120 (-391)))
- (-5 *2 (-1301)) (-5 *1 (-265))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1120 (-391)))
- (-5 *5 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-265))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1120 (-391)))
- (-5 *2 (-1301)) (-5 *1 (-265))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1120 (-391)))
- (-5 *5 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-265))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-972 (-229)) (-229) (-229))) (-5 *4 (-1120 (-391)))
- (-5 *2 (-1301)) (-5 *1 (-265))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1120 (-391)))
- (-5 *5 (-663 (-270))) (-5 *2 (-1301)) (-5 *1 (-265))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-907 (-1 (-229) (-229) (-229)))) (-5 *4 (-1120 (-391)))
- (-5 *2 (-1301)) (-5 *1 (-265))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-305 *7)) (-5 *4 (-1207)) (-5 *5 (-663 (-270)))
- (-4 *7 (-435 *6)) (-4 *6 (-13 (-571) (-871) (-1069 (-560))))
- (-5 *2 (-1300)) (-5 *1 (-266 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-663 (-229))) (-5 *2 (-1300)) (-5 *1 (-269))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-663 (-229))) (-5 *4 (-663 (-270))) (-5 *2 (-1300))
- (-5 *1 (-269))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-972 (-229)))) (-5 *2 (-1300)) (-5 *1 (-269))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-972 (-229)))) (-5 *4 (-663 (-270)))
- (-5 *2 (-1300)) (-5 *1 (-269))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-663 (-229))) (-5 *2 (-1301)) (-5 *1 (-269))))
- ((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-663 (-229))) (-5 *4 (-663 (-270))) (-5 *2 (-1301))
- (-5 *1 (-269)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229)))
- (-5 *5 (-1120 (-229))) (-5 *6 (-663 (-270))) (-5 *2 (-1164 (-229)))
- (-5 *1 (-719)))))
-(((*1 *2)
- (-12 (-4 *3 (-571)) (-5 *2 (-663 (-711 *3))) (-5 *1 (-43 *3 *4))
- (-4 *4 (-432 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1229)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080))
- (-4 *2 (-466))))
+ (-12 (|has| *6 (-6 -4509)) (-4 *4 (-376)) (-4 *5 (-385 *4))
+ (-4 *6 (-385 *4)) (-5 *2 (-663 *6)) (-5 *1 (-535 *4 *5 *6 *3))
+ (-4 *3 (-708 *4 *5 *6))))
((*1 *2 *3)
- (-12 (-5 *3 (-663 *4)) (-4 *4 (-1273 (-560))) (-5 *2 (-663 (-560)))
- (-5 *1 (-500 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-466))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *2 (-871)) (-4 *3 (-466)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-315))))
+ (-12 (|has| *9 (-6 -4509)) (-4 *4 (-571)) (-4 *5 (-385 *4))
+ (-4 *6 (-385 *4)) (-4 *7 (-1022 *4)) (-4 *8 (-385 *7))
+ (-4 *9 (-385 *7)) (-5 *2 (-663 *6))
+ (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-708 *4 *5 *6))
+ (-4 *10 (-708 *7 *8 *9))))
((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |num| (-915 *3)) (|:| |den| (-915 *3))))
- (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-560))) (-4 *3 (-1080)) (-5 *1 (-99 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-99 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-99 *3)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1207)) (-5 *2 (-1211)) (-5 *1 (-1210)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-711 *1)) (-4 *1 (-363)) (-5 *2 (-1297 *1))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-711 *1)) (-4 *1 (-147)) (-4 *1 (-939))
- (-5 *2 (-1297 *1)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080))
- (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-1080))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1080)))))
-(((*1 *1 *2) (-12 (-4 *1 (-688 *2)) (-4 *2 (-1247))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-1207)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1207)) (-5 *3 (-391)) (-5 *1 (-1094)))))
-(((*1 *1) (-5 *1 (-846))))
-(((*1 *2 *3) (-12 (-5 *3 (-948)) (-5 *2 (-1189)) (-5 *1 (-808)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-115)) (-5 *4 (-663 *2)) (-5 *1 (-116 *2))
- (-4 *2 (-1132))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-663 *4))) (-4 *4 (-1132))
- (-5 *1 (-116 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1132))
- (-5 *1 (-116 *4))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-663 *4)))
- (-5 *1 (-116 *4)) (-4 *4 (-1132))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-670 *3)) (-4 *3 (-1080))
- (-5 *1 (-736 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1080)) (-5 *1 (-856 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-972 *3)) (-4 *3 (-13 (-376) (-1233) (-1033)))
- (-5 *1 (-179 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1297 *4)) (-5 *3 (-793)) (-4 *4 (-363))
- (-5 *1 (-542 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132))
- (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-663 *1)) (-4 *1 (-310))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
- ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-630 *3)) (-4 *3 (-1132))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-115)) (-5 *3 (-663 *5)) (-5 *4 (-793)) (-4 *5 (-1132))
- (-5 *1 (-630 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-560)) (-4 *4 (-1273 (-421 *3))) (-5 *2 (-948))
- (-5 *1 (-942 *4 *5)) (-4 *5 (-1273 (-421 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-562))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1207)) (-5 *4 (-975 (-560))) (-5 *2 (-342))
- (-5 *1 (-344))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1207)) (-5 *4 (-1123 (-975 (-560)))) (-5 *2 (-342))
- (-5 *1 (-344))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-793)) (-5 *1 (-697 *3)) (-4 *3 (-1080))
- (-4 *3 (-1132)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-630 (-48)))) (-5 *1 (-48))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-48))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1201 (-48))) (-5 *3 (-663 (-630 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1201 (-48))) (-5 *3 (-630 (-48))) (-5 *1 (-48))))
- ((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175))))
+ (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3))
+ (-4 *5 (-385 *3)) (-4 *3 (-571)) (-5 *2 (-663 *5))))
((*1 *2 *3)
- (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3))
- (-4 *3 (-1273 (-171 *2)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-948)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381))))
- ((*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376))))
+ (-12 (-4 *4 (-571)) (-4 *4 (-175)) (-4 *5 (-385 *4))
+ (-4 *6 (-385 *4)) (-5 *2 (-663 *6)) (-5 *1 (-710 *4 *5 *6 *3))
+ (-4 *3 (-708 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1273 *2)) (-4 *2 (-175))))
+ (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
+ (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-571))
+ (-5 *2 (-663 *7)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-793) *2)) (-5 *4 (-793)) (-4 *2 (-1132))
+ (-5 *1 (-700 *2))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1 *3 (-793) *3)) (-4 *3 (-1132)) (-5 *1 (-704 *3)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1300))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-1301)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391))
+ (-5 *2
+ (-2 (|:| -1430 *4) (|:| -2403 *4) (|:| |totalpts| (-560))
+ (|:| |success| (-114))))
+ (-5 *1 (-811)) (-5 *5 (-560)))))
+(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1302)))))
+(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-324))))
((*1 *2 *1)
- (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1022 *3)) (-5 *1 (-427 *3 *2 *4 *5))
- (-4 *3 (-319)) (-4 *5 (-13 (-424 *2 *4) (-1069 *2)))))
+ (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
+ (-4 *4 (-1080)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3)))))
+(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1249 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55))))
((*1 *2 *1)
- (-12 (-4 *4 (-1273 *2)) (-4 *2 (-1022 *3))
- (-5 *1 (-429 *3 *2 *4 *5 *6)) (-4 *3 (-319)) (-4 *5 (-424 *2 *4))
- (-14 *6 (-1297 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-948)) (-4 *5 (-1080))
- (-4 *2 (-13 (-418) (-1069 *5) (-376) (-1233) (-296)))
- (-5 *1 (-457 *5 *3 *2)) (-4 *3 (-1273 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-630 (-509)))) (-5 *1 (-509))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-630 (-509))) (-5 *1 (-509))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1201 (-509))) (-5 *3 (-663 (-630 (-509))))
- (-5 *1 (-509))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1201 (-509))) (-5 *3 (-630 (-509))) (-5 *1 (-509))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1297 *4)) (-5 *3 (-948)) (-4 *4 (-363))
- (-5 *1 (-542 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-466)) (-4 *5 (-746 *4 *2)) (-4 *2 (-1273 *4))
- (-5 *1 (-797 *4 *2 *5 *3)) (-4 *3 (-1273 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175))))
- ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175))))
- ((*1 *1 *1) (-4 *1 (-1091))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-571)) (-4 *3 (-1080))
- (-5 *2 (-2 (|:| -1774 *1) (|:| -2341 *1))) (-4 *1 (-876 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-571)) (-4 *5 (-1080))
- (-5 *2 (-2 (|:| -1774 *3) (|:| -2341 *3))) (-5 *1 (-877 *5 *3))
- (-4 *3 (-876 *5)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-482)) (-5 *4 (-948)) (-5 *2 (-1303)) (-5 *1 (-1300)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
-(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-600)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-663 *7)) (-5 *3 (-560)) (-4 *7 (-979 *4 *5 *6))
- (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-5 *1 (-464 *4 *5 *6 *7)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-663 (-51))) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-4 *3 (-175)) (-4 *4 (-385 *3))
- (-4 *5 (-385 *3)) (-5 *1 (-710 *3 *4 *5 *2))
- (-4 *2 (-708 *3 *4 *5)))))
+ (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114))
+ (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-744)) (-5 *2 (-114))))
+ ((*1 *2 *1) (-12 (-4 *1 (-748)) (-5 *2 (-114)))))
(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4509)) (-4 *1 (-121 *2)) (-4 *2 (-1247)))))
+ (-12 (-5 *1 (-663 *2)) (-4 *2 (-1132)) (-4 *2 (-1247)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4)
- (-255 *4 (-421 (-560)))))
- (-14 *4 (-663 (-1207))) (-14 *5 (-793)) (-5 *2 (-114))
- (-5 *1 (-519 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-270))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-948)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1201 *7)) (-5 *3 (-560)) (-4 *7 (-979 *6 *4 *5))
- (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080))
- (-5 *1 (-333 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))
- ((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *1 *1) (-4 *1 (-1170))))
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1185 (-229)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -1585
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *2 (-1066)) (-5 *1 (-315)))))
+(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1066)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-421 *2)) (-4 *2 (-1273 *5))
+ (-5 *1 (-829 *5 *2 *3 *6))
+ (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560)))))
+ (-4 *3 (-680 *2)) (-4 *6 (-680 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-663 (-421 *2))) (-4 *2 (-1273 *5))
+ (-5 *1 (-829 *5 *2 *3 *6))
+ (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *3 (-680 *2))
+ (-4 *6 (-680 (-421 *2))))))
(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-560)) (-5 *1 (-583 *3)) (-4 *3 (-1069 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)) (-4 *2 (-559))))
- ((*1 *1 *1) (-4 *1 (-1091))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-114)) (-5 *1 (-851)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-663 *4)) (-4 *4 (-376)) (-4 *2 (-1273 *4))
- (-5 *1 (-952 *4 *2)))))
-(((*1 *1 *1 *1) (-4 *1 (-487))) ((*1 *1 *1 *1) (-4 *1 (-783))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-571)) (-5 *1 (-1000 *2 *3)) (-4 *3 (-1273 *2)))))
-(((*1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-549))) ((*1 *1) (-4 *1 (-744)))
- ((*1 *1) (-4 *1 (-748)))
- ((*1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132))))
- ((*1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-871)))))
-(((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))
- ((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))))
+ (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363)) (-5 *2 (-987 (-1151)))
+ (-5 *1 (-360 *4)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-560)) (-5 *1 (-1230 *3)) (-4 *3 (-1080)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -3887 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-376)) (-4 *7 (-1273 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-421 *7)) (|:| |a0| *6))
- (-2 (|:| -3887 (-421 *7)) (|:| |coeff| (-421 *7))) "failed"))
- (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))))
-(((*1 *2 *1 *2)
- (-12 (-5 *2 (-114)) (-5 *1 (-1243 *3)) (-4 *3 (-1005)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-466)) (-4 *4 (-571))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3164 *4)))
- (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-374 *3)) (-4 *3 (-1132))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-560)) (-4 *1 (-399 *4)) (-4 *4 (-1132)) (-5 *2 (-793))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-560)) (-4 *2 (-23)) (-5 *1 (-671 *4 *2 *5))
- (-4 *4 (-1132)) (-14 *5 *2))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1207))
- (-4 *4 (-13 (-466) (-149) (-1069 (-560)) (-660 (-560))))
- (-5 *1 (-572 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1080)) (-5 *1 (-919 *2 *3)) (-4 *2 (-1273 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))))
-(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481))))
- ((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-481))))
- ((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))))
-(((*1 *1) (-4 *1 (-23)))
- ((*1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-549)))
- ((*1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 (-948))) (-5 *1 (-1133 *3 *4)) (-14 *3 (-948))
- (-14 *4 (-948)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1201 *3)) (-5 *1 (-943 *3)) (-4 *3 (-319)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3))
- (-4 *3 (-1132)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-229)) (-5 *3 (-793)) (-5 *1 (-230))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-171 (-229))) (-5 *3 (-793)) (-5 *1 (-230))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1170))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-571))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132))
- (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))))
+ (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7))))
+ (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-663 *7)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -3841)) (-5 *2 (-114)) (-5 *1 (-636))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2301)) (-5 *2 (-114)) (-5 *1 (-636))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2143)) (-5 *2 (-114)) (-5 *1 (-636))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2673)) (-5 *2 (-114)) (-5 *1 (-713 *4))
- (-4 *4 (-632 (-887)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-632 (-887))) (-5 *2 (-114))
- (-5 *1 (-713 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-114)) (-5 *1 (-900))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-114)) (-5 *1 (-900))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-560))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-606))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-492))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-158))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1197))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-645))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1127))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1122))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1104))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1001))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-183))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-324))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1183))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-539))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1309))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1097))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-531))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-703))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1147))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-619))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-140))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1308))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-698))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-222))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-114))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-114)) (-5 *1 (-1212))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-114)) (-5 *1 (-1212))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-229))) (-5 *2 (-114)) (-5 *1 (-1212))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-560))) (-5 *2 (-114)) (-5 *1 (-1212)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-154 *2 *3 *4)) (-14 *2 (-948)) (-4 *3 (-376))
- (-14 *4 (-1024 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-571))))
+ (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-1094)) (-5 *3 (-1189)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-793)) (-5 *1 (-697 *2)) (-4 *2 (-1132)))))
+(((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-229)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
((*1 *1 *1)
- (|partial| -12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376))))
- ((*1 *1) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376))))
- ((*1 *1 *1) (|partial| -4 *1 (-744)))
- ((*1 *1 *1) (|partial| -4 *1 (-748)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-798 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-1099 *3 *2)) (-4 *3 (-13 (-870) (-376)))
- (-4 *2 (-1273 *3))))
+ (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
+ (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
+ ((*1 *1 *1 *1) (-5 *1 (-391)))
((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
- (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-711 *7)) (-5 *3 (-663 *7)) (-4 *7 (-979 *4 *6 *5))
- (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207))))
- (-4 *6 (-815)) (-5 *1 (-953 *4 *5 *6 *7)))))
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-802 *5 (-888 *6)))) (-5 *4 (-114)) (-4 *5 (-466))
- (-14 *6 (-663 (-1207)))
- (-5 *2
- (-663 (-1177 *5 (-545 (-888 *6)) (-888 *6) (-802 *5 (-888 *6)))))
- (-5 *1 (-647 *5 *6)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1207))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-663 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-663 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -3887 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1233) (-27) (-435 *8)))
- (-4 *8 (-13 (-466) (-149) (-1069 *3) (-660 *3))) (-5 *3 (-560))
- (-5 *2 (-663 *4)) (-5 *1 (-1045 *8 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-956)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-948)) (-5 *4 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1300)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4508)) (-4 *1 (-153 *3))
- (-4 *3 (-1247))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-615 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-696 *3)) (-4 *3 (-1247))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1242 *4 *5 *3 *2)) (-4 *4 (-571))
- (-4 *5 (-815)) (-4 *3 (-871)) (-4 *2 (-1096 *4 *5 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-793)) (-5 *1 (-1245 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-887)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
- (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
- (|:| |relerr| (-229))))
- (-5 *2 (-1185 (-229))) (-5 *1 (-195))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-326 (-229))) (-5 *4 (-663 (-1207)))
- (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-1185 (-229))) (-5 *1 (-313))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *4 (-663 (-1207)))
- (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-1185 (-229))) (-5 *1 (-313)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-711 *4)) (-5 *3 (-948)) (-4 *4 (-1080))
- (-5 *1 (-1060 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-663 (-711 *4))) (-5 *3 (-948)) (-4 *4 (-1080))
- (-5 *1 (-1060 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-5 *2 (-114))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1234 *3)) (-4 *3 (-1132)))))
-(((*1 *1 *1 *1) (-5 *1 (-114))) ((*1 *1 *1 *1) (-4 *1 (-125)))
- ((*1 *1 *1 *1) (-5 *1 (-1151))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-495 *4 *5)) (-14 *4 (-663 (-1207))) (-4 *5 (-1080))
- (-5 *2 (-255 *4 *5)) (-5 *1 (-973 *4 *5)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-1207)) (-5 *1 (-549))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1207)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-549)))))
- ((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1207)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-549)))))
- ((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1207)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-549)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-663 (-1207))) (-5 *2 (-1207)) (-5 *1 (-726 *3))
- (-4 *3 (-633 (-549))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 *1)) (-4 *1 (-1165 *3)) (-4 *3 (-1080))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-421 *1)) (-4 *1 (-1273 *3)) (-4 *3 (-1080))
- (-4 *3 (-571))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1273 *2)) (-4 *2 (-1080)) (-4 *2 (-571)))))
+ (|partial| -12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))
+ (-5 *1 (-535 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-571)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))
+ (-4 *7 (-1022 *4)) (-4 *2 (-708 *7 *8 *9))
+ (-5 *1 (-536 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-708 *4 *5 *6))
+ (-4 *8 (-385 *7)) (-4 *9 (-385 *7))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080))
+ (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-376))))
+ ((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-376)) (-4 *3 (-175)) (-4 *4 (-385 *3))
+ (-4 *5 (-385 *3)) (-5 *1 (-710 *3 *4 *5 *2))
+ (-4 *2 (-708 *3 *4 *5))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-711 *2)) (-4 *2 (-376)) (-4 *2 (-1080))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1154 *2 *3 *4 *5)) (-4 *3 (-1080))
+ (-4 *4 (-245 *2 *3)) (-4 *5 (-245 *2 *3)) (-4 *3 (-376))))
+ ((*1 *2 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-1218 *3)))))
+(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1037)))))
+(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-326 (-391))) (-5 *1 (-315)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-793)) (-5 *3 (-114)) (-5 *1 (-110))))
+ ((*1 *2 *2) (-12 (-5 *2 (-948)) (|has| *1 (-6 -4499)) (-4 *1 (-418))))
+ ((*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-948)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-979 *3 *5 *4)) (-5 *1 (-1017 *3 *4 *5 *2))
+ (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-630 *6))) (-5 *4 (-1207)) (-5 *2 (-630 *6))
+ (-4 *6 (-435 *5)) (-4 *5 (-1132)) (-5 *1 (-587 *5 *6)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-663 (-663 (-663 *4)))) (-5 *3 (-663 *4)) (-4 *4 (-871))
+ (-5 *1 (-1218 *4)))))
(((*1 *2)
- (-12 (-5 *2 (-114)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132))
- (-4 *4 (-1132)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-229)) (-5 *4 (-560))
- (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -2284))))
- (-5 *2 (-1066)) (-5 *1 (-770)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-663 (-975 *3))) (-4 *3 (-466))
- (-5 *1 (-373 *3 *4)) (-14 *4 (-663 (-1207)))))
+ (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6))
+ (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-443 *3 *2)) (-4 *3 (-13 (-175) (-38 (-421 (-560)))))
+ (-4 *2 (-13 (-871) (-21))))))
+(((*1 *1 *1) (-4 *1 (-95)))
((*1 *2 *2)
- (|partial| -12 (-5 *2 (-663 (-802 *3 (-888 *4)))) (-4 *3 (-466))
- (-14 *4 (-663 (-1207))) (-5 *1 (-647 *3 *4)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -4210 *6) (|:| |sol?| (-114))) (-560)
- *6))
- (-4 *6 (-376)) (-4 *7 (-1273 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-421 *7)) (|:| |a0| *6))
- (-2 (|:| -3887 (-421 *7)) (|:| |coeff| (-421 *7))) "failed"))
- (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))))
-(((*1 *2 *2)
(-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-5 *2 (-419 *3)) (-5 *1 (-220 *4 *3))
- (-4 *3 (-1273 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-419 *3)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560)))))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
+ (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-915 *4)) (-4 *4 (-1132)) (-5 *2 (-114))
+ (-5 *1 (-913 *4 *5)) (-4 *5 (-1132))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3))
- (-4 *3 (-1273 (-560)))))
+ (-12 (-5 *4 (-915 *5)) (-4 *5 (-1132)) (-5 *2 (-114))
+ (-5 *1 (-916 *5 *3)) (-4 *3 (-1247))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 (-793))) (-5 *2 (-419 *3)) (-5 *1 (-456 *3))
- (-4 *3 (-1273 (-560)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-663 (-793))) (-5 *5 (-793)) (-5 *2 (-419 *3))
- (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-793)) (-5 *2 (-419 *3)) (-5 *1 (-456 *3))
- (-4 *3 (-1273 (-560)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-419 *3)) (-5 *1 (-1038 *3))
- (-4 *3 (-1273 (-421 (-560))))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-419 *3)) (-5 *1 (-1263 *3)) (-4 *3 (-1273 (-560))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-615 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-987 (-793))) (-5 *1 (-345)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-421 (-1201 (-326 *3)))) (-4 *3 (-571))
- (-5 *1 (-1161 *3)))))
-(((*1 *1 *1) (|partial| -4 *1 (-147))) ((*1 *1 *1) (-4 *1 (-363)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-147)) (-4 *1 (-939)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-871)) (-5 *2 (-663 (-663 *4))) (-5 *1 (-1218 *4))
- (-5 *3 (-663 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
-(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-887))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-419 (-1201 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1201 *1))
- (-4 *4 (-466)) (-4 *4 (-571)) (-4 *4 (-1132))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-939)) (-5 *2 (-419 (-1201 *1))) (-5 *3 (-1201 *1)))))
-(((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887)))))
-(((*1 *2 *2)
+ (-12 (-5 *3 (-663 *6)) (-5 *4 (-915 *5)) (-4 *5 (-1132))
+ (-4 *6 (-1247)) (-5 *2 (-114)) (-5 *1 (-916 *5 *6)))))
+(((*1 *2 *1 *1)
(-12
(-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-560))))
- (-4 *4 (-13 (-1273 *3) (-571) (-10 -8 (-15 -2132 ($ $ $)))))
- (-4 *3 (-571)) (-5 *1 (-1277 *3 *4)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-615 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229)))))
- (-5 *2 (-391)) (-5 *1 (-278))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-315)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-979 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *2 (-871))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-815)) (-4 *5 (-1080)) (-4 *6 (-979 *5 *4 *2))
- (-4 *2 (-871)) (-5 *1 (-980 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-376)
- (-10 -8 (-15 -1578 ($ *6)) (-15 -3757 (*6 $))
- (-15 -3771 (*6 $)))))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571))
- (-5 *2 (-1207)) (-5 *1 (-1071 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1297 *4)) (-4 *4 (-432 *3)) (-4 *3 (-319))
- (-4 *3 (-571)) (-5 *1 (-43 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-948)) (-4 *4 (-376)) (-5 *2 (-1297 *1))
- (-4 *1 (-341 *4))))
- ((*1 *2) (-12 (-4 *3 (-376)) (-5 *2 (-1297 *1)) (-4 *1 (-341 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-175)) (-4 *4 (-1273 *3)) (-5 *2 (-1297 *1))
- (-4 *1 (-424 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-319)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4))
- (-5 *2 (-1297 *6)) (-5 *1 (-427 *3 *4 *5 *6))
- (-4 *6 (-13 (-424 *4 *5) (-1069 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-319)) (-4 *4 (-1022 *3)) (-4 *5 (-1273 *4))
- (-5 *2 (-1297 *6)) (-5 *1 (-429 *3 *4 *5 *6 *7))
- (-4 *6 (-424 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1297 *1)) (-4 *1 (-432 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-948)) (-5 *2 (-1297 (-1297 *4))) (-5 *1 (-542 *4))
- (-4 *4 (-363)))))
-(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-887))))
-(((*1 *1) (-5 *1 (-825))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-774)))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-229)) (-5 *4 (-560))
- (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1066))
- (-5 *1 (-770)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-559))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-1080)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1273 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-114)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-948)) (-4 *6 (-571)) (-5 *2 (-663 (-326 *6)))
- (-5 *1 (-225 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1080))))
- ((*1 *2 *1) (-12 (-5 *1 (-419 *2)) (-4 *2 (-571))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 *5)) (-4 *5 (-13 (-29 *4) (-1233)))
- (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-663 *5))
- (-5 *1 (-599 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-421 (-975 *4))))
- (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560))))
- (-5 *2 (-663 (-326 *4))) (-5 *1 (-603 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1126 *3 *2)) (-4 *3 (-870)) (-4 *2 (-1180 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 *1)) (-4 *1 (-1126 *4 *2)) (-4 *4 (-870))
- (-4 *2 (-1180 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1313 (-1207) *3)) (-5 *1 (-1319 *3)) (-4 *3 (-1080))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-1322 *3 *4)) (-4 *3 (-871))
- (-4 *4 (-1080)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-560)) (-5 *2 (-663 (-2 (|:| -4457 *3) (|:| -3630 *4))))
- (-5 *1 (-718 *3)) (-4 *3 (-1273 *4)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1132))
- (-4 *4 (-133))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1132)) (-5 *1 (-374 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-399 *3)) (-4 *3 (-1132))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1132)) (-5 *1 (-671 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-939)) (-5 *2 (-419 (-1201 *1))) (-5 *3 (-1201 *1)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-915 *4)) (-4 *4 (-1132)) (-5 *2 (-1 (-114) *5))
- (-5 *1 (-916 *4 *5)) (-4 *5 (-1247))))
- ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1197)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-1043)) (-5 *2 (-887)))))
-(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-887))))
-(((*1 *2 *3 *2)
- (-12
+ (-2 (|:| -2625 *3) (|:| |gap| (-793)) (|:| -2584 (-803 *3))
+ (|:| -3276 (-803 *3))))
+ (-5 *1 (-803 *3)) (-4 *3 (-1080))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871))
(-5 *2
- (-663
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-815)) (-4 *3 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-871))
- (-5 *1 (-464 *4 *5 *6 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-421 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-13 (-376) (-149)))
- (-5 *1 (-413 *3 *4)))))
-(((*1 *2 *1)
- (-12
+ (-2 (|:| -2625 *1) (|:| |gap| (-793)) (|:| -2584 *1)
+ (|:| -3276 *1)))
+ (-4 *1 (-1096 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
(-5 *2
- (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
- (|:| |Conditional| "conditional") (|:| |Return| "return")
- (|:| |Block| "block") (|:| |Comment| "comment")
- (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
- (|:| |Repeat| "repeat") (|:| |Goto| "goto")
- (|:| |Continue| "continue")
- (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
- (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-342)))))
+ (-2 (|:| -2625 *1) (|:| |gap| (-793)) (|:| -2584 *1)
+ (|:| -3276 *1)))
+ (-4 *1 (-1096 *3 *4 *5)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-171 (-229))) (-5 *5 (-560)) (-5 *6 (-1189))
+ (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))))
(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4510 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2))
- (-4 *2 (-1080)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1273 *2))
- (-4 *4 (-708 *2 *5 *6)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
- (-5 *1 (-1159 *3 *2)) (-4 *3 (-1273 *2)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229))) (-5 *4 (-229))
- (-5 *2 (-1066)) (-5 *1 (-774)))))
-(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1250)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-544 *3)) (-4 *3 (-13 (-748) (-25))))))
-(((*1 *1) (-5 *1 (-450))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-748)) (-4 *2 (-1247)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376))
- (-4 *7 (-1273 (-421 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -1739 *3)))
- (-5 *1 (-577 *5 *6 *7 *3)) (-4 *3 (-355 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376))
- (-5 *2
- (-2 (|:| |answer| (-421 *6)) (|:| -1739 (-421 *6))
- (|:| |specpart| (-421 *6)) (|:| |polypart| *6)))
- (-5 *1 (-578 *5 *6)) (-5 *3 (-421 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-663 *3)) (-4 *3 (-1247)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-560)) (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1080))
- (-5 *1 (-333 *4 *5 *2 *6)) (-4 *6 (-979 *2 *4 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-663 (-560))) (-5 *1 (-255 *3 *4))
- (-14 *3 (-663 (-1207))) (-4 *4 (-1080))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-663 (-560))) (-14 *3 (-663 (-1207)))
- (-5 *1 (-468 *3 *4 *5)) (-4 *4 (-1080))
- (-4 *5 (-245 (-1553 *3) (-793)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-663 (-560))) (-5 *1 (-495 *3 *4))
- (-14 *3 (-663 (-1207))) (-4 *4 (-1080)))))
-(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-419 *3)) (-4 *3 (-571))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-2 (|:| -4457 *4) (|:| -3630 (-560)))))
- (-4 *4 (-1273 (-560))) (-5 *2 (-793)) (-5 *1 (-456 *4)))))
-(((*1 *1) (-5 *1 (-146))))
-(((*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-663 *5)))))
-(((*1 *1 *1) (-4 *1 (-1175))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-793)) (-4 *2 (-571)) (-5 *1 (-1000 *2 *4))
- (-4 *4 (-1273 *2)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-793)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-815)) (-4 *7 (-979 *4 *5 *6)) (-4 *4 (-466)) (-4 *6 (-871))
+ (-5 *2 (-114)) (-5 *1 (-464 *4 *5 *6 *7)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-663 (-305 *4))) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871))
+ (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948)))))
(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
+ (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-1 (-114) *8))) (-4 *8 (-1096 *5 *6 *7))
- (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871))
- (-5 *2 (-2 (|:| |goodPols| (-663 *8)) (|:| |badPols| (-663 *8))))
- (-5 *1 (-1008 *5 *6 *7 *8)) (-5 *4 (-663 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-943 *3)) (-4 *3 (-319)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-846)) (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *2)
- (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132))
- (-4 *4 (-1132)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-995 *2)) (-4 *2 (-1132)))))
-(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-972 (-229)) (-972 (-229)))) (-5 *1 (-270))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-972 (-229)) (-972 (-229)))) (-5 *3 (-663 (-270)))
- (-5 *1 (-271))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 (-495 *5 *6))) (-5 *3 (-495 *5 *6))
- (-14 *5 (-663 (-1207))) (-4 *6 (-466)) (-5 *2 (-1297 *6))
- (-5 *1 (-650 *5 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-130))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-793)) (-5 *2 (-1297 (-663 (-560)))) (-5 *1 (-494))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-615 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1247)) (-5 *1 (-1185 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1132)) (-5 *2 (-1189)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-663 (-711 *6))) (-5 *4 (-114)) (-5 *5 (-560))
- (-5 *2 (-711 *6)) (-5 *1 (-1061 *6)) (-4 *6 (-376)) (-4 *6 (-1080))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-663 (-711 *4))) (-5 *2 (-711 *4)) (-5 *1 (-1061 *4))
- (-4 *4 (-376)) (-4 *4 (-1080))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-663 (-711 *5))) (-5 *4 (-560)) (-5 *2 (-711 *5))
- (-5 *1 (-1061 *5)) (-4 *5 (-376)) (-4 *5 (-1080)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 (-518 *3 *4 *5 *6))) (-4 *3 (-376)) (-4 *4 (-815))
- (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871))
- (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-663 *1)) (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466))
- (-4 *5 (-815)) (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-663 *1)) (-5 *3 (-663 *7)) (-4 *1 (-1102 *4 *5 *6 *7))
- (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *1))
- (-4 *1 (-1102 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-663 *1))
- (-4 *1 (-1102 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1185 (-421 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319)))))
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1273 *6))
+ (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-571) (-1069 (-560))))
+ (-4 *8 (-1273 (-421 *7))) (-5 *2 (-597 *3))
+ (-5 *1 (-567 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-933 *3)) (-4 *3 (-1132)) (-5 *2 (-1128 *3))))
+ (-12 (-4 *2 (-1125 *3)) (-5 *1 (-1089 *2 *3)) (-4 *3 (-1247))))
((*1 *2 *1)
- (-12 (-5 *2 (-1128 *3)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1132)) (-4 *6 (-911 *5)) (-5 *2 (-910 *5 *6 (-663 *6)))
- (-5 *1 (-912 *5 *6 *4)) (-5 *3 (-663 *6)) (-4 *4 (-633 (-915 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1132)) (-5 *2 (-663 (-305 *3))) (-5 *1 (-912 *5 *3 *4))
- (-4 *3 (-1069 (-1207))) (-4 *3 (-911 *5)) (-4 *4 (-633 (-915 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1132)) (-5 *2 (-663 (-305 (-975 *3))))
- (-5 *1 (-912 *5 *3 *4)) (-4 *3 (-1080))
- (-1937 (-4 *3 (-1069 (-1207)))) (-4 *3 (-911 *5))
- (-4 *4 (-633 (-915 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1132)) (-5 *2 (-913 *5 *3)) (-5 *1 (-912 *5 *3 *4))
- (-1937 (-4 *3 (-1069 (-1207)))) (-1937 (-4 *3 (-1080)))
- (-4 *3 (-911 *5)) (-4 *4 (-633 (-915 *5))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-663 (-663 *7)))
- (-5 *1 (-463 *4 *5 *6 *7)) (-5 *3 (-663 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815))
- (-4 *7 (-871)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-663 (-663 *8)))
- (-5 *1 (-463 *5 *6 *7 *8)) (-5 *3 (-663 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-663 (-663 *7)))
- (-5 *1 (-463 *4 *5 *6 *7)) (-5 *3 (-663 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815))
- (-4 *7 (-871)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-663 (-663 *8)))
- (-5 *1 (-463 *5 *6 *7 *8)) (-5 *3 (-663 *8)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-596)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-663 (-1207))) (-4 *2 (-175))
- (-4 *4 (-245 (-1553 *5) (-793)))
- (-14 *6
- (-1 (-114) (-2 (|:| -3128 *3) (|:| -3205 *4))
- (-2 (|:| -3128 *3) (|:| -3205 *4))))
- (-5 *1 (-475 *5 *2 *3 *4 *6 *7)) (-4 *3 (-871))
- (-4 *7 (-979 *2 *4 (-888 *5))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
- (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
- (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-777)))))
-(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301))))
- ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1301)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-871)))))
-(((*1 *1 *1) (-12 (-5 *1 (-419 *2)) (-4 *2 (-571)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1132)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-286)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-793)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2))
- (-4 *2 (-1273 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5)))
- (-5 *2 (-663 (-663 *4))) (-5 *1 (-354 *3 *4 *5 *6))
- (-4 *3 (-355 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4))) (-4 *3 (-381)) (-5 *2 (-663 (-663 *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1201 *7)) (-4 *7 (-979 *6 *4 *5)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *6 (-1080)) (-5 *2 (-1201 *6))
- (-5 *1 (-333 *4 *5 *6 *7)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-704 *3)) (-4 *3 (-1132)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-435 *3) (-1033))) (-5 *1 (-287 *3 *2))
- (-4 *3 (-571)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-466))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1201 *6)) (-4 *6 (-979 *5 *3 *4)) (-4 *3 (-815))
- (-4 *4 (-871)) (-4 *5 (-939)) (-5 *1 (-471 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1201 *1)) (-4 *1 (-939)))))
-(((*1 *2 *2) (-12 (-5 *1 (-991 *2)) (-4 *2 (-559)))))
-(((*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-221)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-376)) (-5 *2 (-2 (|:| -1774 *3) (|:| -2341 *3)))
- (-5 *1 (-788 *3 *4)) (-4 *3 (-730 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-376)) (-4 *3 (-1080))
- (-5 *2 (-2 (|:| -1774 *1) (|:| -2341 *1))) (-4 *1 (-876 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1080))
- (-5 *2 (-2 (|:| -1774 *3) (|:| -2341 *3))) (-5 *1 (-877 *5 *3))
- (-4 *3 (-876 *5)))))
-(((*1 *1) (-5 *1 (-146))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207))
- (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-305 (-326 *5))))
- (-5 *1 (-1160 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-13 (-319) (-149)))
- (-5 *2 (-663 (-305 (-326 *4)))) (-5 *1 (-1160 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-305 (-421 (-975 *5)))) (-5 *4 (-1207))
- (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-305 (-326 *5))))
- (-5 *1 (-1160 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-305 (-421 (-975 *4)))) (-4 *4 (-13 (-319) (-149)))
- (-5 *2 (-663 (-305 (-326 *4)))) (-5 *1 (-1160 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-421 (-975 *5)))) (-5 *4 (-663 (-1207)))
- (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *5)))))
- (-5 *1 (-1160 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-421 (-975 *4)))) (-4 *4 (-13 (-319) (-149)))
- (-5 *2 (-663 (-663 (-305 (-326 *4))))) (-5 *1 (-1160 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-305 (-421 (-975 *5))))) (-5 *4 (-663 (-1207)))
- (-4 *5 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *5)))))
- (-5 *1 (-1160 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-305 (-421 (-975 *4)))))
- (-4 *4 (-13 (-319) (-149))) (-5 *2 (-663 (-663 (-305 (-326 *4)))))
- (-5 *1 (-1160 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-793)) (-4 *4 (-13 (-571) (-149)))
- (-5 *1 (-1269 *4 *2)) (-4 *2 (-1273 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-342)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229))
- (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229))
- (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))
- (-5 *1 (-270))))
- ((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229))
- (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229))
- (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))
- (-5 *3 (-663 (-270))) (-5 *1 (-271))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-560)) (-5 *4 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301))))
- ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-1120 *3)) (-5 *1 (-1123 *3)) (-4 *3 (-1247))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1264 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1151)) (-5 *2 (-114)) (-5 *1 (-844)))))
+(((*1 *1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229))
- (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229))
- (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))
- (-5 *2 (-1303)) (-5 *1 (-1301))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4166 (-229))
- (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229))
- (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))
- (-5 *1 (-1301))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-270))) (-5 *4 (-1207)) (-5 *2 (-114))
- (-5 *1 (-270)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7))
- (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *4))))
- (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
-(((*1 *1 *2)
- (-12
- (-5 *2
(-663
- (-2
- (|:| -2968
- (-2 (|:| |xinit| (-229)) (|:| |xend| (-229))
- (|:| |fn| (-1297 (-326 (-229))))
- (|:| |yinit| (-663 (-229))) (|:| |intvals| (-663 (-229)))
- (|:| |g| (-326 (-229))) (|:| |abserr| (-229))
- (|:| |relerr| (-229))))
- (|:| -2460
- (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391))
- (|:| |expense| (-391)) (|:| |accuracy| (-391))
- (|:| |intermediateResults| (-391)))))))
- (-5 *1 (-825)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1132)) (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3))))
- (-5 *2 (-663 (-1207))) (-5 *1 (-1106 *3 *4 *5))
- (-4 *5 (-13 (-435 *4) (-911 *3) (-633 (-915 *3)))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-948))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-744)) (-5 *2 (-793)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-694 *3)) (-4 *3 (-871))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-699 *3)) (-4 *3 (-871))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-841 *3)) (-4 *3 (-871)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1175)) (-5 *3 (-146)) (-5 *2 (-114)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571))
- (-5 *2 (-114)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1273 *9)) (-4 *7 (-815)) (-4 *8 (-871)) (-4 *9 (-319))
- (-4 *10 (-979 *9 *7 *8))
- (-5 *2
- (-2 (|:| |deter| (-663 (-1201 *10)))
- (|:| |dterm|
- (-663 (-663 (-2 (|:| -3911 (-793)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-663 *6)) (|:| |nlead| (-663 *10))))
- (-5 *1 (-800 *6 *7 *8 *9 *10)) (-5 *3 (-1201 *10)) (-5 *4 (-663 *6))
- (-5 *5 (-663 *10)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-490 *4 *5 *6 *7)) (|:| -2572 (-663 *7))))
- (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-663 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-887)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-900))))
- ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-900))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-560))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1189))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-520))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-606))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-492))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-139))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-158))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1197))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-645))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1127))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1122))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1104))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1001))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-183))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1067))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-324))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-693))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-156))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1183))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-539))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1309))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1097))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-531))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-703))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-96))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1147))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-135))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-619))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-140))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-1308))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-698))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-222))))
- ((*1 *2 *1) (-12 (-4 *1 (-1168)) (-5 *2 (-538))))
- ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1212))))
- ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1212))))
- ((*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1212))))
- ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1212)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-495 *4 *5))) (-14 *4 (-663 (-1207)))
- (-4 *5 (-466))
- (-5 *2
- (-2 (|:| |gblist| (-663 (-255 *4 *5)))
- (|:| |gvlist| (-663 (-560)))))
- (-5 *1 (-650 *4 *5)))))
-(((*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1297 *1)) (-4 *1 (-380 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-711 *4)) (-4 *4 (-1080)) (-5 *1 (-1173 *3 *4))
- (-14 *3 (-793)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080))
- (-5 *2 (-841 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-868)) (-5 *1 (-1321 *3 *2)) (-4 *3 (-1080)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-4 *1 (-1130 *3))))
- ((*1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-600)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1296 *3)) (-4 *3 (-1247)) (-4 *3 (-1080))
- (-5 *2 (-711 *3)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-773)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229)))
- (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-229))
- (-5 *2 (-1066)) (-5 *1 (-777))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229)))
- (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))))
- (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-402))
- (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-777)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1297 *5)) (-5 *3 (-793)) (-5 *4 (-1151)) (-4 *5 (-363))
- (-5 *1 (-542 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *2 (-663 (-229)))
- (-5 *1 (-482)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-1225 *4 *5))
- (-4 *4 (-1132)) (-4 *5 (-1132)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-871)) (-5 *2 (-663 (-663 (-663 *4))))
- (-5 *1 (-1218 *4)) (-5 *3 (-663 (-663 *4))))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-663 *11)) (-5 *5 (-663 (-1201 *9)))
- (-5 *6 (-663 *9)) (-5 *7 (-663 *12)) (-5 *8 (-663 (-793)))
- (-4 *11 (-871)) (-4 *9 (-319)) (-4 *12 (-979 *9 *10 *11))
- (-4 *10 (-815)) (-5 *2 (-663 (-1201 *12)))
- (-5 *1 (-729 *10 *11 *9 *12)) (-5 *3 (-1201 *12)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-32 *4 *5))
- (-4 *5 (-435 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114))
- (-5 *1 (-160 *4 *5)) (-4 *5 (-435 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114))
- (-5 *1 (-287 *4 *5)) (-4 *5 (-13 (-435 *4) (-1033)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-309 *4)) (-4 *4 (-310))))
- ((*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *5 (-1132)) (-5 *2 (-114))
- (-5 *1 (-434 *4 *5)) (-4 *4 (-435 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114))
- (-5 *1 (-445 *4 *5)) (-4 *5 (-435 *4))))
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-560)))))
+ (-4 *2 (-571)) (-5 *1 (-419 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-115)) (-4 *4 (-571)) (-5 *2 (-114))
- (-5 *1 (-648 *4 *5)) (-4 *5 (-13 (-435 *4) (-1033) (-1233))))))
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-560))
+ (|:| -2609 (-663 (-2 (|:| |irr| *4) (|:| -4181 (-560)))))))
+ (-4 *4 (-1273 (-560))) (-5 *2 (-419 *4)) (-5 *1 (-456 *4)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174)))))
+(((*1 *1 *1) (-4 *1 (-95)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
+ (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-539))))
+ ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1183)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871))
+ (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-128 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-435 *4))
- (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6)))
- (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-571) (-1069 (-560))))
- (-5 *2 (-2 (|:| -3913 (-793)) (|:| -1975 *8)))
- (-5 *1 (-940 *4 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-1185 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-195))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-346 (-421 (-560)) *4 *5 *6))
- (-4 *4 (-1273 (-421 (-560)))) (-4 *5 (-1273 (-421 *4)))
- (-4 *6 (-355 (-421 (-560)) *4 *5))
- (-5 *2 (-2 (|:| -3913 (-793)) (|:| -1975 *6)))
- (-5 *1 (-941 *4 *5 *6)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-663 (-2 (|:| |totdeg| (-793)) (|:| -2738 *3))))
- (-5 *4 (-793)) (-4 *3 (-979 *5 *6 *7)) (-4 *5 (-466)) (-4 *6 (-815))
- (-4 *7 (-871)) (-5 *1 (-464 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-711 (-421 (-975 (-560))))) (-5 *2 (-663 (-326 (-560))))
- (-5 *1 (-1059)))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-114)) (-5 *1 (-609 *3)) (-4 *3 (-1080)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7))
- (-5 *2 (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4))))
- (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *7)) (-4 *7 (-871))
- (-4 *8 (-979 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-815))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1297 (-421 *8)) "failed"))
- (|:| -1954 (-663 (-1297 (-421 *8))))))
- (-5 *1 (-691 *5 *6 *7 *8)))))
-(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-781)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5)) (-4 *5 (-376))
- (-5 *2
- (-2 (|:| |ir| (-597 (-421 *6))) (|:| |specpart| (-421 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-588 *5 *6)) (-5 *3 (-421 *6)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))))
+ (-12 (-5 *3 (-1185 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-313))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1185 (-229))) (-5 *2 (-663 (-1189))) (-5 *1 (-315)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-421 (-975 *4))) (-5 *3 (-1207))
+ (-4 *4 (-13 (-571) (-1069 (-560)) (-149))) (-5 *1 (-584 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7))))
- (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-663 *7)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-663 (-663 (-663 *4)))) (-5 *3 (-663 *4)) (-4 *4 (-871))
- (-5 *1 (-1218 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1273 *6))
- (-4 *6 (-13 (-27) (-435 *5))) (-4 *5 (-13 (-571) (-1069 (-560))))
- (-4 *8 (-1273 (-421 *7))) (-5 *2 (-597 *3))
- (-5 *1 (-567 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8)))))
+ (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2))
+ (-4 *4 (-571)))))
(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-159))))
((*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-898))))
((*1 *2 *3)
(-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *1) (-5 *1 (-592))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-571))
- (-5 *2 (-1201 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-229)) (-5 *5 (-560)) (-5 *2 (-1243 *3))
- (-5 *1 (-812 *3)) (-4 *3 (-1005))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *4 (-114))
- (-5 *1 (-1243 *2)) (-4 *2 (-1005)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-663 (-560))) (-5 *1 (-1035 *3)) (-14 *3 (-560)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-663 (-1171 *4 *5))) (-5 *3 (-1 (-114) *5 *5))
+ (-4 *4 (-13 (-1132) (-34))) (-4 *5 (-13 (-1132) (-34)))
+ (-5 *1 (-1172 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-663 (-1171 *3 *4))) (-4 *3 (-13 (-1132) (-34)))
+ (-4 *4 (-13 (-1132) (-34))) (-5 *1 (-1172 *3 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-711 *3))
- (-4 *3 (-13 (-319) (-10 -8 (-15 -3023 ((-419 $) $)))))
- (-4 *4 (-1273 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-330)) (-5 *3 (-229)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848)))))
+ (-12 (-5 *3 (-663 (-229))) (-5 *4 (-793)) (-5 *2 (-711 (-229)))
+ (-5 *1 (-315)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-376) (-870))) (-5 *1 (-184 *3 *2))
- (-4 *2 (-1273 (-171 *3))))))
-(((*1 *1) (-5 *1 (-611))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1066)) (-5 *3 (-1207)) (-5 *1 (-195)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))))
-(((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-663 *11))
- (|:| |todo| (-663 (-2 (|:| |val| *3) (|:| -4297 *11))))))
- (-5 *6 (-793))
- (-5 *2 (-663 (-2 (|:| |val| (-663 *10)) (|:| -4297 *11))))
- (-5 *3 (-663 *10)) (-5 *4 (-663 *11)) (-4 *10 (-1096 *7 *8 *9))
- (-4 *11 (-1102 *7 *8 *9 *10)) (-4 *7 (-466)) (-4 *8 (-815))
- (-4 *9 (-871)) (-5 *1 (-1100 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
- (-12
- (-5 *5
- (-2 (|:| |done| (-663 *11))
- (|:| |todo| (-663 (-2 (|:| |val| *3) (|:| -4297 *11))))))
- (-5 *6 (-793))
- (-5 *2 (-663 (-2 (|:| |val| (-663 *10)) (|:| -4297 *11))))
- (-5 *3 (-663 *10)) (-5 *4 (-663 *11)) (-4 *10 (-1096 *7 *8 *9))
- (-4 *11 (-1140 *7 *8 *9 *10)) (-4 *7 (-466)) (-4 *8 (-815))
- (-4 *9 (-871)) (-5 *1 (-1176 *7 *8 *9 *10 *11)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1201 *6)) (-5 *3 (-560)) (-4 *6 (-319)) (-4 *4 (-815))
- (-4 *5 (-871)) (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-979 *6 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-114) *9)) (-5 *5 (-1 (-114) *9 *9))
- (-4 *9 (-1096 *6 *7 *8)) (-4 *6 (-571)) (-4 *7 (-815))
- (-4 *8 (-871)) (-5 *2 (-2 (|:| |bas| *1) (|:| -2572 (-663 *9))))
- (-5 *3 (-663 *9)) (-4 *1 (-1242 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-114) *8 *8)) (-4 *8 (-1096 *5 *6 *7))
- (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -2572 (-663 *8))))
- (-5 *3 (-663 *8)) (-4 *1 (-1242 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-769)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 (-663 *8))) (-5 *3 (-663 *8))
- (-4 *8 (-979 *5 *7 *6)) (-4 *5 (-13 (-319) (-149)))
- (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-114))
- (-5 *1 (-953 *5 *6 *7 *8)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *1 (-270))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *3 (-663 (-270)))
- (-5 *1 (-271))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *1 (-482))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *1 (-482)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-1080)) (-5 *2 (-1297 *3)) (-5 *1 (-734 *3 *4))
- (-4 *4 (-1273 *3)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-793)) (-5 *2 (-114))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-114)) (-5 *1 (-1249 *3)) (-4 *3 (-1132))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *3 (-1132)) (-5 *2 (-114))
- (-5 *1 (-1249 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)) (-4 *2 (-466))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *3 (-1096 *4 *5 *6))
- (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -4297 *1))))
- (-4 *1 (-1102 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1252)))
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-1277 *3 *2))
- (-4 *2 (-13 (-1273 *3) (-571) (-10 -8 (-15 -2132 ($ $ $))))))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303))
- (-5 *1 (-1103 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303))
- (-5 *1 (-1139 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-663 (-975 *4))) (-5 *3 (-663 (-1207))) (-4 *4 (-466))
- (-5 *1 (-947 *4)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-630 *4)) (-5 *6 (-1201 *4))
- (-4 *4 (-13 (-435 *7) (-27) (-1233)))
- (-4 *7 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1954 (-663 *4))))
- (-5 *1 (-575 *7 *4 *3)) (-4 *3 (-680 *4)) (-4 *3 (-1132))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-630 *4)) (-5 *6 (-421 (-1201 *4)))
- (-4 *4 (-13 (-435 *7) (-27) (-1233)))
- (-4 *7 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1954 (-663 *4))))
- (-5 *1 (-575 *7 *4 *3)) (-4 *3 (-680 *4)) (-4 *3 (-1132)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391))
- (|:| |expense| (-391)) (|:| |accuracy| (-391))
- (|:| |intermediateResults| (-391))))
- (-5 *2 (-1066)) (-5 *1 (-315)))))
-(((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115)))
- ((*1 *1 *1) (-5 *1 (-174))) ((*1 *1 *1) (-4 *1 (-559)))
- ((*1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132))))
- ((*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-1080))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34)))
- (-4 *3 (-13 (-1132) (-34))))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-793)) (-5 *6 (-114)) (-4 *7 (-466)) (-4 *8 (-815))
- (-4 *9 (-871)) (-4 *3 (-1096 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-663 *4))
- (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4))))))
- (-5 *1 (-1100 *7 *8 *9 *3 *4)) (-4 *4 (-1102 *7 *8 *9 *3))))
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3))))
+ ((*1 *1 *1) (-4 *1 (-1236))))
+(((*1 *2 *1) (-12 (-4 *1 (-870)) (-5 *2 (-560))))
+ ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-931 *3)) (-4 *3 (-1132))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1099 *4 *3)) (-4 *4 (-13 (-870) (-376)))
+ (-4 *3 (-1273 *4)) (-5 *2 (-560))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-571) (-1069 *2) (-660 *2) (-466)))
+ (-5 *2 (-560)) (-5 *1 (-1148 *4 *3))
+ (-4 *3 (-13 (-27) (-1233) (-435 *4)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871))
- (-4 *3 (-1096 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-663 *4))
- (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4))))))
- (-5 *1 (-1100 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-663 *4))
- (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4))))))
- (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-793)) (-5 *6 (-114)) (-4 *7 (-466)) (-4 *8 (-815))
- (-4 *9 (-871)) (-4 *3 (-1096 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-663 *4))
- (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4))))))
- (-5 *1 (-1176 *7 *8 *9 *3 *4)) (-4 *4 (-1140 *7 *8 *9 *3))))
+ (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-864 *3))
+ (-4 *3 (-13 (-27) (-1233) (-435 *6)))
+ (-4 *6 (-13 (-571) (-1069 *2) (-660 *2) (-466))) (-5 *2 (-560))
+ (-5 *1 (-1148 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-1189))
+ (-4 *6 (-13 (-571) (-1069 *2) (-660 *2) (-466))) (-5 *2 (-560))
+ (-5 *1 (-1148 *6 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *6)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-466)) (-5 *2 (-560))
+ (-5 *1 (-1149 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871))
- (-4 *3 (-1096 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-663 *4))
- (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4))))))
- (-5 *1 (-1176 *6 *7 *8 *3 *4)) (-4 *4 (-1140 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-663 *4))
- (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -4297 *4))))))
- (-5 *1 (-1176 *5 *6 *7 *3 *4)) (-4 *4 (-1140 *5 *6 *7 *3)))))
+ (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-864 (-421 (-975 *6))))
+ (-5 *3 (-421 (-975 *6))) (-4 *6 (-466)) (-5 *2 (-560))
+ (-5 *1 (-1149 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-421 (-975 *6))) (-5 *4 (-1207))
+ (-5 *5 (-1189)) (-4 *6 (-466)) (-5 *2 (-560)) (-5 *1 (-1149 *6))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-560)) (-5 *1 (-1230 *3)) (-4 *3 (-1080)))))
+(((*1 *1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793))
+ (-4 *4 (-175))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2))
+ (-4 *2 (-435 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1123 *2)) (-4 *2 (-435 *4)) (-4 *4 (-571))
+ (-5 *1 (-160 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1123 *1)) (-4 *1 (-162))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-793)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-871))
+ (-4 *4 (-175)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946))))
+ ((*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4508)) (-4 *1 (-242 *3))
+ (-4 *3 (-1132))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1247)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-466))))
+ ((*1 *1 *1 *1) (-4 *1 (-466))))
(((*1 *2 *1)
- (-12 (-4 *1 (-717 *3)) (-4 *3 (-1132))
- (-5 *2 (-663 (-2 (|:| -2460 *3) (|:| -3865 (-793))))))))
-(((*1 *2)
- (-12 (-4 *4 (-376)) (-5 *2 (-793)) (-5 *1 (-340 *3 *4))
- (-4 *3 (-341 *4))))
- ((*1 *2) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-793)))))
+ (-12 (-4 *3 (-1132)) (-4 *4 (-13 (-1080) (-911 *3) (-633 *2)))
+ (-5 *2 (-915 *3)) (-5 *1 (-1106 *3 *4 *5))
+ (-4 *5 (-13 (-435 *4) (-911 *3) (-633 *2))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-793)) (-5 *1 (-805 *2)) (-4 *2 (-38 (-421 (-560))))
+ (-4 *2 (-175)))))
+(((*1 *1 *1 *1) (-4 *1 (-998))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-915 *4)) (-4 *4 (-1132)) (-5 *2 (-663 *5))
+ (-5 *1 (-916 *4 *5)) (-4 *5 (-1247)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-551 *3 *2))
- (-4 *2 (-1290 *3))))
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-4 *4 (-1273 *3))
- (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1290 *5))))
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-5 *1 (-556 *3 *2))
- (-4 *2 (-1290 *3))))
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-13 (-571) (-149)))
- (-5 *1 (-1184 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
- (-4 *3 (-380 *4))))
- ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1141)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-31))))
- ((*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-948)))) ((*1 *1) (-4 *1 (-559)))
- ((*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-721))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 *3)) (-5 *1 (-934 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560))
- (-5 *2 (-1066)) (-5 *1 (-778)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391)))
- (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206))))
- (-5 *1 (-1206)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *5 (-711 (-229))) (-5 *6 (-114)) (-5 *7 (-711 (-560)))
- (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS))))
- (-5 *3 (-560)) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-775)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229))
- (-5 *2 (-1066)) (-5 *1 (-773)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-948)) (-4 *4 (-381)) (-4 *4 (-376)) (-5 *2 (-1201 *1))
- (-4 *1 (-341 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1201 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *3 (-376))
- (-4 *2 (-1273 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-1201 *4))
- (-5 *1 (-542 *4)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-663 (-495 *4 *5))) (-5 *3 (-663 (-888 *4)))
- (-14 *4 (-663 (-1207))) (-4 *5 (-466)) (-5 *1 (-485 *4 *5 *6))
- (-4 *6 (-466)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-663 *8)) (-5 *3 (-1 (-114) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571))
- (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1008 *5 *6 *7 *8)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-948)) (-4 *1 (-766 *3)) (-4 *3 (-175)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-711 (-229))) (-5 *5 (-114)) (-5 *6 (-229))
- (-5 *7 (-711 (-560)))
- (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))
- (-5 *3 (-560)) (-5 *2 (-1066)) (-5 *1 (-775)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 *5)) (-4 *5 (-1273 *3)) (-4 *3 (-319))
- (-5 *2 (-114)) (-5 *1 (-469 *3 *5)))))
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3))))
+ ((*1 *1 *1) (-4 *1 (-1236))))
+(((*1 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1247)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-305 (-975 (-560))))
- (-5 *2
- (-2 (|:| |varOrder| (-663 (-1207)))
- (|:| |inhom| (-3 (-663 (-1297 (-793))) "failed"))
- (|:| |hom| (-663 (-1297 (-793))))))
- (-5 *1 (-243)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3))
- (-4 *3 (-1132)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
- (-4 *4 (-1080)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080))
- (-5 *2
- (-2 (|:| -2317 (-793)) (|:| |curves| (-793))
- (|:| |polygons| (-793)) (|:| |constructs| (-793)))))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391)))
- (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206))))
- (-5 *1 (-1206)))))
-(((*1 *1 *1 *1) (-5 *1 (-887))))
+ (|partial| -12 (-4 *2 (-1132)) (-5 *1 (-1225 *3 *2)) (-4 *3 (-1132)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-663 (-1207))) (-4 *5 (-466))
- (-5 *2 (-495 *4 *5)) (-5 *1 (-650 *4 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-979 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871))
- (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247))
- (-4 *4 (-385 *2)) (-4 *5 (-385 *2))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4509)) (-4 *1 (-121 *3))
- (-4 *3 (-1247))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4509)) (-4 *1 (-121 *3))
- (-4 *3 (-1247))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4509)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1132))
- (-4 *2 (-1247))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1207)) (-5 *1 (-651))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1264 (-560))) (|has| *1 (-6 -4509)) (-4 *1 (-673 *2))
- (-4 *2 (-1247))))
- ((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-663 (-560))) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080))
- (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4509)) (-4 *1 (-1041 *2))
- (-4 *2 (-1247))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1247))))
- ((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-1224 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2))
- (-4 *2 (-1247))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4509)) (-4 *1 (-1286 *3))
- (-4 *3 (-1247))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2))
- (-4 *2 (-1247)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1297 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252))
- (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-229)) (-5 *1 (-315)))))
+ (-12 (-5 *3 (-1185 (-1185 *4))) (-5 *2 (-1185 *4)) (-5 *1 (-1191 *4))
+ (-4 *4 (-38 (-421 (-560)))) (-4 *4 (-1080)))))
+(((*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1189)) (-5 *1 (-732)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-887)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-793))
+ (-14 *4 (-793)) (-4 *5 (-175)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-159)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887))))
+ ((*1 *1 *1 *1) (-5 *1 (-887))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-885)) (-5 *2 (-713 (-564))) (-5 *3 (-564)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-1080)) (-4 *4 (-1273 *3)) (-5 *1 (-166 *3 *4 *2))
- (-4 *2 (-1273 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-1211)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1201 *5)) (-4 *5 (-376)) (-5 *2 (-663 *6))
- (-5 *1 (-546 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-870))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-948)) (-5 *2 (-793)) (-5 *1 (-1133 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1201 *6)) (-4 *6 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *2 (-1201 *7)) (-5 *1 (-333 *4 *5 *6 *7))
- (-4 *7 (-979 *6 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-618 *2 *3)) (-4 *3 (-1247)) (-4 *2 (-1132))
- (-4 *2 (-871)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-482)) (-5 *3 (-663 (-270))) (-5 *1 (-1300))))
- ((*1 *1 *1) (-5 *1 (-1300))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391)))
- (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206))))
- (-5 *1 (-1206)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-663 (-305 *3))) (-5 *1 (-305 *3)) (-4 *3 (-571))
- (-4 *3 (-1247)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))))
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1132)) (-4 *5 (-1132))
+ (-5 *2 (-1 *5)) (-5 *1 (-705 *4 *5)))))
(((*1 *2 *2)
(-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-663 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1125 *3)) (-4 *3 (-1247)) (-5 *2 (-560)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))))
-(((*1 *1) (-5 *1 (-146))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-663 *5) *6))
- (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *6 (-1273 *5))
- (-5 *2 (-663 (-2 (|:| -3081 *5) (|:| -3192 *3))))
- (-5 *1 (-831 *5 *6 *3 *7)) (-4 *3 (-680 *6))
- (-4 *7 (-680 (-421 *6))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
- (-5 *1 (-518 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-5 *2 (-560)))))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3))))
+ ((*1 *1 *1) (-4 *1 (-1236))))
+(((*1 *2 *1) (-12 (-5 *2 (-948)) (-5 *1 (-1002)))))
+(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1066)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-663 (-1106 *4 *5 *2))) (-4 *4 (-1132))
+ (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4))))
+ (-4 *2 (-13 (-435 *5) (-911 *4) (-633 (-915 *4))))
+ (-5 *1 (-54 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-663 (-1106 *5 *6 *2))) (-5 *4 (-948)) (-4 *5 (-1132))
+ (-4 *6 (-13 (-1080) (-911 *5) (-633 (-915 *5))))
+ (-4 *2 (-13 (-435 *6) (-911 *5) (-633 (-915 *5))))
+ (-5 *1 (-54 *5 *6 *2)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-711 (-1201 *8))) (-4 *5 (-1080)) (-4 *8 (-1080))
- (-4 *6 (-1273 *5)) (-5 *2 (-711 *6)) (-5 *1 (-515 *5 *6 *7 *8))
- (-4 *7 (-1273 *6)))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391)))
- (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206))))
- (-5 *1 (-1206)))))
+ (-12 (-5 *3 (-421 (-560))) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-571)) (-4 *8 (-979 *7 *5 *6))
+ (-5 *2 (-2 (|:| -2030 (-793)) (|:| -2625 *9) (|:| |radicand| *9)))
+ (-5 *1 (-982 *5 *6 *7 *8 *9)) (-5 *4 (-793))
+ (-4 *9
+ (-13 (-376)
+ (-10 -8 (-15 -3913 ($ *8)) (-15 -2473 (*8 $)) (-15 -2484 (*8 $))))))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-663 (-1201 *4))) (-5 *3 (-1201 *4))
- (-4 *4 (-939)) (-5 *1 (-685 *4)))))
-(((*1 *1) (-5 *1 (-143))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-560)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-793)) (-4 *5 (-175))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-560)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-793)) (-4 *5 (-175))))
+ (-12 (-4 *4 (-815))
+ (-4 *3 (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $))))) (-4 *5 (-571))
+ (-5 *1 (-754 *4 *3 *5 *2)) (-4 *2 (-979 (-421 (-975 *5)) *4 *3))))
((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-518 (-421 (-560)) (-246 *5 (-793)) (-888 *4)
- (-255 *4 (-421 (-560)))))
- (-5 *3 (-663 (-888 *4))) (-14 *4 (-663 (-1207))) (-14 *5 (-793))
- (-5 *1 (-519 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1080)) (-4 *7 (-1080))
- (-4 *6 (-1273 *5)) (-5 *2 (-1201 (-1201 *7)))
- (-5 *1 (-515 *5 *6 *4 *7)) (-4 *4 (-1273 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7))
- (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -4297 *4))))
- (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
-(((*1 *1) (-5 *1 (-159)))
- ((*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-663
- (-2 (|:| |scalar| (-421 (-560))) (|:| |coeff| (-1201 *3))
- (|:| |logand| (-1201 *3)))))
- (-5 *1 (-597 *3)) (-4 *3 (-376)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1297 *4)) (-5 *3 (-560)) (-4 *4 (-363))
- (-5 *1 (-542 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1069 (-560))) (-4 *1 (-310)) (-5 *2 (-114))))
- ((*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-114))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-931 *3)) (-4 *3 (-1132)))))
-(((*1 *1 *1) (-4 *1 (-894 *2))))
+ (-12 (-4 *4 (-1080)) (-4 *5 (-815))
+ (-4 *3
+ (-13 (-871)
+ (-10 -8 (-15 -2400 ((-1207) $))
+ (-15 -2558 ((-3 $ "failed") (-1207))))))
+ (-5 *1 (-1015 *4 *5 *3 *2)) (-4 *2 (-979 (-975 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-663 *6))
+ (-4 *6
+ (-13 (-871)
+ (-10 -8 (-15 -2400 ((-1207) $))
+ (-15 -2558 ((-3 $ "failed") (-1207))))))
+ (-4 *4 (-1080)) (-4 *5 (-815)) (-5 *1 (-1015 *4 *5 *6 *2))
+ (-4 *2 (-979 (-975 *4) *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1185 (-663 (-560)))) (-5 *1 (-908))
+ (-5 *3 (-663 (-560))))))
+(((*1 *1) (-5 *1 (-592))))
+(((*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302))))
+ ((*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))))
+(((*1 *1 *1) (-4 *1 (-176)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-114))
+ (-5 *2 (-1066)) (-5 *1 (-775)))))
+(((*1 *1) (-5 *1 (-623))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-551 *3 *2))
- (-4 *2 (-1290 *3))))
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-4 *4 (-1273 *3))
- (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1290 *5))))
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-5 *1 (-556 *3 *2))
- (-4 *2 (-1290 *3))))
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
+ (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
((*1 *2 *2)
- (-12 (-5 *2 (-1185 *3)) (-4 *3 (-13 (-571) (-149)))
- (-5 *1 (-1184 *3)))))
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3))))
+ ((*1 *1 *1) (-4 *1 (-1236))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-569 *3)) (-4 *3 (-13 (-418) (-1233))) (-5 *2 (-114)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-549)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-972 *3) (-972 *3))) (-5 *1 (-179 *3))
- (-4 *3 (-13 (-376) (-1233) (-1033))))))
-(((*1 *1 *1) (-4 *1 (-1091))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1080) (-871)))
- (-14 *3 (-663 (-1207))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
+ (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
+ (|:| |relerr| (-229))))
+ (-5 *2 (-391)) (-5 *1 (-195)))))
+(((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-1201 (-975 *4))) (-5 *1 (-431 *3 *4))
+ (-4 *3 (-432 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-4 *3 (-376))
+ (-5 *2 (-1201 (-975 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1201 (-421 (-975 *3)))) (-5 *1 (-467 *3 *4 *5 *6))
(-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
(-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-808)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4508)) (-4 *1 (-503 *4))
- (-4 *4 (-1247)) (-5 *2 (-114)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391))
- (-5 *2
- (-2 (|:| -3853 *4) (|:| -4223 *4) (|:| |totalpts| (-560))
- (|:| |success| (-114))))
- (-5 *1 (-811)) (-5 *5 (-560)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-376)) (-4 *4 (-1273 *3)) (-4 *5 (-1273 (-421 *4)))
- (-5 *2 (-1297 *6)) (-5 *1 (-346 *3 *4 *5 *6))
- (-4 *6 (-355 *3 *4 *5)))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1207)) (-5 *1 (-697 *3)) (-4 *3 (-1132)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-310)) (-4 *2 (-1247))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-663 (-630 *1))) (-5 *3 (-663 *1)) (-4 *1 (-310))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-305 *1))) (-4 *1 (-310))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-305 *1)) (-4 *1 (-310)))))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1132))
+ (-5 *2 (-2 (|:| -2625 (-560)) (|:| |var| (-630 *1))))
+ (-4 *1 (-435 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-391)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5))
- (-5 *2 (-2 (|:| -4332 (-663 *6)) (|:| -2109 (-663 *6)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-134)) (-5 *2 (-793))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-560)) (-4 *1 (-385 *3)) (-4 *3 (-1247))
- (-4 *3 (-1132))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-385 *3)) (-4 *3 (-1247)) (-4 *3 (-1132))
- (-5 *2 (-560))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-114) *4)) (-4 *1 (-385 *4)) (-4 *4 (-1247))
- (-5 *2 (-560))))
- ((*1 *2 *1) (-12 (-5 *2 (-1151)) (-5 *1 (-543))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-560)) (-5 *3 (-143))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-560)))))
+ (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-571))
+ (-5 *2 (-1201 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1080)))))
(((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
- (-4 *3 (-380 *4))))
- ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-229))
- (-5 *2
- (-2 (|:| |brans| (-663 (-663 (-972 *4))))
- (|:| |xValues| (-1120 *4)) (|:| |yValues| (-1120 *4))))
- (-5 *1 (-155)) (-5 *3 (-663 (-663 (-972 *4)))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-560)) (-5 *1 (-419 *2)) (-4 *2 (-571)))))
-(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -3887 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-663 (-421 *8))) (-4 *7 (-376)) (-4 *8 (-1273 *7))
- (-5 *3 (-421 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-588 *7 *8)))))
-(((*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-5 *2 (-560)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-793)) (-5 *2 (-1185 (-1002))) (-5 *1 (-1002)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-571))))
- ((*1 *1 *1) (|partial| -4 *1 (-744))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1313 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175))
- (-5 *1 (-686 *3 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-686 *3 *4)) (-5 *1 (-1318 *3 *4))
- (-4 *3 (-871)) (-4 *4 (-175)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *1 (-482)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1247)) (-4 *2 (-871))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-294 *3)) (-4 *3 (-1247))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-999 *2)) (-4 *2 (-871)))))
-(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481))))
- ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-481)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1207)) (-5 *5 (-663 (-421 (-975 *6))))
- (-5 *3 (-421 (-975 *6)))
- (-4 *6 (-13 (-571) (-1069 (-560)) (-149)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-584 *6)))))
-(((*1 *1) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4509)) (-4 *1 (-385 *2)) (-4 *2 (-1247))
- (-4 *2 (-871))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-114) *3 *3)) (|has| *1 (-6 -4509))
- (-4 *1 (-385 *3)) (-4 *3 (-1247)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-972 *4)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
- (-4 *4 (-1080)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-195))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-313))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-315)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-861))
- (-5 *3
- (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229)))
- (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229))))
- (|:| |ub| (-663 (-864 (-229))))))
- (-5 *2 (-1066))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-861))
- (-5 *3
- (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229)))))
- (-5 *2 (-1066)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-793))
- (-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1297 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175))
- (-4 *5 (-1273 *4)) (-5 *2 (-711 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-175)) (-4 *5 (-1273 *4)) (-5 *2 (-711 *4))
- (-5 *1 (-423 *3 *4 *5)) (-4 *3 (-424 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3))
- (-5 *2 (-711 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-793))))
- ((*1 *1 *1) (-4 *1 (-416))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-841 *4)) (-4 *4 (-871)) (-5 *2 (-114))
- (-5 *1 (-694 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-391)) (-5 *1 (-1072)))))
+ (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4))) (-5 *2 (-711 (-421 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *6)) (-5 *4 (-663 (-1185 *7))) (-4 *6 (-871))
- (-4 *7 (-979 *5 (-545 *6) *6)) (-4 *5 (-1080))
- (-5 *2 (-1 (-1185 *7) *7)) (-5 *1 (-1157 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-1189)) (-5 *5 (-711 (-229)))
- (-5 *2 (-1066)) (-5 *1 (-769)))))
-(((*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-278)))))
-(((*1 *1) (-5 *1 (-1116))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
- (-5 *1 (-518 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))))
+ (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-663 *4))
+ (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1207))
+ (-4 *4 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
+ (-5 *1 (-641 *4 *2)) (-4 *2 (-13 (-1233) (-989) (-29 *4))))))
(((*1 *2 *2)
(-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
- (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
- (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))))
-(((*1 *2)
- (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5)))
- (-5 *2 (-793)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4))) (-5 *2 (-793)))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)) (-4 *2 (-571)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1151)) (-5 *1 (-342)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-711 *3)) (-4 *3 (-319)) (-5 *1 (-722 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-793)) (-4 *6 (-376)) (-5 *4 (-1240 *6))
- (-5 *2 (-1 (-1185 *4) (-1185 *4))) (-5 *1 (-1306 *6))
- (-5 *5 (-1185 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-871) (-633 (-1207))))
- (-4 *6 (-815)) (-4 *7 (-979 *4 *6 *5))
- (-5 *2
- (-2 (|:| |sysok| (-114)) (|:| |z0| (-663 *7)) (|:| |n0| (-663 *7))))
- (-5 *1 (-953 *4 *5 *6 *7)) (-5 *3 (-663 *7)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-391)) (-5 *1 (-97)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-793)) (-5 *1 (-880 *2)) (-4 *2 (-175))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-971)) (-5 *3 (-560)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-376))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-588 *5 *3)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-793)) (-4 *1 (-1273 *3)) (-4 *3 (-1080)))))
-(((*1 *1 *2) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1247)))))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-871))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
+ (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3))))
+ ((*1 *1 *1) (-4 *1 (-1236))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-229))
+ (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))))
+ (-5 *2 (-1066)) (-5 *1 (-771))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-229))
+ (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))))
+ (-5 *8 (-402)) (-5 *2 (-1066)) (-5 *1 (-771)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-229))
+ (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1066))
+ (-5 *1 (-771)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
- (-4 *4 (-1080)))))
+ (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114))
+ (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-663 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815))
+ (-5 *2 (-114)) (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-979 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3))
- (-4 *5 (-385 *3)) (-5 *2 (-114))))
+ (-12 (-4 *1 (-1007 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *5 (-1096 *3 *4 *2)) (-4 *2 (-871))))
((*1 *2 *1)
- (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
- (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *1 (-809)) (-5 *2 (-1066))
- (-5 *3
- (-2 (|:| |fn| (-326 (-229)))
- (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229))
- (|:| |relerr| (-229))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-809)) (-5 *2 (-1066))
- (-5 *3
- (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
- (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
- (|:| |relerr| (-229)))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080))
- (-5 *2 (-663 (-663 (-663 (-793))))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-948)) (-5 *2 (-482)) (-5 *1 (-1300)))))
-(((*1 *1 *1) (-5 *1 (-1094))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-482)) (-5 *4 (-948)) (-5 *2 (-1303)) (-5 *1 (-1300)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1201 *3)) (-4 *3 (-1080)) (-4 *1 (-1273 *3)))))
+ (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *2 (-871)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-663 (-2 (|:| -4198 (-421 (-560))) (|:| -4210 (-421 (-560))))))
- (-5 *2 (-663 (-229))) (-5 *1 (-315)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-374 (-115))) (-4 *2 (-1080)) (-5 *1 (-736 *2 *4))
- (-4 *4 (-670 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-374 (-115))) (-5 *1 (-856 *2)) (-4 *2 (-1080)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-711 (-421 (-560)))) (-5 *2 (-663 *4)) (-5 *1 (-801 *4))
- (-4 *4 (-13 (-376) (-870))))))
-(((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-466)) (-4 *4 (-871)) (-4 *5 (-815)) (-5 *2 (-114))
- (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-979 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-114)) (-5 *1 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34)))
- (-4 *4 (-13 (-1132) (-34))))))
-(((*1 *1 *1 *1) (-4 *1 (-998))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-868)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-183))))
- ((*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-703))))
- ((*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-1001))))
- ((*1 *2 *1) (-12 (-5 *2 (-1248)) (-5 *1 (-1104))))
- ((*1 *2 *1) (-12 (-5 *2 (-1212)) (-5 *1 (-1146)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-711 *11)) (-5 *4 (-663 (-421 (-975 *8))))
- (-5 *5 (-793)) (-5 *6 (-1189)) (-4 *8 (-13 (-319) (-149)))
- (-4 *11 (-979 *8 *10 *9)) (-4 *9 (-13 (-871) (-633 (-1207))))
- (-4 *10 (-815))
- (-5 *2
- (-2
- (|:| |rgl|
- (-663
- (-2 (|:| |eqzro| (-663 *11)) (|:| |neqzro| (-663 *11))
- (|:| |wcond| (-663 (-975 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1297 (-421 (-975 *8))))
- (|:| -1954 (-663 (-1297 (-421 (-975 *8))))))))))
- (|:| |rgsz| (-560))))
- (-5 *1 (-953 *8 *9 *10 *11)) (-5 *7 (-560)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229)))
- (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1))))
- (-5 *2 (-1066)) (-5 *1 (-775)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-663 (-560))) (-5 *2 (-1209 (-421 (-560))))
- (-5 *1 (-193)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-663 (-1207))) (-4 *4 (-1132))
- (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4))))
- (-5 *1 (-54 *4 *5 *2))
- (-4 *2 (-13 (-435 *5) (-911 *4) (-633 (-915 *4)))))))
+ (-2 (|:| -3741 (-391)) (|:| -4389 (-1189))
+ (|:| |explanations| (-663 (-1189)))))
+ (-5 *2 (-1066)) (-5 *1 (-315))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -3741 (-391)) (|:| -4389 (-1189))
+ (|:| |explanations| (-663 (-1189))) (|:| |extra| (-1066))))
+ (-5 *2 (-1066)) (-5 *1 (-315)))))
(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1078)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080))
- (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))))
-(((*1 *1) (-5 *1 (-611))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-975 (-421 (-560)))) (-5 *4 (-1207))
- (-5 *5 (-1120 (-864 (-229)))) (-5 *2 (-663 (-229))) (-5 *1 (-313)))))
-(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-845)))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-793)) (-4 *3 (-571)) (-5 *1 (-1000 *3 *2))
- (-4 *2 (-1273 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1207))
- (-4 *4 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)))
- (-5 *1 (-826 *4 *2)) (-4 *2 (-13 (-29 *4) (-1233) (-989))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1185 *4)) (-5 *3 (-1 *4 (-560))) (-4 *4 (-1080))
- (-5 *1 (-1191 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-611)) (-5 *1 (-600)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-560)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1247))
- (-4 *5 (-385 *4)) (-4 *2 (-385 *4))))
+ (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2))
+ (-4 *4 (-571)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1207)) (-5 *3 (-448)) (-4 *5 (-1132))
+ (-5 *1 (-1137 *5 *4)) (-4 *4 (-435 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4))
+ (-4 *4 (-363))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4))
+ (-4 *4 (-363))))
+ ((*1 *1) (-4 *1 (-381)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-948)) (-5 *2 (-1297 *4)) (-5 *1 (-542 *4))
+ (-4 *4 (-363))))
+ ((*1 *1 *1) (-4 *1 (-559))) ((*1 *1) (-4 *1 (-559)))
+ ((*1 *1 *1) (-5 *1 (-793)))
+ ((*1 *2 *1) (-12 (-5 *2 (-931 *3)) (-5 *1 (-934 *3)) (-4 *3 (-1132))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-560)) (-4 *1 (-1084 *4 *5 *6 *7 *2)) (-4 *6 (-1080))
- (-4 *7 (-245 *5 *6)) (-4 *2 (-245 *4 *6)))))
+ (-12 (-5 *3 (-560)) (-5 *2 (-931 *4)) (-5 *1 (-934 *4))
+ (-4 *4 (-1132))))
+ ((*1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-559)) (-4 *2 (-571)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-229)) (-5 *5 (-560)) (-5 *2 (-1243 *3))
+ (-5 *1 (-812 *3)) (-4 *3 (-1005))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *4 (-114))
+ (-5 *1 (-1243 *2)) (-4 *2 (-1005)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
- (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
- (|:| |relerr| (-229))))
- (-5 *2
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1185 (-229)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -3471
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-574)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-342)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-114)) (-5 *3 (-663 (-270))) (-5 *1 (-271)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-669 *3)) (-4 *3 (-1132)))))
-(((*1 *1) (-5 *1 (-143))))
-(((*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1210)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229))
- (-5 *2 (-1066)) (-5 *1 (-774)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+ (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4))
+ (-4 *4 (-363)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1287 *2 *3 *4)) (-4 *2 (-1080)) (-14 *3 (-1207))
+ (-14 *4 *2))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229)))
+ (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))) (-5 *4 (-229))
+ (-5 *2 (-1066)) (-5 *1 (-778)))))
(((*1 *2 *2)
(-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1132)) (-4 *3 (-927 *5)) (-5 *2 (-1297 *3))
- (-5 *1 (-714 *5 *3 *6 *4)) (-4 *6 (-385 *3))
- (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4508)))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1080) (-871)))
- (-5 *1 (-227 *3 *4)) (-14 *4 (-663 (-1207))))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1069 (-560))))
- (-4 *5 (-1273 *4))
- (-5 *2 (-2 (|:| -3887 (-421 *5)) (|:| |coeff| (-421 *5))))
- (-5 *1 (-582 *4 *5)) (-5 *3 (-421 *5)))))
-(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-195))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-313))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1120 (-864 (-229)))) (-5 *2 (-229)) (-5 *1 (-315)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1201 (-975 *6))) (-4 *6 (-571))
- (-4 *2 (-979 (-421 (-975 *6)) *5 *4)) (-5 *1 (-754 *5 *4 *6 *2))
- (-4 *5 (-815))
- (-4 *4 (-13 (-871) (-10 -8 (-15 -1407 ((-1207) $))))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1201 (-560))) (-5 *1 (-971)) (-5 *3 (-560))))
+ (-4 *2 (-13 (-435 *3) (-1033)))))
((*1 *2 *2)
- (-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))
- (-5 *1 (-1155 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-663 *2)) (-4 *2 (-1132)) (-4 *2 (-1247)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
- (-4 *4 (-1080)))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1080)) (-14 *3 (-663 (-1207)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1080) (-871)))
- (-14 *3 (-663 (-1207)))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-1132))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-663 (-1207))) (-4 *3 (-175))
- (-4 *5 (-245 (-1553 *2) (-793)))
- (-14 *6
- (-1 (-114) (-2 (|:| -3128 *4) (|:| -3205 *5))
- (-2 (|:| -3128 *4) (|:| -3205 *5))))
- (-5 *1 (-475 *2 *3 *4 *5 *6 *7)) (-4 *4 (-871))
- (-4 *7 (-979 *3 *5 (-888 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-523 *2 *3)) (-4 *2 (-102)) (-4 *3 (-874))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-571)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1273 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-730 *2)) (-4 *2 (-1080))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-757 *2 *3)) (-4 *3 (-871)) (-4 *2 (-1080))
- (-4 *3 (-748))))
- ((*1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *2 (-871))))
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1290 *3))
+ (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1261 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *4 (-1259 *3))
+ (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1282 *3 *4)) (-4 *5 (-1014 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-871))))
((*1 *1 *1)
- (-12 (-5 *1 (-1321 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-868)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571))
- (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *3))
- (-5 *1 (-1008 *4 *5 *6 *3)) (-4 *3 (-1096 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-1096 *4 *5 *6)) (-4 *4 (-571))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571))
- (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-663 *7) (-663 *7))) (-5 *2 (-663 *7))
- (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-571)) (-4 *5 (-815))
- (-4 *6 (-871)) (-5 *1 (-1008 *4 *5 *6 *7)))))
-(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-405)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1290 *3)))))
-(((*1 *1 *1) (-5 *1 (-887)))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1135 *2 *3 *4 *5 *6)) (-4 *3 (-1132)) (-4 *4 (-1132))
- (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *2 (-1132))))
- ((*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1189))))
- ((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1189))))
- ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1207)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1201 (-560))) (-5 *2 (-560)) (-5 *1 (-971)))))
-(((*1 *1 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1132)) (-4 *2 (-1080))))
- ((*1 *1 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)))))
-(((*1 *1 *1 *1) (-4 *1 (-684))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-319)) (-5 *2 (-114)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1185 (-421 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319)))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-1248))) (-5 *1 (-703))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 (-1212))) (-5 *1 (-1146)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-450)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-948)) (-5 *2 (-1303)) (-5 *1 (-1300))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-948)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-711 (-421 (-975 (-560)))))
- (-5 *2 (-711 (-326 (-560)))) (-5 *1 (-1059)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
+ (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
+ (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1192 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-38 (-421 (-560))))
+ (-5 *1 (-1193 *3))))
+ ((*1 *1 *1) (-4 *1 (-1236))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-663 *1))
- (-4 *1 (-979 *3 *4 *5)))))
+ (-12 (-4 *3 (-1080)) (-5 *2 (-663 *1)) (-4 *1 (-1165 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-560))
- (-14 *6 (-793)) (-4 *7 (-175)) (-4 *8 (-175))
- (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-138 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *9)) (-4 *9 (-1080)) (-4 *5 (-871)) (-4 *6 (-815))
- (-4 *8 (-1080)) (-4 *2 (-979 *9 *7 *5))
- (-5 *1 (-750 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-815))
- (-4 *4 (-979 *8 *6 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *5 (-871)) (-5 *2 (-793)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-1080)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-114)) (-5 *5 (-560)) (-4 *6 (-376)) (-4 *6 (-381))
- (-4 *6 (-1080)) (-5 *2 (-663 (-663 (-711 *6)))) (-5 *1 (-1061 *6))
- (-5 *3 (-663 (-711 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-376)) (-4 *4 (-381)) (-4 *4 (-1080))
- (-5 *2 (-663 (-663 (-711 *4)))) (-5 *1 (-1061 *4))
- (-5 *3 (-663 (-711 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-114)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1080))
- (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1061 *5))
- (-5 *3 (-663 (-711 *5)))))
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1201 *7)) (-4 *5 (-1080))
+ (-4 *7 (-1080)) (-4 *2 (-1273 *5)) (-5 *1 (-515 *5 *2 *6 *7))
+ (-4 *6 (-1273 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-948)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1080))
- (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1061 *5))
- (-5 *3 (-663 (-711 *5))))))
-(((*1 *1 *1 *1) (-4 *1 (-684))))
-(((*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-417 *3)) (-4 *3 (-418))))
- ((*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-417 *3)) (-4 *3 (-418))))
- ((*1 *2 *2) (-12 (-5 *2 (-948)) (|has| *1 (-6 -4499)) (-4 *1 (-418))))
- ((*1 *2) (-12 (-4 *1 (-418)) (-5 *2 (-948))))
- ((*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-5 *2 (-1185 (-560))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4))
- (-4 *4 (-363)))))
-(((*1 *1) (-5 *1 (-146))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-571) (-1069 (-560)))) (-5 *1 (-191 *3 *2))
- (-4 *2 (-13 (-27) (-1233) (-435 (-171 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1207)) (-4 *4 (-13 (-571) (-1069 (-560))))
- (-5 *1 (-191 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 (-171 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560))))
- (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1207))
- (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560))))
- (-5 *1 (-1237 *4 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1080)) (-5 *1 (-50 *2 *3)) (-14 *3 (-663 (-1207)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4))
- (-4 *3 (-13 (-1080) (-871))) (-14 *4 (-663 (-1207)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1132)) (-4 *2 (-1080))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-663 (-1207))) (-4 *5 (-245 (-1553 *3) (-793)))
- (-14 *6
- (-1 (-114) (-2 (|:| -3128 *4) (|:| -3205 *5))
- (-2 (|:| -3128 *4) (|:| -3205 *5))))
- (-4 *2 (-175)) (-5 *1 (-475 *3 *2 *4 *5 *6 *7)) (-4 *4 (-871))
- (-4 *7 (-979 *2 *5 (-888 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-523 *2 *3)) (-4 *3 (-874)) (-4 *2 (-102))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-571)) (-5 *1 (-642 *2 *3)) (-4 *3 (-1273 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-730 *2)) (-4 *2 (-1080))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1080)) (-5 *1 (-757 *2 *3)) (-4 *3 (-871))
- (-4 *3 (-748))))
- ((*1 *2 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1004 *2 *3 *4)) (-4 *3 (-814)) (-4 *4 (-871))
- (-4 *2 (-1080))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *2 (-871)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-38 (-421 (-560))))
- (-5 *2 (-2 (|:| -4313 (-1185 *4)) (|:| -4325 (-1185 *4))))
- (-5 *1 (-1192 *4)) (-5 *3 (-1185 *4)))))
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1080)) (-4 *7 (-1080))
+ (-4 *4 (-1273 *5)) (-5 *2 (-1201 *7)) (-5 *1 (-515 *5 *4 *6 *7))
+ (-4 *6 (-1273 *4)))))
(((*1 *2 *3)
- (-12 (-4 *2 (-376)) (-4 *2 (-870)) (-5 *1 (-974 *2 *3))
- (-4 *3 (-1273 *2)))))
-(((*1 *2) (-12 (-5 *2 (-663 (-1189))) (-5 *1 (-851)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-543)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1247)) (-4 *1 (-153 *3))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-663 (-2 (|:| -3205 (-793)) (|:| -3355 *4) (|:| |num| *4))))
- (-4 *4 (-1273 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-413 *3 *4))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -3280 "void")))
- (-5 *3 (-663 (-975 (-560)))) (-5 *4 (-114)) (-5 *1 (-450))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-448)) (|:| -3280 "void")))
- (-5 *3 (-663 (-1207))) (-5 *4 (-114)) (-5 *1 (-450))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1185 *3)) (-5 *1 (-615 *3)) (-4 *3 (-1247))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-654 *2)) (-4 *2 (-175))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-5 *1 (-686 *3 *4))
- (-4 *4 (-175))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-5 *1 (-686 *3 *4))
- (-4 *4 (-175))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-5 *1 (-686 *3 *4))
- (-4 *4 (-175))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-663 (-663 (-663 *3)))) (-4 *3 (-1132))
- (-5 *1 (-697 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-735 *2 *3 *4)) (-4 *2 (-871)) (-4 *3 (-1132))
- (-14 *4
- (-1 (-114) (-2 (|:| -3128 *2) (|:| -3205 *3))
- (-2 (|:| -3128 *2) (|:| -3205 *3))))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-1146)) (-5 *1 (-860))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-897 *2 *3)) (-4 *2 (-1247)) (-4 *3 (-1247))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 *4))))
- (-4 *4 (-1132)) (-5 *1 (-913 *3 *4)) (-4 *3 (-1132))))
+ (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-421 (-560)))
+ (-5 *1 (-447 *4 *3)) (-4 *3 (-435 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 *5)) (-4 *5 (-13 (-1132) (-34)))
- (-5 *2 (-663 (-1171 *3 *5))) (-5 *1 (-1171 *3 *5))
- (-4 *3 (-13 (-1132) (-34)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-2 (|:| |val| *4) (|:| -4297 *5))))
- (-4 *4 (-13 (-1132) (-34))) (-4 *5 (-13 (-1132) (-34)))
- (-5 *2 (-663 (-1171 *4 *5))) (-5 *1 (-1171 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -4297 *4)))
- (-4 *3 (-13 (-1132) (-34))) (-4 *4 (-13 (-1132) (-34)))
- (-5 *1 (-1171 *3 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34)))
- (-4 *3 (-13 (-1132) (-34)))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-114)) (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34)))
- (-4 *3 (-13 (-1132) (-34)))))
- ((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-663 *3)) (-4 *3 (-13 (-1132) (-34)))
- (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1132) (-34)))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-663 (-1171 *2 *3))) (-4 *2 (-13 (-1132) (-34)))
- (-4 *3 (-13 (-1132) (-34))) (-5 *1 (-1172 *2 *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-663 (-1172 *2 *3))) (-5 *1 (-1172 *2 *3))
- (-4 *2 (-13 (-1132) (-34))) (-4 *3 (-13 (-1132) (-34)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1171 *3 *4)) (-4 *3 (-13 (-1132) (-34)))
- (-4 *4 (-13 (-1132) (-34))) (-5 *1 (-1172 *3 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-1196 *2 *3)) (-4 *2 (-1132)) (-4 *3 (-1132)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-663 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560))
- (-14 *4 (-793)) (-4 *5 (-175)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-663 *2)) (-4 *2 (-979 *4 *5 *6)) (-4 *4 (-319))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-462 *4 *5 *6 *2)))))
-(((*1 *2)
- (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4))) (-5 *2 (-711 (-421 *4))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363))
- (-5 *2 (-1297 (-663 (-2 (|:| -3853 *4) (|:| -3128 (-1151))))))
- (-5 *1 (-360 *4)))))
-(((*1 *2 *3)
+ (-12 (-5 *4 (-630 *3)) (-4 *3 (-435 *5))
+ (-4 *5 (-13 (-571) (-1069 (-560)))) (-5 *2 (-1201 (-421 (-560))))
+ (-5 *1 (-447 *5 *3)))))
+(((*1 *2 *1 *1)
(-12
- (-5 *3
- (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
- (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
- (|:| |relerr| (-229))))
(-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-195)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1132)) (-4 *2 (-927 *5)) (-5 *1 (-714 *5 *2 *3 *4))
- (-4 *3 (-385 *2)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4508)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-663 (-1116))) (-5 *1 (-303)))))
-(((*1 *1) (-5 *1 (-1094))))
-(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1132))))
- ((*1 *2 *1)
- (-12 (-14 *3 (-663 (-1207))) (-4 *4 (-175))
- (-4 *6 (-245 (-1553 *3) (-793)))
- (-14 *7
- (-1 (-114) (-2 (|:| -3128 *5) (|:| -3205 *6))
- (-2 (|:| -3128 *5) (|:| -3205 *6))))
- (-5 *2 (-735 *5 *6 *7)) (-5 *1 (-475 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-871)) (-4 *8 (-979 *4 *6 (-888 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-748)) (-4 *2 (-871)) (-5 *1 (-757 *3 *2))
- (-4 *3 (-1080))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1004 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-814))
- (-4 *4 (-871)))))
+ (-2 (|:| -1938 (-803 *3)) (|:| |coef1| (-803 *3))
+ (|:| |coef2| (-803 *3))))
+ (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-571)) (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *2 (-2 (|:| -1938 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-1096 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1242 *3 *4 *5 *6)) (-4 *3 (-571)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-4 *5 (-381))
- (-5 *2 (-793)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114))
- (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-744)) (-5 *2 (-114))))
- ((*1 *2 *1) (-12 (-4 *1 (-748)) (-5 *2 (-114)))))
-(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-326 (-391))) (-5 *1 (-315)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1300))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1300))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1301))))
- ((*1 *2 *1) (-12 (-5 *2 (-663 (-270))) (-5 *1 (-1301)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1297 *3)) (-4 *3 (-376)) (-14 *6 (-1297 (-711 *3)))
- (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-948)) (-14 *5 (-663 (-1207)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1156 (-560) (-630 (-48)))) (-5 *1 (-48))))
- ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1247))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-352 (-1592 'X) (-1592) (-721))) (-5 *1 (-61 *3))
- (-14 *3 (-1207))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1297 (-352 (-1592 'JINT 'X 'ELAM) (-1592) (-721))))
- (-5 *1 (-62 *3)) (-14 *3 (-1207))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1297 (-352 (-1592) (-1592 'XC) (-721))))
- (-5 *1 (-64 *3)) (-14 *3 (-1207))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-352 (-1592) (-1592 'XC) (-721))) (-5 *1 (-66 *3))
- (-14 *3 (-1207))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1297 (-352 (-1592 'X) (-1592 '-4064) (-721))))
- (-5 *1 (-71 *3)) (-14 *3 (-1207))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1297 (-352 (-1592) (-1592 'X) (-721))))
- (-5 *1 (-74 *3)) (-14 *3 (-1207))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-352 (-1592) (-1592 'X) (-721))) (-5 *1 (-75 *3))
- (-14 *3 (-1207))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1297 (-352 (-1592 'X 'EPS) (-1592 '-4064) (-721))))
- (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1207)) (-14 *4 (-1207))
- (-14 *5 (-1207))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1297 (-352 (-1592 'EPS) (-1592 'YA 'YB) (-721))))
- (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1207)) (-14 *4 (-1207))
- (-14 *5 (-1207))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-352 (-1592) (-1592 'X) (-721))) (-5 *1 (-78 *3))
- (-14 *3 (-1207))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1297 (-352 (-1592) (-1592 'XC) (-721))))
- (-5 *1 (-79 *3)) (-14 *3 (-1207))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1297 (-352 (-1592) (-1592 'X) (-721))))
- (-5 *1 (-80 *3)) (-14 *3 (-1207))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1297 (-352 (-1592 'X) (-1592 '-4064) (-721))))
- (-5 *1 (-82 *3)) (-14 *3 (-1207))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1297 (-352 (-1592 'X '-4064) (-1592) (-721))))
- (-5 *1 (-83 *3)) (-14 *3 (-1207))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-711 (-352 (-1592 'X '-4064) (-1592) (-721))))
- (-5 *1 (-84 *3)) (-14 *3 (-1207))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-711 (-352 (-1592 'X) (-1592) (-721)))) (-5 *1 (-85 *3))
- (-14 *3 (-1207))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1297 (-352 (-1592 'X) (-1592) (-721))))
- (-5 *1 (-86 *3)) (-14 *3 (-1207))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-711 (-352 (-1592 'XL 'XR 'ELAM) (-1592) (-721))))
- (-5 *1 (-88 *3)) (-14 *3 (-1207))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-352 (-1592 'X) (-1592 '-4064) (-721))) (-5 *1 (-89 *3))
- (-14 *3 (-1207))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-663 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5))
- (-14 *3 (-560)) (-14 *4 (-793)) (-4 *5 (-175))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-663 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5))
- (-14 *3 (-560)) (-14 *4 (-793))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1173 *4 *5)) (-14 *4 (-793)) (-4 *5 (-175))
- (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-793)) (-4 *5 (-175))
- (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1297 (-711 *4))) (-4 *4 (-175))
- (-5 *2 (-1297 (-711 (-421 (-975 *4))))) (-5 *1 (-192 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1123 (-326 *4)))
- (-4 *4 (-13 (-871) (-571) (-633 (-391)))) (-5 *2 (-1123 (-391)))
- (-5 *1 (-268 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-871))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-286))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1273 *3)) (-5 *1 (-301 *3 *2 *4 *5 *6 *7))
- (-4 *3 (-175)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1278 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-435 *3)))
- (-14 *5 (-1207)) (-14 *6 *4)
- (-4 *3 (-13 (-1069 (-560)) (-660 (-560)) (-466)))
- (-5 *1 (-325 *3 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-326 *5)) (-5 *1 (-352 *3 *4 *5))
- (-14 *3 (-663 (-1207))) (-14 *4 (-663 (-1207))) (-4 *5 (-401))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *3 *4 *2))
- (-4 *3 (-341 *4))))
+ (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3))
+ (-4 *3 (-1132)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-560)) (-5 *5 (-171 (-229))) (-5 *6 (-1189))
+ (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *2 *3 *2 *3)
+ (-12 (-5 *2 (-450)) (-5 *3 (-1207)) (-5 *1 (-1210))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-450)) (-5 *3 (-1207)) (-5 *1 (-1210))))
+ ((*1 *2 *3 *2 *4 *1)
+ (-12 (-5 *2 (-450)) (-5 *3 (-663 (-1207))) (-5 *4 (-1207))
+ (-5 *1 (-1210))))
+ ((*1 *2 *3 *2 *3 *1)
+ (-12 (-5 *2 (-450)) (-5 *3 (-1207)) (-5 *1 (-1210))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-450)) (-5 *3 (-1207)) (-5 *1 (-1211))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-450)) (-5 *3 (-663 (-1207))) (-5 *1 (-1211)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-793)) (-4 *1 (-1273 *4)) (-4 *4 (-1080))
+ (-5 *2 (-1297 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-913 *4 *5)) (-5 *3 (-913 *4 *6)) (-4 *4 (-1132))
+ (-4 *5 (-1132)) (-4 *6 (-688 *5)) (-5 *1 (-910 *4 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-560)) (-5 *4 (-419 *2)) (-4 *2 (-979 *7 *5 *6))
+ (-5 *1 (-764 *5 *6 *7 *2)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-319)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-571))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-954))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-956)))))
+(((*1 *1) (-5 *1 (-159)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033) (-1233)))))
+ ((*1 *1 *1) (-4 *1 (-649))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-803 *2)) (-4 *2 (-571)) (-4 *2 (-1080))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-1000 *3 *2)) (-4 *2 (-1273 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871)) (-4 *2 (-571))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *3 (-1096 *4 *5 *6))
+ (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *1))))
+ (-4 *1 (-1102 *4 *5 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-975 *4))) (-4 *4 (-466)) (-5 *2 (-114))
+ (-5 *1 (-373 *4 *5)) (-14 *5 (-663 (-1207)))))
((*1 *2 *3)
- (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *2 *4 *3))
- (-4 *3 (-341 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175))
- (-5 *2 (-1322 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175))
- (-5 *2 (-1313 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-871)) (-4 *3 (-175))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342)))))
- (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-396))))
- ((*1 *1 *2) (-12 (-5 *2 (-711 (-721))) (-4 *1 (-396))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342)))))
- (-4 *1 (-398))))
- ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-398))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-398))))
- ((*1 *2 *3) (-12 (-5 *2 (-407)) (-5 *1 (-408 *3)) (-4 *3 (-1132))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342)))))
- (-4 *1 (-411))))
- ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-411))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-411))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-305 (-326 (-171 (-391))))) (-5 *1 (-412 *3 *4 *5 *6))
- (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void")))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-305 (-326 (-391)))) (-5 *1 (-412 *3 *4 *5 *6))
- (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void")))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-305 (-326 (-560)))) (-5 *1 (-412 *3 *4 *5 *6))
- (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void")))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-412 *3 *4 *5 *6))
- (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void")))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-326 (-391))) (-5 *1 (-412 *3 *4 *5 *6))
- (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void")))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-326 (-560))) (-5 *1 (-412 *3 *4 *5 *6))
- (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void")))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-305 (-326 (-716)))) (-5 *1 (-412 *3 *4 *5 *6))
- (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void")))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-305 (-326 (-721)))) (-5 *1 (-412 *3 *4 *5 *6))
- (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void")))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-305 (-326 (-723)))) (-5 *1 (-412 *3 *4 *5 *6))
- (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void")))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-326 (-716))) (-5 *1 (-412 *3 *4 *5 *6))
- (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void")))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-326 (-721))) (-5 *1 (-412 *3 *4 *5 *6))
- (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void")))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-326 (-723))) (-5 *1 (-412 *3 *4 *5 *6))
- (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void")))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342)))))
- (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207))
- (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void")))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-663 (-342))) (-5 *1 (-412 *3 *4 *5 *6))
- (-14 *3 (-1207)) (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void")))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-342)) (-5 *1 (-412 *3 *4 *5 *6)) (-14 *3 (-1207))
- (-14 *4 (-3 (|:| |fst| (-448)) (|:| -3280 "void")))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1211))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-421 (-975 (-421 *3)))) (-4 *3 (-571)) (-4 *3 (-1132))
- (-4 *1 (-435 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-975 (-421 *3))) (-4 *3 (-571)) (-4 *3 (-1132))
- (-4 *1 (-435 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-421 *3)) (-4 *3 (-571)) (-4 *3 (-1132))
- (-4 *1 (-435 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1156 *3 (-630 *1))) (-4 *3 (-1080)) (-4 *3 (-1132))
- (-4 *1 (-435 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-343 *4)) (-4 *4 (-13 (-871) (-21)))
- (-5 *1 (-443 *3 *4)) (-4 *3 (-13 (-175) (-38 (-421 (-560)))))))
- ((*1 *1 *2)
- (-12 (-5 *1 (-443 *2 *3)) (-4 *2 (-13 (-175) (-38 (-421 (-560)))))
- (-4 *3 (-13 (-871) (-21)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-448))))
- ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-448))))
- ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-448))))
- ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-448))))
- ((*1 *1 *2) (-12 (-5 *2 (-448)) (-5 *1 (-450))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342)))))
- (-4 *1 (-454))))
- ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-454))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-454))))
- ((*1 *1 *2) (-12 (-5 *2 (-1297 (-721))) (-4 *1 (-454))))
- ((*1 *1 *2)
- (-12
- (-5 *2 (-2 (|:| |localSymbols| (-1211)) (|:| -2491 (-663 (-342)))))
- (-4 *1 (-455))))
- ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-455))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-4 *1 (-455))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1297 (-421 (-975 *3)))) (-4 *3 (-175))
- (-14 *6 (-1297 (-711 *3))) (-5 *1 (-467 *3 *4 *5 *6))
- (-14 *4 (-948)) (-14 *5 (-663 (-1207)))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *1 (-482))))
- ((*1 *2 *1) (-12 (-5 *2 (-887)) (-5 *1 (-482))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1278 *3 *4 *5)) (-4 *3 (-1080)) (-14 *4 (-1207))
- (-14 *5 *3) (-5 *1 (-488 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-488 *3 *4 *5))
- (-4 *3 (-1080)) (-14 *5 *3)))
- ((*1 *1 *2) (-12 (-5 *2 (-1156 (-560) (-630 (-509)))) (-5 *1 (-509))))
- ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-516))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-663 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-376))
- (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-518 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 (-1248))) (-5 *1 (-538))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 (-1248))) (-5 *1 (-619))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-175)) (-5 *1 (-620 *3 *2)) (-4 *2 (-766 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1247))))
- ((*1 *1 *2) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1247))))
- ((*1 *1 *2) (-12 (-4 *1 (-640 *2)) (-4 *2 (-1080))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1318 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871))
- (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-646 *3 *4 *5)) (-4 *3 (-871))
- (-4 *4 (-13 (-175) (-739 (-421 (-560))))) (-14 *5 (-948))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-175)) (-5 *1 (-652 *3 *2)) (-4 *2 (-766 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-699 *3)) (-5 *1 (-694 *3)) (-4 *3 (-871))))
- ((*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-694 *3)) (-4 *3 (-871))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-987 (-987 (-987 *3)))) (-5 *1 (-697 *3))
- (-4 *3 (-1132))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-987 (-987 (-987 *3)))) (-4 *3 (-1132))
- (-5 *1 (-697 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-699 *3)) (-4 *3 (-871))))
- ((*1 *1 *2) (-12 (-5 *2 (-1146)) (-5 *1 (-703))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-704 *3)) (-4 *3 (-1132))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *2)) (-4 *4 (-385 *3))
- (-4 *2 (-385 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-716))))
- ((*1 *1 *2) (-12 (-5 *2 (-171 (-723))) (-5 *1 (-716))))
- ((*1 *1 *2) (-12 (-5 *2 (-171 (-721))) (-5 *1 (-716))))
- ((*1 *1 *2) (-12 (-5 *2 (-171 (-560))) (-5 *1 (-716))))
- ((*1 *1 *2) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-716))))
- ((*1 *1 *2) (-12 (-5 *2 (-723)) (-5 *1 (-721))))
- ((*1 *2 *1) (-12 (-5 *2 (-391)) (-5 *1 (-721))))
+ (-12 (-5 *3 (-663 (-802 *4 (-888 *5)))) (-4 *4 (-466))
+ (-14 *5 (-663 (-1207))) (-5 *2 (-114)) (-5 *1 (-647 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))))
+(((*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1247)) (-4 *2 (-871))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1247))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-663 (-931 *3))) (-5 *1 (-931 *3)) (-4 *3 (-1132))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871))
+ (-4 *6 (-1096 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -3147 *1) (|:| |upper| *1)))
+ (-4 *1 (-1007 *4 *5 *3 *6)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-391))))
+ ((*1 *1 *1 *1) (-4 *1 (-559)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376))))
+ ((*1 *1 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-793)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-711 *3))
+ (-4 *3 (-13 (-319) (-10 -8 (-15 -3898 ((-419 $) $)))))
+ (-4 *4 (-1273 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-663 (-495 *4 *5))) (-5 *3 (-888 *4))
+ (-14 *4 (-663 (-1207))) (-4 *5 (-466)) (-5 *1 (-650 *4 *5)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3))
+ (-4 *3 (-1132)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-712 *3)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-560)) (-5 *5 (-114)) (-5 *6 (-711 (-229)))
+ (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-777)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-229) (-229) (-229)))
+ (-5 *4 (-1 (-229) (-229) (-229) (-229)))
+ (-5 *2 (-1 (-972 (-229)) (-229) (-229))) (-5 *1 (-719)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-1207)))))
+(((*1 *1 *1) (-5 *1 (-48)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1247))
+ (-4 *2 (-1247)) (-5 *1 (-59 *5 *2))))
+ ((*1 *2 *3 *1 *2 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1132)) (|has| *1 (-6 -4508))
+ (-4 *1 (-153 *2)) (-4 *2 (-1247))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4508)) (-4 *1 (-153 *2))
+ (-4 *2 (-1247))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4508)) (-4 *1 (-153 *2))
+ (-4 *2 (-1247))))
((*1 *2 *3)
- (-12 (-5 *3 (-326 (-560))) (-5 *2 (-326 (-723))) (-5 *1 (-723))))
- ((*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1189)) (-5 *1 (-732))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-175)) (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *4 (-1080))
+ (-5 *2 (-2 (|:| -1617 (-1201 *4)) (|:| |deg| (-948))))
+ (-5 *1 (-225 *4 *5)) (-5 *3 (-1201 *4)) (-4 *5 (-571))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-793))
+ (-4 *6 (-1247)) (-4 *2 (-1247)) (-5 *1 (-247 *5 *6 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-4 *4 (-175)) (-5 *1 (-301 *4 *2 *3 *5 *6 *7))
+ (-4 *2 (-1273 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-571)) (-4 *2 (-1132))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-349 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *3 (-1273 *2))
+ (-4 *4 (-1273 (-421 *3))) (-4 *5 (-355 *2 *3 *4))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1247)) (-4 *2 (-1247))
+ (-5 *1 (-386 *5 *4 *2 *6)) (-4 *4 (-385 *5)) (-4 *6 (-385 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1132)) (-4 *2 (-1132))
+ (-5 *1 (-441 *5 *4 *2 *6)) (-4 *4 (-440 *5)) (-4 *6 (-440 *2))))
+ ((*1 *1 *1) (-5 *1 (-509)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-663 *5)) (-4 *5 (-1247))
+ (-4 *2 (-1247)) (-5 *1 (-664 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1080)) (-4 *2 (-1080))
+ (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *8 (-385 *2))
+ (-4 *9 (-385 *2)) (-5 *1 (-709 *5 *6 *7 *4 *2 *8 *9 *10))
+ (-4 *4 (-708 *5 *6 *7)) (-4 *10 (-708 *2 *8 *9))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-733 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-175)) (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-1080)) (-5 *1 (-734 *3 *2)) (-4 *2 (-1273 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-663 (-2 (|:| -2115 *3) (|:| -1471 *4))))
- (-4 *3 (-1080)) (-4 *4 (-748)) (-5 *1 (-757 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-560)) (-4 *1 (-785))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-3
- (|:| |nia|
- (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
- (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
- (|:| |relerr| (-229))))
- (|:| |mdnia|
- (-2 (|:| |fn| (-326 (-229)))
- (|:| -3471 (-663 (-1120 (-864 (-229)))))
- (|:| |abserr| (-229)) (|:| |relerr| (-229))))))
- (-5 *1 (-791))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-326 (-229)))
- (|:| -3471 (-663 (-1120 (-864 (-229))))) (|:| |abserr| (-229))
- (|:| |relerr| (-229))))
- (-5 *1 (-791))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
- (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
- (|:| |relerr| (-229))))
- (-5 *1 (-791))))
- ((*1 *2 *3) (-12 (-5 *2 (-795)) (-5 *1 (-796 *3)) (-4 *3 (-1247))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |xinit| (-229)) (|:| |xend| (-229))
- (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229)))
- (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229)))
- (|:| |abserr| (-229)) (|:| |relerr| (-229))))
- (-5 *1 (-830))))
- ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-848))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229)))
- (|:| |lb| (-663 (-864 (-229))))
- (|:| |cf| (-663 (-326 (-229))))
- (|:| |ub| (-663 (-864 (-229))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-663 (-326 (-229))))
- (|:| -3161 (-663 (-229)))))))
- (-5 *1 (-863))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229)))))
- (-5 *1 (-863))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229)))
- (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229))))
- (|:| |ub| (-663 (-864 (-229))))))
- (-5 *1 (-863))))
- ((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-882))))
- ((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-898))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-975 (-48))) (-5 *2 (-326 (-560))) (-5 *1 (-899))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-421 (-975 (-48)))) (-5 *2 (-326 (-560)))
- (-5 *1 (-899))))
- ((*1 *1 *2) (-12 (-5 *1 (-918 *2)) (-4 *2 (-871))))
- ((*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-918 *3)) (-4 *3 (-871))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |pde| (-663 (-326 (-229))))
- (|:| |constraints|
- (-663
- (-2 (|:| |start| (-229)) (|:| |finish| (-229))
- (|:| |grid| (-793)) (|:| |boundaryType| (-560))
- (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229))))))
- (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189))
- (|:| |tol| (-229))))
- (-5 *1 (-925))))
- ((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-5 *1 (-931 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1132)) (-5 *1 (-931 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-663 (-931 *3))) (-4 *3 (-1132)) (-5 *1 (-934 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-663 (-931 *3))) (-5 *1 (-934 *3)) (-4 *3 (-1132))))
+ (|partial| -12 (-5 *2 (-421 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-376))
+ (-4 *3 (-175)) (-4 *1 (-746 *3 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-421 (-419 *3))) (-4 *3 (-319)) (-5 *1 (-943 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-421 *3)) (-5 *1 (-943 *3)) (-4 *3 (-319))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-491)) (-5 *2 (-326 *4)) (-5 *1 (-949 *4))
- (-4 *4 (-571))))
- ((*1 *2 *3) (-12 (-5 *2 (-1303)) (-5 *1 (-1064 *3)) (-4 *3 (-1247))))
- ((*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *1 (-1064 *2)) (-4 *2 (-1247))))
+ (-12 (-4 *3 (-175)) (-4 *1 (-746 *3 *2)) (-4 *2 (-1273 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-987 *5)) (-4 *5 (-1247))
+ (-4 *2 (-1247)) (-5 *1 (-988 *5 *2))))
((*1 *1 *2)
(-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871))
(-5 *1 (-1065 *3 *4 *5 *2 *6)) (-4 *2 (-979 *3 *4 *5))
(-14 *6 (-663 *2))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-1071 *3)) (-4 *3 (-571))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1080)) (-4 *4 (-871)) (-5 *1 (-1157 *3 *4 *2))
- (-4 *2 (-979 *3 (-545 *4) *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-1080)) (-4 *2 (-871)) (-5 *1 (-1157 *3 *2 *4))
- (-4 *4 (-979 *3 (-545 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-887))))
- ((*1 *1 *2) (-12 (-5 *2 (-146)) (-4 *1 (-1175))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3)) (-4 *3 (-1080))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1198 *3 *4 *5))
- (-4 *3 (-1080)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1205 *3 *4 *5))
- (-4 *3 (-1080)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1266 *4 *3)) (-4 *3 (-1080)) (-14 *4 (-1207))
- (-14 *5 *3) (-5 *1 (-1205 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1206))))
- ((*1 *2 *1) (-12 (-5 *2 (-1219 (-1207) (-450))) (-5 *1 (-1211))))
- ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1212))))
- ((*1 *2 *1) (-12 (-5 *2 (-520)) (-5 *1 (-1212))))
- ((*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1212))))
- ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1212))))
- ((*1 *2 *1) (-12 (-5 *2 (-887)) (-5 *1 (-1220 *3)) (-4 *3 (-1132))))
- ((*1 *2 *3) (-12 (-5 *2 (-1227)) (-5 *1 (-1228 *3)) (-4 *3 (-1132))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-975 *3)) (-4 *3 (-1080)) (-5 *1 (-1240 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1240 *3)) (-4 *3 (-1080))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1257 *3 *4 *5))
- (-4 *3 (-1080)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1120 *3)) (-4 *3 (-1247)) (-5 *1 (-1264 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1294 *4)) (-14 *4 (-1207)) (-5 *1 (-1287 *3 *4 *5))
- (-4 *3 (-1080)) (-14 *5 *3)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1266 *4 *3)) (-4 *3 (-1080)) (-14 *4 (-1207))
- (-14 *5 *3) (-5 *1 (-1287 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-1294 *3)) (-14 *3 *2)))
- ((*1 *2 *3) (-12 (-5 *3 (-482)) (-5 *2 (-1300)) (-5 *1 (-1299))))
- ((*1 *2 *1) (-12 (-5 *2 (-887)) (-5 *1 (-1300))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1322 *3 *4)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-871))
- (-4 *4 (-175))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1080)) (-4 *2 (-1080))
+ (-14 *5 (-793)) (-14 *6 (-793)) (-4 *8 (-245 *6 *7))
+ (-4 *9 (-245 *5 *7)) (-4 *10 (-245 *6 *2)) (-4 *11 (-245 *5 *2))
+ (-5 *1 (-1086 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-1084 *5 *6 *7 *8 *9)) (-4 *12 (-1084 *5 *6 *2 *10 *11))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1185 *5)) (-4 *5 (-1247))
+ (-4 *2 (-1247)) (-5 *1 (-1187 *5 *2))))
+ ((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-114) *2 *2))
+ (-4 *1 (-1242 *5 *6 *7 *2)) (-4 *5 (-571)) (-4 *6 (-815))
+ (-4 *7 (-871)) (-4 *2 (-1096 *5 *6 *7))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1297 *5)) (-4 *5 (-1247))
+ (-4 *2 (-1247)) (-5 *1 (-1298 *5 *2)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-783))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-793)) (-4 *1 (-1273 *3)) (-4 *3 (-1080)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3))
+ (-4 *5 (-385 *3)) (-5 *2 (-114))))
((*1 *2 *1)
- (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-871))
- (-4 *4 (-175))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-686 *3 *4)) (-4 *3 (-871)) (-4 *4 (-175))
- (-5 *1 (-1318 *3 *4)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -2115 *3) (|:| |gap| (-793)) (|:| -1774 (-803 *3))
- (|:| -2341 (-803 *3))))
- (-5 *1 (-803 *3)) (-4 *3 (-1080))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *3 (-871))
- (-5 *2
- (-2 (|:| -2115 *1) (|:| |gap| (-793)) (|:| -1774 *1)
- (|:| -2341 *1)))
- (-4 *1 (-1096 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *2
- (-2 (|:| -2115 *1) (|:| |gap| (-793)) (|:| -1774 *1)
- (|:| -2341 *1)))
- (-4 *1 (-1096 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
+ (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
+ (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1132)) (-5 *1 (-1225 *3 *2)) (-4 *3 (-1132)))))
-(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1066)))))
+ (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-330)) (-5 *3 (-229)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
- (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
- (|:| |relerr| (-229))))
- (-5 *2 (-391)) (-5 *1 (-195)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114))
- (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-663 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815))
- (-5 *2 (-114)) (-5 *1 (-518 *4 *5 *6 *7)) (-4 *7 (-979 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-421 (-560)))
- (-5 *1 (-447 *4 *3)) (-4 *3 (-435 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-630 *3)) (-4 *3 (-435 *5))
- (-4 *5 (-13 (-571) (-1069 (-560)))) (-5 *2 (-1201 (-421 (-560))))
- (-5 *1 (-447 *5 *3)))))
-(((*1 *1) (-5 *1 (-159)))
- ((*1 *2 *1) (-12 (-4 *1 (-1075 *2)) (-4 *2 (-23)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-1207)))))
+ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229))
+ (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229)))
+ (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229)))
+ (|:| |abserr| (-229)) (|:| |relerr| (-229))))
+ (-5 *2 (-391)) (-5 *1 (-208)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-560)) (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-319))
+ (-4 *9 (-979 *8 *6 *7))
+ (-5 *2 (-2 (|:| -1617 (-1201 *9)) (|:| |polval| (-1201 *8))))
+ (-5 *1 (-764 *6 *7 *8 *9)) (-5 *3 (-1201 *9)) (-5 *4 (-1201 *8)))))
+(((*1 *2) (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-105)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-611))) (-5 *1 (-611)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1207))
+ (-4 *5 (-13 (-571) (-1069 (-560)) (-660 (-560))))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |kers| (-663 (-630 *3)))
+ (|:| |vals| (-663 *3))))
+ (-5 *1 (-288 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5))))))
(((*1 *2 *1)
(-12 (-5 *2 (-177 (-421 (-560)))) (-5 *1 (-119 *3)) (-14 *3 (-560))))
((*1 *1 *2 *3 *3)
@@ -15977,13 +15168,105 @@
((*1 *2 *1)
(-12 (-14 *3 (-560)) (-5 *2 (-177 (-421 (-560))))
(-5 *1 (-896 *3 *4)) (-4 *4 (-894 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080))))
- ((*1 *2 *1) (-12 (-4 *1 (-435 *2)) (-4 *2 (-1132)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-630 *6)) (-4 *6 (-13 (-435 *5) (-27) (-1233)))
+ (-4 *5 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
+ (-5 *2 (-1201 (-421 (-1201 *6)))) (-5 *1 (-575 *5 *6 *7))
+ (-5 *3 (-1201 *6)) (-4 *7 (-1132))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1273 *3)) (-5 *1 (-734 *3 *2)) (-4 *3 (-1080))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-746 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1273 *3))))
+ ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
+ (|partial| -12 (-5 *4 (-1201 *11)) (-5 *6 (-663 *10))
+ (-5 *7 (-663 (-793))) (-5 *8 (-663 *11)) (-4 *10 (-871))
+ (-4 *11 (-319)) (-4 *9 (-815)) (-4 *5 (-979 *11 *9 *10))
+ (-5 *2 (-663 (-1201 *5))) (-5 *1 (-764 *9 *10 *11 *5))
+ (-5 *3 (-1201 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-979 *3 *4 *5)) (-5 *1 (-1065 *3 *4 *5 *2 *6))
+ (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-14 *6 (-663 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1201 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-848)))))
+(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-954)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-871)) (-5 *1 (-1218 *3)))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-319))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -3583 *1)))
+ (-4 *1 (-319)))))
+(((*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-369 *3)) (-4 *3 (-363)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-663 (-326 (-229)))) (-5 *3 (-229)) (-5 *2 (-114))
+ (-5 *1 (-213)))))
(((*1 *1) (-5 *1 (-846))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-571)) (-4 *3 (-175))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -3822 (-663 *1))))
+ (-4 *1 (-380 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-467 *3 *4 *5 *6))
+ (|:| -3822 (-663 (-467 *3 *4 *5 *6)))))
+ (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-948))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 *4)) (-4 *4 (-1132)) (-5 *2 (-1303))
+ (-5 *1 (-1249 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-663 *4)) (-4 *4 (-1132)) (-5 *2 (-1303))
+ (-5 *1 (-1249 *4)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1092 (-1055 *4) (-1201 (-1055 *4)))) (-5 *3 (-887))
+ (-5 *1 (-1055 *4)) (-4 *4 (-13 (-870) (-376) (-1051))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-376) (-870))) (-5 *1 (-184 *3 *2))
+ (-4 *2 (-1273 (-171 *3))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871)) (-4 *2 (-466)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1195 *2 *3)) (-14 *2 (-948)) (-4 *3 (-1080)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-954)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-560)) (-5 *5 (-711 (-229)))
+ (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP))))
+ (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))))
(((*1 *2 *3 *3 *4 *5)
(-12 (-5 *3 (-1189)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871))
(-4 *4 (-1096 *6 *7 *8)) (-5 *2 (-1303))
(-5 *1 (-798 *6 *7 *8 *4 *5)) (-4 *5 (-1102 *6 *7 *8 *4)))))
+(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-116 *3)) (-4 *3 (-1132)))))
+(((*1 *2)
+ (-12 (-4 *3 (-1080)) (-5 *2 (-987 (-734 *3 *4))) (-5 *1 (-734 *3 *4))
+ (-4 *4 (-1273 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-1080)) (-5 *1 (-458 *3 *2)) (-4 *2 (-1273 *3)))))
+(((*1 *1) (-5 *1 (-611))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-571)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -1938 *3)))
+ (-5 *1 (-1000 *4 *3)) (-4 *3 (-1273 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-975 *4)) (-4 *4 (-13 (-319) (-149)))
+ (-4 *2 (-979 *4 *6 *5)) (-5 *1 (-953 *4 *5 *6 *2))
+ (-4 *5 (-13 (-871) (-633 (-1207)))) (-4 *6 (-815)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 *1)) (-4 *1 (-310))))
+ ((*1 *1 *1) (-4 *1 (-310)))
+ ((*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887))))
+ ((*1 *1 *1) (-5 *1 (-887))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033))))))
(((*1 *2 *1 *3)
(-12 (-5 *3 (-663 *1)) (-4 *1 (-1096 *4 *5 *6)) (-4 *4 (-1080))
(-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))))
@@ -15996,19 +15279,225 @@
((*1 *2 *3 *1)
(-12 (-4 *1 (-1242 *4 *5 *6 *3)) (-4 *4 (-571)) (-4 *5 (-815))
(-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))))
-(((*1 *1 *1) (-4 *1 (-684))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-229)))
+ (-5 *6 (-229)) (-5 *2 (-1066)) (-5 *1 (-774)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-769)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1066)) (-5 *3 (-1207)) (-5 *1 (-195)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174))))
+ ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1243 *3)) (-4 *3 (-1005)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-972 (-229)))) (-5 *1 (-1300)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-229))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-229))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-391))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-793)) (-5 *2 (-421 (-560))) (-5 *1 (-391)))))
(((*1 *1 *1)
(-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
(((*1 *2 *1)
+ (-12 (-4 *1 (-262 *3 *4 *2 *5)) (-4 *3 (-1080)) (-4 *4 (-871))
+ (-4 *5 (-815)) (-4 *2 (-277 *4)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229)))
+ (-5 *5 (-1120 (-229))) (-5 *6 (-560)) (-5 *2 (-1243 (-956)))
+ (-5 *1 (-330))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229)))
+ (-5 *5 (-1120 (-229))) (-5 *6 (-560)) (-5 *7 (-1189))
+ (-5 *2 (-1243 (-956))) (-5 *1 (-330))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229)))
+ (-5 *5 (-1120 (-229))) (-5 *6 (-229)) (-5 *7 (-560))
+ (-5 *2 (-1243 (-956))) (-5 *1 (-330))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-326 (-560))) (-5 *4 (-1 (-229) (-229)))
+ (-5 *5 (-1120 (-229))) (-5 *6 (-229)) (-5 *7 (-560)) (-5 *8 (-1189))
+ (-5 *2 (-1243 (-956))) (-5 *1 (-330)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-815)) (-4 *4 (-871)) (-4 *6 (-319)) (-5 *2 (-419 *3))
+ (-5 *1 (-764 *5 *4 *6 *3)) (-4 *3 (-979 *6 *5 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1080)) (-5 *2 (-560)) (-5 *1 (-457 *4 *3 *5))
+ (-4 *3 (-1273 *4))
+ (-4 *5 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-948)) (-5 *1 (-1062 *2))
+ (-4 *2 (-13 (-1132) (-10 -8 (-15 -2429 ($ $ $))))))))
+(((*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302))))
+ ((*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1297 *5)) (-4 *5 (-814)) (-5 *2 (-114))
+ (-5 *1 (-867 *4 *5)) (-14 *4 (-793)))))
+(((*1 *2)
+ (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-432 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| -4335 (-421 (-560))) (|:| -4346 (-421 (-560)))))
+ (-5 *2 (-421 (-560))) (-5 *1 (-1052 *4)) (-4 *4 (-1273 (-560))))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1120 (-229)))
+ (-5 *5 (-114)) (-5 *2 (-1301)) (-5 *1 (-267)))))
+(((*1 *2 *1)
(-12 (-5 *2 (-663 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
(-5 *1 (-597 *3)) (-4 *3 (-376)))))
+(((*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175))))
+ ((*1 *1 *1 *1) (-4 *1 (-487)))
+ ((*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175))))
+ ((*1 *2 *2) (-12 (-5 *2 (-663 (-948))) (-5 *1 (-908))))
+ ((*1 *1 *1) (-5 *1 (-1002)))
+ ((*1 *1 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-560)) (-4 *4 (-13 (-571) (-149))) (-5 *1 (-551 *4 *2))
+ (-4 *2 (-1290 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-560)) (-4 *4 (-13 (-376) (-381) (-633 *3)))
+ (-4 *5 (-1273 *4)) (-4 *6 (-746 *4 *5)) (-5 *1 (-555 *4 *5 *6 *2))
+ (-4 *2 (-1290 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-560)) (-4 *4 (-13 (-376) (-381) (-633 *3)))
+ (-5 *1 (-556 *4 *2)) (-4 *2 (-1290 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1185 *4)) (-5 *3 (-560)) (-4 *4 (-13 (-571) (-149)))
+ (-5 *1 (-1184 *4)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3
+ (-1 (-3 (-2 (|:| -4378 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-376)) (-5 *1 (-588 *4 *2)) (-4 *2 (-1273 *4)))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-663 *11))
+ (|:| |todo| (-663 (-2 (|:| |val| *3) (|:| -3859 *11))))))
+ (-5 *6 (-793))
+ (-5 *2 (-663 (-2 (|:| |val| (-663 *10)) (|:| -3859 *11))))
+ (-5 *3 (-663 *10)) (-5 *4 (-663 *11)) (-4 *10 (-1096 *7 *8 *9))
+ (-4 *11 (-1102 *7 *8 *9 *10)) (-4 *7 (-466)) (-4 *8 (-815))
+ (-4 *9 (-871)) (-5 *1 (-1100 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-663 *11))
+ (|:| |todo| (-663 (-2 (|:| |val| *3) (|:| -3859 *11))))))
+ (-5 *6 (-793))
+ (-5 *2 (-663 (-2 (|:| |val| (-663 *10)) (|:| -3859 *11))))
+ (-5 *3 (-663 *10)) (-5 *4 (-663 *11)) (-4 *10 (-1096 *7 *8 *9))
+ (-4 *11 (-1140 *7 *8 *9 *10)) (-4 *7 (-466)) (-4 *8 (-815))
+ (-4 *9 (-871)) (-5 *1 (-1176 *7 *8 *9 *10 *11)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-663 (-270))) (-5 *4 (-1207)) (-5 *2 (-51))
+ (-5 *1 (-270))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-663 (-270))) (-5 *4 (-1207))
+ (-5 *1 (-272 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-793)) (-4 *4 (-376)) (-5 *1 (-923 *2 *4))
+ (-4 *2 (-1273 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-376))
+ (-4 *5 (-13 (-385 *4) (-10 -7 (-6 -4509))))
+ (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4509))))
+ (-5 *1 (-689 *4 *5 *2 *3)) (-4 *3 (-708 *4 *5 *2))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-1297 *4)) (-5 *3 (-711 *4)) (-4 *4 (-376))
+ (-5 *1 (-690 *4))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-663 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-376))
+ (-5 *1 (-836 *2 *3)) (-4 *3 (-680 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
+ (-5 *1 (-1159 *3 *2)) (-4 *3 (-1273 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-845)))))
(((*1 *1 *1) (-4 *1 (-145)))
((*1 *2 *2)
(-12 (-4 *3 (-571)) (-5 *1 (-160 *3 *2)) (-4 *2 (-435 *3))))
((*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-559)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-601 *2)) (-4 *2 (-559)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-3 *3 (-663 *1)))
+ (-4 *1 (-1102 *4 *5 *6 *3)))))
+(((*1 *2 *3) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-576)) (-5 *3 (-560)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1201 *6)) (-5 *3 (-560)) (-4 *6 (-319)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-5 *1 (-764 *4 *5 *6 *7)) (-4 *7 (-979 *6 *4 *5)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-520)) (-5 *1 (-291))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-3 (-560) (-229) (-520) (-1189) (-1212)))
+ (-5 *1 (-1212)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-573 *2)) (-4 *2 (-559)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-560))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-793)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-815)) (-4 *4 (-979 *5 *6 *7)) (-4 *5 (-466)) (-4 *7 (-871))
+ (-5 *1 (-464 *5 *6 *7 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-520)) (-5 *2 (-114)) (-5 *1 (-115)))))
(((*1 *2 *1 *3)
(-12 (-5 *3 (-663 (-972 *4))) (-4 *1 (-1165 *4)) (-4 *4 (-1080))
(-5 *2 (-793)))))
+(((*1 *2)
+ (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1273 *5))
+ (-4 *5 (-13 (-27) (-435 *4))) (-4 *4 (-13 (-571) (-1069 (-560))))
+ (-4 *7 (-1273 (-421 *6))) (-5 *1 (-567 *4 *5 *6 *7 *2))
+ (-4 *2 (-355 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175))
+ (-5 *2 (-711 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-711 *4)) (-5 *1 (-431 *3 *4))
+ (-4 *3 (-432 *4))))
+ ((*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-114) *9)) (-5 *5 (-1 (-114) *9 *9))
+ (-4 *9 (-1096 *6 *7 *8)) (-4 *6 (-571)) (-4 *7 (-815))
+ (-4 *8 (-871)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3172 (-663 *9))))
+ (-5 *3 (-663 *9)) (-4 *1 (-1242 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-114) *8 *8)) (-4 *8 (-1096 *5 *6 *7))
+ (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -3172 (-663 *8))))
+ (-5 *3 (-663 *8)) (-4 *1 (-1242 *5 *6 *7 *8)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-571)) (-5 *2 (-793)) (-5 *1 (-43 *4 *3))
+ (-4 *3 (-432 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-802 *5 (-888 *6)))) (-5 *4 (-114)) (-4 *5 (-466))
+ (-14 *6 (-663 (-1207))) (-5 *2 (-663 (-1077 *5 *6)))
+ (-5 *1 (-647 *5 *6)))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1132)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
(((*1 *2 *3 *4 *5)
(|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-663 (-421 *7)))
(-4 *7 (-1273 *6)) (-5 *3 (-421 *7)) (-4 *6 (-376))
@@ -16017,6 +15506,30 @@
(|:| |limitedlogs|
(-663 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
(-5 *1 (-588 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1072)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-887))))
+ ((*1 *1 *1) (-5 *1 (-887))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-769)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-3 (-114) "failed")) (-4 *3 (-466)) (-4 *4 (-871))
+ (-4 *5 (-815)) (-5 *1 (-1017 *3 *4 *5 *6)) (-4 *6 (-979 *3 *5 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-793)) (-4 *1 (-1273 *3)) (-4 *3 (-1080)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1273 *5))
+ (-5 *2 (-663 *3)) (-5 *1 (-799 *4 *5 *6 *3 *7)) (-4 *3 (-1273 *6))
+ (-14 *7 (-948)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1290 *4))
+ (-4 *4 (-38 (-421 (-560)))) (-5 *2 (-1 (-1185 *4) (-1185 *4)))
+ (-5 *1 (-1291 *4 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))))
(((*1 *2 *1)
(-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814))
(-5 *2 (-114))))
@@ -16033,662 +15546,57 @@
((*1 *2 *1)
(-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080))
(-5 *2 (-114)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4509))))
- (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4509)))) (-5 *2 (-114))
- (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-711 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-376))
- (-5 *2 (-114)) (-5 *1 (-690 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814))
- (-5 *2 (-114))))
- ((*1 *2 *1) (-12 (-4 *1 (-435 *3)) (-4 *3 (-1132)) (-5 *2 (-114)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4508)) (-4 *1 (-34)) (-5 *2 (-793))))
- ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-258))))
- ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-1002))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132))
- (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-560))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-793)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1080))
- (-4 *4 (-868)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1185 (-560))) (-5 *1 (-1191 *4)) (-4 *4 (-1080))
- (-5 *3 (-560)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
-(((*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
+ (-12 (-5 *2 (-421 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6))
+ (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-314 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1120 (-864 (-229)))) (-5 *3 (-229)) (-5 *2 (-114))
- (-5 *1 (-315))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114))
- (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))))
+ (-12 (-5 *3 (-663 *2)) (-4 *2 (-435 *4)) (-5 *1 (-160 *4 *2))
+ (-4 *4 (-571)))))
(((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-663 (-1297 *4))) (-5 *1 (-379 *3 *4))
- (-4 *3 (-380 *4))))
+ (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303))
+ (-5 *1 (-1103 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6))))
((*1 *2)
- (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-571))
- (-5 *2 (-663 (-1297 *3))))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-663 *2)) (-4 *2 (-1247))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1185 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080))
- (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)))))
-(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217)))))
-(((*1 *1 *1) (-4 *1 (-250)))
- ((*1 *1 *1)
- (-12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1273 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (-2304 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1247)))
- (-12 (-5 *1 (-305 *2)) (-4 *2 (-487)) (-4 *2 (-1247)))))
- ((*1 *1 *1) (-4 *1 (-487)))
- ((*1 *2 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-363)) (-5 *1 (-542 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-737 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)) (-4 *2 (-376)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381))
- (-5 *2 (-1201 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-560)) (-5 *1 (-326 *3)) (-4 *3 (-571)) (-4 *3 (-1132)))))
-(((*1 *1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-270))))
- ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-560))) (-4 *3 (-1080)) (-5 *1 (-609 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-560))) (-4 *1 (-1259 *3)) (-4 *3 (-1080))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-560))) (-4 *1 (-1290 *3)) (-4 *3 (-1080)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1171 *4 *5)) (-4 *4 (-13 (-1132) (-34)))
- (-4 *5 (-13 (-1132) (-34))) (-5 *2 (-114)) (-5 *1 (-1172 *4 *5)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114))))
- ((*1 *1 *1 *1) (-5 *1 (-887))))
-(((*1 *1 *2 *2)
- (-12
- (-5 *2
- (-3 (|:| I (-326 (-560))) (|:| -2284 (-326 (-391)))
- (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206))))
- (-5 *1 (-1206)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-793)) (-4 *5 (-1080)) (-4 *2 (-1273 *5))
- (-5 *1 (-1292 *5 *2 *6 *3)) (-4 *6 (-680 *2)) (-4 *3 (-1290 *5)))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7))
- (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-5 *2 (-663 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7))
- (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-5 *2 (-663 (-1177 *5 *6 *7 *8))) (-5 *1 (-1177 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -4119 (-560)) (|:| -3764 (-663 *3))))
- (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-663 (-1207))) (-4 *5 (-1080))
- (-5 *2 (-495 *4 *5)) (-5 *1 (-973 *4 *5)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-143))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1175)) (-5 *2 (-146)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1002)) (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-1269 *3 *2))
- (-4 *2 (-1273 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-571))))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814))
- (-4 *2 (-571))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-571)))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-708 *2 *3 *4)) (-4 *2 (-1080))
- (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-571))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-793)))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-571))))
- ((*1 *1 *1 *1) (-5 *1 (-887)))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1273 *3)) (-4 *3 (-571))
- (-5 *1 (-1000 *3 *4))))
- ((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1084 *3 *4 *2 *5 *6)) (-4 *2 (-1080))
- (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-571))))
- ((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1185 *3)) (-4 *3 (-1080)) (-5 *1 (-1191 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-975 *6))) (-5 *4 (-663 (-1207)))
- (-4 *6 (-13 (-571) (-1069 *5))) (-4 *5 (-571))
- (-5 *2 (-663 (-663 (-305 (-421 (-975 *6)))))) (-5 *1 (-1070 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-663 (-1207))) (-4 *5 (-1080))
- (-5 *2 (-975 *5)) (-5 *1 (-973 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
-(((*1 *1 *1) (-5 *1 (-887))) ((*1 *1 *1 *1) (-5 *1 (-887)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247))))
- ((*1 *1 *2) (-12 (-5 *1 (-1264 *2)) (-4 *2 (-1247)))))
-(((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-711 *3))
- (-4 *3 (-13 (-319) (-10 -8 (-15 -3023 ((-419 $) $)))))
- (-4 *4 (-1273 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-711 *3))
- (-4 *3 (-13 (-319) (-10 -8 (-15 -3023 ((-419 $) $)))))
- (-4 *4 (-1273 *3)) (-5 *1 (-513 *3 *4 *5)) (-4 *5 (-424 *3 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-948)) (-4 *1 (-245 *3 *4)) (-4 *4 (-1080))
- (-4 *4 (-1247))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-663 (-1207))) (-4 *4 (-175))
- (-4 *5 (-245 (-1553 *3) (-793)))
- (-14 *6
- (-1 (-114) (-2 (|:| -3128 *2) (|:| -3205 *5))
- (-2 (|:| -3128 *2) (|:| -3205 *5))))
- (-5 *1 (-475 *3 *4 *2 *5 *6 *7)) (-4 *2 (-871))
- (-4 *7 (-979 *4 *5 (-888 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-972 (-229))) (-5 *1 (-1244)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1247))
- (-4 *5 (-1247)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-793))
- (-4 *7 (-1247)) (-4 *5 (-1247)) (-5 *2 (-246 *6 *5))
- (-5 *1 (-247 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1247)) (-4 *5 (-1247))
- (-4 *2 (-385 *5)) (-5 *1 (-386 *6 *4 *5 *2)) (-4 *4 (-385 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1132)) (-4 *5 (-1132))
- (-4 *2 (-440 *5)) (-5 *1 (-441 *6 *4 *5 *2)) (-4 *4 (-440 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-663 *6)) (-4 *6 (-1247))
- (-4 *5 (-1247)) (-5 *2 (-663 *5)) (-5 *1 (-664 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-987 *6)) (-4 *6 (-1247))
- (-4 *5 (-1247)) (-5 *2 (-987 *5)) (-5 *1 (-988 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1185 *6)) (-4 *6 (-1247))
- (-4 *3 (-1247)) (-5 *2 (-1185 *3)) (-5 *1 (-1187 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1297 *6)) (-4 *6 (-1247))
- (-4 *5 (-1247)) (-5 *2 (-1297 *5)) (-5 *1 (-1298 *6 *5)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1207))
- (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-435 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-421 (-560)))
- (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5)))
- (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-328 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-305 *3)) (-5 *5 (-421 (-560)))
- (-4 *3 (-13 (-27) (-1233) (-435 *6)))
- (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-328 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-421 (-560)))) (-5 *4 (-305 *8))
- (-5 *5 (-1264 (-421 (-560)))) (-5 *6 (-421 (-560)))
- (-4 *8 (-13 (-27) (-1233) (-435 *7)))
- (-4 *7 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-473 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-421 (-560))))
- (-5 *7 (-421 (-560))) (-4 *3 (-13 (-27) (-1233) (-435 *8)))
- (-4 *8 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-473 *8 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-421 (-560))) (-4 *4 (-1080)) (-4 *1 (-1282 *4 *3))
- (-4 *3 (-1259 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-1132))))
- ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-864 *3)) (-4 *3 (-1132)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1201 *5)) (-4 *5 (-466)) (-5 *2 (-663 *6))
- (-5 *1 (-552 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-870)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-975 *5)) (-4 *5 (-466)) (-5 *2 (-663 *6))
- (-5 *1 (-552 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-870))))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-841 *3)) (|:| |rm| (-841 *3))))
- (-5 *1 (-841 *3)) (-4 *3 (-871))))
- ((*1 *1 *1 *1) (-5 *1 (-887))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1189)) (-5 *5 (-711 (-229))) (-5 *6 (-229))
- (-5 *7 (-711 (-560))) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-774)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-419 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-123 *3)) (|:| |greater| (-123 *3))))
- (-5 *1 (-123 *3)) (-4 *3 (-871))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-597 *4)) (-4 *4 (-13 (-29 *3) (-1233)))
- (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560))))
- (-5 *1 (-599 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-597 (-421 (-975 *3))))
- (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-603 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-376))
- (-5 *2 (-2 (|:| -2773 *3) (|:| |special| *3))) (-5 *1 (-749 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1297 *5)) (-4 *5 (-376)) (-4 *5 (-1080))
- (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1061 *5))
- (-5 *3 (-663 (-711 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1297 (-1297 *5))) (-4 *5 (-376)) (-4 *5 (-1080))
- (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1061 *5))
- (-5 *3 (-663 (-711 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-663 *1)) (-4 *1 (-1175))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-146)) (-5 *2 (-663 *1)) (-4 *1 (-1175)))))
-(((*1 *1 *1 *1) (-5 *1 (-887))))
+ (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-1303))
+ (-5 *1 (-1139 *3 *4 *5 *6 *7)) (-4 *7 (-1102 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1185 (-2 (|:| |k| (-560)) (|:| |c| *3))))
- (-5 *1 (-609 *3)) (-4 *3 (-1080)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-123 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-663 (-1201 (-560)))) (-5 *1 (-194)) (-5 *3 (-560)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-663 *5) *6))
- (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *6 (-1273 *5))
- (-5 *2 (-663 (-2 (|:| |poly| *6) (|:| -3192 *3))))
- (-5 *1 (-831 *5 *6 *3 *7)) (-4 *3 (-680 *6))
- (-4 *7 (-680 (-421 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-663 *5) *6))
- (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))))
- (-4 *6 (-1273 *5))
- (-5 *2 (-663 (-2 (|:| |poly| *6) (|:| -3192 (-678 *6 (-421 *6))))))
- (-5 *1 (-834 *5 *6)) (-5 *3 (-678 *6 (-421 *6))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1207))
- (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-435 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-560)) (-4 *5 (-13 (-466) (-1069 *4) (-660 *4)))
- (-5 *2 (-51)) (-5 *1 (-328 *5 *3))
- (-4 *3 (-13 (-27) (-1233) (-435 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5)))
- (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-328 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *6)))
- (-4 *6 (-13 (-466) (-1069 *5) (-660 *5))) (-5 *5 (-560))
- (-5 *2 (-51)) (-5 *1 (-328 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-560)))
- (-4 *7 (-13 (-27) (-1233) (-435 *6)))
- (-4 *6 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-473 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-560)))
- (-4 *3 (-13 (-27) (-1233) (-435 *7)))
- (-4 *7 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-473 *7 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-560)) (-4 *4 (-1080)) (-4 *1 (-1261 *4 *3))
- (-4 *3 (-1290 *4))))
+ (|partial| -12 (-4 *3 (-1143)) (-4 *3 (-1132)) (-5 *2 (-663 *1))
+ (-4 *1 (-435 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1259 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-560))) (-5 *2 (-560)) (-5 *1 (-500 *4))
- (-4 *4 (-1273 *2)))))
-(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-459 *3)) (-4 *3 (-1080)))))
-(((*1 *2)
- (-12 (-5 *2 (-114)) (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-663 (-1207))) (-5 *2 (-1207)) (-5 *1 (-342)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-1247)) (-5 *2 (-793)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175))
- (-5 *2 (-711 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-711 *4)) (-5 *1 (-431 *3 *4))
- (-4 *3 (-432 *4))))
- ((*1 *2) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-711 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
- (-4 *5 (-1273 (-421 *4))) (-5 *2 (-114)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *7 (-1096 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-663 *7)) (|:| |badPols| (-663 *7))))
- (-5 *1 (-1008 *4 *5 *6 *7)) (-5 *3 (-663 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1297 *4)) (-4 *4 (-13 (-1080) (-660 (-560))))
- (-5 *2 (-114)) (-5 *1 (-1326 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1207))
- (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1233) (-435 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-793)) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560))))
- (-5 *2 (-51)) (-5 *1 (-328 *5 *3))
- (-4 *3 (-13 (-27) (-1233) (-435 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1233) (-435 *5)))
- (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-328 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-305 *3)) (-5 *5 (-793))
- (-4 *3 (-13 (-27) (-1233) (-435 *6)))
- (-4 *6 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-328 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-560))) (-5 *4 (-305 *6))
- (-4 *6 (-13 (-27) (-1233) (-435 *5)))
- (-4 *5 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-473 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3))
- (-4 *3 (-13 (-27) (-1233) (-435 *6)))
- (-4 *6 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-473 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-560))) (-5 *4 (-305 *7)) (-5 *5 (-1264 (-793)))
- (-4 *7 (-13 (-27) (-1233) (-435 *6)))
- (-4 *6 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-473 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1207)) (-5 *5 (-305 *3)) (-5 *6 (-1264 (-793)))
- (-4 *3 (-13 (-27) (-1233) (-435 *7)))
- (-4 *7 (-13 (-571) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-51))
- (-5 *1 (-473 *7 *3))))
+ (|partial| -12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3))
+ (-4 *3 (-1132))))
((*1 *2 *1)
- (-12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1290 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-864 (-391))) (-5 *2 (-864 (-229))) (-5 *1 (-315)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1022 *2)) (-4 *2 (-571)) (-4 *2 (-559))))
- ((*1 *1 *1) (-4 *1 (-1091))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1207)) (-4 *5 (-1252)) (-4 *6 (-1273 *5))
- (-4 *7 (-1273 (-421 *6))) (-5 *2 (-663 (-975 *5)))
- (-5 *1 (-354 *4 *5 *6 *7)) (-4 *4 (-355 *5 *6 *7))))
+ (|partial| -12 (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *2 (-663 *1)) (-4 *1 (-979 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1207)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1252))
- (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5))) (-4 *4 (-376))
- (-5 *2 (-663 (-975 *4))))))
-(((*1 *2 *2)
+ (|partial| -12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080))
+ (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-663 *3))
+ (-5 *1 (-980 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-376)
+ (-10 -8 (-15 -3913 ($ *7)) (-15 -2473 (*7 $))
+ (-15 -2484 (*7 $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-663 (-663 *8))) (-5 *3 (-663 *8))
+ (-4 *8 (-979 *5 *7 *6)) (-4 *5 (-13 (-319) (-149)))
+ (-4 *6 (-13 (-871) (-633 (-1207)))) (-4 *7 (-815)) (-5 *2 (-114))
+ (-5 *1 (-953 *5 *6 *7 *8)))))
+(((*1 *2 *2 *3)
(-12
(-5 *2
- (-2 (|:| |fn| (-326 (-229))) (|:| -3161 (-663 (-229)))
- (|:| |lb| (-663 (-864 (-229)))) (|:| |cf| (-663 (-326 (-229))))
- (|:| |ub| (-663 (-864 (-229))))))
- (-5 *1 (-278)))))
-(((*1 *1 *1) (-5 *1 (-229)))
- ((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))
- ((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-445 *3 *2)) (-4 *2 (-435 *3))))
- ((*1 *1 *1) (-4 *1 (-1170))) ((*1 *1 *1 *1) (-4 *1 (-1170))))
-(((*1 *1 *1 *1) (-4 *1 (-319))) ((*1 *1 *1 *1) (-5 *1 (-793)))
- ((*1 *1 *1 *1) (-5 *1 (-887))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1207)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-724 *4 *5 *6 *7))
- (-4 *4 (-633 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247))
- (-4 *7 (-1247)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-560)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1273 (-560))))))
-(((*1 *2 *3) (-12 (-5 *3 (-520)) (-5 *2 (-713 (-186))) (-5 *1 (-186)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1252)) (-4 *5 (-1273 *4))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-421 *5))
- (|:| |c2| (-421 *5)) (|:| |deg| (-793))))
- (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1273 (-421 *5))))))
-(((*1 *1 *1 *1) (-5 *1 (-114))) ((*1 *1 *1 *1) (-4 *1 (-125))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 *4)) (-4 *4 (-870)) (-4 *4 (-376)) (-5 *2 (-793))
- (-5 *1 (-974 *4 *5)) (-4 *5 (-1273 *4)))))
+ (-2 (|:| |partsol| (-1297 (-421 (-975 *4))))
+ (|:| -3822 (-663 (-1297 (-421 (-975 *4)))))))
+ (-5 *3 (-663 *7)) (-4 *4 (-13 (-319) (-149)))
+ (-4 *7 (-979 *4 *6 *5)) (-4 *5 (-13 (-871) (-633 (-1207))))
+ (-4 *6 (-815)) (-5 *1 (-953 *4 *5 *6 *7)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-871))
- (-5 *1 (-518 *2 *3 *4 *5)) (-4 *5 (-979 *2 *3 *4)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-560)) (-14 *3 (-793))
- (-4 *4 (-175))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-5 *1 (-160 *4 *2))
- (-4 *2 (-435 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1123 *2)) (-4 *2 (-435 *4)) (-4 *4 (-571))
- (-5 *1 (-160 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1123 *1)) (-4 *1 (-162))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1207))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-793)) (-5 *1 (-1318 *3 *4)) (-4 *3 (-871))
- (-4 *4 (-175)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1185 (-1185 *4))) (-5 *2 (-1185 *4)) (-5 *1 (-1191 *4))
- (-4 *4 (-38 (-421 (-560)))) (-4 *4 (-1080)))))
-(((*1 *1 *1 *1) (-4 *1 (-319))) ((*1 *1 *1 *1) (-5 *1 (-793)))
- ((*1 *1 *1 *1) (-5 *1 (-887))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-663 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-114) *8 *8)) (-4 *1 (-1242 *5 *6 *7 *8)) (-4 *5 (-571))
- (-4 *6 (-815)) (-4 *7 (-871)) (-4 *8 (-1096 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-229)) (-5 *4 (-560))
- (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1066))
- (-5 *1 (-770)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229))
- (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1066))
- (-5 *1 (-768)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-1207)))))
-(((*1 *1) (-5 *1 (-1301))))
-(((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1211)))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1132))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-560)) (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3))
- (-4 *3 (-1080))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-841 *4)) (-4 *4 (-871)) (-4 *1 (-1317 *4 *3))
- (-4 *3 (-1080)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
- (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
- (|:| |relerr| (-229))))
- (-5 *2 (-663 (-229))) (-5 *1 (-207)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3))
- (-4 *5 (-385 *3)) (-5 *2 (-560))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
- (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-560)))))
-(((*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-847)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1189)) (-5 *4 (-1151)) (-5 *2 (-114)) (-5 *1 (-844)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-793)) (|:| -2738 *4))) (-5 *5 (-793))
- (-4 *4 (-979 *6 *7 *8)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871))
- (-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-464 *6 *7 *8 *4)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-711 (-229))) (-5 *4 (-560)) (-5 *5 (-114))
- (-5 *2 (-1066)) (-5 *1 (-767)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-560))) (-5 *1 (-1078)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391))
- (-5 *2
- (-2 (|:| -3853 *4) (|:| -4223 *4) (|:| |totalpts| (-560))
- (|:| |success| (-114))))
- (-5 *1 (-811)) (-5 *5 (-560)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1207)) (-5 *4 (-975 (-560))) (-5 *2 (-342))
- (-5 *1 (-344)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *4 (-898))
- (-5 *5 (-948)) (-5 *6 (-663 (-270))) (-5 *2 (-482)) (-5 *1 (-1299))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *2 (-482))
- (-5 *1 (-1299))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-663 (-972 (-229))))) (-5 *4 (-663 (-270)))
- (-5 *2 (-482)) (-5 *1 (-1299)))))
-(((*1 *2 *3) (-12 (-5 *3 (-887)) (-5 *2 (-1189)) (-5 *1 (-732)))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-818 *2)) (-4 *2 (-175))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1027 *3)) (-4 *3 (-175)) (-5 *1 (-820 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-421 (-560))) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376))
- (-14 *4 (-1207)) (-14 *5 *3))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-793)) (-4 *1 (-1317 *3 *4)) (-4 *3 (-871))
- (-4 *4 (-1080)) (-4 *4 (-175))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1317 *2 *3)) (-4 *2 (-871)) (-4 *3 (-1080))
- (-4 *3 (-175)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1212)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391))
- (-5 *2
- (-2 (|:| -3853 *4) (|:| -4223 *4) (|:| |totalpts| (-560))
- (|:| |success| (-114))))
- (-5 *1 (-811)) (-5 *5 (-560)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-663 *10)) (-5 *5 (-114)) (-4 *10 (-1102 *6 *7 *8 *9))
- (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871))
- (-4 *9 (-1096 *6 *7 *8))
- (-5 *2
- (-663
- (-2 (|:| -3192 (-663 *9)) (|:| -4297 *10) (|:| |ineq| (-663 *9)))))
- (-5 *1 (-1019 *6 *7 *8 *9 *10)) (-5 *3 (-663 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-663 *10)) (-5 *5 (-114)) (-4 *10 (-1102 *6 *7 *8 *9))
- (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871))
- (-4 *9 (-1096 *6 *7 *8))
- (-5 *2
- (-663
- (-2 (|:| -3192 (-663 *9)) (|:| -4297 *10) (|:| |ineq| (-663 *9)))))
- (-5 *1 (-1138 *6 *7 *8 *9 *10)) (-5 *3 (-663 *9)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302))))
- ((*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-609 *2)) (-4 *2 (-1080)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4))
- (-4 *4 (-363)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-629 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132))
- (-5 *2 (-114)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lfn| (-663 (-326 (-229)))) (|:| -3161 (-663 (-229)))))
- (-5 *2 (-663 (-1207))) (-5 *1 (-278))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1201 *7)) (-4 *7 (-979 *6 *4 *5)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *6 (-1080)) (-5 *2 (-663 *5))
- (-5 *1 (-333 *4 *5 *6 *7))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-352 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 *2) (-4 *5 (-401))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-435 *3)) (-4 *3 (-1132)) (-5 *2 (-663 (-1207)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1132))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-979 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *5 (-871)) (-5 *2 (-663 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1080))
- (-4 *7 (-979 *6 *4 *5)) (-5 *2 (-663 *5))
- (-5 *1 (-980 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-376)
- (-10 -8 (-15 -1578 ($ *7)) (-15 -3757 (*7 $)) (-15 -3771 (*7 $)))))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1004 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-814))
- (-4 *5 (-871)) (-5 *2 (-663 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-663 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-421 (-975 *4))) (-4 *4 (-571)) (-5 *2 (-663 (-1207)))
- (-5 *1 (-1071 *4)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
- (-5 *1 (-774)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1207)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-724 *3 *5 *6 *7))
- (-4 *3 (-633 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247))
- (-4 *7 (-1247))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1207)) (-5 *2 (-1 *6 *5)) (-5 *1 (-728 *3 *5 *6))
- (-4 *3 (-633 (-549))) (-4 *5 (-1247)) (-4 *6 (-1247)))))
+ (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-694 *3)) (-4 *3 (-871)) (-4 *1 (-387 *3 *4))
- (-4 *4 (-175)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-520)) (-5 *3 (-795)) (-5 *1 (-115))))
- ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-795)) (-5 *1 (-115)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-560)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-419 *4)) (-4 *4 (-571)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)) (-4 *2 (-466)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1290 *4))
- (-4 *4 (-38 (-421 (-560)))) (-5 *2 (-1 (-1185 *4) (-1185 *4)))
- (-5 *1 (-1291 *4 *5)))))
+ (-12 (-5 *2 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-270)))))
(((*1 *2 *1)
(|partial| -12 (-4 *3 (-13 (-1069 (-560)) (-660 (-560)) (-466)))
(-5 *2
@@ -16701,6 +15609,46 @@
(|:| |%type| (-1189))))
(-5 *1 (-1284 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1233) (-435 *3)))
(-14 *5 (-1207)) (-14 *6 *4))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4509))))
+ (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4509)))) (-5 *2 (-114))
+ (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-711 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-376))
+ (-5 *2 (-114)) (-5 *1 (-690 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-948)) (-5 *2 (-1201 *4)) (-5 *1 (-369 *4))
+ (-4 *4 (-363)))))
+(((*1 *1 *1) (-12 (-5 *1 (-943 *2)) (-4 *2 (-319)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946))))
+ ((*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
+(((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *1 (-270))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *3 (-663 (-270)))
+ (-5 *1 (-271))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *1 (-482))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *1 (-482)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
+ (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
+ (|:| |relerr| (-229))))
+ (-5 *2 (-114)) (-5 *1 (-313)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *2 (-871))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-114)) (-5 *1 (-326 *3)) (-4 *3 (-571)) (-4 *3 (-1132)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-571)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))
+ (-5 *1 (-1238 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))))
(((*1 *2 *3 *4)
(-12 (-5 *3 (-663 (-421 (-975 (-560)))))
(-5 *2 (-663 (-663 (-305 (-975 *4))))) (-5 *1 (-393 *4))
@@ -16720,7 +15668,7 @@
(|partial| -12 (-5 *5 (-1207))
(-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)))
(-4 *4 (-13 (-29 *6) (-1233) (-989)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -1954 (-663 *4))))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -3822 (-663 *4))))
(-5 *1 (-675 *6 *4 *3)) (-4 *3 (-680 *4))))
((*1 *2 *3 *2 *4 *2 *5)
(|partial| -12 (-5 *4 (-1207)) (-5 *5 (-663 *2))
@@ -16731,41 +15679,41 @@
(-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4509))))
(-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4509))))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1954 (-663 *4))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3822 (-663 *4))))
(-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4))))
((*1 *2 *3 *4)
(-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4509))))
(-4 *7 (-13 (-385 *5) (-10 -7 (-6 -4509))))
(-5 *2
(-663
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -1954 (-663 *7)))))
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3822 (-663 *7)))))
(-5 *1 (-689 *5 *6 *7 *3)) (-5 *4 (-663 *7))
(-4 *3 (-708 *5 *6 *7))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-711 *5)) (-4 *5 (-376))
(-5 *2
(-2 (|:| |particular| (-3 (-1297 *5) "failed"))
- (|:| -1954 (-663 (-1297 *5)))))
+ (|:| -3822 (-663 (-1297 *5)))))
(-5 *1 (-690 *5)) (-5 *4 (-1297 *5))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-663 (-663 *5))) (-4 *5 (-376))
(-5 *2
(-2 (|:| |particular| (-3 (-1297 *5) "failed"))
- (|:| -1954 (-663 (-1297 *5)))))
+ (|:| -3822 (-663 (-1297 *5)))))
(-5 *1 (-690 *5)) (-5 *4 (-1297 *5))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-711 *5)) (-4 *5 (-376))
(-5 *2
(-663
(-2 (|:| |particular| (-3 (-1297 *5) "failed"))
- (|:| -1954 (-663 (-1297 *5))))))
+ (|:| -3822 (-663 (-1297 *5))))))
(-5 *1 (-690 *5)) (-5 *4 (-663 (-1297 *5)))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-663 (-663 *5))) (-4 *5 (-376))
(-5 *2
(-663
(-2 (|:| |particular| (-3 (-1297 *5) "failed"))
- (|:| -1954 (-663 (-1297 *5))))))
+ (|:| -3822 (-663 (-1297 *5))))))
(-5 *1 (-690 *5)) (-5 *4 (-663 (-1297 *5)))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-663 (-975 *5))) (-5 *4 (-663 (-1207))) (-4 *5 (-571))
@@ -16782,7 +15730,7 @@
(-4 *7 (-13 (-29 *6) (-1233) (-989)))
(-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)))
(-5 *2
- (-2 (|:| |particular| (-1297 *7)) (|:| -1954 (-663 (-1297 *7)))))
+ (-2 (|:| |particular| (-1297 *7)) (|:| -3822 (-663 (-1297 *7)))))
(-5 *1 (-824 *6 *7)) (-5 *4 (-1297 *7))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-711 *6)) (-5 *4 (-1207))
@@ -16794,27 +15742,27 @@
(-5 *5 (-1207)) (-4 *7 (-13 (-29 *6) (-1233) (-989)))
(-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)))
(-5 *2
- (-2 (|:| |particular| (-1297 *7)) (|:| -1954 (-663 (-1297 *7)))))
+ (-2 (|:| |particular| (-1297 *7)) (|:| -3822 (-663 (-1297 *7)))))
(-5 *1 (-824 *6 *7))))
((*1 *2 *3 *4 *5)
(|partial| -12 (-5 *3 (-663 *7)) (-5 *4 (-663 (-115)))
(-5 *5 (-1207)) (-4 *7 (-13 (-29 *6) (-1233) (-989)))
(-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)))
(-5 *2
- (-2 (|:| |particular| (-1297 *7)) (|:| -1954 (-663 (-1297 *7)))))
+ (-2 (|:| |particular| (-1297 *7)) (|:| -3822 (-663 (-1297 *7)))))
(-5 *1 (-824 *6 *7))))
((*1 *2 *3 *4 *5)
(-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-1207))
(-4 *7 (-13 (-29 *6) (-1233) (-989)))
(-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)))
(-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -1954 (-663 *7))) *7 "failed"))
+ (-3 (-2 (|:| |particular| *7) (|:| -3822 (-663 *7))) *7 "failed"))
(-5 *1 (-824 *6 *7))))
((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-115)) (-5 *5 (-1207))
(-4 *6 (-13 (-319) (-1069 (-560)) (-660 (-560)) (-149)))
(-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -1954 (-663 *3))) *3 "failed"))
+ (-3 (-2 (|:| |particular| *3) (|:| -3822 (-663 *3))) *3 "failed"))
(-5 *1 (-824 *6 *3)) (-4 *3 (-13 (-29 *6) (-1233) (-989)))))
((*1 *2 *3 *4 *3 *5)
(|partial| -12 (-5 *3 (-305 *2)) (-5 *4 (-115)) (-5 *5 (-663 *2))
@@ -16850,10 +15798,10 @@
(|partial| -12
(-5 *5
(-1
- (-3 (-2 (|:| |particular| *6) (|:| -1954 (-663 *6))) "failed")
+ (-3 (-2 (|:| |particular| *6) (|:| -3822 (-663 *6))) "failed")
*7 *6))
(-4 *6 (-376)) (-4 *7 (-680 *6))
- (-5 *2 (-2 (|:| |particular| (-1297 *6)) (|:| -1954 (-711 *6))))
+ (-5 *2 (-2 (|:| |particular| (-1297 *6)) (|:| -3822 (-711 *6))))
(-5 *1 (-835 *6 *7)) (-5 *3 (-711 *6)) (-5 *4 (-1297 *6))))
((*1 *2 *3) (-12 (-5 *3 (-925)) (-5 *2 (-1066)) (-5 *1 (-924))))
((*1 *2 *3 *4)
@@ -16926,265 +15874,276 @@
((*1 *2 *3)
(-12 (-4 *4 (-571)) (-5 *2 (-663 (-305 (-421 (-975 *4)))))
(-5 *1 (-1216 *4)) (-5 *3 (-305 (-421 (-975 *4)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-569 *2)) (-4 *2 (-13 (-418) (-1233)))))
+ ((*1 *1 *1 *1) (-4 *1 (-815))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1185 (-560))) (-5 *1 (-1191 *4)) (-4 *4 (-1080))
+ (-5 *3 (-560)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1201 *5)) (-4 *5 (-466)) (-5 *2 (-663 *6))
+ (-5 *1 (-552 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-870)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-975 *5)) (-4 *5 (-466)) (-5 *2 (-663 *6))
+ (-5 *1 (-552 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-870))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-149))
+ (-4 *3 (-319)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *1 (-1008 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-793)) (-5 *2 (-711 (-975 *4))) (-5 *1 (-1060 *4))
+ (-4 *4 (-1080)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-913 *5 *3)) (-5 *4 (-915 *5)) (-4 *5 (-1132))
+ (-4 *3 (-168 *6)) (-4 (-975 *6) (-911 *5))
+ (-4 *6 (-13 (-911 *5) (-175))) (-5 *1 (-181 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-913 *4 *1)) (-5 *3 (-915 *4)) (-4 *1 (-911 *4))
+ (-4 *4 (-1132))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-913 *5 *6)) (-5 *4 (-915 *5)) (-4 *5 (-1132))
+ (-4 *6 (-13 (-1132) (-1069 *3))) (-4 *3 (-911 *5))
+ (-5 *1 (-960 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1132))
+ (-4 *3 (-13 (-435 *6) (-633 *4) (-911 *5) (-1069 (-630 $))))
+ (-5 *4 (-915 *5)) (-4 *6 (-13 (-571) (-911 *5)))
+ (-5 *1 (-961 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-913 (-560) *3)) (-5 *4 (-915 (-560))) (-4 *3 (-559))
+ (-5 *1 (-962 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-913 *5 *6)) (-5 *3 (-630 *6)) (-4 *5 (-1132))
+ (-4 *6 (-13 (-1132) (-1069 (-630 $)) (-633 *4) (-911 *5)))
+ (-5 *4 (-915 *5)) (-5 *1 (-963 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-910 *5 *6 *3)) (-5 *4 (-915 *5)) (-4 *5 (-1132))
+ (-4 *6 (-911 *5)) (-4 *3 (-688 *6)) (-5 *1 (-964 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-913 *6 *3) *8 (-915 *6) (-913 *6 *3)))
+ (-4 *8 (-871)) (-5 *2 (-913 *6 *3)) (-5 *4 (-915 *6))
+ (-4 *6 (-1132)) (-4 *3 (-13 (-979 *9 *7 *8) (-633 *4)))
+ (-4 *7 (-815)) (-4 *9 (-13 (-1080) (-911 *6)))
+ (-5 *1 (-965 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1132))
+ (-4 *3 (-13 (-979 *8 *6 *7) (-633 *4))) (-5 *4 (-915 *5))
+ (-4 *7 (-911 *5)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *8 (-13 (-1080) (-911 *5))) (-5 *1 (-965 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-913 *5 *3)) (-4 *5 (-1132)) (-4 *3 (-1022 *6))
+ (-4 *6 (-13 (-571) (-911 *5) (-633 *4))) (-5 *4 (-915 *5))
+ (-5 *1 (-968 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-913 *5 (-1207))) (-5 *3 (-1207)) (-5 *4 (-915 *5))
+ (-4 *5 (-1132)) (-5 *1 (-969 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-663 (-915 *7))) (-5 *5 (-1 *9 (-663 *9)))
+ (-5 *6 (-1 (-913 *7 *9) *9 (-915 *7) (-913 *7 *9))) (-4 *7 (-1132))
+ (-4 *9 (-13 (-1080) (-633 (-915 *7)) (-1069 *8)))
+ (-5 *2 (-913 *7 *9)) (-5 *3 (-663 *9)) (-4 *8 (-1080))
+ (-5 *1 (-970 *7 *8 *9)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1080)) (-5 *2 (-1297 *3)) (-5 *1 (-734 *3 *4))
+ (-4 *4 (-1273 *3)))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381))
+ (-5 *2 (-1201 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381))
+ (-5 *2 (-1201 *3)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-663 (-421 *6))) (-5 *3 (-421 *6))
+ (-4 *6 (-1273 *5)) (-4 *5 (-13 (-376) (-149) (-1069 (-560))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-663 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-582 *5 *6)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-773)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-663 *6) "failed") (-560) *6 *6)) (-4 *6 (-376))
+ (-4 *7 (-1273 *6))
+ (-5 *2 (-2 (|:| |answer| (-597 (-421 *7))) (|:| |a0| *6)))
+ (-5 *1 (-588 *6 *7)) (-5 *3 (-421 *7)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1189)) (-5 *5 (-711 (-229))) (-5 *6 (-229))
+ (-5 *7 (-711 (-560))) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-774)))))
+(((*1 *1 *1 *1) (-5 *1 (-887))))
+(((*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-723))))
+ ((*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-723)))))
+(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-391))))
+ ((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-391)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-34)) (-5 *3 (-793)) (-5 *2 (-114))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-5 *2 (-114)) (-5 *1 (-1249 *3)) (-4 *3 (-1132))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *3 (-1132)) (-5 *2 (-114))
+ (-5 *1 (-1249 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-593)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 *5)) (-5 *4 (-663 (-1 *6 (-663 *6))))
+ (-4 *5 (-38 (-421 (-560)))) (-4 *6 (-1290 *5)) (-5 *2 (-663 *6))
+ (-5 *1 (-1291 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7))
+ (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *4))))
+ (-5 *1 (-1103 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-897 *2 *3)) (-4 *2 (-1247)) (-4 *3 (-1247)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *2 (-663 (-1207))) (-5 *1 (-1210)) (-5 *3 (-1207)))))
+(((*1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
(((*1 *1 *1 *2 *3)
(-12 (-5 *3 (-663 *6)) (-4 *6 (-871)) (-4 *4 (-376)) (-4 *5 (-815))
(-5 *1 (-518 *4 *5 *6 *2)) (-4 *2 (-979 *4 *5 *6))))
((*1 *1 *1 *2)
(-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871))
(-5 *1 (-518 *3 *4 *5 *2)) (-4 *2 (-979 *3 *4 *5)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-663 (-793))) (-5 *3 (-174)) (-5 *1 (-1195 *4 *5))
- (-14 *4 (-948)) (-4 *5 (-1080)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-114))
- (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
- (-4 *3 (-1096 *5 *6 *7))
- (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -4297 *4))))
- (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *1 (-991 *2)) (-4 *2 (-559)))))
-(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1080))
- (-5 *1 (-877 *5 *2)) (-4 *2 (-876 *5)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1201 (-421 (-1201 *2)))) (-5 *4 (-630 *2))
- (-4 *2 (-13 (-435 *5) (-27) (-1233)))
- (-4 *5 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
- (-5 *1 (-575 *5 *2 *6)) (-4 *6 (-1132))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1201 *1)) (-4 *1 (-979 *4 *5 *3)) (-4 *4 (-1080))
- (-4 *5 (-815)) (-4 *3 (-871))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1201 *4)) (-4 *4 (-1080)) (-4 *1 (-979 *4 *5 *3))
- (-4 *5 (-815)) (-4 *3 (-871))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-419 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1273 (-48)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-123 *3)) (|:| |greater| (-123 *3))))
+ (-5 *1 (-123 *3)) (-4 *3 (-871))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-597 *4)) (-4 *4 (-13 (-29 *3) (-1233)))
+ (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560))))
+ (-5 *1 (-599 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-597 (-421 (-975 *3))))
+ (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *1 (-603 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-421 (-1201 *2))) (-4 *5 (-815)) (-4 *4 (-871))
- (-4 *6 (-1080))
- (-4 *2
- (-13 (-376)
- (-10 -8 (-15 -1578 ($ *7)) (-15 -3757 (*7 $)) (-15 -3771 (*7 $)))))
- (-5 *1 (-980 *5 *4 *6 *7 *2)) (-4 *7 (-979 *6 *5 *4))))
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1273 *5)) (-4 *5 (-376))
+ (-5 *2 (-2 (|:| -3967 *3) (|:| |special| *3))) (-5 *1 (-749 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-421 (-1201 (-421 (-975 *5))))) (-5 *4 (-1207))
- (-5 *2 (-421 (-975 *5))) (-5 *1 (-1071 *5)) (-4 *5 (-571)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-663 (-630 *2))) (-5 *4 (-663 (-1207)))
- (-4 *2 (-13 (-435 (-171 *5)) (-1033) (-1233))) (-4 *5 (-571))
- (-5 *1 (-614 *5 *6 *2)) (-4 *6 (-13 (-435 *5) (-1033) (-1233))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-133))
- (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -3251 *4))))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-523 *3 *4)) (-4 *3 (-102)) (-4 *4 (-874))
- (-5 *2 (-663 (-897 *4 *3)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-663 (-2 (|:| -2115 *3) (|:| -1471 *4))))
- (-5 *1 (-757 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-748))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814))
- (-5 *2 (-1185 (-2 (|:| |k| *4) (|:| |c| *3)))))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4509)) (-4 *1 (-251 *2)) (-4 *2 (-1247)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5))
- (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871))
- (-5 *1 (-1311 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-663 *8)) (-5 *3 (-1 (-114) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571))
- (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1311 *5 *6 *7 *8)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *9)) (-4 *8 (-1096 *5 *6 *7))
- (-4 *9 (-1102 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815))
- (-4 *7 (-871)) (-5 *2 (-793)) (-5 *1 (-1100 *5 *6 *7 *8 *9))))
+ (-12 (-5 *4 (-1297 *5)) (-4 *5 (-376)) (-4 *5 (-1080))
+ (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1061 *5))
+ (-5 *3 (-663 (-711 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *8)) (-5 *4 (-663 *9)) (-4 *8 (-1096 *5 *6 *7))
- (-4 *9 (-1140 *5 *6 *7 *8)) (-4 *5 (-466)) (-4 *6 (-815))
- (-4 *7 (-871)) (-5 *2 (-793)) (-5 *1 (-1176 *5 *6 *7 *8 *9)))))
-(((*1 *1 *1 *1) (-5 *1 (-130)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-948))))
- ((*1 *1 *1 *1) (-5 *1 (-1253))) ((*1 *1 *1 *1) (-5 *1 (-1254)))
- ((*1 *1 *1 *1) (-5 *1 (-1255))) ((*1 *1 *1 *1) (-5 *1 (-1256))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-560)) (-5 *2 (-1303)) (-5 *1 (-1301))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-663 *2)) (-4 *2 (-979 *4 *5 *6)) (-4 *4 (-466))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *1 (-464 *4 *5 *6 *2)))))
-(((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
- (-4 *3 (-380 *4))))
- ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-814))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-663 (-948))) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-948))
- (-4 *2 (-376)) (-14 *5 (-1024 *4 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-735 *5 *6 *7)) (-4 *5 (-871))
- (-4 *6 (-245 (-1553 *4) (-793)))
- (-14 *7
- (-1 (-114) (-2 (|:| -3128 *5) (|:| -3205 *6))
- (-2 (|:| -3128 *5) (|:| -3205 *6))))
- (-14 *4 (-663 (-1207))) (-4 *2 (-175))
- (-5 *1 (-475 *4 *2 *5 *6 *7 *8)) (-4 *8 (-979 *2 *6 (-888 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-4 *1 (-523 *2 *3)) (-4 *2 (-102)) (-4 *3 (-874))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-560)) (-4 *2 (-571)) (-5 *1 (-642 *2 *4))
- (-4 *4 (-1273 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-730 *2)) (-4 *2 (-1080))))
- ((*1 *1 *2 *3)
- (-12 (-5 *1 (-757 *2 *3)) (-4 *2 (-1080)) (-4 *3 (-748))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-663 *5)) (-5 *3 (-663 (-793))) (-4 *1 (-762 *4 *5))
- (-4 *4 (-1080)) (-4 *5 (-871))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-793)) (-4 *1 (-762 *4 *2)) (-4 *4 (-1080))
- (-4 *2 (-871))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-793)) (-4 *1 (-876 *2)) (-4 *2 (-1080))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-663 *6)) (-5 *3 (-663 (-793))) (-4 *1 (-979 *4 *5 *6))
- (-4 *4 (-1080)) (-4 *5 (-815)) (-4 *6 (-871))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-793)) (-4 *1 (-979 *4 *5 *2)) (-4 *4 (-1080))
- (-4 *5 (-815)) (-4 *2 (-871))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-663 *6)) (-5 *3 (-663 *5)) (-4 *1 (-1004 *4 *5 *6))
- (-4 *4 (-1080)) (-4 *5 (-814)) (-4 *6 (-871))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-1004 *4 *3 *2)) (-4 *4 (-1080)) (-4 *3 (-814))
- (-4 *2 (-871)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-421 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1273 *5))
- (-5 *1 (-749 *5 *2)) (-4 *5 (-376)))))
+ (-12 (-5 *4 (-1297 (-1297 *5))) (-4 *5 (-376)) (-4 *5 (-1080))
+ (-5 *2 (-663 (-663 (-711 *5)))) (-5 *1 (-1061 *5))
+ (-5 *3 (-663 (-711 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-663 *1)) (-4 *1 (-1175))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-146)) (-5 *2 (-663 *1)) (-4 *1 (-1175)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-663 (-2 (|:| |deg| (-793)) (|:| -2401 *5))))
- (-4 *5 (-1273 *4)) (-4 *4 (-363)) (-5 *2 (-663 *5))
- (-5 *1 (-220 *4 *5))))
+ (-12 (-4 *4 (-363))
+ (-5 *2 (-663 (-2 (|:| |deg| (-793)) (|:| -2627 *3))))
+ (-5 *1 (-220 *4 *3)) (-4 *3 (-1273 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-571)) (-4 *3 (-1080))
+ (-5 *2 (-2 (|:| -2584 *1) (|:| -3276 *1))) (-4 *1 (-876 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-571)) (-4 *5 (-1080))
+ (-5 *2 (-2 (|:| -2584 *3) (|:| -3276 *3))) (-5 *1 (-877 *5 *3))
+ (-4 *3 (-876 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-1185 *4) (-1185 *4))) (-5 *2 (-1185 *4))
+ (-5 *1 (-1324 *4)) (-4 *4 (-1247))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-2 (|:| -4457 *5) (|:| -3630 (-560)))))
- (-5 *4 (-560)) (-4 *5 (-1273 *4)) (-5 *2 (-663 *5))
- (-5 *1 (-718 *5)))))
+ (-12 (-5 *3 (-1 (-663 (-1185 *5)) (-663 (-1185 *5)))) (-5 *4 (-560))
+ (-5 *2 (-663 (-1185 *5))) (-5 *1 (-1324 *5)) (-4 *5 (-1247)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1207)) (-5 *4 (-975 (-560))) (-5 *2 (-342))
- (-5 *1 (-344)))))
-(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1233))))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-740 *2)) (-4 *2 (-376)))))
+ (-12 (-5 *4 (-114)) (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560))))
+ (-5 *2
+ (-3 (|:| |%expansion| (-325 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1189)) (|:| |prob| (-1189))))))
+ (-5 *1 (-437 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1233) (-435 *5)))
+ (-14 *6 (-1207)) (-14 *7 *3))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-979 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871)) (-4 *2 (-466))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *3 (-1096 *4 *5 *6))
+ (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *1))))
+ (-4 *1 (-1102 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1252)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-1277 *3 *2))
+ (-4 *2 (-13 (-1273 *3) (-571) (-10 -8 (-15 -1938 ($ $ $))))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-5 *2 (-114)) (-5 *1 (-287 *4 *3))
- (-4 *3 (-13 (-435 *4) (-1033))))))
-(((*1 *1 *1 *1) (-5 *1 (-130)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-1214 *2)) (-14 *2 (-948))))
- ((*1 *1 *1 *1) (-5 *1 (-1253))) ((*1 *1 *1 *1) (-5 *1 (-1254)))
- ((*1 *1 *1 *1) (-5 *1 (-1255))) ((*1 *1 *1 *1) (-5 *1 (-1256))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571))
- (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-571)) (-5 *1 (-648 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1033) (-1233)))))
- ((*1 *1 *1) (-4 *1 (-649))))
+ (-12 (-5 *3 (-1297 (-326 (-229))))
+ (-5 *2
+ (-2 (|:| |additions| (-560)) (|:| |multiplications| (-560))
+ (|:| |exponentiations| (-560)) (|:| |functionCalls| (-560))))
+ (-5 *1 (-315)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-633 *2) (-175))) (-5 *2 (-915 *4))
- (-5 *1 (-173 *4 *5 *3)) (-4 *4 (-1132)) (-4 *3 (-168 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-663 (-1120 (-864 (-391)))))
- (-5 *2 (-663 (-1120 (-864 (-229))))) (-5 *1 (-315))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-887)) (-5 *3 (-560)) (-5 *1 (-407))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-424 *3 *4))
- (-4 *4 (-1273 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-424 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3))
- (-5 *2 (-1297 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1297 *3)) (-4 *3 (-175)) (-4 *1 (-432 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-1297 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-419 *1)) (-4 *1 (-435 *3)) (-4 *3 (-571))
- (-4 *3 (-1132))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-1080))
- (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-477 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-549))))
- ((*1 *2 *1) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1247))))
- ((*1 *1 *2) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1247))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-175)) (-4 *1 (-746 *3 *2)) (-4 *2 (-1273 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3)) (-4 *3 (-1132))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-975 *3)) (-4 *3 (-1080)) (-4 *1 (-1096 *3 *4 *5))
- (-4 *5 (-633 (-1207))) (-4 *4 (-815)) (-4 *5 (-871))))
- ((*1 *1 *2)
- (-2304
- (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5))
- (-12 (-1937 (-4 *3 (-38 (-421 (-560))))) (-4 *3 (-38 (-560)))
- (-4 *5 (-633 (-1207))))
- (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))
- (-12 (-5 *2 (-975 (-560))) (-4 *1 (-1096 *3 *4 *5))
- (-12 (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207))))
- (-4 *3 (-1080)) (-4 *4 (-815)) (-4 *5 (-871)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-975 (-421 (-560)))) (-4 *1 (-1096 *3 *4 *5))
- (-4 *3 (-38 (-421 (-560)))) (-4 *5 (-633 (-1207))) (-4 *3 (-1080))
- (-4 *4 (-815)) (-4 *5 (-871))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -4297 *8)))
- (-4 *7 (-1096 *4 *5 *6)) (-4 *8 (-1102 *4 *5 *6 *7)) (-4 *4 (-466))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1189))
- (-5 *1 (-1100 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-663 *7)) (|:| -4297 *8)))
- (-4 *7 (-1096 *4 *5 *6)) (-4 *8 (-1140 *4 *5 *6 *7)) (-4 *4 (-466))
- (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-1189))
- (-5 *1 (-1176 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1134)) (-5 *1 (-1212))))
- ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-1212))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-887)) (-5 *3 (-560)) (-5 *1 (-1227))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-887)) (-5 *3 (-560)) (-5 *1 (-1227))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-802 *4 (-888 *5)))
- (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-14 *5 (-663 (-1207)))
- (-5 *2 (-802 *4 (-888 *6))) (-5 *1 (-1325 *4 *5 *6))
- (-14 *6 (-663 (-1207)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-975 *4)) (-4 *4 (-13 (-870) (-319) (-149) (-1051)))
- (-5 *2 (-975 (-1055 (-421 *4)))) (-5 *1 (-1325 *4 *5 *6))
- (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-802 *4 (-888 *6)))
- (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-14 *6 (-663 (-1207)))
- (-5 *2 (-975 (-1055 (-421 *4)))) (-5 *1 (-1325 *4 *5 *6))
- (-14 *5 (-663 (-1207)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1201 *4)) (-4 *4 (-13 (-870) (-319) (-149) (-1051)))
- (-5 *2 (-1201 (-1055 (-421 *4)))) (-5 *1 (-1325 *4 *5 *6))
- (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207)))))
- ((*1 *2 *3)
- (-12
- (-5 *3 (-1177 *4 (-545 (-888 *6)) (-888 *6) (-802 *4 (-888 *6))))
- (-4 *4 (-13 (-870) (-319) (-149) (-1051))) (-14 *6 (-663 (-1207)))
- (-5 *2 (-663 (-802 *4 (-888 *6)))) (-5 *1 (-1325 *4 *5 *6))
- (-14 *5 (-663 (-1207))))))
-(((*1 *2)
- (-12 (-5 *2 (-1297 (-1133 *3 *4))) (-5 *1 (-1133 *3 *4))
- (-14 *3 (-948)) (-14 *4 (-948)))))
-(((*1 *2)
- (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
- (-4 *3 (-380 *4))))
- ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
-(((*1 *2 *1) (-12 (-5 *2 (-713 (-1166))) (-5 *1 (-1183)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1189)) (-5 *5 (-711 (-229))) (-5 *6 (-711 (-560)))
- (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-779)))))
+ (-12 (-5 *2 (-1185 (-663 (-560)))) (-5 *1 (-908)) (-5 *3 (-560)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-1201 *4))
+ (-5 *1 (-542 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *2 (-571)) (-4 *2 (-466)) (-5 *1 (-1000 *2 *3))
+ (-4 *3 (-1273 *2)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-773)))))
(((*1 *2 *3)
+ (-12 (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-314 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1120 (-864 (-229)))) (-5 *3 (-229)) (-5 *2 (-114))
+ (-5 *1 (-315))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114))
+ (-5 *1 (-518 *3 *4 *5 *6)) (-4 *6 (-979 *3 *4 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
+(((*1 *2 *3) (-12 (-5 *2 (-419 *3)) (-5 *1 (-573 *3)) (-4 *3 (-559)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
+(((*1 *1 *1 *1) (-5 *1 (-887))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303))
+ (-5 *1 (-1103 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1189)) (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-1096 *4 *5 *6)) (-5 *2 (-1303))
+ (-5 *1 (-1139 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-1207)) (-5 *1 (-549))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1207)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-549)))))
+ ((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-1207)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-549)))))
+ ((*1 *2 *3 *2 *2 *2)
+ (-12 (-5 *2 (-1207)) (-5 *1 (-726 *3)) (-4 *3 (-633 (-549)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-663 (-1207))) (-5 *2 (-1207)) (-5 *1 (-726 *3))
+ (-4 *3 (-633 (-549))))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-975 (-560))) (-5 *3 (-1207))
+ (-5 *4 (-1120 (-421 (-560)))) (-5 *1 (-30)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080)) (-5 *2 (-114)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-568)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-793)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560))
+ (-14 *4 *2) (-4 *5 (-175))))
+ ((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-948)) (-5 *1 (-167 *3 *4))
+ (-4 *3 (-168 *4))))
+ ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-948))))
+ ((*1 *2)
+ (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1273 *3))
+ (-5 *2 (-948))))
+ ((*1 *2 *3)
(-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))
(-5 *2 (-793)) (-5 *1 (-535 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4509))))
+ (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4509)))) (-5 *2 (-793))
+ (-5 *1 (-689 *5 *6 *4 *3)) (-4 *3 (-708 *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-711 *5)) (-5 *4 (-1297 *5)) (-4 *5 (-376))
+ (-5 *2 (-793)) (-5 *1 (-690 *5))))
((*1 *2 *1)
(-12 (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080)) (-4 *4 (-385 *3))
(-4 *5 (-385 *3)) (-4 *3 (-571)) (-5 *2 (-793))))
@@ -17196,343 +16155,1181 @@
(-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
(-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-571))
(-5 *2 (-793)))))
-(((*1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1037))))
- ((*1 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1037)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-305 (-854 *3)))
- (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560))))
- (-5 *2 (-854 *3)) (-5 *1 (-655 *5 *3))
- (-4 *3 (-13 (-27) (-1233) (-435 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-305 (-854 (-975 *5)))) (-4 *5 (-466))
- (-5 *2 (-854 (-421 (-975 *5)))) (-5 *1 (-656 *5))
- (-5 *3 (-421 (-975 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-305 (-421 (-975 *5)))) (-5 *3 (-421 (-975 *5)))
- (-4 *5 (-466)) (-5 *2 (-854 *3)) (-5 *1 (-656 *5)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229))
+ (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1066))
+ (-5 *1 (-768)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-560)) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080))
+ (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))))
(((*1 *2)
- (|partial| -12 (-4 *3 (-571)) (-4 *3 (-175))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -1954 (-663 *1))))
- (-4 *1 (-380 *3))))
+ (-12 (-4 *4 (-175)) (-5 *2 (-663 (-1297 *4))) (-5 *1 (-379 *3 *4))
+ (-4 *3 (-380 *4))))
((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-467 *3 *4 *5 *6))
- (|:| -1954 (-663 (-467 *3 *4 *5 *6)))))
- (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-948))
- (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
-(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1256))))))
-(((*1 *1 *1) (-5 *1 (-229)))
- ((*1 *1 *1)
- (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-663 (-1207)))
- (-14 *3 (-663 (-1207))) (-4 *4 (-401))))
- ((*1 *1 *1) (-5 *1 (-391))) ((*1 *1) (-5 *1 (-391))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560))
- (-5 *2 (-1066)) (-5 *1 (-776)))))
-(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
- (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
- (|:| |relerr| (-229))))
- (-5 *2 (-2 (|:| -3967 (-115)) (|:| |w| (-229)))) (-5 *1 (-207)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-1096 *3 *4 *2)) (-4 *3 (-1080)) (-4 *4 (-815))
- (-4 *2 (-871))))
- ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-571))
+ (-5 *2 (-663 (-1297 *3))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-560)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-419 *4)) (-4 *4 (-571)))))
+(((*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-663 (-114))))))
+(((*1 *1) (-5 *1 (-1094))))
+(((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
+ (-4 *3 (-380 *4))))
+ ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-663 (-975 *4))) (-5 *3 (-663 (-1207))) (-4 *4 (-466))
+ (-5 *1 (-947 *4)))))
+(((*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302))))
+ ((*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-376)) (-5 *1 (-788 *2 *3)) (-4 *2 (-730 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
+(((*1 *2 *3) (-12 (-5 *2 (-663 (-560))) (-5 *1 (-460)) (-5 *3 (-560)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1171 *2 *3)) (-4 *2 (-13 (-1132) (-34)))
+ (-4 *3 (-13 (-1132) (-34))))))
+(((*1 *1 *2) (-12 (-5 *2 (-948)) (-4 *1 (-381))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-948)) (-5 *2 (-1297 *4)) (-5 *1 (-542 *4))
+ (-4 *4 (-363))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-871)) (-5 *1 (-735 *2 *3 *4)) (-4 *3 (-1132))
+ (-14 *4
+ (-1 (-114) (-2 (|:| -1591 *2) (|:| -2030 *3))
+ (-2 (|:| -1591 *2) (|:| -2030 *3)))))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-1096 *3 *4 *5)) (-4 *3 (-1080))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-5 *2 (-114)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-4 *6 (-1096 *3 *4 *5)) (-5 *1 (-643 *3 *4 *5 *6 *7 *2))
+ (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *2 (-1140 *3 *4 *5 *6)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-793)) (-4 *4 (-571)) (-5 *1 (-1000 *4 *2))
+ (-4 *2 (-1273 *4)))))
+(((*1 *1 *1)
(-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
- (-4 *4 (-871)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23))
- (-14 *4 *3)))
- ((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-671 *2 *3 *4)) (-4 *2 (-1132)) (-4 *3 (-23))
- (-14 *4 *3)))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-697 *2)) (-4 *2 (-1080)) (-4 *2 (-1132)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-711 *6)) (-5 *5 (-1 (-419 (-1201 *6)) (-1201 *6)))
- (-4 *6 (-376))
+ (-4 *4 (-871)) (-4 *2 (-466)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1212)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 (-1120 (-421 (-560))))) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-663 (-1120 (-391)))) (-5 *1 (-270)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-630 *4)) (-5 *6 (-1201 *4))
+ (-4 *4 (-13 (-435 *7) (-27) (-1233)))
+ (-4 *7 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
(-5 *2
- (-663
- (-2 (|:| |outval| *7) (|:| |outmult| (-560))
- (|:| |outvect| (-663 (-711 *7))))))
- (-5 *1 (-546 *6 *7 *4)) (-4 *7 (-376)) (-4 *4 (-13 (-376) (-870))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
- (-4 *2 (-1096 *4 *5 *6)) (-5 *1 (-798 *4 *5 *6 *2 *3))
- (-4 *3 (-1102 *4 *5 *6 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-256)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1132)) (-5 *1 (-1220 *3)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-630 *4)) (-5 *6 (-1207))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3822 (-663 *4))))
+ (-5 *1 (-575 *7 *4 *3)) (-4 *3 (-680 *4)) (-4 *3 (-1132))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-630 *4)) (-5 *6 (-421 (-1201 *4)))
(-4 *4 (-13 (-435 *7) (-27) (-1233)))
(-4 *7 (-13 (-466) (-1069 (-560)) (-149) (-660 (-560))))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -1954 (-663 *4))))
- (-5 *1 (-580 *7 *4 *3)) (-4 *3 (-680 *4)) (-4 *3 (-1132)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-4 *5 (-1022 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-144 *4 *5 *3))
- (-4 *3 (-385 *5))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3822 (-663 *4))))
+ (-5 *1 (-575 *7 *4 *3)) (-4 *3 (-680 *4)) (-4 *3 (-1132)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-663 (-2 (|:| |val| (-663 *6)) (|:| -3859 *7))))
+ (-4 *6 (-1096 *3 *4 *5)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1019 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-663 (-2 (|:| |val| (-663 *6)) (|:| -3859 *7))))
+ (-4 *6 (-1096 *3 *4 *5)) (-4 *7 (-1102 *3 *4 *5 *6)) (-4 *3 (-466))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1138 *3 *4 *5 *6 *7)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-954))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229)))
+ (-5 *1 (-954))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229)))
+ (-5 *1 (-954))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-663 (-1 (-229) (-229)))) (-5 *3 (-1120 (-229)))
+ (-5 *1 (-954))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-663 (-1 (-229) (-229)))) (-5 *3 (-1120 (-229)))
+ (-5 *1 (-954))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229)))
+ (-5 *1 (-954))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229)))
+ (-5 *1 (-954))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1207)) (-5 *5 (-1120 (-229))) (-5 *2 (-954))
+ (-5 *1 (-955 *3)) (-4 *3 (-633 (-549)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1207)) (-5 *5 (-1120 (-229))) (-5 *2 (-954))
+ (-5 *1 (-955 *3)) (-4 *3 (-633 (-549)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1120 (-229))) (-5 *1 (-956))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229)))
+ (-5 *1 (-956))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1120 (-229)))
+ (-5 *1 (-956)))))
+(((*1 *2 *1) (-12 (-4 *1 (-843)) (-5 *2 (-1189))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-843)) (-5 *3 (-114)) (-5 *2 (-1189))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-843)) (-5 *3 (-845)) (-5 *2 (-1303))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-843)) (-5 *3 (-845)) (-5 *4 (-114)) (-5 *2 (-1303))))
((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-4 *5 (-1022 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-517 *4 *5 *6 *3)) (-4 *6 (-385 *4)) (-4 *3 (-385 *5))))
+ (-12 (-5 *3 (-326 *4)) (-4 *4 (-13 (-843) (-1080))) (-5 *2 (-1189))
+ (-5 *1 (-849 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-326 *5)) (-5 *4 (-114)) (-4 *5 (-13 (-843) (-1080)))
+ (-5 *2 (-1189)) (-5 *1 (-849 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-845)) (-5 *4 (-326 *5)) (-4 *5 (-13 (-843) (-1080)))
+ (-5 *2 (-1303)) (-5 *1 (-849 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-845)) (-5 *4 (-326 *6)) (-5 *5 (-114))
+ (-4 *6 (-13 (-843) (-1080))) (-5 *2 (-1303)) (-5 *1 (-849 *6)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-885)) (-5 *3 (-131)) (-5 *2 (-793)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1297 *4)) (-5 *3 (-1151)) (-4 *4 (-363))
+ (-5 *1 (-542 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1217)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-948))) (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-663 (-793))) (-5 *3 (-174)) (-5 *1 (-1195 *4 *5))
+ (-14 *4 (-948)) (-4 *5 (-1080)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-466)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815))
+ (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-114))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-114)) (-5 *1 (-419 *3)) (-4 *3 (-559)) (-4 *3 (-571))))
+ ((*1 *2 *1) (-12 (-4 *1 (-559)) (-5 *2 (-114))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-114))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-559)) (-4 *3 (-1132))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-114)) (-5 *1 (-864 *3)) (-4 *3 (-559)) (-4 *3 (-1132))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1029 *3)) (-4 *3 (-175)) (-4 *3 (-559)) (-5 *2 (-114))))
((*1 *2 *3)
- (-12 (-5 *3 (-711 *5)) (-4 *5 (-1022 *4)) (-4 *4 (-571))
- (-5 *2 (-2 (|:| |num| (-711 *4)) (|:| |den| *4)))
- (-5 *1 (-715 *4 *5))))
+ (-12 (-5 *2 (-114)) (-5 *1 (-1039 *3)) (-4 *3 (-1069 (-421 (-560)))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391))
+ (|:| |expense| (-391)) (|:| |accuracy| (-391))
+ (|:| |intermediateResults| (-391))))
+ (-5 *2 (-1066)) (-5 *1 (-315)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-494)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-793)) (-4 *3 (-1080)) (-4 *1 (-708 *3 *4 *5))
+ (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *2 (-1080)) (-4 *1 (-1154 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2))
+ (-4 *5 (-245 *3 *2)))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1273 *5))
+ (-4 *5 (-13 (-376) (-149) (-1069 (-560))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-421 *6)) (|:| |c| (-421 *6))
+ (|:| -1347 *6)))
+ (-5 *1 (-1046 *5 *6)) (-5 *3 (-421 *6)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-114)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871))
+ (-4 *3 (-1096 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-663 *4))
+ (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4))))))
+ (-5 *1 (-1100 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560)))))
- (-4 *6 (-1273 *5))
- (-5 *2 (-2 (|:| -3192 *7) (|:| |rh| (-663 (-421 *6)))))
- (-5 *1 (-829 *5 *6 *7 *3)) (-5 *4 (-663 (-421 *6)))
- (-4 *7 (-680 *6)) (-4 *3 (-680 (-421 *6)))))
+ (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-663 *4))
+ (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4))))))
+ (-5 *1 (-1176 *5 *6 *7 *3 *4)) (-4 *4 (-1140 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-711 (-421 (-560))))
+ (-5 *2
+ (-663
+ (-2 (|:| |outval| *4) (|:| |outmult| (-560))
+ (|:| |outvect| (-663 (-711 *4))))))
+ (-5 *1 (-801 *4)) (-4 *4 (-13 (-376) (-870))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381))
+ (-5 *2 (-1201 *3)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-560)) (-5 *6 (-1 (-1303) (-1297 *5) (-1297 *5) (-391)))
+ (-5 *3 (-1297 (-391))) (-5 *5 (-391)) (-5 *2 (-1303))
+ (-5 *1 (-810)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7)) (-5 *2 (-114))
+ (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7))
+ (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -3859 *4))))
+ (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+(((*1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302))))
+ ((*1 *2 *2) (-12 (-5 *2 (-898)) (-5 *1 (-1302)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-793)) (-5 *6 (-114)) (-4 *7 (-466)) (-4 *8 (-815))
+ (-4 *9 (-871)) (-4 *3 (-1096 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-663 *4))
+ (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4))))))
+ (-5 *1 (-1100 *7 *8 *9 *3 *4)) (-4 *4 (-1102 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871))
+ (-4 *3 (-1096 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-663 *4))
+ (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4))))))
+ (-5 *1 (-1100 *6 *7 *8 *3 *4)) (-4 *4 (-1102 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-663 *4))
+ (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4))))))
+ (-5 *1 (-1100 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-793)) (-5 *6 (-114)) (-4 *7 (-466)) (-4 *8 (-815))
+ (-4 *9 (-871)) (-4 *3 (-1096 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-663 *4))
+ (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4))))))
+ (-5 *1 (-1176 *7 *8 *9 *3 *4)) (-4 *4 (-1140 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-793)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871))
+ (-4 *3 (-1096 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-663 *4))
+ (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4))))))
+ (-5 *1 (-1176 *6 *7 *8 *3 *4)) (-4 *4 (-1140 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-663 *4))
+ (|:| |todo| (-663 (-2 (|:| |val| (-663 *3)) (|:| -3859 *4))))))
+ (-5 *1 (-1176 *5 *6 *7 *3 *4)) (-4 *4 (-1140 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-571)) (-5 *2 (-171 *5)) (-5 *1 (-614 *4 *5 *3))
+ (-4 *5 (-13 (-435 *4) (-1033) (-1233)))
+ (-4 *3 (-13 (-435 (-171 *4)) (-1033) (-1233))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-114) (-115) (-115))) (-5 *1 (-115)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1189)) (-5 *4 (-560)) (-5 *5 (-711 (-171 (-229))))
+ (-5 *2 (-1066)) (-5 *1 (-776)))))
+(((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-560)) (-5 *1 (-326 *3)) (-4 *3 (-571)) (-4 *3 (-1132)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1297 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175))
+ (-5 *2 (-663 (-975 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-663 (-975 *4))) (-5 *1 (-431 *3 *4))
+ (-4 *3 (-432 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-432 *3)) (-4 *3 (-175)) (-5 *2 (-663 (-975 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-663 (-975 *3))) (-5 *1 (-467 *3 *4 *5 *6))
+ (-4 *3 (-571)) (-4 *3 (-175)) (-14 *4 (-948))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3)))))
((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-4 *5 (-1022 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1268 *4 *5 *3))
- (-4 *3 (-1273 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-286)))))
+ (-12 (-5 *3 (-1297 (-467 *4 *5 *6 *7))) (-5 *2 (-663 (-975 *4)))
+ (-5 *1 (-467 *4 *5 *6 *7)) (-4 *4 (-571)) (-4 *4 (-175))
+ (-14 *5 (-948)) (-14 *6 (-663 (-1207))) (-14 *7 (-1297 (-711 *4))))))
+(((*1 *2 *2) (-12 (-5 *1 (-991 *2)) (-4 *2 (-559)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-663 (-711 *4))) (-5 *2 (-711 *4)) (-4 *4 (-1080))
+ (-5 *1 (-1061 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-717 *3)) (-4 *3 (-1132))
+ (-5 *2 (-663 (-2 (|:| -3067 *3) (|:| -3384 (-793))))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-663 *2)) (-4 *2 (-559)) (-5 *1 (-161 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-931 *3)) (-4 *3 (-1132)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-663 (-560))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-560))
+ (-14 *4 (-793)) (-4 *5 (-175)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-1060 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-663 (-711 *3))) (-4 *3 (-1080)) (-5 *1 (-1060 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-711 *3)) (-4 *3 (-1080)) (-5 *1 (-1060 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-663 (-711 *3))) (-4 *3 (-1080)) (-5 *1 (-1060 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-363)) (-5 *3 (-560)) (-5 *2 (-1219 (-948) (-793))))))
+(((*1 *1 *2) (-12 (-5 *2 (-898)) (-5 *1 (-270))))
+ ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))))
+(((*1 *1 *1 *1) (-5 *1 (-887))))
+(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-421 (-560))) (-5 *1 (-315)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-663 (-663 *3))) (-4 *3 (-1132)) (-4 *1 (-933 *3)))))
(((*1 *2)
- (-12 (-5 *2 (-1303)) (-5 *1 (-1225 *3 *4)) (-4 *3 (-1132))
- (-4 *4 (-1132)))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-4 *4 (-376)) (-5 *2 (-793)) (-5 *1 (-340 *3 *4))
+ (-4 *3 (-341 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1316 *3)) (-4 *3 (-376)) (-5 *2 (-793)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7))
+ (-5 *2 (-663 (-2 (|:| |val| *3) (|:| -3859 *4))))
+ (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-887)))))
+(((*1 *1 *1) (-5 *1 (-229))) ((*1 *1 *1) (-5 *1 (-391)))
+ ((*1 *1) (-5 *1 (-391))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1290 *3)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-560))) (-4 *3 (-1080)) (-5 *1 (-609 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-560))) (-4 *1 (-1259 *3)) (-4 *3 (-1080))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-560))) (-4 *1 (-1290 *3)) (-4 *3 (-1080)))))
+(((*1 *1) (-5 *1 (-143))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1185 (-2 (|:| |k| (-560)) (|:| |c| *3))))
+ (-5 *1 (-609 *3)) (-4 *3 (-1080)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-149))
+ (-4 *3 (-319)) (-4 *3 (-571)) (-4 *4 (-815)) (-4 *5 (-871))
+ (-5 *1 (-1008 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-520))) (-5 *1 (-49))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 (-900))) (-5 *1 (-497)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1033))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-571) (-149))) (-5 *1 (-551 *3 *2))
+ (-4 *2 (-1290 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-4 *4 (-1273 *3))
+ (-4 *5 (-746 *3 *4)) (-5 *1 (-555 *3 *4 *5 *2)) (-4 *2 (-1290 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-376) (-381) (-633 (-560)))) (-5 *1 (-556 *3 *2))
+ (-4 *2 (-1290 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1185 *3)) (-4 *3 (-13 (-571) (-149)))
+ (-5 *1 (-1184 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-571)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))
+ (-5 *1 (-1238 *3 *4 *5 *2)) (-4 *2 (-708 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-114)) (-5 *1 (-583 *3)) (-4 *3 (-1069 (-560)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1135 *3 *4 *5 *6 *7)) (-4 *3 (-1132)) (-4 *4 (-1132))
+ (-4 *5 (-1132)) (-4 *6 (-1132)) (-4 *7 (-1132)) (-5 *2 (-114)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1282 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1259 *3)))))
+(((*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-159)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1171 *4 *5)) (-4 *4 (-13 (-1132) (-34)))
+ (-4 *5 (-13 (-1132) (-34))) (-5 *2 (-114)) (-5 *1 (-1172 *4 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 *3)) (-4 *3 (-871)) (-5 *1 (-123 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-922))
+ (-5 *3
+ (-2 (|:| |pde| (-663 (-326 (-229))))
+ (|:| |constraints|
+ (-663
+ (-2 (|:| |start| (-229)) (|:| |finish| (-229))
+ (|:| |grid| (-793)) (|:| |boundaryType| (-560))
+ (|:| |dStart| (-711 (-229))) (|:| |dFinish| (-711 (-229))))))
+ (|:| |f| (-663 (-663 (-326 (-229))))) (|:| |st| (-1189))
+ (|:| |tol| (-229))))
+ (-5 *2 (-1066)))))
+(((*1 *1) (-5 *1 (-624))))
+(((*1 *2)
+ (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4))
+ (-4 *3 (-380 *4))))
+ ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815))
+ (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1132)) (-4 *5 (-1132))
+ (-4 *6 (-1132)) (-5 *2 (-1 *6 *5)) (-5 *1 (-706 *4 *5 *6)))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-560)) (-5 *1 (-1185 *3)) (-4 *3 (-1247))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4509)) (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-793)) (-4 *5 (-1080)) (-4 *2 (-1273 *5))
+ (-5 *1 (-1292 *5 *2 *6 *3)) (-4 *6 (-680 *2)) (-4 *3 (-1290 *5)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-793)) (-4 *5 (-571))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-1000 *5 *3)) (-4 *3 (-1273 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1297 (-326 (-229)))) (-5 *2 (-1297 (-326 (-391))))
+ (-5 *1 (-315)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-1141)))))
+(((*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1247)) (-5 *2 (-793)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-663 *6)) (-4 *6 (-979 *3 *4 *5)) (-4 *3 (-466))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-464 *3 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-663 (-663 (-972 (-229)))))
+ (-5 *2 (-663 (-1120 (-229)))) (-5 *1 (-957)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
(-12 (-5 *4 (-560)) (-5 *5 (-1189)) (-5 *6 (-711 (-229)))
(-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))))
(-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))
- (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))
+ (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))
(-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-771)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1247))
+ (-4 *4 (-385 *2)) (-4 *5 (-385 *2))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-560)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2))
+ (-4 *5 (-385 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 "right") (-4 *1 (-121 *3)) (-4 *3 (-1247))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-121 *3)) (-4 *3 (-1247))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-663 (-560))) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2))
+ (-14 *4 (-560)) (-14 *5 (-793))))
+ ((*1 *2 *1 *3 *3 *3 *3)
+ (-12 (-5 *3 (-560)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-793))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-560)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-793))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-560)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-793))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-175)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-560))
+ (-14 *4 (-793))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1207)) (-5 *2 (-252 (-1189))) (-5 *1 (-217 *4))
+ (-4 *4
+ (-13 (-871)
+ (-10 -8 (-15 -1507 ((-1189) $ *3)) (-15 -3884 ((-1303) $))
+ (-15 -3150 ((-1303) $)))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1020)) (-5 *1 (-217 *3))
+ (-4 *3
+ (-13 (-871)
+ (-10 -8 (-15 -1507 ((-1189) $ (-1207))) (-15 -3884 ((-1303) $))
+ (-15 -3150 ((-1303) $)))))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "count") (-5 *2 (-793)) (-5 *1 (-252 *4)) (-4 *4 (-871))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-252 *3)) (-4 *3 (-871))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 "unique") (-5 *1 (-252 *3)) (-4 *3 (-871))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1247)) (-4 *2 (-1247))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1132)) (-4 *2 (-1247))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-663 *1)) (-4 *1 (-310))))
+ ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
+ ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
+ ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115))))
+ ((*1 *2 *1 *2 *2)
+ (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1252)) (-4 *3 (-1273 *2))
+ (-4 *4 (-1273 (-421 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1189)) (-5 *1 (-516))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-793)) (-5 *1 (-697 *2)) (-4 *2 (-1132))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-663 (-560))) (-4 *1 (-708 *3 *4 *5)) (-4 *3 (-1080))
+ (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-115)) (-5 *3 (-663 (-915 *4))) (-5 *1 (-915 *4))
+ (-4 *4 (-1132))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-793)) (-5 *2 (-931 *4)) (-5 *1 (-934 *4))
+ (-4 *4 (-1132))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "value") (-4 *1 (-1041 *2)) (-4 *2 (-1247))))
+ ((*1 *2 *1) (-12 (-5 *1 (-1057 *2)) (-4 *2 (-1247))))
+ ((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-560)) (-4 *1 (-1084 *4 *5 *2 *6 *7)) (-4 *2 (-1080))
+ (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-560)) (-4 *1 (-1084 *4 *5 *2 *6 *7))
+ (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)) (-4 *2 (-1080))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-948)) (-4 *4 (-1132))
+ (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4))))
+ (-5 *1 (-1106 *4 *5 *2))
+ (-4 *2 (-13 (-435 *5) (-911 *4) (-633 (-915 *4))))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-948)) (-4 *4 (-1132))
+ (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4))))
+ (-5 *1 (-1108 *4 *5 *2))
+ (-4 *2 (-13 (-435 *5) (-911 *4) (-633 (-915 *4))))))
+ ((*1 *1 *1 *1) (-4 *1 (-1175)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-1207))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-421 *1)) (-4 *1 (-1273 *2)) (-4 *2 (-1080))
+ (-4 *2 (-376))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-421 *1)) (-4 *1 (-1273 *3)) (-4 *3 (-1080))
+ (-4 *3 (-571))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "last") (-4 *1 (-1286 *2)) (-4 *2 (-1247))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 "rest") (-4 *1 (-1286 *3)) (-4 *3 (-1247))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 "first") (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7))
+ (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-5 *2 (-663 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7))
+ (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-5 *2 (-663 (-1177 *5 *6 *7 *8))) (-5 *1 (-1177 *5 *6 *7 *8)))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-560) "failed") *5)) (-4 *5 (-1080))
+ (-5 *2 (-560)) (-5 *1 (-557 *5 *3)) (-4 *3 (-1273 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-560) "failed") *4)) (-4 *4 (-1080))
+ (-5 *2 (-560)) (-5 *1 (-557 *4 *3)) (-4 *3 (-1273 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-560) "failed") *4)) (-4 *4 (-1080))
+ (-5 *2 (-560)) (-5 *1 (-557 *4 *3)) (-4 *3 (-1273 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-663 (-1201 (-560)))) (-5 *1 (-194)) (-5 *3 (-560)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1102 *4 *5 *6 *3)) (-4 *4 (-466)) (-4 *5 (-815))
+ (-4 *6 (-871)) (-4 *3 (-1096 *4 *5 *6)) (-5 *2 (-114))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *3 (-1096 *4 *5 *6))
+ (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -3859 *1))))
+ (-4 *1 (-1102 *4 *5 *6 *3)))))
+(((*1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560))
+ (-5 *2 (-1066)) (-5 *1 (-778)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-948))
+ (-5 *2 (-1297 (-663 (-2 (|:| -1430 *4) (|:| -1591 (-1151))))))
+ (-5 *1 (-360 *4)) (-4 *4 (-363)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 (-342))) (-5 *1 (-342)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1317 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080))
+ (-5 *2 (-114))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-114)) (-5 *1 (-1321 *3 *4)) (-4 *3 (-1080))
+ (-4 *4 (-868)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-609 *2)) (-4 *2 (-38 (-421 (-560)))) (-4 *2 (-1080)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -1682 (-560)) (|:| -2609 (-663 *3))))
+ (-5 *1 (-456 *3)) (-4 *3 (-1273 (-560))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-4 *5 (-435 *4))
+ (-5 *2 (-419 *3)) (-5 *1 (-449 *4 *5 *3)) (-4 *3 (-1273 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-663 (-663 (-663 *4)))) (-5 *2 (-663 (-663 *4)))
+ (-4 *4 (-871)) (-5 *1 (-1218 *4)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-376)) (-4 *7 (-1273 *5)) (-4 *4 (-746 *5 *7))
- (-5 *2 (-2 (|:| -3822 (-711 *6)) (|:| |vec| (-1297 *5))))
- (-5 *1 (-833 *5 *6 *7 *4 *3)) (-4 *6 (-680 *5)) (-4 *3 (-680 *4)))))
+ (-12 (-4 *2 (-1273 *4)) (-5 *1 (-829 *4 *2 *3 *5))
+ (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *3 (-680 *2))
+ (-4 *5 (-680 (-421 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1273 *4)) (-5 *1 (-829 *4 *2 *5 *3))
+ (-4 *4 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *5 (-680 *2))
+ (-4 *3 (-680 (-421 *2))))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
+ *7 *3 *8)
+ (-12 (-5 *5 (-711 (-229))) (-5 *6 (-114)) (-5 *7 (-711 (-560)))
+ (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS))))
+ (-5 *3 (-560)) (-5 *4 (-229)) (-5 *2 (-1066)) (-5 *1 (-775)))))
+(((*1 *1 *2 *2)
+ (-12
+ (-5 *2
+ (-3 (|:| I (-326 (-560))) (|:| -1683 (-326 (-391)))
+ (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1206))))
+ (-5 *1 (-1206)))))
+(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1247)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-5 *2 (-1297 (-711 *4))) (-5 *1 (-90 *4 *5))
- (-5 *3 (-711 *4)) (-4 *5 (-680 *4)))))
+ (-12 (-5 *3 (-793)) (-5 *2 (-1201 *4)) (-5 *1 (-542 *4))
+ (-4 *4 (-363)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1080)) (-5 *2 (-560)) (-5 *1 (-457 *4 *3 *5))
+ (-4 *3 (-1273 *4))
+ (-4 *5 (-13 (-418) (-1069 *4) (-376) (-1233) (-296))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-663 (-1207))) (-4 *5 (-1080))
+ (-5 *2 (-495 *4 *5)) (-5 *1 (-973 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-376) (-870))) (-5 *1 (-184 *2 *3))
- (-4 *3 (-1273 (-171 *2))))))
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1041 *3)) (-4 *3 (-1247)) (-5 *2 (-114))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-114)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
+ (-4 *4 (-1080)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-793)) (-5 *2 (-1303)) (-5 *1 (-890 *4 *5 *6 *7))
- (-4 *4 (-1080)) (-14 *5 (-663 (-1207))) (-14 *6 (-663 *3))
- (-14 *7 *3)))
+ (-12 (-5 *3 (-663 (-560))) (-5 *2 (-934 (-560))) (-5 *1 (-946))))
+ ((*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229))
+ (-5 *2 (-1066)) (-5 *1 (-773)))))
+(((*1 *2 *3)
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
+ (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
+ (|:| |relerr| (-229))))
+ (-5 *2 (-663 (-229))) (-5 *1 (-207)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391))
+ (-5 *2
+ (-2 (|:| -1430 *4) (|:| -2403 *4) (|:| |totalpts| (-560))
+ (|:| |success| (-114))))
+ (-5 *1 (-811)) (-5 *5 (-560)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-560)) (-5 *1 (-248))))
((*1 *2 *3)
- (-12 (-5 *3 (-793)) (-4 *4 (-1080)) (-4 *5 (-871)) (-4 *6 (-815))
- (-14 *8 (-663 *5)) (-5 *2 (-1303))
- (-5 *1 (-1310 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-979 *4 *6 *5))
- (-14 *9 (-663 *3)) (-14 *10 *3))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1261 *3 *2)) (-4 *3 (-1080))
- (-4 *2 (-1290 *3)))))
+ (-12 (-5 *3 (-663 (-1189))) (-5 *2 (-560)) (-5 *1 (-248)))))
(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4510 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2))
- (-4 *2 (-1080)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1273 *2))
- (-4 *4 (-708 *2 *5 *6)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1189)) (-5 *1 (-97))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1189)) (-5 *1 (-97)))))
+ (-12 (-5 *3 (-1189)) (-5 *2 (-663 (-1212))) (-5 *1 (-1167)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-1069 (-560)) (-660 (-560)) (-466)))
+ (-5 *2 (-864 *4)) (-5 *1 (-325 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1233) (-435 *3))) (-14 *5 (-1207))
+ (-14 *6 *4)))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-13 (-1069 (-560)) (-660 (-560)) (-466)))
+ (-5 *2 (-864 *4)) (-5 *1 (-1284 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1233) (-435 *3))) (-14 *5 (-1207))
+ (-14 *6 *4))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-663 (-793))) (-5 *3 (-114)) (-5 *1 (-1195 *4 *5))
+ (-14 *4 (-948)) (-4 *5 (-1080)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-915 *4)) (-5 *3 (-1 (-114) *5)) (-4 *4 (-1132))
- (-4 *5 (-1247)) (-5 *1 (-916 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-915 *4)) (-5 *3 (-663 (-1 (-114) *5))) (-4 *4 (-1132))
- (-4 *5 (-1247)) (-5 *1 (-916 *4 *5))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-915 *5)) (-5 *3 (-663 (-1207)))
- (-5 *4 (-1 (-114) (-663 *6))) (-4 *5 (-1132)) (-4 *6 (-1247))
- (-5 *1 (-916 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1207)) (-5 *4 (-1 (-114) *5)) (-4 *5 (-1247))
- (-5 *2 (-326 (-560))) (-5 *1 (-966 *5))))
+ (-12 (-5 *3 (-1207))
+ (-4 *4 (-13 (-319) (-149) (-1069 (-560)) (-660 (-560))))
+ (-5 *1 (-442 *4 *2)) (-4 *2 (-13 (-1233) (-29 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1207)) (-5 *4 (-663 (-1 (-114) *5))) (-4 *5 (-1247))
- (-5 *2 (-326 (-560))) (-5 *1 (-966 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-114) *5)) (-4 *5 (-1247)) (-4 *4 (-1132))
- (-5 *1 (-967 *4 *2 *5)) (-4 *2 (-435 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-663 (-1 (-114) *5))) (-4 *5 (-1247)) (-4 *4 (-1132))
- (-5 *1 (-967 *4 *2 *5)) (-4 *2 (-435 *4))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-663 (-1207))) (-5 *3 (-1 (-114) (-663 *6)))
- (-4 *6 (-13 (-435 *5) (-911 *4) (-633 (-915 *4)))) (-4 *4 (-1132))
- (-4 *5 (-13 (-1080) (-911 *4) (-633 (-915 *4))))
- (-5 *1 (-1106 *4 *5 *6)))))
+ (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207)) (-4 *5 (-149))
+ (-4 *5 (-13 (-466) (-1069 (-560)) (-660 (-560)))) (-5 *2 (-326 *5))
+ (-5 *1 (-603 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-663 (-2 (|:| -2968 (-1207)) (|:| -2460 *4))))
- (-5 *1 (-913 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1132))))
+ (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1247)) (-4 *4 (-385 *3))
+ (-4 *5 (-385 *3)) (-5 *2 (-560))))
((*1 *2 *1)
- (-12 (-4 *3 (-1132)) (-4 *4 (-1132)) (-4 *5 (-1132)) (-4 *6 (-1132))
- (-4 *7 (-1132)) (-5 *2 (-663 *1)) (-4 *1 (-1135 *3 *4 *5 *6 *7)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -2788 *3) (|:| |coef1| (-803 *3)) (|:| |coef2| (-803 *3))))
- (-5 *1 (-803 *3)) (-4 *3 (-571)) (-4 *3 (-1080)))))
-(((*1 *1 *2) (-12 (-5 *2 (-421 (-560))) (-5 *1 (-501)))))
+ (-12 (-4 *1 (-1084 *3 *4 *5 *6 *7)) (-4 *5 (-1080))
+ (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-560)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-915 *4)) (-4 *4 (-1132)) (-4 *2 (-1132))
+ (-5 *1 (-913 *4 *2)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-630 *2))) (-5 *4 (-663 (-1207)))
+ (-4 *2 (-13 (-435 (-171 *5)) (-1033) (-1233))) (-4 *5 (-571))
+ (-5 *1 (-614 *5 *6 *2)) (-4 *6 (-13 (-435 *5) (-1033) (-1233))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-948)) (-4 *4 (-381)) (-4 *4 (-376)) (-5 *2 (-1201 *1))
+ (-4 *1 (-341 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1201 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *3 (-376))
+ (-4 *2 (-1273 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1297 *4)) (-4 *4 (-363)) (-5 *2 (-1201 *4))
+ (-5 *1 (-542 *4)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-663 (-291))) (-5 *1 (-291))))
+ ((*1 *2 *1) (-12 (-5 *2 (-663 (-1212))) (-5 *1 (-1212)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-149) (-27) (-1069 (-560)) (-1069 (-421 (-560)))))
+ (-4 *5 (-1273 *4)) (-5 *2 (-1201 (-421 *5))) (-5 *1 (-634 *4 *5))
+ (-5 *3 (-421 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-419 *6) *6)) (-4 *6 (-1273 *5))
+ (-4 *5 (-13 (-149) (-27) (-1069 (-560)) (-1069 (-421 (-560)))))
+ (-5 *2 (-1201 (-421 *6))) (-5 *1 (-634 *5 *6)) (-5 *3 (-421 *6)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1207)) (-5 *3 (-391)) (-5 *1 (-1094)))))
+(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229)))
+ (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))))
+ (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *3 (-229))
+ (-5 *2 (-1066)) (-5 *1 (-771)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229))
+ (-5 *2 (-1066)) (-5 *1 (-773)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-133))
+ (-5 *2 (-663 (-2 (|:| |gen| *3) (|:| -2515 *4))))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-523 *3 *4)) (-4 *3 (-102)) (-4 *4 (-874))
+ (-5 *2 (-663 (-897 *4 *3)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-663 (-2 (|:| -2625 *3) (|:| -1405 *4))))
+ (-5 *1 (-757 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-748))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1276 *3 *4)) (-4 *3 (-1080)) (-4 *4 (-814))
+ (-5 *2 (-1185 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-848)) (-5 *1 (-847)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1128 *4)) (-4 *4 (-1132)) (-5 *2 (-1 *4))
+ (-5 *1 (-1048 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1072)) (-5 *3 (-391))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1120 (-560))) (-5 *2 (-1 (-560))) (-5 *1 (-1078)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-663 (-495 *4 *5))) (-5 *3 (-663 (-888 *4)))
+ (-14 *4 (-663 (-1207))) (-4 *5 (-466)) (-5 *1 (-485 *4 *5 *6))
+ (-4 *6 (-466)))))
+(((*1 *2)
+ (-12 (-4 *3 (-571)) (-5 *2 (-663 *4)) (-5 *1 (-43 *3 *4))
+ (-4 *4 (-432 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-871))
+ (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-793))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1080)) (-4 *3 (-871))
+ (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-793))))
+ ((*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-871)) (-5 *2 (-793))))
+ ((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-948))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-346 *4 *5 *6 *7)) (-4 *4 (-13 (-381) (-376)))
+ (-4 *5 (-1273 *4)) (-4 *6 (-1273 (-421 *5))) (-4 *7 (-355 *4 *5 *6))
+ (-5 *2 (-793)) (-5 *1 (-406 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-854 (-948)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-418)) (-5 *2 (-560))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-793)) (-5 *1 (-610 *3)) (-4 *3 (-1080))))
+ ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-610 *3)) (-4 *3 (-1080))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-571)) (-5 *2 (-560)) (-5 *1 (-642 *3 *4))
+ (-4 *4 (-1273 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-793)) (-4 *1 (-762 *4 *3)) (-4 *4 (-1080))
+ (-4 *3 (-871))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-762 *4 *3)) (-4 *4 (-1080)) (-4 *3 (-871))
+ (-5 *2 (-793))))
+ ((*1 *2 *1) (-12 (-4 *1 (-894 *3)) (-5 *2 (-793))))
+ ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-931 *3)) (-4 *3 (-1132))))
+ ((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-934 *3)) (-4 *3 (-1132))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-435 *4))
+ (-4 *6 (-1273 *5)) (-4 *7 (-1273 (-421 *6)))
+ (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-571) (-1069 (-560))))
+ (-5 *2 (-793)) (-5 *1 (-940 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-346 (-421 (-560)) *4 *5 *6))
+ (-4 *4 (-1273 (-421 (-560)))) (-4 *5 (-1273 (-421 *4)))
+ (-4 *6 (-355 (-421 (-560)) *4 *5)) (-5 *2 (-793))
+ (-5 *1 (-941 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-346 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-376))
+ (-4 *7 (-1273 *6)) (-4 *4 (-1273 (-421 *7))) (-4 *8 (-355 *6 *7 *4))
+ (-4 *9 (-13 (-381) (-376))) (-5 *2 (-793))
+ (-5 *1 (-1049 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1273 *3)) (-4 *3 (-1080)) (-4 *3 (-571))
+ (-5 *2 (-793))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1276 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-814)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1209 (-421 (-560)))) (-5 *1 (-193)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1132)) (-4 *5 (-1132))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-705 *4 *5)))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1189)) (-4 *1 (-403)))))
+(((*1 *1) (-12 (-4 *1 (-479 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-549))) ((*1 *1) (-4 *1 (-744)))
+ ((*1 *1) (-4 *1 (-748)))
+ ((*1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132))))
+ ((*1 *1) (-12 (-5 *1 (-918 *2)) (-4 *2 (-871)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1297 (-663 (-2 (|:| -1430 *4) (|:| -1591 (-1151))))))
+ (-4 *4 (-363)) (-5 *2 (-711 *4)) (-5 *1 (-360 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-663 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4509)) (-4 *1 (-251 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-663 *8)) (-5 *3 (-1 (-114) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571))
+ (-4 *6 (-815)) (-4 *7 (-871)) (-5 *1 (-1008 *5 *6 *7 *8)))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-663 (-803 *3))) (-5 *1 (-803 *3)) (-4 *3 (-571))
- (-4 *3 (-1080)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571))
- (-4 *4 (-815)) (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))))
+ (-12 (-4 *1 (-1296 *3)) (-4 *3 (-1247)) (-4 *3 (-1080))
+ (-5 *2 (-711 *3)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1172 *2 *3)) (-4 *2 (-13 (-1132) (-34)))
- (-4 *3 (-13 (-1132) (-34))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1077 *4 *5)) (-4 *4 (-13 (-870) (-319) (-149) (-1051)))
- (-14 *5 (-663 (-1207)))
- (-5 *2
- (-663 (-2 (|:| -4410 (-1201 *4)) (|:| -2178 (-663 (-975 *4))))))
- (-5 *1 (-1325 *4 *5 *6)) (-14 *6 (-663 (-1207)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051)))
- (-5 *2
- (-663 (-2 (|:| -4410 (-1201 *5)) (|:| -2178 (-663 (-975 *5))))))
- (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-663 (-975 *5)))
- (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051)))
- (-5 *2
- (-663 (-2 (|:| -4410 (-1201 *5)) (|:| -2178 (-663 (-975 *5))))))
- (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-663 (-975 *5)))
- (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207)))))
+ (-12 (-4 *2 (-466)) (-4 *3 (-871)) (-4 *4 (-815))
+ (-5 *1 (-1017 *2 *3 *4 *5)) (-4 *5 (-979 *2 *4 *3)))))
+(((*1 *2)
+ (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1252)) (-4 *4 (-1273 *3))
+ (-4 *5 (-1273 (-421 *4))) (-5 *2 (-711 (-421 *4))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1297 *6)) (-5 *4 (-1297 (-560))) (-5 *5 (-560))
+ (-4 *6 (-1132)) (-5 *2 (-1 *6)) (-5 *1 (-1048 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-523 *3 *2)) (-4 *3 (-102)) (-4 *2 (-874)))))
+(((*1 *1) (-4 *1 (-23)))
+ ((*1 *1) (-12 (-4 *1 (-484 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23))))
+ ((*1 *1) (-5 *1 (-549)))
+ ((*1 *1) (-12 (-5 *1 (-915 *2)) (-4 *2 (-1132)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-630 *3)) (-5 *5 (-1 (-1201 *3) (-1201 *3)))
+ (-4 *3 (-13 (-27) (-435 *6))) (-4 *6 (-571)) (-5 *2 (-597 *3))
+ (-5 *1 (-566 *6 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1207)) (-5 *1 (-1210)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-305 (-421 (-975 *5)))) (-5 *4 (-1207))
+ (-4 *5 (-13 (-319) (-149)))
+ (-5 *2 (-1196 (-663 (-326 *5)) (-663 (-305 (-326 *5)))))
+ (-5 *1 (-1160 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-114)) (-4 *5 (-13 (-870) (-319) (-149) (-1051)))
- (-5 *2
- (-663 (-2 (|:| -4410 (-1201 *5)) (|:| -2178 (-663 (-975 *5))))))
- (-5 *1 (-1325 *5 *6 *7)) (-5 *3 (-663 (-975 *5)))
- (-14 *6 (-663 (-1207))) (-14 *7 (-663 (-1207)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-870) (-319) (-149) (-1051)))
- (-5 *2
- (-663 (-2 (|:| -4410 (-1201 *4)) (|:| -2178 (-663 (-975 *4))))))
- (-5 *1 (-1325 *4 *5 *6)) (-5 *3 (-663 (-975 *4)))
- (-14 *5 (-663 (-1207))) (-14 *6 (-663 (-1207))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1313 (-1207) *3)) (-4 *3 (-1080)) (-5 *1 (-1319 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1313 *3 *4)) (-4 *3 (-871)) (-4 *4 (-1080))
- (-5 *1 (-1322 *3 *4)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-680 *2)) (-4 *2 (-1080)) (-4 *2 (-376))))
+ (-12 (-5 *3 (-421 (-975 *5))) (-5 *4 (-1207))
+ (-4 *5 (-13 (-319) (-149)))
+ (-5 *2 (-1196 (-663 (-326 *5)) (-663 (-305 (-326 *5)))))
+ (-5 *1 (-1160 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-915 *4)) (-4 *4 (-1132)) (-5 *2 (-1 (-114) *5))
+ (-5 *1 (-916 *4 *5)) (-4 *5 (-1247))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1166)) (-5 *1 (-1197)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-948)) (-4 *1 (-766 *3)) (-4 *3 (-175)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1242 *3 *4 *5 *2)) (-4 *3 (-571)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-948)) (-5 *1 (-1063 *2))
+ (-4 *2 (-13 (-1132) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-482))))
+ ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1300))))
+ ((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-1301)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-663 *6)) (-4 *6 (-1096 *3 *4 *5)) (-4 *3 (-571))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-5 *1 (-1008 *3 *4 *5 *6))))
((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-682 *4 *2))
- (-4 *2 (-680 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887))))
- ((*1 *1 *1) (-5 *1 (-887)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-663 *3)) (-4 *3 (-1132)) (-4 *1 (-1130 *3))))
- ((*1 *1) (-12 (-4 *1 (-1130 *2)) (-4 *2 (-1132)))))
-(((*1 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302))))
- ((*1 *2 *2) (-12 (-5 *2 (-948)) (-5 *1 (-1302)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-229) (-229) (-229)))
- (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) "undefined"))
- (-5 *5 (-1120 (-229))) (-5 *6 (-663 (-270))) (-5 *2 (-1164 (-229)))
- (-5 *1 (-719)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1201 *2)) (-4 *2 (-435 *4)) (-4 *4 (-571))
- (-5 *1 (-32 *4 *2)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1171 *3 *2)) (-4 *3 (-13 (-1132) (-34)))
- (-4 *2 (-13 (-1132) (-34))))))
+ (-12 (-5 *2 (-663 *7)) (-5 *3 (-114)) (-4 *7 (-1096 *4 *5 *6))
+ (-4 *4 (-571)) (-4 *5 (-815)) (-4 *6 (-871))
+ (-5 *1 (-1008 *4 *5 *6 *7)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -3960)) (-5 *2 (-114)) (-5 *1 (-636))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -2811)) (-5 *2 (-114)) (-5 *1 (-636))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -1964)) (-5 *2 (-114)) (-5 *1 (-636))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| -1434)) (-5 *2 (-114)) (-5 *1 (-713 *4))
+ (-4 *4 (-632 (-887)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-632 (-887))) (-5 *2 (-114))
+ (-5 *1 (-713 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-114)) (-5 *1 (-900))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-114)) (-5 *1 (-900))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-560))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-606))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-492))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-158))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1197))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-645))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1127))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1122))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1104))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1001))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-183))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1067))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-324))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-693))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1183))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-539))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1309))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1097))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-531))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-703))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1147))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-619))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-140))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-1308))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-698))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-222))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1168)) (-5 *3 (|[\|\|]| (-538))) (-5 *2 (-114))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-1189))) (-5 *2 (-114)) (-5 *1 (-1212))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-520))) (-5 *2 (-114)) (-5 *1 (-1212))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-229))) (-5 *2 (-114)) (-5 *1 (-1212))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (|[\|\|]| (-560))) (-5 *2 (-114)) (-5 *1 (-1212)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+(((*1 *1) (-12 (-5 *1 (-713 *2)) (-4 *2 (-632 (-887))))))
+(((*1 *2)
+ (-12 (-4 *1 (-363))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-663 (-663 *8))) (-5 *3 (-663 *8))
- (-4 *8 (-1096 *5 *6 *7)) (-4 *5 (-571)) (-4 *6 (-815))
- (-4 *7 (-871)) (-5 *2 (-114)) (-5 *1 (-1008 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-435 *4) (-1033) (-1233)))
- (-4 *4 (-571)) (-4 *2 (-13 (-435 (-171 *4)) (-1033) (-1233)))
- (-5 *1 (-614 *4 *5 *2)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-663 *5)) (-5 *4 (-560)) (-4 *5 (-870)) (-4 *5 (-376))
- (-5 *2 (-793)) (-5 *1 (-974 *5 *6)) (-4 *6 (-1273 *5)))))
+ (-12 (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-4 *3 (-1096 *5 *6 *7))
+ (-5 *2 (-663 (-2 (|:| |val| (-114)) (|:| -3859 *4))))
+ (-5 *1 (-1139 *5 *6 *7 *3 *4)) (-4 *4 (-1102 *5 *6 *7 *3)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1189)) (-5 *3 (-846)) (-5 *1 (-845)))))
+(((*1 *2 *1) (-12 (-5 *2 (-560)) (-5 *1 (-882))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1134)) (-5 *1 (-994))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1020))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1041 *2)) (-4 *2 (-1247))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1132) (-34))) (-5 *1 (-1171 *2 *3))
+ (-4 *3 (-13 (-1132) (-34))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-663 (-1207))) (-5 *2 (-1207)) (-5 *1 (-342)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *4 (-711 (-229))) (-5 *5 (-114)) (-5 *6 (-229))
+ (-5 *7 (-711 (-560)))
+ (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))
+ (-5 *3 (-560)) (-5 *2 (-1066)) (-5 *1 (-775)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-1014 *2)) (-4 *2 (-1233)))))
+(((*1 *2 *1) (-12 (-4 *1 (-696 *3)) (-4 *3 (-1247)) (-5 *2 (-114)))))
+(((*1 *2) (-12 (-5 *2 (-132)) (-5 *1 (-1217)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-342)))))
+(((*1 *1 *1 *1) (-5 *1 (-114))) ((*1 *1 *1 *1) (-4 *1 (-125)))
+ ((*1 *1 *1 *1) (-5 *1 (-1151))))
(((*1 *2 *1)
- (-12 (-5 *2 (-713 (-897 (-995 *3) (-995 *3)))) (-5 *1 (-995 *3))
- (-4 *3 (-1132)))))
-(((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-97)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-520)) (-5 *1 (-115))))
+ (-12 (-4 *1 (-1296 *2)) (-4 *2 (-1247)) (-4 *2 (-1033))
+ (-4 *2 (-1080)))))
+(((*1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-159))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-972 *2)) (-5 *1 (-1013 *2)) (-4 *2 (-1080)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-663 *5)) (-4 *5 (-1273 *3)) (-4 *3 (-319))
+ (-5 *2 (-114)) (-5 *1 (-469 *3 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-663 *5) *6))
+ (-4 *5 (-13 (-376) (-149) (-1069 (-421 (-560))))) (-4 *6 (-1273 *5))
+ (-5 *2 (-663 (-2 (|:| |poly| *6) (|:| -2439 *3))))
+ (-5 *1 (-831 *5 *6 *3 *7)) (-4 *3 (-680 *6))
+ (-4 *7 (-680 (-421 *6)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1207)) (-5 *4 (-520)) (-5 *2 (-326 (-560)))
- (-5 *1 (-958))))
+ (-12 (-5 *4 (-1 (-663 *5) *6))
+ (-4 *5 (-13 (-376) (-149) (-1069 (-560)) (-1069 (-421 (-560)))))
+ (-4 *6 (-1273 *5))
+ (-5 *2 (-663 (-2 (|:| |poly| *6) (|:| -2439 (-678 *6 (-421 *6))))))
+ (-5 *1 (-834 *5 *6)) (-5 *3 (-678 *6 (-421 *6))))))
+(((*1 *2 *1) (-12 (-5 *2 (-663 (-1166))) (-5 *1 (-1122)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-208))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-520)) (-4 *4 (-1132)) (-5 *1 (-959 *4 *2))
- (-4 *2 (-435 *4)))))
+ (-12 (-5 *3 (-663 (-391))) (-5 *2 (-391)) (-5 *1 (-208)))))
+(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-887))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-663 *5))) (-4 *5 (-1290 *4))
- (-4 *4 (-38 (-421 (-560))))
- (-5 *2 (-1 (-1185 *4) (-663 (-1185 *4)))) (-5 *1 (-1291 *4 *5)))))
+ (-12 (-5 *3 (-711 (-421 (-975 (-560)))))
+ (-5 *2
+ (-663
+ (-2 (|:| |radval| (-326 (-560))) (|:| |radmult| (-560))
+ (|:| |radvect| (-663 (-711 (-326 (-560))))))))
+ (-5 *1 (-1059)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1155 *4 *5 *6 *3)) (-4 *3 (-708 *4 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-864 (-560))) (-5 *1 (-548))))
+ ((*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1132)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1132)) (-4 *2 (-927 *4)) (-5 *1 (-714 *4 *2 *5 *3))
+ (-4 *5 (-385 *2)) (-4 *3 (-13 (-385 *4) (-10 -7 (-6 -4508)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-305 (-975 (-560))))
+ (-5 *2
+ (-2 (|:| |varOrder| (-663 (-1207)))
+ (|:| |inhom| (-3 (-663 (-1297 (-793))) "failed"))
+ (|:| |hom| (-663 (-1297 (-793))))))
+ (-5 *1 (-243)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *2 (-1066))
+ (-5 *1 (-777)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-571)) (-4 *3 (-175)) (-4 *4 (-385 *3))
+ (-4 *5 (-385 *3)) (-5 *1 (-710 *3 *4 *5 *2))
+ (-4 *2 (-708 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-466)) (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-560))
+ (-5 *1 (-464 *4 *5 *6 *3)) (-4 *3 (-979 *4 *5 *6)))))
(((*1 *2 *2)
(-12 (-4 *3 (-571)) (-5 *1 (-287 *3 *2))
(-4 *2 (-13 (-435 *3) (-1033))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 (-1 (-114) *8))) (-4 *8 (-1096 *5 *6 *7))
- (-4 *5 (-571)) (-4 *6 (-815)) (-4 *7 (-871))
- (-5 *2 (-2 (|:| |goodPols| (-663 *8)) (|:| |badPols| (-663 *8))))
- (-5 *1 (-1008 *5 *6 *7 *8)) (-5 *4 (-663 *8)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-560)) (-5 *5 (-711 (-229))) (-5 *6 (-697 (-229)))
- (-5 *3 (-229)) (-5 *2 (-1066)) (-5 *1 (-772)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-560)) (-5 *4 (-1189)) (-5 *5 (-711 (-229)))
- (-5 *2 (-1066)) (-5 *1 (-769)))))
+(((*1 *1 *2 *3)
+ (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1080)) (-4 *2 (-1132))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-560)) (-5 *2 (-1185 *3)) (-5 *1 (-1191 *3))
+ (-4 *3 (-1080))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-841 *4)) (-4 *4 (-871)) (-4 *1 (-1317 *4 *3))
+ (-4 *3 (-1080)))))
+(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-887))))
+(((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-845)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
+(((*1 *2) (-12 (-5 *2 (-864 (-560))) (-5 *1 (-548))))
+ ((*1 *1) (-12 (-5 *1 (-864 *2)) (-4 *2 (-1132)))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *3 (-663 (-898)))
+ (-5 *4 (-663 (-948))) (-5 *5 (-663 (-270))) (-5 *1 (-482))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *3 (-663 (-898)))
+ (-5 *4 (-663 (-948))) (-5 *1 (-482))))
+ ((*1 *1 *2) (-12 (-5 *2 (-663 (-663 (-972 (-229))))) (-5 *1 (-482))))
+ ((*1 *1 *1) (-5 *1 (-482))))
(((*1 *2 *2)
- (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
- (-4 *2 (-13 (-435 *3) (-1233))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-560)) (|has| *1 (-6 -4499)) (-4 *1 (-418))
- (-5 *2 (-948)))))
+ (|partial| -12 (-5 *2 (-663 (-915 *3))) (-5 *1 (-915 *3))
+ (-4 *3 (-1132)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-663 *4)) (-4 *4 (-376)) (-5 *2 (-711 *4))
- (-5 *1 (-836 *4 *5)) (-4 *5 (-680 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-663 *5)) (-5 *4 (-793)) (-4 *5 (-376))
- (-5 *2 (-711 *5)) (-5 *1 (-836 *5 *6)) (-4 *6 (-680 *5)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-663 (-1106 *3 *4 *5))) (-4 *3 (-1132))
- (-4 *4 (-13 (-1080) (-911 *3) (-633 (-915 *3))))
- (-4 *5 (-13 (-435 *4) (-911 *3) (-633 (-915 *3))))
- (-5 *1 (-1108 *3 *4 *5)))))
+ (-12 (-5 *3 (-1220 (-663 *4))) (-4 *4 (-871))
+ (-5 *2 (-663 (-663 *4))) (-5 *1 (-1218 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1297 (-793))) (-5 *1 (-697 *3)) (-4 *3 (-1132)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-571)) (-4 *2 (-13 (-435 (-171 *4)) (-1033) (-1233)))
- (-5 *1 (-614 *4 *3 *2)) (-4 *3 (-13 (-435 *4) (-1033) (-1233))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1297 *4)) (-4 *4 (-1247)) (-4 *1 (-245 *3 *4)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-421 (-560)))))))
- (-5 *1 (-1159 *3 *2)) (-4 *3 (-1273 *2)))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-571) (-1069 (-560)))) (-5 *2 (-1303))
- (-5 *1 (-447 *3 *4)) (-4 *4 (-435 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-229)) (-5 *4 (-560)) (-5 *2 (-1066)) (-5 *1 (-780)))))
+ (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -3898 ((-419 $) $)))))
+ (-4 *4 (-1273 *3))
+ (-5 *2
+ (-2 (|:| -3822 (-711 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-711 *3))))
+ (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-424 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-560)) (-4 *4 (-1273 *3))
+ (-5 *2
+ (-2 (|:| -3822 (-711 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-711 *3))))
+ (-5 *1 (-790 *4 *5)) (-4 *5 (-424 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-363)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 *3))
+ (-5 *2
+ (-2 (|:| -3822 (-711 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-711 *3))))
+ (-5 *1 (-1016 *4 *3 *5 *6)) (-4 *6 (-746 *3 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-363)) (-4 *3 (-1273 *4)) (-4 *5 (-1273 *3))
+ (-5 *2
+ (-2 (|:| -3822 (-711 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-711 *3))))
+ (-5 *1 (-1307 *4 *3 *5 *6)) (-4 *6 (-424 *3 *5)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1116)))))
+(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-887))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-663 (-793))) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
+ (-4 *4 (-1080)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-5 *2 (-663 (-1058 *5 *6 *7 *3))) (-5 *1 (-1058 *5 *6 *7 *3))
+ (-4 *3 (-1096 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-663 *6)) (-4 *1 (-1102 *3 *4 *5 *6)) (-4 *3 (-466))
+ (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1102 *3 *4 *5 *2)) (-4 *3 (-466)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *2 (-1096 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-114)) (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-5 *2 (-663 (-1177 *5 *6 *7 *3))) (-5 *1 (-1177 *5 *6 *7 *3))
+ (-4 *3 (-1096 *5 *6 *7)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-663 *2)) (-5 *1 (-182 *2)) (-4 *2 (-319))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-663 (-663 *4))) (-5 *2 (-663 *4)) (-4 *4 (-319))
+ (-5 *1 (-182 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-663 *8))
+ (-5 *4
+ (-663
+ (-2 (|:| -3822 (-711 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-711 *7)))))
+ (-5 *5 (-793)) (-4 *8 (-1273 *7)) (-4 *7 (-1273 *6)) (-4 *6 (-363))
+ (-5 *2
+ (-2 (|:| -3822 (-711 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-711 *7))))
+ (-5 *1 (-512 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-560)) (-5 *1 (-576)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-793)) (-5 *1 (-1195 *3 *4)) (-14 *3 (-948))
+ (-4 *4 (-1080)))))
+(((*1 *2) (-12 (-5 *2 (-934 (-560))) (-5 *1 (-946)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-876 *2)) (-4 *2 (-1080)) (-4 *2 (-376)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1201 *4)) (-4 *4 (-363))
- (-4 *2
- (-13 (-416)
- (-10 -7 (-15 -1578 (*2 *4)) (-15 -4419 ((-948) *2))
- (-15 -1954 ((-1297 *2) (-948))) (-15 -3054 (*2 *2)))))
- (-5 *1 (-370 *2 *4)))))
+ (-12 (-5 *3 (-1297 (-1297 *4))) (-4 *4 (-1080)) (-5 *2 (-711 *4))
+ (-5 *1 (-1061 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-663 *3)) (-4 *3 (-1247)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-1132))
- (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1)))
- (-4 *1 (-399 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-915 *3)) (-4 *3 (-1132)))))
-(((*1 *1 *2)
+ (-12 (-4 *3 (-376)) (-4 *3 (-1080))
+ (-5 *2 (-2 (|:| -2584 *1) (|:| -3276 *1))) (-4 *1 (-876 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1080))
+ (-5 *2 (-2 (|:| -2584 *3) (|:| -3276 *3))) (-5 *1 (-877 *5 *3))
+ (-4 *3 (-876 *5)))))
+(((*1 *2 *1)
(-12
(-5 *2
(-663
(-2
- (|:| -2968
+ (|:| -1438
(-2 (|:| |var| (-1207)) (|:| |fn| (-326 (-229)))
- (|:| -3471 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
+ (|:| -1585 (-1120 (-864 (-229)))) (|:| |abserr| (-229))
(|:| |relerr| (-229))))
- (|:| -2460
+ (|:| -3067
(-2
(|:| |endPointContinuity|
(-3 (|:| |continuous| "Continuous at the end points")
@@ -17548,7 +17345,7 @@
(-3 (|:| |str| (-1185 (-229)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -3471
+ (|:| -1585
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite|
"The bottom of range is infinite")
@@ -17556,805 +17353,1008 @@
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-574)))))
-(((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175))))
+ (-5 *1 (-574))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-618 *3 *4)) (-4 *3 (-1132)) (-4 *4 (-1247))
+ (-5 *2 (-663 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1207)) (-4 *4 (-466)) (-4 *4 (-1132))
+ (-5 *1 (-587 *4 *2)) (-4 *2 (-296)) (-4 *2 (-435 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-954)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1207)) (-4 *4 (-571)) (-4 *4 (-1132))
+ (-5 *1 (-587 *4 *2)) (-4 *2 (-435 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-376) (-149) (-1069 (-560)))) (-4 *5 (-1273 *4))
+ (-5 *2 (-2 (|:| |ans| (-421 *5)) (|:| |nosol| (-114))))
+ (-5 *1 (-1046 *4 *5)) (-5 *3 (-421 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 (-146))) (-5 *1 (-143))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-143)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-571) (-149))) (-5 *2 (-663 *3))
+ (-5 *1 (-1269 *4 *3)) (-4 *3 (-1273 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1165 *3)) (-4 *3 (-1080))
+ (-5 *2 (-663 (-663 (-663 (-972 *3))))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229))
+ (|:| |fn| (-1297 (-326 (-229)))) (|:| |yinit| (-663 (-229)))
+ (|:| |intvals| (-663 (-229))) (|:| |g| (-326 (-229)))
+ (|:| |abserr| (-229)) (|:| |relerr| (-229))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))))
+ (-5 *1 (-208)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-663 (-663 *7)))
+ (-5 *1 (-463 *4 *5 *6 *7)) (-5 *3 (-663 *7))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815))
+ (-4 *7 (-871)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-663 (-663 *8)))
+ (-5 *1 (-463 *5 *6 *7 *8)) (-5 *3 (-663 *8))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-571) (-1069 (-560)))) (-5 *2 (-326 *4))
- (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1233) (-435 (-171 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-466) (-1069 (-560)) (-660 (-560))))
- (-5 *1 (-1237 *3 *2)) (-4 *2 (-13 (-27) (-1233) (-435 *3))))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-793)) (-4 *4 (-571)) (-5 *1 (-1000 *4 *2))
- (-4 *2 (-1273 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1207)) (-5 *1 (-845)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1026 *2)) (-4 *2 (-1247)))))
-((-1332 . 733300) (-1333 . 733247) (-1334 . 733143) (-1335 . 732808)
- (-1336 . 731362) (-1337 . 731291) (-1338 . 731169) (-1339 . 730943)
- (-1340 . 730855) (-1341 . 730740) (-1342 . 730604) (-1343 . 730524)
- (-1344 . 730371) (-1345 . 730165) (-1346 . 729915) (-1347 . 729821)
- (-1348 . 729725) (-1349 . 729593) (-1350 . 729386) (-1351 . 729138)
- (-1352 . 729043) (-1353 . 728876) (-1354 . 728627) (-1355 . 728578)
- (-1356 . 728475) (-1357 . 728324) (-1358 . 728150) (-1359 . 727961)
- (-1360 . 727853) (-1361 . 727751) (-1362 . 727531) (-1363 . 727430)
- (-1364 . 727215) (-1365 . 727037) (-1366 . 726851) (-1367 . 725549)
- (-1368 . 725444) (-1369 . 725392) (-1370 . 725251) (-1371 . 725147)
- (-1372 . 725088) (-1373 . 724926) (-1374 . 724637) (-1375 . 723485)
- (-1376 . 723344) (-1377 . 723161) (-1378 . 723064) (-1379 . 722684)
- (-1380 . 722582) (-1381 . 722458) (-1382 . 722246) (-1383 . 721858)
- (-1384 . 721764) (-1385 . 721712) (-1386 . 720838) (-1387 . 720528)
- (-1388 . 720444) (-1389 . 720391) (-1390 . 720230) (-1391 . 719940)
- (-1392 . 719672) (-1393 . 719469) (-1394 . 719200) (-1395 . 719071)
- (-1396 . 718874) (-1397 . 718814) (-1398 . 718406) (-1399 . 717910)
- (-1400 . 717809) (-1401 . 717227) (-1402 . 717073) (-1403 . 717006)
- (-1404 . 716945) (-1405 . 716787) (-1406 . 716679) (-1407 . 713012)
- (-1408 . 712880) (-1409 . 712737) (-1410 . 712515) (-1411 . 712405)
- (-1412 . 712341) (-1413 . 712272) (-1414 . 712174) (-1415 . 711862)
- (-1416 . 711740) (-1417 . 710109) (-1418 . 709951) (-1419 . 709807)
- (-1420 . 709655) (-1421 . 709433) (-1422 . 709009) (-1423 . 708633)
- (-1424 . 708550) (-1425 . 708065) (-1426 . 707855) (-1427 . 706996)
- (-1428 . 706869) (-1429 . 706814) (-1430 . 706420) (-1431 . 706296)
- (-1432 . 706025) (-1433 . 696575) (-1434 . 696112) (-1435 . 695959)
- (-1436 . 695846) (-1437 . 695726) (-1438 . 695573) (-1439 . 695428)
- (-1440 . 695332) (-1441 . 695020) (-1442 . 694898) (-1443 . 693600)
- (-1444 . 693547) (-1445 . 693449) (-1446 . 693366) (-1447 . 693272)
- (-1448 . 693213) (-1449 . 693112) (-1450 . 693059) (-1451 . 692425)
- (-1452 . 692203) (-1453 . 692150) (-1454 . 691941) (-1455 . 691824)
- (-1456 . 691669) (-1457 . 691601) (-1458 . 691234) (-1459 . 691136)
- (-1460 . 691064) (-1461 . 690842) (-1462 . 690757) (-1463 . 690638)
- (-1464 . 690348) (-1465 . 690256) (-1466 . 690115) (-1467 . 690063)
- (-1468 . 689817) (-1469 . 689575) (-1470 . 689522) (-1471 . 689246)
- (-1472 . 689192) (-1473 . 689163) (-1474 . 689100) (-1475 . 688920)
- (-1476 . 688755) (-1477 . 688552) (-1478 . 688455) (-1479 . 688319)
- (-1480 . 687735) (-1481 . 687612) (-1482 . 687482) (-1483 . 687417)
- (-1484 . 687184) (-1485 . 687110) (-1486 . 686949) (-1487 . 686897)
- (-1488 . 686802) (-1489 . 686637) (-1490 . 686540) (-1491 . 686185)
- (-1492 . 685966) (-1493 . 685614) (-1494 . 685513) (-1495 . 685430)
- (-1496 . 683664) (-1497 . 683548) (-1498 . 683333) (-1499 . 683206)
- (-1500 . 683139) (-1501 . 682880) (-1502 . 682808) (-1503 . 682727)
- (-1504 . 682650) (-1505 . 682581) (-1506 . 682480) (-1507 . 681025)
- (-1508 . 680506) (-1509 . 680422) (-1510 . 680349) (-1511 . 680237)
- (-1512 . 680203) (-1513 . 679111) (-1514 . 678927) (-1515 . 678764)
- (-1516 . 678469) (-1517 . 678416) (-1518 . 678226) (-1519 . 676736)
- (-1520 . 675555) (-1521 . 675117) (-1522 . 674776) (-1523 . 674724)
- (-1524 . 674549) (-1525 . 674461) (-1526 . 674334) (-1527 . 674138)
- (-1528 . 673276) (-1529 . 673180) (-1530 . 673068) (-1531 . 672910)
- (-1532 . 672800) (-1533 . 672670) (-1534 . 672548) (-1535 . 672140)
- (-1536 . 671995) (-1537 . 671823) (-1538 . 671736) (-1539 . 671591)
- (-1540 . 671341) (-1541 . 671239) (-1542 . 671148) (-1543 . 671054)
- (-1544 . 670318) (-1545 . 670267) (-1546 . 670138) (-1547 . 670021)
- (-1548 . 669821) (-1549 . 669477) (-1550 . 669406) (-1551 . 669339)
- (-1552 . 669239) (-1553 . 668821) (-1554 . 668658) (-1555 . 668343)
- (-1556 . 667808) (-1557 . 667505) (-1558 . 667400) (-1559 . 667240)
- (-1560 . 667121) (-1561 . 667035) (-1562 . 667004) (-1563 . 666477)
- (-1564 . 666278) (-1565 . 666250) (-1566 . 666122) (-1567 . 665613)
- (-1568 . 665550) (-1569 . 665469) (-1570 . 665191) (-1571 . 664896)
- (-1572 . 664686) (-1573 . 664633) (-1574 . 664545) (-1575 . 664473)
- (-1576 . 664417) (-1577 . 663871) (-1578 . 645296) (-1579 . 645056)
- (-1580 . 644982) (-1581 . 644695) (-1582 . 644537) (-1583 . 643892)
- (-1584 . 643863) (-1585 . 643803) (-1586 . 643650) (-1587 . 643159)
- (-1588 . 643014) (-1589 . 642880) (-1590 . 642736) (-1591 . 642620)
- (-1592 . 639799) (-1593 . 639747) (-1594 . 639690) (-1595 . 639593)
- (-1596 . 639438) (-1597 . 638266) (-1598 . 637699) (-1599 . 637671)
- (-1600 . 637577) (-1601 . 637262) (-1602 . 637228) (-1603 . 636551)
- (-1604 . 636492) (-1605 . 636379) (-1606 . 636308) (-1607 . 635907)
- (-1608 . 635792) (-1609 . 635696) (-1610 . 635575) (-1611 . 635423)
- (-1612 . 635371) (-1613 . 635252) (-1614 . 635169) (-1615 . 635114)
- (-1616 . 635080) (-1617 . 634954) (-1618 . 634877) (-1619 . 634800)
- (-1620 . 634479) (-1621 . 634397) (-1622 . 634347) (-1623 . 633589)
- (-1624 . 632453) (-1625 . 632354) (-1626 . 632277) (-1627 . 632072)
- (-1628 . 631861) (-1629 . 631613) (-1630 . 631542) (-1631 . 631493)
- (-1632 . 631278) (-1633 . 631159) (-1634 . 630984) (-1635 . 630889)
- (-1636 . 630803) (-1637 . 630678) (-1638 . 630627) (-1639 . 630599)
- (-1640 . 630528) (-1641 . 630449) (-1642 . 630396) (-1643 . 629100)
- (-1644 . 628848) (-1645 . 628778) (-1646 . 628671) (-1647 . 628506)
- (-1648 . 628435) (-1649 . 628328) (-1650 . 628276) (-1651 . 628131)
- (-1652 . 628103) (-1653 . 627973) (-1654 . 627888) (-1655 . 627690)
- (-1656 . 627593) (-1657 . 627422) (-1658 . 626802) (-1659 . 626749)
- (-1660 . 626489) (-1661 . 626337) (-1662 . 626303) (-1663 . 625997)
- (-1664 . 625874) (-1665 . 625686) (-1666 . 625543) (-1667 . 625465)
- (-1668 . 625373) (-1669 . 625341) (-1670 . 625270) (-1671 . 625172)
- (-1672 . 624765) (-1673 . 624518) (-1674 . 624422) (-1675 . 624365)
- (-1676 . 624278) (-1677 . 624120) (-1678 . 623972) (-1679 . 623902)
- (-1680 . 623638) (-1681 . 623480) (-1682 . 623402) (-1683 . 623349)
- (-1684 . 623227) (-1685 . 622954) (-1686 . 622566) (-1687 . 622471)
- (-1688 . 622330) (-1689 . 622301) (-1690 . 622242) (-1691 . 622113)
- (-1692 . 621922) (-1693 . 621854) (-1694 . 621761) (-1695 . 621665)
- (-1696 . 621581) (-1697 . 621528) (-1698 . 621195) (-1699 . 621057)
- (-1700 . 620687) (-1701 . 620439) (-1702 . 620340) (-1703 . 620132)
- (-1704 . 620046) (-1705 . 619980) (-1706 . 619654) (-1707 . 619555)
- (-1708 . 619337) (-1709 . 619251) (-1710 . 619174) (-1711 . 619101)
- (-1712 . 618877) (-1713 . 618756) (-1714 . 618677) (-1715 . 618622)
- (-1716 . 618155) (-1717 . 618103) (-1718 . 618030) (-1719 . 617934)
- (-1720 . 617716) (-1721 . 617558) (-1722 . 617037) (-1723 . 616852)
- (-1724 . 616573) (-1725 . 616493) (-1726 . 616333) (-1727 . 616114)
- (-1728 . 615990) (-1729 . 615910) (-1730 . 615858) (-1731 . 615679)
- (-1732 . 615578) (-1733 . 615546) (-1734 . 615431) (-1735 . 614985)
- (-1736 . 614951) (-1737 . 614755) (-1738 . 614658) (-1739 . 614480)
- (-1740 . 614399) (-1741 . 614180) (-1742 . 614004) (-1743 . 613564)
- (-1744 . 613478) (-1745 . 613411) (-1746 . 613383) (-1747 . 613262)
- (-1748 . 613090) (-1749 . 612861) (-1750 . 612784) (-1751 . 612643)
- (-1752 . 612389) (-1753 . 612361) (-1754 . 612275) (-1755 . 612203)
- (-1756 . 612060) (-1757 . 611965) (-1758 . 611887) (-1759 . 611786)
- (-1760 . 611614) (-1761 . 611504) (-1762 . 611409) (-1763 . 611352)
- (-1764 . 611187) (-1765 . 611078) (-1766 . 610929) (-1767 . 610862)
- (-1768 . 610805) (-1769 . 610744) (-1770 . 610585) (-1771 . 610511)
- (-1772 . 610380) (-1773 . 609076) (-1774 . 608826) (-1775 . 608697)
- (-1776 . 608663) (-1777 . 608491) (-1778 . 608316) (-1779 . 608220)
- (-1780 . 608121) (-1781 . 607904) (-1782 . 607786) (-1783 . 607382)
- (-1784 . 607309) (-1785 . 607109) (-1786 . 606929) (-1787 . 606554)
- (-1788 . 606420) (-1789 . 606140) (-1790 . 605968) (-1791 . 605830)
- (-1792 . 605584) (-1793 . 605528) (-1794 . 605370) (-1795 . 604924)
- (-1796 . 604765) (-1797 . 604650) (-1798 . 602920) (-1799 . 602593)
- (-1800 . 602373) (-1801 . 601733) (-1802 . 601622) (-1803 . 601230)
- (-1804 . 600783) (-1805 . 600522) (-1806 . 600420) (-1807 . 600125)
- (-1808 . 599901) (-1809 . 599800) (-1810 . 599282) (-1811 . 599122)
- (-1812 . 598320) (-1813 . 598192) (-1814 . 598115) (-1815 . 598087)
- (-1816 . 597985) (-1817 . 597933) (-1818 . 597852) (-1819 . 597682)
- (-1820 . 597594) (-1821 . 597361) (-1822 . 597267) (-1823 . 597239)
- (-1824 . 597186) (-1825 . 597134) (-1826 . 596957) (-1827 . 596719)
- (-1828 . 596605) (-1829 . 596390) (-1830 . 596330) (-1831 . 596108)
- (-1832 . 596058) (-1833 . 595780) (-1834 . 595728) (-1835 . 595503)
- (-1836 . 595414) (-1837 . 595306) (-1838 . 595102) (-1839 . 594561)
- (-1840 . 593719) (-1841 . 593388) (-1842 . 593270) (-1843 . 593157)
- (-1844 . 593057) (-1845 . 592941) (-1846 . 592403) (-1847 . 592290)
- (-1848 . 592191) (-1849 . 592121) (-1850 . 591992) (-1851 . 591819)
- (-1852 . 591720) (-1853 . 591624) (-1854 . 591553) (-1855 . 591346)
- (-1856 . 589284) (-1857 . 589196) (-1858 . 588962) (-1859 . 588553)
- (-1860 . 588391) (-1861 . 588338) (-1862 . 588264) (-1863 . 588049)
- (-1864 . 587997) (-1865 . 587924) (-1866 . 587816) (-1867 . 587622)
- (-1868 . 587076) (-1869 . 586858) (-1870 . 586760) (-1871 . 586678)
- (-1872 . 586626) (-1873 . 585286) (-1874 . 585233) (-1875 . 585103)
- (-1876 . 585008) (-1877 . 583785) (-1878 . 583757) (-1879 . 583346)
- (-1880 . 583287) (-1881 . 583232) (-1882 . 582973) (-1883 . 582881)
- (-1884 . 582809) (-1885 . 582747) (-1886 . 582582) (-1887 . 582271)
- (-1888 . 582168) (-1889 . 582109) (-1890 . 582050) (-1891 . 581995)
- (-1892 . 581937) (-1893 . 581836) (-1894 . 581720) (-1895 . 581332)
- (-1896 . 581039) (-1897 . 580970) (-1898 . 580206) (-1899 . 579496)
- (-1900 . 579422) (-1901 . 579270) (-1902 . 579187) (-1903 . 578227)
- (-1904 . 577808) (-1905 . 577754) (-1906 . 577439) (-1907 . 577380)
- (-1908 . 577035) (-1909 . 576979) (-1910 . 576920) (-1911 . 576826)
- (-1912 . 576755) (-1913 . 576682) (-1914 . 576434) (-1915 . 576353)
- (-1916 . 576249) (-1917 . 576217) (-1918 . 576073) (-1919 . 576016)
- (-1920 . 575988) (-1921 . 575783) (-1922 . 575409) (-1923 . 575270)
- (-1924 . 575199) (-1925 . 575147) (-1926 . 574696) (-1927 . 574613)
- (-1928 . 574585) (-1929 . 574497) (-1930 . 574446) (-1931 . 574309)
- (-1932 . 574170) (-1933 . 573984) (-1934 . 573469) (-1935 . 573356)
- (-1936 . 573117) (-1937 . 573058) (-1938 . 572995) (-1939 . 572936)
- (-1940 . 572763) (-1941 . 572679) (-1942 . 572309) (-1943 . 572177)
- (-1944 . 572120) (-1945 . 571153) (-1946 . 571057) (-1947 . 570986)
- (-1948 . 570903) (-1949 . 570866) (-1950 . 570698) (-1951 . 570570)
- (-1952 . 570542) (-1953 . 570477) (-1954 . 569609) (-1955 . 569131)
- (-1956 . 568913) (-1957 . 568746) (-1958 . 568511) (-1959 . 568459)
- (-1960 . 568241) (-1961 . 568176) (-1962 . 568109) (-1963 . 568005)
- (-1964 . 567876) (-1965 . 567776) (-1966 . 567717) (-1967 . 567550)
- (-1968 . 566752) (-1969 . 566657) (-1970 . 566307) (-1971 . 566049)
- (-1972 . 565883) (-1973 . 565790) (-1974 . 565519) (-1975 . 565073)
- (-1976 . 564943) (-1977 . 564845) (-1978 . 564703) (-1979 . 564502)
- (-1980 . 563988) (-1981 . 563935) (-1982 . 563448) (-1983 . 563355)
- (-1984 . 563303) (-1985 . 562788) (-1986 . 562565) (-1987 . 562469)
- (-1988 . 562270) (-1989 . 562130) (-1990 . 560913) (-1991 . 557249)
- (-1992 . 557096) (-1993 . 557043) (-1994 . 556900) (-1995 . 556641)
- (-1996 . 556563) (-1997 . 556460) (-1998 . 556386) (-1999 . 556307)
- (-2000 . 556204) (-2001 . 556033) (-2002 . 555887) (-2003 . 555725)
- (-2004 . 555544) (-2005 . 555272) (-2006 . 555106) (-2007 . 555029)
- (-2008 . 554699) (-2009 . 554615) (-2010 . 554506) (-2011 . 554259)
- (-2012 . 554176) (-2013 . 554111) (-2014 . 554008) (-2015 . 553937)
- (-2016 . 553836) (-2017 . 553750) (-2018 . 553535) (-2019 . 553371)
- (-2020 . 553318) (-2021 . 553189) (-2022 . 552991) (-2023 . 552908)
- (-2024 . 552761) (-2025 . 552673) (-2026 . 552594) (-2027 . 552429)
- (-2028 . 552356) (-2029 . 552282) (-2030 . 552190) (-2031 . 551904)
- (-2032 . 550118) (-2033 . 549814) (-2034 . 549755) (-2035 . 549625)
- (-2036 . 549316) (-2037 . 549163) (-2038 . 549066) (-2039 . 549011)
- (-2040 . 548911) (-2041 . 548309) (-2042 . 548241) (-2043 . 548213)
- (-2044 . 548136) (-2045 . 548021) (-2046 . 547824) (-2047 . 547697)
- (-2048 . 547506) (-2049 . 547433) (-2050 . 547201) (-2051 . 546997)
- (-2052 . 546930) (-2053 . 546548) (-2054 . 546494) (-2055 . 546392)
- (-2056 . 546215) (-2057 . 542152) (-2058 . 542079) (-2059 . 541975)
- (-2060 . 541807) (-2061 . 541725) (-2062 . 541500) (-2063 . 541140)
- (-2064 . 541021) (-2065 . 540966) (-2066 . 540907) (-2067 . 540799)
- (-2068 . 540702) (-2069 . 540643) (-2070 . 540591) (-2071 . 540510)
- (-2072 . 540271) (-2073 . 540174) (-2074 . 538876) (-2075 . 538805)
- (-2076 . 538717) (-2077 . 538644) (-2078 . 538445) (-2079 . 538300)
- (-2080 . 538147) (-2081 . 538046) (-2082 . 537942) (-2083 . 537837)
- (-2084 . 537784) (-2085 . 537725) (-2086 . 537655) (-2087 . 537584)
- (-2088 . 537231) (-2089 . 537152) (-2090 . 537054) (-2091 . 537001)
- (-2092 . 536690) (-2093 . 536603) (-2094 . 536530) (-2095 . 536409)
- (-2096 . 536332) (-2097 . 535905) (-2098 . 535747) (-2099 . 533402)
- (-2100 . 533214) (-2101 . 533106) (-2102 . 532944) (-2103 . 532895)
- (-2104 . 532810) (-2105 . 532726) (-2106 . 532578) (-2107 . 532150)
- (-2108 . 531590) (-2109 . 531416) (-2110 . 531315) (-2111 . 531126)
- (-2112 . 531002) (-2113 . 530892) (-2114 . 530810) (-2115 . 530452)
- (-2116 . 530209) (-2117 . 530076) (-2118 . 529982) (-2119 . 529803)
- (-2120 . 529744) (-2121 . 529691) (-2122 . 529613) (-2123 . 529030)
- (-2124 . 528884) (-2125 . 528817) (-2126 . 528745) (-2127 . 528451)
- (-2128 . 528344) (-2129 . 528092) (-2130 . 527943) (-2131 . 527825)
- (-2132 . 526722) (-2133 . 526645) (-2134 . 526102) (-2135 . 526013)
- (-2136 . 525960) (-2137 . 525892) (-2138 . 524549) (-2139 . 524476)
- (-2140 . 524338) (-2141 . 523371) (-2142 . 523302) (-2143 . 523274)
- (-2144 . 523179) (-2145 . 523001) (-2146 . 522770) (-2147 . 522634)
- (-2148 . 522569) (-2149 . 519788) (-2150 . 519729) (-2151 . 519592)
- (-2152 . 519519) (-2153 . 519376) (-2154 . 519194) (-2155 . 519141)
- (-2156 . 518769) (-2157 . 518717) (-2158 . 518510) (-2159 . 518405)
- (-2160 . 518298) (-2161 . 518114) (-2162 . 517956) (-2163 . 517904)
- (-2164 . 517568) (-2165 . 517461) (-2166 . 517278) (-2167 . 517167)
- (-2168 . 517023) (-2169 . 516929) (-2170 . 516897) (-2171 . 516818)
- (-2172 . 516623) (-2173 . 516570) (-2174 . 516470) (-2175 . 516387)
- (-2176 . 516274) (-2177 . 516175) (-2178 . 514775) (-2179 . 514652)
- (-2180 . 514434) (-2181 . 514157) (-2182 . 513836) (-2183 . 513762)
- (-2184 . 513627) (-2185 . 513464) (-2186 . 513404) (-2187 . 513305)
- (-2188 . 513277) (-2189 . 512925) (-2190 . 512720) (-2191 . 512358)
- (-2192 . 511131) (-2193 . 511031) (-2194 . 510929) (-2195 . 510834)
- (-2196 . 510351) (-2197 . 510263) (-2198 . 510029) (-2199 . 509951)
- (-2200 . 509923) (-2201 . 509870) (-2202 . 509590) (-2203 . 509389)
- (-2204 . 509337) (-2205 . 508915) (-2206 . 508661) (-2207 . 508182)
- (-2208 . 508123) (-2209 . 508004) (-2210 . 507810) (-2211 . 507633)
- (-2212 . 507565) (-2213 . 507374) (-2214 . 507321) (-2215 . 506441)
- (-2216 . 506303) (-2217 . 506275) (-2218 . 506201) (-2219 . 506128)
- (-2220 . 505970) (-2221 . 505896) (-2222 . 505810) (-2223 . 505696)
- (-2224 . 505400) (-2225 . 505372) (-2226 . 505244) (-2227 . 505167)
- (-2228 . 505019) (-2229 . 504778) (-2230 . 504682) (-2231 . 504572)
- (-2232 . 504409) (-2233 . 504357) (-2234 . 504225) (-2235 . 504109)
- (-2236 . 503514) (-2237 . 503087) (-2238 . 502553) (-2239 . 501877)
- (-2240 . 501777) (-2241 . 501527) (-2242 . 501448) (-2243 . 501420)
- (-2244 . 501349) (-2245 . 501291) (-2246 . 501239) (-2247 . 501211)
- (-2248 . 500873) (-2249 . 500717) (-2250 . 500640) (-2251 . 500529)
- (-2252 . 500472) (-2253 . 500297) (-2254 . 500041) (-2255 . 500013)
- (-2256 . 499637) (-2257 . 499553) (-2258 . 499451) (-2259 . 499347)
- (-2260 . 499214) (-2261 . 499094) (-2262 . 499033) (-2263 . 498932)
- (-2264 . 498647) (-2265 . 498543) (-2266 . 498126) (-2267 . 498054)
- (-2268 . 497951) (-2269 . 497862) (-2270 . 497655) (-2271 . 497557)
- (-2272 . 496917) (-2273 . 496847) (-2274 . 496788) (-2275 . 496733)
- (-2276 . 496620) (-2277 . 496592) (-2278 . 496564) (-2279 . 496495)
- (-2280 . 496222) (-2281 . 496162) (-2282 . 495676) (-2283 . 495459)
- (-2284 . 495381) (-2285 . 494877) (-2286 . 494445) (-2287 . 494345)
- (-2288 . 494260) (-2289 . 494125) (-2290 . 493745) (-2291 . 493690)
- (-2292 . 493491) (-2293 . 493395) (-2294 . 492909) (-2295 . 492778)
- (-2296 . 492696) (-2297 . 492572) (-2298 . 492544) (-2299 . 492440)
- (-2300 . 492366) (-2301 . 492338) (-2302 . 492139) (-2303 . 492052)
- (-2304 . 491880) (-2305 . 490291) (-2306 . 490191) (-2307 . 489849)
- (-2308 . 489783) (-2309 . 489423) (-2310 . 488800) (-2311 . 488675)
- (-2312 . 488593) (-2313 . 488278) (-2314 . 486422) (-2315 . 486258)
- (-12 . 486086) (-2317 . 485993) (-2318 . 485928) (-2319 . 485866)
- (-2320 . 485713) (-2321 . 485397) (-2322 . 484946) (-2323 . 484520)
- (-2324 . 484274) (-2325 . 483931) (-2326 . 482681) (-2327 . 482594)
- (-2328 . 482497) (-2329 . 481893) (-2330 . 481750) (-2331 . 481501)
- (-2332 . 481313) (-2333 . 481208) (-2334 . 481109) (-2335 . 481051)
- (-2336 . 480938) (-2337 . 480843) (-2338 . 480793) (-2339 . 480409)
- (-2340 . 480219) (-2341 . 480010) (-2342 . 479932) (-2343 . 479880)
- (-2344 . 479748) (-2345 . 479671) (-2346 . 479619) (-2347 . 479567)
- (-2348 . 479471) (-2349 . 479419) (-2350 . 479361) (-2351 . 479146)
- (-2352 . 479077) (-2353 . 479020) (-2354 . 478782) (-2355 . 478596)
- (-2356 . 478529) (-2357 . 478105) (-2358 . 477896) (-2359 . 477837)
- (-2360 . 477371) (-2361 . 477288) (-2362 . 477163) (-2363 . 476895)
- (-2364 . 476780) (-2365 . 476488) (-2366 . 476345) (-2367 . 476212)
- (-2368 . 476126) (-2369 . 475880) (-2370 . 475774) (-2371 . 475636)
- (-2372 . 475583) (-2373 . 475452) (-2374 . 475320) (-2375 . 474721)
- (-2376 . 474479) (-2377 . 474192) (-2378 . 474106) (-2379 . 473788)
- (-2380 . 473728) (-2381 . 473580) (-2382 . 473531) (-2383 . 473274)
- (-2384 . 473081) (-2385 . 472937) (-2386 . 472840) (-2387 . 472768)
- (-2388 . 472420) (-2389 . 472290) (-2390 . 472238) (-2391 . 472150)
- (-2392 . 472035) (-2393 . 471956) (-2394 . 471903) (-2395 . 471751)
- (-2396 . 471684) (-2397 . 471603) (-2398 . 471229) (-2399 . 470951)
- (-2400 . 470883) (-2401 . 470786) (-2402 . 470734) (-2403 . 470596)
- (-2404 . 470398) (-2405 . 470346) (-2406 . 470092) (-2407 . 469970)
- (-2408 . 469856) (-2409 . 469690) (-2410 . 469348) (-2411 . 469019)
- (-2412 . 468881) (-2413 . 468743) (-2414 . 468641) (-2415 . 468212)
- (-2416 . 468117) (-2417 . 468034) (-2418 . 467956) (-2419 . 467855)
- (-2420 . 467574) (-2421 . 467521) (* . 463407) (-2423 . 463249)
- (-2424 . 463215) (-2425 . 462896) (-2426 . 462797) (-2427 . 460569)
- (-2428 . 460432) (-2429 . 460090) (-2430 . 460021) (-2431 . 459637)
- (-2432 . 459378) (-2433 . 459304) (-2434 . 458779) (-2435 . 458635)
- (-2436 . 458534) (-2437 . 458473) (-2438 . 458365) (-2439 . 458172)
- (-2440 . 458098) (-2441 . 457851) (-2442 . 457796) (-2443 . 457693)
- (-2444 . 457594) (-2445 . 457465) (-2446 . 456806) (-2447 . 456729)
- (-2448 . 456655) (-2449 . 456510) (-2450 . 456424) (-2451 . 456300)
- (-2452 . 456198) (-2453 . 456128) (-2454 . 455240) (-2455 . 455082)
- (-2456 . 454887) (-2457 . 454817) (-2458 . 454743) (-2459 . 454642)
- (-2460 . 453440) (-2461 . 453019) (-2462 . 452500) (-2463 . 451068)
- (-2464 . 450962) (-2465 . 450895) (-2466 . 450744) (-2467 . 450572)
- (-2468 . 450499) (-2469 . 449839) (-2470 . 449673) (-2471 . 448994)
- (-2472 . 448901) (-2473 . 448629) (-2474 . 448557) (-2475 . 448438)
- (-2476 . 448293) (-2477 . 448126) (-2478 . 448071) (-2479 . 447991)
- (-2480 . 447941) (-2481 . 447889) (-2482 . 447837) (-2483 . 447610)
- (-2484 . 447373) (-2485 . 447299) (-2486 . 447243) (-2487 . 447183)
- (-2488 . 447105) (-2489 . 446916) (-2490 . 446862) (-2491 . 445681)
- (-2492 . 445621) (-2493 . 445463) (-2494 . 445283) (-2495 . 445052)
- (-2496 . 444985) (-2497 . 444861) (-2498 . 444438) (-2499 . 444378)
- (-2500 . 444325) (-2501 . 444269) (-2502 . 444040) (-2503 . 443740)
- (-2504 . 443619) (-2505 . 443518) (-2506 . 443221) (-2507 . 443076)
- (-2508 . 442989) (-2509 . 442813) (-2510 . 442734) (-9 . 442706)
- (-2512 . 442678) (-2513 . 442616) (-2514 . 442500) (-2515 . 442371)
- (-2516 . 442256) (-2517 . 442085) (-2518 . 435142) (-2519 . 435089)
- (-2520 . 435037) (-2521 . 434878) (-2522 . 434727) (-2523 . 434654)
- (-8 . 434626) (-2525 . 434408) (-2526 . 434251) (-2527 . 434179)
- (-2528 . 434014) (-2529 . 433916) (-2530 . 433724) (-2531 . 433639)
- (-2532 . 433538) (-2533 . 433407) (-2534 . 432747) (-2535 . 432362)
- (-2536 . 432275) (-2537 . 432122) (-2538 . 431995) (-2539 . 427451)
- (-2540 . 427232) (-2541 . 427181) (-2542 . 426595) (-2543 . 426246)
- (-2544 . 426186) (-2545 . 425485) (-2546 . 424668) (-2547 . 424536)
- (-2548 . 424508) (-2549 . 424401) (-2550 . 424297) (-2551 . 424203)
- (-2552 . 424117) (-2553 . 424083) (-2554 . 423956) (-2555 . 423663)
- (-2556 . 423328) (-2557 . 423138) (-2558 . 422878) (-2559 . 422815)
- (-2560 . 422615) (-2561 . 421732) (-2562 . 421704) (-2563 . 421419)
- (-2564 . 421282) (-2565 . 421091) (-2566 . 420941) (-2567 . 419755)
- (-2568 . 419582) (-2569 . 419447) (-2570 . 419175) (-2571 . 418359)
- (-2572 . 418302) (-2573 . 418223) (-2574 . 418062) (-2575 . 417990)
- (-2576 . 417917) (-2577 . 417838) (-2578 . 417672) (-2579 . 417619)
- (-2580 . 416437) (-2581 . 416385) (-2582 . 416332) (-2583 . 416169)
- (-2584 . 416117) (-2585 . 416063) (-2586 . 415735) (-2587 . 415580)
- (-2588 . 415290) (-2589 . 414704) (-2590 . 414096) (-2591 . 413965)
- (-2592 . 413607) (-2593 . 413498) (-2594 . 411290) (-2595 . 411122)
- (-2596 . 410674) (-2597 . 410293) (-2598 . 410198) (-2599 . 410074)
- (-2600 . 410040) (-2601 . 410009) (-2602 . 409925) (-2603 . 409379)
- (-2604 . 409012) (-2605 . 408706) (-2606 . 408632) (-2607 . 408555)
- (-2608 . 408391) (-2609 . 408084) (-2610 . 407911) (-2611 . 407401)
- (-2612 . 407345) (-2613 . 407222) (-2614 . 407155) (-2615 . 407099)
- (-2616 . 407049) (-2617 . 406788) (-2618 . 406504) (-2619 . 406334)
- (-2620 . 406176) (-2621 . 406036) (-2622 . 405890) (-2623 . 405838)
- (-2624 . 405726) (-2625 . 405643) (-2626 . 405517) (-2627 . 405385)
- (-2628 . 405075) (-2629 . 404586) (-2630 . 403501) (-2631 . 403442)
- (-2632 . 403196) (-2633 . 403113) (-2634 . 402848) (-2635 . 402771)
- (-2636 . 402444) (-2637 . 402291) (-2638 . 402209) (-2639 . 402154)
- (-2640 . 402101) (-2641 . 401765) (-2642 . 401529) (-2643 . 401497)
- (-2644 . 401399) (-2645 . 401220) (-2646 . 401161) (-2647 . 401028)
- (-2648 . 400803) (-2649 . 400715) (-2650 . 400373) (-2651 . 400287)
- (-2652 . 399936) (-2653 . 399406) (-2654 . 399323) (-7 . 399295)
- (-2656 . 399065) (-2657 . 399012) (-2658 . 398959) (-2659 . 398674)
- (-2660 . 398585) (-2661 . 398517) (-2662 . 398356) (-2663 . 398243)
- (-2664 . 398171) (-2665 . 398143) (-2666 . 398000) (-2667 . 397878)
- (-2668 . 397717) (-2669 . 397608) (-2670 . 397525) (-2671 . 397440)
- (-2672 . 397248) (-2673 . 397189) (-2674 . 396847) (-2675 . 396678)
- (-2676 . 396491) (-2677 . 395672) (-2678 . 395617) (-2679 . 395515)
- (-2680 . 394962) (-2681 . 394605) (-2682 . 394538) (-2683 . 394393)
- (-2684 . 394250) (-2685 . 394191) (-2686 . 394040) (-2687 . 394012)
- (-2688 . 393983) (-2689 . 393703) (-2690 . 392999) (-2691 . 392777)
- (-2692 . 392691) (-2693 . 392574) (-2694 . 392479) (-2695 . 392299)
- (-2696 . 392126) (-2697 . 391887) (-2698 . 391808) (-2699 . 391149)
- (-2700 . 391061) (-2701 . 386901) (-2702 . 386806) (-2703 . 386261)
- (-2704 . 386043) (-2705 . 385476) (-2706 . 385117) (-2707 . 384879)
- (-2708 . 384710) (-2709 . 384600) (-2710 . 384445) (-2711 . 384199)
- (-2712 . 384046) (-2713 . 383893) (-2714 . 383837) (-2715 . 383749)
- (-2716 . 383636) (-2717 . 383568) (-2718 . 383466) (-2719 . 383329)
- (-2720 . 383239) (-2721 . 383183) (-2722 . 383079) (-2723 . 382903)
- (-2724 . 382759) (-2725 . 382461) (-2726 . 382304) (-2727 . 382233)
- (-2728 . 382090) (-2729 . 381809) (-2730 . 381740) (-2731 . 381669)
- (-2732 . 381495) (-2733 . 381263) (-2734 . 381128) (-2735 . 380352)
- (-2736 . 380199) (-2737 . 380127) (-2738 . 380029) (-2739 . 379858)
- (-2740 . 379549) (-2741 . 379346) (-2742 . 379260) (-2743 . 379191)
- (-2744 . 379026) (-2745 . 378851) (-2746 . 378771) (-2747 . 378721)
- (-2748 . 378110) (-2749 . 377854) (-2750 . 377754) (-2751 . 377659)
- (-2752 . 377571) (-2753 . 377401) (-2754 . 377323) (-2755 . 377240)
- (-2756 . 377183) (-2757 . 377101) (-2758 . 376955) (-2759 . 376404)
- (-2760 . 376231) (-2761 . 376051) (-2762 . 376023) (-2763 . 375927)
- (-2764 . 375811) (-2765 . 375501) (-2766 . 375446) (-2767 . 375327)
- (-2768 . 375242) (-2769 . 375173) (-2770 . 375096) (-2771 . 374981)
- (-2772 . 374141) (-2773 . 374063) (-2774 . 373997) (-2775 . 373882)
- (-2776 . 373715) (-2777 . 373558) (-2778 . 373288) (-2779 . 373109)
- (-2780 . 372782) (-2781 . 372725) (-2782 . 372612) (-2783 . 372444)
- (-2784 . 371781) (-2785 . 371485) (-2786 . 371269) (-2787 . 371145)
- (-2788 . 370757) (-2789 . 370707) (-2790 . 370604) (-2791 . 370570)
- (-2792 . 370441) (-2793 . 370166) (-2794 . 370071) (-2795 . 370042)
- (-2796 . 369419) (-2797 . 369249) (-2798 . 367987) (-2799 . 367931)
- (-2800 . 367712) (-2801 . 367489) (-2802 . 367356) (-2803 . 367069)
- (-2804 . 366921) (-2805 . 366833) (-2806 . 366238) (-2807 . 366143)
- (-2808 . 366047) (-2809 . 365932) (-2810 . 365860) (-2811 . 365352)
- (-2812 . 365059) (-2813 . 365006) (-2814 . 364925) (-2815 . 364640)
- (-2816 . 364537) (-2817 . 364245) (-2818 . 364211) (-2819 . 363959)
- (-2820 . 363681) (-2821 . 363611) (-2822 . 363551) (-2823 . 363453)
- (-2824 . 363371) (-2825 . 363255) (-2826 . 362862) (-2827 . 362778)
- (-2828 . 362573) (-2829 . 362496) (-2830 . 362271) (-2831 . 362243)
- (-2832 . 362060) (-2833 . 362007) (-2834 . 361913) (-2835 . 361797)
- (-2836 . 361711) (-2837 . 361599) (-2838 . 361489) (-2839 . 361357)
- (-2840 . 361290) (-2841 . 361162) (-2842 . 361038) (-2843 . 360968)
- (-2844 . 360535) (-2845 . 360316) (-2846 . 360249) (-2847 . 360166)
- (-2848 . 360063) (-2849 . 359984) (-2850 . 359835) (-2851 . 358807)
- (-2852 . 358604) (-2853 . 358527) (-2854 . 358412) (-2855 . 358326)
- (-2856 . 358160) (-2857 . 358056) (-2858 . 357934) (-2859 . 357881)
- (-2860 . 357804) (-2861 . 357694) (-2862 . 357585) (-2863 . 357314)
- (-2864 . 357226) (-2865 . 356513) (-2866 . 356461) (-2867 . 356268)
- (-2868 . 356177) (-2869 . 356093) (-2870 . 355705) (-2871 . 355580)
- (-2872 . 355503) (-2873 . 355159) (-2874 . 355106) (-2875 . 355052)
- (-2876 . 354980) (-2877 . 354730) (-2878 . 354698) (-2879 . 354436)
- (-2880 . 354313) (-2881 . 354104) (-2882 . 353760) (-2883 . 353613)
- (-2884 . 353540) (-2885 . 353463) (-2886 . 353338) (-2887 . 353280)
- (-2888 . 353200) (-2889 . 353084) (-2890 . 352981) (-2891 . 352837)
- (-2892 . 352679) (-2893 . 352500) (-2894 . 351438) (-2895 . 351359)
- (-2896 . 351234) (-2897 . 351049) (-2898 . 351015) (-2899 . 350962)
- (-2900 . 350863) (-2901 . 350811) (-2902 . 350676) (-2903 . 350609)
- (-2904 . 350489) (-2905 . 350106) (-2906 . 349911) (-2907 . 349323)
- (-2908 . 349257) (-2909 . 348904) (-2910 . 348809) (-2911 . 348629)
- (-2912 . 348522) (-2913 . 348345) (-2914 . 348209) (-2915 . 348126)
- (-2916 . 347801) (-2917 . 347539) (-2918 . 347148) (-2919 . 346837)
- (-2920 . 346785) (-2921 . 346651) (-2922 . 346451) (-2923 . 346291)
- (-2924 . 346172) (-2925 . 345529) (-2926 . 345265) (-2927 . 344949)
- (-2928 . 344701) (-2929 . 344593) (-2930 . 343727) (-2931 . 343587)
- (-2932 . 343535) (-2933 . 343389) (-2934 . 342936) (-2935 . 342883)
- (-2936 . 342781) (-2937 . 342686) (-2938 . 342570) (-2939 . 342503)
- (-2940 . 342345) (-2941 . 342134) (-2942 . 341643) (-2943 . 341584)
- (-2944 . 341458) (-2945 . 341381) (-2946 . 341254) (-2947 . 340995)
- (-2948 . 340940) (-2949 . 340868) (-2950 . 340758) (-2951 . 340521)
- (-2952 . 340269) (-2953 . 340087) (-2954 . 339986) (-2955 . 339934)
- (-2956 . 339881) (-2957 . 339721) (-2958 . 339669) (-2959 . 339511)
- (-2960 . 339263) (-2961 . 339167) (-2962 . 339026) (-2963 . 338787)
- (-2964 . 338691) (-2965 . 338635) (-2966 . 338269) (-2967 . 338218)
- (-2968 . 338064) (-2969 . 337733) (-2970 . 337696) (-2971 . 337599)
- (-2972 . 337481) (-2973 . 337347) (-2974 . 337295) (-2975 . 337201)
- (-2976 . 337054) (-2977 . 336903) (-2978 . 336796) (-2979 . 336735)
- (-2980 . 336479) (-2981 . 336412) (-2982 . 336326) (-2983 . 335762)
- (-2984 . 335385) (-2985 . 335279) (-2986 . 335213) (-2987 . 335181)
- (-2988 . 335122) (-2989 . 334904) (-2990 . 334808) (-2991 . 334674)
- (-2992 . 333867) (-2993 . 333815) (-2994 . 333784) (-2995 . 333626)
- (-2996 . 333536) (-2997 . 333440) (-2998 . 333341) (-2999 . 333289)
- (-3000 . 333212) (-3001 . 332902) (-3002 . 332772) (-3003 . 332722)
- (-3004 . 332655) (-3005 . 332590) (-3006 . 332531) (-3007 . 332425)
- (-3008 . 332310) (-3009 . 332268) (-3010 . 332191) (-3011 . 331728)
- (-3012 . 331585) (-3013 . 331506) (-3014 . 331440) (-3015 . 331267)
- (-3016 . 331189) (-3017 . 331020) (-3018 . 330921) (-3019 . 330784)
- (-3020 . 330626) (-3021 . 330547) (-3022 . 330292) (-3023 . 329018)
- (-3024 . 328986) (-3025 . 328934) (-3026 . 328756) (-3027 . 328579)
- (-3028 . 328385) (-3029 . 328301) (-3030 . 328190) (-3031 . 327796)
- (-3032 . 327549) (-3033 . 327155) (-3034 . 327071) (-3035 . 327003)
- (-3036 . 326722) (-3037 . 326514) (-3038 . 326444) (-3039 . 326377)
- (-3040 . 326306) (-3041 . 326278) (-3042 . 326136) (-3043 . 326059)
- (-3044 . 325922) (-3045 . 325806) (-3046 . 325775) (-3047 . 324859)
- (-3048 . 324713) (-3049 . 324607) (-3050 . 324487) (-3051 . 324360)
- (-3052 . 324230) (-3053 . 324162) (-3054 . 323860) (-3055 . 323776)
- (-3056 . 323651) (-3057 . 323533) (-3058 . 323325) (-3059 . 323099)
- (-3060 . 322688) (-3061 . 322114) (-3062 . 322061) (-3063 . 321823)
- (-3064 . 321471) (-3065 . 321179) (-3066 . 320898) (-3067 . 320671)
- (-3068 . 320627) (-3069 . 320577) (-3070 . 320464) (-3071 . 320261)
- (-3072 . 320130) (-3073 . 320047) (-3074 . 319951) (-3075 . 319466)
- (-3076 . 319268) (-3077 . 319195) (-3078 . 319124) (-3079 . 319011)
- (-3080 . 318938) (-3081 . 318521) (-3082 . 318355) (-3083 . 318248)
- (-3084 . 318068) (-3085 . 318015) (-3086 . 317896) (-3087 . 317597)
- (-3088 . 317463) (-3089 . 317275) (-3090 . 317147) (-3091 . 317029)
- (-3092 . 316952) (-3093 . 316824) (-3094 . 316729) (-3095 . 316633)
- (-3096 . 316560) (-3097 . 316411) (-3098 . 316158) (-3099 . 316018)
- (-3100 . 315620) (-3101 . 315461) (-3102 . 315366) (-3103 . 315287)
- (-3104 . 315183) (-3105 . 315031) (-3106 . 314273) (-3107 . 314030)
- (-3108 . 313845) (-3109 . 313790) (-3110 . 313693) (-3111 . 313577)
- (-3112 . 313395) (-3113 . 313297) (-3114 . 313226) (-3115 . 313028)
- (-3116 . 312933) (-3117 . 312877) (-3118 . 312683) (-3119 . 312588)
- (-3120 . 312314) (-3121 . 312180) (-3122 . 312083) (-3123 . 311978)
- (-3124 . 311863) (-3125 . 311813) (-3126 . 311636) (-3127 . 311563)
- (-3128 . 311236) (-3129 . 311100) (-3130 . 310862) (-3131 . 310792)
- (-3132 . 310708) (-3133 . 310641) (-3134 . 310361) (-3135 . 310190)
- (-3136 . 309980) (-3137 . 309854) (-3138 . 309787) (-3139 . 309716)
- (-3140 . 309483) (-3141 . 309347) (-3142 . 309090) (-3143 . 309062)
- (-3144 . 309012) (-3145 . 308918) (-3146 . 308777) (-3147 . 308636)
- (-3148 . 308391) (-3149 . 308267) (-3150 . 308173) (-3151 . 308087)
- (-3152 . 307765) (-3153 . 307691) (-3154 . 307610) (-3155 . 307582)
- (-3156 . 307260) (-3157 . 307193) (-3158 . 306976) (-3159 . 306906)
- (-3160 . 306826) (-3161 . 306701) (-3162 . 306596) (-3163 . 306413)
- (-3164 . 306312) (-3165 . 306173) (-3166 . 306107) (-3167 . 306003)
- (-3168 . 305902) (-3169 . 305842) (-3170 . 305761) (-3171 . 305534)
- (-3172 . 305464) (-3173 . 305412) (-3174 . 305256) (-3175 . 304940)
- (-3176 . 304845) (-3177 . 304796) (-3178 . 304726) (-3179 . 304664)
- (-3180 . 304494) (-3181 . 304330) (-3182 . 303996) (-3183 . 303795)
- (-3184 . 303742) (-3185 . 303679) (-3186 . 303249) (-3187 . 302745)
- (-3188 . 302688) (-3189 . 302632) (-3190 . 302529) (-3191 . 302154)
- (-3192 . 301944) (-3193 . 301894) (-3194 . 300829) (-3195 . 300551)
- (-3196 . 300523) (-3197 . 299809) (-3198 . 299647) (-3199 . 299540)
- (-3200 . 299294) (-3201 . 299127) (-3202 . 299026) (-3203 . 298708)
- (-3204 . 298631) (-3205 . 298163) (-3206 . 298040) (-3207 . 297451)
- (-3208 . 297365) (-3209 . 297291) (-3210 . 296903) (-3211 . 296639)
- (-3212 . 296412) (-3213 . 296287) (-3214 . 296150) (-3215 . 296031)
- (-3216 . 295943) (-3217 . 295853) (-3218 . 295581) (-3219 . 295493)
- (-3220 . 295425) (-3221 . 295276) (-3222 . 295166) (-3223 . 294628)
- (-3224 . 294562) (-3225 . 294534) (-3226 . 294155) (-3227 . 293958)
- (-3228 . 293821) (-3229 . 293764) (-3230 . 293606) (-3231 . 293443)
- (-3232 . 293127) (-3233 . 293071) (-3234 . 292928) (-3235 . 292764)
- (-3236 . 292643) (-3237 . 292171) (-3238 . 292118) (-3239 . 292003)
- (-3240 . 291814) (-3241 . 290878) (-3242 . 290826) (-3243 . 290774)
- (-3244 . 290743) (-3245 . 290680) (-3246 . 290621) (-3247 . 290535)
- (-3248 . 290463) (-3249 . 290405) (-3250 . 290322) (-3251 . 289121)
- (-3252 . 288951) (-3253 . 288923) (-3254 . 288867) (-3255 . 288799)
- (-3256 . 288729) (-3257 . 288672) (-3258 . 288644) (-3259 . 288535)
- (-3260 . 288498) (-3261 . 288388) (-3262 . 288281) (-3263 . 288225)
- (-3264 . 288093) (-3265 . 287998) (-3266 . 287679) (-3267 . 287524)
- (-3268 . 287361) (-3269 . 287246) (-3270 . 287148) (-3271 . 286843)
- (-3272 . 286814) (-3273 . 286757) (-3274 . 286641) (-3275 . 286450)
- (-3276 . 286048) (-3277 . 285964) (-3278 . 285884) (-3279 . 285765)
- (-3280 . 285736) (-3281 . 285684) (-3282 . 285635) (-3283 . 285479)
- (-3284 . 285359) (-3285 . 285286) (-3286 . 285122) (-3287 . 285032)
- (-3288 . 284980) (-3289 . 284877) (-3290 . 284647) (-3291 . 284556)
- (-3292 . 284460) (-3293 . 284432) (-3294 . 284358) (-3295 . 284254)
- (-3296 . 284184) (-3297 . 284132) (-3298 . 283536) (-3299 . 283363)
- (-3300 . 282985) (-3301 . 282832) (-3302 . 282765) (-3303 . 282619)
- (-3304 . 282482) (-3305 . 281808) (-3306 . 281665) (-3307 . 281579)
- (-3308 . 281369) (-3309 . 281274) (-3310 . 281152) (-3311 . 281069)
- (-3312 . 280995) (-3313 . 280762) (-3314 . 280660) (-3315 . 280632)
- (-3316 . 280598) (-3317 . 280456) (-3318 . 280249) (-3319 . 280192)
- (-3320 . 280130) (-3321 . 280024) (-3322 . 279944) (-3323 . 279500)
- (-3324 . 279208) (-3325 . 278471) (-3326 . 278206) (-3327 . 278022)
- (-3328 . 277906) (-3329 . 277806) (-3330 . 272466) (-3331 . 272343)
- (-3332 . 272250) (-3333 . 272200) (-3334 . 272104) (-3335 . 271999)
- (-3336 . 271883) (-3337 . 271710) (-3338 . 271570) (-3339 . 271471)
- (-3340 . 271387) (-3341 . 271024) (-3342 . 270718) (-3343 . 270622)
- (-3344 . 270527) (-3345 . 270371) (-3346 . 270316) (-3347 . 270247)
- (-3348 . 270029) (-3349 . 269603) (-3350 . 269548) (-3351 . 269224)
- (-3352 . 268911) (-3353 . 268803) (-3354 . 268697) (-3355 . 268366)
- (-3356 . 268176) (-3357 . 268047) (-3358 . 267907) (-3359 . 267836)
- (-3360 . 267572) (-3361 . 267462) (-3362 . 267087) (-3363 . 267018)
- (-3364 . 266701) (-3365 . 266649) (-3366 . 266422) (-3367 . 266293)
- (-3368 . 266168) (-3369 . 265050) (-3370 . 264622) (-3371 . 264481)
- (-3372 . 264194) (-3373 . 264073) (-3374 . 263905) (-3375 . 263115)
- (-3376 . 263041) (-3377 . 262992) (-3378 . 262897) (-3379 . 262790)
- (-3380 . 262635) (-3381 . 262062) (-3382 . 261942) (-3383 . 261890)
- (-3384 . 261793) (-3385 . 261738) (-3386 . 261559) (-3387 . 261427)
- (-3388 . 261274) (-3389 . 261193) (-3390 . 260450) (-3391 . 259891)
- (-3392 . 259696) (-3393 . 259481) (-3394 . 259401) (-3395 . 259319)
- (-3396 . 259180) (-3397 . 258965) (-3398 . 258869) (-3399 . 258814)
- (-3400 . 258648) (-3401 . 258089) (-3402 . 258006) (-3403 . 257909)
- (-3404 . 257779) (-3405 . 257656) (-3406 . 257500) (-3407 . 257398)
- (-3408 . 257320) (-3409 . 256809) (-3410 . 255028) (-3411 . 254772)
- (-3412 . 254698) (-3413 . 254643) (-3414 . 253991) (-3415 . 253361)
- (-3416 . 253269) (-3417 . 253182) (-3418 . 252942) (-3419 . 252810)
- (-3420 . 252717) (-3421 . 252665) (-3422 . 252561) (-3423 . 252395)
- (-3424 . 252235) (-3425 . 252063) (-3426 . 251860) (-3427 . 251716)
- (-3428 . 251688) (-3429 . 251636) (-3430 . 250906) (-3431 . 250677)
- (-3432 . 250237) (-3433 . 249754) (-3434 . 249632) (-3435 . 249530)
- (-3436 . 248944) (-3437 . 248762) (-3438 . 248526) (-3439 . 248197)
- (-3440 . 248145) (-3441 . 248089) (-3442 . 247898) (-3443 . 247168)
- (-3444 . 247095) (-3445 . 247035) (-3446 . 246858) (-3447 . 246703)
- (-3448 . 245126) (-3449 . 245040) (-3450 . 244968) (-3451 . 244882)
- (-3452 . 244771) (-3453 . 244681) (-3454 . 244571) (-3455 . 243894)
- (-3456 . 243750) (-3457 . 243655) (-3458 . 243598) (-3459 . 243461)
- (-3460 . 243340) (-3461 . 243288) (-3462 . 243235) (-3463 . 243207)
- (-3464 . 243136) (-3465 . 243040) (-3466 . 242475) (-3467 . 242367)
- (-3468 . 242279) (-3469 . 241628) (-3470 . 241487) (-3471 . 241348)
- (-3472 . 241319) (-3473 . 241248) (-3474 . 241035) (-3475 . 240919)
- (-3476 . 240817) (-3477 . 240252) (-3478 . 240178) (-3479 . 239568)
- (-3480 . 239501) (-3481 . 239262) (-3482 . 239102) (-3483 . 238921)
- (-3484 . 238763) (-3485 . 238589) (-3486 . 238479) (-3487 . 238396)
- (-3488 . 237831) (-3489 . 237685) (-3490 . 237611) (-3491 . 237534)
- (-3492 . 237272) (-3493 . 237131) (-3494 . 236795) (-3495 . 236647)
- (-3496 . 236550) (-3497 . 236440) (-3498 . 236349) (-3499 . 235674)
- (-3500 . 235483) (-3501 . 235337) (-3502 . 235238) (-3503 . 235086)
- (-3504 . 234932) (-3505 . 234785) (-3506 . 234382) (-3507 . 234192)
- (-3508 . 234160) (-3509 . 234091) (-3510 . 233457) (-3511 . 233239)
- (-3512 . 233100) (-3513 . 233047) (-3514 . 232979) (-3515 . 232793)
- (-3516 . 232680) (-3517 . 232582) (-3518 . 232487) (-3519 . 232041)
- (-3520 . 231933) (-3521 . 231882) (-3522 . 231763) (-3523 . 231708)
- (-3524 . 231608) (-3525 . 231450) (-3526 . 231307) (-3527 . 231211)
- (-3528 . 231128) (-3529 . 231072) (-3530 . 230989) (-3531 . 230710)
- (-3532 . 230622) (-3533 . 230536) (-3534 . 230404) (-3535 . 230007)
- (-3536 . 229841) (-3537 . 229695) (-3538 . 229667) (-3539 . 229573)
- (-3540 . 229432) (-3541 . 229277) (-3542 . 229134) (-3543 . 229032)
- (-3544 . 228505) (-3545 . 228409) (-3546 . 228284) (-3547 . 228232)
- (-3548 . 227705) (-3549 . 227656) (-3550 . 227560) (-3551 . 227370)
- (-3552 . 227318) (-3553 . 226987) (-3554 . 226885) (-3555 . 226797)
- (-3556 . 226462) (-3557 . 226364) (-3558 . 226246) (-3559 . 225994)
- (-3560 . 225903) (-3561 . 225743) (-3562 . 225540) (-3563 . 225280)
- (-3564 . 224964) (-3565 . 224894) (-3566 . 224790) (-3567 . 224716)
- (-3568 . 224660) (-3569 . 224586) (-3570 . 224227) (-3571 . 222685)
- (-3572 . 222099) (-3573 . 222027) (-3574 . 221845) (-3575 . 221774)
- (-3576 . 221700) (-3577 . 221333) (-3578 . 221135) (-3579 . 221023)
- (-3580 . 220989) (-3581 . 220893) (-3582 . 220836) (-3583 . 220765)
- (-3584 . 220679) (-3585 . 220598) (-3586 . 220500) (-3587 . 220224)
- (-3588 . 220196) (-3589 . 219232) (-3590 . 218788) (-3591 . 218665)
- (-3592 . 216887) (-3593 . 216789) (-3594 . 216578) (-3595 . 216523)
- (-3596 . 216446) (-3597 . 216361) (-3598 . 216203) (-3599 . 216108)
- (-3600 . 216035) (-3601 . 215796) (-3602 . 215584) (-3603 . 215524)
- (-3604 . 215365) (-3605 . 215226) (-3606 . 215127) (-3607 . 215055)
- (-3608 . 214976) (-3609 . 214914) (-3610 . 214750) (-3611 . 214552)
- (-3612 . 214356) (-3613 . 211057) (-3614 . 210411) (-3615 . 210118)
- (-3616 . 210035) (-3617 . 209965) (-3618 . 209872) (-3619 . 209789)
- (-3620 . 209669) (-3621 . 209454) (-3622 . 209402) (-3623 . 209275)
- (-3624 . 209047) (-3625 . 208455) (-3626 . 208064) (-3627 . 207924)
- (-3628 . 207852) (-3629 . 205437) (-3630 . 203322) (-3631 . 202864)
- (-3632 . 202719) (-3633 . 202629) (-3634 . 202377) (-3635 . 202259)
- (-3636 . 201652) (-3637 . 201039) (-3638 . 200965) (-3639 . 200432)
- (-3640 . 200328) (-3641 . 200274) (-3642 . 200136) (-3643 . 199318)
- (-3644 . 199007) (-3645 . 198948) (-3646 . 198807) (-3647 . 198779)
- (-3648 . 198533) (-3649 . 198106) (-3650 . 198022) (-3651 . 197985)
- (-3652 . 197806) (-3653 . 196918) (-3654 . 196840) (-3655 . 196448)
- (-3656 . 196379) (-3657 . 196161) (-3658 . 195915) (-3659 . 195799)
- (-3660 . 195749) (-3661 . 195453) (-3662 . 195036) (-3663 . 194962)
- (-3664 . 194859) (-3665 . 194792) (-3666 . 194695) (-3667 . 194624)
- (-3668 . 194526) (-3669 . 193790) (-3670 . 193672) (-3671 . 193559)
- (-3672 . 193400) (-3673 . 193366) (-3674 . 193158) (-3675 . 193105)
- (-3676 . 192987) (-3677 . 192691) (-3678 . 192554) (-3679 . 192458)
- (-3680 . 192343) (-3681 . 192133) (-3682 . 191986) (-3683 . 190908)
- (-3684 . 190606) (-3685 . 190471) (-3686 . 190217) (-3687 . 189964)
- (-3688 . 189622) (-3689 . 189463) (-3690 . 189401) (-3691 . 189373)
- (-3692 . 189345) (-3693 . 189278) (-3694 . 189229) (-3695 . 189148)
- (-3696 . 188782) (-3697 . 188727) (-3698 . 188639) (-3699 . 188545)
- (-3700 . 188462) (-3701 . 188278) (-3702 . 188159) (-3703 . 188102)
- (-3704 . 188030) (-3705 . 187643) (-3706 . 187485) (-3707 . 187287)
- (-3708 . 186776) (-3709 . 186344) (-3710 . 186267) (-3711 . 186214)
- (-3712 . 186143) (-3713 . 185655) (-3714 . 185627) (-3715 . 185336)
- (-3716 . 185162) (-3717 . 185061) (-3718 . 184921) (-3719 . 184804)
- (-3720 . 184725) (-3721 . 184519) (-3722 . 184388) (-3723 . 183961)
- (-3724 . 183668) (-3725 . 183466) (-3726 . 183121) (-3727 . 183026)
- (-3728 . 182995) (-3729 . 182864) (-3730 . 182512) (-3731 . 182428)
- (-3732 . 182309) (-3733 . 182191) (-3734 . 182134) (-3735 . 182061)
- (-3736 . 181774) (-3737 . 181746) (-3738 . 181718) (-3739 . 181292)
- (-3740 . 181211) (-3741 . 181128) (-3742 . 180991) (-3743 . 180350)
- (-3744 . 180246) (-3745 . 180087) (-3746 . 180059) (-3747 . 179940)
- (-3748 . 179852) (-3749 . 179775) (-3750 . 179542) (-3751 . 179412)
- (-3752 . 179283) (-3753 . 178996) (-3754 . 178944) (-3755 . 178858)
- (-3756 . 178561) (-3757 . 177857) (-3758 . 177505) (-3759 . 177298)
- (-3760 . 177237) (-3761 . 177163) (-3762 . 176956) (-3763 . 176840)
- (-3764 . 176500) (-3765 . 176373) (-3766 . 176280) (-3767 . 176057)
- (-3768 . 175830) (-3769 . 175799) (-3770 . 175725) (-3771 . 175044)
- (-3772 . 174891) (-3773 . 174726) (-3774 . 174599) (-3775 . 174444)
- (-3776 . 174341) (-3777 . 173603) (-3778 . 173502) (-3779 . 173270)
- (-3780 . 173211) (-3781 . 170370) (-3782 . 170229) (-3783 . 170086)
- (-3784 . 169994) (-3785 . 169861) (-3786 . 169643) (-3787 . 169520)
- (-3788 . 169302) (-3789 . 169228) (-3790 . 168953) (-3791 . 167773)
- (-3792 . 167699) (-3793 . 167644) (-3794 . 167588) (-3795 . 167504)
- (-3796 . 167251) (-3797 . 167036) (-3798 . 166944) (-3799 . 166829)
- (-3800 . 166741) (-3801 . 166530) (-3802 . 166453) (-3803 . 166281)
- (-3804 . 166216) (-3805 . 166144) (-3806 . 166037) (-3807 . 165921)
- (-3808 . 165835) (-3809 . 165713) (-3810 . 165535) (-3811 . 165449)
- (-3812 . 165236) (-3813 . 164986) (-3814 . 164887) (-3815 . 164831)
- (-3816 . 164669) (-3817 . 164466) (-3818 . 164298) (-3819 . 164146)
- (-3820 . 164028) (-3821 . 163994) (-3822 . 163890) (-3823 . 163519)
- (-3824 . 163433) (-3825 . 163155) (-3826 . 163073) (-3827 . 163022)
- (-3828 . 162871) (-3829 . 162740) (-3830 . 162466) (-3831 . 162412)
- (-3832 . 162360) (-3833 . 162253) (-3834 . 162201) (-3835 . 162148)
- (-3836 . 162062) (-3837 . 161499) (-3838 . 161280) (-3839 . 161156)
- (-3840 . 161049) (-3841 . 161021) (-3842 . 160968) (-3843 . 160674)
- (-3844 . 160478) (-3845 . 160383) (-3846 . 160276) (-3847 . 160196)
- (-3848 . 159718) (-3849 . 159508) (-3850 . 159034) (-3851 . 158849)
- (-3852 . 158821) (-3853 . 158508) (-3854 . 158416) (-3855 . 158362)
- (-3856 . 158210) (-3857 . 158106) (-3858 . 157888) (-3859 . 157785)
- (-3860 . 157567) (-3861 . 157294) (-3862 . 157241) (-3863 . 157213)
- (-3864 . 156880) (-3865 . 156641) (-3866 . 156251) (-3867 . 156189)
- (-3868 . 156155) (-3869 . 155968) (-3870 . 155866) (-3871 . 155808)
- (-3872 . 155575) (-3873 . 155462) (-3874 . 155384) (-3875 . 155312)
- (-3876 . 155257) (-3877 . 155162) (-3878 . 155110) (-3879 . 155029)
- (-3880 . 154929) (-3881 . 154679) (-3882 . 154427) (-3883 . 154303)
- (-3884 . 154111) (-3885 . 153916) (-3886 . 153735) (-3887 . 153680)
- (-3888 . 153601) (-3889 . 153542) (-3890 . 153511) (-3891 . 153460)
- (-3892 . 153411) (-3893 . 153316) (-3894 . 152713) (-3895 . 152369)
- (-3896 . 152251) (-3897 . 152126) (-3898 . 151970) (-3899 . 151917)
- (-3900 . 151802) (-3901 . 151381) (-3902 . 151207) (-3903 . 151088)
- (-3904 . 149120) (-3905 . 149068) (-3906 . 149012) (-3907 . 148931)
- (-3908 . 148768) (-3909 . 148707) (-3910 . 148636) (-3911 . 148525)
- (-3912 . 148391) (-3913 . 146135) (-3914 . 146007) (-3915 . 145864)
- (-3916 . 145809) (-3917 . 145629) (-3918 . 144708) (-3919 . 144567)
- (-3920 . 144384) (-3921 . 144317) (-3922 . 143925) (-3923 . 143561)
- (-3924 . 139561) (-3925 . 139215) (-3926 . 139145) (-3927 . 139092)
- (-3928 . 138937) (-3929 . 138789) (-3930 . 138609) (-3931 . 138374)
- (-3932 . 137375) (-3933 . 137226) (-3934 . 137102) (-3935 . 137009)
- (-3936 . 136864) (-3937 . 136471) (-3938 . 136328) (-3939 . 136276)
- (-3940 . 136109) (-3941 . 135881) (-3942 . 135798) (-3943 . 135740)
- (-3944 . 135663) (-3945 . 135502) (-3946 . 135450) (-3947 . 135263)
- (-3948 . 135104) (-3949 . 135034) (-3950 . 134957) (-3951 . 134786)
- (-3952 . 134719) (-3953 . 134610) (-3954 . 134508) (-3955 . 134323)
- (-3956 . 134082) (-3957 . 119850) (-3958 . 119753) (-3959 . 119667)
- (-3960 . 119543) (-3961 . 119448) (-3962 . 119420) (-3963 . 119343)
- (-3964 . 119250) (-3965 . 119113) (-3966 . 118907) (-3967 . 118828)
- (-3968 . 118718) (-3969 . 118666) (-3970 . 118510) (-3971 . 118415)
- (-3972 . 117823) (-3973 . 117694) (-3974 . 117537) (-3975 . 117439)
- (-3976 . 117295) (-3977 . 117168) (-3978 . 117060) (-3979 . 116899)
- (-3980 . 116797) (-3981 . 116674) (-3982 . 116561) (-3983 . 116502)
- (-3984 . 116439) (-3985 . 116328) (-3986 . 115951) (-3987 . 115880)
- (-3988 . 115813) (-3989 . 115392) (-3990 . 115239) (-3991 . 115121)
- (-3992 . 115035) (-3993 . 114921) (-3994 . 114753) (-3995 . 114616)
- (-3996 . 114460) (-3997 . 114144) (-3998 . 113984) (-3999 . 113688)
- (-4000 . 113565) (-4001 . 113350) (-4002 . 113219) (-4003 . 113166)
- (-4004 . 113072) (-4005 . 112999) (-4006 . 112820) (-4007 . 112742)
- (-4008 . 112638) (-4009 . 112609) (-4010 . 111613) (-4011 . 111365)
- (-4012 . 111312) (-4013 . 110668) (-4014 . 110489) (-4015 . 110417)
- (-4016 . 110210) (-4017 . 110133) (-4018 . 110025) (-4019 . 109924)
- (-4020 . 109857) (-4021 . 109763) (-4022 . 109617) (-4023 . 109545)
- (-4024 . 109450) (-4025 . 109422) (-4026 . 109229) (-4027 . 109064)
- (-4028 . 108702) (-4029 . 108607) (-4030 . 108488) (-4031 . 108400)
- (** . 105405) (-4033 . 105297) (-4034 . 105135) (-4035 . 105055)
- (-4036 . 104724) (-4037 . 104671) (-4038 . 104617) (-4039 . 104518)
- (-4040 . 104327) (-4041 . 104025) (-4042 . 103941) (-4043 . 103781)
- (-4044 . 103747) (-4045 . 103435) (-4046 . 103256) (-4047 . 103203)
- (-4048 . 103141) (-4049 . 103045) (-4050 . 102957) (-4051 . 102779)
- (-4052 . 102597) (-4053 . 102312) (-4054 . 102239) (-4055 . 102160)
- (-4056 . 102108) (-4057 . 102080) (-4058 . 101589) (-4059 . 101561)
- (-4060 . 101466) (-4061 . 100038) (-4062 . 99922) (-4063 . 99758)
- (-4064 . 99489) (-4065 . 99394) (-4066 . 99276) (-4067 . 99202)
- (-4068 . 99117) (-4069 . 98907) (-4070 . 98794) (-4071 . 98649)
- (-4072 . 98423) (-4073 . 98123) (-4074 . 98043) (-4075 . 96973)
- (-4076 . 96873) (-4077 . 96728) (-4078 . 96654) (-4079 . 96576)
- (-4080 . 96497) (-4081 . 96399) (-4082 . 96286) (-4083 . 96084)
- (-4084 . 95979) (-4085 . 95882) (-4086 . 95582) (-4087 . 95503)
- (-4088 . 95452) (-4089 . 95401) (-4090 . 95196) (-4091 . 95090)
- (-4092 . 95035) (-4093 . 94983) (-4094 . 94909) (-4095 . 94139)
- (-4096 . 94026) (-4097 . 93660) (-4098 . 93505) (-4099 . 93417)
- (-4100 . 93346) (-4101 . 93262) (-4102 . 93116) (-4103 . 92978)
- (-4104 . 92802) (-4105 . 92728) (-4106 . 92060) (-4107 . 91881)
- (-4108 . 91205) (-4109 . 91122) (-4110 . 91018) (-4111 . 90959)
- (-4112 . 90886) (-4113 . 90600) (-4114 . 90566) (-4115 . 90387)
- (-4116 . 89545) (-4117 . 89490) (-4118 . 89391) (-4119 . 89307)
- (-4120 . 89183) (-4121 . 89118) (-4122 . 88837) (-4123 . 88083)
- (-4124 . 88029) (-4125 . 87958) (-4126 . 87550) (-4127 . 87462)
- (-4128 . 87425) (-4129 . 83816) (-4130 . 83362) (-4131 . 83009)
- (-4132 . 82787) (-4133 . 82405) (-4134 . 82067) (-4135 . 81954)
- (-4136 . 81817) (-4137 . 81566) (-4138 . 81325) (-4139 . 81136)
- (-4140 . 81083) (-4141 . 80861) (-4142 . 80778) (-4143 . 80181)
- (-4144 . 80114) (-4145 . 79998) (-4146 . 79550) (-4147 . 79455)
- (-4148 . 79359) (-4149 . 79275) (-4150 . 79083) (-4151 . 78837)
- (-4152 . 78757) (-4153 . 78651) (-4154 . 78523) (-4155 . 78341)
- (-4156 . 78259) (-4157 . 78206) (-4158 . 78139) (-4159 . 78111)
- (-4160 . 77915) (-4161 . 77821) (-4162 . 77768) (-4163 . 77582)
- (-4164 . 77504) (-4165 . 77120) (-4166 . 76841) (-4167 . 76623)
- (-4168 . 76556) (-4169 . 76504) (-4170 . 76434) (-4171 . 76205)
- (-4172 . 76061) (-4173 . 75908) (-4174 . 75779) (-4175 . 75715)
- (-4176 . 75587) (-4177 . 75513) (-4178 . 75395) (-4179 . 75252)
- (-4180 . 75151) (-4181 . 74988) (-4182 . 74716) (-4183 . 74646)
- (-4184 . 74505) (-4185 . 74334) (-4186 . 74302) (-4187 . 70352)
- (-4188 . 70272) (-4189 . 70106) (-4190 . 69921) (-4191 . 69822)
- (-4192 . 69699) (-4193 . 69476) (-4194 . 69062) (-4195 . 68995)
- (-4196 . 68841) (-4197 . 68754) (-4198 . 68416) (-4199 . 68198)
- (-4200 . 68131) (-4201 . 68053) (-4202 . 67922) (-4203 . 67826)
- (-4204 . 67731) (-4205 . 67486) (-4206 . 67459) (-4207 . 67260)
- (-4208 . 67192) (-4209 . 67078) (-4210 . 66740) (-4211 . 66454)
- (-4212 . 66348) (-4213 . 66081) (-4214 . 66028) (-4215 . 65815)
- (-4216 . 65721) (-4217 . 65630) (-4218 . 65454) (-4219 . 65376)
- (-4220 . 65242) (-4221 . 64911) (-4222 . 64815) (-4223 . 64506)
- (-4224 . 64364) (-4225 . 63903) (-4226 . 63742) (-4227 . 63218)
- (-4228 . 63145) (-4229 . 63075) (-4230 . 62693) (-4231 . 62474)
- (-4232 . 62412) (-4233 . 62324) (-4234 . 62211) (-4235 . 62183)
- (-4236 . 62100) (-4237 . 61866) (-4238 . 61797) (-4239 . 61676)
- (-4240 . 61197) (-4241 . 61107) (-4242 . 61075) (-4243 . 60983)
- (-4244 . 60756) (-4245 . 60660) (-4246 . 60498) (-4247 . 60340)
- (-4248 . 60288) (-4249 . 60188) (-4250 . 59680) (-4251 . 59582)
- (-4252 . 58907) (-4253 . 58855) (-4254 . 58802) (-4255 . 58712)
- (-4256 . 58460) (-4257 . 58376) (-4258 . 57512) (-4259 . 57366)
- (-4260 . 57297) (-4261 . 57241) (-4262 . 57168) (-4263 . 56430)
- (-4264 . 56293) (-4265 . 56084) (-4266 . 56007) (-4267 . 55816)
- (-4268 . 55661) (-4269 . 55584) (-4270 . 55455) (-4271 . 55361)
- (-4272 . 55218) (-4273 . 55119) (-4274 . 54991) (-4275 . 54428)
- (-4276 . 54332) (-4277 . 54259) (-4278 . 54171) (-4279 . 54043)
- (-4280 . 53839) (-4281 . 53738) (-4282 . 53686) (-4283 . 53549)
- (-4284 . 53378) (-4285 . 53292) (-4286 . 53147) (-4287 . 52584)
- (-4288 . 52455) (-4289 . 52340) (-4290 . 52258) (-4291 . 52078)
- (-4292 . 51853) (-4293 . 51477) (-4294 . 51392) (-4295 . 51040)
- (-4296 . 50957) (-4297 . 50895) (-4298 . 50563) (-4299 . 50507)
- (-4300 . 50451) (-4301 . 50350) (-4302 . 49787) (-4303 . 49688)
- (-4304 . 49585) (-4305 . 49278) (-4306 . 49136) (-4307 . 49017)
- (-4308 . 48790) (-4309 . 48666) (-4310 . 48535) (-4311 . 48478)
- (-4312 . 48377) (-4313 . 47701) (-4314 . 47483) (-4315 . 47303)
- (-4316 . 47166) (-4317 . 46914) (-4318 . 46818) (-4319 . 46734)
- (-4320 . 46576) (-4321 . 46475) (-4322 . 46441) (-4323 . 46389)
- (-4324 . 46361) (-4325 . 45685) (-4326 . 45438) (-4327 . 45300)
- (-4328 . 45052) (-4329 . 45003) (-4330 . 44614) (-4331 . 44192)
- (-4332 . 44033) (-4333 . 43813) (-4334 . 43733) (-4335 . 43602)
- (-4336 . 42454) (-4337 . 41778) (-4338 . 41531) (-4339 . 41195)
- (-4340 . 40992) (-4341 . 40680) (-4342 . 40595) (-4343 . 40439)
- (-4344 . 39855) (-4345 . 39803) (-4346 . 39530) (-4347 . 39131)
- (-4348 . 38988) (-4349 . 38832) (-4350 . 38659) (-4351 . 38606)
- (-4352 . 38042) (-4353 . 37832) (-4354 . 37471) (-4355 . 37276)
- (-4356 . 37138) (-4357 . 37070) (-4358 . 36316) (-4359 . 35870)
- (-4360 . 35755) (-4361 . 35687) (-4362 . 33555) (-4363 . 32991)
- (-4364 . 32924) (-4365 . 32496) (-4366 . 32017) (-4367 . 31949)
- (-4368 . 31835) (-4369 . 31337) (-4370 . 31309) (-4371 . 31166)
- (-4372 . 29967) (-4373 . 29403) (-4374 . 29068) (-4375 . 28582)
- (-4376 . 28518) (-4377 . 28375) (-4378 . 28297) (-4379 . 28067)
- (-4380 . 27929) (-4381 . 27851) (-4382 . 27784) (-4383 . 27668)
- (-4384 . 27640) (-4385 . 27578) (-4386 . 27396) (-4387 . 26833)
- (-4388 . 26669) (-4389 . 26277) (-4390 . 26196) (-4391 . 25971)
- (-4392 . 25598) (-4393 . 25513) (-4394 . 25029) (-4395 . 24886)
- (-4396 . 24858) (-4397 . 24729) (-4398 . 24166) (-4399 . 22999)
- (-4400 . 22940) (-4401 . 22814) (-4402 . 22485) (-4403 . 22354)
- (-4404 . 22268) (-4405 . 21732) (-4406 . 21202) (-4407 . 21116)
- (-4408 . 20934) (-4409 . 20846) (-4410 . 20531) (-4411 . 19968)
- (-4412 . 19815) (-4413 . 19659) (-4414 . 19585) (-4415 . 19404)
- (-4416 . 19300) (-4417 . 19141) (-4418 . 18390) (-4419 . 18246)
- (-4420 . 18166) (-4421 . 18073) (-4422 . 16671) (-4423 . 16108)
- (-4424 . 15886) (-4425 . 15755) (-4426 . 15661) (-4427 . 15543)
- (-4428 . 15491) (-4429 . 15439) (-4430 . 15371) (-4431 . 15266)
- (-4432 . 15142) (-4433 . 15054) (-4434 . 14974) (-4435 . 14903)
- (-4436 . 14744) (-4437 . 14640) (-4438 . 14077) (-4439 . 13996)
- (-4440 . 13862) (-4441 . 13424) (-4442 . 13297) (-4443 . 13242)
- (-4444 . 12812) (-4445 . 12711) (-4446 . 12590) (-4447 . 12537)
- (-4448 . 12484) (-4449 . 12282) (-4450 . 12072) (-4451 . 11778)
- (-4452 . 11622) (-4453 . 11527) (-4454 . 11373) (-4455 . 11220)
- (-4456 . 11077) (-4457 . 5563) (-4458 . 5293) (-4459 . 5170)
- (-4460 . 5069) (-4461 . 4989) (-4462 . 4876) (-4463 . 4745)
- (-4464 . 4632) (-4465 . 4580) (-4466 . 4288) (-4467 . 4149)
- (-4468 . 4050) (-4469 . 3973) (-4470 . 3839) (-4471 . 3446)
- (-4472 . 3030) (-4473 . 2157) (-4474 . 2051) (-4475 . 1972)
- (-4476 . 1890) (-4477 . 1784) (-4478 . 1700) (-4479 . 1629)
- (-4480 . 1453) (-4481 . 1365) (-4482 . 923) (-4483 . 704)
- (-4484 . 562) (-4485 . 436) (-4486 . 348) (-4487 . 107) (-4488 . 30)) \ No newline at end of file
+ (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-871))
+ (-4 *7 (-979 *4 *5 *6)) (-5 *2 (-663 (-663 *7)))
+ (-5 *1 (-463 *4 *5 *6 *7)) (-5 *3 (-663 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815))
+ (-4 *7 (-871)) (-4 *8 (-979 *5 *6 *7)) (-5 *2 (-663 (-663 *8)))
+ (-5 *1 (-463 *5 *6 *7 *8)) (-5 *3 (-663 *8)))))
+(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7))
+ (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 *10))
+ (-5 *1 (-643 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1102 *5 *6 *7 *8))
+ (-4 *10 (-1140 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-802 *5 (-888 *6)))) (-5 *4 (-114)) (-4 *5 (-466))
+ (-14 *6 (-663 (-1207))) (-5 *2 (-663 (-1077 *5 *6)))
+ (-5 *1 (-647 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 (-802 *5 (-888 *6)))) (-5 *4 (-114)) (-4 *5 (-466))
+ (-14 *6 (-663 (-1207)))
+ (-5 *2
+ (-663 (-1177 *5 (-545 (-888 *6)) (-888 *6) (-802 *5 (-888 *6)))))
+ (-5 *1 (-647 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7))
+ (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-5 *2 (-663 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7))
+ (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-5 *2 (-663 (-1058 *5 *6 *7 *8))) (-5 *1 (-1058 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-663 (-802 *5 (-888 *6)))) (-5 *4 (-114)) (-4 *5 (-466))
+ (-14 *6 (-663 (-1207))) (-5 *2 (-663 (-1077 *5 *6)))
+ (-5 *1 (-1077 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7))
+ (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871)) (-5 *2 (-663 *1))
+ (-4 *1 (-1102 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7))
+ (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-5 *2 (-663 (-1177 *5 *6 *7 *8))) (-5 *1 (-1177 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-663 *8)) (-5 *4 (-114)) (-4 *8 (-1096 *5 *6 *7))
+ (-4 *5 (-466)) (-4 *6 (-815)) (-4 *7 (-871))
+ (-5 *2 (-663 (-1177 *5 *6 *7 *8))) (-5 *1 (-1177 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-571))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-663 *1))
+ (-4 *1 (-1242 *4 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |cd| (-1189)) (|:| -4389 (-1189))))
+ (-5 *1 (-845)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-114)) (-5 *1 (-851)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-559))))
+(((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1080))
+ (-5 *1 (-877 *5 *2)) (-4 *2 (-876 *5)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-571)) (-4 *3 (-175))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -3822 (-663 *1))))
+ (-4 *1 (-380 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-467 *3 *4 *5 *6))
+ (|:| -3822 (-663 (-467 *3 *4 *5 *6)))))
+ (-5 *1 (-467 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-948))
+ (-14 *5 (-663 (-1207))) (-14 *6 (-1297 (-711 *3))))))
+(((*1 *1) (-12 (-4 *1 (-440 *2)) (-4 *2 (-381)) (-4 *2 (-1132)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-948)) (-5 *2 (-1297 (-1297 (-560)))) (-5 *1 (-480)))))
+(((*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1201 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-466)) (-5 *1 (-1239 *3 *2))
+ (-4 *2 (-13 (-435 *3) (-1233))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1007 *3 *4 *5 *6)) (-4 *3 (-1080)) (-4 *4 (-815))
+ (-4 *5 (-871)) (-4 *6 (-1096 *3 *4 *5)) (-5 *2 (-114)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1189)) (-5 *2 (-1303)) (-5 *1 (-596)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1207)) (-5 *2 (-1303)) (-5 *1 (-1210))))
+ ((*1 *2) (-12 (-5 *2 (-1303)) (-5 *1 (-1210)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1303)) (-5 *1 (-845)))))
+(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1029 *2)) (-4 *2 (-175)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229)))
+ (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1))))
+ (-5 *2 (-1066)) (-5 *1 (-775)))))
+(((*1 *1 *1) (-5 *1 (-549))))
+(((*1 *2 *1) (-12 (-4 *1 (-541)) (-5 *2 (-713 (-1256))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-114)) (-4 *5 (-363))
+ (-5 *2
+ (-2 (|:| |cont| *5)
+ (|:| -2609 (-663 (-2 (|:| |irr| *3) (|:| -4181 (-560)))))))
+ (-5 *1 (-220 *5 *3)) (-4 *3 (-1273 *5)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-560)) (-5 *4 (-711 (-229))) (-5 *5 (-229))
+ (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))
+ (-5 *2 (-1066)) (-5 *1 (-770)))))
+(((*1 *1 *1) (-12 (-4 *1 (-696 *2)) (-4 *2 (-1247)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1189)) (-5 *3 (-560)) (-5 *1 (-248))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-663 (-1189))) (-5 *3 (-560)) (-5 *4 (-1189))
+ (-5 *1 (-248))))
+ ((*1 *1 *1) (-5 *1 (-887)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-560)) (-5 *1 (-887))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1276 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1080)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1189)) (-5 *4 (-1151)) (-5 *2 (-114)) (-5 *1 (-844)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-815))
+ (-4 *5 (-13 (-871) (-10 -8 (-15 -2400 ((-1207) $))))) (-4 *6 (-571))
+ (-5 *2 (-2 (|:| -1651 (-975 *6)) (|:| -3568 (-975 *6))))
+ (-5 *1 (-754 *4 *5 *6 *3)) (-4 *3 (-979 (-421 (-975 *6)) *4 *5)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-663 (-1207))) (-4 *2 (-175))
+ (-4 *4 (-245 (-2256 *5) (-793)))
+ (-14 *6
+ (-1 (-114) (-2 (|:| -1591 *3) (|:| -2030 *4))
+ (-2 (|:| -1591 *3) (|:| -2030 *4))))
+ (-5 *1 (-475 *5 *2 *3 *4 *6 *7)) (-4 *3 (-871))
+ (-4 *7 (-979 *2 *4 (-888 *5))))))
+(((*1 *2 *3) (-12 (-5 *3 (-793)) (-5 *2 (-1 (-391))) (-5 *1 (-1072)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-711 (-560))) (-5 *5 (-114)) (-5 *7 (-711 (-229)))
+ (-5 *3 (-560)) (-5 *6 (-229)) (-5 *2 (-1066)) (-5 *1 (-776)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-793)) (-5 *4 (-948)) (-5 *2 (-1303)) (-5 *1 (-1300))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-793)) (-5 *4 (-948)) (-5 *2 (-1303)) (-5 *1 (-1301)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *6 (-229))
+ (-5 *3 (-560)) (-5 *2 (-1066)) (-5 *1 (-774)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-711 (-229))) (-5 *5 (-711 (-560))) (-5 *3 (-560))
+ (-5 *2 (-1066)) (-5 *1 (-776)))))
+(((*1 *1) (-5 *1 (-450))))
+(((*1 *1) (-5 *1 (-55))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1096 *2 *3 *4)) (-4 *2 (-1080)) (-4 *3 (-815))
+ (-4 *4 (-871)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1185 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
+ (-5 *1 (-1019 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-663 *7)) (-4 *7 (-1096 *4 *5 *6)) (-4 *4 (-466))
+ (-4 *5 (-815)) (-4 *6 (-871)) (-5 *2 (-114))
+ (-5 *1 (-1138 *4 *5 *6 *7 *8)) (-4 *8 (-1102 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-815)) (-4 *5 (-871)) (-4 *6 (-319)) (-5 *2 (-419 *3))
+ (-5 *1 (-764 *4 *5 *6 *3)) (-4 *3 (-979 *6 *4 *5)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-793)) (|:| -1617 *4))) (-5 *5 (-793))
+ (-4 *4 (-979 *6 *7 *8)) (-4 *6 (-466)) (-4 *7 (-815)) (-4 *8 (-871))
+ (-5 *2
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-464 *6 *7 *8 *4)))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-663 (-1201 *13))) (-5 *3 (-1201 *13))
+ (-5 *4 (-663 *12)) (-5 *5 (-663 *10)) (-5 *6 (-663 *13))
+ (-5 *7 (-663 (-663 (-2 (|:| -1439 (-793)) (|:| |pcoef| *13)))))
+ (-5 *8 (-663 (-793))) (-5 *9 (-1297 (-663 (-1201 *10))))
+ (-4 *12 (-871)) (-4 *10 (-319)) (-4 *13 (-979 *10 *11 *12))
+ (-4 *11 (-815)) (-5 *1 (-729 *11 *12 *10 *13)))))
+(((*1 *1) (-5 *1 (-611))))
+(((*1 *2 *1) (-12 (-4 *1 (-1125 *2)) (-4 *2 (-1247)))))
+(((*1 *1 *2) (-12 (-5 *2 (-663 (-887))) (-5 *1 (-887)))))
+((-1332 . 733301) (-1333 . 733244) (-1334 . 733216) (-1335 . 732795)
+ (-1336 . 732505) (-1337 . 732364) (-1338 . 731976) (-1339 . 731902)
+ (-1340 . 731804) (-1341 . 731777) (-1342 . 731749) (-1343 . 731620)
+ (-1344 . 731446) (-1345 . 731252) (-1346 . 731069) (-1347 . 730996)
+ (-1348 . 730703) (-1349 . 730464) (-1350 . 730372) (-1351 . 730041)
+ (-1352 . 729985) (-1353 . 729793) (-1354 . 729594) (-1355 . 729534)
+ (-1356 . 729503) (-1357 . 729326) (-1358 . 729217) (-1359 . 729164)
+ (-1360 . 729045) (-1361 . 728976) (-1362 . 728835) (-1363 . 728739)
+ (-1364 . 728665) (-1365 . 728580) (-1366 . 728512) (-1367 . 728104)
+ (-1368 . 727977) (-1369 . 727940) (-1370 . 727872) (-1371 . 727778)
+ (-1372 . 725810) (-1373 . 725754) (-1374 . 724990) (-1375 . 724631)
+ (-1376 . 724530) (-1377 . 724416) (-1378 . 724306) (-1379 . 724115)
+ (-1380 . 723999) (-1381 . 723947) (-1382 . 723816) (-1383 . 722274)
+ (-1384 . 721988) (-1385 . 721917) (-1386 . 721864) (-1387 . 721757)
+ (-1388 . 721671) (-1389 . 721615) (-1390 . 721519) (-1391 . 720933)
+ (-1392 . 720273) (-1393 . 720167) (-1394 . 720108) (-1395 . 720052)
+ (-1396 . 719172) (-1397 . 719091) (-1398 . 718979) (-1399 . 718880)
+ (-1400 . 718495) (-1401 . 718388) (-1402 . 718316) (-1403 . 718263)
+ (-1404 . 718198) (-1405 . 717922) (-1406 . 717827) (-1407 . 717689)
+ (-1408 . 717526) (-1409 . 717416) (-1410 . 717199) (-1411 . 717046)
+ (-1412 . 716939) (-1413 . 716757) (-1414 . 716544) (-1415 . 716479)
+ (-1416 . 716347) (-1417 . 716286) (-1418 . 715767) (-1419 . 715649)
+ (-1420 . 715578) (-1421 . 715451) (-1422 . 715357) (-1423 . 715259)
+ (-1424 . 715206) (-1425 . 715156) (-1426 . 715085) (-1427 . 715018)
+ (-1428 . 714614) (-1429 . 714533) (-1430 . 714220) (-1431 . 714146)
+ (-1432 . 713927) (-1433 . 713836) (-1434 . 713777) (-1435 . 713683)
+ (-1436 . 710019) (-1437 . 709708) (-1438 . 709554) (-1439 . 709443)
+ (-1440 . 709315) (-1441 . 709242) (-1442 . 709069) (-1443 . 708702)
+ (-1444 . 708651) (-1445 . 708475) (-1446 . 708304) (-1447 . 708231)
+ (-1448 . 708090) (-1449 . 707956) (-1450 . 707832) (-1451 . 707733)
+ (-1452 . 707533) (-1453 . 707450) (-1454 . 707372) (-1455 . 707231)
+ (-1456 . 706984) (-1457 . 706925) (-1458 . 706804) (-1459 . 706734)
+ (-1460 . 704478) (-1461 . 704383) (-1462 . 704203) (-1463 . 703949)
+ (-1464 . 703897) (-1465 . 703412) (-1466 . 703278) (-1467 . 703033)
+ (-1468 . 702956) (-1469 . 702523) (-1470 . 702395) (-1471 . 702020)
+ (-1472 . 701810) (-1473 . 701696) (-1474 . 701639) (-1475 . 701393)
+ (-1476 . 701062) (-1477 . 700938) (-1478 . 700511) (-1479 . 700432)
+ (-1480 . 700289) (-1481 . 700070) (-1482 . 699828) (-1483 . 699694)
+ (-1484 . 699557) (-1485 . 699391) (-1486 . 699295) (-1487 . 699165)
+ (-1488 . 699007) (-1489 . 698913) (-1490 . 698857) (-1491 . 698685)
+ (-1492 . 698405) (-1493 . 698063) (-1494 . 697942) (-1495 . 697800)
+ (-1496 . 697678) (-1497 . 697592) (-1498 . 697404) (-1499 . 697345)
+ (-1500 . 697188) (-1501 . 697050) (-1502 . 696998) (-1503 . 696669)
+ (-1504 . 696585) (-1505 . 696124) (-1506 . 695716) (-1507 . 691716)
+ (-1508 . 691394) (-1509 . 691286) (-1510 . 691145) (-1511 . 691074)
+ (-1512 . 691018) (-1513 . 690916) (-1514 . 690863) (-1515 . 690702)
+ (-1516 . 690557) (-1517 . 690483) (-1518 . 690321) (-1519 . 690178)
+ (-1520 . 690035) (-1521 . 689877) (-1522 . 689849) (-1523 . 689420)
+ (-1524 . 689347) (-1525 . 689202) (-1526 . 689153) (-1527 . 689072)
+ (-1528 . 688791) (-1529 . 688658) (-1530 . 688212) (-1531 . 688117)
+ (-1532 . 688046) (-1533 . 687931) (-1534 . 687755) (-1535 . 687643)
+ (-1536 . 687615) (-1537 . 687365) (-1538 . 687283) (-1539 . 687198)
+ (-1540 . 687129) (-1541 . 686911) (-1542 . 686752) (-1543 . 686669)
+ (-1544 . 686573) (-1545 . 686499) (-1546 . 686465) (-1547 . 686363)
+ (-1548 . 686279) (-1549 . 685957) (-1550 . 685834) (-1551 . 685763)
+ (-1552 . 685685) (-1553 . 685570) (-1554 . 685462) (-1555 . 685407)
+ (-1556 . 684739) (-1557 . 684648) (-1558 . 684581) (-1559 . 684433)
+ (-1560 . 684359) (-1561 . 684185) (-1562 . 684097) (-1563 . 682367)
+ (-1564 . 682266) (-1565 . 681872) (-1566 . 681693) (-1567 . 681599)
+ (-1568 . 681382) (-1569 . 680822) (-1570 . 680547) (-1571 . 680315)
+ (-1572 . 680260) (-1573 . 680040) (-1574 . 679389) (-1575 . 679108)
+ (-1576 . 678984) (-1577 . 678901) (-1578 . 678850) (-1579 . 678749)
+ (-1580 . 678679) (-1581 . 677903) (-1582 . 676723) (-1583 . 676293)
+ (-1584 . 675653) (-1585 . 675514) (-1586 . 675461) (-1587 . 675348)
+ (-1588 . 675244) (-1589 . 675055) (-1590 . 674926) (-1591 . 674599)
+ (-1592 . 674494) (-1593 . 674420) (-1594 . 674267) (-1595 . 674166)
+ (-1596 . 674055) (-1597 . 673897) (-1598 . 673868) (-1599 . 673809)
+ (-1600 . 673689) (-1601 . 673489) (-1602 . 673365) (-1603 . 673182)
+ (-1604 . 671932) (-1605 . 671877) (-1606 . 671805) (-1607 . 671684)
+ (-1608 . 671238) (-1609 . 670846) (-1610 . 670812) (-1611 . 670741)
+ (-1612 . 670668) (-1613 . 670515) (-1614 . 670171) (-1615 . 670061)
+ (-1616 . 669960) (-1617 . 669862) (-1618 . 669778) (-1619 . 669725)
+ (-1620 . 669512) (-1621 . 669065) (-1622 . 668746) (-1623 . 668477)
+ (-1624 . 668191) (-1625 . 668052) (-1626 . 666960) (-1627 . 666689)
+ (-1628 . 666618) (-1629 . 666536) (-1630 . 666456) (-1631 . 666241)
+ (-1632 . 666070) (-1633 . 666017) (-1634 . 665756) (-1635 . 665640)
+ (-1636 . 665541) (-1637 . 665507) (-1638 . 665323) (-1639 . 665256)
+ (-1640 . 665013) (-1641 . 664909) (-1642 . 664794) (-1643 . 664485)
+ (-1644 . 664283) (-1645 . 664181) (-1646 . 661953) (-1647 . 661851)
+ (-1648 . 661672) (-1649 . 661377) (-1650 . 661277) (-1651 . 661176)
+ (-1652 . 651726) (-1653 . 651593) (-1654 . 651505) (-1655 . 651302)
+ (-1656 . 651092) (-1657 . 650797) (-1658 . 650723) (-1659 . 650586)
+ (-1660 . 650531) (-1661 . 650437) (-1662 . 650122) (-1663 . 650062)
+ (-1664 . 649599) (-1665 . 649388) (-1666 . 649302) (-1667 . 649008)
+ (-1668 . 648784) (-1669 . 648174) (-1670 . 647832) (-1671 . 647733)
+ (-1672 . 647554) (-1673 . 647019) (-1674 . 646938) (-1675 . 646785)
+ (-1676 . 646620) (-1677 . 646543) (-1678 . 646387) (-1679 . 646286)
+ (-1680 . 646217) (-1681 . 646150) (-1682 . 646066) (-1683 . 645988)
+ (-1684 . 645685) (-1685 . 645632) (-1686 . 645405) (-1687 . 645325)
+ (-1688 . 645153) (-1689 . 645058) (-1690 . 644540) (-1691 . 644281)
+ (-1692 . 644042) (-1693 . 643918) (-1694 . 643813) (-1695 . 643743)
+ (-1696 . 643665) (-1697 . 643409) (-1698 . 643344) (-1699 . 643191)
+ (-1700 . 643031) (-1701 . 642957) (-1702 . 642797) (-1703 . 642732)
+ (-1704 . 642572) (-1705 . 642520) (-1706 . 641937) (-1707 . 641865)
+ (-1708 . 641765) (-1709 . 641622) (-1710 . 641399) (-1711 . 640597)
+ (-1712 . 640416) (-1713 . 639891) (-1714 . 639610) (-1715 . 639491)
+ (-1716 . 639345) (-1717 . 639189) (-1718 . 639094) (-1719 . 638978)
+ (-1720 . 638877) (-1721 . 638762) (-1722 . 638634) (-1723 . 638476)
+ (-1724 . 638332) (-1725 . 637578) (-1726 . 637460) (-1727 . 637374)
+ (-1728 . 637058) (-1729 . 636991) (-1730 . 636903) (-1731 . 636781)
+ (-1732 . 636701) (-1733 . 636624) (-1734 . 636523) (-1735 . 636349)
+ (-1736 . 636295) (-1737 . 635768) (-1738 . 635673) (-1739 . 635601)
+ (-1740 . 635431) (-1741 . 635253) (-1742 . 635122) (-1743 . 635094)
+ (-1744 . 635011) (-1745 . 634903) (-1746 . 634832) (-1747 . 634633)
+ (-1748 . 634339) (-1749 . 634290) (-1750 . 634204) (-1751 . 634126)
+ (-1752 . 634013) (-1753 . 633911) (-1754 . 633765) (-1755 . 633572)
+ (-1756 . 633164) (-1757 . 633136) (-1758 . 633029) (-1759 . 632959)
+ (-1760 . 632746) (-1761 . 632663) (-1762 . 632611) (-1763 . 632559)
+ (-1764 . 632485) (-1765 . 632411) (-1766 . 632323) (-1767 . 631481)
+ (-1768 . 630972) (-1769 . 630720) (-1770 . 630658) (-1771 . 630601)
+ (-1772 . 630351) (-1773 . 630059) (-1774 . 629978) (-1775 . 629731)
+ (-1776 . 629654) (-1777 . 629617) (-1778 . 626008) (-1779 . 625945)
+ (-1780 . 625775) (-1781 . 625626) (-1782 . 625544) (-1783 . 625445)
+ (-1784 . 625306) (-1785 . 625136) (-1786 . 624887) (-1787 . 624455)
+ (-1788 . 624400) (-1789 . 624138) (-1790 . 623684) (-1791 . 623552)
+ (-1792 . 623471) (-1793 . 623353) (-1794 . 623189) (-1795 . 623027)
+ (-1796 . 622881) (-1797 . 622782) (-1798 . 622296) (-1799 . 622208)
+ (-1800 . 622067) (-1801 . 621964) (-1802 . 621611) (-1803 . 621333)
+ (-1804 . 620999) (-1805 . 620922) (-1806 . 620192) (-1807 . 619989)
+ (-1808 . 619816) (-1809 . 619739) (-1810 . 619645) (-1811 . 619412)
+ (-1812 . 618789) (-1813 . 618669) (-1814 . 618570) (-1815 . 618234)
+ (-1816 . 618012) (-1817 . 617717) (-1818 . 617516) (-1819 . 616973)
+ (-1820 . 616243) (-1821 . 616075) (-1822 . 615895) (-1823 . 615761)
+ (-1824 . 615702) (-1825 . 615608) (-1826 . 615479) (-1827 . 615331)
+ (-1828 . 614949) (-1829 . 614739) (-1830 . 614686) (-1831 . 614597)
+ (-1832 . 613920) (-1833 . 613892) (-1834 . 613740) (-1835 . 613634)
+ (-1836 . 613533) (-1837 . 613505) (-1838 . 613408) (-1839 . 612749)
+ (-1840 . 612411) (-1841 . 611981) (-1842 . 611928) (-1843 . 611875)
+ (-1844 . 611310) (-1845 . 611192) (-1846 . 611096) (-1847 . 611017)
+ (-1848 . 610964) (-1849 . 610873) (-1850 . 610796) (-1851 . 610683)
+ (-1852 . 610615) (-1853 . 610479) (-1854 . 610391) (-1855 . 610334)
+ (-1856 . 609769) (-1857 . 609653) (-1858 . 609619) (-1859 . 609513)
+ (-1860 . 609338) (-1861 . 609251) (-1862 . 609199) (-1863 . 609125)
+ (-1864 . 608934) (-1865 . 608797) (-1866 . 608213) (-1867 . 608141)
+ (-1868 . 608085) (-1869 . 606742) (-1870 . 606177) (-1871 . 606073)
+ (-1872 . 605763) (-1873 . 605679) (-1874 . 605502) (-1875 . 605403)
+ (-1876 . 605258) (-1877 . 605007) (-1878 . 604951) (-1879 . 604878)
+ (-1880 . 604755) (-1881 . 604652) (-1882 . 603977) (-1883 . 603922)
+ (-1884 . 603551) (-1885 . 603480) (-1886 . 603210) (-1887 . 602972)
+ (-1888 . 602919) (-1889 . 602833) (-1890 . 602681) (-1891 . 602440)
+ (-1892 . 602302) (-1893 . 601756) (-1894 . 601381) (-1895 . 600706)
+ (-1896 . 600587) (-1897 . 600501) (-1898 . 600325) (-1899 . 600211)
+ (-1900 . 600064) (-1901 . 599940) (-1902 . 599751) (-1903 . 599689)
+ (-1904 . 599615) (-1905 . 599565) (-1906 . 598598) (-1907 . 597860)
+ (-1908 . 597775) (-1909 . 597693) (-1910 . 597605) (-1911 . 597546)
+ (-1912 . 597331) (-1913 . 597229) (-1914 . 596826) (-1915 . 596773)
+ (-1916 . 595708) (-1917 . 595631) (-1918 . 595344) (-1919 . 595275)
+ (-1920 . 594712) (-1921 . 594566) (-1922 . 594515) (-1923 . 594296)
+ (-1924 . 594137) (-1925 . 594077) (-1926 . 593887) (-1927 . 592999)
+ (-1928 . 592777) (-1929 . 592682) (-1930 . 592524) (-1931 . 592246)
+ (-1932 . 591683) (-1933 . 591568) (-1934 . 591417) (-1935 . 591275)
+ (-1936 . 591222) (-1937 . 591000) (-1938 . 589897) (-1939 . 589739)
+ (-1940 . 589707) (-1941 . 589624) (-1942 . 589596) (-1943 . 589567)
+ (-1944 . 589389) (-1945 . 588826) (-1946 . 587986) (-1947 . 587855)
+ (-1948 . 587729) (-1949 . 587095) (-1950 . 587045) (-1951 . 586850)
+ (-1952 . 586781) (-1953 . 586184) (-1954 . 586124) (-1955 . 585494)
+ (-1956 . 585263) (-1957 . 584549) (-1958 . 583873) (-1959 . 583599)
+ (-1960 . 583533) (-1961 . 583445) (-1962 . 583167) (-1963 . 582945)
+ (-1964 . 582917) (-1965 . 582639) (-1966 . 582569) (-1967 . 581935)
+ (-1968 . 581868) (-1969 . 581715) (-1970 . 581579) (-1971 . 581417)
+ (-1972 . 580741) (-1973 . 580626) (-1974 . 580572) (-1975 . 580331)
+ (-1976 . 580106) (-1977 . 580032) (-1978 . 579814) (-1979 . 579698)
+ (-1980 . 579633) (-1981 . 579526) (-1982 . 578850) (-1983 . 578798)
+ (-1984 . 578631) (-1985 . 578554) (-1986 . 578465) (-1987 . 578326)
+ (-1988 . 578225) (-1989 . 577777) (-1990 . 577531) (-1991 . 574750)
+ (-1992 . 574186) (-1993 . 574134) (-1994 . 573977) (-1995 . 573869)
+ (-1996 . 573808) (-1997 . 573387) (-1998 . 573334) (-1999 . 573239)
+ (-2000 . 573147) (-2001 . 572980) (-2002 . 572843) (-2003 . 572279)
+ (-2004 . 572009) (-2005 . 571956) (-2006 . 571883) (-2007 . 571679)
+ (-2008 . 571611) (-2009 . 570179) (-2010 . 570083) (-2011 . 569765)
+ (-2012 . 569692) (-2013 . 569128) (-2014 . 569042) (-2015 . 568863)
+ (-2016 . 568505) (-2017 . 568319) (-2018 . 568213) (-2019 . 568129)
+ (-2020 . 567986) (-2021 . 567909) (-2022 . 567346) (-2023 . 567019)
+ (-2024 . 566800) (-2025 . 566769) (-2026 . 566545) (-2027 . 566478)
+ (-2028 . 566365) (-2029 . 566173) (-2030 . 565705) (-2031 . 565523)
+ (-2032 . 564960) (-2033 . 564836) (-2034 . 564779) (-2035 . 564658)
+ (-2036 . 564560) (-2037 . 564409) (-2038 . 564163) (-2039 . 564093)
+ (-2040 . 563970) (-2041 . 563917) (-2042 . 563354) (-2043 . 563241)
+ (-2044 . 563134) (-2045 . 563055) (-2046 . 562960) (-2047 . 562788)
+ (-2048 . 562686) (-2049 . 562606) (-2050 . 562043) (-2051 . 561875)
+ (-2052 . 561822) (-2053 . 561767) (-2054 . 561321) (-2055 . 561248)
+ (-2056 . 561142) (-2057 . 560843) (-2058 . 560769) (-2059 . 560206)
+ (-2060 . 559543) (-2061 . 559249) (-2062 . 559196) (-2063 . 558729)
+ (-2064 . 558069) (-2065 . 557961) (-2066 . 557833) (-2067 . 557699)
+ (-2068 . 557607) (-2069 . 557411) (-2070 . 557115) (-2071 . 557063)
+ (-2072 . 556897) (-2073 . 556846) (-2074 . 556664) (-2075 . 556476)
+ (-2076 . 556190) (-2077 . 556036) (-2078 . 555941) (-2079 . 555725)
+ (-2080 . 555652) (-2081 . 555528) (-2082 . 555446) (-2083 . 555318)
+ (-2084 . 553532) (-2085 . 553116) (-2086 . 552992) (-2087 . 552514)
+ (-2088 . 552462) (-2089 . 552366) (-2090 . 552154) (-2091 . 551411)
+ (-2092 . 551358) (-2093 . 551054) (-2094 . 550936) (-2095 . 550726)
+ (-2096 . 550338) (-2097 . 550120) (-2098 . 549925) (-2099 . 549537)
+ (-2100 . 549485) (-2101 . 549418) (-2102 . 549366) (-2103 . 549307)
+ (-2104 . 549230) (-2105 . 548756) (-2106 . 548706) (-2107 . 548548)
+ (-2108 . 548452) (-2109 . 548237) (-2110 . 548209) (-2111 . 547535)
+ (-2112 . 547405) (-2113 . 547277) (-2114 . 547071) (-2115 . 546886)
+ (-2116 . 546834) (-2117 . 546754) (-2118 . 546558) (-2119 . 546463)
+ (-2120 . 546310) (-2121 . 546238) (-2122 . 546116) (-2123 . 546036)
+ (-2124 . 545978) (-2125 . 545896) (-2126 . 545802) (-2127 . 545725)
+ (-2128 . 545338) (-2129 . 545241) (-2130 . 545145) (-2131 . 545092)
+ (-2132 . 544931) (-2133 . 544771) (-2134 . 544632) (-2135 . 544417)
+ (-2136 . 544364) (-2137 . 544206) (-2138 . 544151) (-2139 . 544078)
+ (-2140 . 543969) (-2141 . 542817) (-2142 . 542598) (-2143 . 542529)
+ (-2144 . 542314) (-2145 . 542214) (-2146 . 542065) (-2147 . 541867)
+ (-2148 . 541784) (-2149 . 541660) (-2150 . 541564) (-2151 . 541507)
+ (-2152 . 541316) (-2153 . 541063) (-2154 . 540461) (-2155 . 540376)
+ (-2156 . 539865) (-2157 . 539785) (-2158 . 539730) (-2159 . 539492)
+ (-2160 . 539190) (-2161 . 539087) (-2162 . 539019) (-2163 . 538879)
+ (-2164 . 538802) (-2165 . 538610) (-2166 . 538558) (-2167 . 538054)
+ (-2168 . 537868) (-2169 . 537702) (-2170 . 537618) (-2171 . 537220)
+ (-2172 . 537192) (-2173 . 537121) (-2174 . 536779) (-2175 . 536600)
+ (-2176 . 536517) (-2177 . 536450) (-2178 . 536290) (-2179 . 536131)
+ (-2180 . 536054) (-2181 . 535885) (-2182 . 535397) (-2183 . 534899)
+ (-2184 . 534700) (-2185 . 534599) (-2186 . 534502) (-2187 . 534405)
+ (-2188 . 533981) (-2189 . 533947) (-2190 . 533828) (-2191 . 533733)
+ (-2192 . 533536) (-2193 . 533349) (-2194 . 533321) (-2195 . 533293)
+ (-2196 . 533121) (-2197 . 533024) (-2198 . 532992) (-2199 . 532783)
+ (-2200 . 532660) (-2201 . 532348) (-2202 . 532269) (-2203 . 532195)
+ (-2204 . 532121) (-2205 . 531994) (-2206 . 531820) (-2207 . 531001)
+ (-2208 . 530858) (-12 . 530686) (-2210 . 530571) (-2211 . 530105)
+ (-2212 . 529949) (-2213 . 529770) (-2214 . 529609) (-2215 . 529418)
+ (-2216 . 529314) (-2217 . 529259) (-2218 . 529119) (-2219 . 527920)
+ (-2220 . 527837) (-2221 . 527674) (-2222 . 527228) (-2223 . 527126)
+ (-2224 . 526951) (-2225 . 526898) (-2226 . 526846) (-2227 . 526773)
+ (-2228 . 526621) (-2229 . 526519) (-2230 . 526402) (-2231 . 526067)
+ (-2232 . 526033) (-2233 . 525171) (-2234 . 525118) (-2235 . 525040)
+ (-2236 . 524915) (-2237 . 524853) (-2238 . 524621) (-2239 . 523863)
+ (-2240 . 523310) (-2241 . 523231) (-2242 . 523167) (-2243 . 523080)
+ (-2244 . 522884) (-2245 . 522675) (-2246 . 522407) (-2247 . 521896)
+ (-2248 . 521800) (-2249 . 521684) (-2250 . 521441) (-2251 . 521374)
+ (-2252 . 521017) (-2253 . 520811) (-2254 . 520668) (-2255 . 520571)
+ (-2256 . 520153) (-2257 . 518372) (-2258 . 518257) (-2259 . 518169)
+ (-2260 . 503937) (-2261 . 503775) (-2262 . 503708) (-2263 . 503523)
+ (-2264 . 503141) (-2265 . 503010) (-2266 . 502609) (-2267 . 502531)
+ (-2268 . 502353) (-2269 . 502322) (-2270 . 502030) (-2271 . 501774)
+ (-2272 . 501596) (-2273 . 501455) (-2274 . 501400) (-2275 . 501346)
+ (-2276 . 501201) (-2277 . 500774) (-2278 . 500544) (-2279 . 500463)
+ (-2280 . 500389) (-2281 . 500246) (-2282 . 499997) (-2283 . 499815)
+ (-2284 . 499632) (-2285 . 499530) (-2286 . 499433) (-2287 . 499290)
+ (-2288 . 498997) (-2289 . 498859) (-2290 . 498640) (-2291 . 498507)
+ (-2292 . 498452) (-2293 . 498167) (-2294 . 497990) (-2295 . 497874)
+ (-2296 . 497815) (-2297 . 497613) (-2298 . 497535) (-2299 . 497359)
+ (-2300 . 497325) (-2301 . 496673) (-2302 . 496587) (-2303 . 496514)
+ (-2304 . 496441) (-2305 . 496259) (-2306 . 495914) (-2307 . 495763)
+ (-2308 . 495696) (* . 491582) (-2310 . 491142) (-2311 . 491108)
+ (-2312 . 491016) (-2313 . 490770) (-2314 . 490691) (-2315 . 490587)
+ (-2316 . 490489) (-2317 . 490394) (-2318 . 490365) (-2319 . 490337)
+ (-2320 . 490251) (-2321 . 490145) (-2322 . 490058) (-2323 . 490006)
+ (-2324 . 489924) (-2325 . 489853) (-2326 . 489722) (-2327 . 489442)
+ (-2328 . 489260) (-2329 . 489193) (-2330 . 489055) (-2331 . 488815)
+ (-2332 . 488787) (-2333 . 488562) (-2334 . 488364) (-2335 . 488012)
+ (-2336 . 487308) (-2337 . 487144) (-2338 . 487116) (-2339 . 486994)
+ (-2340 . 486722) (-2341 . 486629) (-2342 . 486576) (-2343 . 486085)
+ (-2344 . 485990) (-2345 . 485630) (-2346 . 485444) (-2347 . 485222)
+ (-2348 . 485138) (-2349 . 484746) (-2350 . 484625) (-2351 . 484573)
+ (-2352 . 484442) (-2353 . 484414) (-2354 . 484295) (-2355 . 484209)
+ (-2356 . 484153) (-2357 . 484082) (-2358 . 483964) (-2359 . 483443)
+ (-2360 . 483362) (-2361 . 483133) (-2362 . 482902) (-2363 . 482798)
+ (-2364 . 482666) (-2365 . 482571) (-2366 . 482454) (-2367 . 482246)
+ (-2368 . 482052) (-2369 . 481997) (-2370 . 481940) (-2371 . 477990)
+ (-2372 . 477765) (-2373 . 477678) (-2374 . 477601) (-2375 . 477359)
+ (-2376 . 477199) (-2377 . 477083) (-2378 . 476988) (-2379 . 476917)
+ (-2380 . 476858) (-2381 . 476700) (-2382 . 476605) (-2383 . 476577)
+ (-2384 . 476204) (-2385 . 476063) (-2386 . 475904) (-2387 . 475617)
+ (-2388 . 475445) (-2389 . 475281) (-2390 . 475007) (-2391 . 474899)
+ (-2392 . 474871) (-2393 . 474691) (-2394 . 474606) (-2395 . 474352)
+ (-2396 . 474265) (-2397 . 474062) (-2398 . 473976) (-2399 . 473881)
+ (-2400 . 470214) (-2401 . 470117) (-2402 . 469733) (-2403 . 469424)
+ (-2404 . 469290) (-2405 . 469117) (-2406 . 469036) (-2407 . 468552)
+ (-2408 . 468524) (-2409 . 468380) (-2410 . 468062) (-2411 . 467944)
+ (-2412 . 467885) (-2413 . 467788) (-2414 . 467549) (-2415 . 467466)
+ (-2416 . 467323) (-2417 . 467237) (-2418 . 467209) (-2419 . 467149)
+ (-2420 . 467075) (-2421 . 466955) (-2422 . 466903) (-2423 . 466798)
+ (-2424 . 466702) (-2425 . 466623) (-2426 . 466486) (-2427 . 466458)
+ (-2428 . 466315) (-2429 . 465129) (-2430 . 465077) (-2431 . 464929)
+ (-2432 . 464844) (-2433 . 464729) (-2434 . 464648) (-2435 . 464536)
+ (-2436 . 464432) (-2437 . 463773) (-2438 . 463644) (-2439 . 463434)
+ (-2440 . 463339) (-2441 . 462157) (-2442 . 462108) (-2443 . 461879)
+ (-2444 . 461669) (-2445 . 461430) (-2446 . 461380) (-2447 . 461222)
+ (-2448 . 461134) (-2449 . 460975) (-2450 . 460916) (-2451 . 460815)
+ (-2452 . 460737) (-2453 . 458529) (-2454 . 458089) (-2455 . 457832)
+ (-2456 . 457719) (-2457 . 457542) (-2458 . 456361) (-2459 . 456264)
+ (-2460 . 456154) (-2461 . 456126) (-2462 . 451966) (-2463 . 451840)
+ (-2464 . 451739) (-2465 . 451546) (-2466 . 451063) (-2467 . 450918)
+ (-2468 . 450845) (-2469 . 449547) (-2470 . 449452) (-2471 . 449364)
+ (-2472 . 449035) (-2473 . 448331) (-2474 . 448221) (-2475 . 448077)
+ (-2476 . 447955) (-2477 . 447729) (-2478 . 447658) (-2479 . 447522)
+ (-2480 . 446977) (-2481 . 446900) (-2482 . 446769) (-2483 . 446674)
+ (-2484 . 445993) (-2485 . 445896) (-2486 . 445310) (-2487 . 445010)
+ (-2488 . 444772) (-2489 . 444684) (-2490 . 444451) (-2491 . 444233)
+ (-2492 . 444147) (-2493 . 444090) (-2494 . 443908) (-2495 . 443836)
+ (-2496 . 442766) (-2497 . 442696) (-2498 . 442623) (-2499 . 442493)
+ (-2500 . 441926) (-2501 . 441390) (-2502 . 441225) (-2503 . 440972)
+ (-2504 . 440736) (-2505 . 440388) (-2506 . 440288) (-2507 . 440132)
+ (-2508 . 439933) (-2509 . 439849) (-2510 . 439490) (-2511 . 439361)
+ (-2512 . 439232) (-2513 . 438702) (-2514 . 438564) (-2515 . 437363)
+ (-2516 . 437214) (-2517 . 437107) (-2518 . 436977) (-2519 . 436925)
+ (-2520 . 436851) (-2521 . 436706) (-2522 . 436639) (-2523 . 436377)
+ (-2524 . 436090) (-2525 . 435852) (-2526 . 435766) (-2527 . 435699)
+ (-2528 . 435647) (-2529 . 435591) (-2530 . 435513) (-2531 . 435433)
+ (-2532 . 435280) (-2533 . 435000) (-2534 . 434831) (-2535 . 434779)
+ (-2536 . 434597) (-2537 . 434536) (-2538 . 434448) (-2539 . 434257)
+ (-2540 . 434178) (-2541 . 434007) (-2542 . 433906) (-2543 . 433820)
+ (-2544 . 433710) (-2545 . 433622) (-2546 . 433463) (-2547 . 433154)
+ (-2548 . 433039) (-2549 . 432966) (-2550 . 432882) (-2551 . 432784)
+ (-2552 . 431848) (-2553 . 431638) (-2554 . 431534) (-2555 . 431237)
+ (-2556 . 431082) (-2557 . 430767) (-2558 . 430248) (-2559 . 430174)
+ (-2560 . 430059) (-2561 . 429980) (-2562 . 429920) (-2563 . 429405)
+ (-2564 . 429292) (-2565 . 429166) (-2566 . 429061) (-2567 . 428815)
+ (-2568 . 428463) (-2569 . 428310) (-2570 . 428191) (-2571 . 424128)
+ (-2572 . 423997) (-2573 . 423944) (-2574 . 423767) (-2575 . 423662)
+ (-2576 . 423610) (-2577 . 423582) (-2578 . 423529) (-2579 . 423373)
+ (-2580 . 423306) (-2581 . 423153) (-2582 . 423079) (-2583 . 423005)
+ (-2584 . 422755) (-2585 . 422600) (-2586 . 422448) (-2587 . 422351)
+ (-2588 . 422292) (-2589 . 422221) (-2590 . 422014) (-2591 . 421861)
+ (-2592 . 421757) (-2593 . 421628) (-2594 . 421561) (-2595 . 419984)
+ (-2596 . 419684) (-2597 . 419451) (-2598 . 419381) (-2599 . 419325)
+ (-2600 . 419209) (-2601 . 419050) (-2602 . 418832) (-2603 . 418746)
+ (-2604 . 418665) (-2605 . 418586) (-2606 . 418450) (-2607 . 418171)
+ (-2608 . 417818) (-2609 . 417478) (-2610 . 417390) (-2611 . 416639)
+ (-2612 . 416551) (-2613 . 416466) (-2614 . 414121) (-2615 . 414053)
+ (-2616 . 413981) (-2617 . 413930) (-2618 . 413851) (-2619 . 413594)
+ (-2620 . 413467) (-2621 . 413354) (-2622 . 413210) (-2623 . 413012)
+ (-2624 . 412869) (-2625 . 412511) (-2626 . 412425) (-2627 . 412328)
+ (-2628 . 412123) (-2629 . 412095) (-2630 . 412000) (-2631 . 411876)
+ (-2632 . 411778) (-2633 . 411710) (-2634 . 411617) (-2635 . 411524)
+ (-2636 . 411427) (-2637 . 411317) (-2638 . 411265) (-2639 . 411154)
+ (-2640 . 411048) (-2641 . 410883) (-2642 . 410746) (-2643 . 410593)
+ (-2644 . 410371) (-2645 . 410307) (-2646 . 410136) (-2647 . 410074)
+ (-2648 . 409936) (-2649 . 409846) (-2650 . 409429) (-2651 . 409346)
+ (-2652 . 409291) (-2653 . 409232) (-2654 . 409142) (-2655 . 408965)
+ (-2656 . 408888) (-2657 . 408723) (-2658 . 408368) (-2659 . 408193)
+ (-2660 . 407857) (-2661 . 407726) (-2662 . 407632) (-2663 . 407552)
+ (-2664 . 406932) (-2665 . 406822) (-2666 . 406624) (-2667 . 406572)
+ (-2668 . 406378) (-2669 . 405580) (-2670 . 405524) (-2671 . 405278)
+ (-2672 . 405151) (-2673 . 405099) (-2674 . 405005) (-2675 . 404925)
+ (-2676 . 404872) (-2677 . 404820) (-2678 . 404676) (-2679 . 404602)
+ (-2680 . 404507) (-2681 . 404396) (-2682 . 404241) (-2683 . 404137)
+ (-2684 . 404085) (-2685 . 403211) (-2686 . 403059) (-2687 . 402946)
+ (-2688 . 402801) (-2689 . 402683) (-2690 . 402333) (-2691 . 402086)
+ (-2692 . 401910) (-2693 . 401807) (-2694 . 401739) (-2695 . 401705)
+ (-2696 . 401582) (-2697 . 401466) (-2698 . 401193) (-2699 . 400827)
+ (-2700 . 400731) (-2701 . 400473) (-2702 . 400079) (-2703 . 399935)
+ (-2704 . 399197) (-2705 . 399092) (-2706 . 398786) (-2707 . 397913)
+ (-2708 . 397813) (-2709 . 397753) (-2710 . 397598) (-2711 . 397514)
+ (-2712 . 397202) (-2713 . 397036) (-2714 . 396738) (-2715 . 396637)
+ (-2716 . 396549) (-2717 . 396381) (-2718 . 396258) (-2719 . 395772)
+ (-2720 . 395649) (-2721 . 395561) (-2722 . 395493) (-2723 . 395400)
+ (-2724 . 395329) (-2725 . 395141) (-2726 . 394924) (-2727 . 394874)
+ (-2728 . 394790) (-2729 . 394509) (-2730 . 394238) (-2731 . 394100)
+ (-2732 . 393793) (-2733 . 393634) (-2734 . 393491) (-2735 . 393431)
+ (-2736 . 392927) (-2737 . 392831) (-2738 . 392685) (-2739 . 392568)
+ (-2740 . 392360) (-2741 . 392230) (-2742 . 392057) (-2743 . 391239)
+ (-2744 . 391135) (-2745 . 391065) (-2746 . 390987) (-2747 . 390887)
+ (-2748 . 390782) (-2749 . 390644) (-2750 . 390489) (-2751 . 390419)
+ (-2752 . 390277) (-2753 . 389966) (-2754 . 389456) (-2755 . 389375)
+ (-2756 . 389343) (-2757 . 389258) (-2758 . 389142) (-2759 . 389083)
+ (-2760 . 389015) (-2761 . 388948) (-2762 . 388747) (-2763 . 388691)
+ (-2764 . 388488) (-2765 . 388354) (-2766 . 388283) (-2767 . 388148)
+ (-2768 . 387975) (-2769 . 387814) (-2770 . 387691) (-2771 . 387177)
+ (-2772 . 387106) (-2773 . 387054) (-2774 . 386913) (-2775 . 386475)
+ (-2776 . 386444) (-2777 . 386198) (-2778 . 386100) (-2779 . 385720)
+ (-2780 . 385580) (-2781 . 385478) (-2782 . 385425) (-2783 . 385283)
+ (-2784 . 385255) (-2785 . 385188) (-2786 . 385132) (-2787 . 385005)
+ (-2788 . 384598) (-2789 . 384352) (-2790 . 384253) (-2791 . 384198)
+ (-2792 . 384075) (-2793 . 383746) (-2794 . 383669) (-2795 . 383576)
+ (-2796 . 383520) (-2797 . 383436) (-2798 . 383189) (-2799 . 383105)
+ (-2800 . 383009) (-2801 . 382896) (-2802 . 382759) (-2803 . 382707)
+ (-2804 . 382670) (-2805 . 382620) (-2806 . 382268) (-2807 . 382216)
+ (-2808 . 381853) (-2809 . 381757) (-2810 . 381271) (-2811 . 381243)
+ (-2812 . 381184) (-2813 . 381068) (-2814 . 380553) (-2815 . 380374)
+ (-2816 . 380113) (-2817 . 380030) (-2818 . 379973) (-2819 . 379842)
+ (-2820 . 379536) (-2821 . 379473) (-2822 . 379391) (-2823 . 379168)
+ (-2824 . 379137) (-2825 . 378853) (-2826 . 377965) (-2827 . 377633)
+ (-2828 . 377551) (-2829 . 377464) (-2830 . 377368) (-2831 . 376141)
+ (-2832 . 375764) (-2833 . 374848) (-2834 . 374752) (-2835 . 374674)
+ (-2836 . 374504) (-2837 . 374448) (-2838 . 374296) (-2839 . 374201)
+ (-2840 . 374043) (-2841 . 374009) (-2842 . 373885) (-2843 . 373244)
+ (-2844 . 373173) (-2845 . 373057) (-2846 . 372858) (-2847 . 372712)
+ (-2848 . 372554) (-2849 . 372162) (-2850 . 372061) (-2851 . 371637)
+ (-2852 . 371489) (-2853 . 371461) (-2854 . 371305) (-2855 . 371238)
+ (-2856 . 371023) (-2857 . 370917) (-2858 . 370777) (-2859 . 370708)
+ (-2860 . 370568) (-2861 . 370192) (-2862 . 370093) (-2863 . 370023)
+ (-2864 . 369954) (-2865 . 369899) (-2866 . 369846) (-2867 . 369742)
+ (-2868 . 369469) (-2869 . 369048) (-2870 . 368921) (-2871 . 368801)
+ (-2872 . 368695) (-2873 . 367478) (-2874 . 367260) (-2875 . 367114)
+ (-2876 . 367061) (-2877 . 366958) (-2878 . 366860) (-2879 . 366786)
+ (-2880 . 366522) (-2881 . 366453) (-2882 . 363612) (-2883 . 363459)
+ (-2884 . 363306) (-2885 . 363179) (-2886 . 363127) (-2887 . 363011)
+ (-2888 . 362837) (-2889 . 362530) (-2890 . 362218) (-2891 . 362060)
+ (-2892 . 361861) (-2893 . 361643) (-2894 . 361557) (-2895 . 361163)
+ (-2896 . 361110) (-2897 . 360980) (-2898 . 360930) (-2899 . 360818)
+ (-2900 . 360676) (-2901 . 360623) (-2902 . 360507) (-2903 . 360186)
+ (-2904 . 360108) (-2905 . 359432) (-2906 . 359377) (-2907 . 359290)
+ (-2908 . 359176) (-2909 . 359148) (-2910 . 358858) (-2911 . 358790)
+ (-2912 . 358647) (-2913 . 358351) (-2914 . 358268) (-2915 . 358149)
+ (-2916 . 357959) (-2917 . 357901) (-2918 . 357848) (-2919 . 357524)
+ (-2920 . 355935) (-2921 . 355767) (-2922 . 355700) (-2923 . 355574)
+ (-2924 . 355315) (-2925 . 355013) (-2926 . 354596) (-2927 . 354393)
+ (-2928 . 353212) (-2929 . 352985) (-2930 . 352885) (-2931 . 352763)
+ (-2932 . 352485) (-2933 . 352172) (-2934 . 352035) (-2935 . 351961)
+ (-2936 . 350195) (-2937 . 350117) (-2938 . 350033) (-2939 . 349764)
+ (-2940 . 349632) (-2941 . 349573) (-2942 . 349449) (-2943 . 349176)
+ (-2944 . 348834) (-2945 . 348726) (-2946 . 348050) (-2947 . 347734)
+ (-2948 . 347579) (-2949 . 346124) (-2950 . 346021) (-2951 . 345896)
+ (-2952 . 345793) (-2953 . 345483) (-2954 . 345352) (-2955 . 345286)
+ (-2956 . 344898) (-2957 . 344792) (-2958 . 344525) (-2959 . 344365)
+ (-2960 . 344242) (-2961 . 342814) (-2962 . 341324) (-2963 . 341250)
+ (-2964 . 341132) (-2965 . 341065) (-2966 . 340576) (-2967 . 340475)
+ (-2968 . 340165) (-2969 . 340070) (-2970 . 339710) (-2971 . 339520)
+ (-2972 . 339224) (-2973 . 339150) (-2974 . 338942) (-2975 . 338829)
+ (-2976 . 338732) (-2977 . 338653) (-2978 . 337568) (-2979 . 337323)
+ (-2980 . 337105) (-2981 . 337021) (-2982 . 336880) (-2983 . 336755)
+ (-2984 . 336626) (-2985 . 336503) (-2986 . 335767) (-2987 . 335541)
+ (-2988 . 335438) (-2989 . 335379) (-2990 . 335308) (-2991 . 335128)
+ (-2992 . 334967) (-2993 . 334865) (-2994 . 334836) (-2995 . 334754)
+ (-2996 . 334614) (-2997 . 334399) (-2998 . 334343) (-2999 . 334084)
+ (-3000 . 333921) (-3001 . 333510) (-3002 . 333364) (-3003 . 333266)
+ (-3004 . 333020) (-3005 . 332883) (-3006 . 332824) (-3007 . 332753)
+ (-3008 . 332438) (-3009 . 332307) (-3010 . 332235) (-3011 . 332107)
+ (-3012 . 331533) (-3013 . 331371) (-3014 . 331288) (-3015 . 330552)
+ (-3016 . 330300) (-3017 . 330165) (-3018 . 330036) (-3019 . 328180)
+ (-3020 . 327916) (-3021 . 327860) (-3022 . 327807) (-3023 . 327730)
+ (-3024 . 327085) (-3025 . 326904) (-3026 . 326851) (-3027 . 326586)
+ (-3028 . 326468) (-3029 . 326372) (-3030 . 326322) (-3031 . 326158)
+ (-3032 . 325967) (-3033 . 325368) (-3034 . 325258) (-3035 . 325230)
+ (-3036 . 325136) (-3037 . 323964) (-3038 . 323692) (-3039 . 323454)
+ (-3040 . 323377) (-3041 . 323264) (-3042 . 323180) (-3043 . 322629)
+ (-3044 . 322561) (-3045 . 322492) (-3046 . 322399) (-3047 . 322326)
+ (-3048 . 322211) (-3049 . 322045) (-3050 . 321693) (-3051 . 321366)
+ (-3052 . 321207) (-3053 . 321049) (-3054 . 320956) (-3055 . 320639)
+ (-3056 . 320574) (-3057 . 320200) (-3058 . 320021) (-3059 . 319729)
+ (-3060 . 319628) (-3061 . 319516) (-3062 . 318380) (-3063 . 318239)
+ (-3064 . 318162) (-3065 . 318109) (-3066 . 317956) (-3067 . 316754)
+ (-3068 . 316547) (-3069 . 316409) (-3070 . 316313) (-3071 . 316261)
+ (-3072 . 316199) (-3073 . 316121) (-3074 . 315840) (-3075 . 315510)
+ (-3076 . 315428) (-3077 . 315310) (-3078 . 315276) (-3079 . 315192)
+ (-3080 . 315039) (-3081 . 314812) (-3082 . 314708) (-3083 . 314481)
+ (-3084 . 314397) (-3085 . 314342) (-3086 . 314046) (-3087 . 313994)
+ (-3088 . 313902) (-3089 . 313849) (-3090 . 313720) (-3091 . 313404)
+ (-3092 . 313352) (-3093 . 313323) (-3094 . 313279) (-3095 . 313170)
+ (-3096 . 313033) (-3097 . 312697) (-3098 . 312669) (-3099 . 312577)
+ (-3100 . 312244) (-3101 . 311806) (-3102 . 311355) (-3103 . 311230)
+ (-3104 . 310234) (-3105 . 310203) (-3106 . 310153) (-3107 . 310070)
+ (-3108 . 309834) (-3109 . 309738) (-3110 . 309491) (-3111 . 309405)
+ (-3112 . 309267) (-3113 . 308149) (-3114 . 307723) (-3115 . 307475)
+ (-3116 . 307406) (-3117 . 307341) (-3118 . 307228) (-3119 . 307113)
+ (-3120 . 307081) (-3121 . 306833) (-3122 . 306463) (-3123 . 306035)
+ (-3124 . 305789) (-3125 . 305736) (-3126 . 305635) (-3127 . 305532)
+ (-3128 . 305329) (-3129 . 305119) (-3130 . 305021) (-3131 . 304972)
+ (-3132 . 304293) (-3133 . 304045) (-3134 . 303904) (-3135 . 303561)
+ (-3136 . 302917) (-3137 . 302786) (-3138 . 302715) (-3139 . 302568)
+ (-3140 . 302389) (-3141 . 302000) (-3142 . 301901) (-3143 . 301614)
+ (-3144 . 301527) (-3145 . 301348) (-3146 . 301265) (-3147 . 301164)
+ (-3148 . 301105) (-3149 . 300027) (-3150 . 299605) (-3151 . 299528)
+ (-3152 . 299320) (-3153 . 299199) (-3154 . 299102) (-3155 . 299030)
+ (-3156 . 298944) (-3157 . 298848) (-3158 . 298546) (-3159 . 298413)
+ (-3160 . 298193) (-3161 . 297131) (-3162 . 296963) (-3163 . 296877)
+ (-3164 . 296502) (-3165 . 295898) (-3166 . 295691) (-3167 . 295206)
+ (-3168 . 294991) (-3169 . 294856) (-3170 . 294631) (-3171 . 294551)
+ (-3172 . 294494) (-3173 . 294428) (-3174 . 293638) (-3175 . 293495)
+ (-3176 . 293418) (-3177 . 293254) (-3178 . 293056) (-3179 . 292802)
+ (-3180 . 292714) (-3181 . 292661) (-3182 . 292530) (-3183 . 292204)
+ (-3184 . 292130) (-3185 . 291942) (-3186 . 291834) (-3187 . 291761)
+ (-3188 . 291708) (-3189 . 291455) (-3190 . 291113) (-3191 . 289965)
+ (-3192 . 289469) (-3193 . 289370) (-3194 . 289321) (-3195 . 289216)
+ (-3196 . 289073) (-3197 . 288972) (-3198 . 288843) (-3199 . 288772)
+ (-3200 . 288430) (-3201 . 288344) (-3202 . 288097) (-3203 . 287996)
+ (-3204 . 287778) (-3205 . 287683) (-3206 . 287584) (-3207 . 287517)
+ (-3208 . 287319) (-3209 . 287206) (-3210 . 287047) (-3211 . 286696)
+ (-3212 . 286493) (-3213 . 285911) (-3214 . 285825) (-3215 . 285718)
+ (-3216 . 285431) (-3217 . 285373) (-3218 . 285279) (-3219 . 285162)
+ (-3220 . 285079) (-3221 . 285006) (-3222 . 284944) (-3223 . 284414)
+ (-3224 . 284329) (-3225 . 284252) (-3226 . 284097) (-3227 . 283984)
+ (-3228 . 283838) (-3229 . 283691) (-3230 . 283525) (-3231 . 283496)
+ (-3232 . 283468) (-3233 . 283385) (-3234 . 283229) (-3235 . 283156)
+ (-3236 . 283061) (-3237 . 282488) (-3238 . 282416) (-3239 . 282291)
+ (-3240 . 282203) (-3241 . 282096) (-3242 . 282068) (-3243 . 281838)
+ (-3244 . 281254) (-3245 . 281204) (-3246 . 281084) (-3247 . 280989)
+ (-3248 . 280809) (-3249 . 280730) (-3250 . 280677) (-3251 . 280610)
+ (-3252 . 280558) (-3253 . 280067) (-3254 . 280015) (-3255 . 279631)
+ (-3256 . 279603) (-3257 . 279438) (-3258 . 279385) (-3259 . 279332)
+ (-3260 . 279251) (-3261 . 278852) (-3262 . 278707) (-3263 . 278517)
+ (-3264 . 278420) (-3265 . 278227) (-3266 . 278108) (-3267 . 277989)
+ (-3268 . 277916) (-3269 . 277631) (-3270 . 277265) (-9 . 277237)
+ (-3272 . 277081) (-3273 . 276947) (-3274 . 276515) (-3275 . 276460)
+ (-3276 . 276251) (-3277 . 276086) (-3278 . 275997) (-3279 . 275942)
+ (-8 . 275914) (-3281 . 275741) (-3282 . 275640) (-3283 . 275496)
+ (-3284 . 275418) (-3285 . 275338) (-3286 . 275159) (-3287 . 275064)
+ (-3288 . 274698) (-3289 . 273988) (-3290 . 273900) (-3291 . 273832)
+ (-7 . 273804) (-3293 . 273751) (-3294 . 273699) (-3295 . 273580)
+ (-3296 . 273528) (-3297 . 273420) (-3298 . 273267) (-3299 . 273148)
+ (-3300 . 272888) (-3301 . 272814) (-3302 . 272763) (-3303 . 272602)
+ (-3304 . 272508) (-3305 . 272147) (-3306 . 272090) (-3307 . 271971)
+ (-3308 . 271839) (-3309 . 271758) (-3310 . 271681) (-3311 . 271593)
+ (-3312 . 271441) (-3313 . 271110) (-3314 . 271027) (-3315 . 270914)
+ (-3316 . 270719) (-3317 . 270622) (-3318 . 270561) (-3319 . 270453)
+ (-3320 . 270370) (-3321 . 270333) (-3322 . 270149) (-3323 . 270077)
+ (-3324 . 269850) (-3325 . 269712) (-3326 . 269557) (-3327 . 269448)
+ (-3328 . 269420) (-3329 . 269101) (-3330 . 269042) (-3331 . 268912)
+ (-3332 . 268750) (-3333 . 268653) (-3334 . 267693) (-3335 . 267665)
+ (-3336 . 267546) (-3337 . 267478) (-3338 . 267246) (-3339 . 266679)
+ (-3340 . 266605) (-3341 . 266450) (-3342 . 266385) (-3343 . 266305)
+ (-3344 . 266178) (-3345 . 266060) (-3346 . 265641) (-3347 . 265498)
+ (-3348 . 265441) (-3349 . 264995) (-3350 . 264967) (-3351 . 264804)
+ (-3352 . 264731) (-3353 . 264498) (-3354 . 264167) (-3355 . 263826)
+ (-3356 . 263630) (-3357 . 263496) (-3358 . 263442) (-3359 . 263327)
+ (-3360 . 263233) (-3361 . 263075) (-3362 . 262960) (-3363 . 262907)
+ (-3364 . 262855) (-3365 . 262803) (-3366 . 262744) (-3367 . 262546)
+ (-3368 . 261960) (-3369 . 261892) (-3370 . 261577) (-3371 . 261491)
+ (-3372 . 261393) (-3373 . 261339) (-3374 . 260994) (-3375 . 260900)
+ (-3376 . 260846) (-3377 . 260812) (-3378 . 260463) (-3379 . 260396)
+ (-3380 . 259719) (-3381 . 259414) (-3382 . 259300) (-3383 . 259201)
+ (-3384 . 258962) (-3385 . 258815) (-3386 . 258756) (-3387 . 258696)
+ (-3388 . 258600) (-3389 . 258551) (-3390 . 258123) (-3391 . 258064)
+ (-3392 . 257501) (-3393 . 257472) (-3394 . 257176) (-3395 . 257025)
+ (-3396 . 256931) (-3397 . 256874) (-3398 . 256173) (-3399 . 255694)
+ (-3400 . 255625) (-3401 . 255562) (-3402 . 255449) (-3403 . 255421)
+ (-3404 . 255305) (-3405 . 255250) (-3406 . 255183) (-3407 . 255076)
+ (-3408 . 255005) (-3409 . 254188) (-3410 . 254117) (-3411 . 254049)
+ (-3412 . 253978) (-3413 . 253787) (-3414 . 253659) (-3415 . 253576)
+ (-3416 . 253396) (-3417 . 253335) (-3418 . 253262) (-3419 . 253176)
+ (-3420 . 253044) (-3421 . 252930) (-3422 . 252834) (-3423 . 252432)
+ (-3424 . 252284) (-3425 . 252205) (-3426 . 252064) (-3427 . 251808)
+ (-3428 . 251560) (-3429 . 251532) (-3430 . 251451) (-3431 . 251374)
+ (-3432 . 251253) (-3433 . 251169) (-3434 . 250928) (-3435 . 250745)
+ (-3436 . 250596) (-3437 . 250529) (-3438 . 250448) (-3439 . 250350)
+ (-3440 . 250243) (-3441 . 249719) (-3442 . 249639) (-3443 . 249487)
+ (-3444 . 249391) (-3445 . 249278) (-3446 . 248250) (-3447 . 248183)
+ (-3448 . 248097) (-3449 . 247993) (-3450 . 247889) (-3451 . 247613)
+ (-3452 . 247540) (-3453 . 247488) (-3454 . 247369) (-3455 . 247259)
+ (-3456 . 246867) (-3457 . 246790) (-3458 . 246758) (-3459 . 246194)
+ (-3460 . 246166) (-3461 . 246072) (-3462 . 246002) (-3463 . 245919)
+ (-3464 . 245859) (-3465 . 245696) (-3466 . 245644) (-3467 . 245280)
+ (-3468 . 245165) (-3469 . 244201) (-3470 . 243824) (-3471 . 243680)
+ (-3472 . 243548) (-3473 . 243462) (-3474 . 243080) (-3475 . 243028)
+ (-3476 . 242973) (-3477 . 242920) (-3478 . 242574) (-3479 . 242525)
+ (-3480 . 242423) (-3481 . 242337) (-3482 . 242231) (-3483 . 242174)
+ (-3484 . 242100) (-3485 . 242066) (-3486 . 241622) (-3487 . 241403)
+ (-3488 . 241237) (-3489 . 241133) (-3490 . 241007) (-3491 . 240875)
+ (-3492 . 240719) (-3493 . 240666) (-3494 . 240587) (-3495 . 240559)
+ (-3496 . 240493) (-3497 . 240366) (-3498 . 240243) (-3499 . 240181)
+ (-3500 . 238735) (-3501 . 238658) (-3502 . 238538) (-3503 . 238422)
+ (-3504 . 238267) (-3505 . 238163) (-3506 . 237958) (-3507 . 237926)
+ (-3508 . 237633) (-3509 . 235855) (-3510 . 235767) (-3511 . 235696)
+ (-3512 . 235619) (-3513 . 235192) (-3514 . 235119) (-3515 . 234971)
+ (-3516 . 234849) (-3517 . 234475) (-3518 . 234257) (-3519 . 233922)
+ (-3520 . 233824) (-3521 . 233711) (-3522 . 233629) (-3523 . 233507)
+ (-3524 . 233343) (-3525 . 232809) (-3526 . 232574) (-3527 . 232521)
+ (-3528 . 232382) (-3529 . 232286) (-3530 . 232075) (-3531 . 231885)
+ (-3532 . 231857) (-3533 . 231631) (-3534 . 231581) (-3535 . 231481)
+ (-3536 . 231391) (-3537 . 231314) (-3538 . 230315) (-3539 . 230181)
+ (-3540 . 230129) (-3541 . 229997) (-3542 . 229942) (-3543 . 229682)
+ (-3544 . 229599) (-3545 . 229349) (-3546 . 229261) (-3547 . 228503)
+ (-3548 . 228393) (-3549 . 228341) (-3550 . 228192) (-3551 . 227606)
+ (-3552 . 227155) (-3553 . 226348) (-3554 . 226285) (-3555 . 226200)
+ (-3556 . 225966) (-3557 . 225851) (-3558 . 225752) (-3559 . 225673)
+ (-3560 . 225570) (-3561 . 225461) (-3562 . 225337) (-3563 . 225215)
+ (-3564 . 225163) (-3565 . 225080) (-3566 . 224922) (-3567 . 224722)
+ (-3568 . 224653) (-3569 . 224625) (-3570 . 224548) (-3571 . 224412)
+ (-3572 . 224141) (-3573 . 223911) (-3574 . 223549) (-3575 . 223456)
+ (-3576 . 223302) (-3577 . 223144) (-3578 . 223116) (-3579 . 223062)
+ (-3580 . 222967) (-3581 . 222084) (-3582 . 221963) (-3583 . 221352)
+ (-3584 . 221199) (-3585 . 220994) (-3586 . 220903) (-3587 . 220832)
+ (-3588 . 220744) (-3589 . 220599) (-3590 . 220532) (-3591 . 220313)
+ (-3592 . 220223) (-3593 . 220172) (-3594 . 220144) (-3595 . 220071)
+ (-3596 . 219592) (-3597 . 219381) (-3598 . 219131) (-3599 . 219079)
+ (-3600 . 218983) (-3601 . 218270) (-3602 . 217877) (-3603 . 217816)
+ (-3604 . 217531) (-3605 . 217394) (-3606 . 217298) (-3607 . 217059)
+ (-3608 . 216707) (-3609 . 216617) (-3610 . 216369) (-3611 . 216275)
+ (-3612 . 216221) (-3613 . 216193) (-3614 . 216165) (-3615 . 216113)
+ (-3616 . 215970) (-3617 . 215871) (-3618 . 215797) (-3619 . 215658)
+ (-3620 . 215521) (-3621 . 215309) (-3622 . 215208) (-3623 . 215176)
+ (-3624 . 215147) (-3625 . 215076) (-3626 . 214980) (-3627 . 214906)
+ (-3628 . 214568) (-3629 . 214516) (-3630 . 214323) (-3631 . 214137)
+ (-3632 . 214085) (-3633 . 213894) (-3634 . 213735) (-3635 . 213643)
+ (-3636 . 213594) (-3637 . 213462) (-3638 . 213399) (-3639 . 213243)
+ (-3640 . 213139) (-3641 . 213048) (-3642 . 212881) (-3643 . 212736)
+ (-3644 . 212623) (-3645 . 212546) (-3646 . 212407) (-3647 . 212257)
+ (-3648 . 212030) (-3649 . 206690) (-3650 . 206475) (-3651 . 206268)
+ (-3652 . 206198) (-3653 . 206121) (-3654 . 206037) (-3655 . 205809)
+ (-3656 . 205570) (-3657 . 205260) (-3658 . 205161) (-3659 . 204988)
+ (-3660 . 204892) (-3661 . 204773) (-3662 . 204721) (-3663 . 204473)
+ (-3664 . 204362) (-3665 . 203766) (-3666 . 203683) (-3667 . 203295)
+ (-3668 . 203232) (-3669 . 203102) (-3670 . 202967) (-3671 . 202895)
+ (-3672 . 202733) (-3673 . 202638) (-3674 . 202463) (-3675 . 202406)
+ (-3676 . 202233) (-3677 . 202175) (-3678 . 202050) (-3679 . 202000)
+ (-3680 . 201941) (-3681 . 201862) (-3682 . 201590) (-3683 . 201490)
+ (-3684 . 201395) (-3685 . 201228) (-3686 . 200850) (-3687 . 200675)
+ (-3688 . 200598) (-3689 . 200521) (-3690 . 200437) (-3691 . 200370)
+ (-3692 . 200291) (-3693 . 200229) (-3694 . 199721) (-3695 . 199649)
+ (-3696 . 199600) (-3697 . 199514) (-3698 . 199361) (-3699 . 199105)
+ (-3700 . 198944) (-3701 . 198600) (-3702 . 198535) (-3703 . 198165)
+ (-3704 . 198004) (-3705 . 197840) (-3706 . 197742) (-3707 . 197685)
+ (-3708 . 197560) (-3709 . 197457) (-3710 . 197429) (-3711 . 197362)
+ (-3712 . 197310) (-3713 . 197257) (-3714 . 197198) (-3715 . 197066)
+ (-3716 . 196868) (-3717 . 196796) (-3718 . 196744) (-3719 . 196598)
+ (-3720 . 196447) (-3721 . 196396) (-3722 . 196159) (-3723 . 195783)
+ (-3724 . 195596) (-3725 . 195524) (-3726 . 195409) (-3727 . 195352)
+ (-3728 . 195279) (-3729 . 195083) (-3730 . 195030) (-3731 . 195002)
+ (-3732 . 194828) (-3733 . 194744) (-3734 . 194607) (-3735 . 194357)
+ (-3736 . 194198) (-3737 . 193921) (-3738 . 193879) (-3739 . 193783)
+ (-3740 . 193704) (-3741 . 190405) (-3742 . 190153) (-3743 . 190082)
+ (-3744 . 189960) (-3745 . 189904) (-3746 . 189715) (-3747 . 189613)
+ (-3748 . 189470) (-3749 . 189400) (-3750 . 189368) (-3751 . 189291)
+ (-3752 . 189220) (-3753 . 189054) (-3754 . 188761) (-3755 . 188677)
+ (-3756 . 188598) (-3757 . 188440) (-3758 . 188354) (-3759 . 188246)
+ (-3760 . 188189) (-3761 . 188085) (-3762 . 187823) (-3763 . 187746)
+ (-3764 . 187663) (-3765 . 187200) (-3766 . 187117) (-3767 . 187064)
+ (-3768 . 186860) (-3769 . 185996) (-3770 . 185852) (-3771 . 185750)
+ (-3772 . 185697) (-3773 . 185564) (-3774 . 185354) (-3775 . 185183)
+ (-3776 . 185060) (-3777 . 185023) (-3778 . 184880) (-3779 . 184828)
+ (-3780 . 184758) (-3781 . 184612) (-3782 . 184392) (-3783 . 184140)
+ (-3784 . 184045) (-3785 . 183984) (-3786 . 183775) (-3787 . 183708)
+ (-3788 . 183540) (-3789 . 183474) (-3790 . 183381) (-3791 . 183218)
+ (-3792 . 183149) (-3793 . 183079) (-3794 . 182978) (-3795 . 182856)
+ (-3796 . 182755) (-3797 . 182411) (-3798 . 182302) (-3799 . 182212)
+ (-3800 . 182084) (-3801 . 181911) (-3802 . 181859) (-3803 . 181776)
+ (-3804 . 181720) (-3805 . 181542) (-3806 . 181435) (-3807 . 181150)
+ (-3808 . 181067) (-3809 . 180882) (-3810 . 180735) (-3811 . 180657)
+ (-3812 . 180629) (-3813 . 180414) (-3814 . 180360) (-3815 . 180287)
+ (-3816 . 180122) (-3817 . 179936) (-3818 . 179832) (-3819 . 179758)
+ (-3820 . 179685) (-3821 . 179444) (-3822 . 178576) (-3823 . 178407)
+ (-3824 . 178079) (-3825 . 178027) (-3826 . 177890) (-3827 . 177462)
+ (-3828 . 177391) (-3829 . 176089) (-3830 . 175672) (-3831 . 175439)
+ (-3832 . 175342) (-3833 . 175217) (-3834 . 175118) (-3835 . 174640)
+ (-3836 . 174350) (-3837 . 174223) (-3838 . 174014) (-3839 . 173882)
+ (-3840 . 173775) (-3841 . 173670) (-3842 . 173568) (-3843 . 173496)
+ (-3844 . 173438) (-3845 . 173352) (-3846 . 173134) (-3847 . 172997)
+ (-3848 . 172769) (-3849 . 172161) (-3850 . 172084) (-3851 . 172032)
+ (-3852 . 171717) (-3853 . 171660) (-3854 . 171608) (-3855 . 171505)
+ (-3856 . 171471) (-3857 . 171347) (-3858 . 171267) (-3859 . 171205)
+ (-3860 . 171047) (-3861 . 170812) (-3862 . 170672) (-3863 . 170541)
+ (-3864 . 170350) (-3865 . 170284) (-3866 . 170139) (-3867 . 169998)
+ (-3868 . 169909) (-3869 . 169767) (-3870 . 169672) (-3871 . 169556)
+ (-3872 . 169477) (-3873 . 169425) (-3874 . 169353) (-3875 . 169244)
+ (-3876 . 169089) (-3877 . 169001) (-3878 . 168973) (-3879 . 168869)
+ (-3880 . 168662) (-3881 . 168564) (-3882 . 168461) (-3883 . 168433)
+ (-3884 . 167679) (-3885 . 167461) (-3886 . 167206) (-3887 . 167038)
+ (-3888 . 164623) (-3889 . 164494) (-3890 . 163527) (-3891 . 163468)
+ (-3892 . 163338) (-3893 . 163281) (-3894 . 162641) (-3895 . 162564)
+ (-3896 . 162420) (-3897 . 162353) (-3898 . 161079) (-3899 . 160631)
+ (-3900 . 158516) (-3901 . 158422) (-3902 . 158255) (-3903 . 158185)
+ (-3904 . 158079) (-3905 . 157921) (-3906 . 157828) (-3907 . 157796)
+ (-3908 . 157692) (-3909 . 157311) (-3910 . 156853) (-3911 . 156710)
+ (-3912 . 156543) (-3913 . 137968) (-3914 . 137909) (-3915 . 137829)
+ (-3916 . 137650) (-3917 . 137513) (-3918 . 137461) (-3919 . 137332)
+ (-3920 . 137237) (-3921 . 137092) (-3922 . 136993) (-3923 . 136506)
+ (-3924 . 133685) (-3925 . 133630) (-3926 . 133186) (-3927 . 132980)
+ (-3928 . 132901) (-3929 . 128357) (-3930 . 126225) (-3931 . 126047)
+ (-3932 . 125947) (-3933 . 125823) (-3934 . 125733) (-3935 . 125605)
+ (-3936 . 125492) (-3937 . 125200) (-3938 . 125090) (-3939 . 124965)
+ (-3940 . 124784) (-3941 . 124750) (-3942 . 124498) (-3943 . 124402)
+ (-3944 . 124333) (-3945 . 124305) (-3946 . 123568) (-3947 . 123383)
+ (-3948 . 123331) (-3949 . 123269) (-3950 . 123217) (-3951 . 122629)
+ (-3952 . 122088) (-3953 . 122004) (-3954 . 121886) (-3955 . 121813)
+ (-3956 . 121657) (-3957 . 121629) (-3958 . 121364) (-3959 . 121330)
+ (-3960 . 121302) (-3961 . 121236) (-3962 . 120394) (-3963 . 119227)
+ (-3964 . 118681) (-3965 . 118074) (-3966 . 117986) (-3967 . 117908)
+ (-3968 . 117839) (-3969 . 117655) (-3970 . 117560) (-3971 . 117507)
+ (-3972 . 117176) (-3973 . 116823) (-3974 . 116749) (-3975 . 116382)
+ (-3976 . 116254) (-3977 . 115662) (-3978 . 115563) (-3979 . 115468)
+ (-3980 . 115350) (-3981 . 113948) (-3982 . 113642) (-3983 . 113109)
+ (-3984 . 112905) (-3985 . 112775) (-3986 . 112403) (-3987 . 111814)
+ (-3988 . 111685) (-3989 . 111633) (-3990 . 111426) (-3991 . 111246)
+ (-3992 . 111133) (-3993 . 111029) (-3994 . 110952) (-3995 . 110851)
+ (-3996 . 110799) (-3997 . 110713) (-3998 . 110578) (-3999 . 110421)
+ (-4000 . 110321) (-4001 . 110214) (-4002 . 110050) (-4003 . 109996)
+ (-4004 . 109899) (-4005 . 109762) (-4006 . 109555) (-4007 . 109481)
+ (-4008 . 109383) (-4009 . 109316) (-4010 . 109200) (-4011 . 109023)
+ (-4012 . 103509) (-4013 . 103129) (-4014 . 102958) (-4015 . 102853)
+ (-4016 . 102465) (-4017 . 102321) (-4018 . 102201) (-4019 . 102065)
+ (-4020 . 101527) (-4021 . 101134) (-4022 . 101015) (-4023 . 100922)
+ (-4024 . 100820) (-4025 . 100734) (** . 97739) (-4027 . 97521)
+ (-4028 . 97257) (-4029 . 97150) (-4030 . 96767) (-4031 . 96640)
+ (-4032 . 96557) (-4033 . 96444) (-4034 . 96002) (-4035 . 95947)
+ (-4036 . 95875) (-4037 . 95730) (-4038 . 95546) (-4039 . 95319)
+ (-4040 . 95124) (-4041 . 95016) (-4042 . 94946) (-4043 . 94621)
+ (-4044 . 94286) (-4045 . 94141) (-4046 . 94041) (-4047 . 93912)
+ (-4048 . 93787) (-4049 . 93629) (-4050 . 93549) (-4051 . 93158)
+ (-4052 . 92985) (-4053 . 92818) (-4054 . 92660) (-4055 . 92480)
+ (-4056 . 92429) (-4057 . 92377) (-4058 . 92240) (-4059 . 92137)
+ (-4060 . 91952) (-4061 . 91641) (-4062 . 91542) (-4063 . 91370)
+ (-4064 . 91315) (-4065 . 91172) (-4066 . 90796) (-4067 . 90768)
+ (-4068 . 90432) (-4069 . 90313) (-4070 . 90116) (-4071 . 90082)
+ (-4072 . 90030) (-4073 . 89934) (-4074 . 89719) (-4075 . 89623)
+ (-4076 . 89543) (-4077 . 89414) (-4078 . 89329) (-4079 . 89298)
+ (-4080 . 89118) (-4081 . 89011) (-4082 . 88923) (-4083 . 87619)
+ (-4084 . 87527) (-4085 . 87305) (-4086 . 87171) (-4087 . 87100)
+ (-4088 . 87007) (-4089 . 86835) (-4090 . 86546) (-4091 . 86463)
+ (-4092 . 86413) (-4093 . 86230) (-4094 . 85955) (-4095 . 85790)
+ (-4096 . 85700) (-4097 . 85548) (-4098 . 85326) (-4099 . 85126)
+ (-4100 . 84919) (-4101 . 84863) (-4102 . 84811) (-4103 . 84653)
+ (-4104 . 84575) (-4105 . 84464) (-4106 . 84192) (-4107 . 83865)
+ (-4108 . 83662) (-4109 . 83567) (-4110 . 83463) (-4111 . 83303)
+ (-4112 . 83215) (-4113 . 82789) (-4114 . 82617) (-4115 . 82564)
+ (-4116 . 82512) (-4117 . 82429) (-4118 . 82045) (-4119 . 81901)
+ (-4120 . 81813) (-4121 . 81254) (-4122 . 81036) (-4123 . 81007)
+ (-4124 . 80909) (-4125 . 80790) (-4126 . 80556) (-4127 . 80277)
+ (-4128 . 80050) (-4129 . 79759) (-4130 . 79480) (-4131 . 79386)
+ (-4132 . 79318) (-4133 . 78759) (-4134 . 78656) (-4135 . 78033)
+ (-4136 . 77950) (-4137 . 77541) (-4138 . 76898) (-4139 . 75267)
+ (-4140 . 75030) (-4141 . 74942) (-4142 . 74724) (-4143 . 74692)
+ (-4144 . 74543) (-4145 . 74373) (-4146 . 74155) (-4147 . 73891)
+ (-4148 . 73729) (-4149 . 72870) (-4150 . 72784) (-4151 . 72710)
+ (-4152 . 72643) (-4153 . 72217) (-4154 . 71944) (-4155 . 71704)
+ (-4156 . 71625) (-4157 . 71515) (-4158 . 71349) (-4159 . 70087)
+ (-4160 . 70034) (-4161 . 69718) (-4162 . 68420) (-4163 . 68360)
+ (-4164 . 68228) (-4165 . 68176) (-4166 . 67981) (-4167 . 67443)
+ (-4168 . 65381) (-4169 . 65325) (-4170 . 65297) (-4171 . 65082)
+ (-4172 . 64834) (-4173 . 64756) (-4174 . 64359) (-4175 . 64289)
+ (-4176 . 64223) (-4177 . 64170) (-4178 . 63951) (-4179 . 63618)
+ (-4180 . 63566) (-4181 . 63458) (-4182 . 63286) (-4183 . 63120)
+ (-4184 . 62931) (-4185 . 62702) (-4186 . 62674) (-4187 . 62574)
+ (-4188 . 62351) (-4189 . 61961) (-4190 . 61888) (-4191 . 61022)
+ (-4192 . 60876) (-4193 . 60822) (-4194 . 60678) (-4195 . 60595)
+ (-4196 . 60484) (-4197 . 60105) (-4198 . 60043) (-4199 . 59910)
+ (-4200 . 59882) (-4201 . 59774) (-4202 . 59634) (-4203 . 59574)
+ (-4204 . 59464) (-4205 . 59311) (-4206 . 59114) (-4207 . 59001)
+ (-4208 . 58714) (-4209 . 58680) (-4210 . 58586) (-4211 . 58534)
+ (-4212 . 58340) (-4213 . 58182) (-4214 . 58072) (-4215 . 57943)
+ (-4216 . 57844) (-4217 . 57707) (-4218 . 57520) (-4219 . 57372)
+ (-4220 . 56826) (-4221 . 56680) (-4222 . 56539) (-4223 . 56359)
+ (-4224 . 56295) (-4225 . 56193) (-4226 . 54793) (-4227 . 54736)
+ (-4228 . 54648) (-4229 . 54494) (-4230 . 54276) (-4231 . 53823)
+ (-4232 . 53668) (-4233 . 53601) (-4234 . 53473) (-4235 . 53420)
+ (-4236 . 53218) (-4237 . 53095) (-4238 . 52937) (-4239 . 52342)
+ (-4240 . 52284) (-4241 . 52186) (-4242 . 52133) (-4243 . 51990)
+ (-4244 . 51866) (-4245 . 51792) (-4246 . 51022) (-4247 . 50804)
+ (-4248 . 50641) (-4249 . 50546) (-4250 . 50313) (-4251 . 50231)
+ (-4252 . 50129) (-4253 . 50027) (-4254 . 49604) (-4255 . 49486)
+ (-4256 . 48190) (-4257 . 47869) (-4258 . 47553) (-4259 . 47475)
+ (-4260 . 47379) (-4261 . 47327) (-4262 . 47267) (-4263 . 47172)
+ (-4264 . 46645) (-4265 . 46568) (-4266 . 46425) (-4267 . 46369)
+ (-4268 . 46295) (-4269 . 46180) (-4270 . 46108) (-4271 . 45992)
+ (-4272 . 44652) (-4273 . 44599) (-4274 . 44503) (-4275 . 44402)
+ (-4276 . 44267) (-4277 . 44124) (-4278 . 44069) (-4279 . 43997)
+ (-4280 . 43944) (-4281 . 43877) (-4282 . 43821) (-4283 . 43696)
+ (-4284 . 43533) (-4285 . 43370) (-4286 . 43206) (-4287 . 43111)
+ (-4288 . 42603) (-4289 . 42445) (-4290 . 42315) (-4291 . 42263)
+ (-4292 . 42034) (-4293 . 41762) (-4294 . 41641) (-4295 . 41581)
+ (-4296 . 41288) (-4297 . 41207) (-4298 . 41112) (-4299 . 40901)
+ (-4300 . 40601) (-4301 . 40074) (-4302 . 40004) (-4303 . 39532)
+ (-4304 . 39433) (-4305 . 39380) (-4306 . 39280) (-4307 . 38057)
+ (-4308 . 37566) (-4309 . 37445) (-4310 . 37396) (-4311 . 37255)
+ (-4312 . 36334) (-4313 . 36306) (-4314 . 36253) (-4315 . 36172)
+ (-4316 . 35922) (-4317 . 35894) (-4318 . 35835) (-4319 . 35739)
+ (-4320 . 35638) (-4321 . 35458) (-4322 . 35287) (-4323 . 34896)
+ (-4324 . 34781) (-4325 . 34186) (-4326 . 33834) (-4327 . 33582)
+ (-4328 . 33297) (-4329 . 33171) (-4330 . 32760) (-4331 . 32570)
+ (-4332 . 32273) (-4333 . 32241) (-4334 . 31628) (-4335 . 31290)
+ (-4336 . 31085) (-4337 . 30896) (-4338 . 30772) (-4339 . 30669)
+ (-4340 . 30610) (-4341 . 30483) (-4342 . 30431) (-4343 . 30286)
+ (-4344 . 30206) (-4345 . 29779) (-4346 . 29441) (-4347 . 29389)
+ (-4348 . 29027) (-4349 . 28735) (-4350 . 28543) (-4351 . 28284)
+ (-4352 . 28229) (-4353 . 27898) (-4354 . 27722) (-4355 . 27556)
+ (-4356 . 26740) (-4357 . 26688) (-4358 . 26588) (-4359 . 26554)
+ (-4360 . 26359) (-4361 . 26304) (-4362 . 26045) (-4363 . 25943)
+ (-4364 . 25864) (-4365 . 25679) (-4366 . 25648) (-4367 . 25546)
+ (-4368 . 25294) (-4369 . 25113) (-4370 . 25021) (-4371 . 24949)
+ (-4372 . 24921) (-4373 . 24833) (-4374 . 24608) (-4375 . 24509)
+ (-4376 . 24414) (-4377 . 24351) (-4378 . 24296) (-4379 . 24018)
+ (-4380 . 23946) (-4381 . 23724) (-4382 . 23614) (-4383 . 23498)
+ (-4384 . 23163) (-4385 . 22940) (-4386 . 22881) (-4387 . 22398)
+ (-4388 . 22319) (-4389 . 21673) (-4390 . 21603) (-4391 . 21351)
+ (-4392 . 21266) (-4393 . 21204) (-4394 . 21075) (-4395 . 20977)
+ (-4396 . 20563) (-4397 . 20504) (-4398 . 20416) (-4399 . 20330)
+ (-4400 . 19738) (-4401 . 19678) (-4402 . 19513) (-4403 . 19331)
+ (-4404 . 19212) (-4405 . 19097) (-4406 . 18979) (-4407 . 18912)
+ (-4408 . 18840) (-4409 . 18606) (-4410 . 18508) (-4411 . 18457)
+ (-4412 . 18146) (-4413 . 18045) (-4414 . 17874) (-4415 . 17622)
+ (-4416 . 17468) (-4417 . 17410) (-4418 . 17332) (-4419 . 17250)
+ (-4420 . 17201) (-4421 . 17149) (-4422 . 17046) (-4423 . 16955)
+ (-4424 . 10012) (-4425 . 9925) (-4426 . 9897) (-4427 . 9814)
+ (-4428 . 9719) (-4429 . 9603) (-4430 . 9544) (-4431 . 9491)
+ (-4432 . 9331) (-4433 . 9278) (-4434 . 9060) (-4435 . 8890)
+ (-4436 . 8610) (-4437 . 8007) (-4438 . 7614) (-4439 . 7555)
+ (-4440 . 7395) (-4441 . 7343) (-4442 . 7140) (-4443 . 7073)
+ (-4444 . 7045) (-4445 . 6844) (-4446 . 6760) (-4447 . 6416)
+ (-4448 . 6361) (-4449 . 6101) (-4450 . 6049) (-4451 . 5898)
+ (-4452 . 5864) (-4453 . 5786) (-4454 . 5648) (-4455 . 5226)
+ (-4456 . 5170) (-4457 . 4965) (-4458 . 4847) (-4459 . 4789)
+ (-4460 . 4631) (-4461 . 4315) (-4462 . 4158) (-4463 . 4027)
+ (-4464 . 3959) (-4465 . 3647) (-4466 . 3280) (-4467 . 3026)
+ (-4468 . 2901) (-4469 . 2824) (-4470 . 2576) (-4471 . 2475)
+ (-4472 . 2405) (-4473 . 2333) (-4474 . 2237) (-4475 . 2139)
+ (-4476 . 1660) (-4477 . 1450) (-4478 . 1380) (-4479 . 1224)
+ (-4480 . 1171) (-4481 . 946) (-4482 . 830) (-4483 . 734) (-4484 . 630)
+ (-4485 . 465) (-4486 . 370) (-4487 . 102) (-4488 . 30)) \ No newline at end of file